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Preface

The Annual Iranian Mathematics Conference (AIMC) has been held since 1970. It is
the oldest Iranian scientific gathering which takes place regularly each year at one of
Iranian universities. The 36th annual Iranian mathematics conference was held at Yazd
University and now we are pleased to organize the 46th conference. The 46th AIMC will
be held at Yazd University in Yazd (the most beautiful and historical city of Iran) from
August 25 until August 28, 2015. The Iranian Mathematical Society and Yazd University
have jointly sponsored the 46th AIMC. This conference is an international conference and
includes Keynote speakers, Invited speakers, Presentations of contributed research papers,
and Poster presentations.

It is our pleasure to publish the Proceedings of the 46th AIMC. More than 700 math-
ematicians from our country and abroad have taken part in the conference. By kind
cooperation of contributors, more than 1100 papers were received. The scientific com-
mittee put a considerable effort on referral process in order to arrange a conference of
excellent scientific quality. We have 15 plenary speakers from universities of Iran, as well
as from Australia, South Korea, Canada, China, Czech Republic, India, Serbia and Spain.
Moreover, our invited speakers are about 12.

The Scientific Committee of
46th Annual Iranian Mathematics Conference
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A medley of group actions∗

Cheryl E. Praeger†

The University of Western Australia

Abstract

Most of my interaction and collaborative research with Iranian mathematicians has
been linked with symmetric structures, and has involved group actions. The lecture
will be a tribute to my Iranian colleagues.

Keywords: Group actions, symmetric structures, Iranian mathematicians

Mathematics Subject Classification [2010]: 20B25, 05C25

1 My first visit to Iran

My first mathematical colleague from Iran was Dr Akbar Hassani, who had been a graduate
student with me in Oxford. His sabbatical leave spent at the University of Western
Australia in 1986 led to my first visit to Tehran in 1994. Dr Hassani worked in Perth with
me and Dr Luz Nochefranca on 2-arc transitive graphs.

Definition 1.1. A graph Γ is (G, 2)-arc-transitive, for some subgroup G of automor-
phisms, if G is transitive on all vertex triples (α, β, γ) such that {α, β} and {β, γ} are
both edges and α 6= γ.

Previous work of mine had shown that every non-bipartite (G, 2)-arc transitive graph
is a normal cover of a basic one where the group G has a special from. Hassani, Luz and
I classified all possible basic examples for an infinite family of almost simple groups G.

Theorem 1.2. [1] All (G, 2)-arc-transitive graphs such that PSL(2, q) ≤ G ≤ PΓL(2, q)
are known.

My lecture course in Tehran in 1994 was on the movement and separation of subsets
under group actions, and some open problems on this theme became the topic of the PhD
thesis for Mehdi Khayaty, now Professor Mehdi Alaeiyan.

Definition 1.3. Let G be a permutation group on a finite set Ω such that G has no fixed
points in Ω, and let Γ ⊆ Ω. The movement of Γ is move(Γ) = maxg∈G |Γg \ Γ|, and the
movement of G is the maximum value of move(Γ) over all subsets Γ.

∗Will be presented in English
†Speaker
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In earlier work I had shown that both the number of G-orbits in Ω and the length of
each G-orbit are bounded above by linear functions of the movement of G. In particular,
if G is transitive on Ω with movement m, and if G not a 2-group and p is the smallest
odd prime dividing its order |G|, then I had shown that |Ω| ≤ b2mpp−1 c. The main result of
Mehdi’s thesis was a classification of all groups which attain this upper bound.

Theorem 1.4. [2] Let p be a prime, p ≥ 5, let m be a positive integer, and let G be a
transitive permutation group on a set Ω of size b2mpp−1 c such that G has movement m, G is
not a 2-group and p is the least odd prime dividing |G|. Then either G is known explicitly,
or G is a p-group of exponent bounded in terms of p only.

The second of Akbar Hassani’s students who worked with me in the 1990s was Associate
Professor Mohammadali Iranmanesh. Mohammadali’s thesis topic was vertex-transitive
non-Cayley graphs, namely deciding whether such graphs exist of certain orders [3].

Definition 1.5. Let G be a group and S an inverse-closed subset of G such that 1G /∈ S.
The Cayley graph Cay(G,S) is the graph with vertex set G such that {x, y} is an edge if
and only if xy−1 ∈ S. The group G acts by right multiplication as a regular subgroup of
automorphisms (that is, G is transitive and only the identity fixes a vertex).

A graph Γ is a Cayley graph (for some group) if and only if Aut(Γ) contains a regular
subgroup. As a result of Mohammadali’s work (extending work of Brendan McKay, Alice
Miller, Greg Gamble, Ákos Seress, Akbar Hassani and myself) we know precisely when
such graphs exist for a large class of orders. Mohammadali has worked on several other
research projects with me since this time [5, 6, 7, 16].

Theorem 1.6. [4] All integers n are known such that n has at most three distinct prime
divisors, and there exists a vertex-transitive graph on n vertices which is not a Cayley
graph.

2 Professor Mehdi Behzad

In 2005 I participated in the Annual Iranian Mathematical Society Conference in Yazd.
At that conference I met four Iranian mathematicians who have since visited me in Perth.
The first is Professor Mehdi Behzad, with whom I wrote two papers [8, 9] jointly also
with Professor Behzad’s son Arash. The most interesting one, for me, was the paper [9] in
which we discussed nine different fundamental domination parameters for a graph Γ. (A
vertex/edge subset A dominates a graph Γ if each vertex/edge is either in A or adjacent
to an element of A.) We interpreted these parameters in terms of the total graph T (Γ) of
Γ introduced by Professor Behzad, namely, the vertices of T (Γ) are the vertices and edges
of Γ, with two (vertices or edges) being adjacent in T (Γ) if they are either adjacent or
incident in Γ. We concluded that, arguably, the most fundamental of these parameters is
the vertex-vertex domination parameter.

In addition, I spent hundreds of hours editing an English version of Professor Behzad’s
play “The Legend of the King and the Mathematician” [10]. Based on the puzzle of the
Wolf, Sheep and Cabbage, the play is a wonderful initiative of Professor Behzad aimed at
inspiring young people to enjoy and engage with the mathematical strategies behind the
main story.
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3 My work with younger Iranian colleagues

Dr Seyed Hassan Alavi worked with me and Dr John Bamberg on triple factorisations of
groups of the form G = ABA (for proper subgroups A,B). A surprising equivalence is
that a triple factorisation is directly associated with a G-flag-transitive point-line incidence
structure in which each point-pair is incident with at least one line. If the latter property
holds we say that the geometry is collinearly complete. Part of Hassan’s development, of a
theory of these geometries, is his fundamental paper [11] which connects these geometries
with primitive permutation groups, with restricted movement of point-subsets, and with
flag-transitive symmetric designs. One very interesting class of examples arises for general
linear groups: note that, for given collections of points and lines there are often several
possible notions of incidence. In [12], Hassan identifies all possibilities for subspace actions,
producing new collinearly complete geometries. He also find new examples when the points
or lines are subspace bisections.

Theorem 3.1. [12] Let G = GL(n, q), and V = GF(q)n, and consider the geometry with
m-dimensional subspaces as ‘points’, k-dimensional subspaces as ‘lines’, and incidence
between a ‘point’ and a ‘line’ when the intersection has dimension j. This geometry is
collinearly complete if and only if max{0,m+ k − n} ≤ j ≤ k

2 + max{0,m− n
2 .

Associate Professor Ashraf Daneshkhah worked with me and Associate Professor Alice
Devillers in Perth on subdivision graphs S(Σ) of a given graph Σ, that is, the graph
obtained by ‘adding a vertex’ in the middle of each edge of Σ. Formally, the vertices of
S(Σ) are the vertices and edges of Σ, and edges of S(Σ) are those vertex-edge pairs (α, e)
such that the vertex α lies on the edge e. The paper [13] elucidates connections between
various symmetry properties of Σ and of its subdivision graph S(Σ), in particular local
s-arc-transitivity, and local s-distance transitivity.

Theorem 3.2. [13] Let Σ be a connected graph, s a positive integer, and G ≤ Aut(Σ).
Then S(Σ) is locally (G, s)-arc transitive if and only if Σ is (G, d s+1

2 e)-arc transitive.
Moreover, provided Σ has diameter at least s+1

2 , either of these conditions holds if and
only S(Σ) is locally (G, s)-distance transitive.

Ashraf and Alice then extended this study further and obtained a complete classifica-
tion of locally distance transitive subdivision graphs, which highlighted their connection
with projective planes, generalised quadrangles and generalised hexagons.

Dr Moharram Iradmusa and I worked on a very interesting generalisation of Cayley
graphs, called 2-sided group digraphs. Start with a group G and two subsets L,R of G.

The corresponding 2-sided group digraphs
−→
2S(G;L,R) has vertex set G and an arc from

a vertex x to a vertex y if and only if y = `−1xr for some ` ∈ L, r ∈ R. Despite the
similarities to Definition 1.3, these digraphs need not be vertex-transitive, and we give in
[14, Example 2.1] a surprising example with 12 vertices, and with connected components

of sizes 4 and 8 (see Figure 11). We also determine conditions under which
−→
2S(G;L,R) is

a graph (that is, the joining relation is symmetric), and conditions for it to be connected,
and to be a Cayley graph or digraph. We pose several open problems about these digraphs.

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

A medley of group actions pp.: 3–5

4



Figure 1: Disconnected two-sided group graph with non-isomorphic components

I have worked also with Dr Azizollah Azad on non-commuting graphs for general linear
groups [15, 16], and with Dr Marzieh Akbari on codes in Hamming graphs. I thank all
my Iranian colleagues for their great collaborations and their friendship.
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On Laplacian eigenvalues of graphs

Kinkar Ch. Das∗

Department of Mathematics, Sungkyunkwan University,

Suwon 440-746, Republic of Korea

Abstract

Let G = (V, E) be a simple graph. Denote by D(G) the diagonal matrix of its
vertex degrees and by A(G) its adjacency matrix. Then the Laplacian matrix of G is
L(G) = D(G) − A(G). Denote the spectrum of L(G) by S(L(G)) = (µ1, µ2, . . . , µn),
where we assume the eigenvalues to be arranged in nonincreasing order: µ1 ≥ µ2 ≥
· · · ≥ µn−1 ≥ µn = 0. Let a be the algebraic connectivity of graph G. Then a = µn−1.
Among all eigenvalues of the Laplacian matrix of a graph, the most studied is the
second smallest, called the algebraic connectivity (a(G)) of a graph [5]. In this talk
we show some results on µ1(G) and a(G) of graph G. We obtain some integer and
real Laplacian eigenvalues of graphs. Moreover, we discuss several relations between
Laplacian eigenvalues and graph parameters. Finally, we give some conjectures on the
Laplacian eigenvalues of graphs.

Keywords: Graph, Largest Laplacian eigenvalue, Algebraic connectivity, Diameter,
Minimum degree
Mathematics Subject Classification [2010]: 05C50
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Partition of Unity Parametrics: A framework for

meta-modeling in computer graphics

Faramarz F. Samavati∗

University of Calgary

In the past three decades, the field of Computer Graphics (CG) has experienced a rev-
olution, benefiting from significant research and technical achievements. Creating detailed
digital content is a major task in CG related industries such as Game, Film, GIS and CAD,
and requires well-constructed, high quality geometric models. However, even with sophis-
ticated software packages, geometric modeling is still a challenging and time consuming
task. This challenge is due to the mathematical foundation of geometric models, our way
of interacting with them, and more specifically, the augmenting of these geometric models
with respect to their macro- and microscopic character. Therefore, geometric modeling -
as a main pillar of CG - still requires evaluation to rectify foundation issues.

We present Partition of Unity Parametrics (PUPs), a natural and more flexible ex-
tension of NURBS (which are widely used in industry) that maintains affine invariance.
NURBS inherit many useful properties from B-spline basis functions, and extend B-splines
by allowing a scalar weight to be associated with each control point, indicating its relative
importance to the curve. For these reasons NURBS have emerged as the predominant
choice for modeling in computer graphics. Despite their widespread use, it is difficult to
modify the characteristics of NURBS models. In practice, it is complex to toggle between
sharp and smooth features, as well as to interpolate and approximate control points. Like-
wise, it is difficult to control the local character of curves and surfaces, and not possible
to increase NURBS smoothness without increasing its support.

PUPs replace the weighted basis functions of NURBS with arbitrary weight-functions
(WFs). By choosing appropriate WFs, PUPs yield a comprehensive geometric modeling
framework, accounting for a variety of beneficial properties, such as local-support, speci-
fied smoothness, arbitrary sharp features and approximating or interpolating curves. This
serves as a basis for metamodeling systems where users model the tools used for modeling
(ie. weight functions) in tandem with the model itself. PUPs allow common geometric
requirements and operations to be phrased succinctly, including: the addition of control
points, arbitrary sharp features, increasing smoothness without increasing support, ap-
proximation and interpolation. For surfaces, PUPs permit non-tensor weight functions
and allow control points to be added anywhere (without introducing other control points).
This facilitates simple methods for sketching features and converting a planar mesh into
a parametric surface of arbitrary smoothness.

As an important class of PUPs, we introduce CINAPCT-spline, based on bump-
functions, which is C-infinity but with compact-support. The underlying weight functions
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are similar in form to B-spline basis functions, and are parameterized by a degree-like shape
parameter. We examine approximating and interpolating curves created using CINAPCT-
spline. Furthermore, we propose and demonstrate a method to specify the tangents and
higher order derivatives of the curve at control points for CINPACT and PUPs curves.
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An eigenvalue problem

Behrouz Emamizadeh∗

Department of Mathematical Sciences

University of Nottingham
Ningbo, China

Abstract

This talk is motivated by the following nonlinear Lorentz invariant wave equation:

�2u+ ε�6u− V ′(u) = 0, (1)

where

�pu =
∂

∂t

[
(c2|∇u|2 − |ut|2)p−2ut

]
− c2∇ ·

[
(c2|∇u|2 − |ut|2)p−2∇u

]
,

and V is an appropriate function. In the last equation, u : R3+1 → R4, u = u(x, t),
x ∈ R3, t ∈ R, ∇u denotes the Jacobian with respect to x, and ut is the derivative
with respect to t.

A static solution of (1) is a function Z : R3 → R4 that satisfies

−c2∆Z − εc10 ∆10Z − V ′(Z) = 0, (2)

where ∆p = ∇ · (|∇u|p−2∇u) is the well-known p-Laplace operator. The differential
operator in (2) is a linear combination of ∆ and ∆10.

Here we are interested in a class of scalar equations similar to (2), in which the
differential operator is a convex combination of −∆p and −∆. More precisely, we
consider the eigenvalue problem

{
−t∆pu− (1− t)∆u = λu in D

u = 0 on ∂D,
(p 6= 2) (3)

where D ⊆ Rn is a smooth bounded domain. We will show that the set of eigenvalues
of (3) is continuous for t ∈ (0, 1]. In fact, if λ1 is the first eigenvalue of −∆, then we
will prove the striking result that the spectrum of (3) is ((1 − t)λ1,∞), even when
t is very close to zero. This result is surprising because when t approaches zero the
differential operator

Ct := −t∆p − (1− t)∆
approaches −∆ and the expectation would be that when t is very near zero the spec-
trum σ(Ct) of Ct would be the union

⋃
Ii of some intervals Ii each containing the

ith-eigenvalue of −∆. Recall that the spectrum of the Laplacian is a discrete set:

σ(−∆) = {λj | j ∈ N} where λ1 < λ2 ≤ λ3 ≤ λ4 ≤ · · · → ∞.
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In other words, when the convex parameter t moves from 1 to 0 in the interval [0, 1],
the spectrum σ(Ct) will keep containing the interval [λ1,∞) until t takes the exact
value 0, in which case σ(Ct) suddenly snaps into the discrete set σ(−∆).

The eigenvalue problems of type (3) are new in the mathematics literature. Re-
cently, the following eigenvalue problem was investigated:

{
−∆pu−∆u = λu in D
∂u
∂ν = 0 on ∂D,

where ν denotes the unit outward normal to the boundary ∂D. It was proved that
the spectrum is {0} ∪ (λN1 ,∞), where λN1 denotes the first non-zero eigenvalue of −∆
with respect to the Neumann boundary condition. Our approach toward solving the
eigenvalue problem (3) is different; our approach is based on the fibering method that
was introduced in the early 1990’s by the late S. Pohozaev. The fibering method is far
more powerful than the Nehari-manifold method as it is applicable to a much broader
range of boundary value problems than we discuss here. To help with a geometric
intuition of the material, we introduce the δ-plane, which we denote by δπ. This plane
has two axes, the −∆p-axis and the −∆-axis. The δ-plane is naturally equivalent to
R2 in the sense that there exists a canonical map η : R2 → δπ as follows:

η(a, b) = −a∆p − b∆.

In particular, we have
Ct = η(t, 1− t),

which is a convex combination of −∆p and −∆.1

The unit square S is the square with vertices at points O = η(0, 0), A = η(1, 0),
B = η(1, 1), and C = η(0, 1). The main diagonal of S, joining η(0, 1) to η(1, 0), is
what we are interested in.

The following is a summary of what is known about the spectrum of some of the
operators in the δ-plane:

(i) σ(η(0, 1)) = {λj | j ∈ N} in which λ1 < λ2 ≤ λ3 ≤ λ4 ≤ · · · → ∞, with respect
to both Dirichlet and Neumann boundary conditions. In the latter case, λ1 = 0
and λ2 < λ3.

(ii) σ(η(1, 1)) = {0} ∪ (λN1 ,∞), with respect to the Neumann boundary conditions.

(iii) σ(η(1, 0)) = [0,∞), provided that p ∈ ( 2n
n+2 ,∞) \ {2}.

Note that every operator in the first quadrant of the δ-plane η(R+ × R+) is
a translate of one in S. The same goes with those in the third quadrant, since
η(−a,−b) = −η(a, b). Hence it makes sense to focus on S in this talk. On the
other hand, the operators in the second and the fourth quadrants need to be treated
separately.

The main result of this presentation is the following:

Theorem 0.1. Let p ∈ (1,∞) \ {2} and t ∈ (0, 1). Then the following hold:

(i) If λ ∈ [0, (1− t)λ1], then λ /∈ σ(Ct).

(ii) If λ ∈ ((1− t)λ1,∞), then λ ∈ σ(Ct).

Here λ1 denotes the first eigenvalue of −∆ with respect to the Dirichlet boundary
conditions on ∂D.

1hence the use of the calligraphic ‘C’ with a ‘t’ subscript in Ct.
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We prove the theorem using variational methods. For this purpose we will consider
an energy functional associated with (3), and prove that the critical points of this
functional will give rise to non-trivial solutions of (3). The challenge is the parameter
p. More precisely, for p > 2, the energy functional is coercive, hence the direct
method applies. However, for the case p < 2, the lack of coercivity will render the
direct method ineffective. Hence, we will apply the fibering method of Pohozaev.

We will derive a priori bounds and regularity results on the eigenfunctions. We
will show that the behavior of the eigenfunctions are totally different between the case
of p ∈ (1, 2) and that of p > 2. More precisely, it turns out that when λ approaches
the threshold (1− t)λ1, then

{
supD |u| → 0, (p > 2)

supD |u| → ∞, (1 < p < 2).

Key Words: Lorentz invariant wave equation, continuous eigenvalues, Laplacian, p-
Laplacian, fibering method, coercivity, existence, bounds, regularity.

MSC 2010: 81Q05, 35J60, 35P30
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Set-theoretic methods of homological algebra and their

applications to module theory

Jan Trlifaj∗

Charles University, Prague

Abstract

We present some of the recent tools of set-theoretic homological algebra together
with their applications, notably to the approximation theory of modules, and to (in-
finite dimensional) tilting.

Keywords: approximations of modules, set-theoretic homological algebra, infinite
dimensional tilting theory

Mathematics Subject Classification [2010]: 16DXX, 18G25, 13D07, 03E75

1 Introduction

A major topic of module theory concerns existence and uniqueness of direct sum decom-
positions. Positive results provided by the Krull-Remark-Schmidt-Azumaya theorems,
the Faith-Walker Theorem, and Kaplansky theorems, form the cornerstones of the clas-
sic theory. However, there are a number of important classes of (not necessarily finitely
generated) modules to which the theory does not apply, because their modules do not
decompose into (possibly infinite) direct sums of indecomposable, or small, submodules.

While such direct sum decompositions are rare, there do exist more general structural
decompositions that are almost ubiquitous. The point is to replace direct sums by transfi-
nite extensions. For example, taking direct sums of copies of the group Zp, one obtains all
Zp-modules whose sole isomorphism invariant is the vector space dimension. In contrast,
transfinite extensions of copies of Zp yield the much richer class of all abelian p-groups
whose isomorphism invariants are known basically only in the totally-projective case (the
Ulm-Kaplansky invariants).

Starting with the solution of the Flat Cover Conjecture [5], numerous classes C of mod-
ules have been shown to be deconstructible, that is, expressible as transfinite extensions
of small modules from C. Basic tools for deconstruction come from set-theoretic homolog-
ical algebra and originate in abelian group theory [6], but have since been expanded and
generalized to module categories, and even beyond that setting.

Each deconstructible class is precovering, so it provides for approximations of modules.
By choosing appropriately the class C, one can tailor these approximations to the needs
of various particular structural problems, cf. [12].
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Approximations can also be employed in developing relative homological algebra in
module categories. In the case when minimal approximations exist, ones obtains new
invariants of modules, generalizing classic invariants such as the Betti numbers, or the
(dual) Bass invariants, cf. [8]. Further applications in this direction involve model category
structures associated to deconstructible classes in the setting of Grothendieck categories,
such as the category of all unbounded chain complexes of modules, or the category of all
quasi-coherent sheaves on a scheme. They yield new ways of computing cohomology of
quasi-coherent sheaves via the approach of Quillen and Hovey, cf. [9], [11], [15].

But deconstructibility has its limits. This has first been observed by Eklof and Shelah
[7] who proved that it is consistent with ZFC that the class of all Whitehad groups is not
precovering. The latter fact, however, is not provable in ZFC, because it is also consistent
that all Whitehead groups are free. More recent results show that non-deconstructibility
is a phenomenon occuring in ZFC, and it is much more widespread than expected earlier.
There is also a surprising connection to another important part of module theory: the
tilting theory, [2], [14].

Our goal here is to explain these developments in more detail, and present some of the
techniques of set-theoretic homological algebra and approximation theory of modules that
have been developed over the past two decades. We will also consider several applications,
notably to (infinite dimensional) tilting theory [1] and to representation theory [13].

2 Filtrations and approximations

2.1 Filtrations and the Hill Lemma

For an (associative, but not necessarily commutative) ring R with 1, we denote by Mod-R
the category of all (unitary right R-) modules. Moreover, given an infinite cardinal κ and a
class of modules C, we will use the notation C<κ to denote the subclass of C consisting of all
modules possessing a projective resolution consisting of less than κ-generated projective
modules. In particular, mod-R := (Mod-R)<ω will denote the category of all strongly
finitely presented modules, i.e, the modules possessing a projective resolution consisting
of finitely generated projective modules.

Note that if R is right noetherian, then mod-R is just the category of all finitely
generated modules, while if R is right coherent, then mod-R is the category of all finitely
presented modules.

Definition 2.1. Let C be a class of modules. A module M is said to be C-filtered (or a
transfinite extension of the modules in C), provided there exists an increasing chain M =
(Mα | α ≤ σ) of submodules of M with the following properties: M0 = 0, Mα =

⋃
β<α Mβ

for each limit ordinal α ≤ σ, Mα+1/Mα
∼= Cα for some Cα ∈ C for each α < σ, and

Mσ = M .
The chain M is called a C-filtration of the module M of length σ. If σ is finite, then

M is said to be finitely C-filtered. The class of all C-filtered modules will be denoted by
Filt(C). We will say that C is closed under transfinite extensions provided that C =Filt(C).

For example, if C is the class of all simple modules, then Filt(C) is the class of all
semiartinian modules, and finitely C-filtered modules coincide with the modules of finite
length.
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As mentioned in the Introduction, given a class of modules C and M ∈ C, it is rarely
possible to decompose M into a direct sum of small, or indecomposable, modules from C.
Deconstructibility is much more feasible:

Definition 2.2. Let C be a class of modules and κ an infinite cardinal. Then C is κ-
deconstructible provided that C =Filt(C<κ). The class C is called deconstructible, if C is
κ-deconstructible for some infinite cardinal κ.

For example, the class of all projective modules P0 is ℵ1-deconstructible, because each
projective module is a direct sum of countably generated projective modules by a classic
theorem of Kaplansky. Let n ≥ 0 and κ be an uncountable cardinal. If each right ideal of
R is < κ-generated, then the class Pn of all modules of projective dimension at most n is
κ-deconstructible. Similarly, if R has cardinality < κ, then the class Fn of all modules of
flat dimension at most n is κ-deconstructible, [12].

A module equipped with a C-filtration often possess many other C-filtrations, and their
lengths may vary in general. There is however a way to organize some of these C-filtrations
in a family that makes it possible to develop a sort of infinite dimensional Jordan-Hölder
theory in this generality:

Lemma 2.3. (Hill Lemma) Let R be a ring, M a module, κ a regular infinite cardinal,
and C a class of < κ–presented modules. Let M = (Mα | α ≤ σ) be a C-filtration of M .

Then there exists a family H consisting of submodules of M such that (i) M ⊆ H, (ii)
H forms a complete distributive sublattice of the complete modular lattice of all submodules
of M , (iii) P/N is C-filtered for all N ⊆ P in H, and (iv) if N ∈ H and S is a subset of M
of cardinality < κ, then there is P ∈ H such that N ∪ S ⊆ P and P/N is < κ–presented.

Proof. (sketch) For each α < σ take an arbitrary < κ-generated submodule Aα of Mα+1

such that Mα+1 = Mα + Aα. (So Mα =
∑

β<α Aβ in particular.)
A subset S ⊆ σ is called closed in case each α ∈ S satisfies Mα ∩ Aα ⊆ ∑

β<α,β∈S Mβ .
Define H = {∑α∈S Aα | S closed }.

Hill Lemma makes it possible to replace a given C-filtration of M by a different one
fitting better the particular problem in case. We refer to [12, Chap.7] for various appli-
cations of the Hill Lemma. Here, we present only one (due to Enochs and Šťov́ıček) that
makes it possible to replace any C-filtration of M by a new filtration of (shorter) length
≤ κ on the account of making the consecutive factors of the new filtration thicker. (In the
particular case when C = the class of all simple modules, an instance of the new filtration
is provided by the socle sequence of a semiartinian module.)

Corollary 2.4. In the setting of Lemma 2.3, let Sum(C) denote the class of all direct
sums of copies of the modules from C. Then M possesses a Sum(C)–filtration of length
≤ κ.

2.2 Approximations and complete cotorsion pairs

Definition 2.5. (i) A class of modules A is precovering if for each module M there is
f ∈ HomR(A,M) with A ∈ A such that each f ′ ∈ HomR(A′,M) with A′ ∈ A has a
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factorization through f :

A
f

// M

A′

g

OO�

�

� f ′

>>||||||||

The map f is called an A-precover of M (or a right A-approximation of M).

(ii) An A-precover is special in case it is surjective, and its kernel K satisfies Ext1R(A,K) =
0 for each A ∈ A.

(iii) Let A be precovering. Assume that in the setting of (i), if f ′ = f then each factoriza-
tion g is an automorphism. Then f is an A-cover of M . A is called a covering class
in case each module has an A-cover. We note that each covering class containing P0

and closed under extensions is necessarily special precovering.

For example, the class P0 is easily seen to be precovering, while F0 is covering by [5].
By a classic result of Bass, P0 is covering, iff P0 = F0, i.e., iff R is a right perfect ring.

Dually, we define (special) preenveloping and enveloping classes of modules. For ex-
ample, I0, the class of all injective modules, is an enveloping class.

Precovering classes are ubiquitous because of the following

Theorem 2.6. Let S be a set of modules and C = Filt(S). Then C is precovering.
Moreover, if C is closed under direct limits, then C is covering.

Example 2.7. The classes Pn (n < ω) for any ring R, as well as GP, the class of all
Gorenstein projective modules for R Iwanaga–Gorenstein, are special precovering. The
classes Fn (n < ω) over any ring, and GF of all Gorenstein flat modules for R Iwanaga–
Gorenstein, are covering. The classes In (n < ω) for any ring R (resp. GI for R Iwanaga–
Gorenstein) are special preenveloping (resp. enveloping).

Precovering classes C, and preenveloping classes E , can be employed in developing
relative homological algebra similarly as the classes of all projective and injective modules
are used in the classic (absolute) case, cf. [8].

Besides the formal duality between the definitions of precovering and preenveloping
classes, there is also an explicit duality discovered by Salce, mediated by complete cotorsion
pairs:

Definition 2.8. Let R be a ring. A pair of classes of modules C = (A,B) is a (hereditary)
cotorsion pair provided that

1. A = ⊥B := {A ∈ Mod-R | ExtiR(A,B) = 0 for all i ≥ 1 and B ∈ B}, and

2. B = A⊥ := {B ∈ Mod-R | Exti
R(A,B) = 0 for all i ≥ 1 and A ∈ A}.

If moreover 3. For each module M , there exists an exact sequences 0 → B → A → M → 0
with A ∈ A and B ∈ B, then C is called complete.

Condition 3. implies that A is a special precovering class. In fact, 3. is equivalent to
its dual: 3′. For each module M there is an exact sequence 0 → M → B → A → 0 with
A ∈ A and B ∈ B, which in turn implies that B is a special preenveloping class.

Complete cotorsion pairs, and hence special precovering and special preenveloping
classes, are abundant:
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Theorem 2.9. For each set of modules S, there is a complete cotorsion pair of the form
(⊥(S⊥),S⊥) in Mod-R.

3 Applications

3.1 Infinite dimensional tilting

For a module T , denote by Add(T ) (resp. add(T )) the class of all direct summands of
arbitrary (resp. finite) direct sums of copies of T .

Definition 3.1. A module T is tilting provided that

(T1) T has finite projective dimension.

(T2) ExtiR(T, T (κ)) = 0 for all 1 ≤ i and all cardinals κ.

(T3) There exist r < ω and an exact sequence 0 → R → T0 → · · · → Tr → 0 where
Ti ∈ Add(T ) for each i ≤ r.

The class TT := T⊥ is the tilting class, and the cotorsion pair CT := (⊥Tt,TT ) the tilting
cotorsion pair, induced by T . If T has projective dimension ≤ n, then the tilting module
T is called n-tilting, and similarly for TT and CT . If T and T ′ are tilting modules, then T
is equivalent to T ′ in case T and T ′ induce the same tilting class.

Strongly finitely presented tilting modules are called classical. A tilting module T is
good provided that all the modules Ti in condition (T3) can be taken in add(T ). We note
that each classical tilting module is good, and each tilting module is equivalent to a good
one.

Tilting theory originated in the realm finitely generated modules/representations of
finite dimensional algebras, but many of its aspects extend to the general setting of possibly
infinitely generated modules over arbitrary rings. Such extension is especially desired for
commutative rings, because each finitely generated tilting module over a commutative ring
is projective, that is, 0-tilting.

A classic result of Miyashita says that each classical n-tilting module induces (via
the functors Exti

R(T,−) and TorS
i (−, T ) for i = 0, . . . , n) an n + 1-tuple of category

equivalences between certain subcategories of Mod-R and Mod-S where S = End(TR).
For n = 0, this is just the well known Morita equivalence between Mod-R and Mod-S.
Miyashita’s result has recently been extended to good n-tilting modules in [4].

Rather than studying equivalences induced by large tilting modules, we will consider
here approximation properties of the corresponding tilting classes. The first result concerns
1-tilting and torsion classes of modules:

Proposition 3.2. Let R be a ring and T be a torsion class of modules. Then T is 1-tilting,
iff T is special preenveloping.

A much more complex argument is needed to prove the following characterization of
general tilting classes and tilting cotorsion pairs:

Theorem 3.3. Let R be a ring and C = (A,B) be a cotorsion pair. Then C is tilting, iff
A ⊆ Pn for some n < ω, and B is closed under arbitrary direct sums.
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Even though tilting modules are allowed to be infinitely generated, there is always a
grain of finiteness preserved. Indeed, the following result, proved by set-theoretic methods
in a series of papers in 2005-7, says that each n-tilting class T is of finite type, that is, there
exists a set S consisting of strongly finitely presented modules of projective dimension ≤ n
such that T = S⊥. In particular, T is axiomatizable, by a (possibly infinite) set of formulas
of the language of the first order theory of modules:

Theorem 3.4. Let R be a ring, T be an n-tilting module, and T = T⊥ the induced
n-tilting class. Then T is of finite type.

Theorem 3.4 makes it possible to classify tilting modules and classes over Dedekind
domains, because finitely presented modules are classified in this case. Further tools are
needed to handle the general commutative noetherian case. The main recent result from
[1] offers the following classification. (A sequence P = (P0, . . . , Pn−1) consisting of subsets
of the spectrum Spec(R) is called characteristic provided that P0 ⊆ P1 ⊆ · · · ⊆ Pn−1, and
for each i < n, Pi is a lower subset of the poset (Spec(R),⊆) such that Pi contains all
associated primes of the ith cosyzygy in the minimal injective coresolution of R.

Theorem 3.5. Let R be a commutative noetherian ring and n < ω. Then n-tilting
classes are parametrized by characteristic sequences: the tilting class T corresponding to
a characteristic sequence P = (P0, . . . , Pn−1) is defined by the formula

T = {M ∈ Mod-R | TorR
i (M,R/p) = 0 for all i < n and p ∈ Spec(R) \ Pi}.

3.2 Flat Mittag-Leffler modules and local freeness

Having defined tilting modules, we can now proceed to locally T -free modules:

Definition 3.6. Let R be a ring. A system S consisting of countably presented submod-
ules of a module M is a dense system provided that S is closed under unions of well-ordered
countable ascending chains, and each countable subset of M is contained in some N ∈ S.

Let F be a set of countably presented modules. Denote by C the class of all modules
possessing a countable F-filtration. A module M is locally F-free provided that M contains
a dense system of submodules from C. (Notice that if M is countably presented, then M
is locally F-free, iff M ∈ C.)

If F = A<ℵ1 for a cotorsion pair C = (A,B), then C = A<ℵ1, and a module is locally
A<ℵ1-free, iff it admits a dense system of countably presented submodules from A. In
particular, if T is a tilting module with the induced tilting cotorsion pair CT = (A,B),
then the locally A<ℵ1-free modules are called locally T -free modules.

For example, if T = R, then the locally T -free modules coincide with flat Mittag-Leffler
modules, [10]. So in this particular case, the following theorem says that the class of all
flat Mittag-Leffler modules is precovering, iff R is a right perfect ring:

Theorem 3.7. [2] Let R be a ring and T be a tilting module. Then the class of all locally
T -free modules is precovering, iff T is locally split (i.e., each pure embedding in Add(T )
splits).
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The proof of Theorem 3.7 uses the notion of a tree module M from [14], that is, of
a module constructed by a particular decoration of the tree Tκ of all finite sequences of
ordinals less that a given infinite cardinal κ. While the initial combinatorial object is Tκ,
the initial algebraic object used for its decoration is a Bass module, i.e., a fixed countable
direct limit B of the modules from A<ℵ1. The key property of the tree module M is the
fact that M contains a direct sum D of κ (= the number of nodes of Tκ) elements of A<ℵ1 ,
while M/D contains κω (= the number of branches of Tκ) copies of the Bass module B.

3.3 Almost split morphisms

We finish with a rather surprising application of the tree module construction to solving
a long-standing open problem from representation theory going back to Auslander.

Definition 3.8. Given a non-projective module N , an epimorphism of modules f : M →
N is said to be right almost split provided that f is not split, and if g : P → N is not
a split epimorphism, then g factorizes through f . Dually, we define a left almost split
monomorphism f ′ : N ′ → M ′ for N ′ non-injective.

A short exact sequence of modules 0 → N ′ f ′
→ M

f→ N → 0 is almost split provided
that it does not split, f is a right almost split epimorphism, and f ′ is a left almost split
monomorphism.

Auslander proved that if N is an (indecomposable) finitely presented non-projective
module with local endomorphism ring, then there always exists a right almost split epi-
morphism f : M → N . This result is the basis of the celebrated Auslander-Reiten theory
of almost split maps and sequences [3], with a number of far reaching consequences in the
representation theory of algebras.

Already in 1977, Auslander asked, whether there are other cases where a right almost
split epimorphism ending in a non-projective module N exists. Only recently, Šaroch
was able to give a negative answer. The key ingredient in his proof employs generalized
tree modules. (The term generalized refers to the fact that unlike the trees Tκ above,
the generalized trees may have branches of length bigger than ω in order to capture also
uncountable well-ordered direct limits of modules rather than just the Bass modules.)

Theorem 3.9. [13] Let R be a ring and N be a non-projective module. Then there
exists a right almost split epimorphism f : M → N , iff N is finitely presented and its
endomorphism ring is local.

Theorem 3.9 has a corollary concerning the structure of almost split sequences in
Mod-R:

Corollary 3.10. [13] Let R be a ring and 0 → N ′ → M → N → 0 an almost split
sequence in Mod-R. Then N is finitely presented with local endomorphism ring, and N ′

is pure-injective.
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Extended Abstract

The theory of complex networks has a wide range of applications in a variety of disci-
plines such as communications and power system engineering, the internet and worldwide
web (www), food webs, human social networks, molecular biology, population biology and
biological networks. The focus of this talk is on biological applications of the theory of
graphs and networks. Network analysis leads to a better understanding of the critical role
of these networks in many key questions.

we present some of the popular biological networks which have been investigated by
several authors.

Protein-Protein Interaction network (PPI-Network) is a graph G = (V,E) where V is
a set of proteins and two proteins are joined by an edge if they interact physically. The
interaction between viral proteins and human proteins can be represented as a bipartite
graph G. The vertex set of G is V1 ∪ V2, where V1 is the set of viral proteins and V2 is the
set of all human proteins. A viral protein v ∈ V1 is joined to a human protein w ∈ V2 if
v interacts with w. This bipartite graph is called viral-human protein interaction network
and this network has been investigated by Mukhopadhyay and Maulik [2].

Human protein and disease association network is a bipartite graph G whose vertex is
V1 ∪ V2, where V1 is the set of human proteins and V2 is the set of diseases and v1 ∈ V1
is joined by an edge to v2 ∈ V2, if the human protein v1 is associated with the disease v2.
This network has been investigated by Mukhopadhyay and Maulik [2].

Metabolome based reaction network is a directed graph D = (V,A) where V is a set
of metabolites and a vertex v is joined to a vertex w by an arc (v, w) if there is a reaction
or interaction which transforms the metabolite v to the metabolite w. This network has
been investigated by Veeky Baths et al. [4].

Gene regulation is a general term for cellular control of the synthesis of protein at the
transcription step. Often one gene is regulated by another gene via the corresponding
protein. Thus gene regulation leads to the concept of gene regulatory network, which has
been investigated by Yue and Chunmei [5]. Gene regulatory network is a directed graph
D = (V,A) where V is the set of genes and two genes g1, g2 ∈ V are joined by an arc
if there is a regulatory relationship between g1 and g2, or more precisely g1 regulates g2.
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The regulatory relationship between two genes may be either positive direct regulatory
influence or inverse causality or no correlation. Hence gene regulatory network can also
be represented as a directed weighted graph, where the weight of an arc is an estimate
of the probability of relationship between the genes in the network. This network has
been investigated by Raza and Jaiswal [3]. Positive regulatory relationship represents
activation and negative regulatory relationship represents inhibition. This leads to the
representation of a gene regulatory network as a signed directed graph where an arc
(g1, g2) is assigned a positive sign if the corresponding regulatory relationship is activation
and is assigned a negative sign if the corresponding relationship is inhibition. A study of
gene regulatory network leads to a better understanding of the regularity mechanism of
the genes and prediction of the behavior of some unknown genes.this network has been
studied in Christensen et al. [1].

There are several centrality measures such as Stress, Betweenness, Edge betweenness,
Diameter, Average distance, Closeness, Eigenvector Centrality and Eccentricity which are
used for analyzing biological networks.
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Covering properties defined by stars

Ljubǐsa D.R. Kočinac
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Abstract

We discuss covering properties in topological spaces defined by stars. Special
attention is paid to two star covering properties related to the Gerlits-Nagy property
GN. Some examples in this connection are given.

Keywords: Star selection principles, star-GN, strongly star-GN
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1 Introduction

If A is a subset of a topological space X, and P is a family of subsets of X, then St(A,P) :=
∪{P ∈ P : A ∩ P 6= ∅}; when A = {x}, x ∈ X, one writes St(x,P) instead of St({x},P).
In the literature one can find a big number of topological properties which are defined or
characterized in terms of stars. In particular, it is the case with many covering properties
of topological spaces. We consider here an application of this method in the theory of star
selection principles introduced in [4]. For more details on star selection principles and for
undefined notions see the survey paper [5].

Selection Principles Theory has roots in the papers by Menger [7], Hurewicz [3], Roth-
berger [9], but in the last two-three decades a big number of mathematicians work sys-
tematically in this field of mathematics.

Following [4] and [5] we have the following definitions.

Let O be the collection of all open covers of a space X, B a subfamily of O, and K a
family of subsets of X. Then:

1. The symbol S∗fin(O,B) denotes the selection hypothesis: For each sequence 〈Un : n ∈ N〉
of elements of O there is a sequence 〈Vn : n ∈ N〉 such that for each n ∈ N, Vn is a finite
subset of Un, and {St(∪Vn,Un) : n ∈ N} ∈ B;
2. S∗1(O,B) denotes the selection hypothesis: For each sequence 〈Un : n ∈ N〉 of elements
of O there is a sequence 〈Un : n ∈ N〉 such that for each n ∈ N, Un ∈ Un and {St(Un,Un) :
n ∈ N} ∈ B;
3. SS∗K(O,B) denotes the following selection hypothesis: For each sequence 〈Un : n ∈
N〉 of elements of O there exists a sequence 〈Kn : n ∈ N〉 of elements of K such that
{St(Kn,Un) : n ∈ N} ∈ B.
When K is the collection of all finite (resp. one-point, compact) subspaces of X we write
SS∗fin(O,B) (resp., SS∗1(O,B), SS∗K(O,B)) instead of SS∗K(O,B).
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Let Γ denotes the collection of γ-covers of a space X. (An open cover U of X is a
γ-cover if for each x ∈ X the set {U ∈ U : x /∈ U} is finite.) Let X be a space. The
following terminology and notation (for X) we borrow from the above mentioned papers.

SR: the star-Rothberger property = S∗1(O,O);
SSR: the strongly star-Rothberger property = SS∗1(O,O);
SH: the star-Hurewicz property = S∗fin(O,Γ);
SSH: the strongly star-Hurewicz property = SS∗fin(O,Γ).

In [2], Gerlits and Nagy introduced several covering properties of a topological spaces.
One of these properties, denoted (∗) and nowadays called the Gerlits-Nagy property (or GN-
property for short), has been characterized in [8] in a form more convenient for use: a space
X is Gerlits-Nagy if and only if it is Hurewicz and Rothberger. Other characterizations
of GN properrty were obtained in [6]. One of these characterizations is: a space X is GN
if and only if it satisfies the selection property S1(O,Ogp). Here, Ogp denotes the family
of groupable open covers of X: an open cover U of X is groupable if it can be represented
in the form U =

⋃
n∈N Un, so that Un’s are finite, pairwise disjoint, and each x belongs to

all but finitely many ∪Un.

Following the first of these two results we introduce the following definition.

Definition 1.1. A space X is said to be:

1. star-Gerlits-Nagy, denoted X ∈ CSGN, if X is SH and SR;

2. strongly star-Gerlits-Nagy, denoted X ∈ CSSGN, if X is SSH and SSR.

2 Main results

We need also the following known uncountable small cardinal

add(M) = min{|F| : F ⊂M & ∪ F /∈M},

where M is the ideal of meager subsets of R.
Recall a known topological construction. A family of infinite subsets of N is almost

disjoint if the intersection of any two distinct elements is finite. For an almost disjoint
family A of infinite subsets of N, set Ψ(A) = N∪A. Topologize Ψ(A) so that the points of
N are isolated and a basic neighbourhood of a point A ∈ A are of the form {A} ∪ (A \F ),
where F is a finite set in N.

Theorem 2.1. If |A| < add(M), then Ψ(A) ∈ CSSGN.

Proof. Matveev proved: (a) Ψ(A) is SSH if and only if |A| < b; (b) if |A| < cov(M), then
Ψ(A) is SSR (see [5]). Combining these results with the Miller-Truss theorem (see [1])
saying that add(M) = min{b, cov(M) we have the proof of the theorem.

We do not know if the converse of this theorem true.

Theorem 2.2. There is a Tychonoff space which is in CSGN but is not in CSSGN (in fact,
it is not neither SSR nor SSH).
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Proof. Let αD(c) = D(c) ∪ {∞} be the one-point compactification of the discrete space
D(c) of cardinality c. Set Y = αD(c)× [0, c+), Z = D(c)× {c+}. Endow X = Y ∪Z with
the relative topology of the product αD(c)× [0, c+].

Claim 1. X is SH

Let U be an open cover of X. Since αD(c)× [0, c+) is countably compact (the product
of a compact and a countably compact space), there is a finite set F ⊂ X such that
St(F ;U) ⊃ αD(c)× [0, c+). For each α ∈ D(c) one can choose Uα ∈ U such that (α, c+) ∈
U . Take xα = (α, βα) ∈ Uα \ {(α, c+)}. Let β = sup{βα : α ∈ D(c)}. Then β < c+,
because c+ is regular. The set K = ClD(α)×[0,β]{xα : α ∈ D(c)} is compact, and thus
there exists a finite set E ⊂ X such that St(E,U) ⊃ K. The set A = F ∪ E is finite and
St(A,U) = X.

Claim 2. X is SR.

It is known that every ordinal space [0, α) is SSR, hence SR. Therefore, Z is SR.
Let 〈Un : n ∈ N〉 be a sequence of open covers of X. For every α < c take βα

having property {α} × [βα, c
+] ⊂ V for some V ∈ U1. Let β = sup{βα : α < c}, and let

(∞, c+) ∈ U1 ∈ U1. The set St(U1,U1) contains all but finitely many elements xα = (α, c+),
α < c, say xα2 , · · · , xαm . For each i = 2, · · ·m pick an element Ui ∈ Ui such that xαi ∈ Ui,
and any Uj ∈ Uj for j > m. Then the sequence 〈Un : n ∈ N〉 witnesses for 〈Un : n ∈ N〉
that Y ⊂ St(Un,Un). This implies that X = Y ∪ Z is SR.

It follows from Claims 1 and 2 that X ∈ CSGN.

Claim 3. X is not in CSSGN.

It is enough to prove that X is not SSR. For each n let Un = U = {αD(c)× [0, c+)} ∪
{{α} × [0, c+] : α ∈ D(c)}. Then we have a sequence of open covers Un, n ∈ N, of X.
Suppose that we have chosen an element xn ∈ X for each n ∈ N. Set A = {xn : n ∈ N}.
We prove that St(A,U) 6= X. Let π be the projection of X onto αD(c). As π(A) is
countable, there is a point u ∈ X \ π(A). Then, as it is easily checked, (u, c+) /∈ St(A,U),
hence X is not SSR.

This completes the proof of the theorem.

Remark 2.3. The product of a compact SSGN spaces X and a compact space Y need
not be SSGN. Take X to be a compact Rothberger space. It is well known that a compact
space is Rothberger if and only if it is scattered (i.e. each nonempty subspace has an
isolated point). Further, in the class of (para)compact spaces the Rothberger property
coincides with the SSR property [4], so that X is SSR. On the other hand, since X is
compact, it is Hurewicz, hence strongly star-Hurewicz. Therefore, X is an SSGN space.

Let Y be a a non-scattered compact space. Then X × Y is not SSGN space. Suppose
to the contrary, that X × Y ∈ SSGN. By the results mentioned above X × Y must be
scattered, being compact and Rothberger. By the fact that a compact space which is a
continuous image of a compact scattered space is also (compact) scattered, it would follow
that Y is scattered. A contradiction.

Theorem 2.4. There is a space X ∈ CSSGN and a Lindelöf space Y such that X × Y is
not in CSGN.

Proof. Let X = [0;ω1) with the usual order topology and Y the one-point Lindelöfication
of X (i.e. Y = [0;ω1] with the following topology: each point α with α < ω1 is isolated,
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and a set U containing ω1 is open if and only if Y \U is countable). Then X is countably
compact, Y is Lindelöf, and X × Y is not in this class, even not in the class CSGN.

The space X is SSR because every ordinal space is SSR. On the other hand, X is SSH
being (Hausdorff) countably compact and so strongly starcompact. Therefore, X ∈ CSSGN.
According to [5], the product X × Y is not SH, hence X × Y is not in the class CSGN.

The following result regarding SSH spaces (see [5])

Theorem 2.5. A space X is SSH if and only if X ∈ SS∗fin(O,Ogp)

suggests the following

Problem. Is it true that S∗fin(O,Γ) = S∗fin(O,Ogp)? Is it true that X ∈ CSSGN if and only
if SS∗1(O,Ogp) if and only if SS∗1(O,Γ)?
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Some question on the reduction of elliptic curves
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Abstract

An elliptic curve E over the rationals gives, in a natural way, a family of elliptic
curves over finite fields simply considering the reduction Ep of the curve modulo prime
numbers. And many interesting question arises regarding this family. For example, one
could ask for the number of primes up to X so that Ep has a prime number of points,
and try to solve an open problem stated long back by Koblitz. Recall that this question
has a direct interest in building elliptic curves interesting for cryptographic purposes.
Another problems related with this family are the famous Sato-Tate conjecture, or
the Lang-Trotter conjectures on the trace of the Frobenius element and the Frobenius
ring. In the talk, after a review of the ingredients, i will talk about some contributions
that i could do, on these problems.
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Abstract

We give a brief survey of image space analysis and its applications to constrained
optimization problems. By introducing some class of nonlinear separation functions
in the image space associated with an infinite analysis, we investigate con constrained
optimization problems. Furthermore, the equivalence between the existence of non-
linear separation function and a saddle point condition for a generalized Lagrangian
function associated with the given problem is obtained. Some open problems for the
vector variational inequalities with constraints are mentioned.

Keywords: Nonlinear separation for Image space analysis, Scalarization of vector
optimization, Generalized Lagrangian function, Exact penalty

Mathematics Subject Classification [2010]: 90C26, 90C29, 26B25, 49J40

1 Introduction

The image space analysis(ISA) approach has been proved to be a fruitful method in many
topics of optimization theory (e.g., optimality condition, existence of solution, duality,
vector variational inequalities and vector equilibrium problems); see [1-13] and [18-20].
Moreover, it has been shown that several theoretical aspects of a constrained extremum
problem as duality , penalty methods , regularity and Lagrangian- type optimality can be
developed by Image space Analysis .
Furthermore, (ISA) has received considerable attention in the optimization community and
has become a powerful tool and a unifying scheme for studying constrained optimization
problems . In the (ISA) method, the optimality condition for constrained optimization
problems is expressed under the form of the impossibility of a parametric system. The
impossibility of such a system is reduced to the disjunction of two suitable subsets of the
image space (IS) associated with the given problem; such a disjunction can be proved by
showing that they lie in two disjoint level sets of a nonlinear separation function (see[11]).
Here, we focus our attentions on some nonlinear separation functions for the constrained
extremum problem. We extend a nonlinear regular weak separation function that has
been discussed in [12], to use in set-valued optimization in normed linear spaces. Then,
we define two new nonlinear (regular) weak separation functions based on the oriented
distance function M and derive some optimality conditions, in particular, some saddle
point sufficient optimality conditions for the constrained extremum problem.
Let X be a topological vector space and let Y and Z be two normed linear spaces with
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normed dual spaces Y ∗ and Z∗, respectively. Let C ⊂ Y and D ⊂ Z be pointed, closed
and convex cones with nonempty interiors. The space of continuous linear operators from
Z to Y is denoted by L(Z, Y ) and

L+(Z, Y ) := {T ∈ L(Z, Y ) : T (D) ⊆ C}.

The positive dual cone of C is defined by

C+ := {p ∈ Y ∗ : p(y) ≥ 0, ∀y ∈ C},

and the set of all positive linear functionals in C+ is

C+i := {p ∈ Y ∗ : p(y) > 0, ∀y ∈ C \ {0}}.

Note that, if C is a convex cone in Y, then int C+ ⊆ C+i and the equality holds if
int C+ 6= ∅ . A partial order ≤C in Y is defined by

y1 ≤C y2 ⇔ y2 − y1 ∈ C, ∀y1, y2 ∈ Y.

For simplicity, throughout this talk, we denote
◦
C := int C and C0 := C \ {0}.

In the sequel, we suppose that F : U ⇒ Y is a multifunction defined on a nonempty
convex subset U of X with values in Y.

Definition 1.1. Let F : U ⇒ Y and G : U ⇒ Z be two multifunctions with nonempty
values. We consider the following vector optimization problem:

minC F (x) s.t. x ∈ R := {x ∈ U : G(x) ∩ (−D) 6= ∅}, (1)

where R is called the feasible region of Problem (1).

Definition 1.2. A point x̄ ∈ R is called a minimum point of Problem (1) iff

∃ȳ ∈ F (x̄) s.t. (F (R)) ∩ (ȳ − C0) = ∅.

In this case we say that (x̄, ȳ) is a minimizer for Problem (1) and a point x̄ ∈ R is called
a weak minimum point of Problem (1) iff

∃ȳ ∈ F (x̄) s.t. (F (R)) ∩ (ȳ −
◦
C) = ∅.

In this case we say that (x̄, ȳ) is a weak minimizer for Problem (1).

The following result presents a necessary and sufficient condition for a vector to be a min-
imum point or a weak minimum point of Problem (1).

Lemma 1.3. [17] Let x̄ ∈ R and (x̄, ȳ) ∈ gr F . Then

(i ) (x̄, ȳ) is a minimizer of Problem (1) iff

(ȳ − C0,−D) ∩ (F (x), G(x)) = ∅ ∀x ∈ U.
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(ii) (x̄, ȳ) is a weak minimizer of problem (1) iff

(ȳ −
◦
C,−D) ∩ (F (x), G(x)) = ∅ ∀x ∈ U.

Here, we develop the image space analysis for vector optimization with multifunction
constraints and multifunction objective. Let x̄ ∈ R and p̄ := (x̄, ȳ) ∈ gr F . We introduce
the multifunction Ap̄ : U ⇒ Y × Z , defined by

Ap̄(x) := {(ȳ − y,−z) : y ∈ F (x) , z ∈ G(x), x ∈ U},

and we associate the following sets to p̄ ∈ gr F

H = C0 ×D , Kp̄ = Ap̄(U).

The setKp̄ is called the image space associated with Problem (1). By Lemma 1.3, p̄ = (x̄, ȳ)
is a minimizer of Problem (1) iff

Kp̄ ∩H = ∅. (2)

and p̄ = (x̄, ȳ) is a weak minimizer of Problem (1) iff

Kp̄ ∩Hic = ∅,

where, Hic =
◦
C×D.

Definition 1.4. Let Γ be a set of parameters andH = C0×D.The class of all the functions
ω : Y × Z ××Y ∗ × Γ −→ R such that

H ⊆ lev≥0 ω(., ., ., γ), ∀γ ∈ Γ, (3)

and ⋂
γ∈Γ

lev>0 ω(., ., ., γ) ⊆ H, (4)

is called the class of weak separation functions and is denoted byW(Γ), in which lev>0 ω(., ., θ̄, γ̄) :=
{(u, v) ∈ Y × Z : ω(u, v, θ̄, γ̄) > 0} denotes the level set of ω(., ., θ̄, γ̄).

Definition 1.5. The class of all the functions ω : Y × Z ××Y ∗ × Γ −→ R, such that

⋂
γ∈Γ

lev>0 ω(., ., ., γ) = H, (5)

is called the class of regular weak separation functions and is denoted by Wr(Γ).

Suppose that Γ is the given set of parameters and the class of functions ω1 : Y ×Z×Y ∗×
Γ 7→ R is given by:

ω1(u, v, θ, γ) := 〈θ, u〉+ ω0(v, γ).

where ω0 fulfils the following conditions

∀γ ∈ Γ, ∀α ∈ R+, ∃γα ∈ Γ s.t. αω0(v, γ) = ω0(v, γα) ∀v ∈ Z. (6)

⋂
γ∈Γ

lev≥0 ω0(., γ) = D. (7)
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In sequel, we consider the following assumptions

inf
γ∈Γ

ω0(v, γ) = −∞ ∀v 6∈ D. (8)

inf
γ∈Γ

ω0(v, γ) = 0 ∀v ∈ D. (9)

Definition 1.6. Suppose that A ⊆ Y and dA(y) = inf{‖a − y‖ : a ∈ A} is the distance
function from A. The function 4A : Y → R ∪ {±∞} defined by

4A(y) = dA(y)− dY \A(y),

is called the oriented distance function.

Now by the oriented distance function 4, we consider the nonlinear class of functions
ω2 : Y × Z × Γ 7→ R given by:

ω2(u, v, γ) := −4C(u) + ω0(v, γ).

The class of separation ω1 and ω2 are unified the following known linear or nonlinear
separation functions; see [1, 15, 16]:

(i) ω3(u, v, θ, γ) := 〈θ, u〉+ 〈γ, v〉,

(ii) ω4(u, v, θ, γ) := 〈θ, u〉 − 4R+(〈γ, v〉),

(iii) ω5(u, v, θ, γ) := 〈θ, u〉 − γdD(v),

(iv) ω6(u, v, θ) := 〈θ, u〉 − δD(v), where, δD is indicator function of D.

(v) ω7(u, v, γ) := −4C(u) + 〈γ, v〉,

(vi) ω8(u, v) := −4C(u)− δD(v),

(vii) ω9(u, v, θ, γ) := 〈θ, u〉 − 4C(Tv), where, T ∈ L+(Z, Y )

2 Main results

Here, we obtain first some results for minimizing of Problem (1).

Proposition 2.1. (a)- Let x̄ ∈ R, p̄ = (x̄, ȳ) ∈ gr F . Let ω1(u, v, θ̄, γ) := 〈θ̄, u〉+ω0(v, γ),
be a class of regular nonlinear separation functions satisfying both conditions (8) and (9).
If,

inf
γ∈D+

sup
(u,v)∈Kp̄

ω1(u, v, θ̄, γ) ≤ 0,

then, p̄ is a minimizer of Problem (1).
(b)- If Kp̄ and H admit the following regular nonlinear separation functions

ω2(u, v, γ̄) := −4C(u) + ω0(v, γ̄),
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then p̄ is a minimizer of Problem (1).
(c)- Let ω2(u, v, γ) := −4C(u) + ω0(v, γ), be a class of nonlinear separation functions
satisfying both conditions (8) and (9). If for each z ∈ G(x) ∩ (−D),

inf
γ∈D+

sup
{y∈F (x):x∈R}

ω2(ȳ − y,−z, γ) < 0,

then, p̄ is a minimizer of Problem (1).

The next results shows that the existence of a nonlinear separation between Kp̄ and H
is equivalent to the existence of a saddle point for the generalized Lagrangian.

Theorem 2.2. Let p̄ = (x̄, ȳ) ∈ gr F, and ω1(u, v, θ, γ) := 〈θ, u〉+ ω0(v, γ) be the class of
nonlinear functions satisfying conditions (8) and (9).

(i ) If (x̄, γ̄) is a saddle point for the generalized Lagrangian function L1 : U×C+×Γ 7→ R
defined by

L1(x, θ, γ) = inf
y∈F (x)

〈θ, y〉 − sup
z∈G(x)

ω0(−z, γ),

where F is compact valued, i.e.

L1(x̄, θ̄, γ) ≤ L1(x̄, θ̄, γ̄) ≤ L1(x, θ̄, γ̄), ∀x ∈ U, ∀γ ∈ Γ,

for a fixed θ̄ ∈ C∗ then, x̄ ∈ R and Kx̄ and H, admit a nonlinear separation;

(ii) Suppose that F (x̄) ⊆ {ȳ} + C, and there exists (θ̄, γ̄) ∈ C∗ × Γ which admits a
nonlinear separation for Kx̄ and H, then (x̄, γ̄) is a saddle point for the generalized
Lagrangian function ,i.e.

L1(x̄, θ̄, γ) ≤ L1(x̄, θ̄, γ̄) ≤ L1(x, θ̄, γ̄), ∀x ∈ U, ∀γ ∈ Γ,

Theorem 2.3. Let p̄ = (x̄, ȳ) ∈ gr F, and ω2(u, v, γ) := −4C(u) +ω0(v, γ) be the class of
functions satisfying two conditions (8) and (9).

(i ) If x̄ ∈ R, F (x̄) ⊆ {ȳ} + C and Kx̄ and H, admit a (regular) nonlinear separation
then, (x̄, γ̄) is a saddle point for the generalized Lagrangian function L2 : U ×Γ 7→ R
defined by

L2(x, γ) = inf
y∈F (x)

4C(ȳ − y)− sup
z∈G(x)

ω0(−z, γ),

where F is compact valued, i.e.

L2(x̄, γ) ≤ L2(x̄, γ̄) ≤ L2(x, γ̄), ∀x ∈ U, ∀γ ∈ Γ.

(ii) Suppose that F (x̄) ⊆ {ȳ} +
◦
C, and (x̄, γ̄) is a saddle point for the generalized La-

grangian function L2 then, x̄ ∈ R and Kx̄ and H, admit a regular nonlinear separa-
tion

In the following result, we suppose X and Z are reflexive and derive an exterior penalty
method for the Problem (1).
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Theorem 2.4. Let x̄ ∈ R, p̄ = (x̄, ȳ) ∈ gr F ,F (x̄) ⊆ {ȳ} + C, θ̄ ∈ C+i and the function
Lω : U × R+ −→ R defined by

Lω(x, γ) := inf
y∈F (x)

〈θ̄, y〉+ γ inf
z∈G(x)

dD(−z).

Then the following statements are equivalent:

(i ) cl cone Ep̄ ∩Hu = ∅.

(ii ) there exists γ̄ ∈ R+ \ {0} such that

sup
y∈F (x)

〈θ̄, ȳ − y〉 ≤ γ̄ inf
z∈G(x)

dD(−z) ∀x ∈ U.

(iii ) there exists γ̄ ∈ Γ := R+ \ {0} such that

ω(u, v, θ̄, γ̄) ≤ 0, ∀(u, v) ∈ Kp̄;

where
ω(u, v, θ, γ) = 〈θ, u〉+ ω0(v, λ) = 〈θ, u〉 − γdD(v)

(iv ) Lω(x, γ) is an exact penalty function of Problem (1) at x̄.
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Derived Algebraic Structures from Algebraic

Hyperstrutctures

R. Ameri, A. Kordi∗

School of Mathematics, Statistic and Computer Sciences, University of Tehran

Abstract

Given an algebraic hyperstructure (AHS) H. Let P be an algebaic property. In
our talk we want to answer to Is there a smallest strongly regular relation ρ on H,
such that the quotient H/ρ, the derived algebraic structure (AS) from H, satisfies
in the property P? In this regards we try to answer to this question in general. In
this regards first we review briefly some attempts to this diirection and we answer the
questions for two specila manners for derived Engle groups and (pseduo) regular rings.

AMS:20N20, 16Y99.
Keywords: fundamental relation, multiplicative hyperring, Engel, pseudo regular.

1 Introduction

The theory of hyperstructures has been introduced by Marty in 1934 during the 8th

Congress of the Scandinavian Mathematicians [21]. Marty introduced hypergroups as
a generalization of groups. He published some notes on hypergroups, using them in differ-
ent contexts as algebraic functions, rational fractions, non commutative groups and then
many researchers have been worked on this new field of modern algebra and developed
it. It was later observed that the theory of hyperstructures has many applications in
both pure and applied sciences; for example, semi-hypergroups are the simplest algebraic
hyperstructures that possess the properties of closure and associativity. The theory of
hyperstructures has been widely reviewed [21, 10, 11, 14, 33].
In [11] Corsini and Leoreanu-Fotea have collected numerous applications of algebraic hy-
perstructures, especially those from the last fifteen years to the following subjects: geome-
try, hypergraphs, binary relations, lattices, fuzzy sets and rough sets, automata, cryptog-
raphy, codes, median algebras, relation algebras, artificial intelligence, and probabilities.
A special equivalence relations which is called fundamental relations play important roles
in the the theory of algebraic hyperstructures. The fundamental relations are one of the
most important and interesting concepts in algebraic hyperstructures that ordinary alge-
braic structures are derived from algebraic hyperstructures by them. The fundamental
relation β∗ on hypergroups was defined by Koskas [19], mainly studied by Corsini [21],
Freni [18], Vougiouklis [34]( for more details about hyperrings and fundamental relations

∗Speaker
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on hyperrings see [3, 12, 14, 32, 34]). Also, recently in [6] nilpotent groups derived from
a polygroup studied; and R. Ameri and E. Mohamadzadeh in [1] introduced and studied
Engel groups derived from hypergroups was .
In this note we start by the following important quoestion in the theory of algebraic hy-
perstructures: Consider an algebraic hyperstructure H and an algebraic property P . Is
there an strongly regular relation ρ on H such that the quotient algebraic structure H/ρ
satisfies in the property P?
In this talk we try to answer to this question in general. Also, we examine this question
for two important case for derived Engel groups and pseudo regular rings .

Recall that a hyperoperation ”.” on nonempty set H is a mapping of H ×H into the
family of all nonempty subsets of H. Let ”.” be a hyperoperation on H. Then, (H, .) is
called a hypergroupoid. we can extend the hyperoperation on H to subsets of H as follows.
For A,B ⊆ H and h ∈ H, then AB = ∪a∈A,b∈Bab,
Ah = A{h}, hB = {h}B. A semihypergroup is a hypergroupoid (H, .), which is associative,
that is (a.b).c = a.(b.c) for all a, b, c ∈ H. A hypergroup is a semihypergroup (H, .), that
satisfies the reproduction axioms, that is a.H = H = H.a for all a ∈ H.

A non-empty set R with two hyperoperations + and . is said to be a hyperring if (R,+)
is a canonical hypergroup, (R, .) is a semihypergroup with r.0 = 0.r = 0 for all r ∈ R (0 as
a bilaterally absorbing element) and the hyperoperation . is distributive with respect to
+, i.e., for every a, b, c ∈ R; a(b+ c) = ab+ ac and (a+ b)c = ac+ bc.
A multiplicative hyperring is an additive commutative group (R,+) endowed with a hy-
peroperation . which satisfies the following conditions:
(1.) ∀a, b, c ∈ R : a(bc) = (ab)c;
(2.) ∀a, b, c ∈ R : (a+ b)c ⊆ ac+ bc, a(b+ c) ⊆ ab+ ac;
(3.) ∀a, b ∈ R : (−a)b = a(−b) = −(ab).
If in (2) we have equalities instead of inclusions, then we say that the multiplicative hy-
perring is strongly distributive.

2 Derived Engel Groups

Definition 2.1. let H be a hypergroup . We define for a fix element s ∈ H,
1) L0,s(H) = H
1) Lk+1,s(H) = {h;h ∈ [x, s];x ∈ Lk,s(H)}.
for all k ≥ 0 suppose that n ∈ N , and ωn =

⋃
m>1 ωmn where ω1n is the diagonal relation

and for every integer m ≥ 1, ωmn is the relation defined as follows:
xωmny ⇐⇒ ∃(z1, ..., zm) ∈ Hm; ∃δ ∈ Sm : δ(i) = i if zi is not in Ln,s(H) such that
x ∈∏m

i=1 zi, y ∈
∏m
i=1 zδ(i).

Obviously, for every n ≥ 1, the relation ωn is reflexive and symmetric. Now let ω∗n be
the transitive closure of ωn.

Theorem 2.2. For every n ∈ N , the relation ω∗n is a strongly regular relation.

Corollary 2.3. If H is a commutative hypergroup, then β∗ = ω∗n = ν∗n = γ∗.
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Definition 2.4. For any group G we define the subgroups Zi(Gy) for a fix element y, i ∈
{0, 1, , ...} as follows. Define Z0,y(G) = {e},Z1,y(G) =< {x ∈ G; [x, y] = e} >,...,Zk(Gy) =<
{x ∈ G; [x,k y] = e} >.
Also we define L0(Gs) = G, and for a fix s ∈ G, Lk+1(Gs) = {[x, s];x ∈ Lk(Gs)}.

Theorem 2.5. If H is a hypergroup and ϕ is a strongly regular relation on H, then for a
fix s ∈ H,
Lk+1,s(

H
ϕ )) = {[t, s]; t ∈ Lk,s((H)}.

Theorem 2.6. H
ω∗
n

is an n-Engel group.

In this section we introduce the smallest strongly relation ω∗ on a finite hypergroup
H such that H

ω∗ is an Engel group.

Definition 2.7. Let H be a finite hypergroup. Then we define the relation ω∗ on H as
follows:
ω∗ =

⋂
n≥1 ω

∗
n.

Theorem 2.8. The relation ω∗ is a strongly regular relation on a finite hypergroup H
such that H

ω∗ is an Engel group.

Theorem 2.9. The relation ω∗ is the smallest strongly regular relation on a finite hyper-
group H such that H

ω∗ is an Engel group.

3 Part II: Pseudo Regular Rings

Let R be a ring. An element a ∈ R is regular if there exists x ∈ R, such that a = axa.
R is a regular ring if every elements of R is regular. The set of all regular elements in R
is denoted by V (R). In this section we introduced the notation of pseudo regular rings.
In 1950, Brown and McCoy [9], defined the set of elements of a ring such that generated
ideal of that elements is regular and they denoted this set by M(R). They proved that
M(R) is an ideal and clearly M(R) ⊆ V (R).

Definition 3.1. Let (R,+, ·) be a ring. We define
(1) T0(R) = R
(2) Tk+1(R) = {x− xrx|x ∈ Tk(R), r ∈ R},
for k ≥ 0.

Definition 3.2. Let R be a ring. An ideal series of R is a finite chain of ideals of R such
that

{0} = R0 / R1 / · · · / Rk = R

such that 1 ≤ i ≤ k, Ri−1 / Ri. Then k is said to be the length of series and denoted by
`(R).
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Definition 3.3. Let R be a ring. An ideal series

{0} = R0 / R1 / · · · / Rk = R

is called regular series, if for all 1 ≤ i ≤ k, Ri
Ri−1

/M( R
Ri−1

), where M(R) = {x ∈ R| <
x > is a regular ideal}.

Proposition 3.4. ([9]) Let R be a ring. Then M( R
M(R)) = {0}.

Remark 3.5. Let R be a ring. We denote M0(R) = {0}.

Definition 3.6. Let R be a ring. A lower ideal series is an ideal series

R = R0 . R1 . R2 . · · · ,

where Ri =< Ti(R) >, for all 1 ≤ i ≤ k.

Definition 3.7. A ring R is said to be pseudo regular if it has a regular series. The
smallest length of a regular series of R is called regularity class of R.

Example 3.8. Let R be a nontrivial pseudo regular ring. ThenM(R) 6= {0}, because on
the otherwise R will be trivial.

Example 3.9. Let R = Zp[i] = {a + ib|a, b ∈ Zp}, i =
√
−1 be the Gaussian integer

modulo p, for some odd prime p. Then by Corollary 3.11 of [23], M(R) 6= {0}, and hence
R is pseudo regular with length ≥ 1, where Zp[i]. If R = Zpk [i] for some odd prime p and
k 6= 1, then M(R) = {0} and in this case R is not pseudo regular.

Example 3.10. Let R = Z2k [i] for all k. Then M(R) = {0}. Therefore, R is not a
pseudo regular ring.

Theorem 3.11. Let R be a ring and n ≥ 1. Then the following statements are equivalent:
(i) Rn = {0};
(ii) R is pseudo regular.

Corollary 3.12. Let R be a ring and n ≥ 1. If M(R) = R, then R is pseudo regular.

Proposition 3.13. ([9]) If r is an element of R such that a − ara is regular, then a is
regular.

Theorem 3.14. Let R be a ring. IfM(R) = V (R) and R is pseudo regular, thenM(R) =
R.

Theorem 3.15. Let R be a non trivial pseudo regular ring with an unitary and I an non
zero ideal of R. Then M(I) 6= {0}.

Theorem 3.16. Let I be an ideal of a pseudo regular ring R. Then I and R
I are pseudo

regular.

Theorem 3.17. If R1, R2, · · · , Rr are pseudo regular rings, then R =
∏r
i=1Ri is pseudo

regular.
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Corollary 3.18. Let R be a ring and I and J be two ideals of R. If R
I and R

J are pseudo
regular, then R

I
⋂
J is also pseudo regular.

Proposition 3.19. ([10]) If (H, ·) is a semihypergroup(resp. hypergroup) and ρ is a
strongly regular relation on H, then the quotient H/ρ is a semigroup(resp. group) under
the operation:

ρ(x)⊗ ρ(y) = ρ(z), ∀z ∈ x · y.
We denote ρ(x) by x̄ and instead of x̄⊗ ȳ we write x̄ȳ.

For all n > 1, we define the relation βn on a semihypergroup H, as follows:

aβnb⇔ ∃(x1, · · · , xn) ∈ Hn : {a, b} ⊆
n∏

i=1

xi, and β =
⋃

n≥1
βn

where β1 = {(x, x);x ∈ H}, is the diagonal relation on H. This relation was introduced by
Koskas [19] and studied by many researchers in the theory of algebraic hyperstructures(for
more see [1, 3, 10, 11, 12, 13, 15, 33, 34] ). Consider β∗ as the transitive closure of β. It is
proved that the relation β∗ is a strongly regular relation, and it is called the fundamental
relation of H [10].
Let (R,+, .) be a hyperring. Define the relation γ as follows:

xγny ⇔ ∃(x1, · · · , xn) ∈ Hn, ∃τ ∈ Sn : x ∈
n∏

i=1

xi, y ∈
n∏

i=1

xτ(i),

and γ =
⋃
n≥1 γn. We denote the transitive closure of γ by γ∗. The relation γ∗ is

the smallest equivalence relation on a multiplicative hyperring (R,+, .) such that the
quotient R/γ∗, the set of all equivalence classes, is a ring. The relation γ∗ is called
fundamental relation on R, and R/γ∗ is called the fundamental ring. Suppose that γ∗(a)
is the equivalence class containing a ∈ R. Then both the sum ⊕ and the product � in
R/γ∗ are defined as follows:

γ∗(a) ⊕ γ∗(b) = γ∗(c) for all c ∈ γ∗(a) + γ∗(b) and γ∗(a) � γ∗(b) = γ∗(d) for all
d ∈ γ∗(a).γ∗(b). Then R/γ∗ is a ring, which is called fundamental ring of R (for more
details see also [33]).

Definition 3.20. Let R be a multiplicative hyperring. We say that a ∈ R is regular if
there exists x ∈ R such that a ∈ axa, and R is a regular multiplicative hyperring, if all
the elements of R are regular. The set of all regular elements in R is denoted by V (R).

Definition 3.21. Let (R,+, ·) be a multiplicative hyperring. Define
(1) L0(R) = R; (2) Lk+1(R) = {h|h ∈ (x− xrx)

⋂
(xr − rx), x ∈ Lk(R), r ∈ R};

for k ≥ 0. Suppose that n ∈ N and ηn =
⋃
m>1 ηm,n, where η1,n is the diagonal relation

and for every integer m ≥ 1, the relation ηm,n is defined as follows:
xηm,ny ⇔ ∃(z1, · · · , zm) ∈ Rm,∃σ ∈ Sm : σ(i) = i if zi /∈ Ln(R) such that

x ∈∏m
i=1 zi and y ∈

∏m
i=1 zσ(i).

Obviously, for every n ≥ 1, the relation ηn is reflexive and symmetric. Now suppose that
η∗n is the transitive closure of ηn.

Corollary 3.22. For every n ∈ N, we have β∗ ⊆ η∗n ⊆ γ∗.
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Theorem 3.23. For every n ∈ N, the relation η∗n is a strongly regular relation.

Theorem 3.24. Let R be a multiplicative hyperring. Let ρ be a strongly regular relation
on R. Then Lk+1(R/ρ) = {h̄|h̄ = x̄ − x̄r̄x̄ = x̄r̄ − r̄x̄, x ∈ Lk(R), r ∈ R}, where r̄ is the
class of r with respect to ρ.

Theorem 3.25. R/η∗n is a pseudo regular ring of the class at most n+ 1 .

Corollary 3.26. The relation η∗ is a strongly regular relation on a multiplicative hyperring
R, such that R/η∗ is a pseudo regular ring.

Theorem 3.27. The relation η∗ is the smallest strongly regular relation on a multiplicative
hyperring such that R/η∗ is a pseudo regular ring.
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A survey of simplicial cohomology for semigroup algebras

A. Pourabbas

Amirkabir University of Technology

Tehran, Iran

Abstract

In this survey, we investigate the higher simplicial cohomology groups of the con-
volution algebra `1(S) for various semigroups S. The classes of semigroups considered
are semilattices, Clifford semigroups, regular Rees semigroups and the additive semi-
groups of integers greater than a for some integer a. Our results are of two types: in
some cases, we show that some cohomology groups are 0, while in some other cases,
we show that some cohomology groups are Banach spaces.

1 Introduction

In this talk, we investigate the higher simplicial cohomology groups of the convolution
algebra `1(S) for various semigroups S. Our results are of two types: in some cases, we
show that some cohomology groups are 0, while in some other cases, we show that some
cohomology groups are Banach spaces.

First we explain the general idea for showing that a cohomology group is a Banach
space. Let δ : Cn(A,X ) −→ Cn+1(A,X ) be the boundary map. Then Hn(A,X ) is a
Banach space if and only if the range of δ is closed, which is the case if and only if δ is
open onto its range, that is there exists a constant K such that if ψ = δ(φ) is such that
‖ψ‖ < 1 then there exists φ1 ∈ Cn(A,X ) such that ‖φ1‖ < K and ψ = δ(φ1).

Let A be a Banach algebra and let A′ be a Banach A-bimodule in the usual way. An
n-cochain is a bounded n-linear map T from A to A′, which we denote by T ∈ Cn(A,A′).
The map δn : Cn(A,A′) −→ Cn+1(A,A′) is defined by

(δnT )(a1, . . . , an+1)(a0) = T (a2, a3, . . . , an+1)(a0a1)

− T (a1a2, a3, . . . , an+1)(a0)

+ T (a1, a2a3, a4, . . . , an+1)(a0) + . . .

+ (−1)nT (a1, . . . , an−1, anan+1)(a0)

+ (−1)n+1T (a1, . . . , an)(an+1a0) .

The n-cochain T is an n-cocycle if δnT = 0 and it is an n-coboundary if T = δn−1S for
some S ∈ Cn−1(A,A′). The linear space of all n-cocycles is denoted by Zn(A,A′), and the
linear space of all n-coboundaries is denoted by Bn(A,A′). We also recall that Bn(A,A′) is
included in Zn(A,A′) and that the nth simplicial cohomology group Hn(A,A′) is defined
by the quotient

Hn(A,A′) =
Zn(A,A′)
Bn(A,A′) .
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Definition 1.1. Let S be a semigroup and

`1(S) = {f : S −→ C : ‖f‖1 =
∑

s∈S
|f(s)| <∞}.

We define the convolution of two elements f =
∑

s∈S f(s)δs and g =
∑

t∈S g(t)δt in `1(S)
by ∑

s∈S
f(s)δs ∗

∑

t∈S
g(t)δt =

∑

r∈S

∑

st=r

f(s)g(t)δr,

where δs is the point mass function at s. Then (`1(S), ∗, ‖ · ‖1) becomes a Banach algebra
that is called the semigroup algebra of S.

2 Semilattice Algebra

Let S be a semigroup and let E(S) = {p ∈ S : p2 = p}. We say that S is a semilattice if
S is commutative and E(S) = S, that is, e2 = e for every e ∈ S.

Theorem 2.1. [Gourdeau, Pourabbas and White] Let A = `1(S), where S is a semilattice,
and let X be a commutative A−module. Then H3(A,X ) is a Banach space.

The idea of the proof, if one knows that the algebraic cohomology vanishes, this often
implies that the coboundaries are dense in the space of cocycles. If only we can show
that the coboundary map is open onto its range, then we will be able to show that the
coboundary map has closed range. A method of showing that the map is open is to try
the following strategy. Take a proof that Hn(A,A′) is trivial, so that all cocycles are
coboundaries. This will show that a coboundary map is surjective, so certainly open onto
its range. Now try to rewrite this proof to show that if φ is an approximate n-cocycle,
that is ‖δφ‖ < 1, then it is approximately equal to a coboundary, i.e. there exists a ψ
so that ‖φ− δψ‖ < K (for some K). Then we will have a small φ′ = φ − δψ, which has
δφ′ = δφ.

Now let us see how this works in the particular case of Theorem 2.1. We take the
standard proof that derivations vanish on symmetrically acting idempotents.

D(e) = D(e2) = eD(e) +D(e)e = 2eD(e)

Hence eD(e) = 2eD(e) and so eD(e) = 0 and so D(e) = 0.
Then if we are given a small 2-coboundary, δψ, say ‖δψ‖ < 1, we can think of this

as saying that ψ is an approximate derivation. Then we have ψ(e) = ψ(e2) ≈ 2eψ(e),
hence eψ(e) ≈ 2eψ(e), and so eψ(e) ≈ ψ(e) and ψ(e) ≈ 0. This shows that ψ is small on
symmetrically acting idempotents.

Theorem 2.2 (Gourdeau, Pourabbas and White). Let S be a semilattice. Then
H3(`1(S), `∞(S)) = 0.

Proof. Let A = `1(S), where S is a semilattice, and let T ∈ C3(A,A′). We define

t2(T )(u, v) =2uvT (u, u, uv) + uvT (v, v, uv)− uvT (uv, v, v)

+ uT (v, uv, uv) + uT (u, v, v)− uT (uv, uv, v)

+ 2T (u, uv, uv)− T (u, v, uv)− T (u, u, v).
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We claim that δ1t1+t2δ2 = id, where t1 : C2(A,A′) −→ C1(A,A′) is defined by t1(φ)(e) =
(2e− 1)φ(e, e). To prove our claim for φ ∈ C2(A,A′) we have

t2(δ2)(φ)(u, v) =2uvδ2φ(u, u, uv) + uvδ2φ(v, v, uv)− uvδ2φ(uv, v, v)

+ uδ2φ(v, uv, uv) + uδ2φ(u, v, v)− uδ2φ(uv, uv, v)

+ 2δ2φ(u, uv, uv)− δ2φ(u, v, uv)− δ2φ(u, u, v).

Using the definition of boundary map δ2 we obtain the value of all terms on the right-hand
side of the above as follows

t2(δ2φ)(u, v) = φ(u, v)− [u(2v − 1)φ(v, v)− (2uv − 1)φ(uv, uv) + v(2u− 1)φ(u, u)]

= (id− δ1t1)(φ)(u, v),

which proves our claim, and the proof is complete.

Theorem 2.3 (Choi). Let S be a semilattice. Then
(i) Hn(`1(S), `∞(S)) = 0, for all n ≥ 1.
(ii) Hn(`1(S), X) = 0, for all symmetric `1(S)-bimodule X and all n ≥ 1.

If S is a semilattice, Duncan and Namioka showed that `1(S) is amenable if and only
if S is finite. Dales and Duncan observed that

H1(`1(S), X) = H2(`1(S), X) = 0,

for all symmetric `1(S)-bimodule X and this has been extended to the third cohomology
by [Gourdeau, Pourabbas and White].

3 Approximately additive functions and the semigroup Na

Definition 3.1. A real-valued function f defined on a subset X of a semigroup S is called
1-additive if

|f(x) + f(y)− f(x+ y)| < 1 when x, y, x+ y ∈ X,
and additive if

|f(x) + f(y)− f(x+ y)| = 0 when x, y, x+ y ∈ X.

The following proposition will enable us to deduce that the boundary map

δ : C1(`1(Na), `
∞(Na)) −→ C2(`1(Na), `

∞(Na))

is open onto its range, and hence that H2(`1(Na), `
∞(Na)) is a Banach space.

Proposition 3.2 (Gourdeau, Pourabbas and White). Let f be a real-valued 1-additive
function on [s, t] = {n ∈ N : s ≤ n ≤ t}. Then there exists a universal constant K and an
additive function g on [s, t] such that ‖f − g‖∞ < K where ‖f‖∞ = maxx∈[s,t] |f(x)|.

Theorem 3.3 (Gourdeau, Pourabbas and White). H2(`1(Na), `
∞(Na)) is a Banach space.
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Proof. Let φ ∈ C1(`1(Na), `
∞(Na)) be such that ‖δφ‖ < 1. Using the one-to-one corre-

spondence between Cn(`1(Na), `
∞(Na)) and bounded functions from the n-fold product

Na × · · · ×Na into `∞(Na), we write

|δφ(x, y)(z)| < 1 ∀x, y, z ∈ Na,

which is
|φ(y)(x+ z)− φ(x+ y)(z) + φ(x)(y + z)| < 1 .

For each N ≥ 3a, let fN : [a,N − a] −→ R be given by

fN (x) = φ(x)(N − x).

Then fN is 1-additive as, for x, y, x+ y ∈ [a,N − a], we have

|fN (x) + fN (y)− fN (x+ y)| = |δφ(x, y)(N − (x+ y))|
< 1

Therefore it follows from the previous Proposition that, for each N ≥ 3a, there exists
gN : [a,N − a] −→ R additive such that ‖fN − gN‖∞ < K for a fixed constant K.

Let ψ ∈ C1(`1(Na), `
∞(Na)) be induced by

ψ(x)(y) =

{
φ(x)(y) if x+ y < 3a;
gN (x) else, where N = x+ y.

Then δ(φ − ψ) = δ(φ) and ‖φ − ψ‖ < K. The map δ is therefore open onto its range,
which proves the theorem.

4 Rees Semigroup Algebra

Let G be a group, I and Λ be index sets, and G0 = G∪{0} be the group with zero arising
from G by adjunction of a zero element. Let P = (pλi) be a regular sandwich matrix over
G0, so each row and column of P contains at least one nonzero entry. The associated Rees
semigroup is defined by S∅ = I ×G× Λ ∪ {∅}, where ∅ acts as the zero element of S and

(i, g, λ)(j, h, µ) = (i, gpλjh, µ),

if pλ,j 6= 0 and ∅ otherwise.

Theorem 4.1 (Gourdeau, Gronbaek and White). Let S∅ be a regular Rees semigroup.
Then the cohomology groups H2(`1(S∅), `∞(S∅)) and HC2(`1(S∅)) are Banach spaces.

To show that H2(`1(S∅), `∞(S∅)) is a Banach space, we must show that the space
B2(`1(S∅), `∞(S∅)) is closed. We do this by showing that the map

δ : C1(`1(S∅), `
∞(S∅)) −→ C2(`1(S∅), `

∞(S∅))

is an open map onto its range and hence has closed range.
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Theorem 4.2 (Gourdeau, Gronbaek and White). Let S be a Rees semigroup with un-
derlying group G. Then we have

Hn(`1(S), `1(S)) ' Hn(`1(G), `1(G))

and
Hn(`1(S), `∞(S)) ' Hn(`1(G), `∞(G)).

That is, the simplicial cohomology and homology of `1(S) is isomorphic of those underlying
discrete group algebra.

As a consequence H1(`1(S), `∞(S)) = 0 and H2(`1(S), `∞(S)) is a Banach space.

5 Brandt semigroup

Let G be a group and let I be a non-empty set. Set

M0(G, I) = {(g)ij : g ∈ G, i, j ∈ I} ∪ {0},
where (g)ij denotes the I × I-matrix with entry g ∈ G in the (i, j) position and zero
elsewhere. Then M0(G, I) with the multiplication given by

(g)ij(h)kl =

{
(gh)il if j = k

0 if j 6= k
(g, h ∈ G, i, j, k, l ∈ I),

is an inverse semigroup with (g)∗ij = (g−1)ji, that is called the Brandt semigroup over G
with index set I.

If S is Brandt semigroup over G with a finite index set I, Duncan and Namioka showed
that `1(S) is amenable if and only if G is finite.

The notion of approximate amenable Banach algebras was introduced by F. Ghahra-
mani and R. J. Loy. Let A be a Banach algebra and let E be a Banach A-bimodule. A
continuous derivation D : A −→ E is approximately inner if there is a net (Dν) of inner
derivations in B(A, E) such that

D(a) = lim
ν
Dν(a) (a ∈ A),

where the limit is taken in the strong-operator topology of B(A, E).
A Banach algebra A is called approximately amenable if for each Banach A-bimodule

E, every continuous derivation D : A −→ E′ is approximately inner. That is,

H1
app(A,A′) =

Z1(A,A′)
B1(A,A′)strong

= 0.

A Banach algebra A is pseudo-amenable if there is a net (mα) ⊆ A⊗̂A, called an
approximate diagonal for A, such that for each a ∈ A

a ·mα −mα · a −→ 0 and π(mα)a −→ a.

M. M. Sadr has shown that if G is an amenable group, then the Brandt semigroup
algebra is pseudo-amenable. It remained open whether pseudo-amenability of the Brandt
semigroup algebra implies the amenability of group G. Essmaili, Rostami and Pourabbas
characterized pseudo-amenability of Brandt semigroup algebras and this characterization
answers the question raised by Sadr.
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Theorem 5.1 (Essmaili, Rostami and Pourabbas). Let G be a group, I be a non-empty
set and let S =M0(G, I) be the Brandt semigroup over G with index set I. Then `1(S)
is pseudo-amenable if and only if G is an amenable group.

Recently, Sadr and Pourabbas characterized the approximate amenability of Brandt
semigroup algebras. Precisely, they have shown that for a Brandt semigroup S =M0(G, I),
the semigroup algebra `1(S) is approximate amenable if and only if G is amenable and I is
finite. This fact and previous result gives an example of pseudo-amenable Banach algebra
that is not approximate amenable.

Theorem 5.2 (Sadr and Pourabbas). Let S = M0(G, I) be a Brandt semigroup. Then
the following are equivalent.

(1) `1(S) is amenable.

(2) `1(S) is approximately amenable.

(3) I is finite and G is amenable.

6 Clifford semigroup algebra

We recall that S is a Clifford semigroup if it is an inverse semigroup with each idempotent
central, or equivalently, if it is a strong semilattice of groups. So we can write our Clifford
semigroup as S = ∪{Ge : e ∈ E} where E is the semilattice of idempotents and each Ge
is a group with identity element e, and for every e, e′ ∈ E, we have GeGe′ ⊆ Gee′ .

Let S = ∪e∈E(S)Ge be a Clifford semigroup over a finite semilattice E(S), Duncan and
Namioka showed that `1(S) is amenable if and only if each Ge is amenable.

Theorem 6.1 (Gourdeau, Pourabbas and White). Let S be a Clifford semigroup. Then
H2(`1(S), `∞(S)) is a Banach space.

To prove the theorem for every ψ ∈ C1(`1(S), `∞(S)) with ‖δψ‖ < 1, we show that
there exists a constant M and ψ̂ ∈ C1(`1(S), `∞(S)) such that ||ψ̂|| < M and δψ̂ = δψ,
which proves the result.

Theorem 6.2 (Choi, 2010). (i) Let S = ∪e∈E(S)Ge be a Clifford semigroup. Suppose
that each Ge is amenable. Then

Hn(`1(S), `1(S)) = 0

and
Hn(`1(S), `∞(S)) = 0

for all n ≥ 1.

(ii) Let S be a commutative Clifford semigroup and let X be any symmetric Banach
`1(S)-bimodule. Then Hn(`1(S), X) = 0 for all n ≥ 1.

(iii) Let S be a normal band (that is, a semigroup in which every element is idempotent
and abca = acba for all a, b, c ∈ S). Then `1(S) is simplicially trivial, that is
Hn(`1(S), `∞(S)) = 0 for all n ≥ 1.
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Proposition 6.3 (Essmaili, Rostami and Pourabbas). Let S = ∪e∈E(S)Ge be a Clifford
semigroup such that E(S) is uniformly locally finite. Then `1(S) is pseudo-amenable if
and only if Ge is amenable for every e ∈ E(S).

Remark 6.1. A Theorem of Essmaili, Rostami and Pourabbas implies that `1(S) is pseudo-
amenable whenever S is a uniformly locally finite semilattice and they claim that the
converse does not hold in general.

Let S = (N,min). Then `1(S) is approximate amenable, as has been by [Dales, et. al.].
But (δn)n∈N is a bounded approximate identity for `1(S). On the other hand, any Banach
algebra with a bounded approximate identity is approximate amenable if and only if it is
pseudo-amenable. This shows that `1(S) is pseudo-amenable but (S,≤) is not uniformly
locally finite

7 Inverse semigroup

The semigroup S is an inverse semigroup if for each s ∈ S there exists a unique element
s∗ ∈ S with ss∗s = s and s∗ss∗ = s∗. For any inverse semigroup S, there is a partial order
on S defined by

s ≤ t ⇐⇒ s = ss∗t (s, t ∈ S). (7.1)

The canonical partial order on E(S) is given by

s ≤ t ⇐⇒ s = st = ts (s, t ∈ E(S)). (7.2)

It is easily verified that the partial order given on S coincides with that given on E(S).
If (S,≤) is a partially ordered set, we set (x] = {y ∈ S : y ≤ x}. The partially ordered

set (S,≤) is called locally finite if (x] is finite for every x ∈ S and is called uniformly
locally finite if sup{|(x]| : x ∈ S} <∞.

Theorem 7.1 (Essmaili, Rostami and Pourabbas). Let S be an inverse semigroup such
that (E(S),≤) is uniformly locally finite. Then the following are equivalent:

(i) `1(S) is pseudo-amenable.

(ii) Each maximal subgroup of S is amenable.

(iii) `1(S) is biflat.

The Banach algebra (`1(S), •, ‖ · ‖1) is called the restricted semigroup algebra and will
be denoted by B(S), where the multiplication • on `1(S) is defined by

∑

s∈S
f(s)δs •

∑

t∈S
g(t)δt =

∑

r∈S

∑

st=r,
s∗s=tt∗

f(s)g(t)δr,

if there are no elements t, s ∈ S with st = r and s∗s = tt∗, the multiplication is taken as
zero.

Theorem 7.2 (Rostami, Pourabbas and Essmaili). Let S be an inverse semigroup. Then
the following are equivalent:
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(i) B(S) is approximately amenable.

(ii) `1(S) is amenable.

(iii) B(S) is amenable.

Theorem 7.3 (Rostami, Pourabbas and Essmaili). Let S be a uniformly locally finite
inverse semigroup. Then the following are equivalent:

(i) `1(S) is approximately amenable.

(ii) E(S) is finite and each maximal subgroup of S is amenable.

(iii) `1(S) is amenable.

(iv) `1(S) is boundedly approximate contractible.

(v) `1(S) is boundedly approximate amenable.

For proof we have

`1(S) ∼= `1 −
⊕
{ME(Dλ)(`

1(Gpλ)) : λ ∈ Λ},

as Banach algebras. Thus for each λ ∈ Λ, ME(Dλ)(`
1(Gpλ)) is a homomorphic image

of `1(S). This shows that ME(Dλ)(`
1(Gpλ)) is approximately amenable for each λ ∈ Λ.

On the other hand, we have E(S) is finite. This implies that `1(Gpλ) is approximately
amenable for each λ ∈ Λ. Hence Gpλ is amenable for each λ ∈ Λ and thus (ii) holds.

Remark 7.1. The above Theorem is not valid if S is a locally finite but not uniformly
locally finite inverse semigroup. For example the semigroup S = (N,min) is locally finite
but is not uniformly locally finite. Also, E(S) = S and it is shown in [4, Example 10.10]
that `1(S) is approximately amenable.

Corollary 7.4. (i) Let S = M0(G, I) be the Brandt semigroup over group G with
index set I. Then `1(S) is approximately amenable if and only if I is finite and G is
amenable.

(ii) Let S = ∪e∈E(S)Ge be a Clifford semigroup such that E(S) is uniformly locally
finite. Then `1(S) is approximately amenable if and only if E(S) is finite and Ge is
amenable for every e ∈ E(S).

(iii) Let S be a uniformly locally finite semilattice. Then `1(S) is approximately amenable
if and only if S is finite.

Theorem 7.5. Let S be a band semigroup and let `1(S) be approximately amenable.
Then S is a semilattice.

Corollary 7.6. Let S be a uniformly locally finite band semigroup. Then the following
are equivalent:

(i) `1(S) is approximately amenable.

(ii) S is a finite semilattice.
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(iii) `1(S) is amenable.

Duncan and Namioka showed that the amenability of `1(S) implies that S is an
amenable semigroup, this extended to some classes of semigroups in the following the-
orem.

Theorem 7.7 (Essmaili, Rostami and Medghalchi). Let S be an inverse semigroup. If
`1(S) is pseudo amenable, then S is an amenable semigroup.
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Zero Divisors of Group Rings of Torsion-Free Groups

Alireza Abdollahi∗

University of Isfahan and IPM

Abstract

Irving Kaplansky proposed this conjecture that the group ring F[G] has no zero
divisor for any field F and any torsion-free group G. We will talk on a recent approach
to bound the size of the support of a possible zero divisor.

Keywords: Kaplansky’s Zero Divisor Conjecture; Torsion-Free Groups; Group Rings

Mathematics Subject Classification [2010]: 20C07; 16S34

1 Introduction

Let R be a ring and H be a group. Recall that the group ring R[H] is the set of all functions
α from H to R with finite supports, where the support of α is {x ∈ H | α(x) 6= 0R}
and denoted by supp(α). The group ring R[H] is a ring with pointwise addition and
‘polynomial-like’ multiplication. That is, if α and β in R[H] then α + β is the function
from H to R such that (α + β)(x) = α(x) + β(x) for all x ∈ H; and αβ is the function
from H to R such that

(αβ)(x) =
∑

(y,z)∈supp(α)×supp(β)
α(y)β(z).

We call a non-zero element a of a ring, a zero divisor whenever ab = 0 or ba = 0 for some
b in the ring.

Irving Kaplansky proposed the following conjecture [1].

Kaplansky’s Zero Divisor Conjecture (KZDC) [1]. Let G be a torsion free group
and F be any field. Then the group ring F[G] has no zero divisor.

Let α be a possible zero divisor of F[G]. Then it is known that |supp(α)| ≥ 3 (see e.g.
[2, Theorem 2.1]), where supp(α) = {x ∈ G | α(x) 6= 0F}.

Let α and β be non-zero elements of F2[G] such that αβ = 0. It is proved in [2,
Theorem 1.3] that

1. if |supp(α)| = 3, then |supp(β)| ≥ 18;

2. if |supp(α)| = 4, then |supp(β)| ≥ 8.
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Assume that G is a torsion free group and R = Q or Fp the field with prime p elements,
such that there exist non-zero elements α, β ∈ R[G] such that αβ = 0 and |supp(α)| = 3.

We would like to study the improvement of the above lower bound of |supp(β)| for
such βs obtained in [2] and mentioned above.

2 Main results

Theorem 2.1. Let G be a torsion-free group such that the group ring Q[G] contains a
zero divisor with the support of size 3. Then there exist a zero divisor of the form 1+x+y
or 1 + x− y for some x, y ∈ G.

Theorem 2.2. Let G be a torsion-free group and F be a field such that the group ring F[G]
contains a zero divisor α with support of size 3. Then S := {s−1t | s, t ∈ supp(α), s 6= t}
is of size 6. Suppose that β ∈ F[G] \ {0} is such that αβ = 0 and αβ′ 6= 0 whenever
|supp(β′)| < |supp(β)| for β′ ∈ F[G]. Let Γ be the induced subgraph Γ of the Cayley graph
Cay(G,S) on the support supp(β) of β. If F = F2 is the field of size 2 and the graph Γ
has a cycle of length 4, then G contains two distinct elements x, y such that x2 = y3 and
either 1 + x+ y or 1 + y + y−1x is a zero divisor in F2[G].
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Geometry and Architecture

M. M. Rezaii∗

Amirkabir University of Technology

Hooman Malaiery†

Isfahan Art University

Abstract

Minimal surfaces have an essential rule in the Industrial designs, architecture and
biology. First we discuss about eight equivalent definitions of minimality and their
connections to other branches of mathematics. Then we will refer to meshing of the
minimal surface in the discrete geometry. Also we will point to the branche point and
conjugate of minimal surfacs. Finally we will see the extension concept of minimal
surface in Finsler geometry with their applications.

Keywords: minimal surface, Weierstrass Representations, Discrete minimal surface,
adjoint of minimal surface, Finsler minimal surface.

1 Introduction

Minimal surfaces have many applications in architecture, industrial design and biology.
Minimal surface is used in architecture for light roof constructions and tents for air ex-
change. The number of architects that know this way have been increasing. Among the
famous buildings are designed according to this way include: RTV Headquarters in Zurich,
Michael Schumacher tower, Japan Pavilion,... .
In this article we first discuss the equivalent definitions of minimal surfaces, then we ex-
plain Weierstrass Representations of minimal surface and their construction method. After
that we mention definition of adjoint of minimal surface and branch points.
Since minimal surfaces are surfaces with minimum area relative to its boundary, we con-
sider them from the perspective of calculus of variations and PDE.
But in architecture and applied issues we need to discrete continuous geometry. Therefore
we give a quick review of minimal surface in discrete geometry.
Our main problem in this article is to generalize minimal surface in Finsler geometry. In
Finsler geometry there are a few number of articles such as [13, 10, 1]. We want to study
these surfaces from applied vision. Finally we present application of minimal surfaces in
architecture and industrial designs.

2 Minimal surfaces

We can define a minimal surface from different point of view. Here we consider the eight

equivalent definitions of minimality and their connections to other branches of mathemat-
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ics.

Let S ⊂ R3 be a surface and

X : Ω ⊂ R2 C∞−→ S ⊂ R3,

X(u, v) = (x1(u, v), x2(u, v), x3(u, v))

be a parameterization of S, where Ω is an open domain in R2. S is called regular if

Xu ×Xv 6= 0 for each (u, v) ∈ U . Put w = (u, v), DX(w) = [Xu(w), Xv(w)] then

TpS := DX(w)(R2), p = X(u, v),

is called tangent space of S at poit p = X(u, v).

Definition 2.1. The surface S is called minimal sursace iff xi is a harmonic map for each

i, i.e. 4xi = 0, where 4 is the Riemannian Laplacian operator.

Suppose N(w) = Xu(w)×Xv(w)
|Xu(w)×Xv(w)| is a unit normal vector at point w ( S is orientable).

Then N : Ω C∞−→ S ⊂ R3 is a Gauss map and dNp : TpS −→ TpS is a self-adjoint linear

map. H(p) = trace dNp is a mean curvature and we have 4X = 2HN .

Definition 2.2. A surface S ⊂ R3 is minimal iff its mean curvature vanishes identically.

Any regular surface can be locally expressed as the graph of a function u = u(x, y). In [9]

the mean curvature to vanishe identically, the quasilinear, second order, elliptic partial

differential equation

(1 + u2
x)uyy − 2uxuyuxy + (1 + u2

y)uxx = 0 (1)

which admits a divergence form version

div(
∇u√

1 + |∇u|2
) = 0 (2)

Definition 2.3. A surface S ⊂ R3 is minimal iff it can be locally expressed as the graph

of u = u(x, y) of a solution of the equation (1) or (2)

Let Ω be a domain with Ω̄ is compact, if h ∈ C∞(Ω) with compact support and

Y (t) = X + tuN is again an immersion whenever H < ε0 then

A(t) =

∫ ∫

Ω
|Yu(t)× Yv(t)| dA

is an area functional. We have

A′(0) = −2

∫ ∫

Ω
hHdA

.
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Definition 2.4. A surface S ⊂ R3 is minimal surface iff it is a critical point of the area

functional.

With second variational of area functional we obtain:

Definition 2.5. A surface S ⊂ R3 is minimal surface iff for each point p ∈ S there exist

a neighborhood with least-area relative to its boundary.

Now we consider an other well-known functional in the calculus of variations is the

Dirichlet energy

E =

∫ ∫

Ω
|∇X|2dA

where Ω is compact closure. We have E ≥ 2A with equality iff X : Ω −→ S ⊂ R3 is

conformal.

The coordinate (u, v) on Ω are said to be isothermal if there exists a function λ(u, v) > 0

such that < Xu, Xu >= λ2 =< Xv, Xv > and < Xu, Xv >= 0.

Spivak [12] shows that for each differentiable surface S in R3 at each point p ∈ S, locally

an isothermal coordinate exists.

Then if X : Ω −→ S ⊂ R3 and (u, v) ∈ Ω is an isothermal coordinate then

ds2 = dx2
1 + dx2

2 + dx2
3 = λ2(u, v)(du2 + dv2)

so X is conformal.

Then the existence of isothermal coordinate and conformality of X allow us to give

Definition 2.6. A conformal immersion X : Ω −→ S ⊂ R3 is minimal surface iff it is a

critical point of the Dirichlet energy (least energy).

From a physical point of view, the pressure at the two sides of the surface when are equal

then membrane has zero mean curvature. Therefore, soap film (i.e. not bubbles) in space

are physical realization of the ideal concept of a minimal surface.

Definition 2.7. A surface S ⊂ R3 is minimal surface iff every point p ∈ S has a neigh-

borhood Dp which is equal to the unique idealized soap film with boundary ∂D.

Suppose Ap = −dNp : TpS −→ TpS the shape operator. After identification of N with

its stereographic projection g : S −→ C ∪ {+∞} the next result is given.

Definition 2.8. A Riemannian surface (complex manifold with complex dimension 1)

is minimal surface iff its stereographically projected Gauss map g : S −→ C ∪ {+∞} is

meromorphic.
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3 Weierstrass Representations

The minimal surface X : Ω −→ S ⊂ R3 in isothermal coordinate satisfies the equations

4X = 0, |Xu|2 = |Xv|2, < Xu, Xv >= 0.

Let z = u+ iv, X(z, z̄) = (x1(z, z̄), x2(z, z̄), x2(z, z̄)) and

φ(z) :=
∂X

∂z
, φk(z) :=

∂xk
∂z

, k = 1, 2, 3

where ∂
∂z = 1

2( ∂
∂u − i ∂∂v ) and ∂

∂z̄ = 1
2( ∂
∂u + i ∂∂v ).

Then the conditions |Xu|2 = |Xv|2 and < Xu, Xv >= 0 are equivalent to φ2
1(z) = φ2

2(z) =

φ2
3(z) = 0.

Put f = φ1 − iφ2 and g = φ3/φ1 − iφ2, then fg = φ3. f and f.g2 are holomorphic and g

is meromorphic.

Theorem 3.1. (Weierstrass): If f be holomorphic and g be a meromorphic such that

fg2 be a holomorphic on the simply connected domain Ω then there exists a minimal

surface X(u, v) = (x1, x2, x3) such that

x1 = Re

∫

Ω
f(1− g2)dz

x2 =

∫

Ω
if(1 + g2)dz

x3 =

∫

Ω
fgdz

Theorem 3.2. (Weierstrass): If g is holomorphic function and dh holomorphic 1−form

on the simply connected domain Ω then

X(z) = Re

∫ z

z0

(
1

2
(
1

g
− g),

i

2
(
1

g
+ g), 1)dh

expresses the minimal surface [8].
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4 The Adjoint surface of minimal surface

Let X(u, v) for (u, v) ∈ Ω be a minimal surface in isothermal coordinate then the surface

X∗(u, v) is called the adjoint surface of X(u, v) if Xu = X∗v and Xv = X∗u.

(4X = 0, |Xu|2 = |Xv|2, < Xu, Xv >= 0)⇐⇒
(4X∗ = 0, |X∗u|2 = |X∗v |2, < X∗u, X

∗
v >= 0)⇐⇒

(Xzz̄ = 0, < Xu, Xv >= 0)

i.e. X∗(u, v) is minimal surface.

Note: X∗∗ = −X.

Figure 1: Minimal surfaces and their adjoint

Theorem 4.1. The singular points z of a non constant minimal surface X on a domain

Ω are isolated. They are exactly the zeros of the function |Xu| in Ω [4].
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Definition 4.2. (Branch points:) The singular points of minimal surfaces are called

branch points.

As we shall see the behavior of a minimal surface in the neighborhood of one of its singular

points resembles the behavior of a holomorphic function ϕ(z) = x1(z) + ix∗1(z) in the

neighborhood of a zero of ϕ′(z).

5 The Plateau Problem and the Partially Boundary Prob-
lem

Given in R3 a configuration Γ =< Γ1,Γ2, ...,Γk > consisting of k closed and mutually

disjoint Jordan curves Γj , find a minimal surface of prescribed Euler characteristic, ori-

entable or not, that span Γ. If Γ is a closed Jordan curve that lies on a convex surface,

then Γ bounds a disk-type minimal surface without self-intersections.

Another positive result, due to White:

If Γ is a closed Jordan curve in R3 with total curvature less or equal to 4π, then any

minimal surface (independently of its topological type) is embedded up to and including

the boundary, with no interior branch points.

Figure 2: A soap film experiment

We will explain in the next sections discrete minimal surface and minimal surface in Finsler

geometry. Also we will show the applications of minimal surface in architecture.
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Crámer’s Probabilistic Model of Primes and The Zeta

Function

Kasra Alishahi ∗

Sharif University of Technology

Abstract

In 1936 Harald Crámer proposed a probabilistic model to mimic the behavior
of prime numbers. According to the prime number theorem we know that density of
primes around a big number x is approximately 1/ lnx. Crámer’s model simply chooses
every natural number n with probability 1/ lnn, independently, and considers these
numbers as “primes”! It is believed that this model captures some characteristics
of distribution of primes e.g. asymptotics on size of large gaps in primes. In this
paper we study the behavior of Zeta function for the Crámer’s model. We prove that
if q1, q2, · · · is a realization of primes from Crámer’s model then the associated zeta
function, ζC(s) =

∏∞
i=1(1 − q−si )−1, which is defined for Re(s) > 1, is almost surely

continuable to a holomorphic function on Re(s) > 1
2 but not to any larger domain.

Keywords: Zeta Function, Cramer’s Model, Random Prime Numbers

Mathematics Subject Classification [2010]: 11M45, 30B20
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Semigroups with apartness: constructive versions of some

classical theorems

Melanija Mitrović∗

University of Nǐs

Sinǐsa Crvenković

University of Novi Sad

Daniel Abraham Romano

University of Banja Luka

Abstract

The starting point of our work is the structure (S,=, 6=, · ) called a semigroup with
apartness. We examine and prove constructive analogues of some classical theorems,
like, for example, isomorphism theorems and Cayley’s theorem.

Keywords: Set with apartness, Semigroup with apartness, Coequivalence, Cocon-
gruence.

Mathematics Subject Classification [2010]: 03F65, 20M99

1 Introduction

Following [10, Vol II], “The study of algebraic structures in an intuitionistic setting was
undertaken by Heyting [7].” Within BISH, which forms the framework for our work, the
history of constructive semigroups with an inequality began recently, [1]. In [3], [9] it is
shown/announced that constructive algebraic structures with apartness can be applied in
computer science (especially in computer programming) as well.

Definition 1.1. By an apartness on S (see [8]), we mean a binary relation 6w on S which
satisfies the axioms of irreflexivity, symmetry and cotransitivity: ¬(x 6w x), x 6w y ⇒ y 6w
x, x 6w z ⇒ ∀y (x 6w y ∨ y 6w z). We then say that (S,w, 6w) is a set with apartness.
An apartness is tight if ¬(x 6w y)⇒ x w y.

Definition 1.2. Let (A,w, 6w ) be a set with apartness. A function f : A −→ A is
strongly extensional, or, for short, a se-function if whenever we have f(a) 6w f(b), then
a 6w b follows, a, b ∈ A.

Following [6], [10], where the notion of commutative constructive semigroups with tight
apartness has appeared, we define and put the notion of noncommutative constructive
semigroups with “ordinary” apartness in the centre of our study.

Definition 1.3. A tuple (S,w, 6w, ·) is a semigroup with apartness with (S,w, 6w) as a
set with apartness, · a binary operation on S which is associative, i.e. ∀a,b,c∈S [(a · b) · c w
a · (b · c)], and strongly extensional, i.e. ∀a,b,x,y∈S (a · x 6w b · y ⇒ (a 6w b ∨ x 6w y)).
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Theorem 1.4. Let (A,w, 6w ) be a set with apartness, and let f : A −→ A be an se-
mapping. If S is a set of all se-functions from A to A, and ◦ composition of functions,
then (S,w, 6w , ◦) with

f w g ⇔ ∀x∈A (f(x) w g(x)) and f 6w g ⇔ ∃x∈A (f(x) 6w g(x)),

is a semigroup with apartness.

Corollary 1.5. Every semigroup with apartness se-embeds into the semigroup of all
strongly extensional self-maps on a set.

Remark 1.6. For undefined notions and notations as well as omitted proofs see [4], [5].

2 Main results

In order to give the constructive versions of the isomorphism theorems for sets and semi-
groups with apartness we need the following notions.

Definition 2.1. A binary relation α defined on semigroup with apartness S is
– consistent if α ⊆ 6w;
– cotransitive if (x, z) ∈ α ⇒ ∀y ((x, y) ∈ α ∨ (y, z) ∈ α);
– coequivalence if it is consistent, symmetric and cotransitive;
– cocongruence if it is coequivalence that is cocompatible with multiplication, i.e. that

is ∀a,b,x,y∈S ((ax, by) ∈ α ⇒ (a, b) ∈ α ∨ (x, y) ∈ α).

Quotient sets (structures) are not part of BISH. In order to make them a part of
BISH we need the following notions: equivalence, taken from CLASS, which behaves
on constructive mathematics rules; coequivalence, a constructive notion, as well as link(s)
between them - Theorem 2.3 (and Theorem 2.4) from [4]. Now we can formulate one of
the main results - Apartness Isomorphism Theorem for sets with apartness.

Theorem 2.2. Let f : S −→ T be an se-mapping between sets with apartness. Then:
(i) the relation coker f = {(x, y) ∈ S × S : f(x) 6w f(y)} is a coequivalence on S

(which we call the cokernel of f);
(ii) coker f is associated with the kernel of f , denoted, as usual, by ker f , and ker f ⊆∼

coker f ;
(iii) (S/ ker f,w, 6w) is a set with apartness, where

a(ker f) w b(ker f) ⇔ (a, b) ∈ ker f

a(ker f) 6w b(ker f) ⇔ (a, b) ∈ coker f ;

(iv) the mapping θ : S/ ker f −→ T , defined by θ(x(ker f)) w f(x), is a one-one,
injective se-mapping such that f w θ ◦ π; and

(v) if f maps S onto T , then θ is an apartness bijection.

Proof : (i) The consistency of coker f is easy to prove: if (x, y) ∈ coker f , then
f(x) 6w f(y) and therefore x 6w y. If (x, y) ∈ coker f , then, by the symmetry of apartness
in T , f(y) 6w f(x); so (y, x) ∈ coker f . If (x, y) ∈ coker f and z ∈ S, i.e. f(x) 6w f(y)
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and f(z) ∈ T , then either f(x) 6w f(z) or f(z) 6w f(y); that is, either (x, z) ∈ coker f or
(z, y) ∈ coker f . Hence coker f is a coequivalence on S.

(ii) Let (x, y) ∈ coker f and (y, z) ∈ ker f ; then f(x) 6w f(y) and f(y) w f(z).
Hence f(x) 6w f(z), i.e. (x, z) ∈ coker f , and coker f is associated with ker f . Now
let (x, y) ∈ ker f , so f(x) w f(y). If (u, v) ∈ coker f , then, by the cotransitivity of
coker f , it follows that (u, x) ∈ coker f or (x, y) ∈ coker f or (y, v) ∈ coker f . Thus
either (u, x) ∈ coker f or (y, v) ∈ coker f , and, by the consistency of coker f , either
u 6w x or y 6w v; whence we have (x, y) 6w (u, v). Thus (x, y) . coker f , or, equivalently
(x, y) ∈ ∼ coker f .

(iii) This follows from the definition of 6w in S/ ker f and (i).
(iv) Let us first prove that θ is well defined. Let x(ker f), y(ker f) ∈ S/ ker f be such

that x(ker f) w y(ker f); that is, (x, y) ∈ ker f . Then we have f(x) w f(y), which, by the
definition of θ, means that θ(x(ker f)) w θ(y(ker f)). Now let θ(x(ker f)) w θ(y(ker f));
then f(x) w f(y). Hence (x, y) ∈ ker f , which implies that x(ker f) w y(ker f). Thus
θ is one-one. Next let θ(x(ker f)) 6w θ(y(ker f)); then f(x) 6w f(y). Hence (x, y) ∈
coker f , which, by (iii), implies that x(ker f) 6w y(ker f). Thus θ is an se-mapping. Let
x(ker f) 6w y(ker f); that is, by (iii), (x, y) ∈ coker f . So we have f(x) 6w f(y), which,
by the definition of θ means θ(x(ker f)) 6w θ(y(ker f)). Thus θ is injective. On the other
hand, by the definition of composition of functions, Theorem 2.4 ([4]), and the definition
of θ, for each x ∈ S we have (θ ◦ π)(x) w θ(π(x)) w θ(x(ker f)) w f(x).

(v) Taking into account (iv), we have to prove only that θ is onto. Let y ∈ T . Then,
as f is onto, there exists x ∈ S such that y w f(x). On the other hand π(x) w x(ker f).
By (iv), we now have

y w f(x) w (θ ◦ π)(x) w θ(π(x)) w θ(x(ker f)).
Thus θ is onto. �

Using this result we can prove another main result of this paper, Apartness Isomor-
phism Theorem for semigroups with apartness.

Theorem 2.3. Let f : S −→ T be an se-homomorphism between semigroups with apart-
ness. Then:

(i) the relation coker f is a cocongruence on S associated with ker f ;
(ii) (S/ ker f,w, 6w, ·) is a semigroup with apartness, where

a(ker f) w b(ker f) ⇔ (a, b) ∈ ker f ,

a(ker f) 6w b(ker f) ⇔ (a, b) ∈ coker f ,

a(ker f) b(ker f) w (ab)(ker f);

(iii) the mapping θ : S/ker f −→ T , defined by θ(x(ker f)) w f(x), is an apartness
embedding such that f w θ ◦ π; and

(iv) if f is onto, then θ is an apartness isomorphism.

Results of several years long investigation, presented in [4], [5], present a semigroup
facet of some relatively well established direction of constructive mathematics. Imprtant
sourse of ideas and notions of our work is [2]. At the very end we want to emphasize that
semigroups with apartness are a new approach, and not a new class of semigroups.
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On a conjecture of Richard Stanley∗

Seyed Amin Seyed Fakhari†

IPM

Abstract

Let K be a field and S = K[x1, . . . , xn] be the polynomial ring in n variables
over the field K. In 1982, Stanley defined what is now called the Stanley depth of a
multigraded S-module. He conjectured that Stanley depth is an upper for the depth
of the module. This conjecture has been recently disproved by Duval et al., [2]. In
this talk, we describe their counterexample. We also present the recent developments
in this topic.

Keywords: Stanley depth, Monomial ideal, Cohen-Macaulay simplicial complex, Par-
titionable simplicial complex
Mathematics Subject Classification [2010]: 13C15, 13C13, 05E40

1 Introduction

Let K be a field and let S = K[x1, . . . , xn] be the polynomial ring in n variables over K.
Let M be a finitely generated Zn-graded S-module. Let u ∈M be a homogeneous element
and Z ⊆ {x1, . . . , xn}. The K-subspace uK[Z] generated by all elements uv with v ∈ K[Z]
is called a Stanley space of dimension |Z|, if it is a free K[Z]-module. Here, as usual, |Z|
denotes the number of elements of Z. A decomposition D of M as a finite direct sum
of Stanley spaces is called a Stanley decomposition of M . The minimum dimension of a
Stanley space in D is called the Stanley depth of D and is denoted by sdepth(D). The
quantity

sdepth(M) := max
{

sdepth(D) | D is a Stanley decomposition of M
}

is called the Stanley depth of M . For a reader friendly introduction to Stanley depth, we
refer to [7] and for a nice survey on this topic, we refer to [3].

A Zn-graded S-module M is said to satisfies Stanley’s inequality if

depth(M) ≤ sdepth(M).

In fact, Stanley [11] conjectured that

Stanley depth conjecture. Every Zn-graded S-module satisfies Stanley’s inequality.

This conjecture has been recently disproved in [2]. In this talk, we describe their
counterexample. Time permitting, We will also present the recent developments in this
topic.

∗Will be presented in English
†Speaker
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2 A counterexample for the Stanley’s conjecture

In this section, we describe the counterexample invented in [2] to disprove the Stanley’s
conjecture. We first need to introduce some basic notions from the theory of simplicial
complexes.

A simplicial complex ∆ on the set of vertices [n] := {1, . . . , n} is a collection of subsets
of [n] which is closed under taking subsets; that is, if F ∈ ∆ and F ′ ⊆ F , then also F ′ ∈ ∆.
Every element F ∈ ∆ is called a face of ∆, the size of a face F is defined to be |F | and
its dimension is defined to be |F | − 1. (As usual, for a given finite set X, the number
of elements of X is denoted by |X|.) The dimension of ∆ which is denoted by dim ∆, is
defined to be d−1, where d = max{|F | | F ∈ ∆}. A facet of ∆ is a maximal face of ∆ with
respect to inclusion. We say that ∆ is pure if all facets of ∆ have the same cardinality.

One of the connections between the combinatorics and commutative algebra is via
rings constructed from the combinatorial objects. Let ∆ be a simplicial complex on [n].
For every subset F ⊆ [n], we set xF =

∏
i∈F xi. The Stanley–Reisner ideal of ∆ over K

is the ideal I∆ of S which is generated by those squarefree monomials xF with F /∈ ∆. In
other words, I∆ = 〈xF | F ∈ N (∆)〉, where N (∆) denotes the set of minimal nonfaces of
∆ with respect to inclusion. The Stanley–Reisner ring of ∆ over K, denoted by K[∆], is
defined to be K[∆] = S/I∆. We say that a simplicial complex ∆ is Cohen–Macaulay over
K, if the Stanley–Reisner ring K[∆] of ∆ is Cohen–Macaulay.

Definition 2.1. Let ∆ be a pure simplicial complex with facets F1, . . . , Fm. A partitioning
P of ∆ is a decomposition into pairwise-disjoint Boolean intervals

∆ =
m⊔

i=1

[Gi, Fi],

where G1, . . . , Gm are faces of ∆ and

[Gi, Fi] = {F ∈ ∆ | Gi ⊆ F ⊆ Fi}.

Another well-known conjecture of Stanley [10] states that

Partitionability conjecture. Every Cohen-Macaulay simplicial complex is partition-
able.

Herzog, Soleyman Jahan and Yassemi [4] proved that

Theorem 2.2. The Stanley depth conjecture implies the Partitionability conjecture.

Thus, in order to disprove the Stanley depth conjecture, it is enough to find a coun-
terexample for the the Partitionability conjecture.

Let ∆ be a simplicial complex. A subcomplex of ∆ is a simplicial complex Γ with
Γ ⊆ ∆. A subcomplex is an induced subcomplex if it is of the form

∆ |W := {σ ∈ ∆ | σ ⊆W},

for some W ⊆ V .
In the construction of the counterexample, one needs to work with the more general

class of relative simplicial complexes. A relative complex Φ on V is a subset of 2V that is
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convex: if ρ, τ ∈ Φ and ρ ⊆ σ ⊆ τ , then σ ∈ Φ. Every relative complex can be expressed
as a pair Φ = (∆,Γ) := ∆\Γ, where ∆ is a simplicial complex and Γ ⊆ ∆ is a subcomplex.
Note that there are infinitely many possibilities for the pair ∆,Γ.

The following technical lemma will be central to the construction.

Lemma 2.3. [2, Proposition 2.3] Let ∆1, . . . ,∆t be d-dimensional Cohen-Macaulay sim-
plicial complexes on disjoint vertex sets. Let Γ be a Cohen-Macaulay simplicial complex
of dimension d − 1 or d, and suppose that each ∆i contains a copy of Γ as an induced
subcomplex. Then the complex obtained from ∆1, . . . ,∆t by identifying the t copies of Γ
is Cohen-Macaulay.

The following theorem gives a general construction that reduces the problem of finding
a counterexample to the problem of constructing a certain kind of non-partitionable Cohen-
Macaulay relative complex.

Theorem 2.4. [2, Theorem 3.1] Let Q = (X,A) be a relative complex such that

(i) X and A are Cohen-Macaulay;

(ii) A is an induced subcomplex of X of codimension at most 1; and

(iii) Q is not partitionable.

Let t be the total number of faces of A, let N > t, and let C = CN be the simplicial
complex constructed from N disjoint copies of X identified along the subcomplex A. Then
C is Cohen-Macaulay and not partitionable.

Thus, in order to construct the counterexample, it is enough to construct a relative
complex which satisfies the conditions (i), (ii) and (iii) of Theorem 2.4.

Construction. The construction begins with Ziegler’s nonshellable 3-ball Z, which
is a nonshellable triangulation of the 3-ball with 10 vertices labeled 0, 1, . . . , 9 and the
following 21 facets:

0123, 0125, 0237, 0256, 0267, 1234, 1249

1256, 1269, 1347, 1457, 1458, 1489, 1569

1589, 2348, 2367, 2368, 3478, 3678, 4578

Then Z is Cohen-Macaulay. Let B be the induced subcomplex Z |{0,2,3,4,6,7,8}. That is, B
is the pure 3-dimensional complex with facets

0237, 0267, 2367, 2368, 2348, 3678, 3478

Then B is Cohen-Macaulay (in fact, the above order is a shelling of B) and one can
check that the relative complex (Z,B) is not partitionable. Therefore, thanks to Lemma
2.3 and theorem 2.4, this construction provides a counterexample for the partitionability
conjecture.
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3 More results about the Stanley depth of monomial ideals

In this section, we list some recent results about the Stanley depth of monomial ideals
and their quotients. The first result provides a method for comparing the Stanley depth
of factors of monomial ideals.

Theorem 3.1. [8, Theorem 2.1] Let I2  I1 and J2  J1 be monomial ideals in S. Assume
that there exists a function φ : Mon(S)→ Mon(S), such that the following conditions are
satisfied.

(i) For every monomial u ∈ Mon(S), u ∈ I1 if and only if φ(u) ∈ J1.

(ii) For every monomial u ∈ Mon(S), u ∈ I2 if and only if φ(u) ∈ J2.

(iii) For every Stanley space uK[Z] ⊆ S and every monomial v ∈ Mon(S), v ∈ uK[Z] if
and only if φ(v) ∈ φ(u)K[Z].

Then
sdepth(I1/I2) ≥ sdepth(J1/J2).

Theorem 3.1 has interesting corollaries.

Corollary 3.2. [1, 5] Let J  I be monomial ideals in S such that
√
I 6=
√
J . Then

sdepth(I/J) ≤ sdepth(
√
I/
√
J).

In the following corollary, I denotes the integral closure of the ideal I

Corollary 3.3. [9] Let J  I be two monomial ideals in S such that I 6= J . Then for
every integer k ≥ 1

sdepth(Ik/Jk) ≤ sdepth(I/J).

Corollary 3.4. Let J  I be monomial ideals in S and v ∈ S be a monomial such that
(I : v) 6= (J : v). Then

sdepth(I/J) ≤ sdepth((I : v)/(J : v)).

Let I be a squarefree monomial ideal in S and suppose that I has the irredundant
primary decomposition

I = p1 ∩ . . . ∩ pr,

where every pi is an ideal of S generated by a subset of the variables of S. Let k be a
positive integer. The kth symbolic power of I, denoted by I(k), is defined to be

I(k) = pk1 ∩ . . . ∩ pkr .

Corollary 3.5. [8] Let J ⊆ I be squarefree monomial ideals in S. Then for every pair of
integers k, s ≥ 1

sdepth(I(ks)/J (ks)) ≤ sdepth(I(s)/J (s)).
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Definition 3.6. Let J  I be two monomial ideals. Assume that G(I) and G(J) are the
sets of minimal monomial generators of I and J , respectively. The lcm number of I/J ,
denoted by l(I/J), is the maximum integer t for which there exist monomials u1, . . . , ut ∈
G(I) ∪G(J) such that

u1 6= lcm(u1, u2) 6= . . . 6= lcm(u1, u2, . . . , ut).

The following theorem gives a lower bound for the Stanley depth of factors of monomial
ideals in terms of the lcm number.

Theorem 3.7. [6, Theorem 2.4] Let J  I be two monomial ideals of S. Then depth(I/J) ≥
n− l(I/J) + 1 and sdepth(I/J) ≥ n− l(I/J) + 1.

Using the above theorem, we are able to prove the Stanley’s inequality for some classes
of monomial ideals.

Theorem 3.8. [6, Theorem 4.4] Let I be a monomial ideal of S. If l(I) ≤ 3, then I and
S/I satisfy Stanley’s inequality.

Theorem 3.9. [6, Corollary 4.5] Let I be a monomial ideal of S such that S/I is Goren-
stein. If l(I) ≤ 4, then I and S/I satisfy Stanley’s inequality.
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Abstract

We discuss several characterizations of special classes of Steiner triple systems in
terms of forbidden configurations. Among other things, we present such a characteri-
zation for strongly anti-Pasch Steiner triple systems.

Keywords: Steiner triple systems, Pasch configuration
Mathematics Subject Classification [2010]: 05B07, 05B05

1 Introduction

Steiner triple systems are classical objects in combinatorial design theory. A Steiner triple
system (STS for short) is a pair S = (X,B) where X is a set of v points and B is a set of
3-subsets of X, called the triples of S, such that every two distinct points are contained
in exactly one triple of S. One of the most classical results in combinatorics asserts that
a Steiner triple system with v points exists if and only if v ≡ 1, 3 (mod 6), v ≥ 3. See [2]
for a through treatment of enormous results on Steiner triple systems.

There are several prominent classes of Steiner triple systems of which we recall projec-
tive, affine and Hall STS in what follows. A projective Steiner triple system PG(d, 2) is the
Steiner triple system with 2d+1 − 1 points corresponding to non-zero (d+ 1)-dimensional
vectors over Z2 for d ≥ 1. Three vectors x,y, z form a triple of PG(d, 2) if x + y + z = 0.
The smallest non-trivial projective Steiner triple system is PG(2, 2) which is indeed the
Fano plane. An affine Steiner triple system AG(d, 3) is the Steiner triple system with 3d

points corresponding to d-dimensional vectors over Z3 for d ≥ 1. Three vectors x,y, z form
a triple of AG(d, 3) if x + y + z = 0. The smallest non-trivial affine Steiner triple system,
AG(2, 3), is the unique Steiner triple system with nine points which we denote it by S9.
Another interesting family of Steiner triple systems is the class of Hall triple systems. A
Steiner triple system S is a Hall triple system if for every point x of S, there exists an
involutory automorphism of S that fixes only the point x. Hall [5] showed that Hall triple
systems are “locally” affine Steiner triple systems. To be more precise, a STS is a Hall
STS if and only if every Steiner triple system induced by the points of two non-disjoint
triples of S is isomorphic to S9.

There are several characterizations for certain classes of combinatorial objects in terms
of well-described forbidden substructures. For instance, the celebrated Kuratowski’s the-
orem asserts that a graph is planar if and only if it does not contain a subdivision of one
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of the graphs K3,3 or K5. In analogy, it is natural to ask whether special classes of Steiner
triple systems can be characterized in terms of forbidden configurations. By a configura-
tion C we mean a set of points and triples such that each pair of points is in at most one
of the triples, and we say that a Steiner triple system S contains C if there is an injective
mapping of the points of C to the points of S such that the image of any triple of C is
a triple of S. An important configuration of triple systems is the Pasch configuration (or
quadrilateral) which is a set of four triples

{a, b, c}, {a, d, e}, {f, b, d}, {f, c, e}

such that all elements a, b, c, d, e, f are distinct. See Figure 1 for an illustration of this and
two other configurations namely C14 and anti-mitre.

 

 

 

 

                                                                                                                                            

 

                                                                                                    

 

                                                                                             

                                                                                                  
   

                                                                              

   

 

 

 

 

                                                                                                                                            

 

                                                                                                    

 

                                                                                             

                                                                                                  
   

                                                                              

 

 

 

 

                                                                                                                                            

 

                                                                                                    

 

                                                                                             

                                                                                                  
   

                                                                              

   

Figure 1: The configurations C14, Pasch and anti-mitre, respectively

For the aforementioned classes of Steiner triple systems, characterization in terms of
forbidden configurations is possible.

Theorem 1.1. ([3, 8]) A Steiner triple system is projective if and only if it contains no
configuration C14.

 

 

 

 

                                                                                                                                            

 

                                                                                                    

 

                                                                                             

                                                                                                  
   

                                                                              

 

 

 

 

                                                                                                                                            

 

                                                                                                    

 

                                                                                             

                                                                                                  
   

                                                                              Figure 2: The configurations CA and CB, respectively, of Theorem 1.2

Theorem 1.2. ([6], see also [7]) Let S be a Steiner triple system.

(i) S is an Hall STS if and only if it does not contain any Pasch or anti-mitre configu-
ration.

(ii) S is an affine STS if and only if it does not contain any Pasch, CA, or CB configu-
ration.
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2 Strongly anti-Pasch Steiner triple systems

Some STS contains Pasch configuration and some does not. In fact any projective STS on
v points contains exactly v(v−1)(v−3)/24 distinct Pasch configurations and on the other
hand any affine STS does not contain any. STS with no Pasch configurations are called
anti-Pasch (or quadrilateral-free). For a long time it had been conjectured that for any
admissible v ≡ 1, 3 (mod 6), except v = 7, 13, an anti-Pasch STS exists. This conjecture
was finally proved in [4].

Let S = (X,B) be a STS on v ≥ 7 points. Let
(
X
3

)
denote the set of all 3-subsets of

X. If {a, b, c} ∈
(
X
3

)
\ B, then there are distinct points x, y, z ∈ X such that

{{a, b, x}, {a, c, y}, {b, c, z}} ⊂ B. (1)

Note that the three triples of (1) together with {x, y, z} make a Pasch configuration.
We see that for a given STS S = (X,B) and {x, y, z} ∈

(
X
3

)
\ B it may happen that

there exist three triples in B which make a Pasch configuration together with {x, y, z}. We
are interested in the extremal case that this property holds for all {x, y, z} ∈

(
X
3

)
\B. It is

seen that in this extremal case, S must be anti-Pasch and the Pasch configuration C with
{x, y, z} ∈ C and |C ∩ B| = 3 is unique (see [1]). This motivates the following definition.

Definition 2.1. Let S = (X,B) be a STS. We say that S is strongly anti-Pasch if for any
{x, y, z} ∈

(
X
3

)
\ B there exits a, b, c ∈ X such that {{a, b, x}, {a, c, y}, {b, c, z}} ⊂ B.

In analogy to the characterizations of projective, affine, and Hall STS in terms of
forbidden configuration, we present the following for strongly anti-Pasch STS.

Theorem 2.2. A STS is Strongly anti-Pasch if and only if it contains neither Pasch
configuration nor the configuration Q of Figure 3.

 

 

 

 

                                                                                                                                            

 

                                                                                                 

 

                                                                                             

                                                                                                    
   

                                                                              

   

Figure 3: The configuration Q

3 Questions

Any strongly anti-Pasch STS which we are known of is a Hall STS. This motivates us to
ask the following:

Question 1. Is it true that any strongly anti-Pasch STS is a Hall STS?
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By Theorem 1.2 any STS S is Hall if and only if S contains neither Pasch nor the
anti-mitre configuration. The question raises that:

Question 2. Is it true that in an anti-Pasch STS the existences of anti-mitre configuration
and the configuration Q are equivalent?

Thus answering Question 2 would be a possible direction in studying Question 1.
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A new view of supremum, infimum, maximum and minimum

Madjid Eshaghi Gordji∗

Semnan University

Abstract

Let X be a set and let R be a relation on X (not necessary partially order rela-
tion). Let E be a subset of X. We define the left bound, right bound, supremum,
infimum, maximum and minimum of E with respect to relation R. Also, we generalize
the concept of lattices and by some examples we show that our definitions are real
extensions of the old ones. We prove some new fixed point theorems. Among many
other things, we investigate several results and theorems of set theory by replacing
“relation R” instead of “partially order relation”. The results of the present paper
can be useful in economic, game theory, computer sciences and information sciences.

Keywords: Poset; supremum; infimum; maximum; minimum

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

In mathematics, the supremum, infimum, maximum and minimum are define for subsets
of partially ordered sets. These concepts are important in analysis (especially in Lebesgue
integration), algebra, geometry, applied mathematics, mathematical physics and other sci-
ences. In this paper, we define the left bound, right bound, supremum, infimum, maximum
and minimum for subset E of the set X with respect to the relation R ⊆ X ×X . Hence,
we would like to study the set theory by replacing “relation R” instead of “partially order
relation”.

From now on, we suppose that X is a nonempty set and R ⊆ X ×X is a relation on
X. The following definition is the main definition of this paper.

Definition 1.1. Let E ⊆ X be a subset of X. Then
• r ∈ X is called a right bound for E (with respect to relation R) if eRr for all e ∈ E.

We denote by R(E) the set of all right bounds of E.
• l ∈ X is called a left bound for E (with respect to relation R) if lRe for all e ∈ E.

We denote by L(E) the set of all left bounds of E.
• b ∈ X is called a bound for E (with respect to relation R) if e ∈ R(E)∩L(E); in the

other words, eRb and bRe for all e ∈ E. We denote by B(E) the set of all bounds of E.
• We define supremum and infimum of E (with respect to relation R) as follows:

sup(E) := {r ∈ R(E) : r ∈ L(R(E))} = R(E) ∩ L(R(E)),

∗Speaker
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inf(E) := {l ∈ L(E) : l ∈ R(L(E))} = L(E) ∩R(L(E)).

• Moreover, we define maximum and minimum of E as follows:

max(E) := E ∩ sup(E),

min(E) := E ∩ inf(E).

• Let n ∈ N. Then X is said to be a n − R−lattice if for every subset E of X with
card(E)=n, we have sup(E) 6= φ and inf(E) 6= φ.
• X is said to be a permanently R−lattice if for every nonempty finite subset E of X, we
have sup(E) 6= φ and inf(E) 6= φ.
• X is said to be a complete R−lattice if for every nonempty subset E of X, we have
sup(E) 6= φ and inf(E) 6= φ.
• X is said to be a strongly complete R−lattice if for every nonempty subset E of X, we
have sup(E) ∩ inf(E) 6= φ.
• X is said to be a high strongly complete R−lattice if we have ∩E⊆X,E 6=φ[sup(E) ∩
inf(E)] 6= φ.

Example 1.2. Let X be a set with card(X) > 1. Let R := {(x, x) : x ∈ X}. Let E := {x}
and x ∈ X be fixed. Then we have L(E) = R(E) = {x}. It follows that

sup(E) = inf(E) = E 6= φ.

It follows that X is 1-R-lattice. On the other hand for every subset F of X with card(F ) >
1, we have L(F ) = R(F ) = φ. It follows that

sup(F ) = inf(F ) = φ.

Then X is not n-R-Lattice for n > 1.

Example 1.3. Let X be a set with card(X) > 1. Let U 6= φ be a subset of X. Put
R := X × U ∪ U ×X. Then we have L(E) = R(E) = U for all nonempty subset E of X.
It follows that

sup(E) = inf(E) = U 6= φ.

It follows that X is high strongly complete R−lattice.

2 some important results

In this section, we prove some basic results.
It is easy to see that R(E) = ∩e∈ER({e}) and L(E) = ∩e∈EL({e}) for all subset E of

X.
Note that in posets a right bound is an upper bound and the left bound is the lower

bound. Also, sup(E) = a as an element of poset, if and only if sup(E) = {a} by our
definition. We have the same situation for inf(E),max(E) and min(E).

A mapping f : X → X is called R−preserving if

∀x, y ∈ X;xRy ⇒ f(x)Rf(y).
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We denote by Fix(R) the set of all x ∈ X such that xRx. Also, we denote by RC the
set X ×X −R (the compliment of R). Moreover, we denote by R∗ for dual of relation R
given by {(b, a) : (a, b) ∈ R}. It is easy to see that for every nonempty set X and relation
R on X, and for every subset E of X, we have

RR(E) = LR∗(E),LR(E) = RR∗(E),

it follows that

BR(E) = BR∗(E), supR(E) = infR∗(E), infR(E) = supR∗(E),

for all E ⊆ X.

Lemma 2.1. Let E ⊆ X. Then we have
(1) max(E) = E ∩R(E),
(2) min(E) = E ∩ L(E),
(3) sup(E) = min(R(E)),
(4) inf(E) = max(L(E)).
(5) max(E) ∪min(E) ∪ sup(E) ∪ inf(E) ⊆ Fix(R).

It is easy to see that the relation R is reflexive on X if and only if Fix(R) = X. It
follows from (5) that X is R−reflexive if and only if

(∪E⊆Xmax(E)) ∪ (∪E⊆Xmin(E)) ∪ (∪E⊆Xsup(E)) ∪ (∪E⊆Xinf(E)) = X.

Lemma 2.2. R is antisymmetric if and only if for each subset E of X with B(E) 6= φ,
E is singleton and B(E) = E.

Theorem 2.3. X is strongly complete R−lattice if if and only if B(X) 6= φ.

Lemma 2.4. L(E)×E ⊆ R, inf(E)×E ⊆ R,E×R(E) ⊆ R,E×sup(E) ⊆ R,B(E)×E ⊆
R and E × B(E) ⊆ R for all E contained in X.

Lemma 2.5. The following assertions are equivalent for every subset E of X.
(1) E is contained in L(E),
(2) E is contained in R(E),
(3) E is contained in B(E),
(4) E × E is contained in R.

We have the following lemma for antisymmetric relations.

Lemma 2.6. Let R be an anti-symmetric relation on a set X and let E ⊆ X. Then we
have card(max(E)) ≤ 1, card(min(E)) ≤ 1, card(sup(E)) ≤ 1 and card(inf(E)) ≤ 1.

Lemma 2.7. Let X be a set and R relation on X. Then the following assertions hold. i)
R is a function if and only if card(L(E)) ≤ 1 for all non-empty subset E of X.
ii) R is reflexive if and only if Fix(R) = X.

Lemma 2.8. Let R be a relation on a set X and let U ⊆ V ⊆ X. Then we have

R(V ) ⊆ R(U)

and
L(V ) ⊆ L(U).
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Proof. It is straightforward.

Definition 2.9. Let X be a set and R ⊆ X ×X be a relation on X. Let f : X → X be
a mapping. Then
R is said to be f−antisymmetric if

∀a ∈ X; ((aRf(a), f(a)Ra)⇒ a = f(a)).

R is said to be f−transitive if

∀a, b ∈ X;
(
((aRf(a), f(a)Rb)⇒ aRb) ∧ ((bRf(a), f(a)Ra)⇒ bRa)

)
.

It is easy to see that
(i) every transitive relation is f−transitive;
(ii) every antisymmetric relation is f−antisymmetric.
By the following examples, we show that the converse of above statements are not correct.

Example 2.10. Let X = R the set of real numbers and let f : X → X defined by
f(x) = 1 for all x ∈ X. Then one can easily to check that the relation

R1 := {(r, r + 1) : r ∈ R} ∪ {(r + 1, r) : r ∈ R} ∪ {(1, 1)}

is f−antisymmetric, but R1 is not antisymmetric. Moreover, we can see that R1 is not
f−transitive. To this end, put a = 2, b = 0. Then we have 2R1f(2) and f(2)R10. But we
have not 2R10. Now, we put

R2 := R1 − {(0, 1), (1, 0), (1, 2)}.

Then it is easy to see that R2 is f−transitive and it is not transitive (we have 4R23 and
3R22 but we have not 4R22).

Now, we generalize the Tarski fixed point theorem as follows.

Theorem 2.11. Let (X,R) be a non-empty complete R-lattice.
If f : X → X is a monotone mapping, such that R is f−transitive and f−antisymmetric.
Then Fix(f 6= φ.

Proof. i) Let Fix(f) denote the set of fixed points of f . We show that Fix(f) is non-
empty and max(Fix(f)) 6= φ and min(Fix(f)) 6= φ. Since X is a complete R-lattice, we
have sup(X) 6= φ and inf(X) 6= φ. On the other hand, we have sup(X) = sup(X) ∩X =
max(X), inf(X) = inf(X) ∩ X = min(X). Let a0 ∈ min(X) and b0 ∈ max(X). Let
A := {x ∈ X : xRf(x) or x = f(x)}. Then we have a0Rf(a0), and a0 ∈ A. Hence
A is non-empty. Since X is complete, then sup(A) 6= φ. Let β ∈ sup(A). We show that
β ∈ Fix(f). We claim first that β ∈ A. To this end, note that for any x ∈ A, since xRβ
and f is monotone, then f(x)Rf(β). Moreover, x ∈ A then we have xRf(x) or x = f(x).
On the other hand R is f−transitive, then xRf(β). Since this holds for every x ∈ A, this
establishes that f(β) is an upper bound of A. On the other hand, β is a supremum of A.
Then βRf(β); which means that β satisfies the condition for inclusion in A. We next claim
that for any x ∈ A, f(x) ∈ A. To this end, note that by definition, if x ∈ A then xRf(x)
or x = f(x). Since f is monotone, then f(x)Rf(f(x)) or f(x) = f(f(x))(= x), which is
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the condition for f(x) ∈ A, which establishes the claim. This implies, in particular, that
since β ∈ A, then f(β) ∈ A. Since β is an upper bound for A, this means that f(β)Rβ.
Since R is f−antisymmetric, then we have β = f(β). Hence, β ∈ Fix(f). On the other
hand, by definition of A, we have Fix(f) ⊆ A and hence, since β is an upper bound of A,
it is an upper bound of Fix(f). So, β ∈ max(Fix(f)). So, we have

(φ 6=)sup(A) ⊆ max(Fix(f)) ⊆ Fix(f).

A similar argument establishes that inf(B) 6= φ if B := {x ∈ X : f(x)Rx or f(x) = x}
and inf(B) ⊆ Fix(f). Let α ∈ inf(B). We have Fix(f) ⊆ B and since α is a lower bound
of B, it is a lower bound of Fix(f). Also, we can show that α ∈ Fix(f). It follows that
α ∈ minFix(f). So, we have

inf(B) ⊆ min(Fix(f)) ⊆ Fix(f).

Question: Is the set of fixed points of f a complete R-lattice?
From now on, we suppose that (X, d) is a metric space and R is a relation on X. We

denote by (X, d,R) this metric space with this relation.

Definition 2.12. Let (X, d,R) be a metric space with relation R. a) A sequence {xn} is
called R− increasing if

∀n ∈ N, xnRxn+1.

b) A sequence {xn} is called R− decreasing if

∀n ∈ N, xn+1Rxn.

b) A sequence {xn} is called R−monotone if it is R− increasing or R− decreasing.
c) (X, d) is called weakly R − complete if every Cauchy R −monotone sequence in X is
convergent.
d) Let k ∈ [0, 1). A mapping f : X → X is called R− k − contraction if

d(f(x), f(y)) ≤ kd(x, y)

for all x, y ∈ X with xRy.
e) A mapping f : X → X is called weakly R − continuous in x ∈ X if for every R −
monotone sequence {xn} in X, if xn → x, then f(xn)→ f(x). Also, f : X → X is called
weakly R− continuous on X if it is weakly R− continuous in x for all x ∈ X.

It is well known that that every sequence in R has a monotone subsequence and it
has a key role in BolzanoWeierstrass theorem. We will show that this assertion is true in
every chain (X,R).

Theorem 2.13. Let R be a relation on X (not necessary metric space). Then we have
the following assertions:
i) If X is a chain, then every sequence in X has an R−monotone subsequence.
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ii) If in part i), the relation R is transitive, then every sequence in X has a WR −
subsequence.
iii) If every sequence in X has WR− subsequence, then R is reflexive.
v) If every sequence in X has R−monotone subsequence, then R is reflexive.

Proof. i) Let {xn} be a sequence in X. Let

S := {n ∈ N : ∀m ∈ N,m > n⇐⇒ xmRxn}.

If S is infinite, then {xn} has R − increasing subsequence. If S is finite, put n1 :=
max(S) + 1. Then n1 ∈ N− S. So by definition of S, there exists n2 > n1 such that xn2

has not relation R with xn1 . On the other hand X is a chain. Then we have xn1Rxn2 .
Also, we have n2 ∈ N− S. Similarly, there exists n3 > n2 such that xn2Rxn3 . Continuing
this process, we can find an R− decreasing subsequence of {xn}.
ii) Let R be transitive. Then every R − increasing sequence is R − sequence; every
R − decreasing sequence is R∗ − sequence. Hence, every R − monotone sequence is
WR− sequence. Then easily ii) follows from i).
iii) Let x ∈ X. Put xn := x for all n ∈ N. {xn} has WR− subsequence. Then there exist
n1, n2 ∈ N such that x = xn1Rxn2 = x. It follows that xRx.
The proof of v) is similar to iii).

The following assertions are true in R with Euclidean metric.
1) Every bounded monotone sequence is convergent.
2) Every monotone sequence with a convergent subsequence is convergent.
3) If sup(A)(or inf(A)) exists in R, then sup(A)(or inf(A)) belongs closer of A
for all subset A of R.

The same assertions are not true for general (X, d,R). For example, if X := R with
Euclidean metric, R := {(−1, 1), (1,−1)} and xn := (−1)n for all n ∈ N, then {xn} is a
bounded R − sequence (with convergent subsequence) which is not convergent. Also, if
X := R with Euclidean metric, R := [0, 1]×R ∪R× [0, 1], then sup([2, 3]) = inf([2, 3]) =
[0, 1] is not contained in closer of [2, 3].

The main result of papers [3] and [2], is the following theorem.

Theorem 2.14. Let X be a partially ordered set and let d be a metric on X such that
(X, d) is a complete metric space. If F is continuous, monotone mapping from X into X
such that
• there exists k ∈ (0, 1) with d(F (x), F (y)) ≤ kd(x, y),∀x ≥ y. If there exists x0 ≤

F (x0) or x0 ≥ F (x0), then F has a fixed point. Furthermore, if every pair x, y ∈ X has
a lower bound or an upper bound, then the fixed point of F is unique and F is a Picard
operator (briefly PO), that is, F has a unique fixed point x∗ and limn→∞ Fn(x) = x∗ for
all x ∈ X.

Now, we would like to generalize above theorem.
In the main theorem of [3], the authors consider a complete metric space (X, d). We

can replace “weakly R − complete metric space” instead of “complete metric space”,
also, the authors consider a continuous mapping where, we can replace R − continuous
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mapping instead of continuous mapping. Moreover, they consider only relation “≥’ ’ and
≥ −k − contraction, so, we can replace relation R instead of ≥ and R − k − contraction
instead of ≥ −k − contraction as follows.

Theorem 2.15. Let (X, d,R) be a metric space with relation R such that for every pair
x, y ∈ X, L({x, y}) 6= φ, or R({x, y}) 6= φ. Let k ∈ (0, 1) be fixed. Let (X, d) be waekly
R− complete and F be a weakly R− continuous, R−preserving and R−k− contraction
from X into X. If there exists x0 ∈ X such that x0RF (x0) or F (x0)Rx0,
then F is a Picard operator (briefly PO), that is, F has a unique fixed point x∗ and
limn→∞ Fn(x) = x∗ for all x ∈ X.

In [2], authors replaced the condition
(∗) ′′ if a non-increasing sequence xn → x ∈ X; then x ≤ xn for all n ∈ N′′,
instead of continuity of F in the main results of paper. This condition study in metric
space (X, d) with partially order relation ′′ ≤′′ (or ≥). We can write the general form of
condition (∗) by replacing arbitrary relation R instead of partially order relation ≤ (or ≥)
as follows:
(∗∗) if {xn} is a sequence such that ∀n ∈ N;xnRxn+1 and xn → x ∈ X; then xnRx, for
all n ∈ N,
and (∗ ∗ ∗) if {xn} is a sequence such that ∀n ∈ N;xn+1Rxn and xn → x ∈ X; then xRxn,
for all n ∈ N.

Using conditions (∗∗) and (∗ ∗ ∗) to prove the following theorem in metric space (X, d)
with arbitrary relation R.

Theorem 2.16. Let k ∈ (0, 1) be fixed. Let (X, d,R) be a metric space with relation R
such that conditions (∗∗) and (∗ ∗ ∗) hold. Then every R − k − contraction from X into
X is weakly R− continuous on X.

Then we have the following result.

Theorem 2.17. Let (X, d,R) be a metric space with relation R with conditions (∗∗) and
(∗∗∗) such that for every pair x, y ∈ X, L({x, y}) 6= φ, or R({x, y}) 6= φ. Let k ∈ (0, 1) be
fixed. Let (X, d) be waekly R−complete and F be an R−preserving and R−k−contraction
from X into X. If there exists x0 ∈ X such that x0RF (x0) or F (x0)Rx0,
then F is a Picard operator (briefly PO), that is, F has a unique fixed point x∗ and
limn→∞ Fn(x) = x∗ for all x ∈ X.

More recently, M. Eshaghi et al.[1] introduced the notion of orthogonally sets and then
they gave an extension of Banach’s fixed point theorem. A binary relation ⊥ on X is
called an orthogonality relation if

(∃x0 : ∀y, y⊥x0) or (∃x0 : ∀y, x0⊥y),

then X is called an orthogonal set (briefly O-set). We denote this O-set by (X,⊥).

Theorem 2.18. (Theorem 3.11 of [1]) Let ⊥ be an orthogonally relation on X, (X, d)
be ⊥-complete metric space (not necessarily complete metric space) and 0 < λ < 1. Let
f : X → X be weakly ⊥-continuous, ⊥ − λ − contraction and ⊥-preserving. Then f has
a unique fixed point x∗ ∈ X. Also, f is a Picard operator, that is, lim fn(x) = x∗ for all
x ∈ X.
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Now, we generalize this theorem as follows.

Theorem 2.19. Let (X, d,R) be a metric space with relation R. Let (X, d) be R−complete
metric space and 0 < λ < 1 be fixed. Let f : X → X be a weakly R − continuous,
R− λ− contraction and R− preserving. If there exists x0 ∈ X such that x0Ry for all y
in range(f), then f has a unique fixed point x∗ ∈ X. Also, f is a PO.

It is well known that Theorem 2.18 is a real generalization of Banach principle (see
[1]). Also, it is easy to see that Theorem 2.19 is a generalization of Theorem 2.18. Now,
we show that it is a real generalization. To this end, let X = [0, 1) with Euclidean metric
and R := {(0, x) : x ∈ Q ∩X}. Define f : X → X by

f(x) =

{
x
2 , if x ∈ Q ∩X,
0 , if x ∈ Qc ∩X.

The mapping f is R − 1
2 − contraction, R − preserving and weakly R − continuous on

X. But R is not an orthogonal relation on X. Then Theorem 2.18 does not work to find
fixed points of f . Indeed, by using Theorem 2.19, we can show that f has a unique fixed
point, and f is a PO.
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On enumeration of complete semihypergroups and M-P-Hs.
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Abstract

In this paper, we compute the number of complete semihypergroups generated by
semigroups of order 2 or 3. Also, we enumerate M -polysymmetrical hypergroups of
order less than 6. We show that there are 7 isomorphism classes of M -polysymmetrical
hypergroups of order 5 and calculate Cayley tables of them.
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1 Introduction

The concept of a hyperstructures first was introduced by Marty at the 8th international
Congress of Scandinavian Mathematicians. The hyperstructure theory had applications
to several domains of theoretical and applied mathematics[4, 5].

In [7] and [6] introduced KH -hypergroups; particularly studied the relations of simili-
tude in KH -hypergroups. De Salvo [8] computed the number of KH -hypergroups of given
size n ≤ 4.

J. Mittas in his paper[9], which has been announced in the French Academy of Sci-
ences, has introduced a special type of hypergroup that he has named polysymmetrical.
Polysymmetrical hypergroups are special class of KH -hypergroups. Also, in the same
paper J. Mittas has given certain fundamental properties of this hyperstructure.

Staring from the above paper and having called Mittas structure M-polysymmetrical
hypergroup (in order to distinguish this polysymmetrical hypergroup from other types of
polysymmetrical hypergroups) we have proceeded to a profound analysis of this hypergroup[10]
and its subhypergroups[11].

We recall the construction ofKH -(semi)hypergroups[6]: let (H, ◦) be a (semi)hypergroup
and {Aa|a ∈ H} a family of non-empty and pairwise disjoint sets, having as indexes the
elements of H; the the set K = ∪a∈HAa becomes a (semi)hypergroup under the following
hyperoperation:

x ∗ y = ∪c∈a◦bAc, ∀x ∈ Aa, y ∈ Ab.
We say the (K, ∗) is a KH -(semi)hypergroup, generated by the (semi)hypergroup H.

If (K, ∗) is a KH -semihypergroup and H be a semigroup then we say that (K, ∗) is a
complete semihypergroup and K/β∗ ∼= H.

We recall definition of M -polysymmetrical hypergroup of [11] as follows:
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A non-empty set H is called M-polysymmetrical hypergroup (M-P-H.) if it is endowed
with a hyperoperation + : H × H → P∗(H), when P∗(H) is the set of all non-empty
subsets of H, that satisfies the following axioms:

(1) + is associative, i. e, for every x, y, z ∈ H we have x+ (y + z) = (x+ y) + z;

(2) + is commutative, i. e, for every x, y ∈ H, x+ y = y + x;

(3) there exists 0 ∈ H such that for every x ∈ H we have x ∈ x+ 0;

(4) for every x ∈ H there exists x′ ∈ H such that 0 = x + x′, (x′ is an opposite or
symmetrical of x , with regard to considered 0, and the set of all the opposites
S(x) = {x′|0 = x+ x′} is the symmetrical set of x),

(5) for every x, y, z ∈ H,x′ ∈ S(x), y′ ∈ S(y) and z′ ∈ S(z), x ∈ y + z implies that
x′ ∈ y′ + z′.

Theorem 1.1. [11] Let (H,+) be a M-P-H, then for every x, y, z, w ∈ H we have:

(1) S(0) = 0, that means 0 + 0 = 0;

(2) 0 ∈ 0 + x⇒ x = 0 and hence y ∈ y + x⇒ x = 0;

(3) 0 is unique;

(4) (x+ y) ∩ (z + w)⇒ x+ y = z + w;

(5) for all z′ ∈ S(z), x ∈ y + z implies that y ∈ x+ z′;

(6) 0 ∈ x+ y ⇒ x+ y = 0.

Let H be an M -polysymmetrical hypergroup and H/(0) = {c(0), c(x2), . . . , c(cn)}. We
call an M -polysymmetrical hypergroup H of order n of type (k1 = 1, k2, . . . , kn) when
|H/(0)| = n and

Mittas [9] proved that, in general, M -polysymmetrical hypergroups are associated with
abelian groups:

Theorem 1.2. [9] Let (H,+) be an M -polysymmetrical hypergroup. The set C(x) = 0+x
when x traverse H, from a partition of H and we have:

x+ y = 0 + x+ y = (0 + x) + (0 + y),

moreover, x + y is a class of partition and the set G = {C(x)|x ∈ H} of these classes is
an abelian group according to operation C(x) + C(y).

We recall the following results from [9, 11]:
We symbolize with mod 0 or simply (0) the equivalence relation that the above men-

tioned partition defines, for which we have:

x ≡ y ⇔ 0 + x = 0 + y ⇔ C(x) = C(y).
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Thus G = H/(0) calling this group, group of reduction of H. So, mod 0 is a strongly
regular equivalence relation to H. In group G for every x, y ∈ H, x1 ∈ C(x) and y1 ∈ C(y)
,we have

C(x) + C(y) =
⋃

z1∈x1+y1
C(z1) = C(z),

when z ∈ x+ y.
We choose, foe every class C, mod 0, of H one element xC as distinguished element of

the class, let it be G the set of this elements. Then we consider the mapping

f : G→ G with f(C) = xC .

Obviously it is one-to-one and using this map we consider the following operation into G :

x⊕ y = f [C(x) + C(y)],∀x, y ∈ G.

Consequently we have:

Theorem 1.3. [11] To every M -polysymmetrical hypergroup (H,+) there is subset G of
H with abelian group’s structure isomorphic to the group of reduction H/(0). We call the
group (G,⊕) group of choice of (H,+).

Inversely, from an abelian group it is possible, under certain conditions to become an
M -polysymmetrical hypergroup. The detailed study of this subject leads to the following
theorem:

Theorem 1.4. [11] Let E be a set and G its subset with the structure of an abelian group.
Also, let 0 be its neutral element and for every x ∈ G, −x be its opposite. If:

there exist a partition R of E and mapping one-to-one of quotient set E/R on G
such as for every x ∈ G, f−1(x) = CR(x), [ where CR(x) is the class of E mod R
that contains the element x] and:

CR(0) = {0},

then the hyperoperation x ⊕ y = f−1[f(CR(x) + CR(y))] defined on E, through the group
G gives in E the structure of an M -polysymmetrical hypergroup of which the group of
reduction E/(0) coincides to E/R.

2 On enumeration of complete semihypergroups

In this section, we will find, up to equivalent (with equivalence being isomorphism or
anti-isomorphism), the number of complete semihypergroups of given size n, which are
generated by semigroups H, such that |H| ≤ 3. We recall the following notations from [8].

If K is a complete semihypergroup generated by semigroup H, such that K = ∪a∈HAa,
|K| = n, H = {x1, . . . , xm}, |Axi | = ni then K turns out to be type (n1, . . . , nm), where
obviously n1 + . . .+nm = n. There are as many types, as m-ples of positive integers whose

sum equal to n; this number is

(
n− 1
m− 1

)
.
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Let [n,m] be the number of similitude classes of complete semihypergroups of size n,
generated by semigroup of size m. Beside, let [[n,m]] denote the number of equivalent
classes of the complete semihypergroups satisfying the same conditions. We have [n, 1] =
[[n, 1]] = 1. Also [n, n] = 1 and [[n, n]] = sn, where sn denoted, up to equivalent, the
number of the semigroups of size n.

Now, suppose m = 2 or m = 3, In order to compute [n,m], we observe this number
depends on the solutions of linear equation

x1 + . . .+ xm = x

such that for every i, 1 ≤ i ≤ m,xi ∈ N∗. Denote S(n,m), the number of such m-ples
of positive integers . If α = (α1, . . . , αm) ∈ S(m,n), then for every i, 1 ≤ i ≤ m, rα(αi)
indicates the number of times the αi appairs in the m-ple α. Define in S(n,m) the following
relation ρ:

∀(α, β) ∈ S(n,m)2, α = (α1, . . . , αm), β = (β1, . . . , βm),

αρβ ⇔ {[{α1, . . . , αm} = {β1, . . . , βm} = T ] and [∀w ∈ T, rα(w) = rβ(w)]}.
ρ is an equivalence, and let S∗(n,m) the quotient set of S(n,m) relative to it. For the
definition of similitude, S∗(n,m) = [n,m]

We have: S∗(n,m) =
∑m

t=1 st(n,m), where for every t, st(n,m) is the number of the
equivalence classes relative to ρ, determined by the m-ples, whose underlying set is of size
t. De salvo [8] enumerated st(n,m) for m = 2, 3 and t = 1, . . . ,m as follows:

s1(n, 2) =

{
0 if n is odd
1 if n is even.

s2(n, 2) =

{
n
2 − 1 if n is even
n−1
2 if n is odd.

s1(n, 3) =

{
0 if 3 dos′nt divide n
1 if 3 divides n.

We obtain s2(3, 3) = 0; s2(4, 3) = 1; s2(5, 3) = 2 and for n ≥ 4

s2(n, 3) = s2(n− 3, 3) +

{
1 if n is even
2 if n is odd.

Also, s3(n, 3) = 0; and for all n ≥ 6

s3(n, 3) = s3(n− 3, 3) +

{
n−4
2 if n is even

n−5
2 if n is odd.

Therefore by using the preceding formulas, we can compute the value of the numbers
[n,m]. In the following, we will value the number [[n, 2]] and [[n, 3]].

De salvo enumerated KH -hypergroups and complete hypergroups[8]. We compute the
number of complete semihypergroups:

We begin the determine the number [[n, 2]] :
We can consider only the complete semihypergroups by the following four semigroup,

which determine the equivalence classes relative to the relation of equivalent on the set of
the semigroup of two elements:

H1 :
0 0
0 0

H2 :
0 0
0 1

H3 :
0 0
1 1

H4 :
0 1
1 0
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Also, |AUT (H3)| = 2 and |AUT (H1)| = |AUT (H2)| = |AUT (H4)| = 1. So, the number of
complete semihypergroups of order n, which is generated by semigroup H3:

s1(n, 2) + s2(n, 2)

and for H1, H2 and H4, we obtain

s1(n, 2) + 2s2(n, 2)

Therefore:

Theorem 2.1. For every n ≥ 2

[[n, 2]] = 3(s1(n, 2) + 2s2(n, 2)) + s1(n, 2) + s2(n, 2) = 4s1(n, 2) + 7s2(n, 2)

Since there exist 18 non-equivalent semigroups (with equivalence being isomorphism
or anti-isomorphism) and compute the automorphism groups are given:

TabelA.G. Order3

group number

trivial 12
Z2 5
S3 1

Therefore we by using the above table obtain:

Theorem 2.2. For every n ≥ 3

[[n, 3]] = 12(s1(n, 3) + 3s2(n, 3) + 6s3(n, 3)) + 5(s1(n, 3) + 2s2(n, 3) + 3s3(n, 3))+
(s1(n, 3) + s2(n, 3) + s3(n, 3))

= 18s1(n, 3) + 47s2(n, 3) + 88s3(n, 3).

3 On enumeration of M-P-Hs.

In this section we use the results of the papers [11] and [12] and we characterize the
M-P-Hs. of order less than 6 up to isomorphism.

Theorem 3.1. Every M-P-H. (H,+) of order 2 is a group and so H ∼= Z2.

Proof. Let (H = {0, 1},+) be an M-P-H. of order 2. Since 0 = 0 + 0 then by part (4) of
Theorem 3.1 we have 0 + 1 = 1 + 0 = 1 and 1 + 1 = 0. Therefore (H,+) is an group and
it is isomorphism with (Z2,+).

Notice that there are 20 isomorphism classes of Hv-groups of order 2 and 8 isomorphism
classes of hypergroups of order 2.

Theorem 3.2. For every M -polysymmetrical hypergroup (H,+) with |H| ≥ 2, we have
|H/(0)| ≥ 2.

Theorem 3.3. Let (H,+) be an M -polysymmetrical hypergroup. If x1 ∈ C(x) and y1 ∈
C(y) then x1 + y1 = x+ y = C(z), for every z ∈ C(x) + C(y).
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Theorem 3.4. There are 2 isomorphism classes of M-P-Hs. of order 3 with the following
tables:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

+ 0 1 2

0 0 12 12
1 12 0 0
2 12 0 0

Proof. Let H = {0, 1, 2} be an M -polysymetrical hypergroup of order 3. Then we have
H/(0) ∼= Z2 or H/(0) ∼= Z3.

If H/(0) ∼= Z2 then C(1) = C(2) = {1, 2} (because C(0) = {0} and by Theorem 1.2).
Thus 0 + 1 = 0 + 2 = {1, 2}. By Theorem 3.3, we obtain 1 + 1 = 1 + 2 = 2 + 1 = 2 + 2 =
C(0) = {0}. If H/(0) ∼= Z3 then H is an group of order 3 and so H ∼= Z3.

Bayon and Lygeros [1] show that there are 1.026.462 isomorphism classes of Hv-groups
of order 3 and Tsitouras and Massouros [12] enumerated 23.192 isomorphism classes of
hypergroups of order 3.

Theorem 3.5. There are 4 isomorphism classes of M-P-Hs. of order 4 with the following
tables:

T1 :

+ 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

T3 :

+ 0 1 2 3

0 0 123 123 123
1 123 0 0 0
2 123 0 0 0
3 123 0 0 0

T2 :

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

T4 :

+ 0 1 2 3

0 0 1 23 23
1 1 23 0 0
2 23 0 1 1
3 23 0 1 1

Proof. By the theory of abelian groups we have one of 4 cases for group of reduction H/(0)
of H :

Case 1. H/(0) ∼= Z2 × Z2 and so H ∼= Z2 × Z2.(Table T1)

Case 2. H/(0) ∼= Z4 and so H ∼= Z4.(Table T2)

Case 3. H/(0) ∼= Z2. Thus we have C(1) = C(2) = C(3) = {1, 2, 3} and so by Theorem 3.3
we obtain i + j = C(0) = {0} and 0 + i = C(i) for all i, j ∈ {1, 2, 3}. Therefore we
obtain (H,+) have the cayley table T3.

Case 4. H/(0) ∼= Z3 = {0̄, 1̄, 2̄}. Since C(0) = {0} so there exists two equivalence classes
C(x) and C(y) where x, y ∈ {1, 2, 3}, |C(x)| = 1 and |C(y)| = 2. This means
H/(0) = {C(0), C(x), C(y)}. Thus by the cayley table of Z3 we obtain the following
table for (H/(0),+) :

+ C(0) C(x) C(y)

C(0) C(0) C(x) C(y)
C(x) C(x) C(y) C(0)
C(y) C(y) C(0) C(x).
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Now, we construction cayley table (H(x,y,z),+) by the cayley table of H/(0). We
have C(0) = {0}, C(x) = {x} and C(y) = H − {0, x} = {y, z}. By Theorem 3.3 and
straightforward computing we obtain the cayley table of (H(x,y,z),+) :

+ 0 x y z

0 0 x yz yz
x x yz 0 0
y yz 0 x x
z yz 0 x x

For any choice of x ,y and z we obtain an M -polysymmetrical (H(x,y,z),+) isomorphic
to the M -polysymmetrical hypergroup with table T4. In fact f : H → H(x,y,z) with
f(1) = x, f(2) = y and f(3) = z is an isomorphism.

Bayon and Lygeros [2] show that there are 10.614.362 isomorphism classes of abelian
hypergroups of order 4 and Bayon and Lygeros [3] enumerated 8.028.299.905 isomorphism
classes of abelian Hv-groups of order 4.

Theorem 3.6. There are 7 isomorphism classes of M-P-Hs. of order 5 with the following
tables:

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 0 1 2 4
4 0 1 2 3 4

+ 0 1 2 3 4

0 0 1234 1234 1234 1234
1 1234 0 0 0 0
2 1234 0 0 0 0
3 1234 0 0 0 0
4 1234 0 0 0 0

+ 0 1 2 3 4

0 0 12 12 34 34
1 12 34 34 0 0
2 12 34 34 0 0
3 34 0 0 12 12
4 34 0 0 12 12

+ 0 1 2 3 4

0 0 1 2 34 34
1 1 2 34 0 0
2 2 34 0 1 1
3 34 0 1 2 2
4 34 0 1 2 2

+ 0 1 2 3 4

0 0 1 234 234 234
1 1 234 0 0 0
2 234 0 1 1 1
3 234 0 1 1 1
4 234 0 1 1 1

+ 0 1 2 3 4

0 0 1 23 23 4
1 1 23 4 4 0
2 23 4 0 0 1
3 23 4 0 0 1
4 4 0 1 1 23

+ 0 1 2 3 4

0 0 1 2 34 34
1 1 0 34 2 2
2 2 34 0 1 1
3 34 2 1 0 0
4 34 2 1 0 0
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Closed non-vanishing ideals in CB(X)

M. R. Koushesh
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Abstract

Let X be a completely regular space. For a closed non-vanishing ideal H in CB(X)
we construct the spectrum sp(H) of H as a subspace of the Stone–Čech compactifi-
cation of X. The known construction of sp(H) will then enable us to derive certain
properties of sp(H) which are not generally expected to be easily deducible from the
standard Gelfand theory.

This paper is a rather self-contained extract from the research monograph [M. R.
Koushesh, Ideals in CB(X) arising from ideals in X, 53 pp.] available as the arXiv
preprint arXiv:1508.07734 [math.FA], to which the reader may also be referred to.

Keywords: Stone–Čech compactification, Commutative Gelfand–Naimark Theorem,
Spectrum, Gelfand Theory, Real Banach algebra.

Mathematics Subject Classification [2010]: 54D35, 54D65, 46J10, 46J25,
46E25, 46E15, 54C35, 46H05, 16S60.

1 Introduction

Throughout this paper by a space we will mean a topological space.
Let X be a completely regular space. Let CB(X) be the algebra of all complex valued

continuous bounded mappings on X equipped with the supremum norm. Also, let C0(X)
be the subset of CB(X) consisting of all f which vanish at infinity (i.e., |f |−1([ε,∞)) is
compact for each ε > 0). A subset H of CB(X) is said to be non-vanishing if for each x
in X there is some h in H such that h(x) 6= 0.

The commutative Gelfand–Naimark theorem states that every commutative C∗-algebra
A is isometrically ∗-isomorphic to C0(Y ) for some locally compact Hausdorff space Y . Such
a space Y is necessarily unique (up to homemorphism) by the Banach–Stone theorem and
is identical to the spectrum of A. Here, using purely topological arguments, we prove that
a closed non-vanishing ideal H of CB(X) is isometrically isomorphic to C0(Y ) for a locally
compact space Y . This in particular re-proves the commutative Gelfand–Naimark theorem
in its special case. We construct Y as a subspace of the Stone–Čech compactification of
X. The known construction of Y will then enable us to study it deeper and derived results
which are not generally expected to be easily deducible from the standard Gelfand theory.

This paper is an extract from the research monograph [10]. However, it is rather self-
contained, as it contains a complete proof for its main result (Theorem 2.7). For proofs
of the remaining results (Theorems 2.9 and 2.10) we refer the interested reader to the
original preprint [10]. (See [6]–[8] for further related results.)
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In what follows we use the Stone–Čech compactification as the main tool. For its
importance we define it in the following and refer to the texts [3], [4] and [11] for further
information.

The Stone–Čech compactification

Let X be a completely regular space, i.e., a Hausdorff space such that for every closed
subset C of X and every x in X \ C there is a continuous mapping f : X → [0, 1] such
that f(x) = 0 and f |C = 1. A compactification of X is a compact Hausdorff space which
contains X as a dense subspace. The Stone–Čech compactification of X, denoted by βX,
is the compactification of X which is characterized among all compactifications of X by
the fact that every continuous bounded mapping f : X → C is extendable to a continuous
mapping F : βX → C. This extension is necessarily unique, as any two such extensions
agree on the dense subspace X of βX. The Stone–Čech compactification of a completely
regular space always exists.

2 The representation theorem

The following is motivated by the definition of λPX as given in [5] and [9].

Definition 2.1. Let X be a completely regular space. For an ideal H of CB(X) define

λHX =
⋃{

intβXclβX |h|−1
(
(1,∞)

)
: h ∈ H

}
,

which is considered as a subspace of βX.

Recall that a subset H of CB(X) is said to be non-vanishing if for each x in X there
is an h in H such that h(x) 6= 0.

Note that if X is a space and D is a dense subspace of X, then

clXU = clX(U ∩D)

for any open subspace U of X.

Lemma 2.2. Let X be a completely regular space and let H be an ideal of CB(X). Let h
be in H and let hβ : βX → C be the continuous extension of h. Then

|hβ|−1
(
(1,∞)

)
⊆ λHX.

Proof. Observe that

|hβ|−1
(
(1,∞)

)
⊆ clβX |hβ|−1

(
(1,∞)

)

= clβX
(
X ∩ |hβ|−1

(
(1,∞)

))
= clβX |h|−1

(
(1,∞)

)
,

as |hβ|−1((1,∞)) is open in βX and X is dense in βX. Therefore

|hβ|−1
(
(1,∞)

)
⊆ intβXclβX |h|−1

(
(1,∞)

)
.

But intβXclβX |h|−1((1,∞)) is contained in λHX by the way we have defined λHX.
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Lemma 2.3. Let X be a completely regular space and let H be a non-vanishing ideal of
CB(X). Then

X ⊆ λHX.
Proof. Let x be in X. There is some h′ in H such that h′(x) 6= 0. Choose some n = 1, 2, . . .
such that |h′(x)| > 1/n. Denote h = nh′. Let hβ : βX → C be the continuous extension
of h. Then

|hβ|−1
(
(1,∞)

)
⊆ λHX

by Lemma 2.2. Therefore x is in λHX, as x is in |hβ|−1((1,∞)).

Lemma 2.4. Let X be a completely regular space and let H be an ideal in CB(X). Let
K be a compact subspace of λHX. Then

K ⊆ clβXh
−1((1,∞)

)

for some h in H.

Proof. By compactness of K we have

K ⊆
j⋃

i=1

intβXclβX |hi|−1
(
(1,∞)

)
(1)

where hi is in H for each i = 1, . . . , j. Let

h =

j∑

i=1

hihi =

j∑

i=1

|hi|2.

Then h is in H, as H is an ideal in CB(X). We have

j⋃

i=1

|hi|−1
(
(1,∞)

)
⊆ h−1

(
(1,∞)

)
.

In particular

j⋃

i=1

intβXclβX |hi|−1
(
(1,∞)

)
⊆ intβXclβX

[ j⋃

i=1

|hi|−1
(
(1,∞)

)]

⊆ intβXclβXh
−1((1,∞)

)
.

This together with (1) implies that

K ⊆ intβXclβXh
−1((1,∞)

)
.

The lemma now follows.

Lemma 2.5. Let X be a completely regular space and let f be in CB(X). Let f1, f2, . . .
be a sequence in CB(X) such that

|f |−1
(
[1/n,∞)

)
⊆ |fn|−1

(
[1,∞)

)

for each n = 1, 2, . . .. Then, there is a sequence g1, g2, . . . in CB(X) such that gnfn → f .
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Proof. Fix some n = 1, 2, . . .. We define a mapping un : X → C by

un(x) =

{
1/fn(x), if x ∈ |fn|−1([1,∞));

fn(x), if x ∈ |fn|−1([0, 1]).

The mapping un is well defined, as 1/fn(x) = fn(x) for any x in the intersection

|fn|−1
(
[1,∞)

)
∩ |fn|−1

(
[0, 1]

)
= |fn|−1(1),

and un is continuous, as it is continuous on each of the two closed subspaces |fn|−1([1,∞))
and |fn|−1([0, 1]) of X whose union is the entire X. Note that |un(x)| ≤ 1 for each x in
X. In particular, un is in CB(X). We now verify that

∣∣unfnf(x)− f(x)
∣∣ < 1/n (2)

for each x in X. Let x be in X. We consider the following two cases:

Case 1 Suppose that x is in |fn|−1([1,∞)). Then un(x)fn(x) = 1 by the definition of un.
Therefore unfnf(x)− f(x) = 0, and thus (2) holds in this case.

Case 2 Suppose that x is in |fn|−1([0, 1)). Then fn(x) = un(x) by the definition of un.
Therefore

un(x)fn(x)f(x)− f(x) =
∣∣un(x)

∣∣2f(x)− f(x) =
[∣∣un(x)

∣∣2 − 1
]
f(x).

But |un(x)| ≤ 1 and |f(x)| < 1/n, as using our assumption

|fn|−1
(
[0, 1)

)
⊆ |f |−1

(
[0, 1/n)

)
.

Therefore (2) holds in this case as well.

By (2) it follows that ‖unfnf − f‖ ≤ 1/n for each n = 1, 2, . . . and consequently

‖unfnf − f‖ → 0.

Let gn = unf for each n = 1, 2, . . .. Then g1, g2, . . . is a sequence in CB(X) such that
gnfn → f .

Lemma 2.6. Let X be a completely regular space. Let X ⊆ Y ⊆ βX and for any f in
CB(X) let fY = fβ|Y where fβ : βX → C is the continuous extension of f . Then, for any
f and g in CB(X) we have

(a) (f + g)Y = fY + gY .

(b) (fg)Y = fY gY .

(c) ‖fY ‖ = ‖f‖.
Proof. To show (a) observe that (f+g)Y and fY +gY are identical, as they are continuous
mappings which both coincide with f + g on the dense subspace X of Y . That (b) holds
follows analogously.

To show (c), note that

|fY |(Y ) = |fY |(clYX) ⊆ |fY |(X) = |f |(X) ⊆
[
0, ‖f‖

]
,

where the bar denotes the closure in R. This yields ‖fY ‖ ≤ ‖f‖. That ‖f‖ ≤ ‖fY ‖ is
clear, as fY is an extension of f .
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By a version of the Banach–Stone theorem, for locally compact Hausdorff spaces X
and Y , the Banach algebras C0(X) and C0(Y ) are isometrically isomorphic if and only
if the spaces X and Y are homeomorphic; see Theorem 7.1 of [2]. (It turns out that for
a locally compact Hausdorff space X even the ring theoretic structure of C0(X) suffices
to determine the topology of the space X; see [1].) This will be used in the proof of the
following theorem.

Theorem 2.7. Let X be a completely regular space. Let H be a closed non-vanishing
ideal in CB(X). Then H is isometrically isomorphic to C0(Y ) for some unique locally
compact Hausdorff space Y , namely for Y = λHX. In particular, Y is the spectrum of H.
Furthermore, the following are equivalent:

(a) H is unital.

(b) H contains 1.

(c) Y is compact.

(d) Y = βX.

Proof. For an f in CB(X) denote

fH = fβ|λHX

where fβ : βX → C is the continuous extension of f . Observe that X is contained in λHX
by Lemma 2.3, thus, in particular, fH extends f .

Claim. For an f in CB(X) the following are equivalent:

(i) f is in H.

(ii) fH is in C0(λHX).

Proof of the claim. (i) implies (ii). Let n = 1, 2, . . .. Note that

|fβ|−1
(
[1/n,∞)

)
⊆ |fβ|−1

(( 1

n+ 1
,∞
))

=
∣∣(n+ 1)fβ

∣∣−1((1,∞)
)
⊆ λHX

by Lemma 2.2. Thus

|fH |−1
(
[1/n,∞)

)
= λHX ∩ |fβ|−1

(
[1/n,∞)

)
= |fβ|−1

(
[1/n,∞)

)

is closed in βX and is therefore compact.
(ii) implies (i). Let n = 1, 2, . . .. Since |fH |−1([1/n,∞)) is a compact subspace of

λHX, by Lemma 2.4 we have

|fH |−1
(
[1/n,∞)

)
⊆ clβXg

−1
n

(
(1,∞)

)

for some gn in H. Therefore, if we intersect the two sides of the above relation with X, it
yields

|f |−1
(
[1/n,∞)

)
= X ∩ |fH |−1

(
[1/n,∞)

)

⊆ X ∩ clβXg
−1
n

(
(1,∞)

)
= clXg

−1
n

(
(1,∞)

)
.
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In particular,
|f |−1

(
[1/n,∞)

)
⊆ g−1n

(
[1,∞)

)
.

By Lemma 2.5 there is a sequence l1, l2, . . . in CB(X) such that lngn → f . Note that lngn
is in H for each n = 1, 2, . . ., as gn is in H. But then f is the limit of a sequence in H and
is therefore in H, as H is closed in CB(X) by our assumption.

Claim. Let
ψ : H → C0(λHX)

be defined by ψ(h) = hH for any h in H. Then ψ is an isometric isomorphism.

Proof of the claim. The mapping ψ is clearly well defined by the first claim. The mapping
ψ is a homomorphism by Lemma 2.6. Also, it is clear that ψ is injective. (Observe that
X ⊆ λHX by Lemma 2.3, and use the fact that any two real valued continuous mappings
on λHX coincide if they agree on its dense subspace X.) We show that ψ is surjective.
Let g be in C0(λHX). Then (g|X)H = g (as (g|X)H and g are identical when restricted
to X) and thus g|X is in H by the first claim. Observe that ψ(g|X) = g. Finally, observe
that ‖hH‖ = ‖h‖ for any h in H by Lemma 2.6. That is ψ is an isometry. This proves the
claim.

The uniqueness of Y follows from the Banach–Stone theorem. (Note that λHX is open
in βX by its definition, and is therefore a locally compact Hausdorff space.)

To show the concluding assertion of the theorem, let H be unital with the unit element
u. For each x in X choose some hx in H such that hx(x) 6= 0. Then u(x)hx(x) = hx(x)
which yields u(x) = 1. Thus u = 1. But then λHX = βX by the way λHX is defined.
Observe that if Y is compact then C0(Y ) = CB(Y ), and therefore H is unital, as it is
isometrically isomorphic to C0(Y ) and the latter is so.

Remark 2.8. The existence of the space space Y in Theorem 2.7 may also be deduced
from the commutative Gelfand–Naimark theorem in which Y is the spectrum (or the
character space or the maximal ideal space) of H. The advantage of our method is that
it constructs the space Y explicitly as a subspace of the Stone–Čech compactification of
X. This known construction of Y enables us to derive certain properties of Y which
are generally not expected to be deducible from the standard theories. (See [6]–[8] for
examples.)

The following two results are to illustrate the advantage of our topological approach.
The proofs, however, are relatively long and are therefore omitted. The interested reader
is referred to [10] for the complete proofs.

Theorem 2.9. Let X be a completely regular space. Let H be a closed non-vanishing ideal
in CB(X). The following are equivalent:

(a) The spectrum of H is σ-compact.

(b) The ideal H is σ-generated, i.e.,

H = 〈f1, f2, . . .〉

for some f1, f2, . . . in CB(X).
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Let {Yi : i ∈ I} be a collection of topological spaces. We may assume that the spaces
Yi’s are pairwise disjoint. The topological direct sum of {Yi : i ∈ I}, denoted by

⊕
i∈I Yi,

is the set Y =
⋃
i∈I Yi together with the family O of all U ⊆ Y such that U ∩ Yi is open

in Yi for every i ∈ I.
Let X be a completely regular space. The collection H of all ideals of CB(X) (partially

ordered with set-theoretic inclusion ⊆) is a complete upper semi-lattice, that is, together
with any subcollection G of H , H contains their least upper bound

∨
G . Indeed, let

{Hi : i ∈ I} be a collection of ideals in CB(X). Then

∨

i∈I
Hi =

〈⋃

i∈I
Hi

〉
.

Also, we denote
⊕

i∈I
Hi =

〈⋃

i∈I
Hi

〉

if we further have Hi ∩ 〈
⋃
i 6=j∈I Hj〉 = 0 for each i ∈ I.

Theorem 2.10. Let X be a completely regular space. Let {Hi : i ∈ I} be a collection of
ideals in CB(X).

(1) Suppose that Hi is non-vanishing for each i ∈ I. Then

sp

(∨

i∈I
Hi

)
=
⋃

i∈I
sp
(
Hi

)
.

(2) Suppose that
⊕

i∈I Hi is non-vanishing. Then

sp

(⊕

i∈I
Hi

)
=
⊕

i∈I
sp
(
Hi

)
.

(3) Suppose that
⋂
i∈I Hi is non-vanishing. Then

sp

(⋂

i∈I
Hi

)
= int sp(CB(X))

(⋂

i∈I
sp
(
Hi

))
.

Here the bar denotes the closure in CB(X) and sp(H) denotes the spectrum of H.
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Second derivative general linear methods for the numerical

solution of IVPs

Gholamreza Hojjati∗

University of Tabriz

Abstract

General linear methods (GLMs) were introduced as the natural generalizations
of the classical RungeKutta and linear multistep methods. An extension of GLMs,
so-called SGLMs (GLM with second derivative), was introduced to the case in which
second derivatives, as well as first derivatives, can be calculated. In this paper, we
introduce the basic concepts, construction and implementation of SGLMs.

Keywords: Stiff IVPs, General linear methods, Second derivative methods, stability
aspects, Variable stepsize implementation.

Mathematics Subject Classification [2010]: 65L05

1 Introduction

Traditional numerical methods for solving an initial value problem

y′(x) = f(y(x)), x ∈ [x0, x],

y(x0) = y0,
(1)

where f : Rm → Rm and m is the dimensionality of the system, generally fall into two main
classes: linear multistep (multivalue) and Runge–Kutta (multistage) methods. In 1966,
Butcher [5] introduced general linear methods as a unifying framework for the traditional
methods to study the properties of consistency, stability, and convergence and to formulate
new methods with clear advantages over the these classes.

On the other hand, one of the main directions to construct methods with higher order
and extensive stability region, is the using higher derivatives of the solutions, and some
methods have been introduced that have good properties, especially for stiff problems. See
[7, 8, 10]. Although the mentioned GLM includes linear multistep methods, Runge–Kutta
and many other standard methods, but for the above reasons, it has be seemed that it be
extended to the case in which second derivatives of solution, as well as first derivatives,
can be calculated. These methods introduced by Butcher and Hojjati [6].

In this paper, we will review the basic concepts, types, construction and implementa-
tion issues of SGLMs.

∗Speaker
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2 Basic Concepts

An SGLM is characterized by six matrices denoted by A,A ∈ Rs×s, U ∈ Rs×r, B,B ∈
Rr×s and V ∈ Rr×r. By denoting the second derivative stage value of step number n

by g(Y [n])) = [g(Y
[n]
i )]si=1, where g(·) = f ′(·)f(·) and using of previous notations, the

representation of SGLMs takes the form

Y [n] = h(A⊗ Im)f(Y [n]) + h2(A⊗ Im)g(Y [n]) + (U ⊗ Im)y[n−1],
y[n] = h(B ⊗ Im)f(Y [n]) + h2(B ⊗ Im)g(Y [n]) + (V ⊗ Im)y[n−1].

(2)

It is convenient to write coefficients of the method, that is elements of A, A, U , B, B and
V as a partitioned (s+ r)× (2s+ r) matrix

[
A A U

B B V

]
.

In an SGLM we assumed that the ith subvector in y[n−1] represents uiy(xn−1) +
vihy

′(xn−1) +O(h2). The vectors u and v are characteristic of any particular method.

Definition 2.1. An SGLM (A,A,U,B,B, V ) is ‘pre-consistent’ if V has an eigenvalue
equal to 1 and u be a corresponding eigenvector and also Uu = e, where e = [1, 1, · · · , 1]T ∈
Rs.

Definition 2.2. An SGLM (A,A,U,B,B, V ) is ‘consistent’ if it is pre-consistent with pre-
consistency vector u and there exists a vector v (consistency vector) such that Be +V v =
u+ v.

Definition 2.3. An SGLM (A,A,U,B,B, V ) is ‘stable’ if there exists a constant k such
that

‖V n‖ ≤ k, for all n = 1, 2, . . .

Theorem 2.4. [2] If the SGLM (A,A,U,B,B, V ) is convergent, then it is stable.

Theorem 2.5. [2] Let (A,A,U,B,B, V ) denote a convergent SGLM which is, moreover,
covariant with pre-consistency vector u. Then it is consistent.

Theorem 2.6. [2] A consistent and stable SGLM is convergent.

An SGLM has order p and stage order q if

y[n−1] =

p∑

k=0

hk
(
αk ⊗ y(k)(xn−1)

)
+O(hp+1) (3)

implies that

Y [n] =

p∑

k=0

hk
(ck
k!
⊗ y(k)(xn−1)

)
+O(hq+1) (4)

and

y[n] =

p∑

k=0

hk
(
αk ⊗ y(k)(xn)

)
+O(hp+1), (5)

for some vectors α0, α1, . . . , αp ∈ Rr associated with the method.
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Theorem 2.7. [3] An SGLM has order p equal to stage order q if and only if
{

C = ACK +ACK2 + UW,

WE = BCK +BCK2 + VW,
(6)

where

C :=

[
1

c

1!

c2

2!
· · · cp

p!

]
,

K := [0 e1 e2 · · · ep] ,

W := [α0 α1 α2 · · · αp] ,

E := exp(K) =




1 1
1!

1
2! · · · 1

p!

0 1 1
1! · · · 1

(p−1)!

0 0 1
. . .

...
...

...
...

. . . 1
1!

0 0 0 · · · 1



.

The stability matrix of SGLMs is obtained by applying these methods to the standard
test problem of Dahlquist y′ = qy, where q is a (possibly complex) number, which it is

M(z) = V +
(
zB + z2B

)(
I − zA− z2A

)−1
U,

where z = qh.

Definition 2.8. If the characteristic polynomial of M(z), known as the stability function,
has the special form

p(w, z) = det
(
wI −M(z)

)
= wr−1

(
w −R(z)

)
,

then the method is said to possess ‘Runge–Kutta stability’ (RKS).

We divide SGLMs into four types, depending on the nature of the differential system
to be solved and the computer architecture that is used to implement these methods. For
type 1 or 2 methods, matrices A and A have the form

A =




λ
a21 λ
...

...
. . .

as1 as2 · · · λ


 , A =




µ
a21 µ
...

...
. . .

as1 as2 · · · µ


 ,

where λ = µ = 0 or λ > 0, µ < 0, respectively. For type 3 or 4 methods, A = λI and
A = µI, where λ = µ = 0 or λ > 0, µ < 0, respectively.

Some order barriers have been peroved for SGLMs.

• Let p be the order of an SGLM of type 2 with RKS property. Then

p ≤
{

2s+ 2, if µ < −λ2

4 ,

2s+ 1, if µ ≥ −λ2

4 ,

where s is the number of internal stages.

• The orders of types 3 and 4 SGLMs with RKS property cannot exceed two and four
respectively.
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3 Nordsieck SGLMs

If p = q = s+ 1 = r − 1 and the matrix W equal to the identity matrix, the methods can
be represented in the Nordsieck form with the output values as

y[n] =




y(xn)

hy′(xn)

h2y′′(xn)
...

hpy(p)(xn)




+O(hp+1).

For such methods order conditions (6) can be written as
{
U = C −ACK −ACK2,

V = E −BCK −BCK2.
(7)

The coefficients matrices of a single example of L–stable Nordsieck SGLMs with RKS
with s = 2, p = 3, c = [12 1]T and the error constant C = −0.4 × 10−5 take the following
forms

A =

[
0.9320000000 0

−0.4808609798 0.9320000000

]
, A =

[
−0.2860000000 0

0.1314734508 −0.2860000000

]
,

B =




−0.4808609798 0.9320000000

0 1

0 0

2.1002864620 5.2426575276


 , B =




0.1314734508 −0.2860000000

0 0

0 1

1.4715274391 −2.6196282911


 ,

U =

[
1.0000000000 −0.4320000000 −0.0550000000 0.0473333333

1.0000000000 0.5488609798 −0.0370429609 −0.0189624363

]
,

V =




1.0000000000 0.5488609798 −0.0370429609 −0.0189624363

0 0 0 0

0 0 0 0

0 −7.3429439896 −5.1446999066 0


 .

The coefficients matrices of a single example of L–stable Nordsieck SGLMs with RKS
with s = 3, p = 4, c = [14

1
2 1]T and the error constant C = −10−5 take the following

forms

A =




0.5000000000 0 0

−0.1084646955 0.5000000000 0
−21.4854212762 11.3754879183 0.5000000000


 ,

A =



−0.0500000000 0 0

−0.0514889392 −0.0500000000 0
−0.1268254314 −1.5150262971 −0.0500000000


 ,
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B =




−21.4854212762 11.3754879183 0.5000000000

0 0 1

0 0 0

−175.3567237676 187.8806581465 −12.5239343789
−456.0798770012 442.7876468092 −22.7655989812



,

B =




−0.1268254314 −1.5150262971 −0.0500000000

0 0 0

0 0 1

−19.1546420631 −25.0495110943 6.6269394049
−45.4064679121 −58.1223790607 10.7694811395



,

U =




1.0000000000 −0.2500000000 −0.0437500000 −0.0005208333 0.0004231771

1.0000000000 0.1084646955 0.0036051130 −0.0004049101 0.0003289895

1.0000000000 10.6099333579 1.3754630884 0.0053695982 −0.0043627985


 ,

V =




1.0000000000 10.6099333579 1.3754630884 0.0053695982 −0.0043627985

0 0 0 0 0

0 0 0 0 0

0 0 0 −0.0567408031 0.0461019020

0 36.0578291732 8.1511106602 −0.0698348354 0.0567408031



.

4 Implementation aspects

A Nordsieck SGLM in the variable stepsize mode takes the form

Y [n] = hn(A⊗ Im)f(Y [n]) + h2n(A⊗ Im)g(Y [n]) + (UD(δn)⊗ Im)y[n−1],

y[n] = hn(B ⊗ Im)f(Y [n]) + h2n(B ⊗ Im)g(Y [n]) + (V D(δn)⊗ Im)y[n−1],
(8)

where hn = xn − xn−1. Here Y [n] is an approximation of stage order q = p to the vector
y(xn−1 + chn) = [y(xn−1 + cihn)]si=1, y

[n] is an approximation of order p to the Nordsieck
vector [hi−1n y(i−1)(xn)]ri=1, and D(δn) is the rescaling matrix defined by

D(δn) := diag
(
1, δn, δ

2
n, . . . , δ

p
n

)
,

where δn is the ratio of consecutive stepsizes δn = hn/hn−1.
To obtain a reliable approximation to the vector y[0], we carry out one step of SDIRK

method of order p? = 3 which gives sufficient output information, ỹ1 ≈ y(x0 + h0) and
Ỹi ≈ y(x0 + c̃ih0), i = 1, 2, . . . , p?.
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For the stage predictors, without any additional computational cost, we use the Taylor
expansion to predict the stage values

Y
[n],0
i = y(xn−1 + cihn) +O(hp+1

n )

= C(i)D(δn)y[n−1] +O(hp+1
n )

≈ C(i)D(δn)y[n−1],

where C(i) is the ith row of the matrix C.
In order to control the stepsize, we need to estimate the local truncation error. To

do this, we approximate the hp+1y(p+1)(xn), using linear combination of the known stage

first and second derivatives, hf(Y
[n]
i ) and h2g(Y

[n]
i ), i = 1, 2, . . . , s.

The used strategy to control the stepsize in the advancing from the step n to the step
n+ 1 is according to the following control

est(xn) ≤ Rtol ·max{‖yn‖, ‖yn+1‖}+Atol, (9)

where Atol and Rtol are given absolute and relative tolerances. If the control (9) is not
satisfied, the current step is repeated with the halved stepsize. Otherwise, the current
step is accepted and we carry our the next step with the new stepsize as the following

hn+1 = δn+1hn,

where

δn+1 = min
{

∆,
( ρ · tol
‖est(xn)‖

) 1
p+1
}
.

In our numerical experiments we have used Atol = Rtol = tol, ρ = 0.9 and ∆ = 2.
This value for ∆ is a safe choice, since it guarantees the zero-stability of the constructed
methods of orders 3and 4.

5 Numerical experiments

In this section we present the results of numerical experiments to show efficiency of the
constructed methods of order 3 and 4 in the variable stepsize mode. To compare, we
also present the results of numerical experiments of the L–stable Nordsieck GLM of order
p = q = 3 given in [11] on the page 88. Computational experiments are done by applying
methods on the stiff chemical reaction problem, called E5 [9],





y′1 = −Ay1 −By1y3,
y′2 = Ay1 −MCy2y3,

y′3 = Ay1 −By1y3 −MCy2y3 + Cy4,

y′4 = By1y3 − Cy4,

where A = 7.89 × 10−10, B = 1.1 × 107, C = 1.13 × 103, and M = 106. The initial
values are y(0) = [1.76 × 10−3, 0, 0, 0]T and x ∈ [0, 105]. The variables of this problem
are badly scaled (y1 ≈ 10−3 at the beginning, all other components do not exceed the
value 1.46× 10−10). The differential equations possess the invariant y2 − y3 − y4 = 0, and
because of eventual cancellation of digits, we use the relation y′3 = y′2 − y′4 in solving.
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Table 1: Numerical results for problem E5 solved by the methods of order 3 with h0 = 10−5.

tol Method ns nrs nfe nJe ge

10−6 SGLM 38 5 516 432 1.96× 10−7

GLM 42 3 649 473 1.00× 10−6

10−8 SGLM 37 0 337 265 1.56× 10−8

GLM 52 5 763 539 1.95× 10−8

10−10 SGLM 48 1 482 386 7.38× 10−10

GLM 103 4 1354 930 3.36× 10−9

10−12 SGLM 84 2 1201 1031 2.28× 10−11

GLM 276 10 3437 2297 1.16× 10−10

Table 2: Numerical results for problem E5 solved by the methods of order 4 with h0 = 10−5.

tol Method ns nrs nfe nJe ge

10−6 SGLM 56 7 1746 1560 4.80× 10−8

GLM 187 17 5138 4123 4.36× 10−5

10−8 SGLM 57 8 1403 1211 2.71× 10−9

GLM 228 29 5317 4037 3.11× 10−7

10−10 SGLM 62 0 1432 1249 3.68× 10−10

GLM 554 107 13461 10156 3.07× 10−9

10−12 SGLM 83 1 1416 1167 1.21× 10−11

GLM 429 60 8717 6277 8.94× 10−11
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Figure 1: Accepted stepsizes versus x of the SGLM and GLM of order 3 (left) and order
4 (right) for problem P4 with h0 = 10−5 and tol = 10−8.

References
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On a sub-projective Randers geometry

Mehdi Rafie-Rad

University of Mazandaran

Abstract

Projective manifolds form an important class of spaces in geometry and topology.
Metric projective manifolds are are typical examples of spaces on which straight line
segments are the shortest connection between two points, at least at a local scheme.
Randers manifolds (M,F = α + β) are the ubiquitous in Finslerian geometry with
applications. A notable sub-group of the projective group Proj(M,F ) which is denoted

by P̂roj(M,F ) turns the projective Finsler geometry to be a finer geometry called
special projective geometry. Some difficult results in projective Finsler geometry which
are not proved yet, are established in this finer projective geometry; A Lichnérowicz-
Obata type result is proved for Randers manifolds.

Keywords: Projective geometry, projective manifolds, projective group, Randers
metric

Mathematics Subject Classification [2010]: 53B40, 53C60, 58J60

1 Introduction

Felix Klein’s Erlanger program in 1872 upturns geometry to the study of those issues
of a space which are invariant under a group of transformations. In a vastly struc-
ture free sense, a geometry due to Klein’s manifest, is a pair (X,G), where X is a set
and G is a group acting (usually transitively) on X. The set X and the group G may
have geometric, topological, algebraic, analytic, combinatorial, etc., or even composite
additional structures in any actual instances. The geometries (Rn, Isom(Rn, dEuclidean)),
(Rn,Aff(Rn)),(RPn,PGl(n+1,R)), are called the Euclidean geometry, the Affine geometry
and the Projective geometry, respectively. If Rn is equipped with a Minkowski norm and d
denotes the associated metric, the (Rn, Isom(Rn, d))-geometry is called a Minkowski geom-
etry. One may also think of geometries which are infinitesimally modeled on the Euclidean
(resp. Minkowskian) geometry (Rn, Isom(Rn, dEuclidean)) (or (Rn, Isom(Rn, d))) when we
deal with differentiable manifolds. These class of geometries are known by Riemannian
geometry (resp. Finslerian geometry). It is even natural to consider spaces which have
local (X,G) geometry; this is indeed, modeling the space locally on a (X,G)-geometry.

Hilbert ’s fourth problem, posted in International Congress of Mathematics 1n 1900,
asks, in a modern version, to construct and study the geometries in which the straight
line segment is the shortest connection between two points, cf. [5]. These geometries
may be found in the wider geometries locally modeled on (RPn,PGl(n+ 1,R)); although,
the different modern approaches evokes the problem at the basis of integral geometry,
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inverse problems in the calculus of variations, and Finslerian geometry. There has been a
longstanding history of research activities in solving Hilbert’s fourth problem, cf. [13, 19].
This problem may have solutions in smooth and non-smooth synthetic settings. Smooth
solutions of Hilbert’s fourth problems are in fact Riemannian-Finslerian geometries in
which, the space is covered by coordinates systems within the geodesics are rectilinear.
These types of Riemannian-Finslerian geometries are said to be projective. Beltrami ’s
theorem asserts that projective Riemannian geometries are exactly those with constant
sectional curvature and vice-versa, cf. [4, 9]. Therefore, within an immense framework,
constant curvature geometries are sub-geometries of projective geometry in the Rieman-
nian setting. However, this result fails in for Finslerian geometries, since there are non-
projective Finslerian geometries with constant curvature, cf. [3]. Another important
sub-geometries of the projective geometry are locally modeled on (Rn,Aff(Rn)). These
geometries not only possess the notions of projective geometry, but also enjoy the notion
of parallelism. An (X,G)-structure on a manifold is an atlas of coordinates neighborhoods
A = {φα : Uα −→ X}α∈I such given any intersecting neighborhood Uα and Uβ and a con-
nected component C of Uα∩Uβ, there is an element gα,β,C ∈ G, such that φα◦φ−1β = gα,β,C .
Every (Rn,Aff(Rn)) (called an affine structure) corresponds to a projective affine connec-
tion and every (RPn,PGl(Rn)) (called a projective structure) corresponds to a projective
connection.

2 Preliminaries

Let M be a connected and smooth manifold of dimension n ≥ 2. We denote the ele-
ments of the tangent manifold TM by (x, v) where v ∈ TxM with the natural projection
π : TM →M is given by π(x, v) := x and we set TM0 = TM \ {0}. A Finsler metric on
M is a function F : TM → [0,∞) with the following properties: (1) F is C∞ on TM0, (2)
F is positively 1-homogeneous on the fibers of tangent bundle TM and (3) the y-Hessian

of F 2 with elements gij(x, v) := ∂2F 2

∂vi∂vj
is positive definite. The pair (M,F ) is then called

a Finsler space. We denote a Riemannian metric by α =
√
aij(x)vivj and a 1-form by

β = bi(x)vi.
Two Finsler metrics F and F̃ on a smooth n-manifold M are said to be projectively equiva-
lent (resp. affine equivalent) if they have the same forward geodesics (resp. they have the
same forward geodesics with the same parametrization). A Finsler manifold (M,F ) is said
to be projective if M is covered by an atlas A of coordinates neighborhood U on which F
and the Euclidean metric are projectively equivalent; A Finsler manifold (M,F ) is said to
be flat if M is covered by an atlas A of coordinates neighborhood U on which F and the
Euclidean metric are affine equivalent; This terminology sometimes is called locally flat or
locally Minkowski. Euclidean geodesics on U are straight lines, hence coordinates change
in Amay be viewed in the above cases, naturally as elements of PGl(n,R) (resp. as element
of Aff(Rn). Thus, a projective (resp. Affine) Finsler manifold on M is indeed a projective
(rep. affine) structure on M and it can be modeled locally on (RPn,PGl(n + 1,R)) (rep.
(Rn,Aff(Rn))). Given a Finsler space (M,F ), a diffeomorphism φ : M −→ M is called
a projective transformation (resp. affine transformation) if F and φ∗F are projectively
(resp. affine equivalent). The collection of all projective (resp. affine) transformations is
denoted by Proj(M,F ) (resp. (Aff(M,F ) and forms a finite dimensional Lie group with
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respect to the compact-open topology, e.g. cf. [18]. Its connected component containing
the identity map is denoted by Proj0(M,F ) (resp. Aff0(M,F ). A very natural and old
fashion problem in differential geometry is to characterize (pseudo-)Riemannian manifolds
(M, g) for which Aff(M, g) ( Proj(M, g), namely,M admits an essential projective trans-
formation, cf. [11]. Upon a long public research history, (e.g. see [6, 7, 8]), the following
rigidity result is announced:

Theorem 2.1. (Projective Lichnérowicz conjecture) Let (M, g) be a compact (pseudo-)
Riemannian manifold. Then, unless (M ; g) is a finite quotient of the Euclidean sphere,
Proj(M, g)/Aff(M, g) is finite. Same does hold when compactness is replaced by complete-
ness.

The another form of projective Lichnérowicz conjecture may be formulated in other
forms: if M is compact and Aff(M, g) ( Proj(M, g), then (M, g) is covered by the Euclidean
sphere by local isometry.

Let us suppose that F is Finsler metric on the manifold M . Given any vector field
W ∈ X (M) satisfying F (x,Wx) < 1, x ∈M , there is a Finsler metric FW on M such that
we have F (x, v

FW (x,v) + Wx) = 1, x ∈ M, v ∈ TxM \ {0}. Hence, at every point x ∈ M ,

the indicatrix Sx of F equals the translation of the indicatrix SWx of FW along the vector
Wx ∈ TxM . The Finsler metric FW is called the Zermelo transform of F with respect
to W and we write ZWF := FW , cf. [10]. The Zermelo transform of every Riemannian
metric with respect to any appropriate vector field W is a Randers metric and vice-versa;
this is called the so called Zermelo correspondence in the contexts, cf. [2]. Two Finsler
metrics F and F̃ on M are said to be weakly conformal if there is a function σ ∈ C∞(M)
and a vector field W on M such that the pair (F,W ) solves the Zermelo navigation
problem eσF̃ (x, yF + Wx) = 1, x ∈ M, y ∈ TxM , namely, ZW (eσF̃ ) = F . Two Finsler

manifold (M,F ) and (M̃, F̃ ) are said to be weakly conformal if there is diffeomorphism
φ : M −→ N such that F and φ∗F̃ are weakly conformal. The expression weakly conformal
can be replaced by weakly isometric if we have σ ≡ 0. This terminology was first proposed
by Zhongmin Shen and used in [17].

3 Main results

Given a Randers manifold (M,F = α + β), the group of projective transformations
Proj(M,F ) is a subgroup of Proj(M,α), cf. [15, 16]; In fact, Proj(M,F ) is the group
of stabilizers of the tensor αsij

∂
∂xi
⊗ dxj . The equality holds if the 1-form β is closed.

Some local issues of the projective group, such as local dimension, can be obtained using
its Lie algebra of projective vector fields. The reference [1] is good introductory source for
arriving projective vector fields in Finsler geometry. In an infinitesimal form it follows:

Theorem 3.1. [14, 15] A vector field V is projective on a Randers space (M,F = α+ β)
if and only if V is projective in (M,α) and £V̂ (αsi j) = 0.

A classical result states that if n = dimM , then Proj(M,α) has at most n(n + 2)
dimensions and the equality holds if and only if α is a projective metric. The latter is
equivalent to constancy of the sectional curvature of α by Beltrami’s theorem. We may
generalize this to the following result:
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Theorem 3.2. An Randers metric F = α+ β on a manifold M of dimension (n ≥ 3) is
projective if and only if Proj(M,F ) has (locally) dimension n(n+ 2).

A generic Finsler manifold has in general several non-Riemannian quantities and each of
which has a stabilizer group of transformations. The Berwald curvature for a Finsler met-
ric an important non-Riemannian quantity which measures the deflection of the geodesic
spray form being induced by a Riemannian metric, namely, the failure of being quadratic
on tangent spaces. The collection of projective transformations which stabilize the Berwald
curvature forms a subgroup of Proj(M,F ), denoted by P̂roj(M,F ). On the other hand,
notice that the important non-Riemannian quantity which is called S-curvature play a fun-
damental role in Finsler spaces. It has fine link with Lott, Sturm and Villani’s curvature-
dimension condition CD(K,N) in its synthetic form, cf, [12]. Every Berwald spaces has
vanishing S-curvature and thus, the projective group refers to be induced by a Riemannian
metric. Einstein-Randers metrics have constant S-curvature. Hence, we are interested to
consider Randers spaces whose S-curvature are nonzero constant and result the following
characterization:

Theorem 3.3. Let (M,F = α+β) be an n-dimensional (n ≥ 3) Randers space of non-zero
constant S-curvature. The special projective algebra of (M,F ) has maximum dimension
n(n+1)

2 if and only if F is (up to a rescaling) locally isometric the following locall projectively
flat Randers metric:

F (x, y) =

√
|y|2 − (|x|2|y|2 − 〈x, y〉2)

1− |x|2 ± 〈x, y〉
1− |x|2 ±

〈a, y〉
1 + 〈a, x〉 , (1)

where, y ∈ TxRn, a ∈ Rn, |a| < 1.

Notice that, the Randers metric given by (1) is a asymmetric generalization of the
Klein’s metric on the unit disk.
Let Fins(M) (resp. Riem(M)) denotes the collection of all Finsler metrics (resp. Rieman-
nian metrics) on the manifold M . Any subgroup of diffeomorphism group Diff(M) can
act naturally on Fins(M) by pull-back; So does the projective group Proj(M,F ) and in

particular the special projective group P̂roj(M,F ). A dynamical issue of such an action
can be considered by having fixed point or acting with no fixed points. In the former
case, the stabilizer of fixed points are in fact isometries and the projective group is called
essential in the later case. A classical result related to this dynamics is has been formu-
lated by Lichnérowicz and later by Obata under the name Projective Lichnérowicz-Obata
conjecture. In the sub-class Riemannian metrics, this conjecture was proved by Matveev in
[7]. However, the proof for the large class Finsler metrics seems to be far away to be done,
since the Proj(M,F )-orbits in Riem(M) are finite dimensional manifold while Fins(M) may
be infinite dimensional and this causes the analysis highly different. This may be related
to more complex dynamical issues of the mentioned acting in comparison to Riemannian
setting. Here, we prove this conjecture for Randers manifolds and in a version reduced to
the special projective group:

Theorem 3.4. Let us suppose that (M,F = α+β) be a Randers space of dimension n ≥ 2
and is obtained by Zermelo transform ZWh = F , where, h is a Riemannian metric and
W is a vector field satisfying h(W,W ) < 1. Then, at least one of the following statements
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holds:
(i) Every special projective vector field on (M,F ) is a conformal vector field of the Rie-
mannian metric h,
(ii) F is of isotropic S-curvature.

Notice that, the above result does not require any further topological assumptions such
as completeness and has no counterparts in the Riemannian setting; Moreover, Theorem
3.4 is in fact an assertion about the acting connected component containing the identity
of P̂roj(M,F ). It is surprising that the special projective geometry is a sub-geometry of
the conformal geometry whence the Randers metric is not of isotropic S-curvature.

Theorem 3.5. Let us suppose that (M,F = α + β) be a closed and connected Randers
space of dimension n ≥ 2 and is obtained by Zermelo transform ZWh = F , where, h is a
Riemannian metric and W is a vector field satisfying h(W,W ) < 1. Suppose that, V is a
special projective vector field of F . Then, at least one of the following statements holds:
(i) V is a conformal vector field for the Riemannian metric h,
(ii) There is a Randers metric F̂ such that V is a Killing vector field for F̂ ,
(iii) After an appropriate rescaling, F is of the following local form:

F (x, y) =

√
|y|2 + |x|2|y|2 − 〈x, y〉2

1 + |x|2 − fxky
k

√
1− f2(x)

, y ∈ TxM ∼= Rn, (2)

where, f is an eigenfunction of the standard Laplacian satisfying ∆f = nf and ‖f‖L∞(M) <
1. In particular, (M,F ) is a projective manifold of positive flag curvature K(x, y) =
1
4 + 3F (x,−y)

4(1−f(x)2)F (x,y)
.

Notice that, the case (iii) in Theorem 3.5 entails that (M,F ) is weakly isometric tho
the Euclidean sphere (Sn, h1), where, h1 is the standard Riemannian metric on Sn induced
as a hypersurface in Rn+1.
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Derivations of direct limits of Lie superalgebras

Malihe Yousofzadeh∗

University of Isfahan & IPM

Abstract

In this work, we study derivations of a direct limit of Lie superalgebras. As an
application, we determine the derivation algebra of a direct union of finite dimensional
basic classical simple Lie superalgebras.

Keywords: Derivation, Inverse limit, Direct limit, Locally finite Lie superalgebra.

Mathematics Subject Classification [2010]: 17B40

1 Derivations

Following the interest of physicists in the context of supersymmetries, in 1977, V. Kac [1]
introduced Lie superalgebras (known as Z2-graded Lie algebras in Physics). He classified
classical Lie superalgebras, i.e., finite dimensional simple Lie superalgebras whose even
parts are reductive Lie algebras. These Lie superalgebras are a generalization of finite
dimensional simple Lie algebras over an algebraically closed field of characteristic zero
but classical Lie superalgebras are not necessarily equipped with nondegenerate invariant
bilinear forms while Killing form on a finite dimensional simple Lie algebra over a field
of characteristic zero is invariant and nondegenerate. To get a better super version of
finite dimensional simple Lie algebras, one can work with those classical Lie superalgebras
equipped with even nondegenerate invariant bilinear forms, called finite dimensional basic
classical simple Lie superalgebras. It is known that all derivations of a finite dimensional
Lie superalgebra with nondegenerate Killing form are inner. In [2], the author studies
derivations of locally finite split simple Lie algebras [3]; a locally finite split simple Lie
algebra is a direct union of finite dimensional split simple Lie algebras. In this work, we
first study derivations of a direct limit of Lie superalgebras and then as an application,
we determine the derivations of locally finite basic classical simple Lie superalgebras [4].
This work has been derived from the author’s recent preprint on the topic.

Throughout this work, F is an algebraically closed field of characteristic zero. Unless
otherwise mentioned, all vector spaces are considered over F. We denote the dual space of
a vector space V by V ∗. We denote the degree of a homogenous element v of a superspace
by |v| and make a convention that if in an expression, we use |u| for an element u of a
superspace, by default we have assumed u is homogeneous. For two symbols i, j, by δi,j ,
we mean the Kronecker delta.

∗Speaker
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Suppose that L is a Lie superalgebra and M is a superspace, we say M together with
a bilinear map · : M × L −→M is a right L-module if

Mi · Lj ⊆Mi+j

a · [x, y] = (a · x) · y − (−1)|x||y|(a · y) · x

for x, y ∈ L, a ∈ M and i, j ∈ {0, 1}. We also say M together with a bilinear map
∗ : L×M −→M is a left L-module if

Li ∗Mj ⊆Mi+j

[x, y] ∗ a = x ∗ (y ∗ a)− (−1)|x||y|y ∗ (x ∗ a)

for x, y ∈ L, a ∈ M and i, j ∈ {0, 1}. We note that if (M, ·) is a right L-module, then M
together with the action x · a := −(−1)|x||a|a ∗ x (x ∈ L, a ∈ M) is a left L-module. In
the sequel, when we say M is an L-module, we mean that it is a right L-module; in this
case, we use the left action of L on M as we have just defined. For an L-module M, we
set ML := {a ∈M | ax = 0; ∀x ∈ L} and note that

ML := {a ∈M | xa = 0; ∀x ∈ L}. (1.1)

Also for an L-module M, we say a bilinear form (·, ·) : M ×M −→ F is L-invariant if

(ax, b) = (a, xb); x ∈ L, a, b ∈M.

Definition 1.1. Suppose that L is a Lie superalgebra and M is an L-module. A derivation
of L in M is a linear map d : L −→M satisfying

d[x, y] = d(x)y − (−1)|x||y|d(y)x

for all x, y ∈ L. We denote the set of all derivations of L in M by der(L,M). A derivation
d ∈ der(L,M) is called inner if there is m ∈ M with d(x) = mx for all x ∈ L. If we
consider L as an L-module, we denote der(L,L) by der(L).

We recall that the first cohomology group of a Lie superalgebra L with coefficients
in an L-module M is the quotient space H1(L,M) := der(L,M)/Ider(L,M) in which
Ider(L,M) is the set of inner derivations of L in M.

The aim of this work is the study of the derivations of a direct limit L of Lie super-
algebras in L-modules. We first briefly explain the concepts of the direct limit and the
inverse limit in a category C. Suppose that (I,4) is a directed set and {Ai | i ∈ I} is a
class of objects of C. For i, j ∈ I with i 4 j, suppose fji : Ai −→ Aj is a morphism such
that fii = id and fkjfji = fki for i, j, k ∈ I with i 4 j 4 k. The pair ({Ai}i∈I , {fji}i4j)
is called a directed system. A direct limit of this directed system is an abject A together
with a class {fi : Ai −→ A | i ∈ I} of morphisms such that

• for each i, j ∈ I with i 4 j, fj ◦ fji = fi,

• if B is an object of C and {ϕi : Ai −→ B | i ∈ I} is a class of morphisms such that for
each i, j ∈ I with i 4 j, ϕj ◦ fji = ϕi, then there is a unique morphism ϕ : A −→ B
such that ϕ ◦ fi = ϕi for all i ∈ I.
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We refer to fi’s as canonical morphisms. Direct limits of a directed system ({Ai}, {fji}i4j)
are equivalent, and so if there exists one, we refer to as “the” direct limit and denote it
by lim−→i∈IAi. Direct limits exist in the category of Lie superalgebras. One knows that if

({Ai}, {fji}i4j) is a directed system in a concrete category C such that the direct limit
exists for this directed system, then lim−→i∈IAi = ∪i∈Ifi(Ai). Also if fi(a) = fj(b), for some

i, j ∈ I, a ∈ Ai and b ∈ Aj , then there is k ∈ I with i 4 k, j 4 k and fki(a) = fkj(b).

Next for i, j ∈ I with i 4 j, suppose pij : Aj −→ Ai is a morphism such that pii = id
and pijpjk = pik for i, j, k ∈ I with i 4 j 4 k. The pair ({Ai}, {pij}i4j) is called an
inverse system. An inverse limit of this inverse system is an abject A together with a class
{pi : A −→ Ai | i ∈ I} of morphisms such that

• for each i, j ∈ I with i 4 j, pij ◦ pj = pi,

• if B is an object of C and {ψi : B −→ Ai | i ∈ I} is a class of morphisms such that for
each i, j ∈ I with i 4 j, pij ◦ ψj = ψi, then there is a unique morphism ψ : B −→ A
such that pi ◦ ψ = ψi for all i ∈ I.

Two inverse limits of an inverse system ({Ai}i∈I , {pij}i4j) are equivalent, and so if an
inverse limit exists, we refer to as “the” inverse limit and denote it by lim←−i∈IA

i. One

knows that if ({Ai}i∈I , {pij}i4j) is an inverse system in a concrete category C such that∏
i∈I A

i is a product of {Ai | i ∈ I} in C (e.g. if C is the category of super vector spaces),
then

{(ai)i ∈
∏

i∈I
Ai | pij(aj) = ai; i 4 j}

together with the canonical projection maps corresponding to the direct product
∏
i∈I A

i

is the inverse limit of ({Ai}i∈I , {pij}i4j). In the sequel, by the inverse limit for such an
inverse system, we mean the one we have just defined. From now on till the end of this
section, we suppose I is a directed set and ({Li}i, {fji}i4j) is a directed system in the
category of Lie superalgebras. Set L := lim−→i∈ILi with the canonical morphisms fi (i ∈ I).
Suppose u is an L-module whose module action is written as juxtaposition. For i ∈ I,
consider u as an Li-module via the action u ·i x := ufi(x) for x ∈ Li and u ∈ u.

Proposition 1.2. We have the following:
(i) Suppose i, j ∈ I with i 4 j, then for d ∈ der(Lj , u), d ◦ fji ∈ der(Li, u).

(ii) Suppose that i, j ∈ I with i 4 j. Define dij : der(Lj , u) −→ der(Li, u) mapping
d ∈ der(Lj , u) to d ◦ fji, then ({der(Li, u)}i, {dij}i4j) is an inverse system.

(iii) der(lim−→i∈ILi, u) ' lim←−i∈Ider(Li, u).

Proof. (i), (ii) One can easily check it.
(iii) We recall that L = lim−→i∈ILi and suppose that d ∈ der(L, u). Then for i ∈ I and

x, y ∈ Li, we have

(d ◦ fi)[x, y] = d[fi(x), fi(y)]

= d(fi(x))fi(y)− (−1)|fi(y)||fi(x)|d(fi(y))fi(x)

= d(fi(x)) ·i y − (−1)|y||x|d(fi(y)) ·i x
= (d ◦ fi)(x) ·i y − (−1)|y||x|(d ◦ fi)(y) ·i x.
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This means that d ◦ fi ∈ der(Li, u). Define di : der(L, u) −→ der(Li, u) mapping d ∈
der(Li, u) to d ◦ fi. We claim that der(lim−→i∈ILi, u) together with the maps di (i ∈ I) is the

inverse limit of the inverse system ({der(Li, u)}i, {dij}i4j). It follows from the following:

• For i, j ∈ I with i 4 j and d ∈ der(Lj , u), we have

dij ◦ dj(d) = dij(d ◦ fj) = d ◦ fj ◦ fji = d ◦ fi = di(d).

• Suppose that V is a vector superspace and that for each i ∈ I, ψi : V −→ der(Li, u) is
a Linear transformation such that for i, j ∈ I with i 4 j, dij ◦ ψj = ψi. We know that
lim−→i∈ILi = ∪i∈Ifi(Li). Define

ψ : V −→ der(lim−→i∈ILi, u)

x 7→ ψ(x)

in which for x ∈ V, ψ(x) maps fi(y), for y ∈ Li, to ψi(x)(y). We show that ψ is well-
defined. Suppose that x ∈ V, i, j ∈ I, z ∈ Li and y ∈ Lj such that fj(y) = fi(z) and show
that ψj(x)(y) = ψi(x)(z). We know that there is k ∈ I with i 4 k and j 4 k such that
fkj(y) = fki(z). Now we have

ψj(x)(y) = ψi(x)(z).

• For i ∈ I, we have di ◦ ψ = ψi. In fact, for x ∈ V and y ∈ Li,

(di ◦ ψ)(x)(y) = di(ψ(x))(y) = (ψ(x) ◦ fi)(y) = ψ(x)(fi(y)) = ψi(x)(y).

• The linear transformation ψ with the mentioned property in the previous part is unique.
Indeed, suppose that ϕ : V −→ der(lim−→i∈ILi) is a linear transformation such that for each

i ∈ I, di ◦ ϕ = ψi. Then for i ∈ I, x ∈ V and y ∈ Li, we have

ψ(x)(fi(y)) = ψi(x)(y) = (di ◦ ϕ)(x)(y) = (di(ϕ(x))(y)

= (ϕ(x) ◦ fi)(y)

= ϕ(x)(fi(y)).

Therefore, we have ψ = ϕ. This completes the proof.

Proposition 1.2. Suppose that for each i ∈ I, H1(Li, u) = {0}. For i ∈ I, denote the
equivalence class u ∈ u in u/uL

i
by [u]i. For i, j ∈ I with i 4 j, define pij : u/uL

j −→ u/uL
i

mapping [u]j to [u]i. Then {{u/uLi}i, {pij}i4j} is an inverse system and

der(L, u) ' lim←−i∈I(u/u
Li).

Proof. Suppose that i, j ∈ I with i 4 j. If [u]j = 0 for some u ∈ u, then for each x ∈ Lj ,
u ·j x = ufj(x) = 0, so for each x ∈ Li,

u ·i x = ufi(x) = ufj(fji(x)) = 0.

This means that pij is well-defined. It is immediate that pii = id and that pijpjk = pik
for i, j ∈ I with i 4 j. This is what we need for the first assertion. Next suppose
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that d ∈ der(L, u). As we have already seen, for each i ∈ I, d ◦ fi ∈ der(Li, u). Since
H1(Li, u) = {0}, there is ui ∈ u such that

(d ◦ fi)(x) = ui ·i x = uifi(x); x ∈ Li.

We claim that
ηd := ([ui]i)i ∈ lim←−i∈I(u/u

Li).

To show this, we assume i, j ∈ I with i 4 j and show that [ui]i = [uj ]i. We must show

ui − uj ∈ uL
i

or equivalently, uifi(x) = ujfi(x) for all x ∈ Li. For each x ∈ Li, we have

ujfi(x) = ujfj(fji(x)) = uj ·j fji(x) = (d ◦ fj)(fji(x)) = (d ◦ fj ◦ fji)(x)

= (d ◦ fi)(x)

= ui ·i x
= uifi(x).

This is what we need. Now η : der(L, u) −→ lim←−i∈Iu/u
Li mapping d to ηd is a well-

defined linear transformation. Next suppose α := ([ui]i)i∈I ∈ lim←−i∈Iu/u
Li and recall that

L = lim−→i∈ILi = ∪i∈Ifi(Li). Define dα ∈ der(L, u) mapping fi(x) to uifi(x) if i ∈ I

and x ∈ Li. We first show that dα is well-defined. Suppose that i, j ∈ I, x ∈ Li and
y ∈ Lj are such that fi(x) = fj(y). Then there is k ∈ I with i 4 k and j 4 k such that

fki(x) = fkj(y). Since α ∈ lim←−i∈Iu/u
Li , we have [uk]i = [ui]i and [uk]j = [uj ]j . So it follows

that uifi(x) = ukfi(x) and ujfj(y) = ukfj(y). Therefore, we have

uifi(x) = ukfi(x) = uk(fk ◦ fki)(x) = ukfk(fki(x)) = ukfk(fkj(y)) = ukfj(y)

= ujfj(y).

This shows that dα is well-defined. Next we show that dα is a derivation. Suppose that
a, b ∈ L, then there are i, j ∈ I, x ∈ Li and y ∈ Lj with a = fi(x) and b = fj(y). Take
k ∈ I to be such that i 4 k and j 4 k. Therefore, we have

dα[a, b] = dα[fi(x), fj(y)]

= dα[fk(fki(x)), fk(fkj(y))]

= dα(fk[(fki(x)), (fkj(y))])

= ukfk[fki(x), fkj(y)]

= uk[fk(fki(x)), fk(fkj(y))]

= (ukfk(fki(x)))fk(fkj(y))− (−1)|x||y|(ukfk(fkj(y)))fk(fki(x)

= (ukfk(fki(x)))fj(y)− (−1)|x||y|(ukfk(fkj(y)))fi(x)

= dα(a)(b)− (−1)|a||b|dα(b)a.

Now we are done as ηdα = α and dηd = d for α ∈ lim←−i∈Iu/u
Li and d ∈ der(L, u).

Proposition 1.3. Suppose that u = ∪i∈Ifi(Li)u and that (·, ·) : u × u −→ F is an L-
invariant nondegenerate bilinear form. For α := ([ui]i)i ∈ lim←−i∈Iu/u

Li , define θα to be an

element of u∗ mapping a ∈ fi(Li)u (i ∈ I) to (ui, a). Then

der(L) ' {θα | α ∈ lim←−i∈Iu/u
Li} ⊆ u∗.
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Proof. Using Proposition 1.2, we just need to show that each θα is a well-defined func-
tional and that if θα = θβ, then α = β.

Step 1. For i ∈ I, we have (uL
i
, fi(L

i)u) = {0} : Suppose that z ∈ uL
i

and a =∑m
t=1 fi(a

t)vt ∈ fi(Li)u, where m is a positive integer and at ∈ Li for t ∈ {1, . . . ,m}. Then
using (1.1), we have

(z, a) = (z,
m∑

t=1

fi(a
t)vt) =

m∑

t=1

(zfi(a
t), vt) =

m∑

t=1

(z ·i at, vt) = 0

Step 2. Suppose that ([ui]i)i∈I ∈ lim←−i∈Iu/u
Li . If i0, j0 ∈ I with i0 4 j0 and a ∈

fi0(Li0)u, then (ui0 , a) = (uj0 , a) : Suppose that a =
∑m

t=1 fi0(at)vt, where m is a positive

integer and at ∈ Li0 for t ∈ {1, . . . ,m}. Since [ui0 ]i0 = [uj0 ]i0 , one finds z ∈ uL
i0 with

ui0 = uj0 + z. Now using Step 1, we have

(ui0 , a) = (uj0 , a) + (z, a) = (uj0 , a) + 0 = (uj0 , a).

Step 3. Suppose that ([ui]i)i∈I ∈ lim←−i∈Iu/u
Li . If i, j ∈ I, a ∈ fi(Li)u and b ∈ fj(Lj)u

such that a = b, then (ui, a) = (uj , b) : Take k ∈ I to be such that i 4 k and j 4 k, then
by Step 2, we have (ui, a) = (uk, a) = (uk, b) = (uj , b).

Step 4. If α = β ∈ lim←−i∈Iu/u
Li , then θα = θβ : Suppose that α = ([ui]i)i∈I , β =

([u′i]i)i∈I , then for each i ∈ I, [ui]i = [u′i]i. Then for each i ∈ I, there is zi ∈ uL
i

such that
u′i = z + ui. But by Step 1, (zi, a) = 0 for all a ∈ fi(Li)u. So for all a ∈ fi(Li)u, we have

(u′i, a) = (ui + zi, a) = (ui, a) + (zi, a) = (ui, a).

This shows that θα = θβ.

Step 5. For α ∈ lim←−i∈Iu/u
Li , θα is linear: Suppose that a, b ∈ u = ∪i∈Ifi(Li)u and

r ∈ F, then there are i, j, k ∈ I with a ∈ fi(Li)u, b ∈ fj(Lj)u and ra+ b ∈ fk(Lk)u. Take
t ∈ I with i 4 t, j 4 t and k 4 t, then by Step 1, we have

θα(ra+ b) = (uk, ra+ b) = (ut, ra+ b) = r(ut, a) + (ut, b) = r(ui, a) + (uj , b)

= rθα(a) + θ(b).

Step 6. Suppose that α = ([ui]i)i∈I , β = ([u′i]i)i∈I ∈ lim←−i∈Iu/u
Li such that θα = θβ,

then α = β : For i ∈ I, a ∈ Li and u ∈ u, using Step 1, we have

(uifi(a), u) = (ui, fi(a)u) = θα(fi(a)u) = θβ(fi(a)u) = (u′i, fi(a)u)

= (u′ifi(a), u).

But the form is nondegenerate, so ui − u′i ∈ uL
i
. This completes the proof.

2 An application

For index supersets I, J, by an I×J-matrix with entries in F, we mean a map A : I×J −→
F. For i ∈ I, j ∈ J, we set aij := A(i, j) and call it the (i, j)-th entry of A. By a convention,
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we denote the matrix A by (aij). We also denote the set of all I × J-matrices with entries
in F by FI×J and by FI×Jrc−fin, the set of all matrices (aij) such that for all i ∈ I and j ∈ J,

{t ∈ J | ai,t 6= 0} and {r ∈ I | ar,j 6= 0}

are finite sets. For A = (aij) ∈ FI×J , the matrix B = (bij) ∈ FJ×I with

bij :=





aji |i| = |j|
aji |i| = 1, |j| = 0
−aji |i| = 0, |j| = 1

is called the supertransposition of A and denoted by Ast. If A = (aij) ∈ FI×J and B =
(bij) ∈ FJ×K are such that for all i ∈ I and k ∈ K, at most for finitely many j ∈ J, aijbjk’s
are nonzero, we define the product AB of A and B to be the I × K-matrix C = (cik)
with cik :=

∑
j∈J aijbjk for all i ∈ I, k ∈ K. We note that if A,B,C are three matrices

such that AB, (AB)C, BC and A(BC) are defined, then A(BC) = (AB)C. We make a
convention that if I is a disjoint union of subsets I1, . . . , It of I, then for an I × I-matrix
A, we write

A =




A1,1 · · · A1,t

A2,1 · · · A2,t
...

...
...

At,1 · · · At,t




in which for 1 ≤ r, s ≤ t, Ar,s is an Ir × Is-matrix whose (i, j)-th entry coincides with
(i, j)-th entry of A for all i ∈ Ir, j ∈ Is. We note that the defined matrix product obeys
the product of block matrices. For i ∈ I, j ∈ J, we define ei,j to be a matrix in FI×J whose
(i, j)-th entry is 1 and other entries are zero. If {ai | i ∈ I} ⊆ F, by diag(ai), we mean an
I × I-matrix whose (i, i)-th entry is ai for all i ∈ I and other entries are zero. We also set
1I := diag(1). Take MI×J(F) to be the subspace of FI×J spanned by {eij | i ∈ I, j ∈ J}.
Then MI×J(F) is a superspace with MI×J(F)̄i := spanF{ers | |r| + |s| = ī}, for i = 0, 1.
Also with respect to the multiplication of matrices, the vector superspace MI×I(F) is an
associative F-superalgebra and so it is a Lie superalgebra under the Lie bracket [A,B] :=
AB − (−1)|A||B|BA for all A,B ∈ MI×I(F). We denote this Lie superalgebra by plF(I)
or plF(I0, I1). For an element X ∈ plF(I), we set str(X) :=

∑
i∈I(−1)|i|xi,i and call it

the supertrace of X. In the case that I0, I1 or both are finite, we denote plF(I0, I1) by
plF(|I0|, I1), plF(I0, |I1|) or plF(|I0|, |I1|) respectively.

sl(J0, J1) : Suppose that J is a superset with J0 6= ∅. Set

G := sl(J0, J1) = {X ∈ plF(J0, J1) | str(X) = 0}.

If |J | <∞ and |J0| = |J1| 6= 0, take K := F
∑

j∈J ejj . Set

sls(J0̄, J1̄) :=

{
G/K if |J | <∞ and |J0| = |J1| 6= 0
G J0 6= ∅ and J1 6= ∅.

sls(J0̄, J1̄) is a subsuperalgebra of plF(J0, J1) which is a direct union of finite dimensional
basic classical simple Lie superalgebras.
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osp(2I, 2J), osp(2I + 1, 2J) : For two disjoint index sets I, J with J 6= ∅, suppose that
{0, i, ī, | i ∈ I ∪J} is a superset with |0| = |i| = |̄i| = 0 for i ∈ I and |j| = |j̄| = 1 for j ∈ J.
We set İ := I ∪ Ī , İ0 := {0} ∪ I ∪ Ī and J̇ := J ∪ J̄ in which

Ī := {̄i | i ∈ I} and J̄ := {j̄ | j ∈ J}.

For I := İ ∪ J̇ or I := İ0 ∪ J̇ , we set

QI :=

(
M1 0
0 M2

)

in which

M2 :=
∑

j∈J
(ej,j̄ − ej̄,j) and M1 :=

{ −2e0,0 +
∑

i∈I(ei,̄i + eī,i) if I = İ0 ∪ J̇∑
i∈I(ei,̄i + eī,i) if I 6= ∅, I = İ ∪ J̇ .

Now
GI := {X ∈ plF(I) | XstQI = −QIX}

is a subsuperalgebra of plF(I) which we refer to as osp(2I, 2J) or osp(2I+1, 2J) if I = İ∪J̇
or I = İ0 ∪ J̇ respectively.

Theorem 2.1. (i) suppose that J is an infinite superset with J0 6= ∅, then

der(slC(J)) ' CI×Irc−fin/C1I .

(ii) Suppose that I, J are two index sets with J 6= ∅ and |I ∪ J | =∞. Consider I and QI
as above. Then

der(GI) ' {X ∈ CI×Irc−fin | XstQI = −QIX}.
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In this talk we discuss the local bifurcation control of singular smooth germs and
singular germs of vector fields. We describe how we may help to design an efficient
nonlinear bifurcation controller for a nonlinear singular system.
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Designing an efficient nonlinear controller for linearly uncontrollable singular systems
is an important challenging problem and has wide applications in different engineering
disciplines. This is closely related to universal unfolding and codimension of singularities.
Since many singular differential systems in engineering problems are not finitely deter-
mined, we have recently defined the notion of asymptotic universal unfolding and have
used it to suggest designs of efficient controllers. In this talk we discuss how (asymptotic)
universal unfolding of such systems can help to suggest efficient nonlinear controllers. The
main tools for our study falls within the scope of normal form theory of singular systems;
see [7–11, 21]. Our claims are theoretically proven and all results are computable. Thus,
they can be used in practice.

Let
f : Rn × Rm → Rn (1)

be a smooth germ with a rest point at the origin, i.e., f(0, 0) = 0. We here address two
categories of problems. One is related to steady-state solutions of systems governed by
zeros of f, i.e.,

f(x, α) = 0, for x ∈ Rn, α ∈ Rm, (2)

while the other is related to the differential system

ẋ := f(x, α), for x ∈ Rn, α ∈ Rm. (3)

The main aim is to suggest a control system designed by the nonlinear (polynomial) map

P : Rn × Rk → Rn, where P (x, 0) = 0 for any x ∈ Rn, 0 ∈ Rk, (4)

so that appropriate choices for u ∈ Rk in F (x, α, u) := f(x, α) + P (x, u) would lead to
a desired dynamics for either the system F (x, α, u) = 0 or ẋ = F (x, α, u), respectively;

∗Will be presented in English
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see [10]. Our proposal for bifurcation control of nonlinear singular systems (2) and (3)
is closely related to, but different from, bifurcation control of control systems described
in [1, 2, 14–18].

The rest of this conference paper is organized as follows. A brief introduction to a few
concepts such as universal unfolding and bifurcation analysis of singular germs is given
in Section 1. Section 2 treats problem types of Equations (2) and (3) for n := 1 and the
cases of n > 1 are addressed in Section 3.

1 Introduction

There exist many engineering problems modeled by either (2) or (3). Further, equilibrium
solutions of ODEs, steady-state solutions of PDEs, and periodic solutions of dynamical
systems may be reduced to either of these equations by reduction techniques like Liapunov-
Schmidt, traveling wave solution or similarity methods; see [13, Chapter VII] and [20].
Further, singular systems frequently occur in engineering problems and thus, a method to
suggest designs of efficient nonlinear controllers is an important contribution. This paper
addresses an approach for this goal.

Our suggested approach is closely related to the concept of universal unfoldings of
singular germs and the asymptotic universal unfolding of germs of vector fields. However,
our proposal is well beyond these and can be applied in other contexts with different
applications. Therefore, we first digress to introduce a few related concepts and then, we
describe how these are used to suggest bifurcation controllers’ designs.

(a) (b) (c) (d)

Figure 1: Persistent bifurcation diagrams.

Generally speaking, the qualitative properties of solutions of a parametric system may
change when its parameters are smoothly varied. When the qualitative properties of
solutions change at certain points (we call the points by bifurcation points), we say that
a bifurcation is occurred. Next, the system at the bifurcation point is called singular and
we refer to the system a singularity. The qualitative properties are usually defined via
an equivalence relation, that is, a property is called qualitative property when either all
or non of elements of an equivalence class has the property. Many equivalence relations
have been used in the literature due to their applications. We can mention a few of these
equivalences that have been used to study of bifurcation analysis of singular germs like
contact-, right-, right-left-, strategy-, topological-, orbital, formal normal form-, formal
orbital-, formal parametric- and their associated N -asymptotic-equivalences. From now
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on, we assume that an appropriate equivalence relation has been chosen and fixed and
thus, the associated qualitative properties are defined.

Figure 2: Transition set.

A bifurcation on a system modeling a real life problem demonstrates a surprising
change on its solutions. For example, consider f(x, λ, u1, u2) := x3 + λx + u1 + u2λ
representing the dynamics of a real life problem subjected to a quasi-static changes of
parameters. Therefore, the bifurcation diagrams merely shows the equilibria but not the
transit solutions that the system experiences through stabilization. An end-user friendly
Maple library, named “Singularity”, is developed for local bifurcation analysis of nonlin-
ear singular scalar germs. Using Singularity, a complete list of persistent bifurcation
diagrams associated with f are given in Figure 1.

Each of these bifurcation diagrams are associated with arbitrary choices of parameters
ui from connected components in the complement of the transition set (regions) depicted
in Figure 2.

Figure 3: A bifurcation diagrams.

We explain how these bifurcations influence the dynamics of a real life system through
a hypothetical scenario based on the bifurcation diagram given in Figure 3. When λ
decreases from positive values, we have an stable equilibrium and at the bifurcation point
(when another stable equilibrium is born), it looses its stability. At the bifurcation point
two new branches of solutions are born, one is usually stable and the other is unstable.
This means that the solution jumps up and follows the stable solution branch. This
demonstrates how new and surprising changes in the dynamics of real life problems occur.

A parametric germ

G : Rn × Rk → Rn, where P (x, 0) = 0 for any x ∈ Rn, 0 ∈ Rk, (5)

is called a versal unfolding for f(x, 0), 0 ∈ Rm, x ∈ Rn, when for any small perturbation of
f(x, 0), say f(x, α) + p(x, β), α ∈ Rm, β ∈ Rl, there exists smooth germs γ : Rl+m → Rk,
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so that G(x, γ(α, β)) is equivalent to f(x, α) + p(x, β). The smallest natural number k
results in universal unfolding of f(x, 0) and is called codimension. Sometimes an additional
condition on universal unfolding is assumed so that it would be the simplest among its
equivalent class, that is, the universal unfolding is a parametric normal form according
to [6–9,11,12]; also see [10].

2 Scalar smooth germs

2.1 Systems given by Equation (2)

We have recently developed an end-user Maple library, named Singularity, for local
bifurcation analysis of zeros of scalar smooth germs. Singularity will be made available
to everyone, once the reference [5] is accepted for publication in a refereed journal. Assume
that we have a system of the form (2) when m := 1 and we intend to design an efficient
nonlinear controller for it.

Using the command UniversalUnfolding(f(x, \alpha)+P(x, u)), where P (x, u)
is a multi-variate polynomial germ, we may determine whether a parametric germ is
a (uni)versal unfolding for f(x, 0) or not. Therefore by increasing the density of the
polynomial germ P (x, u) and its degree, we may find a versal unfolding for f(x, 0) provided
that the equivalence relation (that we have chosen) results in a finite codimension problem.

We may work with F := f(x, α) + P (x, u) and choose P so that no extra unnecessary
parameters are added into F. Further, we can determine the parametric terms on which
they can play the role of universal unfolding terms. Then, we may replace P (and update
F ) with a polynomial germ of least density and degree. Using a reparametrization (ui may
depend on certain important parameters of αj) we may describe F (x, u, α) := f(x, 0) +
P (x, u) + g(x, α), where g(x, 0) = 0. Next, P (x, u) suggest an efficient nonlinear controller
for the system.

Note that the choice of P is not usually unique and mostly, there are alternative choices
for P. This is important for their application in real life problems and the possible user
should be able to try any possible alternatives. The command UniversalUnfolding is
designed with various built-in options to give us other possible choices suitable for appli-
cations. Then, using the command TransitionSet(F(x, u, 0)) we obtain a partition
for the parameters ui-s so that each connected component of the partition represents a
qualitative type of dynamics. PersistentDiagram generates a list of persistent bifurca-
tion diagrams and provides a good insight about the system’s dynamics. Furthermore,
the parameters u depend to certain important parameters αj of the original system (2)
and their relations are computed. Therefore, by choosing the control parameters from
a connected component of the partition (off course, it should be far from the partition’s
boundary), we expect to arrive at a desired and predicted dynamics for Equation (2). This
is due to the fact that the parameters contributing into P are the ones playing the roles
of universal unfolding terms and they are expected to dominate its dynamics.

2.2 Systems given by Equation (3)

This subsection is related to parametric single zero singularity. These systems are well-
studied in [11, Section 5]. We proved that the universal unfolding of such systems is
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governed by

G(x, u) := ±xk+1 +
k∑

i=1

uix
i (6)

for some k. Thereby, for any parametric system (3), there exists germs of ui(α) so that
the parametric system (3) can be transformed into (6). The bifurcation analysis of
Equation (6) may be performed by our Maple library, Singularity, via the commands
TransitionSet and PersistentDiagram.

There are two suggested practical approaches here described as follows. First, a para-
metric system is transformed into its parametric normal form. Then, polynomial con-
trollers of degree less than or equal to k are added to the parametric normal form when
necessary. Then, the obtained universal unfolding may be transformed back to the origi-
nal system so that we can accommodate the possible contribution of the added unfolding
terms. This suggests a design for a potential nonlinear controller. The second approach is
that we add arbitrary polynomial controllers to the original system and use their paramet-
ric normal forms to check if they can form a versal unfolding. By reducing the polynomial
density of the controllers, we can obtain the universal unfolding. The relations between
the original parameters and the universal unfolding parameters (in either of the two ap-
proaches) provide the transformations transforming the bifurcation diagrams of (6) into
that of the original system.

3 Multi-dimensional state variables

Our proposal for systems described by (2) for multi-dimensional state variables is similar
to one dimensional case, but it is an in-progress project. Therefore, we merely describe
differential systems of type (3).

3.1 Degenerate nonlinear center

Section 3 in [12] considers the parametric normal form of an arbitrary parametric degen-
erate nonlinear center. By [12, Theorem 3.9], any such system can be transformed into
the reduced system (ignoring phase equation)

F (ρ, u) := ±ρ2k+1 +

k∑

i=1

uiρ
2i−1 (7)

for some k, and functions of ui in terms of the parameters of the degenerate nonlinear
center system. The zeros of Equation (7) constitute the equilibria and limit cycles of the
nonlinear centers. These can be analyzed via Singularity while the assocaited trans-
formations between the parametric nonlinear center and their parametric normal form
can be computed via the Maple program developed by the method of formal decompo-
sition method described in [12]. The bifurcation controller designs follows the suggested
approach in Subsection 2.2.

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Local bifurcation control of nonlinear singularities pp.: 5–8

128



3.2 Bogdanov-Takens singularity

One of the most challenging singularities in the long history of normal form theory is
Bogdanov-Takens singularity. Many contributions have been made in the literature and
there are still some problems that they remain to be addressed. We considered a general
case of this singularity in [4, Chapter 2] and by [4, Corollary 2.3.9.], any such parametric
systems can be transformed into

ẋ = y, (8)

ẏ = x2 + xu1 + yu2 + axy +

∞∑

i=0

bix
3i+3yui+2,

where certain conditions relating the first few coefficients holds. Furthermore, another
general case of this singularity has been considered in [6] in a different normal form style.
We skip the presentation of the other parametric normal form and refer the reader to [6,
Theorem 5.3]. The normal form style used in Equation (8) is useful for locating the
equilibria of the normal form system while other normal form styles have other benefits
and we may use them for bifurcation analysis of this singularity. For instance, the results
in [6] uses sl2-style normal form. This style is useful for detecting certain symmetries of
systems, introduction of new and important families of systems, computation or estimating
of first integrals for systems with a first integral, integrable or Hamiltonian systems; also
see [7–9]. They can also be used for homoclinic bifurcation analysis and use of Melnikov
functions.

Given different parametric normal forms and by using a N -equivalence relation defined
by [22], we may call an N -degree truncated parametric normal form of (8) an asymptotic
universal unfolding for Bogdanov-Takens singularity. Note that there are still some gen-
eral cases of this singularity that their parametric normal forms and asymptotic universal
unfolding normal forms remain to be derived. Certain dynamics of those systems can
be detected by an N -degree truncated parametric normal form of (8) and our proposed
approach is helpful to control those dynamics while certain dynamics may not be control-
lable by polynomial controllers. Parametric normal forms along with a thorough discus-
sion about finite determinacy of its normal forms using different equivalence relations is
required for certain bifurcation control of this singularity. This is an in-progress project
and will be addressed in future.

3.3 Hopf-zero singularity

We have recently derived the infinite level normal form of a general family of this singu-
larity. The normal forms use a dynamically meaningful decomposition of Hopf-zero vector
fields and use a sl2-type of normal form style. The orbital and parametric normal form of
this family is divided into three cases. The first family are the ones with leading solenoidal
terms and their orbital and parametric normal forms are obtained; see [10]. The orbital
normal forms and parametric normal forms for the other two cases are also obtained and
their dynamics and bifurcation control are in progress.

Hopf-zero singularity normal forms with leading solenoidal terms are a large family of
vector fields with applications in different disciplines. In order to avoid technical details,
we consider the most generic cases of this family, say v. The results have been obtained
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for more general cases. By Theorem 4.1 in [10], v can be transformed into a parametric
normal form that its planner reduced 2-jet truncated part is given by

ρ̇ =
1

2
u2ρ− a1xρ, (9)

ẋ = u1 + 2ρ2 + u2x+ a1x
2.

We proved that the systems governed by Equation (9) are 2-contact equivalent deter-
mined. Following the procedure in [10, Page 20], we successfully showed that we may
suggest efficient controllers for controlling the limit cycles and equilibria bifurcating from
a Hopf-zero equilibrium. Numerical and symbolic implementations verifies our claims.
The basic idea is similar to Subsection 2.2. We first derive the 2-asymptotic universal
unfolding normal form for such systems and assume an arbitrary polynomial controller
for the system. The controller can be changed and chosen based on its potential applica-
tions. Next, the procedure in [10, Page 20] detects the parametric terms depending on αi
that they can play the role of asymptotic universal unfolding and recognizes the need for
adding extra parametric unfolding terms (ui) into the system. By deriving the transition
sets of the proposed asymptotic universal unfolding normal form system, we may find our
possible desired dynamics. Since the relations between the unfolding terms with original
parameters of the system and the controllers’ parameters are available, we may simply
project our desired conditions to the original system’s and controller’s parameters. This
controls our designed control system to behave as desired.
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Abstract

In this paper, we define 2-absorbing, weakly 2-absorbing and n-absorbing ideals in
a lattice. We also show that 2-absorbing and weakly 2-absorbing ideals are equvalent
in a lattice. It is shown that a non-zero proper ideal I of L is a 2-absorbing ideal if
and only if whenever I1 ∧ I2 ∧ I3 ⊆ I then I1 ∧ I2 ⊆ I or I1 ∧ I3 ⊆ I or I2 ∧ I3 ⊆ I for
some ideals I1, I2, I3 of L.

Keywords: lattice , 2-absorbing ideal , n-absorbing ideal.
Mathematics Subject Classification [2010]: 03G10; 16D25.

1 Introduction

The concept of 2-absorbing ideals, in a commutative ring, was introduced by A. Badawi,
in [1], as a generalization of prime ideals, and some properties of 2-absorbing ideals were
studied. The definitions and related threads are taken from [1, 2, 3]. In this paper we
introduced the 2-absorbing ideal of a lattice L. A proper ideal I of L is said to be 2-
absorbing if a ∧ b ∧ c ∈ I for a, b, c ∈ L implies that a ∧ b ∈ I or a ∧ c ∈ I or b ∧ c ∈ I.

In this paper we introduce radical of ideal I in a lattice L and we show that RadI = I.
In Section 2, a 2-absorbing ideal of a lattice L and also a weakly 2-absorbing ideal are
defined. Particular, we show that if I be a 2-absorbing ideal, then |MinI| ≤ 2, where
Min(I) denotes the set of minimal prime ideals of I in L.

Then , we introduce the concept n-absorbing ideal in a lattice L. It shown that an
n-absorbing ideal is also an m-absorbing ideal for all integers m ≥ n.

Definition 1.1. Let I be an ideal of a lattice L. The radical of I, denoted RadI, is the
ideal

∩
P , where the intersection is taken over all prime ideals P which contain I. If the

set of prime ideals containing I is empty, then RadI is defined to be L.

Proposition 1.2. If I is an ideal of a lattice L, then RadI = I.

Definition 1.3. Let I be an ideal of L. A prime ideal P in L is called a minimal prime
ideal of I if I ⊆ P and there is no prime ideal P ′ such that I ⊆ P ′ ⊂ P .

Proposition 1.4. If an ideal I of a lattice L is contained in a prime ideal P of a lattice
L, then P contains a minimal prime ideal of I.

Proposition 1.5. [4] Let I be an ideal of L. Let P be a prime ideal containing I. Then
P is a minimal prime ideal belonging to I if and only if for each x ∈ P there is a y ̸∈ P
such that x ∧ y ∈ I.
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2 2-absorbing ideals

Definition 2.1. A proper ideal I of lattice L is said to be a 2-absorbing ideal if for any
a, b, c ∈ L, a ∧ b ∧ c ∈ L implies either a ∧ b ∈ L or b ∧ c ∈ L or a ∧ c ∈ L.

Example 2.2. Consider the lattice L = {⊥, a, b, c, d, e, f, ⊤} whose Hasse diagram is given
in the figure (1):

Consider the ideal I = {⊥, a, b, c, f}. It is clear that I is 2-absorbing ideal of L, but I
is not prime ideal of L.

Figure (1)
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Proposition 2.3. Let I1, I2 be two prime ideals of lattice L, then I1 ∩ I2 is a 2-absorbing
ideal of lattice L.

Proposition 2.4. Let L and K be two lattices and φ : L → K be a lattice homomorphism.
If J is a 2-absorbing ideal of K, then φ−1(J) is a 2-absorbing ideal of L. Furthermore, if
φ is an onto lattice homomorphism and J is a 2-absorbing ideal of L such that kerφ ⊆ J2,
then φ(J) is a 2-absorbing ideal of K.

Proposition 2.5. Let L and L′ be two lattices. If I1 is a 2-absorbing ideal of L, then
I1 × L′ is a 2-absorbing ideal of L × L′. Also if I2 is a 2-absorbing ideal of L′, then L × I2

is a 2-absorbing ideal of L × L′.

Proposition 2.6. If I is a 2-absorbing ideal of lattice L, then |Min(I)| ≤ 2.

Corollary 2.7. Suppose that I is a proper ideal of a lattice L. The following statements
are equivalent

1. I is 2-absorbing ideal of lattice L.

2. If I1 ∧ I2 ∧ I3 ⊆ I for some ideals I1, I2, I3 of L, then I1 ∧ I2 ⊆ I or I1 ∧ I3 ⊆ I or
I2 ∧ I3 ⊆ I.

Definition 2.8. A proper ideal I in lattice L is said to be a weakly 2-absorbing ideal if
for any a, b, c ∈ L, ⊥ ̸= a ∧ b ∧ c ∈ I implies either a ∧ b ∈ I or b ∧ c ∈ I or a ∧ c ∈ I.

Let I be a weakly 2-absorbing ideal of a lattice L and a, b, c ∈ L. We say (a, b, c) is a
triple-zero of I if a ∧ b ∧ c = ⊥, a ∧ b ̸∈ I, b ∧ c ̸∈ I, and a ∧ c ̸∈ I.

Proposition 2.9. Let I be a weakly 2-absorbing ideal of a lattice L and suppose that that
(a, b, c) is a triple-zero of I for some a, b, c ∈ L. Then
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1. a ∧ b ∧ I = b ∧ c ∧ I = a ∧ c ∧ I = {⊥}.

2. a ∧ I = b ∧ I = c ∧ I = {⊥}.

Proposition 2.10. For every proper ideal I ̸= {⊥} in lattice L, I is a 2-absorbing ideal
of lattice L if and only if I is a weakly 2-absorbing ideal of lattice L.

Now, we give some basic properties of n-absorbing ideals.

Definition 2.11. Let n be a positive integer. Proper ideal I of a lattice L is an n-
absorbing ideal of L if whenever a1 ∧ a2 ∧ ... ∧ an+1 ∈ I for a1, a2, ..., an+1 ∈ L, then there
are n of the ai’s whose meet is in I.

Proposition 2.12. Let L be a lattice, and let m and n be positive integers.

1. A proper ideal I of L is n-absorbing if and only if whenever a1 ∧ a2 ∧ ...∧ am ∈ I for
a1, ..., am ∈ I with m > n, then there are n of the ai’s whose meet is in I.

2. If I is an n-absorbing ideal, then I is an m-absorbing ideal, for all m ≥ n.

3. If Ij is an nj-absorbing ideal of L for each 1 ≤ j ≤ m, then I1 ∧ I2 ∧ ... ∧ Im is an
n-absorbing ideal of L for n = n1 + n2 + ... + nm.

Let I be a proper ideal of a lattice L. In Proposition 2.12, we abserved that an n-
absorbing ideal is also m-absorbing ideal for all integers m ⩾ n. If I is an n-absorbing
ideal of L for some positive integer n, then define ωL(I) = min{n| I is an n-absorbing ideal
of L}; otherwise, set ωL(I) = ∞.

Thus for any ideal I of L, we have ωL(I) ∈ N ∪ {0, ∞} with ωL(I) = 1 if and only if
I is a prime ideal of L and ωL(I) = 0 if and only if I = L.

Proposition 2.13. Let I be an n-absorbing ideal of L. Then there are at most n prime
ideals of L minimal over I. Morover |Min(I)| ≤ ωL(I).

Proposition 2.14. Let f : L → R be a homomorphism of lattice.

1. Let J be an n-absorbing ideal of R. Then f−1(J) is an n-absorbing ideal of L.
Moreover, WL(f−1(J)) < WR(J).

2. Let f be surjective and I be an n-absorbing ideal of L such that kerf ⊆ I2. Then f(I)
is an n-absorbing ideal of R if and only if I is an n-absorbing ideal of L. Morover
WR(f(I)) = WL(I).
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Abstract

2-absorbing submodule is generalization of the notion of 2-absorbing ideal. We will
study 2-absorbing submodules and we prove that 2-absorbing submodules are not too
far from prime submodules, which are well-known and studied concepts. Also we find
some properties of 2-absorbing submodules in flat modules.

Keywords: 2-absorbing submodule, Flat modules, Faithfully flat modules
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1 Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary.
Also we consider n > 1 a positive integer. Let N be a submodule of an R−module M.
The set {r ∈ R|rM ⊆ N} is denoted by (N : M). Also we consider T (M) = {m ∈M |∃0 6=
r ∈ R, rm = 0}. A module M is called torsion-free, if T (M) = 0.

According to [1] an ideal I of a ring R is called 2-absorbing, if abc ∈ I for a, b, c ∈ I
implies that ab ∈ I or bc ∈ I or ac ∈ I.

A module version of 2-absorbing ideals is introduced as follows:

Definition 1.1. A proper submodule N of M will be called 2-absorbing if for r, s ∈ R
and x ∈M, rsx ∈ N implies that rs ∈ (N : M) or rx ∈ N or sx ∈ N.

In order to obtain our main results, we use some definitions and lemma such as the
following:

Let F be an R-module. Writing ϕ to stand for a sequence ... −→ N ′ −→ N −→
N ′′ −→ ... of R-modules and linear maps, we let F ⊗ ϕ stand for induced sequence
... −→ F ⊗N ′ −→ F ⊗N −→ F ⊗N ′′ −→ ...

The R-module F is called flat, if for every sequence ϕ,

ϕ is exact =⇒ F ⊗ ϕ is exact.

According to [2, p. 45], F is called faithfully flat, if for every sequence ϕ,

ϕ is exact ⇐⇒ F ⊗ ϕ is exact.

∗Will be presented in English
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Lemma 1.2. [3, Lemma 2.14] Let N,K be two submodules of M and r ∈ R. Then for
every flat R-module F, we have:

(i) (F ⊗N : r) = F ⊗ (N : r).

If F is faithfully flat, then we have the following:

(ii) If F ⊗N ⊆ F ⊗K, then N ⊆ K.

(iii) (F ⊗N : F ⊗M) = (N : M).

2 Main results

Here we study 2-absorbing submodules and we introduce the main results of our article.

Lemma 2.1. Let N be a proper submodule of M. If for r, s ∈ R and x ∈ M, rsx ∈ N
implies that rs ∈

√
(N : M) or rx ∈ N or sx ∈ N, then:

(i) If rst ∈ (N : M) for some r, s, t ∈ R, then rs ∈
√

(N : M) or rt ∈ (N : M) or
st ∈ (N : M).

(ii)
√

(N : M) is a 2-absorbing ideal of R and one of the following holds:

(a)
√

(N : M) = P, where P is a prime ideal of R.

(b)
√

(N : M) = P1 ∩ P2, where P1, P2 are the only distinct minimal prime ideals
over (N : M).

(iii) If
√

(N : M) = P and P 2 ⊆ (N : M), then (N : M) is 2-absorbing.

Proof. (i) Let s, t, r ∈ R and str ∈ (N : M). If sr, tr /∈ (N : M), then there exist
x, y ∈M \N such that srx, try /∈ N.

Since st(r(x+y)) ∈ N, by assumption st ∈
√

(N : M) or sr(x+y) ∈ N or tr(x+y) ∈ N.
If sr(x + y) ∈ N, then since srx /∈ N, we have sry /∈ N. So as st(ry) ∈ N and try /∈ N,
st ∈

√
(N : M).

Similarly in case tr(x+ y) ∈ N, we get st ∈
√

(N : M).
(ii) Let s, t, r ∈ R and str ∈

√
(N : M). Then for some positive integer n we have

(str)n ∈ (N : M) and by part(i), (st)n ∈
√

(N : M) or (sr)n ∈ (N : M) or (tr)n ∈ (N :
M) and therefore either st ∈

√
(N : M) or sr ∈

√
(N : M) or tr ∈

√
(N : M). Then

√
(N : M) is a 2-absorbing ideal, hence as

√√
(N : M) =

√
(N : M), the rest of result

follows from ([1, Theorem 2.1]).
(iii) suppose that rst ∈ (N : M) for some r, s, t ∈ R. Then rst ∈ P and so we can

assume that r ∈ P. If s ∈ P or t ∈ P, then rs ∈ P 2 ⊆ (N : M) or rt ∈ P 2 ⊆ (N : M) and
we have the result. Therefore we suppose that s, t /∈ P. Hence st /∈ P and so by part(i),
sr ∈ (N : M) or tr ∈ (N : M). Consequently (N : M) is 2-absorbing.

Theorem 2.2. Let R be an integral domain of dimension one and M a nonzero torsion
free and notherian R-module. Then the following are equivalent.
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(i) For every maximal ideal m of R and s ∈ m \m2, mMm = sMm.

(ii) If N is a 2-absorbing submodule of M, then (N : M) = 0 or (N : M) = m or
(N : M) = m1m2 or (N : M) = m2 where m,m1,m2 are some maximal ideals.

Proof. (i) ⇒ (ii) Let N be a 2-absorbing submodule of M such that (N : M) 6= 0. Since
dimR = 1 and by [4, Proposition 1], we have two cases.

Case 1: For some maximal ideal m of R,
√

(N : M) = m. Then by [4, Proposition 1],
m2 ⊆ (N : M). If (N : M) 6= m2, then by assumption for some s ∈ (N : M) \m2, we have
mmMm = mMm = sMm ⊆ (N : M)Mm = (N : M)mMm and so (N : M)m = mm. Hence
as (N : M) is primary, (N : M) = m.

Case 2: There exist maximal ideals m1,m2 of R such that
√

(N : M) = m1 ∩m2 =
m1m2. Then [4, Proposition 1] implies that m2

1m
2
2 ⊆ (N : M) and since (N : M) is

2-absorbing, so either m1m2 ⊆ (N : M) or m2
1m2 ⊆ (N : M) or m1m

2
2 ⊆ (N : M). If

m1m2 ⊆ (N : M) ⊆ m1m2, then m1m2 = (N : M) and we have the result.
Now suppose that m2

1m2 ⊆ (N : M). Since (N : M) is 2-absorbing, either m2
1 ⊆ (N :

M) or m1m2 ⊆ (N : M). But m2
1 6⊆ (N : M), since otherwise m1 = m1m2 and hence as

m1 is maximal, m1 = m2. Thus m1 = m1m2 = m2
1 and so m1M = m2

1M. Since M is a
notherian R-module, m1M is finitely generated and since M is nonzero torsion free, hence
by Nakayama lemma m1 = 0 or m1 = R, which is a contradiction. Then m1m2 = (N : M).

Consequently we have the result.
(ii) ⇒ (i) Suppose that m is a maximal submodule of R and s ∈ m \ m2. We have

m2M+sM 6= M. Since otherwise mM = M and so by Nakayama lemma m = 0 or m = R,
which is impossible. We claim that (m2M + sM : M) = m.

If (m2M + sM : M) = m2, then s ∈ (m2M + sM : M) = m2, which is a contradiction.
Hence as m2 ⊆ (m2M+sM : M),

√
(m2M + sM : M) = m and so m2M+sM is primary

and then by [4, Lemm 4], m2M + sM is 2-absorbing. Therefore the hypothesis in (ii)
implies that (m2M + sM : M) = 0 or (m2M + sM : M) = m1 or (m2M + sMM :
M) = m1 ∩m2 or (m2M + sM : M) = m2

3, where m1,m2,m3 are some maximal ideals.
Clearly (m2M + sM : M) 6= o, since otherwise m2 = 0 and so m = 0, which is impossible.
Therefore as

√
(m2M + sM : M) = m, m1 = m or m1 = m2 = m or m3 = m and since

(m2M + sM : M) 6= m2, (m2M + sM : M) = m. Thus mM = m2M + sM and so
mmMm = m2

mMm +RsmMm. Then by Nakayama lemma mMm = mmMm = RsmMm =
sMm.

Lemma 2.3. Let N be a proper submodule of M. Then the following are equivalent.

(i) N is 2-absorbing.

(ii) (N : ab) = (N : a) ∪ (N : b), for every a, b ∈ R and ab ∈ R \ (N : M).

(iii) (N : ab) = (N : a) or (N : ab) = (N : b), for every a, b ∈ R and ab ∈ R \ (N : M).

Proof. (i)⇒ (ii) Let a, b ∈ R and ab ∈ R \ (N : M) and x ∈ (N : ab). Then abx ∈ N and
since ab /∈ (N : M) and N is 2-absorbing, ax ∈ N or bx ∈ N. Therefore (N : ab) ⊆ (N :
a) ∪ (N : b) and clearly we have the result.
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(ii) ⇒ (iii) The proof is clear, since a submodule cannot be written as the union of
two distinct submodules.

(iii)⇒ (i) Let a, b ∈ R and ab ∈ R \ (N : M) with aby ∈ N. Then y ∈ (N : ab) and so
y ∈ (N : a) or y ∈ (N : b). Consequently ay ∈ N or by ∈ N.

Theorem 2.4. Let N be a submodule of M.

(i) If F is a flat R-module and N an 2-absorbing submodule of M such that F ⊗N 6=
F ⊗M, then F ⊗N is a 2-absorbing submodule of F ⊗M.

(ii) Let F be a faithfully flat R-module. Then N is a 2-absorbing submodule of M if and
only if F ⊗N is a 2-absorbing submodule of F ⊗M.

Proof. (i) Let Let a, b ∈ R and ab ∈ R \ (F ⊗N : F ⊗M). Hence as (N : M) ⊆ (F ⊗N :
F ⊗M), ab /∈ (N : M). By Lemma 2.3, (N : ab) = (N : a) or (N : ab) = (N : b).

If (N : ab) = (N : a), then Lemma 1.2(i), implies that (F ⊗N : ab) = (F ⊗N : a).
Similarly in case (N : ab) = (N : b), we have (F ⊗N : ab) = (F ⊗N : b).
Consequently by Lemma 2.3, F ⊗N is 2-absorbing.
(ii) (=⇒) Let N is a 2-absorbing submodule of M. By Lemma 1.2(ii), F ⊗N 6= F ⊗M.

Now by part (i), F ⊗N is 2-absorbing.
(⇐=) Suppose that F ⊗N is 2-absorbing. Since F ⊗N 6= F ⊗M, clearly N 6= M. Let

a, b ∈ R and ab ∈ R \ (N : M). By Lemma 1.2(iii), (F ⊗ N : F ⊗M) = (N : M), then
ab ∈ R \ (F ⊗N : F ⊗M).

According to Lemma 2.3, (F ⊗N : ab) = (F ⊗N : a) or (F ⊗N : ab) = (F ⊗N : b).
So by Lemma(1.2)(i), F ⊗ (N : ab) = (F ⊗ N : ab) = (F ⊗ N : a) = F ⊗ (N : a) or

F ⊗ (N : ab) = (F ⊗N : ab) = (F ⊗N : b) = F ⊗ (N : b).
Hence by Lemma 1.2(ii), (N : ab) = (N : a) or (N : ab) = (N : a). Now Lemma 2.3

implies that N is 2-absorbing.

Corollary 2.5. Let F be a flat R-module and I an ideal of R.

(i) If I is a 2-absorbing ideal of R and IF 6= F, then IF is a 2-absorbing submodule of F.

(ii) If F is faithfully flat, then I is a 2-absorbing ideal of R if and only if IF is a 2-absorbing
submodule of F.

Proof. Having that IF ∼= F ⊗ I, we put M = R. Now the proof follows from Theorem 2.4.
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2-capability and 2-exterior center of a group
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Abstract

The aim of this talk is to obtain a characteristic subgroup of G to give a criteria
for detecting 2-capability of G. We show that a relation between this subgroup and
2-epicenter of any group.

Keywords: 2-capability, 2-exterior center, 2-nilpotent multiplier.
Mathematics Subject Classification [2010]: 17B30.

1 Introduction and Motivation

The concept of epicenter Z∗(G) is defined by Beyl and others in [1]. It gives a criteria for
detecting capable groups. In fact G is capable if and only if Z∗(G) = 1. Ellis defined the
exterior center Z∧(G) of G the set of all elements g of G for which g ∧ h = 1 for all h ∈ G
and he showed Z∗(G) = Z∧(G).

Similar to the concept of capability of group, a group G is called 2-capable if here
exists a group H such that G ∼= H/Z2(H). The concepts of 2−capability and 2−epicenter,
Z∗2 (G), were introduced by Ellis in [2]. Later Moghaddam and Kayvanfar in [4] showed
that the 2−epicenter Z∗2 (G) of G is minimal subject to being the image of G of some N2

extensions of G, that is,

Z∗2 (G) =
⋂

(E,φ)is N2 extension of G φ(Z2(E)).

Let G be a finite group presented as the quotient of a free group F by a normal subgroup
R, following the notation in [2], we may define

γ∗3(G) = γ3(F )/γ3(R,F ) and Z∗2 (G) = π(Z2(F/γ3(R,F )))

where π : F/γ3(R,F )� G ∼= F/R is an epimorphism given by γ3(R,F )x 7→ Rx.

Recall that the 2-nilpotent multiplier of G is the abelian group M(2)
(G) =

R∩γ3 (F )

[R,F,F ] ,
and the following sequence is exact

M2(G) ↪→ γ∗3(G)� γ3(G).

The main result of [2] shows G is 2−capable if and only if Z∗2 (G) = 1.
It the current note, we define 2-exterior center Z∧2 (G) of G, and then we get that

Z∗2 (G) = Z∧2 (G).
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2 Main results

The following result will be used in our notes and we give here for the convenience of the
reader.

Proposition 2.1. (See [2])
If N is a normal subgroup of G contained in Z

∗
2
(G), then the canonical

M(2)
(G) ↪→M(2)

(G/N)

is injection.

For any group G with normal subgroup N , γ]3(N,G) defined as the quotient of (N ∧
G) ∧G by imposing the relations

((x ∧ y) ∧y z)((y ∧ z) ∧z x)((z ∧ x) ∧x y) = 1, x, y, z ∈ N.
Since these relations correspond to the well-known Hall-Witt commutator relation, the
homomorphism δ : (N ∧ G) ∧ G → G induces a homomorphism σ : γ]3(N,G) → G. Here

we denote γ]3(G) instead of γ]3(G,G).

Lemma 2.2. (See [2]) Let G be a group and N EG. Then

γ]3(N,G)→ γ]3(G)→ γ]3(G/N)→ 1.

It is well-known that M(1)(G) ∼= ker(G ∧ G → G). A corresponding isomorphism for
M(2)(G) is given in [2] as the following.

Lemma 2.3. There exist cononical isomorphisms

γ]3(G) ∼= γ3(G) andM2(G) ∼= ker(σ : γ]3(G)→ G).

Definition 2.4. Let G be a group. Then

Z∧2 (G) = {x ∈ G | (x ∧ g1) ∧ g2 = 1
γ]3(G)

for all g1, g2 ∈ G}
and it is called is the 2-exterior center of G.

Using the above definition, it is easy to see that

Proposition 2.5. (i) Z∧2 (G) is a characteristic subgroup of G contained in Z2(G) .
Let N be a normal subgroup of G.

(ii)
Z∧2 (G)N

N
⊆ Z∧2 (G/N) and Z∧2 (G/Z∧2 (G)) = 1.

(iii) The sequence
1→ Z∧2 (G) ∩N → Z∧2 (G)→ Z∧2 (G/N)

is exact.

Lemma 2.6. N ⊆ Z∧2 (G) if and only if the natural map γ]3(G)→ γ]3(G/N) is a monomor-
phism.

Corollary 2.7. N ⊆ Z∧2 (G) if and only if the natural map

M(2)
(G) ↪→M(2)

(G/N)

is a monomorphism.

Theorem 2.8. For any group G, we have Z∧2 (G) = Z∗2 (G).
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A classification of cubic one-regular graphs
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Abstract

A graph is one-regular if its automorphism group acts regularly on the set of its
arcs. In this talk, we classify cubic one-regular graphs of order 2p2q.

Keywords: One-regular graphs, Symmetric graphs, Cayley graphs.
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1 Introduction

Throughout this paper we consider undirected finite connected graphs without loops or
multiple edges. For a graph X we use V (X), E(X) and Aut(X) to denote its vertex set,
edge set and its full automorphism group, respectively. An s-arc in a graph is an ordered
(s+ 1)-tuple (v0, v1, · · · , vs−1, vs) of vertices of the graph such that vi−1 is adjacent to vi
for 1 ≤ i ≤ s, and vi−1 6= vi+1 for 1 ≤ i ≤ s−1. By an n-cycle we shall always mean a cycle
with n vertices. Also girth is the length of shortest cycle. For a subgroup G ≤ Aut(X),
a graph X is said to be (G, s)-arc-transitive or (G, s)-regular if G acts transitively or
regularly on the set of s-arcs of X, respectively. In the special case graph is one-regular if
its automorphism group acts regularly on the set of its arcs.

Proposition 1.1. Let p ≥ 7 be a prime and X a cubic symmetric graph of order 2p. Then
X is a one-regular normal Cayley graph on the dihedral group D2p.

Proposition 1.2. Let X be a connected cubic symmetric graph and let G be a s-regular
subgroup of Aut(X). Then the stabilizer Gv of v ∈ V (X) in G is isomorphic to Z3, S3, S3×
Z2, S4 or S4 × Z2 for s = 1, 2, 3, 4 or 5, respectively.

Proposition 1.3. NAut(X)(R(G)) = R(G)oAut(G,S).

Proposition 1.4. Let G be a finite group and let Q be an abelian Sylow subgroup contained
in the center of its normalizer. Then Q has a normal complement K (indeed, K is even
a characteristic subgroup of G).

Proposition 1.5. The quotient group NG(H)/CG(H) is isomorphic to a subgroup of the
automorphism group Aut(H) of H.
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2 Main results

Lemma 2.1. Let p and q be distinct odd primes and p > q ≥ 7. Also let G be a group of
order 2p2q and G is not isomorphic to (Zp × Zp)oD2q or (Zp × Zp)oZ2q . Then G has
a normal subgroup of order p or q.

Proof. Let G be a group of order 2p2q. Thus G is solvable and has a characteristic sub-
group of order p2q, say H. Clearly G

′ ≤ H and |G′ | ∈ {1, p, p2, p2q, q, pq}. If |G′ | = 1,
then G is an abelian group and so G has a normal subgroups of orders p and q, as desired.
If |G′ | ∈ {p, q, pq, p2q}, then G

′
has a characteristic subgroup of order p or q. Thus G

has a normal subgroup of order p or q, as desired. Now assume that |G′ | = p2. By our
assumption G

′
cannot be isomorphic to Zp × Zp. Thus G

′ ∼= Zp2 , and so G
′

has charac-
teristic subgroup of order p. Therefore G has normal subgroup of order p, as desired.

The following theorem is the main result of this paper. Also for construction of the
graphs see [2, 3, 4]

Theorem 2.2. Let X be a cubic one-regular graph of order 2p2q. Then X is isomorphic
to C(Z3

p), C(Zp2 × Zp), CBp2, CQp, for 3|p− 1, CI(p, k, q), where q ≡ 1 (mod 3) and

k2 + k + 1 = 0 (k ∈ Z∗
q), or Cay(D2p2q, {τ, τρ, τρk+1}), where D2p2q = 〈τ, ρ | τ2 = ρp

2q =
1, τ−1ρτ = ρ−1〉 and k2 + k + 1 = 0 (k ∈ Z∗

p2q).

Proof. If p = q, then X has order 2p3 and by [4, Theorem 3.2], cubic one-regular graphs
of this order is isomorphic to C(Z3

p), or C(Zp2 × Zp), where 3|p− 1. Thus we may assume
that p 6= q. If q = 2, then X has order 4p2 and by [2, Theorem 6.2], there is no cubic one
regular graph of this order. If q = 3, then X has order 6p2 and by [2, Theorem 5.3], cubic
one-regular graph of this order is isomorphic to CBp2 , where 3|p− 1. Also if q = 5, then
X has order 10p2 and by [1, Theorem 5.1], there is no one-regular graph of this order.
Finally if p = 2, then X has order 8q and by [3, Theorem 5.1], cubic one-regular graph
of this order is isomorphic to CQp, where 3|p− 1. In what following we may assume that
either p > q ≥ 7 or q > p > 2. First assume that p > q ≥ 7. Let A = Aut(X). By the
one-regularity of X, one has |A| = 6p2q. Let P be Sylow p-subgroup of A.

Claim I: A Sylow p-subgroup P is normal in A.

Since |A| = 2.3p2q, it follows that A has normal subgroup of order 3p2q, say H. Let
np and nq be the number of Sylow p-subgroups and Sylow q-subgroups of H, respectively.
Now np = 1 + rp, and nq = 1 + sq for some integers r and s. Since np | 3q and p > q ≥ 7,
we have np = 1 or np = 3q. Suppose that np = 3q and so 1 + rp = 3q. Thus r = 2 and
so 1 + 2p = 3q. On the other hand nq = p, p2, 3p or 3p2. If nq = p, then q | p − 1, a
contradiction. If nq = p2, then q | p2 − 1. Since q | 1 + 2p, we get a contradiction. If
nq = 3p, then q | 3p− 1, a contradiction. Finally if nq = 3p2, then q | 3p2 − 1. Also since
q | 1 + 2p, we have q | 2 + 3p. Now by q | 1 + 2p, we have q | p, a contradiction. Thus
np = 1, and P EA, as claimed.
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Let XP be the quotient graph of X relative to the set of orbits of P . Thus |V (XP )| = 2q
or 2pq.

First assume that |V (XN )| = 2q. XN is A/N -arc-transitive, so XN is a one-regular
normal Cayley graph on the dihedral group D2q. Now by Proposition 1.2, the stabilizer
Aut(XN )v of v ∈ V (XN ) is isomorphic to Z3. Thus Aut(XN ) has order 6q, and so
A/N = Aut(XN ). Also A has normal subgroup G such that G/N acts regularly on
V (XN ), and so |G/N | = 2q. Therefore G acts regularly on V (X) and one may assume
that X is normal Cayley graph on the group G, say X = Cay(G,S). Clearly |G| = 2p2q.
Since X has valency 3, S contains an involution. Since Aut(G,S) is transitive on S and
so S contains of three involutions. By the connectivity of X, G can be generated by three
involutions.

Suppose that G is not isomorphic to (Zp×Zp)oD2q or (Zp×Zp)oZ2q. By Lemma 2.1,
G has a normal subgroup of order p or q. First suppose that G has a normal subgroup of
order q, say Q. Then G = 〈a〉oK, where |K| = 2p2 and o(a) = q.

If K is an abelian group, then K ∼= Z2p2 , or Z2p × Zp. If K ∼= Z2p2 = 〈b〉, then

b−1ab = ai, where 0 ≤ i ≤ q− 1. Thus i2p
2

= 1 (mod q). If i = 1 (mod q) or i = −1 (mod
q), then either b−1ab = a or b−1ab = a−1. For the former case G is an abelian group and all
involutions of G are contained in the subgroup 〈b〉, a contradiction. So b−1ab = a−1. The
elements of order 2 are ambp

2
, where 0 ≤ m ≤ q − 1. Clearly G cannot be generated by

these elements. Thus we may assume that i 6= ±1 (mod q). So 2p2 | q−1, a contradiction.
Now assume that K ∼= Z2p × Zp = 〈b〉 × 〈c〉, where o(b) = 2p and o(c) = p. Since

Q C G, we have b−1ab = ai, c−1ac = aj , where 0 ≤ i ≤ q − 1 and 0 ≤ j ≤ q − 1. Thus
i2p = 1 (mod q) and jp = 1 (mod q). If i = ±1 (mod q), and j = 1 (mod q), then we have
the following cases:
(1) b−1ab = a, c−1ac = a;
(2) b−1ab = a−1, c−1ac = a−1;
(3) b−1ab = a, c−1ac = a−1;
(4) b−1ab = a−1, c−1ac = a.

For the first case G is an abelian group and all involution of G are contained in the
subgroup 〈b〉 × 〈c〉, a contradiction. For case (2), the elements of order 2 are aibp, where
i is odd. Clearly G cannot be generated by these elements. For case (3), bp is the only
element of order 2. Clearly G cannot be generated by bp. Finally for case (4), the elements
of order 2 are aibp, where i is odd, a contradiction. Thus we may suppose that i 6= ±1
and j 6= 1. So p | q − 1, a contradiction.

If K is not abelian, then from elementary group theory we know that there are three
non-abelian groups of order 2p2 up to isomorphism:
G1(p) = 〈b, c | b2 = cp

2
= 1, bcb = c−1〉;

G2(p) = 〈b, c, d | bp = cp = d2 = [b, c] = 1, d−1bd = b−1, d−1cd = c−1〉;
G3(p) = 〈b, c, d | bp = cp = d2 = 1, [b, c] = [b, d] = 1, d−1cd = c−1〉.

Now by considering all cases we complete the proof.
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A generalization of commutativity notion
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Abstract

Mason introduced the reflexive property for ideals. We in this article consider the
reflexive ring property on nil ideals, introducing the concept of a nil-reflexive ring
as a generalization of the reflexive ring property. It is proved that the polynomial
and power series rings over right Noetherian (or NI) rings R are both shown to be
nil-reflexive if (aRb)2 = 0 implies aRb = 0 for all a, b ∈ N(R). The structure of
nil-reflexive rings is studied in relation to various sorts of ring extensions which have
roles in ring theory.

Keywords: Nil-reflexive ring, Nil ideal, Polynomial ring, Power series ring, Right
quotient ring

Mathematics Subject Classification [2010]: 16N40, 16S70

1 Introduction

Throughout this article all rings are associative with identity unless otherwise specified.
Given a ring R, the polynomial (resp., power series) ring with an indeterminate x over R
is denoted by R[x] (resp., R[[x]]). For any ring R and n ≥ 2, denote the n by n full matrix
ring over R by Matn(R) and the n by n upper triangular matrix ring over R by Un(R). Let
Dn(R) denote the subring {A ∈ Un(R) | the diagonal entries of A are all equal} of Un(R).
We use N∗(R) and N(R) to denote the upper nilradical (i.e., the sum of all nil ideals) and
the set of all nilpotent elements of R, respectively. It is well-known that N∗(R) ⊆ N(R).
Z (Zn) denotes the ring of integers (modulo n).

The reflexive property for right ideals was first studied by Mason [8]. a right ideal I of
a ring R is called reflexive if aRb ⊆ I implies bRa ⊆ I for a, b ∈ R, and R is called reflexive
if 0 is a reflexive ideal. Every semiprime ring is reflexive by an easy computation. Kwak
and Lee [6] characterized the aspects of the reflexive and one-sided idempotent reflexive
properties, and provided a method by which a reflexive ring, which is not semiprime, can
always be constructed from any semiprime ring, and showed that the reflexive property is
Morita invariant.

In [6], it is proved that a ring R is reflexive if and only if IJ = 0 implies JI = 0 for
ideals I, J of R. We will consider the reflexive ring property on nil ideals of a ring.

Definition 1.1. A ring R is called nil-reflexive if IJ = 0 implies JI = 0 for nil ideals I, J
of R.
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Any reflexive ring is clearly nil-reflexive. But the converse need not hold by the fol-
lowing.

Example 1.2. Let F be a field and F ⟨a, b⟩ be the free algebra with noncommuting
indeterminates a, b over F . Let I be the ideal of F ⟨a, b⟩ generated by ab. Set R = F ⟨a, b⟩/I
and let a, b coincide with their images in R for simplicity. We can show that R is nil-
reflexive but not reflexive.

For a nonempty subset X of a ring R, we write rR(X) = {a ∈ R|Xa = 0}, which is
called the right annihilator of X in R. The left annihilator is defined similarly and denoted
ℓR(X).

Proposition 1.3. For a ring R the following are equivalent:
(1) R is a nil-reflexive ring.
(2) aRb = 0 for a, b ∈ N∗(R) implies bRa = 0.
(3) For each a ∈ N∗(R), rN∗(R)(aR) = ℓN∗(R)(Ra).
(4) ARB = 0 implies BRA = 0 for any nonempty subsets A,B of N∗(R).

Recall that a ring is reduced if it has no nonzero nilpotent elements. Cohn [2] called
a ring R reversible if ab = 0 implies ba = 0 for a, b ∈ R. Reduced rings are clearly
reversible, and reversible rings are obviously reflexive. In [7], a ring R is called NI if
N∗(R) = N(R). The class of NI rings contains reversible rings, but we can see that the
concepts of (nil-)reflexive rings and NI rings are independent of each other.

Proposition 1.4. Let R be an NI ring. Then the following conditions are equivalent:
(1) R is nil-reflexive.
(2) aRb = 0 for a, b ∈ N(R) implies bRa = 0.
(3) IJ = 0 implies JI = 0 for all nil right (or, left) ideals I, J of R.

2 Main results

Theorem 2.1. (1) If R is a nil-reflexive ring then so is eRe for each central e2 = e ∈ R.
(2) If R is a nil-reflexive ring then so is Matn(R) for any n ≥ 2.
(3) Let R =

⊕
i∈I Ri be a direct sum of rings Ri and I be a finite index set. Then R

is a nil-reflexive ring if and only if Ri is a nil-reflexive ring for each i ∈ I.
(4) If R is a ring with an Abelian unit group, then N(R) is commutative (and hence

R is nil-reflexive).

Corollary 2.2. For a central idempotent e of a ring R, eR and (1 − e)R are nil-reflexive
if and only if R is nil-reflexive.

We can prove that both Un(R) and Dn(R) for any ring R and n ≥ 3 are not nil-reflexive,
but we can construct reversible (hence (nil-)reflexive) subrings of Dn(R) for n ≥ 3 over
reduced ring R. If R is a reduced ring, then D2(R) is reversible and so it is nil-reflexive.
But the following example shows that there exists a reversible (and so nil-reflexive) R such
that D2(R) is not nil-reflexive.
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Example 2.3. Let
S = Z2⟨a0, a1, a2, b0, b1, b2, c⟩

be the free algebra generated by noncommuting indeterminates a0, a1, a2, b0, b1, b2, c over
Z2. Next let I be the ideal of S generated by

a0b0,a0b1 + a1b0, a0b2 + a1b1 + a2b0, a1b2 + a2b1, a2b2, a0rb0, a2rb2,

b0a0,b0a1 + b1a0, b0a2 + b1a1 + b2a0, b1a2 + b2a1, b2a2, b0ra0, b2ra2,

(a0+a1 + a2)r(b0 + b1 + b2), (b0 + b1 + b2)r(a0 + a1 + a2), and r1r2r3r4,

where the constant terms of r, r1, r2, r3, r4 ∈ S are zero. Now set R = S/I. Then R is a
reversible ring, but D2(R) is not nil-reflexive.

However, we have the following result.

Proposition 2.4. (1) Let R be a ring. If N∗(R)2 = 0 then R is nil-reflexive.
(2) If R is a reduced ring then U2(R) is nil-reflexive.
(3) If U2(R) is nil-reflexive, then R is nil-reflexive.
(4) If D2(R) is nil-reflexive, then R is nil-reflexive.

Notice that R = Mat3(S) over a reduced ring S is a nil-reflexive ring by Theorem
2.1(2), but the subring U3(S) of R is not nil-reflexive. Therefore the nil-reflexivity is not
closed under subrings. One may conjecture that the nil-reflexivity is closed under factor
rings, but the following erases the possibility.

Example 2.5. Let F be a field and R = F ⟨a, b⟩ be the free algebra with noncommuting
indeterminates a, b over F . Let I be the ideal of R generated by

ab, a2 and b2.

Let a, b coincide with their elements in R/I for simplicity. Obviously R is nil-reflexive,
but we can show that R/I is not nil-reflexive.

Proposition 2.6. For a ring R and a proper ideal I of R, if R/I is a nil-reflexive ring
and I is reduced as a ring without identity, then R is nil-reflexive.

A ring is called Abelian if every idempotent is central. Reversible rings are Abelian
through a simple computation, but not conversely in general. The concepts of an Abelian
ring and a nil-reflexive ring do not imply each other. For, the ring R = D3(A), over a
reduced ring A, is Abelian by help of [5, Proposition 1.2], but R is not nil-reflexive. On
the other hand, the nil-reflexive ring Mat3(S) over a reduced ring S is not Abelian clearly.

Let R be an algebra over a commutative ring A. Due to Dorroh [3], the Dorroh exten-
sion of R by A is the Abelian group R ⊕ A with multiplication given by (r1, a1)(r2, a2) =
(r1r2 + a1r2 + a2r1, a1a2) for ri ∈ R and ai ∈ A.

Theorem 2.7. Let R be an algebra with identity over a commutative reduced ring A.
Then R is nil-reflexive if and only if the Dorroh extension D of R by A is.

We can show that the nil-reflexive property does not pass to polynomials by Example2.3.

A ring R is called Armendariz if whenever any polynomials f(x) =
∑m

i=0 aix
i, g(x) =∑n

j=0 bjx
j ∈ R[x] satisfy f(x)g(x) = 0, aibj = 0 for all i, j.
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Theorem 2.8. Let R be an Armendariz ring. Then R is nil-reflexive if and only if so is
R[x].

Note that the classes of Armendariz rings and nil-reflexive rings are independent of
each other. The nil-reflexive property does not go up to power series rings by the same
argument as polynomials, either. However, we have the following result.

Theorem 2.9. Let R be a ring such that (aRb)2 = 0 implies aRb = 0 for all a, b ∈ N(R).
(1) If R is a right Noetherian ring then IJ = JI = 0 for all nil ideals I, J in R[[x]]

(R[x]).
(2) If R is a right Noetherian ring then R[[x]] (R[x]) is nil-reflexive.
(3) If R is an NI ring then R[[x]] (R[x]) is nil-reflexive.

A multiplicatively closed (m.c. for short) subset X of a ring R is said to satisfy the
right Ore condition if for each r ∈ R and x ∈ X, there exist r1 ∈ R and x1 ∈ X such that
rx1 = xr1. It is shown by [9, Theorem 2.1.12] that X satisfies the right Ore condition and
X consists of regular elements if and only if the right quotient ring of R with respect to
X exists.

Theorem 2.10. Let X be an m.c. subset of a ring R, and suppose that X satisfies the
right Ore condition and X consists of regular elements.

(1) If R is a reflexive ring then so is the right quotient ring Q of R with respect to X.
(2) If R is a nil-reflexive ring then so is the right quotient ring Q of R with respect to

X.

References

[1] V. Camillo, C.Y. Hong, N.K. Kim, Y. Lee, and P.P. Nielsen, Nilpotent ideals in poly-
nomial and power series rings, Proc. Amer. Math. Soc. 138 (2010), pp. 1607–1619.

[2] P.M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), pp. 641–648.

[3] J.L. Dorroh, Concerning adjunctins to algebras, Bull. Amer. Math. Soc. 38 (1932), pp.
85–88.

[4] N.K. Kim, Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), pp.
477–488.

[5] N.K. Kim, Y. Lee, Extensions of reversible rings, J. Pure and Appl. Algebra 185 (2003),
pp. 207–223.

[6] T.K. Kwak, Y. Lee, Reflexive property of rings, Comm. Algebra 40 (2012), pp. 1576–
1594.

[7] G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), pp. 2113–2123.

[8] G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), pp. 1709–1724.

[9] J.C. McConnell, J.C. Robson, Noncommutative Noetherian Rings, John Wiley & Sons
Ltd., 1987.

Email: m.kheradmand@math.iut.ac.ir

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

A generalization of commutativity notion pp.: 4–4

151



A New Algorithm to Compute Secondary Invariants
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Abstract

In this paper we present a new method to compute secondary invariants of invariant
rings. The main advantage of our approach relies on using SAGBI-Gröbner basis
in computation which against the Gröbner basis, keeps the invariant structure of
polynomials. For this purpose, we use Molien’s formula to compute Hilbert series and
find the degree of secondary invariants. When the degrees are known, it is sufficient to
compute partial SAGBI-Gröbner bases up to certain degrees to find a set of secondary
invariants.

Keywords: Invariant ring, Secondary invariants, SAGBI-Gröbner basis
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1 Introduction

Let G be a finite n×n matrix group, linearly acting on a polynomial ring R with n variables
over the field K. The ring of all polynomials in R which are invariant under the action of
G is called the invariant ring denoted by RG, which has also an algebra structure. Thanks
to the known Hilbert theorem, RG is finitely generated as a K−algebra and furthermore,
there are n algebraically independent homogeneous invariants P = {f1, . . . , fn} for which
RG is finitely generated module over sub-algebra K[f1, . . . , fn]. The elements of P are
called primary invariant, and any minimal system of homogeneous invariants g1, . . . , gt

generating RG as a K[f1, . . . , fn]−module is called a system of secondary invariants.
There are some algorithms to compute secondary invariants each of which uses an

special kind of Gröbner basis. Most of these algorithms like those stated in [5], use
some extra auxiliary variables which increase the volume of computations. Furthermore,
Gröbner basis breaks the invariant structure of polynomials. There is a generalization
of Gröbner basis for ideals of sub-algebras of polynomial rings, which contains important
information about the ideal, and also there are efficient algorithms to compute it [2, 3]. The
main idea of this paper is to use SAGBI-Gröbner basis to compute secondary invariants.
So, in the sequel we recall necessary concepts and then we state our new algorithm. The
following definition states the main computational tool in invariant ring.

Definition 1.1. The Reynolds operator of G is the map R : R → RG mapping each
f ∈ R to R(f) = 1/|G|(∑σ∈G f(σ.X)) where X is the column vector of variables.
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It is easy to see that the Reynolds operator is a K−linear map onto RG which does
not change invariants. We are going now to recall the definition of SAGBI-Gröbner basis.
Fix an admissible monomial ordering ≺ that is a well-ordering and stable under monomial
multiplication. For a polynomial f ∈ R, the greatest monomial w.r.t. ≺ contained in f is
called the leading monomial of f , denoted by LM(f). Further, if F is a set of polynomials,
LM(F ) is defined to be {LM(f)|f ∈ F}. Also, the monomials appearing in LM(RG) are
called initial monomials.

Definition 1.2. Let IG ⊂ RG be an ideal and F ⊂ IG be a finite set. We call F a
SAGBI-Gröbner basis for IG whenever LM(F ) generates the initial ideal ⟨LM(IG)⟩ as an
ideal in ⟨LM(RG)⟩. Further, we call it a partial SAGBI-Gröbner basis up to degree D if
LM(F ) generates ideal ⟨LM(IG)⟩ up to degree D.

One of the most efficient algorithms for computing SAGBI-Gröbner bases is G2V-
Invariant algorithm mentioned in [3] which we use in this paper for computations. The
following lemma states a nice property of SAGBI-Gröbner basis which is one of the base
tools in this paper.

Lemma 1.3. If F is a SAGBI-Gröbner basis for IG then the set of initial monomials
which are not divisible by LM(F ) construct a basis for the K−vector space RG/IG.

2 Description of the main idea

In this section we state our main result on computing secondary invariants. The corner-
stone of our idea is the Nakayama’s lemma [4, Lemma 2.1] as follows:

Lemma 2.1. Suppose that a set of primary invariants, P is given. Then {g1, . . . , gt} is
a set of secondary invariants if it generates RG/IG as a K−vector space.

It is worth noting that to apply SAGBI-Gröbner basis, we must restrict ourselves to the
cases for which the matrix group G is a monomial matrix group. By a monomial matrix
group we mean a group which converts monomials to monomials. So, in the sequel we
assume that the group G is a monomial matrix group. Using the above lemma together
with Lemma 1.3, it is enough to know the degrees of each gi appearing in the set of
secondary invariants to compute them. In doing so, we can use the well-known Hilbert
series and Molien’s formula as mentioned in [5, Chapter 2]:

Proposition 2.2. Let d1, . . . , dn be the degree of primary invariants of RG, then

• in the non-modular case by Mollien’s formula, the Hilbert series of RG equals

H(RG, z) =
1

|G|
∑

σ∈G

1

det(id − zσ)

• if e1, . . . , et be the degrees of secondary invariants, then we have

H(RG, z)

n∏

i=1

(1 − zdi) = ze1 + · · · + zet
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We are ready now to state our new algorithm which we have implemented in Maple1.

Theorem 2.3. The following algorithm computes a set of secondary invariants for RG:

Algorithm 1 Secondary

Require: P , a set of primary invariants.
Ensure: {g1, . . . , gt}, a set of secondary invariants.

S := {};
Compute {e1, . . . , et} using Proposition 2.2, sorted increasingly;
for i = 1, . . . , t do

Compute F , a SAGBI-Gröbner basis for ⟨P ⟩ up to degree ei;
S := S union the set of generators of RG/⟨F ⟩ of degree ei using Lemma 1.3;

end for
RETURN(S);

The following example shows the behaviour of our algorithm to compute secondary
invariants.

Example 2.4. Let G be the cyclic group generated by the matrix

A =




0 1 0
−1 0 0
0 0 −1


 .

Suppose that the set of primary invariants P = {x2 + y2, z2, x4 + y4} is given. Using
Proposition 2.2 we have

H(RG, z)(1 − z2)2(1 − z4) = 1 + 2z3 + z4

which implies that we must compute secondary invariants of degrees 0, 3 and 4. It is
obvious that the secondary invariant of degree 0 is g1 = 1. To continue, we compute a
SAGBI-Gröbner basis for ⟨P ⟩ up to degree 3 which is:

{x2 + y2, z2, x2y2}.

Therefore, the set of initial monomials of degree 3 generating RG/⟨P ⟩ is {xyz, y2z}. Thus
we have g2 = R(xyz) = xyz and g3 = R(x2z) = x2z − y2z. For degree 4, we receive to
the same SAGBI-Gröbner basis and so g4 = R(x3y) = x3y − xy3.
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Abstract

For a non-trivial finite group G different from a cyclic group of prime order, the
intersection graph Γ(G) of G is the simple undirected graph whose vertices are the
non-trivial proper subgroups of G and two vertices are joined by an edge if and only if
they have a non-trivial intersection. In this paper we will survey many of the known
results of this graph and we will provide references to the literature for their proofs.
Also as a new result, we characterize all finite groups with planar intersection graphs.
It turns out that few solvable groups have planar intersection graphs.

Keywords: Subgroups graph, Subgroups lattice, Intersection of subgroups
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1 Introduction

Csákány and Pollák [4], introduced the intersection graph of non-trivial proper subgroups
of groups. For a group G, which is not cyclic of prime order the intersection graph of G,
which is denoted by Γ(G) is the graph whose vertex set is the set of all proper non-trivial
subgroups of G, with two vertices H1 and H2 being adjacent if and only if H1∩H2 6= {1}.

This study was inspired by the definition of the intersection of non-trivial proper
subsemigroups due to Bosák [3]. Zelinka [7], continued the investigation of the intersection
graph of subgroups of a finite abelian group.

The main result of [7], states that if Γ(A) is known for a finite abelian group A, one
can determine the number of factors in the expression of A as a direct product of Sylow
groups and the intersection graph of any of these Sylow groups. The author concludes
with the conjecture that two finite abelian groups with isomorphic intersection graphs,
are isomorphic. This conjecture was invesigated by Bertholf and Walls in [2].

The authors gave a counterexample to this conjecture, namely non-isomorphic cyclic
primary groups of the same height. Then they present a theorem: If G is a finite abelian
group with no cyclic Sylow subgroups, then G is determined by its intersection graph.

In response to a question posed by Csákány and Pollák [4], Shen [6], classified finite
groups with disconnected intersection graph of subgroups. These groups are classified as
Zp × Zq, where p and q are primes, or a Frobenius group whose complement is a group
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of prime order and the kernel is a minimal normal subgroup. The prime graph of a
non-abelian simple group plays a major role in the proof of the theorem.

Herzog et al. [5], defined a graph ΓM(G), where G is a finitely generated group,
whose vertex set is the set of all the maximal subgroups of G and two distinct vertices
M1 and M2 are joined by an edge if and only if M1 ∩M2 6= {1}. The paper has two main
results. First of all the authors proved that if G is a finite simple group then ΓM(G)
is a connected graph with diameter at most 62. Secondly they proved that G is a finite
group with ΓM(G) disconnected if and only if: (i) G is elementary abelian of order p2 (p
a prime number), (ii) G is cyclic of order pq (p, q different prime numbers), (iii) G is the
semi-direct product of an elementary abelian p-group P by a cyclic group Q of prime order
q, where q 6= p, and Q acts irreducibly and fixed point freely on P . We emphasize that in
this work G is a non-trivial finite group different from a cyclic group of prime order.

Definition 1.1. For a group G, the intersection graph of G, which is denoted by Γ(G) is
the graph whose vertex set is the set of all proper non-trivial subgroups of G, with two
vertices H1 and H2 being adjacent if and only if H1 ∩H2 6= {1}.

We classify groups with planar graphs in theorem 2.1, using a well-known theorem,
due to Kuratowski:

Theorem 1.2. (Theorem 8.6.5 [1]) A graph is planar if and only if it contains no subdi-
visions of K5 or K3,3.

We start with the following useful lemmas:

Lemma 1.3. Γ(G) is non-planar if one of the following holds:
(1) G has at least 5 distinct subgroups with mutually non-trivial intersection.
(2) G has distinct subgroups Hi and Sj, such that Hi ∩ Sj 6= {1}; 1 ≤ i ≤ j ≤ 3.
(3) Γ(H) is non-planar, for some subgroup H of G.
(4) G has a normal subgroup N such that Γ(G/N) is non-planar.

Lemma 1.4. If G is a finite solvable group and Γ(G) is planar, then |G| = pαqβrγ, where
p, q, r are distinct primes, α, β, γ are non-negative integers such that 2 ≤ α + β + γ ≤ 5.
Also if |π(G)| = 3, then 3 6∈ {α, β, γ}.

Remark 1.5. For two groups G and H if G ∼= H, then obviously Γ(G) ∼= Γ(H).

2 Main results

Our main result is the following:

Theorem 2.1. The graph Γ(G) is planar if and only if G is one of the following types:

(1) Zpα ,Zpβq,Zpqr, where p, q, rare distinct primes, 2 ≤ α ≤ 5 and 1 ≤ β ≤ 2,

(2) Z2 × Z2, Zp × Zp, Z4 × Z2 or Z2 × Z2 × Zp, where p is an odd prime number.

(3) Q8 or D8, where Q8 and D8 are the quaternion group and the dihedral group of order
8; respectively,
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(4) 〈a, b | ap = bq = 1, bab−1 = ai, Ordp(i) = q〉 ∼= Zp o Zq, where p, q are distinct
primes with q < p,

(5) 〈a, b | aq = bp
2

= 1, bab−1 = ai, Ordq(i) = p2〉 ∼= Zq o Zp2 with p < q and
p2 | (q − 1),

(6) 〈a, b, c | ap = bp = cq = 1, ab = ba, cac−1 = aibk, cbc−1 = ajbl〉 ∼= (Zp × Zp)o Zq,
with q - (p− 1) and

(
i j
k l

)
has order q in GL(2, p),

(7) 〈a, b, c | ap = bp = cq
2

= 1, ab = ba, cac−1 = aibk, cbc−1 = ajbl〉 ∼= (Zp×Zp)oZq2,

with q < p, q - (p− 1) and

(
i j
k l

)
has order q2 in GL(2, p),

(8) 〈a, b | ar = bpq = 1, bab−1 = ai, Ordr(i) = pq〉 ∼= Zr oZpq, where p, q, r are distinct
primes and p < q < r.
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Abstract

In this paper we study the graph of equivalence classes of zero divisors of a ring
R, denoted by ΓE(R). We give some necessary conditions for finiteness of ΓE(R).
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1 Introduction

The graph of equivalence classes of zero divisors of a ring R, denoted by ΓE(R), is defined
in [7] and studied in [4]. Let Z(R) denotes the set of zero divisors of a ring R and
Z(R)∗ = Z(R)\{0}. Define an equivalence relation ∼ on Z(R) as follows[5]: x ∼ y if and
only if Ann(x) = Ann(y). ΓE(R) is a graph associated to R whose vertices are the classes
of elements in Z(R)∗, and two distinct classes [x] 6= [y] are joined by an edge if and only
if xy = 0. Another interpretation of ΓE(R) is as follows: The vertices are the elements of
{ann(a) : a ∈ Z(R)∗} and two distinct elements Ann(x) and Ann(y) are adjacent if and
only if xy = 0.

First we recall some facts and notations related to this paper. Throughout this paper
R denotes a commutative ring with unit element. For any ideal I, Ann(I) = {r ∈ R :
ri = 0∀i ∈ I} is called an annihilator ideal. We say R satisfies ACC(Ann) if every chain
in the set of annihilator ideals has a maximal element. If R is a subring of a Noetherian
ring then R satisfies ACC(Ann). A prime ideal P is called an associated prime ideal if
P = Ann(x) for some x ∈ Z(R)∗. The set of associated prime ideals of R is denoted by
Ass(R). Also a vertex [x] of ΓE(R) is called associated prime if Ann(x) ∈ Ass(R).

Let Γ be a simple graph. The degree of v ∈ V (Γ) denoted by d(v). The set of vertices
which are adjacent to v is denoted by NΓ(v). A complete subgraph of Γ is called a clique.
The clique number of Γ, denoted by ω(Γ), is suprimum of size of cliques. A subset S of
V is called a dominating set if every vertex in V \S has a neighbor in S. The minimum
size of the dominating sets is called domination number and is denoted by γ(Γ).

In [4] and [7] the ring R is Noetherian. In this paper we show that many results are
true without Noetherian condition or true with a weaker condition.
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2 Main results

In this section we state and prove our main results.

Theorem 2.1. Let R be a ring. Let S ⊆ R be a subset such that

1. 0 /∈ S

2. If a ∈ R, s ∈ S and as 6= 0 then as ∈ S

If Ann(x) is a maximal element in {Ann(s) : s ∈ S} then it is an associated prime.

Proof. Let ab ∈ Ann(x). If bx = 0 then b ∈ Ann(x). If bx 6= 0 then bx ∈ S and
Ann(x) ⊆ Ann(bx). By maximality of Ann(x) we conclude that Ann(x) = Ann(bx). So
a ∈ Ann(bx) = Ann(x).

Theorem 2.2. [7] Ass(R) is a clique in ΓE(R).

Proof. Let Ann(x) 6= Ann(y) be two elements of Ass(R). Let t ∈ Ann(x)\Ann(y). Since
(t)Ann(t) = 0 ⊆ Ann(y), so Ann(t) ⊆ Ann(y). Thus xy = 0.

Theorem 2.3. Let R be a ring. The following are equivalent:

1. ΓE(R) is finite.

2. {Ann(a) : a ∈ R} is finite.

3. {Ann(I) : I ER} is finite.

Proof. 1. 1 ⇔ 2 : Let f : ΓE(R) → {Ann(a) : a ∈ Z(R)∗} be such that f([a]) =
Ann(a). This map is a one to one corresponding. So the result follows because
{Ann(a) : a ∈ R} = {Ann(a) : a ∈ Z(R)∗} ∪ {0, R}.

2. 2 ⇒ 3 : It is clear that Ann(I) = ∩a∈IAnn(a). Since {Ann(a) : a ∈ R} is finite so
{Ann(I) : I ER} is finite.

3. 3⇒ 2 :This is clear.

Theorem 2.4. [7] Let R be a ring. If every Ann(a) sits in an associated prime ideal i.e
R satisfies ACC(Ann) then Ass(R) is a dominating set.

Proof. Assume Ann(a) is not an associated prime. Let t ∈ Ann(a). If Ann(t) ⊆ Ann(x) ∈
Ass(R) then ax = 0. Hence Ann(a) is adjacent to ann(x) ∈ Ass(R).

Theorem 2.5. Let R be a ring. If the degree of [x] is finite then every chain in {ann(a) :
a ∈ Ann(x)} is finite and [x] is adjacent to an associated prime. Also, If the degree of
each vertex is finite then R satisfies ACC(Ann).

Proof. Let S = Ann(x)\{0}. Since d(x) <∞, so {Ann(a) : a ∈ S} is finite. The maximal
elements of this set are associated primes by theorem 2.1 which are adjacent to [x].

Corollary 2.6. [7] Let R be a ring.
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1. ΓE(R) is a finite graph if and only if each vertex of ΓE(R) has finite degree.

2. If d([x]) = 1 then only neighbor of [x] is an associated prime.

Proof. 1. One implication is trivial. Assume every vertex has finite degree. Hence R
satisfies ACC(Ann). Since Ass(R) is a clique in ΓE(R), so Ass(R) must be finite.
Also Ass(R) is a dominating set of ΓE(R) by Theorem 2.4. This implies that ΓE(R)
is a finite graph.

2. This is clear.

Theorem 2.7. Let R be a ring. If ΓE(R)) contains a cycle of length three then there is
a vertex such that is adjacent to only one of vertices of this cycle.

Proof. Let [x], [y], [z] be the vertices of the cycle and ann(z) be a maximal element in
{ann(x), Ann(y), Ann(z)}. ThenAnn(z) * Ann(x)

⋃
Ann(y). Let w ∈ Ann(z)\Ann(x)

⋃
Ann(y).

So [w] 6= [x], [y], [z]. Hence [w] is adjacent only to vertex [z].

Corollary 2.8. [7] If |ΓE(R))| ≥ 3 then ΓE(R)) is not a complete graph

The following theorem is a theorem in [6][Theorem 3.2.24,p 364] which we give the
commutative version of it here.

Theorem 2.9. Let R be a reduced ring. If R satisfies ACC(Ann) then Ass(R) =
{P1, · · · , Pn} is finite and every Ann(I) is an intersection of some of the Pi.

It is clear that if ΓE(R) is finite then R satisfies ACC(Ann)(DCC(Ann)). In the
following theorem we prove a partial converse to this fact.

Theorem 2.10. Let R be a reduced ring. Then ΓE(R) is finite if and only if R satisfies
ACC(Ann).

Proof. If ΓE(R) is finite then {Ann(I) : I E R} is finite by Theorem 2.3. So R satisfies
ACC on annihilator ideals. Conversely, If R satisfies ACC on annihilator ideals then
{Ann(I) : I ER} is finite by Theorem 2.9. Thus ΓE(R) is finite by Theorem 2.3.

Corollary 2.11. Let R be a Noetherian reduced ring. Then ΓE(R) is a finite graph.
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Abstract

Let R be a ring, S a strictly ordered monoid and ω : S → End(R) a monoid
homomorphism. In [4], Marks, Mazurek and Ziembowski study the class of (S, ω)-
Armendariz rings, as a generalization of the standard Armendariz condition from
ordinary polynomial ring to skew generalized power series ring. We observe from
results in [4], that the upper nilradical coincides with the prime radical in (S, ω)-
Armendariz rings and also every one-sided nil ideal of these rings is contained in a
two-sided nil ideal of the ring, namely satisfies in the Köthe’s conjecture. Also it can
be shown that the factor rings of an (S, ω)-Armendariz rings over its prime radical
is also (S, ω)-Armendariz. We continue in this paper the study of rings with such
property in skew generalized power series rings and bring some properties of these
rings.

Keywords: Lower nilradical, Nilpotent elements, Skew generalized power series ring.
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06F05.

1 Introduction

Throughout the present paper all rings considered, unless otherwise noted, shall be as-
sumed to be associative and possess an identity; subrings of a ring need not have the
same unit, subrng will denote a subring without unit, and “an order” on a set will always
mean “a partial order”. Our notation and terminology are standard and shall follow [3].
For instance, for such a ring R, the monoid of endomorphisms of R (with composition of
endomorphisms as the operation) is denoted by End(R). We adopt the notations Niℓ(R),
Niℓ∗(R) and Niℓ∗(R) to represent the set of all nilpotent elements, the lower nilradical
(i.e., the prime radical) and the upper nilradical (i.e., the sum of all nil ideals) of a ring
R, respectively. By R[S], we mean the monoid ring of a monoid S over a ring R, while
R[x] denotes the ring of all polynomials over a ring R.

Let (S, ≤) be an ordered set. Then (S, ≤) is called artinian if every strictly decreasing
sequence of elements of S is finite and (S, ≤) is called narrow if every subset of pairwise
order-incomparable elements of S is finite. An ordered monoid is a pair (S, ≤) consisting
of a monoid S (written multiplicatively) and an order ≤ on S such that for all s1, s2, t ∈ S,
s1 ≤ s2 implies s1t ≤ s2t and ts1 ≤ ts2. An ordered monoid (S, ≤) is said to be strictly
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ordered if for all s1, s2, t ∈ S, s1 < s2 implies s1t < s2t and ts1 < ts2. It is known that
torsion-free nilpotent groups and free groups are ordered groups. Hence, any submonoid
of a torsion-free nilpotent group or a free group is an ordered monoid. Let R be a ring,
(S, ≤) a strictly ordered monoid and ω : S → End(R) a monoid homomorphism. For
s ∈ S, let ωs denote the image of s under ω, that is, ωs = ω(s). Let A be the set of all
functions f : S → R such that the support supp(f) = {s ∈ S : f(s) ̸= 0} is an artinian
and narrow set. Then for any s ∈ S and f, g ∈ A the set

Xs(f, g) = {(x, y) ∈ supp(f) × supp(g) : s = xy}

is finite. Thus one can define the product fg : S → R of f, g ∈ A as follows:

(fg)(s) =
∑

(x,y)∈Xs(f,g)

f(x).ωx(g(y))

(by convention, a sum over the empty set is 0). With multiplication as defined above
and pointwise addition, A becomes a ring, called the ring of skew generalized power series
with coefficients in R and exponents in S, denoted by R[[S, ω, ≤]] (see also [4]). The
construction of the skew generalized power series rings generalizes some classical ring
constructions such as polynomial rings (S = N∪{0} under usual addition, with the trivial
order, i.e., the order with respect to which any two distinct elements are incomparable,
and ω is trivial, i.e., the monoid homomorphism that sends every element of S to the
identity endomorphism), monoid rings (trivial order, and ω is trivial), skew polynomial
ring R[x;σ] for some σ ∈ End(R) (S = N ∪ {0} under usual addition, with the trivial
order, and ω1 = σ), skew Laurent polynomial ring R[x, x−1;σ] for some σ ∈ End(R)
(S = Z under usual addition, with the trivial order, and ω1 = σ), skew monoid rings
(with trivial order), skew power series ring R[[x; σ]] for some σ ∈ End(R) (S = N ∪ {0}
under usual addition, with the usual order, and ω1 = σ), skew Laurent power series ring
R[[x, x−1; σ]] for some σ ∈ End(R) (S = Z with usual addition, with the usual order,
and ω1 = σ), the Mal’cev-Neumann construction ((S, . , ≤) a totally ordered group and
trivial ω) the Mal’cev-Neumann construction of twisted Laurent series rings ((S, . , ≤) a
totally ordered group, and generalized power series rings. For each r ∈ R and s ∈ S, let
cr, es ∈ R[[S, ω, ≤]] defined by

cr (x) =

{
r if x = 1
0 if x ∈ S\ {1} ,

es (x) =

{
1 if x = s
0 if x ∈ S\ {s} .

It is clear that r 7→ cr is a ring embedding of R into R[[S, ω, ≤]] and s 7→ es is a monoid
embedding of S into the multiplicative monoid of the ring R[[S, ω, ≤]], and also we have
escr = cωs(r)es. Moreover, for any nonempty subset X of R we have

X[[S, ω, ≤]] = {f ∈ R[[S, ω, ≤]] : f(s) ∈ X ∪ {0} for every s ∈ S} ,

and for each nonempty subset Y of R[[S, ω, ≤]], we put CY = {g(t) : g ∈ Y , t ∈ S}.

In their pioneering work [5] in the 1997’s, Rege and Chhawchharia introduced Armen-
dariz property of rings which have since become the most widely used tool for studying
the annihilators of a ring extensions. Recall that a ring R is said to be Armendariz if the
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product of two polynomials in R[x] is zero if and only if the product of their coefficients
is zero. This nomenclature was used by them since it was Armendariz [2, Lemma 1] who
initially showed that a reduced ring (i.e., ring without non-zero nilpotent element) always
satisfies this condition. Since its introduction, the concept of an Armendariz ring has
been generalized and extended in many different ways. All these were unified by Marks
et al. [4] calling this unified generalization an (S, ω)-Armendariz ring R, where (S, ≤) is
a strictly ordered monoid and ω : S → End(R) is a monoid homomorphism. A ring R is
called (S, ω)-Armendariz if whenever fg = 0 for f, g ∈ R[[S, ω, ≤]], then f(s).ωs(g(t)) = 0
for all s, t ∈ S [4, Definition 2.1].

Antoine [1] continued to work in this area, introducing the concept of nil-Armendariz
ring. A ring R is called nil-Armendariz if the product of two polynomials has coefficients
in the set of nilpotent elements, then the product of the coefficients of the polynomials is
also nilpotent. This condition was introduced by Antoine to develop an annihilator theory
for polynomial rings, which is related to a question of Amitsur of whether polynomial rings
over nil rings are nil. It was extensively studied in conjunction with another zero-divisor
conditions. Our results continues this ongoing effort in the case of skew generalized power
series ring with respect to lower nilradical.

2 Main results

We start our main results with the following definition.

Definition 2.1. Let R be any ring, (S, ≤) a strictly ordered monoid and ω : S → End(R)
a monoid homomorphism. We say that R is lower nil (S, ω)-Armendariz if whenever
fg ∈ Niℓ∗(R)[[S, ω, ≤]] for f, g ∈ R[[S, ω, ≤]], then f(s).ωs(g(t)) ∈ Niℓ∗(R) for all s, t ∈ S.

Lemma 2.2. Let R be a ring, (S, ≤) a strictly ordered monoid and also ω : S → End(R)
a monoid homomorphism. Then we have the following statements:

(a) [4, Proposition 4.5] If R is S-compatible and (S, ω)-Armendariz, then N0(R) =
Niℓ∗(R) = Niℓ∗(R).

(b) The class of (S, ω)-Armendariz rings is closed under subrings (possibly without
unity) and direct products.

Proposition 2.3. Let R be a ring, (S, ≤) a strictly ordered monoid and also ω : S →
End(R) a monoid homomorphism. If R is S-compatible and lower nil (S, ω)-Armendariz,
then for each elements f1, . . . , fn in R[[S, ω, ≤]] such that f1f2 · · · fn ∈ Niℓ∗(R)[[S, ω, ≤]],
we have f1(s1)f2(s2) · · · fn(sn) ∈ Niℓ∗(R), where si ∈ S for each i.

Theorem 2.4. Let R be a ring, (S, ≤) a strictly ordered monoid and also ω : S →
End(R) a monoid homomorphism. If R is S-compatible, then the ring R is lower nil
(S, ω)-Armendariz if and only if the factor ring R/Niℓ∗(R) is (S, ω̄)-Armendariz, where
ω̄ : S → End(R/Niℓ∗(R)) is the induced monoid homomorphism.

Theorem 2.5. Let R be a ring, (S, ≤) a strictly ordered monoid and also ω : S → End(R)
a monoid homomorphism. If R is S-compatibe and lower nil (S, ω)-Armendariz ring, then
Niℓ∗(R) = Niℓ∗(R).
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Proposition 2.6. Let R be a ring, (S, ≤) a strictly ordered monoid and also ω : S →
End(R) a monoid homomorphism. If a nil ring R is S-compatible and lower nil (S, ω)-
Armendariz, then it is a prime radical ring.

Let R be any ring, (S, ≤) a strictly ordered monoid and also ω : S → End(R) a
monoid homomorphism. Recall that a subset P ⊆ R is S-stable if for every s ∈ S we have
ωs(P ) = P . Moreover, an ideal I of a ring R is S-compatible (or (S, ω)-compatible) if for
all a, b ∈ R and each s ∈ S, ab ∈ I if and only if aωs(b) ∈ I.

Proposition 2.7. Let R be a ring, (S, ≤) a strictly ordered monoid and also ω : S →
End(R) a monoid homomorphism. If I is S-stable ideal of R such that I ⊆ Niℓ∗(R), then
the ring R is lower nil (S, ω)-Armendariz if and only if the factor ring R/I is lower nil
(S, ω̄)-Armendariz, where ω̄ : S → End(R/I) is the induced monoid homomorphism.

Proposition 2.8. Let R be any ring, (S, ≤) a strictly ordered monoid and ω : S → End(R)
a monoid homomorphism such that R is S-compatible. If Niℓ∗(R) is S-compatible and R
is lower nil (S, ω)-Armendariz ring, then Niℓ(R) forms a subrng of R.

The study of nil rings is one of the central topics in noncommutative ring theory
because of the famous Köthe’s conjecture which posits that a ring with no non-zero nil
(two-sided) ideals has no non-zero nil one-sided ideals either. This problem has been open
since 1930. We have the following related result.

Corollary 2.9. Let R be any ring, (S, ≤) a strictly ordered monoid and ω : S → End(R)
a monoid homomorphism. If R is S-compatible and lower nil (S, ω)-Armendariz ring and
also Niℓ∗(R) is S-compatible, then R satisfies the Köthe’s conjecture.

Hence by considering the monoid ring R[S], we conclude that for a strictly ordered
monoid (S, ≤), each lower nil S-Armendariz ring satisfies the Köthe’s conjecture.
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Abstract

In this talk, we intend to investigate the Baer invariants of certain class of groups
with respect to the variety of polynilpotent groups of class row (c1, c2), when (c2 +
1)n − (c2 + 1) < c1. Moreover, an explicit formula for the Baer invariant of direct
product of two finite cyclic groups with respect to the variety of metabelian groups is
also given.

Keywords: Baer invariant, Nilpotent product, Basic commutator
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1 Introduction

Let Nc1,c2 be the variety of polynilpotent groups of class row (c1, c2), and G be an arbitrary
group with a free presentation

1→ R→ F → G→ 1.

The Baer invariant of G with respect to the variety of polynilpotent groups of class row
(c1, c2), is defined to be

Nc1,c2M(G) ∼= R ∩ γc2+1(γc1+1(F ))

[R, c1 F, c2 γc1+1(F )]
.

The Baer invariant of G with respect to this variety, is called a (c1, c2) polynilpotent mul-
tiplier.

Now let {Aλ}λ∈Λ be a family of cyclic groups and A be the free product of this family.
n− nilpotent product of {Aλ}λ∈Λ is defined as follows,

n∗∏

λ∈Λ

Aλ =
A

γn+1(A)
.

Assume that
Zr =< x | xr = 1 > , Zs =< y | ys = 1 >
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be two cyclic groups of orders r and s, respectively. Also consider the following free
presentations for Zr and Zs where Zr ∼= F1

R1
and Zs ∼= F2

R2
such that F1 =< x >, F2 =<

y >, F = F1 ∗ F2, R1 =< xr >F1 and R2 =< ys >F2 . It is easy to check that

Zr
n∗ Zs =< x, y | xr, ys, γn+1(F ) >,

is a free presentation for Zr
n∗ Zs which is denoted by G(r,s,n).

Now put S =< R1, R2 >
F , and R = Sγn+1(F ). With this notations Zr

n∗ Zs ∼= F
R .

The following theorems are vital in our main results.

Theorem 1.1. (P.Hall [4]). Let F =< x1, x2, . . . , xt > be a free group, then

γn(F )

γn+i(F )
, 1 ≤ i ≤ n

is the free abelian group freely generated by the basic commutators of weights n, n +
1, . . . , n+ i− 1 on the letters {x1, . . . , xt}.

Theorem 1.2. (Witt Formula [4]). The number of basic commutators of weight n on
t generators is given by the following formula:

χn(t) =
1

n

∑

m|n
µ(m)tn/m

where µ(m) is the Mobious function, and defined to be

µ(m) =





1 if m = 1,
0 if m = pα1

1 . . . pαkk ∃αi > 1,
(−1)s if m = p1 . . . ps.

In this talk we find the structure of (c1, c2)−polynilpotent multiplier of the group
G(r,s,n) under some conditions.

2 The Main Results

In this section, we intend to investigate the structure of

Nc1,c2M(G(r,s,n)),

where c2 < 5 and (c2 + 1)n− (c2 + 1) < c1.
Clearly the Baer invariant of G(r,s,n) with respect to the variety of polynilpotent groups

of class row (c1, c2), is as follows.

Nc1,c2M(G(r,s,n)) ∼=
Sγn+1(F ) ∩ γc2+1(γc1+1(F ))

[Sγn+1(F ), c1 F, c2 γc1+1(F )]
.
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Now, let ρc1+1(S) = [S, c1 F ] for c1 ≥ 0, then we have

Nc1,c2M(G(r,s,n)) ∼=
γc2+1(γc1+1(F ))

[ρc1+1(S)γc1+n+1(F ), c2 γc1+1(F )]

∼= γc2+1(γc1+1(F ))/[γc1+n+1(F ), c2 γc1+1(F )]

[ρc1+1(S)γc1+n+1(F ), c2 γc1+1(F )]/[γc1+n+1(F ), c2 γc1+1(F )] .

In [2] We have determined the structure of the factor group
γc2+1(γc1+1(F ))

[γc1+n+1, c2 γc1+1(F )] . One notes

that the main problem is to find the structure of the factor group
[ρc1+1(S)γc1+n+1(F ), c2γc1+1(F )]

[γc1+n+1(F ), c2γc1+1(F )] .

In order to find the structure of Nc1,c2M(Zr
n∗ Zs), we need the following notations and

theorems.
Let d = (r, s), Y be the set of all basic commutators on X of weights c1 + 1, . . . , c1 +n

and Lj be the set of all dth powers of the basic commutators on Y of weight j.

Theorem 2.1. If (c2 + 1)n− (c2 + 1) < c1 then we have

[ρc1+1(S)γc1+n+1(F ), c2 γc1+1(F )] ≡ < Lc2+1 > (mod [γc1+n+1(F ), c2 γc1+1(F )]).

The following theorem is proved in [2].

Theorem 2.2. There exists a set of basic commutators on X,Zc2+1 say; with

[γc1+n+1(F ), c2 γc1+1(F )] ⊆< Zc2+1 > modulo γ(c2+1)c1+(c2+1)n+2(F ),

and Zc2+1 ∩Mc2+1 = ∅.

Now, we are in a position to prove the following important theorem.

Theorem 2.3. With the above notation and assumption, if c2 < 5 and (c2 + 1)n −
(c2 + 1) < c1, then

[ρc1+1(S)γc1+n+1(F ), c2 γc1+1(F )]

[γc1+n+1(F ), c2 γc1+1(F )]
,

is a free abelian group with the following basis

Lc2+1 = {l[γc1+n+1(F ), c2 γc1+1(F )] | l ∈ Lc2+1}.

The immediate consequence of the Theorems 2.1 and 2.2 is as follows.

Theorem 2.4. With the above notations, if c2 < 5 then
(i) For each odd integers r and s,

Nc1,c2M(G(r,s,2)) ∼= Zd ⊕ . . .⊕ Zd (χc2+1(
2∑

i=1

χc1+i(2))− copies),

in which c2 + 1 < c1.
(ii) For all non negative integers r and s, which are not divisible by 2 and 3, then

Nc1,c2M(G(r,s,3)) ∼= Zd ⊕ . . .⊕ Zd (χc2+1(

3∑

i=1

χc1+i(2))− copies),
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where 2c2 + 2 < c1.
(iii) For all non negative integers r and s, which are not divisible by 2 and 3, then

Nc1,c2M(G(r,s,4)) ∼= Zd ⊕ . . .⊕ Zd (χc2+1(

4∑

i=1

χc1+i(2))− copies),

where 3c2 + 3 < c1.

In the end of this talk we state the following interesting results. Note that S2 is the
variety of metabelian groups is in fact the variety of polynilpotent groups of class row
(1, 1).

Corollary 2.5. Let r and s be two arbitrary positive integers. Then for each (c2 +
1)n− (c2 + 1) < c1 and c2 < 5 we have

Nc1,c2M(Zr × Zs) ∼= Zd ⊕ . . .⊕ Zd (χc2+1(χc1+1(2))− copies),

in which d = (r, s). In particular

S2M(Zr × Zs) ∼=< 1 > .

Corollary 2.6. If (r, s) = 1 then for any n

Nc1,c2M(G(r,s,n)) ∼=< 1 >,

where c2 < 5 and (c2 + 1)n− (c2 + 1) < c1.
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Behavior of Prime (Ideals)Filters of Hyperlattices under the
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Abstract

The purpose of this note is the study of some lattice properties such as distribu-
tivity and dual distributivity under the fundamental relation. Also, we investigate the
behavior of prime (resp. ideals) filters under fundamental relation in hyperlattices. In
particular, we construct a one to one correspondence between the prime (resp. ideals)
of a hyperlattice L containing ωφ, the heart of L, and the prime (resp. ideals) filters
of the fundamental lattice L\ε∗.

Keywords: Hyperlattice, Prime filter, Fundamental relation

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Hyperstructures theory was first introduced by F. Marty in the eighth congress of Scan-
dinavians in 1934 [8]. This theory has been developed in various fields. R. Ameri and
Zahedi in [1] introduced and studied hyperalgebraic systems as a general form of algebraic
hyperstructures; R. Ameri and Nozari studied relationship between the categories of mul-
tialgebra and algebra [2]. Also, Ameri and Rosenberg studied congruences and strongly
congruences of multialgebras [3]. The theory of hyperlattices, as a class of multialgebras,
was introduced by Konstantinidou in [6]. Rahnemaei Barghi considered the prime ideal
theorem for distributive hyperlattices in [9]. In [5], B. B. N. Koguep, C. Nkuimi, and C.
Lele studied fuzzy ideals(filters) in hyperlattices. Rasouli and Davvaz in [10] introduced
and studied fundamental relation on hyperlattices. In this note, we studied prime (resp.
ideals) and filters. Also, we use the fundamental relation ε∗ on a given hyperlattice L,
as the smallest equivalence relation on L, such that the quotient L\ε∗ is a lattice, and
study the behavior of (rep. dual)distributivity under this quotient. Also, we study the
relationship prime filters and ideals of L and fundamental lattice L\ε∗.

Recall that for a nonempty set H, a hyperoperation on H is a mapping from H ×H
into P ?(H), where P ?(H) is the set of all nonempty subsets of H.

Definition 1.1. [6] Let L be a nonempty set, ” ∧ ” be a binary operation, and ” ∨ ” be
a hyperoperation on L. Then L is called a hyperlattice, if for all a, b, c ∈ L the following
conditions hold:
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L1) a ∈ a ∨ a, and a ∧ a = a;
L2) a ∨ b = b ∨ a, and a ∧ b = b ∧ a;
L3) a ∈ [a ∧ (a ∨ b)] ∩ [a ∨ (a ∧ b)];
L4) a ∨ (b ∨ c) = (a ∨ b) ∨ c, and a ∧ (b ∧ c) = (a ∧ b) ∧ c;
L5) a ∈ a ∨ b =⇒ a ∧ b = b.

In the natural way, we can extend ” ∧ ” and ” ∨ ” to subsets of L as follows:

A ∨B = ∪{a ∨ b | a ∈ A, b ∈ B},
A ∧B = {a ∧ b | a ∈ A, b ∈ B},

where A,B ∈ P ?(L).
A nonempty subset I of L is an ideal, if the following conditions hold:

(i) If a, b ∈ I, then a ∨ b ⊆ I;
(ii) If a ∈ I, b ≤ a, and b ∈ L, then b ∈ I.

An ideal I is a prime ideal, if a ∧ b ∈ I, then a ∈ I or b ∈ I, for all a, b ∈ L. Also, a
nonempty subset F of L is a filter, if the following conditions hold:
(i) If a, b ∈ F , then a ∧ b ∈ F ;
(ii) If a ∈ F , a ≤ b, and b ∈ L, then b ∈ F .

A filter F is a prime filter if (a ∨ b) ∩ F 6= ∅, then a ∈ F or b ∈ F for all a, b ∈ L.
A hyperlattice L is distributive, if for all a, b, c ∈ L:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

for more see [9])

Example 1.2. [5] Let L = {0, a, b, 1}. ” ∧ ” and ” ∨ ” are given with Table 1. Then
(L,∨,∧, 0, 1) is a distributive hyperlattice.

∧ 0 a b 1

0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

(a)

∨ 0 a b 1

0 {0} {a} {b} {1}
a {a} {0, a} {1} {b, 1}
b {b} {1} {0, b} {a, 1}
1 {1} {b, 1} {a, 1} L

(b)

Table 1

2 Fundamental relation and primeness

Let R be a reflexive and symmetric relation on a nonempty set L. As it is well known
the transitive closure of R is the smallest equivalence relation which containing R and it
is denoted by R?. Therefore,

xR?y ⇐⇒ ∃n ∈ N,∃(x1, x2, ..., xn) ∈ Ln
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such that xRx1Rx2R...xnRy.
Let L be a hyperlattice. Then ε?, the smallest equivalence relation on L, such that the

quotient L/ε? is a lattice is called the fundamental relation on L and the quotient L/ε? is
said to be fundamental lattice of L. Let X be a nonempty subset of L and Σ(X) denote
the set of all finite combinations respect to ”∨” and ”∧”. For example, if X = {x, y}, then
Σ(X) = {x ∨ y, x ∧ y, (x ∧ y) ∨ x, (x ∧ (y ∨ x)) ∨ x, ...} (for more details see [10]).

Letting ε1 = {(x, x)|x ∈ L}, and for every integer n > 1, define the relation εn as
follows:

xεny ⇐⇒ ∃(z1, z2, ..., zn) ∈ Ln, ∃z ∈ Σ({z1, z2, ..., zn}) : {x, y} ⊆ z.
Obviously, for n > 1, the relations εn are symmetric, and the relation ε =

⋃
n>1 εn is

reflexive and symmetric. Let ε? be the transitive closure of ε. [10].

Definition 2.1. [10] Let (L,∨,∧) be a hyperlattice and R be an equivalence relation on
L. Define hyperoperations ⊕,⊗ : L/R× L/R −→ P ∗(L/R) as follows:

R(x)⊗R(y) = R(x ∧ y),

and
R(x)⊕R(y) = R(x ∨ y).

Clearly, if X and Y are nonempty subsets of L, then R(X) ⊗ R(Y ) = R(X ∧ Y ) and
R(X)⊕R(Y ) = R(X ∨ Y ).

Theorem 2.2. If L is a distributive (resp. dual distributive) hyperlattice, then L/ε? is
so.

Remark 2.3. The converse of Theorem 2.2, is not true. Because consider (L,∨,∧) as a
non-distributive lattice. Then define a ⊕ b = L, for all a, b ∈ L. clearly, L/ε? = (0), is
distributive, since ∀a, b ∈ L, aε?b, (a, b ∈ a⊕ b = L).

Theorem 2.4. If P is a prime filter (resp. ideal), then P/ε? is so.

Lemma 2.5. Let L and K be hyperlattices and f : L −→ K be a good homomorphism.
(i) If P is a prime ideal of L and f is onto, then
f(P ) is a prime ideal in K.
(ii)

Lemma 2.6. Let L be a hyperlattice and φL : L −→ L/ε? define by φL(x) = ε?(x), for all
x ∈ L. Then φL is an onto good homomorphism and it is called canonical map.

Theorem 2.7. If P is a prime filter (resp. ideal) of L, then φL(P ) is a prime filter (resp.
ideal) of L/ε? and φL(P ) = P/ε?.

Is the converse of Theorem 2 true Precisely, is every prime filter (resp. ideal) Q in
L/ε? is to the form P/ε?, where P is a prime filter (resp. ideal) of L.
By Lemma 2.5, (φL)−1(Q) is a prime filter of L. Let (φL)−1(Q) = P . Then φL(φL)−1(Q) =
φ(P ). So, Q = P/ε?.

We know that (φL)−1(Q) = {x ∈ L | ε?(x) ∈ Q}. We define ωφL = (φL)−1(0) = {x ∈
L | ε?(x) = 0 = ε?(0)}. It is clear that ωφL ⊆ (φL)−1(Q) where, Q is a prime ideal of L/ε?.

Theorem 2.8. [Correspondence Theorem] There is a correspondence between the set
all of prime ideals of L and the prime ideals of L/ε? that contains ωφL
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Abstract

It is shown that for a capable group G, the index of the center is bounded above by
the function |G′|2log2|G′|. In this talk, we intend to determine the sufficient conditions
for capability of a group G which satisfies this inequality.
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1 Introduction

In 1938, Bare[1] initiated a systematic investigation of the question which conditions a
group G must fulfill in order to be the group of inner automorphisms of some group E
(G ∼= E/Z(E)). Following M. Hall and Senior [5] such a group G is called capable. Baer
classified capable groups that are direct sums of cyclic groups. His characterisation of
finitely generated abelian groups that are capable is given in the following theorem.

Theorem 1.1. [1]. Let G be a finitely generated abelian group written as G = Zn1 ⊕Zn2 ⊕
· · · ⊕ Znk

, such that each integer ni + 1 is divisible by ni, where Z0 = Z, the infinite cyclic
group. Then G is capable if and only if k ⩾ 2 and nk−1 = nk.

In 1940, P. Hall [4] introduced the concept of isoclinism of groups, which is one of the
most significant methods for classification of groups. He showed that capable groups play
an important role in characterizing p-groups. Also, capability has interesting connections
to other branch of group theory. So some authors studied different aspects of capable
groups. One of the interesting aspects is finding a relation between the index of Z(G) and
the order of G

′
in a capable group G.

Understanding the relationship between G/Z(G) and G′ goes back at least to 1904
when I. Schur[11] proved that the finiteness of G/Z(G) implies the finiteness of G′. Infinite
extra-special p-groups show that the converse of Schur’s theorem does not hold in general.
Isaacs [6] proved that if G is a finite capable group, then |G/Z(G)| is bounded above by
a function of |G′ |. Podoski and Szegedy [8] extended Isaac’s result and gave the following
explicit bound for the index of the center in a capable group.
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Theorem 1.2. If G is a capable group and |G′| = n, then |G/Z(G)| ≤ n2log2n.

Now, one should notice that the extra-special p-groups of order p3 and exponent
p2 satisfy the inequality, but these groups are not capable. Therefore, the inequality

|G/Z(G)| ≤ |G′ |2log2|G′ | is a necessary condition for capability of groups with finite de-
rived subgroup, whereas it is not a sufficient condition.

Definition 1.3. Let χ denote a class of groups satisfying the inequality |G/Z(G)| ≤ |G′ |2.

It is clear that, each group in the class χ has the necessary condition for capability.
Now, we intend to determine the sufficient conditions for capability of some groups belong
to the class χ.

2 Main results

In this section, we introduce three subclasses of groups which belong to the class χ. Then,
we intend to determine capable groups among them.

Theorem 2.1. [7, Theorem A] Let G be a finite non-abelian group with all Sylow subgroups
abelian. Then |G/Z(G)| < |G′ |2.

The first subclass of desirable capable groups is as follows.

Theorem 2.2. Let G be a finite group with all Sylow subgroups abelian. If G/G
′

is a
capable group, then so is G.

Example 2.3. Let G = (⊕t
1Zp) ⋉ Zq, where p and q are two distinct prime and t ⩾ 2.

Using Lemma 2.2, one can see that G is a capable group.

Theorem 2.4. Let G be a soluble group all of whose Sylow subgroups are abelian and the
smallest term of the lower central series of G is abelian. If the system normalizer of G is
capable, then G too is capable.

The second subclass of the class χ is obtained by the following theorem.

Theorem 2.5. [3] Let G be a group such that G
′
is finite and ϕ(G) = 1. Then |G/Z(G)| ≤

|G′ |2.

Theorem 2.6. Let G be a group such that G
′
is finite and ϕ(G) = 1. If G/G

′
is a capable

group, then so is G.

Theorem 2.7. Let G be a finite group with the abelian derived subgroup and ϕ(G) = 1.
If the complement of G

′
is capable, then G is capable.

Beyl et al. [2] proved that every finite group G having a cyclic normal subgroup of
order m with cyclic factor group of order n has a presentation

G(m,n, r, s) = ⟨x, y;xm = 1, y−1xy = xr, yn = xs⟩,

where r and s are positive integer satisfying rn ≡ 1 (mod m) and (m, 1+r+ . . .+rn−1) ≡ 0
(mod s). They also described a finite capable metacyclic group G(m,n, r, s) as follows.
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Theorem 2.8. [2, Corollary 9.3] The group G(m,n, r, s) is capable if and only if s = m
and n is the smallest positive integer satisfying 1 + r + . . . + rn−1 ≡ 0 (mod m).

The third subclass of the class χ is obtained by the following theorem.

Theorem 2.9. [7, Theorem B] Let G be a finite non-abelian group such that G/G′ is
cyclic. Then |G/Z(G)| < |G′ |2.

The exact structure of some groups with cyclic abelianization is given in the following
lemmas.

Theorem 2.10. [10, 10.26] Let G be a finite group such that all Sylow subgroups of G
are cyclic. Then G

′
and G/G

′
are both cyclic. So that G is metacyclic, G splits over G

′
,

and G
′
is a Hall subgroup of G.

Theorem 2.11. [9, 10.1.10] If G is a finite group such that all of whose Sylow subgroups
are cyclic, then G has a presentation

⟨a, b|am = 1 = bn, b−1ab = ar⟩,

where rn ≡ 1 (mod m), m is odd, 0 ≤ r < m, and m and n(r−1) are coprime. Conversely
in a group with such a presentation all Sylow subgroups are cyclic.

Thus, the set of finite groups with all Sylow subgroups cyclic is a subclass of the class
χ. Moreover, using Lemmas 2.8 and 2.11, one can describe the exact structure of capable
groups in this set.
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Characterizations of interior hyperideals of semihypergroups

towards fuzzy points
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Abstract

Using a generalized version of the notion of quasi-coincidence of a fuzzy point, we
discuss on a generalization of (∈,∈ ∨q)-fuzzy interior hyperideal, called (∈,∈ ∨qk)-
fuzzy interior hyperideal in a semihypergroup. Also, we characterize this notion in
different ways. Specially, by using a fuzzy subset of a semihypergroup, we discuss on
the generated (∈,∈ ∨qk)-fuzzy interior hyperideal.

Keywords: Semihypergroup, Interior hyperideal, Quasi-coincidence, (∈,∈ ∨qk)-fuzzy
interior hyperideal

Mathematics Subject Classification [2010]: 20N20, 08A72

1 Preliminaries and Notations

In this section, for the purpose of reference, we present some definitions and results about
semihypergroups and fuzzy sets on which our research in this paper is based.

A hypergroupoid [1] is a non-empty set S together with a map · : S × S −→ P∗(S)
where P∗(S) denotes the set of all the non-empty subsets of S. The image of the pair
(x, y) is denoted by x · y. If x ∈ S and A,B are non-empty subsets of S, then A · B is
defined by A · B = ∪a∈A,b∈Ba · b. Also A · x is used for A · {x} and x · A for {x} · A. A
hypergroupoid (S, ·) is called a semihypergroup if (x ·y) · z = x · (y · z), for all x, y, z ∈ S. A
non-empty subset I of a semihypergroup S is called a subsemihypergroup if I · I ⊆ I. A
subsemihypergroup I of a semihypergroup S is called interior hyperideal if, for all x, y ∈ S
and a ∈ I, we have x ·a ·y ⊆ I. Let S and S′ be semihypergroups. A function f : S −→ S′

is called a homomorphism if it satisfies the condition f(x ·y) = f(x) ·f(y), for all x, y ∈ S.
According to [6], a function µ : X −→ [0, 1] is called a fuzzy subset of X. Let f be

a mapping from a set X to a set Y and µ, λ be fuzzy subsets of X and Y , respectively.
Then the homomorphic preimage f−1(λ) and homomorphic image f(µ) are fuzzy sets in
X and Y , respectively, defined by f−1(λ)(x) = λ(f(x)) and

f(µ)(y) =

{
sup{µ(x) | x ∈ f−1(y)} if f−1(y) 6= ∅,
0 otherwise,

for all x ∈ X and y ∈ Y .
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Definition 1.1. [3] Let S be a semihypergroup and µ a fuzzy subset of S. Then µ is said
to be a fuzzy interior hyperideal of S if, for all a, x, y ∈ S, the following axioms hold:

(1) ∧z∈x·yµ(z) ≥ µ(x) ∧ µ(y),
(2) ∧z∈x·a·yµ(z) ≥ µ(a).

Theorem 1.2. [3] Let µ be a fuzzy subset of a semihypergroup S. Then µ is a fuzzy
interior hyperideal of S if and only if, for every t ∈ (0, 1], each non-empty level subset
µt = {x ∈ S | µ(x) ≥ t} of µ is an interior hyperideal of S.

Let x ∈ S and t ∈ (0, 1]. A fuzzy set µ of a semihypergroup S of the form

µ(y) =

{
t if y = x,
0 otherwise,

is said to be a fuzzy point [2] with support x and value t and is denoted by [x; t]. A fuzzy
point [x; t] is said to belong to (resp. to be quasicoincident with) a fuzzy subset µ, written
as [x; t] ∈ µ (resp. [x; t]qµ), if µ(x) ≥ t (resp. µ(x) + t > 1). If [x; t] ∈ µ or [x; t]qµ, then
we write [x; t] ∈ ∨qµ. We write [x; t]αµ, if [x; t]αµ does not hold, for α ∈ {∈, q,∈ ∨q}.

Let t ∈ (0, 1] and k ∈ [0, 1). For a fuzzy point [x; t] and a fuzzy subset µ of a
semihypergroup S, we write [x; t]qkµ, if µ(x) + t + k > 1 and [x; t] ∈ ∨qkµ, if [x; t] ∈ µ
or [x; t]qkµ. We write [x; t]qµ if µ(x) + t ≥ 1, [x; t]q

k
µ if µ(x) + t + k ≥ 1 and [x; t]αµ if

[x; t]αµ does not hold, for α ∈ {qk, qk,∈ ∨qk}.
Definition 1.3. [4] Let µ be a fuzzy subset of a semihypergroup S and t ∈ (0, 1] and
k ∈ [0, 1). Then the set Q(µ; t) := {x ∈ S | [x; t]qµ} is called closed q- level subset of S, the
set Qk(µ; t) := {x ∈ S | [x; t]qkµ} is called the qk-level subset of S, the set Q

k
(µ; t) := {x ∈

S | [x; t]q
k
µ} is called closed qk-level subset of S, the set Uk(µ; t) := {x ∈ S | [x; t] ∈ ∨qkµ}

is called (∈ ∨qk)- level subset of S, and the set Uk(µ; t) := {x ∈ S | [x; t] ∈ ∨q
k
µ} is called

closed (∈ ∨qk)-level subset of S.

2 Main Results

In what follows let S denote a semihypergroup and k an arbitrary element of [0, 1) unless
otherwise specified. In this section, we concentrate on the notion of (∈,∈ ∨qk)-fuzzy
interior hyperideal and give various characterizations of it.

Definition 2.1. [5]A fuzzy subset µ of S is called an (∈,∈ ∨qk)-fuzzy interior hyperideal
of S if, for any x, a, y ∈ S and t, r ∈ (0, 1]

(I1) [x; t] ∈ µ, [y; r] ∈ µ =⇒ [z; t ∧ r] ∈ ∨qkµ, for all z ∈ x · y

(I2) [a; t] ∈ µ =⇒ [w; t] ∈ ∨qkµ, for all w ∈ x · a · y

where t ∧ r = min{t, r}.
Example 2.2. Let S = {a, b, c, d, e}. Then (S, ·) is a semigroup, where · is defined by the
Table 1.

It is a routine to check that (S,�) is a semihypergroup where the hyperoperation � is
defined by x� y = {a, x · c · y, x · d · y}, for all x, y ∈ S. Now, if µ(a) = µ(b) = µ(d) = 0.9,
µ(c) = 0.8 and µ(e) = 0.6, then it is easy to verify that µ is an (∈,∈ ∨q0.6)-fuzzy interior
hyperideal of (S,�).
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Table 1: Tabl of Example 2.2

· a b c d e

a a a a a a
b a a a a a
c a a c c e
d a a d d e
e a a c c e

Theorem 2.3. [5]A fuzzy subset µ of S is an (∈,∈ ∨qk)-fuzzy interior hyperideal of S if
and only if the following conditions hold:

1. ∧z∈x·yµ(z) ≥ µ(x) ∧ µ(y) ∧ 1−k
2 , for all x, y ∈ S;

2. ∧z∈x·a·yµ(z) ≥ µ(a) ∧ 1−k
2 , for all x, a, y ∈ S.

In the next theorem, we characterize (∈,∈ ∨qk)-fuzzy interior hyperideals based on
∈-level sets.

Theorem 2.4. A fuzzy subset µ of S is an (∈,∈ ∨qk)-fuzzy interior hyperideal of S if
and only if the set µt( 6= ∅) is an interior hyperideal of S, for all t ∈ (0, 1−k2 ].

We say that µt is an ∈-level interior hyperideal of µ in S.
In the following theorem, we investigate some equivalent conditions for µt as an interior

hyperideal.

Theorem 2.5. For a fuzzy subset µ of S, the following assertions are equivalent:

1. µt(6= ∅) is an interior hyperideal of S, for all t ∈ (1−k2 , 1].

2. µ satisfies the following conditions:

(2.1) ∧z∈x·y(µ(z) ∨ 1−k
2 ) ≥ µ(x) ∧ µ(y), for all x, y ∈ S.

(2.2) ∧z∈x·a·y(µ(z) ∨ 1−k
2 ) ≥ µ(a), for all x, a, y ∈ S.

In the next theorem, we characterize (∈,∈ ∨qk)-fuzzy interior hyperideals based on
closed qk-level sets.

Theorem 2.6. Let µ be an (∈,∈ ∨qk)-fuzzy interior hyperideal of S. Then Q
k
(µ; t)(6= ∅)

is an interior hyperideal of S, for all t ∈ (1−k2 , 1].

Now, we characterize (∈,∈ ∨qk)-fuzzy interior hyperideals based on closed ∈ ∨qk-level
sets.

Theorem 2.7. A fuzzy subset µ of S is an (∈,∈ ∨qk)-fuzzy interior hyperideal of S if
and only if Uk(µ; t)(6= ∅) is an interior hyperideal of S, for all t ∈ (0, 1].

Corollary 2.8. A fuzzy subset µ of S is an (∈,∈ ∨qk)-fuzzy interior hyperideal of S if
and only if Uk(µ; t)(6= ∅) is an interior hyperideal of S, for all t ∈ (0, 1].
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We say that Uk(µ; t) is an ∈ ∨qk-level interior hyperideal of µ in S.
In the next theorem, we investigate the behavior of (∈,∈ ∨qk)-fuzzy interior hyperideals

under the homomorphisms of semihypergroups.

Theorem 2.9. Let f : S1 → S2 be a semihypergroup homomorphism and µ and λ be
(∈,∈ ∨qk)-fuzzy interior hyperideal of S1 and S2, respectively. Then:

(i) f−1(λ) is an (∈,∈ ∨qk)-fuzzy interior hyperideal of S1.

(ii) If f is onto and µ is f -invariant (f(x) = f(y) implies that µ(x) = µ(y)), then f(µ)
is an (∈,∈ ∨qk)-fuzzy interior hyperideal of S2.

Theorem 2.10. For any chain I0 ⊆ I1 ⊆ · · · ⊆ In = S of interior hyperideals of S there
exists an (∈,∈ ∨qk)-fuzzy interior hyperideal of S whose ∈-level interior hyperideals are
precisely the members of the chain.

Definition 2.11. Let S be a semihypergroup and X a subset of S. Let {Hi}i∈I be the
family of all subsemihypergroups of S which contain X. Then ∩i∈IHi is called the sub-
semihypergroup of S generated by the set X and denoted by 〈X〉. If X = {a1, a2, · · · , an},
we write 〈a1, a2, · · · , an〉 in place of 〈X〉. If a1, a2, · · · , an ∈ S and S = 〈a1, a2, · · · , an〉, S
is said to be finitely generated. If a ∈ S and S = 〈a〉, then S is said to be cyclic. It is
not difficult to see that, for every a ∈ S, 〈a〉 = {a} ∪ a2 ∪ a3 ∪ · · · .

Theorem 2.12. Let S be a semihypergroup and assume that there exists an element a ∈ S
such that S = 〈a〉. If µ is an (∈,∈ ∨qk)-fuzzy interior hyperideal of S such that µ(a) ≥ 1−k

2 ,

then µ(x) ≥ 1−k
2 , for all x ∈ S.
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Abstract

Let G be a finite non-abelian p-group and Autc(G) denote the group of all class
preserving automorphisms of G. In this paper, using the notion of Frattinian groups,
we give necessary condition for finite p-groups G for the groups Autc(G) and Inn(G)
coincide when (G,Z(G)) is a Camina pair.
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1 Introduction

Let G be a finite p-group. For x ∈ G, xG denotes the conjugacy class of x in G. By Aut(G)
we denote the group of all automorphisms of G. An automorphism α of G is called class
preserving if α(x) ∈ xG for all x ∈ G. We let Autc(G) denote the set of all class preserving
automorphisms of G. The group Autc(G) have been studied by several authors, see for
example [3, 4, 10], [12, 13] . It is well known that if G is a finite p-group, then so is the
group Autc(G), In this paper we study closely the groups Autc(G) for a finite non-abelian
p-group G. We give necessary condition for finite p-groups G for the groups Autc(G) and
Inn(G) coincide when (G,Z(G)) is a Camina pair. Throughout the paper all groups are
assumed to be finite groups.

2 Main results

In this section we give some known results which will be used in the rest of the paper.
Let G be a finite p-group. Following Schmid, we call G Frattinian provided Z(G) 6=

Z(M) for all maximal subgroups M of G. In [11], P. Schmid proved the following structural
theorem for the Frattinian groups.

Theorem 2.1 ([11]). Suppose G is a non-abelian Frattinian p-group. Then one of the
following holds:

(i) G is the central product of non-abelian p-groups of order p2|Z(G)|, amalgamating
their centres.
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(ii) G = E∗F is the central product of Frattinian subgroups E and F with CF (Z(Φ(F ))) =
Φ(F ), E = CG(F ) and Φ(E) ≤ Z(G).

It is worth noting that in case (i) of the above theorem the factors of the central product
are minimal non-abelian p-groups. Accordingly, in this case we have Z(G) = Φ(G). Also
in (ii) either E = Z(G) (and therefore G = F ) or E is a central product as in (i).

Camina groups were introduced by A.R. Camina in [2] and were studied in past (see
for example [5, 6, 7, 8, 9]). Let G be a finite p-group and N be non-trivial proper normal
subgroup of G. Then (G,N) is called a Camina pair if xN ⊆ xG for all x ∈ G−N , where
xG denotes the conjugacy class of x in G. It follows that (G,N) is a Camina pair if and
only if N ⊆ [x,G] for all x ∈ G−N , where [x,G] = {[x, g]|g ∈ G}.
We start with a result of I. D. Macdonald [6].

Theorem 2.2 ([6], Theorem 2.2). Let (G,H) be a Camina pair, let H = Z(G), and let
G have class c. Then Zr(G)/Zr−1(G) has exponent p whenever 1 ≤ r ≤ c.

Theorem 2.3. Let G be a finite p-group such that (G,Z(G)) is a Camina pair and
Autc(G) = Inn(G). Then one of the following holds.

(i) G is extraspecial.

(ii) Z2(G) is abelian and CG(Z2(G)) = Φ(G).

(iii) G = EF , where E = CG(F ), Z2(F ) ≤ Φ(F ), Z2(F ) is abelian, CG(Z2(F )) = Φ(F )
and both E,F are Frattinian p-groups. Moreover E = E1...Es, |Ei| = p3 for all
1 ≤ i ≤ s.
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Congruence on a ternary monoid generated by a relation
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Abstract

In this paper we define the notion of congruence on a ternary monoid generated
by a relation and we determine the method of obtaining a congruence on a ternary
monoid T from a relation R on T . Making of congruences is important because we
can gain new ternary monoid from them.

Keywords: Ternary monoid, Relation, Congruence
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1 Introduction

The theory of ternary algebraic systems was introduced by D. H. Lehmer [3] in 1932, but
before that (1904) such structures were studied by E. Kanser [2] who gave the idea of n-ary
algebras. Lehmer studied certain ternary algebraic systems called triplexes, commutative
ternary groups, in fact. Ternary structures and their generalization, the so called n-ary
structures, are outstanding for their application in physics. The notion of congruence
was first introduced by Karl Fredrich Gauss in the beginning of the nineteenth century.
Congruences are a special type of equivalence relations which play a vital role in the
study of quotiont structures of different algebraic structures. In this paper we define the
notion of congruence on a ternary monoid generated by a relation and we determine the
method of obtaining a congruence on a ternary monoid T from a relation R on T . Making
of congruences is important because we can gain new ternary monoid (in fact quotiont
monoids) from them. The first we express some primary notions.

Definition 1.1. A non-empty set T is called a ternary semigroup if there exists a ternary
operation T × T × T → T , written as (a, b, c) → abc satisfying the following statement:
(abc)de = a(bcd)e = ab(cde) for all a, b, c, d, e ∈ T .

Definition 1.2. An element e of a ternary semigroup T is called,
(i) a left identity (left unital element) if eex = x for all x ∈ T ;
(ii) a right identity (right unital element) if xee = x for all x ∈ T ;
(iii) a lateral identity (lateral unital element) if exe = x for all x ∈ T ;
(iv) a two-sided identity (bi-unital element) if eex = xee = x for all x ∈ T ;
(v) an identity (unital element) if eex = exe = xee = x for all x ∈ T .
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Remark 1.3. There is no need any ternary semigroup to have unique identity. For
example Z, the set of all integers, with usual ternary multiplication of integers is a ternary
semigroup and both of 1 and -1 are identity elements of Z.

Definition 1.4. A ternary semigroup T is called a ternary monoid if it has an identity.

Example 1.5. {0̄, 1̄, 5̄} ⊆ Z30 with ternary multiplication of Z30 is a ternary monoid

Definition 1.6. Let R be a relation on a set X. Then the smallest equivalence on X
containing R (the intersection of all equivalence relations on X containing R) is called the
equivalence relation on X generated by R and it is denoted by Re.

Definition 1.7. Let S be a reflexive relation on a set X. Then we denote ∪n≥1S
n by S∞

and we call it the transitive closure of the relation S.

Proposition 1.8. For every relation R on a set X, Re = (R ∪ R−1 ∪ 1X)∞.

Corollary 1.9. Let R be a relation on a set X. Then (x, y) ∈ Re if and only if either
x = y or for some n ∈ N, there is a sequence x = z1, z2, · · · , zn−1, zn = y of elements of T
such that, for each i ∈ {1, 2, · · · , n − 1}, either (zi, zi+1) ∈ R or (zi+1, zi) ∈ R.

2 Main results

In this section we try to obtain a congruence on a ternary monoid T from a relation R
on T .

Definition 2.1. A relation ρ on a ternary monoid T is said to be,
(i) a left compatible relation if for every a, b ∈ T , aρb implies at1t2 ρ bt1t2 for all t1, t2 ∈ T ;
(ii) a right compatible relation if for every a, b ∈ T , aρb implies t1t2aρt1t2b for all t1, t2 ∈ T ;
(iii) a lateral compatible relation if for every a, b ∈ T , aρb implies t1at2 ρ t1bt2 for all
t1, t2 ∈ T ;
(iv) a compatible relation if for all a, b, c, a′, b′, c′ ∈ T , aρa′, bρb′, cρc′ imply abc ρ a′b′c′.

Proposition 2.2. Let T be a ternary monoid. Then every left and right compatible
relation on T is a lateral compatible relation on T .

Proposition 2.3. Let R be a left (right, lateral) compatible relation on a ternary monoid
T . Then Rn is a left (right, lateral) compatible relation on T for every n ≥ 1.

Definition 2.4. An equivalence relation ρ on a ternary monoid T is said to be a right
(left, lateral) congruence if it is a right (left, lateral) compatible relation. Furthermore a
compatible equivalence relation ρ on a ternary monoid T is called a congruence on T .

Proposition 2.5. An equivalence relation ρ on a ternary monoid T is a congruence if
and only if it is left, right and lateral congruence.

Definition 2.6. Let R be a relation on a ternary monoid T . Then the smallest congruence
on T containing R (the intersection of all congruences on T containing R) is called the
congruence generated by R and it is denoted by R#.
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Lemma 2.7. Let T be a ternary monoid and let R be a relation on T . Then Rc =
{(xay, xby) | x, y ∈ T, (a, b) ∈ R} is the smallest left, right and lateral compatible relation
on T containing R.

Lemma 2.8. Let R and S be two relations on a ternary monoid T . Then
(1) R ⊆ S ⇒ Rc ⊆ Sc.
(2) (R−1)c = (Rc)−1.
(3) (R ∪ S)c = Rc ∪ Sc.

Theorem 2.9. For every relation R on a ternary monoid T , R# = (Rc)e.

Corollary 2.10. Let R be a relation on a ternary monoid T and a, b ∈ T . Then
(a, b) ∈ R# if and only if either a = b or for some n ∈ N, there is a sequence a =
c1, c2, · · · , cn−1, cn = b of elements of T such that, for each i ∈ {1, 2, · · · n − 1}, either
(ci, ci+1) ∈ Rc or (ci+1, ci) ∈ Rc.

Proposition 2.11. Let T be a ternary monoid and let E be an equivalence on T . Then

E♭ = {(a, b) ∈ T × T | (xay, xby) ∈ E for all x,y ∈ T}

is the largest congruence on T contained in E.

Example 2.12. Let T be a ternary monoid and A be a subset of T . Also let πA be an
equivalence on T whose classes are A and T ∖ A. Then π♭

A = {(a, b) ∈ T × T | xay ∈ A ⇔
xby ∈ A for all x, y ∈ T}.
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Decomposing modules into modules

with local endomorphism rings
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Abstract

Let R be a right artinian ring or a perfect commutative ring. Let M be a non-
cosingular lifting module that does not have relatively projection component. Then
M = ⊕ni=1Mi has the exchange property and the decomposition complements direct
summands, where each endomorphism ring End(Mi) is local.

Keywords: noncosingular module; lifting module; local endomorphism ring.
Mathematics Subject Classification [2010]: 16D10, 16D80.

1 Introduction

Throughout this paper R will denote an associative ring with identity. Modules over R
will be right R-modules. We will use the notation N �M to indicate that N is small in
M (i.e. ∀L �M,L+N 6= M). Rad(M) will denote the Jacobson radical of M . A non-zero
module M is called hollow if every proper submodule of M is small in M . M is called
local if the sum of all proper submodules of M is also a proper submodule of M . It is clear
that every local module is hollow. A module M is called lifting if for every submodule
A ≤ M , there exists a direct summand B of M such that B ≤ A and A/B � M/B.
Lifting modules are dual notions of extending modules and [3] deals with different aspects
of lifting modules. A module M is amply supplemented and every coclosed submodule of
M is a direct summand of M if and only if M is lifting by [3, 22.3(d)]. In [5] Talebi and
Vanaja defined Z(M) as follows:

Z(M) = Re (M,S) =
⋂
{Ker(g) | g ∈ Hom (M,L),L ∈ S},

where S denotes the class of all small modules. They called M a cosingular (noncosingular)
module if Z(M) = 0 (Z(M) = M).

A family {Xλ : λ ∈ Λ} of submodules of a module M is called a local summand of
M , if

∑
λ∈ΛXλ is direct and

∑
λ∈F Xλ is a summand of M for every finite subset F ⊆ Λ.

If even
∑

λ∈ΛXλ is a summand of M , we say that the local summand is a summand. A
module M is said to have the (finite) exchange property if for any (finite) index set I,
whenever M ⊕ N = ⊕i∈IAi for modules N and Ai, then M ⊕ N = M ⊕ (⊕i∈IBi) for
submodules Bi ≤ Ai. Let M = ⊕IMi be a decomposition of the module M into nonzero
summands Mi. This decomposition is said to complement direct summands if, whenever
A is a direct summand of M , there is a subset J of I for which M = (⊕JMj)⊕A.
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In Section 2, we prove the following theorem:
Let R be a right artinian ring or a perfect commutative ring. Let M be a noncosingular

lifting module which has no relatively projection component. Then M = ⊕ni=1Mi, where
each endomorphism ring End(Mi) is local and the following statements satisfy:

(1) The decomposition complements direct summands.
(2) Every local summand of M is a summand.
(3) M has the exchange property.
(4) The radical factor ring S/J(S) of the endomorphism ring S of M is von Neumann

regular, and idempotents lift modulo J(S).

2 Main results

Lemma 2.1. [1, Lemma 2.2] Let M = ⊕∞
i=1Mi, where each Mi is local noncosingular. If,

for each i, there is an epimorphism fi : Mi −→Mi+1 which is non-isomorphism, then M
is not lifting.

Proposition 2.2. Let R be an arbitrary ring and M a noncosingular local module. If
M is not noetherian, then there exists a countable family {Ni | i ∈ N} of non-noetherian
images of M such that ⊕i∈NNi is not lifting.

Recall that a family of modules {Mi | i ∈ I} is called (locally) semi-T-nilpotent if,
for any countable set of non-isomorphisms {fn : Min → Min+1}N with all in distinct
in I, ( and for any x ∈ Mi1), there exists k ∈ N (depending on x) such that fk...f1 = 0
(fk...f1(x) = 0). It is obvious that if each Mi is a local module, then the family {Mi | i ∈ I}
of modules is locally semi-T-nilpotent if and only if it is semi-T-nilpotent.

Theorem 2.3. Let M = ⊕∞
i=1Mi with Mi local noncosingular and Mj-projective whenever

j 6= i. If M is a lifting module, then:
(1) {Mi} is locally semi-T-nilpotent.
(2) M is quasi-discrete.
(3) Rad(M)�M .
(4) The decomposition M = ⊕∞

i=1Mi complements summands.

Recall that a module M is said to be Hopfian if any epimorphism is an isomorphism.

Lemma 2.4. Let R be a right artinian ring or a perfect commutative ring. Then every
noncosingular hollow R-module M has a local endomorphism ring.

A module M is said to have finite hollow dimension if there exists an epimorphism
from M to a finite direct sum of n hollow factor modules with small kernel.

Theorem 2.5. [1, Theorem 2.1] Let R be a right perfect ring. Let M be a noncosingular
lifting module that does not have relatively projective component. Then M has finite hollow
dimension.

Theorem 2.6. Let R be a right artinian ring or a perfect commutative ring. Let M be a
noncosingular lifting module that does not have relatively projection component. Then M =
⊕ni=1Mi, where each endomorphism ring End(Mi) is local and the following statements
satisfy:
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(1) The decomposition complements direct summands.
(2) Every local summand of M is a summand.
(3) M has the exchange property.
(4) The radical factor ring S/J(S) of the endomorphism ring S of M is von Neumann

regular, and idempotents lift modulo J(S).
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Divisibility Graph for some finite simple groups∗

Adeleh Abdolghafourian†

Yazd University

Mohammad A. Iranmanesh
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Abstract

The divisibility graph of a finite group G has vertex set the conjugacy class sizes
of non-central elements in G and two vertices are adjacent if one divides the other.
We determine the connected components of the divisibility graph of the finite simple
groups of Lie type over a finite field of odd characteristic.

Keywords: Conjugacy class, Divisibility graph, Finite simple group, Prime graph.

Mathematics Subject Classification [2010]: 05C25, 20D05

1 Introduction

In [3] the divisibility graph which is related to a set of positive integers have been intro-

duced. The divisibility graph,
−→
D(X) is a graph with vertex set X∗ = X \ {1} and there

is an arc between two vertices a and b if and only if a divides b. It is also asked for
the structure and especially the number of connected components of this graph (see [3,
Question 7]).

Let G be a finite group and cs(G) denotes the set of conjugacy class sizes of non-central

elements in G. We show the underlying graph of
−→
D(cs(G)) by D(G) without changing

the name for convenience. Actually by the divisibility graph D(G) we mean a graph with
vertex set cs(G) and two conjugacy class sizes are adjacent if one divides the other.

In [1], The structure of divisibility graph D(G), where G is a symmetric group or an
alternating group is studied.

Theorem 1.1. [1, Corollary 11] D(Sn) has at most two connected components. If it is
disconnected then one of its connected components is K1.

Theorem 1.2. [1, Corollary 17] D(An) has at most three connected components. If it is
disconnected, then two of its connected components are K1.

Also in [2], the structure of divisibility graphs for PSL(2, q), Sz(q) and 26 sporadic
simple groups have been described.

Theorem 1.3. [2, Theorem 2.1] Let G = PSL(2, q). Then D(G) is either 3K1 or K2+2K1.

Theorem 1.4. [2, Theorem 2.2] Let G = Sz(q). Then D(G) = K2 + 3K1.

∗Will be presented in English
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Here we are interested in determining the divisibility graph for other finite simple
groups. The classification theorem of finite simple groups is well known.

Theorem 1.5. [5, p. 6] Every finite simple group is one of the following:

1) a cyclic group Zp of prime order p,

2) an alternating group An for n ≥ 5,

3) a finite simple group of Lie type,

4) one of 26 sporadic simple groups.

In the next section we will study the structure of divisibility graph for finite simple
groups of Lie type.

2 Main results

For a finite group G let cs(G) = {|xG|; x ∈ G} \ {1} denotes the set of conjugacy class
sizes of non-central elements in G. Let D(G) denote the divisibility graph of G, which is
a graph with vertex set cs(G) and edge set E(G) = {{|xG|, |yG|} : either |xG| divides |yG|
or |yG| divides |xG|}.

For two arbitrary elements x, y ∈ G, we say x is equivalent to y whenever |xG| and
|yG| are in the same connected component of D(G).

We now reintroduce a well known graph, namely the prime graph. The vertex set of
the prime graph of a finite group G, ρ(G), is the set of primes dividing the order of the
group and two vertices r and s are adjacent if and only if G contains an element of order
rs. Williams [6, Lemma 6] investigated prime graphs of finite simple groups.

From now on let G be a finite simple group of Lie type over a finite field Fq in charac-
teristic p where p is an odd and good prime, that is (see [4, p. 28])

1. p ̸= 2 when G has type Aℓ,
2Aℓ, Bℓ, Cℓ, Dℓ,

2Dℓ,

2. p ̸∈ {2, 3} when G has type G2, F4, E6,
2E6, E7,

3. p ̸∈ {2, 3, 5} when G has type E8.

Lemma 2.1. D(PSL(3, q)) and D(PSU(3, q2)) are as Figure 1. In this figure δ = 1 for
G = PSL(3, q) and δ = −1 for G = PSU(3, q), r = q − δ, s = q + δ, t = q2 + δq + 1,
r′ = r/gcd(3, r), and t′ = t/gcd(3, r).

In the rest of the paper we assume G is not the groups PSL(2, q), PSL(3, q) and PSU(3, q2).

Lemma 2.2. All unipotent elements of G are equivalent.

Lemma 2.3. Every involution is equivalent to a unipotent element.

Lemma 2.4. for a semisimple element s ∈ G two possibilities may arise:

• s is equivalent to a an involution.
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Figure 1: The Divisibility Graph for PSL(3, q) and PSU(3, q2) (left: gcd(3, r) ̸= 1 right:
gcd(3, r) = 1).

• s is not equivalent to an involution. In this case, the maximal torus containing s,
namely T , is an isolated Hall subgroup of G and the conjugacy classes of all elements
of T have the same length. So there is only one isolated vertex in D(G) related to
all elements T . In this case the prime divisors of |T | make a connected component
of ρ(G) not containing 2.

Now we give our main result in the following theorem which shows the relation between
the divisibility graph and the prime graph.

Theorem 2.5. Let G be a finite simple group of Lie type over a finite field Fq in char-
acteristic p where p is an odd and good prime. Then the divisibility graph D(G) is either
connected or at most one of its connected components is not an isolated vertex. Moreover
the number of connected components of D(G) is equal to the number of ρ(G).
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Domination number of the order graph of a group

Hamid Reza Dorbidi∗

University of Jiroft

Abstract

The order graph of a group G, denoted by Γ∗(G), is a graph whose vertices are
non-trivial subgroups of G and two distinct vertices H and K are adjacent if and only
if |H|

∣∣|K| or |K|
∣∣|H|. In this paper, we study the domination number of this graph.

Keywords: Order graph, Domination number, Perfect group

Mathematics Subject Classification [2010]: 20A05, 05C25

1 Introduction

Let G be a finite group. The order graph of G is the (undirected) graph Γ∗(G), whose
vertices are non-trivial proper subgroups of G and two distinct vertices H and K are
adjacent if and only if either |H|

∣∣|K| or |K|
∣∣|H|. So Γ∗(G) is the empty graph if and only

if |G| is a prime number. This graph has studied in [8] and [4]. In this paper, we study
the domination number of this graph.

First we recall some facts and notations related to this paper. Throughout this paper
G denotes a nontrivial finite group. Let π(n) be the set of prime divisors of n. We denote
π(|G|) by π(G). The cyclic group of order n is denoted by Cn. The symmetric group on
n letters is denoted by Sn. Dn is the dihedral group of order 2n. The alternative group is
denoted by An. The finite field with q elements is denoted by Fq.

Let Γ be a simple graph with vertex set V . A subset S of V is called a dominating set
if every vertex in V \S has a neighbor in S. The minimum size of the dominating sets is
called domination number and is denoted by γ(Γ). We denote γ(Γ∗(G)) by γ(G).

2 Main results

In this section we state and prove our main results.

Theorem 2.1. Let S be a set of subgroups of G such that for each prime p ∈ π(G) there
is only one subgroup P of order p in S. Then S is a dominating set.

Proof. Let H be a subgroup of G. Let p be a prime factor of |H|. If P is a subgroup of
order p in S then H = P or H is adjacent to P .

Corollary 2.2. The domination number of the order graph of G is at most |π(G)|.
∗Speaker
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Theorem 2.3. Let S be a set of maximal subgroups of G such that for each maximal
subgroup M of G there is only one subgroup M1 ∈ S such that |M | = |M1|. Then S is a
dominating set.

Proof. Let H be a proper subgroup of G. So H ≤ M for a maximal subgroup M of G.
Since |M | = |M1| for some M1 ∈ S, so H = M1 or H is adjacent to M1.

Theorem 2.4. G is a p−group if and only if γ(G) = 1.

Proof. First assume that γ(G) = 1 and |G| = n = pn1
1 · · · pnkk , k ≥ 2. Let H be a subgroup

which is adjacent to other vertices. If p ∈ π(G) then p
∣∣|H|. Since every Sylow subgroup

is adjacent to H, so pnii
∣∣|H|. Hence |G| = |H| which is a contradiction. Thus |π(G)| = 1

i.e G is a p−group. Conversely, If G is a p−group then Γ∗(G) is a complete graph. So
γ(G) = 1.

Corollary 2.5. If |π(G)| = 2 then γ(G) = 2.

Theorem 2.6. If G is not a p−group and G has a subgroup H of a prime power index
then γ(G) = 2.

Proof. Assume [G : H] = pk and P is a subgroup of order p. Let K be a subgroup of G.
If p
∣∣|K| then K is adjacent to P . If p - |K| then (p, |K|) = 1. Hence |K|

∣∣|H|. So K is
adjacent to H and the proof is complete.

Remark 2.7. The groups with a prime power index subgroup are studied in many papers,
see [1],[2],[6]. One of the main theorems is the Burnside’s theorem which states that if
[G : Cg(a)] = pk > 1 then G is not a simple group. By using classification theorem
of simple groups, Guralnick has classified all simple groups with a prime power index
subgroup in [6].

Corollary 2.8. If G is not a p−group and G 6= G′ i.e G is not a perfect group then
γ(G) = 2.

Proof. Since G/G′ is a nontrivial abelian group, so it has a subgroup of prime index. Thus
γ(G) = 2 by Theorem 2.6.

Corollary 2.9. If G is not a p−group and G is a solvable group then γ(G) = 2.

Corollary 2.10. If n ≥ 3 then γ(Sn) = 2.

Corollary 2.11. If F is a finite field then γ(GLn(F )) = 2.

Remark 2.12. Let G = A5. Let H ∼= A4 and K ∼= D5 be subgroups of order 12 and 10.
Then S = {H,K} is a dominating set by Theorem 2.3. So γ(Γ∗(A5)) = 2 < |π(A5)| = 3.

Question. Determine all the groups G such that γ(G) = |π(G)|.
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Extended annihilating-ideal graph of a ring
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Abstract

In this paper we extend the concept of annihilating-ideal graph of a commuta-
tive ring and then we characterize commutative Artinian local ring whose Extended
annihilating-ideal graph is star graph.

Keywords: Annihilating-ideal graph, Extended annihilating-ideal graph
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1 Introduction

A graph (simple graph)G is an ordered pair of disjoint sets (V,E) such that V = V (G) is
the vertex set of G and E = E(G) is its edge set. If the graph G contains a vertex, say
v, to which all other vertices are joined and has no other edges, it is called a star graph
with center v.
Throughout this paper, all rings R are assumed to be commutative with identity 1R.
For a ring R, let I(R) be the set of ideals of R, A(R) the set of annihilating-ideals of
R, where a nonzero ideal I of R is called an annihilating-ideal if there exists a non-zero
ideal J of R such that IJ = 0. The annihilating-ideal graph AG(R) of R is a simple
graph with vertex set A(R), such that distinct vertices I and J are adjacent if and only
if IJ = 0. Annihilating-ideal graphs of rings, first introduced and studied in [3], provide
an excellent setting for studying some aspects of algebraic property of a commutative
ring, especially, the ideal structure of a ring. Some fundamental results on the concept
have been established in [1, 3]. For example, AG(R) is always a simple, connected and
undirected graph with diameter less than four; if AG(R) contains a cycle, then its girth
is less than five; if R is a non-domain ring, then AG(R) is a finite graph if and only if R
has finitely many ideals, if and only if every vertex of AG(R) has finite degree. In this
paper we extend the concept of annihilating-ideal graph of a ring and then we characterize
commutative Artinian local rings whose Extended annihilating-ideal graph is star graph.

2 Artinian local ring and Extended annihilating-ideal graph

In this section we first extend the concept of annihilating-ideal graphs of a ring and then
we state some properties of this graph.

∗Speaker

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Extended annihilating-ideal graph of a ring pp.: 1–3

198



Definition 2.1. Extended annihilating-ideal graph AG∗(R) of R is a (not necessarily
simple) graph with vertex set A(R), such that vertices I and J (not necessarily distinct)
are adjacent if and only if IJ = 0.

Definition 2.2. A local ring (R,m) is called a special product of almost prime ideals ring
(abbreviated, SPAP-ring), if for each x ∈ m−m2, (x2) = m2 and m3 = 0.

SPAP-rings were introduced in [2]. D. D. Anderson and Malik Bataineh in [2] char-
acterize Noetherian rings whose proper ideals are a product of almost prime ideals. Thus
almost prime ideals play an important role in commutative algebra.

Lemma 2.3. Let (R,m) be an SPAP-ring with m2 6= 0. Then m2 is a minimal ideal of
R.

Proof. If m = m2, then m2 = m3 = 0, a contradiction. Therefore m 6= m2, thus there
exists y ∈ m − m2. So m2 = (y2). Thus m2 is a cyclic R-mod and therefore it is
a multiplication R-module. Now if J is a submodule (ideal of R) of m2, there exists
an ideal K of R, such that J = Km2. If K = R then J = m2 and if K 6= R then
J = Km2 ⊆ m3 = 0, hence J = 0. Therefore m2 is a minimal ideal of R.

Lemma 2.4. [4, Lemma 2.1] Let (R,m) is an Artinian local ring such that AG(R) is a
star graph. If ms 6= 0 and ms+1 = 0, where either s = 2 or s = 3, then ms is the unique
minimum nonzero ideal of R.

Lemma 2.5. Let (R,m) be an SPAP-ring such that m2 6= 0. If I is an ideal of R then,
I = 0 or I = m2 or I2 = m2.

Proof. Let (R,m) be an SPAP-ring such that m2 6= 0. By lemma 2.3, m2 is a minimal
ideal. Now let I be a proper ideal of (R,m). If I ⊆ m2 then, I = 0 or I = m2. If I * m2,
then there exists y ∈ I −m2. Thus m2 = (y2), hence m2 = (y2) ⊆ I2. Thus I2 = m2.
Therefore for any proper ideal I of R, we have I = 0 or I = m2 or I2 = m2.

Lemma 2.6. Let (R,m) be an Artinian local ring with unique minimal ideal such that
m2 = 0. Then we have the following statements:
i) The Extended annihilating-ideal graph AG∗(R) of R has a unique loop;
ii) If we eliminate the loop of the Extended annihilating-ideal graph AG∗(R) of R, then
the remainder graph is a simple star graph;
iii)If v is the center of the remainder graph describe in (ii), then v has a loop in AG∗(R).

Lemma 2.7. Let (R,m) be an Artinian SPAP-ring with m2 6= 0, such that for all ideals
I and J with m2 ( I, J , IJ 6= 0. Then we have the following statements:
i) The Extended annihilating-ideal graph AG∗(R) of R has a unique loop;
ii) If we eliminate the loop of the Extended annihilating-ideal graph AG∗(R) of R, then
the remainder graph is a simple star graph;
iii) If v is the center of the remainder graph describe in (ii), then v has a loop in AG∗(R).

Theorem 2.8. [3, Theorem 2.6] Let R be an Artinian ring. Then AG(R) is a star graph
if and only if either R ∼= F1 ⊕ F2, where F1, F2 are fields, or (R,m) is a local ring and
one of the following conditions holds.
(i) m2 = (0) and m is the only nonzero proper ideal of R.
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(ii) m3 = (0), m2 is the only minimal ideal of R and for every distinct proper ideals I1, I2
of R such that m2 6= Ii (i = 1, 2), I1I2 = m2.
(iii) m4 = (0), m3 6= (0) and AG(R) = {m,m2,m3}.

Theorem 2.9. Let (R,m) be an Artinian ring such that The Extended annihilating-
ideal graph AG∗(R) of R has a unique loop and if we eliminate the loop of the Extended
annihilating-ideal graph AG∗(R) of R, then the remainder graph is a simple star graph.
Then m3 = 0 and one of the following conditions holds:
i) If m = 0, then R is a field.
ii) If m2 = 0 and m 6= 0, then (R,m) is a local ring with unique minimal ideal.
iii) If m3 = 0 and m2 6= 0, then (R,m) is a SPAP-ring.

Theorem 2.10. Let (R,m) be an Artinian ring such that for all ideals I and J with
m2 ( I, J , we have IJ 6= 0. The following statements are equivalent.

1) R is a field or SPAP-ring or a local ring with m2 = 0 and has a unique minimal
ideal.

2) The Extended annihilating-ideal graph AG∗(R) of R has a unique loop and if we
eliminate the loop of the Extended annihilating-ideal graph AG∗(R) of R, then the remain-
der graph is a simple star graph.

3) One of the following conditions holds:
(i) (R,m) is a PIR, where m 6= 0 and m has nilpotency index less than or equal to

4. (This is equivalent to saying that there exists an element β ∈ m such that m = (β),
βs+1 = 0 and βs 6= 0 for some 1 ≤ s ≤ 3)

(ii) char(R) = 2 or char(R) = 4, and m has a minimal generating set {β1, β2} with
β1β2 6= 0, β21 = β22 = 0. In this case, m2 6= 0,m3 = 0.
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First hochchild cohomology of square algebra
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Abstract

In this paper, we define the square algebra and describe the first hochschild coho-
mology of this algebra.

Keywords: First hochschild cohomology, Hochschild cohomology, Square algebra.
Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

If A and B are algebras, M is an A , B-module. and N is a B , A-module, then we will

call S =

[
A M
N B

]
a square algebra. We study the structure of Hochschild cohomology

groups of square algebra. This groups is important in many areas of mathematics, such
as ring theory, commutative algebra, geometry, group theory and etc.
Although Hochschild cohomology for algebras has been studied extensively for many years,
there are still few techniques available for explicitly calculating the various cohomology
groups. The study of first cohomology group H1(A,X), where A is algebra and X is
A-bimodule, is essentially the study of inner dervations.

2 Main results

Definition 2.1. Let A and B be algebra. Let M be an A, B-module and N be a B,
A-module such that M ⊗B N = 0 = N ⊗A M . We put

S =

{ [
a m
n b

]
: a ∈ A, m ∈ M,n ∈ N, b ∈ B

}
.

If S is given the usual operations associated with 2 × 2 matrices, then S becomes an
algebra. We shall call such an algebra a square algebra.
If A is algebra, a continuous derivation on A is a bounded linear operator S : A −→ A
such that δ(ab) = aδ(b) + δ(a)b. Given x ∈ A, we define the map δx : A −→ A by
δx(a) = xa − ax.
The map δx is easily seen to be a continuous derivations are said to be inner. Let Der (A)
denote all continuous derivation of A and Let Inn (A) denote all inner derivations. We
define H1(A, A), the first cohomology group of A by
H1(A,A) = Der(A)/Inn(A).
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Proposition 2.2. Let δ : S −→ S be a derivation.
Then the map τ : M −→ M and σ : N −→ N obtained above satisfies

(i) τ(a.m) = δA(a).m + a.τ(m)

(ii) τ(m.b) = τ(m).b + m.δB(b)

(iii) σ(n.a) = nδA(a) + σ(n).a

(iv) σ(b.n) = b.σ(n) + δB(b).n.

Conversely, if δA and δB are continuous derivations of A and B respectively and if τ :
M −→ M and σ : N −→ N are any continuous linear maps satisfying (i),(ii),(iii) and

(iv) then the map δ
([

a m
n b

] )
=

[
δA(a) τ(m)
σ(n) δB(b)

]
define a continuous derivation on δ.

Proof. The proof of first statement follows immediately from [2, proposition 2.2] and for
(3) and (4) we have

δ
( [

0 0
n.a 0

])
= δ

([
0 0
n 0

] [
a 0
0 0

])
= n.δA(a) + σ(n).a

and

δ
([

0 0
b.n 0

])
= δ

([
0 0
0 b

] [
0 0
n 0

])
= b.σ(n) + δB(b).n

To prove the converse consider:

δ
([

a1 m1

n1 b1

] [
a2 m2

n2 b2

])
= δ

([
a1a2 a1m2 + m1b − 2

n1a2 + b1n2 b1b2

])

=

[
δA(a1a2) (a1m2 + m1b − 2)

σ(n1a2 + b1n2) δB(b1b2)

]
.

Moreover,
[
a1 m1

n1 b1

]
δ

[
a2 m2

n2 b2

]
+ δ

([
a1 m1

n1 b1

] ) [
a2 m2

n2 b2

]
=

[
a1δA(a2) a1z(m2) + m1δB(b2)

n1SA(a2 + b1σ(n2) b1δB(b2)

]

=

[
a1δA(a2) + δA(a1)a2 a1z(m2) + m1δB(b2) + δA(a1)m2 + z(M1b2

n1δA(a2) + b1σ(n2) + σ(n1)a2δB(b1)n2 b1δB(b2) + δB(b1)b2

]

=

[
δA(a1a2) z(a1m2) + z(m1b − 2)

σ(n1a2) + σ(b1n2) δB(b1b2)

]

by (1) and (2) thus δ is a derivation on δ. Continuity is clear.

Lemma 2.3. Let φ ∈ HomA,B(M) and σ ∈ HomB, A(N). Then the map δφ,σ : S −→ S
given by

δφ,σ

( [
a m
n b

] )
=

[
0 φ(m)

σ(n) 0

]

is a continuous derivation. Moreover, δφ,σ is an inner derivation if and only if φ = τx,z

and σ = τz,x where τx,z ∈ τRA,B(M) and τz,x ∈ ττRB,A(N).
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Proof. The first statement follows immediately from Assume that φ = τx,τ and σ = ττ,x

where x ∈ τ(A) and τ ∈ τ(B). Then

δ
x 0
0 τ



(

[
a m
n b

]
) =

[
x 0
0 τ

] [
a m
n b

]
−

[
a m
n b

] [
x 0
0 τ

]
=

[
xa xm
τn τb

]
−

[
ax mτ
nx bτ

]

[
xa − ax xm − mτ
τn − nx τb − bτ

]
=

[
0 xm − mτ

τn − nx 0

]
=

[
0 φ(m)

φ(n) 0

]
.

Hence δφ,σ is inner. Conversely, assume that δφ,σ is inner. Then there exists

[
x y
w τ

]
∈ δ

such that δφ,σ = δ
x y
w τ



.

However

δ
x y
w τ



(

[
a m
n b

]
) =

[
x y
w τ

] [
a m
n b

]
−

[
a m
n b

] [
x y
w τ

]

=

[
xa − ax xm + yb − ay − mτ

wa + τn − nx − bw τb − bτ

]
.

If δ
x y
w τ




= δφ,σ, then xa − ax = 0 for each a ∈ A and τb − bτ = 0 for each b ∈ B. In

particular, x ∈ τ(A) and τ ∈ τ(B). Moreover, we have

φ(m) = xm + yb − ay − mτ

and

σ(n) = wa + τn − nx − bw.

Since φ ∈ HA,B(M) and σ ∈ HB,A(N), it follows that yb − ay = 0 and wa − bw = 0.
Hence φ(m) = xm − mτ = τx,z(m) and σ(n) = τn − nx = τz,x(n).
In particular, φ ∈ τRA,B(M) and σ ∈ τRB,A(N).

We can now state the main result of this section for describe H1(S, S).

Theorem 2.4. Let A be a with unit algebra and B be an algebra with a bounded approx-
imate id. Let M be an essential A, B-module, N be an essential B,A-module and Let

S =

[
A M
N B

]
. If H1(A,A) = 0 = H1(B, B), then

H1(S, S) ∼= HomA,B(M) × HomB,A(N)

ZRA,B(M) × ZRB,A(N)

Proof. Let ϕ : HomA,B(M) × HomB,A(N) −→ H1(S, S) be defined by

ϕ(φ, σ) = δ̄φ,σ,
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where δ̄φ represents the equivalence class of δφ,σ in H1(S, S). Clearly ϕ is linear. We first

show that ϕ is surjective. Let S be a continuous derivation of S. Let δA , δB ,
τ :M→M

σ : N → N
, mδa , nδ be as in the statement of Proposition 2.2 Since H1(A,A) = H1(B,B) = 0, we
can find x ∈ A and τ ∈ B such that δA = δx and δB = δz. Define δ0 : S −→ S by

δ0

([
a m
n b

])
=

[
δx(a) τx,z + (amδ − mδb)

σz,x + (nδa − bnδ) δz(b)

]
.

Then δ0 is the inner derivation of S induced by

[
x −mδ

−nδ τ

]
and as such 0 is clearly

continuous. Furthermore, if δ1 = S − δ0 then δ1 is a derivation and by Proposition 2.2,

δ1

( [
a m
n b

] )
=

[
δx(a) τ(m) + (amδ − mδb)

σ − n + (nδa − bnδ) δz(b)

]

−
[

δx(a) τx,z(m) + (amδ − mδb)
σz,xn + (nδa − bnδ) δz(b)

]
=

[
0 τx,z(m) − τx,z(m)

σn − σz,xn 0

]

=

[
0 τ1(m)

σ1n 0

]

τ1 = τ − τx,z and σ1 = σ − σz,x.
It follow from Proposition 2.2 that τ1 ∈ HomA,B(M) and σ1HomB,A(N).
Finally δ̄ = δ̄1 = ϕ(ϖσ1) , and so ϕ is surjective.
We have shown that

H1(S, S) ∼= HomA,B(M) × HomB,A(N)

Kerϕ
.

However (φ, σ) ∈ Kerϕ if and only if δφ,σ is inner. By Lemma 2.3, Kerϕ = τRA,B(M) ×
τRB,A(N).
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Frobenius semirational groups

Ashraf Daneshkhah∗

Bu-Ali Sina University, Hamedan, Iran

Abstract

In this talk, we give a survey of some recent advances on the problem of studying
semi-rational finite groups.

Keywords: Semi-rational groups, Frobenius groups, Simple groups.

Mathematics Subject Classification [2010]: 20E45, 20E34

1 Introduction

For a finite group G, an element x of G is called rational if all generators of the group 〈x〉
are conjugate in G. If all elements of G are rational, then G itself is called rational. The
notion of rational elements and rational groups has been generalised by Chillag and Dolfi
[3]. An element x ∈ G is called k-semi-rational if the generators of 〈x〉 belongs to at most
k conjugacy classes of G. The group G is said to be k-semi-rational if all its elements are
k-semi-rational in G. In particular, a 2-semi-rational group is called semi-rational and its
elements are called semi-rational.

It was proved by Gow [6] that if G is a rational solvable group then π(|G|) ⊆ {2, 3, 5}.
Chillag and Dolfi extended Gow’s result to semi-rational groups and proved that π(G) ⊆
{2, 3, 5, 7, 13, 17} when G is a semi-rational solvable group. They also posed the following
problem:

Problem 1. [3, Problem 2] Let G be a solvable group, and let k be a positive integer. If
G is a k-semi-rational, then is π(|G|) bounded in terms of k?

This talk is based on the results in [1]. Indeed, we generalise the results of [4] to
semi-rational Frobenius groups:

Theorem 1.1. Let G = HK be a Frobenius group with complement H and kernel K.
Then G is semi-rational if and only if the following two properties hold:

(a) H is itself semi-rational;

(b) Each element of K is semi-rational in G, that is, for every x ∈ K, the generators of
〈x〉 belong to at most two conjugacy classes of G.

We moreover give more details on the structure of semi-rational Frobenius groups:
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Theorem 1.2. Suppose that G = HK is a semi-rational Frobenius group with complement
H and kernel K. Then

(a) if H is of even order, then H and K are known;

(b) if H is of odd order, then H ∼= C3 and |K| = 2a · 7b > 1 with a > 0 and b > 0. In
particular, if b > 1, then K is not semi-rational;

Consequently, we answered Problem 1 for Frobenius groupsG and showed that |π(G)| 6
5.

In general, composition factors of rational group studied by Feit and Seitz [5], in
particular, they determined all simple rational groups. In this direction, for semi-rational
groups, Alavi, Burness and Daneshkhah [2] studied semi-rational simple groups.
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Group factorisations and associated geometries

Seyed Hassan Alavi∗

Bu-Ali Sina University, Hamedan, Iran

Abstract

Triple factorisations of groups G of the form G = ABA, for proper subgroups
A and B, are fundamental in the study of Lie type groups, as well as in geometry.
In this talk, we present recent studies of such factorisations in the context of both
permutation group theory and geometry.

Keywords: Triple factorisation, Rank 2 geometry, Large subgroup
Mathematics Subject Classification [2010]: 20B15, 51E30

1 Introduction

For a group G with subgroups A and B, if G = ABA then we say that (G,A,B) is a
triple factorisation. For example, groups with BN -pairs give rise to triple factorisations
G = BNB where B is a Borel subgroup and N/(N ∩B) is the Weyl subgroup. Geometri-
cally, the study of flag-transitive rank 2 incidence geometries are closely related to triple
factorisations of their automorphism groups.

Higman and McLaughlin [6] introduced the notion of Geometric ABA-groups and
showed that a Geometric ABA-group acts primitively (as an automorphism group) on
the point set of the associated linear space, see [6, Propositions 1-3]. As a generalisation,
for a given triple factorisation G = ABA, Alavi and Praeger [5] introduced a reduction
pathway to the case where A is maximal and core-free. This motivates us to investigate
large subgroups H of finite simple groups G, that is |G| ≤ |H|3, see [4]. This talk is
based on results in [2, 3, 4] in which we studied parabolic triple factorisations G = ABA
of general linear groups G and its classical subgroups with A and B maximal parabolic
subgroups.

In connection with geometry, each triple factorisation G = ABA gives rise to a
collinearly complete coset geometry Cos(G;A,B) (with A the stabiliser of a point p and B
the stabiliser of a line ` incident with p) in which ‘each pair of points lies on at least one
line’, and vice versa [6, Lemma 3]. Interchanging the roles of points and lines, leads us to
a dual completeness concept: a geometry is concurrently complete if ‘each pair of lines is
incident with at least one point’.

In this talk, we also establish above natural connection between triple factorisations
and geometry, and apply such geometric method to obtain new triple factorisations. Con-
sequently, in addition to the well-known examples (linear spaces, symmetric designs and
projective spaces), our results leads us to new collinearly and/or concurrently complete
spaces.

∗Speaker

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Group factorisations and associated geometries pp.: 1–2

207



References

[1] S. H Alavi, On triple factorisations of finite groups, Ph.D. thesis, School of Mathe-
matics and Statistics, The University of Western Australia, (2011).

[2] S. H. Alavi, J. Bamberg and C. E. Praeger, Triple factorisations of the general lin-
ear group and their associated geometries, Linear Algebra and its Applications, 469
(2015), pp. 169-203.

[3] S. H. Alavi, J. Bamberg and C. E. Praeger, Triple factorisations of classical groups
by maximal parabolic subgroups and their associated geometries, preprint.

[4] S. H. Alavi, T. C. Burness, Large subgroups of simple groups, J. Algebra, 421 (2015),
pp. 187-233.

[5] S. H. Alavi and C. E. Praeger, On triple factorisations of finite groups, 14 n. 3 (2011),
pp. 341-360.

[6] D. G. Higman and J. E. McLaughlin, Geometric ABA-groups, Illinois J. Math. 5
(1961), pp. 382–397.

Email: alavi.s.hassan@gmail.com

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Group factorisations and associated geometries pp.: 2–2

208



Independence graph of a vector space

Mohammad Ali Esmkhani∗

University of Zanjan

Abstract

Let V be a vector space over field F . The independence graph of V , denoted by
ΓV is a graph with all elements of V minus zero as vertices, and two distinct vertices
v1 and v2 are adjacent if and only if { v1, v2} is independent. In this paper we obtain
some properties of the independence graph. For example it is shown that when the
independent graph is complete.

Keywords: Independence graph, Vector space, Vertices
Mathematics Subject Classification [2010]: 97H60, 97K30

1 Introduction

The study of algebraic structures using the properties of graphs has become an exciting
research topic in the last twenty years, leading to many fascinating results and questions.
There are many papers on assigning a graph to a ring, see([1]-[3]). Throughout the paper
V is a vector space over a field F . We define the independence graph of V to be graph
ΓV with all elements of V minus zero as vertices, and two distinct vertices v1 and v2 are
adjacent if and only if {v1, v2} is independent.

Let Γ be a graph with vertices x and y. We define d(x, y) to be the length of the shortest
path from x to y. The diameter of Γ is diam(Γ) = sup{d(x, y)|x and y are vertices of Γ}.
The girth of Γ, denoted by gr(Γ), is the length of a shortest cycle in Γ.

In Section 2, we obtain some properties of the independence graph of a vector space.
Basic references for graph theory is [5]; for linear algebra see [4].

2 Main results

It is clear that the independent graph of a vector space of dimension zero is empty graph.

Theorem 2.1. Let V be a vector space of dimension greater or equal than 1 over field F .
Then ΓV is only a set of some vertices if and only if dim(V ) = 1.

Proof. First, suppose dim(V ) = 1. Then there is x ∈ V such that every element of V
is cx which c is an scaler. Therefore every subset of V with at least 2 elements is not
independence and so there is not any edges in ΓV .

Now, ΓV is only a set of some vertices. Therefore for every pair of vertices x and y,
there exists c such that x = cy. Thus dim(V ) = 1.
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Theorem 2.2. Let V be a vector space of dimension greater or equal than 2. For every v
ad w of ΓV we have d(v, w) ≤ 2 and so ΓV is connected.

Proof. Suppose v and w are two vertices. If {v, w} is independent, then there is an edge
between them. In other case, v = cw such that c ̸= 0. In view of the dimension of V ,
there is a vector x such that {v, x} and {x,w} are independent. Therefore x and v are
adjacent and also x and w. This ends the proof.

Theorem 2.3. Let V be a vector space of dimension greater or equal than 1. Then ΓV is
complete if and only if |F | = 2.

Proof. First, suppose ΓV is complete. Let x be a nonzero vector. If |F | ≥ 3, there is c in
F such that c ̸= 1 and c ̸= 0. Thus {x, cx} is not independent, and so there is not any
edge between x and cx which is a contradiction. Consequently |F | = 2.

Conversely, suppose |F | = 2 and x and y two nonzero distinct elements of V . If there
is any edge between x and y, then there exists c ∈ F such that x = cy. Since x ̸= 0 and
c ̸= 0, c = 1 and so x = y which is contradiction. Thus there is an edge between x and y
and so ΓV is complete.

Proposition 2.4. Let V be a vector space of dimension n ≥ 2 and |F | = r. Then the
cardinal of the set of all edges of ΓV is

(rn − 1)(rn − 1 − (r − 1))/2.

Proof. We know that the number of edges in a complete graph with the number of vertices
s is s(s − 1)/2. On the other hand s = rn − 1. Let v be a vector and C(v) be the set of
all vertices connected to v. Then the cardinal of C(v) is rn − 1 − (r − 1) and therefore
(rn − 1)(rn − 1 − (r − 1))/2 is the cardinal of the set of all edges of ΓV .

Definition 2.5. Let v be a nonzero vector. The subspace generated by v minus zero is
said to be the line which passes through from v.

Theorem 2.6. Let V be a vector space of dimension n ≥ 2 over field F and |F | = r.
Then the number of triangle of ΓV is (rn − 1)(rn − r)(rn − 2r + 1) and so gr(ΓV ) = 3.

Proof. The number of vertices which do not connect to a vector v is the cardinal of F
minus one. The number of lines in ΓV is s = rn − 1/r − 1. First, we choose three line.
The number of this choice is s(s − 1)(s − 2). Then we will choose one vertex of every line.
Therefore we have s(s − 1)(s − 2)(r − 1)3 = (rn − 1)(rn − r)(rn − 2r + 1) triangles.

Let V be a vector space over field F and the cardinal of the set of vertices of ΓV be
finite. Let the cardinal of F be pt and the cardinal of the set of vertices of ΓV be s.
Therefore s + 1 = ptn such that pt is the cardinal of F and n is the dimension of V . In
view of ptn = s + 1, we obtain the characteristic of F . Let ΓV be the complement graph
of ΓV . The number of vertices in every components of ΓV is pt − 1 and so we obtain t.
Consequently, we obtain the dimension of V .
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Large non-nilpotent subsets of finite general linear groups

Azizollah Azad ∗
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Abstract

Let G be a group. A subset X of G is said to be non-nilpotent if, for any two
distinct elements x and y in X, ⟨x, y⟩ is a non-nilpotent subgroup of G. Define ωG to
be the order of the largest non-nilpotent set in G.

Using regular semisimple and regular unipotent elements we find a lower bound
for ω(NG) for G = GLn(q)

Keywords: non-nilpotent set, regular semisimple element, regular unipotent element

Mathematics Subject Classification [2010]: 20D60

1 Introduction

Let G be a group. A subset X of G is said to be a non-nilpotent subset if, for any two
distinct elements x and y in X, ⟨x, y⟩ is a subgroup of G which is not nilpotent. Define
ωG to be the order of the largest non-nilpotent set in G. If G is a nilpotent group we
define ω(G) = 1.

The value of ωG has been studied for various groups. Endimioni proved that if a
finite group G satisfies ωG ≤ 3 then G is nilpotent, while if ωG ≤ 20 then G is soluble;
furthermore these bounds cannot be improved [4]. Tomkinson proved that if G is a finitely
generated soluble group such that ωG = n, then |G/Z∗(G)| ≤ nn4

, where Z∗(G) is the
hypercentre of G [9]. Also, for a finite insoluble group G, it has been proved that G
satisfies the condition ωG = 21 if and only if G/Z∗(G) ∼= A5 [1, Theorem 1.2].

Definition 1.1. Let G is a linear algebraic group we can write G ≤ GLn(K) for some
integer n. An element g ∈ G is then said to be semisimple if g is diagonalizable in GLn(K),
and is said to be unipotent if all of its eigenvalues are equal to 1.

Theorem 1.2. Suppose that H contains a set of subgroups A1, A2, . . . , An that form a
partition of H. If nilH(g) ≤ Ai, for all g ∈ Ai \ nil(H), then

1. ω(NH) =
∑n

i=1 ω(NAi).

2. If Ai is nilpotent for all i ∈ {1, . . . , n}, then every non-nilpotent subset of H can be
extended to a maximal non-nilpotent subset of H.
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Lemma 1.3. Suppose that p is a prime number dividing |H|. Let P = P1, P2, . . . , Pνp(H)

be the Sylow p-subgroups of H. Suppose that

P\
νp(H)∪

i=2

Pi ̸= ∅. (1)

Then there exists a non-nilpotent set Ω ⊆ H such that all elements of Ω are p-elements
and |Ω| = νp(H).

Proposition 1.4. T Let H ∼= J × K for two finite groups J and K. Then

ω(H) = ω(J) · ω(K).

Definition 1.5. Let g ∈ GL(n, q) where q = pk, p a prime, and |g| = qn − 1. Then ⟨g⟩ is
called a Singer cycle subgroup of G.

Definition 1.6. Let V be a vector space over a finite field F with dimension n. We
call V = V n1 ⊕ V n2 ⊕ . . . ⊕ V nk an (n1, n2, . . . , nk)-decomposition if (n1, n2, . . . , nk) is a
partition of n and for i = 1, 2, . . . , k, Vni is a subspace of V of dimension ni.

Definition 1.7. Let V be an n−dimensional vector space over a finite field F with size
q. An element g of GL(n, q) is called an (n1, n2, . . . , nk)-Singer generator if there is an
(n1, n2, . . . , nk)-decomposition V = Vn1 ⊕Vn2 ⊕ . . .⊕Vnk

of V such that g = gn1gn2 . . . gnk
,

where for each i, ⟨gni⟩ is a Singer cycle subgroup of GL(Vni), or if ni = 1 then gni has
eigenvalue 1, and if ni = nj with i ̸= j, then cgni

(t) ̸= cgnj
(t), where cgni

(t) is the

characteristic polynomial for gni on Vni . We call Πk
i=1⟨gni⟩ the (n1, n2, . . . , nk)−maximal

torus corresponding to g.

Note that GL(n, q) has no (1, 1, . . . , 1)-Singer generator unless q ≥ n + 1.

Definition 1.8. Let n be a natural number. We define a partition of n by 1k =
(1, 1, 1, . . . , 1, n − k) so that the first k elements are 1 and the last is n − k, with k =
0, 1, 2, . . . , n − 1.

Lemma 1.9. Let G = GL(n, q), with q = pk ≥ n + 1 and suppose that g ∈ G is an 1k-
Singer generator, where k = 0, 1, 2, . . . , n − 1, with g = g11g12 . . . g1k

gn−k. Then CG(g) =
Πk

i=1⟨g1i⟩ × ⟨gn−k⟩ is a subgroup of order Πk
i=1(q − 1)k × (qn−k − 1) and p does not divide

|CG(g)|.
Theorem 1.10. Let G = GL(n, q), where q = pk ≥ n + 1. Let N1k

consist of one 1k-
Singer generator element of G corresponding to each 1k-maximal torus of G. Then N1k

is

a non-nilpotent subset of size |G|
k!(q−1)k(n−k)(qn−k−1)

.

2 Main results

Theorem 2.1. Let G = GL(n, q), where q ≥ n+1. Then N =
∪n

k=0 N1k
is a non-nilpotent

subset of the regular semisimple elements of size

|N | =

n∑

k=1

|N1k
| =

|G|
n(qn − 1)

+

n−2∑

k=1

|G|
k!(q − 1)k(n − k)(qn−k − 1)

+
|G|

n!(q − 1)n
.
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Lie structure of smash products ∗
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Abstract

We investigate the conditions under which the smash product of an (ordinary or
restricted) enveloping algebra and a group algebra is Lie solvable or Lie nilpotent.

Keywords: smash products, enveloping algebras, group algebras, Lie solvable

Mathematics Subject Classification [2010]: 17B60, 16S40, 16R40, 17B35

1 Introduction

Let A be an associative algebra over a field and regard A as a Lie algebra via the Lie
product defined by [x, y] = xy − yx, for every x, y ∈ A. Then, A is said to be Lie
solvable (respectively, Lie nilpotent) if it is solvable (nilpotent) as a Lie algebra. The
Lie structure of associative algebras have been extensively studied over the years and
considerable attention has been especially devoted to group algebras (see e.g. [2, 3, 5])
and restricted enveloping algebras (see e.g. [6, 7, 8, 9, 10]).

Let G be a group and F a field. We denote by FG the group algebra of G over F. We
also denote by G′ the derived subgroup of G. Passi, Passman and Sehgal established in
[5] when FG is Lie solvable and Lie nilpotent.

Theorem 1.1 ([5]). Let FG be the group algebra of a group G over a field F of char-
acteristic p ≥ 0. Then FG is Lie nilpotent if and only if one of the following conditions
hold:

1. p = 0 and G is abelian;

2. p > 0, G is nilpotent and G′ is a finite p-group;

Theorem 1.2 ([5]). Let FG be the group algebra of a group G over a field F of char-
acteristic p ≥ 0. Then FG is Lie solvable if and only if one of the following conditions
hold:

1. p = 0 and G is abelian;

2. p > 2 and G′ is a finite p-group;

3. p = 2 and G has a subgroup N of index at most 2 such that N ′ is a finite 2-group.

∗Will be presented in English
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Let L a restricted Lie algebra over a field F of characteristic p > 0. The restricted
enveloping algebras of L is denoted by u(L). We recall that a subset S of L is said to
be p-nilpotent if S[p]m = {x[p]m |x ∈ S} = 0, for some m ≥ 1. We will also denote by L′

the derived subalgebra [L,L] of L. The Lie structure of restricted enveloping algebras has
been investigated by Riley and Shalev in [6].

Theorem 1.3 ([6]). Let L be a restricted Lie algebra over a field of characteristic p > 0.
Then u(L) is Lie nilpotent if and only if L is nilpotent and L′ is finite-dimensional and
p-nilpotent.

Theorem 1.4 ([6]). Let L be a restricted Lie algebra over a field of characteristic p > 2.
Then u(L) is Lie solvable if and only if L′ is finite-dimensional and p-nilpotent.

Let H be a Hopf algebra and suppose that A is a left H-module algebra via ϕ : H →
EndF(A). For every h ∈ H and x ∈ A, we set h ∗ x = ϕ(h)(x) and use the so-called
Sweedler’s notation ∆(h) =

∑
h1 ⊗ h2 for the comultiplication of H . We recall that the

smash product A#H is the vector space A⊗FH endowed with the following multiplication
(we will write a#h for the element a⊗ h):

(a#h)(b#k) =
∑

a(h1 ∗ b)#h2k.

In particular, we consider H = FG, where the action of FG on A is induced by a group
homomorphism ϕ : G→ Aut(A). Conversely, every FG-module algebra arises in this way.
Since ∆(g) = g⊗g, the multiplication in A#FG is just given by (a#g)(b#h) = a(g∗b)#gh,
for all a, b ∈ A and g, h ∈ G. See [4] for more details.

Now, suppose that a group G acts by automorphisms on a restricted Lie algebra L
over a field F of positive characteristic. This action is naturally extended to the action
of FG on u(L) and one can form the smash product u(L)#FG. Necessary and sufficient
conditions under which these smash products satisfy a nontrivial polynomial identity were
provided by Bahturin and Petrogradsky in [1]. In this paper we determine necessary and
sufficient conditions under which u(L)#FG is Lie solvable or Lie nilpotent.

It is worth mentioning that smash products, sometimes referred as semidirect products,
arise very frequently in the theory of Hopf algebras. A classical example is a celebrated
structure theorem of Cartier-Kostant-Milnor-Moore, asserting that every cocommutative
Hopf algebra over an algebraically closed field of characteristic zero can be presented as
a smash product of a group algebra and an enveloping algebra (see e.g. [4, §5.6]). As
an application of our results, we show that a cocommutative Hopf algebra over a field of
characteristic zero is Lie solvable if and only if it is commutative.

2 Main results

In the main results of this paper we determine the conditions under which u(L)#FG is
Lie solvable in odd characteristic (Theorem 2.1) or Lie nilpotent (Theorem 2.2). We also
deal with smash products U(L)#FG, where U(L) is the ordinary enveloping algebra of a
Lie algebra over any field. In particular, we establish when U(L)#FG is Lie solvable (in
characteristic different than 2) or Lie nilpotent.
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Theorem 2.1. Let G be a group acting by automorphisms on a restricted Lie algebra L
over a field F of characteristic p > 2. Then u(L)#FG is Lie solvable if and only if the
following conditions hold:

1. G′ is a finite p-group;

2. L contains a finite-dimensional p-nilpotent G-stable restricted ideal P such that L/P
is abelian and G acts trivially on L/P .

Let a group G act by automorphisms on a F-vector space V . One says that G acts
nilpotently on V if there exists a chain 0 = V0 ⊆ V1 ⊆ · · ·Vn = V of G-stable subspaces
of V such that the induced action of G on each factor Vi/Vi−1 is trivial. Note that this
is tantamount to saying that ω(G)m ∗ V = 0 for some m, where V is regarded as an
FG-module in the natural way.

Theorem 2.2. Let G be a group acting by automorphisms on a restricted Lie algebra L
over a field F of characteristic p > 0. Then u(L)#FG is Lie nilpotent if and only if the
following conditions are satisfied:

1. G is nilpotent and G′ is a finite p-group;

2. L is nilpotent;

3. L has a finite-dimensional p-nilpotent G-stable restricted ideal P such that L/P is
abelian, and G acts nilpotently on L and trivially on L/P .
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Local dimension and direct sum of cyclic modules
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Abstract

In this paper we study rings with local dimension which certain of ideals are direct
sum of cyclic modules. It is shown that for a commutative ring R with local dimension
ω, every ideal is direct sum of cyclic modules if and only if R is a principal ideal domain.
We show that for a non-local ring R with finite local dimension if every ideal of R is
a direct sum cyclic right R-modules, then R is right Artinian.

Keywords: Local dimension, Cyclic modules, Principal ideal ring, Artinian Ring.

Mathematics Subject Classification [2010]: 13F10, 16P20, 16D25.

1. Introduction

Throughout this article, let R denote an arbitrary ring with identity. All modules are
assumed to be unitary. For a module MR, we write Soc(M) and Rad(M) for the socle
and the Jacobson radical of M , respectively. Also, J(R) will be used for the Jacobson
radical of a ring R. A local ring is a ring with only one maximal right (or left) ideal. The
study of commutative rings which ideals are direct sum of cyclic modeles was initiated by
Behboodi, Ghorbani and Moradzade in [1]. An interesting natural question of this sort is:
”What is the class of non-local commutative rings R for which every ideal is a direct sum
of cyclic modules?” We answer this question in the case where rings have local dimension
less than or equal to ω. Recall that local dimension is a measure of how far a coatomic
module deviates from being local. Let M be an R-module. If M has a largest proper
submodule, i.e., a proper submodule which contains all proper submodules, then M is
called a local module (see [5]). A module M is called coatomic if every proper submodule
of M is contained in a maximal submodule (see [3]).

Definition 1.1. In order to define local dimension for coatomic modules over a ring R,
we first define, by transfinite induction, classes ζα of coatomic R-modules for all ordinals
α. To start with, let ζ1 be the class of non-zero local modules. Next, consider an ordinal
α > 1; if ζβ has been defined for all ordinals β < α, let ζα be the class of those coatomic R-
modules M such that, for every submodule N < M , M/N �M implies M/N ∈ ⋃β<α ζβ.
If a coatomic R-module M belongs to some ζα, then the least such α is the local dimension
of M , denoted l.dim(M). For M = 0, we define l.dim(M) = 0. If a coatomic module M
does not belong to any ζα, then we say that “l.dim(M) is not defined,” or that “ M has
no local dimension” (See [2] ).

∗Speaker

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Local dimension and direct sum of cyclic modules pp.: 1–4

219



In this paper we study commutative rings with local dimension less than or equal
to ω such that every ideal is direct sum of cyclic modules. In Theorem 2.4, we show
that when local dimension of a commutative ring R is ω, every ideal of R is direct sum
of cyclic modules if and only if R is a principal ideal ring. In continue, we study non-
commutative rings with finite local dimension. We have obtained the conditions under
which, noncommutative rings with finite local dimension are Artinian. By Proposition 3.2,
if R is a non-local ring such that l.dim(RR) < ∞ and J(R) is finitely generated as righ
R-module, then R is right Artinian and length(RR) = l.dim(RR). This yields that in the
same condition if J(R)n is a direct sum of finitely generated right R-modules, for every
n ∈ N, then R is right Artinian and lenght(RR) = l.dim(RR) (Theorem 3.4).

2. Commutative rings with countable local dimension

In this section we study commutative rings with local dimension less than or equal to ω
whose ideals are direct sum of cyclic modules. Behboodi et al. in [1] showed that for a
commutative Noetherian local ring (R,M) every ideal is direct sum of cyclic modules if
and only if M = Rw1 ⊕ · · · ⊕ Rwn with at most two of Rwi’s not simple. On the other
hand, we showed that a commutative ring R has finite local dimension if and only if R is
Artinian or local ( See [2, Theorem 4.12]). Therefore we have the following.

Proposition 2.1. Suppose R is a commutative non-local ring with finite local dimension.
Then every ideal of R is direct sum of cyclic modules if and only if R = R1 × · · · × Rn
such that for every 1 6 i 6 n, Ri is an Artinian local ring with maximal ideal Mi that
Mi = Rwi1 ⊕ · · · ⊕Rwini with at most two of Rwij’s not simple.

Now we want to study commutative rings with local dimension equal to ω whose ideals
are direct sum of cyclic modules. First we need some preliminary definition and results.

Lemma 2.2. (See [2, Theorem 2.8]) If R is a ring such that RR has finite local dimension,
then R is a semilocal ring.

In the above lemma replace R with R/J(R), and suppose l.dim(R/J(R)) is finite, then
R/J(R) is semilocal and since J(R/J(R)) = 0 we conclude that R/J(R) is semisimple.

Corollary 2.3. If R be a ring (not necessarily commutative) such that l.dim(R/J(R)) as
right R-module is finite, then R is semilocal.

Now we are in a position to state our main theorem.

Theorem 2.4. Let R be a commutative ring such that l.dim(R) = ω. Then,
every ideal of R is a direct sum of cyclic modules if and only if R is PID.

Proof. We give here a sketch of proof. Consider that by [2, Corollary 4.11], R is right
Noetherian. First we show that for every ideal I of R, if R/I is not local then I is cyclic.
This implies that every ideal of R is a direct sum of two cyclic modules. In continue,
we show that Soc(R) = J(R) = 0. From this we concluded that R is a principal ideal
domain.
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3. Noncommutative rings with finite local dimension

As you saw in section 2, for a commutative ring R if 1 < l.dim(R) < ∞, then R is
Artinian and l.dim(R) = length(R). In this section, we obtain the conditions under
which noncommutative rings with finite local dimension are Artinian. First consider the
following.

Lemma 3.1. Let R be a ring such that 1 < l.dim(RR) <∞. If I1 ⊇ I2 ⊇ · · · is a chain of
two sided ideals of R such that R/I1 is not local, then there exist m ∈ N such that Im = Ij,
for every j > m.

Proposition 3.2. Let R be a ring such that 1 < l.dim(RR) < ∞. If J(R) is a finitely
generated right R-module, then R is right Artinian and l.dim(RR) = length(RR).

Lemma 3.3. [1, Lemma 2.3] Let R be a ring and M be an R-module such that M is a
direct sum of a family of finitely generated R-modules. Then Nakayamas lemma holds for
M (i.e., for each I ⊆ J(R), if MI = M , then M = (0)).

Now we can state the main result of this section.

Theorem 3.4. Let R be a ring such that 1 < l.dim(RR) < ∞. If J(R)n is a direct
sum of finitely generated right R-moduls, for every n ∈ N, then R is right Artinian and
l.dim(RR) = length(RR).

Proof. Proof by induction hypothesis on local dimension of RR. The base of induc-
tion is obvious by [2, lemma 4.6]. Suppose l.dim(RR) = n and the assertion is true
for all rings with local dimension less than n. If J(R) = 0, then R is semisimple and
l.dim(RR) = length(RR). Suppose J(R) 6= 0, we show that J(R) is finitely gener-
ated right R-module and so by Proposition 3.2, R is right Artinian and l.dim(RR) =
length(RR). By Lemma 3.1, there exist m ∈ N such that J(R)m = J(R)m+1. Then
J(R)mJ(R) = J(R)m and by Lemma 3.3, J(R)m = 0, because J(R)m is a direct sum
of finitely generated modules. Assume that J(R) = ⊕i∈ILi such that Li’s are finitely
generated modules, let k = l.dim(R/J(R)) and t = n − k. Note that J(R)J(R)m−1 = 0
so J(R) is an R/J(R)m−1-module. Since l.dim(R/J(R)m−1) < l.dim(R) by induction
hypothesis R/J(R)m−1 has finite length, hence Li has finite length as an R/J(R)m−1-
module and so as an R-module. Without loss of generality, we can assume J(R) =
H1 ⊕ H2 ⊕ · · ·Ht+1 ⊕ F such that F = ⊕j∈JHj and J = I \ {1, · · · , t + 1}. For
i = 1, · · · , t + 1, let Li = Li0 > Li1 > · · · > Liqi = 0 be a composition series for Li.
Then J(R) = L10 ⊕ L20 ⊕ · · · ⊕ L(t+1)0 ⊕ F . Let h = q1 + q2 + · · · + qt+1. We can show
that there is a series J(R) = J0 > J1 > J2 > · · · > Jh = F such that Ji/Ji+1 is simple,
moreover h > t + 1. By induction hypothesis, length(R/J(R)) = l.dim(R/J(R)) = k.
Consider that J0/J1 is simple, hence length(R/J1) = length(R/J0) + 1 = k + 1 and so
R/J1 � R/J0, then l.dim(R/J1) > l.dim(R/J0). On the other hand, by [2, corollary
3.3], l.dim(R/J1) 6 length(R/J1) = length(R/J0) + 1 = l.dim(R/J0) + 1 which show that
l.dim(R/J1) = l.dim(R/J0)+1. Similarly length(R/Ji+1) = length(R/Ji)+1, for every 0 6
i < h, because Ji/Ji+1 is simple. Which show that length(R/Ji) = k+i, for every 0 6 i 6 h
and so R/Ji+1 � R/Ji. Therefore = l.dim(R/Ji) < l.dim(R/Ji+1) 6 length(R/Ji+1), for
every 0 6 i < h, and so l.dim(R/Ji) = length(R/Ji) = k+ i, for every 0 6 i 6 h. Now for
i = t + 1 we have l.dim(R/Ji) = k + i = k + t + 1 = k + n − k + 1 = n + 1 > n which is
contradiction and hence J(R) is a finitely generated right R-module.
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Corollary 3.5. Let R be a ring such that 1 < l.dim(RR) < ∞. If every ideal of R
is a direct sum of cyclic right R-modules, then R is right Artinian and l.dim(RR) =
length(RR).
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Minimum size of intersetion for covering groups by subgroups

Mohammad Javad Ataei∗

Department of Mathematics, Payame Noor University, Iran

Abstract

Let G denotes a semisimple C8-group and {Mi |1 ≤ i ≤ 8} be a maximal irredun-

dant 8-cover for G, with core-free intersection D =
⋂8
i=1Mi. Also for each i, 1 ≤ i ≤ 8

we assume that |G : Mi| = αi such that α1 ≤ α2 ≤ α3 ≤ α4 ≤ α5 ≤ α6 ≤ α7 ≤ α8.

Let l is minimum positive integer such that
⋂l
i=1(Mi)G 6= 1. We say that l is

minimum size of intersetion and in this case we show that MSI(G)=l. In this paper
we show that if G be a semisimple C8-group and αl ≤ 4 then MSI(G)≤ 3

Keywords: covering groups by subgroups, Subdirect product, maximal iredundant
cover, core-free intersection
Mathematics Subject Classification [2010]: 20F99

1 Introduction and history

Let G be a group. A set C of proper subgroups of G is called a cover for G if its set-
theoretic union is equal to G. If the size of C is n, we call C an n-cover for the group
G. A cover C for a group G is called irredundant if no proper subset of C is a cover for
G. A cover C for a group G is called core-free if the intersection D =

⋂
M∈CM of C is

core-free in G, i.e. DG =
⋂
g∈G g

−1Dg is the trivial subgroup of G. A cover C for a group
G is called maximal if all the members of C are maximal subgroups of G. A cover C for a
group G is called a Cn-cover whenever C is an irredundant maximal core-free n-cover for
G and in this case we say that G is a Cn-group. A finite group is called semisimple if it
has no non-trivial normal abelian subgroups (see p. 86 of [9] for further information on
such groups).

Also we use the usual notations ([9]); for example, Cn denotes the cyclic group of order
n, (Cn)j is the direct product of j copies of Cn, the core of a subgroup H of G is denoted
by HG.

In [10], Scorza determined the structure of all groups having an irredundant 3-cover
with core-free intersection.

Theorem 1.1. (Scorza [10]) Let {Ai : 1 ≤ i ≤ 3} be an irredundant cover with core-free
intersection D for a group G. Then D = 1 and G ∼= C2 × C2.

In [7], Greco characterized all groups having an irredundant 4-cover with core-free
intersection. Bryce et al.[6], characterized groups with maximal irredundant 5-cover with
core-free intersection.

∗Department of Mathematics, Payame Noor University of Isfahan, Iran
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We characterized groups with maximal irredundant 6-cover with core-free intersection
in [1]. Abdollahi et al.[3], characterized groups with maximal irredundant 7-cover with
core-free intersection.

Also we characterized p-groups with maximal irredundant 8-cover with core-free inter-
section in [2].

Theorem 1.2. ( See [2] ). Let G be a C8-group. Then G is a p-group for a prime number
p if and only if G ∼= (C3)

4 or (C7)
2.

Also we investigated covering groups by subgroups and semisimplity condition in [4]
and subdirect product and covering groups by subgroups in [5].

Let l is minimum positive integer such that
⋂l
i=1(Mi)G 6= 1. We say that l is minimum

size of intersetion and in this case we show that MSI(G)=l. In this paper we show that if
G be a semisimple C8-group and αl ≤ 4 then MSI(G)≤ 3

2 Main results

In the proofs of the main results we need the following lemmas:

Lemma 2.1. (Lemma 2.2 of [6]). Let Γ = {Ai : 1 ≤ i ≤ m} be an irredundant covering
of a group G whose intersection of the members is D.

(a) If p is a prime, x a p-element of G and |{i : x ∈ Ai}| = n , then either x ∈ D or
p ≤ m− n.

(b) ∩
j 6=i
Aj = D for all i ∈ {1, 2, ...,m}.

(c) If ∩
i∈S
Ai = D whenever |S| = n, then

∣∣∣∣ ∩i∈TAi : D

∣∣∣∣ ≤ m−n+ 1 whenever |T | = n−1
.

(d) If Γ is maximal and U is an abelian minimal normal subgroup of G, then if
|{i : U ⊆ Ai}| = n, either U ⊆ D or |U | ≤ m− n.

Lemma 2.2. (Lemma 3.1 of [11]). Let M be a proper subgroup of the finite group G
and let H1, H2, ..., Hk be subgroups with |G : Hi| = βi and β1 ≤ β2 ≤ ... ≤ βk. If
G = M ∪H1 ∪ · · · ∪Hk then β1 ≤ k. Furthermore if β1 = k then β1 = β2 = · · · = βk = k
and Hi ∩Hj ≤M for all i 6= j.

Lemma 2.3. (Lemma 3.2 of [11]). Let N be a normal subgroup of the finite group G.
Let U1,...,Uh be proper subgroups of G containing N and V1,..., Vk be subgroups such that
ViN = G with |G : Vi| = βi and β1 ≤ β2 ≤ ... ≤ βk. If G = U1

⋃ · · ·⋃Uh
⋃
V1
⋃ · · ·⋃Vk

then β1 ≤ k. Furthermore if β1 = k then β1 = β2 = · · · = βk = k and Vi
⋂
Vj ⊆

U1
⋃ · · ·⋃Uh for all i 6= j.

Remark 2.4. (1) The only primitive subgroups of degree 5 are C5, C5 o C2, C5 o C4,
Alt5 and Sym5.

(2) The only primitive subgroups of degree 6 are Alt5, Alt6, Sym5 and Sym6.
(3) The only primitive subgroups of of degree 7 are C7, C7 oC2, C7 oC3, AGL(1, 7),

PSL(3, 2), Alt7 and Sym7.

Lemma 2.5. Let G be a semisimple C8-group. Then for every subset S of {1, . . . , 8} such
that |S| = 4, we have |⋂i∈S(Mi)G| = 1.
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Proof. Suppose, on the contrary, that K :=
⋂
i∈S(Mi)G 6= 1 and |S| = 4. Therefore by

Lemma 2.1 (a), K contains no 5-element and no 7-element. Thus K is a normal soluble
subgroup of G, which contradicts the semisimplity of G.

Lemma 2.6. Let G be a semisimple C8-group. If αl ≤ 4 for l ≤ 8, then MSI(G)≤ 3.

Proof. In the first we show that
⋂l
i=1(Mi)G 6= 1.

Let
⋂l
i=1(Mi)G = 1, then

G =
G

⋂l
i=1(Mi)G

↪→ Sym4 × · · · × Sym4︸ ︷︷ ︸
l

.

Thus G is soluble, which it is not possible since G is semisimple. It follows from Lemma
2.5 that l ≤ 3.

Now we introduce one question for researchers, because answer to bellow question is
very important for classification of Cn-group.

Question 2.7. Let m and n are positive integer numbers and G be a primitive subgroups
of degree m. Now for which of number m, G is a Cn-group?
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Monoids over which products of indecomposable acts are

indecomposable

Mojtaba Sedaghatjoo∗

University of Persian Gulf

Abstract

In this paper we prove that for a monoid S, products of indecomposable right
S-acts are indecomposable if and only if S contain a right zero. Besides, we prove
that subacts of indecomposable right S-acts are indecomposable if and only if S is left
reversible. Ultimately, we prove that the one element right S-act ΘS is product flat if
and only if S contains a left zero.

Keywords: Indecomposable act, left reversible monoid, Baer criterion, product flat,
super flat.

Mathematics Subject Classification [2010]: Primary: 20M30; Secondary:
20M50

1 Introduction

Throughout this paper, S stands for a monoid and 1 denotes its identity element. A
nonempty set A together with a mapping A× S → A, (a, s) as, is called a right S-act
or simply an act (and is denoted by AS) if a(st) = (as)t and a1 = a for all a ∈ A, s, t ∈ S.
We refer the reader to [1, 6] for more details on the concepts mentioned in this paper.

Since for a given monoid S any right S-act AS is uniquely the disjoint union of inde-
composable acts called indecomposable components of AS , analogous to the bricks forming
a wall, indecomposable acts deserve to be taken into consideration. A pioneering work
in this account goes back to [3], where collection of all indecomposable right S-acts are
partitioned into equivalence classes correspond to components of the right S-act R formed
by letting S act on its right congruences by translation.

As mentioned, every right S-act AS has a unique decomposition into indecompos-
able subacts, indeed, indecomposable components of AS are the equivalence classes of
the relation ∼ on AS defined in [8] by a ∼ b if there exist s1, s2, . . . , sn, t1, t2, . . . , tn ∈
S, a1, a2, . . . , an ∈ AS such that

a = a1s1, a1t1 = a2s2, a2t2 = a3s3, . . . , antn = b

which we shall call this sequence of equalities a scheme of length n.
The paper comprises three sections as follows. In the first section we presented a short

account of the needed notions. The second one concerns indecomposable acts over left
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reversible monoids which we prove that in Baer criterion for acts, the condition of possess-
ing a zero element can be abandoned in case that S is not left reversible. In third section
we engage in the main results of this paper that is conditions under which indecompos-
able, product flat and super flat properties are preserved under products. Furthermore
we prove that for the one element act ΘS , the tensor functor ΘS ⊗ − preserves limits if
and only if it preserves products, equivalently; products of indecomposable left S-acts are
indecomposable.

2 Main results

In what follows we investigate indecomposable acts over left reversible monoids and give
some characterizations for left reversible monoids regarding indecomposable property. In
the next proposition we show that for left reversible monoids the length of the preceding
scheme can be considered 2.

Proposition 2.1. For a monoid S the following are equivalent.
i) S is a left reversible monoid,
ii) a right S-act AS is indecomposable if and only if for any a, a′ ∈ AS there exist

s, s′ ∈ S such that as = a′s′,
iii) any indecomposable right S-act contains at most one zero element.

Recall that Baer criterion for right S-acts asserts that a right S-act is injective if and
only if it possesses a zero element and is injective relative to all inclusions into cyclic right
S-acts. In what follows we prove that if S is not left reversible then the condition of
possessing a zero element in Baer criterion could be omitted.

Proposition 2.2. Let S be a monoid that is not left reversible. A right S-act QS is
injective if and only if it is injective relative to all inclusions into cyclic right S-acts.

Here a question can be posed that
whether a monoid S over which injective acts are precisely ones that are in-
jective relative to all inclusions into cyclic acts, is not left reversible.

In the next proposition we characterize monoids over which subacts of indecomposable
acts are indecomposable.

Proposition 2.3. For a monoid S all subacts of indecomposable right S-acts are inde-
composable if and only if S is left reversible.

Corollary 2.4. For a monoid S the category of indecomposable right S-acts is a full
subcategory of Act-S if and only if S is left reversible.

The next proposition characterizes monoids over which non-zero cofree acts are de-
composable.

Proposition 2.5. For a monoid S the following are equivalent.
i) all Non-zero cofree S-acts are decomposable,
ii) there exists a non-zero decomposable cofree right S-act,
iii) S is left reversible.
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Note that products of indecomposable acts are not indecomposable in general, for
instance if S is a left zero semigroup with an identity element externally adjoint, then
there is no scheme in S × S connecting (1, a) to (a, 1) for 1 6= a ∈ S.

Corollary 2.6. For a monoid S, SS×S is indecomposable if and only if SI is indecom-
posable for each nonempty set I. In the case that S is finite, SS×S is indecomposable if
and only if S × S is indecomposable.

A subject of interest in the study of tensor products is preservation of limits by tensor
functor AS ⊗− for a right S-act AS which is investigated in [3]. Following terms used in
this reference a right S-act AS is called (finitely) super flat if the functor AS⊗− preserves
all (finite) limits, and (finitely) product flat if it preserves all (finite) products. Now if
finite products of indecomposable acts are indecomposable then S ×S is indecomposable.
In the next theorem we show that this is a sufficient condition for finite products of
indecomposable acts to be indecomposable which is equivalent to the one element left S-act

SΘ is finitely product flat. Besides in the sequel we show that products of indecomposable
acts are indecomposable if and only if the one element left S-act SΘ is product flat.

Theorem 2.7. For a monoid S the following are equivalent.
i) finite products of indecomposable acts are indecomposable,
ii) finite products of cyclic acts are indecomposable,
iii) Sn is indecomposable for each n ∈ N,
iv) Sn is indecomposable for some 1 6= n ∈ N,
v) S × S is indecomposable,
vi) the one element left S-act SΘ is finitely product flat.

If products of indecomposable acts are indecomposable, then SI is indecomposable for
each nonempty set I, though, in comparison with Theorem 2.7, this is a strict implication.
Hereby, we need an additional condition on S to fill the gap namely Condition right-FI
under which there exists a fixed natural number n such that any pair of elements in any
indecomposable right S-act can be connected via a scheme of length n (see [3, Corollary
2.11]).

In the next proposition we characterize monoids satisfying Condition right-FI.

Proposition 2.8. Monoids satisfying condition right-FI are precisely left reversible
monoids which the associated natural number can be taken 2.

In the next proposition we characterize monoids for which products of indecomposable
acts are indecomposable.

Proposition 2.9. For a monoid S the following are equivalent:
i) products of indecomposable right S-acts are indecomposable,
ii) S is left reversible and SS×S is indecomposable,
iii) S satisfies condition right-FI and SS×S is indecomposable,
iv) non-zero cofree acts are decomposable and SS×S is indecomposable,
v) All subacts of indecomposable right S-acts are indecomposable and SS×S is inde-

composable.

For commutative monoids, the left reversibility condition in Proposition 2.9 is fulfilled
and the following corollary is obtained.
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Corollary 2.10. For a commutative monoid S products of indecomposable acts are
indecomposable if and only if SS×S is indecomposable.

Lemma 2.11. For a left reversible monoid S, finite products of indecomposable right
S-acts are indecomposable if and only if S is right collapsible.

Theorem 2.12. For a monoid S products of indecomposable right S-acts are indecom-
posable if and only if S has a right zero.

Note that in [3, Proposition 3.8] states that for a proper right ideal K of a monoid S
if the Rees factor act S/K is finitely product flat then S/K is super flat. So a naturally
come question to the mind is the case that K = S. In the next proposition we show that
in this case product flatness is equivalent to super flatness. Indeed in [3] it is proved that
the one element left S-act SΘ is product flat if and only if S satisfies condition right-FI
and SI is indecomposable for each set I. Hereby we give the next proposition which is an
improvement of this result.

Proposition 2.13. For a monoid S the following are equivalent:
i) the one element right S-act ΘS is super flat,
ii) the one element right S-act ΘS is product flat,
iii) S contains a left zero.
iv) products of indecomposable left S-acts are indecomposable.
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On direct products of S-posets

Roghaieh Khosravi∗

Fasa University

Abstract

In this paper we investigate on direct products of (po-)torsion free, principally
weakly and weakly (po-)flat and strongly flat S-posets. Moreover, a characterization
of pomonoids over which direct products of S-posets satisfying conditions (P), (E),
and (Pw) again satisfy that conditions is given.

Keywords: Pomonoid, S-poset, Direct product
Mathematics Subject Classification [2010]: 06F05, 20M30

1 Introduction

A monoid S that is also a partially ordered set, in which the binary operation and the
order relation are compatible, is called a pomonoid. A right S-poset AS is a right S-act
A equipped with a partial order ≤ and, in addition, for all s, t ∈ S and a, b ∈ A, if s ≤ t
then as ≤ at, and if a ≤ b then as ≤ bs. An S-subposet of a right S-poset A is a subset
of A that is closed under the S-action. The definition of ideal is the same for the act case.
Moreover, X ⊆ S and take (X] = {p ∈ S | ∃x ∈ X, p ≤ x}. Finally, an S-morphism from
S-poset A to S-poset C is a monotonic map that preserves S-action.

A right S-poset AS is weakly po-flat if a ⊗ s ≤ a′ ⊗ t in AS ⊗ S implies that the
same inequality holds also in AS ⊗ S(Ss ∪ St) for a, a′ ∈ AS , s, t ∈ S. A right S-poset
AS is principally weakly po-flat if as ≤ a′s implies that a ⊗ s ≤ a′ ⊗ s in AS ⊗ SSs for
a, a′ ∈ AS , s ∈ S. Weakly flat and principally weakly flat can be defined as same as the
previous by replacing ≤ by =.

An S-poset AS satisfies condition (Pw) if, for all a, b ∈ A and s, t ∈ S, as ≤ bt implies
a ≤ a′u, a′v ≤ b for some a′ ∈ A, u, v ∈ S with us ≤ vt. A right S-poset AS satisfies
condition (P) if, for all a, b ∈ A and s, t ∈ S, as ≤ bt implies a = a′u, b = a′v for
some a′ ∈ A, u, v ∈ S with us ≤ vt, and it satisfies condition (E) if, for all a ∈ A and
s, t ∈ S, as ≤ at implies a = a′u for some a′ ∈ A, u ∈ S with us ≤ ut. A right S-poset is
called strongly flat if it satisfies both conditions (P) and (E).

If S is a pomonoid, the cartesian product SΓ is a right and left S-poset equipped
with the order and the action componentwise where Γ is a non-empty set. Moreover,
(sγ)γ∈Γ ∈ SΓ is dented simply by (sγ), and the right S-poset S × S will be denoted by
D(S).

Recall that an S-poset morphism f : AS → BS is called an order-embedding if f(a) ≤
f(a′) implies a ≤ a′, for all a, a′ ∈ A. The proof of the following lemma is routine.
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Lemma 1.1. Let S be a pomonoid, Γ any non-empty set, and I a left ideal of S. Then
the following are equivalent:

(i) SΓ ⊗ I → SΓ ⊗ S is order-embedding;
(ii) SΓ ⊗ I → IΓ is order-embedding.

Proposition 1.2. Let S be a pomonoid and s ∈ S. Then the following are equivalent:
(i) fs : SΓ ⊗ Ss→ (Ss)Γ is order-embedding for all Γ 6= ∅;

(ii) there exist (s1, t1), ..., (sn, tn) ∈ D(S) such that
(1) sis ≤ tis for all 1 ≤ i ≤ n, and
(2) if us ≤ vs for some u, v ∈ S, then there exist u1, ..., un ∈ S such that

u ≤ u1s1

u1t1 ≤ u2s2
...

untn ≤ v.

2 Main results

First, we begin our investigation with the weakest of the flatness properties. An element
c of a pomonoid S will be called right po-cancellable if, for all s, t ∈ S, sc ≤ tc implies
s ≤ t. A right S-poset AS is called po-torsion (torsion) free if, for a, a′ ∈ A and a right
po-cancellable (cancellable) element c of S, from ac ≤ a′c (ac = a′c) it follows that a ≤ a′
(a = a′). The proof of the following result is immediately evident.

Proposition 2.1. For any pomonoid S direct products of po-torsion (torsion) free S-
posets are again po-torsion (torsion) free.

Recall that a pomonoid S is call a left PSF pomonoid if all principal left ideals of
a pomonoid S are strongly flat. Let S be a pomonoid. An element u ∈ S is called
right semi-po-cancellable if for s, t ∈ S, su ≤ tu implies that there exists r ∈ S such that
ru = u, sr ≤ tr. In [7], it is shown that a pomonoid S is left PSF pomonoid if and only
if every element of S is right semi-po-cancellable.

Lemma 2.2. ([7]) Over a left PSF pomonoid S a right S-poset AS is principally weakly
po-flat if and only if for any a, a′ ∈ AS , s ∈ S, if as ≤ a′s, then there exists r ∈ S such
that rs = s and ar ≤ a′r.

Proposition 2.3. If S is a left PSF pomonoid, then the S-poset Sn is principally
weakly po-flat for each n ∈ N.

Since principally weakly po-flat implies principally weakly flat, over a left PSF pomonoid
S, Sn is also principally weakly flat.

Proposition 2.4. The following are equivalent for a pomonoid S:
(i) SΓ

S is principally weakly po-flat for each non-empty set Γ;
(ii) For any s ∈ S, the mapping fs : SΓ ⊗ Ss −→ (Ss)Γ is order-embedding for each

non-empty set Γ;
(iii) For any s ∈ S there exist (s1, t1), . . . , (sn, tn) ∈ D(S) such that
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(1) sis ≤ tit for all 1 ≤ i ≤ n, and

(2) if us ≤ vs (u, v ∈ S), then there exist u1, ..., un ∈ S such
that

u ≤ u1s1

u1t1 ≤ u2s2
...

untn ≤ v.

In [7], it is shown that a right S-poset AS is weakly po-flat if and only if it is principally
weakly po-flat and satisfies condition (W):

If as ≤ a′t for a, a′ ∈ AS , s, t ∈ S, then there exist a′′ ∈ AS , p ∈ Ss and q ∈ St such
that p ≤ q, as ≤ a′′p, a′′q ≤ a′t.

For each (p, q) ∈ D(S), {(u, v) ∈ D(S)| ∃w ∈ S, u ≤ wp,wq ≤ v} is a left S-poset and

will be denoted by Ŝ(p, q) from now on. Clearly Ŝ(p, q) contains the cyclic S-poset S(p, q).
Moreover, if Ss ∩ (St] 6= ∅, {(as, a′t)| as ≤ a′t} is denoted by H(s, t).

Proposition 2.5. The diagonal S-poset D(S) is weakly po-flat if and only if it is prin-
cipally weakly po-flat and Ss ∩ (St] = ∅ or for each (as, a′t) and (bs, b′t) in H(s, t) there

exist (p, q) ∈ H(s, t) such that (as, a′t), (bs, b′t) ∈ Ŝ(p, q).

Definition 2.6. Let S be a pomonoid. A finitely generated left S-poset SB is called
finitely definable (FD) if the S-morphism SΓ ⊗ B → BΓ is order-embedding for all non-
empty set Γ.

Theorem 2.7. The following are equivalent for a pomonoid S:
(i) SΓ is weakly po-flat right S-poset for each Γ 6= ∅;

(ii) every finitely generated left ideal of S is FD;
(iii) Ss is FD for each s ∈ S, and

for every s, t ∈ S, if Ss ∩ (St] 6= ∅, then H(s, t) ⊆ Ŝ(p, q) for some (p, q) ∈ H(s, t).

The ordered version of locally cyclic acts is called weakly locally cyclic S-poset as an
S-poset A that every finitely generated S-subposet of A is contained in a cyclic S-poset.
Moreover, a left ideal of S that is also weakly locally cyclic is called weakly locally principal
left ideal. The set L(a, b) := {(u, v) ∈ D(S)| ua ≤ vb} is a left S-subposet of D(S), and
the set (l(a, b) := {u ∈ S| ua ≤ ub}) is a left ideal of S.

Proposition 2.8. For any pomonoid S the following are equivalent:
(i) any finite product of right S-posets satisfying condition (P) (condition (E)) sat-

isfies condition (P) (condition (E));
(ii) the diagonal S-poset D(S) satisfies condition (P) (condition (E));
(iii) for every a, b ∈ S the set L(a, b) (l(a, b)) is either empty or a weakly locally cyclic

left S-poset ( weakly locally principal left ideal of S).

Proposition 2.9. For any pomonoid S the following are equivalent:
(i) any finite product of right S-posets satisfying condition (Pw) satisfies condition

(Pw);
(ii) the diagonal S-poset D(S) satisfies condition (Pw);
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(iii) for every a, b ∈ S the set L(a, b) is either empty or for each two elements

(u, v), (u′, v′) ∈ L(a, b) there exists (p, q) ∈ L(a, b) such that (u, v), (u′, v′) ∈ Ŝ(p, q).

Theorem 2.10. The following are equivalent for a pomonoid S:
(i) the direct product of every non-empty family of right S-posets satisfying condition

(P) (condition (E)) satisfies condition (P) (condition (E));
(ii) (SΓ)S satisfies condition (P) (condition (E)) for every non- empty set Γ;
(iii) for every a, b ∈ S the set L(a; b) (l(a, b)) is either empty or a cyclic left S-poset

( principal left ideal of S).

Theorem 2.11. The following are equivalent for a pomonoid S:
(i) the direct product of every non-empty family of right S-posets satisfying condition

(Pw) satisfies condition (Pw);
(ii) (SΓ)S satisfies condition (Pw) for every non- empty set Γ;
(iii) for every a, b ∈ S the set L(a, b) is either empty or there exists (p, q) ∈ L(a, b)

such that L(a, b) = Ŝ(p, q).

Corollary 2.12. The following are equivalent for a pomonoid S:
(i) every product SΓ is strongly flat right S-poset for a non-empty set Γ;

(ii) every product
∏
i∈I Ai of strongly flat right S-posets Ai, i ∈ I, is strongly flat;

(iii) for all (a, b) ∈ D(S), L(a, b) is either empty or a cyclic left S-poset and l(a, b)
is either empty or a principal left ideal of S.
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Abstract

Let M and N be two finitely generated graded modules over a standard graded
Noetherian ring R =

⊕
n≥0Rn. In this paper we show that if R0 is semi-local of

dimension ≤ 2 then, the set AssR0

(
Hi
R+

(M,N)n

)
is asymptotically stable for n →

−∞ in some special cases. Also, we study the torsion-freeness of graded generalized
local cohomology modules Hi

R+
(M,N). Finally, the tame loci T i(M,N) of (M,N)

are introduced and some sufficient conditions are proposed for the openness of these
sets in Zariski topology.

Keywords: generalized local cohomology modules, associated prime ideals, tame loci

Mathematics Subject Classification [2010]: 13D45, 13A02

1 Introduction

Assume that R is a commutative Noetherian ring with identity and all modules are unitary.
Let a be an ideal of R and R −Mod the category of R-modules and R-homomorphisms.
We denote by N0 and N the sets of non-negative and positive integers, respectively.

For i ∈ N0, the i-th generalized local cohomology functor with respect to a is a
generalization of the i-th local cohomology functor with respect to a, i.e. H i

a(−) =
lim−→n∈N ExtiR(R/a

n,−)([1], [5]). It is defined, by Herzog ([6]), as follows:

H i
a(−,−) : R−Mod×R−Mod→ R−Mod

H i
a(M,N) = lim−→

n∈N
ExtiR(M/anM,N).

For all R-modulesM and N , H i
a(M,N) is called the i-th generalized local cohomology

module of M and N with respect to a. These functors coincide when M = R and have
been studied by many authors (see for instance [2], [3].

Now, let R =
⊕

n∈N0
Rn be a standard graded Noetherian ring and let M and N be

two finitely generated graded R-modules. Also, assume that R+ =
⊕

n∈NRn denotes the
irrelevant ideal of R. It is well known that for each i ∈ N0, H

i
R+

(M,N) carries a natural
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grading. Then, according to [8], H i
R+

(M,N)n is a finitely generated R0-module for all
n ∈ Z and it vanishes for all sufficiently large values of n. Therefore, the R0-modules
H i
R+

(M,N)n are asymptotically trivial if n→ +∞.
One basic question in this respect is to ask for the asymptotic behavior of the graded

components H i
R+

(M,N)n for n→ −∞. The concept of tameness is the most fundamental
concept related to the asymptotic behavior of cohomology. A graded R-module T =⊕

n∈Z Tn is said to be tame, or asymptotically gap free, if either Tn 6= 0 for all n� 0 or else
Tn = 0 for all n� 0. In this paper we are interested to the study of the tame loci T i(M,N)
with respect to a pair of modules (M,N), that is, the sets of all primes p0 ∈ Spec(R0)
for which the graded Rp0-module H i

R+
(M,N)p0 is tame. Tame loci T i(R,N) have been

studied in [4].
The paper is organized as follows: in the second section, we study the asymptotic

behavior of AssR0

(
H i
R+

(M,N)n
)
as n→ −∞. More precisely, we show that if R0 is semi-

local and dimR0 ≤ 2 then the set AssR0

(
H i
R+

(M,N)n

)
is asymptotically stable in each

of the following cases:

(1) depth(R0) > 0 and Γm0(M) = 0 = Γm0(N),

(2) dimR0

(
H i−1
R+

(M,N)n
)
≤ 1 for all n� 0 (Theorem 2.9).

Section 3 deals with the torsion-freeness of H i
R+

(M,N). In this section we show that

if R0 is a domain and dimH i
R+

(N) ≤ 2, then there is some t ∈ R0 − {0} such that the

(R0)t-module H i
R+

(M,N)t is torsion-free (or vanishes) for each i ∈ N0 (Theorem 3.2).

Section 4 is devoted to the study of Tame loci T i(M,N). In this section we use the
results in previous sections to show that these sets are open in Zariski topology in some
special cases.

Throughout the paper, R =
⊕

n∈N0
Rn is a standard graded Noetherian ring, R+ =⊕

n∈NRn is the irrelevant ideal of R and M and N denote two finitely generated graded
R-modules.
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Abstract

Let (H, ◦) be a hypergroup. Consider the fundamental relation β∗, as the smallest
equivalence relation on H, such that the quotient algebraic structures (H/β∗,⊗),
the fundamental group of H, is a group. In this paper we investigate some conditions
such that for a given finite hypergroup H, its fundamental group (H/β∗, ⊗) is a trivial
group.

Keywords: OC-Hypergroup, Adapted Hypergroup, TS-Hypergroup, Identical Hy-
pergroup, mn-Hypergroup

Mathematics Subject Classification [2010]: 20N20

1 Introduction

The concept of hypersrtucture was defined by Marty in 1934 [6]. A non-empty set H
together with a mapping ◦ (namely hyperproduct) from H × H into P ∗(H), the set of all
non-empty subsets of H, is called a hypergroupoid and denoted by (H, ◦). If there is no
ambiguity, we simply write H instead of (H, ◦). For two non-empty subsets A,B ⊆ H,
define A ◦ B =

∪
(a,b)∈A×B a ◦ b. By abuse of notation, a ◦ b = {x}, A ◦ {a} and {a} ◦ A

are denoted by a ◦ b = x, A ◦ a and a ◦ A, respectively. A hypergroupoid (H, ◦) is called
a hypergroup if ◦ is associative and H ◦ x = x ◦ H = H, for every x ∈ H ( reproduction
axiom). From now on, if there is no ambiguity, by xy (for x, y ∈ H) and H, we mean
x ◦ y and hypergroup (H, ◦), respectively. A hypergroup H is commutative if xy = yx
for every x, y ∈ H. Many books and papers has been written about the applications of
hyperstructures theory in mathemathics and even other sciences ([1, 2, 3]). The purpose
of this paper is to study some finite hepergroups that have trivial fundamental group. In
this regards, we introduce the notion of overlapped covering of a hypergrpup, which leads
us to class of OC-hypergroups, and then some special subclasses, namely class of adapted
hypergroups and class of TS-hypergroups. First, we need some general and basic concepts
of hyperstructures theory.
A non-empty subset A of the hypergroup H is called a complete part of H if for all
positive integer n and for all (x1, x2, ..., xn) ∈ Hn,

∏n
i=1 xi

∩
A ̸= Ø implies

∏n
i=1 xi ⊆ A.

The complete closure of A in H is the intersection of all complete parts containing A and
is denoted by C(A) and is equal to K(A) that is obtained as the following way:

K1(A) = A,
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Kn(A) = {x ∈ H| ∃n ∈ N, ∃z1, z2, . . . , zn ∈ H : x ∈
n∏

i=1

zi,

n∏

i=1

zi

∩
Kn−1(A) ̸= Ø}

and K(A) =
∪

n≥1 Kn(A).
A hypergroup H is called complete if for all x, y ∈ H, C(xy) = xy. For a hypergroup H,
let U(H) be the set of all finite hyperproducts of the elements of H. Define the relation
β =

∪
n≥1 βn, where β1 is the diagonal relation and for every integer n > 1, βn is the

relation defined as the following:

xβny ⇐⇒ ∃(z1, z2, . . . , zn) ∈ Hn : x, y ∈
n∏

i=1

zi.

The relation β was introduced by Koskas [5] and was studied mainly by Corsini [1] and
Freni [4]. Consider β∗ as the transitive closure of β. Indeed,

xβ∗y ⇐⇒ ∃x1, x2, . . . , xn ∈ H : x = x1βx2β · · · xn−1βxn = y

in which xi, xi+1 ∈ ui ∈ U(H) for 1 ≤ i ≤ n − 1.

Let R be an equivalence relation on H and Ø ̸= A,B ⊆ H. Then ARB if and only if xRy
for all (x, y) ∈ A × B. An equivalence relation R on H is said to be strongly regular if for

all (x, a, b) ∈ H3, aRb implies axRbx and xaRxb. Refering to [7], it is well-known that the
relation β∗ is called the fundamental relation of hypergroup H, as the smallest strongly
regular equivalence relation such that the quotient (H/β∗, ⊗) is a group, where

β∗(x) ⊗ β∗(y) = β∗(z) ∀x, y ∈ H, ∀z ∈ xy.

The group (H/β∗, ⊗) is called the fundamental group of H. Freni in [4] proved that β is
transitive on hypergroups, i.e., β∗ = β.
Consider ϕH as the canonical map ϕH : H −→ H/β∗, where ϕH(a) = β∗(a). The set
ωH = {a ∈ H| ϕH(a) = 1H/β∗} is called the heart or core of H. Let H be a hypergroup.
An element e ∈ H is called an identity such that x ∈ ex ∩ xe for each x ∈ H. For x ∈ H,
if there exists y ∈ H such that e ∈ xy ∩ yx, then x is said to be invertible and y is an
inverse of x. The set of all identities of H is denoted by E. A hypergroup H is regular
if E ̸= Ø and every element of H has an inverse. A hypergroup H is called identical if
E = H. Let H be a hypergroup. We say x ∈ H is adapted if there exists e ∈ E and k ∈ N
such that e, x ∈ xk. In this case, we say that x is e-adapted or adapted with respect to e
and δe(x) denotes the smallest element of k’s satisfying in e, x ∈ xk. A hypergroup H is
adapted if each x ∈ H is adapted. In other words, H is adapted if each x ∈ H is e-adapted
for some e ∈ E. A hypergroup H with e ∈ E is e-adapted if each x ∈ H is e-adapted,
i.e., for all x ∈ H there exists n ∈ N such that e, x ∈ xn. A hypergroup H with e ∈ E is
called strongly e-adapted if there exists a fixed n ∈ N such that e, x ∈ xn for all x ∈ H.
Obviously if H is strongly e-adapted, then it is e-adapted. Let H be strongly e-adapted
and set M = {i ∈ N| ∀x ∈ H e, x ∈ xi}. Clearly, M is non-empty. For the strongly
e-adapted hypergroup H, we set δe(H) = min(M) and say H is e-adapted of power δe(H).

Definition 1.1. Let x1, x2, . . . , xm ∈ H be a sequence of not necessarily distinct elements.
Set P =

∏m
i=1 xi. With notation xr :=

∏r
i=1 x for each r ∈ N, we rewrite and denote

P by SP = xn1
i1

xn2
i2

· · · xnk
ik

in which n1 + n2 + · · · + nk = m, xi1 ̸= xi2 ̸= · · · ≠ xik
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and {i1, i2, . . . ik} ⊆ {1, 2, . . . ,m} with the same order i1 ≤ i2 ≤ · · · ≤ ik (for some
k ∈ {1, 2, . . . ,m}). We say SP =

∏k
j=1 x

nj

ij
is the simplified form of hyperproduct P =∏m

i=1 xi.

The following example illustrates what we defined.

Example 1.2. Let x1, x2, . . . , xn ∈ H be distinct. The simplified forms of hyperproducts
x1x2x5x5x1, x2x3x2x3x2x3 and x1x1x3x3x3x1 are x1x2x

2
5x1, x2x3x2x3x2x3 and x2

1x
3
3x1,

respectively.

Definition 1.3. A sequence x1, x2, . . . , xm of not necessarily distinct elements of hyper-
group H is called a total sequence or briefly T-sequence if

∏m
i=1 xi = H and

∏m
i=1 xi is

called a T-hyperproduct. We call the sequence n1, n2, . . . , nk ∈ N appeared in the simpli-
fied form SP =

∏k
j=1 x

nj

ij
of the hyperproduct P =

∏m
i=1 xi, the T-power sequence of the

T-sequence x1, x2, . . . , xm ∈ H.

Definition 1.4. We say a hypergroup H is a TS-hypergroup of T-power (n1, n2, . . . , nk)
if there is a T-sequence x1, x2, . . . , xm ∈ H with simplified form

∏k
j=1 x

nj

ij
.

Definition 1.5. Let H be a hypergroup and (m,n) ∈ N2. We say H is an mn-hypergroup
if there exist not necessarily distinct elements x1, x2, . . . , xm ∈ H such that

∏n
j=1

∏m
i=1 xi

is a T-hyperproduct. In this case we write (
∏m

i=1 xi)
n = H.

Definition 1.6. Let A be a set and A1, A2, . . . , An ⊆ A with 1 < n ∈ N such that
A =

∪n
i=1 Ai, and Ai ∩ Ai+1 ̸= Ø for i = 1, 2, ..., n − 1. Then, we say (A1, A2, . . . , An) is

an overlapped covering of length n and A has an overlapped covering.

Remark 1.7. Note that in 1.6 Ai’s can be repeated. Also, (A1, . . . , An) is said non-trivial
if Ai ̸= A for some i.

Definition 1.8. Let H be a hypergroup. We say H is an OC-hypergroup if U(H) contains
an overlapped covering of H.

2 Main results

As the first results, we have the following statements:

Proposition 2.1. Every e-adapted hypergroup has trivial fundamental group.

Proposition 2.2. Every TS-hypergroup has trivial fundamental group.

Proposition 2.3. A hypergroup H is an OC-hypergroup if and only if it has trivial fun-
damental group.

Proposition 2.4. Every commutative e-adapted hypergroup is a regular hypergroup.

Let H be a hypergroup and set

Ê = {e ∈ E| ∀x ∈ H ∃n ∈ N : e ∈ xn}.

Even we can restrict Ê to

̂̂
E = {e ∈ E| ∀x ∈ H ∃n ∈ N : e, x ∈ xn}.
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Theorem 2.5. Let H be a hypergroup with E ̸= Ø.

1. If H is a TS-hypergroup with complete part E, then H is an identical hypergroup
with trivial fundamental group.

2. If H is an e-adapted hypergroup with complete parts Ê or
̂̂
E, then H is an identical

hypergroup with trivial fundamental group.

Proposition 2.6. Let H be a complete commutative hypergroup with at least two elements.
If H is e-adapted of power n ∈ N, then

1. H is a regular 21-hypergroup as well as a regular 2n-hypergroup, or

2. H is a regular 12-hypergroup as well as a regular 12n-hypergroup.

Note that in 2.6 in the first case, H is of T-powers (1, 1), (n, n) and (1, 1, . . . , 1) with
2n components 1, and in the second case, H is of T-powers (2) and (2n).

Proposition 2.7. Let H be an OC-hypergroup. Then H does not have any proper complete
part.

Theorem 2.8. Let H be a complete OC-hypergroup. Then H is a regular identical hyper-
group that has trivial fundamental group and ωH is the only complete part of H.
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Abstract

In this paper, for every free R-module F of finite rank, we associate a hypergraph
PHQ(F ) called the prime submodules hypergraph of F with respect to Q, where Q
is a prime ideal of comutative ring R. We then investigate the interplay between the
module-theoretic properties of F and the graph-theoretic properties of PHQ(F ). We
also show that PHQ(F ) is the union of Steiner systems and use their properties for
counting the number of Q-prime submodules of F when Q is a maximal ideal of R
and [R : Q] (number of cosets R in Q) is finite.

Keywords: Hypergraphs, Prime submodules, Turán graphs, Steiner systems .

Mathematics Subject Classification [2010]: 05C65, 05C15, 13C99, 51E10.

1 Introduction

.
Throughout this article, all rings are assumed to be commutative with identity and F

denotes a free R-module of finite rank. Let M be an R-module and Q be a prime ideal
of R. A proper submodule N of M is called Q-prime if, for r ∈ R, m ∈ M and rm ∈ N
we have m ∈ N or r ∈ Q = (N : M), where (N : M) = {r ∈ R | rM ⊆ N}. We use the
notation R(n) for R ⊕ · · · ⊕ R︸ ︷︷ ︸

n−times

.

A hypergraph is a pair H = (V,E) of disjoint sets where the elements of E are
nonempty subsets (of any cardinality) of V . The elements of V are the vertices and
the elements of E are the edges of hypergraph. Note that, if the cardinality of each edge
is two, then we have a simple graph. For x ∈ V the degree of x denoted by dH(x), is the
number of edges in E containing x. A hypergraph in which all vertices have the same de-
gree r is said to be regular of degree r or r-regular. A hypergraph is called an intersecting if
every pair of edges intersects nontrivially. The hypergraph H = (V, E) is called k-uniform
whenever every edge e of H is a k−subset of V . A k-uniform hypergraph H is called com-
plete if every k-subset of the vertices is an edge of H. The hypergraph H ′ = (V ′, E′) is a
subhypergraph of the hypergraph H = (V,E), whenever V ′ ⊂ V and E′ ⊂ E. The union
of two hypergraphs H and H ′ is the hypergraph H ∪H ′ with V (H ∪H ′) = V (H)∪V (H ′)
and E(H ∪ H ′) = E(H) ∪ E(H ′).

Let H be a k-uniform hypergraph. A subset A of V (H) is called a clique of H if every
k-subset of A is an edge of H. A path of a hypergraph H is an alternating sequence of

∗Speaker
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distinct vertices and edges of the form v1, e1, v2, e2, . . . , vk such that for all 1 ≤ i ≤ k−1, vi

and vi+1 are in ei. The number of edges of a path is called its length. The distance between
two vertices x and y of H, denoted by dH(x, y), is the length of the shortest path from x
to y. If no such path between x and y exists, we set dH(x, y) = ∞. The greatest distance
between any two vertices in H is called the diameter of H and is denoted by diam(H).
The hypergraph H is said to be connected whenever diam(H) < ∞.

A Steiner system S(t, k, n) (1 < t < k < n) is a k-uniform hypergraph on n vertices
with the property that every t-element subsets of vertices is contained in exactly one
edge. If t = 2 then we have a projective plane and S(2, 3, 7) is called Fano plane. In
combinatorial mathematics, a set S of k−subsets of an n−set X is a block design with
parameters (t, k, n, λ) if every t−subset of X belongs to exactly λ elements of S. A Steiner
system is a type of block design, specifically a t−design, with λ = 1 and t ≥ 2[see 2].

We recall that a complete multipartite graph Ka1,...,as has a vertex-set which may be
partitioned into s parts B1, B2, . . . , Bs, where |Bi| = ai (1 ≤ i ≤ s). Two vertices are
adjacent if they belong to different parts. This graph is not regular in general but its
complement consists of regular connected components [see 3].

The Turán graph T (n, r) is a complete multipartite graph formed by partitioning a set
of n vertices into r subsets, with sizes as equal as possible.If n is divisible by r, then it is
a regular graph.

2 Main results

Definition 2.1 Let F = R(n), Q be a prime ideal of R and HQ(F ) denote the hypergraph
with vertices F ∗ = F\Q(n). A subset {X1, . . . , Xk} (2 ≤ k ≤ n) of F ∗ is an edge of HQ(F ),
if the determinant of every submatrix k × k of matrix B = [X1 . . . Xk] is in Q.

Remark 2.2 Let HQ(F ) be the hypergraph in Definition 2.1 and Hk
Q(F ) (2 ≤ k ≤

n) denote a subhypergraph of HQ(F ) with V (Hk
Q(F )) = F ∗ and E(Hk

Q(F )) = {e ∈
E(HQ(F )) | |e| = k}. Then Hk

Q(F ) is a k-uniform hypergraph, for 2 ≤ k ≤ n. It follows

that HQ(F ) is the union of k-uniform hypergraphs Hk
Q(F ), 2 ≤ k ≤ n. Furthermore, if

k = 2 then H2
Q(F ) is a simple graph.We call it PGQ(F ).

Theorem 2.3 Let F = R(n) and N be a submodule of F . Then N is a prime submodule
of F if and only if (N : F ) = Q is a prime ideal of R and N = Q(n) or there exists a
positive integer 1 ≤ k ≤ n − 1 such that N∗ = N\Q(n) is a clique of a (k + 1)-uniform
hypergraph Hk+1

Q (F ), that is not strictly contained in any clique of Hk+1
Q (F ).

Theorem 2.4 Let F = R(n) (n ≥ 2) and Q be a prime ideal of R. Then PGQ(F ) is

a disconnected graph with complete connected components. Furthermore, PGQ(F ) is a
complete multipartite graph, if R is finite.

Corollary 2.5 Let F = R(n) and Q be a prime ideal of a finite ring R. Let [R : Q] = m.
Then PGQ(F ) is a regular Turán graph with parameter (|Q|n(mn − 1),

∑n
i=1 mn−i).

Proposition 2.6 Let F = R(n) and Q be a prime ideal of R. Let N ̸= Q(n) be a
Q-prime submodule of F . Then N∗ = N\Q(n) is the union of components of PGQ(F )
which have a vertex in N∗.

Definition 2.7 Let F = R(n) and Q be a prime ideal of R. The prime submodule
hypergraph of F with respect to Q (denoted by PHQ(F )) is the hypergraph with vertex set
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V (PHQ(F )) = {[X] | [X] is a connected component of PGQ(F )}. A subset e = {[Xi] | i ∈
I} of V (PHQ(F )) is an edge of PHQ(F ), if

∪
i∈I [Xi] ∪ Q(n) is a prime submodule of F

(equivalently,
∪

i∈I [Xi] is a clique of Hk
Q(F ) that is not strictly contained in other cliques,

for some 2 ≤ k ≤ n).
Remark 2.8 Let PHQ(F ) be as above. We use PHk

Q(F )(1 ≤ k ≤ n − 1) as a

subhypergraph of PHQ(F ) with V (PHk
Q(F )) = V (PHQ(F )) and E(PHk

Q(F )) = {e ∈
E(PHQ(F )) | ∪

[x]∈e[x]∪Q(n) is a Q-prime submodule of Q−height equal to k}. Indeed,

e ∈ E(PHQ(F )) is an edge of PHk
Q(F ) if and only if

∪
[x]∈e[x] is a clique of Hk+1

Q (F ) that

is not strictly contained in other cliques, 2 ≤ k ≤ n − 1. If k = 1 then PH1
Q(F ) is a

1-uniform hypergraph which has only loops as edges.
Theorem 2.9 Let F = R(n) (n ≥ 2) and Q be a maximal ideal of R such that

[R : Q] = m. Then PHk
Q(F ) is a

∑k−1
i=0 mi-uniform hypergraph, 1 ≤ k ≤ n − 1.

Corollary 2.10 Let F = R(n) (n ≥ 3) and Q be a maximal ideal of R such that
[R : Q] = m. Then PHk

Q(F ) is a Steiner system with parameters (k,
∑k−1

i=0 mi,
∑n−1

i=0 mi),
2 ≤ k ≤ n − 1.

Corollary 2.11 Let F = R(n) and Q be a maximal ideal of R such that [R : Q] = m.

Then PHk
Q(F ) is a

∑k−1
i=0 mi-uniform rk =


 (

∑n−1
i=0 mi) − 1
k − 1





 (

∑k−1
i=0 mi) − 1
k − 1




-regular hypergraph with

bk =




∑n−1
i=0 mi

k







∑k−1
i=0 mi

k




edges, (2 ≤ k ≤ n − 1).

Corollary 2.12 Let F = R(n) and Q, m, bk (2 ≤ k ≤ n − 1) be as in Corollary 2.11.
Then F has bk, Q-prime submodules of Q-height equal to k , 2 ≤ k ≤ n − 1.

Corollary 2.13 Let F = R(n) and Q, m, bk (2 ≤ k ≤ n − 1) be as in Corollary 2.11.
Then F has

∑n−1
k=1 bk, Q-prime submodules, where b1 =

∑n−1
i=0 mi.

Proposition 2.14 Let F = R(n) (n ≥ 3) and Q be a prime ideal of R. Then,
for 2 ≤ k ≤ n − 1, PHk

Q(F ) is a connected hypergraph with diameter one that is not
complete.

Example 2.15 Let F = Z(3) and Q = 2Z be a maximal ideal of Z. Then [Z : 2Z] = 2
. By Corollary 2.12 , PH2

2Z(F ) is a Fano Plane . Also by Corollary 2.15 , F has fourteen
2Z - prime submodues .
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On split Clifford algebras with involution in characteristic two

A.-H. Nokhodkar

University of Kashan

Abstract

In characteristic two, the involutions on split Clifford algebras induced by the
involutions of orthogonal group are investigated. Orthogonal and symplectic involu-
tions on these algebras are classified up to isomorphism by invariants of involutions in
orthogonal group.

Keywords: Clifford algebra, involution, quadratic form, matrix algebra.
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1 Introduction

Let A be a central simple algebra over a field F . An anti-automorphism σ : A → A is
called an involution if σ2 = id. Every nondegenerate bilinear form B : V × V → F on
a finite-dimensional F -vector space V induces a unique involution σB on EndF (V ) which
satisfies B(x, f(y)) = B(σB(f)(x), y) for every x, y ∈ V and f ∈ EndF (V ). This involution
is called the adjoint involution of EndF (V ) with respect to B. The map B 7→ σB defines a
one-to-one correspondence between the similarity classes of nondegenerate bilinear forms
over F and the isomorphism classes of split F -algebras with involution (see [2, p. 1]).

Let (V, q) be a quadratic space over a field F . The group of all isometries of (V, q) is
called the orthogonal group of (V, q) and is denoted by O(V, q). An isometry τ ∈ O(V, q) is
called an involution if τ2 = id. Every involution τ ∈ O(V, q) induces a natural involution
Jτ on the Clifford algebra C(V, q) which satisfies Jτ (v) = v for every v ∈ V . The natural
involutions were studied in [6] and [7] in connection with the Pfister Factor Conjecture,
which was finally settled in [1]. Some properties of these involutions were also investigated
in [3] and [5]. It is shown that for every multiquaternion algebra with involution (A, σ) :=
(Q1, σ1)⊗· · ·⊗(Qn, σn), there exists a quadratic space (V, q) and an involution τ ∈ O(V, q)
such that (A, σ) ' (C(V, q), Jτ ) (see [3, (6.3)] and [5, (6.3)]). This shows that properties
of multiquaternion algebras with involution are reflected in properties of Clifford algebras
with natural involution.

The main object of this work is to study the natural involutions of split Clifford algebras
in characteristic 2. The transpose involution is the most elementary involution on the ma-
trix algebra Mn(F ) over a field F . For a quadratic space (V, q) over a field F of character-
istic 2, we obtain a necessary and sufficient condition to have (C(V, q), Jτ ) ' (M2n(F ), t).
More generally, we characterize orthogonal and symplectic natural involutions on split
Clifford algebras.

Following an approach based on the ideas of [3] and [5], we start with some observations
on involutions of orthogonal group in characteristic 2. In [8, Theorem 1] it is shown that
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for every involution τ in O(V, q), there exists a decomposition V = W ⊥ V1 ⊥ V2 ⊥ · · · to
τ -invariant subspaces of V , where τ |W = id and exactly one of the following is true:
(1) each Vi is a two-dimensional subspace of V and the restriction of τ to Vi is nontrivial;
(2) each Vi is a four-dimensional subspace of V and the fixed subspace of the restriction
of τ to Vi is a totally isotropic space of dimension 2.

This decomposition is called a Wiitala decomposition of (V, τ) and the subspace W is
called a Wiitala subspace of V .

For an involution σ on a central simple F -algebra A, the set of alternating elements of
A is defined as follows:

Alt(A, σ) = {a− σ(a)|a ∈ A}.
If CharF = 2, an involution σ on A is symplectic if 1 ∈ Alt(A, σ). Otherwise σ is
orthogonal (see [2, (2.6)]). If σ is orthogonal and A is of even degree n = 2m over F , then
the discriminant of σ is defined as follows:

discσ = (−1)mNrdA(a)F×2 ∈ F×/F×2 for a ∈ Alt(A, σ) ∩A∗,

where NrdA(a) is the reduced norm of a and A∗ is the unit group of A.

2 Main results

Definition 2.1. Let F be a field. The canonical involution γ on M2(F ) is defined by

γ

(
a b
c d

)
=

(
d −b
−c a

)
,

for a, b, c, d ∈ F .
It is known that the canonical involution is the unique symplectic involution on M2(F )

and it is characterized by the property γ(x)x ∈ F for every x ∈M2(F ) (see [2, Ch. I]).

Definition 2.2. Let F be a field of characteristic 2 and let α ∈ F×. Define the involution
Tα : M2(F )→M2(F ) via

Tα

(
a b
c d

)
=

(
a cα−1

bα d

)
.

In particular T1 = t is the transpose involution.

Note that Tα is, up to isomorphism, the unique orthogonal involution on M2(F ) such
that discTα = αF×2 ∈ F×/F×2 (see [2, (7.4)]).

Definition 2.3. Let (V, q) be a quadratic space over a field F of characteristic 2 and let

u ∈ V be an anisotropic vector. The involution τu ∈ O(V, q) defined by τu(v) = v+ b(v,u)
q(u) u

for every v ∈ V , is called the reflection along u. Also the class of q(u) in the quotient
group F×/F×2 is called the spinor norm of τu and is denoted by θ(τu).

Remark 2.4. Let (V, q) be a 2-dimensional quadratic space over a field F of character-
istic 2. Then C(V, q) splits if and only if q represents 1. It follows that (C(V, q), Jτ ) '
(M2(F ), t) if and only if τ is a reflection and θ(τ) = 1 ∈ F×/F×2. More generally, if C(V, q)
splits then (C(V, q), Jτ ) ' (M2(F ), Tα) if and only if τ is a reflection and θ(τ) = αF×2,
also (C(V, q), Jid) ' (M2(F ), γ).
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Lemma 2.5. Let F be a field of characteristic 2 and let A ∈ Mn(F ) such that At = A
and A2 ∈ F . Then A2 ∈ F 2.

Notation. Let (V, q) be a quadratic space over a field F . For an isometry τ ∈ O(V, q) we
use the notation Fix(V, τ) = {v ∈ V |τ(v) = v}.

Proposition 2.6. ([5, (4.7)]) Let (V, q) be a quadratic space over a field F of characteristic
2 and let τ be an involution in O(V, q). Then the involution Jτ on C(V, q) is orthogonal
if and only if (V, τ) has trivial Wiitala subspace if and only if dim Fix(V, τ) = 1

2 dimV .

Definition 2.7. Let (V, q) be a 4-dimensional quadratic space over a field F of character-
istic 2. An involution τ ∈ O(V, q) is called an interchange isometry if Fix(V, τ) is a totally
isotropic space of dimension 2.

The next result follows from [5, (6.10)] and (2.4).

Proposition 2.8. Let (V, q) be a 4-dimensional quadratic space over a field F of charac-
teristic 2 and let τ be an interchange isometry of (V, q). Then (C(V, q), Jτ ) ' (M4(F ), t).

Theorem 2.9. Let (V, q) be a quadratic space over a field F of characteristic 2 and let τ ∈
O(V, q) be an involution. Then (C(V, q), Jτ ) ' (M2n(F ), t) if and only if dim Fix(V, τ) =
1
2 dimV and q(x) ∈ F 2 for every x ∈ Fix(V, τ).

Proof. Since the involution t is of orthogonal type, if f : (C(V, q), Jτ ) ' (M2n(F ), t) is
an isomorphism, then by (2.6), we have dim Fix(V, τ) = 1

2 dimV . Let x ∈ Fix(V, τ), i.e.,
τ(x) = x and set A = f(x) ∈ M2n(F ). Then A2 = f(x)2 = q(x) ∈ F and At = A, so by
(2.5), A2 ∈ F 2, i.e., q(x) = x2 ∈ F 2.

Conversely suppose that dim Fix(V, τ) = 1
2 dimV and q(x) ∈ F 2 for every x ∈

Fix(V, τ). By (2.6), (V, τ) has trivial Wiitala subspace. So τ = τ1 ⊥ τ2 ⊥ · · · , where
either every τi is a reflection on a two-dimensional subspace Vi of V , or every τi is an
interchange isometry on a four-dimensional subspace Ai of V . If τi is an interchange isom-
etry, by (2.8) we have (C(Ai, q|Ai), Jτi) ' (M4(F ), t), i = 1, · · · , s. Also if τi is a reflection,
as q(x) ∈ F 2 for every x ∈ Fix(V, τ), we obtain θ(τi) = 1 ∈ F×/F×2. So by (2.4) we have
(C(Vi, q|Vi), Jτi) ' (M2(F ), t), i = 1, · · · , r. This completes the proof.

The following result characterizes the symplectic involutions on split Clifford algebras.
The idea of proof is that if C(V, q) is split and Jτ is symplectic, then (C(V, q), Jτ ) is
hyperbolic and isomorphic to

⊗n
i=1(M2(F ), γ), see [2, (12.35)].

Theorem 2.10. Let (V, q) be a quadratic space of dimension n over a field F of char-
acteristic 2 and let τ ∈ O(V, q) be an involution. Suppose that C(V, q) splits. Then the
following statements are equivalent:

(i) Jτ is of symplectic type.

(ii) dim Fix(V, τ) > 1
2 dimV .

(iii) (C(V, q), Jτ ) '⊗n
i=1(M2(F ), γ).
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Definition 2.11. Let F be a field and let q : V → F be a quadratic form. We say that
q is totally singular if q(u + v) = q(u) + q(v) for every u, v ∈ V . For α1, · · · , αn ∈ F , the
isometry class of the n-dimensional totally singular quadratic form q over F defined by
q(v1, . . . , vn) = α1v

2
1 + · · ·+ αnv

2
n is denoted by [α1] ⊥ · · · ⊥ [αn].

The following result characterizes the orthogonal involutions on split Clifford algebras.
Note that by [4, (3.6)], up to isomorphism, every involution of orthogonal type on M2n(F )
is of the form

⊗n
i=1(M2(F ), Tαi) for some α1, · · · , αn ∈ F×.

Theorem 2.12. Let (V, q) be a quadratic space of dimension n = 2m over a field F of
characteristic 2 and let τ ∈ O(V, q) be an involution. Let L = Fix(V, τ) and let (V ′, q′) be
the quadratic form [α1] ⊥ · · · ⊥ [αm], where α1, · · · , αm ∈ F×. Suppose that C(V, q) splits
and dimL = m. Then the following statements are equivalent:

(i) (C(V, q), Jτ ) '⊗n
i=1(M2(F ), Tαi).

(ii) C(L, q|L) ' C(V ′, q′).
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ON STRONGLY CLEAN TRIANGULAR MATRIX RINGS
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Abstract

Let R be a associative ring with identity. We prove that for (a0, a1, · · · , an−1) ∈
R[x]
(xn)
∼= T (R,n), if a0 or 1− a0 is strongly π-regular in R, then (a0, a1, · · · , an−1) is a

strongly clean element in the triangular matrix ring R[x]
(xn)
∼= T (R,n). As a corollary, we

deduce that if R is a strongly π-regular ring, then R[x]
(xn)
∼= T (R,n) is a strongly clean

ring. We also show that the (k, g(x))-clean property of a ring R and R[x]
(xn)

∼= T (R,n)

is equivalent.

Keywords: Triangular matrix ring, Strongly clean ring, (k, g(x))-clean

Mathematics Subject Classification [2010]: Primary: 16S36, 16N60; Secondary:
16U80

1 Introduction

According to Nicholson [11], a ring R is called clean if every element of R can be written
as a sum of a unit and an idempotent. Nicholson [13] also defined the notion of strong
cleanness. An element of a ring R is strongly clean if it is the sum of an idempotent and
a unit that commute. A ring R is strongly clean if every element of R is strongly clean.
Local rings are obviously strongly clean. An element a ∈ R is called right π-regular if the
chain aR ⊇ a2R ⊇ · · · terminates. The left π-regular elements are defined analogously.
An element a ∈ R is called strongly π-regular if it is both left and right π-regular, and
R is called a strongly π-regular ring if every element is strongly π- regular. According to
Burgess and Menal (Proposition 2.6 [4]) and (Theorem 1, [13]), strongly π-regular rings

are strongly clean. It was a question in R[x]
(xn)
∼= T (R,n)[13] whether the matrix ring over a

strongly clean ring is again strongly clean. The answer is ‘No’ by [14] where it was shown
that for the localization Z(2) of Z at (2), M2(Z(2)) is not strongly clean. In [10] A. R.
Nasr-Isfahani and A. Moussavi introduced T (R,n) as below,

T (R,n) =








a1 a2 a3 . . . an
0 a1 a2 . . . an−1

0 0 a1 . . . an−2
...

...
...

. . .
...

0 0 0 . . . a1



|ai ∈ R





.

with n ≥ 2. It is easy to see that T (R,n) is a subring of the triangular matrix
ring, with matrix addition and multiplication. We can denote elements of T (R,n)by
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(a0, a1, · · · , an−1). Then T (R,n) is a ring with addition pointwaise and multiplication
given by (a0, a1, · · · , an−1)(b0, b1, · · · , bn−1) = (a0b0, a0b1+a1b0, · · · , a0bn−1+· · ·+an−1b0),
for each ai, bj ∈ R.

On the other hand, there is a ring isomorphism ϕ : R[x]
(xn) → T (R,n), given by,

ϕ(a0 + a1x + · · · + an−1x
n−1) = (a0, a1, · · · , an−1), with ai ∈ R, 0 ≤ i ≤ n − 1. So

R[x]
(xn)
∼= T (R,n), where R[x] is the rings of polynomials in an indeterminant x, and (xn) is

the ideal generated by xn.

We prove that for (a0, a1, · · · , an−1) ∈ R[x]
(xn)

∼= T (R,n), if a0 or 1 − a0 is strongly π-

regular in R, then (a0, a1, · · · , an−1) is a strongly clean element in the triangular matrix

ring R[x]
(xn)
∼= T (R,n). As a corollary, we deduce that if R is a strongly π-regular ring, then

R[x]
(xn)
∼= T (R,n) is a strongly clean ring.

2 STRONGLY CLEAN TRIANGULAR MATRIX RING

A ring R is strongly π-regular if for each a ∈ R there exist a positive integer n and
x ∈ R such that an = an+1x. By results of Azumaya [2] and Dischinger [6], the element
x can be chosen to commute with a. In particular, this definition is left-right symmetric.
Strongly π-regular rings were introduced by Kaplansky [8] as a common generalization
of algebraic algebras and Artinian rings. Following [15], a ring R is an exchange ring if

RR satisfies the (finite) exchange property. By [[15], Corollary 2], this definition is left-

right symmetric. Every strongly π-regular ring is an exchange ring [R[x]
(xn)
∼= T (R,n)[13],

Example 2.3]. The strong π-regularity has roles in module theory and ring theory as we
see in Ara [1], Azumaya [2], Birkenmeier et al. [3], Burgess and Menal [4], Hirano [7],
R[x]
(xn)
∼= T (R,n)[13], and so on.

Lemma 2.1. An element r ∈ R is strongly π-regular if and only if there exists m ≥ 1
such that rm = fw = wf , where f2 = f ∈ R,w ∈ U(R) and r, f and w all commute.

Proof. By [2] or (proposition 1, [11]) hold.

Theorem 2.2. Let R be a ring and (a0, a1, · · · , an−1) ∈ R[x]
(xn)

∼= T (R,n). If either a0
or 1 − a0 is a strongly π-regular element of R, then (a0, a1, · · · , an−1) is a strongly clean

element of R[x]
(xn)
∼= T (R,n).

Corollary 2.3. If R is a strongly π-regular ring, then R[x]
(xn)
∼= T (R,n) is a strongly clean

ring.

Remark 2.4. By [5] ,a ring R is said to satisfy the condition (*) if for each a ∈ R, either
a or 1− a is strongly π-regular. by (Remark 2.5 [5]) there exist rings that R not strongly
π-regular, but it satisfies (*).
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Example 2.5. The condition (*) is suficient for R[x]
(xn)
∼= T (R,n) to be strongly clean, but

it is not necessary. Let R = T (2;Z(2))) and let

A =

[
−1 0
0 2

]
∈ R.

It can be verified easily that either A nor I −A is strongly π-regular. But

T (R,n) ∼= R[x]

(xn)
∼=
T (2,Z(2)))[x]

(xn)

is strongly clean. Because Z(2) is local, hence by [10], R is so. Thus T (R,n) ∼= R[x]
(xn) is

local.

By Xiao and Tong [18] , an element a ∈ R is called k-clean if a = u1 + · · · + uk + e,
where e2 = e ∈ R and ui ∈ U(R) for each i, where U(R) is the set of all unit elements of
R and k is a positive integer. A ring R is called k-clean if every element of R is k-clean.
Let C(R) be the center of a ring R and g(x) a fixed polynomial in C(R)[x]. Camillo
and Simon [16] defined R to be g(x)-clean if each a ∈ R has the form a = u + b, where
u ∈ U(R) and g(b) = 0. Also by [17], R is (k, g(x))-clean if each element a ∈ R has the
form a = u1+ · · ·+uk+b, where ui ∈ U(R) and g(b) = 0. Note that clean rings are 1-clean
and k-clean rings are (k, x2 − x)-clean. In the following, we show that the (k, g(x))-clean

property of a ring R and R[x]
(xn)
∼= T (R,n) is equivalent.

Theorem 2.6. Let R be a ring and g(x)inC(R)[x]. Then R is (k, g(x))-clean if and only

if R[x]
(xn)
∼= T (R,n) is (k, g(x))-clean.
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Abstract

For a finite group G and a subgroup H of G, the relative commutativity degree of
H in G, denoted by d(H,G), is the probability that an element of H commutes with
an element of G. In the present paper, we characterize the factor group H/H ∩Z(G)
when d(H,G) = d1, d2, d3 and dn, where D(G) = {d(H,G)|H ≤ G} = {d0, d1, . . . , dn}
such that 1 = d0 > d1 > · · · > dn = d(G,G).

Keywords: Relative center, relative commutativity degree.
Mathematics Subject Classification [2010]: 20P05, 20E45.

1 Introduction

Let G be a finite group and H be a subgroup of G. Then the relative commutativity
degree of H in G is defined as

d(H,G) =
|{(h, g) ∈ H ×G|[h, g] = 1}|

|H||G| .

The set of all relative commutativity degrees of G is denoted by D(G).
In [1], it is shown that a finite group G admits three relative commutativity degrees if

and only if G/Z(G) is a non-cyclic group of order pq, where p and q are primes. Moreover,
the authors determined all the relative commutativity degrees of some known groups.

Lemma 1.1. ([1], Lemma 2.1) Let G be a finite group and H ≤ K be subgroups of G.
Then d(K,G) ≤ d(H,G) and the equality holds if and only if K = HCK(g) for all g ∈ G.

Utilizing the above lemma, in what follows, we always assume thatD(G) = {d0, d1, . . . , dn}
such that 1 = d0 > d1 > · · · > dn = d(G,G).

Definition 1.2. Let G be a group and H be a subgroup of G. The relative center of H
in G is defined by Z(H,G) = H ∩ Z(G).

In the present paper, we characterize the factor group H/Z(H,G) when d(H,G) =
d1, d2, d3 and dn.
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2 Main results

Lemma 2.1. Let G be a finite group. If H ≤ G is non-abelian and K ≤ H is abelian,
then d(H,G) < d(K,G).

Lemma 2.2. Let G be a finite group and H be a subgroup of G. If H is not nilpotent of
class n, then d(H,G) < d(Zn(H), G).

Proposition 2.3. Let G be a finite group and H be a nilpotent subgroup of G. If d(H,G) =
dn, then |H/Z(H,G)| = p1 . . . pm for some primes p1, . . . , pm and m ≤ n.

Theorem 2.4. Let G be a finite group and H be a subgroup of G such that d(H,G) = d1.
Then H/Z(H,G) ∼= Zp is a cyclic group of prime order.

Theorem 2.5. Let G be a finite group and H be a subgroup of G such that d(H,G) = d2.
Then H/Z(H,G) is a group of order p or pq, where p and q are primes.

Theorem 2.6. Let G be a finite group and H be a subgroup of G such that d(H,G) = d3.
Then H/Z(H,G) is a group of order p, pq or pqr, where p, q and r are primes.
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On the n-c-Nilpotent Groups
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Abstract

In this paper we introduce the notion of n-c-nilpotent group. It is shown that every
nilpotent group of class at most c is n-c-nilpotent. Also we find a class of groups that
all groups of it are n-c-nilpotent. Finally one equivalent condition for a n-c-nilpotent
group to be torsion free is obtained.

Keywords: n-potent, n-center, nilpotent.

Mathematics Subject Classification [2010]: 20E34, 20E36, 20F28.

1 Introduction

In 1979 Fay and Waals [1] introduced the notion of the n-potent and the n-centre subgroups
of a group G, for a positive integer n, respectively as follows:

Gn = 〈[x, yn]|x, y ∈ G〉

Zn(G) = {x ∈ G|xyn = ynx, ∀y ∈ G}
Where [x, yn] = x−1y−nxyn. It is easy to see that Gn is a fully invariant subgroup and
Zn(G) is a characteristic subgroup of group G. In the case n = 1, these subgroups will
be G′ and Z(G), the drive and center subgroups of G, respectively. In this paper we fix
n ∈ N.

Definition 1.1. A normal series 1 = G0 ≤ G1 ≤ . . . ≤ Gt = G of group G is called
n-central series of length t if and only if

Gi+1

Gi
≤ Zn(

G

Gi
)

Definition 1.2. A group G is called n-c-nilpotent if it has at least one n-central series of
the length c such that c is the least of the lengths of its n-central series.

Now we introduce upper and lower n-central series of G which give us two examples
of n-central series.
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Definition 1.3. The upper n-central series of G is defined to be the series

1 = Zn0 (G) ≤ Zn1 (G) ≤ . . . ≤ Znt (G) ≤ . . .

where inductively
Zni+1(G)/Zni (G) = Zn(G/Zni (G))

for i > 0. So Zn1 (G) = Zn(G).

Definition 1.4. Put γn1 (G) = G, and let γni (G) be defined inductively for i > 1. Then
γni+1(G) is defined as the subgroup [γni (G), Gn].

It is immediate from the previous definition that the following series

G = γn1 (G) ≥ γn2 (G) ≥ . . . ≥ γnt (G) ≥ . . .

is an n-central series which is called lower n-central series of G.
Now we make some elementary observations about the properties of γni+1(G) and Zni (G)
for i ≥ 0.

Lemma 1.5. Let G be any group and let i and j be positive integers.
(1) γni (G)Cf G, Zni (G) Cc G;
(2) γni (G) = 1⇐⇒ Zni−1(G) = G;
(3) γni (G/N) = (γni (G)N)/N , Zni (G/N) ≥ (Zni (G)N/N);
(4) γni (G) ≤ γi(G), Zi(G) ≤ Zni (G);
(5) γni (G×H) = γni (G)× γni (H);
(6) Zni (G/Znj (G)) = Zni+j(G)/Znj (G).

Remark 1.6. Of course, if G is nilpotent group of class c, then it is n-c-nilpotent for all
positive integer n. But the converse is not hold. For example consider S3.

Note that the n-c-nilpotency of a group G is equivalent to Znc (G) = G. Also by the
previous lemma for this group G, γnc+1(G) = 1.
In the sequel we introduce special type of groups such that they are n-c-nilpotent for some
c. Also notice that the class of n-c-nilpotent group is closed under subgroups and product.

Definition 1.7. A group G is called n-p-group if Gn = 〈gn|g ∈ G〉 is a p-group.

To close this section we give a result of finit n-p-group about |Zn(G)|.

Proposition 1.8. Let G be a nontrivial finite n-p-group. Then |Zn(G)| > 1.

2 Main results

The properties of the center of a nilpotent group are often reflected in the entire group.
On such result for n-c-nilpotent group is the following:

Theorem 2.1. Let G be a n-c-nilpotent group and 1 6= H CG. Then H ∩ Zn(G) 6= 1.

Corollary 2.2. Let G be a n-c-nilpotent group and M normal minimal subgroup of it.
Then M ≤ Zn(G).
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Now we say our principal results:

Corollary 2.3. Let G be a n-c-nilpotent group. G is torsion-free if and only if Zn(G) is
torsion-free.

In studying the behavior of the maximal subgroups of a group G, Giovani Frattini
introduced what he called the Φ-subgroup of G, the intersection of the maximal subgroups
of G. Since then, this subgroup is usually known as the frattini subgroup of G. In order
to setup clearly the contents of this survey, we mention, the main result of Frattini

Finite group G is nilpotent ⇐⇒ G′ ≤ Φ(G)
In the next theorem, we shall consider finitely generated n-c-nilpotent group G, which
causes to find a subgroup of Φ(G).

Theorem 2.4. Let G be a finitely generated n-c-nilpotent group. Then Gn ≤ Φ(G).

Our main result is to introduce a class of groups that are n-c-nilpotent for some c.

Theorem 2.5. Every finite n-p-group is n-c-nilpotent, for some c.
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Abstract

In this paper, we define a new invariant for a commutative ring R, which we call
measure of R. Let A be a set as follows

{| Min(I)| : I is an ideal of R},

where Min(I) is the set of prime ideals minimal over I. We study A and give an upper
bound and a lower bound for the supremum of A.

Keywords: Minimal prime ideals, Semilocal rings

Mathematics Subject Classification [2010]: 13A15, 13C99, 13H99

1 Introduction

Throughout this paper R is a commutative ring with 1. An ideal p of R is said to be
prime if it is a proper ideal, and if xy ∈ p implies that x ∈ p or y ∈ p. A prime ideal p of
R is called minimal if there is no prime ideal of R which is properly contained in p. Thus,
for example, if R is an integral domain then o is the only minimal prime ideal of R [4].
Let I ̸= R be an ideal of R. Anderson [1] showed that if all the prime ideals minimal over
I are finitely generated, then there are only finitely many prime ideals minimal over I.
In particular if R is a Noetherian then there are only finitely many prime ideals minimal
over I. In fact we only need R to satisfy the ascending chain condition on radical ideals
([3], Theorem 88). Let I be an ideal of R, we denote the set of minimal prime ideals of
R by Min(R), the set of prime ideals of R minimal over I by Min(I), the set of maximal
ideals of R by Max(R), and the dimension of R by dimR. In this paper we introduce a
new invariant for a ring: its mr (R). We will show, mr (R) is finite if and only if R satisfies
the following two properties:
(1) R is a semilocal ring,
(2) dimR ≤ 1.

We will show for a semilocal ring R with dimR = 1 there are the following inequalities

max
{
|Max(R)|, |Min(R)|

}
≤ mr (R) ≤ |Spec(R)| − 1.
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2 The number of minimal prime ideals

We begin with the following known result.

Proposition 2.1. Let p, q be prime ideals of the Noetherian ring R such that p $ q. If
there exists one prime ideal of R strictly between p and q then there are infinity many.

Proof. (See [5], Ex. 15.3). �

Lemma 2.2. Let R be a Noetherian ring with dimR ≥ 2 and n a positive integer. Then
there is an ideal I of R such that |Min(I)| = n.

Proof. Let p be a prime ideal of R with htp = 2. Now consider p0 $ p1 $ p be a chain
of ideals in Spec(R) such that htp0 = 0 and htp1 = 1. So there is a

{
qi

}∞
i=1

in Spec(R)
such that ht(qi) = 1 for all i ≥ 1 and qi ̸= qj for each i ̸= j by Proposition 2.1. Let
I = q1q2...qn. We show that Min(I) =

{
q1, q2, ..., qn

}
. If q ∈ Min(I), then I ⊆ qi ⊆ q for

some 1 ≤ i ≤ n, see ([2], page 2). Hence q = qi and so Min(I) ⊆
{
q1, q2, ..., qn

}
. Now it is

enough to show that qi ∈ Min(I) for each 1 ≤ i ≤ n. For this, consider q́ ∈ Min(I) such
that I ⊆ q́ ⊆ qi. Therefore qj ⊆ q́ ⊆ qi for some 1 ≤ j ≤ n. Since htqi = htqj = 1, it
follows that q́ = qi. This ends the proof. �

Lemma 2.3. Let R be a ring with |Max(R)| = ∞ and n a positive integer. Then there is
an ideal I of R such that |Min(I)| = n.

Proof. Let
{
mi

}∞
i=1

be a sequence in Max(R) such that mi ̸= mj for each i ̸= j.

Let I = m1m2...mn. We will show Min(I) =
{
m1, ..., mn

}
. First let p ∈ Min(I), so

m1m2...mn ⊆ p. Hence I ⊆ mi ⊆ p for some 1 ≤ i ≤ n and therefore mi = p. Now it is
enough to show that mi ∈ Min(I) for each 1 ≤ i ≤ n. For this, consider q ∈ Min(I) such
that I ⊆ q ⊆ mi. Therefore mj ⊆ q ⊆ mi for some 1 ≤ j ≤ n. Since mj and mi are in
Max(R), so mi = mj = q. This ends the proof. �

We are now ready to present our main definition.

Definition 2.4. Let R be a ring. Then

mr(R) = sup
{
|Min(I)| : I is an ideal of R

}
,

is called the measure of the ring R.

Corollary 2.5. Let R be a Noetherian ring such that mr(R) is finite. Then dim(R) ≤ 1.

Proof. It follows from Lemma 2.2. �

Corollary 2.6. Let R be a ring such that mr(R) is finite. Then |Max(R)| is finite.

Proof. It follows from Lemma 2.3. �

Proposition 2.7. Let R be a ring such that |Max(R)| is finite. Then |Max(R)| ≤ mr (R).

Proof. If Max(R) =
{
m1,m2, ..., mn

}
and I = m1...mn, then Min(I) =

{
m1, m2, ..., mn

}
,

see the proof of Lemma 2.3. Hence |Max(R)| = |Min(I)| and so |Max(R)| ≤ mr (R). �
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Corollary 2.8. Let R be a ring such that Max(R) finite. Then

max
{
|Max(R)|, |Min(R)|

}
≤ mr (R).

Proof. It follows from |Min(0)| = |Min(R)| ≤ mr (R). �

It is clear that if R is an Artinian ring, then mr (R) = |Spec(R)| = |Max(R)|. The
following result shows that the measure of a Noetherian ring of dimension greater than
one is infinite.

Theorem 2.9. Let R be a Noetherian ring. Then mr (R) < ∞ if and only if R is a
semilocal ring and dimR ≤ 1.

Proof. Since mr (R) is finite, |Max(R)| ≤ mr (R) by Corollary 2.6 and Proposition 2.7.
So R is semilocal. In view of Lemma 2.2, dimR ≤ 1. Conversely, since R is a semilocal
ring with dimR ≤ 1, it follows that Spec(R) = Min(R) ∪ Max(R) and Max(R) is finite.
On the other hand |Min(R)| < ∞, see [1]. Hence |Spec(R)| < ∞ and so mr (R) is finite.
�

It is clear that if I is a proper ideal of R and p, q ∈ Spec(R) such that p ⊆ q and
p, q ∈ Min(I), then p = q. In the sequel we use this fact without notice.

Theorem 2.10. Let R be a semilocal Noetherian ring with dimR = 1. Then

max
{
|Max(R)|, |Min(R)|

}
≤ mr (R) ≤ |Spec(R)| − 1.

Proof. It is clear that mr (R) ≤ |Spec(R)| and Spec(R) is finite. In view of Corollary
2.8, it is enough to show that mr (R) < |Spec(R)|. If mr (R) = |Spec(R)|, then there is an
ideal I of R such that |Min(I)| = |Spec(R)|. Since dimR = 1, it follows that there exist
m ∈ Max(R) and p ∈ Min(R) such that p $ m. Hence p ∈ Min(I) or m ∈ Min(I). So we
will have mr (R) < |Spec(R)|. �
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Abstract

In this note we introduce and characterize weakly prime fuzzy submodules of a uni-
tary module M over a commutative ring with identity R, and investigate the Zariski-
like topology on the weakly prime Cl-FSpectrum of M, consisting of all weakly prime
fuzzy submodules of M .

Keywords: Fuzzy submodule, Weakly prime fuzzy submodule, Zariski like-topology.

Mathematics Subject Classification [2010]: 08A72

1 Introduction

The concept of fuzzy submodules was first introduced by Negoita and Ralescu in 1975 [7]
and subsequently studied, among others, by Pan, [8] in 1987. The notion of a fuzzy prime
submodules is studied by Ameri and Mahjoob in [1]. Recently, the notion of weakly prime
submodules and Zariski Like-Topology on CL.Spec(M), the set of prime submodules of a
module M over a commutative ring R, are studied by Behboodi in [4]and [5]. In this paper
we introduce the notion of weakly prime fuzzy submodules of a module over a commuta-
tive ring with identity. Let R be a commutative ring with identity and M be an unitary
R-module. We recall that a submodule N of an R-module M is called weakly prime, if for
any elements a, b ∈ R and x ∈ M , the condition abx ∈ N implies that ax ∈ N or bx ∈ N .
For more information see [2], [4].
In this paper by fuzzy subset µ of a non-empty set X, we mean a function µ from X to
real interval [0, 1]. FX denotes the set of all fuzzy subset of X. For µ, ν ∈ FX we say
that µ is contained in ν and we write µ ⊆ ν if µ(x) ≤ ν(x), for all x ∈ X. For µ, ν ∈ FM ,
the intersection and union, µ ∪ ν, µ ∩ ν ∈ FX are defined by (µ ∪ ν)(x) = µ(x) ∨ ν(x)
and (µ ∩ ν)(x) = µ(x) ∧ ν(x), for all x ∈ X. Also for µ ∈ FX , a ∈ [0, 1], µa is defined by,
µa = {x ∈ M |µ(x) ≥ a}, where µa is called a-cut or a-level subset of µ.
Let f be a mapping from X into Y and let µ ∈ FX , ν ∈ F Y . Then f(µ) ∈ F Y and
f−1(ν) ∈ FX are defined as follows:

f(µ)(y) =

{ ∨{µ(x)|x ∈ f−1(y)} if f−1(y) ̸= ∅
0 otherwise

and f−1(ν)(x) = ν(f(x)), for all x ∈ X. This is called extension principle. Let M and
N be R-modules and f : M → N be an R-module homomorphism. µ ∈ FM is called
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f -invariant if f(x) = f(y) implies that µ(x) = µ(y) for all x, y ∈ M .
We recall some definitions and theorems from the book [6], which we need them for
development of our paper.

Definition 1.1. Let µ ∈ FR. Then µ is called fuzzy ideal of R if for every x, y ∈ R the
following conditions are satisfied:
(1) µ(x − y) ≥ µ(x) ∧ µ(y);
(2) µ(xy) ≥ µ(x) ∨ µ(y)
The set of all fuzzy ideals of R is denoted by FI(R).

Definition 1.2. Let µ, ν ∈ FI(R). We define µν ∈ FI(R) as follows:
µν(x) =

∨{µ(y) ∧ ν(z) | y, z ∈ R, x = yz} ∀x ∈ R.

Definition 1.3. Let R be a ring and ζ ∈ FI(R). Then ζ is called prime fuzzy ideal of R
if ζ is non-constant and for every µ, ν ∈ FI(R), µν ⊆ ζ implies that µ ⊆ ζ or ν ⊆ ζ.

Theorem 1.4. Let ζ ∈ FR.Then ζ is prime fuzzy ideal of R if and only if ζ(0) = 1 and
ζ = 1ζ∗ ∪ cR such that ζ∗ is a prime ideal of R.

Definition 1.5. A fuzzy subset µ of M is called fuzzy submodule of M if the following
hold:
(1)µ(0) = 1;
(2)µ(rx) ≥ µ(x) for all r ∈ R and x ∈ M and
(3)µ(x + y) ≥ µ(x) ∧ µ(y) for all x, y ∈ M .
The set of all fuzzy submodules of M is denoted by F (M).

Theorem 1.6. Let µ ∈ FM . Then µ ∈ F (M) if and only if each non-empty level subset
of µ is a submodule of M . Moreover if µ ∈ F (M) then µ∗ = {x ∈ M | µ(x) = 1} is a
submodule of M .

Theorem 1.7. Let ζ ∈ FR and µ ∈ FM . Define ζ · µ ∈ FM as follows:
(ζ · µ)(x) =

∨{ζ(r) ∧ µ(y) | r ∈ R, y ∈ M, ry = x} for all x ∈ M .

Definition 1.8. For µ, ν ∈ FM and ζ ∈ FR, define (µ : ν) ∈ FR and (µ : ζ) ∈ FM as
follows:

(µ : ν) =
∪

{η ∈ FR | η · ν ⊆ µ}, (µ : ζ) =
∪

{ν ∈ FM | ζ · ν ⊆ µ}.

Definition 1.9. A fuzzy submodule µ of M is called primary if for ζ ∈ FI(R) and
ν ∈ F (M) such that ζ · ν ⊆ µ then either ζ ⊆ ℜ(µ : 1M ) or ν ⊆ µ where for η ∈ FI(R),

ℜ(η)(x) =
∨

n∈N

η(xn), ∀x ∈ R. .

Theorem 1.10. Let c ∈ [0, 1] and N be a submodule of M. Then (1N ∪ cM ) : 1M =
1(N :M) ∪ cR.

We recall that in [1] a fuzzy submodule µ of M is called prime, if for ζ ∈ FI(R) and
ν ∈ F (M) such that ζ · ν ⊆ µ, then either ν ⊆ µ or ζ ⊆ (µ : 1M ).

Theorem 1.11. [1] Let µ be a fuzzy submodule of M . Then µ is prime if and only if
µ = 1µ∗ ∪ cM such that, µ∗ is a prime submodule of M .
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2 Weakly prime fuzzy submodules

In this section we introduce the notion of weakly prime fuzzy submodules and investigate
some basic properties of them.

Definition 2.1. A non-constant fuzzy submodule µ of M is called weakly prime, if for
ζ, η ∈ FI(R) and ν ∈ F (M) such that ζ · η · ν ⊆ µ, then either ζ · ν ⊆ µ or η · ν ⊆ µ.

Theorem 2.2. Let µ be a fuzzy submodule of M . Then µ is weakly prime if and only if
µ = 1µ∗ ∪ cM such that µ∗ is weakly prime submodule of M .

Remark 2.3. Every prime fuzzy submodule is weakly prime. But the converse, in general
is not true. (see the example 2.8).

Theorem 2.4. If µ is a weakly prime fuzzy submodule of M , then (µ : 1M ) is a prime
fuzzy ideal of R.

Theorem 2.5. Let µ be a weakly prime fuzzy submodule of M . Then for all fuzzy sub-
module ξ, ν of M that are not contained in µ, (µ : ν) ⊆ (µ : ξ) or (µ : ξ) ⊆ (µ : ν).

Theorem 2.6. let M be an R-module and µ is a non-constant fuzzy submodule of M .
Then µ is a prime fuzzy submodule, if and only if µ is primary and weakly prime fuzzy
submodule of M .

Theorem 2.7. Let M,N be R-modules and f a homomorphism of M onto N .
(1) If µ is a weakly prime fuzzy submodule of M and µ is f -invariant, then f(µ) is a
weakly prime fuzzy submodule of N .
(2)If ν is a weakly prime fuzzy submodule of N , then f−1(ν) is a weakly prime fuzzy
submodule of M .

Example 2.8. Let R be an integral domain and P a non-zero prime ideal of R. Then
for the free R-module M = R ⊕ R, the submodule (0 ⊕ P ) is a weakly prime submodule,
which is not prime. For every element t ∈ [0, 1], define µ ∈ F (M) by

µ(x) =

{
1 if x ∈ (0 ⊕ P )
t otherwise

for all x ∈ M.
Then by Theorem 2.2 is weakly prime fuzzy submodule of M .

In [5], the authores have introduced the classical prime spectrume Cl − Spec(M) that
is the set of all weakly prime submodule of M . By Cl − FSpec(M) we mean the set of all
weakly prime fuzzy submodule of M . Let M be a nonzero R-module. For any µ ∈ F (M),
we define the fuzzy classical variety of µ by V(µ), to be the set of all classical prime fuzzy
submodule ν of F (M) such that µ ⊆ ν. Then
(i) V(1M ) = ∅ and V(1{0}) = CL − FSpec(M),

(ii)
∩

i∈I

V(µi) = V(
∑

i∈I

µi),

(iii) V(µ) ∪ V(ξ) ⊆ V(µ ∩ ξ),
where µ, ξ, µi ∈ F (M). A fuzzy submodule µ ∈ F (M) is called classical semiprime fuzzy
submodule if µ is an intersection of classical prime fuzzy submodules.
A classical prime fuzzy submodule µ ∈ F (M) is called fuzzy extraordinary if whenever
ν, ξ are classical semiprime fuzzy submodule of M with ν ∩ ξ ⊆ µ then ν ⊆ µ or ξ ⊆ µ.
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Theorem 2.9. For an R−module M the following statements are equivalent:
(i) M is classical fuzzy Top module;
(ii) Every classical prime fuzzy submodule of M is fuzzy extraordinary;
(iii) V(µ1) ∪ V(µ2) = V(µ1 ∩ µ2).
For every classical semiprime fuzzy submodule µ1, µ2 ∈ F (M).

Theorem 2.10. Every classical fuzzy Top module is fuzzy Top module.
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Abstract

In this article, we introduce and study the concept of perfect dimension, which is a
Krull like dimension extension of the concept ofDCC on finitely generated submodules
or being perfect. We show that some of the basic results of Krull dimension is true
for perfect dimension.

Keywords: finitely generated module, Krull dimension, Perfect dimension, Distributive
module.
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1 introduction

Lemonnier [6] has introduced the concept of deviation of an arbitrary poset, in particular,
when applied to the lattice of all submodules of a module RM , give the concept of Krull
dimension (in the sense of Rentschler and Gabriel) see [5, 3, 8]. The Krull dimension
of an R-module is denoted by k-dimM . It is well known that an R-module M is per-
fect if and only if it satisfies the descending chain condition (DCC) on finitely generated
submodules. Motivated by this fact, one is tempted to extend this for Krull dimension.
Let us give a brief outline of this paper. Section 1, is the introduction. In section 2,
of this paper we study the concept of perfect dimension of an R-module M , denoted by
p-dimM , which is the deviation of F (M), the poset of finitely generated submodules of
M . It is also denoted by K(F (M)) in [1]. We investigate some basic properties of perfect
dimension. It is manifest that if k-dimM exists, then p-dimM ≤ k-dimM , where M
is an R-module. We observe that for any ordinal number α, there exists an R-module
M such that p-dimM = α but it does not have Krull dimension. It is proved that if
M is a perfect R-module and for each small submodule N of M , M

N has finite Goldie
dimension, then M is Artinian. Consequently we prove that over perfect rings R, any
quotient finite dimensional module M is Artinian. We give another proof for [1, Propo-
sition 1.17]. Consequently we observe that if an R-module M has perfect dimension and
for each essential submodule E of M , M

E has finite Goldie dimension, then either M has
a non-finitely generated socle or p-dimM = k-dimM . We recall that an R-module M
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is called α-critical if k-dimM = α and k-dim M
N < α, for each nonzero submodule N of

M . M is called critical if it is α-critical for some ordinal number α. We also introduce
and study perfect critical modules. Section 3, deals with perfect dimension of distributive
modules. We observe that if {Mi}i∈I is a family of unrelated distributive modules, see
[10], then p-dim (

∑
i∈I ⊕Mi) = sup{p-dimMi : i ∈ I}. Throughout this paper R will

always denote an associative ring with a non-zero identity, 1 6= 0, and M is a left unital
R-module. The notation N ⊆ M (resp., N ⊂ M) means that N is a submodule (resp.,
proper submodule) of M . The reader is referred to [8, 4, 5], for definitions, concepts, and
the necessary background not explicitly given here.

2 Main results

First, we give our definition of perfect dimension.

Definition 2.1. If M is a left R-module, then the perfect dimension of M , denoted by
p-dimM , is defined to be the deviation of F (M), the poset of finitely generated submodules
of M . It is also denoted by K(F (M)) in [1]. In particular p-dimRR is the left perfect
dimension of R.

Next, we give our definition of perfect critical modules.

Definition 2.2. An R-module M is called α-perfect critical if p-dimM = α and for any
nonzero f.g. submodule N of M , p-dim M

N < α. M is said to be perfect critical if it is
α-perfect critical for some α.

We have the following interesting results.

Lemma 2.3. Let M be an R-module such that for any small submodule N of M , M
N has

finite Goldie dimension. Then k-dimM = 0 if and only if p-dimM = 0, i.e., M is Artinian
if and only if it is perfect.

We should remind the reader that by a quotient finite dimensional module M we mean
for each submodule N of M , M

N has finite Goldie dimension.

Theorem 2.4. Let M be a quotient finite dimensional R-module. If p-dimM = α, then
k-dimM = α.

Corollary 2.5. Let R-module M has Krull dimension, then M has perfect dimension and
p-dimM = k-dimM .

Corollary 2.6. Let R-module M has Krull dimension, then M is α perfect critical if and
only if it is α-critical.

Corollary 2.7. The following are equivalent for an R- module M .

1. k-dimM ≤ α.

2. M is quotient finite dimensional and k-dim (xR) ≤ α for any x ∈M .

3. M is quotient finite dimensional and p-dim (xR) ≤ α for any x ∈M .
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4. M is quotient finite dimensional and k-dim (F ) ≤ α for any finitely generated sub-
module F of M .

5. M is quotient finite dimensional and p-dim (F ) ≤ α for any finitely generated sub-
module F of M .

6. M is quotient finite dimensional and p-dimM ≤ α.

It is well-know that for each submoduleN of anR-moduleM , k-dimM = sup {k-dim M
N , k-dimN},

if either side exists. A slight modification of the proof of this fact gives the following result.

Theorem 2.8. Let M be an R-module and 0 6= A ⊆M be a submodule of M with Krull
dimension, then p-dimM = sup {k-dimA, p-dim M

A } if either side exists.

The following result is similar to [5, Corollary 1.5].

Lemma 2.9. Let M be an R-module with finite Goldie dimension if for each essen-
tial submodule E of M , M

E has perfect dimension, then M has perfect dimension and
p-dimM ≤ sup {p-dim M

E + 1 : E ⊆e M}.

The following result is similar to [5, Proposition 6.1].

Proposition 2.10. Let R be a semiprime left Goldie ring. If for each essential left
ideal E of R, R

E has perfect dimension, then R has perfect dimension and p-dimR =
sup {p-dim R

E + 1 : E ⊆e R}.

Recall that an R-module M is said to be a distributive module, written D-module,
if the lattice of submodules of M is a distributive lattice. That is: If A,B and C are
submodules of M , then A ∩ (B + C) = (A ∩ B) + (A ∩ C). We also recall that two
module A and B are said to be unrelated if whenever we have submodules P ′ ⊆ P ⊆ A
and Q′ ⊆ Q ⊆ B such that P

P ′ '
Q
Q′ , then P = P ′ and Q = Q′. For more information

about distributive modules, see [10]. We show that if {Mi}i∈I is a family of unrelated
D-modules, then then p-dim (

∑
i∈I ⊕Mi) = sup{p-dimMi : i ∈ I}, if either side exists.
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Abstract

In this paper, we define (MV ) positive implicative interval valued residuated lattice
-filter (IVRL-filters for short) of triangle algebras. We state and prove some theorems
that determine some properties of these filters. Also, we introduce some special
triangle algebras, and determine the relationship between them and IVRL-filters.

Keywords: Residuated lattices, Interval-valued structures, Triangle algebras, IVRL-
filters
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1 Preliminaries

Filter theory for logical algebras plays an important role in studying these algebraic
structures and the completeness of the corresponding non-classical logics.

Van Gass et al. introduced triangle algebras as a variety of residuated lattices equipped
with approximation operators and with a third angular point u, different from 0,1 [5]. They
defined some types of filters in triangle algebras and obtained some interesting results [4].

Definition 1.1. [5] A residuated lattice is an algebra L = (L,∨,∧, ∗,→, 0, 1) with four
binary operations and two constants 0,1 such that:
• (L,∨,∧, 0, 1) is a bounded lattice,
• ∗ is commutative and associative, with 1 as neutral element, and
• x ∗ y ≤ z iff x ≤ y → z, for all x, y and z in L (residuation principle).

The ordering ≤ in a residuated lattice L = (L,∨,∧, ∗,→, 0, 1) is defined as follows, for
all x and y in L: x ≤ y iff x ∧ y = x.

Definition 1.2. [5] Given a lattice A = (A,∨,∧), its triangularization T(A) is the
structure T(A) = (Int(A),∨,∧) defined by
•Int(A) = {[x1, x2] : (x1, x2) ∈ A2 and x1 ≤ x2},
•[x1, x2] ∧ [y1, y2] = [x1 ∧ y1, x2 ∧ y2],
•[x1, x2] ∨ [y1, y2] = [x1 ∨ y1, x2 ∨ y2].

The set DA = {[x, x] : x ∈ L} is called the diagonal of T(A).
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Definition 1.3. [5] An interval-valued residuated lattice (IVRL) is a residuated lattice
(Int(A),∨,∧,�,→�, [0, 0], [1, 1]) on the triangularization T(A) of a bounded lattice A, in
which the diagonal DA is closed under � and →�, i.e. [x, x]� [y, y] ∈ DA and [x, x]→�
[y, y] ∈ DA, for all x, y in L.

Definition 1.4. [5] A triangle algebra is a structure A = (A,∨,∧, ∗,→, ν, µ, 0, u, 1) in
which (A,∨,∧, ∗,→, 0, 1) is a residuated lattice, ν and µ are unary operations on A, u a
constant, and satisfying the following conditions:

(T.1)νx ≤ x, (T.1
′
)x ≤ µx,

(T.2)νx ≤ ννx, (T.2
′
)µµx ≤ µx,

(T.3)ν(x ∧ y) = νx ∧ νy, (T.3
′
)µ(x ∧ y) = µx ∧ µy,

(T.4)ν(x ∨ y) = νx ∨ νy, (T.4
′
)µ(x ∨ y) = µx ∨ µy,

(T.5)νu = 0, (T.5
′
)µu = 1,

(T.6)νµx = µx, (T.6
′
)µνx = νx,

(T.7)ν(x→ y) ≤ νx→ νy,

(T.8)(νx↔ νy) ∗ (µx↔ µy) ≤ (x↔ y),

(T.9)νx→ νy ≤ ν(νx→ νy).

Definition 1.5. [4] Let A = (A,∨,∧, ∗,→, ν, µ, 0, u, 1) be a triangle algebra. An element
x in A is called exact if νx = x. The set of exact elements of A is denoted by E(A).

Definition 1.6. [4] Let A = (A,∨,∧, ∗,→, ν, µ, 0, u, 1) be a triangle algebra. An IVRL-
filter of A is a non-empty subset F of A satisfying:

(F.1) if x ∈ F, y ∈ A and x ≤ y, then y ∈ F ,
(F.2) if x, y ∈ F , then x ∗ y ∈ F ,
(F.3) if x ∈ F , then νx ∈ F .

For all x, y ∈ A, we write x ∼F y iff x→ y and y → x are both in F.
Van Gass et al. introduced triangle algebras: a variety of residuated lattice equipped

with approximation operators, and with a third angular point u, different from 0,1. They
show that these algebras serve as an equational representation of interval-valued residuated
lattice (IVRLs) [5]. Van Gass et al. defined some types of filters in triangle algebras as
Boolean filters and prime filters. Also, they obtained some interesting results [4].

2 Positive implicative filters in triangle algebras

Definition 2.1. F is an IVRL-extended positive implicative filter if for x, y ∈ A, (νx →
νy)→ νx ∈ F , implies νx ∈ F .

Definition 2.2. F is a positive implicative IVRL-filter if for x, y ∈ A, ν((x→ y)→ x) ∈
F , implies νx ∈ F .

It is clear that every positive implicative IVRL-filter of A is an IVRL-extended positive
implicative filter of A, but the converse is not true.
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x νx x µx � 0 u 1 ⇒ 0 u 1
0 0 0 0 0 0 0 0 0 1 1 1
u 0 u 1 u 0 u u u 0 1 1
1 1 1 1 1 0 u 1 1 0 u 1

Example 2.3. Let A = {0, u, 1}. We define operators ν, µ,�,⇒ as follow:
A = (A,∨,∧,�,⇒, ν, µ, 0, u, 1) is a triangle algebra. It is clear that, that F = {1} is

an IVRL-extended positive implicative filter of A. Let x = u, y = 0. Then ν((u ⇒ 0) ⇒
u) = 1 ∈ F, but νu = 0 /∈ F. Thus F is not a positive implicative IVRL-filter of A.

Theorem 2.4. Let F be an IVRL-filter of A. Consider the following assertions:
(i) F is an IVRL-extended positive implicative filter of A.
(ii) If x ∈ A and ¬νx→ νx ∈ F, then νx ∈ F.
(iii) If x, y ∈ A and (νx→ νy)→ νy ∈ F, then (νy → νx)→ νx ∈ F .
Then:
a) (i)⇔ (ii).
b) (i)⇒ (iii).
c) If F is an IVRL-extended implicative filter of A, then (i)⇔ (ii)⇔ (iii).

Theorem 2.5. If F,G are two IVRL-filters of A, F ⊆ G and F is an IVRL-extended
positive implicative filter(positive implicative IVRL-filter) of A, then G is an IVRL-extended
positive implicative filter(positive implicative IVRL-filter) of A.

Definition 2.6. A triangle algebra A is called a Boolean triangle algebra if x ∨ ¬x = 1,
for all x ∈ A.

Definition 2.7. For a nonempty subset S ⊆ A, the smallest IVRL-filter of A which
contains S, i.e. ∩{F : S ⊆ F}, is said to be the IVRL-filter of A generated by S and will
be denoted by [S). If S = {a}, with a ∈ A, we denoted by [a) the IVRL-filter generated
by {a} ([a) is called principal).

Proposition 2.8. Let S ⊆ A, a nonempty subset of A, a ∈ A. Then [S) = {x ∈ A :
s1 ∗ ...∗sn ≤ νx, for some n ≥ 1 and s1, ..., sn ∈ S}. In particular, [a) = {x ∈ A : an ≤ νx,
for some n ≥ 1}.
Lemma 2.9. The following conditions are equivalent:

(i) {1} is an IVRL-extended positive implicative filter of A,
(ii) Every IVRL-filter of A is an IVRL-extended positive implicative filter of A,
(iii) For every a ∈ A, [a) is an IVRL-extended positive implicative filter of A,
(iv) (νx→ νy)→ νx = νx, for all x, y ∈ A,

Lemma 2.10. The following conditions are equivalent:
(i) {1} is an positive implicative IVRL-filter of A,
(ii) Every IVRL-filter of A is an IVRL-extended positive implicative filter of A,
(iii) For every a ∈ A, [a) is a positive implicative IVRL-filter of A,
(iv) ν((x→ y)→ x) = νx, for all x, y ∈ A,
(v) A is a Boolean-triangle algebra.
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Proposition 2.11. Let F be an IVRL-filter of A. A/F is a Boolean triangle algebra if
and only if F is a positive implicative IVRL-filter of A.

Corollary 2.12. Let A/F be a Boolean triangle algebra. Then F is an IVRL-extended
positive implicative filter of A.

In the following example we show that the converse of above corollary is not true.

Example 2.13. In Example 2.3, it is clear that F = {1} is an IVRL-extended positive
implicative filter of A. But since ¬u ∨ u = u, A/{1} is not a Boolean triangle algebra.

Definition 2.14. A triangle algebra A is called a BL-triangle algebra if it satisfies the
following identities, for all x, y ∈ A :

(x→ y) ∨ (y → x) = 1 (prelinearity),
x ∧ y = x ∗ (x→ y)(divisibility).
A BL-triangle algebra A is called an MV -triangle algebra if and only if (x → y) →

y = (y → x)→ x, for all x, y ∈ A.

Definition 2.15. An IVRL-filter F of A will be called IVRL-extended MV -filter if ((νx→
νy) → νy) → ((νy → νx) → νx) ∈ F . And will be called MV -IVRL-filter if ν(((x →
y)→ y)→ ((y → x)→ x)) ∈ F , for all x, y ∈ A.

Corollary 2.16. Let F be an IVRL-extended MV -filter (MV -IVRL-filter)of A. Then
¬¬νx→ νx ∈ F (ν(¬¬x→ x) ∈ F ), for all x ∈ A.

Theorem 2.17. F is an MV -IVRL-filter of A if and only if A/F is an MV -triangle
algebra.
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Abstract

In this paper, we investigate the ideal theory in MV -algebras and we define the
notions of implicative MV -algebras and primary (P -primary) ideals in MV -algebras.
Then we show that in implicative MV -algebras, if an ideal has a primary decomposi-
tion, then it has a reduced primary decomposition.

Keywords: MV -algebra, radical, primary and P -primary ideals, primary decompo-
sition
Mathematics Subject Classification [2010]: 06F35, 06D99, 08A05

1 Introduction

MV -algebras were defined by C.C. Chang [1, 2] as algebras corresponding to the Lukasiewicz
infinite valued propositional calculus. These algebras have appeared in the literature un-
der different names and polynomially equivalent presentation: CN -algebras, Wajsberg
algebras, bounded commutative BCK-algebras and bricks. The notion of prime ideal in
an MV -algebra was introduced by Chang. Since the notion of ideal in MV -algebras is
important, for completion of study of ideals in MV -algebras, in this paper, we present
definitions of radical of an ideal and primary decomposition of an ideal.

Definition 1.1. [3] An MV-algebra is a structure M = (M, ⊕,′ , 0) of type (2, 1, 0) such
that:
(MV 1) (M, ⊕, 0) is an Abelian monoid,
(MV 2) (a′)′ = a,
(MV 3) 0′ ⊕ a = 0′,
(MV 4) (a′ ⊕ b)′ ⊕ b = (b′ ⊕ a)′ ⊕ a,
If we define the constant 1 = 0′, then operations ⊙ and ⊖ are defined by a⊙ b = (a′ ⊕ b′)′,
a ⊖ b = a ⊙ b′. Also, operations ∨ and ∧ on M are defined by a ∨ b = (a ⊙ b′) ⊕ b and
a ∧ b = a ⊙ (a′ ⊕ b), for every a, b ∈ M . An ideal of MV -algebra M is a subset I of M ,
satisfying the following condition: (I1) 0 ∈ I, (I2) x ≤ y and y ∈ I implies that x ∈ I,
(I3) x⊕y ∈ I, for every x, y ∈ I. We let I(M) be the set of all ideals of M . A proper ideal
P of M is a prime ideal if for x, y ∈ M , x ∧ y ∈ P implies x ∈ P or y ∈ P . Equivalently,
P is prime if and only if x ⊖ y ∈ P or y ⊖ x ∈ P , for every x, y ∈ M .

Note: From now on, in this paper, we let M be an MV -algebra and PI(M) be the
set of all prime ideals of M .

∗Speaker

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Primary decomposition of ideals in MV -algebras pp.: 1–4

275



2 Primary decomposition of ideals in MV -algebras

Definition 2.1. M is called an implicative MV -algebra if x ⊖ (y ⊖ x) = x, for every
x, y ∈ M .

Example 2.2. Let M1 = {0, 1, 2, 3}, M2 = {0, 1}, and operations ⊕1 and ⊕2 be defined
by

⊕1 0 1 2 3

0 0 1 2 3
1 0 1 3 3
2 2 3 2 3
3 3 3 3 3

⊕2 0 1

0 0 1
1 1 1

If 0′ = 3, 1′ = 2, 2′ = 1 and 3′ = 0, then (M1, ⊕1,
′ , 0, 1) is an implicative MV -algebra.

Also, if 0′ = 1 and 1′ = 0, then (M2, ⊕2,
′ , 0, 1) is an implicative MV -algebra.

Definition 2.3. Let M be an MV -algebra and I ∈ I(M). Then the intersection of all
prime ideals of M , including I, is called radical of I and it is denoted by radM (I) or briefly
rad(I) . If there is not any prime ideal of M including I, then we let rad(I) = M .

Example 2.4. In Example 2.2, I = {0, 1} and J = {0, 2} are ideals of M1. It is easy to
show rad(I) = I and rad(J) = J .

Lemma 2.5. Let M be implicative. Then (x⊖z)⊖ (y ⊖z) = (x⊖y)⊖z and x⊖ (x⊖y) =
y ⊖ (y ⊖ x), for every x, y, z ∈ M .

Theorem 2.6. Let x ⊕ x = x, for every x ∈ M . Then M is a chain if and only if all
proper ideals of M are prime.

Theorem 2.7. Let M be an implicative chain. Then rad(I) = I, for every I ∈ I(M).

Definition 2.8. Let M be an MV -algebra and ∅ ̸= S ⊆ M . We say that S is ∧-closed,
if a ∧ b ∈ S, for all a, b ∈ S.

Theorem 2.9. Let M be an MV -algebra, I ∈ I(M), S ⊆ M be ∧-closed and S ∩ I = ∅.
Then there exists a maximal ideal P of M such that P ⊇ I and P ∩ S = ∅. Furthermore,
P is a prime ideal of M .

Notation. The set of all prime ideals of M that contain J ∈ I(M) will be denoted
by PIJ(M).

Lemma 2.10. Let M be implicative and a, b, c ∈ M . Then a ∧ (b ⊖ c) = (a ∧ b) ⊖ c.

Theorem 2.11. Let M be implicative and I ∈ I(M). Then

rad(I) = {x ∈ M : ∀P ∈ PII(M), ∃c ∈ M \ P such that c ∧ x ∈ I}.

Proof. Let

T = {x ∈ M : ∀P ∈ PII(M),∃c ∈ M \ P such that c ∧ x ∈ I}
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and x ∈ rad(I). Then x ∈ P , for every P ∈ PII(M). If x ∈ I, then by considering
c = 1, we have x ∈ T . Now, let x /∈ I. If x /∈ T , then there exists P1 ∈ PII(M) such that
c∧x /∈ I, for every c ∈ M \P1. Let S = {(c∧x)⊖y : y ∈ I and c ∈ M \P1}. First, we show
that S is ∧-closed. Let (c1 ∧x)⊖y1, (c2 ∧x)⊖y2 ∈ S, where c1, c2 ∈ M \P1 and y1, y2 ∈ I.
By Lemma 2.10, we can show that ((c1 ∧x)⊖y1)∧ ((c2 ∧x)⊖y2) = ((y′

2 ∧c1 ∧c2)∧x)⊖y1.
Now, we show that y′

2 ∧ c1 ∧ c2 ∈ M \ P1. Let y′
2 ∧ c1 ∧ c2 ∈ P1. Since c1 ∧ c2 /∈ P1,

y′
2 ∈ P1 and so 1 ∈ P1. Since x ≤ 1 ∈ P1, x ∈ P1, for every x ∈ M and so P1 = M , which

is a contradiction. Hence, y′
2 ∧ c1 ∧ c2 ∈ M \ P1 and so ((y′

2 ∧ c1 ∧ c2) ∧ x) ⊖ y1 ∈ S. It
means that((c1 ∧ x) ⊖ y1) ∧ ((c2 ∧ x) ⊖ y2) ∈ S and so S is ∧-closed. Now, we prove that
S ∩ I = ∅. If S ∩ I ̸= ∅, then there exist c′ ∈ M \ P1 and y′ ∈ I such that (c′ ∧ x) ⊖ y′ ∈ I.
It results that c′ ∧ x ∈ I. But, by definition of S, c ∧ x /∈ I, for every c ∈ M \ P1, which is
a contradiction. Then S ∩ I = ∅ and so by Theorem 2.9, there exists P2 ∈ PII(M) such
that P2∩S = ∅. Since (c∧x)⊖x = 0 ∈ P and x ∈ P , c∧x ∈ P , for every c ∈ M \P and for
every P ∈ PII(M). Then (c∧x) ∈ P2. On the other hand, c∧x = (c∧x)⊖0 ∈ S. Hence,
c ∧ x ∈ P2 ∩ S, which is a contradiction. It implies that x ∈ T . Therefore, rad(I) ⊆ T .
It is easy to show that T ⊆ rad(I) and so T = rad(I).

Proposition 2.12. Let M be implicative and I ∈ I(M). If for every P ∈ PI(M),
P ∩ I ̸= {0} implies that I ⊆ P , then

rad(I) = {x ∈ X : ∀ P ∈ PI(M) with P ∩ I ̸= {0}, ∃c ∈ M \ P such that c ∧ x ∈ I}.

Theorem 2.13. Let M be an MV -algebra and I, J, I1, · · · , In be ideals of M . Then
(i) I ⊆ rad(I),
(ii) I ⊆ J implies rad(I) ⊆ rad(J),
(iii) rad(I) ∪ rad(J) ⊆ rad(I ∪ J).
Moreover, if M is implicative and P ∩Ik ̸= {0} implies that Ik ⊆ P , for every P ∈ PI(M)
and 1 ≤ k ≤ n, then
(iv) rad(rad(I)) = rad(I),
(v) rad(

∩n
k=1 Ik) =

∩n
k=1 rad(Ik).

Definition 2.14. Let M be an MV -algebra and Q be a proper ideal of M . Then Q is
called a primary ideal of M if a ∧ b ∈ Q, then there exists c ∈ M \ P such that c ∧ b ∈ Q
or a ∧ c ∈ Q, for every P ∈ PIQ(M) and a, b ∈ M .

Example 2.15. In Example 2.2, I = {0, 1} and J = {0, 2} are primary ideals of M1.

Proposition 2.16. Let M be implicative and Q be an ideal of M . Then Q is a primary
ideal of M if and only if a∧b ∈ Q implies that a ∈ rad(Q) or b ∈ rad(Q), for any a, b ∈ M .

Proof. (⇒) Let Q be a primary ideal of M and a ∧ b ∈ Q, for a, b ∈ M . If a ∈ Q, then
a ∈ rad(Q). Let a /∈ Q. Then there exits c ∈ M \ P such that c ∧ b ∈ Q or a ∧ c ∈ Q,
for every P ∈ PIQ(M). If c ∧ b ∈ Q, then c ∧ b ∈ P , for every P ∈ PIQ(M). Since
c /∈ P , b ∈ P , for every P ∈ PIQ(M). It results that b ∈ ∩

Q⊆P P = rad(Q). Similarly, if
a ∧ c ∈ Q, then a ∈ rad(Q).
(⇐) By Theorem 2.11, the result will be obtained.

Theorem 2.17. In an MV -algebra, every prime ideal is a primary ideal.
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Theorem 2.18. Let M be implicative and I ∩ P ̸= {0} implies that I ⊆ P , for every
I ∈ I(M) and P ∈ PI(M). Then the radical of every primary ideal of M is a prime ideal
of M .

Definition 2.19. Let M be an MV -algebra and Q,P ∈ I(M). Then Q is called a
P -primary ideal of M if Q is a primary ideal of M and rad(Q) = P .

Example 2.20. In Example 2.15, I is a P -primary ideal of M , where P = {0, 1}.

Definition 2.21. Let M be an MV -algebra, I ∈ I(M) and there exist primary ideals
Q1, Q2, · · · , Qn of M such that I = Q1 ∩ Q2 · · · ∩ Qn. Then we say Q1 ∩ Q2 · · · ∩ Qn is
a primary decomposition of I and I has a primary decomposition. This decomposition is
reduced if
(i) Qj ⊉

∩
i̸=j Qi, for every 1 ≤ i, j ≤ n,

(ii) rad(Qi) ̸= rad(Qj), for every 1 ≤ i, j ≤ n.

Lemma 2.22. Let M be implicative and Q1, Q2, · · · , Qn be P ′-primary ideals of M such
that P ∩ Qi ̸= {0} implies that Qi ⊆ P , for every P ∈ PI(M), where P ′ ∈ PI(M). Then∩n

i=1 Qi is P ′-primary.

Theorem 2.23. Let M be implicative, I = Q1 ∩ · · · ∩ Qn be a primary decomposition of
I and P ∩ Qi ̸= {0} implies that Qi ⊆ P , for every P ∈ PI(M) and 1 ≤ i ≤ n. Then I
has a reduced primary decomposition.
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Abstract

In this paper we introduce representations of polygroups by Krasner hypervector
spaces.The goal of polygroup representation is to study polygroups via their actions
on Krasner hypervector spaces. By acting on Krasner hypervector spaces even more
detailed information about a polygroup can be obtained.
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1 Introduction

In [8] M. Motameni, R. Ameri and R. Sadeghi studied hypermatrix based on hyperspaces.
The goal of repsentation of polygroups is to study polygroups via their actions on hyper-
spaces. By acting on hyperspaces even more detailed information about a polygroup can
be obtained. In this note we introduced and study the representation of polygroups by
Krasner hyperspaces and obtain some related basic results.

Recall that for a non-empty set H a hyperoperation or a join operation is a map
. : H ×H −→ P∗(H), where P∗(H) is the set of all non-empty subsets of H.

Definition 1.1. [4] A polygroup is a special case of a hypergroup. A polygroup is a
system P = ⟨P, ., e,−1 ⟩, where e ∈ P , −1 is a unary operation on P , . maps P × P into
nonempty subsets of P , and the following axioms hold for all x, y, z ∈ P :
(P1) (x.y).z = x.(y.z),
(P2) x.e = e.x = x,
(P3) x ∈ y.z implies y ∈ x.z−1 and z ∈ y−1.x.

Definition 1.2. [3] A Krasner hyperring is a hyperstructure (R,⊕, ⋆) where
(i) (A,⊕) is a canonical hypergroup;
(ii) (A, ⋆) is a semigroup endowed with a two-sided absorbing element 0;
(iii) the product distributes from both sides over the sum.

Definition 1.3. [3] Let (K,⊕, ⋆) be a hyperfield and (V,⊕) be a canonical hypergroup.
We define a Krasner hyperspace over K to be the quadrupled (V,⊕, ·,K), where · is a
single-valued operation

· : K × V −→ V,
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such that for all a ∈ K and x ∈ V we have a · x ∈ V , and for all a, b ∈ K and x, y ∈ V the
following conditions are satisfied:
(H1) a · (x⊕ y) = a · x⊕ a · y;
(H2) (a⊕ b) · x = a · x⊕ b · x;
(H3) a · (b · x) = (a ⋆ b) · x;
(H4) 0 · x = 0;
(H5) 1 · x = x.

Definition 1.4. [8] Let (V,⊕, ·) and (W,⊕, ·) be two K−hyperspaces over a hyperfield
K. Then the mapping T : V −→ P∗(W ) is called (i) multivalued linear transformation
mv−transformation if

T (x⊕ y) ⊆ T (x) ⊕ T (y) and T (a · x) = a · T (x).

(ii) strong multivalued linear transformation smv−transformation if

T (x⊕ y) = T (x) ⊕ T (y) and T (a · x) = a · T (x).

where, P∗(W ) is the non-empty power set of W .

Definition 1.5. [7] Let (G, ·) be a hypergroupoid. The action of (G, .) on a non empty
set A is a map • : G×A −→ P∗(A) such that for all (g1, g2) ∈ G×G, a ∈ A:
(i)

∪
t∈g1.g2

t • a =
∪

s∈g2•a g1 • s,
(ii) ∃e ∈ G ; a ∈ e • a.

Proposition 1.6. [7] Let (G, .) be a hypergroupoid and AP∗(A) be the set of all functions
from A to P∗(A), endowed with the composition operation ◦, then φ : G −→ AP∗(A) defined
by φ(g)(a) = g • a is a homomorphism.

The homomorphism φ : G −→ AP∗(A) is called a representation associated with the
hypergroupoid action. this process is reversible in the sense that if φ : G −→ AP∗(A) is any
homomorphism then the map from G × A −→ P∗(A) defined by g • a = φ(g)(a) satisfies
the properties of a hypergroupoid action of G on A (for more details see [7]).

Definition 1.7. [7] Let (H, .) and (K,⊙) be two hypergroupoids and φ : K −→ HP∗(H)

be a representation determined by the hypergroupoid action • of K on H. Let G be the
set of ordered pairs (h, k) where (h, k) ∈ H ×K and define the following hyperoperation
on G by

(h1, k1) ∗ (h2, k2) = (h1.φ(k1)(h2), k1 ⊙ k2).

Clearly this hyperoperation makes G into hypergroupoid which is denoted by H
∫
φK or

(H ×K, ∗)φ.

Definition 1.8. Let (V,⊕, .) be a K−hyperspace over a hyperfield K and let G be a poly-
group. Then V be a KG−hypermodule if G act on V , satisfying the following conditions
for all u, v ∈ V, λ ∈ K and g, h ∈ G:
1) g • (λv) = λ(g • v);
2) g • (u⊕ v) ⊆ g • u⊕ g • v.
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Proposition 1.9. Let ⟨G, ., e,−1 ⟩ be a polygroup and V is a KG−hypermodule, then
φ : G −→ L(V ), where L(V ) = {T | T : V −→ P∗(V ) is a mv−transformation} defined
by φ(g)(v) = g • v is a good homomorphism.

Proof. φ(g) is a mv−transformation. (By the Definition 1.8) (φ(g1.g2))(v) =
∪

t∈g1.g2
t•v.

From Definition 1.5 (i) obtains

∪

t∈g1.g2

t • v =
∪

s∈g2•v

g1 • s = g1 • (g2 • v) = φ(g1)(φ(g2)(v)) = (φ(g1) ⊙ φ(g2))(v).

The homomorphism φ : G −→ L(V ) is called a representation associated with the
polygroup action.

2 Main results

Note that a K−hyperspace V , L(V ) by the composition is a monoid, where (f ◦ g)(x) =∪
t∈g(x) f(t).

Definition 2.1. A representation of a polygroup P is a homomorphism φ : P −→ L(V )
for some (finite-dimensional) non-zero K−hyperspace V such that L(V ) = {T : V −→
P∗(V ) | T is mv−transformation}. The dimension of V is called the degree of φ.

If T : V −→ P∗(W ) be a mv−transformation, then T induced a map T : P∗(V ) −→
P∗(W ) by T (A) =

∪
a∈A T (a). Since if A = B ⊆ V , then T (A) = T (B). Thus T is

well-defined.
Two representations φ : G → L(V ) and ψ : G → L(W ) are equivalent if there exists

an isomorphism T : V → W such that ψg = TφgT
−1 for all g ∈ P , i.e., ψgT = Tφg for all

g ∈ P . In this case, we write φ ∼ ψ. In pictures, we have that the diagram

V
φg

−→ P∗(V )

T ↓ ↓ T

W
−→
ψg

P∗(W )

commutes.

Definition 2.2. Let φ : P → L(V ) be a representation. A K−subhyperspace W ≤ V is
P−invariant if, for all g ∈ P and w ∈ W , one has φgw ⊆ W .

Definition 2.3. A representation φ : P → L(V ) is said to be irreducible if the only
P−invariant K−subhypervector spaces of V are {0} and V .

Definition 2.4. Let P be a polygroup. A representation φ : P → L(V ) is said to be
completely reducible if V = V1 ⊕ V2 ⊕ . . . ⊕ Vn where the Vi are non-zero P−invariant
K−subhypervector spaces and φ |Vi is irreducible for all i = 1, . . . , n.
Equivalently, φ is completely reducible if φ ∼ φ(1) ⊕ φ(2) ⊕ . . . ⊕ φ(n) where the φ(i) are
irreducible representations.
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Definition 2.5. We say that φ is decomposable if V = V1 ⊕ V2 with V1, V2 non-zero
P -invariant K−subhyperspaces. Otherwise, V is called indecomposable.

Proposition 2.6. Let φ : P → L(V ) be equivalent to decomposable representation. Then
φ is decomposable.

Proposition 2.7. Let φ : P → L(V ) be equivalent to an irreducible representation. Then
φ is irreducible.

Proposition 2.8. Let φ : P → L(V ) be equivalent to a completely reducible representa-
tion. Then φ is completely reducible.
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Abstract

In this article the notion of semi factorization structure in a category X is defined
and its properties are investigated. Also conditions under which the semi factorization
structure and the factorization structure are equivalent are given.

Keywords: Factorization structure, Semi factorization structure, Category
Mathematics Subject Classification [2010]: 20J99, 18A32

1 Introduction

Factorization structures in categories are one of the most studied categorical concepts and
weak factorization structures play an important role in homotopy theory(see [2]).

We introduce the notion of semi factorization structure in a category X and we re-
mark that factorization structures are semi factorization structures. Then we provide an
example of a semi factorization structure which is not a factorization structure. Also we
analyze some of the properties of semi factorization structures which are similar to those
of factorization structures. Finally, we show that if E , M are classes of morphisms of X
which are closed under composition and M ⊆ Mono(X ), where Mono(X ) is the class of
monomorphisms of X , then X has (E , M)-semi factorization structure if and only if it has
(E ,M)-factorization structure.

Definition 1.1. Let E and M be two classes of morphisms in a category X , which
are closed under composition with isomorphisms. We say that X has semi (E , M)-
factorizations or (E ,M) is a semi factorization structure in X , whenever:

(i) for all f : Y // X there exist m ∈ M/X and e ∈ Y/E such that f = me; and
(ii) in the unbroken commutative diagrams below, with e, e′ ∈ E and m,m′ ∈ M:

· e //

///

e′

��

·

m and

��· //

d

??

·

· //

e

��

·

m′

��

///

· m
//

d′

??

·
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there exist unique morphisms d and d′ such that e = de′ and m = m′d′.

Remark 1.2. Let (E , M) be a factorization structure in X . Then (E , M) is a semi
factorization structure in X .

Lemma 1.3. Let (E , M) be a semi factorization structure in X . If in the following
diagram:

A
e //

///

1A

��

A

m

��

d

��
A

f
// B

we have f = me and de = 1, then e ∈ Iso(X ) and f ∈ M.

Proposition 1.4. Let (E , M) be a semi factorization structure in X . Then:
(1) E ∩ M = Iso(X ).
(2) M is closed under composition if and only if the following commutative diagram

has a diagonal d making both triangles commute, where e ∈ E and m,m′, n ∈ M.

A
n //

e
��

B

m′
��

D′
m
//

d

>>

D

(2) E is closed under composition if and only if the following commutative diagram has
a diagonal d making both triangles commute, where e, e1, e2 ∈ E and m ∈ M.

A
e2 //

e
��

B

e1

��

d

~~
D′

m
// D

Proof. (1) Let α : A → B in Iso(X ) be given and α = me be the semi factorization of α.

A

e   A
AA

AA
AA

A

///

α // B

M

m

>>}}}}}}}}

So we have:
α = me ⇒ (α−1m)e = 1
α = me ⇒ meα−1 = 1 ⇒ m(eα−1m) = m
Hence, both morphisms 1M and eα−1m make the triangle in the following diagram

commute:
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A //

e

��

M

m

��

///

M m
//

∃!

>>

M

By uniqueness of the diagonal we have, e(α−1m) = 1M . So e ∈ Iso(X ). Therefore
α = me ∈ M and Iso(X ) ⊆ M ∩ E . Proof of the converse is similar.

Proposition 1.5. Let (E , M) be a semi factorization structure in X . Then,
(1) f ◦ g ∈ M ⇒ g ∈ M
(2) f ◦ g ∈ E ⇒ f ∈ E
(3) If g is a retraction and f ◦ g ∈ M, then f ∈ M.
(4) If f is a section and f ◦ g ∈ E, then g ∈ E.

Lemma 1.6. Let (E , M) be a semi factorization structure in X and Sec(X ), Ret(X ) be
the class of sections and retractions of X , respectively. Then,

(1) Sec(X ) ⊆ M.
(2) Ret(X ) ⊆ E.

Proposition 1.7. Let (E , M) be a semi factorization structure in X . Then, M is closed
under product.

Proof. Let the family {mi : Ai → Bi}i∈I of morphisms of M be given. Consider the
following (E ,M)-semi factorization of

∏
i∈I mi:

∏
i∈I Ai

e
##G

GG
GG

GG
GG

///

∏
i∈I mi //

∏
i∈I Bi

C

m

;;wwwwwwwww

Now in the following commutative diagram, since for each i, mi ∈ M, πi, e ∈ E , there
exists a unique morphism di : C → Ai such that die = πi.

∏
i∈I Ai

πi //

///

e

��

Ai

mi

��
C πim

//

di

<<

Bi

By the property of product we have:
∏

i∈I Ai

///

πi // Ai

C

∃!d

ccGGGGGGGGG di

??��������

So, πide = die = πi, which implies de = 1.
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Since ed and 1C make the triangle in the following diagram commute, by uniqueness
of the diagonal we have, ed = 1. Therefore e ∈ Iso(X ). Hence

∏
i∈I mi ∈ M.

∏
i∈I Ai

e //

///

e

��

C

m

��
C m

//

ed,1C

;;

∏
i∈I Bi

Proposition 1.8. Let (E , M) be a semi factorization structure in X and E , M be closed
under composition. Then for all the unbroken commutative diagrams

A
u //

e
��

B

m
��

C v
// D

with m ∈ M, e ∈ E, there exist morphisms w,w′ : C → B such that mw = v and
w′e = u.

2 Main result

Theorem 2.1. Let E and M be classes of morphisms of X that are closed under compo-
sition and M ⊆ Mono(X ), where Mono(X ) is the class of monomorphisms of X . Then
(E ,M) is a semi factorization structure for X if and only if it is a factorization structure
for X .
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Abstract

Prime ideals have many important properties and so its generalizations have been
studied in many papers. The notion of n-almost prime submodules is generalization
of prime submodules. In this article we study the behavior of n-almost Prime ideals
in unique factorization domains and also we find some properties of n-almost Prime
submodules of PI-multiplication modules.

Keywords: n-almost prime submodule, unique factorization domain, PI-multiplication
modules

Mathematics Subject Classification [2010]: 13E05, 13C99, 13C13, 13F05,
13F15.

1 Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary.
Also we consider n > 1 a positive integer. Let N be a submodule of an R−module M. The
set {r ∈ R|rM ⊆ N} is denoted by (N : M) and particularly we denote {r ∈ R|rN = 0}
by ann(N). Also we consider T (M) = {m ∈ M |∃0 6= r ∈ R, rm = 0}. A module M is
called torsion, if T (M) = M. If T (M) = 0, it is said that M is a torsion-free module.

An n-almost prime ideal was introduced in [1]. The concept of n-almost prime ideals
is very strong motivation for the following notion, which is studied in this paper:

Definition 1.1. A proper submodule N of M will be called n-almost prime, if for r ∈ R
and x ∈M with rx ∈ N \ (N : M)n−1N, either x ∈ N or r ∈ (N : M). A 2-almost prime
submodule will be called an almost prime submodule.

According to definition, each prime submodule is an n-almost prime submodule, for
any integer n > 1.

In order to obtain our main results, we use some definitions and lemma such as the
following:

Lemma 1.2. [3, Proposition 3.3] and [4, Proposition 3.1] Let M be a multiplications
module. If M is non-torsion or finitely generated and I is an ideal of R containing ann(M),
then (IM : M) = I.

∗Will be presented in English
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Recall that an R-module M is called semi-non-torsion, if M as R
ann(M)−module is non-

torsion and an R-module M is called a PI-multiplication module, if for any submodule
N of M, there exists an element r ∈ R such that N = rM (see [3]).

Lemma 1.3. [5, Proposition 2.6] Let I be an ideal of a ring R and N a submodule of
an R-module M. If IM 6= IN, IN 6= N, then K = IN is n-almost prime if and only if
K = (K : M)n−1K.

2 Main results

In the following we find some properties of n-almost prime ideal in unique factorization
domain.

Proposition 2.1. Let R be a unique factorization domain and I a proper ideal of R.

(i) Suppose that I is an n-almost prime ideal. Then for x, y ∈ R with [x, y] ∈ I \ In,
either x ∈ I or y ∈ I.

(ii) I is n-almost prime if and only if for any x ∈ I \ In, there exists a prime element
p ∈ I such that p | x and pn 6 |x.

(iii) If there exist distinct prime elements p1, ..., pm and positive integers k1, ..., km ≥ 2
such that pk11 ...p

km
m ∈ I \ I2, then I is not n-almost prime.

(iv) If I is n-almost prime, then the ideal I/In of the ring R/In can be generated by the
set {p+ In | p ∈ I and p is a prime element of R}.

Proof. (i) Note that x. y
(x,y) = [x, y] ∈ I \ In, where (x, y) is the greatest common divisor

of x and y. Then x ∈ I or y
(x,y) ∈ I. If y

(x,y) ∈ I, then evidently y ∈ I.
(ii) Let I be an n-almost prime ideal and x ∈ I \ In. If x = pk11 ...p

km
m is a prime

decomposition for x, then as I is n-almost prime, for some 1 ≤ j ≤ m, we have pj ∈ I. If
kj ≥ n, then x ∈ In, which is a contradiction. Therefore kj < n and so pj |x, pnj 6 |x.

Conversely, let x, y ∈ R with xy ∈ I \ In and there exists a prime element p ∈ I such
that p|xy. Thus p | x or p | y, and so x ∈ I or y ∈ I. Consequently I is n-almost prime.

(iii) If I is n-almost prime, then I is almost prime, so for some 1 ≤ j ≤ m, we have
pj ∈ I. Since kj ≥ 2, then pk11 ...p

km
m ∈ I2, which is impossible. Therefore I is not n-almost

prime.
(iv) Let I/In be generated by a set X. Then for any x ∈ I \ In with x + In ∈ X,

there exists a prime element px of R such that px ∈ I and px | x. This shows that I/In is
generated by the set {px + In | x+ In ∈ X, x ∈ I \ In}.

Proposition 2.2. Let M be a semi-non-torsion PI-multiplication R-module and I a
proper ideal of R containing ann(M). If N = IM, then the following are equivalent.

(i) N is an n-almost prime submodule of M.

(ii) N is a prime submodule of M or N = In−1N.

(iii) I is a prime ideal of R or I = In.
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Proof. Note that (N : M) = (IM : M) = I, by Lemma 1.2.
(i) =⇒ (ii) By [3, Theorem 4.18], there exist a positive integer m and prime ideals

P1, ..., Pm of R containing ann(M) such that N = P1...PmM.
If N = P1M, then since M is non-torsion multiplication R

ann(M)−module, by Lemma

1.2, we have ( P1
ann(M)M : M) = P1

ann(M) . Hence by [3, Proposition 4.19], P1
ann(M)M is a

prime R
ann(M)−submodule of M, and clearly N = P1M is a prime R-submodule of M.

Now suppose that N 6= P1M. Without loss of generality, we may suppose that N 6=
P2P3 · · ·PmM. Then by Lemma 1.3, N = (N : M)n−1N = In−1N.

(ii) =⇒ (iii) If N is a prime submodule, then evidently I = (N : M) is a prime ideal.
If N = In−1N, then I = (IM : M) = (N : M) = (InM : M) = In, by Lemma 1.2.

(iii) =⇒ (i) If I is a prime ideal, then by [3, Proposition 4.19], N = IM is a prime
submodule. Also note that I = In implies that N = IM = InM = In−1N = (N :
M)n−1N.

According to ([2]), an endomorphism e of an R-module M is called a scalar multi-
plication idempotent, if e2 = e and there exists r ∈ R with e(z) = rz for all z ∈ M
.

The following theorem assert that under some conditions EndR(MN ) has a non-trivial
scalar multiplication idempotent,for submodule N of M.

Theorem 2.3. Let N be a non-zero submodule of a multiplication R-module M. Then
EndR(MN ) has a non-trivial scalar multiplication idempotent if and only if there exist two
proper submodules J,K of M such that N = (K : M)J, M = J + K and R = (K :
M) + (J : M).

Proof. Assume e is a non-trivial scalar multiplication idempotent of MN . Since e is idempo-
tent, there exist two submodules J,K of M containing N such that Im e = J

N , Ker e = K
N

and M
N = J

N ⊕ K
N ([1]).

Clearly N = J ∩K and M = J + K, so we have (N : J) = (J ∩K : J) = (K : J) =
(K : K + J) = (K : M), and similarly (N : K) = (J : M).

Now we claim that (N : K) + (N : J) = R, that is (J : M) + (K : M) = R. Since e
is a non-trivial scalar multiplication idempotent, there exists an element r ∈ R such that
for any z ∈ M, e(z + N) = rz + N and r, r + 1 /∈ (N : M). We have r ∈ (N : K), since
N = e(c+N) = rc+N, for any c ∈ K. Let a ∈ J. Then there exists an element b ∈M such
that a+N = e(b+N) = rb+N. Then a+N = rb+N = e(b+N) = e2(b+N) = r2b+N.
Thus (1− r)(a+N) = (1− r)rb+N = rb− r2b+N = N, and so 1− r ∈ (N : J). Hence,
as 1 = r + (1− r) ∈ (N : K) + (N : J), then (N : K) + (N : J) = R.

Since (J : M) + (K : M) = R, it is easy to see that ((J : M)M) ∩ ((K : M)M) ⊆ (J :
M)(K : M)M. Note that M is multiplication, then J = (J : M)M and K = (K : M)M,
consequently N = J ∩K ⊆ (J : M)(K : M)M = (J : M)K = (K : M)J ⊆ J ∩K = N
and so N = (J : M)K = (K : M)J . Note that K is a proper submodule of M, otherwise
N = (K : M)J = J, thus e = 0EndR(MN ), which is impossible. Also if J = M, then N =

(J : M)K = K, therefore e is a monomorphism and since e2 = e, we have e = 1EndR(MN ),

which is a contradiction.
Conversely, let there exist two proper submodules J,K of M such that N = (K : M)J ,

M = J+K and R = (K : M)+(J : M). Clearly N ⊆ K∩J. Then (N : M) ⊆ (K∩J : M).
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As (K : M) and (J : M) are comaximal ideals, (N : M) ⊆ (K ∩ J : M) = (K : M) ∩ (J :
M) = (K : M)(J : M). Since (K : M)(J : M) ⊆ ((K : M)J : M) = (N : M), we will get
(N : M) = (K : M)(J : M) = (K : M) ∩ (J : M), and so R

(N :M) ' R
(K:M) × R

(J :M) .

If s+ (N : M) is a preimage of the element (1 + (K : M), 0 + (J : M)) ∈ R
(K:M) × R

(J :M)

in R
(N :M) , then s + (N : M) is a non trivial idempotent and so s2 − s ∈ (N : M) and

s, s − 1 /∈ (N : M). Define R-homomorphism h : M
N −→ M

N , h(w + N) = sw + N, for
each w ∈ M. For any x ∈ M, we have (s2 − s)x + N = h2(x + N) − h(x + N) = N, so
h2(x+N) = h(x+N), that is h is idempotent.

If h = 0, then for every z ∈ M, h(z + N) = sz + N = N, hence s ∈ (N : M), which
is impossible. In case h = 1, we have h(g + N) = sg + N = g + N, for each g ∈ M, then
s−1 ∈ (N : M), which is a contradiction. Therefore h is a non-trivial scalar multiplication
idempotent.

Corollary 2.4. Let N be a finitely generated submodule of multiplication torsion-free an
R-module M and EndR(MN ) has a non-trivial scalar multiplication idempotent. Then N
is n-almost prime if and only if N = 0.

Proof. If N = 0, then clearly N is n−almost prime. Now assume N is n-almost prime.
By Theorem 2.3, there exist two proper submodules L,K of M such that N = (K :
M)L, M = K + L and (K : M) + (L : M) = R.

Note that K = (K : M)M 6= (K : M)L = N, otherwise M = K, which is impossible.
Also N = (K : M)L 6= L, otherwise L ⊆ N ⊆ K, and hence K = M, a contradiction.
Therefore by Lemma 1.3, N = (N : M)n−1N, so by Nakayama’s lemma for some t ∈ (N :
M)n−1, (t+ 1)N = 0, and as M is torsion-free, so N = 0.
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Abstract

Let G be a finite solvable group. In this paper we consider the character graph of
G and study some parameters of this graph. At first, we answer this question that
when is this graph Hamiltonian? Then we obtain conditions which it is a complete
graph. Finally, we study the coloring of this graph.
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1 Introduction

Let G be a finite group, and let cd(G) be the set of all character degrees of G, that is,
cd(G) = {χ(1)| χ ∈ Irr(G)}, where Irr(G) is the set of all complex irreducible characters
of G. The set of prime divisors of character degrees of G is denoted by ρ(G). It is well
known that the character degree set cd(G) may be used to provide information on the
structure of the group G. For example, Ito-Michler’s Theorem [8] states that if a prime
p divides no character degree of a finite group G, then G has a normal abelian Sylow
p-subgroup. Another result due to J. Thompson [10] says that if a prime p divides every
non-linear character degree of a group G, then G has a normal p-complement.

A useful way to study the character degree set of a finite group G is to associate a
graph to cd(G). One of these graphs is the character graph ∆(G) of G. Its vertex set
is ρ(G) and two vertices p and q are joined by an edge if the product pq divides some
character degree of G. We refer the readers to a survey by Lewis [5] for results concerning
this graph and related topics. When G is a solvable group, some interesting results on the
character graph of G have been obtained. For example, Manz in [6] has proved that in this
case, ∆(G) has at most two connected components. Manz, Willems and Wolf in [7] have
proved that diameter of ∆(G) is at most 3. If ∆(G) is regular with n vertices. Morresi
Zuccari in [9] proved that ∆(G) is either complete or (n− 2)-regular graph. Moreover, if
∆(G) is (n−2)-regular and G has no normal non-abelian Sylow subgroups, he shown that
G is a direct product of groups having disconnected character graph.

Throughout this work all groups are assumed to be finite and all graphs are simple
and finite. Here we bring some definitions and notations from [1].
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Definition 1.1. Let Γ be a graph with vertex set V (Γ) and edge set E(Γ). For a vertex
u, the adjacent vertices to u are called the neighbors of u. A complete graph of order n is
a graph with n vertices in which any two vertices are adjacent. We denote this graph by
Kn. A cycle on n vertices v1, . . . , vn, n ≥ 3, is a graph whose vertices can be arranged in a
cyclic sequence in such a way that two vertices are adjacent if they are consecutive in the
sequence, and are non-adjacent otherwise. A cycle with n vertices is said to be of length
n and is denoted by Cn, i.e., Cn : v1, . . . , vn, v1. Let X be a subset of V (Γ), the subgraph
of Γ whose vertex set is X and whose edge set consists of all edges of Γ which have both
ends in X is called the induced subgraph of Γ on X. A cut vertex of a graph Γ is a vertex
v such that the number of connected component of Γ − v is more than the number of
connected component of Γ. A maximal connected subgraph without a cut vertex is called
a block. By their maximality, different blocks of Γ overlap in at most one vertex, which
is then a cut vertex. Thus, every edge of Γ lies in a unique block and Γ is the union of its
blocks. A clique of a graph is a set of mutually adjacent vertices. The clique number of Γ,
denoted ω(Γ), is the maximum size of a clique of a graph Γ. If Γ has n vertices, any cycle
of Γ of length n is called a Hamilton cycle. We say that Γ is Hamiltonian if it contains
a Hamilton cycle. Minimum number of colors needed to color vertices of the graph Γ so
that any two adjacent vertices of Γ have different colors, is called the chromatic number of
Γ and denoted by χ(Γ). A matching of Γ is a set of pairwise non-adjacent edges of Γ, and
that the number of edges in a maximum matching of Γ is said the matching number and
denoted by α′(Γ). Finally we should mention that throughout this paper, the complement
of the graph Γ is denoted by Γc. For more details, we refer the reader to basic textbooks
on the subject, for instance [1].

2 Main results

When G is a solvable group of Fitting height 2, there is a good result on the structure of
∆(G) [4].

Lemma 2.1. Let Γ be a graph with n vertices. There exists a solvable group G of Fitting
height 2 with ∆(G) = Γ if and only if the vertices of degree less than n−1 can be partitioned
into two subsets (X,Y ), each of which induces a complete subgraph of Γ and one of which
contains only vertices of degree n− 2.

In the above lemma, we called the partition (X,Y ) as Lewis’ partition. Let ∆(G) be
the character graph of a finite solvable group G. Since an important family of graphs is
the class of Hamiltonian graphs, in the following, we wish to study Hamiltonian character
graphs. For this purpose we gave some results from [3].

Theorem 2.2. Let G be a solvable group. Then ∆(G) is Hamiltonian if and only if ∆(G)
is a block with at least 3 vertices.

Corollary 2.3. Let G be a solvable group of Fitting height 2 with Lewis’ partition (X,Y )
such that |X|, |Y | > 2. Then ∆(G) is Hamiltonian.

Corollary 2.4. Let ∆(G) be the character graph of a finite solvable group G with n > 6
vertices and ω(∆(G)) = 3. Then n 6 9 and ∆(G) is Hamiltonian.
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One of the most important classes of finite simple graphs is the class of complete
graphs. So in the sequel, we wish to obtain conditions which guarantee the character
graph ∆(G) of a finite solvable group G is complete.

Theorem 2.5. Let N be a cyclic normal subgroup of G such that CG(N) is abelian. Then
∆(G) is a complete graph.

Corollary 2.6. Let all Sylow subgroups of G be abelian and G′ be cyclic. Then ∆(G) is
a complete graph.

Finally, in this part we gave some results on coloring of character graphs stated in [2].

Theorem 2.7. Let G be a finite solvable group. Then χ(∆(G)) + α′(∆(G)c) = |ρ(G)|.
Corollary 2.8. Suppose G is a finite solvable group and ∆(G)c is Hamiltonian. Then
χ(∆(G)) = −[−|ρ(G)|/2].
Corollary 2.9. Let G be a finite solvable group of Fitting height at most 2. Then
χ(∆(G)) = ω(∆(G)).
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Abstract

In this paper we define three quotient graphs of the power graphs and study their
properties and some relation between them.
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1 Introduction

Let G be a finite group. The power graph P (G) is the graph with vertex set G and edge
set E, where there is an edge {x, y} ∈ E between two distinct vertices x, y ∈ G if one
is a positive power of the other (see [2]). Observed that P (G) is 2-connected if and only
if P0(G), the 1G-cut subgraph of P (G), is connected. Many of results are collected in a
survey [1].

In this paper we define quotient power graph, order graph and power type graph of a
finite group and study some properties of them, particulary the 2-connectivity of them.
Throughout this paper, we use the standard notations of [4]. Also we denote by c(Γ), the
number of connected components of the graph Γ.

Definition 1.1. Let Γ = (V,E) be a graph and ∼ is an equivalence relation on the set
V . The quotient graph Γ/ ∼= ([V ], [E]), of Γ with respect to ∼ is a graph with vertex set
[V ] = V/ ∼ and there is an edge {[x], [y]} ∈ [E] between [x], [y] ∈ [V ] if [x] ̸= [y] and there
exist x, y ∈ V such that x ∼ x, y ∼ y and {x, y} ∈ E.

Definition 1.2. Define the equivalence relation relation ∼ on G as follows: For x, y ∈ G,
x ∼ y if and only if ⟨x⟩ = ⟨y⟩. Then [x] = {xm : 1 ≤ m ≤ o(x), (m, o(x)) = 1}.
The quotient graph P (G)/ ∼= ([G] = G/ ∼, [E]) will be denoted by P̃ (G) and called
the quotient power graph of G. We show that [x] ̸= [y], {[x], [y]} ∈ [E] if and only if
{x, y} ∈ E. P̃ (G) is always connected and it is 2-connected if and only if the 1G-cut
subgraph P̃0(G), of P̃ (G), is connected.

Definition 1.3. The order graph of G is the graph O(G) with vertex set O(G) = {m ∈ N :
∃g ∈ G with o(g) = m} and edge set EO(G), where for each m,n ∈ O(G), {m,n} ∈ EO(G)

if m ̸= n and m | n or n | m. The proper order graph O0(G) is defined as the 1-cut graph
of O(G). Its vertex set is then O0(G) = O(G) \ {1}. We set c(O0(G)) = c0(O(G)). O(G)
is always connected and it is 2-connected if and only if O0(G) is connected.
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Given a permutation ψ ∈ Sn which decomposes as a product of r pairwise disjoint
cycles of lengths x1, . . . , xr, we associate with ψ the r-partition Tψ = [x1, . . . , xr] ∈ T (n)
which we call the type of ψ. Note that the map t : Sn → T (n), defined by t(ψ) = Tψ is
surjective, that is, each partition of n may be viewed as the type of some permutation in
Sn. If X ⊆ Sn, we call T (X) = t(X) the set of types admissible for X.

Definition 1.4. Let G ≤ Sn. We define the power type graph of G, as the graph P (T (G))
with vertex set the set T (G) of types admissible for G and edge set ET (G), where for two
distinct types T, T ′ ∈ T (G), {T, T ′} ∈ ET (G) if one is the positive power of the other.
We define also the proper power type graph P0(T (G)) of G, as the [1n]-cut subgraph of
P (T (G)). P (T (G)) is always connected and it is 2-connected if and only if P0(T (G)) is
connected. For short, we put c0(T (G)) = c(P0(T (G))).

2 Main results

Theorem 2.1. [3] Let G be a finite group. Then P̃ (G) is isomorphic to a tree if and only
if G is one of the following groups:
Case 1) G is a p-group of exponent p.
Case 2) G is a nilpotent group of order pmq as follows:

i) |G| = pmq, where 3 ≤ p < q,m ≥ 3, |F(G)| = pm−1 and |G : G′| = p.

ii) |G| = pmq, where 3 ≤ q < p,m ≥ 1 and |F(G)| = |G′| = pm.

iii) |G| = 2mp, where p ≥ 3,m ≥ 2 and |F(G)| = |G′| = 2m.

iv) |G| = 2pm, where p ≥ 3,m ≥ 1, |F(G)| = |G′| = pm and F(G) is elementary abelian.

Case 3) G ∼= A5.

Theorem 2.2. [3] Let G be a finite group. Then P̃0(G) is a path if and only if G is
isomorphic to one of the groups Zp,Zp2 and Zpq, where p, q are prime numbers.

Theorem 2.3. [3] Let G be a finite group. Then P̃0(G) is a bipartite graph if and only if
P̃0(G) is connected and the order of each non-trivial element of G is a prime or a product
of two primes,(not necessary distinct).

Corollary 2.4. [3] Let G be a finite group. Then the quotient power graph P̃ (G) is planar
if and only if πe(G) ⊆ {1, p, p2, p3, pq, p2q}, where p, q are distinct prime numbers.

Theorem 2.5. [3] Suppose n = p1
α1p2

α2 ...pr
αr , where p1 < p2 < ... < pr are prime

numbers. Then
ω(P̃ (Zn)) = χ(P̃ (Zn)) = 1 + Σr

i=1αi.

Proposition 2.6. For each finite group G, the graph O0(G) is a quotient of the graph
P̃0(G). Also for every permutation group G ≤ Sn, O0(G) is a quotient of the graph
P (T (G)) and P (T (G)) is a quotient of the graph P̃0(G).

Corollary 2.7. For every permutation group G ≤ Sn, we have c0(O(G)) ≤ c0(P (T (G))) ≤
c0(P̃ (G)).
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Theorem 2.8. The values of c0(Sn) = c̃0(Sn), c0(T (Sn)) and c0(O(Sn)) are given by the
following tables:

Table 1: c0(Sn), c0(T (Sn)) and c0(O(Sn)) for 2 ≤ n ≤ 7.

n 2 3 4 5 6 7

c0(Sn) 1 4 13 31 83 128

c0(T (Sn)) 1 2 3 3 4 3

c0(O(Sn)) 1 2 2 2 2 2

Table 2: c0(Sn), c0(T (Sn)) and c0(O(Sn)) for n ≥ 8

n n ∈ P n ∈ P + 1 n /∈ P ∪ (P + 1)

c0(Sn) (n− 2)! + 1 n(n− 3)! + 1 1

c0(T (Sn)) = c0(O(Sn)) 2 2 1

Corollary 2.9. The following facts are equivalent:

i) P (Sn) is 2-connected;

ii) P̃0(Sn) is connected;

iii) P (T (Sn)) is 2-connected;

iv) O(Sn) is 2-connected;

v) n ∈ N \ [P ∪ (P + 1)].

Corollary 2.10. Apart the trivial case n = 2, the minimum n ∈ N such that P (Sn) is
2-connected is n = 9. There exists infinite n ∈ N such that P (Sn) is 2-connected.

Let P be the set of prime numbers. For b, c ∈ N, we set bP + c = {x ∈ N : x =
bp+ c, for some p ∈ P} and define A = P ∪ (P + 1) ∪ (P + 2) ∪ (2P ) ∪ (2P + 1).

Theorem 2.11. The values of c0(An), c0(T (An)) and c0(O(An)) are given by the follow-
ing tables:

Corollary 2.12. i) O0(An) is connected if and only if n = 3 or n, n− 1, n− 2 are not
prime. The maximum number of connected components of O0(An) is 3.

ii) P0(An) is connected if and only if P0(T (An)) is connected, that is, if and only if
n = 3 or n /∈ A.

iii) The minimum n ∈ N such that P (An) is 2-connected and An is non-abelian, is
n = 16. There exists infinite n such that P (An) is 2-connected.
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Table 3: c0(An) and c0(T (An)), for 3 ≤ n ≤ 10.

n 3 4 5 6 7 8 9 10

c0(An) 1 7 31 121 421 962 5442 29345

c0(T (An)) 1 2 3 4 4 3 4 3

c0(O(An)) 1 2 3 3 3 2 2 1

Table 4: c0(An), c0(T (An)) and c0(O(An)) for n ≥ 11.

c0(An) c0(T (An)) c0(O(An)) n ≥ 11
n(n−1)(n−4)!

2 + 4n(n−2)(n−4)!
n−1 + 1 3 2 n− 2, n−1

2 ∈ P, n /∈ P

(n− 2)! + 4n(n−2)(n−4)!
n−1 + 1 3 2 n, n−1

2 ∈ P, n− 2 /∈ P

(n− 2)! + n(n−1)(n−4)!
2 + 1 3 3 n, n− 2 ∈ P, n−1

2 /∈ P
n(n−1)(n−4)!

2 + 1 2 2 n− 2 ∈ P, n, n−1
2 /∈ P

4n(n−2)(n−4)!
n−1 + 1 2 1 n−1

2 ∈ P, n, n− 2 /∈ P

(n− 2)! + 1 2 2 n ∈ P, n− 2, n−1
2 /∈ P

n(n− 3)! + 1 2 2 n− 1 ∈ P, n
2 /∈ P

4(n−1)(n−3)!
n + n(n− 3)! + 1 3 2 n− 1, n2 ∈ P
4(n−1)(n−3)!

n + 1 2 1 n
2 ∈ P, n− 1 /∈ P

1 1 1 n /∈ A
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Abstract

In this paper we first introduce the notion of complementable semihypergroup,
proving that the classes of simplifiable semigroups, groups, simplifiable semihyper-
groups and complete hypergroups are examples of complementable semihypergroups.
Then we define when two semihypergroups are disjoint and find examples of such
semihypergroups.
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groups.
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1 Introduction

In this paper we introduce a new type of semihypergroups, called complementable semi-
hypergroups, as semihypergroups having the complement (so the hypergroupoid endowed
with the complement hyperoperation) a semihypergroup too. Our first aim is to find
several classes of complementable semihypergroups and we prove that the simplifiable
semigroups, groups, simplifiable semihypergroups and complete hypergroups have this
property.

We recall here some basic notions of hypergroup theory and we fix the notations used
in this note. We referee the readers to the following fundamental books Corsini [1], Corsini
and Leoreanu [2], Vougiouklis [3].

Let H be a non-empty set and P∗(H) denote the set of all non-empty subsets of
H. Let ◦ be a hyperoperation (or join operation) on H, that is, a function from the
chartezian product H × H into P∗(H). The image of the pair (a, b) ∈ H × H under
the hyperoperation ◦ in P∗(H) is denoted by a ◦ b. The join operation can be extended
in a natural way to subsets of H as follows: for non-empty subsets A, B of H, define
A ◦ B = ∪{a ◦ b | a ∈ A, b ∈ B}. The notation a ◦ A is used for {a} ◦ A and A ◦ a for
A ◦ {a}. Generally, the singleton {a} is identified with its element a. The hyperstructure
(H, ◦) is called a semihypergroup if a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ H, which means
that ∪

u∈x◦y

u ◦ z =
∪

v∈y◦z

x ◦ v.
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2 Complementable semihypergroups

In this section, we firstly introduce the notion of complementable semihypergroup and
based on it, we define the class of disjoint (semi)hypergroups of a (semi)hypergroup.
We show that the classes of simplifiable semigoups and simplifiable semihypergroups are
complementable.

Definition 2.1. A semihypergroup (H, ◦) is called simplifiable on the left if the following
implication is valid:

∀(x, a, b) ∈ H3, x ◦ a ∩ x ◦ b ̸= ∅ =⇒ a = b.

Similarly, we can define the simplifiability on the right. The semihypergroup (H, ◦) is
called simplifiable if it is simplifiable on the left and on the right.

Theorem 2.2. Let (H, ◦) be a semihypergroup such that, for all t ∈ H, t ◦ H = H and
there exists t0 ∈ H such that H ◦ t0 = H. If H is simplifiable on the left (right), then H
is a group.

Having in mind the concept of the complement of a set, we define the complement
hyperoperation and then the complement hypergroupoid of a semihypergroup.

Definition 2.3. Let (H, ◦) be a semihypergroup such that x ◦ y ̸= H, for all x, y ∈ H.
We call the complement of (H, ◦) the hypergroupoid (H, ◦c) endowed with the complement
hyperoperation: x ◦c y = H − {x ◦ y}. We say that the semihypergroup (H, ◦) is comple-
mentable if its complement (H, ◦c) is a semihypergroup too, and in this case (H, ◦c) is
called the complement semihypergroup of (H, ◦).

Example 2.4. Suppose that H = {e, a, b}. Consider the semihypergroup (H, ◦), where
the hyperoperation ◦ is defined on H by the following table:

◦ e a b

e a, b b b
a b b b
b b b b

Notice that H is a complementable semihypergroup, where its complement, defined as
follows

◦c e a b

e e e, a e, a
a e, a e, a e, a
b e, a e, a e, a

is a semihypergroup, too.

Example 2.5. Suppose that H = {e, a, b, c}. Consider the semihypergroup (H, ◦) en-
dowed with the hyperoperation · defined as follows:

◦ e a b c

e c a, b a, b c
a a, b c c a, b
b a, b c c a, b
c c a, b a, b c
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In this case H is not complementable, since the complement hypergroupoid is not a semi-
hypergroup.

Now we can establish a connection between simplifiable semigroups/ semihypergroups
and complementable ones.

Proposition 2.6. Every simplifiable semigroup of order at least 2 is complementable.

Corollary 2.7. Every non-trivial group is complementable.

The following example shows that the above assertion is not true for the class of
hypergroups.

Example 2.8. Let H = {e, a, b, c} and (H, ◦) be the following hypergroup.

◦ e a b c

e e, a e, a e, b e, c
a e, a e, a a, b a, c
b e, b a, b b, c b, c
c e, c a, c b, c b, c

Now we can see that the complement (H, ◦c) is not a hypergroup, so H is not comple-
mentable.

Proposition 2.9. Every simplifiable semihypergroup is complementable.

We notice that in the above proposition we need the simplifiablity property on the left
and on the right. In the following example we show that the left simplifiable semihyper-
group (which is not also right simplifiable) in example 3.4 is complementable, too.

Definition 2.10. Let (H, ◦) and (H, ∗) be two semihypergroups with the same support
set. We say that (H, ◦) and (H, ∗) are disjoint, if x ◦ y ∩ x ∗ y = ∅, for every (x, y) ∈ H2

and we write (H, ◦) ∩ (H, ∗) = ∅.

It is obvious that, if (H, ◦) is a complementable semihypergroup, then (H, ◦) and its
complement (H, ◦c) are disjoint.

Example 2.11. On the set H = {e, a, b} consider the semihypergroups (H, ◦) and (H, ◦′)
defined by the following tables. It is easy to see that (H, ◦) and (H, ◦′) are disjoint
semihypergroup, while (H, ◦′) is not the complement of (H, ◦).

◦ e a b

e a, b e e
a e a b
b e a, b a, b

◦′ e a b

e e a, b a, b
a a, b e e
b a, b e e

It is easy to see that (H, ◦) and (H, ◦′) are disjoint semihypergroups, while (H, ◦′) is not
the complement of (H, ◦).

Definition 2.12. Let (H, ◦) be a semihypergroup such that x ◦ y ̸= H, for all x, y ∈ H.
Denote D(H, ◦) = {(H, ∗) ∈ SH(H)|(H, ∗) ∩ (H, ◦) = ∅}, where SH(H) is the class of
semihypergroups with H as the support set.
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Proposition 2.13. Let (H, ◦) be a semihypergroup such that the quotient H∗ = (H/β∗, ·)
is a simplifiable semigroup of order at least 2. Then (H, ◦c) is a semihypergroup, where
the hyperoperation ◦c is defined by

x ◦c y = {t | t̄ ∈ H∗ − {x̄ȳ}}.

Moreover, (H, ◦) and (H, ◦c) are disjoint.

The following consequence follows immediately.

Corollary 2.14. If (H, ◦) is a hypergroup such that |H/β∗| ≥ 2, then D(H, ◦) ̸= ∅.

The following example shows that the converse of the above corollary is not always
true.

Example 2.15. On the support set H = {e, a, b} consider (H, ◦) as the following semi-
hypergroup

◦ e a b

e a, b b b
a b b b
b b b b

We have that (H, ◦) is not a hypergroup and D(H, ◦) ̸= ∅. Indeed, the semihypergroup
defined by the following table

◦c e a b

e e e, a e, a
a e, a e, a e, a
b e, a e, a e, a

is disjoint with respect to (H, ◦).

Proposition 2.16. Let (H, ◦) be a semihypergroup such that x ◦ y ̸= H, for all x, y ∈ H.
Then

(1) D(H, ◦c) ∩ D(H, ◦) = ∅.

(2) If (H, ∗) ∈ D(H, ◦), then I(H, ∗) ∩ I(H, ◦) = ∅, where I(H, ∗) is the set of all
identities of (H, ∗).
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Abstract

The aim of this work is to investigate the relationship between ideals in bounded
BCK-algebras so we introduce the concepts of involutory and EI-ideals in bounded
BCK-algebras and characterise their properties. Also we introduce the concepts of
EQI-algebras and EQI-ideals in bounded BCK-algebras and show that EQI-algebras
include some important BCK structures such as involutory BCK-algebras, commu-
tative and PC-lattices. The relationships between these ideals and quotient algebras
that are constructed via these ideals are described. We clarify that EI, involutory and
commutative ideals coincide in PC-lattices, whereas they are not the same in bounded
BCK-algebras in general. It is proved that EQI-ideals contain some current ideals
such as involutory, commutative, positive implicative and implicative ideals

Keywords: involutory ideal, EI-ideal, EQI-ideal, EQI-algebras
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1 Introduction

This paper by extended view on ideal theory of bounded BCK-algebras introduces con-
cepts of involutory, EI and EQI-ideals in bounded BCK-algebras. By introduce the concept
of EQI-algebras, we have a new structure of bounded BCK-algebras that contains some
important BCK structures such as PC-lattices, bounded commutative BCK-algebras and
involutory BCK-algebras. We describe the relationships between these ideals that men-
tioned in the abstract.

Definition 1.1. Let X be a set with a binary operation ∗ and a constant 0. Then (X; ∗, 0)
is called a BCK-algebra if it satisfies the following axioms:
(BCK-1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(BCK-2) (x ∗ (x ∗ y)) ∗ y = 0,
(BCK-3) x ∗ x = 0,
(BCK-4) x ∗ y = 0 and y ∗ x = 0 imply x = y.
(BCK-5) 0 ∗ x = 0

A partial ordering ≤ on X can be defined by x ≤ y if only if x ∗ y = 0.
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Definition 1.2. [2, 1] Let X be a BCK-algebra. Then
(i) X is said to be with condition (S), if for any x, y ∈ X, the set A(x, y) = {t ∈ X : t∗x ≤
y} has the greatest element which is denoted by x ◦ y.
(ii) (X, ∗, ≤) is called a BCK-lattice, if (X, ≤) is a lattice, that ≤ is a partial BCK-order
on X.
(iii) Lattice (X, ≤) is said to be distributive if x∨(y∧z) = (x∨y)∧(x∨z), for all x, y, z ∈ L.

Definition 1.3. [3, 5] Let I be a nonempty subset of BCK-algebra X. Then
(i) I is called a ideal of X if 0 ∈ I, y ∈ I and x ∗ y ∈ I imply x ∈ I.
(ii) I is called an implicative ideal of X if 0 ∈ I, (x ∗ (y ∗x)) ∗ z ∈ I and z ∈ I imply x ∈ I.
(iii) I is called a positive implicative ideal of X if 0 ∈ I, (x ∗ y) ∗ z ∈ I and y ∗ z ∈ I imply
x ∗ z ∈ I.
(iv) I is called a commutative ideal of X if 0 ∈ I, (x ∗ y) ∗ z ∈ I and z ∈ I imply
x ∗ (y ∗ (y ∗ x)) ∈ I,
for all x, y, z ∈ X.

Definition 1.4. [2, 1] Let X be a BCK-algebra. Then
(i) X is said to be with condition (S), if for any x, y ∈ X, the set A(x, y) = {t ∈ X : t∗x ≤
y} has the greatest element which is denoted by x ◦ y.
(ii) (X, ∗, ≤) is called a BCK-lattice, if (X, ≤) is a lattice, that ≤ is a partial BCK-order
on X.
(iii) Lattice (X, ≤) is said to be distributive if x∨(y∧z) = (x∨y)∧(x∨z), for all x, y, z ∈ L.

Definition 1.5. [4] Let X be a BCK-lattice . Then X is called a PC-lattice if it satisfies
in

(z ∗ x) ∗ (y ∗ x) = z ∗ (x ∨ y)

.

2 EI and involutory ideals in bounded BCK-algebras

In this article we suppose that X is a bounded BCK-algebra, unless otherwise is stated.

Definition 2.1. Let I be a nonempty subset of X. Then I is called an EI-ideal if 0 ∈ I,
NN(x ∗ y) ∈ I and y ∈ I imply x ∈ I, for all x, y ∈ X.

Lemma 2.2. Let I be an EI-ideal of X. Then
(i) If x ≤ y and y ∈ I, then x ∈ I, for x, y ∈ X,
(ii) I is an ideal, but the converse is not true.

Theorem 2.3. Let I be a nonempty subset of X. Then I is an implicative ideal if and
only if x ∗ (x ∗ Nx) ∈ I for all x ∈ X.

Theorem 2.4. Let I be a nonempty subset of X. Then I is an implicative ideal if and
only if I is a positive implicative and an EI-ideal.
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Definition 2.5. Let I be a nonempty subset of X. Then I is called an involutory ideal of
X, if 0 ∈ I and x ∗ NNx ∈ I for all x ∈ X.

Theorem 2.6. Let I be a commutative (implicative) ideal of X. Then I is an involutory
ideal of X, but the converse does not hold.

Theorem 2.7. Every involutory ideal of X is an EI-ideal, but the converse does not hold.

Corollary 2.8. Every implicative and commutative ideal of X is an EI-ideal, but the
converse does not hold.

Theorem 2.9. Let I be an ideal of X. Then
(i) If X is a bounded BCK-algebra, then I is an EI-ideal if and only if NNx ∈ I imply
x ∈ I, for all x ∈ X.
(ii) If X is a PC-lattice, then the concepts of EI-ideals and involutory ideals coincide.

Theorem 2.10. Let X be a PC-lattice. Then the following are equivalent.
(i) I is a commutative ideal.
(ii) I is an involutory ideal.
(iii) t ∗ x ∈ I and t ∗ y ∈ I imply t ∗ (x ∗ (x ∗ y)) ∈ I .
for all x, y, t ∈ X

Corollary 2.11. Let X be a PC-lattice. Then the concepts of EI, commutative and
involutory ideals coincide.

3 EQI algebras and EQI- ideals in bounded BCK-algebras

Definition 3.1. Let X be a bounded BCK-algebra. Then X is called an EQI-algebra if

N(x ∗ NNx) = 1

Theorem 3.2. Every involutory BCK-algebra and PC-lattice is an EQI-algebra . But
the converse does not hold in general.

Theorem 3.3. Let X be an EQI-algebra. Then the concepts of EI-ideals and involutory
ideals coincide.

Corollary 3.4. Let I and A be ideals of X and I ⊆ A. If I is an EI-ideal, so is E.

Theorem 3.5. Let X be a EQI-algebra. Then the following are equivalent:
(i) {0} is an EI-ideal.
(ii) Every ideal of X is an EI-ideal.
(iii) X is an involutory BCK-algebra.

Theorem 3.6. Let X be a bounded BCK-algebras. Then the following are equivalent:
(i) {0} is an involutory ideal.
(ii) Every ideal of X is an involutory ideal.
(iii) X is an involutory BCK-algebra.

Theorem 3.7. Let I be an ideal of EQI-algebra X. Then I is an EI-ideal if and only if
X/I is an involutory BCK-algebra.

Corollary 3.8. Let X be an EQI-algebra. Then the quotient algebras of X induced by
the EI-ideals and induced by involutory ideals coincide.
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Ideals

Commutative ideals

Implicative ideals

Positive implicative ideals

Involutory ideals

EQI−ideals

EI−ideals

4 Conclusion

In this research we introduced and studied involutory, EI and EQI-ideals in bounded BCK-
algebras. We then established the relationships between these ideals and quotient algebras
that are constructed via these ideals. We also introduced EQI-algebras and described the
relation between it and other ordered structures. The following figure shows the relations
between ideals in bounded BCK-algebras.

Acknowledgment

The authors would like to thank the referees for their valuable suggestions and comments

References

[1] Y. Huang, BCI-algebras, Science Press, 2006.

[2] K. Iséki, BCK-algebras with condition (S), Mathematica Japonica 24 (1979), 107-119.
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The subgroup generated by small conjugacy classes

Mahmoud Hassanzadeh
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Abstract

Let G be a finite group and M(G) be the subgroup generated by all noncentral
elements of G that lie in the conjugacy classes of the smallest size. We show some
results related to M(G) and direct product of groups.

Keywords: Conjugacy class size, Small subgroup, Direct product

Mathematics Subject Classification [2010]: 20E45, 20K25

1 Introduction

In 2006, A. Mann [1] defined M(G) and showed that for a finite nilpotent group G, M(G)
has nilpotency class at most 3. It is generalized by M. Isaacs [2] and M. K. Yadav [3] for
some family of groups, particularly solvable groups.
Let H and K be finite groups. The purpose of this paper is to prove that M(H × K) can
be calculated from M(H), M(K) and the centers of H and K.

All groups in this paper are finite.

Definition 1.1. Let G be a finite group and 1 = n1 < n2 < · · · < nk be the sizes of
its conjugacy classes. The classes of size n2 are called minimal or small classes, and their
elements are called minimal or small elements.

Let M(G) be the subgroup generated by all small elements of G. In other words, M(G)
is the subgroup generated by all noncentral elements that lie in conjugacy classes of the
smallest size.

We denote all small elements of G by Sm(G), and n2 by n2(G). For an abelian group
A, we define n2(A) = ∞ and Sm(A) = ∅.

Example 1.2.
- For an abelian group G, M(G) is trivial.
- For a nonabelian simple group G, M(G) = G.
- M(An) = An and M(Sn) = Sn, for n ≥ 5.
- M(S3) ∼= C3 and M(S4) = M(A4) ∼= C2 × C2.
- M(D2n) ∼= Cn and [D2n : M(D2n)] = 2, for n ≥ 5.
- M(Q4n) ∼= C2n and [Q4n : M(Q4n)] = 2, for n ≥ 5.
- M(D8) = D8 and M(Q8) = Q8.
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Proposition 1.3. M(G) is a characteristic subgroup, hence normal, in G.

Proposition 1.4. For a nonabelian finite group G, Z(G) ≤ M(G) , where Z(G) is the
center of G. Moreover, M(G) is the subgroup generated by all elements of G that lie in
conjugacy classes of the two smallest sizes.

2 Main results

In this section, H and K are finite groups. For the proofs of the following propositions we
need a lemma.

Lemma 2.1. For any H and K, we have n2(H × K) = min{n2(H), n2(K)} and

Sm(H × K) ⊆
(
Sm(H) × Z(K)

)
∪

(
Z(H) × Sm(K)

)
. (1)

Proposition 2.2. If H is a nonabelian and K is an abelian group, then
M(H ×K) = M(H) × K.

Proof. By Lemma 2.1, n2(H × K) = n2(H) and Sm(H ×K) = Sm(H) × K. Since for
every group G, M(G) =

⟨
Sm(G)

⟩
, so that

M(H ×K) =
⟨
Sm(H × K)

⟩
=

⟨
Sm(H) × K

⟩
=

⟨
Sm(H)

⟩
× K = M(H) × K.

Proposition 2.3. If H and K are nonabelian groups and n2(H) < n2(K), then
M(H ×K) = M(H) × Z(K).

Proof. n2(H ×K) = n2(H) and Sm(H ×K) = Sm(H)×Z(K). The rest of proof is similar
to last proposition.

Proposition 2.4. If H and K are nonabelian groups and n2(H) = n2(K), then
M(H ×K) = M(H) × M(K).

Proof. In formula (1) equality holds and we have

M(H × K) =
⟨
M(H) × Z(K), Z(H) × M(K)

⟩
.

So that M(H ×K) ⊆ M(H)×M(K). To prove the inverse inclusion, we use the fact that
(a, b) = (a, 1).(1, b), for any (a, b) in H × K.

Now combining the preceding propositions, we have:

Theorem 2.5. For arbitrary finite groups H and K, we have

M(H × K) =





1 if H,K abelian

M(H) × K if H abelian, K nonabelian

M(H) × Z(K) if H,K nonabelian, n2(H) < n2(K)

M(H) × M(K) if H,K nonabelian, n2(H) = n2(K)

Corollary 2.6. For a nonabelian finite group G, we have M(G × G) = M(G) × M(G).
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Torsion theory cogenerated by a class of modules

Behnam Talaee∗

Babol University of Technology

Abstract

We introduce and study a generalization of a class of modules related to radical.
The torsion theory cogenerated by this class of modules will be investigated in this
paper. We will show that the module N ∈ σ[M ] is M−radical if and only if For
any M− injective module I and any homomorphism f : N −→ I in σ[M ], we have
Im(f) ⊆ Rad(I). Also we conclude that N = ReRd[M ](N) if and only if for every
nonzero homomorphism f : N −→ K in σ[M ], Im(f) * Rad(K), where Rd[M ] is
the class of all M−radicla modules. The relationship between this modules and some
other kind of modules will be studied.

Keywords: Torsion theory, Radical modules, Small modules

Mathematics Subject Classification [2010]: 16D60, 16D80

1 Introduction

Throughout this article, all rings are associative and have an identity, and all modules are
unitary right modules.

N ⊆⊕ M means that N is a direct summand of M . A submodule L of M is called
small in M (denoted by L�M) if, for every proper submodule K of M , L+K 6= M . The
sum of all small submodules of M is called the radical of M and is denoted by Rad(M).

A submodule N of M is called essential in M (denoted by N ⊆ess M) if N ∩K 6= 0
for every nonzero submodule K of M .

Let M be a module and B ≤ A ≤ M . If A/B � M/B, then B is called a cosmall
submodule of A in M . The submodule A of M is called coclosed if A has no proper cosmall
submodule. Also B is called a coclosure of A in M if B is a cosmall submodule of A and
B is coclosed in M .

For a module M , an injective module E is called an injective envelope (or injective
hull) of M if, M ⊆ess E. It is well known that for every ring R, every R−module has
injective envelope. We refer for more information and basic notations to [1].

Let A be a nonempty class of modules in σ[M ]. Recall the following classes

A◦ = {B ∈ σ[M ]|Hom(B,A) = 0;∀A ∈ A} = {B ∈ σ[M ]|Re(B,A = B}
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A• = {B ∈ σ[M ]|Hom(A,B) = 0;∀A ∈ A} = {B ∈ σ[M ]|Tr(A, B) = 0}
A. = {X ∈ σ[M ]|Hom(U,A) = 0; ∀U ≤ X,A ∈ A} ⊆ A◦

AI = {X ∈ σ[M ]|Hom(A,
X

Y
) = 0;∀Y ≤ X,A ∈ A} ⊆ A•

The class A. defines a hereditary pretorsion class of modules and also A. = {E}◦ for
some injective module E ∈ σ[M ] (for more details see Proposition 9.5 [6]).

The class AI defines a cohereditary class of modules.
It is clear that AI is closed under extensions and submodules but is not closed under
products.

An ordered pair (A,B) of classes of modules from σ[M ] is called a torsion theory if
A = B◦ and B = A•. In this case A is called the torsion class and it’s elements are the
torsion modules, while B is the torsion free class and it’s elements are the torsion free
modules.

2 Main results

In this section we attempt to investigate the torsion theory cogenerated by M−radical
modules. First we give an proposition that characterize M−radical modules.

Proposition 2.1. Let M be a module and N ∈ σ[M ]. the following are equivalet

1. N is M−radical;

2. N ⊆ Rad(N̂); where N̂ is the M−injective hull of N ;

3. For any M− injective module I and any homomorphism f : N −→ I in σ[M ], we
have Im(f) ⊆ Rad(I).

Proposition 2.2. Let R be a ring, M an R-module and N ∈ σ[M ]. The following are
equivalent

1. N = TrRd[M ](N);

2. N = TrS(N);

3. N ⊆ Rad(N̂);

4. xR� N̂ for every x ∈ N ;

5. xR ⊆ Rad(N̂) for every x ∈ N ;

6. N ∈ Gen(S);

7. N ∈ Gen(Rd[M ]).

Proposition 2.3.
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1. S• = {N ∈ σ[M ]|TrN(N) = 0} = {N ∈ σ[M ]|TrRd[M ](N) = 0} = Rd[M ]•; hence
the class Rd[M ]• is cogenerated by simple M -injective modules in σ[M ].

2. S•◦ = {N ∈ σ[M ]|TrS(NK ) 6= 0; ∀K $ N} = {N ∈ σ[M ]|TrRd[M ](
N
K ) 6= 0; ∀K $

N} = Rd[M ]•◦;
hence Rd[M ]•◦ = {N ∈ σ[M ]|N has no simple M − injective factor module}.

3. Let N ∈ σ[M ], then N ∈ Gen(S) iff N = TrS(N) = TrRd[M ](N). Thus N ∈ Gen(S)
iff N ∈ Gen(Rd[M ]). Now if M is σ-cohereditary, then Gen(Rd[M ]) = Rd[M ]•◦.

Proposition 2.4. Let M be a module and N ∈ σ[M ]. The following conditions are
equivalent

1. N = ReRd[M ](N);

2. If f : N −→ K is a nonzero homomorphism in σ[M ] and L is a submodule of Im(f),

then Im(f)
L ⊆ Rad(KL ) implies Im(f) = L;

3. For every nonzero homomorphism f : N −→ K in σ[M ], Im(f) * Rad(K).

Proof. 1 =⇒ 2: Suppose that Im(f)
L ⊆ Rad(KL ). Consider the map πof : N −→ K

L ; where

π : K −→ K
L is the natural epimorphism. Then Im(πof) = Im(f)

L , and so πof has to be
zero. Hence Im(f) = L.

2 =⇒ 3 is obvious.
3 =⇒ 1: Assume f : N −→ K to be nonzero, where K ∈ Rd[M ]. Then the composition

map ιof is a nonzero homomorphism from N to K̂, where ι : K −→ K̂ is the inclusion
map. Now we have Im(ιof) = Im(f) ⊆ K ⊆ Rad(K̂) a contradiction. Therefore there is
no nonzero homomorphism from N to M−radical modules; that is N = ReRd[M ](N).

In above proposition when condition 2 holds, we say Im(f) is radical-coclosed in M .

Proposition 2.5. Let M be a module and N ∈ Rd[M ]◦. The following hold

1. Every M−radical proper submodule K ⊂ N is contained in Rad(N) and so TrRd[M ](N) =
Rad(N).

2. If L is a proper extension module of N in σ[M ], then N is radical-coclosed in L.

3. For any proper submodule K of N , K is radical-coclosed in N iff K ∈ Rd[M ]◦.

Example 2.6. 1. Let M = Z
12Z . Then Rad(M) = 6Z

12Z and so Z /∈ Rd[M ]◦.

2. Suppose that M is a divisible Z-module with no nontrivial small submodule. Then
every factor module of M is contained in Rd[M ]◦.
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A convergence theorem by extragradient method for

variational inequalities in Banach spaces
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Abstract

In this paper, we propose a new extragradient method for finding a common ele-
ment of the set of solutions of a variational inequality for an α-inverse-strongly mono-
tone operator and fixed point of a generalized nonexpansive mapping in Banach spaces.
we prove a weak convergence theorem by this method under suitable conditions.

Keywords: Sunny generalized nonexpansive retraction, Variational inequality, weak
convergence.

Mathematics Subject Classification [2010]: 47H09, 47H10, 47J05, 47J25

1 Introduction

Let E be a real Banach space and E∗ be the dual of E. Let C be a closed convex subset
of E. In this paper, we concerned with the following Variational Inequality (V I), which
consists in finding a point u ∈ C such that

〈f(u), y − u〉 ≥ 0, ∀ y ∈ C, (1)

where f : C → E∗ is a given mapping and 〈., .〉 denotes the generalized duality pairing.
The solution set of (1) denoted by SOL(C, f).

Many algorithms for solving the (V I) are projection algorithms. In 1976, Korpelevich
[5] proposed a new algorithm for solving the (V I) in Euclidean space which is known that
Extragradient Method putting x0 ∈ H arbitrarily, she present her algorithm as follows:

{
yk := PC(xk − τf(xk))

xk+1 := PC(xk − τf(yk))

where τ is some positive number and PC denotes Euclidean least distance projection onto
C. Censor et al.[1] presented a modified extragradient algorithm for finding a common
element of solution set of a (V I) and the set of fixed points of a nonexpansive mapping.
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In recent years, many authors have used extragradient method for finding a common
element of solutions set of a (V I) and the set of fixed points of a nonexpansive mapping
in the framework of Hilbert spaces and Banach spaces, see for instance [4, 1] and the
references there in. In this paper, employing the idea of Censor et al.[1], we propose a new
extragradient method. Using this method, we prove a weak convergence theorem under
suitable conditions.

2 Preliminaries

We denote by J the normalized duality mapping from E to 2E
∗

defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, ∀ x ∈ E.
Let S(E) be the unite sphere centered at the origin of E.
A Banach space E is strictly convex if ‖x+y

2 ‖ < 1, whenever x, y ∈ S(E) and x 6= y.
Modulus of convexity of E is defined by

δE(ε) = inf{1− 1

2
‖(x+ y)‖ : ‖x‖, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε}

for all ε ∈ [0, 2]. E is said to be uniformly convex if δE(0) = 0, and δE(ε) > 0 for all
0 < ε ≤ 2. Let p be a fixed real number with p ≥ 2. A Banach space E is said to be
p-uniformly convex [9] if there exists a constant c > 0 such that δE ≥ cεp for all ε ∈ [0, 2].
The Banach space E is called smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

, (2)

exists for all x, y ∈ S(E). It is also said to be uniformly smooth if the limit (2) is attained
uniformly for all x, y ∈ S(E) [8]. If a Banach space E uniformly convex, then E is reflexive
and strictly convex [7].
We denote the strong convergence and the weak convergence of a sequence {xk} to x in E
by xk → x and xk ⇀ x, respectively. We also, denote the weak

∗
convergence of a sequence

{x∗k} to x∗ in E∗ by x∗
k
⇀∗ x∗.

Let C be nonempty subset of a Banach space E and T : C → E be a mapping. Then T
is said to be demiclosed at y ∈ E if for any sequence {xk}∞k=0 in C the following implication
holds:

xk ⇀ x ∈ C and Txk → y imply Tx = y.

The duality mapping J is said to be weakly sequentially continuous if xk ⇀ x implies that
Jxk ⇀∗ Jx [2].
An operator f : C → E∗ is called monotone if 〈f(x) − f(y), x − y〉 ≥ 0, for all x, y ∈
C. Also, it is called α-inverse-strongly monotone if there exists a constant α > 0 with
〈f(x)− f(y), x− y〉 > α‖f(x)− f(y)‖2, for all x, y ∈ C. Let E be a smooth Banach space,
we define the function φ : E×E → R by φ(x, y) = ‖x‖2−2〈x, Jx〉+‖y‖2, for all x, y ∈ E.

Definition 2.1. [3] Let E be a smooth Banach space and Let C be a nonempty subset
of E. A mapping T : C → C is called generalized nonexpansive if F (T ) 6= ∅ and

φ(Tx, y) ≤ φ(x, y),

for all x ∈ C and all y ∈ F (T ).
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Definition 2.2. [3] Let D be a nonempty subset of a Banach space E. A mapping
R : E → D is said to be sunny if

R(Rx+ t(x−Rx)) = Rx,

for all x ∈ E and all t ≥ 0. A mapping R : E → D is said to be a retraction if Rx = x for
all x ∈ D. A nonempty subset D of a smooth Banach space E is said to be a generalized
nonexpansive retract (resp. sunny generalized nonexpansive retract) of E if there exists a
generalized nonexpansive retraction (resp. sunny generalized nonexpansive retraction) R
from E onto D.

Lemma 2.3. [3] Let C be a nonempty closed subset of a smooth and strictly convex Banach
space E such that there exists a sunny generalized nonexpansive retraction R from E onto
C and let (x, z) ∈ E × C. Then the following hold:

1. z = Rx if and only if 〈x− z, Jy − Jz〉 ≤ 0 for all y ∈ C,

2. φ(Rx, z) + φ(x,Rx) ≤ φ(x, z).

Lemma 2.4. [10] Let E be a 2-uniformly convex and smooth Banach space. Then, for all
x, y ∈ E, we have

‖x− y‖ ≤ 2

c2
‖Jx− Jy‖,

where J is the duality mapping of E and 1
c (0 ≤ c ≤ 1) is the 2-uniformly convex constant

of E.

Lemma 2.5. [4] Let E be a uniformly convex Banach space and let r > 0. Then there
exists a strictly increasing, continuous and convex function g : [0, 2r] → [0,∞) such that
g(0) = 0 and

g(‖x− y‖) ≤ φ(x, y),

for all x, y ∈ Br = {z ∈ E : ‖z‖ ≤ r}.
Lemma 2.6. [4] Let E be a uniformly convex and smooth Banach space and let {xk} and
{yk} be two sequences of E. If φ(xk, yk) → 0 and either {xk} or {yk} is bounded, then
xk − yk → 0.

3 Main result

Now, we present an algorithm for finding a solution of the (V I) which is also a fixed point
of a generalized nonexpansive mapping. Let S : C → C be a generalized nonexpansive
mapping and denote by F (S) the set of fixed point of S, i.e. F (S) = {x ∈ C | S(x) = x}.

Let {αk}∞k=0 ⊂ [c, d] for some c, d ∈ (0, 1). Let RC be the sunny generalized nonexpan-
sive retraction from E onto C, where C is nonempty subset of E.
Step 0: Select a arbitrary starting point x0 ∈ C and τ > 0, and put k = 0.
Step 1: Let xk+1 be k th iteration, compute

{
yk := RCJ

−1(Jxk − τf(xk)),

xk+1 := J−1(αkJxk + (1− αk)JSyk).
(3)

Step 2: Set k ← (k + 1) and return to Step 1.
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Theorem 3.1. Let C be a nonempty closed convex subset of a 2-uniformly convex, uni-
formly smooth Banach space E. Let f : C → E∗ ba a α-inverse strongly monotone operator
such that

Ω := SOL(C, f) ∩ F (S) 6= ∅
and ‖f(x)‖ ≤ ‖f(x)− f(u)‖ for all x ∈ C and u ∈ Ω, furthermore, assume that
(i) lim inf

k→∞
αk > 0.

(ii)α ≥ 2τ
c2

, where 1
c is the 2-uniformly convexity constant of E.

If J is weakly sequentially continuous and I−S is demiclosed at 0, then sequences {xk}∞k=0

and {yk}∞k=0 generated by (3) converge weakly to the some solution u∗ ∈ Ω, where

u∗ = lim
k→∞

RΩ(xk)
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An inequality of Hermite-Hadamard type for h-convex functions via Riemann-
Liouville fractional integral is studied. Our results generalize and improve the results
of other researchers.
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1 Introduction

Let f : I ⊆ R→ R be a function defined on the interval I of the real numbers and a, b ∈ I
, with a < b. If f is a convex function, then the Hermite-Hadamard inequality holds:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
. (1)

Definition 1.1. [4] Let h : J ⊆ R→ R be a positive function. We say that f : I ⊆ R→ R
is h-convex function or that f belongs to the class SX (h, I) if f is nonnegative and for
all x, y ∈ I and λ ∈ (0, 1) we have

f (λx+ (1− λ) y) ≤ h (λ) f (x) + h (1− λ) f (y) .

Notice that the class of h-convex functions generalizes the class of convex functions for
h(x) = x for all x.

Definition 1.2. [2] Let f ∈ L1 [a, b]. The Riemann-Liouville integrals Jαa+f and Jαb−f of
order α > 0 with a ≥ 0 are defined by

Jαa+f (x) =
1

Γ (α)

∫ x

a
(x− t)α−1 f (t) dt, x > a
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and

Jαb−f (x) =
1

Γ (α)

∫ b

x
(t− x)α−1 f (t) dt, x < b

respectively. Here, Γ (α) is the Gamma function and J0a+f (x) = J0b−f (x) = f (x).

Recently, some generalizations of Hermite-Hadamard inequality for fractional integral
have been proved by many researchers [2, 3]. For example, in 2013, Saikaya et al., proved
the following inequality for fractional integrals.

Theorem 1.3. [2] Let f : [a, b]→ R be a positive function with 0 ≤ a < b and f ∈ L1 [a, b].
If f is a convex function on [a, b] , then the following inequalities for fractional integrals
holds:

f

(
a+ b

2

)
≤ Γ (α+ 1)

2 (b− a)α
[Jαa+f (b) + Jαb−f (a)] ≤ f (a) + f (b)

2

with α > 0.

In 2013, Tunç [3] proposed the following inequality for fractional integrals based on
h−convex function.

Theorem 1.4. [3] Let f ∈ SX (h, I) , a, b ∈ I with a < b and f ∈ L1 ∈ [a, b]. Then one
has inequality for h-convex functions for fractional integrals:

Γ (α)

(b− a)α
[Jαa+f (b) + Jαb−f (a)] ≤ [f (a) + f (b)]

∫ 1

0
tα−1 [h (t) + h (1− t)] dt.

In this paper, an inequality of Hermite-Hadamard type for h-convex functions via the
Riemann-Liouville fractional integral is studied. Our results generalize and improve the
corresponding results of Tunç [3, 2013], Sarikaya et al. [2, 2013].

2 Main results

Now, we state and prove the main result of this paper.

Theorem 2.1. Let f : [a, b] → R be a positive function with 0 ≤ a < b and f ∈ L1[a, b].
If f is a h−convex function on [a, b], then the following inequalities for fractional integrals
hold:

ϕ (α, λ)

h
(
1
2

) 6 Γ (α+ 1)

(b− a)α

[
Jαa+f (λb+ (1− λ) a) + Jα

(λb+(1−λ)a)−f (a)

+Jα
(λb+(1−λ)a)+f (b) + Jαb−f (λb+ (1− λ) a)

]
6 2αΦ (α, λ)

∫ 1

0
(h (t) + h (1− t)) tα−1dt,

for all λ ∈ [0, 1] , t ∈ (0, 1) , α > 0 where

ϕ (α, λ) := λαf

(
λb+ (2− λ) a

2

)
+ (1− λ)α f

(
(1 + λ) b+ (1− λ) a

2

)
,

and

Φ (α, λ) :=
λα

2
f (a) +

(
λα

2
+

1

2
(1− λ)α

)
f (λb+ (1− λ) a) +

1

2
(1− λ)α f (b) .
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Proof. Since f is a h−convex function on [a, b], we have for x, y ∈ [a, b]

f

(
x+ y

2

)
6 h

(
1

2

)
(f (x) + f (y)) . (2)

Let t ∈ (0, 1) . So, for x = ta + (1− t) (λb+ (1− λ) a) , y = (1− t) a + t (λb+ (1− λ) a) ,
Ineq. (2) implies that

1

h
(
1
2

)f
(
λb+ (2− λ) a

2

)
6 f (ta+ (1− t) (λb+ (1− λ) a))+f ((1− t) a+ t (λb+ (1− λ) a)) .

For λ 6= 0, multiplying both sides by tα−1, then integrating the resulting inequality
with respect to t over [0, 1], we obtain

1

h
(
1
2

)
α
f

(
λb+ (2− λ) a

2

)
6
∫ 1

0
tα−1f (ta+ (1− t) (λb+ (1− λ) a)) dt

+

∫ 1

0
tα−1f ((1− t) a+ t (λb+ (1− λ) a)) dt

=

∫ a

λb+(1−λ)a

(
(λb+ (1− λ) a)− u

λ (b− a)

)α−1

f (u)
du

λ (a− b)

+

∫ λb+(1−λ)a

a

(
v − a

λ (b− a)

)α−1

f (v)
dv

λ (b− a)

=
Γ (α)

λα (b− a)α

(
Jαa+f (λb+ (1− λ) a) + Jα

(λb+(1−λ)a)−f (a)
)
.

So,

1

h
(
1
2

)
α
f

(
λb+ (2− λ) a

2

)
6 Γ (α)

λα (b− a)α

(
Jαa+f (λb+ (1− λ) a) + Jα

(λb+(1−λ)a)−f (a)
)
.

(3)
Again for x = t (λb+ (1− λ) a) + (1− t) b, y = (1− t) (λb+ (1− λ) a) + tb and Ineq. (2),
for λ 6= 1, we have

1

h
(
1
2

)
α
f

(
(1 + λ) b+ (1− λ) a

2

)
≤ Γ (α)

(1− λ)α (b− a)α

(
Jα
(λb+(1−λ)a)+f (b) + Jαb−f (λb+ (1− λ) a)

)
.

Then

1

h
(
1
2

)
α
f

(
(1 + λ) b+ (1− λ) a

2

)
6 Γ (α)

(1− λ)α (b− a)α

(
Jα
(λb+(1−λ)a)+f (b) + Jαb−f (λb+ (1− λ) a)

)
.

(4)
Multiplying (3) by λα, (4) by (1 − λ)α, and adding the resulting inequalities, the first
inequality is proved. For the proof of the second inequality, since f is a h−convex, we
have

f (ta+ (1− t) (λb+ (1− λ) a)) 6 h (t) f (a) + h (1− t) f (λb+ (1− λ) a) .
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and
f ((1− t) a+ t (λb+ (1− λ) a)) 6 (1− t) f (a) + tf (λb+ (1− λ) a)

By adding these inequalities, then multiplying both sides by tα−1 and integrating the
resulting inequality with respect to t over [0, 1], we get

Γ (α)

λα (b− a)α

(
Jαa+f (λb+ (1− λ) a) + Jαλb+(1−λ)a−f (a)

)
(5)

6 (f (a) + f (λb+ (1− λ) a))

∫ 1

0
tα−1 (h (t) + h (1− t)) dt.

Again, the h−convexity of f implies that

f (t (λb+ (1− λ) a) + (1− t) b) 6 h (t) f (λb+ (1− λ) a) + h (1− t) f (b)

and
f ((1− t) (λb+ (1− λ) a) + tb) 6 h (1− t) f (λb+ (1− λ) a) + h (t) f (b)

By adding these inequalities, then multiplying both sides by tα−1 and integrating the
resulting inequality with respect to t over [0, 1], we obtain

Γ (α)

(1− λ)α (b− a)α

[
Jα
(λb+(1−λ)a)+f (b) + Jαb−f (λb+ (1− λ) a)

]
(6)

6 (f (λb+ (1− λ) a) + f (b))

∫ 1

0
tα−1 (h (t) + h (1− t)) dt.

Multiplying (5) by λα, (6) by(1 − λ)α and adding the resulting inequalities, we get to
second inequality and the proof is completed.

Remark 2.2. As special cases of Theorem 2.1,
(I) if λ = 1 and h (t) = t for any t ∈ (0, 1), then we have Theorem 1.3 which obtained by
Sarikaya et al. (II) If λ = 1, then we have Theorem 1.4 which obtained by Tunç [3, 2013].
(III) If α = λ = 1 and h (t) = t for any t ∈ (0, 1) , then the classical Hermite-Hadamard
inequality (1) holds.

References

[1] A.A. Kilbas, H.M. Srivastava, J. J. Trujillo, Theory and Applications Fractional Dif-
ferential Equations, Elsevier B.V, Netherlands, 2006.
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In this paper, we consider composition operators on weighted Hilbert spaces of
analytic functions and observe that a formula for the essential norm, give a Hilbert-
Schmidt characterization and characterize the membership in Schatten-class for these
operators. Also, closed range composition operators are investigated.
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1 Introduction

Let D denotes the open unit disk {z ∈ C : |z| < 1} and ϕ be an analytic self map of D.
The composition operator Cϕ induced by ϕ is defined Cϕf = f ◦ ϕ, for any f ∈ H(D),
the space of all analytic functions on D. This operator can be generalized to the weighted
composition operator uCϕ, uCϕf(z) = u(z)f(ϕ(z)), u ∈ H(D). We consider a weight as
a positive integrable function ω ∈ C2[0, 1) which is radial, ω(z) = ω(|z|). The weighted
Hilbert space of analytic functions Hω consists of all analytic functions on D such that

||f ′||2ω =

∫

D
|f ′(z)|2ω(z) dA(z) <∞,

equipped with the norm ||f ||2Hω = |f(0)|2 +||f ′||2ω. Here dA is the normalized area measure
on D. Also the weighted Bergman spaces defined by

A2
ω =

{
f ∈ H(D) : ||f ||2ω =

∫

D
|f(z)|2ω(z) dA(z) <∞

}
.

If f(z) =
∑∞

n=0 anz
n, then f ∈ Hω if and only if ||f ||2Hω =

∑∞
n=0 |an|2ωn < ∞, where

ω0 = 1 and for n ≥ 1

ωn = 2n2

∫ 1

0
r2n−1ω(r)dr,
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and f ∈ Aω if and only if ||f ||2Aω =
∑∞

n=0 |an|2pn <∞, where

pn = 2

∫ 1

0
r2n+1ω(r)dr, n ≥ 0.

By letting ωα(r) = (1 − r2)α (standard weight), α > −1, Hωα = Hα. If 0 ≤ α < 1, then
Hα = Dα, the weighted Dirichlet space, and H1 = H2, the Hardy space.

There are several papers that studied composition operators on various spaces of an-
alytic functions. The best monographs for these operators are [1, 7]. In [2], Kellay and
Lefèvre studied composition operators on weighted Hilbert space of analytic functions
by using generalized Nevanlinna counting function. They characterized boundedness and
compactness of these operators. Pau and Pérez [6] studied boundedness, essential norm,
Schatten-class and closed range properties of these operators acting on weighted Dirichlet
spaces.

Our aim in this paper is to generalize the results of [6] to a large class of spaces.
Throughout the remainder of this paper, c will denote a positive constant, the exact value
of which will vary from one appearance to the next.

2 Preliminaries

In this section we give some notations and lemmas will be used in our work.

Definition 2.1. [2] We assume that ω is a weight function, with the following properties
(W1): ω is non-increasing,
(W2): ω(r)(1− r)−(1+δ) is non-decreasing for some δ > 0,
(W3): limr→1− ω(r) = 0,
(W4): One of the two properties of convexity is fulfilled





(W
(I)
4 ) : ω is convex and limr→1 ω

′(r) = 0,
or

(W
(II)
4 ) : ω is concave.

Such a weight ω is called admissible.

If ω satisfies conditions (W1)-(W3) and (W
(I)
4 ) (resp. (W

(II)
4 )), we shall say that ω is

(I)-admissible (resp. (II)-admissible). Also we use weights satisfy (L1) condition (due to
Lusky [5]):

(L1) inf
k

ω(1− 2−k−1)

ω(1− 2−k)
> 0.

This is equivalent to this condition (see[3]):

There are 0 < r < 1 and 0 < c < ∞ with ω(z)
ω(a) ≤ c for every a, z ∈ ∆(a, r), where

∆(a, r) = {z ∈ D : |σa(z)| < r} and σa(z) = a−z
1−az is the Mobius transformation on D.

All characterizations in this paper are needed to the generalized counting Nevanlinna
function. Let ϕ be an analytic self map of D (ϕ(D) ⊂ D). The generalized counting
Nevanlinna function associated to a weight ω defined as follows

Nϕ,ω(z) =
∑

a:ϕ(a)=z

ω(a), z ∈ D\{ϕ(0)}.
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By using the change of variables formula we have: If f be a non-negative function on D,
then ∫

D
f(ϕ(z))|ϕ′(z)|2ω(z)dA(z) =

∫

D
f(z)Nϕ,ω(z)dA(z). (1)

Also the generalized counting Nevanlinna function has the sub-mean value property (Lem-
mas 2.2 and 2.3 [2]). Let ω be an admissible weight. Then for every r > 0 and z ∈ D such
that D(z, r) ⊂ D\D(0, 1/2)

Nϕ,ω(z) ≤ 2

r2

∫

|ζ−z|<r
Nϕ,ω(ζ)dA(ζ). (2)

Lemma 2.2. [2] If ω is a weight satisfying (W1) and (W2), then there exists c > 0 such
that

1

c
ω(z) ≤ ω(σϕ(0)(z)) ≤ cω(z), z ∈ D.

Lemma 2.3. [2] Let ω be a weight satisfying (W1) and (W2). Let a ∈ D and

fa(z) =
1√
ω(a)

(1− |a|2)1+δ

(1− az)1+δ
.

Then ||fa||Hω � 1.

3 Hilbert-Schmidt and Schatten-class

For studying Schatten-class we need the Toeplitz operator. For more information about
relation between Toeplitz operator and Schatten-class see [8]. Let ψ be positive function
in L1(D, dA) and ω be a weight. The Toeplitz operator associated to ψ defined by

Tψf(z) =
1

ω(z)

∫

D

f(t)ψ(t)ω(t)

(1− zt)2
dA(t).

Tψ ∈ Sp(A2
ω) if and only if the function

ψ̂r(z) =
1

(1− |z|2)2ω(z)

∫

∆(z,r)
ψ(t)ω(t)dA(t)

is in Lp(D, dλ), [4], where dλ = (1−|z|2)−2dA(z) is the hyperbolic measure on D. Accord-
ing to the description of [6] pages 8 and 9, Cϕ ∈ Sp(Hω) if and only if ϕ′Cϕ ∈ Sp(A2

ω).

Theorem 3.1. Let ω be an admissible weight satisfy (L1) condition. Then Cϕ ∈ Sp(Hω)
if and only if

ψ(z) =
Nϕ,ω(z)

ω(z)
∈ Lp/2(D, dλ).

If p = 2, then we have a characterization for Hilbert-Schmidt composition operators.

Corollary 3.2. Let ω be an admissible weight satisfy (L1) condition. Then Cϕ is Hilbert-
Schmidt on Hω if and only if

∫

D

Nϕ,ω(z)

ω(z)(1− |z|2)2
dA(z) =

∫

D

Nϕ,ω(z)

ω(z)
dλ(z) <∞.
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4 Closed Range

It is well known that having the closed range for a bounded operator acting on a Hilbert
space H is equivalent to existing a positive constant c such that for every f ∈ H, ||Tf ||H ≥
c||f ||H . Consider the function

τϕ,ω(z) =
Nϕ,ω(z)

ω(z)
.

Proposition 4.1. Let ω be an admissible weight and Cϕ be a bounded operator on Hω.
Then Cϕ has closed range if and only if there exists a constant c > 0 such that for all
f ∈ Hω ∫

D
|f ′(z)|2τϕ,ω(z)ω(z) dA(z) ≥ c

∫

D
|f ′(z)|2ω(z) dA(z). (3)

Fredholm composition operator is an example of composition operator with closed
range property. Recall that a bonded operator T between two Banach spaces X,Y is
called Fredholm if Kernel T and T ∗ are finite dimensional.

Example 4.2. Suppose that Cϕ : Hω → Hω be a Fredholm operator. By Theorem 3.29[1],
ϕ is an authomorphism of D. Then Nϕ,ω(z) = ω(ϕ−1(z)). If ϕ(0) = 0, Schwarz Lemma
implies that |ϕ−1(z)| ≤ |z|. Since ω is non-increasing, ω(ϕ−1(z)) = ω(|ϕ−1(z)|) ≥ ω(|z|) =
ω(z). Now (3) holds. If ϕ(0) 6= 0, then the same argument can be applied.
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A note on composition operators on Besov type spaces

Ebrahim Zamani∗

University of Tabriz

Hamid Vaezi

University of Tabriz

Abstract

Let D be the open unit disc in the complex plane C. We denote by H(D) the
space of all holomorphic function on D. given a holomorphic self map ϕ on D the
composition operator Cϕ on H(D) is defined by

(Cϕf)(z) = f(ϕ(z))

for every f ∈ H(D) and z ∈ D.
In this article we give some results about the boundednes of the composition op-

erators on Besov type space Bp,q for 1 < p <∞ and −1 < q <∞.

Keywords: Composition operator, Carleson Measure, Besov Type Space
Mathematics Subject Classification [2010]: 47B33, 30H25

1 Introduction

Let D be the open unit disc in the complex plane C. We will use the notation H(D) to
denote the space of holomorphic functions on the unit disc D. Suppose ϕ is a holomorphic
function defined on D such that ϕ(D) ⊆ D. Each ψ ∈ H(D) and holomorphic self-map ϕ
of D induces a linear weighted composition operator Cψ,ϕ : H(D)→ H(D) defined by

Cψ,ϕ(f)(z) = ψ(z)f(ϕ(z))

for every f ∈ H(D) and z ∈ D.
(weighted) Composition operator on various spaces of functions are being studied by

many authors. We can refer for example to [4, 5, 6, 7].
Fix any a ∈ D and let σa(z) be the Mobius transform defined by

σa(z) =
a− z
1− az , z ∈ D.

We denote the set of all Mobius transformations on D by G. Such a map is its own
inverse and satisfies the fundamental identity

|σ′a(z)| =
1− |a|2
|1− az|2 .

see[6, 9].
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Definition 1.1. Fix 1 < p < ∞ and −1 < q < ∞. Then f is in the Besov type space
Bp,q if

‖f‖p,q = (

∫

D
|f ′(z)|p(1− |z|2)qdA(z))

1
p <∞, (1)

where dA(z) denotes the Lebesgue area measure on D. Also, if we take 1 < p < ∞ and
q = p− 2 in (1),then we get the analytic Besov space Bp.

By making a non-univalent change of variables we see that

‖Cϕf‖p,q =

∫

U
|f ′(w)|

p

Np,q(w, φ)dA(w). (2)

Now consider the restriction Cϕ to Bp,q .Then Cϕ is a bounded operator if and only if
there is a positive constant C such that

‖Cϕf‖Bp,q ≤ C‖f‖
p
Bp,q

for all f ∈ Bp,q or, equivalently
∫

U
|f ′(w)|

p

Np,q(w, φ)dA(w) ≤ C‖f‖pp,q

for all f ∈ Bp,q.
Definition 1.2. : Let µ be a positive measure on D and let X = Bp,q (1 < p < ∞
,−1 < q <∞).Then µ is an (X,p)-Carleson measure if there is a constant A > 0 such that

∫

U
|f ′(w)|p ≤ A‖f‖pX

for all f ∈ X.

2 Main results

(Weighted) composition operators on spaces of holomorphic functions on unit disc D are
studied by many authors. See for example [1, 2, 3]. Boundedness and compactness of
composition operators on Besov spaces was studied by Sharma and Kumar in [6] and
Tjani in [7, 8].

In this section we give some results about the composition operators on Besov type
spaces.

Theorem 2.1. For 1 < p <∞ , −1 < q <∞,a ∈ C then σa ∈ Bp,q.
In view of (2) we see that Cϕ is bounded operator on Bp,q if and only if the measure

Np,q(w, φ)dA(w) is a (Bp,q, p)- Carleson measure

Theorem 2.2. For 1 < p < ∞ and −1 < q < ∞ if µ is a (Bp,q, p)- Carleson measure.
Then there exists a constant B > 0 such that

∫

U
|α′a(z)|pdµ(z) ≤ B

for a ∈ D.
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Theorem (2.2) yields the following:

Theorem 2.3. Let ϕ be a holomorphic function on D and Cϕ is a bounded operator on
Bp,q(1 < p <∞ and −1 < q <∞).Then

supa∈D‖Cϕf‖Bp,q <∞.
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A note on the transitive groupoid spaces

Habib Amiri∗

University of Zanjan

Abstract

If a group G acts on a set X and H is a subgroup of G, the Frattini argument shows
that H acts transitively on X if and only if G acts transitively on X and G = HStabx
for some x ∈ X, where Stabx is the stabilizer of x in G. There is another useful result
in group action which indicates that the action of G on a set X is doubly transitive if
and only if, for each x ∈ X, the group Stabx acts transitively on X \ {x}, where the
cardinal number of X is more than two. In this paper if a groupoid acts on a set X,
then by using sections, special subsets of X, instead of the points of X in the group
case, we will extend these results to the groupoid case.

Keywords: Groupoid; Groupoid space; Frattini argumen

Mathematics Subject Classification [2010]: 18B40, 16W22

1 Introduction

When a group G acts on a set X, the point stabilizer of x ∈ X is denoted by Stabx
and is a subgroup of G. In the case where G acts transitively on X, then the stabilizers
Stabx(x ∈ X) form a single conjugacy class of subgroups of G. The Frattini argument
indicate that a subgroup H of G acts transitively on X if and only if G = HStabx for
some x ∈ X [1]. The action of the group G on the set X is naturally extend to an action
of G on the cartesian product X × X by g.(x, y) = (g.x, g.y). The action of G on X is
called doubly transitive, if for two pairs (x1, x2), (y1, y2) in X ×X with x1 6= x2, y1 6= y2,
there exists g ∈ G with g.x1 = y1, g.x2 = y2. The action of G on X is doubly transitive if
and only if, for each x ∈ X, the group Stabx acts transitively on X \ {x} [1].

A groupoid (see definition 1.1 of [4]) is a set G endowed with a product map (x, y) 7→
xy : G2 → G where G2 as a subset of G×G is called the set of composable pairs, and an
inverse map x 7→ x−1 : G→ G such that the following relations are satisfied:

1. For every x ∈ G, (x−1)−1 = x.

2. If (x, y), (y, z) ∈ G2, then (xy, z), (x, yz) ∈ G2 and (xy)z = x(yz).

3. For all x ∈ G, (x−1, x) ∈ G2 and if (x, y) ∈ G2, then x−1(xy) = y. Also for all
x ∈ G, (x, x−1) ∈ G2 and if (z, x) ∈ G2, then (zx)x−1 = z.

∗Speaker

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

A note on the transitive groupoid spaces pp.: 1–4

329



The maps r and d on G defined by the formulas r(x) = xx−1 and d(x) = x−1x are
called the range map and domain map. It follows easily from the definition that they have
a common image called the unit space of G which is denoted by G0. The pair (x, y) is
composable if and only if the range of y is the domain of x. Condition (3) implies that
r(x)x = x, xd(x) = x. For u, v ∈ G0, Gu = r−1(u), Gv = d−l(v), Guv = Gu ∩ Gv and Guu,
which is a group, is called the isotropy group at u and G′ =

⋃
u∈G0 Guu is called stabilizer

subgroupoid of G. A groupoid G is called transitive if Guv 6= ∅ for all u, v ∈ G0.
The notion of groupoid action on a set which is a generalization of group actions is

discussed in several places, for example, see [3], [5]. If G is a groupoid and X is a set,
we say that G acts (on the left) of X if there is a surjection ρ : X → G0 and a map
(g, x) 7→ g.x form G ∗X = {(g, x) : d(g) = ρ(x)} to X such that

1) If (g1, g2) ∈ G2 and (g2, x) ∈ G∗X, then (g1g2, x), (g1, g2.x) ∈ G∗X and g1.(g2.x) =
(g1g2).x

2) For all x ∈ X, ρ(x).x = x.
We think of ρ as a ”generalized range” map. We see that similar to the groupoid

multiplication which is partially defined, a groupoid action on a set is partially defined.
When a groupoid G acts on a set X, then the set X is called Groupoid-space or simply

G−space. If X is a G−space, for every u ∈ G0 we use Xu to denote the set ρ−1(u), the
ρ−fiber at u. If G is a groupoid and X is a G−space, then X is said to be transitive
G−space if for every pair of point x, y ∈ X there exists g ∈ G such that g.x = y. It is
easy to show that if X is a transitive G−space then G must be a transitive groupoid [2].

For a groupoid G and a G−space X, if we set X ∗X = {(x, y) : ρ(x) = ρ(y)}, then
it is easy to check that G acts on X ∗X by the diagonal action: g.(x, y) = (g.x, g.y) [5].
Obviously ∆, the diagonal in X ×X, is a subset of X ∗X and is an invariant subset of
X ∗X under the diagonal action. Also the diagonal action on ∆ is transitive if and only
if X is a transitive G−space.

In this paper, when G is a groupoid and X is a G−space, we obtain a groupoid version
of Frattini argument. In this case, instead of points of X in the group case, we use some
special subsets of X which are called sections of X. Indeed it is shown that a subgroupoid
H of G acts transitively on X if and only if G acts transitively on X and G = H ′G{S} for
some section S of X which H acts transitively on S, where H ′ is the stabilizer subgroupoid
of H. Also we prove that the diagonal action of G on X ∗X \∆ is transitive if and only if,
for each section S of X, the groupoid G{S} acts transitively on X \ S. As a corollary, we
prove that the diagonal action of G on X ∗X is transitive if and only if the action of G on
X is transitive and for a section S0 of X, the groupoid G{S0} acts transitively on X \ S0.

2 Transitive groupoid action

Let G be a groupoid and X be a G−space, to avoid trivial misunderstanding, we only
consider the G−spaces without any singleton fiber. In order to proceed we need the
following definition.

Definition 2.1. Suppose that G is a groupoid which acts transitively on a set X. A
section of X is a subset S of X where ρ : S → G0 is a bijection. Therefore S ⊂ X
is a section if and only if, Su is a singleton {su} for every u ∈ G0. The stabilizer of a
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section S is the set G{S} = {g ∈ G : g.sd(g) = sr(g)}. By the definition of groupoid action,
G0 ⊂ G{S}.

Lemma 2.2. If G is a groupoid and X is a G−space, for every section S of X, the
stabilizer of S is a subgroupoid of G, and in the case where X is a transitive G−space and
T is another section of X, then G{S} is isomorphic to G{T}.

Proof. Let g ∈ G{S}, then g.sd(g) = sr(g), so g−1.sd(g
−1) = g−1.sr(g) = sd(g) = sr(g

−1).
That is G{S} is closed under inversion. To prove that G{S} is closed under multiplication,
let g1, g2 ∈ G{S} and (g1, g2) ∈ G2, then

g1g2.s
d(g1g2) = g1g2.s

d(g2) = g1.s
r(g2) = g1.s

d(g1) = sr(g1) = sr(g1g2),

so g1g2 ∈ G{S}. Now suppose that X is a transitive G−space and T is another section of X.

Since the action of G on X is transitive, there exists a section K of G′ with k
d(g)
d(g)s

d(g) = td(g)

for every g ∈ G, where {kuu} = Ku. It is easy to check that the map ϕK : G{S} → G{T}
by ϕK(g) =

(
k
r(g)
r(g)

)
g
(
k
d(g)
d(g)

)−1
is well defined and is a groupoid isomorphism.

In the group case, the Frattini argument indicates that when a group G acts on a set X
and H is a subgroup of G, then H acts transitively on X if and only if G acts transitively
on X and G = HStabx for some x ∈ X. In the following we bring the groupoid version of
this.

Proposition 2.3. If a groupoid G acts on a set X and H is a subgroupoid of G, then the
following are equivalent:

1. H acts transitively on X,

2. G acts transitively on X and G = H ′G{S} for some section S of X which H acts
transitively on S.

Proof. 1)⇒ 2) Obviously if H acts transitively on X, then G acts too. Let S be a Section
of X and g ∈ G. Since H acts transitively on X, for g.sd(g), s(r(g) ∈ X there exists h ∈ H
with g.sd(g) = h.sr(g). It is easy to check that h ∈ H ′, and h−1g.sd(h

−1g) = h−1g.sd(g) =
sr(g) = sd(h) = sr(h

−1g). That is h−1g ∈ G{S}, and so g ∈ H ′G{S}. To prove the last part
of the item 2), let u, v ∈ G0 and su, sv ∈ S. Since H acts transitively on X, then H is
transitive, so there exists h ∈ Hu

v . But G = H ′G{S} implies that, there exist h′ ∈ H ′ with

h′h ∈ G{S}. So h′h.sv = h′h.sd(h
′h) = sr(h

′h) = sr(h
′) = sd(h

′) = sr(h) = su. That is H acts
transitively on S.

2) ⇒ 1) If G acts transitively on X and G = H ′G{S} for some section S of X which
H acts transitively on S, then X = G.S = H ′G{S}.S = H ′.S. Now let x1, x2 ∈ X, then

there exist two element h1, h2 of H ′ with x1 = h1.s
d(h1) and x2 = h2.s

d(h2). Since H acts
transitively on S, so there exists an element h3 ∈ H with h3.s

d(h1) = sd(h2) consequently
h2h3h

−1
1 .x1 = h2h3.s

d(h1) = h2.s
d(h2) = x2.

Corollary 2.4. If a groupoid G acts on a set X and H is a subgroupoid of G which acts
transitively on X and G{S} ⊂ H for some section S of X, then G = H.
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For a groupoid G and a G−space X, obviously ∆, the diagonal in X ×X, is a subset
of X ∗X and is an invariant subset of X ∗X under the diagonal action, therefore X ∗X \∆
is invariant. It is easy to check that the diagonal action of G on ∆ is transitive if and only
if X is a transitive G−space.

Lemma 2.5. If X is a G−space and S is a section of X, then G{S} acts on X \ S.

Proof. First note that ρ : X \S → (G{S})0 is surjective, since X has no singleton fiber and
G0 ⊂ G{S}. It is enough to show that for g ∈ G{S} and x ∈ X \S, g.x /∈ X \S. If g.x ∈ S,

since S is a section, so g.x = sr(g) and therefore x = g−1.sr(g) = g−1sd(g
−1) = sr(g

−1) ∈ S,
which is a contradiction.

Proposition 2.6. The diagonal action of G on X ∗X \∆ is transitive if and only if for
each section S of X the action of the groupoid G{S} on X \ S is transitive.

Proof. Suppose that the diagonal action of G on X ∗X \∆ is transitive, by the previous
lemma G{S} acts on X \S. Let x1, x2 ∈ X \S, then (sρ(x1), x1), (s

ρ(x2), x2) ∈ X ∗X \∆. So

there exists g ∈ G with g.(sρ(x1), x1) = (sρ(x2), x2), hence g.sρ(x1) = sρ(x2) and g.x1 = x2,
it is enough to show that g ∈ G{S}. But g.x1 = x2 implies that ρ(x2) = r(g), ρ(x1) = d(g),

so g.sd(g) = sr(g) which means that g ∈ G{S}. Conversely, let (x1, x2), (y1, y2) ∈ X ∗X \∆.
Take a section S of X with x1, y1 ∈ S. Since S is a section, so x2, y2 ∈ X \ S and therefre
there exists g ∈ G{S} with g.x2 = y2. Hence g.x1 is defined and

g.x1 = g.sρ(x1) = g.sρ(x2) = g.sd(g) = sr(g) = sρ(y2) = sρ(y1) = y1.

Corollary 2.7. The diagonal action of G on X ∗X \∆ is transitive if and only if X is
a transitive G−space and for one section S0 of X the subgroupoid G{S0} acts transitively
on X \ S0.
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Abstract Convexity of ICR-k Functions

Mohammad Hossein Daryaei∗

Shahid Bahonar University of Kerman, Kerman, Iran.

Abstract

The theory of ICR (increasing and co-radiant) functions defined on ordered topo-
logical vector spaces has well been developed. In this paper, we present the theory of
ICR-k (increasing and co-radiant of degree k) functions defined on an ordered topolog-
ical vector space X. We first give a characterization for ICR-k functions and examine
abstract convexity of this class of functions. Finally, we characterize support set and
subdifferential of ICR-k functions.

Keywords: Abstract convexity, ICR function, ICR-k function, Subdifferential, Sup-
port set.

Mathematics Subject Classification [2010]: 26B25, 26A48

1 Introduction

Monotonic analysis is one of the advanced topics in so-called abstract convex analysis
which is a natural generalization of classical convex analysis.
Abstract convexity has found many applications in the study of mathematical analysis
and optimization problems (see [2, 5]). Functions which can be represented as upper en-
velopes of subsets of a set H of sufficiently simple (elementary) functions, are studied in
this theory (for more details see [4, 5, 6]).
It is well-known that some classes of increasing functions are abstract convex. For exam-
ple, the class of increasing and positively homogeneous (IPH) functions (see [5]) and the
class of increasing and convex-along-rays (ICAR) functions are abstract convex (see [4]).
The class of increasing and co-radiant (ICR) functions is another class of increasing func-
tions which are abstract convex.
Abstract convexity of ICR functions defined on a topological vector space has been in-
vestigated in [1, 3]. In this paper, we study non-negative increasing and co-radiant of
degree k (ICR-k) functions defined on an ordered topological vector space X. Finally, we
characterize the support set and subdifferential of this functions.

2 Preliminaries

Let X be a topological vector space. We assume that X is equipped with a closed convex
pointed cone S (the latter means that S ∩ (−S) = {0}). The increasing property of our
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functions will be understood to be with respect to the ordering ≤ induced on X by S :

x ≤ y ⇐⇒ y − x ∈ S, (x, y ∈ X).

A function f : X −→ [−∞, +∞] is called co-radiant of degree k (k > 0) if f(γx) ≥ γkf(x)
for all x ∈ X and all γ ∈ (0, 1] (a co-radiant of degree 1 function is called co-radiant).
It is easy to see that f is co-radiant of degree k if and only if f(γx) ≤ γkf(x) for all
x ∈ X and all γ ≥ 1. The function f is called increasing if x ≥ y =⇒ f(x) ≥ f(y). In
this paper, we study non-negative ICR-k (increasing and co-radiant of degree k) functions
f : X −→ [0, +∞] such that

0 ∈ domf := {x ∈ X : −∞ < f(x) < +∞}.

Lemma 2.1. Let 0 < k1 < k2 and f : X −→ [0,+∞] be an ICR-k1 function. Then f is
an ICR-k2 function.

Lemma 2.2. Let f : X −→ [0,+∞] be an function. Then f is ICR-k if and only if k
√

f
is ICR.

Lemma 2.3. Let { fi : i = 1, 2, . . . , k } be a set of non-negative ICR functions defined on
X. Then the function f := f1 × f2 × · · · × fk is ICR-k function.

Example 2.4. Consider the function f : R −→ [0,+∞] defined as follows

f(x) :=

{
akx

k + ak−1x
k−1 + · · · + a1x + a0, x ≥ 0,

0, x < 0

for all x ∈ R (ai ≥ 0 (i = 1, 2, . . . , k)). It is clear that f is an ICR-k function.

Definition 2.5. Let X be a non-empty set, H be a non-empty set of functions h : X −→
[−∞, +∞] defined on X and f : X −→ [−∞, +∞] be a function.
1) The support set (or the set of all H-minorants) of f with respect to H is defined by

supp(f,H) := {h ∈ H : h(x) ≤ f(x), ∀ x ∈ X }. (1)

2) The function f is called abstract convex with respect to H (or H-convex) if there exists
a subset U of H such that

f(x) = sup
h∈U

h(x), (x ∈ X). (2)

3) The subdifferential of the function f at a point x0 ∈ domf with respect to H (or
H-subdifferential of f) is defined by

∂Hf(x0) := { h ∈ H : h(x0) ∈ R, f(x) − f(x0) ≥ h(x) − h(x0), ∀ x ∈ X }. (3)

The set H in Definition 2.5 is called the set of elementary functions. It is worth noting
that the support set accumulates global information about the function f in terms of
elementary functions H.
Now, consider the function lk : X × X × R++ −→ [0, +∞] defined by

lk(x, y, α) := max{ 0 ≤ λ ≤ (α)k :
k
√

λy ≤ x }, ∀ x, y ∈ X, ∀ α > 0, (4)

(with the convention max ∅ := 0).
In the following, we give some properties of this function.
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Theorem 2.6. for every x, y, x′, y′ ∈ X; γ ∈ (0, 1]; µ, α, α′ ∈ R++, one has

lk(µx, y, α) = µklk(x, y,
α

µ
), (5)

lk(x, µy, α) =
1

µk
lk(x, y, µα), (6)

x ≤ x′ =⇒ lk(x, y, α) ≤ lk(x′, y, α), (7)

y ≤ y′ =⇒ lk(x, y′, α) ≤ lk(x, y, α), (8)

α ≤ α′ =⇒ lk(x, y, α) ≤ lk(x, y, α′), (9)

lk(γx, y, α) ≥ γklk(x, y, α), (10)

lk(x, γy, α) ≤ 1

γk
lk(x, y, α), (11)

lk(x, y, α) = αk ⇐⇒ αy ≤ x. (12)

Theorem 2.7. Let f : X → [0,+∞] be a function. Then the following assertions are
equivalent.
(i) f is ICR-k.
(ii) λkf(y) ≤ f(x) for all x, y ∈ X and all λ ∈ (0, 1] such that λy ≤ x.
(iii) lk(x, y, α)f(αy) ≤ αkf(x) for all x, y ∈ X and all α ∈ R++ with the convention
0 × (+∞) = 0.

3 Main results

Now, we are going to show that each non-negative ICR-k function is supremally generated
by a certain class of ICR-k functions.
Assume that y ∈ X and α ∈ R++ are arbitrary. Consider the function lk(y,α) : X −→
[0, +∞] defined by lk(y,α)(x) := lk(x, y, α) for all x ∈ X. Also, let L := { lk(y,α) : y ∈ X, α ∈
R++ } be the set of elementary functions.

Remark 3.1. By (7) and (10), the function lk(y,α) is an ICR-k function.

Theorem 3.2. Let f : X −→ [0,+∞] be a function. Then f is ICR-k if and only if there
exists a set A ⊆ L such that

f(x) = sup
lk
(y,α)

∈A

lk(y,α)(x), (x ∈ X). (13)

In this case, one can take A := { lk(y,α) ∈ L : f(αy) ≥ αk }. Hence, f is ICR-k if and only
if f is L-convex.

Theorem 3.3. Let f : X −→ [0, +∞] be an ICR-k function. Then

supp(f, L) = { lk(y,α) ∈ L : f(αy) ≥ αk }. (14)

In the following, we characterize the L-subdifferential of a non-negative ICR-k function.
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Proposition 3.4. Let f : X −→ [0, +∞] be an ICR-k function and x0 ∈ X be such that
f(x0) ̸= 0, +∞. Then

{ lk(y,α) ∈ L : f(αy) ≥ αk, f(x0) = lk(y,α)(x0) } ⊆ ∂Lf(x0). (15)

Moreover, ∂Lf(x0) ̸= ∅.

Theorem 3.5. Let f : X −→ [0, +∞] be an ICR-k function and x0 ∈ X be such that
f(x0) ̸= +∞. Then

{ lk(y,α) ∈ L : f(x0) ≤ lk(y,α)(x0), αk − lk(y,α)(x0) ≤ f(αy) − f(x0) } ⊆ ∂Lf(x0). (16)

Moreover, the equality holds if and only if infx∈X f(x) = 0.
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Abstract

Generalizing the notion of amenability for L1(G), we study the concept of amenabil-
ity of L1(G,A). Among the other things, we prove that L1(G,A) is approximately
weakly amenable where A is a unital separable Banach algebra. We investigate the
existence of a left invariant mean on various vector valued function spaces. The can-
didates for the choice of space are LUC(G,A∗), WAP (G,A∗) and C0(G,A

∗).

Keywords: Amenability, Banach algebras, Derivation, Group algebra, Invariant
mean.

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

It is a well-known theorem of Johnson that a locally compact group G is amenable if and
only if L1(G) is amenable. We now switch from groups to vector-valued Banach algebras.
Our references for vector-valued integration theory is [1], [2]. Let G be a locally compact
group with a fixed left Haar measure m and A be a unital separable Banach algebra.
Let L1(G,A) be the set of all measurable vector-valued (equivalence classes of) functions
f : G → A such that ∥f∥1 =

∫
G ∥f(t)∥dm(t) < ∞. Equipped with the norm ∥.∥1 and the

convolution product * specified by

f ∗ g(x) =

∫
f(t)g(t−1x)dm(t) (f, g ∈ L1(G,A)),

L1(G,A) is a Banach algebra. It is our objective in this paper to demonstrate the corre-
sponding characterization of L1(G,A). M(G,A) will denote the space of regular A-valued
Borel measures of bounded variation onG. L1(G,A) is a closed two-sided ideal ofM(G,A).

Another space considered in this paper is L∞(G,A∗), which consists of maps f of G
into A∗ that are scalarwise measurable and N∞(∥f∥) = loc ess supt∈G(∥f(t)∥) < ∞. The
dual of L1(G,A) may be identified with L∞(G,A∗) [2]. We show that every continuous
derivation from L1(G,A) into L∞(G,A∗) is approximately inner, that is, of the form

D(a) = lim
α

(Fα.a− a.Fα)

for some {Fα}α∈I ∈ L∞(G,A∗).
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As usual we write C(G,A∗) for the bounded continuous functions from G into A∗,
C0(G,A

∗) for the continuous functions from G into A∗ vanishing at infinity and C00(G,A
∗)

for the continuous functions from G into A∗ with compact support under the norm ∥f∥ =
supt∈G ∥f(t)∥. For f ∈ L∞(G,A∗), set Lxf(t) = f(xt)(x, t ∈ G). Then f is called left
uniformly continuous, if the map x 7→ Lxf from G into L∞(G,A∗) is continuous with
respect to N∞(∥f∥) on L∞(G,A∗). The set of uniformly continuous functions is denoted
by LUC(G,A∗). A function f ∈ C(G,A∗) is called weakly almost periodic if the set
{Lxf : x ∈ G} is relatively compact in the weak-topology on C(G,A∗). The space of
these functions are denoted by WAP (G,A∗). In the case A = C, the complex field, these
spaces will be denoted by L1(G), M(G), C(G), C0(G), C00(G), LUC(G) and WAP (G).

Left invariant means on spaces of vector-valued functions were first considered by
Dixmier in [1]. A linear mapping M : L∞(G,A∗) → A∗ is called a mean if for each f ,
M(f) belongs to the weak∗-closure of the convex hull of {f(x) : x ∈ G} in A∗. A mean
M is left invariant if M(Laf) = M(f) for each a ∈ G and f ∈ L∞(G,A∗). If m is a
left invariant mean on L∞(G), then m induces a left invariant mean M on L∞(G,A∗)
such that ⟨M(f), a⟩ = m(⟨f(.), a⟩) for each a ∈ A, here ⟨f(.), a⟩ denotes the functions
x 7→ ⟨f(x), a⟩. We present some of the properties of left invariant means on LUC(G,A∗),
WAP (G,A∗) and C0(G,A

∗).

2 Main results

Theorem 2.1. Let G be a locally compact group. Then G is amenable if and only if
L1(G,A) is amenable for each unital separable Banach algebra A.

Theorem 2.2. Let G be a locally compact group. Then the following statements are
equivalent:

(i) G is amenable.

(ii) For every unital separable Banach algebra A, there exists a bounded net {ψα}α∈I ⊆
L1(G,A) such that ∥δx ∗ ψα − ψα∥1 → 0 whenever x ∈ G.

(iii) For every unital separable Banach algebra A, there exists a bounded net {ψα}α∈I ⊆
L1(G,A) such that for every compact set K ⊆ G, ∥ψ ∗ψα −ψα∥1 → 0 uniformly for
all ψ ∈ L1(G,A) with

∫
G\K ∥ψ(t)∥dm(t) = 0.

It is known that G is amenable if and only if LUC(G) has a left invariant mean. It
will be interesting to have a direct proof of this fact. We present a vector version of this
characterization.

Theorem 2.3. Let G be a locally compact group and A be a unital separable Banach
algebra. The following statements are hold:

(i) L∞(G,A∗)L1(G,A) = LUC(G,A∗).

(ii) G is amenable if and only if LUC(G,A∗) has a left invariant mean.

Analogous to the scalar function case, we can easily obtain the following
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Theorem 2.4. Let G be a locally compact group and A be a unital separable Banach
algebra. The following statements are hold:

(i) If f ∈ L∞(G,A∗), then f ∈ WAP (L1(G,A)) if and only if {fδx : x ∈ G} is
relatively weakly compact in L∞(G,A∗).

(ii) WAP (L1(G,A)) = WAP (G,A∗).

(iii) WAP (L1(G,A)) has a left invariant mean.

Theorem 2.5. Let G be a noncompact amenable group and let f ∈ C0(G,A
∗). If M is

left invariant mean on L∞(G,A∗), then |M(f)| = 0.

It is known that if two Banach algebras A and B have bounded approximate identities
{aα}α and {bα}α, then A⊗̂B has a bounded approximate identity {aα⊗bβ}(α,β) where
⊗̂ denotes the completion of usual tensor product of Banach spaces with respect to the
projective tensor norm. Let {eα}α be a bounded approximate identity for L1(G) and
eA be an identity in A. Regarding {eα ⊗ eA}α as an element in (L1(G)⊗̂A)∗∗, and let
F ∈ (L1(G)⊗̂A)∗. Using exactly the same notation as in [3], we put ⟨(eα ⊗ eA), F ⟩ =∫
Fd(eα ⊗ eA). Given a dual Banach space X∗ and F ∈ B(L1(G), A;X∗), we define∫
Fd(eα ⊗ eA) ∈ X∗ by

⟨
∫
Fd(eα ⊗ eA), x⟩ =

∫
⟨F (f, a), x⟩d(eα ⊗ eA)(f, a).

Theorem 2.6. Let G be a locally compact group and let A be a unital separable Banach
algebra. Then L1(G,A) is approximately weakly amenable.

Proof. Consider a continuous derivation D : L1(G,A) → L1(G,A)
∗
. It is well known

that the space L1(G,A) is isometrically isomorphic to L1(G)⊗̂A. Define F : L1(G) ×
A → L1(G,A)

∗
by F (f, a) = D(f ⊗ a). Put gα =

∫
F (f, a)d(eα ⊗ eA)(f, a). For each

F (f, a) ∈ L1(G,A)
∗
, its image under isometry onto L∞(G,A∗) is a map whose values at

x ∈ G is F (f, a)(x). Now put F : L1(G) × A → A∗ given by F (f, a) = F (f, a)(x),
f ∈ L1(G), a ∈ A and x ∈ G. So we can define

∫
F (f, a)d(eα ⊗ eA)(f, a) ∈ A∗

by ⟨
∫
F (f, a)d(eα ⊗ eA)(f, a), c⟩ =

∫
⟨F (f, a), c⟩d(eα ⊗ eA)(f, a) for each c ∈ A. Note

that x 7→ gα(x) =
∫
F (f, a)(x)d(eα ⊗ eA)(f, a) is a scalarwise measurable function and

N∞(∥gα(x)∥) < ∞ for each α. Then there is a map κgα from B(A,L∞(G)) such that
⟨κgα(a), f⟩ =

∫
f(x)⟨gα(x), a⟩dm(x) for each f ∈ L1(G) and a ∈ A, where κgα is defined

by κgα(a) = ⟨gα(x), a⟩ [2]. For each F : L1(G) × A → L1(G,A)
∗

and f, g ∈ L1(G) and
a, b ∈ A we have

lim
α

∫
F (fg, ab)d(eα ⊗ eA)(f, a) = lim

α
⟨
∫

(fg ⊗ ab)d(eα ⊗ eA)(f, a), F ⟩

= lim
α

⟨
∫

(gf ⊗ ba)d(eα ⊗ eA)(f, a), F ⟩

= lim
α

∫
F (gf, ba)d(eα ⊗ eA)(f, a).
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Hence

lim
α

(g ⊗ b)⟨f́ , κgα(á)⟩ = lim
α

∫
f́(x)⟨(g ⊗ b).gα(x), á⟩dm(x)

= lim
α

∫
f́(x)⟨

∫
(g ⊗ b).D(f ⊗ a)(x)d(eα ⊗ eA)(f, a), á⟩dm(x)

= lim
α

∫
f́(x)⟨

∫
D(gf ⊗ ba)(x)d(eα ⊗ eA)(f, a), á⟩dm(x)

− lim
α

∫
f́(x)⟨

∫
D(g ⊗ b).(f ⊗ a)(x)d(eα ⊗ eA)(f, a), á⟩dm(x)

=

∫
f́(x) lim

α
⟨
∫
F (gf, ba)(x)d(eα ⊗ eA)(f, a), á⟩dm(x)

−
∫
f́(x) lim

α
⟨D(g ⊗ b)

∫
(f ⊗ a)(x)d(eα ⊗ eA)(f, a), á⟩dm(x)

=

∫
f́(x) lim

α
⟨
∫
F (fg, ab)(x)d(eα ⊗ eA)(f, a), á⟩dm(x)

−
∫
f́(x)⟨D(g ⊗ b)(x), á⟩dm(x)

=

∫
f́(x) lim

α
⟨
∫
F (f, a)(x)d(eα ⊗ eA)(f, a), á⟩dm(x)(g ⊗ b)

−
∫
f́(x)⟨D(g ⊗ b)(x), á⟩dm(x)

= lim
α

∫
f́(x)⟨gα(x), á⟩dm(x)(g ⊗ b) −

∫
f́(x)⟨D(g ⊗ b)(x), á⟩dm(x)

= lim
α

⟨f́ , κgα(á)⟩(g ⊗ b) − ⟨f́ , κD(g⊗b)(á)⟩

for all g ⊗ b ∈ L1(G) ⊗A, á ∈ A and f́ ∈ L1(G,A). Consequently

lim
α

((g ⊗ b)κgα(á) − κgα(á)(g ⊗ b)) = −κD(g⊗b)(á)

lim
α

⟨(g ⊗ b).gα(x), á⟩ − ⟨gα(x).(g ⊗ b), á⟩ = −⟨D(g ⊗ b)(x), á⟩

for all g ⊗ b ∈ L1(G) ⊗A and á ∈ A. It follows that D is inner.
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Amenability of weighted semigroup algebras

based on a character
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Abstract

In this paper, we study ϕ-amenability and character amenability of weighted semi-
group algebra ℓ1(S, ω). Indeed, we characterize character amenability of weighted
semigroup algebras with a zero element. As an application, we give a characterization
of character amenability of weighted Brandt semigroup algebras.

Keywords: Semigroup algebras, weight, character amenability

Mathematics Subject Classification [2010]: 43A20, 20M18, 16E40.

1 Introduction

Let A be a Banach algebra and E is a Banach A-bimodule. We regards the dual space E′

as a Banach A-bimodule with the following module actions:

(a · f)(x) = f(x · a) , (f · a)(x) = f(a · x) (a ∈ A, f ∈ E′, x ∈ E).

Kaniuth, Lau and Pym have introduced and studied in [6] and [7] the notion of ϕ-
amenability for Banach algebras, where ϕ : A −→ C is a character. M. S. Monfared
in [8] introduced and investigated the notion of character amenability for Banach alge-
bras. Let ∆(A) be the set of all characters of the Banach algebra A, and let ϕ ∈ ∆(A).
A Banach algebra A is called left ϕ-amenable if for all Banach A-bimodules E for which
the right module action is given by

x · a = ϕ(a)x (x ∈ E, a ∈ A),

every continuous derivation D : A −→ E′ is inner. We say that A is left character amenable
if A is left ϕ-amenable for all ϕ ∈ ∆(A) and has a bounded left approximate identity.
Similarly, the right and two-sided version of ϕ-amenability and character amenability can
be defined. These notions have been studied for various classes of Banach algebras. For
more details see, [6], [7], [8].

Recently in [5], the authors studied the notions of ϕ-amenability and character amenabil-
ity for the semigroup algebra ℓ1(S), where S is a semilattice. Also, they characterized the
character amenability of ℓ1(S), where S is a uniformly locally finite inverse semigroup. As
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a consequence, they characterized the character amenability of ℓ1(S) for a Brandt semi-
group S = M0(G, I). For more detailes about semigroup algebras see, [1], [2], [3], [4] and
[9].

In this paper, for some classes of semigroups S we study ϕ-amenability and character
amenability of weighted semigroup algebra ℓ1(S, ω). Indeed, we characterize character
amenability of weighted semigroup algebras with a zero element. As an application, we
give a characterization of character amenability of weighted Brandt semigroup algebras.

2 Main results

First, we establish some notations and define some concepts.
Let S be a semigroup. A weight on S is a function ω : S −→ (0, ∞) such that for all

s, t ∈ S
ω(st) ≤ ω(s)ω(t).

Now, let S be a semigroup and ω : S −→ (0, ∞) be a weight. Then

ℓ1(S, ω) = {f : S −→ C : ∥f∥ω =
∑

s∈S

f(s)ω(s) < ∞},

with ∥ · ∥w as the norm and the convolution product, specified by the requirement that

δs ∗ δt = δst (s, t ∈ S),

is a Banach algebra which is called weighted semigroup algebra.
Let S be a semigroup and ω : S −→ (0,∞) be a weight on S. Denotes by Ŝω the set of

all non-zero homomorphism ϕ : S −→ C such that

|ϕ(s)| ≤ ω(s) (s ∈ S).

In the sequel, we characterize character space of weighted semigroup algebras.

Theorem 2.1. Let S be a semigroup and ω be a weight on S. Then we have

∆(ℓ1(S, ω)) ∼= Ŝω.

Proof. Define the map Ψ : ∆(ℓ1(S, ω)) −→ Ŝω by

Ψ(ϕ)(s) = ϕ(δs) (ϕ ∈ ∆(ℓ1(S, ω)), s ∈ S).

First, Ψ is well-defined because for each s ∈ S

|Ψ(ϕ)(s)| = |ϕ(δs)| ≤ ∥ϕ∥∥δs∥ω = ω(s).

Moreover, it is easy to see that Ψ is a bijection.

Theorem 2.2. Let S be a semilattice and ω be a weight on S. Then we have

∆(ℓ1(S, ω)) = ∆(ℓ1(S)).
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Proof. It follows by Theorem 2.1.

Theorem 2.3. Let S be a semigroup and ω be a weight on S.

(i) If ω ≥ 1 and ℓ1(S, ω) is character amenable, then ℓ1(S) is character amenable.

(ii) If ω ≤ 1 and ℓ1(S) is character amenable, then ℓ1(S, ω) is character amenable.

In the following theorem, we characterize characetr amenability of weighted semigroup
algebras with a zero element.

Theorem 2.4. Let S be a semigroup with a zero element and ω be a weight on S. If
ℓ1(S, ω) is character amenable, then ℓ1(S) is character amenable.

Let G be a group and let I be a non-empty set. Set

M0(G, I) = {(g)ij : g ∈ G, i, j ∈ I} ∪ {0},

where (g)ij denotes the I × I-matrix with entry g ∈ G in the (i, j) position and zero
elsewhere. Then M0(G, I) with the multiplication given by

(g)ij(h)kl =

{
(gh)il if j = k

0 if j ̸= k
(g, h ∈ G, i, j, k, l ∈ I),

is an inverse semigroup with (g)∗
ij = (g−1)ji, that is called the Brandt semigroup over G

with index set I.
In the following, we give a characterization of character amenability of weighted Brandt

semigroup algebras.

Corollary 2.5. Let S = M0(G, I) be the Brandt semigroup and ω be a weight on S. Then
the following are equivalent:

(i) ℓ1(S, ω) is character amenable.

(ii) ℓ1(S) is character amenable.

(iii) I is finite and in the case where |I| = 1 then G is amenable.

Proof. It follows by applying Theorem 2.4 and [5, Corollary 2.7].
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AN ITERATIVE METHOD FOR NONEXPANSIVE

MAPPINGS IN HILBERT SPACES

Zahra Solimani∗

University of Maragheh

Abstract

In this paper, with a different iterative method for finding a common fixed point
of a countable nonexpansive mappings a strong convergence theorem for a countable
family of nonexpansive mappings in a Hilbert space is given. This theorem complete
some recent results.

Keywords: Fixed points; Nonexpansive mapping; Iterative method; Variational in-
equality; Hilbert space.

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Moudafi introduced the viscosity approximation method for nonexpansive mappings. Let
f be a contraction on H, starting with an arbitrary initial x0 ∈ H, define a sequence {xn}
recursively by

xn+1 = αnf(xn) + (1 − αn)Txn, n ≥ 0, (1)

where {αn} is a sequence in (0, 1).
Xu proved that under certain appropriate conditions on {αn}, the sequence {xn} generated
by (1) converges strongly to the unique solution x∗ in Fix(T ) of the variational inequality:

⟨(I − f)x∗, x∗ − x⟩ ≤ 0,∀x ∈ Fix(T ). (2)

We know iterative methods for nonexpansive mappings can be used to solve a convex
minimization problem. See, e.g., [4, 5] and references therein. A typical problem is that
of minimizing a quadratic function on the set of the fixed points of nonexpansive mapping
on a real Hilbert space

min
x∈Fix(T )

1

2
⟨Ax, x⟩ − ⟨x, a⟩, (3)
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where a is a given point in H.
Yamada introduced the following hybrid iterative method for solving the variational in-
equality

xn+1 = Txn − µλnF (Txn), n ≥ 0, (4)

where F is k-Lipschitzian and η-strongly monotone operator with k, η > 0 and 0 < µ <
2η/k2. Let a sequence {λn} in (0, 1) satisfies appropriate conditions, the sequence {xn}
generated by (4) converges strongly to the unique solution of the variational inequality

⟨Fx∗, x − x∗⟩ ≥ 0, ∀x ∈ Fix(T ).

Tian [3] combined the following iterative method

xn+1 = αnγf(xn) + (I − αnA)Txn, n ≥ 0, (5)

with the Yamada’s method (4) and considered the following iterative method:

xn+1 = αnγf(xn) + (I − µαnF )Txn, n ≥ 0. (6)

He proved, if the sequence {αn} satisfies appropriate conditions, then the sequence {xn}
generated by (6) converges strongly to the unique solution x∗ ∈ Fix(T ) of the variational
inequality

⟨(γf − µF )x∗, x − x∗⟩ ≤ 0, ∀x ∈ Fix(T ).

In this article, under different conditions on γ, and the weaker conditions on f, we prove
the strong convergence theorem for a countable family of nonexpansive mappings in a
Hilbert space.
On the other hand, if the sequences {αn} and {βn} satisfies appropriate conditions, then
the sequence {xn} defined by

xn+1 = (1 − βn)yn + βnSnyn, n ≥ 1,

by means of the technique of measures of noncompactness, converge strongly to q ∈ Fix(S)
which is a solution of the following variational inequality

⟨(µF − γf)q, q − z⟩ ≤ 0,

for γ < 0 and all z ∈ Fix(S).

2 Preliminaries and Main results

Let E be a Banach space. For a bounded subset C ⊂ E, let

αE(C) = inf{δ > 0|∃n : Ci ⊂ C,C ⊆
n∪

i

Ci, diam(Ci) ≤ δ}

denote the (Kuratowskii) measure of non-compactness, where diam (Ci) denotes the di-
ameter of Ci. Let X, Y be two Banach spaces and Ω be a subset of X. A continuous and
bounded map N : Ω → Y is k-set contractive if for any bounded set C ⊂ Ω we have
αY (N(C)) ≤ kαX(C). Also, N is strictly k-set contractive if N is k-set contractive and
αY (N(C)) < kαX(C) for all bounded sets A ⊂ Ω with αX(C) ̸= 0. N is a condensing map
if N is strictly 1-set contractive.
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Theorem 2.1. [4] Let Ω ⊂ E be a bounded open subset and N : Ω → E is a condensing
map and Krasnoselskii condition is satisfied:
Let H be a Hilbert space, θ ∈ Ω, ⟨Nx, x⟩ ≤ ∥x∥2 for every x ∈ ∂Ω, then N has at least one
fixed point in Ω.

Let Ω be a nonempty closed convex subset of H. Then, for any x ∈ H, there exists a
unique nearest point in Ω, denoted by PΩ(x), such that

∥x − PΩ(x)∥ ≤ ∥x − y∥,

for all y ∈ Ω.

Theorem 2.2. [2] Let H be a real Hilbert space and suppose H. Let {Sn}∞
n=1 be an infinite

family of nonexpansive self-mappings on H which satisfies
∩∞

n=1 Fix(Sn) ̸= ∅. Let f be a
contraction of H into itself with coefficient 0 < a < 1 and F a k-Lipschitzian and η-strongly

monotone operator on H with k, η > 0. Let 0 < µ < 2η/k2, 0 < γa < τ = µ(η − µk2

2 ) and
τ < 1. Define a sequence {xn} ⊂ H as follows:
x1 = x ∈ H and

yn = αnγf(xn) + (I − αnµF )Snxn,

xn+1 = (1 − βn)yn + βnSnyn, for n ∈ N, (7)

where {αn} and {βn} are two sequences in [0, 1] satisfying the following conditions:

(I) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(II) limn→∞ βn = 0 or βn ∈ [0, b) for some b ∈ (0, 1) and
∑∞

n=1 |βn+1 − βn| < ∞;

(III)
∑∞

n=1 |αn+1 − αn| < ∞ or limn→∞ αn
αn+1

= 1.

Suppose
∑∞

n=1 sup{∥Sn+1z − Snz∥ : z ∈ K} < ∞ for any bounded subset K of H. Let
S be a mapping of H into itself defined by Sz = limn→∞ Snz for all z ∈ H and suppose
Fix(S) =

∩∞
n=1 Fix(Sn). Then the sequences {xn} defined by (2.3) converge strongly to

q ∈ Fix(S) which is a unique solution of the following variational inequality

⟨(µF − γf)q, q − z⟩ ≤ 0, ∀z ∈ Fix(S).

Theorem 2.3. Let H be a Hilbert space. Let {Sn}∞
n=1 be a family of nonexpansive self-

mappings on H which satisfies
∩∞

n=1 Fix(Sn) ̸= ∅. Let f be a a-Lipschitzian mapping of H
into itself and F a k-Lipschitzian and η-strongly monotone operator on H with k, η > 0.

Let 0 < µ < 2η/k2, −1 − γa < τ = µ(η − µk2

2 ) < −γa for γ < 0. Define a sequence
{xn} ⊂ H as follows:
x1 = x ∈ H and {

yn = αnγf(xn) + (I − αnµF )Snxn,

xn+1 = (1 − βn)yn + βnSnyn, ∀n ∈ N,

where {αn} and {βn} are two sequences in [0, 1] satisfying the following conditions:

(I) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
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(II) limn→∞ βn = 0 or βn ∈ [0, b) for some b ∈ (0, 1) and
∑∞

n=1 |βn+1 − βn| < ∞;

(III)
∑∞

n=1 |αn+1 − αn| < ∞ or limn→∞ αn
αn+1

= 1.

Let Q = P∩∞
n=1 Fix(Sn), Q(I − µF + γf)(x) be condensing mapping from K to H and

⟨Q(I − µF + γf)(x), x⟩ ≤ ∥x∥2, ∀x ∈ ∂K for any open bounded subset K of H where
θ ∈ K. Suppose

∑∞
n=1 sup{∥Sn+1z − Snz∥ : z ∈ K} < ∞. Let S be a mapping of H into

itself defined by Sz = limn→∞ Snz for all z ∈ H and suppose Fix(S) =
∩∞

n=1 Fix(Sn).
Then the sequences {xn} defined by (2.3) converge strongly to q ∈ Fix(S) which is a
solution of the following variational inequality

⟨(µF − γf)q, q − z⟩ ≤ 0, ∀z ∈ Fix(S).

Taking F = I, µ = 1, γ = −1 in Theorem 2.3, we get

Corollary 2.4. We have {xn} generated by

{
yn = −αnf(xn) + (1 − αn)Snxn,

xn+1 = (1 − βn)yn + βnSnyn, n ≥ 1,

converges strongly to q ∈ Fix(S) which solves the variational inequality ⟨(I+f)q, q−z⟩ ≤ 0,
for all z ∈ Fix(S).

Remark 2.5. When γ > 0, Theorem 3.1 in [2], cannot help us to finding a fixed point,
since 1 − (τ + γa) be constant of Lipschitzian in proof of that theorem, and then Q(I −
µF + γf) cannot be contraction.
The point of this paper is that we replace the parameter of γ > 0 by condition of γ < 0
and derive some new results, which complete the corresponding results of [2].
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Best approximation in normed left modules

Ali Reza Khoddami∗

Department of Pure Mathematics, University of Shahrood,

P. O. Box 3619995161-316, Shahrood, Iran.

Abstract

We introduce a generalized notion of best approximation and also investigate some
basic properties of this notion. Some illustrative examples are presented.

Keywords: A−best approximation, A−proximinal subset, A−Chebyshev subset,
normed left module.

Mathematics Subject Classification [2010]: 41A50, 46B99

1 Introduction

Suppose that Y is a normed vector space and K is a non-empty subset of Y . An element
k0 ∈ K is said to be a best approximation for y ∈ Y , if

‖y − k0‖ = d(y,K) = inf{ ‖y − k‖ | k ∈ K }.

The set of all best approximations of y in K is denoted by PK(y). One can easily cheque
that if K is closed, then so is PK(y). The non-empty subset K of Y is said to be proximinal
if PK(y) 6= ∅ for all y ∈ Y . Also K is said to be Chebyshev, if each point y ∈ Y has a
unique best approximation in K. For the basic results concerning the theory of best
approximation, the reader can refer to [1, 3].

Our purpose in this paper is to introduce the module best approximation of the el-
ements of a normed left module and also its module proximinal and module Chebyshev
subsets. Also we prove some basic results concerning module best approximation.

For this end we introduce some terminologies. Let A be a non-zero normed algebra, X
be a normed left A−module and W be a non-empty subset of X. For an element x ∈ X,
we say that an element w0 ∈ W is an A−best approximation for x, if there exists an
element 0 6= a ∈ A such that ax = x and ‖x−aw0‖ = d(x, aW ). We denote by (AP )W (x),
the set of all A−best approximations of x ∈ X in W . Also we say that W is A−proximinal
if (AP )W (x) 6= ∅ for all x ∈ X, and it is A−Chebyshev if each point x ∈ X has a unique
A−best approximation in W . The basic properties of the module best approximation in
normed left modules are investigated in [2].
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2 Main Results

In this section we introduce a generalized notion of best approximation, that is completely
compatible with the previous notion.
From now on, A is a non-zero normed algebra, X is a normed left A−module and W is a
non-empty subset of X.

Definition 2.1. Let A be a non-zero normed algebra, X be a normed left A−module and
W be a non-empty subset of X. For an element x ∈ X, we say that an element w0 ∈W is
an A−best approximation for x, if there exists an element 0 6= a ∈ A such that ax = x and
‖x− aw0‖ = d(x, aW ). We denote by (AP )W (x), the set of all A−best approximations of
x ∈ X in W . Also we say that W is A−proximinal if (AP )W (x) 6= ∅ for all x ∈ X, and it
is A−Chebyshev if the set (AP )W (x) is a singleton set for all x ∈ X.

Remark 2.2. This definition is coincide with the usual definition in the best approxi-
mation theory. Indeed, let X be a normed vector space and for each λ ∈ C and x ∈ X
define λ · x = λx. Clearly with this action, X is a normed left C−module. Let W be
a non-empty subset of X, x ∈ X and w0 be a C−best approximation of x in W . Then
there exists 0 6= λ ∈ C such that λx = x and ‖x − λw0‖ = d(x, λW ). If x = 0 then
|λ|‖w0‖ = |λ|d(0,W ) that implies ‖0 − w0‖ = d(0,W ). Also in the case where x 6= 0 we
have λ = 1 and ‖x − w0‖ = d(x,W ). It follows that w0 is a best approximation of x in
W . So we can claim that the usual definition of best approximation is a special case of
our definition.
Similarly, one can verify that for each normed vector space X with the trivial action
λ · x = λx, the notions of C−proximinality and C−Chebyshevity implies proximinality
and Chebyshevity in the usual sense. As one can define a variety of left module actions
on a normed vector space, the investigation on the notion of module best approximation,
is worthy of consideration.

Example 2.3. Let A be a non-zero normed algebra and X be a normed vector space.
For each a ∈ A and x ∈ X define a · x = 0. One can easily verify that the action “ · ”
turn X into a normed left A−module. In this case for every non-empty subset W of X,
(AP )W (0) = W and if x 6= 0, (AP )W (x) = ∅. This shows that in the case where X 6= {0}
there is no non-empty A−proximinal subset of X.

Let X be a normed vector space and W be a non-empty closed subset of X. It is
obvious that X is a faithful normed left C−module with the trivial action. In this case it
is well-known that for each x ∈ X, PW (x) is closed. We conclude a similar result with a
mild condition.

Theorem 2.4. Let A be a non-zero normed algebra, X be a faithful normed left A−module
and W be a non-empty closed subset of X. Then for each 0 6= x ∈ X, (AP )W (x) is closed.

Remark 2.5. We don’t know whether the previous theorem is correct in the case where
x = 0. So in this case we need a new condition.

Theorem 2.6. Let A be a non-zero normed algebra and X be a normed left A−module
such that ‖ax‖ = ‖a‖‖x‖, (a ∈ A, x ∈ X). Then for every non-empty closed subset W ,
the set (AP )W (0) is closed.
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Let X be a normed vector space and K be a non-empty compact subset of X. It is
well-known that for each x ∈ X, pK(x) 6= ∅. We extend this result on normed left modules.

Theorem 2.7. Let A be a non-zero normed algebra, X be a normed left A−module and
K be a non-empty compact subset of X. Also let x ∈ X be an element such that there
exists a ∈ A such that ax = x. Then (AP )W (x) 6= ∅.

We recall that for a unital normed algebra A, the normed left A−module X is unital,
if 1Ax = x for all x ∈ X.

Corollary 2.8. Let A be a unital normed algebra, X be a unital normed left A−module
and K be a non-empty compact subset of X then K is A−proximinal.

Note that because C is a unital normed algebra and every normed vector space X with
the module action λ · x = λx, is a unital normed left C−module then by applying the
previous corollary, every non-empty compact subset of X is proximinal.

In the case where X is a normed vector space it is well-known that each singleton
subset of X is Chebyshev. We extend this result on normed left modules.

Proposition 2.9. Let A be a non-zero normed algebra and X be a normed left A−module
such that for every x ∈ X there exists a ∈ A such that ax = x. Then every singleton
subset of X is A−Chebyshev.

Corollary 2.10. Let A be a unital normed algebra and X be a unital normed left A−module
then every singleton subset of X is A−Chebyshev.

Theorem 2.11. Let A be a non-zero normed algebra and X be a normed left A−module.
Also let x ∈ X and W be a non-empty subset of X such that (AP )W (x) 6= ∅. Then,

(AP )(AP )W (x)(x) = (AP )W (x).

In the sequel we conclude some results. Let A be a non-zero normed algebra and X
be a normed left A−module. Also let 0 6= x ∈ X and W be a non-empty subset of X such
that w0 ∈ (AP )W (x). Set

Iw0(x) = {a ∈ A | ax = x, ‖x− aw0‖ = d(x, aW )},

so we have the following results. Note that in the case where X is faithful, Iw0(x) has
precisely one element.

Proposition 2.12. Let A be a non-zero normed algebra and X be a normed left A−module.
Also let 0 6= x ∈ X and W be a non-empty subset of X such that w0 ∈ (AP )W (x). Then
Iw0(x) is non-empty and closed. In particular, if W = {w0} then Iw0(x) = { a ∈ A | ax =
x} is a non-empty closed subset of A.

Proposition 2.13. Let A be a non-zero normed algebra and X be a faithful normed left
A−module. Also let 0 6= x ∈ X and W be a non-empty subset of X such that (AP )W (x) 6=
∅. Then,

∩w0∈(AP )W (x) Iw0(x) = { a ∈ A | ax = x, d(x, a(AP )W (x)) = d(x, aW ) }.
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Abstract

In this paper we introduce cyclic generalized contraction maps and the theorems
asked about it. Moreover, we obtain existence and convergence of best proximity point
for this mappings in uniformly convex Banach space.
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contraction map, Uniformly convex Banach space.

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Let A and B be two nonempty subsets of a X. A map T : A∪B → A∪B is called a cyclic
map if T (A) ⊆ B and T (B) ⊆ A. Let (X, d) be a metric space and T : A ∪ B → A ∪ B a
cyclic map. For any two nonempty subsets A and B of X, let

d(A,B) = inf{d(x, y) : x ∈ A and y ∈ B}.

A point x ∈ A ∪ B is called to be a best proximity point for T if

d(x, Tx) = d(A, B).

Throughout this paper. We denote by N and R the sets of positive integers and real
numbers, respectively. Recently, the existence, uniqueness and convergence of iterates to
the best proximity point were investigated by many authors; see [1-5,8-9]. In 2006, Eldred
and Veeramani [4] first gave the concept of cyclic contraction as follows.

Definition 1.1. [4] Let A and B be nonempty subsets of a metric space (X, d). T :
A ∪ B → A ∪ B is a cyclic contraction map if it satisfies
(1) T (A) ⊆ B and T (B) ⊆ A.
(2) there exists k ∈ (0, 1) such that

d(Tx, Ty) ≤ kd(x, y) + (1 − k)d(A,B)

for all x ∈ A, y ∈ B.

Example 1.2. [4] Given k in (0, 1), let A and B be subsets of Lp,1 ≤ p ≤ ∞, defined by
A = {((1 + k2n)e2n) : n ∈ N} and B = {((1 + k2m−1)e2m−1) : m ∈ N}. Suppose
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T ((1 + k2n)e2n) = (1 + k2n+1)e2n+1

and

T ((1 + k2m−1)e2m−1) = (1 + k2m)e2m.

Then T is a cyclic contraction on A ∪ B.

In [3], Amini-Harandi and others introduced following new class of cyclic generalized
contraction maps.

Definition 1.3. [3] Let A and B be nonempty subsets of a metric space (X, d). A map
T : A ∪ B → A ∪ B is a cyclic generalized contraction map if T (A) ⊆ B, T (B) ⊆ A and

d(Tx, Ty) ≤ α(d(x, y))d(x, y) + (1 − α(d(x, y))d(A,B)

for each x ∈ A and y ∈ B, where α : [d(A,B), ∞) → [0, 1) satisfies
limsups→t+ α(s) < 1 for each t ∈ (d(A,B), ∞).

Remark 1.4. If α(t) = k for each t ∈ [d(A,B), ∞), where k ∈ [0, 1) is constant, then T
is a cyclic contraction.

Example 1.5. [3] Consider the uniformly convex Banach space X = R2 with Euclidean
metric. Let A := {(0, x) : 0 ≤ x} and B := {(2, y) : 0 ≤ y}. Then A and B are nonempty
closed and convex subsets of X and d(A,B) = 2.
Let T : A ∪ B → A ∪ B be defined as

T (0, x) = (2, x
2 ) and T (2, y) = (0, y

2 ) for each x,y ≥ 0.

Then T is a cyclic generalized contraction map with α(t) = 1
2 for t ∈ [2, ∞).

Lemma 1.6. [6] Let (X, d) be a complete metric space and let T : X → X be a map
satisfying

d(Tx, Ty) ≤ α(d(x, y))d(x, y) for each x, y ∈ X,

where α : [0,∞) → [0, 1) satisfies limsups→t+ α(s) < 1 for each t ∈ (0, ∞). Then T has
a unique fixed point.

2 Main results

In this section, we shall state and prove some results about existence and convergence of
best proximity points for cyclic generalized contraction maps in uniformly convex Banach
spaces.

Theorem 2.1. Let A and B be nonempty closed and convex subsets of a uniformly convex
Banach space X and let T : A∪B → A∪B be a cyclic generalized contraction map. Also,
let x0 ∈ A and sequence {xn} is generated by

xn+1 = Txn for each n ∈ N.

Then ∥xn − xn+1∥ → d(A,B).
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Theorem 2.2. Let A and B be nonempty closed and convex subsets of a uniformly convex
Banach space X and let T : A∪B → A∪B be a cyclic generalized contraction map. Also,
let x0 ∈ A and sequence {xn} is generated by

xn+1 = Txn for each n ∈ N.

Then ∥x2n+2 − x2n∥ → 0 and ∥x2n+3 − x2n+1∥ → 0 as n → ∞.

Theorem 2.3. Let A and B be nonempty closed and convex subsets of a uniformly convex
Banach space X and let T : A∪B → A∪B be a cyclic generalized contraction map. Also,
let x0 ∈ A and sequence {xn} is generated by

xn+1 = Txn for each n ∈ N.

Then, for each ϵ > 0, there exists N ∈ N such that for all m > n ≥ N ,

∥x2m − x2n+1∥ < d(A,B) + ϵ.

Theorem 2.4. Let A and B be nonempty closed and convex subsets of a uniformly convex
Banach space X and let T : A∪B → A∪B be a cyclic generalized contraction map. Also,
let x0 ∈ A and sequence {xn} is generated by

xn+1 = Txn for each n ∈ N.

Then, {x2n} is Cauchy sequence.

Theorem 2.5. Let A and B be nonempty closed and convex subsets of a uniformly convex
Banach space X and let T : A∪B → A∪B be a cyclic generalized contraction map. Also,
let x0 ∈ A and sequence {xn} is generated by

xn+1 = Txn for each n ∈ N.

Then, there exists unique x in A such that x2n → x and

∥x − Tx∥ = d(A,B).
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Block matrix operators and p-paranormality
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Abstract

In this paper we introduce a new model of a block matrix operator M(γ, η) induced
by two sequences γ and η. Then by its corresponding composition operator CT on
`2+ = L2(N0) we characterize p-paranormality the block matrix operator M(γ, η).

Keywords: p-paranormal operator, composition operator, conditional expectation.

Mathematics Subject Classification [2010]: 47B20, 47B38

1 Introduction

Let H be the infinite dimensional complex Hilbert space and L(H) be the algebra of all
bounded linear operators on H and let T = U |T | be the canonical polar decomposition for
T ∈ L(H). An operator T ∈ L(H) is said to be p-paranormal if ‖|T |pU |T |px‖ ≥ ‖|T |px‖2,
for all unit vectors x ∈ H. By using the property of read quadratic forms T is p-paranormal
operator if and only if for all integers k ≥ 0, |T |pU∗|T |2pU |T | − 2k|T |2p + k2 ≥ 0.

Let (X,Σ, µ) be a complete σ-finite measure space and let T : X → X be a transfor-
mation such that T−1(Σ) ⊆ Σ and µ ◦ T−1 � µ. It is assumed that the Radon-Nikodym
derivative h = dµ ◦ T−1/dµ is in L∞(X). The composition operator CT on L2(X) is
defined by CT f = f ◦ T . The condition h ∈ L∞(X) assures that CT is bounded. All
comparisons between two functions or two sets are to be interpreted as holding up to a
µ-null set. In [3] Jabbarzadeh and Azimi characterize p-paranormality of CT on L2(X).
A key tool in [3] was the use of the conditional expectation operators for studying p-
paranormality of CT , and this will be the main tool of this note. For a sub-σ-finite algebra
T−1(Σ) ⊆ Σ, the conditional expectation operator associated with T−1(Σ) is the mapping
f → ET

−1(Σ)f , defined for all non-negative f as well as for all f ∈ Lp(Σ), 1 ≤ p ≤ ∞,
where ET

−1(Σ)f , by Radon-Nikodym theorem, is the unique T−1(Σ)-measurable function
satisfying ∫

A
fdµ =

∫

A
ET

−1(Σ)fdµ, ∀A ∈ T−1(Σ).

Throughout this paper, we assume that ET
−1(Σ) = E. For more details on the properties

of the conditional expectation operators see [2, 4].
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In [1] Exner, Jung and Lee introduced the block matrix operatorM(α, β) and charecter-
ize its p-hyponormality. In section 2 we define a new block matrix operator M(γ, η) in-
duced by two sequences γ and η such that in the special case its corresponding operator
on `2+ has the shift operators form, then we obtain its corresponding composition operator
CT on `2+ = L2(N0) induced by a measurable transformation T on the set of nonnegative
integers N0 with point mass measure. In section 3, we characterize block matrix operator
M(γ, η) for p-paranormality and construct a useful form for some examples.

2 Basic Definitions And Preliminaries

Let γ := {ani } 1≤i≤r
0≤n<∞

and η := {bnj } 1≤j≤s
0≤n<∞

be bounded sequences of positive real numbers.

Let M(γ, η) := [Aij ]0≤i,j<∞ be a block matrix operator whose blocks are (r+ s)× (r+ 2)
matrices such that Aij = 0, i 6= j, and

An := Ann =




0 a
(n)
1 O

. . .

a
(n)
r

b
(n)
1

O
...

b
(n)
s




(1)

where other entries are 0 except an∗ and bn∗ in (1).

Definition 2.1. For two bounded sequences γ := {ani } 1≤i≤r
0≤n<∞

and η := {bnj } 1≤j≤s
0≤n<∞

, the

block matrix operator M := M(γ, η) satisfying in (1) is called a block matrix operator
with weight sequence (γ, η).

Let M be a block matrix operator with weight sequence (γ, η) and let Wγ,η be its
corresponding operator on `2+ relative to some orthornormal basis. Then Wγ,η may provide

a repetitive form; for example r = 2 , s = 3 and a
(n)
i = b

(n)
j = 1 for all i, j, n ∈ N, then the

block matrix operator with (γ, η) is unitarily equivalent to the following operator Wγ,η on
`2+ defined by

Wγ,η(x1, x2, x3, x4.x5, ...) = (x2, x3, x4, x4, x4, x5, ...).

Now we put X = N0 and the power set P(X) of X for the σ-algebra Σ. Define a non-
singular measurable transformation T on N0 such that

T−1(k(r + 1) + r + 1) = {k(r + s) + i+ r − 1 : 1 ≤ i ≤ s}, k = 0, 1, 2, ..., (2)

T−1(k(r + 1) + i) = k(r + s) + i− 1, 1 ≤ i ≤ r, k = 0, 1, 2, ....

We write m({i}) := mi, i ∈ N0, for the underlying point mass measure on X, and we
assume throughout that each mi is strictly positive.
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Proposition 2.2. With the above notations the bounded composition operator CT on `2+
defined by CT f = f ◦T is unitarily equivalent to the block matrix operator M(γ, η), where

γ : a
(n)
i =

√
mn(r+s)+i−1

mn(r+1)+i
(1 ≤ i ≤ r), η : b

(n)
j =

√
mn(r+s)+j+r−1

mn(r+1)+r+1
(1 ≤ j ≤ s),

for n ∈ N0.

Proposition 2.3. Let M(γ, η) be a block matrix operator with weight sequence (γ, η),
where γ := {ani } 1≤i≤r

0≤n<∞
and η := {bnj } 1≤j≤s

0≤n<∞
. Then there exists a measurable transforma-

tion T on a σ-finite measure space (N0,P(N0),m) such that M(γ, η) is unitarily equivalent
to the composition operator CT on `2+.

3 The Main Results

Theorem 3.1. Let T be a non-singular measurable transformation on `2+ as in (2) and
let p ∈ (0,∞). Then the following assertions are equivalent

(i) CT is p-paranormal on `2+;

(ii) the block matrix operator M(γ, η) as in proposition 2.2 is p-paranormal;

(iii) hp ◦ T (n) ≤ E(hp)(n), n ∈ N0, where h = dµ ◦ T−1/dµ;

(iv) the following inequality holds
(
m(T−1(T (n)))

mT (n)

)p
≤ 1

m(T−1(T (n)))

∑

l∈T−1(T (n))

m(T−1(l))p

mp
l

ml, n ∈ N0. (3)

The conditions above simplify considerably if we specialize to the case of a repeated
block. Let M be a block matrix operator as follows:

M(γ, η) : A ≡ A1 = A2 = ... (4)

γ : a
(n)
i = ai, n ∈ N0, 1 ≤ i ≤ r;

η : b
(n)
j = bj , n ∈ N0, 1 ≤ j ≤ s.

Theorem 3.2. Let M(γ, η) be as in (4). Then the block matrix operator M(γ, η) is p-
paranormal if and only if the following two conditions hold

(i) if n = k(r + s) + i+ r − 1 1 ≤ i ≤ s, then

 ∑

1≤i≤s
b2i



p

≤
∑

l∈T−1(T (n))

l≡r+1 mod(r+1)


 ∑

1≤i≤s
b2i



p(

b2tl∑
1≤i≤s b

2
i

)
(5)

+
∑

l∈T−1(T (n))

l≡il mod(r+1)

(ail)
2p

(
b2tl∑

1≤i≤s b
2
i

)
, (1 ≤ il ≤ r and 1 ≤ tl ≤ s);
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(ii) if n = k(r + s) +m− 1 for 1 ≤ m ≤ r, then

(ii− a) a2
m ≤

∑

1≤i≤s
b2i n ≡ r + 1 mod(r + 1)

(ii− b) a2
m ≤ a2

tn n ≡ tn mod(r + 1) (1 ≤ tn ≤ r).

Corollary 3.3. Assume that M(γ, η) is as in 3.2, and GCD(r + s, r + 1) = 1. Then M
is p-paranormal for all p ∈ (0,∞).
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C*-Algebras and Dynamical Systems, a Categorical Approach
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Abstract

There are interactions between C*-algebras, essentially minimal dynamical sys-
tems, ordered Bratteli diagrams, and dimension groups. We extend these interactions
to encompass morphisms of these categories. We show that the category of essentially
minimal dynamical systems is equivalent to the category of essentially simple ordered
Bratteli diagrams. Especially, one can describe the factors of certain dynamical sys-
tems using a graphical approach. The functor K0 is constructed to distinguish various
types of orbit equivalence. Relations with crossed products of C*-algebras are studied.

Keywords: C*-algebra, ordered Bratteli diagram, essentially minimal system, cate-
gory, dimension group

Mathematics Subject Classification [2010]: 46L05, 37B05, 37A20.

1 Introduction

In 1972, Bratteli in a seminal paper introduced what are now called Bratteli diagrams
to study AF algebras [3]. He associated to each AF algebra an infinite directed graph,
its Bratteli diagram, and used this very effectively to study AF algebras. In 1976, based
on the notion of a Bratteli diagram, Elliott introduced dimension groups and gave a
classification of AF algebras using K-theory [4]. In fact, he showed that the functor
K0 : AF→ DG, from the category of AF algebras to the category of dimension groups is
a strong classification functor [4, 5].

In [1], the authors introduced an appropriate notion of morphism between Bratteli
diagrams and obtained the category of Bratteli diagrams, BD, such that isomorphism
of Bratteli diagrams in this category coincides with Bratteli’s notion of equivalence. We
showed that the map B : AF → BD, defined by Bratteli on objects, is in fact a functor.
The fact that this is a strong classification functor [1, Theorem 3.11], is a functorial
formulation of Bratteli’s classification of AF algebras and completes his work from the
classification point of view introduced by Elliott in [5].

In a different direction, Bratteli diagrams were used to study certain dynamical sys-
tems. In 1981, A. V. Versik used Bratteli diagrams to construct so-called adic transfor-
mations [8]. Based on his work, Herman, Putnam, and Skau introduced the notion of
an ordered Bratteli diagram and associated a dynamical system to each (essentially sim-
ple) ordered Bratteli diagram [7]. They showed that there is a one-to-one correspondence
between essentially simple ordered Bratteli diagrams and essentially minimal dynamical
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systems [7, Theorem 4.7]. This correspondence was used effectively to study Cantor mini-
mal dynamical systems and characterization of various types of orbit equivalence in terms
of isomorphism of related C*-crossed products and dimension groups [7, 6].

In this paper, we propose a notion of (ordered) morphism between ordered Bratteli
diagrams and obtain the category of ordered Bratteli diagrams OBD (Theorem 2.1).
The isomorphism in this category coincides with the notion of equivalence in the sense
of Herman, Putnam, and Skau (Theorem 2.2). Then we show that the correspondence
obtained by Herman, Putnam, and Skau in [7] is an equivalence of categories. Denote by
ODS the category of ordered essentially minimal dynamical systems (see Definition 2.4).
We construct the contravariant functor P : ODS → OBD. Thus we obtain a kind of
diagram for a homomorphism between essentially minimal dynamical systems. (This is in
particular useful in the study of factors of such systems.)

We show that the contarvariant functor P : ODS → OBD is full and faithful. The
fact that this functor is full is a tool to obtain homomorphisms between dynamical sys-
tems in question by graphically constructing certain arrows (i.e., morphisms) between
the associated Bratteli diagrams. The functor P : ODS → OBDess is an equivalence
of categories (Theorem 2.6). We construct the inverse of the functor P, i.e., the functor
V : OBDess → ODS which is also an equivalence of categories. Therefore, we obtain a
functorial formulation of the correspondence between essentially simple ordered Bratteli
diagrams and essentially minimal dynamical systems (Theorem 2.9).

Definition 1.1 ([7], Definition 2.1). A Bratteli diagram consists of a vertex set V and
an edge set E satisfying the following conditions. We have a decomposition of V as a
disjoint union V0 ∪ V1 ∪ · · · , where each Vn is finite and non-empty and V0 has exactly
one element, v0. Similarly, E decomposes as a disjoint union E1 ∪ E2 ∪ · · · , where each
En is finite and non-empty. Moreover, we have maps r, s : E → V such that r(En) ⊆ Vn
and s(En) ⊆ Vn−1, n = 1, 2, 3, . . . (r = range, s = source). We also assume that s−1{v} is
non-empty for all v in V and r−1{v} is non-empty for all v in V \ V0.

We denote such a B by the diagram

V0
E1 // V1

E2 // V2
E3 // · · · .

Definition 1.2 ([7], Definition 2.3). An ordered Bratteli diagram is a Bratteli diagram
(V,E) together with a partial order ≥ on E such that e and e′ are comparable if and only
if r(e) = r(e′). That is, we have a linear order on each set r−1{v}, v ∈ V \ V0.
Definition 1.3. Let B = (V,E,≥) and C = (W,S,≥) be ordered Bratteli diagrams.
An ordered premorphism f : B → C is a triple (F, (fn)∞n=0,≥) where (F, (fn)∞n=0) is a
premorphism (see [1, 2]) and ≥ is a partial order on F such that:

(1) e, e′ ∈ F are comparable if and only if r(e) = r(e′), and ≥ is a linear order on r−1{v},
v ∈W ;

(2) the diagram of f : B → C commutes:

V0
E1 //

F0

��

V1
E2 //

F1

��

V2
E3 //

F2}}

· · ·

W0
S1

//W1
S2

//W2
S3

// · · · .
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We define an equivalence relation on ordered premorphisms and we obtain ordered
morphisms (see [2] for details).

2 Main Results

Theorem 2.1. The class OBD with ordered morphisms, as defined above, is a category.

Theorem 2.2. A pair of ordered Bratteli diagrams are isomorphic in the category OBD
with morphisms if, and only if, they are equivalent in the sense of Herman, Putnam, and
Skau.

We refer to OBD with ordered morphisms as defined above, as the category of ordered
Bratteli diagrams.

Definition 2.3 ([7], Definition 1.2). Let X be a compact, totally disconnected metrizable
space. Let ϕ be a homeomorphism on X and y ∈ X. The triple (X,ϕ, y) is called an
essentially minimal dynamical system if the dynamical system (X,ϕ) has a unique minimal
set Y and y is in Y .

Definition 2.4. By an ordered essentially minimal dynamical system we mean a quadruple
(X,ϕ, y,R) where (X,ϕ, y) is an essentially minimal dynamical system and R is a system
of Kakutani-Rohlin partitions for (X,ϕ, y). The category of ordered essentially minimal
dynamical systems ODS is the category whose objects is the class of all essentially minimal
dynamical systems and its morphism are as follows. Let (X,ϕ, y,R) and (Y, ψ, z,S) be in
ODS. By a morphism α : (X,ϕ, y,R)→ (Y, ψ, z,S) we mean a homomorphism from the
dynamical system (X,ϕ) to (Y, ψ) (i.e., a continuous map with α ◦ ϕ = ψ ◦ α) such that
ϕ(y) = z.

See [2] for the definition of the map P : ODS→ OBD.

Theorem 2.5. The map P : ODS→ OBD is a contravariant functor.

Theorem 2.6. The functor P : ODS→ OBDess is an equivalence of categories.

Corollary 2.7. Let (X,ϕ, y,R) and (Y, ψ, z,S) be in ODS. The following statements are
equivalent:

(1) (X,ϕ, y) and (Y, ψ, z) are pointed topological conjugate;

(2) the ordered Bratteli diagrams P(X,ϕ, y,R) and P(Y, ψ, z,S) are equivalent;

(3) P(X,ϕ, y,R) ∼= P(Y, ψ, z,S) in OBD.

See [2] for the definition of the map V : OBDess → ODS.

Theorem 2.8. The map V : OBDess → ODS is a contravariant functor which is an
equivalence of categories.

See [2] for the definition of the correspondences σ an τ .
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Theorem 2.9. The functors P : ODS → OBDess and V : OBDess → ODS are
equivalences of categories which are inverse of each other and τ : 1OBDess

∼= PV and
σ : 1ODS

∼= VP.

See [2] for the definition of the functors AF : DS → AF and K0 : DS → DG. That
the first three statements in the following theorem are equivalent is a well-known result
[6]. A minimal dynamical system (X,ϕ) is called a Cantor system if X is a compact
metrizable space with a countable basis of clopen subsets and X has no isolated points.

Theorem 2.10. Let (X,ϕ) and (Y, ψ) be Cantor systems. Let y and z be arbitrary points
in X and Y , respectively. Then the following are equivalent:

(1) (X,ϕ) and (Y, ψ) are strong orbit equivalent;

(2) K0(X,ϕ) is order isomorphic to K0(Y, ψ) by a map preserving the distinguished
ordered unit;

(3) C(X)oϕ Z ∼= C(Y )oψ Z;

(4) AF(X,ϕ, y) ∼= AF(Y, ψ, z) in AF.
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C∗-algebras of Toeplitz and composition operators

Massoud Salehi Sarvestani∗
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Abstract

We investigate the unital C∗-algebras generated by an irreducible Toeplitz operator
Tψ and one or more composition operators Cϕ induced by linear-fractional self-maps ϕ
of the unit disk acting on the Hardy space H2, modulo the ideal of compact operators
K(H2). For automorphism symbol ϕ, we compare this algebra with the one generated
by the shift operator Tz and a composition operators.

Keywords: the unilateral shift operator, Toeplitz operator, composition operator,
linear-fractional map, automorphism of the unit disk.
Mathematics Subject Classification [2010]: 47B33, 47B32

1 Introduction

The Hardy space H2 = H2(D) is the collection of all analytic functions f on the open
unit disk D satisfying the norm condition ‖f‖2 := limr→1

1
2π

∫ 2π
0 |f(reiθ)|2dθ < ∞. For

any analytic self-map ϕ of the open unit disk D, a bounded composition operator on H2

is defined by
Cϕ : H2 → H2, Cϕ(f) = f ◦ ϕ.

If f ∈ H2, then the radial limit f(eiθ) := limr→1 f(reiθ) exists almost everywhere on
the unit circle T. Hence we can consider H2 as a subspace of L2(T). Let φ is a bounded
measurable function on T and PH2 be the orthogonal projection of L2(T) (associated with
normalized arc-length measure on T ) onto H2. The Toeplitz operator Tφ is defined on
H2 by Tφf = PH2(φf) for all f ∈ H2. Coburn in [2] shows that the quotient of the unital
C∗-algebra C∗(Tz) generated by the unilateral shift operator Tz on the ideal of compact
operators K = K(H2) is ∗-isomorphic to C(T), and determines essential spectrum of
Toeplitz operators with continuous symbol. Recently the unital C∗-algebra generated by
the shift operator Tz and the composition operator Cϕ for a linear-fractional self-map ϕ
of D is studied. For a linear-fractional self-map ϕ on D, if ‖ϕ‖∞ < 1 then Cϕ is a compact
operator on H2. Therefore we consider those linear-fractional self-maps ϕ which satisfy
‖ϕ‖∞ = 1. If moreover ϕ is an automorphism of D, then C∗(Tz, Cϕ)/K is ∗-isomorphic to
the crossed products C(T)oϕZ or C(T)oϕZn [4]. When ϕ is not an automorphism there
are three different cases:

(i) ϕ has only one fixed point γ which is on the unit circle T (i.e. ϕ is a parabolic
map) [7]. In this case, C∗(Tz, Cϕ)/K is a commutative C∗-algebra isomorphic to
Cγ(T)⊕ C0([0, 1]), where Cγ(T) is the set of functions in C(T) vanishing at γ ∈ T.
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(ii) ϕ has a fixed point γ ∈ T and fixes another point in C ∪ {∞} (equivalently ϕ has a
fixed point γ ∈ T and ϕ

′
(γ) 6= 1) [7]. In this case, C∗(Tz, Cϕ)/K is ∗-isomorphic to

Cγ(T)⊕ (C0([0, 1])o Z).

(iii) ϕ fixes no point of T but there exist distinct points γ, η ∈ T with ϕ(γ) = η [5]. In
this case, C∗(Tz, Cϕ)/K is a C∗-subalgebra of C(T)⊕M2(C([0, 1])).

This paper generalizes the above results by replacing the shift operator Tz by an irreducible
Toeplitz operator Tψ with continuous symbol ψ on T, and a single composition operator
with finitely many composition operators on the Hardy space H2 induced by certain
linear-fractional self-maps of D. Moreover we investigate the C∗-algebra generated by a
composition operator induced by a rotation and an irreducible Toeplitz operator with a
symbol whose range is invariant under this rotation.

2 Main results

Let ϕ1, · · · , ϕn are linear-fractional non-automorphism self-maps of D that fix γ ∈ T,
and lnϕ

′
1(γ), ..., lnϕ

′
n(γ) are linearly independent over Z. Define the action α

′
: Zn →

Aut(C0([0, 1])) by α
′
(m1,...,mn)

(f)(x) = f(xϕ
′
(γ)m1 ...ϕ

′
(γ)mn ), for f ∈ C0([0, 1]), (m1, ...,mn) ∈

Zn and x ∈ [0, 1]. First we extend a result of Quertermous in [7] (the case (ii) in the
previous section) to finitely many composition operators induced by linear-fractional non-
automorphism self-maps of D with a common fixed point on the unit circle as follows.

Theorem 2.1. If ϕ1, ..., ϕn are linear-fractional non-automorphism self-maps of D fixing
γ ∈ T and lnϕ

′
1(γ), ..., lnϕ

′
n(γ) are linearly independent over Z, then C∗(Tz, Cϕ1 , ..., Cϕn)/K

∗-isomorphic to the minimal unitization of the direct sum Cγ(T)⊕ (C0([0, 1])oα′ Z
n).

Let X be a compact Hausdorff space and A be a C∗-subalgebra of C(X) containing
the constants. For x, y ∈ X, put x ∼ y if and only if f(x) = f(y) for all f in A. Let [x]
denote the equivalence class of x and [X] be the quotient space and equip [X] with the
weak topology induced by A. Let X/ ∼ be the quotient space equipped with the quotient
topology. Then A is ∗-isomorphic to C([X]) and a C∗-subalgebra of C(X/ ∼) via f 7→ f̃
where f̃([x]) := f(x) for x ∈ X.

Note that Tz is irreducible (i.e. the only closed vector subspaces of H2 reducing for Tz
are 0 and H2) and there are other irreducible Toeplitz operators. If D = C∗(Tψ) = C∗(Tz)
For some continuous function ψ, then D0 := {f ∈ C(T) : Tf ∈ D} = C(T) is generated
by ψ and by the Stone-Weierstrass theorem, ψ must be one-to-one on the unit circle.
Therefore we are interested in the case that ψ is not one-to-one on T.

The following results are the extension of (i) and (ii) for an arbitrary irreducible
Toeplitz operator and finitely many composition operators.

Theorem 2.2. If Tψ is irreducible with symbol ψ in C(T) and ρ is a parabolic non-
automorphism self-map of D fixing γ ∈ T then, C∗(Tψ, Cϕ)/K is ∗-isomorphic to the
minimal unitization of C[γ]([T])⊕ C0([0, 1]).

Theorem 2.3. If Tψ is irreducible with symbol ψ in C(T) and ϕ1, ..., ϕn are linear-
fractional non-automorphism self-maps of D fixing γ ∈ T such that lnϕ

′
1(γ), ..., lnϕ

′
n(γ)

are linearly independent over Z, then C∗(Tψ, Cϕ1 , ..., Cϕn)/K is ∗-isomorphic to the mini-
mal unitization of C[γ]([T])⊕ (C0([0, 1])oα′ Z

n).
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Now consider the case that ϕ is a linear-fractional non-automorphism self-map of D
such that ϕ(γ) = η for some γ 6= η ∈ T. In the following we extend the work of Kriete,
MacCluer and Moorhouse (the case (iii) in the previous section) [5].

Theorem 2.4. Let ϕ be a linear-fractional non-automorphism self-map of D such that
ϕ(γ) = η for distinct points γ, η ∈ T and Tψ be irreducible with continuous symbol ψ on
T. Then every element b in B = C∗(Tψ, Cϕ)/K has a unique representation of the form

b = [Tω] + f([C∗ϕCϕ]) + g([CϕC
∗
ϕ]) + [Uϕ]h([C∗ϕCϕ]) + [U∗ϕ]k([CϕC

∗
ϕ])

where ω ∈ C∗(ψ) and f, g, h and k are in C0([0, 1]). Moreover B is ∗-isomorphic to the
C∗-subalgebra D of C([T])⊕M2(C([0, 1])) defined by

D =

{
(f, S) ∈ C([T])⊕M2(C([0, 1])) : S(0) =

[
f([γ]) 0

0 f([η])

]}
.

Jury in [4] finds the C∗-algebra C∗(Tz, Cϕ)/K, for ϕ ∈ Aut(D), as a crossed product
C∗-algebra. We do the same when the shift operator is replaced by a general irreducible
Toeplitz operator Tψ. If ϕ ∈ Aut(D) be of the form

ϕ(z) = ω
s− z
1− s̄z ,

for some non-real ω ∈ T and non-zero s ∈ D, then the quotient C∗(Tz, Cϕ)/K = C∗(Cϕ)/K
does not change, if one replaces Tz with Tψ. Here we check the case s = 0.

Theorem 2.5. Let ϕ be a rational automorphism ϕ(z) = ωz for some ω ∈ T. If Tψ is
irreducible and ϕ(ψ(T)) = ψ(T), then there is an exact sequence of C∗-algebras

0→ K→ C∗(Tψ, Cϕ)→ C(ψ(T)))oϕ Z→ 0,

if ϕ has infinite order. In the case that ϕ has finite order q, in the exact sequence, Z is
replaced by the finite cyclic group Zq = Z/qZ.

Proof. Z acts on X by

β : Z→ Home(X); n 7→ βn, βn(x) = ϕn(x),

for n ∈ Z and x ∈ X. This induces an action of Z on C(X) given by

α : Z→ Aut(C(X)); αn(f)(x) = f(ϕ−n(x)).

The C∗-algebra C∗(Tψ, Cϕ)/K is generated by C∗(Tψ)/K ∼= C(X) and unitaries [Cϕn ]. On
the other hand the unitary representation n → [Cϕ−n ] satisfies the covariance relation
[Cϕ]f [C∗ϕ] = αn(f). Hence there is a surjective ∗-homomorphism from the full crossed
product C(X)oϕZ to C∗(Tψ, Cϕ)/K. But the action of the amenable group Z on compact
Hausdorff space X is amenable and topologically free (i.e. for each n ∈ Z, the set of points
that are fixed by ϕn has empty interior) thus similar to the proof of Theorem 2.1 in [4],
the above ∗-homomorphism is also injective and hence an isometry.
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As a concrete example let the automorphism ϕ be of the form

ϕ(z) = ze
i 2p
q
π

where p and q are relatively prime integers with q positive. By using the method in [6], we
construct a function ψ that satisfies the conditions of the above Theorem, is not one-to-one
on the unit circle and

ψ(T) = T ∪ (

q−1⋃

n=0

ϕn([1/2, 1)).

Since the action of finite group Zq is free on the compact spaces T and ψ(T), using
the same idea as in the proof of Proposition 5.2 in [8], the spectra of the C∗-algebras
C(ψ(T))oϕ Zq and C(T)oϕ Zq are Zq\ψ(T) and Zq\T, respectively. It is easy to see that
Zq\ψ(T) is homeomorphic to T

⋃
[1/2, 1) and Zq\T is homeomorphic to T. Therefore the

spectra of these C∗-algebras are not homeomorphic, and so they could not be isomorphic.
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Chebyshevity and proximity in quotient spaces

Hamid Mazaheri∗

Yazd University

Abstract

We obtain a sufficient and necessary theorems simple for Chebyshevity of the best
approximate sets in quotient spaces. Approximation theory, which mainly consists
of theory of nearest points (best approximation) and theory of farthest points (worst
approximation), is an old and rich branch of analysis. The theory is as old as Mathe-
matics itself. The ancient Greeks approximated the area of a closed curve by the area
of a polygon.

Keywords: Best approximation, ϵ-Proximinality, ϵ-chebyshevity, Quotient spaces

Mathematics Subject Classification [2010]: 41A65, 41A52, 46N10

1 Introduction

In this paper with a new ways we obtain some results on quotient spaces about proximi-
nality, Chebyshevity of approximate sets.

Let W be a non-empty subset of a normed linear space X. For any x ∈ X, the (possibly
empty) set of best approximations x from M is defined by

PW (x) = {y ∈ W : ∥x − y∥ = d(x,W )},

where d(x,W ) = inf{∥x − y∥ : y ∈ W}, and

Ŵ = {x ∈ X : ∥x∥ = d(x,W )}.

The subset W is said to be proximinal if the set PW (x) is non-empty for every x ∈ X
and the set W is Chebyshev if PW (x) is a singleton set. The closed unit ball of X is BX

and
BX = {x ∈ X : ∥x∥ ≤ 1}

Let W be a subspace of a normed space X. We define the quotient space X/W to be
the set of all cosets x + W of W together with the following operations:

(x + W ) + (y + W ) = (x + y) + W,

and
λ(x + W ) = λx + W,
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for all x, y ∈ X and arbitrary scalar λ. Then, the quotient space X/W is a normed space
with the norm ∥x + W∥ = infw∈W ∥x − w∥.

The closed unit ball of the quotient space X/W is

BX/M = {x + M : ∥x + M∥ ≤ 1} = {x + W : d(x,M) ≤ 1}.

2 Main Results

Theorem 2.1. Let M be a proximinal subspace of a normed space X, W a subspace of
X containing M . Then W/M is Chebyshev if and only if for all r > 0, there exists an
unique z ∈ rBX such that d(z, W ) = r.

Corollary 2.2. Let M be a proximinal subspace of a normed space X, W a subspace of X
containing M . Then W/M is Chebyshev if and only if for all z ∈ X there exists a f ∈ X∗

such that f |W = 0 and f(z) = ∥z∥.

Lemma 2.3. If the point y0 ∈ W is ϵ-approximation for x ∈ X. Then for r > 0, there
exists a z ∈ ϵBX such that d(z,W ) ≤ ϵ.

Corollary 2.4. Let M be a closed subspace of X, π : X → X/M be the canonical map
and let W be a proximinal subspace of X containing M. Then, π(PW (x)) ⊆ PW/M (x + M)
for all x ∈ X.

Theorem 2.5. Let X be a normed linear space, W a linear subspace of X and r > 0. If
there exists an unique z ∈ rBX such that d(z,W ) = r. Then W is Chebyshev.

Theorem 2.6. Let M be a Chebyshev subspace of X and let W be a subspace of X
containing M?. If W/M is Chebyshev of X/M . Then W is Chebyshev of X.

Theorem 2.7. Let M be a closed subspace of a normed space X and let W be a Chebyshev
subspace of X containing M . Then, W/M is Chebyshev of X/M .

Theorem 2.8. Let X be a normed linear space, W a linear subspace of X and r > 0. If
W is Chebyshev, then there exists an unique z ∈ rBX such that d(z,W ) = r.

Theorem 2.9. Let M be a f-proximinal subspace of a normed space X and let W be a
Proximinal subspace of X containing M . If π : X → X/M is the canonical map. Then,

π(PW (x)) = PW/M (x + M).

Theorem 2.10. If W is a proximinal subspace of a normed space X and Ŵ is convex,
then W is Chebyshev.

Theorem 2.11. Let M be proximinal subspace of a normed space X and let W be a
proximinal subspace of X containing M . If Ŵ is convex, then W/M is Chebyshev of
X/M .

Theorem 2.12. Let M be a closed subspace of a normed space X and let W be a coprox-

iminal subspace of X containing M . Then π((̂W ) ⊆ ̂(W/M).
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Classification of frame graphs by dimension

Abdolaziz Abdollahi∗

Shiraz University

Hashem Najafi

Shiraz University

Abstract

To each finite frame φ in an inner product space H we associate a simple graph
G(φ), called frame graph, with the vectors of frame as vertices and there is an edge
between vertices f and g provided that ⟨f, g⟩ ̸= 0. In this paper the relation between
the order of G(φ) and the dimension of H is investigated for some well-known classes
of graphs and their products.

Keywords: Frame Graph, Graph product, Tree, Corona product, inner product space

Mathematics Subject Classification [2010]: 05C50, 42C15, 15A63

1 Introduction

The study of frames, using the properties of graphs, is an exciting research topic and
hopefully will become mutually useful for both frame and graph theory. For example, in
[1, 3, 4] the relation between equiangular tight frames and graphs was observed. A one-to-
one correspondence between a subclass of equiangular tight frames and regular two-graphs
was offered in [3] and another one between real equiangular frames of n vectors and graphs
of order n was given in [6]. The authors of [5] found some restrictions on the existence
of real equiangular tight frames by an equivalence between equiangular tight frames and
strongly regular graphs with certain parameters.

To begin with we need to remind the notion of frame.

Definition 1.1. A finite frame for a finite dimensional Hilbert space H (or inner product
space) is a finite sequence {fi}n

i=1 in H such that there exist constants 0 < A ≤ B < ∞
with the property that

A ∥ f ∥2≤
n∑

i=1

|⟨f, fi⟩|2 ≤ B ∥ f ∥2

holds for all f ∈ H.

In this work we define another connection between frames and graphs. This connection
is made by the zero-nonzero pattern of the correlation between different elements of frame
by the following definition.
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Definition 1.2. For a finite frame φ in an inner product space H we associate a simple
graph G(φ), called frame graph, with the elements of frame as vertices and two distinct
vertices are adjacent if and only if the respective vectors are non-orthogonal.
It is known and easy to check that each simple graph is a frame graph. Investigating the
relation between the dimension of H and the graph-theoretic properties of G is the main
purpose of this paper. Some well known classes of graphs such as trees, cycles, complete
and complete bipartite graphs will be characterized as frame graphs. Finally, the relation
between dim(H) and the order of graph G will be studied for corona, Cartesian and strong
product of some well-known classes of graphs.

2 Main results

Throughout this paper all graphs are non-trivial and connected, and so the associated
frames do not include zero vectors.
For a given graph G, we are interested to find all inner product spaces that G is a frame
graph in them.

Theorem 2.1. Let G be a simple graph on n vertices. Then G is a tree if and only if it
is just frame graph in inner product spaces of dimension n − 1 and n.

Proposition 2.2. Let G be a bipartite graph which contains Kn,m as an induced subgraph
and its partite sets U and V are of size m and n where m ≥ n. Then G is just frame
graph in inner product spaces of dimensions m,m + 1, ..., m + n − 1,m + n.

2.1 Cartesian product

The Cartesian product of two graphs G1 = (V1, E1) and G2 = (V2, E2), denoted G1□G2,
is the graph with vertex set V1 × V2 such that (u, v) is adjacent to (u′, v′) if and only if
(1)u = u′ and {v, v′} ∈ E2 or (2) v = v′ and {u, u′} ∈ E1 .

Theorem 2.3. Let Km be the compete graph of order m and T be a tree of order n.
Then the graph G = Km□T is just frame graph in inner product spaces of dimension
mn − m,mn − m + 1, ..., mn − 1 and mn.

2.2 Corona product

The corona product of G1 = (V1, E1) with G2 = (V2, E2), denoted G1 ◦ G2, is the graph
of order |V1||V2|+ |V1| obtained by taking one copy of G1 and |V1| copies of G2, and joining
all the vertices in the ith copy of G2 to the ith vertex of G1 [2].

Theorem 2.4. Let T and T ′ be trees of order m and m′, respectively. Then the followings
hold.

(1) The graph T◦T ′ is just frame graph in spaces of dimension mm′−1, mm′, ...,mm′+m.

(2) The graph T◦Kn(n ≥ 2) is just frame graph in spaces of dimension 2m−1, 2m, ...,mn+
m.
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(3) The graph Kn ◦ T is just frame graph in spaces of dimension nm − n + 1, nm − n +
2, ..., nm + n.

(4) The graph Kn◦Km is just frame graph in spaces of dimension n+1, n+2, ..., nm+n.

(5) Ct ◦ T is just frame graph in spaces of dimension tm − 2, tm − 1, ..., tm + t.

(6) the graph T ◦ Ct is just frame graph in spaces of dimension m(t − 1) − 1,m(t −
1), ..., mt + m.

(7) The graph Ct ◦Kn is just frame graph in spaces of dimension 2t−2, 2t−1, ..., nt+ t.

(8) The graph Kn ◦Ct is just frame graph in spaces of dimension n(t− 2)+1, n(t− 2)+
2, ..., nt + n.

(9) The graph Ct ◦Ct′ is just frame graph in spaces of dimension t(t′ − 1)− 2, t(t′ − 1)−
1, ..., tt′ + t.

2.3 Strong product

The strong product of two graphs G1 = (V1, E1) and G2 = (V2, E2), denoted G1 ⊠ G2,
is the graph with vertex set V1 × V2 such that (u, v) is adjacent to (u′, v′) if and only
if (1)u = u′ and {v, v′} ∈ E2 or (2) v = v′ and {u, u′} ∈ E1 or (3) {u, u′} ∈ E1 and
{v, v′} ∈ E2.

Theorem 2.5. Let G be the strong product of Pn and Pm, i.e., G = Pn⊠Pn. Then G is just
frame graph in inner product spaces of dimension (n−1)(m−1), (n−1)(m−1)+1, ...,mn−1
and mn.
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Compact composition operators on real Lipschitz spaces of

complex-valued bounded functions

Davood Alimohammadi ∗

Arak University

Sajedeh Sefidgar

Arak University

Abstract

We characterize compact composition operators on real Lipschitz spaces of complex-
valued bounded functions on metric spaces, not necessarily compact, with Lipschitz
involutions.

Keywords: Compact operator, composition operator, Lipschitz function, Lipschitz
involution.

Mathematics Subject Classification [2010]: 46J10, 47B48.

1 Introduction and Preliminaries

Let X be a nonempty set, VK(X) be a vector space over K of K-valued functions on X and
T : VK(X) −→ VK(X) be a linear operator on X. If there exists a self-map ϕ : X −→ X
such that Tf = f ◦ϕ for all f ∈ VK(X), then T is call the composition operator on VK(X)
induded by ϕ.

Let X be a topological space. We denote by Cb
K(X) the set of all K-valued bounded

continuous functions on X. Then Cb
K(X) is a unital commutative Banach algebra over K

under the pointwise operations and with the uniform norm

∥ f ∥X= sup{|f(x)| : x ∈ X} (f ∈ Cb
K(X)).

We denote by CK(X) the algebra of all K-valued continuous functions on X. Clearly,
Cb

K(X) = CK(X) whenever X is compact. We write Cb(X) and C(X) instead of Cb
C(X)and

CC(X), respectively.
Let (X, d) and (Y, ρ) be metric spaces. A map ϕ : X −→ Y is called a Lipschitz

mapping from (X, d) into (Y, ρ) if there exists a constant M ≥ 0 such that ρ(ϕ(x), ϕ(y)) ≤
Md(x, y) for all x, y ∈ X. A map ϕ : X −→ Y is called supercontractive from (X, d) into
(Y, ρ) if

lim
d(x,y)→0

ρ(ϕ(x), ϕ(y))

d(x, y)
= 0.

Let (X, d) be a metric space. A function f : X −→ K is called a K-valued Lipschitz
function on (X, d) if f is a Lipschitz mapping from (X, d) into the Euclidean metric space
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K. For a K-valued Lipschitz function f on (X, d), the Lipschitz number of f on (X, d) is
denoted by L(X,d)(f) and defined by

L(X,d)(f) = sup{|f(x) − f(y)|
d(x, y)

: x, y ∈ X, x ̸= y}.

We denote by LipK(X, d) the set of all K-valued bounded Lipschitz functions on (X, d).
Clearly, LipK(X, d) is a subalgebra of Cb

K(X) and 1X ∈ LipK(X, d), where 1X is the
constant function with value 1 on X. Moreover, LipK(X, d) with the norm

∥f∥X,L = max{∥f∥X , L(X,d)(f)}

is a Banach space over K. The set of all f ∈ LipK(X, d) for which f is supercontractive
on (X, d), is denoted by lipK(X, d). Clearly, lipK(X, d) is a subalgebra of LipK(X, d)
and 1X ∈ lipK(X, d). Moreover, lipK(X, d) is a closed set in (LipK(X, d)∥ · ∥X,L) so
(lipK(X, d), ∥·∥X,L) is a Banach space over K. We write Lip(X, d) and lip(X, d) instead of
LipC(X, d) and lipC(X, d), respectively. These algebras were first introduced by Sherbert
in [3, 4]. Note that, if ϕ : X −→ X is a Lipschitz mapping then f ◦ ϕ ∈ LipK(X, d)
(f ◦ ϕ ∈ lipK(X, d), respectively) for all f in LipK(X, d) (lipK(X, d), respectively).

Jiménez-Vargas and Villegas-Vallecillos [2] characterized compact composition oper-
ators on Banach spaces of Lipschitz functions LipK(X, d) with the norm ∥ · ∥X,L and
lipK(X, d) with the norm ∥ · ∥X,L, where (X, d) is a metric space, not necessarily compact.

Let X be a topological space. A self-map τ : X −→ X is called a topological involution
on X if τ is continuous and τ(τ(x)) = x for all x ∈ X.

Let X be a topological space and τ be a topological involution on X. The map
σ : Cb(X) −→ Cb(X) defined by σ(f) = f ◦ τ is an algebra involution on the complex
algebra Cb(X), which is called the algebra involution induced by τ on Cb(X). Note that
∥σ(f)∥X = ∥f∥X for all f ∈ Cb(X). We now define

Cb(X, τ) = {f ∈ Cb(X) : σ(f) = f}.

Then Cb(X, τ) is a unital self-adjoint uniformly closed real subalgebra of Cb(X), iX /∈
Cb(X, τ) where iX is the constant function with value i on X, Cb(X) = Cb(X, τ) ⊕
i Cb(X, τ) and

max{∥f∥X , ∥g∥X} ≤ ∥f + ig∥X ≤ 2max{∥f∥X , ∥g∥X},

for all f, g ∈ Cb(X, τ). Moreover, Cb(X, τ) = Cb
R(X) if τ is the identity map on X. Note

that if X is compact, then Cb(X, τ) = C(X, τ), where C(X, τ) = {f ∈ C(X) : f ◦ τ = f}.
In this part we introduce real Lipschitz spaces Lip(X, d, τ), lip(X, d, τ) and Lip0(X, d, τ).

Definition 1.1. Let (X, d) be a metric space. A self-map τ : X −→ X is called a Lipschitz
involution on (X, d) if τ(τ(x)) = x and τ is a Lipschitz mapping from (X, d) into (X, d).

Note that if τ is a Lipschitz involution on (X, d), then τ is a topological involution on
(X, d) and C ≥ 1 whenever d(τ(x), τ(y)) ≤ Cd(x, y) for all x, y ∈ X.

Let (X, d) be a metric space, τ be a Lipschitz involution on (X, d) and σ be the algebra
involution induced by τ on Cb(X). We can easily show that σ(Lip(X, d)) = Lip(X, d),
σ(lip(X, d)) = lip(X, d), L(X,d)(σ(f)) ≤ CL(X,d)(f) for all f ∈ Lip(X, d) and ∥σ(f)∥X,L ≤
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C∥f∥X,L for all f ∈ Lip(X, d) , where C ≥ 1 and d(τ(x), τ(y)) ≤ Cd(x, y) for all x, y ∈ X.
We now define

Lip(X, d, τ) := {f ∈ Lip(X, d) : σ(f) = f},

lip(X, d, τ) := {f ∈ lip(X, d) : σ(f) = f}.

In fact, Lip(X, d, τ) = Lip(X, d) ∩ Cb(X, τ) and lip(X, d, τ) = lip(X, d) ∩ Cb(X, τ).
In the following result, we give some properties of Lip(X, d, τ) and lip(X, d, τ).

Theorem 1.2. Let (X, d) be a metric space and τ be a Lipschitz involution on (X, d).
Suppose that A = Lip(X, d, τ) and B = Lip(X, d) (A = lip(X, d, τ) and B = lip(X, d),
respectively). Then:

(i) A is a self-adjoint real subalgebra of Cb(X, τ) and B, 1X ∈ A and iX /∈ A.

(ii) B = A ⊕ iA.

(iii) For all f, g ∈ A we have

max{∥f∥X,L, ∥g∥X,L} ≤ C∥f + ig∥X,L ≤ 2C max{∥f∥X,L, ∥g∥X,L},

where C ≥ 1 and d(τ(x), τ(y)) ≤ Cd(x, y) for all x, y ∈ X.

(iv) A is closed in (B, ∥ · ∥X,L) and so (A, ∥ · ∥X,L) is a real Banach space.

(v) f ◦ ϕ ∈ A for all f ∈ A whenever ϕ : X −→ X is a Lipschitz mapping from (X, d)
into (X, d) with ϕ ◦ τ = τ ◦ ϕ.

(vi) A = LipR(X, d)(A = lipR(X, d), respectively), if τ is the identity map on X.

Note that lip(X, d, τ) is a real subalgebra of Lip(X, d, τ) and a closed set in (Lip(X, d, τ), ∥·
∥X,L).

Real Lipschitz algebras Lip(X, d, τ) and lip(X, d, τ) where first introduced in [1], when-
ever (X, d) is a compact metric space.

In Section 2, we characterize compact composition operators on real Lipschitz spaces
(Lip(X, d, τ), ∥ · ∥X,L) and (lip(X, d, τ), ∥ · ∥X,L) whenever (X, d) is a metric space, not
necessarily compact and τ is a Lipschitz involution on (X, d).

2 Compact composition operators

Let (X, ∥ · ∥) be a real Banach space and Xe = X ⊕ iX be the complexification of X. We
know that, there exists a norm ∥| · |∥ on XC such that ∥|x + i0|∥ = ∥x∥ for all x ∈ X, and

max{∥x∥, ∥y∥} ≤ ∥|x + iy|∥ ≤ 2max{∥x∥, ∥y∥},

for all x, y ∈ X, and so (XC, ∥| · |∥) is a complex Banach space.

Theorem 2.1. Let (X, ∥ · ∥) be a real Banach space, XC be the complexification of X and
∥| · |∥ be a norm on XC satisfying ∥|f |∥ = ∥f∥ for all f ∈ X and

max{∥f∥, ∥g∥} ≤ K1∥|f + ig|∥ ≤ K2 max{∥f∥, ∥g∥},

for positive contants K1 and K2 and for all f, g ∈ X. Let T ∈ BLR(X, X) and T
′

:
XC −→ XC defined by T

′
(f + ig) = Tf + iTg (f, g ∈ X). Then:
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(i) T
′ ∈ BLC(XC, XC) and ∥T

′∥ ≤ 2C∥T∥.

(ii) T
′
is compact if and only if T is compact.

(iii) T
′
is invertible in BLC(XC, XC) if and only if T is invertible in BLR(X,X).

(iv) T
′
= IXC if and only if T = IX.

(v) σ(T
′
) ∩ R = σ(T ).

Compact composition operators on Lipschitz spaces (LipK(X, d), ∥·∥X,L) characterized
in [2, Theorem 1.1].

In the following result, we characterize compact composition operators on real lipschitz
spaces (Lip(X, d, τ), ∥ · ∥X,L) applying Theorem 2.1 and [2, Theorem 1.1].

Theorem 2.2. Let (X, d) be a metric space, τ be a Lipschitz involution on (X, d) and
ϕ : X −→ X be a Lipschitz mapping from (X, d) into (X, d) such that ϕ ◦ τ = τ ◦ ϕ. Then
the composition operator T : Lip(X, d, τ) −→ Lip(X, d, τ) induced by ϕ is compact if and
only if ϕ is supercontractive and ϕ(X) is totally bounded in (X, d).

In [2, Definition 1.1], Jiménez-Vargas and Villegas-Vallecillos obtained the analogous
result for compact composition operators on little Lipschitz spaces (lipK(X, d), ∥ · ∥X,L)
that satisfy a kind of uniform separation property.

Compact composition operators on Lipschitz space (LipK(X, d), ∥ · ∥X,L) characterized
in [2, Theorem 1.3].

In the following result, we characterize compact composition operators on real little
Lipschitz spaces (lip(X, d, τ), ∥ · ∥X,L) when lip(X, d) satisfies aforementioned uniform
separation propertyb applying Theorems 2.1 and [2, Theorem 1.3].

Theorem 2.3. Let (X, d) be a metric space, τ be a Lipschitz involution on (X, d) and
ϕ : X −→ X be a Lipschitz mapping from (X, d) into (X, d) with ϕ ◦ τ = τ ◦ ϕ. Suppose
that lip(X, d) separates points uniformly on bounded subsets of X. Then the composition
operator T : lip(X, d, τ) −→ lip(X, d, τ)induced by ϕ is compact if and only if ϕ induced
by ϕ is supercontractive and ϕ(X) is totally bounded in (X, d).
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Abstract

Recently many authors have worked on normal weighted composition operators.
On the other hand, it is known that every normal operator is a complex symmetric
operator. Therefore, in this paper, we study complex symmetric weighted composition
operators on the weighted Hardy spaces.

Keywords: Weighted Hardy Space, Weighted Composition Operator, Complex Sym-
metric.

Mathematics Subject Classification [2010]: 47B33, 47B38

1 Introduction

In 2010, C. C. Cowen and E. Ko obtained an explicit characterization and spectral de-
scription of all hermitian weighted composition operators on the classical Hardy space H2

[5]. This work was later extended to certain weighted Hardy spaces by C. C. Cowen, G.
Gunatillake, and E. Ko [4]. Along similar lines, P. Bourdon and S. Narayan have recently
studied weighted composition operators on H2 [1]. Taken together, theses articles have
established the existence of several unexpected families of normal weighted composition
operators. Then S. R. Garcia and C. Hammond in [11] investigated complex symmetric
weighted composition operators on the weighted Hardy spaces.

Definition 1.1. Let D be the open unit disk in the complex plane C. Let H be a Hilbert
space of functions analytic on the unit disk. If the monomials 1, z, z2, ... are an orthogonal
set of non-zero vectors with dense span in H, then H is called a weighted Hardy space.
We will assume that the norm satisfies the normalization ‖1‖ = 1. The weight sequence
for a weighted Hardy space H is defined to be β(n) = ‖zn‖. The weighted Hardy space
with weight sequence β(n) will be denoted H2(β). The norm on H2(β) is given by

∥∥∥∥∥∥

∞∑

j=0

ajz
j

∥∥∥∥∥∥

2

=

∞∑

j=0

|aj |2β(j)2.
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Definition 1.2. Let w ∈ D and H be a Hilbert space of analytic functions on D. Let ew
be the point evaluation at w, that is, ew(f) = f(w) for each f ∈ H. If ew is a bounded
linear functional on H, then the Riesz Representation Theorem implies that there is a
function (which is usually called Kw) in H that induces this linear functional, that is,
ew(f) = 〈f,Kw〉. In this case, the functions Kw are called the reproducing kernels and
the functional Hilbert space is also called a reproducing kernel Hilbert space. We know
that weighted Hardy spaces are reproducing kernel Hilbert spaces.

Definition 1.3. We say that a bounded operator T on a complex Hilbert space H is com-
plex symmetric if there exits a conjugation (i.e., a conjugate linear, isometric involution)
J such that T = JT ∗J . The general study of such operators was undertaken by S. R.
Garcia, M. Putinar and W. Wogen, in various combinations, in [7-10].

Definition 1.4. For any analytic self-map ϕ of D, the composition operator Cϕ on H2(β)
is defined by Cϕ(f) = f ◦ϕ. If ψ is a bounded analytic function on D and ϕ is an analytic
map from D into itself, the weighted composition operator Cψ,ϕ on H2(β) is defined by
Cψ,ϕ(f)(z) = ψ(z)f(ϕ(z)).

Definition 1.5. It is well-known that the automorphisms of the unit disk, that is, the
one-to-one analytic maps of the disk onto itself, are just the functions

ϕ(z) = λ
a− z
1− az , (1)

where |λ| = 1 and |a| < 1 (see, e.g., [3]). We denote the class of automorphisms of D by
Aut(D). Also an involutive disk automorphism is an automorphism that ϕ ◦ ϕ = I.

Definition 1.6. We say that an operator A on a Hilbert space H is hyponormal if A∗A−
AA∗ ≥ 0, or equivalently if ‖A∗f‖ ≤ ‖Af‖ for all f ∈ H (see [2]).

Definition 1.7. An analytic self-map ϕ of D is univalent if it is one-to-one.

Definition 1.8. For any non-constant non-automorphism ϕ : D → D which has a fixed
point w0 in D and for which ϕ

′
(w0) 6= 0, there is an analytic k : D → C such that

k ◦ ϕ = ϕ
′
(w0)k. This function called the Koenigs eigenfunction for ϕ, is unique up to

scalar multiplication (see [6]).

Definition 1.9. Recall that an operator T on a Hilbert space H is said to be normal if
TT ∗ = T ∗T .

2 Main results

In this section, we investigate complex symmetric composition and weighted composition
operators on H2(β). Also, we show that if Cψ,ϕ is complex symmetric on H2(β), then
either ψ is identically zero or ψ is nonvanishing on D. Moreover, if ϕ is not a constant
function and ψ is not identically zero, then ϕ is univalent (see [11]).

Proposition 2.1. If ϕ is either (i) constant, or (ii) an involutive disk automorphism,
then Cϕ is a complex symetric operator on H2(β).
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Proposition 2.2. If Cϕ is a hyponormal composition operator on H2(β) which is complex
symmetric, then ϕ(z) = az, where |a| ≤ 1.

Proposition 2.3. Suppose that Cϕ is J-symetric on H2(β). If J(1) is a constant multiple
of a kernel function Kw, then ϕ(w) = w. The converse holds whenever ϕ is not an
automorphism.

Proposition 2.4. Suppose that J : H2(β) → H2(β) is a conjugation, J(1) is a constant
multiple of 1, and J(z) is a constant multiple of zm for some m ≥ 1. If Cϕ is J-symmetric,
then ϕ(z) = az for some |a| ≤ 1.

Theorem 2.5. If Cψ,ϕ is complex symmetric on H2(β), then either ψ is identically zero or
ψ is nonvanishing on D. Moreover, if ϕ is not a constant function and ψ is not identically
zero, then ϕ is univalent.

Theorem 2.6. Suppose that Cψ,ϕ is a complex symmetric operator on H2(β). If ϕ(w0) =
w0 for some w0 in D, then ψ(w0)ϕ

′
(w0)

n is an eigenvalue of Cψ,ϕ for every integer n ≥ 0.

Proposition 2.7. Let ϕ : D → D be an analytic self-map which is not an automorphism
and suppose that ϕ(w0) = w0 and ϕ

′
(w0) 6= 0 for some w0 in D. If Cϕ is a complex

symmetric operator on H2(β), then every power kn of the Koenigs eigenfunction for ϕ
belongs to H2(β).
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Abstract

In this article we investigate the composition operator Cϕ on weak vector valued
weighted Dirichlet type spaces wDp

v(X) for Banach space X and 1 ≤ p ≤ 2. This op-
erator is bounded(compact) on those spaces if the related measure µp,v is a (compact)
Carleson. Also if Cϕ is bounded(compact) on wDp

v(X), then the same behavior holds
on wDq

v(X) for 1 ≤ q < p.

Keywords: Composition operator, Carleson measure, Compact Carleson measure,
Weak vector valued weighted Dirichlet type space.
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1 Introduction

Let X be a complex Banach space and D be the open unit disc in the complex plane
C. The Lebesgue area measure on D is defined by dA(z) = rdrdθ = dxdy. Denote by
H(X) the class of all analytic functions f : D → X. The weight function v is a posi-
tive function v(r), 0 ≤ r < 1, which is integrable in (0, 1). We extend v to D by setting
v(z) = v(|z|), z ∈ D.

For p ≥ 1, the vector valued weighted Bergman space Ap
v(X) consists of all functions

f ∈ H(X) for which

||f ||2Ap
v(X) =

∫

D
||f(z)||pXv(z)dA(z) < ∞.

For X = C and v = 1, the space A2 is called the (unweighted) Bergman space. Also for
X = C and v = (1−|z|2)α, α > −1, we have the standard weighted Bergman space Ap

α(D).
Note that Ap

v(X) is Banach space for p ≥ 1 and Hilbert space for p = 2 (see [5] for the
theory of these spaces).

The vector valued weighted Dirichlet type space Dp
v(X) is the space of all f in H(X)

such that f ′ ∈ Ap
v(X), equipped with the norm

||f ||Dp
v(X) = ||f (0)|| + ||f ′||Ap

v(X).
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For X = C and v = 1, the space D = D2 is the classical Dirichlet space of analytic
functions. Clearly Dp

v(X) ⊂ Dq
v(X) when 1 ≤ q < p.

The weak vector valued weighted Dirichlet space wDp
v(X) consists of all analytic functions

f : D → X for which
||f ||wDp

v(X) = sup
||x∗||X∗≤1

(||x∗of ||Dp
v(D))

is finite. Here x∗ ∈ X∗, the dual space of X. In fact, such kinds of weak version spaces
wE(X) can be introduced under more general conditions on any Banach spaces E consist-
ing of analytic functions f : D → C. Some strong and weak version spaces are completely
different such as Hardy spaces H2(X) and wH2(X) by constructing some concrete ex-
amples in [1]. Also Dirichlet spaces wDα(X) and Dα(X) are different for any infinite
dimensional complex Banach space X as Wang has shown in [10]. Others are the same
such as Bloch spaces B(X) and wB(X), refer to [1].

Given analytic function ϕ in the unit disc D such that φ(D) ⊂ D, the composition
operator Cϕ defined by Cϕf (z) = f (ϕ(z)), for f ∈ H(X) and z ∈ D. Clearly this operator
is linear.
Let µ be a finite positive Borel measure on D. Then µ is said to be a Carleson mea-
sure if there exists a constant C such that µ(S(ξ, h) ≤ Ch2 for all ξ and h, such that
|ξ| = 1 and 0 < h < 2. The measure is said to be a compact Carleson measure if

limh→0 sup|ξ|=1
µ(S(ξ,h))

h2 = 0. Carleson measures have been useful in the study of compo-
sition operators in several settings (see for example [6, 8, 11]). For w ∈ D, let N2(ϕ,w)
denote the number of zeros (counting multiplicities) of ϕ(z)−w. For 1 ≤ p < 2 and w ∈ D,
we define the modified counting function

Np,v(ϕ,w) =
∑ v(z)

|ϕ′(z)|2−p

where the sum extends over the zeros of ϕ − w, repeated by multiplicity. In particular,
Np,v(ϕ,w) = 0 for w /∈ ϕ(D). Clearly with v = 1 and p = 2, we have N2(ϕ,w).
Let µp,v be the measure defined on D by dµp,v(w) = Np,v(ϕ,w)dA(w), 1 ≤ p < 2.

A non negative measure µ on D is called a Carleson measure for wDp
v(X) if there is a

constant C > 0 such that
∫

D
||f(z)||pdµ(z) ≤ C||f ||p

wDp
v(X)

,

for all f ∈ wDp
v(X). That is, the inclusion operator i from wDp

v(X) into Lp(X,µ) is
bounded. We call the Carleson measure µ, a compact Carleson measure for wDp

v(X) if
the inclusion operator i from wDp

v(X) into Lp(X,µ) is compact.

2 Boundeness and compactness of composition operator on
weak vector valued Dirichlet type spaces

The actions of composition operators and weighted composition operators on analytic
function spaces such as Bergman, Hardy, Dirichlet and Dirichlet type spaces have been
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studied by many authors, see for example [6, 11].
In [11], Zorboska has studied bounded and compact composition operators on weighted
Dirichlet spaces. His method involves integral averages of determining function for the op-
erator. In [8] compactness of composition operator Cϕ is characterized by MacCluer and
Shapiro in term of the angular derivative of the symbol ϕ. Adjoints of rationally induced
composition operators on Bergman and Dirichlet spaces were studied in [2] by Ghoshab-
ulaghi and Vaezi. Weighted composition operators on weak vector-valued Bergman and
Hardy spaces were studied in [3] by Hassanlou, Vaezi and Wang. We have studied the
isometric weighted composition operators on Hardy and Dirichlet spaces in [9]. In this
article we study the boundedness and compactness of the composition operators on the
weak vector valued weighted Dirichlet type spaces wDp

v(X) for 1 ≤ p ≤ 2.

Characterization of Carleson measure has been studied by many authors in the case
of scaler and vector valued for different spaces of analytic functions. In [4] Hastings first
proved some characterization for Carleson measure in Ap(D), then by Stegenga it has
shown for Ap

α(D). Some general methods for this characterization have been proved by
Luecking in [7]. Also Kumar, Cima, Wogen, Nevanlinna and many others have worked on
it.
Through this facts one can have the following theorem, which characterizes Carleson mea-
sure for Dp

v(X).

Theorem 2.1. Take 1 < p < q < 2. Let µ be a positive Borel measure on D. Then
(a) µ is said to be a Carleson measure for Ap

v(X) if and only if Ap
v(X) ⊂ Lp(µ,X). In this

case the inclusion operator
I : Ap

v(X) → Lp(µ,X)

is a bounded operator.
(b) µ is said to be a compact Carleson measure for Ap

v(X) if and only if Ap
v(X) ⊂ Lp(µ,X)

and the inclusion operator I from Ap
v(X) into Lp(µ,X) is compact.

Remark 2.2. The above theorem is equivalent with the following statement:
There exists a constant C such that

∫

D
||f(z)||pdµ(z) ≤ C||f ||p

Ap
v(X)

,

for all f ∈ Ap
v(X).

3 Main results

Our main results are as follows:

Theorem 3.1. The composition operator Cϕ is bounded on wDp
v(X) if and only if µp,v is

a Carleson measure.

Theorem 3.2. The composition operator Cϕ is compact on wDp
v(X) if and only if µp,v is

a compact Carleson measure.
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Lemma 3.3. Suppose that the composition operator Cϕ is bounded on wDp
v (X). Then for

1 ≤ q < p, µq,v is a finite measure on D.

Theorem 3.4. Suppose that the composition operator Cϕ is bounded on wDp
v (X) and

1 ≤ q < p. Then Cϕ is bounded on wDq
v (X).

Theorem 3.5. If Cϕ is compact on wDp
v (X) and 1 ≤ q < p, then Cϕ is compact on

wDq
v (X).
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Connectivity of Idempotent graph of Bounded Linear

Operators on a Hilbert Space

Pandora Raja∗

Shahid Beheshti University

Abstract

Let H be a complex Hilbert space. The idempotent graph of B(H), the algebra of
all bounded linear operators on H, denoted by I(B(H)), is a graph whose vertices are
all nontrivial idempotents of B(H) and two distinct vertices P and Q are adjacent if
and only if PQ = QP = 0. In this paper we show if H is a Hilbert space that has not
finite dimensional, then I(B(H)) is a connected graph and its diameter is at most 4.

Keywords: Idempotent operator, Idempotent Graph, Connected Graph, Diameter

Mathematics Subject Classification [2010]: 47A06

1 Introduction

Throughout this paper H and B(H) denote a complex Hilbert Space and the algebra of
all bounded linear operators on H, respectively. If P ∈ B(H) and P 2 = P , we say that P
is an idempotent operator.

Let G be a graph. We denote the vertex set and edge set of G by V (G) and E(G),
respectively. A finite non-null sequence v0e1v1e2v2 · · · ekvk, whose terms are alterna-
tively vertices and edges such that for each i, 1 ≤ i ≤ k, the ends of ei are vi−1 and
vi and for each i and j, i ̸= j, vi ̸= vj , is a path of length k between v0 and vk.
For distinct vertices x and y of G, let d(x, y) be the length of the shortest path from
x to y and if there is no such path we define d(x, y) = ∞. The diameter of G is
diam(G) = sup{d(x, y)|x andy are distinct vertices of G}. If u and v are two adjacent
vertices, then we write u v. The graph G is said connected, if there is a path between
every two distinct vertices of G.

Formally, the idempotent graph, I(B(H)), of B(H) is a simple (i.e., undirected and
loopless) graph whose vertex set consists of all nonscalar idempotents and where two
distinct vertices P and Q form an edge P Q if and only if PQ = QP = 0.

In this paper we show if H is a Hilbert space that has not finite dimensional, then
I(B(H)) is a connected graph and its diameter is at most 4.
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2 Main results

Theorem 2.1. Let H be a complex Hilbert space that has not finite dimensional. Then
I(B(H)) is a connected graph and furthermore, diamI(B(H)) ≤ 4.

Proof. Let A, B be arbitrary non-scalar idempotents in B(H). Suppose that α ∈ kerA
and β ∈ kerB. First, suppose that < α >=< β > and γ ∈< α >. Put M =< γ > and
define P1 = PM . Let x ∈ H. Then there are r ∈ C and y ∈ Mperp such that x = rγ + y.
Since ImA = (kerA)⊥ and < α >⊂ kerA, We have

PMA(x) = PMA(rγ + y) = PMA(y) = 0.

Also APM (x) = A(rγ) = 0. Similarly, PMB = BPM = 0. Therefore, d(A, B) ≤ 2.
Now, let < α ≯=< β >. Put M =< α >, N =< β >, P1 = PM , and P2 = PN . As

same as we showed in previous case, we can show A is connected to P1 and B is connected
to P2. Put S =< α, β >⊥ and P3 = PS . Suppose that x ∈ H is arbitrary. Then there are
y ∈< α, β > and z ∈ S such that x = y + z and there are r, t ∈ C such that y = rα + tβ.
Since z ∈< α >⊥ and rα ∈ Sα, then

P3P1(x) = P3(P1(rα + tβ + z)) = P3(rα) = 0.

On the other hand P1P3(x) = P1(z) = 0. Therefore, P1 is connected to P3. Also, since
tβ ∈ S⊥, we have

P3P2(x) = P3P2(rα + tβ + z) = P3(tβ) = 0.

On the other hand, P2P3(x) = P2(z) = 0. Therefore, P2 is connected to P3. We have
A P1 P3 P2 B and d(A, B) ≤ 4. The proof is complete.
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Constructing dual and approximate dual fusion frames

Fahimeh Arabyani∗
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Abstract

The main goal of this paper is the construction of dual and approximate dual
fusion frames. We introduce the notion of approximate duality for fusion frames, and
present some approaches to obtain dual fusion frames. In particular, we characterize
all duals of a Riesz decomposition fusion frame.

Keywords: Fusion frames; dual fusion frames; approximate duals; Riesz decomposi-
tion
Mathematics Subject Classification [2010]: 42C15

1 Introduction

In this section we review some definitions and primary results of fusion frames and show
that, unlike discrete frames, every fusion frame has at least one alternate dual. Throughout
this paper, πV denotes the orthogonal projection from H onto a closed subspace V .

Definition 1.1. Let {Wi}i∈I be a family of closed subspaces of H and {ωi}i∈I be a family
of weights, i.e. ωi > 0, i ∈ I. Then {(Wi, ωi)}i∈I is called a fusion frame for H if there
exist the constants 0 < A ≤ B <∞ such that

A‖f‖2 ≤
∑

i∈I
ω2
i ‖πWif‖2 ≤ B‖f‖2, (f ∈ H). (1)

The constants A and B are called the fusion frame bounds. If we only have the upper
bound in (1) we call {(Wi, ωi)}i∈I , a Bessel fusion sequence. A fusion frame is called
A-tight, if A = B, and Parseval if A = B = 1. If ωi = ω for all i ∈ I, the collection
{(Wi, ωi)}i∈I is called ω-uniform and we abbreviate 1- uniform fusion frames as {Wi}i∈I .
A fusion frame {Wi}i∈I is called an orthonormal basis for H when ⊕i∈IWi = H and it is
a Riesz decomposition of H if for every f ∈ H, there is a unique choice of fi ∈ Wi such
that f =

∑
i∈I fi. It is clear that every orthonormal fusion basis is a Riesz decomposition

for H, and also every Riesz decomposition is a 1- uniform fusion frame for H.
Let {(Wi, ωi)}i∈I be a fusion frame, the fusion frame operator SW : H → H is defined

by SW f =
∑

i∈I ω
2
i πWif is a bounded, invertible as well as positive. Hence, we have the

following reconstruction formula [4]

f =
∑

i∈I
ω2
i S
−1
W πWif, (f ∈ H).
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The family {(S−1W Wi, ωi)}i∈I , which is also a fusion frame, is called the canonical dual
of {(Wi, ωi)}i∈I . In general, every Bessel fusion sequence {(Vi, νi)}i∈I is called a dual of
fusion frame {(Wi, ωi)}i∈I if

f =
∑

i∈I
ωiνiπViS

−1
W πWif, (f ∈ H). (2)

It is proved that a Bessel fusion sequence {(Vi, υi)}i∈I is a dual of fusion frame {(Wi, ωi)}i∈I ,
if and only if TV φvwT

∗
W = IH, where the bounded operator φvw :

∑
i∈I
⊕
Wi →

∑
i∈I
⊕
Vi

is given by
φvw({fi}i∈I) = {πViS−1W fi}i∈I . (3)

Moreover, a Bessel fusion sequence V = {(Vi, ωi)}i∈I given by Vi = S−1W Wi⊕Ui, is dual of
{(Wi, ωi)}i∈I in which Ui is a closed subspace of H for all i ∈ I, [11].

2 Main results- Approximate duals

Dual fusion frames play a key role in fusion frame theory, however their explicit computa-
tions seem rather intricate. In this section, we introduce the notion of approximate dual
for fusion frames and discuss the existence of dual fusion frames from an approximate dual.
Moreover, we present a complete characterization of duals of Riesz decompositions. The
notion of approximate dual for discrete frames has been already introduced by Christensen
and Laugesen in [6], however many of its results are invalid for fusion frames. Throughout
this section we consider a Riesz decomposition as a 1-uniform fusion frame.

First, we recall the notion of approximate dual for discrete frames. Let F = {fi}i∈I
and G = {gi}i∈I be Bessel sequences for H with synthesis operators T and U , respectively.
Then F and G are called approximate dual frames if ‖IH − UT ∗‖ < 1. In this case
{(UT ∗)−1G} is a dual of F , see [6].

Now we introduce approximate duality for fusion frames.

Definition 2.1. Let {(Wi, ωi)}i∈I be a Bessel fusion sequence. A Bessel fusion sequence
{(Vi, υi)}i∈I is called an approximate dual of {(Wi, ωi)}i∈I if

‖IH − TV φvwT ∗W ‖ < 1.

Putting

Uvw = TV φvwT
∗
W . (4)

Then, we have the following reconstruction formula

f =
∑

i∈I
(Uvw)−1ωiυiπViS

−1
W πWif =

∞∑

n=0

(I − Uvw)nUvwf, (f ∈ H).

Proposition 2.2. Let V = {(Vi, υi)}i∈I be an approximate dual of a Bessel fusion sequence
W = {(Wi, ωi)}i∈I . Then W and V are fusion frames.

The stability of approximate dual of discrete frames can be found in [6]. In the follow-
ing, we discuss on the stability of approximate dual fusion frames.
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Proposition 2.3. Let {ej}j∈J be an orthonormal basis of H. The Bessel sequence V =
{(Vi, υi)}i∈I is an approximate dual of W = {(Wi, ωi)}i∈I , if and only if {υiπViej}i∈I,j∈J
is an approximate dual of {ωiπWiS

−1
W ej}i∈I,j∈J .

Theorem 2.4. Let W = {(Wi, ωi)}i∈I and V = {(Vi, υi)}i∈I be Bessel sequences, also
{gi,j}j∈Ji be a frame for V with bounds Ai and Bi, for every i ∈ I such that 0 < a =
infi∈I Ai. Then V is an approximate dual of W if and only if G = {υigi,j}i∈I,j∈Ji is an
approximate dual of F = {ωiπWiS

−1
W g̃i,j}i∈I,j∈Ji, where {g̃i,j}j∈Ji is the canonical dual of

{gi,j}j∈Ji.

We know that many concepts of the classical frame theory have not been generalized
to the fusion frames. For example in the duality discussion, if V = {(Vi, υi)}i∈I is a dual
of fusion frame W = {(Wi, ωi)}i∈I , then W is not a dual of V , moreover, it is not an
approximate dual of V in general. Indeed if

W1 = span{(1, 0, 0)}, W2 = span{(1, 1, 0)},
W3 = span{(0, 1, 0)}, W4 = span{(0, 0, 1)},

and ω1 = ω3 = ω4 = 1, ω2 =
√

2. Then W = {(Wi, ωi)}i∈I is a fusion frame for R3 with
an alternate dual as V = {(Vi, υi)}i∈I where

V1 = span{(0, 1, 0)}, V2 = R3, V3 = span{(1, 0, 0)}, V4 = span{(0, 0, 1)},

and υ1 = υ3 = 3 , υ2 = 3
√

2, υ4 = 1, see Example 3.1 of [1]. A straightforward calculation
shows that ‖IH−Uwv‖ = 1, hence W is not an approximate dual of V . The next theorem
gives sufficient conditions for a fusion frame is approximate dual of its dual.

Theorem 2.5. Let {(Vi, υi)}i∈I be a dual of fusion frame {(Wi, ωi)}i∈I such that

‖S−1W − S−1V ‖ < ‖SW ‖−1/2‖SV ‖−1/2.

Then {(Wi, ωi)}i∈I is an approximate dual of {(Vi, υi)}i∈I .

Theorem 2.6. Let {Wi}i∈I be a Riesz decomposition and {Vi}i∈I be an approximate dual
of {Wi}i∈I . Then the sequence {U−1vw Vi}i∈I is a dual of {Wi}i∈I .

Corollary 2.7. Let {Wi}i∈I be a Riesz decomposition. A Bessel sequence {Vi}i∈I is an
dual of {Wi}i∈I if and only if

Vi ⊇ S−1W Wi, (i ∈ I). (5)

other alternate duals of {Wi}i∈I are not Riesz decomposition.

Theorem 2.8. Let {Vi}i∈I be a dual of a Riesz decomposition {Wi}i∈I . Then {Vi}i∈I is
Riesz decomposition if and only if, it is the canonical dual of {Wi}i∈I .

Corollary 2.9. Let {Wi}i∈I be a Riesz decomposition. A Bessel sequence {Vi}i∈I is an
dual of {Wi}i∈I if and only if

Vi ⊇ S−1W Wi, (i ∈ I). (6)
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Abstract

In this paper, we introduce a new Mann type iteration for finding a common
element of the set of solutions of an equilibrium problem and the set of fixed points
of 2-generalized hybrid mappings in a Hilbert space.

Keywords: Fixed point, Hilbert space, Weak convergence
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1 Introduction and Preliminaries

Let H be a real Hilbert space with inner product 〈., .〉 and induced norm ‖.‖, and let E
be a nonempty closed convex subset of H. Let f be a bifunction from E × E to R. The
equilibrium problem for f : E × E → R is to find x ∈ E such that f(x, y) ≥ 0 for all
y ∈ E. The set of solutions of the equilibrium problem for f is denoted by EP (f), i.e.,
EP (f) = {x ∈ E : f(x, y) ≥ 0, ∀y ∈ E}.

A self mapping S of E is called nonexpansive if ‖Sx− Sy‖ ≤ ‖x− y‖, for all x, y ∈ E.
We denote by F (S) the set of fixed points of S.

In the recent years, many authors studied the problem of finding a common element
of the set of fixed points of a nonexpansive mapping and the set of solutions of an equi-
librium problem in the framework of Hilbert spaces and Banach spaces, respectively; see
for instance, [1, 8] and the references therein.

Let E be a nonempty closed convex subset of a Banach space. In 1953, for a self
mapping S of E, Mann [7] defined an iteration procedure by xn+1 = αnxn + (1−αn)Sxn,
where x0 ∈ E chosen arbitrarily and 0 ≤ αn ≤ 1 for all n ∈ N ∪ {0}.

In 2007, Tada and Takahashi [8] for finding an element of EP (f) ∩ F (S), introduced
the following iterative scheme for a nonexpansive self mapping S of a nonempty, closed
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convex subset E in a Hilbert space H:





x1 = x ∈ H chosen arbitrarily,

un ∈ E such that f(un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀ y ∈ E,

xn+1 = αnxn + (1− αn)Sun,

for all n ∈ N, where f : E×E → R satisfies appropriate conditions, {αn} ⊂ [a, b] for some
a, b ∈ (0, 1) and {rn} ⊂ (0,∞) satisfies lim infn→∞ rn > 0. They proved {xn} converges
weakly to w ∈ F (S) ∩ EP (f), where w = limn→∞ PF (S)∩EP (f)(xn).

Let E be a nonempty closed convex subset of H. A self mapping S of E is called
generalized hybrid [6] if there exist γ, λ ∈ R such that

γ‖Sx− Sy‖2 + (1− γ)‖x− Sy‖2 ≤ λ‖Sx− y‖2 + (1− λ)‖x− y‖2, (1)

for all x, y ∈ E. We call such a mapping a (γ, λ)-generalized hybrid mapping.

2 Preliminaries

A self mapping S of E is called: (i) firmly nonexpansive, if ‖Sx−Sy‖2 ≤ 〈x− y, Sx−Sy〉
for all x, y ∈ E; (ii) nonspreading, if 2‖Sx−Sy‖2 ≤ ‖Sx−y‖2 +‖Sy−x‖2 for all x, y ∈ E;
(iii) hybrid, if 3‖Sx− Sy‖2 ≤ ‖x− y‖2 + ‖Sx− y‖2 + ‖Sy − x‖2 for all x, y ∈ E. Also, a
self mapping S of E with F (S) 6= ∅ is called quasi-nonexpansive if ‖x−Sy‖ ≤ ‖x− y‖ for
all x ∈ F (S) and y ∈ E. It is well-known that for a quasi-nonexpansive mapping S, F (S)
is closed and convex [5].

It easy to see that (1, 0)-generalized hybrid mapping is nonexpansive; (2, 1)-generalized
hybrid mapping is nonspreading; (32 ,

1
2)-generalized hybrid mapping is hybrid.

A self mapping T of C is called 2-generalized hybrid [10] if there exist γ1, γ2, λ1, λ2 ∈ R
such that

γ1‖T 2x− Ty‖2 + γ2‖Tx− Ty‖2 + (1− γ1 − γ2)‖x− Ty‖2

≤ λ1‖T 2x− y‖2 + λ2‖Tx− y‖2 + (1− λ1 − λ2)‖x− y‖2,

for all x, y ∈ C. Such a mapping is called a (γ1, γ2, λ1, λ2)-generalized hybrid mapping.
It is easy to see that a (0, γ2, 0, λ2)-generalized hybrid mapping is an (γ2, λ2)-generalized
hybrid mapping [4]. Also, one can easily show that a 2-generalized hybrid mapping is
quasi-nonexpansive if the set of it’s fixed points is nonempty. In [4], Hojo et al. give two
examples of 2-generalized hybrid mappings which are not generalized hybrid mappings.
So, the class of 2-generalized hybrid mappings is broader than the class of generalized
hybrid mappings.

Let K be a closed convex subset of H and let PK be metric (or nearest point) projection
from H onto K (i.e., for x ∈ H, PKx is the only point in K such that ‖x − PKx‖ =
inf{‖x−z‖ : z ∈ K}). Let x ∈ H and z ∈ K. Then z = PKx if and only if 〈x−z, y−z〉 ≤ 0,
for all y ∈ K. For more details we refer readers to [9].

To study the equilibrium problem, we assume that f : E × E −→ R satisfies the
following conditions:

(A1) f(x, x) = 0 for all x ∈ E;
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(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ E;
(A3) for each x, y, z ∈ E, limt↓0 f(tz + (1− t)x, y) ≤ f(x, y);
(A4) for each x ∈ E, y 7→ f(x, y) is convex and lower semicontinuous.

The following lemma can be found in [2].

Lemma 2.1. Let E be a nonempty closed convex subset of H, let f be a bifunction from
E × E to R satisfying (A1) − (A4) and let r > 0 and x ∈ H. Then, there exists z ∈ E
such that

f(z, y) +
1

r
〈y − z, z − x〉 ≥ 0,

for all y ∈ E.
The following lemma is established in [3].

Lemma 2.2. For r > 0, x ∈ H, define a mapping Tr : H −→ E as follows:

Tr(x) = {z ∈ E : f(z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ E}.

Then, the following statements hold:

(i) Tr is singel-valued;
(ii) Tr is firmly nonexpansive, i.e., for all x, y ∈ H ‖Trx−Try‖2 ≤ 〈Trx−Try, x− y〉;

(iii) F (Tr) = EP (f);
(iv) EP(f) is closed and convex.

3 Main Results

In this section, we prove weak convergence theorems for finding a common element of the
set of solution of an equilibrium problem and the set of fixed points of a 2-generalized
hybrid mapping.

Theorem 3.1. Let E be a nonempty closed convex subset of a real Hilbert space H. Let f
be a bifunction from E×E to R satisfying (A1)−(A4) and S be a 2-generalized hybrid self
mapping of E with F (S)∩EP (f) 6= φ and ‖S2x−Sx‖ ≤ ‖Sx−x‖ for all x ∈ E. Assume
that {rn} ⊂ (0,∞) satisfies lim infn→∞ rn > 0 and {αn} is sequence in [a, 1] for some
a ∈ (0, 1) such that lim infn→∞ αn(1− αn) > 0. If {xn} and {un} be sequences generated
by x = x1 ∈ H and{

un ∈ E such that f(un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀ y ∈ E,

xn+1 = S((1− αn)xn + αnSun),

for all n ∈ N. Then xn ⇀ v ∈ F (S) ∩ EP (f), where v = limn→∞PF (S)∩EP (f)(xn).

Corollary 3.2. Let E be a nonempty closed convex subset of a real Hilbert space H. Let
S be a 2-generalized hybrid self mapping of E with F (S) 6= φ and ‖S2x−Sx‖ ≤ ‖Sx− x‖
for all x ∈ E. Assume that {αn} is sequence in [a, 1] for some a ∈ (0, 1) such that
lim infn→∞ αn(1− αn) > 0. If {xn} and {un} be sequences generated by x = x1 ∈ H and{

un ∈ E such that 〈y − un, un − xn〉 ≥ 0, ∀ y ∈ E,
xn+1 = S((1− αn)xn + αnSun),

for all n ∈ N. Then xn ⇀ v ∈ F (S), where v = limn→∞PF (S)(xn).

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Convergence theorems for a broad class of nonlinear mappings pp.: 3–4

395



Corollary 3.3. Let E be a nonempty closed convex subset of a real Hilbert space H. Let
f be a bifunction from E × E to R satisfying (A1) − (A4) with EP (f) 6= φ. Assume
that {rn} ⊂ (0,∞) satisfies lim infn→∞ rn > 0 and {αn} is sequence in [a, 1] for some
a ∈ (0, 1) such that lim infn→∞ αn(1− αn) > 0. If {xn} and {un} be sequences generated
by x = x1 ∈ H and{

un ∈ E such that f(un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀ y ∈ E,

xn+1 = (1− αn)xn + αnun,

for all n ∈ N. Then xn ⇀ v ∈ EP (f), where v = limn→∞PEP (f)(xn).
Remark 3.4. As previously mentioned, the class of 2-generalized hybrid mappings in-
cludes the classes of nonexpansive, nonspreading, generalized hybrid and hybrid mappings
in a Hilbert space. Hence the Theorems 3.1 and the Corollaries 3.2 and 3.3 hold for these
mappings.
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Convolution condition on n-starlike functions

E. Amini∗

Payame Noor University

Abstract

Let P(γ, β), γ > 0, β < 1 denote the class of analytic function f in the unit disk
normalized by f(0) = 1, f ′(0) = 1 and satisfying the condition

Re
{
eiφ

(
f ′(z) +

1

γ
zf ′′(z) − β

)}
> 0, |z| < 1,

for some φ ∈ R. In this paper consider Sn(α), the class of n-starlike function of
order α, defined by G. S. Salagean (1983) [5] and we find condition on γ, β so that
P(γ, β) ⊆ Sn(α). We take advantage of the Ruscheweh’s Duality theory.

Keywords: Univalent functions, Starlike functions, Hadamard product, Salagean
differential operator.
Mathematics Subject Classification [2010]: 30C45, 30C50

1 Introduction

Let A be the class of functions of the form

f(z) = z +

∞∑

n−2

anz
n. (1)

which are analytic in the open unit disc U = {z ∈ C; |z| < 1} and let S denote the subclass
of functions in A which are univalent in U . Let A0 denote the subclass of analytic functions
in the open unit disk U consisting of functions normalized by f(0) = 1, f ′(0) = 1. For
0 ≤ α < 1, a function f(z) ∈ A is said to be starlike of order ρ in U if it satisfies

Re
{zf ′(z)
f(z)

}
> α, (z ∈ U). (2)

The set of all starlike functions of order α denote by ST (α). Note that ST (0), the class
of starlike function denote by ST (For more details see [1, 2]).

S. Rucheweyh in [3] defined the operator Dn by

Dnf(z) =
z

(1 − z)n+1
∗ f(z), n ∈ N0 f ∈ A.

If f ∈ A is given by (1), then Dnf(z) =
∑∞

k=1 k
nakz

k (see [5]) .

∗Speaker

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Convolution condition on n-starlike functions pp.: 1–4

397



Definition 1.1. [5] For 0 ≤ α < 1 and f ∈ A the class Sn(α), n-starlike function of order
α, is defined by

Sn(α) =
{
f ∈ A : Re

Dn+1f(z)

Dnf(z)
> α z ∈ U

}
.

Note that Sn(0), the class of n-starlike function, denote by Sn, Further S0(α) = ST (α).

For f and g in A, with f(z) = z+
∑∞

n=2 anz
n and f(z) = z+

∑∞
n=2 bnz

n, the convolution
(Hadamard product) of f and g, denoted by f ∗ g, is a function also in A, given by

(f ∗ g)(z) = z +
∞∑

n=2

anbnz
n.

In convolution theory, the concept of Duality is central. For a set

V ⊆ A0 =
{
g : g(z) =

f(z)

z
, f ∈ A

}
,

the dual set is defined as

V ∗ = {g ∈ A0 : (f ∗ g)(z) ̸= 0 for all f ∈ V, z ∈ U}.

Further, the second dual, or dual hull, of V is defined as V ∗∗ = (V ∗)∗. However, V ∗∗ ⊆
(V ∗)∗ . The basic reference to this theory is the book by Ruscheweyh [4].

Note that for f, g ∈ A, Dn(f ∗ g) = Dnf ∗ g = f ∗Dng. Further, for n ∈ N, f ∈ Sn(α)
if and only if Dnf is a starlike function.

Theorem 1.2. [6] The function f is starlike functions of order α in U , if and only if

1

z

(
f ∗

z + x+2α−1
2(1−α) z

2

(1 − z)2

)
̸= 0, |x| = 1.

Theorem 1.3. [4] Let

Vβ =
{
β +

(1 − β)(1 + xz)

1 + yz
: |x| = |y| = 1, β ∈ R, β ̸= 1

}

then
V ∗∗
β =

{
g ∈ A0 : ∃φ ∈ R such that Re

[
eiφ(g(z) − β)

]
> 0, z ∈ U

}
.

Notice that if h ∈ Vβ, h(z) = β + (1 − β)1+xz
1+yz with |x| = |y| = 1, β ∈ R, β ̸= 1, then

h(z) = 1 + (1 − β)(1 − eiψ)
∑∞

k=1(yz)
k, for some ψ ∈ R.

Theorem 1.4. (Duality principle, see [4] ) Let V ⊆ A0 be compact and has the following
property

f ∈ V ⇒ ∀|x| ≤ 1 : fx ∈ V

where fx(z) = f(xz). Then φ(V ) = φ(V ∗∗), for all continuous linear functional φ on A,
and co(V ) ⊆ coV ∗∗. where co stand for the closed convex hull of a set.

In this paper we use the powerful method duality principle in geometric function theory
developed by Rucheweyh [4], and try to find condition on γ, β so that P(γ, β) ⊆ Sn(α).

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Convolution condition on n-starlike functions pp.: 2–4

398



2 Main results

Theorem 2.1. The function f is n-starlike functions of order α in U , if and only if

1

z

(
f ∗

z + x+2α−1
2(1−α) z

2

(1 − z)2
∗ z

(1 − z)n+1

)
̸= 0, n ∈ N0|x| = 1.

Proof. The function f is n-starlike function of order α for all n ∈ N if and only if Dnf is
starlike of order α, Hence by applying Theorem 1.2 we have

1

z

(
Dnf ∗

z + x+2α−1
2(1−α) z

2

(1 − z)2

)
̸= 0, n ∈ N0, |x| = 1, ∀z ∈ U . (3)

Since Dnf(z) = f ∗ z
(1−z)n+1 , we obtain the inequality (2). Hence, this complete the

proof of this theorem.

Corollary 2.2. The function f is n-starlike functions in U , if and only if

1

z

(
f ∗ z + x−1

2 z2

(1 − z)2
∗ z

(1 − z)n+1

)
̸= 0, |x| = 1, n ∈ N0.

Proof. In Theorem 2.1, we set α = 0.

Theorem 2.3. Suppose that γ > 0, β < 1, α < 1 and n ∈ N0. Then P(γ, β) ⊆ Sn(α) if
and only if

Re(F (x, z)) > −1 − α

1 − β
(4)

where

H(x, z) = γ
∞∑

k=1

kn
k(1 + x) + 2(1 − α)

(k + 1)(k + γ)
zn, ∀|x| = 1, n ∈ N0, ∀z ∈ U . (5)

Proof. Let a function f be in the class P(γ, β). If we denote f ′(z) + z
γ f

′′(z) = gγ(z) then

we have gγ ∈ V ∗∗
β . If f(z)

∑∞
k=1 akz

k, a1 = 1, then

f ′(z) +
z

γ
f ′′(z) =

∞∑

k=1

k(k − 1 + γ)

γ
akz

k−1 = gγ(z).

So
f(z)

z
=

∞∑

k=1

akz
k−1 = gγ(z) ∗

∞∑

k=1

γzk−1

k(k − 1 + γ)
,

and we obtain one-to-one correspondence between P(γ, β) and V ∗∗
β . Thus, by Theorem

2.1, P(γ, β) ⊆ Sn(α) if and only if

gγ(z) ∗
∞∑

k=1

γzk−1

k(k − 1 + γ)
∗

1 + x+2α−1
2(1−α) z

(1 − z)2
∗ 1

(1 − z)n+1
̸= 0, ∀gγ ∈ V ∗∗

β ∀|x| = 1, ∀z ∈ U .

(6)
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Let us consider for z ∈ U the continuous linear functional λz : A0 −→ C, such that

λz(h) = h(z) ∗
∞∑

k=1

γzk−1

k(k − 1 + γ)
∗

1 + x+2α−1
2(1−α) z

(1 − z)2
∗ 1

(1 − z)n+1
̸= 0.

By Duality principle we have λz(V ) = λz(V
∗∗
β ). By Theorem 2.3, the inequality (6) holds

if and only if

[
1+ (1−β)(1− eiψ)

∞∑

k=1

zk
]

∗
[
1+

∞∑

k=1

γzk−1

k(k − 1 + γ)

]
∗
[1 + x+2α−1

2(1−α) z

(1 − z)2

]
∗
[

1

(1 − z)n+1

]
̸= 0,

(7)
for all ψ ∈ R, n ∈ N0, |x| = 1 and z ∈ U . Using the properties of convolution we can
reformulate (7) as

γ
∞∑

k=1

kn
k(1 + x) + 2(1 − α)

(k + 1)(k + γ)
zk ̸= − 2(1 − α)

(1 − eiψ)(1 − β)
. (8)

For ψ ∈ R the quantity on the right side of (8) take its values on the line Re w = −1−α
1−β

so (8) is equivalent to (4).
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Derivations on the algebra of operators in Hilbert modules

over locally C*-algebras

Khadijeh Karimi∗

Shahrood University

Kamran Sharifi

Shahrood University

Abstract

Let E be a Hilbert module over a locally-C*-algebra A and LA(E) be the algebra
of all adjointable A-module operators on E. We show that if A is a unital commutative
locally-C*-algebra and b(E), the set of all bounded elements of E, is a full Hilbert
b(A)-module then every derivation on LA(E) is inner. If A be a commutative σ-
C*-algebra with a countable approximate unit and E is full, then every derivation
on LA(E) is a weakly approximately inner derivation. Moreover, the innerness of
derivations on compact operators implies the innerness of derivations on LA(E).

Keywords: Hilbert modules, Locally C*-algebras, Derivations

Mathematics Subject Classification [2010]: 46L08, 46L05, 46L57

1 Introduction

Recall that a derivation of an algebra A is a linear mapping ∆ from A into itself, such
that ∆(ab) = ∆(a)b + a∆(b) for all a, b ∈ A. We say that ∆ is inner if there exists x ∈ A
such that ∆(a) = [a, x] = ax− xa for every a ∈ A. One of the interesting problem in the
theory of derivations is to identify those algebras on which all the derivations are inner,
i.e. the first cohomology group is trivial. The first result of this problem is probably due
to Kaplansky [6] who proved that every derivation of a type I W*-algebra is inner. In
1966, Sakai [8] extended the result of Kaplansky and proved that every derivation of a W*-
algebra is inner. Finally Kadison [5] proved the innerness of derivation on von Neumann
algebras.

A locally C*-algebra is a complete Hausdorff complex topological ∗-algebra A whose
topology is determined by its continuous C*-seminorms in the sense that the net {ai}i∈I

converges to 0 if and only if the net {p(ai)}i∈I converges to 0 for every continuous C*-
seminorm p on A. A σ-C*-algebra is a locally C*-algebra whose topology is determined by
a countable family of C*-seminorms. These algebras were first introduced by Inoue [3] as
a generalization of C*-algebras and appear in the study of certain aspects of C*-algebras
such as tangent algebras of C*-algebras, domain of closed ∗-derivations on C*-algebras,
multipliers of Pedersen’s ideal, noncommutative analogues of classical Lie groups, and
K-theory. Let S(A) be the set of all continuous C*-seminorms on A. For p ∈ S(A),
Ap = A/Np, where Np = {a ∈ A : p(a) = 0} is a C*-algebra in the norm induced by
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p, and for p, q ∈ S(A), p ≥ q there is a canonical morphism πpq from Ap onto Aq such
that πpq(a + Np) = a + Nq, a ∈ A. Then {Ap; πpq}p,q∈S(A),p≥q is an inverse system of C*-
algebras and the locally C*-algebras A and lim←−p

Ap are isomorphic. The canonical map

from A onto Ap will be denoted by πp and ap is reserved to denote a + Np. We denote by
b(A) the set of all elements a ∈ A such that

∥a∥∞ := sup{p(a) : p ∈ S(A)} <∞.

Then b(A) is a C*-algebra with respect to the norm ∥.∥∞ and is dense in A. An approxi-
mate unit of a locally C*-algebra A is an increasing net {ei}i∈I of positive elements of A
such that p(ei) ≤ 1 for all i ∈ I and p ∈ S(A); p(aei − a) → 0 and p(eia− a) → 0 for all
p ∈ S(A) and a ∈ A. Any locally C*-algebra has an approximate unit.

In 1992, R. Becker [1] proved that ifA be a locally C*-algebra such that every derivation
on each C*-quotient of A is inner, then every derivation ∆ on A is approximately inner,
i.e. there exists a net {hi}i∈I in A such that ∆(a) = limi[hi, a] for all a ∈ A. In 1995, N.
C. Phillips [7] improved the previous result of Becker by using interesting techniques. He
dropped the assumption of the innerness of the derivations of the C*-quotient algebras of
A and proved that every derivation of a locally C*-algebra is approximately inner. This
note is devoted to the study of innerness of derivations on the algebra of operators in
Hilbert modules over locally C*-algebras

Let us we present some definitions and basic facts about Hilbert modules over locally
C*-algebras. A (right) pre-Hilbert module over a locally C*-algebra A is a right A-module
E, compatible with the complex algebra structure, equipped with an A-valued inner prod-
uct ⟨·, ·⟩ : E × E → A (x, y) 7→ ⟨x, y⟩, which is A-linear in the second variable y and has
the properties:

⟨x, y⟩ = ⟨y, x⟩∗, and ⟨x, x⟩ ≥ 0 with equality if and only if x = 0.

A pre-Hilbert A-module E is a Hilbert A-module if E is complete with respect to the
topology determined by the family of seminorms {pE}p∈S(A) where pE(ξ) =

√
p(⟨ξ, ξ⟩),

ξ ∈ E. Hilbert modules over locally C*-algebras have been studied systematically in the
book [4]. Denote by ⟨E, E⟩ the closure of the linear span of all ⟨x, y⟩, x, y ∈ E. We call
E is full if ⟨E, E⟩ = A. One can always consider any Hilbert module over locally C*-
algebra A as a full Hilbert module over locally C*-algebra ⟨E, E⟩. Let p ∈ S(A) then
NE

p = {ξ ∈ E; p̄E(ξ) = 0} is a closed submodule of E and Ep = E/NE
p is a Hilbert

Ap-module with (ξ + NE
p )πp(a) = ξa + NE

p and ⟨ξ + NE
p , η + NE

p ⟩ = πp(⟨ξ, η⟩). The

canonical map from E onto Ep will denote by σE
p and ξp ie reserved to denote σE

p (ξ).

For p, q ∈ S(A) with p ≥ q, there is a canonical morphism σE
pq from Ep onto Eq such

that σE
pq(σ

E
p (ξ)) = σE

q (ξ) for all ξ ∈ E. Then {Ep; Ap; σE
pq, πpq}p,q∈S(A),p≥q is an inverse

system of Hilbert C*-modules in the following sense:

• σE
pq(ξpap) = σE

pq(ξp)πpq(ap), ξp ∈ Ep, ap ∈ Ap, p, q ∈ S(A), p ≥ q,

• ⟨σE
pq(ξp), σ

E
pq(ηp)⟩ = πpq(⟨ξp, ηp⟩), ξp, ηp ∈ Ep, p, q ∈ S(A), p ≥ q,

• σE
qr o σE

pq = σE
pr if p, q, r ∈ S(A), p ≥ q ≥ r,

• σE
pp(ξp) = ξp, ξ ∈ E, p ∈ S(A).
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In this case lim←−p
Ep is a Hilbert A-module which can be identified with E. We denote by

b(E) the set of all elements x ∈ E such that

∥x∥∞ := sup{pE(x) : p ∈ S(A)} <∞.

Then b(E) is a Hilbert b(A)-module and is dense in E. Let E and F be Hilbert A-modules
and T : E → F be an A-module map. The module map T is called bounded if for each
p ∈ S(A), there is kp > 0 such that p̄E(Tx) ≤ kp p̄E(x) for all x ∈ E. The module map
T is called adjointable if there exists an A-module map T ∗ : F → E with the property
⟨Tx, y⟩ = ⟨x, T ∗y⟩ for all x ∈ E, y ∈ F. It is well-known that every adjointable A-module
map is bounded. The set LA(E, F ) of all bounded adjointable A-module maps from E
into F becomes a locally convex space with topology defined by the family of seminorms
{p̃}p∈S(A), in which, p̃(T ) = ∥(πp)∗(T )∥LAp (Ep,Fp) and (πp)∗ : LA(E, F ) → LAp(Ep, Fp)

is defined by (πp)∗(T )(ξ + NE
p ) = Tξ + NF

p for all T ∈ LA(E,F ), ξ ∈ E. Let p, q ∈
S(A), p ≥ q and (πpq)∗ : LAp(Ep, Fp) → LAq(Eq, Fq) is defined by (πpq)∗(Tp)(σ

E
q (ξ)) =

σF
pq(Tp(σ

E
p (ξ))). Then {LAp(Ep, Fp); (πpq)∗}p,q∈S(A),p≥q is an inverse system of Banach

spaces and lim←−p
LAp(Ep, Fp) can be identified to LA(E, F ). In particular, topologizing,

LA(E,E) becomes a locally C*-algebra which is abbreviated by LA(E). By definition,
the set of all compact operators KA(E) on E is defined as the closure of the set of all finite
linear combinations of the operators {θx,y : θx,y(ξ) = x⟨y, ξ⟩, x, y, ξ ∈ E}. It is a locally
C*-subalgebra and a two sided ideal of LA(E) and moreover KA(E) may be identified to
lim←−p
KAp(Ep).

Definition 1.1. A derivation ∆ : LA(E) → LA(E) is called weakly approximately inner
if there exists a net {Ti}i∈I in LA(E) such that ∆(A)x = limi[Ti, A]x for all A ∈ LA(E)
and x ∈ E.

Since LA(E) is a locally C*-algebra by [7, Theorem 3], every derivation on LA(E) is
approximately inner and so is a weakly approximately inner. In this paper, We show that
if A is a unital commutative locally-C*-algebra and b(E) is a full Hilbert b(A)-module
then every derivation on LA(E) is inner. We use the concept of approximate unit and
we construct the net {Ti}i∈I in Definition 1.1 for every derivation on LA(E) where A is
a commutative σ-C*-algebra containing a countable approximate unit. Then we extend
some results of the paper [2] in the context of locally C*-algebras and Hilbert modules over
them. Indeed, we show that the innerness of derivations on KA(E) implies the innerness
of derivations on LA(E).

2 Main results

Let A be a σ-C*-algebra which has a countable approximate unit and E be a Hilbert
A-module. If E is full then by [4, lemma 5.2.13], there is a sequence {xn} in E such that
p(

∑n
k=1⟨xk, xk⟩a − a) → 0 for all p ∈ S(A) and a ∈ A. Moreover ∥∑n

k=1⟨xk, xk⟩∥∞ ≤ 1,
for all n and so {∑n

k=1⟨xk, xk⟩}n can be considered as a sequence in b(A).

Lemma 2.1. Let A be a locally C*-algebra and E be a Hilbert A-module. If (an) be a
sequence in b(A) such that p(aan − a) → 0 for all a ∈ A and for all p ∈ S(A) then
p̄E(anx− x)→ 0 for all x ∈ E and for all p ∈ S(A).
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Lemma 2.2. Every derivation of a locally C*-algebra annihilates its center.

Theorem 2.3. Let A be a unital commutative locally-C*-algebra and E be a Hilbert A-
module such that b(E) is a full b(A)-module. Then every derivation on LA(E) is inner.

Theorem 2.4. Let A be a commutative locally-C*-algebra and E be a full Hilbert A-
module which contains a sequence {xn} such that p(

∑n
k=1⟨xk, xk⟩a − a) → 0 for all p ∈

S(A) and a ∈ A. Then for each positive integer n, the map Tn on E defined by Tnx =∑n
k=1 ∆(θx,xk

)xk is an element in LA(E) such that for every derivation ∆ on LA(E),

∆(A)x = limn[Tn,A]x,

for all A ∈ LA(E) and x ∈ E, i.e. ∆ is a weakly approximately inner derivation.

Corollary 2.5. If A is a commutative σ-C*-algebra contaning a countable approximate
unit and E be a full Hilbert A module then every derivation on LA(E) is weakly approxi-
mately inner.

The following theorem states that the innerness of derivations on KA(E) implies the
innerness of derivations on LA(E).

Theorem 2.6. Let A be a commutative σ-C*-algebra with a countable approximate unit
and let E be a full Hilbert A-module. If every derivation on KA(E) is inner, than any
derivation on LA(E) is also inner.
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Disjoint Hypercyclicity of Composition Operators on the

Weighted Dirichlet Spaces

Zahra Kamali∗

Islamic Azad University of Shiraz

Marzieh Monfaredpour

Islamic Azad University of Shiraz

Abstract

In this paper, we discuss about disjoint hypercyclicity of composition operators on
some Weighted Dirichlet spaces.

Keywords: Hypercyclicity, Disjoint hypercyclicity, composition operators, Weighted
Dirichlet spaces.

Mathematics Subject Classification [2010]: 47A16, 47B33, 47B38

1 Introduction

Let X be a topological vector space and T a bounded linear operator on X. The T-orbit
of a vector x ∈ X is the set

O(x, T ) := {Tn(x) : n ∈ N ∪ {0}}.

Definition 1.1. The operator T is said to be hypercyclic if there exists a vector x ∈ X
such that O(x, T ) is dense in X. Such a vector x is said to be hypercyclic vector for T .

It is known that the direct sum of two hypercyclic operators need not be hypercyclic,
see [5]. Finitely many hypercyclic operators acting on a common topological vector space
are called disjoint if their direct sum has a hypercyclic vector on the diagonal of the
product space.

Definition 1.2. For N ≥ 2, the operators T1, T2, ..., TN are called disjoint hypercyclic or
d-hypercyclic if the direct sum T1 ⊕ T2 ⊕ ... ⊕ TN has a hypercyclic vector of the form
(x, x, ..., x) ∈ XN .

Definition 1.3. Let {β(n)}∞n=0 be a sequence of positive numbers with β(0) = 1. The
Weighted Hardy spaceH2(β) is defined as the space of functions f =

∑∞
n=0 f̂(n)zn analytic

on D such that ‖ f ‖2β=
∑∞

n=0 | f̂n |2 β(n)2 < ∞. Let β(n) = (n + 1)ν , where ν is a real
number. These spaces are known as weighted Dirichlet spaces or Sν .

Definition 1.4. Let ϕ be a holomorphic self map of unit disk D. A composition operator
on Sν , Cϕ, is defined by Cϕf = foϕ for all f ∈ Sν .
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Theorem 1.5. (D-Hypercyclicity Criterion) Suppose X is a topological vector space
and T1, T2, ..., TN are bounded linear operator on X. If there exist an increasing sequence of
positive integers {nk} and dense subsets X0, X1, ..., XN of X and mappings Sm,k : Xm →
X where k ∈ N, 1 ≤ m ≤ N , such that

(i) Tnkm → 0 point wise on X0 as k →∞,
(ii)Sm,k → 0 point wise on Xm as k →∞ and
(iii) (Tnki Sm,k − δi,mIdXm)→ 0 point wise on Xm (1 ≤ i ≤ N).
Then T1, T2, ...TN are d-hypercyclic.

Theorem 1.5 was proved in [2]. It is a essential tool for proof of main theorem.

2 Main results

For a positive integer n, the nth iterate of ϕ is denoted by ϕ[n] and when ϕ is invertible
ϕ[−n] is the nth iterate of ϕ−1.

The holomorphic self maps of the unit disk are divided into two classes, elliptic and
non-elliptic functions. The elliptic type is an automorphism and has a fixed point in D.
The non-elliptic one has a unique fixed point p ∈ D, called the Denjoy-Wolff point of ϕ,
which is known as attractive fixed point, that is the sequence of iterates of ϕ, {ϕ[n]}n
converges to p uniformly on compact subsets of D (see [4] for more details).

The following lemma that will be proved is useful in the proof of main theorem:

Lemma 2.1. Let A be a finite set of complex scalars with A∩D = ∅. The set of polynomials
that vanishing m times on A is dense in Sν , where m ∈ N and ν < 1

2 .

Theorem 2.2 is the our main theorem:

Theorem 2.2. Let Cϕ1 , ...CϕN for N ≥ 2 be hypercyclic composition operators on Sν ,
where ϕ1, ..., ϕN are linear fractional transformations and ν < 1

2 . Suppose that for each
1 ≤ l, j ≤ N with l 6= j we have

(ϕ
[−n]
l oϕ

[n]
j )(z)→ γl

as n→∞ and for almost all z ∈ D, where γl is a fixed point of ϕl. Then Cϕ1 , ...CϕN are
d-hypercyclic.

Corollary 2.3. Let Cϕ1 , ...CϕN for N ≥ 2 be hypercyclic composition operators on Sν ,
where ϕ1, ..., ϕN are linear fractional transformations ν < 1

2 . If the attractive fixed points
of ϕ1, ..., ϕN are all distinct, then Cϕ1 , ...CϕN are d-hypercyclic.

Corollary 2.3 is a direct consequence of Theorem 2.3.
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Eigenvalues of Euclidean Distance Matrices and

rs-majorization on R2

Asma Ilkhanizadeh Manesh∗

Department of Pure Mathematics, Vali-e-Asr University of Rafsanjan
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Abstract

Let D1 and D2 be two Euclidean distance matrices (EDMs) with correspond-
ing positive semidefinite matrices B1 and B2 respectively. Suppose that λ(A) =
((λ(A))i)

n
i=1 is the vector of eigenvalues of a matrix A such that (λ(A))1 ≥ . . . ≥

(λ(A))n. In this paper, the relation between the eigenvalues of EDMs and those of the
corresponding positive semidefinite matrices respect to ≺rs, on R2 will be investigated.

Keywords: Euclidean distance matrices, Rs-majorization.

Mathematics Subject Classification [2010]: 34B15, 76A10

1 Introduction

An n × n nonnegative and symmetric matrix D = (d2ij) with zero diagonal elements is
called a predistance matrix. A predistance matrix D is called Euclidean or a Euclidean
distance matrix (EDM) if there exist a positive integer r and a set of n points {p1, . . . , pn}
such that p1, . . . , pn ∈ Rr and d2ij = ‖pi − pj‖2 (i, j = 1, . . . , n), where ‖.‖ denotes the
usual Euclidean norm. The smallest value of r that satisfies the above condition is called
the embedding dimension. As is well known, a predistance matrix D is Euclidean if and

only if the matrix B = −1
2 PDP with P = In−

1

n
eet, where In is the n×n identity matrix,

and e is the vector of all ones, is positive semidefinite matrix. Let Λn be the set of n× n
EDMs, and Ωn(e) be the set of n× n positive semidefinite matrices B such that Be = 0.

Then the linear mapping τ : Λn → Ωn(e) defined by τ(D) =
−1

2
PDP is invertible, and its

inverse mapping, say κ : Ωn(e) → Λn is given by κ(B) = bet + ebt− 2B with b = diag(B),
where diag(B) is the vector consisting of the diagonal elements of B. For general refrence
on this topic see, e.g. [1].

Majorization is one of the vital topics in mathematics and statistics. It plays a basic
role in matrix theory. One can see some type of majorization in [2]-[13]. In this paper,
the relation between the eigenvalues of EDMs and those of the corresponding positive
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semidefinite matrices respect to ≺rs on R2 will be investigated. An nonnegative matrix R
is called row stochastic if the sum of entries of each row of R is equal to one.

The following notation will be fixed throughout the paper.
Co(A) := {∑m

i=1 λiai | m ∈ N, λi ≥ 0,
∑m

i=1 λi = 1, ai ∈ A, i ∈ Nm},
for a subset A ⊂ Rn;
Sgn{α} be 1 if α > 0 and be −1 if α < 0, Sgn{0} can be 1 or −1;
[T ] be the matrix representation of a linear function T : Rn → Rn with respect to the
standard basis;
ri be the sum of entries on the ith row of [T ].
A linear function T : Rn −→ Rn is said to be a linear preserver (strong linear preserver)
of ∼ if T (x) ∼ T (y) whenever x ∼ y (T (x) ∼ T (y) if and only if x ∼ y).

1.1 Rs-majorization

We introduce the relation ≺rs on Rn and we state some properties of rs-majorization on
R2.

Definition 1.1. A matrix R ∈Mn with nonnegative entries is called row stochastic if the
sum of entries of each row of R is equal to one.

Definition 1.2. For two real vector x and y, we say that x is rs-majorized by y (denoted
by x ≺rs y) if there exists an n-by-n row stochastic matrix R with all its column entries
equal such that x = Ry.

In this paper, we consider this relation on R2. The following proposition gives an
equivalent condition for rs-majorization on R2.

Proposition 1.3. Let x = (x1, x2)
t, y = (y1, y2)

t ∈ R2. Then x ≺rs y if and only if
x1 = x2 ∈ C{y1, y2}.

Here we state all (resp. strong) linear preservers of ≺rs on R2.

Theorem 1.4. Let T : R2 → R2 be a linear function, and let [T ] =
(
a b
c d

)
. Then T

preserves ≺rs if and only if r1 = r2, Sgn{a} = Sgn{d} 6= Sgn{b} = Sgn{c}.

Theorem 1.5. A linear function T : R2 → R2 strongly preserves ≺rs if and only if
[T ] = αI for some α ∈ R \ {0}.

2 Main results

Till the end of this section, the relation between the eigenvalues of EDMs and those of the
corresponding positive semidefinite matrices respect to ≺rs on R2 will be specify.

Theorem 2.1. Let B, B̃ ∈ Ω2(e), and let D = κ(B) and D̃ = κ(B̃). Then
λ(B) ≺rs λ(B̃) ⇐⇒ λ(D) ≺rs λ(D̃)
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Proof. Since B, B̃ ∈ Ω2(e), there exist α,β ≥ 0 such that B =
(
α −α
−α α

)
, B̃ =

(
β −β
−β β

)
, and

{0, 2α} and {0, 2β} are the set of eigenvalues of B and B̃, respectively. By the definition of
κ, D =

(
0 4α
4α 0

)
and D̃ =

(
0 4β
4β 0

)
. So {−4α, 4α} and {−4β, 4β} are the set of eigenvalues

of D and D̃, respectively.
We see that λ(B) ≺rs λ(B̃) if and only if B = 0. Also, if λ(D) ≺rs λ(D̃) if and only if
D = 0. Hence λ(B) ≺rs λ(B̃) if and only if λ(D) ≺rs λ(D̃).
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Existence of three solutions for a problem involving the

p(x)-Laplacian

Fariba Fattahi∗

University of Mazandaran
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Abstract

In this article, we study p(x)−Laplacian problem on a bounded domain and obtain
three solutions under appropriate hypotheses. The technical approach is mainly based
on the three critical points theorem obtained by Ricceri.

Keywords: three solutions, p(x)−Laplacian
Mathematics Subject Classification [2010]: 35J65, 35J60, 47J30, 58E05

1 Introduction

Variational-hemivariational inequalities have been extensively studied in recent years via
variational methods: in (cf. [2]), Bonanno and Candito studied a class of variational-
hemivariational inequalities; in (cf. [6]), Kristály studied hemivariational inequalities
on an unbounded strip-like domain; In (cf. [1]), Alimohammady studied variational-
hemivariational inequality on bounded domains by using the mountain pass theorem and
the critical point theory for Motreanu-Panagiotopoulos type functionals.

In this paper we study the following nonlinear differential inclusion with p(x)−Laplacian
{
−∆p(x)u = −µg(x, u) in Ω

−|∇u|p(x)−2 ∂u
∂ν ∈ −λ∂F (x, u) on ∂Ω,

(1)

where Ω ⊂ RN (N ≥ 2) is a bounded smooth domain, ∂u∂ν is the outer unit normal derivative
on ∂Ω, p : Ω̄→ R is a continuous function satisfying

1 < p− = min
x∈Ω̄

p(x) ≤ p(x) ≤ p+ = max
x∈Ω̄

p(x) < +∞,

and λ ∈ [0,∞). F : ∂Ω × R → R is a function such that F (·, u) is measurable for every
u ∈ R and F (x, ·) is locally Lipschitz for a.e. x ∈ ∂Ω. Also ∂F (x, u) denotes the generalized
Clarke gradient of F (x, u) at u ∈ R.
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Moreover, g : Ω× R→ R is a Carathéodory function and G(x, u) =
∫ u
0 g(x, t)dt.

The generalized Lebesgue-Sobolev space WL,p(x)(Ω) for L = 1, 2, ... is defined as

WL,p(·)(Ω) = {u ∈ Lp(·)(Ω) : Dαu ∈ Lp(·)(Ω), |α| ≤ L},

where Dαu = ∂|α|
∂α1x1···∂αnxn with α = (α1, α2, · · ·, αN ) is a multi-index and |α| = ΣNi=1αi.

In this paper, we denote by X =W 1,p(x)(Ω) and X? the dual space.
For a locally Lipschitz function h : X → R we define the generalized directional derivative
of h at u ∈ X in the direction γ ∈ X by

h0(u; γ) = lim sup
w→u,t→0+

h(w + tγ)− h(w)
t

.

The generalized gradient of h at u ∈ X is defined by

∂h(u) = {x? ∈ X? : < x?, γ >X≤ h0(u; γ), ∀γ ∈ X},

which is a nonempty, convex and w?−compact subset of X?, where < ·, · >X is the duality
pairing between X? and X.

Lemma 1.1. (cf. [3]) Let h, g : X → R be a locally Lipschitz function. Then we have:
(i) h0(u; ·) is subadditive, positively homogeneous.
(ii) (−h)0(u; z) = h0(u;−z), ∀u, z ∈ X.
(iii) h0(u; v) = max{< ξ, v > : ξ ∈ ∂h(u)}, ∀v ∈ X.
(iv) (h+ g)0(u; v) ≤ h0(u; v) + g0(u; v), ∀v ∈ X.

Lemma 1.2. (cf. [4]) For p, q ∈ C+(Ω) such that q(x) ≤ p∗L(x) for all x ∈ Ω, there is a
continuous embedding

WL,p(x)(Ω) ↪→ Lq(x)(Ω).

If we replace ≤ with <, the embedding is compact.

Theorem 1.3. (cf. [5]) Let X be a separable and reflexive Banach space, Λ be a real
interval, B a nonempty, closed, convex subset of X. φ ∈ C1(X,R) a sequentially weakly
l.s.c. functional, bounded on any bounded subset of X, such that φ′ is of type (S)+,
F : X → R a locally Lipschitz functional with compact gradient. Assume that:
(i) lim‖u‖→+∞[φ− λF ] = +∞, ∀λ ∈ Λ,
(ii)There exists ρ0 ∈ R such that

sup
λ∈Λ

inf
u∈X

[φ+ λ(ρ0 −F(u))] < inf
u∈X

sup
λ∈Λ

[φ+ λ(ρ0 −F(u))].

Then, there exist λ1, λ2 ∈ Λ (λ1 < λ2) and σ > 0 such that, for every λ ∈ [λ1, λ2] and
every locally Lipschitz functional G : X → R with with compact gradient, there exists
µ1 > 0 such that for every µ ∈]0, µ1[ the functional φ− λF + µG has at least three critical
points whose norms are less than σ.
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2 Main results

Remark 2.1. (i) By the proposition (1.2) there is a continuous and compact embedding
of W 1,p(x)(Ω) into Lq(x) where q(x) < p∗(x) for all x ∈ Ω.
(ii) Define

‖u‖ = inf{λ > 0 :

∫

Ω
|∇u
λ
|p(x)dx ≤ 1},

is a norm on W 1,p(x)(Ω).

Theorem 2.2. Every critical point of the functional I is a solution of Problem (1).

Theorem 2.3. Let Ω, p, F be as mentioned. Then, there exist λ1, λ2 > 0(λ1 < λ2) and
σ > 0 such that for every λ ∈ [λ1, λ2] and every G as above, satisfying G, there exists
µ1 > 0 such that for every µ ∈]0, µ1[ problem (1) admits at least three solutions whose
norms are less than σ.
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Fekete-Szego Problem for New Subclasses of Univalent

Functions with bounded positive real part
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Abstract

In this paper we solve Fekete-Szego problem for Mλ(α, β) in the open unit disk ∆
which maps ∆ onto the strip domain ω with α < Reω < β.

Keywords: Univalent functions, Fekete-Szego Problem, Subordination.
Mathematics Subject Classification [2010]: 30C45

1 Introduction

Let A denote the class of functions f(z) of the form :

f(z) = z +
∞∑

n=2

anz
n (1)

which are analytic in the open unit disck ∆ = {z ∈ C : |z| < 1}. The subclass of A,
Consisting of all univalent functions f(z) in ∆ is denoted by S.
Let f and g be analytic in ∆. The function f is subordinate to g, written f ≺ g or
f(z) ≺ g(z), if there exists an analytic function ω such that ω(0) = 0, |ω(z)| < 1, and
f(z) = g(ω(z)) on ∆.
Authors in [1,3] proved Fekete-Szego problem for subclasses of univalen functions, In this
paper we introdused new subclasses of univalent functions and we solved Fekete-Szego
problem for the subclasses. We denoted the subclasses with Mλ(α, β).

2 Main results

To prove our main results we shall need the following definitions and lemmas.

Definition 2.1. : Let α and β be real numbers such that 0 ≤ α < 1 < β. The function
f ∈ A belongs to the class ν(α, β) satisfies the following inequality;

α < Re{( z

f(z)
)2f

′
(z)} < β (z ∈ ∆). (2)
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Definition 2.2. : Let α and β be real numbers such that 0 ≤ α < 1 < β. The function
f ∈ A belongs to the class ω(α, β) satisfies the following inequality;

α < Re{ 1

f ′(z)
(
zf
′′
(z)

f ′(z)
+ 1)} < β (z ∈ ∆). (3)

Definition 2.3. : Let α and β be real numbers such that 0 ≤ α < 1 < β. The function
f ∈ A belongs to the class Mλ(α, β) satisfies the following inequality;

α < Re{(1− λ)(
z

f(z)
)2f

′
(z) +

λ

f ′(z)
(
zf
′′
(z)

f ′(z)
+ 1)} < β (z ∈ ∆). (4)

Remark 2.4. we note that M0(α, β) = ν(α, β) and M1(α, β) = ω(α, β).

Now, we define an analytic function Sα,β(z) : ∆ −→ C by

Sα,β(z) = 1 +
β − α
π

ilog(
1− e

2πi
1− α
β − αz

1− z ) (5)

due to Kuroki and Owa[4] and they proved Sα,β(z) maps ∆ onto a convex domain ω with
α < Re(ω) < β, conformaly. Using this fact and the definition of subordination, we can
obtain the following lemmas, directly:

Lemma 2.5. Let f ∈ A and 0 ≤ α < α < 1 < β, Then f ∈Mλ(α, β) if and only if

(1− λ)(
z

f(z)
)2f

′
(z) +

λ

f ′(z)
(
zf
′′
(z)

f ′(z)
+ 1) ≺ 1 +

β − α
π

ilog(
1− e

2πi
1− α
β − αz

1− z ) (6)

By taking λ = 0 and λ = 1, we state the following lemmas respectively:

Lemma 2.6. Let f ∈ A, Then f ∈ ν(α, β) if and only if

(
z

f(z)
)2f

′
(z) ≺ 1 +

β − α
π

ilog(
1− e

2πi
1− α
β − αz

1− z ) (7)

where α < 1, β > 1.

Lemma 2.7. Let f ∈ A, Then f ∈ ω(α, β) if and only if

1

f ′(z)
(
zf
′′
(z)

f ′(z)
+ 1) ≺ 1 +

β − α
π

ilog(
1− e

2πi
1− α
β − αz

1− z ) (8)

where α < 1, β > 1.
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We note that

Sα,β(z) = 1 +
β − α
π

ilog(
1− e

2πi
1− α
β − αz

1− z ) = 1 +

∞∑

n=1

Bnz
n, (9)

where

Bn =
2(β − α)

nπ
sin

nπ(1− α)

β − α (n = 1, 2, 3...). (10)

Using the subordination 6 and applying following lemma due to Rogosinski [6] we solve
Fekete-szego problem for f ∈Mλ(α, β).

Lemma 2.8. Let P (z) =
∑∞

n=1Anz
n and Q(z) =

∑∞
n=1Bnz

n be analytic in ∆, if P (z) ≺
Q(z) (z ∈ ∆), then

m∑

k=1

|Ak|2 ≤
m∑

k=1

|Bk|2, (m = 1, 2, 3, ...).

Theorem 2.9. If the function f(z) = z +
∑∞

n=2 anz
n ∈Mλ(α, β) then

|(1 + 2λ)a3 − (1 + 3λ)a22| ≤
β − α
π

sin
2π(1− α)

β − α (11)

Proof. Let

P (z) = (1− λ)(
z

f(z)
)2f

′
(z) +

λ

f ′(z)
(
zf
′′
(z)

f ′(z)
+ 1)

= 1 + (a3 − a22 + 2λa3 − 3λa22)z
2 + (2a4 − 4a2a3 + 6λa4 − 18λa2a3 + 18λa32)z

3 + ...

and

Sα,β(z) = 1 +
∞∑

n=1

Bnz
n

where Bn is as in 10. Applying lemma 2.8, we can get the results as asserted.

when λ = 0 and λ = 1 we state the following corollaries respectively:

Corollary 2.10. If the function f(z) = z +
∑∞

n=2 anz
n ∈ ν(α, β), then

|a3 − a22| ≤
β − α
π

sin
2π(1− α)

β − α .

Corollary 2.11. If the function f(z) = z +
∑∞

n=2 anz
n ∈ ω(α, β), then

|a3 −
4

3
a22| ≤

1

3

β − α
π

sin
2π(1− α)

β − α .
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Abstract

In this paper, we introduce the non-Archimedean Menger PM-space, Φ-functions,
intuitionistic probabilistic metric space and then prove fixed point theorems for family
of self-mapping and generalized contraction mapping.
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1 Introduction

The triangular norm (t-norm) and the triangular conorm (t-conorm) originated from the
studies of probabilistic metric spaces [5, 6] in which triangular inequalities were extended
using the theory of t-norm and t-conorm. Non-Archimedean probabilistic metric spaces
first studied by Isratescu and Crivat [3]. Some fixed point theorems for mappings on non-
Archimedean Menger spaces have been proved by Isratescu [1, 2]. Menger [5] initiated
the study of probabilistic metric space in 1942 and by now the theory of probabilistic
metric spaces has already made a considerable progress in several directions. Kutukcu et.
al. [4] introduced the notion of intuitionistic Menger spaces with the help of t-norms and
t-conorms as a generalization of Menger space due to Menger [5].

Definition 1.1. A t-norm is a binary operation ∗ : [0, 1] × [0, 1] → [0, 1] which is commu-
tative, associative, nondecreasing for each variable and a ∗ 1 = a, for all a ∈ [0, 1].

Definition 1.2. A distance distribution function is a function F : [0,∞] → [0, 1], that is
non-decreasing and left continuous on R, moreover, F (0) = 0 and F (∞) = 1.
The set of all the distance distribution functions (d.d.f.) is denoted by △+. In particular

for every x0 ≥ 0, εx0 is the d.d.f. defined by εx0 =

{
1 if x > x0,

0 if x ≤ x0.

Definition 1.3. Let X be a non-empty set. A non-Archimedean Menger PM-space is an
ordered triple (X,F, ∗) where ∗ is a t-norm and F is a function from X × X into △+.
satisfying the following conditions: Fx,y(t) = 1, t > 0, if and only if x = y; Fx,y(t) =
Fy,x(t); Fx,y(0) = 0 and Fx,y(max{t, s}) ≥ Fx,z(t) ∗ Fz,y(s), for all x, y, z ∈ X, s, t ≥ 0.
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2 Main results

Definition 2.1. We denoted by Φ the class of all Φ-functions ϕ : R → R if:
ϕ(t) = 0 if and only if t = 0; ϕ(t) is strictly monotone increasing and ϕ(t) → ∞ as t → ∞;
ϕ is left continuous in (0,∞) and continuous at 0.

Theorem 2.2. Let (X,F, ∗) be a G-complete PM -Menger space endowed with minimum
t-norm and {Tα}α∈J be a family of self-mapping of X. If there exists a fixed β ∈ J such
that for each α ∈ J

1

FTαx,Tβy(ϕ(λt))
− 1 ≤ λmax{(

1

Fx,y(ϕ(t))
− 1), (

1

Fx,Tαx(ϕ(t))
− 1)

,(
1

Fy,Tβy(ϕ(t))
− 1), (

1

Fx,Tβy(ϕ(t))
− 1), (

1

Fy,Tαx(ϕ(2t))
− 1)} (1)

for some λ = λ(α) and for each x, y ∈ X,t > 0. Then all Tα have a unique common fixed
point in X and at this point each Tα is continuous.

Theorem 2.3. Let (X,F, ∗) be a complete non-Archimedean PM -Menger space endowed
with minimum t-norm and {Tα}α∈J be a family of self-mapping of X. If there exists a
fixed β ∈ J such that for each α ∈ J

1

FTαx,Tβy(ϕ(λt))
− 1 ≤ λmax{(

1

Fx,y(ϕ(t))
− 1), (

1

Fx,Tαx(ϕ(t))
− 1)

,(
1

Fy,Tβy(ϕ(t))
− 1), (

1

Fx,Tβy(ϕ(t))
− 1), (

1

Fy,Tαx(ϕ(t))
− 1)} (2)

for some λ = λ(α) and for each x, y ∈ X, t > 0. Then all Tα have a unique common fixed
point in X and at this point each Tα is continuous.

Theorem 2.4. Let (X,F, ∗) be a G-complete PM -Menger space endowed with minimum
t-norm. The following property is equivalent to completeness of X :
If Y is any non-empty closed subset of X and T : Y → Y is any generalized contraction
mapping then T has a fixed point in Y .

Definition 2.5. A binary operation ♢ : [0, 1] × [0, 1] → [0, 1] is continuous t-conorm if ♢
is commutative, associative, nondecreasing for each variable and a♢0 = a for all a ∈ [0, 1].

Definition 2.6. A non-distance distribution function is a function L : [0,∞] → [0, 1],
that is non-increasing and left continuous on [0,∞], moreover, L(0) = 1 and L(∞) = 0.
The family of all non-distance distribution functions (n.d.f.) is denoted by Γ+. In partic-

ular for every x0 ≥ 0, ζx0 is the n.d.f. defined by ζx0 =

{
0 if x > x0,

1 if x ≤ x0.

The collection of all pairs (s1, s2) ∈ △+ × Γ+ such that s1 + s2 ≤ 1 will be denoted by
Λ. We denote its unit by 1Λ = (ε0, ζ0).

Definition 2.7. An intuitionistic probabilistic metric space (abbreviated, IPM -space) is
an ordered pair (X,µ), where X is a non-empty set and µ : X × X → Λ is defined by
µ(p, q) = (F (p, q), L(p, q))(µ(p, q) is denoted by µp,q), satisfies the conditions:
µpq(t) = 1Λ(t), iff p = q; µpq(t) = µqp(t) and if µpq(t) = 1Λ(t) and µqr(s) = 1Λ(s), then
µpr(s+ t) = 1Λ(s+ t) for every p, q, r ∈ X and t, s ≥ 0.
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Definition 2.8. A triangular norm (briefly, t-norm) on L∗ is a mapping T : (L∗)2 → L∗

satisfying the following conditions for all a, b, c, d ∈ L∗: T (a, 1L∗) = a; T (a, b) = T (b, a);
T (a, T (b, c)) = T (T (a, b), c) and if a ≤L∗ c and b ≤L∗ d, then T (a, b) ≤L∗ T (c, d), where
L∗ = {(a1, a2) : a1, a2 ∈ [0, 1] and a1 + a2 ≤ 1} and 1L∗ = (1, 0).

Definition 2.9. A continuous t-norm T on L∗ is called continuous t-representable iff
there exist a continuous t-norm T and a continuous t-conorm S on [0, 1] such that, for all
a = (a1, a2), b = (b1, b2) ∈ L∗, T (a, b) = (T (a1, b1), S(a2, b2)).

Definition 2.10. An intuitionistic Menger space is a triple (X,µ, T ), where (X,µ) is
IPM -space and T is a continuous t-representable such that for all p, q, r ∈ X and for all
t, s ≥ 0, µpq(t+ s) ≥L∗ T (µpr(t), µrq(s)).

Definition 2.11. A function ψ(t) : [0,∞) → [0,∞) is saied to be a Ψ-function if:
ψ(t) is strictly increasing; ψ(0) = 0 and lim

n→∞
ψn(t) = ∞ for all t > 0.

Theorem 2.12. Let (X,µ, T ) be a complete IPM -space. Let T : X → X be a mapping
satisfying the following conditions:
(i) there exists x0 ∈ X such that

lim
t→∞

Fx0,T ix0
(t) = 1 and lim

t→∞
Lx0,T ix0

(t) = 0, i = 1, 2, ...; (3)

(ii) there exists a mapping m : X → N such that for any x, y ∈ X,

FT m(x)x,T m(x)y(t) ≥ Fx,y(ψ(t)) and LT m(x)x,T m(x)y(t) ≤ Lx,y(ψ(t)), (4)

where the function ψ is a Ψ-function and lim
t→∞

[ψ(t) − t] = ∞.

Then T has a unique fixed point x∗, and the quasi-iterative sequence {xn : Tm(xn−1)xn−1}
converges to x∗.

Corollary 2.13. Let (X,µ, T ) be a complete IPM -space. Let T : X → X be a mapping
satisfying the following conditions:
(i) there exists x0 ∈ X such that

lim
t→∞

Fx0,T ix0
(t) = 1 and lim

t→∞
Lx0,T ix0

(t) = 0, i = 1, 2, ...;

(ii) there exists a mapping m : X → N such that for any x, y ∈ X,

FT m(x)x,T m(x)y(t) ≥ Fx,y(
t

k
) and LT m(x)x,T m(x)y(t) ≤ Lx,y(

t

k
),

where 0 < k < 1. Then the conclusion of Theorem 2.11 remains true.

Corollary 2.14. Let (X,µ, T ) be a complete IPM -space. Let T : X → X be a mapping.
If there exists a mapping m : X → N such that for any x, y ∈ X,

FT m(x)x,T m(x)y(t) ≥ Fx,y(ψ(t)) and LT m(x)x,T m(x)y(t) ≤ Lx,y(ψ(t)),

where the function ψ is a Ψ-function and lim
t→∞

[ψ(t) − t] = ∞. Then T has a unique fixed

point x∗, and the iterative sequence {Tnx} converges to x∗ for every x ∈ X.
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Theorem 2.15. Let (X,µ, T ) be a complete IPM -space with t∗t ≥ t and (1−t)♢(1−t) ≤
(1 − t) for all t ∈ [0, 1], and T : X → X be a continuous mapping satisfying

FTx,Ty(.) > Fx,Tx(.) ∗ Fy,Ty(.) ∗ Fx,y(.) , LTx,Ty(.) < Lx,Tx(.)♢Ly,Ty(.)♢Lx,y(.) (5)

for all x ̸= y. If there exists x0 ∈ X such that {Tnx0}∞
n=0 has an accumulation point

x∗ ∈ X, and

FT n−1x0,T nx0
(t) ≤ FT nx0,T n+1x0

(t) , LT n−1x0,T nx0
(t) ≥ LT nx0,T n+1x0

(t), ∀t > 0, n = 1, 2, ...
(6)

then x∗ is the unique fixed point of T , and lim
n→∞

Tnx0 = x∗.
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In this paper, we introduce Ciric-type-generalized ϕ-probabilistic contraction in
probabilistic Menger spaces. We derive some results about existence and uniqueness
of a fixed point for this classe of self mappings in probabilistic Menger spaces.
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1 Introduction and Preliminaries

Probabilistic metric space (abbreviated, PM space) has been introduced and studied in
1942 by Karl Menger in [4]. The idea of Menger was to use distribution functions instead of
nonnegative real numbers as values of the metric. The notion of a PM space corresponds to
the situation when we do not know exactly the distance between two points, we know only
probabilities of possible values of this distance. In fact the study of such spaces received an
impetus with the pioneering works of Schweizer and Sklar [5] and [6]. Recently, the study
of fixed point theorems in PM spaces is also a topic of recent interest and forms an active
direction of research. Sehgal et al. [7] made the first ever effort in this direction. Since
then several authors have already studied fixed point and common fixed point theorems
in PM spaces. Next we shall recall some well-known definitions and results in the theory
of PM spaces which are used later on in this paper. For more details, we refer the reader
to [2] and [5].

Definition 1.1. A probabilistic metric space (abbreviated, PM -space) is an ordered pair
(X,F ), where X is a nonempty set and F : X × X → D+ (F (p, q) is denoted by Fp,q)
where D+ is the family of all distribution functions on R, satisfies the following conditions:

Fp,q = ε0, where ε0(t) =

{
0 t ≤ 0,
1 t > 0.

, iff p = q; Fp,q(t) = Fq,p(t); if Fp,q(t) = 1 and

Fq,r(s) = 1, then Fp,r(t+ s) = 1; for every p, q, r ∈ X and t, s ≥ 0.

Definition 1.2. A mapping ∆ : [0, 1]× [0, 1] → [0, 1] is called a triangular norm (abbre-
viated, t-norm) if the following conditions are satisfied: ∆(a, b) = ∆(b, a); ∆(a,∆(b, c)) =
∆(∆(a, b), c); ∆(a, b) ≥ ∆(c, d) whenever a ≥ c and b ≥ d; ∆(a, 1) = a; for every
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a, b, c, d ∈ [0, 1]. Two typical examples of continuous t-norm are ∆p(a, b) = ab and
∆m(a, b) = min{a, b}. It is evident that, as regards the pointwise ordering, ∆ ≤ ∆m,
for each t-norm ∆.

Definition 1.3. A t-norm ∆ is said to be of Hadžić type (abbreviated, H-type) if the
sequence of functions (∆n(a)) is equicontinuous at a = 1.

The t-norm ∆m is a trivial example of a t-norm of H-type, but there are t-norms ∆
of H-type with ∆ 6= ∆m, see [2]. It is easy to see that if ∆ is of H-type, then ∆ satisfies
supa∈(0,1) ∆(a, a) = 1.

Definition 1.4. A probabilistic Menger space is a triplet (X,F,∆), where (X,F ) is PM
space and ∆ is a t-norm such that for all p, q, r ∈ X and for all t, s ≥ 0,

Fp,r(t+ s) ≥ ∆(Fp,q(t), Fq,r(s)).

The probabilistic version of the classical Banach contraction principle, was first studied
in 1972 by Sehgal and Bharucha-Reid [7].

Theorem 1.5. [7] Let (X,F,∆m) be a complete probabilistic Menger space. If T is a
contraction mapping of X into itself, that is

FTp,Tq(cx) ≥ Fp,q(x) ∀x > 0, p, q ∈ X.

Then there is a unique x∗ ∈ X such that Tx∗ = x∗. Moreover, {Tnx0} converges to x∗

for each x0 ∈ X.

Definition 1.6. [2] Let (X,F ) be a PM space. For every x0 ∈ X let O(x0, T ) = {Tnx0 :
n ∈ N∪{0}}. The set O(x0, T ) is the orbit of the mapping T : X → X at x0. Let DO(x0,T ) :
R → [0, 1] be a diameter of O(x0, T ), i.e, DO(x0,T )(x) = sups<x infu,v∈O(x0,T ) Fu,v(s). If
supx∈RDO(x0,T )(x) = 1, then the orbit O(x0, T ) is a probabilistic bounded subset of X.
Hence O(x0, T ) is a probabilistic bounded set if and only if DO(x0,T ) ∈ D+. Also, X is
said to be T -orbitally complete if for all x ∈ X, O(x, T ) is complete.

In recent years, a number of generalizations of the Banach contraction principle have
appeared. Of all these, the following generalization of ciric [1] stands at the top.

Theorem 1.7. [1] Let (X,F,∆m) be a complete probabilistic Menger space. If T : X → X
is generalized contraction mapping on X, that is there exists a constant 0 < c < 1 such
that for every u, v ∈ X

FTu,Tv(cx) ≥ min{Fu,v(x), Fu,Tu(x), Fv,Tv(x), Fu,Tv(x), FTu,v(x)},

for all x > 0, and X is T -orbitally complete. Then there is a unique x∗ ∈ X such that
Tx∗ = x∗. Moreover, {Tnx0} converges to x∗ for each x0 ∈ X.

Theorem 1.8. [3]Let (X,F,∆) be a complete probabilistic Menger space under a t-norm
∆ of H-type. Let T : X → X be a generalized ϕ-probabilistic contraction, that is,

FTp,Tq(ϕ(x)) ≥ Fp,q(x) ∀x > 0, ∀p, q ∈ X. (1)

where ϕ : R+ → R+ be a mapping such that, for any t > 0, 0 < ϕ(t) < t and lim
n→∞

ϕn(t) =

0. Then, there is a unique x∗ ∈ X such that Tx∗ = x∗. Moreover, {Tnx0} converges to
x∗ for each x0 ∈ X.
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Definition 1.9. Let (X,F,∆) be a probabilistic Menger space and T : X → X. We say
that T is Ciric-type-generalized ϕ-probabilistic contraction if for every u, v ∈ X and x > 0

FTu,Tv(ϕ(x)) ≥ min{Fu,v(x), Fu,Tu(x), Fv,Tv(x), Fu,Tv(x), FTu,v(x)}, (2)

where ϕ : R+ → R+ is a mapping.

The following example shows that a Ciric-type-generalized ϕ-probabilistic contraction
need not be a generalized ϕ-probabilistic contraction.

Example 1.10. Let X = [0,∞), T : X → X be defined by Tx = x + 1, and let
ϕ : [0,∞)→ [0,∞) be defined by

ϕ(x) =

{
x

1+x 0 ≤ x ≤ 1,

x− 1 1 < x.

For each p, q ∈ X, let Fp,q(x) = ε0(x − |p − q|) for all x ∈ R. Then, since max{|p − q −
1|, |q−p−1|} = |p−q|+1 for all p, q ∈ X, we have FTp,Tq(ϕ(x)) ≥ min{Fp,Tq(x), FTp,q(x)}.
Thus,

FTp,Tq(ϕ(x)) ≥ min{Fp,q(x), Fp,Tp(x), Fq,T q(x), Fp,Tq(x), FTp,q(x)}.
which satisfies (2). If x = 2, p = 0 and q = 3

2 , then FT0,T 3
2
(ϕ(2)) = 0 and F0, 3

2
(2) = 1.

Thus, FT0,T 3
2
(ϕ(2)) < F0, 3

2
(2), which does not satisfy (1).

2 Main results

Now we state and prove our main results about existence and uniqueness of the fixed point
for Ciric-type-generalized ϕ-probabilistic contraction in complete probabilistic Menger
space under certain conditions.

Theorem 2.1. Let (X,F,∆) be a complete probabilistic Menger space and let T : X → X
be a continuous Ciric-type-generalized ϕ-probabilistic contraction map such that ϕ is a
bijective mapping, 0 < ϕ(t) < t and lim

n→∞
ϕn(t) = 0 for each t > 0. If there exists x0 ∈ X

with the bounded orbit, then there is a unique x∗ ∈ X such that Tx∗ = x∗. Moreover,
{Tnx0} converges to x∗.

The above theorem has been proved by Ume in 2011 [8], for probabilistic Menger space
(X,F,∆m) with more conditions.

Theorem 2.2. Let (X,F,∆) be a complete Menger space and let the self-maps T and S
satisfy the contractive condition

FTu,Tv(ϕ(x)) ≥ min{FSu,Sv(x), Fu,Tu(x), Fv,Tv(x), FSu,Tv(x), FTu,Sv(x)}, u, v ∈ X,

where ϕ : R+ → R+ is a mapping the same as in Theorem 2.1. If TX ⊆ SX and SX is
a complete subset of X, then T and S have a unique concidence point in X. Moreover, if
T and S are weakly compatible (i.e, they commut at their concidence points), then T and
S have a unique common fixed point.
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Example 2.3. Let X = [−1, 1] with the usual metric and T : X → X and ϕ : [0,∞) →
[0,∞) be mappings defined as follows:

T (x) =





0 −1 ≤ x < 0,

x
1+x 0 ≤ x ≤ 4

5 or 7
8 < x ≤ 1,

−1
16 x

4
5 ≤ x ≤ 7

8 ,

ϕ(x) =





x− x2

8 0 ≤ x ≤ 1,

7
8x 1 < x,

and Fp,q(x) = ε0(x − |p − q|) for all x ∈ R, p, q ∈ X. It is easy to see that all of the
assumptions of Theorem 2.1 are satisfied, and so T has a unique fixed point (x = 0 is a
unique fixed point of T ). On the other hand, we can show that T does not satisfy (1).

Theorem 2.4. Let (X,F,∆) be a complete probabilistic Menger space. Suppose T : X →
X is a mapping satisfying, for all t > 0 and u, v ∈ X

FTu,Tv(α(t)t) ≥ min{Fu,v(x), Fu,Tu(x), Fv,Tv(x), Fu,Tv(x), FTu,v(x)},

where α : (0,∞)→ [0, 1) is strictly decreasing function. Assume that there exists x0 ∈ X
with the bounded orbit. Then there is a unique x∗ ∈ X such that Tx∗ = x∗. Moreover,
{Tnx0} converges to x∗.
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Abstract

In this paper, we introduce a new concept of generalized contraction on intuition-
istic fuzzy metric spaces and give fixed point results for these classes of contractions.

Keywords: Intuitionistic fuzzy metric space, Generalized contractive mapping, Fixed
point.

Mathematics Subject Classification [2010]: 47H10

1 Introduction

Kramosil and Michalek introduced the notion of fuzzy metric spaces [4] and George and
Veeramani modified the concept in 1994 [2] in order to obtain a Hausdorff topology in
fuzzy metric spaces. In 2014, Park introduced the notion of intuitionistic fuzzy metric
spaces [5], and he showed that the topology generated by the intuitionistic fuzzy metric
(M, N) coincides with the topology generated by the fuzzy metric M. In [6] Wardowski
introduced a new concept of a fuzzy H-contractive mappings and formulated the conditions
guaranteeing the convergence of a fuzzy H-contractive sequence to a unique fixed point in a
fuzzy M-complete metric space. Recently, Amini-Harandi [1] introduced a new concept of
fuzzy generalized contractions as a generalization of the fuzzy H-contractive, by replacing
the constant k by a function α and then gave a fixed point result for such mappings in
the setting of fuzzy M-complete metric spaces. He also gave an affirmative partial answer
to a question posed by Wardowski. In the present paper, we introduce some new classes
of generalized contractions in a complete intuitionistic fuzzy metric spaces and give fixed
point results for them. Our new result generalized some results obtained by Ionescu et al
[3] in the setting of complete intuitionistic fuzzy metric spaces.

Definition 1.1. [5] A 5-tuple (X, M, N, ∗, ⋄) is said to be an intuitionistic fuzzy metric
space if X is an arbitary set, ∗ a continuous t-norm, ⋄ a continuous t-conorm and M,N
are fuzzy sets on X2 × [0, ∞) satisfying the following conditions:for all x, y, z ∈ X, s, t > 0,

(a) M(x, y, t) + N(x, y, t) ≤ 1;

(b) M(x, y, 0) = 0;
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(c) M(x, y, t) = 1 for all t > 0 if and only if x = y;

(d) M(x, y, t) = M(y, x, t);

(e) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s) for all x, y, z ∈ X, s, t > 0;

(f) M(x, y, ·) : [0, ∞) → [0, 1] is left continuous;

(g) limt→∞ M(x, y, t) = 1 for all x, y ∈ X;

(h) N(x, y, 0) = 1;

(i) N(x, y, t) = 0 for all t > 0 if and only if x = y;

(j) N(x, y, t) = N(y, x, t);

(k) N(x, y, t) ⋄ N(y, z, s) ≥ N(x, z, t + s) for all x, y, z ∈ X, s, t > 0;

(l) N(x, y, ·) : [0, ∞) → [0, 1] is right continuous;

(m) limt→∞ N(x, y, t) = 0 for all x, y ∈ X.

Then (M, N) is called an intuitionistic fuzzy metric on X. The fuzzy metric (M, N) is
called triangular whenever

1

M(x, y, t)
− 1 ≤ 1

M(x, z, t)
− 1 +

1

M(z, y, t)
− 1

and
N(x, y, t) ≤ N(x, z, t) + N(z, y, t)

for all x, y, z ∈ X and t > 0.

Definition 1.2. [5] Let (X, M, N, ∗, ⋄) be an intuitionistic fuzzy metric space. Then

(a) a sequence {xn} in X is called a Cauchy sequence if for each ϵ > 0 and t > 0, there
exists a natural number n0 such that M(xn, xm, t) > 1 − ϵ and N(xn, xm, t) < ϵ for
all n, m ≥ n0;

(b) a sequence {xn} in X is said to be converged to x in X (written as xn → x) if for
each t > 0, limn→∞ M(xn, x, t) = 1 and limn→∞ N(xn, x, t) = 0.

An intuitionistic fuzzy metric space is said to be complete if and only if every Cauchy
sequence is convergent.

Remark 1.3. Every fuzzy metric space (X, M, ∗) is an intuitionistic fuzzy metric space
of the form (X, M, 1 − M, ∗, ⋄) such that t-norm ∗ and t-conorm ⋄ are associated with
x ⋄ y = 1 − ((1 − x) ∗ (1 − y)) for all x, y ∈ X.

We denote by H the family of all onto and strictly decreasing mappings η : (0, 1] →
[0, ∞), (Note that if η ∈ H, then η(1) = 0, η and η−1 are continuous.), and by S the
family of all functions α : [0, ∞) → [0, 1) such that lim sups→t α(s) < 1, for all t > 0.

In [6] Wardowski proved the following result:
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Theorem 1.4. Let (X, M, ∗) be an M-complete fuzzy metric space and T : X → X be a
fuzzy H-contractive with respect to η ∈ H, i.e. there exists k ∈ (0, 1) satisfying

η(M(Tx, Ty, t)) ≤ kη(M(x, y, t)),

for all x, y ∈ X and t > 0, such that:

(i)
∏k

i=1 M(x, Tx, ti) ̸= 0, for all x ∈ X, k ∈ N and any sequence (ti)i∈N ⊂ (0, ∞), ti ↘ 0;

(ii) r ∗ s > 0 ⇒ η(r ∗ s) ≤ η(r) + η(s), for all r, s ∈ {M(x, Tx, t) : x ∈ X, t > 0};
(iii) {η(M(x, Tx, ti)) : i ∈ N} is bounded for all x ∈ X and any sequence (ti)i ∈ N ⊂

(0, ∞), ti ↘ 0.

Then T has a fixed point x∗ ∈ X and for each x0 ∈ X the sequence (Tnx0)n∈N converges
to x∗.

In [1] Amini-Harandi generalized this theorem as the following:

Theorem 1.5. Let (X, M, ∗) be an M-complete fuzzy metric space such that M(x, y, .) is
continuous unifomly for x, y ∈ X, that is, if for each t0 > 0 and each ϵ > 0 there exists
δ > 0 such that t > 0 , |t − t0| ≤ δ implies |M(x, y, t) − M(x, y, t0)| < ϵ, and T : X → X
be a fuzzy generalized H-contractive mapping with respect to η ∈ H and α ∈ S, i.e.

η(M(Tx, Ty, t)) ≤ α(η(M(x, y, t)))η(M(x, y, t)),

for all x, y ∈ X and t > 0. Assume that for each x ∈ X, O(X) = {x, Tx, T 2x, ..., Tn(x), ...}
is bounded. Then T has a fixed point x∗ ∈ X and for each x0 ∈ X the sequence (Tnx0)n∈N
converges to x∗.

In 2013, Ionescu et al.[3] introduced new classes of contractive conditions on intuition-
istic fuzzy metric space and gave the following fixed point result:

Theorem 1.6. Let (X,M,N, ∗, ⋄) be a complete triangular intuitionistic fuzzy metric
space, h ∈ [0, 1) and let T : X → X be a continuous mapping satisfying the contractive
condition

1

M(Tx, Ty, t)
− 1 ≤ hmax{ 1

M(x, Tx, t)
− 1,

1

M(y, Ty, t)
− 1},

for all x, y ∈ X. Then T has a unique fixed point.

In this paper, we intend to generalize this result by weakening the contractive condition
to an intuitionistic fuzzy generalized H-contractive mapping with respect to η ∈ H and
α ∈ S.

2 Main results

Definition 2.1. Let (X,M,N, ∗, ⋄) be an intuitionistic fuzzy metric space. A mapping
T : X → X is said to be fuzzy quasi-contraction type if there exists h ∈ [0, 1) satisfying

1

M(Tx, Ty, t)
− 1 ≤ hmax{ 1

M(x, Tx, t)
− 1,

1

M(y, Ty, t)
− 1,

1

M(x, y, t)
− 1,

1

2
[

1

M(x, Ty, t)
− 1 +

1

M(y, Tx, t)
− 1]},

for all x, y ∈ X and t > 0.
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Theorem 2.2. Let (X,M,N, ∗, ⋄) be a complete triangular intuitionistic fuzzy metric
space and let T : X → X be a continuous mapping satisfying fuzzy quasi-contraction type
condition. Then T has a unique fixed point.

Proof. Put x1 = Tx0 and xn+1 = Tn+1x0 for all n ≥ 1. Assume that xn+1 ̸= xn for all n,
we obtain

1

M(Txn, Txn−1, t)
− 1 ≤ hmax{ 1

M(xn, Txn, t)
− 1,

1

M(xn−1, Txn−1, t)
− 1},

Put tn = max{ 1

M(xn, Txn, t)
−1,

1

M(xn−1, Txn−1, t)
−1}.Then tn =

1

M(xn−1, Txn−1, t)
−1

for all n, and so

1

M(xn+1, xn, t)
− 1 ≤ h(

1

M(xn−1, Txn−1, t)
− 1).

We can prove that {xn} ia a Cauchy sequence and so there exists x∗ ∈ X such that
xn → x∗. Since T is continuous, xn+1 = Txn → Tx∗ and so x∗ = Tx∗. On the contrary,
we conclude that x∗ is unique fixed point of T .

Theorem 2.3. Let (X,M,N, ∗, ⋄) be a complete intuitionistic fuzzy metric space such
that M(x, y, .) is continuous unifomly for x, y ∈ X, and let T : X → X be an intuitionistic
fuzzy generalized H-contractive map with respect to η ∈ H and α ∈ S , that is,

η(M(Tx, Ty, t)) ≤ α(η(M(x, y, t)))max{η(M(x, Tx, t)), η(M(y, Ty, t))},

for all x, y ∈ X and t > 0. Assume that for each x ∈ X, {x, Tx, T 2x, ..., Tn(x), ...} is
bounded. Then T has a fixed point x∗ ∈ X and for each x0 ∈ X the sequence (Tnx0)n∈N
converges to x∗.
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Abstract

In this paper, we will look at the Gram-Schmidt process corresponding to a function
valued inner product in L2(0,∞).

Keywords: function-valued inner product, function-valued norm, function-valued
orthogonal, Gram-Schmidt process.
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1 Introduction

A function-valued inner product on L2(0,∞) by using of the dilation operator and its
application in dilation-invariant systems has been introduced in [3]. Fix a > 1. For each
pair f, g ∈ L2(0,∞), the function 〈f, g〉a on (0,∞) is defined by

〈f, g〉a (x) :=
∑

j∈Z
ajf(ajx)g(ajx)

and is called function-valued inner product on L2(0,∞) with respect to a. It is easy to
show that 〈f, g〉 =

∫ a
1 〈f, g〉a (x)dx, where 〈., .〉 is the original inner product in L2(0,∞).

Also, the function-valued norm on L2(0,∞) with respect to a is defined by

‖f‖a(x) :=
√
〈f, f〉a (x), ∀f ∈ L2(0,∞) and ∀x ∈ (0,∞).

The function φ on (0,∞) is called dilation periodic function with period a if φ(ax) = φ(x)
for all x ∈ (0,∞). The set of bounded dilation periodic functions on (0,∞) is denoted by
Ba. For any function φ on [1, a], the function φ̃ defined by φ̃(ajx) = φ(x), for all j ∈ Z
and x ∈ [1, a] is dilation periodic. Throughout this paper, let φ̃ be the dilation periodic
function defined as above for any complex function φ on [1, a]. A function f defined on
(0,∞) is called function-valued bounded respect to a, or simply function-valued bounded,
if there is a B > 0 such that ‖f‖a(x) ≤ B for almost all x ∈ [1, a]. The set of function-
valued bounded functions denote by L∞a (0,∞).
The properties of the function-valued inner product are given in the next theorem.
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Theorem 1.1. [3] Let f, g, h ∈ L2(0,∞), c, d ∈ C, and b > 0. The following hold:
1) 〈f, g〉 =

∫ a
1 〈f, g〉a (x)dx.

2) ‖f‖L2(0,∞) = ‖‖f‖a‖L2[1,a].
3) 〈cf + dg, h〉a = c 〈f, h〉a + d 〈g, h〉a.
4) 〈f, cg + dh〉a = c̄ 〈f, g〉a + d̄ 〈f, h〉a.
5) 〈f, g〉a = 〈g, f〉a.
6) 〈fg, h〉a = 〈f, ḡh〉a, for fg, ḡh ∈ L2(0,∞).
7) If 〈f, g〉a = 0, then 〈f, g〉 = 0.
8) 〈Dbf,Dbg〉a = 1√

b
Db 〈f, g〉a.

9) ‖Dbf‖2a = 1√
b
Db‖f‖2a.

10) 〈Daf, g〉a =
〈
f,D 1

a
g
〉
a
.

11) D 1
b
〈Dbf, g〉a = 1√

b

〈
f,D 1

b
g
〉
a
.

12) | 〈f, g〉a | ≤ ‖f‖a‖g‖a.
13) ‖f + g‖2a = ‖f‖2a + 2Re 〈f, g〉a + ‖g‖2a.
14) ‖f + g‖a ≤ ‖f‖a + ‖g‖a.
15) ‖f + g‖2a + ‖f − g‖2a = 2(‖f‖2a + ‖g‖2a).

In function-valued inner products, bounded dilation periodic functions have a behavior
similar to scalers.

Proposition 1.2. [3] Let f, g ∈ L2(0,∞) and φ ∈ Ba. Then

〈φf, g〉a = φ 〈f, g〉a and 〈f, φg〉a = φ̄ 〈f, g〉a

2 Main results

The definition of orthonormal basis in Hilbert spaces can be found in [1]. Function-valued
orthonormal bases are defined similar: For any f, g ∈ L2(0,∞), f and g are function-
valued orthogonal with respect to a, or simply function-valued orthogonal if 〈f, g〉a = 0
a.e. on [1, a].
A sequence {en}n∈Z in L2(0,∞) is called function-valued orthogonal with respect to a if
en ⊥a em, for all n 6= m ∈ Z. If also ‖en‖a = 1 a.e. on [1, a], then {en}n∈Z is called
a function-valued orthonormal sequence with respect to a, or simply function-valued or-
thonormal sequence, in L2(0,∞).
A sequence {en}n∈Z is called function-valued orthonormal basis with respect to a, or simply
function-valued orthonormal basis, for L2(0,∞) if it is a function-valued orthonormal se-

quence and span{ψ̃men}m,n∈Z = L2(0,∞), where ψm is defined by ψm(x) = 1√
a−1e

2πi m
a−1

(a−x)

for all m ∈ Z and x ∈ [1, a].

Proposition 2.1. [3] If {en}n∈Z is a function-valued orthonormal basis in L2(0,∞), then

{ψ̃men}m,n∈Z is an orthonormal basis in L2(0,∞) and f =
∑

n∈Z
˜〈f, en〉aen on (0,∞).

For f ∈ L2(0,∞), we define the function valued normalization of f to be

Na(f)(x) =





f(x)

‖̃f‖a(x)
if ‖̃f‖a(x) 6= 0

0 if ‖̃f‖a(x) = 0.
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For any f, g ∈ L2(0,∞) we have

〈Na(f), g〉a (x) =
∑

j∈Z
ajNa(f)(ajx)g(ajx)

=
∑

j∈Z
aj

f(ajx)

‖̃f‖a(ajx)
g(ajx)

=
1

‖̃f‖a(x)

∑

j∈Z
ajf(ajx)g(ajx)

=
〈f, g〉a (x)

‖̃f‖a(x)
,

where ‖̃f‖a(x) 6= 0. Thus

〈Na(f), g〉a =
〈f, g〉a
‖̃f‖a

(1)

Lemma 2.2. Let f, g, h ∈ L2(0,∞). we have

a) Na(g) ∈ span{ψ̃mg}m∈Z.
b) If any two of f, g, h are in L∞a (0,∞), then 〈f, h〉a g ∈ span{ψ̃mg}m∈Z.

Definition 2.3. A sequence {fn}kn=1 in L2(0,∞) is called function valued linearly inde-

pendent if for each n ∈ {1, 2, 3, ..., k}, fn /∈ span{ψ̃mfi}m∈Z;1≤i 6=n≤k. A sequence {fn}n∈N
in L2(0,∞) is called a function valued linearly independent if every sub-family is function
valued linearly independent.

Now we state the Gram-Schmidt process.

Theorem 2.4. Let {fn}n∈N be a function valued linearly independent sequence in L2(0,∞).

Then there existes a function valued orthonrmal sequence {en}n∈N such that span{ψ̃mfk}m∈Z;1≤k≤n =

span{ψ̃mek}m∈Z;1≤k≤n, for all n ∈ N.

Proof. We proceed by induction. First let e1 := Na(f1). If {ei}ni=1 have been defined to
satisfy the theorem, let

en+1 := Na(fn+1 −
n∑

i=1

〈fn+1, ei〉a ei).

Let

f := fn+1 −
n∑

i=1

〈fn+1, ei〉a ei.

Now f 6= 0, by the function valued linearly independenty of the sequence {fn}n∈N and
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Lemma 2.2. Using equation 1 for 1 ≤ k ≤ n we have

〈en+1, ek〉a =

〈
Na(fn+1 −

n∑

i=1

〈fn+1, ei〉a ei), ek
〉

a

=
1

‖̃f‖a
(〈fn+1, ek〉a −

n∑

i=1

〈fn+1, ei〉a 〈ei, ek〉a)

=
1

‖̃f‖a
(〈fn+1, ek〉a − 〈fn+1, ek〉a 〈ek, ek〉a)

= 0.

The statement about the linear spans follows from Lemma 2.2.
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Abstract

In this paper we investigate the equivalence of conditions for fusion Riesz basis
and state when a fusion Riesz basis and its canonical dual are dual of each other.
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1 Introduction

Frames for Hilbert spaces were first defined by Duffin and Schaeffer in 1952 and introduced
in 1986 by Daubechies, Grossmann and Meyer. Fusion frames are a generalization of frmes
in Hilbert spaces, were introduced by Casazza and Kutyniok in [1].

In this section we review some definitions and primary results of fusion frames. For
more informations see [1]. Throughout this paper, I denotes a countable index set and
πW the orthogonal projection from H onto a closed subspace W .

Definition 1.1. Let {Wi}i∈I be a family of closed subspaces of H and {ωi}i∈I be a family
of weights, i.e. ωi > 0, i ∈ I. Then {(Wi, ωi)}i∈I is a fusion frame for H if there exist
constants 0 < A ≤ B <∞ such that

A‖f‖2 ≤
∑

i∈I
ω2
i ‖πWif‖2 ≤ B‖f‖2, (f ∈ H).

The constants A,B are called the fusion frame bounds. If we only have the upper bound,
we call {(Wi, ωi)}i∈I a Bessel fusion sequence. A fusion frame is called tight, if A,B can
be chosen to be equal, and Parseval if A = B = 1. If ωi = ω for all i ∈ I, the collection
{(Wi, ωi)}i∈I is called ω-uniform and we abbreviate 1- uniform fusion frams as {Wi}i∈I .
A fusion frame {(Wi, ωi)}i∈I is said to be an orthonormal fusion basis if H =

⊕
i∈IWi

and it is called Riesz decomposition of H if for every f ∈ H, there is a unique choice of
fi ∈ Wi such that f =

∑
i∈I fi. It is clear that every orthonormal fusion basis is a Riesz

decomposition for H, and also every Riesz decomposition is a 1-uniform fusiom frame for
H.
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If {(Wi, ωi)}i∈I is a fusion frame, the fusion frame operator SW : H → H is defined
by SW (f) =

∑
i∈I ω

2
i πWi(f) is a bounded, invertible and positive. Hence we have the

following reconstruction formula [1]

f =
∑

i∈I
ω2
i S
−1
W πWif, (f ∈ H).

The family {(S−1W Wi, ωi)}i∈I , which is also a fusion frame, is called the canonical dual
of {(Wi, ωi)}i∈I and satsfies the following reconstruction formula

f =
∑

i∈I
ω2
i πS−1

W Wi
S−1W πWif, (f ∈ H).

In general, every Bessel fusion sequence {(Vi, υi)}i∈I is called dual of fusion frame {(Wi, ωi)}i∈I ,
if

f =
∑

i∈I
ωiυiπViS

−1
W πWif, (f ∈ H).

In [3], it is shown that a Bessel fusion sequence {(Vi, υi)}i∈I is a dual of fusion frame
{(Wi, ωi)}i∈I , if and only if TV φvwT

∗
W = IH, where the bounded operator φvw : (

∑
i∈I
⊕
Wi)`2 →

(
∑

i∈I
⊕
Vi)`2 is given by

φvw({fi}i∈I) = {πViS−1W fi}i∈I

If {Wi}i∈I is a family of closed subspaces of H and {ωi}i∈I be a family of weights then
we say that {(Wi, ωi)}i∈I is a fusion Riesz basis for H if spani∈I{Wi} = H and there exist
constants 0 < C ≤ D <∞ such that for each finite subset J ⊆ I

C(
∑

j∈J
‖fj‖2)1/2 ≤ ‖

∑

j∈J
ωjfj‖ ≤ D(

∑

j∈J
‖fj‖2)1/2, (fj ∈Wj).

2 Main results

Theorem 2.1. Let {Wi}i∈I be a family of subspaces in H. Then the following are equiv-
alent:
(1) {Wi}i∈I is fusion Riesz basis.
(2) S−1W Wi ⊥Wj for all i, j ∈ I, i 6= j.

Theorem 2.2. A fusion frame {(Wi, 1)}i∈I is a fusion Riesz basis if and only if πWiS
−1
W πWj =

δijπWj , for all i, j ∈ I.

Proposition 2.3. A fusion Riesz basis {Wi}i∈I is dual of {S−1W Wi}i∈I if and only if
πWiπS−1

W Wi
Wi = Wi, for all i.

Proposition 2.4. If S
W̃

= S−1W then {Wi}i∈I is dual of {S−1W Wi}i∈I .

The reverse of last proposition is not true in general.
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Example 2.5. Consider

W1 = span{(1, 1, 0)}, W2 = span{(1, 0, 0), (0, 0, 1)}

It is easy to see that {(Wi, 1)}i=1,2 is fusion Riesz basis for R3, with the frame operator

SW =




3
2

1
2 0

1
2

1
2 0

0 0 1


 ,

so

W̃1 := S−1W W1 = span{(0, 1, 0)}, W̃2 := S−1W W2 = span{(1,−1, 0), (0, 0, 1)}.

Also

S
W̃

=




1
2

−1
2 0

−1
2

3
2 0

0 0 1


 .

It is easy to check that {(W̃i, 1)} and {(Wi, 1)} are dual of each other and S−1W 6= S
W̃

.

Proposition 2.6. let {Vi}i∈I be alternate dual of fusion frame {Wi}i∈I . If SW = SV ,
then {Wi}i∈I is also alternate dual of {Vi}i∈I .

In the non- parseval tight fusion frames, the canonical dual of them is themselves, so
they are dual of themselves and by Proposition 2.7 the non- parseval tight fusion frames
are not fusion Riesz basis. In the next section, we show that by multipliers.
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Email: mitra.shamsabadi@yahoo.com
Email: arefijamaal@gmail.com

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Fusion Riesz basis pp.: 3–3

437



Fuzzy frame in Fuzzy real inner product space
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Abstract

In this paper we describe the true concept of fuzzy inner product spaces. Then,
to clarify the meaning of these spaces look at an example . Below we explain the
new concept of alpha frames . A couple of examples of the different spaces with inner
frames in classic look .

Keywords: Fuzzy inner product; Fuzzy frame; Inner product;
Mathematics Subject Classification [2010]: 03E72, 15A63

1 Introduction

It was Katsaras[7], who while studying fuzzy topological vector spaces, was the rst to
introduced in 1984, the idea of fuzzy norm on a linear space. Later on many other
mathematicians like Felbin[5], Cheng & Mordeson[4], Bag & Samanta[3] etc. introduced
denition of fuzzy normed linear spaces in dierent approach. studies on fuzzy inner product
spaces are relatively recent and few work have been done in fuzzy inner product spaces.
Dafyn the first time in 1952 and Scheffer in order to complete his paper on non- harmonic
Fourier series theory made frames and frames them as soon as mentioned in that article
.But so far nothing has been done about fuzzy frame in fuzzy inner product spaces . In
this paper, the definition of a real inner product space that is expressed by A.Hasankhani,
A.Nazari, M.Saheli, in[6] .After that, A couple of examples the concept of fuzzy frames in
real inner fuzzy spaces between them with frames in real inner product are expressed.

2 Preliminaries

In this section some denitions and preliminary results are given which are used in this
paper

Definition 2.1 (6). Let X a linear space over R (the set of real numbers). Then a fuzzy
subset µ : X ×X ×R→ [0, 1] is called fuzzy real inner product on X if ∀x, y, z ∈ X and
t ∈ R the following conditions hold.
(FI-1) µ(x, x, t) = 0 ∀t < 0
(FI-2) µ(x, x, t) = 1 ∀t > 0 iff x = 0
(FI-3) µ(x, y, t)=µ(y, x, t)
(FI-4)
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µ(x, y, t) =





µ(x, y, tc) for c > 0

H(t) for c = 0

1-µ(x, y, tc) for c < 0

(FI-5) µ(x+ y, z, t+ s)≥ min{ µ(x, z, t),µ(y, z, t)}
(FI-6) lim

t→∞
µ(x,x,t)=1

wher

H(t) =

{
1 if t > 0

0 if t ≤ 0

Remark 2.2. µ(x, y, .) is a non-decreasing function of R.

Proof. Let t1 > t2. Therefore t1 − t2 > 0 µ(0 + x, y, t1 − t2 + t2)
µ(x+ y, z, t+ s) ≥ min{ µ(0, y, t1 − t2 > 0), µ(x, y, t2)}
⇒ µ(x, y, t1) ≥ min{ 1, µ(x, y, t2)}[by (FI-4) and since H(t1 − t2) = 1]
⇒ µ(x, y, t1) ≥ µ(x, y, t2)

Example 2.3. Let (X, 〈, 〉) be an ordinary inner product space over R. Define µ : X ×
X ×R→ [0, 1] by µ(cx, y, t) = H(t) for c = 0 and for c 6= 0.

µ(cx, y, t) =





1 for t > c|〈x, y〉|
1
2 for t = c|〈x, y〉|
0 for t < c|〈x, y〉|

Then (X,µ) is a fuzzy real inner product space.

Proof. see [9]

Theorem 2.4. Let (X,µ) be a fuzzy real inner product space. Assume further that (FI-
7)µ(x, y, st) ≥ µ(x, y, s2) ∧ µ(y, y, t2) ∀s, t ∈ R and ∀x, y ∈ X. function N : X × R →
[0, 1] by

N(x,t) =

{
µ(x, x, t2) if t > 0

0 if t ≤ 0
(1)

Then N is a B-S[1] fuzzy norm on X. We call this norm as induced norm ofµ.

Proof. see [9]

Suppose (X,µ) be a fuzzy real inner product space and α ∈ (0, 1). we Define α−fuzzy
real inner products of µ onX. as the following definition

〈x, y〉α = ∧{t ∈ R : µ(x, y, t) ≥ α},
Theorem 2.5. Let (X,µ) be a fuzzy real inner product space. Assume further that (FI-8)
∧{t ∈ R : µ(x, x, t) ≥ α} <∞, ∀α ∈ (0, 1)and
µ(x, x, t) > 0 ∀t > 0⇒ x = 0.
Then{〈, 〉α : α ∈ (0, 1)} is an ascending family of inner products on X.
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Proof. see [9]

Suppose (X,µ) be a fuzzy real inner product space and α ∈ (0, 1). we Define α −
fuzzy norm of µ onX as the following definition

‖x‖α = [〈x, x〉α]
1
2

Remark 2.6. Let (X,µ) is a fuzzy real inner product space satisfying (FI-7) and (FI-8)
and N be its induced fuzzy norm. The α - norms derived from induced fuzzy norm N and
from α - inner product are same.

Proof. see [9]

3 fuzzy frame

Suppose (X,µ) be a fuzzy real inner product space and X has finite-dimensional vector
space,α ∈(0,1).A family of elements {fk}mk=1 in X is a α - frame for X if there exist
constants A,B > 0 such that

A‖f‖2α ≤
∑m

k=1|〈f, fk〉α|2≤ B‖f‖2α ∀f ∈ X

The numbers A,B are called frame bounds. The frame is normalized if ‖fk‖α = 1 ,k =
1, 2, ...,m. A α− frame {fk}mk=1 is tight if we can choose A = B in the definition, if

m∑

k=1

|〈f, fk〉α|2= Aα‖f‖2α ∀f ∈ X (2)

Example 3.1. Let (X, 〈, 〉) be an ordinary inner product space over R. Define µ : X ×
X× R→ [0, 1] by µ(cx, y, t) = H(t)forc = 0andforc6= 0,

µ(cx, y, t) =





1 for t > c|〈x, y〉|
1
2 for t = c|〈x, y〉|
0 for t < c|〈x, y〉|

As shown in the example3.2 (X,µ) is a fuzzy real inner product space α − fuzzy inner
products on X defined as follows:

〈x, y〉α =

{
〈x, y〉| if α ≥ 1

2

0 if α < 1
2

In this example we see for α ≥ 1
2 the concept of a fuzzy frame is the same frame in

classic mode Because if for Constant α we put$ Aα = A and Bα = B we have :
Aα‖f‖2α ≤

∑m
k=1|〈f, fk〉α|2≤ Bα‖f‖2α ∀f ∈ X

⇔ Aα‖f‖2 ≤
∑m

k=1|〈f, fk〉|2≤ Bα‖f‖2 ∀f ∈ X
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G-Ultrametric Dynamics and Some Fixed Point Theorems

Hamid Mamghaderi∗
K. N. Toosi University of Technology

Hashem Parvaneh Masiha
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Abstract
This paper is concerned with dynamics in general G-ultrametric spaces, hence we

discuss the introduced concepts of these spaces. Also, the fixed point existing results of
strictly contractive and non-expansive mappings defined on these spaces by inspiring
from the theorem proved by Mustafa and Sims.

Keywords: Fixed point, G-ultrametric space, strictly contractive mapping, non-
expansive mapping.
Mathematics Subject Classification [2010]: 47H10, 47H09

1 Introduction

In 2005,Mustafa and Sims introduced a new class of generalized metric spaces (see [4, 5]),
which are called G-metric spaces, as generalization of a metric space (X, d). Subsequently,
many fixed point results on such spaces appeared (see, for example, [3, 1, 2]). Here, we
present the necessary definitions and results in G-metric spaces, which will be useful for
the rest of the paper. However, for more details, we refer to [4, 5].

Definition 1.1. [5]. Let X be a nonempty set. Suppose that G : X × X × X → [0,∞) is
a function satisfying the following conditions:

G1) G(x, y, z) = 0 if x = y = z;

G2) 0 < G(x, x, y), for all x, y, z ∈ X with x ̸= y;

G3) G(x, x, y) ≤ G(x, y, z); for all x, y, z ∈ X with z ̸= y;

G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . ., (symmetry in all three variables), and

G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z), for all x, y, z ∈ X, ( rectangle inequality),

then the function G is called a generalized metric, or more specifically a G-metric on X,
and the pair (X, G) is a G-metric space.

Definition 1.2. [5] Let (X, G) be a G-metric space, then for x0 ∈ X, r > 0, the G-
ball(dressed ball) with center x0 and radius r is

B(x0, r) = {y ∈ X : G(x0, y, y) < r},

and the stripped ball of radius r and center x0 is

B(x0, r
+) = {y ∈ X : G(x0, y, y) ≤ r}

Proposition 1.3. [5] Let (X, G) be a G-metric space, then for any x0 ∈ X and r > 0, we
have,
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(1) if G(x0, x, y) < r, then x, y ∈ BG(x0, r);

(2) if y ∈ B(x0, r), then there exists δ > 0 such that B(y, δ) ⊆ B(x0, r).

Now, first we introduce a new class of G metric spaces which are called G-ultrametric
spaces, and in the sequel give examples and results which are required.

Definition 1.4. A G-metric space (X, G) is called a G- ultrametric space if the G-metric
G satisfies the strong rectangle inequality, i.e., for all x, y, z ∈ X:

G(x, y, z) ≤ max{G(x, a, a), G(a, y, z)}, for all x, y, z ∈ X.

In this case, G is called to be generalized ultrametric, and the pair (X, G) is a G-ultrametric
space.

Examples

(a) Let X be a nonempty set. The following function on X3 defines a G-ultrametric on
X:

G(x, y, z) =
{

0 x = y = z,
1 otherwise.

In this case, (X, G) is called a discrete G-ultrametric space (or trivial G-ultrametric
space).

(b) Every G-ultrametric on X defines an ultrametric dG on X by

dG(x, y) = max{G(x, y, y), G(y, x, x)}, for all x, y ∈ X.

Conversely, for any d-ultrameric d on X,

G1(x, y, z) = max{d(x, y), d(y, z), d(x, z)}, for all x, y ∈ X.

is readily seen to define an G-ulmetric on X3.

(c) Let N be the set of positive integer numbers. The mapping G : N × N × N → [0, ∞)
is defined by

G(m,n, l) =

{
0 m = n = l
max{1 + 1

m , 1 + 1
n , 1 + 1

l } otherwise

is a G-ultrametric on N3.

The G-Ultrametric topology

Proposition 1.5. Let (X, G) be a G-ultrametric space then:

(a) any point of a G-ball is a center of the ball.

(b) if two G-balls have a common point, one is contained in the other.

(c) the diameter of a G-ball is less than or equal to its radius.

Proposition 1.6. Let (X, G) be a G-ultrametric space.
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(a) If x ∈ S(x0, r), then B(x, r) ⊆ S(x0, r) and S(x0, r) = ∪x∈S(x0,r)B(x, r)}, which

S(x0, r) = {y ∈ X : G(x0, y, y) = r}.

(b) The spheres S(x0, r) are open and closed (henceforth we use the word clopen as an
abbreviation of ” closed and open”).

(c) The dressed balls of positive radius are open, and the stripped balls are closed.

Consequently, the G-ultrametric topology τ(G) is zero-dimensional and coincides with
the ultrametric topology arising from dG. Thus, while isometrically distinct, every G-
ultrametric space is topologically equivalent to an ultrametrics space. This allows us to
readily transport many concepts and results from ultrametric spaces into the G-ultrametric
space setting.

Definition 1.7. A G-ultrametric space (X, G) is said to be spherically complete if every
shrinking collection of dressed balls in X has a nonempty intersection.

Definition 1.8. Let (X,G) be a G-ultrametric space. The sequence {xn} ⊆ X is G-
convergent to x if it converges to x in the G-ultrametric topology, τ(G).

Definition 1.9. [5] Let (X, G) be a G-metric space, then a sequence {xn} ⊆ X is said
to be G-Cauchy if for every ε > 0, there exists N ∈ N such that G(xn, xm, xl) < ε for all
n,m, l ∈ N.

Proposition 1.10. In a G-ultrametric space, (X, G), the following statements are equiv-
alent.

(a) The sequence {xn} is G-Cauchy.

(b) For every ε > 0 there exists N ∈ N such that G(xn, xn+1, xn+1) < ε; for all n ≥ N .

Remark 1.11. The Proposition 1.10 in G-metric space isn’t valid. In fact, if we let X = R
and

G : X × X × X → R+

G(x, y, z) = d(x, y) + d(x, z) + d(y, z),

which d is Euclidean metric on R, then G(xn, xn+1, xn+1) → 0, but {lnn} ↛ o.

2 The Main Theorem

It is known that a contractive mapping on a G-metric space need not have a fixed point,
e.g., let (R, G) be a G-metric space with

G(x, y, z) = |x − y| + |x − z| + |y − z|,
the mapping T : (R, G) → (R, G) with Tx = x + 1

1+ex is a strictly contractive mapping,
but has no fixed point.

Now, we prove that every contractive mapping T : X → X , where X is G-spherically
complete ultrametric space, has a unique fixed point. We give also examples to show that
this assertion cannot be extended to include either nonexpansive mappings or nonspheri-
cally complete spaces.

Theorem 2.1. Let (X,G) be G-spherically complete ultrametric space. If T : X → X is
a mapping such that for tree distinct points x, y, z ∈ X,

G(Tx, Ty, Tz) < max{G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz)},

then T has a unique fixed point.
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Theorem 2.2. Let (X,G) be G-spherically complete ultrametric space. If T : X → X is
a mapping such that for every x, y, z ∈ X,

G(Tx, Ty, Tz) ≤ max{G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz)},

then either T has at least one fixed point or there exists a sphere B of the radius r > 0
such that T : B → B and for which G(b, T b, T b) = r for each b ∈ B.

Example 2.3. Let Qp be the p-adic field (i.e., The completion Qp of Q with respect to the
p-adic absolute value |a|p = p−r if a = pr m

n such that m and n are coprime to the prime
number p). Also, let AQp = {a : N → Qp | a is bounded map}, where a ∈ A is a bounded
map if there exists a positive number M > 0 such that sup{|a(n)|p | n ∈ N} < M,
and let ∥f∥∞

p = sup{|a(n)|p | n ∈ N}, We define the G-ultrametric on AQp as the

following: G(x, y, z) = max{∥x − y∥∞
p , ∥x − z∥∞

p , ∥y − z∥∞
p }. Also, we set A0

Qp
= {a ∈ A |

G(a(n), 0, 0) → 0} In this case A0
Qp

is spherically complete G-ultrametric space. Suppose

T : A0
Qp

→ A0
Qp

is the mapping defined by T (x1, x2, x3, . . .) = (p, x1, x2, x3, . . .) Clearly T is

a nonexpansive map, but T has no fixed point in A0. However, the ball {a ∈ A | ∥a∥∞
p ≤ 1

p}
is minimal T -invariant because for every a ∈ Qp we have G(a, Ta, Ta) = 2

p .

Example 2.4. Let Cp be the field of completion of the algebraic closure of Qp, and ACp ,

A0
Cp

and G-ultrametric on A0
Cp

are defined as in Example 2.3. In this case, A0
Cp

is not

spherically complete because the value group {|x|p | x ∈ Cp} is dense in [0, ∞). Suppose
T is the mapping T : A0

Cp
→ A0

Cp
defined by

T (x1, x2, x3, . . .) = (1, π1x1, π2x2, π3x3, . . . , πnxn, . . .),

where {πn} is a sequence in Cp with |πn| < 1 for all n ∈ N, limn→∞ |πn| = 1, and
limn→∞

∏n
i=1 |πn| = 0. The mapping T is a strongly contractive but it has no fixed

points.
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Generalized cyclic contraction and convex structure
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Abstract

In this paper we consider approximate proximity pair for a single map. We apply
approximate fixed point for a map and discuss the existence of approximate proximity
pair. Approximation theory, which mainly consists of theory of nearest points (best
approximation) and theory of farthest points (worst approximation), is an old and rich
branch of analysis. The theory is as old as Mathematics itself. The ancient Greeks
approximated the area of a closed curve by the area of a polygon. Starting in 1853,
Russian mathematician P.L. Chebyshev made significant contributions in the theory
of best approximation.

MSC (2000): 46A32, 46M05, 41A17.

Keywords: Approximate pair proximity, Best proximity, Generalized cyclic contrac-
tion, Approximate fixed point, Convex structure.

1 Introduction

Let (X, d) be a metric space, A, B nonempty subsets of X and d(A,B) is the distance of
A and B,

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.
If d(x0, y0) = d(A,B), then the pair (x0, y0) is called a best proximity pair for A and B
and put

prox(A,B) = {(x, y) ∈ A×B : d(x, y) = d(A,B)} (1.1)

as the set of all best proximity pairs for (A,B) (see[1-5]).

Definition 1.1. [3] Let (X, d) be a metric space, T : X → X, ε > 0 and x0 ∈ X. Then
x0 is an ε-fixed point (approximate fixed point) of T if

d(T (x0), x0) < ε

.
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In this paper we will denote the set of all approximate best proximity of pair (A,B),
by

P aT (A,B) = {x ∈ A ∪B : d(x, Tx) ≤ d(A,B) + ε for some ε > 0}
We say that the pair (A,B) has approximate best proximity pair property if P aT (A,B) 6= ∅.

Definition 1.2. [4] Let A and B be nonempty subsets of a metric space (X, d) and let
T : A∪B → A∪B, S : A∪B → A∪B be two maps such that T (A) ⊆ B, S(B) ⊆ A. A
point (x, y) ∈ A× B is said to be an approximate pair proximity for (T, S) in X if there
exists a ε > 0

d(Tx, Sy) ≤ d(A,B) + ε (2.1)

We say that the pair (T, S) has the approximate pair proximity property in X if
P a(T,S)(A,B) 6= ∅, where

P a(T,S)(A,B) = {(x, y) ∈ A×B : d(Tx, Sy) ≤ d(A,B) + ε for some ε > 0}.

Theorem 1.3. [4] Let A and B be nonempty subsets of a metric space (X, d) and let
T : A ∪ B → A ∪ B, S : A ∪ B → A ∪ B be two maps such that T (A) ⊆ B, S(B) ⊆ A.
If, for every (x, y) ∈ A×B,

limn→∞d(Tn(x), Sn(y)) = d(A,B), (2.2)

then (T, S) has the approximate pair proximity property.

2 Approximate Best Proximity Pairs

In this section, we will consider the existence of approximate best proximity points for a
cyclic map T : X → X.

Definition 2.1. Let T : A∪B → A∪B be a cyclic map, i.e., a map satisfying T (A) ⊆ B,
T (B) ⊆ A and x ∈ A ∪ B. Then x is an approximate best proximity point of the pair
(A,B), if

d(x, Tx) ≤ d(A,B) + ε, for some ε > 0.

Theorem 2.2. Let (X, d) be a metric space. Suppose that the mapping T : X → X is a
cyclic map and

d(Tx, Ty) ≤ ad(x, y) + b{d(x, Tx) + d(y, Ty)}+ c{d(y, Tx)}

for all x, y ∈ X, where a, c ≥ 0 and b < 1 and a+ 2 b+ c < 1. Then

d(Tnx, Tn+1x) ≤ d(Tn−1x, Tnx).

Therefore if x ia a ε-fixed for T , then x is a ε-fixed point for Tn for n ≥ 1.
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Theorem 2.3. Let A and B be nonempty subsets of a metric space (X, d). Suppose that
the mappings T, S : X → X is a cyclic maps and

d(Tx, Ty) ≤ ad(x, y) + b{d(x, Tx) + d(y, Ty)}+ c{d(A,B)}

for all x, y ∈ X, where 0 ≤ a < 1 and c ≥ 0 and b ≥ 0 and 2a + 2b + c < 1. If x, y are
approximate best proximity of the pair (A,B), then (x, y) is an approximate proximity pair
for (T, S).

Theorem 2.4. Let X be a normed linear space , A and B two nonempty subsets of X.
Let T : A ∪B → A ∪B, be a cyclic map satisfying

‖ Tx− Ty ‖≤ α ‖ x− y ‖ +(1− α)d(A,B), (1.3)

for all x, y ∈ A ∪B and α ∈ (0, 1). Then

‖ T 2n−1x− T 2nx ‖≤ α2n−1 ‖ x − Tx ‖ +(1− α2n−1)d(A,B)

for all x ∈ A ∪B,n ≥ 1. Therefore for all x ∈ A ∪B and n ≥ 1

‖ T 2n−1x− T 2nx ‖−→ d(A,B) as n −→∞.

Definition 2.5. For a metric space (X, d) ,a continuous mapping w : X×X× [0, 1] −→ X
is to be a convex structure on X if for all x, y ∈ X and λ ∈ [0, 1]

d(u,w(x, y, λ)) ≤ λd(u, y) + (1− λ)d(u, y),

for all u ∈ X.

Theorem 2.6. For a metric space (X, d), suppose a w : X ×X × [0, 1] −→ X is a convex
structure on X and let T : X −→ X is a map satisfy

d(Tx, Ty) ≤ ad(x, y)

for all 0 ≤ a < 1 and x, y ∈ X. Then for every u ∈ X

d(u, T (w(x, y, λ))) ≤ λd(u, x) + (1− λ)d(u, y),

for all fixed point u of T.
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Abstract

For the analytic selfmap ϕ and analytic function u on the open unit ball of the
complex plane, we investigate generalized weighted composition operators

(
Dk
ϕ,uf

)
(z) = u(z)f (k)(ϕ(z)),

between weighted Zygmund spaces and weighted Bloch spaces.

Keywords: Generalized weighted composition operators, Weighted composition op-
erators, Weighted Zygmund spaces, Weighted Bloch spaces.
Mathematics Subject Classification [2010]: 47B38, 46E15.

1 Introduction

Let D be the open unit ball in C and u and ϕ be analytic functions on D such that
ϕ(D) ⊆ D. For a nonnegative integer k, the generalized weighted composition operator
Dk
ϕ,u on H(D), the space of all analytic functions on D, is defined by

(
Dk
ϕ,uf

)
(z) = u(z)f (k)(ϕ(z)), z ∈ D.

Generalized weighted composition operators are generalization of well-known weighted
composition operators uCϕ defined by

(uCϕf) (z) = u(z)f(ϕ(z)), z ∈ D,

and also generalization of some other known operators. In this paper, we consider gen-
eralized weighted composition operators between weighted Zygmund spaces and weighted
Bloch spaces defined as follows.

By a weight function we mean a continuous, strictly positive and bounded function
ν : D → R+. The weight ν is called radial if ν(z) = ν(|z|) for all z ∈ D. For a weight ν,
the weighted Banach space of analytic functions on D is defined as

H∞ν =

{
f ∈ H(D) : ‖f‖ν = sup

z∈D
ν(z)|f(z)| <∞

}
.
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For a weight ν, the associated weight ν̃ is defined by

ν̃(z) = (sup {|f(z)| : f ∈ H∞ν , ‖f‖ν ≤ 1})−1 .

It is known that for the standard weights (0 < α <∞)

να(z) = (1− |z|2)α, z ∈ D,

and the logarithmic weight

νlog(z) =

(
log

2

1− |z|2
)−1

, z ∈ D,

the associated weights and the weights are the same.
For 0 < α < ∞, the weighted Bloch space Bα is the space of all analytic functions

f ∈ H(D) for which
sup
z∈D

(1− |z|2)α|f ′(z)| <∞.

Weighted Bloch space Bα is a Banach space with the norm

‖f‖Bα = |f(0)|+ sup
z∈D

(1− |z|2)α|f ′(z)|.

In the case of α = 1, we get the classical Bloch space B = B1.
The Zygmund space Z is the class of all functions f ∈ H (D) ∩ C(D) with

sup
eiθ∈∂D
h>0

∣∣f
(
ei(θ+h)

)
+ f

(
ei(θ−h)

)
− 2f

(
eiθ
)∣∣

h
<∞.

It is known that an analytic function f belongs to Z if and only if f ′ ∈ B, or equivalently

supz∈D
(

1− |z|2
)
|f ′′ (z)| < ∞. For 0 < α < ∞, the weighted Zygmund space Zα is the

space of all analytic functions f ∈ H(D) for which

sup
z∈D

(1− |z|2)α|f ′′(z)| <∞.

Weighted Zygmund space Zα is a Banach space if equipped with the norm

‖f‖Zα = |f(0)|+ |f ′(0)|+ sup
z∈D

(1− |z|2)α|f ′′(z)|.

Hu and Ye, in 2012, studied boundedness and compactness of weighted composition
operators between Zygmund spaces. Boundedness, compactness and essential norms of
weighted composition operators between weighted Zygmund spaces and weighted Bloch
spaces were investigated by the authors in [5]. Li and Fu, in 2013, studied generalized
weighted composition operators from Bloch spaces into Zygmund spaces. In this paper, we
investigate generalized weighted composition operators between weighted Zygmund spaces
and weighted Bloch spaces.
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2 Main results

Before giving the main results, we recall the following lemmas which will be used in the
proof of main theorems. The next lemma is due to Montes-Rodŕiguez [4] and Hyvärinen
et al. [2]. We also mention that for the real scalars A and B, the notation A � B means
that cB ≤ A ≤ CB for some positive constants c and C.

Lemma 2.1. [2, 4] Let ν and ω be radial, non-increasing weights tending to zero at the
boundary of D. Then,

(i) the weighted composition operator uCϕ maps H∞ν into H∞ω if and only if

sup
n≥0

‖uϕn‖ω
‖zn‖ν

� sup
z∈D

ω(z)

ν̃(ϕ(z))
|u(z)| <∞,

with norm comparable to the above supremum.

(ii) lim supn→∞
‖uϕn‖ω
‖zn‖ν = lim sup|ϕ(z)|→1

ω(z)
ν̃(ϕ(z)) |u(z)|.

Lemma 2.2. [3] For every 0 < α <∞ we have

(i) lim supn→∞(n+ 1)α‖zn‖να = (2αe )α,

(ii) lim supn→∞(log n)‖zn‖νlog = 1.

In the next theorems we give necessary and sufficient conditions for the boundedness
of generalized weighted composition operator Dk

ϕ,u : Zα → Bβ in the case of k = 1. The
results for the boundedness of D1

ϕ,u : Zα → Bβ are stated in three different cases of
0 < α < 1, α = 1, and 1 < α <∞.

Theorem 2.3. Suppose that 0 < α < 1. Then, the generalized weighted composition
operator D1

ϕ,u : Zα → Bβ is bounded if and only if u ∈ Bβ and

sup
z∈D

(1− |z|2)β
(1− |ϕ(z)|2)α |u(z)ϕ′(z)| <∞.

Theorem 2.4. The generalized weighted composition operator D1
ϕ,u : Z → Bβ is bounded

if and only if

(i) supz∈D(1− |z|2)β|u′(z)| log 2
1−|ϕ(z)|2 <∞,

(ii) supz∈D
(1−|z|2)β
1−|ϕ(z)|2 |u(z)ϕ′(z)| <∞.

Theorem 2.5. Suppose that 1 < α < ∞. Then, the generalized weighted composition
operator D1

ϕ,u : Zα → Bβ is bounded if and only if

(i) supz∈D
(1−|z|2)β

(1−|ϕ(z)|2)α−1 |u′(z)| <∞,

(ii) supz∈D
(1−|z|2)β

(1−|ϕ(z)|2)α |u(z)ϕ′(z)| <∞.
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Regarding Theorems 2.3, 2.4 and 2.5, in the next theorem we consider the case k > 1
and give necessary and sufficient conditions for the boundedness of generalized weighted
composition operator Dk

ϕ,u : Zα → Bβ.

Theorem 2.6. Suppose that 0 < α < ∞. Then, the generalized weighted composition
operator Dk

ϕ,u : Zα → Bβ is bounded if and only if

(i) supz∈D
(1−|z|2)β

(1−|ϕ(z)|2)α+k−2 |u′(z)| <∞,

(ii) supz∈D
(1−|z|2)β

(1−|ϕ(z)|2)α+k−1 |u(z)ϕ′(z)| <∞.

Remark 2.7. Recall that a linear operator T between Banach spaces X and Y is compact
if it takes bounded sets to sets with compact closure. The space of all compact operators
T : X → Y is denoted by K(X,Y ). The essential norm of a bounded operator T :
X → Y is defined as the distance from T to K(X,Y ). Estimates of essential norms have
been extensively studied for different types of operators between many spaces of analytic
functions. It is worth mentioning that essential norm estimates of generalized weighted
composition operators between weighted Zygmund spaces and weighted Bloch spaces have
been studied by the authors [6].
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Hausdorff measure of noncompactness for some paranormed

λ-sequence spaces of non-absolute type
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Abstract

Recently some new generalize sequence spaces related to the spaces l∞(p), c(p) and c0(p)
have been defined. In this work, we establish estimates for the operator norms and the
Hausdorff measure of noncompactness of certain matrix operators on this spaces that
are paranormed spaces by the matrix classes (X,Y ), where X ∈ {c0(λ, p), c(λ, p), l∞(λ, p)}
and Y ∈ {c0(q), c(q), l∞(q)}. Further, we apply our results to obtain corresponding
subclasses of compact matrix operators.

Keywords: Hausdorff measure of noncompactness; λ-sequence spaces; paranormed
spaces

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

We denote W for the space of all real-valued sequences. Any vector subspace of W is
called a sequence space.

Definition 1.1. Definitions of K-space, FK-space, BK-space and AK-property are in [2].
If X ⊃ φ is a BK-space and a = (ak) ∈ W, then we defined

∥ a ∥∗
X= supx∈SX

| ∑∞
k=0 akxk|,

(1)

provided the expression on the right hand side exist and is finite.
Let X and Y be any two sequence spaces and A = (ank) be any infinite matrix of real

numbers ank, where n, k ∈ N with N = {0, 1, 2, . . .}. By (X, Y ), we denote the class of all
infinite matrices that map X into Y .
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Definition 1.2. Assume here and after that (pk), (qk) are bounded sequences of strictly
positive real numbers with sup pk = H and M = max{1, H}.
Lemma 1.1([4]). Let X be any of the spaces c0, c, l∞ or lp(1 ≤ p < ∞). Then, we have
∥ . ∥∗

X=∥ . ∥Xβ on Xβ, where ∥ . ∥Xβ denotes the natural norm on the dual spaces Xβ.
Lemma 1.2([2]). Let X ⊃ φ be a BK-space and Y be any of the spaces c0, c,or l∞. If
A ∈ (X, Y ), then:

∥ LA ∥=∥ A ∥(X,l∞)= supn ∥ An ∥∗
X< ∞.

In [1] new sequence spaces have been defined as follows:

l∞(λ, p) = {x = (xk) ∈ W : supn | 1
λn

∑n
k=0(λk − λk−1)xk|pn < ∞};

c(λ, p) = {x = (xk) ∈ W : limn→∞ | 1
λn

∑n
k=0(λk − λk−1)(xk − l)|pn = 0 for some l ∈ R};

c0(λ, p) = {x = (xk) ∈ W : limn→∞ | 1
λn

∑n
k=0(λk − λk−1)xk|pn = 0};

l(λ, p) = {x = (xk) ∈ W :
∑∞

n=0 | 1
λn

∑n
k=0(λk − λk−1)xk|pn < ∞}.

For any x = (xk) ∈ W , we defined the associated sequence y = (yk), which will frequently
be used, as the Λ-transform of x, i.e, y = Λ(x), and hence:

yn =
∑n

k=0 (
λk−λk−1

λn
)xk (n ∈ N).

(2)

Lemma 1.3([1]). The sequence spaces l∞(λ, p), c(λ, p) and c0(λ, p) are BK- spaces with
respect to paranorm defined by:

f(x) = supn | 1
λn

∑n
k=0(λk − λk−1)xk|

pn
M .

Lemma 1.4. If a = (ak) ∈ Xβ, where X is any of the spaces l∞(λ, p), c(λ, p)or c0(λ, p),
then â = (âk) ∈ l1 and the following equality holds for all x = (xk) ∈ X, where y = Λ(x)
is given by (2),

∑∞
k=0 akxk =

∑∞
k=0 âkyk,

(3)

where,

âk = ( ak
λk−λk−1

− ak+1

λk+1−λk
)λk, (n, k ∈ N).

(4)
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Proof. By [Theorem 4, 5] the proof is complete.•

Theorem 1.5. If a = (ak) ∈ Xβ, where X is similar to Lemma 1.4, then:

∥ a ∥∗
X=∥ â ∥Xβ=∥ â ∥l1=

∑∞
k=0 |âk| < ∞,

(5)

where â = (âk) is a sequence defined by (4).
Proof. By using Lemma 1.4, relations (3) and (2), Lemma 1.3 and relation (1) respec-
tively, we obtain the proof.•
Lemma 1.6. Let X be one of the spaces l∞(λ, p), c(λ, p) or c0(λ, p) and Y be the re-
spective one of the spaces l∞(p), c(p) and c0(p) and Z be a sequence space and A = (ank)
an infinite matrix. If A ∈ (X,Z) then we obtain Â ∈ (Y, Z) such that Ax = Ây for all
sequences x ∈ X and y ∈ Y which are connected by the relation (2), where Â = (ânk) is
the associated matrix defined as follows:

ânk =





s1 , 0 ≤ k ≤ n
s2 , k = n
0 , k > n

where, s1 = ∆( ak
λk−λk−1

) and s2 = ( akλk
λk−λk−1

).

Proof. By using relation (2) and Theorem 1.5 the proof is completes.•
Theorem 1.7. Let X is any of the spaces l∞(λ, p), c(λ, p) or c0(λ, p) and A = (ank) be
an infinite matrix. If A is in any of the classes (X, c0(q)), (X, c(q)) or (X, l∞(q)), then

∥ LA ∥=∥ A ∥(X,l∞(q))= supn(
∑

k |ânk|M
1

pk )qn < ∞ (∀n ∈ N),

where q = (qn) is a non-decreasing bounded sequence of positive real numbers, and M be
natural numbers.
Proof. By combining Lemma 1.2 and Theorem 1.5 the proof is obvious. •
By MX we denote the collection of all bounded subsets of a metric space (X, d). If
Q ∈ MX , then the Hausdorff measure of noncompactness of the set Q, denoted by χ(Q),
is defined by:

χ(Q) = inf{ϵ > 0 : Q has a finite ϵ−net in X}.

The function χ : MX → [0, ∞) is called the Hausdorff measure of noncompactness.

2 Main results

Theorem 2.1. Let A = (ank) be an infinite matrix and Â = (ânk) the associated matrix
defined in Lemma 1.6. Further, assume that X be one of the spaces l∞(λ, p), c(λ, p) or c0(λ, p).
Then the following hold:

(a) If A ∈ (X, c0(q)), then ∥ LA ∥χ= lim supn→∞(
∑

k |ânk|M
1

pk )qn (∀M)
and
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LA is compact if and only if limn→∞(
∑

k |ânk|M
1

pk )qn = 0.

(b) If A ∈ (X, c(q)), then
1
2 .lim supn→∞(

∑∞
k=0 |ânk−âk|M

1
pk )qn ≤ ∥ LA ∥χ≤ lim supn→∞(

∑∞
k=0 |ânk − âk|M

1
pk )qn

and

LA is compact if and only if limn→∞(
∑

k |ânk − âk|M
1

pk )qn = 0

where, ∃âk, limn |ânk − âk|qn = 0 , (∀M).

(c) If A ∈ (X, l∞(q)), then 0 ≤∥ LA ∥χ≤ lim supn→∞(
∑∞

k=0 |ânk|M
1

pk )qn(∀M)
and

LA is compact if limn→∞(
∑∞

k=0 |ânk|M
1

pk )qn = 0.

Proof. By using Theorem 1.7, [Theorems 3.1 and 3.2, 2] and [section 2, 7] the proof is
completes.•
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Higher nummerical ranges of basic A−factor block circulant

matrix

Mohammad Ali Nourollahi Ravari∗
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Abstract

In this paper, using the notion of k−numerical range, the relation between k−numerical
range of matrix polynomials and the k−numerical range of its linearization are inves-
tigated. Moreover, the k−numerical ranges of basic circulant A−factor matrix are
studied.

Keywords: k−numerical range, matrix polynomial, companion linearization, basic
A−factor block circulant matrix

Mathematics Subject Classification [2010]: 15A60, 15A18, 47A56

1 Introduction

Let k and n are positive integers, Mn be the algebra of all n×n complex matrices, The set
of all n × k isometry matrices is denoted by Xn×k, i.e., Xn×k = {X ∈ Mn×k : X∗X = Ik}
and the group of n × n unitary matrices is denoted by Un. The k−numerical range of
A ∈ Mn is defined and denoted by Wk(A) = { 1

k tr (X∗AX) : X ∈ Xn×k}, where tr(.)
denotes the trace. The sets Wk(A), where k ∈ {1, 2, . . . , n}, are generally called higher
numerical ranges of A. Let A ∈ Mn have eigenvalues λ1, λ2, . . . , λn, counting multiplicities.
The set of all k−averages of eigenvalues of A is denoted by σ(k)(A), namely,

σ(k)(A) = {1

k
(λi1 + λi2 + · · · + λik) : 1 ≤ i1 < i2 < · · · < ik ≤ n}.

Proposition 1.1. Let A ∈ Mn. Then the following assertions are true:
(i) Wk(A) is a compact and convex set in C;
(ii) conv

(
σ(k)(A)

)
⊆ Wk(A), The equality holds if A is normal;

(iii) { 1
n tr(A)} = Wn(A) ⊆ Wn−1(A) ⊆ · · · ⊆ W2(A) ⊆ W1(A) = W (A);

(iv) If V ∈ Xn×s, where k ≤ s ≤ n, then Wk (V ∗AV ) ⊆ Wk(A). The equality holds if
s = n, i.e., Wk (U∗AU) = Wk(A), where U ∈ Un;
(v) For any α, β ∈ C, Wk(αA+βIn) = αWk(A)+β, and for the case k < n, Wk(A) = {α}
if and only if A = αIn;
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Suppose that
P (λ) = Amλm + Am−1λ

m−1 + · · · + A1λ + A0 (1)

is a matrix polynomial, where Ai ∈ Mn (i = 0, 1, . . . , m), Am ̸= 0 and λ is a complex vari-
able. The numbers m and n are referred as the degree and the order of P (λ), respectively.
The k-numerical range and the k-spectrum of P (λ) are, respectively, defined and denoted
by

Wk[P (λ)] = {µ ∈ C : tr(X∗P (µ)X) = 0 for some X ∈ Xn×k} , (2)

σ(k)[P (λ)] =
{

µ ∈ C : 0 ∈ σ(k)(P (µ))
}

. (3)

Moreover, if P (λ) = λIn − A, where A ∈ Mn, then Wk[P (λ)] = Wk(A) and σ(k)[P (λ)] =
σ(k)(A). It is clear that Wk[P (λ)] is a closed set in C which contains σ(k)[P (λ)].

Consider a matrix polynomial P (λ) = Amλm + Am−1λ
m−1 + · · · + A1λ + A0 as in (1),

in which m ≥ 2. The companion linearization of P (λ) is defined, e.g., see [2], as:

L(λ) =




In 0 0 · · · 0
0 In 0 · · · 0
... · · · . . . · · · ...
0 · · · 0 In 0
0 0 · · · 0 Am




λ −




0 In 0 0 · · · 0
0 0 In 0 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · 0 In 0
0 0 0 · · · 0 In

−A0 −A1 · · · · · · · · · −Am−1




(4)

By [2, page 186], there exists unimodular matrix polynomials E(λ) and F (λ) of order

mn such that E(λ)L(λ)F (λ) =

(
P (λ) 0

0 In(m−1)

)
. So, σ[P (λ)] = σ[L(λ)], and hence, for

any integer 1 ≤ k ≤ mn, σ(k)[P (λ)] = σ(k)[L(λ)].

Theorem 1.2. Let 1 ≤ k ≤ n be a positive integer, and P (λ), as in (1), be a matrix
polynomial with the companion linearization L(λ) as in (4). Then Wk[P (λ)] ∪ {0} ⊆
Wk[L(λ)].

Corollary 1.3. If Wk[L(λ)] is bounded, then Wk[P (λ)] is also bounded.

2 Main results

In this section, we study the k−numerical range of the companion linearization of the
matrix polynomial P (λ) = λmIn − A, where m ≥ 2 and A ∈ Mn. By (4), the companion
linearization of P (λ) is L(λ) = λImn − ΠA, where

ΠA =




0 In 0 · · · 0
0 0 In · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 In

A 0 · · · 0 0




∈ Mmn, (5)

is called the basic A−factor block circulant matrix. These matrices have important appli-
cations in vibration analysis and differential equations. e.g., see [1] and their references.
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Figure 1: W2(ΠA)

Theorem 2.1. Let A ∈ Mn, 1 ≤ k ≤ mn be a positive integer. Then ei 2π
m Wk(ΠA) =

Wk(ΠA). Consequently, if m is even, then Wk(ΠA) is symmetric with respect to the origin.

Theorem 2.2. Let 1 ≤ k ≤ n be a positive integer, A ∈ Mn and ΠA be the basic A−factor

block circulant matrix as in (5). Then conv
(

m
√

Wk(A) ∪ {0}
)

⊆ Wk(ΠA).

The set equality in Theorem 2.2 does not hold in general, see the following example.

Example 2.3. Let A =

(
−1 0
0 1

)
∈ M2, k = 2 and m = 3. We have W2(A) = {0}

and so, conv
(

3
√

W2(A)
)

= {0}. Since A is unitary, ΠA is also a unitary matrix. Then

W2(ΠA) = conv
(
σ(2)(ΠA)

)
= {0, ±1

2(1 + ei π
3 ), ±1

2(1 + ei 2π
3 ), ±1

2(ei π
3 + ei 2π

3 ), ±1
2(ei π

3 +

ei 5π
3 ),±1

2(−1 + ei π
3 ), ±1

2(−1 + ei 2π
3 )} ̸= {0}. which is shown in Figure 1.

In the following example, we characterize the k−numerical range of ΠIn .

Example 2.4. Let m ≥ 2 be a positive integer, and ΠIn ∈ Mmn be the companion matrix
as in (5). It is clear that the eigenvalues of ΠIn , counting multiplicity, are

1, . . . , 1︸ ︷︷ ︸
n−times

, ω, . . . , ω︸ ︷︷ ︸
n−times

, ω2, . . . , ω2

︸ ︷︷ ︸
n−times

, . . . , ωm−1, . . . , ωm−1

︸ ︷︷ ︸
n−times

,

where ω = ei 2π
m and σ(k)(ΠIn) contains all points of the following form:

1

k
(r0 + r1ω + r2ω

2 + · · · + rm−1ωm−1), (6)

where 0 ≤ r0, r1, . . . , rm−1 ≤ k are positive integers and r0+r1+ · · ·+rm−1 = k. Since ΠIn

is normal, by Proposition 1.1(ii), we have Wk(ΠIn) = conv(σ(k)(ΠIn)). Now, we consider
the following cases:
case 1: If 1 ≤ k ≤ n, then {1, ω, ω2, . . . , ωm−1} ⊆ σ(k)(ΠIn) and so,

Wk(ΠIn) = conv(σ(k)(ΠIn)) = conv({1, ω, . . . , ωm−1}).
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case 2: If k = tn + l, where 1 ≤ t ≤ m and 0 ≤ l ≤ n − 1 are integer numbers, then by
considering all the points of the form pα = 1

k (nωα1 + nωα2 + · · · + nωαt + lωαt+1) , where
α = (α1, α2, . . . , αt+1) is a (t + 1)-permutation of {0, 1, . . . , n − 1}, we have

conv
(
σ(k)(ΠI)

)
= conv ({ pα : α = (α1, α2, . . . , αt+1) is a

(t + 1) − permutation of {0, 1, . . . , n − 1}}) .

For example, if m = 4 and n = 2, then W1(ΠI2) = W2(ΠI2) = conv({1, i, −1, −i}),

W3(ΠI2) = conv

({
2 + i

3
,
2i + 1

3
,
2i − 1

3
,
i − 2

3
,
−2i − 1

3
,
−i − 2

3
,
2 − i

3
,

1 − 2i

3

})
,

W4(ΠI2) = conv

({
1 + i

2
,
i1
2

,
−1 − i

2
,
1 − i

2

})
,

W5(ΠI2) = conv

({
1 + 2i

5
,
2 + i

5
,
2 − i

5
,
1 − 2i

5
,
−1 + 2i

5
,
−2 + i

5
,

−1 − 2i

5
,
−2 − i

5

})
,

W6(ΠI2) = conv

({
i

3
,
1

3
,
−i

3
,
−1

3

})
, W7(ΠI2) = conv

({
i

7
,
1

7
,
−i

7
,
−1

7

})
,

and W8(ΠI2) = {1
8 tr(ΠI2)} = {0}.

At the end of this section, we find a circular disk which contains Wk(ΠA).

Theorem 2.5. Let 1 ≤ k ≤ mn be a positive integer, A ∈ Mn and ΠA be the basic
A−factor block circulant matrix as in (5). Then Wk(ΠA) ⊆ {µ ∈ C : |µ| ≤ 1 + ∥A − In∥}.
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Homological properties of certain subspaces of L∞(G) on
group algebras

Sima Soltani Renani∗
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Abstract

Homological properties of several Banach left L1(G)-modules have been studied
by Dales and Polyakov and recently by Ramsden. In this paper, we characterize
homological properties for some sub-modules of L∞(G) as Banach left L1(G)-modules.

Keywords: Banach module, flatness, injectivity and locally compact group.

Mathematics Subject Classification [2010]: 43A15, 43A20, 46H25.

1 Introduction

Throughout this paper, G denotes a locally compact group with the identity element e,
the modular function ∆, and a fixed left Haar measure λ. As usual, let L1(G) denote the
group algebra of G as defined in [4] equipped with the norm ‖ · ‖1 and the convolution
product ∗ of functions on G defined by

(φ ∗ ψ)(x) =

∫

G
φ(y)ψ(y−1x) dλ(y)

for all φ, ψ ∈ L1(G) and locally almost all x ∈ G. Let also L∞(G) denote the Banach
space as defined in [4] equipped with the essential supremum norm ‖ · ‖∞. Then L∞(G)
is the dual bimodule of the Banach L1(G)-bimodule L1(G) under the pairing

〈f, φ〉 =

∫

G
f(x)φ(x) dλ(x).

for all φ ∈ L1(G) and f ∈ L∞(G). The left and right module actions of L1(G) on L∞(G)
are given by the formulae

φ · f = f ∗ φ̃ and f · φ =
1

∆
φ̃ ∗ f

for all f ∈ L∞(G) and φ ∈ L1(G), where φ̃(x) = φ(x−1) for all x ∈ G. We denote
by Cb(G) the space of all bounded continuous functions on G, by LUC(G) the space
of all bounded left uniformly continuous functions on G and by C0(G) the space of all
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continuous functions on G vanishing at infinity. Then Cb(G) , LUC(G) and C0(G) are
closed submodules of the Banach L1(G)-bimodule L∞(G).

Dales and Polyakov [2] have characterized projectivity, injectivity and flatness of cer-
tain Banach left L1(G)-modules; see also [1], [9], [8]. In this work, we intend to charac-
terize these homological properties for some sub-modules of L∞(G) as Banach left L1(G)-
modules in terms of some topological and algebraic properties of G.

2 Main results

Let A be a Banach algebra. A Banach left A-module I is called injective if for each
Banach left A-modules E and F , each admissible monomorphism T ∈ AB(E,F ), and
each S ∈ AB(E, I), there exists R ∈ AB(F, I) such that R ◦ T = S. Similar definitions
apply for Banach right A-modules.

For each Banach left A-module E, the space B(A,E) is a Banach left A-module with
(a · T )(b) = T (ba) for all a, b ∈ A and T ∈ B(A,E). Define the left A-module morphism
Π : E −→ B(A,E) by the formula Π(ξ)(a) = a · ξ for ξ ∈ E and a ∈ A. It is shown in
[3], Proposition III.1.31, that if A is a Banach algebra, and E is faithful as Banach left
A-module (i.e., A · ξ 6= {0} for all ξ ∈ E \ {0}), then E is injective if and only if there
exists a left A-module morphism ρ : B(A,E) −→ E with ρ ◦Π = IE .

Theorem 2.1. Let G be a locally compact group. Then the following statements are
equivalent.

(a) There is a submodule X of Cb(G), C0(G) ⊂ X, and X is an injective Banach left
L1(G)-module.

(b) There exists a closed subspace X of Cb(G), C0(G) ⊂ X, and X is complemented
in L∞(G).

(c) G is discrete.

Proof. (a)⇒(b). Suppose that a submodule X of Cb(G) is an injective Banach left L1(G)-
module such that , C0(G) ⊂ X. Then there exists a left L1(G)-module morphism

ρG : B(L1(G), LUC(G)) −→ X

such that ρG ◦ ΠG = ILUC(G), where ΠG : X −→ B(L1(G), LUC(G)) is the canonical
embedding defined by

ΠG(h)(φ) = φ · h
for all h ∈ X and φ ∈ L1(G). Now, consider Q : L∞(G) −→ B(L1(G), LUC(G)) with

Q(f)(φ) = φ · f

for all f ∈ L∞(G) and φ ∈ L1(G). In particular, Q(h)(φ) = ΠG(h)(φ) for all h ∈ X and
φ ∈ L1(G). The result follows from the fact that ρG ◦Q : L∞(G) −→ X is projection on
LUC(G).

(b)⇒(c). see [6], Theorem 4.
(c)⇒(a). This follows from facts that L∞(G) is always an injective Banach left L1(G)-

module and that Cb(G) = L∞(G) when G is discrete; see [2], Theorem 2.4.

As a consequence of Theorem 2.3, we have the following result.
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Corollary 2.2. Let G be a locally compact group. Then LUC(G) is an injective Banach
left L1(G)-module if and only if G is discrete.

Let A be a Banach algebra and let us recall that a Banach left A-module F is called flat
if F ∗ is an injective Banach right A-module. Moreover, a locally compact group G is called
amenable if there is a positive functional m ∈ L∞(G)∗ with ‖m‖ = 1 and m · δx = m for
all x ∈ G. The class of amenable groups includes all compact groups and all abelian locally
compact groups; however, the discrete free group F2 on two generators is not amenable;
see [7] for more details.

Theorem 2.3. Let G be a locally compact group. Let X be a submodule of Cb(G), C0(G) ⊂
X. Then the following statements are equivalent.

(a) X is a flat Banach left L1(G)-module.
(b) G is amenable.

Proof. (b)⇔(a). Suppose that G is amenable. Then by the classical result of Johnson
[5], L1(G) is an amenable Banach algebra; that is, H1(L1(G), E∗) = {0} for all Banach
L1(G)-bimodule E. So, LUC(G) is a flat Banach left L1(G)-module; this follows from the
fact that if A is an amenable Banach algebra, then each Banach left or right A-module is
flat, see [3], VII.2.29.

For the converse, suppose that X is flat as a Banach left L1(G)-module; that is, X∗

is injective as a Banach right L1(G)-module. We will show that the Banach right L1(G)-
module M(G) is a retraction of X∗. Thus M(G) is also an injective Banach right L1(G)-
module; this is because that each retraction of an injective Banach module is injective;
see [3], Proposition III.1.16. Therefore, G is amenable by Crollary 4.7 of [2].

We define Q : M(G) −→ X∗ to be the map that sends a measure µ in M(G) to the
integration functional h 7→

∫
h dµ (h ∈ X). This is well defined because h is continuous.

Clearly, Q is a right L1(G)-module morphism. Now, let P : X∗ −→ M(G) be the re-
striction map, and note that P is a right L1(G)-module morphism. One can easily check
that Q is a right inverse for P, and thus M(G) is a retraction of X∗ . This completes the
proof.

Corollary 2.4. Let G be a locally compact group. Then LUC(G) is a flat Banach left
L1(G)-module if and only if G is amenale.
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Inequalities for Keronecker product of Matrices
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Abstract

In this paper we present a brief overview on the Kronecker product and ts prop-
erties. Triangle and Young inequalities are presented. In particular, the arithmetic-
geometric mean inequality for Keronecker product is obtained as special case.

Keywords: Kronecker product, Keronecker sum, Löwner partial order
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1 Introduction

The kronecker product of two matrices denoted by A⊗B, has been researched since nine-
teenth century. In fact the kronecker product should be called Zehfuss product because
Johann Georg Zehfuss published a paper in 1858 which contained the well-known deter-
minate conclusion |A⊗B| = |A|n|B|m , for square matrices A ∈Mm(C) and B ∈Mn(C).
Many propetrties about its trace, determinant, eigenvalues, and other decompositions have
been discovered during this time. The Keronecker product has wide applications in system
theory [6], matrix calculus [3], and quantum mechanics [2].

Definition 1.1. The Kronecker product of the matrix A ∈ Mmn(C) with the matrix
B ∈Mpq(C) is a matrix in M(mp)(nq)(C) and is defined by

A⊗B =




a11B · · · a1nB
...

...
am1B · · · amnB


 .

The Kronecker product of marices has a lot of interesting properties, many of them
stated and proven in the basic literature about matrix anlysis (e.g. one can see chapter
4 in [5]). The (relatively few) properties that are used to established the results in this
paper are collected in the following theorems.

Theorem 1.2. Let A ∈Mmn(C), B ∈Mqr(C), C ∈Mnp(C), and D ∈Mrs(C).

1. (A⊗B)(C ⊗D) = (AC)⊗ (BD).
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2. A⊗B = (A⊗ Iq)(In ⊗B) = (Im ⊗B)(A⊗ Ir).

3. If A ∈Mm(C) and B ∈Mn(C), then A⊗B = (A⊗In)(Im⊗B) = (Im⊗B)(A⊗In).
This means (A⊗ In) and (Im ⊗B) are commutative for square matrices A and B.

4. (A⊗B)∗ = A∗ ⊗B∗.

Theorem 1.3. Let A ∈Mm(C) and B ∈Mn(C).

1. σ(A⊗B) = {λµ : λ ∈ σ(A), µ ∈ σ(B)}.

2. tr (A⊗B) = tr (B ⊗A) = tr (A)tr (B).

3. det(A⊗B) = det(B ⊗A) = (detA)n(detB)m.

4. If A and B are non-singular, then (A⊗B)−1 = A−1 ⊗B−1

5. If A and B are positive definite matrices, then (A ⊗ B)r = Ar ⊗ Br for any real
number r.

Corollary 1.4. If A ∈ MM (C) and B ∈ Mn(C) are positive semi-definite matrices, then
(A⊗B) is positive semi-definite.

Corollary 1.5. If A ∈ MM (C) and B ∈ Mn(C), then |A ⊗ B| = |A| ⊗ |B|, where |A|
stands for the unique positive square root of A∗A.

A real n × n matrix A is called totally positive if determinant of all its minors are
positive. The following example shows that Kronecker product does not preserve totally
positivity.

Example 1.6. If A =

(
1 1
2 3

)
and B =

(
1 1
3 4

)
. Then A and B are totally positive

but A⊗B =




1 1 1 1
3 4 3 4
2 2 3 3
6 8 9 12


 is not totally positive.

Definition 1.7. The Kronecker sum of two square matrices A ∈Mm(C) and B ∈Mn(C)
is a matrix in Mmn(C) and is defined as

A⊕B = (In ⊗A) + (B ⊗ Im) .

Note that the definition of the Kronecker sum varies in the literature. Horn and
Johnson [5] use the above definition, whereas Graham[3] use A⊕B = (A⊗In) + (Im⊗B).
We use Horn and Johnson’s version of the Kronecker sum.
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2 Triangle and Young Inequalities

Some of the most important inequalities in complex numbers admit generalisations in
matrix context. The triangle inequality |α + β| ≤ |α| + |β| and the arithmetic-geometric

mean inequality
√
|αβ| ≤ |α|+|β|2 , are all in evidence. Another such inequality is the Young

inequality that refers to the following elementary, though fundamental, inequality between
the moduli of any pair of complex numbers α, β ∈ C:

|αβ| ≤ |α|
p

p
+
|β|q
q

, (1)

where p, q ∈ (1,∞) are conjugate exponents, that is 1
p + 1

q = 1. Furthermore, it is well
known that equality holds if and only if |β|q = |α|p .

The formulation of the triangle inequality for operators with respect to the Löwner
partial order (see Theorem 2.1 below) originates with a paper of Thompson [7] for operators
acting on finite-dimensional spaces.

Theorem 2.1. Let A and B be any two matrices in Mn(C). Then there exist unitary
matrices U and V such that

|A+B| ≤ U |A|U∗ + V |B|V ∗ .
The Young inequality was extended to complex matrices in [1] by T. Ando in the

following theorem.

Theorem 2.2. For each complex matrices A and B there exists a unitary matrix U such
that for each conjugate exponents p and q,

U∗|AB∗|U ≤ 1

p
|A|p +

1

q
|B|q. (2)

Equality holds in (2) if and only if |A|p = |B|q [4].

Since (|A| ⊗ In) and (Im ⊗ |B|) are commutative for any matrix A ∈ Mm(C) and
B ∈ Mn(C) (part (3) Theorem 1.2), an almost immediate consequence of the Gelfand
theory is that the triangle and Young Inequalities are hold in the following forms.

Theorem 2.3. Let A ∈Mm(C) and B ∈Mm(C) be any two matrices. Then

|A⊕B| ≤ |A| ⊕ |B| .
Theorem 2.4. Let A ∈Mm(C) and B ∈Mm(C) be any two matrices. Then

|A⊗B|r ≤ 1

p
|A|p ⊕ 1

q
|B|q ,

where p, q and r are positive real numberssuch such that 1
p + 1

q = 1
r .

Moreover, equality holds if and only if |A|p ⊗ In = Im ⊗ |B|q.
Corollary 2.5. ( Arithmetic-geometric mean inequality) Let A ∈Mm(C) and B ∈
Mm(C) be any two matrices. Then

√
|A⊗B| ≤ 1

2
(|A| ⊕ |B|) .

Equality holds if and only if |A| ⊗ In = Im ⊗ |B|.
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∞-Tuples of operators and Hereditarily

Mezban Habibi∗

Abstract

In this paper, we introduce for an∞-tuple of operators on common Ordered Banach
space and some conditions to an ∞-tuple to be Hereditary Hypercyclic infinity tuple.
The supreme is taken over norm operator defined on the space.

Keywords: Hypercylicity, ∞-tuple, Hereditarily.

Mathematics Subject Classification [2010]: 37A25, 47B37.

1 Introduction

Let X be an infinite dimensional Banach space and T1, T2, ... are commutative bounded
linear operators on X . By an ∞-tuple we mean the ∞-component T = (T1, T2, ...). For
the ∞-tuple T = (T1, T2, ...) the set

F =
∞⋃

n=1

{T1k1T2k2 ...Tnkn : ki ≥ 0, i = 1, 2, ..., n, n ∈ N}

is the semigroup generated by T . For x ∈ X take

Orb(T , x) = {Sx : S ∈ F}.

In other hand

Orb(T , x) =
∞⋃

n=1

{T1k1T2k2 ...Tnkn(x) : ki ≥ 0, i = 1, 2, ...n}.

Definition 1.1. The set Orb(T , x) is called, orbit of vector x under T and ∞-Tuple
T = (T1, T2, ...) is called hypercyclic ∞-tuple, if there is a vector x ∈ X such that, the set
Orb(T , x) is dense in X , that is

Orb(T , x) =

∞⋃

n=1

{T1k1T2k2 ...Tnkn(x) : ki ≥ 0, i = 1, 2, ...n} = X .

In this case, the vector x is called a hypercyclic vector for the ∞-tuple T .
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Definition 1.2. Let {m(k,1)}∞k=1, {m(k,2)}∞k=1, ... be increasing sequences of non-negative
integers. The ∞-tuple T = (T1, T2, ...) is called hereditarily hypercyclic with respect
to {mj,1}∞j=1, {mj,2}∞j=1, ..., {mj,n}∞j=1, ... if for all subsequences {m′j,1}∞j=1, {m′j,2}∞j=1, ... of
{mj,1}∞j=1, {mj,2}∞j=1, ..., {mj,n}∞j=1, ... respectively, the sequence

{Tm
′
(k,1)

1 T
m′

(k,2)

2 ...Tn
m′

(k,n)}∞n=1

is hypercyclic. That is, there exists a vector x in X such that

∞⋃

n=1

{T1k1T2k2 ...Tnkn(x) : ki ≥ 0, i = 1, 2, ...n} = X .

Note 1.3. If X be an finite dimensional Banach space, then there are no hypercyclic
operator on X , also there are no ∞-tuple or n-tuple on X .

Note 1.4. All of operators in this paper are commutative bounded linear operators on a
Banach space. Also, note that by {j, i} or (j, i) we mean a number, that was showed by
this mark and related with this indexes, not a pair of numbers. Also, let T1, T2, ... acting
on Ordered Banach Space X and T = (T1, T2, ...) be∞-tuple of those operators and x ∈ X

T (x) = Supn

n⋃

h=1

{T1k1T2k2 ...Thkh(x) : ki ≥ 0, i = 1, 2, ...h}.

Since X is Ordered Space then the supreme is well fine.

2 Main Results

Theorem 2.1 (The Hypercyclicity Criterion for∞-Tuples). Let X be a separable Banach
space and T = (T1, T2, ...) is an∞-tuple of continuous linear mappings on X . If there exist
two dense subsets Y and Z in X , and strictly increasing sequences {mj,1}∞j=1, {mj,2}∞j=1,
... such that :
1. T

mj,1
1 T

mj,2
2 ...→ 0 on Y as j →∞,

2. There exist functions {Sj : Z → X} such that for every z ∈ Z, Sjz → 0,
and T

mj,1
1 T

mj,2
2 ...Sjz → z, on Z as j →∞,

then T is a hypercyclic ∞-tuple.

We can replace the notation Supn{Tmj,11 T
mj,2
2 ...T

mj,n
n Sjz} by T

mj,1
1 T

mj,2
2 ...Sjz

Theorem 2.2. An ∞-tuple T = (T1, T2, ...) is hereditarily hypercyclic with respect to
increasing sequences of non-negative integers{mj,1}∞j=1, {mj,2}∞j=1, ... if and only if for all
given any two open sets U , V, there exist some positive integers Mi,M2, ... such that

(
∞⋃

n=1

{Tmk,11 T
mk,2
2 ...T

mk,n
n (U),∀mk,i > Mi, i = 1, 2, ..., n})

⋂
V 6= φ
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Proof. Let T = (T1, T2, ...) be hereditarily hypercyclic∞-tuple with respect to increas-
ing sequences of non-negative integers

{mj,1}∞j=1, {mj,2}∞j=1, ...

and suppose that there exist some open sets U , V such that

(
∞⋃

n=1

{Tm
′
k,1

1 T
m′k,2
2 ...T

m′k,n
n (U),∀m′k,i > Mi, i = 1, 2, ..., n})

⋂
V = φ

for some subsequence {m′j,1}∞j=1, {m′j,2}∞j=1, ... of {mj,1}∞j=1, {mj,2}∞j=1, ... respectively.
Since the∞-tuple T = (T1, T2, ...) is hereditarily hypercyclic with respect to {mj,1}∞j=1, {mj,2}∞j=1, ...,

thus {Tm
′
k,1

1 T
m′k,2
2 ...} is hypercyclic, and so we get a contradiction.

Conversely, Suppose that {m′j,1}∞j=1, {m′j,2}∞j=1, ... are arbitrary subsequences of {mj,1}∞j=1, {mj,2}∞j=1, ...
respectively, and U , V are open sets in X , satisfying

(
∞⋃

n=1

{Tm
′
k,1

1 T
m′k,2
2 ...T

m′k,n
n (U), ∀m′k,i > Mi, i = 1, 2, ..., n})

⋂
V 6= φ

So there exist (i, j), large enough for j = 1, 2, ... such that m(ki,j) > Mj for j = 1, 2, ... and

(

∞⋃

n=1

{Tmk1,11 T
mk2,2
2 ...T

mkn,n
n (U), ∀mki,i > Mi, i = 1, 2, ..., n})

⋂
V 6= φ.

This implies that
{Tm(ki,1)

1 T
m(ki,2)

2 ...}
is hypercyclic, so the ∞-tuple T = (T1, T2, ...) is indeed hereditarily hypercyclic with
respect to the sequences

{m(k,1)}∞k=1, {m(k,2)}∞k=1, ....

By this the proof is complete.
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Integral Operators and Multiplication Operators

on F (p, q, s) Spaces

Amir H. Sanatpour

Kharazmi University (Tarbiat Moallem University)

Abstract

We study integral operators on a large family of analytic function spaces, called
F (p, q, s) spaces. Our approach for the study of integral operators is to investigate
some related multiplication operators on F (p, q, s) type spaces. As a consequence of
this approach, we obtain certain properties of integral operators on Qs spaces.

Keywords: Integral operators, Multiplication operators, F (p, q, s) spaces, Qs spaces.
Mathematics Subject Classification [2010]: 47B38, 46E15.

1 Introduction

Let D denote the open unit disc of the complex plane and H(D) denote the space of all
analytic functions on D. For a ∈ D, the Möbius function ϕa : D→ D is defined by

ϕa(z) =
a− z
1− az ,

for all z ∈ D. Also, the Green’s function of D with logarithmic singularity at a is defined
by

g(z, a) = log

∣∣∣∣
1− az
a− z

∣∣∣∣ = log
1

|ϕa(z)|
,

for all z ∈ D.
For 0 < p < ∞, −2 < q < ∞ and 0 < s < ∞, a function f ∈ H(D) is said to belong

to the space F (p, q, s), if

‖f‖p,q,s = sup
a∈D

(∫

D
|f ′(z)|p(1− |z|2)qgs(z, a)dA(z)

) 1
p

<∞, (1)

and f ∈ H(D) is said to belong to the space F0(p, q, s), if

lim
|a|→1

∫

D
|f ′(z)|p(1− |z|2)qgs(z, a)dA(z) = 0, (2)

where dA denotes the normalized Lebesgue area measure on D. In the case of s = 0, a
function f ∈ H(D) is said to belong to the space F (p, q, 0), if

‖f‖p,q,0 = sup
a∈D

(∫

D
|f ′(z)|p(1− |z|2)qdA(z)

) 1
p

<∞,
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and for convenience F0(p, q, 0) is defined to be F (p, q, 0).
It is known that for 1 ≤ p < ∞, −2 < q < ∞ and 0 ≤ s < ∞, F (p, q, s) is a Banach

space if equipped with the norm

‖f‖ = |f(0)|+ ‖f‖p,q,s.

Moreover, F0(p, q, s) is a closed subspace of F (p, q, s).
The spaces F (p, q, s), which were first studied by Zhao [5] and Rättyä [3], are also

called “general family of function spaces” or “large family of analytic function spaces”
because one can get many well known function spaces by taking special parameters of p,
q and s. Two important special cases are “Bloch type spaces” and “Qs spaces”, defined
as follows.

For 0 < α <∞, the Bloch type space Bα is the space of all analytic functions f ∈ H(D)
for which

Bα(f) = sup
z∈D

(1− |z|2)α|f ′(z)| <∞.

The Bloch type space Bα is a Banach space if equipped with the norm

‖f‖Bα = |f(0)|+Bα(f).

When α = 1, we get the classic Bloch space B = B1.
For any 0 ≤ s <∞, the Qs space consists of all analytic functions f ∈ H(D) such that

Qs(f) = sup
a∈D

(∫

D
|f ′(z)|2(1− |ϕa(z)|2)sdA(z)

) 1
2

<∞.

The Qs space is a Banach space if equipped with the norm

‖f‖Qs = |f(0)|+Qs(f).

It is known that for s > 1, Qs = B. Also, when s = 1, Qs = BMOA, the space of
all analytic functions of bounded mean oscillation. Moreover, when s = 0, the space Qs
degenerates to the Dirichlet space [4]. Therefore, one may be interested in the study of
Qs spaces only in the case of 0 < s < 1.

About the relation between F (p, q, s) spaces and Bloch type spaces Bα, we know that

F (p, q, s) = B
q+2
p for s > 1, and F (p, q, s) ⊆ B

q+2
p for 0 < s ≤ 1. Also, one can get Qs

spaces by taking p = 2 and q = 0 in F (p, q, s) spaces, that is, F (2, 0, s) = Qs [5].
In this paper, we consider “integral operators” and “multiplication operators”, on

F (p, q, s) spaces, defined as follows.
For g ∈ H(D), the integral operator Ig is given by

(Igf) (z) =

∫ z

0
g(ξ)f ′(ξ)dξ, (z ∈ D),

and the multiplication operator Mg is given by

(Mgf) (z) = g(z)f(z), (z ∈ D).

Integral operators and multiplication operators acting on various function spaces of
analytic functions on D have been studied by many authors. See, for example, [1, 2] and
the references therein.
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2 Main results

It is known that for 0 < p < ∞, −2 < q < ∞ and 0 < s < ∞, an analytic function f on
D belongs to F (p, q, s) if and only if [5]

sup
a∈D

∫

D
|f ′(z)|p(1− |z|2)q(1− |ϕa(z)|2)sdA(z) <∞, (3)

and belongs to F0(p, q, s) if and only if

lim
|a|→1

∫

D
|f ′(z)|p(1− |z|2)q(1− |ϕa(z)|2)sdA(z) = 0. (4)

Therefore, one may consider (3) and (4) instead of (1) and (2), respectively, in the definition
of F (p, q, s) spaces.

Before giving our main results, we next state a useful lemma, Theorem 4.2.2 [3], which
will be used in the proof of next theorems.

Lemma 2.1. Let f ∈ H(D), 1 < p < ∞, −2 < q < ∞ and 0 ≤ s < ∞ such that
−1 < q + s− p. Then, f ∈ F (p, q, s) if and only if

sup
a∈D

∫

D
|f(z)|p(1− |z|2)−p+q(1− |ϕa(z)|2)sdA(z) <∞.

We next give one of the main theorems, giving the idea that study of integral operators
Ig between F (p, q, s) type spaces may reduce to the study of multiplication operators Mg

between F (p, q, s) type spaces.

Theorem 2.2. Let g ∈ H(D), then the integral operator

Ig : F (p, q, s)→ F (p, q, s),

is bounded if and only if the multiplication operator

Mg : F (p, p+ q, s)→ F (p, p+ q, s),

is bounded.

Applying Theorem 2.2, in the special case of F (2, 0, s), leads to the following corollary
for the boundedness of integral operator Ig on Qs spaces.

Corollary 2.3. Let g ∈ H(D), then the integral operator Ig : Qs → Qs is bounded if and
only if the multiplication operator Mg : F (2, 2, s)→ F (2, 2, s) is bounded.

Regarding Theorem 2.2, in the next theorem we apply Lemma 2.1 to characterize
boundedness of multiplication operator

Mg : F (p, p+ q, s)→ F (p, p+ q, s),

when 1 < p <∞, −2 < q <∞ and 0 ≤ s <∞ such that −1 < q + s.
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Theorem 2.4. Let 1 < p < ∞, −2 < q < ∞ and 0 ≤ s < ∞ such that −1 < q + s. Let
g ∈ H(D), then the multiplication operator

Mg : F (p, p+ q, s)→ F (p, p+ q, s),

is bounded if and only if g ∈ H∞(D).

Note that the case of p = 2, q = 0 and 0 ≤ s <∞ satisfies the conditions of Theorem
2.4. Therefore, Theorem 2.4 implies that the multiplication operator

Mg : F (2, 2, s)→ F (2, 2, s),

is bounded if and only if g ∈ H∞(D). This, along with Corollary 2.3, leads to the next
corollary for the boundedness of integral operator Ig on Qs spaces.

Corollary 2.5. The integral operator Ig : Qs → Qs is bounded if and only if g ∈ H∞(D).

Remark 2.6. As we mentioned before, the main idea of this paper is to give the approach
of studying integral operators Ig between F (p, q, s) type spaces by investigating related
multiplication operators Mg between F (p, q, s) type spaces. For example, note that the
result of Corollary 2.5 has been proved in [2] using a classic approach in the study of
integral operators. But, here we obtained Corollary 2.5 as a consequence of our proposed
different approach in Theorem 2.2. It is also worth mentioning that, using a similar method
as in the proof of Theorem 2.2, one can prove this approach for the compactness of integral
operators Ig between F (p, q, s) type spaces. More precisely, we have the following result.

The integral operator
Ig : F (p, q, s)→ F (p, q, s),

is compact if and only if the multiplication operator

Mg : F (p, p+ q, s)→ F (p, p+ q, s),

is compact.
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Mappings under asymptotic pointwise weaker

Meir-Keeler-type contractive type conditions
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Abstract

In this paper we first define the asymptotic pointwise weaker Meir-Keeler-type ψ
-condition type, ψ : X −→ R+, and present fixed point theorems for mapping such
condition in normed and Banach space.

1 Introduction

The notion of asymptotic pointwise mapping was introduction in {[3, 4]}. In this work,
we introduce new asymptotic pointwise weaker Meir-Keeler-type ψ -contraction type, ψ :
X −→ R+, and present fixed point theorems for mapping such condition in normed
and Banach space. In normed spaces, we discuss an asymptotic behavior of a mapping
of asymptotic pointwise weaker Meir-Keeler-type ψ-contraction type .Our results extend
and improve, for example, the corresponding result of Chi- Ming Chen [1].

Asymptotic contractions are defined as follows. Let Φ denote the class of all mappings
φ : R+ −→ R+ satisfying

(i) φ is continuous, (ii) 0 ≤ φ(t) < t for all t ∈ R+ \ {0}, φ(0) = 0.

Definition 1.1. let (M,D) be a metric space. A mapping T : M −→M is said to be an
asymptotic contraction if

d(Tnx, Tny) ≤ φn(d(x, y)) for all x, y ∈M. (1.1)

where φn −→ φ ∈ Φ uniformly on the range of d.

A function ψ : R+ −→ R+ ([5]) is said to be a Meir-Keeler-type function if for each
η ∈ R+, there exists δ > 0 such that for t ∈ R+ with η ≤ t < η + δ, we have ψ(t) < η.

Definition 1.2. A function ψ : R+ −→ R+ is called a weaker Meir-Keeler-type function
if for each η > 0, there exists δ > η such that for t ∈ R+ with η ≤ t < η + δ, there exists
n0 ∈ N such that ψn0(t) < η.
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Definition 1.3. Let X be a Banach space, and let ψ : R+ −→ R+ be a weaker Meir-
Keeler-type function. Then the mapping T : X −→ X is said to be asymptotic pointwise
weaker Meir-Keeler-type ψ -contraction if for each n ∈ N,

‖ Tnx− Tny ‖≤ ψn(‖ x ‖) ‖ x− y ‖ for all x, y ∈ X.

Theorem 1.4. ([1]). Let A be a weakly compact convex subset of a Banach space X, let
ψ : R+ −→ R+ be a weaker Meir-Keeler-type function where for each t ∈ R+, {ψn(t)}n∈N
is nonincreasing, and let T : A −→ A be an asymptotic pointwise weaker Meir-Keeler-type
ψ - contraction. Then T has a unique fixed point x̄ ∈ A, and for each x ∈ A, the sequence
of Picard iterates, {Tn}, converges in norm to x̄.

2 Asymptotic pointwise weaker Meir-Keeler-type contrac-
tion type

Definition 2.1. Let X be a Banach space, and let ψ : R+ −→ R+ be a weaker Meir-
Keeler-type function. Then the mapping T : X −→ X is said to be of asymptotic pointwise
weaker Meir-Keeler-type ψ -contraction type (resp. of weak asymptotic pointwise weaker
Meir-Keeler-type ψ -contraction type ) if TN is continuous for some integer N ≥ 1. for
each x ∈ X

lim sup
x→∞

sup
y∈X
{‖ Tnx− Tny ‖ −ψn(‖ x ‖) ‖ x− y ‖} ≤ 0 (2.1)

(lim inf
x→∞

sup
y∈X
{‖ Tnx− Tny ‖ −ψn(‖ x ‖) ‖ x− y ‖} ≤ 0), (2.2)

Taking

rn(x) = sup
y∈X
{‖ Tnx− Tny ‖ −ψn(‖ x ‖) ‖ x− y ‖} ∈ R+ ∪ {∞} (2.3)

it can be easily seen from (2.1) (resp. (2.2)) that

lim
n→∞

rn(x) = 0 (2.4)

(resp. lim inf
n→∞

rn(x) ≤ 0) (2.5)

for all x ∈ X, and

‖ Tnx− Tny ‖≤ ψn(‖ x ‖) ‖ x− y ‖ +rn(x). (2.6)

It is easy to see that an asymptotic pointwise weaker Meir-Keeler-type contraction is
of asymptotic pointwise weaker Meir-Keeler-type contraction type; but, the converse is
not true:

Example 2.2. Let X = Πn≥1[0, 1n ] ⊆ C0(N). For aech x = (x1, x2, x3, ...) in X, define

T (x1, x2, x3, ...) = (f(x1), x2, x3, ...),

where f : [0, 1] −→ [0, 1] is a nonexpansive mapping. It easy to see that T is a continuous
nonlinear mapping from X to X which is of asymptotic pointwise weaker Meir-Keeler-type
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contraction type. In fact, we notice that for every x = (x1, x2, x3, ...) and y = (y1, y2, y3, ...)
in X,

‖ Tnx− Tny ‖≤ sup{| xi − yi |: i ≥ n+ 1} ≤ 1

n+ 1
.

Hence, for η < 1, we have

sup
y∈X

(‖ Tnx− Tny ‖ −ψn(‖ x ‖) ‖ x− y ‖) ≤ 1

n+ 1
−→ 0, as n −→∞.

But, T is not an asymptotic pointwise weaker Meir-Keeler-type contraction. Indeed,
for any x = (x1, x2, x3, ...) ∈ X and n ∈ N,

‖ Tnx− Tny ‖=‖ x− y ‖,
for every y = (y1, y2, y3, ...) ∈ X for which yi = xi, i=1,2,...,n+1.

In this study, we also use the technique of asymptotic centers. Let X be Banach space,
A a subset of X, and {xn} a bounded sequence in X. The asymptotic center of {xn}
relative to A, denoted as CA(xn), is the set of minimizers in A (if any) of the function f
given by

f(x) = lim sup
n→∞

‖ xn − x ‖

That is,
CA(xn) = {x ∈ A : f(x) = inf

A
f}.

It is known that f : X −→ R+ is convex, nonexpansive and hence weak lower semi-
continuous. Moreover, if C is weakly compact, then AC(xn) is nonempty (see[2]).

We employ the technique of asymptotic centers to prove the following extension of
theorem 1.7.

Theorem 2.3. Let A be a weakly compact convex subset of a Banach space X, let
ψ : R+ −→ R+ be a weaker Meir-Keeler-type function where for each t ∈ R+, {ψn(t)}n∈N
is nonincreasing, and let T : A −→ A be a weak asymptotic pointwise weaker Meir-Keeler-
type ψ-contraction type. Then T has a unique fixed point x̄ ∈ A, and for each x ∈ A, the
sequence of Picard iterates, {Tnx}, converges in norm to x̄.

Proof. Fix an x ∈ A and define a function f by

f(y) = lim sup
n→∞

‖ Tnx− y ‖, y ∈ A.

Since A is a weakly compact convex subset of a Banach space X, the asymptotic center
of the sequence {Tnx} relative to A, CA(Tnx) = {y ∈ A : f(y) = minA f}. is a non-empty
closed convex subset of A. We now claim that

f(Tmy) ≤ ψm(‖ y ‖)f(y) + rm(y), y ∈ A, m ≥ 1.

Indeed, we have

f(Tmy) = lim sup
n→∞

‖ Tnx− Tmy ‖

≤ lim sup
n→∞

ψm(‖ y ‖) ‖ Tnx− y ‖ +rm(y)

= ψm(‖ y ‖)f(y) + rm(y).
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Take an y ∈ CA(Tnx), and since Tmy ∈ A, we get, for m ≥ 1,

f(y) ≤ f(Tmy) ≤ ψm(‖ y ‖)f(y) + rm(y). (2.7)

Since T is of weak asymptotic pointwise weaker Meir-Keeler-type ψ-contraction type, by
(2.5), we have lim infn→∞ rn(y) ≤ 0. Thus, for a subsequence {rmk(y)} of {rm(y)}, we
have lim infk→∞ rmk(y) ≤ 0.

On the other hand, since {ψm(‖ y ‖)}m∈N is nonincreasing, it must converge to some
η ≥ 0. We claim that η = 0. To the contrary, assume that η > 0. Then by the definition
of the weaker Meir-Keeler-type function, there exists δ > η such that for y ∈ A with
η ≤‖ y ‖< δ, there exists n0 ∈ N such that ψn0(‖ y ‖) < η. Since limm→∞ ψm(‖ y ‖) = η,
there exists m0 ∈ N such that η ≤ ψm(‖ y ‖) < δ for all m ≥ m0. Thus we conlude that
ψm0+n0(‖ y ‖) < η. and we get a contraction. So limm→∞ ψm(‖ y ‖) = 0.
Taking the limit in (2.7) as m→∞, we get f(y) = 0. This implies that Tnx→ u, in norm.
From this and the continuity of TN , for some N ≥ 1, it follows TNy = TN (limn→∞ Tnx) =
limn→∞ Tn+Nx = y; namely, y is a fixed point of TN . Now, repeating the above proof for
y instead of x, we deduce that Tny converges, in norm, to a member of C. But, T kNy = y,
for all k ≥ 1. Hence, Tny → u, in norm. We show that Ty = y; for this purpose, consider
an arbitrary ε > 0. Then, there exists a K0 > 0 such that ‖ Tny − y ‖< ε, for all n > K0.
So, by choosing a natural number k > K0/N , we obtain ‖ Ty − y ‖=‖ T (T kNy)− y ‖=‖
T kN+1y − y ‖< ε. Since the choice of ε > 0 is arbitrary, we get Ty = y. It is easy to see
that T has a unique fixed point. Indeed, if z ∈ A is also a fixed point of T , then for all
n ∈ N,

‖ y − z ‖=‖ Tny − Tnz ‖≤ ψn(‖ y ‖) ‖ y − z ‖ +rn(y).

Letting n→∞, we get ‖ y − z ‖= 0, and so y = z.
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Abstract

We give a minimal description in the sense of Aronszajn-Gagliardo for the real
methods in the case of quasi-Banach quaternion.

Keywords: quasi-Banach spaces, interpolation space, real method of interpolation
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1 Introduction

Our main reference to the theory of interpolation space is [1]. Let Ā = (A0, A1, A2, A3) be
a quasi-Banach quaternion and t̄ = (t1, t2, t3) ∈ R3

+. The Peetre, K-functional is defined
for a ∈ A0 +A1 +A2 +A3 :=

∑
(Ā) by

K(t1, t2, t3, a; Ā)

= inf{‖a0‖A0 + t1‖a1‖A1 + t2‖a2‖A2 + t3‖a3‖A3 : a =

3∑

i=0

ai, aj ∈ Aj}

and similarly the J-functional for a ∈ A0 ∩A1 ∩A2 ∩A3 := 4(Ā) by

J(t1, t2, t3, a; Ā) = max{‖a‖A0 , t1‖a‖A1 , t2‖a‖A2 , t3‖a‖A3 : a ∈ 4(Ā)}.

Let Ā = (A0, A1, A2, A3) be a quaternion of quasi-Banach spaces and n̄ = (n1, n2, n3) ∈
Z3. For 0 < θ1, θ2, θ3 < 1, θ1 + θ2 + θ3 < 1 and 0 < q ≤ ∞ we define the real interpolation
space Ā(θ1,θ2,θ3),q,K as the set of all a ∈∑(Ā) which have a finite quasi-norm
‖a‖(θ1,θ2,θ3),q,K

=





( ∑

n̄∈Z3

(2−n1θ12−n2θ22−n3θ3K(2n1 , 2n2 , 2n3 , a; Ā))q
)1/q

if 0 < q <∞

sup
n̄∈Z3

{2−n1θ12−n2θ22−n3θ3K(2n1 , 2n2 , 2n3 , a; Ā)} if q =∞
.

Also we define the real interpolation space Ā(θ1,θ2,θ3),q,J as the set of all a ∈ ∑(Ā)that

may by written as a =
∑

n̄∈Z3

un̄, un̄ ∈ 4(Ā) (convergence in
∑

(Ā)) and which have a finite
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quasi-norm
‖a‖(θ1,θ2,θ3),q,J

= inf
a=

∑

n̄∈Z3

un̄

( ∑

n̄∈Z3

(2−n1θ12−n2θ22−n3θ3J(2n1 , 2n2 , 2n3 , un̄; Ā))q
)1/q

With the usual interpretation when q =∞.
If Ā = (A0, A1, A2, A3) and B̄ = (B0, B1, B2, B3) are Banach quaternion, we write T ∈
£(Ā, B̄) to mean that T is a linear operator from

∑
(Ā) into

∑
(B̄) whose restriction to

each Aj defines a bounded operator from Aj into Bj (j = 0, 1, 2, 3). We put

‖T‖Ā,B̄ = max
j=0,1,2,3

{‖T‖Aj ,Bj}.

Scalar sequence spaces are defined over Z3 and given any sequence of positive numbers
(wn̄)n̄∈Z3 we put

lp(wn̄) = {(an̄) : ‖an̄‖lp(wn̄) = ‖wn̄an̄‖lp <∞}.

Of special interest for us are the quaternion l̄p =

(
lp, lp(2

−n1), lp(2
−n2), lp(2

−n3)

)
,

(0 < p ≤ 1) and l̄∞ =

(
l∞, l∞(2−n1), l∞(2−n2), l∞(2−n3)

)
.

2 Main results

We start this section by introducing the following:

Let T be a mapping from a quasi-Banach space A into a scalar sequence spaceM. We
say that T is quasi-linear with constant C ≥ 1 if

|T (a+ b)| ≤ C
(
|Ta|+ |Tb|

)
, a, b ∈ A

|T (λa)| = |λ||Ta|, a ∈ A, λ ∈ F (F − scalarfield).

Given any quasi-Banach quaternion Ā = (A0, A1, A2, A3) and C ≥ 1 we denote by
£C(Ā, l̄∞) the collection of all those quasi-linear operators T :

∑
(Ā) → ∑

(l̄∞) with
the constant C whose restriction to Ai (i = 0, 1, 2, 3) defines a bounded operator from
A0, A1, A2, A3 into l∞, l∞(2−n1), l∞(2−n2), l∞(2−n3) respectively.

Definition 2.1. Let 0 < θ1, θ2, θ3 < 1, θ1 + θ2 + θ3 < 1 and 0 < q ≤ ∞.Given any
quasi-Banach quaternion Ā = (A0, A1, A2, A3) we define H(θ1,θ2,θ3),q,C(Ā) as the collection

of all those a ∈ ∑(Ā) such that Ta ∈ lq(2
−n1θ1−n2θ2−n3θ3) for any T ∈ £C(Ā, l̄∞) and

quasi-norm

‖a‖H(θ1,θ2,θ3),q,C
(Ā) = sup{‖Ta‖lq(2−n1θ1−n2θ2−n3θ3 ) : ‖T‖Ā,l̄∞ ≤ 1}
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is finite.

Theorem 2.2. Let Ā = (A0, A1, A2, A3) be a quasi-Banach quaternion, let 0 < θ1, θ2, θ3 <
1, θ1 + θ2 + θ3 < 1 and 0 < q ≤ ∞. Assume that the constant in the triangle inequality of
Ai is Ci (i− 0, 1, 2, 3) and put C = max(C0, C1, C2, C3). Then

(A0, A1, A2, A3)(θ1,θ2,θ3),q,K = H(θ1,θ2,θ3),q,C(A0, A1, A2, A3).

In the following (A0, A1, A2, A3) will always denote a quasi-Banach quaternion that Aj
is cj normed with (c1 + c2 + c3)/3c0 ≤ 1.

Theorem 2.3. Let (A0, A1, A2, A3) be a quasi-Banach quaternion and a ∈ A0 +A1 +A2 +
A3. Then

K(t1, t2, t3, a; Ā) = K(t1, t2, t3, a;A0, A0 +A1 +A2 +A3) (t ≥ 1).

Theorem 2.4. Let (A0, A1, A2, A3) be a quasi-Banach quaternion and a0 ∈ A0. Then

K(t1, t2, t3, a0; Ā) ≤ K(t1, t2, t3, a0;A0, A0 ∩A1 ∩A2 ∩A3) (t > 0).

Proposition 2.5. Let (A0, A1, A2, A3) be a quasi-Banach quaternion. Then the following
identities hold.

(A0 +A1 +A2 +A3, A0)θ,q ∩ (A0 +A1 +A2 +A3, A1 +A2 +A3)θ,q

= (A0 +A1 +A2 +A3, A0 ∩A1 ∩A2 ∩A3)θ,q. (0 < θ < 1, 0 < q ≤ ∞)
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Monotonicity and dominated best proximity pair in Banach

lattices and some applications
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Abstract

In this paper we introduce the dominated Best proximity pair problem in Banach
lattices. We give some necessary and sufficiency conditions such that this problem is
uniquely solvable in STM space. Also we show that every UM spaces have property
UC in Banach Lattices.

Keywords: Banach Lattice, Best proximity pair, STM Space, Property UC.
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1 Introduction

Let (X,≤) be a Banach lattice and A,B be two nonempty subset of Xand T be a mapping
from A in to B. x ∈ A is called a point of best proximity pair if ‖x−Tx‖ = d(A,B) where

d(A,B) = inf{‖x− y‖ : (x, y) ∈ A×B}.

The set of all best proximity points is denoted by TBA . T is called a nonexpansive map if
‖Tx− Ty‖ ≤ ‖x− y‖ for each x, y ∈ A. Best proximity pair also evolves a generalization
of the concept of fixed point of mapping. Indeed every best proximity pair is a fixed point
of T , whenever A ∩ B 6= ∅. The problem of best proximity pair is discussed by many
authors for more information you can refer to [2], [3], [9] and [10]. Eldered and Veeramani
in [3] proved that for a cyclic contraction map in a uniformly convex Banach space there
exists a unique best proximity pair and Sankar Raj and Veeramani proved similarly results
for relatively nonexpansive map. In [10] Suzuki et.al by using Lemma 3.8 in [3] defined
property UC and discussed the existence of best proximity pair. In this paper we introduce
the concept of dominated best proximity pair and stated some condition to guaranteed
the existence of best proximity pair. For general information in Banach lattices we can
refer to chapter one of [1] and [7].

Definition 1.1. [6] A Banach lattice X is said to be strictly monotone (X ∈ STM) if for
all x, y ∈ X+, the conditions x ≥ y, y 6= 0 and ‖x‖ = ‖y‖ implies x = y.
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Definition 1.2. [6] A Banach lattice X is said to be uniformly monotone (X ∈ UM) if
for all yn ≥ xn ≥ 0, such that limn→∞ ‖xn‖ = limn→∞ ‖yn‖, then ‖xn − yn‖ → 0.

Definition 1.3. [7] The norm on a Banach lattice X is called order continuous if inf{‖x‖ :
x ∈ A} = 0 for every downwards directed system A ⊂ X such that inf(A) = 0.

Definition 1.4. [10] Let A,B be nonempty subset of a Banach lattice X. Then (A,B)
satisfies property UC if the following holds:
• If {xn} and {x′n} are sequences in A and {yn} is a sequence in B such that limn ‖xn −
yn‖ = limn ‖x′n − yn‖ = d(A,B), then limn ‖xn − x′n‖ = 0 holds.

For general definition in Musielak-Orlicz space we can refer to [4], [5], [8].

Definition 1.5. Suppose that (T,Σ, µ) is a σ-finite, complete (non-trivial), positive mea-
sure space and φ(t, r) : T ×R+ → R+ is a function such that for µ-a.e. t ∈ T , φ(t, 0) = 0,
φ(t, .) is non-trivial (continuous at zero with nonzero values), convex, and lsc. Moreover
φ(., r) is measurable, for all r > 0. We call φ the Musielak-Orlicz function.

Definition 1.6. Musielak-Orlicz spaces Lφ(µ) consist of all µ-measurable functions f :
T → R such that

Iφ(αf) =

∫

T
φ(α|f(t)|, t)dµ < +∞

for some α > 0 (depending on f).

Musielak-Orlicz spaces under the natural ordering, it becomes a Banach lattice The
function φ is said to satisfy a ∆2, condition (φ ∈ ∆2) if there exist a set T0 of zero measure,
a constant K > 0, and an integrable (nonnegative) function h, such that for all t ∈ T \T0,
and r > 0, there holds

φ(2r, t) ≤ Kφ(r, t) + h(t).

2 Main results

In this section we introduce dominated best proximity pair problem and we will state the
relationship between monotonicity of Banach lattices and existence and uniqueness of best
proximity pair problem. We recall that in this section A ≤ B means x ≤ y for each x ∈ A
and y ∈ B.

Theorem 2.1. Let A,B be nonempty sublattice of Banach lattices X such that A ≤ B. Let
T : A→ B is a nonexpansive map. Then X is an STM space if and only if card(TBA ) ≤ 1.

Theorem 2.2. Let A,B be nonempty closed convex sublattices of Banach lattice X with
property UC and A ≤ B. Let T : A → B is a nonexpansive map. Then X is an STM
space with order continuous norm if and only if card(TBA ) = 1.

Proposition 2.3. Let X be a Banach lattice with property UM and A,B be two subsets
of X. then (A,B) have property UC.

Theorem 2.4. Let A,B be nonempty closed convex sublattices of Banach lattice X such
that A ≤ B. Let T : A→ B is a nonexpansive map. If X is an UM space then card(TBA ) =
1.
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2.1 Some applications of the dominated best proximity pair problem in
Musielak-Orlicz spaces

Theorem 2.5. For the Musielak-Orlicz space Lφ(µ) the following statement are equivalent

i) φ ∈ ∆2.

ii) Let A,B be nonempty closed convex sublattices in Lφ(µ) with property UC and A ≤
B. Let T : A→ B is a nonexpansive map. Then card(TBA ) ≥ 1.

Corollary 2.6. The dominated best proximity pair problem for nonexpansive map in Lφ(µ)
with φ < ∞ with respect to closed bounded sublattices is uniquely solvable if and only if
φ > 0 and φ ∈ ∆2.

Theorem 2.7. In the Musielak-Orlicz spaces the following statements are equivalent

i) φ ∈ ∆2

ii) Let A,B be nonempty closed convex sublattices in Lφ(µ) with property UC. Let T :
A→ B is a nonexpansive map. Then card(TBA ) 6= ∅.
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Abstract

We investigate the notion of positive multilinear mappings on matrix algebras.
Some matrix inequalities including positive multilinear mappings are introduced.

Keywords: positive multilinear mapping, Jensen inequality, positive matrix, matrix
convex function
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1 Introduction

Let Mn := Mn(C) be the C∗-algebra of all n × n complex matrices with identity matrix
I. A linear map Φ : Mq → Mp is called positive if Φ(A) ≥ 0 in Mp, whenever A ≥ 0
in Mq. Positive linear mapppings on C∗-algebras and their related operator inequalities
are well-known and have been studied by many mathematicians; see e.g., [1, 2, 4] and
the references therein. Positive linear mappings have been used to characterize matrix
convex functions. A continuous real function f : J → R is said to be matrix convex if
f(λA + (1 − λ)B) ≤ λf(A) + (1 − λ)f(B) for all λ ∈ [0, 1] and all hermitian matrices
A,B with eigenvalues in J . It is well-known that a continuous real function f : J → R is
matrix convex if and only if

f(Φ(A)) ≤ Φ(f(A)) (1)

for every unital positive linear mapping Φ and every hermitian matrix A with spectrum
in J . The inequality (1) is known as the Choi-Davis-Jensen inequality, see [2, 4].

The notion of positive linear mappings is introduced also for maps of several variables.
Let Ak, k = 1, · · · , n and B, be C∗-algebras. A map Φ : A1 × · · · × An → B is called to
be positive multilinear if, it is linear in each of its variable and for every positive elements
ak ∈ Ak, k = 1, · · · , n, Φ(a1, · · · , an) is positive in B [5].

It is known that if A and B are positive matrices, then so is their Hadamard (Schur)
product, A ◦ B. The same is true for tensor product, A ⊗ B. Moreover, the mapping
(A,B) → A ⊗ B is also linear in each of its variables. So if we define Φ : M2

q → Mp by
Φ(A,B) = A ⊗ B, then Φ is multilinear and positive in the sense that Φ(A,B) is positive,
whenever A,B are positive.
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However, the Choi-Davis-Jensen type inequality f
(
Φ(A,B)

)
≤ Φ

(
(f(A), f(B)

)
does

not hold in general for a unital positive multilinear mapping Φ and matrix convex functions
f . For example, consider the matrix convex function f(t) = t2 − t and the unital positive
multilinear mapping Φ(A,B) = A ◦ B. If A = 2I and B = I, then 2I = f(Φ(A,B)) ≰
Φ(f(A), f(B)) = 0. This can be a motivation to study operator inequalities via positive
multilinear mappings.

We present a version of Choi-Davis-Jensen inequality for positive multilinear mappings.
We inquire some matrix inequalities including positive multilinear mappings, which some
of them would be generalization of inequalities for the Hadamard product and the tensor
product of matrices.

2 Main results

We start by definition of a positive multilinear mapping.

Definition 2.1. A mapping Φ : Mk
q → Mp is said to be multilinear, if it is linear in each

of its variable. It is called positive if Φ(A1, · · · , Ak) ≥ 0 , whenever A1, · · · , Ak ≥ 0. If
Φ(I, · · · , I) = I, then Φ is called unital.

Example 2.2. It is well-known that the Schur product of every two positive matrices is
positive again. This ensures that the mapping Φ : Mk

q → Mp defined by

Φ(A1, · · · , Ak) = A1 ◦ · · · ◦ Ak

is positive. Moreover, it is multilinear and unital. The same is true if we define

Φ(A1, · · · , Ak) = A1 ⊗ · · · ⊗ Ak.

Example 2.3. Assume that Xi ∈ Mq (i = 1, · · · , k) and
∑k

i=1 X∗
i Xi = I. The mapping

Φ : Mk
q → Mp defined by Φ(A1, · · · , Ak) =

∑k
i=1 X∗

i AiXi is positive and unital. However,
it is not multilinear.

Example 2.4. The mappings Φ : Mk
q → Mp defined by

Φ(A1, · · · , Ak) := Tr(A1 ⊗ · · · ⊗ Ak) = Tr(A1) · · · Tr(Ak)I (2)

is positive and multilinear.

It is evident that, every positive multilinear mapping Φ : Mk
q → Mp is adjoint-

preserving and monotone [3].
The following theorem can be regarded as a reconstruction of [4, Theorem 1.21] for

positive multilinear mappings.

Theorem 2.5. [3] Let f : [0, ∞) → R be a matrix convex and submultiplicative function,
i.e., f(xy) ≤ f(x)f(y) for all x, y ∈ [0, ∞) (resp. a super-multiplicative matrix concave
function). If Φ : Mk

q → Mp is a unital positive multilinear mapping, then

f(Φ(A1, . . . , Ak)) ≤ Φ(f(A1), . . . , f(Ak))

(resp. f(Φ(A1, . . . , Ak)) ≥ Φ(f(A1), . . . , f(Ak))).
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Corollary 2.6. Suppose that Φ : Mk
q → Mp is a unital positive multilinear mapping.

(1) If 0 ≤ r ≤ 1, then

Φ(Ar
1, · · · , Ar

k) ≤ Φ(A1, ·, Ak)
r

for all positive matrices A1, · · · , Ak.

(2) If −1 ≤ r ≤ 0 and 1 ≤ r ≤ 2, then

Φ(A1, · · · , Ak)
r ≤ Φ(Ar

1, · · · , Ar
k)

for all positive matrices A1, · · · , Ak.

Corollary 2.7. Let Φ : Mk
q → Mp be a uninal positive multilinear mapping. If 1 ≤ s < t,

then

Φ(As
1, · · · , As

k)
1
s ≤ Φ(At

1, · · · , At
k)

1
t

for all positive matrices A1, · · · , Ak.

Remark 2.8. It is well known that if f : [0, ∞) → [0,∞) is a continuous function, then
f is operator monotone if and only if it is operator concave. Suppose that Φ : Mk

q → Mp

is a unital positive multilinear mapping and f : [0, ∞) → [0,∞) is a matrix monotone and
supermultiplicative function. Then Theorem 2.5 implies that

f(Φ(A1, A2, · · · , Ak)) ≥ Φ(f(A1), f(A2), · · · , f(Ak))

for all positive matrices A1, · · · , Ak.

By a theorem of Ando (see e.g. [1]), if A and B are positive matrices and Φ is a strictly
positive linear mapping, then

Φ(A♯B) ≤ Φ(A)♯Φ(B), (2)

where the geometric matrix mean is defined by ♯, namely

A♯B = A
1
2

(
A− 1

2 BA− 1
2

) 1
2
A

1
2 .

By aid of Theorem 2.5, we show the positive multilinear mapping version of Ando’s in-
equality (2).

Lemma 2.9. If Φ : Mk
q → Mp is a strictly positive multilinear mapping, then

Φ(A1♯B1, · · · , Ak♯Bk) ≤ Φ(A1, · · · , Ak)♯Φ(B1, · · · , Bk)

for all A1, · · · , Ak > 0 and B1, · · · , Bk ≥ 0.

In [2], Choi generalized Kadison’s inequality to normal matrices by showing that if Φ
is a unital positive linear mapping, then

Φ(A)Φ(A∗) ≤ Φ(A∗A) and Φ(A∗)Φ(A) ≤ Φ(A∗A).

for every normal matrix A. A similar result holds true for positive multilinear mappings.
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Lemma 2.10. Let Φ : Mk
q → Mp be a positive multilinear mapping. Then

Φ(A∗
1A1, A

∗
2A2, · · · , A∗

kAk) ≥ Φ(A1, · · · , Ak)Φ(A1, · · · , Ak)
∗

for all normal matrices A1, A2, · · · , Ak.

A multilinear mapping Φ : Mk
q → Mp is called completely positive if for every n ≥ 1,

[Φ(A1,ij , · · · , Ak,ij)]ij ≥ 0 in Mnp whenever [Am,ij ]ij ≥ 0, m = 1, · · · , k in Mnq; see e.g.
[5]. It is well known that if f : J → R is a convex function and Φ is a positive linear
mapping, then f

(
⟨Φ(A)x, x⟩

)
≤ ⟨Φ

(
f(A)

)
x, x⟩ for all Hermitian matrices A and all unit

vector x. We state a similar result for completely positive multilinear mappings.

Lemma 2.11. Let A1, · · · , Ak be positive matrices. If f : [0, ∞) → R is a convex and
submultiplivative function and Φ : Mk

q → Mp is a unital completely positive multilinear
mapping, then

f
(
⟨Φ(A1, · · · , Ak)x, x⟩

)
≤ ⟨Φ

(
f(A1), · · · , f(Ak)

)
x, x⟩.

for all unit vector x.
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New reverse of continuous triangle inequalities type for

Bochner integral in Hilbert C*-modules
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Abstract

In this paper some reverses of continuous triangle inequalities for integrable func-
tions with value in a Hilbert C∗-modules are given.

Keywords: Bochner integral, Reverse of triangle inequality, Hilbert C∗-module.
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1 Introduction

Let f : [a, b] → K , K = C or R be a Lebesgue integrable function. The following
inequality is the continuous version of the triangle inequality

∣∣∣
∫ b

a
f(x)dx

∣∣∣ ≤
∫ b

a
|f(x)|dx, (1)

and plays a fundamental role in mathematical analysis and its applications.
It appears, see [7, p. 492], that the first reverse inequality for (1.1) was obtained by J.
Karamata in his book from 1949 [6]:

cos θ

∫ b

a
|f(x)|dx ≤

∣∣∣
∫ b

a
f(x)dx

∣∣∣ (2)

provided

−θ ≤ arg[f(x)] ≤ θ, x ∈ [a, b]

for given θ ∈ (0, π
2 ). In [5], S. S. Dragomir has extended the above result for Bochner

integrals of vector-valued functions in real or complex Hilbert spaces.
If (H; ⟨., .⟩) is a Hilbert space over K(K = C, R) and f ∈ L([a, b]; H), this means that

f : [a, b] → H is strongly measurable on [a, b] and the Lebesgue integral
∫ b
a ∥f(t)∥dt exists

and is finite, and there exist a constant k ≥ 1 and a vector e ∈ H, ∥e∥ = 1 such that

∥f(t)∥ ≤ kRe
⟨
f(t), e

⟩
for a.e.t ∈ [a, b] (3)
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then we have the inequality
∫ b

a
∥f(t)∥dt ≤ k

∥∥∥
∫ b

a
f(t)dt

∥∥∥. (4)

This provides a reverse inequality for the well-known result for Bochner integrals and
vector-valued functions:

∥∥∥
∫ b

a
f(t)dt

∥∥∥ ≤
∫ b

a
∥f(t)∥dt, (5)

for any f ∈ L([a, b]; H). Note that the case of equality holds in (5) (see [5]) if and only if
∫ b

a
f(t)dt =

1

k

( ∫ b

a
∥f(t)∥dt

)
e. (6)

For some particular cases of interest, see [5].

2 Preliminaries

If (Ω, Σ, µ) is a measure space and B is a Banach space, a map s : Ω → B is called simple
if there exist b1, ..., bn ∈ B and E1, ..., En ∈ Σ which satisfy that Ei ∩ Ej = ∅ for i ̸= j,
such that

s(ω) =

n∑

i=1

biχEi(ω), ω ∈ Ω

where χEi(ω) = 1 if ω ∈ Ei and Ei(ω) = 0 if ω /∈ Ei. A map f : Ω → B is called
µ-measurable if there exists a sequence of simple maps {sn} from Ω to B with

lim
n→∞

∥f(ω) − sn(ω)∥ = 0

µ-almost everywhere. A map f : Ω → B is called weakly µ-measurable if for each ϕ ∈
B∗ the function ϕ(f) is µ-measurable, where B∗ is the dual space of B. By Pettiss
measurability theorem, a µ-measurable map from a measure space to a Banach space is
weakly µ-measurable [2].
Let (Ω, Σ, µ) be a measure space, and let B be a Banach space. A µ-measurable map
f : Ω → B is said to be Bochner integrable if there exists a sequence of simple maps {sn}
from Ω to B such that

lim
n→∞

∫

Ω
∥f(ω) − sn(ω)∥dµ = 0. (7)

In this case, for any E ∈ Σ, the Bochner integral of f over E is defined by
∫

E
f(ω)dµ = lim

n→∞

∫

E
sn(ω)dµ,

in the sense of strong convergence in B, where
∫
E sn(ω)dµ is defined in an obvious way [2].

By [2, Chapter II, Theorem 2], a µ-measurable function f : Ω → B is Bochner integrable
if and only if

∫
X ∥f∥dµ < ∞. Hence in the case where (Ω,Σ, µ) is a finite measure space,

if a measurable function f : Ω → B is bounded, then it is integrable. We can see that the
sequence {sn}n∈N satisfying (7) may be chosen so that it converges everywhere on Ω to f
and ∥sn(ω)∥ ≤ ∥f(ω)∥ for all n ∈ N and ω ∈ Ω.
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3 Main results

Theorem 3.1. Let X be a Hilbert C∗-module over a unital C∗-algebra A and f ∈
L([a, b]; X). If there exist a constant k ≥ 1 with

|f(t)| ≤ kRe
⟨
f(t), e

⟩
(8)

for some e ∈ X with |e| = 1 and all t ∈ [a, b], then

∫ b

a
|f(t)|dt ≤ k

∥∥∥
∫ b

a
f(t)dt

∥∥∥. (9)

If the case of equality holds in (9), then

∫ b

a
f(t)dt =

1

k

(∫ b

a
|f(t)|dt

)
e. (10)

Corollary 3.2. Let X be a Hilbert C∗-modules, e ∈ X with |e| = 1, ρ ∈ (0, 1) and
f ∈ L([a, b]; X) such that for a.e t ∈ [a, b],

|f(t) − e| ≤ ρ. (11)

Then we have the inequality

√
1 − ρ2

∫ b

a
|f(t)|dt ≤

∥∥∥
∫ b

a
f(t)dt

∥∥∥. (12)

If the case of equality holds in (12), then

∫ b

a
f(t)dt =

√
1 − ρ2

(∫ b

a
|f(t)|dt

)
e. (13)

Corollary 3.3. Let X be a Hilbert C∗-module on C∗-algebra A, e ∈ X with |e| = 1 and
M ≥ m > 0. If f ∈ L([a, b];X) is such that

Re
⟨
Me − f(t), f(t) − me

⟩
≥ 0; for a.e. t ∈ [a, b] (14)

or, equivalently,

∣∣∣f(t) − M + m

2
e
∣∣∣ ≤ 1

2
(M − m); for a.e. t ∈ [a, b], (15)

then we have the inequality

2
√

mM

M + m

∫ b

a
|f(t)|dt ≤

∥∥∥
∫ b

a
f(t)dt

∥∥∥. (16)

If the case of equality holds in (16), then

∫ b

a
f(t)dt =

2
√

mM

M + m

( ∫ b

a
|f(t)|dt

)
e. (17)
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Non-linear Semigroups in Hadamard Spaces

Bijan Ahmadi Kakavandi

Shahid Beheshti University

Abstract

There are at least two methods to generate a non-linear semigroup of non-expansive
operators in Hadamard spaces: gradient flows of convex maps and semigroups gener-
ated by m-co-accretive operators. Using an inner product-like notion of quasilineariza-
tion, we have established a link between these two approaches. We prove that in each
geodesically unbounded Hadamard space X, each convex map f : X → (−∞,+∞]
induces a co-accretive operator Tf : X → 2X such that it generates a nonlinear semi-
group which coincides the gradient flow of f .

Keywords: Hadamard space, non-linear semigroup, co-accretive operator, gradient
flow, quasilinearization.

Mathematics Subject Classification [2010]: 47H20, 53C23.

1 Introduction

1.1 Hadamard Space

A CAT (0) space is a metric space (X, d) such that for each two points x0, x1 ∈ X and for
each 0 < t < 1 there exists some xt ∈ X such that

d2(y, xt) ≤ (1− t)d2(y, x0) + td2(y, x1)− t(1− t)d2(x0, x1) (y ∈ X). (1)

It can be seen that such xt must be unique, so one can write (1 − t)x0 ⊕ tx1 = xt.
A complete CAT (0) space is called a Hadamard space. These spaces are well-studied
by many authors; we refer the reader to the standard texts such as [5, 6]. There are
many various examples of Hadamard spaces: Hilbert spaces, Hadamard manifolds (i.e.,
simply-connected complete Riemannian manifolds with nonpositive sectional curvature
which can be of infinite dimension), any bounded domain in a complex Banach space
with Carathéodory metric, e.g., open unit ball of a complex Hilbert space with Poincaré
metric, R-trees as well as examples that have been built out of given Hadamard spaces
as: closed convex subsets, direct products, warped products, L2-spaces, direct limits and
Reshetnyak’s gluing.

1.2 Co-accretive Operator

A Hadamard space (X, d) is called geodesically unbounded if for each x, y ∈ X there
exists a geodesic line c : R → X passing through x, y, i.e., d(c(t), c(s)) = |t − s|d(x, y)
for t, s ∈ R, c(0) = x and c(1) = y. Every geodesically unbounded Hadamard space is
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a hyperbolic space in the sense of Reich and Shafrir [8, (2.1)] and we can consider the
notion of co-accretive operators on it. Let (X, d) be a geodesically unbounded Hadamard
space. For x, y ∈ X and r ≥ 0, the point (1 + r)x	 ry is the unique point z ∈ X such that
x = 1

1+rz ⊕ r
1+ry, see [8, p. 539]. Following [8, (3.1),(3.5)and (7.2)]; a set-valued operator

T : X → 2X with domain D(T ) = {x ∈ X|Tx 6= ∅} and range R(T ) = ∪{Tx|x ∈ X} is
called co-accretive if

d(x1, x2) ≤ d((1 + r)x1 	 ry1, (1 + r)x2 	 ry2) (yi ∈ Txi, i = 1, 2, r > 0) (2)

and is called m-co-accretive if in addition

R((1 + r)I 	 rT ) = X (r > 0) (3)

If T is co-accretive and r > 0, the resolvent Jr(T ) : R((1 + r)I 	 rT ) → D(T ) of T is a
single-valued nonexpansive mapping which is defined by

Jr(T )((1 + r)x	 ry) = x (x ∈ D(T ), y ∈ Tx). (4)

The following is a direct consequence of Theorem 8.1 in [8].

Theorem 1.1. Let (X, d) be a geodesically unbounded Hadamard space and T : X → 2X

be an m-co-accretive operator. Then T generates a continuous semigroup of nonlinear
nonexpansive maps on clD(T ) via the exponential formula

Stx = lim
n→+∞

Jnt/n(T )x (x ∈ clD(T ), t ≥ 0) (5)

1.3 Gradient Flow

Let f : X −→ (−∞,+∞] be a lower semicontinuous convex function which is proper,
i.e., its efficient domain D(f) = {x ∈ X| f(x) < +∞} is non-empty. For each r > 0, the
resolvent Jr(f) : X → X of f is a single-valued nonexpansive mapping which is defined
by

Jr(f)(x) = argmin{y 7→ f(y) +
1

2r
d2(x, y)} (6)

The following is deduced from Theorems 1.13, 2.1 and 2.5 in [7].

Theorem 1.2. Let (X, d) be a Hadamard space and f : X −→ (−∞,+∞] be a proper,
lower semicontinuous and convex function. Then f generates a continuous semigroup of
nonlinear nonexpansive maps on clD(f) via the exponential formula

Stx = lim
n→+∞

Jnt/n(f)x (x ∈ clD(f), t ≥ 0). (7)

More details about non-linear semigroups on Hadamard spaces and their properties
can be found in [1].
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1.4 Quasilinearization and Dual Metric Space

Berg and Nikolaev in [4] have introduced the concept of quasilinearization along this lines.

Let us formally denote a pair (a, b) ∈ X × X by
−→
ab and call it a vector. Then the

quasilinearization map 〈 , 〉 : (X ×X)× (X ×X)→ R is defined by

〈−→ab , −→uv〉 =
1

2
(d2(a, v) + d2(b, u)− d2(a, u)− d2(b, v)) (a, b, u, v ∈ X). (8)

Berg and Nikolaev have then proved [4, Corollary 3] that a geodesically connected metric
space (X, d) is a CAT (0)space if and only if it satisfies the Cauchy-Schwartz inequality,
i.e.,

〈−→ab , −→uv〉 ≤ d(a, b)d(u, v) (a, b, u, v ∈ X).

Consider the map Θ : R×X ×X → C(X;R) defined by

Θ(t, a, b)(x) = t〈−→ab , −→ax〉 (t ∈ R, a, b, x ∈ X)

where C(X;R) is the space of all continuous real-valued functions on X. Then the Cauchy-
Schwartz inequality implies that Θ(t, a, b) is a Lipschitz function with Lipschitz seminorm
L(Θ(t, a, b)) = t d(a, b) (t ∈ R , a, b ∈ X). Now, we introduce a pseudometric D on
R×X ×X by

D
(
(t, a, b) , (s, u, v)

)
= L

(
Θ(t, a, b)−Θ(s, u, v)

)
(t, s ∈ R, a, b, u, v ∈ X).

The pseudometric space (R × X × X , D) can be considered as a subspace of the pseu-
dometric space of all real-valued Lipschitz functions (Lip(X,R) , L). Also, D imposes an
equivalence relation on R×X ×X, where the equivalence class of (t, a, b) is

[t
−→
ab] = { s−→uv | t 〈−→ab , −→xy〉 = s 〈−→uv , −→xy〉} (x, y ∈ X).

The set X∗ := {[t−→ab] | (t, a, b) ∈ R × X × X } is a metric space with metric D, which is
called the dual metric space of (X, d).

For example if X is a closed and convex subset of a Hilbert space H with non-empty
interior, then X∗ = H; see [3, p.3451]. Among other properties, we have a separation
property of dual metric space [3, Proposition 2.3] and a new characterization of the so-
called ∆-convergence in terms of this duality; see [2, Theorem 2.6].

1.5 Subdifferential

The subdifferential of each f ∈ Γ0(X) is a set-valued operator ∂f : X → 2X
∗

with
definition

∂f(x) = {x∗ | f(z)− f(x) ≥ 〈x∗ , −→xz〉 ∀z ∈ X } (9)

when x ∈ D(f) and ∂f(x) = ∅ otherwise [3, Definition 4.1].

Theorem 1.3. [3,Theorem4.2] Let f ∈ Γ0(X) then
i) The subdifferential map ∂f is a monotone operator, i.e.,

〈x∗2 − x∗1 , −−→x1x2〉 ≥ 0 (xi ∈ X, x∗i ∈ ∂f(xi), i = 1, 2) (10)

here, we have used the notation (2.10).
ii) For each y ∈ X there exists a point x ∈ X, such that [−→xy] ∈ ∂f(x).

When X is a Hilbert space, this theorem asserts that the subdifferential of f is a
maximal monotone operator.
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2 Main results

Let (X, d) be a geodesically unbounded Hadamard space and f : X → (−∞,+∞] be a
proper lower semicontinuous convex map.
We introduce the set-valued operator Tf : X → 2X by

Tf (x) = {2x	 y| y ∈ X, [−→xy] ∈ ∂f(x)} (x ∈ X), (11)

Proposition 2.1. For each proper lower semicontinuous convex map f the set D(∂f) is
dense in the set D(f).

Theorem 2.2. The operator Tf is a co-accretive operator and clD(Tf ) = clD(f). More-
over R((1 + r)I 	 rTf ) = X and Jr(Tf ) = Jr(f) for each 0 < r ≤ 1.

Corollary 2.3. We have

Stx = lim
n→+∞

Jnt/n(f)x = lim
n→+∞

Jnt/n(Tf )x (x ∈ clD(f) = clD(Tf ), t ≥ 0).

This means that the semigroup generated by the operator Tf and the gradient flow
generated by the mapping f are the same.
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On a new notion of injectivity of Banach modules
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Abstract

In this paper, we introduce a new homological properties of Banach modules.
It is shown that for a locally compact group G, the dual space of all bounded left
uniformly continuous functions LUC(G)′ is 0-injective in the category of left Banach
M(G)-modules.

Keywords: Banach algebra, injective module, character, φ-injective module, locally
compact group.
Mathematics Subject Classification [2010]: 46M10, 43A20, 46H25

1 preliminaries

Let A be a Banach algebra and ∆(A) denote the character space of A, i.e., the space
of all non-zero homomorphisms from A onto C. We denote by A-mod and mod-A the
category of all Banach left A-modules and all Banach right A-modules respectively. In
the case that A has an identity we denote by A-unmod the category of all Banach left
unital modules. For E,F ∈ A-mod, let AB(E,F ) be the space of all bounded linear left
A-module morphisms from E into F .

Let E,F ∈ A-mod. Suppose that Z1(A × E,F ) denotes the Banach space of all
continuous bilinear maps B : A× E −→ F satisfying

a ·B(b, ξ)−B(ab, ξ) +B(a, b · ξ) = 0 (a, b ∈ A, ξ ∈ E).

Define δ0 : B(E,F ) −→ Z1(A×E,F ) by (δ0T )(a, ξ) = a ·T (ξ)−T (a · ξ) for all a ∈ A and
ξ ∈ E. Then we have

Ext1A(E,F ) = Z1(A× E,F )/Imδ0.

By [6, Proposition VII.3.19], we know that Ext1A(E,F ) is topologically isomorphic to
H1(A,B(E,F )) where B(E,F ) is a Banach A-bimodule with the following module actions:

(a · T )(ξ) = a · T (ξ), (T · a)(ξ) = T (a · ξ) (a ∈ A, ξ ∈ E, T ∈ B(E,F )).

To see further details about Ext1A(E,F ); see [7].

Definition 1.1. Let A be a Banach algebra and J ∈ A-mod. We say that J is injective
if for each F,E ∈ A-mod and admissible monomorphism T : F → E the induced map
TJ : AB(E, J)→ AB(F, J) defined by TJ(R) = R ◦ T is onto.
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Suppose that φ ∈ ∆(A). For E ∈ A-mod, put

I(φ,E) = span{a · ξ − φ(ξ)a : a ∈ A, ξ ∈ E},

and

φB(A], E) = {T ∈ B(A], E) : T (ab− φ(b)a) = a · T (b− φ(b)e]), (a, b ∈ A)}.

Obviously, φB(A], E) is a Banach subspace of B(A], E). On the other hand, for each
b ∈ ker(φ), if T ∈ φB(A], E), then T (ab) = a · T (b) for all a ∈ A. Therefore, we conclude
that φB(A], E) is a Banach left A-submodule of B(A], E).

Note that if E,F ∈ A-mod and ρ : E → F is a left A-module homomorphism, we
can extend the module actions of E and F from A into A] and ρ to a left A]-module
homomorphism in a natural way. For Banach spaces E and F , T ∈ B(E,F ) is admissible
if and only if there exists S ∈ B(F,E) such that T ◦ S ◦ T = T .

The following definition of a φ-injective Banach module, introduced by Nasr-Isfahani
and Soltani Renani in [10].

Definition 1.2. Let A be a Banach algebra, φ ∈ ∆(A) and J ∈ A-mod. We say that J
is φ-injective if for each F,E ∈ A-mod and admissible monomorphism T : F → E with
I(φ,E) ⊆ ImT , the induced map TJ is onto.

By Definition 1.1 and 1.2, one can easily check that each injective module is φ-injective,
although by [10, Example 2.5], the converse is not valid. In [3], the authors with use of the
semigroup algebras, gave two good examples of φ-injective Banach modules which they
are not injective.

Now, we give our new concept of injectivity as follows.

Definition 1.3. Let A be a Banach algebra and E ∈ A-mod. We say that E is (left)
0-injective if for each F,K ∈ A-mod and admissible monomorphism T : F → K for which
A ·K = span{a · k : a ∈ A, k ∈ K} ⊆ ImT , the induced map TJ is onto.

Clearly, every injective module is 0-injective but the converse is not valid in general;
see [5, Example 3.4].

In this paper we provide a wide range of non-injective 0-injective Banach modules.
Indeed, for each locally compact group G, we prove that LUC(G)

′ ∈ M(G)-mod is 0-
injective, while we know that LUC(G)

′ ∈ M(G)-mod is injective if and only if G is
amenable.

2 Main Results

We start this section with the following Lemma which is an essential tool in the sequel.

Lemma 2.1. Let E ∈ A-mod. If Ext1A(F,E) = {0} for all F ∈ A-mod with A · F = 0,
then E ∈ A-mod is 0-injective.

Proof. To show this, let K,W ∈ A-mod and T : K →W be an admissible monomorphism
with A ·W ⊆ ImT . We claim that the induced map TE is onto.
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We know that the short complex 0→ K
T−→W

q−→ W
ImT → 0 is admissible where q is the

quotient map. But for all a ∈ A and x ∈W , a · (x+ ImT ) = ImT , because A ·W ⊆ ImT .
Therefore, by assumption Ext1A( W

ImT , E) = {0}. Now, by [7, III Theorem 4.4], the complex

0→ AB(
W

ImT
,E)→ AB(W,E)

TE−−→ AB(K,E)→ Ext1A(
W

ImT
,E)→ · · · ,

is exact. Therefore, TE is onto.

Recall that if E,F be two Banach spaces and E⊗̂F denotes the projective tensor
product space, then (E⊗̂F )∗ is isomorphic to B(E,F ∗) as two Banach spaces with the
pairing

< Tx, y >= T (x⊗ y) (x ∈ E, y ∈ F, T ∈ (E⊗̂F )∗).

Also, note that E⊗̂F is isometrically isomorphic to F ⊗̂E as two Banach spaces.

Theorem 2.2. Let A be a Banach algebra. Then A is left 0-amenable if and only if each
J ∈mod-A is 0-flat.

Proof. Suppose that A is left 0-amenable. We show that Ext1A(E, J∗) = {0} for all E ∈
A-mod with A · E = 0. We have

Ext1A(E, J∗) = H1(A,B(E, J∗)) = H1(A, (E⊗̂J)∗) = {0},

because E⊗̂J ∈ mod-A has the module action, a · z = 0 for all z ∈ E⊗̂J . Therefore, by
Lemma 2.1, J∗ ∈ A-mod is 0-injective.

Conversely, let J ∈ mod-A be 0-flat. So, for Banach right A-module C with module
action λ · a = 0 for all a ∈ A and λ ∈ C we have

H1(A, J∗) = H1(A,B(J,C)) = H1(A,B(J,C∗))
= H1(A, (J⊗̂C)∗)

= H1(A, (C⊗̂J)∗)

= H1(A,B(C, J∗))

= Ext1A(C, J∗)
= 0.

Hence, if we take J a left A module with module action a · x = 0 for all a ∈ A and x ∈ J ,
then the above relation implies that A is 0-amenable.

Corollary 2.3. If A is a Banach algebra with a bounded approximate identity, then each
E ∈mod-A is 0-flat.

For a locally compact group G, the space of all bounded left uniformly continuous
functions LUC(G), is a closed submodule of L∞(G) as a Banach M(G)-bimodule. Thus,
we can regard LUC(G)′ as a Banach M(G)-bimodule with the dual module actions; for
more details see [1] and [9]. It is shown in [9, Theorem 2.6] that LUC(G)′ as the Banach
left (right) M(G)-module is injective if and only if G is amenable.
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Now, with using Corollary 2.3 we give the following generalization of the aforemen-
tioned theorem which also provide for us a good source of 0-injective Banach modules.
Note that it is well-known that L1(G) has a bounded approximate identity and M(G) is
unital.

Corollary 2.4. Let G be a locally compact group. Then we have

(i) LUC(G)′ ∈ L1(G)-mod is 0-injective.

(ii) LUC(G)′ ∈M(G)-mod is 0-injective.
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Abstract

A critical point theorem (local minimum result) for differentiable functionals is
exploited in order to prove that a one-dimensional Laplacian-like problem admits at
least one non-trivial and non-negative weak solution.

Keywords: One-dimensional Laplacian-like problem, Existence results, Critical method
theorem.
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1 Introduction

The aim of this paper is to study the following one-dimensional Laplacian-like problem:




−
((

1 + u′2√
1+u′4

)
u′
)′

= λf(t, u) in (0, 1),

u(0) = u(1) = 0,

(1)

where λ ∈ R and f : [0, 1]× R→ R is a Carathéodory function.
Capillarity can be briefly explained by considering the effects of two opposing forces:

adhesion, i.e. the attractive (or repulsive) force between the molecules of the liquid and
those of the container; and cohesion, i.e. the attractive force between the molecules of
the liquid. The study of capillary phenomena has gained some attention recently. This
increasing interest is motivated not only by fascination in naturally-occurring phenomena
such as motion of drops, bubbles and waves but also its importance in applied fields ranging
from industrial and biomedical and pharmaceutical to microfluidic systems. Existence,
non-existence and multiplicity of positive solutions of problem (1) have been discussed by
several authors in the last decades. See, for instance, the papers [1, 2, 4, 5, 6].

If we recall that weak solution of problem (1) is a function u ∈W 1,2
0 (]0, 1[) such that

∫ 1

0

(
u′(t)v′(t) +

u′(t)3v′(t)√
1 + u′(t)4

)
dt− λ

∫ 1

0
f(t, u(t))v(t) dt = 0

for all v ∈W 1,2
0 (]0, 1[).
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2 Main results

Now, we present our main result.

Theorem 2.1. Let f : [0, 1]× R→ R be an L1-Carathéodory function. Assume that

(i) f(t, 0) = 0 for a.e. t ∈ [0, 1],

(ii) there are two real positive constants τ and k such that for a.e. t ∈ [0, 1] and every
x ∈ [0, τ ] one has |f(t, x)| ≤ k.

In addition, assume that there are a non-empty open set D ⊆ (0, 1) and B ⊂ D of positive
Lebesgue measure such that

lim sup
ξ→0+

ess inft∈B F (t, ξ)

ξ2
= +∞, lim inf

ξ→0+

ess inft∈D F (t, ξ)

ξ2
> −∞,

where F (t, ξ) :=
∫ ξ

0 f(t, x) dx for all t ∈ [0, 1] and ξ ∈ R. Then, there exists an open
interval Λ ⊆ (0,+∞) such that for each parameter λ ∈ Λ, problem (1) admits at least one
non-trivial and non-negative weak solution uλ ∈ C1,β([0, 1]) for some β ∈ (0, 1]. Moreover,
we have

lim
λ→0+

‖uλ‖C1([0,1]) = 0,

and the real function

λ 7→ 1

2

∫ 1

0

(
|u′λ(t)|2 +

√
1 + |u′λ(t)|4

)
dt− λ

∫ 1

0

(∫ uλ(t)

0
f(t, x)dx

)
dt− 1

2

is negative and strictly decreasing in the open interval Λ.

Proof. Let a : [0,+∞)→ (0,+∞) be the C1,1 function defined by

a(s) :=





1 + s√
1+s2

if s ∈ [0, 1),
2+
√

2
16 (s− 2)2 + 14+7

√
2

16 if s ∈ [1, 2),
14+7

√
2

16 if s ∈ [2,+∞).

Set, for every s ≥ 0, A(s) :=
∫ s

0 a(t) dt. We have

1 ≤ a(s) ≤ 2 +
√

2

2
⇒ s ≤ A(s) ≤ 2 +

√
2

2
s (2)

for every s ≥ 0. Further, as the function s 7→ sa(s2) is increasing, the function s 7→ A(s2)
is convex in [0,+∞). Note that a satisfies the structure and the regularity conditions
assumed in [3]. For a.e. t ∈ [0, 1], we truncate f as follows:

g(t, x) :=





0, x ∈ (−∞, 0),

f(t, x), x ∈ [0, τ),

f(t, τ), x ∈ [τ,+∞).
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By (i) the function g is L1-Carathéodory function and G : [0, 1] × R → R denotes its

primitive, that is, G(t, ξ) :=
∫ ξ

0 g(t, x)dx for all (t, ξ) ∈ [0, 1] × R, g and G satisfy the
assumptions of the theorem. Let us consider the auxiliary truncated problem

{
−(a(|u′|2)u′)′ = λg(t, u) in (0, 1),
u(0) = u(1) = 0.

(3)

Let the functionals Φ,Ψ : X → R be defined by

Φ(u) :=
1

2

∫ 1

0
A(|u′(t)|2)dt, Ψ(u) :=

∫ 1

0
G(t, u(t)) dt, Iλ(u) := Φ(u)− λΨ(u)

for every u ∈ X. From now on, we divide the proof in several steps.

Step 1. The local minimization technique for the truncated problem.

Due to (2), Φ is well defined on X, continuous and coercive. Moreover, by the convexity of
the function s 7→ A(s2) in [0,+∞), Φ is convex and then sequentially weakly lower semi-
continuous. The functional Ψ is well defined and sequentially weakly (upper) continuous.
Moreover, Φ and Ψ are continuously Gâteaux differentiable with derivative given by

Φ′(u)(v) =

∫ 1

0
a(|u′(t)|2)u′(t)v′(t) dt, Ψ′(u)(v) =

∫ 1

0
g(t, u(t))v(t) dt

for any u, v ∈ X. Now, thanks to Theorem [7, Theorem 2.5], for every λ ∈ (0, λ?) ⊆
(0, 1/ϕ(r)), the functional Iλ admits at least one critical point (local minima) uλ ∈
Φ−1(−∞, r).

Step 2. For every fixed λ ∈ (0, λ?) we prove that uλ 6= 0 and the map (0, λ?) 3 λ 7→ Iλ(uλ)
is negative.

To this end, we easily see that lim‖u‖→0+
Ψ(u)
Φ(u) = +∞.

Step 3. We claim that limλ→0+ ‖uλ‖ = 0.

Bearing in mind that Φ is coercive and that for every λ ∈ (0, λ?) the solution uλ ∈
Φ−1(−∞, r), one has that there exists a positive constant L such that ‖uλ‖ ≤ L for every
λ ∈ (0, λ?). Then, since 0 ≤ ‖uλ‖2 ≤ Φ′(uλ)(uλ), we have 0 ≤ ‖uλ‖2 ≤ Φ′(uλ)(uλ) =
λ
∫ 1

0 g(t, uλ(t))uλ(t) dt for any λ ∈ (0, λ?).

Step 4. The map λ 7→ Iλ(uλ) is strictly decreasing in (0, λ?).

For our goal we observe that for any u ∈ X, one has Iλ(uλ) = λ
(

Φ(u)
λ −Ψ(u)

)
. Now, let us

fix 0 < λ1 < λ2 < λ? and let uλi be the global minimum of the functional Iλi restricted to

Φ−1(−∞, r) for i = 1, 2. Also, let mλi =
(

Φ(uλi )

λi
−Ψ(uλi)

)
= infv∈Φ−1(−∞,r)

(
Φ(v)
λi
−Ψ(v)

)

for i = 1, 2. we get that Iλ2(uλ2) = λ2mλ2 ≤ λ2mλ1 < λ1mλ1 = Iλ1(uλ1).

Step 5. Let us prove that the critical points of the energy functional Iλ are non-negative.
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Arguing by a contradiction, assume that u is a critical point of Iλ and that the open set
A := {t ∈ [0, 1] : u(t) < 0} is of positive Lebesgue measure. Put v := min{0, u}. Clearly,
v ∈ X and, taking into account that u is a critical point, one has

0 = Φ′(u)(v)− λΨ′(u)(v) =

∫ 1

0
a(|u′(t)|2)u′(t)v′(t) dt− λ

∫ 1

0
g(t, u(t))v(t) dt

=

∫

A
a(|u′(t)|2)|u′(t)|2 dt ≥

∫

A
|u′(t)|2dt,

since a(s) ≥ 1 for all s ≥ 0 and g(t, s) = 0 for a.e t ∈ [0, 1] and every s < 0. Hence, since
u|A ∈W 1,2

0 (A), one has u ≡ 0 on A which is a contradiction.

Step 6. There is a Λ ⊆ (0,+∞) such that, for every λ ∈ Λ, problem (1) has a non-negative
solution uλ ∈ C1,β([0, 1]) for some β ∈ (0, 1] satisfying limλ→0+ ‖uλ‖C1([0,1]) = 0.

For λ ∈ (0, λ?), if uλ is a critical point of Iλ, then it is a weak solution of the auxiliary
problem (3) and it is non-negative. Moreover, since X ↪→ C0([0, 1]), there exists a λ? such
that ‖uλ‖∞ ≤ τ for every λ ∈ (0, λ?). On the other hand, by (ii) and bearing in mind the
definition of g, it follows that |g(t, x)| ≤ k, for a.e. t ∈ [0, 1] and x ∈ R. there are constants
β ∈ (0, 1] and κ > 0 such that uλ ∈ X ∩ C1,β([0, 1]) and ‖uλ‖C1,β([0,1]) ≤ κ. Pick any
sequence {λn} with λn ∈ (0, λ?) and limn→∞ λn = 0, and let {uλn} be the corresponding
sequence of the truncated problem (3). Arzelà-Ascoli Theorem yields the existence of a
subsequence, still denoted by {uλn}, converging to zero in C1([0, 1]). So, we conclude that
limλ→0+ ‖uλ‖C1([0,1]) = 0.
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ON BEST APPROXIMATION IN KM FUZZY METRIC

SPACES
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Abstract

In this paper we introduce the notation of t-best approximatively compact sets,
t-best approximation points, t-proximinal sets, t-boundedly compact sets and t-best
proximity pair in fuzzy metric spaces. The results derived in this paper are more
general than the corresponding results of metric spaces, fuzzy metric spaces, fuzzy
normed spaces and probabilistic metric spaces.

Keywords: best approximation, topology, fuzzy metric spaces

Mathematics Subject Classification [2010]: 54A40, 41A50

1 Introduction

Kramosil and Michálek [5] introduced the fuzzy metric space by generalizing the concept
of probabilistic metric space to the fuzzy situation with the help of continuous t-norm.
Best approximation has important applications in diverse disciplines of mathematics, en-
gineering and economics in dealing with problems arising in: Fixed point theory, Ap-
proximation theory, game theory, mathematical economics, best proximity pairs, Equi-
librium pairs, etc. Many authors have studied best approximation and best proximity
pair in the both metric and fuzzy metric spaces. Also Best approximation has important
applications in diverse disciplines of mathematics, engineering and economics in dealing
with problems arising in: Fixed point theory, Approximation theory, game theory, math-
ematical economics, best proximity pairs, Equilibrium pairs, etc. Many authors have
studied best approximation and best proximity pair in the both metric and fuzzy metric
spaces (e. g. see [1,6,7,9–11]). Best proximity pair theorems in the metric space (X, d) are
consider to expound the sufficient conditions that ensure the existence of x ∈ A such that
d(x, Tx) = d(A,B) := inf{d(a, b); a ∈ A, b ∈ B}, where T : A → 2B is a multifunction
defined on suitable subsets A,B of X. Also, a best proximity pair theorem evolves as
a generalization of the problem, considered by Beer and Pai [1], Sahney and Singh [6],
Singer [8] and Xu [11], of exploring the sufficient conditions for the non-emptiness of the
set Prox(A,B) = {(a, b) ∈ A × B : d(a, b) = d(A,B)}, where A,B are suitable subsets
of metric or linear normed space X. In this paper, we generalize some notions, defini-
tions and results in [4, 7–10] such as set of best approximation points, proximinal sets
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and approximatively compact sets for the fuzzy metric space in the sense of Kramosil and
Michálek [5]. In addition, some examples and applications are presented.

Recall that a continuous t-norm is a binary operation ∗ : [0, 1] × [0, 1] → [0, 1] such
that ([0, 1],≤, ∗) is an ordered Abelian topological monoid with unit 1.

Definition 1.1. (Kramosil and Michálek [5]) A fuzzy metric space is an ordered triple
(X,M, ∗) such that X is a (non-empty) set, ∗ is a continuous t-norm and M is a fuzzy set
of X × X × [0, ∞) satisfying the following properties, for all x, y, z ∈ X, s, t > 0:

(KM1) M(x, y, 0) = 0;

(KM2) M(x, y, t) = 1 for all t > 0 if and only if x = y;

(KM3) M(x, y, t) = M(y, x, t);

(KM4) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s);

(KM5) M(x, y, ·) : [0, ∞) → [0, 1] is left continuous.

Example 1.2. Let X = R. For every x, y ∈ X, t > 0 define the metric dt on X × X by
dt(x, y) = min{| x − y |, t}, and the map M : R2 × [0, ∞) → [0, 1] by M(x, y, 0) = 0 and

M(x, y, t) =
t

t + dt(x, y)
,

then (X, M, ·) is a fuzzy metric space, wherein · is the product t-norm.

2 Best approximation and Generalization

Definition 2.1. Let A be a non-empty subset of fuzzy metric space (X,M, ∗). For each
x ∈ X and t > 0, define

M(A, x, t) = sup{M(x, y, t) : y ∈ A}.

An element y0 ∈ A is said to be a t-best approximation point to x from A if

M(y0, x, t) = M(A, x, t).

We denote by PM
A (x, t) the set of t-best approximation points to x. For t > 0 a subset A of

a fuzzy metric space (X, M, ∗) is called t-proximinal if for every point x ∈ X, PM
A (x, t) ̸= ∅.

By a slight modification in the definitions and the results in [7, 9, 10] we can extend
those results to the fuzzy metric spaces, e. g., the following is given for fuzzy normed spaces
in [9].

Definition 2.2. Let A be a non-empty subset of a fuzzy metric space (X,M, ∗). An
element y0 ∈ A is said to be an F -best approximation of x ∈ X from A if it is a t-
best approximation of x from A, for every t > 0. The set of all elements of F -best
approximations of X from A is denoted by

FPM
A (x) =

∩

t∈(0,∞)

PM
A (x, t).

If each x ∈ X has at least one F -best approximation in A, then A is called a F -proximinal
set.
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Remark 2.3. Let (X, Md, ∗) be a standard fuzzy metric space in [3] and A ⊆ X and
x ∈ X, then for every t1, t2 > 0, PM

A (x, t1) = PM
A (x, t2), thus, FPM

A (x) = PM
A (x, t1) =

PM
A (x, 1). Also this property holds for Example 2.15 of [9] and other known examples in

the literature, the following shows that the above property is not true in general and the
definition of best approximation point in fuzzy metric spaces is related to parameter t in
its definition, so it is different from the classical theory of metric spaces.

Example 2.4. Consider Example 1.2, take A = [0, 1] and y0 = 2 then one can easily
shows that if t ≥ 1 then PM

A (y0, t) = {1} and if 0 < t < 1 then PM
A (y0, t) = A.

Following the approach of Kainen [4] we introduce a new definition to generalize t-ap-
proximatively compact set, then, we introduce t-best approximation point, t-proximinal
set and t-boundedly compact set relative to set in fuzzy metric spaces.

Definition 2.5. Let (X,M, ∗) be a fuzzy metric space and A,B are non-empty subsets
of X and t > 0, let

M(A,B, t) = sup{M(a, b, t); a ∈ A, b ∈ B}.

We say a sequence xn ∈ A, t-converges in distance to B if

M(xn, B, t) → M(A,B, t).

If B = {b} is singleton then we use b instead of {b}. Let B denote the family of non-empty
subsets of X, we say the subset A is t-approximatively compact relative to B if for every
B ∈ B and every sequence xn ∈ A which converges in distance to B, then there exists a
subsequence ynk

of yn and y0 ∈ A such that ynk
→ y0. If B = {B} is singleton then we

use B instead of {B}.

Definition 2.6. For t > 0, an element y0 ∈ A is said to be a t-best approximation point
to B from A if

M(y0, B, t) = M(A,B, t).

We denote by PM
A (B, t) the set of t-best approximation points to B. A subset A is called

t-proximinal relative to B if for every B ∈ B, PM
A (B, t) ̸= ∅ and A is called t-quasi

Chebyshev relative to B if for every B ∈ B, PM
A (B, t) be a compact set.

Let (X, M, ∗) be a fuzzy metric spaces. In the sequel for arbitrary t > 0, let C(X), A(X)
and B(X) denote the set of compact, t-approximatively compact and t-boundedly compact
subsets of X respectively. Also we denote by (A(X), B) the set of t-approximatively
compact subsets of X relative to B and for non-empty subsets A,B of X, denote by
Prox(A,B, t) the set of t-best proximity pairs, i. e. (a, b) ∈ A × B such that M(a, b, t) =
M(A, B, t).

The following main result shows that the notion of t-approximatively compact set can
be applied to compact sets.

Theorem 2.7. Let t > 0. A and B be non-empty subsets of a fuzzy metric space (X,M, ∗).
If A ∈ A(X) and B ∈ C(X) then A ∈ (A(X), B).

The following investigates the above notions for product of fuzzy metric spaces.
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Theorem 2.8. Let A and B be non-empty subsets of a fuzzy metric space (X1,M1, ∗)
and (X2,M2, ∗), respectively. Suppose B ∈ C(X2), if A ∈ B(X1) or A ∈ A(X1) then
A × B ∈ B(X1 × X2) or A × B ∈ A(X1 × X2), respectively.

The following generalizes [7, Theorem 2.19] and shows that the metric projection
PM

A (x, t) also preserves compactness.

Theorem 2.9. Let A and B be non-empty subsets of a fuzzy metric space (X,M, ∗).
Suppose B ∈ C(X), if A ∈ B(X) or A ∈ A(X) then A is t-quasi Chebyshev relative to B.
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On Chatterjea Contractions in Metric Space with a Graph
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Abstract

In this talk, we introduce Chatterjea contractions using directed graphs in met-
ric spaces with a graph and investigate the existence of fixed points for Chatterjea
contractions under two different conditions and discuss the main theorem. We also
discuss the uniqueness of the fixed point.

Keywords: G-Chatterjea mapping, Fixed point, Orbitally G-continuous mapping.

Mathematics Subject Classification [2010]: 47H10, 05C20

1 Introduction

Let (X, d) be a metric space. In [3], Chatterjea introduced the notion of Chatterjea
contraction on a metric space X as follows:

d(Tx, Ty) ≤ α
[
d(x, Ty) + d(y, Tx)

]
(1)

for all x, y ∈ X, where α ∈ [0, 1
2). He also investigated the existence and uniqueness of

fixed points for self-map T and proved that such mappings have a unique fixed point in
complete metric spaces.

Recently in 2008, Jachymski [4] proved some fixed point results in metric spaces en-
dowed with a graph and generalized simultaneously the Banach contraction principle from
metric and partially ordered metric spaces. Recently in 2013, Bojor [1] followed Jachym-
ski’s idea for Kannan contractions using a new assumption called the weak T -connectedness
of the graph.

The aim of this paper is to study Chatterjea contractions in metric spaces endowed with
a graph by standard iterative techniques and avoid imposing the assumption of weak T -
connectedness on the graph. Our main result generalizes Chatterjea’s fixed point theorem
in metric spaces and also in metric spaces equipped with a partial order.

We next review some basic notions of graph theory in relation to uniform spaces that
we need in the sequel. For more details on the theory of graphs, see, [2, 4].

An edge of an arbitrary graph with identical ends is called a loop and an edge with
distinct ends is called a link. Two or more links with the same pairs of ends are said to
be parallel edges.

Let (X, d) be a metric space and G be a directed graph with vertex set V (G) = X such
that the set E(G) consisting of the edges of G contains all loops, that is, (x, x) ∈ E(G)
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for all x ∈ X. Assume further that G has no parallel edges. Then G can be denoted by
the ordered pair (V (G), E(G)), and also it is said that the metric space (X, d) is endowed
with the graph G.

We denote by G−1 the conversion of the graph G, that is, V (G−1) = V (G) and

E(G−1) =
{
(x, y) : (y, x) ∈ E(G)

}
.

The metric space (X, d) can also be endowed with the graph G̃, where the former is
the latter is an undirected graph obtained from G by ignoring the directions of the edges.
In other words, V (G) = V (G̃) and E(G̃) = E(G) ∪ E(G−1).

It should be remarked that if both (x, y) and (y, x) belong to E(G), then we will face
with parallel edges in the graph G̃. A graph G = (V (G), E(G)) is said to be transitive if
(x, y), (y, z) ∈ E(G) implies (x, z) ∈ E(G) for all x, y, z ∈ V (G).

By a subgraph of G, we mean a graph H satisfying V (H) ⊆ V (G) and E(H) ⊆ E(G)
such that V (H) contains the vertices of all edges of E(H), i.e., (x, y) ∈ E(H) implies
x, y ∈ V (H) for all x, y ∈ V (G).

Definition 1.1 ([6]). A self-map T on X is called a Picard operator if T has a unique
fixed point x̂ ∈ X and Tnx → x̂ for all x ∈ X and is called weakly Picard operator if the
sequence {Tnx} converges to a fixed point of T for all x ∈ X. Let (X, d) be a metric space
and T : X → X be a mapping. Then

It is clear that a Picard operator is a weakly Picard one but the identity mapping of
any metric space with more that one point shows that the converse is not generally true.

Definition 1.2 ([4]). Self-map T on metric space (X, d) endowed with a graph Gis called
orbitally G-continuous on X if for each x, y ∈ X and each sequences {bn} of positive
integers with (T bnx, T bn+1x) ∈ E(G) for all n ≥ 1, the convergence T bnx → y implies
T (T bnx) → Ty.

It is clear that, a continuous mapping on a metric space is orbitally G-continuous for
all graphs G. But the converse of these relations is not true in general as the next example
shows.

2 Main results

Let (X, d) be a metric space endowed with a graph G and T : X → X be an arbitrary
mapping. Throughout this section, we denote the set

{
x ∈ X : (x, Tx) ∈ E(G)

}
by the

XT and the set
{
x ∈ X : Tx = x

}
by the Fix(T ). Since E(G) contains all loops, it follows

that Fix(T ) ⊆ XT .
Motivated by [4, Definition 2.1] and [1, Definition 4], we introduce G-Chatterjea map-

pings in metric spaces endowed with a graph as follows:

Definition 2.1 ([5]). Let (X, d) be a metric space endowed with a graph G. We say that
a mapping T : X → X is a G-Chatterjea mapping if

C1) T preserves the egdes of G, that is, (x, y) ∈ E(G) implies (Tx, Ty) ∈ E(G) for all
x, y ∈ X;
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C2) there exists an α ∈ [0, 1
2) such that

d(Tx, Ty) ≤ α
[
d(x, Ty) + d(y, Tx)

]

for all x, y ∈ X with (x, y) ∈ E(G).

If T : X → X is a G-Chatterjea mapping, then we call the number α in (C2) the constant
of T .

We now give some examples of G-Chatterjea mappings in metric spaces endowed with
a graph.

Example 2.2. Let (X, ⪯) be a poset and d be a metric on X. Consider the poset graphs
G1 and G2 by

V (G1) = X and E(G1) =
{
(x, y) ∈ X × X : x ⪯ y

}

and G2 = G̃1. Since ⪯ is reflexive, it follows that both E(G1) and E(G2) contain all
loops. Assume that (X, d) is endowed with one of the graphs G1 and G2. Then a mapping
T : X → X preserves the edges of G1 if and only if T is nondecreasing, and T satisfies
(C2) for the graph G1 if and only if

d(Tx, Ty) ≤ α
[
d(x, Ty) + d(y, Tx)

]
(2)

for all comparable elements x, y ∈ X, where α ∈ [0, 1
2). Moreover, T preserves the edges

of G2 if and only if T maps the comparable elements of (X, ⪯) onto comparable elements,
and T satisfies (C2) for the graph G2 if and only if (2) holds. Thus, each G1-Chatterjea
mapping is a G2-Chatterjea one.

In order to prove our main theorem, we begin with an interesting and important
property of G-Chatterjea mappings which is needed in the sequel.

Proposition 2.3 ([5]). Let (X, d) be a metric space endowed with a graph G and T : X →
X be a G-Chatterjea mapping. Then Fix(T ) does not contain both ends of any link of G.

The next useful lemma shows that in a metric space (X, d) endowed with a graph G,
two successive iterates of any point of XT under a G-Chatterjea mapping T : X → X
are getting arbitrarily closer whenever the numbers of the iterates are getting sufficiently
large.

Lemma 2.4 ([5]). Let (X, d) be a metric space endowed with a graph G and T : X → X
be a G-Chatterjea mapping with constant α. Then

d(Tnx, Tn+1x) ≤
( α

1 − α

)n · d(x, Tx) (3)

for all x ∈ XT and all n ≥ 0. In particular, d(Tnx, Tn+1x) → 0 as n → ∞, for all x ∈ XT .

Our main theorem shows that a G-Chatterjea mapping T defined on a complete metric
space (X, d) endowed with a graph G has a fixed point in X whenever T is orbitally G-
continuous on X or the triple (X, d, G) has a suitable property.
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Theorem 2.5 ([5]). Let (X, d) be a complete metric space endowed with a graph G and
T : X → X be a G-Chatterjea mapping. Then the restriction of T to the set XT is a
weakly Picard operator if one of the following statements holds:

1) T is orbitally G-continuous on X;

2) The triple (X, d, G) has the following property:

(∗) If xn → x and (xn, xn+1) ∈ E(G) for all n ≥ 1, then there exists a subsequence
{xnk

} of {xn} such that (xnk
, x) ∈ E(G) for all k ≥ 1.

In particular, whenever (1) or (2) holds, then Fix(T ) ̸= ∅ if and only if XT ̸= ∅.

Combining Theorem 2.5 and Proposition 2.4 yields Chatterjea’s fixed point theorem
[3] in complete metric spaces as follows:

Corollary 2.6 ([5]). Let (X, d) be a complete metric space and T : X → X be a mapping
which satisfies (1). Then T is a Picard operator.

Theorem 2.7 ([5]). Let (X, d) be a metric space endowed with a graph G and T : X → X
be a G-Chatterjea mapping. Then T has at most one fixed point in X if one of the following
statements holds:

a) For all x, y ∈ X, there exists a path in G from x to y of length 2;

b) The subgraph of G with the vertices Fix(T ) is weakly connected.
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Abstract

In this note, we characterize boundedness and (weak) compactness of linear oper-

ators from a Banach space into analytic Lipschitz spaces lipA(X,α). We also obtain

a lower bound for the essential norm of such operators.
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1 Introduction

Let E be a Banach space, (X, d) be a compact metric space, and α ∈ (0, 1]. The space

Lipα(X,E) consist of E-valued functions f on X that

pα(f) = sup

{∥f(x) − f(y)∥E

dα(x, y)
: x, y ∈ X,x ̸= y

}
< ∞,

and lipα(X,E) is the subspace of those functions f for which

lim
d(x,y)→0

∥f(x) − f(y)∥E

dα(x, y)
= 0.

The spaces Lipα(X,E) and lipα(X,E) are Banach spaces with the norm ∥f∥α = ∥f∥X +

pα(f), where ∥f∥X = supx∈X ∥f(x)∥E . In the case that E is the scalar field of the complex

numbers C, we have classic Lipschitz algebras Lip(X,α) = Lipα(X,C) and lip(X,α) =
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lipα(X,C). It is known that Lip(X,α) for 0 < α ≤ 1 and lip(X,α) for 0 < α < 1

are Banach function algebras and their character spaces (maximal ideal spaces) coincide

with X. These algebras first studied by de Leeuw [2] and Sherbert [3, 4]. When X is a

compact plane set, analytic Lipschitz algebras are subalgebras of Lipschitz algebras consist

of analytic functions on the interior of X and denoted by LipA(X,α) and lipA(X,α), that

is

LipA(X,α) = Lip(X,α) ∩A(X) and lipA(X,α) = lip(X,α) ∩A(X),

where A(X) is the algebra of all continuous functions on X which are analytic on intX.

Let G be an open set in C and E be a complex topological vector space. A function

f : G → E is said to be analytic if Λf is analytic in the ordinary sense for every Λ in E∗,

the dual space of E.

In this paper we study the properties of linear operators from a Banach space B into

lipA(X,α) and we provide some results analogue to the results obtained in [1].

2 Main results

For convenience, we recall some notions which we require in the sequel. Suppose that B

is a Banach space. We denote by B× the algebraic dual space of B, the space of all linear

functionals on B. The topological dual space of B is the Banach space B∗ whose elements

are the bounded linear functionals on B.

For a linear operator T (not necessarily bounded) from a Banach spaceB into lipA(X,α),

we denote the restriction of the algebraic adjoint T× : lipA(X,α)∗ → B× of T to the

space X by ψ. Therefore, by the definition of adjoint, we have ψ = T×|X : X → B×,

ψ(x) = T×(ex) = ex ◦T , that ex ∈ lipA(X,α)∗ is the evaluation functional at point x ∈ X

defined by ex(f) = f(x) for every f ∈ lipA(X,α). In this case, one can say that the linear

operator T is induced by the function ψ or that ψ induces T by means of ψ(x) = ex ◦ T
or equivalently, (Tb)(x) = ψ(x)(b) for each b ∈ B and x ∈ X. If T is bounded, then

the function ψ maps X into B∗. In fact, ψ is the restriction of the topological adjoint

T ∗ : lipα(X)∗ → B∗ of T to the space X, and it is continuous with the weak∗-topology

on B∗. It is interesting to know when a function ψ : X → B× induces linear operator

T : B → lipA(X,α). In other words, under what conditions the function Tb : X → C de-
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fined by Tb(x) = ψ(x)b belongs to lipA(X,α) whenever b ∈ B. In the following theorem, we

give conditions on a function ψ : X → B× to induce a linear operator T : B → lipA(X,α).

Theorem 2.1. Let B be a Banach space. If T is a linear operator from B into lipA(X,α),

then the function ψ = T×|X is analytic in intX and satisfies

lim
d(x,y)→0

ψ(x) − ψ(y)

dα(x, y)
= 0, (2.1)

in the weak∗-topology of B×. Conversely, if a function ψ : X → B× is analytic in intX

and satisfies (2.1) in the weak∗-topology of B×, then the linear operator T defined by

Tb(x) = ψ(x)b maps B into lipA(X,α).

The following results concerning with the problem to describe when such linear oper-

ators are bounded, compact or weakly compact in terms of function theoretic properties

of the induced function. For the boundedness, we have the following result.

Theorem 2.2. Suppose that B is a Banach space and T : B → lipA(X,α) is a linear

operator induced by ψ : X → B×. Then T is bounded if and only if ψ ∈ Lipα(X,B∗).

Moreover, ∥T∥ ≤ ∥ψ∥α ≤ 2∥T∥.

Note that as shown in Theorem 2.1, a function ψ : X → B∗ may not, in general,

induce a linear operator T : B → lipA(X,α). Even if ψ ∈ Lipα(X,B∗) is analytic in intX,

the operator T defined by (Tb)(x) = ψ(x)b does not, in general, map B into lipA(X,α).

For example, set B = lipA(X,α) and let λ0 ∈ lipA(X,α)∗, f0 ∈ LipA(X,α) \ lipA(X,α)

and define ψ : X → lipA(X,α)∗ by ψ(x) = f0(x)λ0. Note that ψ ∈ Lipα(X, lipA(X,α)∗).

Let T be the induced operator by ψ. Then (Tf)(x) = ψ(x)f = f0(x)λ0(f) for each

f ∈ lipA(X,α) and x ∈ X. Thus, Tf = λ0(f)f0 is not in lipA(X,α) for any f ∈ lipA(X,α)

with λ0(f) ̸= 0. Therefore, T does not map B = lipA(X,α) into lipA(X,α).

In the following theorem, we characterize the compactness of these operators.

Theorem 2.3. Let B be a Banach space. Then a linear operator T : B → lipA(X,α)

induced by ψ is compact if and only if ψ ∈ lipα(X,B∗).

Using the above theorem, we determine a lower bound for the essential norm of a

bounded linear operator T : B → lipA(X,α). The essential norm ∥T∥e of a bounded
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linear operator T , is defined as

∥T∥e = inf
K

∥T −K∥,

where the infimum is taken over all compact operators K : B → lipA(X,α). Note that

∥T∥e = 0 if and only if T is compact.

Theorem 2.4. If B is a Banach space and T : B → lipA(X,α) is a bounded linear

operator induced by a function ψ : X → B∗, then

lim sup
d(x,y)→0

∥ψ(x) − ψ(y)∥
dα(x, y)

≤ ∥T∥e.

We next characterize weak compactness of a bounded linear operator T : B →
lipA(X,α).

Theorem 2.5. Let B be a Banach space. Then a linear operator T : B → lipA(X,α)

induced by a function ψ : X → B∗ is weakly compact if and only if

lim
d(x,y)→0

ψ(x) − ψ(y)

dα(x, y)
= 0,

in the weak topology of B∗.
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Abstract

In this paper, some algebraic and geometrical properties of the pseudospectrum of
matrix polynomials are investigated. The notion of pseudonumerical range of matrix
polynomials is also introduced, and some properties of this notion are studied.

Keywords: Matrix polynomial, pseudospectrum, numerical range

Mathematics Subject Classification [2010]: 15A18, 15A60, 47A56

1 Introduction

Let Mn be the algebra of all n×n complex matrices, A ∈Mn, and ε > 0. The pseudospec-
trum of A is defined and denoted, e.g., see [5] and [1] by

σε(A) = {z ∈ C : ∃E ∈Mn s.t. ‖E‖ < ε and z ∈ σ(A+ E)}, (1)

where σ(.) denotes the spectrum and ‖.‖ is the spectral matrix norm (i.e., the matrix norm
subordinate to the Euclidean vector norm). It is known that

σ(A) =
⋂

ε>0

σε(A).

The spectrum of a matrix provides a fundamental tool for understanding the behavior of
it. For instance, if σ(A) ⊆ {z ∈ C : | z |< 1}, then

∑∞
i=0A

i is convergent.
Pseudospectra provide an analytical and graphical alternative for investigating nonnormal
matrices and operators, give a quantitative estimate of departure from non-normality
and give information about stability. There are many interesting results concerning the
pseudospectrum and its application; See [5]. In the following proposition, we list some
known properties of pseudospectrum of matrices.
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Proposition 1.1. Let A ∈Mn and ε > 0. Then the following assertions are true:
(a) σ(A) +D(0, ε) ⊆ σε(A) ⊆W (A) +D(0, ε),
where D(0, ε) = {z ∈ C : |z| < ε} and W (A) = {x∗Ax : x ∈ Cn, ‖x‖ = 1} is the numerical
range of A;
(b) σε(αI + βA) = α+ βσε/|β|(A) where α ∈ C and β ∈ C \ {0}.
(c) σε(A) = σε(U

∗AU), where U ∈Mn is a unitary matrix.

Consider a matrix polynomial

P (λ) = Amλ
m +Am−1λm−1 + · · ·+A1λ+A0, (2)

where Ai ∈ Mn, Am 6= 0 and λ is a complex variable. The numbers m and n are, respec-
tively, called the degree and the order of P (λ). The matrix polynomial P (λ), as in (2), is
called a monic matrix polynomial if Am = In.
For the case m = 1, P (λ) is said to be a linear pencil. A scalar λ0 ∈ C is called an
eigenvalue of P (λ) if the system p(λ0)x = 0 has a nonzero solution x0 ∈ Cn. This solution
is known as an eigenvalue of P (λ) corresponding to λ0. The set of all eigenvalues of P (λ)
is called the spectrum of P (λ); namely,

σ[P (λ)] = {µ ∈ C : detP (µ) = 0}. (3)

In this paper, we are going to study some algebraic and geometric properties of the pseu-
dospectrum of matrix polynomials. For this, in section 2, we state definitions and general
properties of the pseudonumerical range of matrix polynomials and we investigate some
algebraic properties of this notion.

2 Main results

Let P (λ) = Amλ
m + Am−1λm−1 + · · · + A1λ + A0 be a matrix polynomial as in (2). We

begin our discussion by introducing the pseudospectrum of P (λ).

Definition 2.1. Let ε > 0 and P (λ) be a matrix polynomial as in (2). The pseudospec-
trum of P (λ) is defined and denoted by

σε[P (λ)] = {µ ∈ C : 0 ∈ σε(P (µ))}

where for every µ ∈ C, P (µ) ∈Mn is a matrix and σε(P (µ)) is as in (1).
In view of Define 2.1 and (1), we have the following proposition.

Proposition 2.2. Let ε > 0 and P (λ) be a matrix polynomial as in (2). Then

σε[P (λ)] = {µ ∈ C : ∃Q(λ) of degree m and order n, s.t. ‖Q(µ)‖ < ε and det(P (µ)+Q(µ)) = 0}

By Define 2.1 and (1) and Proposition 2.2, we have the following proposition.

Proposition 2.3. Let ε > 0 and P (λ) = λIn − A, where A ∈Mn, (i.e., P (λ) is a monic
linear pencil). Then σε[P (λ)] = σε(A).
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In view of Proposition 2.3, we conclude that the pseudospectrum of matrix polynomials
is a generalization of the pseudospectrum of matrices.
By a result in [4], we have the following theorem.

Theorem 2.4. Let ε > 0 and P (λ) be a matrix polynomial as in (2). Then
(a) σε[P (λ)] is bounded if and only if 0 ∈ σε(Am). (b) If σ[P (λ)] has k element(s), then
σε[P (λ)] has at most k connected component(s).

At the end of this section, we introduce and study the pseudonumerical range of matrix
polynomials.

Definition 2.5. Let ε > 0 and P (λ) be a matrix polynomial as in (2). The pseudonu-
merical range of P (λ) is defined and denoted by

Wε[P (λ)] = {µ ∈ C : 0 ∈W (P (µ)) +D(0, ε)}.

By Definition 2.5, it is clear that σε[P (λ)] ⊆ Wε[P (λ)]. In the following proposition,
we characterize the pseudonumerical range of monic linear pencils.

Proposition 2.6. Let ε > 0 and P (λ) = λIn−A, where A ∈Mn,be a monic linear pencil.
Then Wε[P (λ)] = W (A) +D(0, ε).

Proof. Since for every S ⊆ C, S +D(0, ε) = S −D(0, ε), the result follows from Definition
2.5.

Remark 2.7. Let ε > 0 and A ∈ Mn. The set W (A) + D(0, ε), as in Proposition 2.6, is
called the augmented numerical range of A; See [3] for more information.

References

[1] J. Cui, C. K. Li and Y. T. Poon, Pseudospectra of special operators and pseudospectrum
preservers, J. Math Anal. Appl. 419 (2014), pp. 1261–1273.

[2] I. Gohberg, L. Rodman and P. Lancaster, Matrix Polynomials, Academic Press, New
york, 1982.

[3] K. Gustafson and D. K. M. Rao, Numerical Range: The Field of Values of Linear
Operators and Matrices, Springer, 1996.

[4] P. Lancaster and P. Psarrakos, On the pseudospectra of matrix polynomials, SIAM J.
Matrix Anal. Appl. 27 (2005), pp. 115–129.

[5] L. N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnor-
mal Matrices and Operators, Princeton University Press, Princeton, 2005.

Email: aghamollaei@uk.ac.ir
Email: m.khakshour@student.kgut.ac.ir

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

On pseudospectrum of matrix polynomials pp.: 3–3

523



On some means inequalities in matrix spases
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Abstract

In this paper, we state some recent results on non-commutative version of re-
finements and reverses of ν-weighted arthimetic-geometric-harmonic mean inequality,
which is a fundamental relation between two nonnegative real numbers, in the frame
work of matrices.
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1 Introduction

The well-known Young inequality, states that if a, b are two positive numbers and p, q > 0
such that 1

p + 1
q = 1, then

ab ≤ ap

p
+
bq

q
,

and equality holds if and only if a = b. Equivalently, for distinct positive numbers a, b and
0 < ν < 1, we have

aνb1−ν < νa+ (1− ν)b.

By defining weighted arithmetic and geometric means as Aν(a, b) = νa + (1 − ν)b and
Gν(a, b) = aνb1−ν , respectively, the Young inequality can be written as Gν(a, b) < Aν(a, b),
which is known as the arithmetic-geometric mean inequality. A similar inequality, known
as geometric-harmonic mean inequality, states that Hν(a, b) < Gnu(a, b) where Hν(a, b) =
(νa−1 + (1− ν)b−1)−1 is the harmonic mean of a, b.

One can consider these inequalities on the complex matrix space.

Definition 1.1. For two positive definite matrices A,B, we define

• arithmetic mean of A,B:

A∇νB = νA+ (1− ν)B,

• geometric mean of A,B:

A]νB = A1/2(A−1/2BA−1/2)1−νA1/2,

• harmonic mean of A,B:

A!νB = (νA−1 + (1− ν)B−1)−1.
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Some mathematicians investigated on the above inequalities and found different re-
finements of them. They found some sharper upper and lower bounds for the difference
and the ratio of these two means.

In this paper, we focus on the matrix inequalities which compare the difference of
weighted arithmetic and geometric means and also arithmetic and harmonic means with
respect to two different weights ν, µ.

2 Arithmetic-geometric mean type inequalities

Theorem 2.1. [1] Let 0 < ν ≤ µ < 1. If A,B are two positive definite matrices, then

ν

µ
(A∇µB −A]µB) ≤ A∇νB −A]νB ≤

1− ν
1− µ(A∇µB −A]µB). (1)

The following special case was proved by Kittaneh and Manasrah [2, 3], independently.

Corollary 2.2. Let 0 < ν < 1 and A,B be two positive definite matrices. Then

r0(A∇1/2B −A]1/2B) ≤ A∇νB −A]νB ≤ R0(A∇1/2B −A]1/2B),

where r0 = 2 min{ν, 1− ν} and R0 = 2 max{ν, 1− ν}.

A similar version of (3) for positive numbers can be stated as follow.

Theorem 2.3. Let 0 < ν < µ < 1 and n ≥ 1. Then

(
ν

µ

)n
≤ Aν(a, b)n −Gν(a, b)n

Aµ(a, b)n −Gµ(a, b)n
≤
(

1− ν
1− µ

)2

. (2)

for two distinct positive numbers a, b.

Since every two commuting matrices are simultaneously diagonalizable, so we have the
following result.

Corollary 2.4. Let A,B be two positive definite commuting matrices and 0 < ν < µ < 1
and n ≥ 1. Then

(
ν

µ

)n
[A∇µBn −A]µBn] ≤ A∇νBn −A]νBn

≤
(

1− ν
1− µ

)n
[A∇µBn −A]µBn

3 Arithmetic-harmonic mean type inequalities

Theorem 3.1. [5] Let 0 < ν ≤ µ < 1. If A,B are two positive definite matrices, then

ν

µ
(A∇µB −A!µB) ≤ A∇νB −A!νB ≤

1− ν
1− µ(A∇µB −A!µB). (3)

As an special case was have the following result which is proved in [4] and [6].
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Corollary 3.2. Let 0 < ν < 1 and A,B be two positive definite matrices. Then

r0(A∇1/2B −A]1/2B) ≤ A∇νB −A]νB ≤ R0(A∇1/2B −A]1/2B),

where r0 = 2 min{ν, 1− ν} and R0 = 2 max{ν, 1− ν}.

Theorem 3.3. Let A,B ∈ Mn(C) be positive definite matrices satisfy 0 < mI ≤ A ≤
B ≤MI. If ν is real number with 0 ≤ ν ≤ 1, then

A∇νB −A!νB ≤ ν(1− ν)

(
1− M

m

)2

B.

Also we state and prove a generalization of these result for weighted power mean of
operators.
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On the stability of Szász-Mirakjan operators
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Abstract

A linear operator T from normed space A into normed space B is said to be HU-
stable if there exists a constant K such that for any g ∈ T (A), ε > 0 and f ∈ A
with ‖Tf − g‖ ≤ ε, there exists an f0 ∈ A such that Tf0 = g and ‖f − f0‖ ≤ Kε.
We present the modified Szász-Mirakjan operators and prove that this operators are
HU-unstable.

Keywords: Hyers–Ulam stability, approximation, Szász-Mirakjan operators
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1 Introduction

The Hyers-Ulam stability of linear operators was considered for the first time in the papers
by Miura and Takahasi et al. (see [1, 2]).

Definition 1.1. Let A and B be normed spaces and T : A→ B be a linear operator. We
say that T is HU-stable if there exists a constant K such that for any g ∈ T (A), ε > 0 and
f ∈ A with ‖Tf − g‖ ≤ ε, there exists an f0 ∈ A such that Tf0 = g and ‖f − f0‖ ≤ Kε
[5]. The number K is called a HUS constant of T and the infimum of all HUS constants
of T is denoted by KT .

Theorem 1.2. [5] Let A and B be Banach spaces and T : A → B be a bounded linear
operator. Then the following statements are equivalent:

1. T is HU-stable;

2. The range R(T ) of T is closed in B;

3. The linear operator T̃−1 from R(T ) onto the quotient space A
N(T ) is bounded, where

N(T ) is the kernel of T and T̃ : A
N(T ) → B is defined by

T̃ (f +N(T )) = T (f) (f ∈ A).

Moreover, if one of the conditions (1),(2),(3) is satisfied, then KT = ‖T̃−1‖.
∗Speaker
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Remark 1.3. It is easy to see that a bounded linear operator T : A→ B is HU-stable if
and only if there exists a constant K such that for any f ∈ A with ‖Tf‖ ≤ 1 there exists
an f0 ∈ N(T ) such that ‖f − f0‖ ≤ K.

Popa and Rasa obtained some important results on the HU-stability of some classical
operators from approximation theory in [3]. In particular, it is shown that the Szász-
Mirakjan operators are HU-unstable. In this talk, we present the modified Szász-Mirakjan
operators Sn;r and prove that this operators are HU-unstable.

2 Main result

Let Cb[0,∞) be the space of all continuous, bounded, real-valued functions on [0,∞).
This space with the supremum norm is a Banach space. The nth Szász-Mirakjan operator
Ln : Cb[0,∞)→ Cb[0,∞) is defined by

Sn(f ;x) = e−nx
∞∑

i=0

f

(
i

n

)
ni

i!
xi x ∈ [0,∞). (1)

In [4], it is introduced the following modified Szász-Mirakjan operators

Sn;r(f ;x) :=
1

Ar(nx)

∞∑

k=0

f

(
rk

n

)
(nx)rk

(rk)!
x ∈ [0,∞), (2)

for every f ∈ Cb[0,∞) and every fixed r ∈ N, where

Ar(t) :=

∞∑

k=0

trk

(rk)!
(t ∈ [0,∞)).

clearly, Sn;1(f ;x) = Sn(f ;x). Now we prove that the modified Szász-Mirakjan operators
are HU-unstable.

Lemma 2.1. [4] For every fixed r ∈ N, there exists a positive constant M such that

1 ≤ enx

Ar(nx)
≤M (x ∈ [0,∞), n ∈ N).

Theorem 2.2. For each n ∈ N and r ∈ N the operator Sn;r is HU-unstable.

Proof. Suppose that there exist n ∈ N and r ∈ N such that Sn;r is HU-stable. Then
there exists a constant K such that for any f ∈ Cb[0,∞) with ‖Sn;rf‖ ≤ 1 there exists a
g ∈ N(Sn;r) such that ‖f − g‖ ≤ K. By Lemma 2.1, there exists M > 0 such that

1

Ar(nx)
≤ M

enx
(x ∈ [0,∞)).

By Stirling’s formula, we have limi→∞ ii

i!ei
= 0. Hence there exists j ∈ N such that j

r ∈ N
and M(K + 1) jj

ejj!
≤ 1. Define the function f by f(x) = 0 for x ∈ [0, j−rn ] ∪ [ j+rn ,∞);
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f
(
j
n

)
= K + 1; f linear on [ j−rn , jn ] and on [ jn ,

j+r
n ]. Then it is proved that ‖Sn;rf‖ ≤ 1.

Hence there exists a g ∈ N(Sn;r) such that ‖f − g‖ ≤ K. Now g( jn) = 0 and so we have

K + 1 =

∣∣∣∣f
(
j

n

)
− g

(
j

n

)∣∣∣∣ ≤ ‖f − g‖ ≤ K

which is a contradiction.

Corollary 2.3. For each n ∈ N and r ∈ N, the range of the operator Sn;r is not closed in
Cb[0,∞).

Proof. By Theorem 2.2, Sn;r is HU-unstable. Hence by Theorem 1.2, R(Sn;r) is not
closed.
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Abstract

In this note we discuss about the problem of existence and uniqueness of local
extremum points of multi variable zeros of the elliptic operator defined on an open or
compact subset of the Euclidean space. We also obtain some results on the theory of
partial differential equations.
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1 Preliminaries

Let U ⊆ Rn be an open set, f : U → R be a map of class C2 and ∇2f =
∑n

i=1
∂2f
∂x2i

.

The function f is called Harmonic if ∇2f = 0. For the function ε defined on U , the C2

function f : U → R is called ε−Subharmonic if ∇2f = ε. For a non empty set D ⊆ Rn

the map f : D → R is called Harmonic on D if there exists an open set U containing D
and a map g : U → R of class C2 such that g|D = f and ∇2g = 0 on D. The set of all
Harmonic (res. ε−Subharmonic) functions on D is denoted by H(D) (res. S(ε,D)). Let
A = [aij ] be an n × n positive definite symmetric matrix and L = ( ∂

∂X )A( ∂
∂X )t, then L

is called an Elliptic operator and the C2 function f : U → R is called L−Harmonic (res.
εL−Subharmonic) on U if L(f) = 0(res. L(f) = ε). The set of all L−Harmonic (res.
εL−Subharmonic) functions on U is denoted by H(L,U) (res. S(ε, L, U)). Similarly if
D ⊆ Rn be a nonempty set, then the sets H(L,D) and S(ε, L,D) defined as above.

2 Introduction

The problem of existence of local extremum points of Holomorphic functions is discussed
in [1]. Also the similar problem for two variable Harmonic functions defined on a compact
subset of the Euclidean plane is proposed in [2] and [5] as the real part of some Holomorphic
functions. Dowling [3] showed that an extension of maximum principle for vector valued
harmonic functions defined on the open unit disc to a complex Banach space is hold. A
new method for finding the extremum points of smooth functions is discussed in [6, 7].
In this note we generalize the similar results for multi variable generalized Harmonic and
Subharmonic functions defined on a compact set D ⊆ Rn, i.e., the elements f of H(D),
S(ε,D), H(L,D) and S(ε, L,D) for which L is an elliptic operator defined on C2(Rn, R).
Then we deduce some uniqueness theorems on the theory of Boundary Value Problem
LT = ε.
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3 Main results

Theorem 3.1. Let ε ∈ R be a constant function. Then H(U) ≈ S(ε, U).

Proof. Let ϕ : H(U)→ S(ε, U) defined by ϕ(f) = f + h in which h : Rn → R is the map
h(x1, ..., xn) = ε

2n

∑n
i=1 x

2
i . Then ϕ is well defined, one to one and surjective.

Theorem 3.2. Let U ⊆ Rn be an open set, D = U ∪ ∂U and ε > 0 (res. ε < 0) on D.
Then every f ∈ S(ε,D) has not a local maximum (res. minimum) on U .

Proof. Let x0 ∈ U be the local maximum point of f . Then ∂f
∂xi

(x0) = 0 and ∂2f
∂x2i

(x0) ≤ 0

for all i = 1, ..., n. So ∇2f =
∑n

i=1
∂2f
∂x2i

(x0) = ε ≤ 0 which is a contradiction.

Corollary 3.3. Let U ⊆ Rn be an open set, D = U ∪∂U be a bounded set and ε > 0 (res.
ε < 0). Then every f ∈ S(ε,D) has an absolute maximum (res. minimum) point on ∂U .

Theorem 3.4. Let U ⊆ Rn be an open set, D = U ∪ ∂U be a bounded set. If f ∈ H(D)
has an absolute maximum (res. minimum) point on U , then it has an absolute maximum
(res. minimum) point on ∂U with the same value.

Proof. Let x0 ∈ U be the absolute maximum point of f and define the sequence of functions
{fn}n∈N by fn(x) = f(x)+ 1

nexp◦p1(x) in which p1 is the first projection map p1 : Rn → R.
Then

∇2fn(x) =
exp ◦ p1(x)

n
> 0

Let xn ∈ ∂U be the absolute maximum point of fn, then fn(xn) ≥ fn(x0) and

f(x0) ≥ f(xn) ≥ f(x0) +
1

n
[exp ◦ p1(x0)− exp ◦ p1(xn)]

Therefore p1(x0) ≤ p1(xn). Let limn→+∞xn = x∞ ∈ ∂U , then

f(x0) ≥ limn→+∞f(xn)

≥ f(x0) + limn→+∞
1

n
[exp ◦ p1(x0)− exp ◦ p1(xn)]

and so f(x0) ≥ f(x∞) ≥ f(x0), therefore f(x0) = f(x∞).

Lemma 3.5. Let U ⊆ Rn be an open set, D = U ∪ ∂U be a bounded set and ε : ∂U → R
be a continuous map. If f : D → R be a zero of the Laplace equation ∇2T = ε on D and
there exists a continuous map φ : ∂U → R such that f = φ for all x ∈ ∂U , then f is
unique on U ∪ ∂U .

Any symmetric positive definite matrix is orthogonally similar to the diagonal matrix
Λ = diag(λ1, ..., λn) of its eigenvalues. So there exists an invertible matrix C such that
Λ = C−1AC and C−1 = Ct. Let ∂

∂X be the 1 × n matrix ∂
∂X = ( ∂

∂x1
, ..., ∂

∂xn
), X be the

1× n matrix X = (x1, ..., xn), and ∂
∂xi
· ∂
∂xj

= ∂2

∂xi∂xj
symbolically. Define the new matrix
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Y = (y1, ..., yn) by Y t = CXt. A simple calculation shows that λi > 0 for all 1 ≤ i ≤ n,
A = CΛCt and ∂

∂X = ∂
∂Y C, therefore

L =
∂

∂X
A(

∂

∂X
)t = (

∂

∂Y
C)ACt

(
∂

∂Y

)t
=

∂

∂Y
Λ

(
∂

∂Y

)t
= Σn

i=1λi
∂2

∂y2i

The following theorems are immediate consequences of the preceding discussion,

Theorem 3.6. Let U ⊆ Rn be an open set, D = U ∪ ∂U , L be an elliptic operator and
ε > 0 (res. ε < 0) on D. Then every f ∈ S(ε, L,D) has not a local maximum (res.
minimum) point on U .

Theorem 3.7. Let U ⊆ Rn be an open set, D = U ∪ ∂U be a bounded set, L be an
elliptic operator and ε > 0 (res. ε < 0) on D. Then every f ∈ S(ε, L,D) has an absolute
maximum (res. minimum) on ∂U .

Theorem 3.8. Let U ⊆ Rn be an open set, D = U ∪ ∂U be a bounded set, and L be an
elliptic operator. If f ∈ H(L,D) has an absolute maximum (res. minimum) point on U ,
then it has an absolute maximum (res. minimum) point on ∂U with the same value.

4 Application

Theorem 4.1. Let U ⊆ Rn be an open set, D = U ∪∂U be a bounded set, L be an elliptic
operator and w, φ : ∂U → R are continuous maps. If f : D → R be a zero of the equation
LT = w on D and f = φ for all x ∈ ∂U , then f is unique on U ∪ ∂U .

Theorem 4.2. There exists a C2 function ε such that for any non empty open subset
U ⊆ Rn and any n × n positive definite symmetric matrix A = [aij ], and the elliptic
operator L = ( ∂

∂X )A( ∂
∂X )t, the equation Lf = ε has a unique zero on U ∪ ∂U .

Proof. If ε = exp(Σn
i=1xi) and M = Σn

i=1aii + 2Σi<jaij , then a simple argument shows
that M 6= 0 and f = M−1ε is a unique zero of the equation.

Remark 4.3. Let U ⊆ Rn be an open set, D = U ∪ ∂U be a bounded set. Any affine
function defined on D takes its extremums on ∂U . This, generalizes the theorem on the
existence of best feasible solution in OR [8].

Remark 4.4. An elliptic operator has not a zero in general. Let U = {(x, y)||x| < 1, |y| <
1}− {(0, 0)} and φ(x, y) = ε(x, y) = − 1

x2
− 1

y2
. Then D = {(x, y)||x| ≤ 1, |y| ≤ 1} and the

equation Lf = ε for the operator L = ∂2

∂x2
+ ∂2

∂y2
has not a C2 zero on U ∪ ∂U .
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On two types of approximate identities
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Abstract

Let A be a Banach algebra with non-empty character space. We study two types
of approximate identities of A depending on its character space and with using of the
generalized Fourier algebra and the disc algebra, we give examples which show the
difference between these notions.

Keywords: Banach algebra, approximate identity, character space, locally compact
group.
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1 preliminaries

Let A be a Banach algebra and let ∆(A) be the character space of A, that is, the space
consisting of all non-zero homomorphisms from A into C. The notion of a bounded ap-
proximate identity first arose in Harmonic analysis; see [1, Section 2.9] for a full discussion
of approximate identities and its applications.

A net {uα} in A is called a bounded weak approximate identity if there exists a non-
negative constant C <∞ such that ||uα|| < C for each α and

lim
α
|φ(auα)− φ(a)| = 0,

for all a ∈ A and φ ∈ ∆(A); see [3] for more details. In the case that A is a natural
Banach function algebra, a bounded weak approximate identity {uα} is called a bounded
pointwise approximate identity; see [2, Definition 2.11]

Let G be a locally compact group. If 1 < p <∞, let Ap(G) denote the Figà-Talamanca
Herz algebra introduced by A. Figà-Talamanca in the case that G is Abelian and in the
general case by C. Herz; see [4]. For each u ∈ Ap(G) we know that ||u|| ≤ ||u||Ap(G) where
||u|| is the norm of u in C0(G). Also, we know that ∆(Ap(G)) = G, that is, each character
of Ap(G) is an evaluation function at some x ∈ G [4, Theorem 3].

The group G is said to be amenable if there exists an m ∈ L∞(G)∗ such that m ≥ 0,
m(1) = 1 and m(Lxf) = m(f) for each x ∈ G and f ∈ L∞(G) where Lxf(y) = f(x−1y)
[6, Definition 4.2].

There are many characterizations of amenability of a group G that can be found in the
literature. One of these characterizations is the following theorem. Here C+

c (G) denotes
the space of all positive continuous functions from G into C with compact support.
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Theorem 1.1. [6, Theorem 9.6] Let G be a locally compact group. The group G is
amenable if and only if for one q ∈ (1,∞) and each f ∈ C+

c (G)

||f ||1 = ||Lf ||CVq(G) = sup{||Lf (g)|| : g ∈ Lq(G), ||g||q ≤ 1}
= sup{||f ∗ g|| : g ∈ Lq(G), ||g||q ≤ 1}.

It is easy to verify that Cc(G) ∗ Cc(G) ⊆ Cc(G) and for each n ∈ N and ψ ∈ C+
c (G),

||ψ||n1 = ||(ψ∗)n||1 which ψ∗(x) = Λ(x−1)ψ(x−1) and Λ shows the modular function of
group G. If φ ∈ Cc(G) ⊆M(G), the function Fφ : Ap(G)→ C defined by

Fφ(u) =< u, φ > (u ∈ Ap(G)),

is an element of Ap(G)∗. Here < ·, · > denotes the pairing between M(G) and C0(G). In
view of [6, Proposition 10.3] we have ||Fφ|| = ||Lφ||CVq(G).

It is easy to see that for each ψ ∈ C+
c (G), n ∈ N and p ∈ (1,∞),

||L(ψ∗)n ||CVp(G) ≤ ||Lψ||nCVp(G)·

2 Main Results

Let A be a Banach algebra with ∆(A) 6= ∅. Recall that for each a ∈ A, â, denotes the
Gel’fand transform of a and K(∆(A)) denotes the collection of all compact subset of ∆(A).

Definition 2.1. A cw-approximate identity for A is a net {eα} in A such that for each
a ∈ A and K ∈ K(∆(A))

lim
α
||âeα − â||K = lim

α
sup
φ∈K
|φ(aeα)− φ(a)| = 0·

If the net {eα} is bounded, we say that it is a bounded cw-approximate identity (b.cw-a.i)
for Banach algebra A.

Definition 2.2. A net (aλ) in A is a weakly bounded cw-approximate identity (w.b.cw-a.i)
if the net (âλ) is a b.a.i for the topological algebra Â[τco], that is, for each a ∈ A and
K ∈ K(∆(A)), limα ||âeα − â||K = 0 and there exists a constant M > 0 such that

PK(âλ) = sup{|φ(aλ)| : φ ∈ K} < M, for all λ and K ∈ K(∆(A)).

Since for each φ ∈ ∆(A), ||φ|| ≤ 1, it is a routine calculation that each b.cw-a.i is a
w.b.cw-a.i. But we will show in the sequel that this two concepts are different.

A classical theorem due to Leptin and Herz, characterize the amenability of a group
G through the existence of a bounded approximate identity for the Figà-Talamanca-Herz
algebra.

Now, we give the following theorem that is a variant of Leptin-Herz theorem.

Theorem 2.3. Let G be a locally compact group and 1 < p <∞. Then the following are
equivalent.

1. G is an amenable group,
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2. Ap(G) has a b.cw-a.i,

Proof. Let (2) holds and let {ui} be a b.cw-a.i for Ap(G) bounded by C. Suppose that q
is the conjugate exponent of p, that is, 1/p + 1/q = 1. By Theorem 1.1, it is enough to
show that for q and each ψ ∈ C+

c (G), ||Lψ||CV q = ||ψ||1.
If K is any compact subset of G, we choose V an arbitrary compact neighborhood of

G containing the identity of G and put f = |V |−1χV ∗ χV −1K .
A routine verification shows that if x ∈ K, f(x) = 1 and otherwise f(x) = 0. Since

{ui} is a b.cw-a.i and f ∈ Ap(G) for K ⊆ G = ∆(Ap(G)) we have

||ûif − f̂ ||K = sup
t∈K
|ui(t)f(t)− f(t)| = sup

t∈K
|ui(t)− 1| → 0.

Hence, for ε > 0, there exists i0 such that supt∈K |Re(ui0(t)) − 1| < ε. Therefore,
inf{Re(ui0(t)) : t ∈ K} ≥ 1− ε.

Let φ ∈ C+
c (G) and K = supp(φ). By the discussion after Theorem 1.1, we have

| < ui0 , φ > | = |Fφ(ui0)| ≤ ||Lφ||CVq(G)||ui0 || ≤ C||Lφ||CVq(G).

But

Re < ui0 , φ >=

∫

K
Re(ui0(x))φ(x)dx ≥ (1− ε)||φ||1.

Hence, if ε tends to 0, we have ||φ||1 ≤ C||Lφ||CVq(G).
Let ψ ∈ C+

c (G) be arbitrary and n ∈ N. Thus we have

||ψ||n1 = ||(ψ∗)n||1 ≤ C||L(ψ∗)n ||CVq(G) ≤ C||Lψ||nCVq(G).

Therefore, ||ψ||1 ≤ ||Lψ||CVq(G). Hence, ||Lψ||CVq(G) = ||ψ||1 and this completes the proof.

Remark 2.4. By using [5, Lemma 4.1], we can give another proof for Theorem 2.3 but
the above proof is direct. Indeed, we adopt the proof of [6, Theorem 10.4].

The following example provide for us an example of a Banach algebra with a w.b.cw-a.i
such that has no b.cw-a.i.

Example 2.5. Let 1 < p < ∞ and G be a non-amenable locally compact group. By
Theorem 2.3, Ap(G) does not have any b.cw-a.i. Now, we construct a w.b.cw-a.i for
Ap(G). Put Λ = {K ⊆ G : K is compact and |K| > 0}. It is obvious that Λ with
inclusion is a directed set. For each K ∈ Λ define uK as follows,

uK := |K|−1χKK ∗ χ̌K .

Clearly, (uK) is a net in Ap(G). For each x ∈ G we have

uK(x) = |K|−1

∫

G
χKK(y)χ̌K(y−1x)dy = |K|−1

∫

KK
χK(x−1y)dy

= |K|−1

∫

KK
χxK(y)dy

=
|KK⋂xK|
|K| .
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If x ∈ K, KK
⋂
xK = xK. Therefore, uK(x) = 1 and otherwise since KK

⋂
xK ⊆ xK,

0 ≤ uK(x) ≤ 1. Hence, for each compact set K
′

of G and K of Λ we have,

PK′ (ûK) = sup{|uK(x)| : x ∈ K ′} ≤ 1.

So, {ûK} is a bounded net in Âp(G)[τco].
Now, let f be an arbitrary element of Ap(G) and K

′
be a compact subset of G. Since

G is a locally compact group, for each x ∈ K ′ there exists a compact neighborhood Vx of
x. On the other hand, we know that K

′ ⊆ ⋃x∈K′ Vx and for each x, |Vx| > 0. But K
′

is compact, so there are points x1, . . . , xn in K
′

such that K
′ ⊆ ⋃n

i=1 Vxi . Therefore, by
putting K

′′
=
⋃n
i=1 Vxi we have an element K

′′
of Λ such that K

′ ⊆ K ′′ .
Now, it is obvious that limK∈Λ ||ûKf − f̂ ||K′ = 0 and this completes the proof.

It is worth noting that there exists Banach algebras without any w.b.cw-a.i as the
following example shows.

Example 2.6. Let A = A(D) be the disc algebra and for z0 ∈ intD, let B = Mz0 = {f ∈
A : f(z0) = 0}. Clearly, D\{z0} ⊆ ∆(B). So, if B has a w.b.cw-a.i, then B has a bounded
pointwise approximate identity which is in contradiction with [2, Example 4.8(i)].
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We investigate orthogonality preserving mappings in the setting of inner product
C∗-modules to obtain their general structure. We also give some characterizations of
orthogonality preserving mappings between inner product C∗-modules.
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1 Introduction

The set of all orthogonality preserving bounded linear mappings on Hilbert spaces is fairly
easy to describe, and it coincides with the set of all conformal linear mappings there: a
linear map T between two Hilbert spaces is orthogonality preserving if and only if T is the
scalar multiple of an isometry. As a natural generalization of the described situation one
may change the algebra of coefficients to arbitrary C∗-algebras A and the Hilbert spaces to
C∗-valued inner product A-modules, the Hilbert C∗-modules. Hilbert C∗-modules are an
often used tool in the study of locally compact quantum groups and their representations,
in noncommutative geometry, in KK-theory, and in the study of completely positive maps
between C∗-algebras, among other research fields. To be more precise, an inner product
A-module is a complex linear space E which is a right A-module with a compatible scalar
multiplication and equipped with an A-valued inner product 〈·, ·〉 : E×E −→ A satisfying
(i) 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉,
(ii) 〈x, ya〉 = 〈x, y〉a,
(iii) 〈x, y〉∗ = 〈y, x〉,
(iv) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0,
for all x, y, z ∈ E, a ∈ A,α, β ∈ C.

The mapping ‖.‖ : E −→ R defined by ‖x‖ = ‖〈x, x〉‖
1
2
A is a norm on E. If E is complete

with respect to this norm, then it is called a Hilbert A-module, or a Hilbert C∗-module
over A. Complex Hilbert spaces are Hilbert C-modules. Any C∗-algebra A can be regarded
as a Hilbert C∗-module over itself via 〈a, b〉 := a∗b. For every x ∈ E the positive square
root of 〈x, x〉 is denoted by |x|. In the case of a C∗-algebra we get the usual modulus of a,

that is |a| = (a∗a)
1
2 . Although the definition of |x| has the same form as that of the norm
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of elements of inner product spaces, there are some significant differences. For instance, it
does not satisfy the triangle inequality in general. Note that the theory of inner product
C∗-modules is quite different from that of inner product spaces. For example, not any
closed submodule of an inner product C∗-module is complemented; a bounded C∗-linear
operator on an inner product C∗-module may not have an adjoint operator. We refer
the reader to [4] for more information on the basic theory of C∗-algebras and Hilbert
C∗-modules.

Orthogonality preserving mappings in the framework of Hilbert C∗-modules have been
recently treated in [1, 2, 3, 5]. In the next section we investigate orthogonality preserving
mappings in the setting of inner product C∗-modules to obtain their general structure.
We also give some characterizations of orthogonality preserving mappings between inner
product C∗-modules.

2 Main results

Recall that a linear mapping T : E −→ F , where E and F are inner product A-modules,
is said to be orthogonality preserving if 〈x, y〉 = 0 =⇒ 〈Tx, Ty〉 = 0 for all x, y ∈ E. Also,
T is called A-linear if it is linear and T (xa) = (Tx)a for all x ∈ E, a ∈ A.

Theorem 2.1. [5] Let E and F be two inner product A-modules. For a nonzero A-linear
mapping T : E −→ F the following statements are equivalent:

(i) there exists γ > 0 such that ‖Tx‖ = γ‖x‖ for all x ∈ E, i.e., T is a similarity;

(ii) T is injective and 〈Tx,Ty〉
‖Tx‖‖Ty‖ = 〈x,y〉

‖x‖‖y‖ for all x, y ∈ E r {0}.

Furthermore, each one of the assertions above implies:

(iii) 〈x, y〉 = 0 ⇐⇒ 〈Tx, Ty〉 = 0 for all x, y ∈ E, i.e., T is strongly orthogonality pre-
serving;

(iv) |x| = |y| ⇐⇒ |Tx| = |Ty| for all x, y ∈ E;

(v) |x| ≤ |y| ⇐⇒ |Tx| ≤ |Ty| for all x, y ∈ E.

The following example shows that conditions (iii)-(v) are not equivalent to conditions
(i)-(ii) in general.

Example 2.2. [5] Let Ω be a locally compact Hausdorff space. Let us take E = F =
C0(Ω), the C∗-algebra of all continuous complex-valued functions vanishing at infinity on
Ω. For a nonzero function f0 ∈ C0(Ω), suppose that T : C0(Ω) −→ C0(Ω) is given by
T (g) = f0g. Obviously T is C0(Ω)-linear and satisfies conditions (iii)-(v) but need not
satisfies conditions (i)-(ii). Indeed, if there exists γ > 0 such that ‖T (g)‖ = γ‖g‖ for all
g ∈ C0(Ω), then 1

γ2
f0f0h = h for all h ∈ C0(Ω) and hence, 1

γ2
f0f0 is the identity in C0(Ω),

which is a contradiction.
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Recall that a linear mapping T : E −→ F , where E and F are inner product A-
modules, is called local if

xa = 0 =⇒ (Tx)a = 0 (a ∈ A, x ∈ E).

Examples of local mappings include multiplication and differential operators. Note that
every A-linear mapping is local, but the converse is not true, in general (take linear
differential operators into account). Moreover, every bounded local mapping between
inner product modules is A-linear.

Theorem 2.3. [2] Let E and F be two inner product A-modules such that K(H) ⊆ A ⊆
B(H). Suppose that T : E −→ F is a nonzero orthogonality preserving A-linear map.
Then there exists a positive number γ such that

〈Tx, Ty〉 = γ〈x, y〉 (1)

for all x, y ∈ E.

Note that the assumption of A-linearity, even in the case A = K(H), is necessary in
Theorem 2.3 as can be seen from the following example.

Example 2.4. [5] Let H be a Hilbert space such that dimH = ∞ and H∗ = H as an
additive group, but define a new scalar multiplication on H∗ by setting λ · x = λx, and a
new inner product by setting 〈x|y〉∗ = 〈y|x〉. Then H∗ equipped with the operations

〈x, y〉 := x⊗ y and x · S := S∗x (x, y ∈ H∗, S ∈ K(H))

is an inner product K(H)-module. If T : H∗ −→ H∗ is any unbounded linear map, then
T preserves orthogonality (namely, if 〈x, y〉 = x ⊗ y = 0, then x = 0 or y = 0. So
〈Tx, Ty〉 = Tx⊗ Ty = 0), but T obviously does not satisfy (1).

Theorem 2.5. [5] Let E and F be two inner product A-modules such that K(H) ⊆ A ⊆
B(H). Suppose that T : E −→ F is a local and nonzero orthogonality preserving map.
Then

(i) |x| = |y| ⇐⇒ |Tx| = |Ty| for all x, y ∈ E;

(ii) |x| ≤ |y| ⇐⇒ |Tx| ≤ |Ty| for all x, y ∈ E.

Corollary 2.6. [5] Let E and F be two inner product A-modules and K(H) ⊆ A ⊆ B(H).
Suppose that T : E −→ F is a nonzero A-linear mapping between inner product A-modules.
Then T is orthogonality preserving if and only if

|x| ≤ |y| =⇒ |Tx| ≤ |Ty|

for all x, y ∈ E.
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Abstract

In this paper, we introduce concept of generalized (ψ, φ)-contractive mappings
of type I and II for generalized quasimetric spaces. We show that if f is a (ψ, φ)-
contractive map of type I or II, then f has a periodic point.
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1 Introduction

The concept of metric space represented in 1906 by Frechet [4]. The metric space and
its generalizations are important in many branches of mathematics, particular fixed point
theory. This theory is one of the old theory in mathematics that it has wide range of appli-
cations. Banach contraction principle creates simple and suitable conditions to guarantee
existance and uniquencess of solution of operator equation Tx = x. This principle is the
most essential theorem of classical functional analysis. Over the past few decades, with
the change in contraction’s condition or change in the definition of the metric space and or
both, the generalization of this theorem is obtained [1, 5]. For example, Branciari [1] has
introduced the concept of generalized metric by replacing the triangle inequality to overall
inequality is called a quadrilateral inequality. Branciari proved the fixed point theorem
in this space and claimed that a generalized metric is a continuous function, generalized
metric space is Hausdorff and any convergent sequance is Cauchy sequence in generalized
metric space. Sarma and et al. [8] and Samet [7] provide an example showed that some
features claimed by Branciari are not true, especially Hausdorffness. Note that in the
proof of uniquensess of the fixed point, the condition is necessary Hausdorff space. De-
spite the weakness in generalized metric space, several authors have been proposed some
of techinques to ablian a unique fixed point [2, 3].

Recently, quasimetric space have been one of intersting issues for the researchers in
the field of fixed point theory, because the assumption of quasimetric are weaker than
the standard metric, thus fixed point results obtained in this space is very public. So it
also covers the corresponding results in the metric space. Very recently Lin and et al.
[6] introduced the concept of generalized quasimetric space and examine the existence of
determined operator on such space.
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In this paper supposed that the generalized quasimetric space is Hausdorff and obtain
some periodic point theorems on generalized (ψ, φ)-contractive mappings on generalized
quasimetric spaces.

Definition 1.1. Let X be a nonempty set and let d : X × X → [0,∞) be a mapping.
Then d is called a metric on X and (X, d) is a metric space if for every x, y, z ∈ X, it
satisfies

(1) d(x, y) = d(y, x) = 0 if and only if x = y;
(2) d(x, y) = d(y, x);
(3) d(x, z) ≤ d(x, y) + d(y, z).
d is called a quasimetric on X and (X, d) is a quasimetric space, if conditions (1) and

(3) hold. d is called a generalized metric on X and (X, d) is a generalized metric space
if conditions (1) and (2) hold and for every x, y ∈ X and every distinict u, v ∈ X each of
which is different from x, y

(4) d(x, z) ≤ d(x, y) + d(u, v) + d(v, z).
Finally, d is called generalized quasimetric and (X, d) is a generalized quasimetric space

if conditions (1) and (4) hold.

Definition 1.2. Let (X, d) be a generalized quasimetric space, {xn} be a sequence in X.
Then

(i) {xn} is called generalized quasimetric convergent to x if and only if

lim
n→∞

d(xn, x) = lim
n→∞

d(x, xn) = 0.

(ii) {xn} is called right Cauchy if for every ε > 0 there exists k ∈ N such that d(xn, xm) < ε
for all mn > k.

Definition 1.3. Generalized quasimetric space (X, d) is called right complete if each right
Cauchy sequence in X is convergent.

In the following, let Ψ,Φ be the family of continuous and nondecresing functions ψ, φ :
[0,∞]→ [0,∞] such that

(i) ψ(t) = 0 if and only if t = 0.
(ii) φ(t) = 0 if and only if t = 0.
Now, let (X, d) be a generalized quasimetric space, f : X → X be a self mapping,

ψ ∈ Ψ and φ ∈ Φ. Then
(i) f is called a (ψ, φ)-contractive mapping

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− φ(d(x, y))

for all x, y ∈ X.
(ii) f is called a (ψ, φ)-contractive mapping type of I if

ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− φ(M(x, y))

for all x, y ∈ X, where

M(x, y) = max{d(x, y), d(x, fx), d(y, fy)}.
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(iii) f is called a (ψ, φ)-contractive mapping type of II if

ψ(d(Tx, Ty)) ≤ ψ(N(x, y))− φ(N(x, y))

for all x, y ∈ X, where

N(x, y) = max{d(x, y),
d(x, fx) + d(y, fy)

2
}.

2 Main results

We commence this section with the main result of the paper.

Theorem 2.1. Let (X, d) be a right complete generalized quasimetric space and let f :
X → X be a continuous (ψ, φ)-contractive mapping of type I. Then f has periodic point.

Theorem 2.2. Let (X, d) be a right complete generalized quasimetric space and let f :
X → X be a continuous (ψ, φ)-contractive mapping of type II. Then f has periodic point.

Denote by Λ the set of functions α : [0,∞]→ [0,∞] satisfying following hypothesis:
(i) α is a Lebesgue integrable mapping on each compact subset of [0,∞];
(ii) for every ε > 0, we have

∫ ε
0 α(s)ds > 0.

In the following, let P (x, y) be either M(x, y) or N(x, y).

Theorem 2.3. Let (X, d) be a Hausdorff and right complete generalized quasimetric space
and let f : X → X be a continuous self-mapping satisfying

∫ d(Tx,Ty)

0
α(s)ds ≤

∫ P (x,y)

0
α(s)ds−

∫ P (x,y)

0
β(s)ds.

for all x, y ∈ X, where α, β ∈ Λ Then f has a periodic point.

Taking β(s) = (1−k)α(s) for k ∈ [0, 1) in Theorem 2.1, we obtain the following result.

Corollary 2.4. Let (X, d) be a Hausdorff and right complete generalized quasimetric space
and let T : X → X be a continuous self - mapping satisfying

∫ d(Tx,Ty)

0
α(s)ds ≤ k

∫ P (x,y)

0
α(s)ds.

for all x, y ∈ X, where α ∈ Λ and k ∈ [0, 1). Then f has a periodic point.

Taking α ≡ 1 in pervious corollary, we obtain the following result.

Corollary 2.5. Let (X, d) be a Hausdorff and right-complete generalized quasimetric space
and let T : X → X be a continuous self-mapping satisfying

d(Tx, Ty) ≤ kP (x, y).

for all x, y ∈ X, where α ∈ Λ and k ∈ [0, 1). Then f has a periodic point.
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Abstract

In this paper, among the other things, we study the concept of φ-amenability of
a Banach algebra A, where φ is a nonzero multiplicative linear functional on A. We
present a few results in the theory of φ-amenable Banach algebras, and we obtain
necessary and sufficient conditions for A∗∗ to have a left invariant φ-mean on Banach
subspaces of A∗. The candidates for the choice of space are A∗, WAP (A) and S(G).

Keywords: Banach algebra, φ-amenability, φ-means, weak∗ topology.
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1 Introduction

In [3], Lau introduced and investigated a large class of Banach algebras which he called F -
algebras. Later, F -algebras were termed Lau algebras. They are Banach algebras A such
that the dual A∗ is a von Neumann algebra and the identity of A∗ is a multiplicative linear
functional on A. The concept of left amenability for a Lau algebra has been extensively
extended for an arbitrary Banach algebra by introducing the notion of φ-amenability (see
[2]). Let A be an arbitrary Banach algebra and φ a character of A, that is a homomorphism
from A onto C. A is called φ-amenable if there exists a bounded linear functional m on A∗

satisfying ⟨m,φ⟩ = 1 and ⟨m, f.a⟩ = φ(a)⟨m, f⟩ for all a ∈ A and f ∈ A∗. This concept
considerably generalizes the notion of left amenability for Lau algebras.

The main purpose of this paper is to investigate the φ-amenability for certain Banach
subspaces of dual Banach algebras. We continue [1] in the study of amenability of a
Banach algebra A defined with respect to a character φ of A. Various necessary and
sufficient conditions are found for a Banach algebra to possess a left invariant φ-mean.
Throughout the paper, ∆(A) will denote the set of all homomorphisms from A onto C.

We prove that A∗∗ has a left invariant φ-mean on A∗ if and only if for every normal
φ-bimodule E, every bounded weak∗-continuous derivation D : A → E is inner. Other
results in this direction are also obtained. Our second purpose in this paper is to present
several characterizations of the existence of a left (right) invariant φ-mean on Wap(A).
Finally we obtain sufficient conditions and some necessary conditions about S(G) to have
a left invariant 1-mean.
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2 Main results

Let A be a dual Banach algebra with predual A∗, and let φ ∈ ∆(A) ∩ A∗. The Banach
A-bimodules E that are relevant to us are those where the right action is of the form
x.a = φ(a)x. For sake of brevity, such E will occasionally be called Banach φ-bimodule.
A dual φ-bimodule E is called normal φ-bimodule if for each x ∈ E, the map a 7→ a.x
is weak∗-continuous. Note that φ is taken to be in a closed submodule A∗ of A∗. For an
element φ in A∗, the map a 7→ x.a = φ(a)x is in general not weak∗ continuous unless φ∗
and E is not normal.

Definition 2.1. Let A be a Banach algebra and let X be a closed subspace of A∗ with
φ ∈ X that is invariant. A continuous functional m on X is called left invariant φ-mean
on X if the following properties holds:

⟨m,φ⟩ = 1, ⟨m, f.a⟩ = φ(a)⟨m, f⟩ (f ∈ X, a ∈ A)

Theorem 2.2. Let A be a dual Banach algebra with predual A∗, and let φ ∈ ∆(A) ∩ A∗.
Then A∗∗ has a left invariant φ-mean on A∗ if and only if for every normal φ-bimodule
E, every bounded weak∗-continuous derivation D : A → E is inner.

Theorem 2.3. Let A be a dual Banach algebra with predual A∗, and let φ ∈ ∆(A) ∩ A∗.
Let A has a bounded approximate identity. Then A∗∗ has a left invariant φ-mean on A∗
if and only if A is φ-amenable.

Let A and B be commutative dual Banach algebras and let f ∈ A∗ and g ∈ B∗. Let
f ⊗ g denote the element of (A⊗̂B)∗ satisfying (f ⊗ g)(a ⊗ b) = f(a)g(b) for all a and b.
Note that with this notation

∆(A⊗̂B) = {φ⊗ ψ; φ ∈ ∆(A), ψ ∈ ∆(B)}.
We use ⊗w to denote the injective tensor product of two Banach spaces and ⊗̂ to denote
the projective tensor product of two dual Banach algebras.

Theorem 2.4. Let A∗ and B∗ be the preduals of commutative dual Banach algebras A and
B, respectively. Let φ ∈ ∆(A)∩A∗ and ψ ∈ ∆(B)∩B∗. If A⊗̂B is a dual Banach algebra
with predual A∗ ⊗w B∗, then (A⊗̂B)∗∗ has a left invariant (φ ⊗ ψ)-mean on A∗ ⊗w B∗
if and only if A∗∗ has a left invariant φ-mean mean on A∗ and B∗∗ has a left invariant
ψ-mean on B∗

We write A∗A for the closed linear span in A∗ of {f.a; f ∈ A∗, a ∈ A}. When A has
a bounded right approximate identity the Cohen-Hewitt factorization theorem shows that
in fact A∗A = {f.a; f ∈ A∗, a ∈ A}.

Theorem 2.5. Let A be a Banach algebra and let φ ∈ ∆(A). Suppose that A has a
bounded approximate identity. Then A is φ-amenable if and only if (A∗A)∗ has a left
invariant φ-mean.

A special interesting case is that there exists a left invariant φ-mean on WAP (A). A
functional f ∈ A∗ for which {f.a; ∥a∥ ≤ 1} is relatively compact in the weak topology of
A∗ is said to be weakly almost periodic. The set of weakly almost periodic functionals on
A is denoted by WAP (A). We put

∥a∥WAP (A) = sup{|⟨f, a⟩| : f ∈ WAP (A), ∥f∥ ≤ 1} (a ∈ A)
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Theorem 2.6. Let A be a Banach algebra with a bounded approximate identity and φ ∈
∆(A). Then the following statements are equivalent:

(i) There exists a left invariant φ-mean on WAP (A);

(ii) There exists a bounded net {aα}α∈I in {a ∈ A; φ(a) = 1} such that ∥aaα −
φ(a)aα∥WAP (A) → 0 for each a ∈ A;

(iii) There exists a bounded net {aα}α∈I in {a ∈ A; φ(a) = 1} such that for each weakly
compact subset C ⊆ A, ∥aaα − φ(a)aα∥WAP (A) → 0 uniformly for all a ∈ C.

If S is a semigroup of operators on WAP (A), the orbit O(f) of an element f of
WAP (A) is defined to be {T (f); T ∈ S}. S will be called weakly almost periodic if each
orbit has compact closure in the weak topology of WAP (A).

We say that an element a of A is φ-maximal if it satisfies ∥a∥ = φ(a) = 1. Let P1(A,φ)
denote the collection of all φ-maximal elements of A. Let X(A,φ) denote the closed linear
span of P1(A,φ). If f ∈ A∗ and a ∈ A, we also consider λa(f) = f.a.

Theorem 2.7. Let A be a Banach algebra and φ ∈ ∆(A). The closure S of S = {λa; a ∈
P1(A,φ)} in the weak operator topology is a compact convex semitopological semigroup in
the same topology. Moreover, among the following two properties, the implication (i) →
(ii) hold. If X(A,φ) = A, then (ii) → (i).

(i) WAP (A)∗ has a left invariant φ-mean m ∈ P1(A,φ)
w∗

;

(ii) The semigroup S has a left zero, that is, there exists some S ∈ S such that SoT = S
for any T ∈ S.

A linear functional m ∈ WAP (A)∗ is called a right invariant φ-mean on WAP (A) if
⟨m,φ⟩ = 1 and ⟨m, af⟩ = φ(a)⟨m, f⟩ whenever f ∈ WAP (A) and a ∈ A. A left invariant
and right invariant φ-mean on WAP (A) is called invariant φ-mean.

Theorem 2.8. Let A be a Banach algebra and φ ∈ ∆(A). If WAP (A)∗ has a left invariant

φ-mean m ∈ P1(A,φ)
w∗

and a right invariant φ-mean n ∈ P1(A,φ)
w∗

, then the compact
semitopological semigroup S contains a left zero and a right zero. Moreover, m = n and
it is the unique invariant φ-mean on WAP (A).

Recall that a Segal algebra S(G) on a locally compact group G, is a dense left ideal of
L1(G) that satisfies the following conditions:

(i) S(G) is a Banach space with respect to a norm ∥.∥S , called a Segal norm, satisfying
∥ψ∥1 ≤ ∥ψ∥S for ψ ∈ S(G), where ∥.∥1 denotes the L1-norm.
(ii) For ψ ∈ S(G) and y ∈ G, Lyψ ∈ S(G), where Ly is the left translation operator defined
by Lyψ(x) = ψ(y−1x), x ∈ G. Moreover, the left translation Lyψ, y ∈ G, is continuous in
y for each ψ ∈ S(G).
(iii) The equality ∥Lyψ∥S = ∥ψ∥S holds for ψ ∈ S(G), y ∈ G.

Equipped with the norm ∥.∥S and the convolution product, denoted by ∗, S(G) is
a Banach algebra. The inequality ∥h ∗ ψ∥S ≤ ∥h∥1∥ψ∥S holds for all h ∈ L1(G), and
ψ ∈ S(G).

In the following theorem, we obtain necessary and sufficient conditions for S(G) to
have a left invariant 1-mean. P1((S(G), ∥.∥1), 1) denotes the collection of all 1-maximal
elements of a Segal algebra S(G) with respect to L1-norm.
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Theorem 2.9. Let G be a locally compact group. Then the following statements are
equivalent:

(i) There is a left invariant 1-mean m ∈ P1((S(G), ∥.∥1), 1)
w∗

on P1((S(G), ∥.∥1), 1).

(ii) There is a net ψα ∈ P1((S(G), ∥.∥1), 1) such that ∥ψ ∗ ψα − ψα∥S → 0 for each
ψ ∈ P1((S(G), ∥.∥1), 1).

(iii) There is a net ψα ∈ P1((S(G), ∥.∥1), 1) such that for each weakly compact subset
C ⊆ P1((S(G), ∥.∥1), 1), ∥ψ ∗ ψα − ψα∥S → 0 uniformly for all ψ ∈ C.
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Abstract

In this paper, we prove some new PPF dependent fixed point theorems in the
Razumikhin class for some integral type mappings involving αc-admissible mappings
where the domain and range of the mappings are not the same. Our results extend
and generalize some results in the literature.

Keywords: Fixed point, Complete metric space, PPF dependent fixed point, αc-
admissible mapping, integral typ mapping, Banach space.
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1 Introduction

Fixed point theory plays an important role in Banach spaces. In 1997, Bernfeld et al. [2]
introduced the concept of PPF dependent fixed point. They also proved the existence of
PPF dependent fixed point in the Razumikhin class for Banach type contraction mappings.
Very recently, some authors established the existence and uniqueness of PPF dependent
fixed point for different types of contractive mappings and generalized some results of
Bernfeld et al. [2].

During last four decades, the Banach contraction principle has been widely generalized
and extended. In 2002, Branciari [7], proved the following theorem.

Theorem 1.1. Let (X, d) be a complete metric space, c ∈ (0, 1), and let f : X → X be a
mapping such that for each x, y ∈ X

∫ d(fx,fy)

0
Φ(t)dt ≤ c

∫ d(x,y)

0
Φ(t)dt

where Φ : [0, 1) → [0, 1) is a nonnegative Lebesgue-integrable map which is summable, (i.e.,
with finite integral) on each compact subset of [0,∞), and for each ϵ > 0,

∫ ϵ
0 Φ(t)dt > 0.

Then f has a unique fixed point a ∈ X such that for each x ∈ X, lim
n→∞

fnx = a.
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Throughout this paper, let (E, ∥ · ∥E) be a Banach space, I denotes a closed interval
[a, b] in R and E0 = C(I, E) denotes the set of all continuous E-valued functions on I
equipped with the supremum norm ∥ · ∥E0 defined by

∥ϕ∥E0 = sup
t∈I

∥ϕ(t)∥E .

For a fixed element c ∈ I, the Razumikhin or minimal class of functions in E0 is defined
by

Rc = {ϕ ∈ E0 : ∥ϕ∥E0 = ∥ϕ(c)∥E}.
Clearly, every constant function from I to E is a member of Rc. It is easy to see that the
class Rc is algebraically closed with respect to difference, i.e., ϕ− ξ ∈ Rc when ϕ, ξ ∈ Rc.
Also the class Rc is topologically closed if it is closed with respect to the topology on E0

generated by the norm ∥ · ∥E0 .

Definition 1.2. [2] A mapping ϕ ∈ E0 is said to be a PPF dependent fixed point or a
fixed point with PPF dependence of mapping T : E0 → E if Tϕ = ϕ(c) for some c ∈ I.

Definition 1.3. [2] The mapping T : E0 → E is called a Banach type contraction if there
exists k ∈ [0, 1) such that,

∥Tϕ− Tξ∥E ≤ k∥ϕ− ξ∥E0

for all ϕ, ξ ∈ E0.

The concept of αc-admissible mapping was introduced by Agarwal [1] in 2013.

Definition 1.4. Let c ∈ I, T : E0 → E and α : E × E → [0,∞). We say that T is an
αc−admissible mapping if for all ϕ, ξ ∈ E0

α(ϕ(c), ξ(c)) ≥ 1 =⇒ α(Tϕ, Tξ) ≥ 1. (1)

Definition 1.5. [4] Let c ∈ I, T : E0 → E and α : E × E → [0,∞). We say that T is a
triangular αc−admissible mapping if

(T1) α(ϕ(c), ξ(c)) ≥ 1 implies α(Tϕ, Tξ) ≥ 1,

(T2) α(ϕ(c), µ(c)) ≥ 1 and α(µ(c), ξ(c)) ≥ 1 implies α(ϕ(c), ξ(c)) ≥ 1,

for ϕ, ξ, µ ∈ E0.

Let Φ be the collection of all mappings Φ : [0, 1) → [0, 1) which are Lebesgue-integrable,
summable on each compact subset of [0, 1) and satisfying the following condition:

∫ ϵ

0
Φ(t)dt > 0 for each ϵ > 0.
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2 Main results

Let F denotes the class of all functions β : [0,+∞) → [0, 1) satisfying the following
condition:

β(tn) → 1 implies tn → 0, as n → +∞. (2)

β is called a Geraghty [5] mapping.

Definition 2.1. Let T : E0 → E be a nonself-mapping and α : E × E → [0,∞) be a
function. We say that T is a integral type rational Geraghty contraction if there exists
β ∈ F and c ∈ I such that,

∫ α(ϕ(c),Tϕ)α(ξ(c),T ξ)∥Tϕ−Tξ∥E

0
Φ(t)dt ≤

∫ β(M(ϕ(c),ξ(c)))M(ϕ(c),ξ(c))

0
Φ(t)dt

for all ϕ, ξ ∈ E0, where

M(ϕ(c), ξ(c)) = max

{
∥ϕ− ξ∥E0 ,

∥ϕ(c) − Tϕ∥E∥ξ(c) − Tξ∥E

1 + ∥ϕ− ξ∥E0

,
∥ϕ(c) − Tϕ∥E∥ξ(c) − Tξ∥E

1 + ∥Tϕ− Tξ∥E

}
.

Theorem 2.2. Let T : E0 → E and α : E × E → [0,∞) be two mappings satisfying the
following assertions:

(a) There exists c ∈ I such that Rc is topologically closed and algebraically closed with
respect to difference,

(b) T is αc-admissible,

(c) T is a integral type rational Geraghty contractive mapping,

(d) if {ϕn} is a sequence in E0 such that ϕn → ϕ as n → ∞ and α(ϕn(c), Tϕn) ≥ 1,
then α(ϕ(c), Tϕ) ≥ 1 for all n ∈ N,

(e) There exists ϕ0 ∈ Rc such that α(ϕ0(c), Tϕ0) ≥ 1.

Then, T has a unique PPF dependent fixed point ϕ∗ ∈ Rc. Moreover, for a fixed ϕ0 ∈ Rc,
the sequence {ϕn} of iterates of T defined by Tϕn−1 = ϕn(c) for all n ∈ N, converges to
ϕ∗ ∈ Rc.

Let Ψ be the family of all nondecreasing functions ψ : [0,∞) → [0,∞) such that

lim
n→∞

ψn(t) = 0

for all t > 0.
As an example ψ1(t) = kt for all t ≥ 0, where k ∈ [0, 1) and ψ2(t) = ln(t + 1) for all

t ≥ 0, are in Ψ.

Theorem 2.3. Let T : E0 → E and α : E × E → [0,∞) be two mappings satisfying the
following assertions:

(a) There exists c ∈ I such that Rc is topologically closed and algebraically closed with
respect to difference,
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(b) T is triangular αc-admissible,

(c) Suppose that there exists ψ ∈ Ψ such that,

∫ α(ϕ(c),ξ(c))∥Tϕ−Tξ∥E

0
Φ(t)dt ≤ ψ

( ∫ (M(ϕ(c),ξ(c)))

0
Φ(t)dt

)
, (3)

where

M(ϕ(c), ξ(c)) = max

{
∥ϕ− ξ∥E0 ,

∥ϕ(c) − Tϕ∥E∥ξ(c) − Tξ∥E

1 + ∥ϕ− ξ∥E0

,
∥ϕ(c) − Tϕ∥E∥ξ(c) − Tξ∥E

1 + ∥Tϕ− Tξ∥E

}

for all ϕ, ξ ∈ E0,

(d) if {ϕn} is a sequence in E0 such that ϕn → ϕ as n → ∞ and α(ϕn(c), Tϕn) ≥ 1,
then α(ϕ(c), Tϕ) ≥ 1 for all n ∈ N,

(e) there exists ϕ0 ∈ Rc such that α(ϕ0(c), Tϕ0) ≥ 1.

Then, T has a unique PPF dependent fixed point ϕ∗ ∈ Rc. Moreover, for a fixed ϕ0 ∈ Rc,
the sequence {ϕn} of iterates of T defined by Tϕn−1 = ϕn(c) for all n ∈ N, then {ϕn}
converges to the PPF dependent fixed point of T in Rc.
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Abstract

In this paper for a given ε > 0 and an n × n complex matrix A, the notion
of pseudonumerical range of A is introduced. Also, some algebraic and geometrical
properties of this notion are investigated moreover the relationship between this notion
and the pseudospectrum of A is stated.

Keywords: Spectrum, Pseudospectrum, Numerical range, Pseudonumerical range,
Pseudonumerical radius.

Mathematics Subject Classification [2010]: 15A60, 47A10, 65F15

1 Introduction

Let Mn(C) be the algebra of all n × n complex equipped with the operator norm ‖.‖
induced by the usual vector norm ‖x‖ = (x∗x)1/2 on Cn, i.e.,

‖A‖ = max{‖Ax‖ : x ∈ Cn, ‖x‖ = 1}.

In our discussion we assume that D(a, r) = {µ ∈ C : |µ− a| < r}, where a ∈ C and r > 0.
Also, we use the convention that if z is an eigenvalue of A ∈Mn(C), then ‖(A− zI)−1‖ :=
∞. For ε > 0 and a matrix A ∈Mn(C), the pseudospectrum of A is defined and denoted,
e.g., see [4], by

σε(A) = {z ∈ C : ‖(A− zI)−1‖ > 1/ε}. (1)

It is known that

σε(A) = {z ∈ σ(A+ E) : E ∈Mn and ‖E‖< ε} (2)

= {z ∈ C : sn(zI −A) < ε},

where sn(.) denotes the smallest singular value.
Pseudospectrum provides an analytical and graphical alternative for investigating nonnor-
mal matrices and operators, gives a quantitative estimate of departure from non-normality

∗Speaker

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Pseudonumerical range of matrices pp.: 1–4

554



and gives information about stability; See [4], [1] and their references. Like the spectrum,
the numerical range is a set of complex numbers naturally associated with a given A ∈Mn,
namely,

W (A) = {x∗Ax : x ∈ Cn, ‖x‖ = 1}. (3)

The spectrum of a matrix is a discrete point set; While the numerical range can be a
continuum set, it is always a compact convex set. It is a set that can be used to learn
something about the matrix, and it can often give information that the spectrum alone
cannot give; For instance, W (A) ⊆ R if and only if A is Hermitian. For more information
about the numerical range of matrices, see [2] and [3]. In this paper we are going to
introduce the notion of pseudonumerical range of matrices. We also investigate some
algebraic and geometrical of this notion.

2 Main results

We begin this section by introducing the notion of pseudonumerical range of square com-
plex matrices.

Definition 2.1. Let ε > 0 and A ∈Mn(C). The ε−pseudonumerical range of A is defined
and denoted by

Wε(A) = {λ ∈ C : ∃E ∈Mn(C) with ‖E‖< ε and ∃x ∈ Cn with x∗x = 1 s.t. λ = x∗(A+E)x}.

Let A ∈Mn(C). From Definition 2.1, it follows that the pseudonumerical ranges asso-
ciated with various ε are nested sets, i.e.,

Wε1(A) ⊆Wε2(A), 0 < ε1 6 ε2.

Also, for ε > 0, we obtain that:

Wε(A) =
⋃

‖E‖<ε
W (A+ E). (4)

From Definition 2.1 , it follows that the intersection of all the pseudonumerical ranges
is the numerical range; namely,

Proposition 2.2. Let ε > 0 and A ∈Mn(C). Then

W (A) =
⋂

ε>0

Wε(A). (5)

In view of Proposition 2.2 and relation (4), we have the following result.

Corollary 2.3. Let A ∈Mn(C). Then

W (A) =
⋂

ε>0

⋃

‖E‖<ε
W (A+ E) := lim sup

ε>0, ‖E‖<ε
W (A+ E).

We know that the numerical range contains the spectrum.That is also verified for the
pseudonumerical range.
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Proposition 2.4. Let ε > 0 and A ∈Mn(C). Then

σε(A) ⊆Wε(A)

Proof. Let λ ∈ σε(A)be given. Then by (2), there exists a E ∈ Mn(C) such that λ ∈
σ(A + E). Since σ(A + E) ⊆ W (A + E), λ ∈ W (A + E), and hence by (4), we have
λ ∈Wε(A). So, the proof is complete.

Theorem 2.5. Let ε > 0, ‖D‖ = δ < ε and A,D ∈Mn(C). Then

(a) Wε−δ(A+D) ⊂Wε(A) ⊂Wε+δ(A+D)
(b) Wε−δ(A) ⊂Wε(A+D) ⊂Wε+δ(A)

In the following theorem, we state some algebraic properties of ε−pseudonumerical
range of matrices.

Theorem 2.6. Let ε > 0, 0 6= α, β ∈ C and A ∈ Mn(C). Then the following assertions
are true:
(a) Wε(αA) = αWε/|α|(A);
(b) Wε(A+ βI) = Wε(A) + β;
(c) Wε(αA+ βI) = αWε/|α|(A) + β.

We define the ε−pseudonumerical radius of A ∈Mn(C) as

rε(A) = sup
z∈Wε(A)

|z|.

The following result follows from Theorem 2.6.

Corollary 2.7. Let ε > 0, α ∈ C \ {0} and A ∈Mn(C). Then

rε(αA) = |α|rε/|α|(A)

Lemma 2.8. Let ε > 0. Then

⋃

‖E‖<ε
W (E) = D(0, ε) , E ∈Mn(C).

By the above lemma, we can characterize the ε−pseudonumerical range of matrices.

Theorem 2.9. Let ε > 0 and A ∈Mn(C). Then

Wε(A) = W (A) +D(0, ε)

Corollary 2.10. Let ε > 0 ,α ∈ C \ {0} and A ∈Mn(C). Then
(a) rε(A) = r(A) + ε; where r(A) = maxz∈W (A) |z| is the numerical radius of A;
(b) rε(αA) = |α|rε/|α|(A);
(c) rε(αA) = |α|r(A) + ε.

We illustrate Theorem 2.9 by the following example.
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Example 2.11. Let ε = 2 and A =




−4i 10i 0 0
i 5i 0 0
0 0 5− 5i 10
0 0 5 −5i


 .

In the Figure 1, the red region is the numerical range of A and the red and blue region
are 2−pseudonumerical range of A.

Figure 1: numerical range and augmented numerical range of matrix A
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Abstract

We describe the real interpolation spaces with a function parameter when we apply
the real K-method of LionsPeetre to martingale Hardy spaces. As application we get
interpolation spaces of the martingale Hardy-Lorentz spaces Λsq(ϕ).
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1 Introduction

The family of martingale Hardy spaces is one of the important martingale function spaces.
The study of the martingale Hardy spaces is extended to the martingale Hardy– Lorentz
spaces [7, 4, 5].These spaces play an important role in the theory of Banach spaces since
they have been defined are the objects of extensive investigations, results of which are
contained among others in the papers [2, 6] and in probability theory and in statistics
[3, 1]. Moreover, interpolation of martingale Hardy spaces is one of the main topics in
martingale Hp theory, and its theory has been applied to Fourier analysis. Here the
interpolation spaces with a function parameter between martingale Hardy–Lorentz spaces
are identified. Some results due to [8] are extended to interpolation with a function
parameter.

2 preliminaries

To achieve our goal we first fix our notations and terminology. Let us denote the set of
integers and the set of non–negative integers, by Z and N, respectively.

Let (Ω,F , P ) be a probability space. A filtration (Fn)n∈N is a non-decreasing sequence
of sub-σ-algebras of F such that F = σ(∪n∈NFn). We denote by E and En the expectation
and the conditional expectation operators with respect to (Fn)n∈N. For simplicity, we
assume that Enf = 0 if n = 0.

For a martingale f = (fn, n ∈ N) relative to (Ω,F , P ), denote the martingale differ-
ences by dnf := fn − fn−1 with convention d0f = 0. The conditional square function of f
is defined by

sm(f) :=


∑

n≤m
En−1 | dnf |2




1/2

, s(f) :=

(∑

n∈N
En−1 | dnf |2

)1/2

.
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Let us recall briefly the construction of Lorentz spaces and the real interpolation
method. For measurable function f , we define a distribution function m(r, f) by setting
m(r, f) = P ({w ∈ Ω : |f(w)| > r}). The function

f∗(t) = inf{r > 0 : m(r, f) ≤ t}, (t ≥ 0)

is called the decreasing rearrangement of f .
Let ϕ > 0 be a non-negative and local integrable function on [0,∞). The classical

Lorentz spaces Λq(ϕ) is defined to be the collection of all measurable functions f for
which the quantity

‖f‖Λq(ϕ) :=

{ (∫∞
0 (f∗(t)ϕ(t))q dtt

) 1
q 0 < q <∞,

supt f
∗(t)ϕ(t) (q =∞)

is finite. Recall that for 0 < q ≤ ∞, ‖.‖Λq(ϕ) is only a quasi-norm.
For 0 < q ≤ ∞, martingale Hardy-Lorentz spaces Λsq(ϕ) is defined by:

Λsq(ϕ) =
{
f = (fn)n∈N : ‖f‖Λsq(ϕ) := ‖s(f)‖Λq(ϕ) <∞

}
.

Note that if ϕ(t) = t
1
p , then Λq(ϕ) = Lp,q and Λsq(ϕ) = Hs

p,q. In particular, if ϕ(t) = t
1
q ,

then Λq(ϕ) = Lq and Λsq(ϕ) = Hs
q .

Let (A0, A1) be a quasi–Banach couple ,that is, two quasi-Banach spaces A0, A1 which
are continuously embedded in some Hausdorff topological vector space. The K–functional
is defined by

K(t, f, A0, A1) = K(t, f) := inf
f0+f1=f

{‖f0‖A0 + t‖f1‖A1}

for t > 0 and f ∈ A0 +A1, where fi ∈ Ai, i = 0, 1.
For 0 < q ≤ ∞ and each measurable function %, the real interpolation space (A0, A1)%,q
consists of all elements of f ∈ A0 +A1 such that the quantity

‖f‖(A0,A1)%,q :=





(∫∞
0

(
K(t,f)
%(t)

)q
dt
t

) 1
q

(0 < q <∞),

supt>0
K(t,f)
%(t) (q =∞)

is finite. Let a and b be real numbers such that a < b. The notation ϕ(t) ∈ Q[a, b] means
that ϕ(t)t−a is non–decreasing and ϕ(t)t−b is non-increasing for all t > 0. Moreover, we
say that ϕ(t) ∈ Q(a, b), wherever ϕ(t) ∈ Q[a + ε, b − ε] for some ε > 0. The notation
ϕ(t) ∈ Q(a,−) (or ϕ(t) ∈ Q(−, b)) means that ϕ(t) ∈ Q(a, c) (or ϕ(t) ∈ Q(c, b)) for some
real number c.

In what follows, a . b means that a ≤ Cb for some positive constant C independent
of the quantities a and b. If both a . b and b . a are satisfied (with possibly different
constants), we write a ≈ b.
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3 interpolation

In this section, some interpolation theorems for martingale–Hardy spaces are formulated
and these results will be extended to interpolation of martingale Hardy–Lorentz spaces.
First, the following Lemmas, which will be used in the proof of Theorem 3.3 are given.

Lemma 3.1. Let f ∈ Λsq(ϕ), 0 < q ≤ ∞, y > 0 and fix 0 < p ≤ 1. Then f can be
decomposed into the some of two martingales g and h such that

‖g‖Hs∞ ≤ 6y

and

‖h‖Hs
p
.
(∫

{s(f)>y}
s(f)pdP

) 1
p

.

Lemma 3.2. If 0 < p ≤ 1 then

K(t, f,Hs
p , H

s
∞) .

(∫ tp

0
s(f)∗(x)pdx

) 1
p

, t > 0.

Theorem 3.3. Let 0 < p ≤ 1, 0 < q ≤ ∞ and % ∈ Q(0, 1) be a parameter function. Then

(Hs
p , H

s
∞)%,q = Λsq(t

1
p /%(t

1
p )).

If we take %(t) = tθ in Theorem 3.3, then we get the following result, which has proved
by Weisz [8].

Corollary 3.4. If 0 < θ < 1, 0 < p0 ≤ 1 and 0 < q ≤ ∞, then

(Hs
p0 , H

s
∞)θ,q = Hs

p,q

1

p
=

1− θ
p0

.

Applying the Theorem 3.3 we get the next theorem.

Theorem 3.5. Let ϕi(t) ∈ Q(0,−), i = 0, 1, 0 < p ≤ 1, 0 < q0, q1, q ≤ ∞ and % ∈ Q(0, 1).
Then

1. (
Λsq0(ϕ0), Hs

∞
)
%,q

= Λsq(ϕ),

where ϕ(t) = ϕ0(t)/%(ϕ0(t));

2. If, in addition ϕ1(t) ∈ Q(0, 1/p). then

(
Hs
p ,Λ

s
q1(ϕ1)

)
%.q

= Λsq(ϕ),

where ϕ(t) = t1/p/%(t1/p/ϕ1(t));
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3. If, in addition ϕ0(t)/ϕ1(t) ∈ Q(0,−) or ϕ0(t)/ϕ1(t) ∈ Q(−, 0), then
(
Λsq0(ϕ0),Λsq1(ϕ1)

)
%,q

= Λsq(ϕ),

where ϕ(t) = ϕ0(t)/ρ(ϕ0(t)/ϕ1(t)).

The following result is a simple application of Theorem 3.5, if we take ϕi(t) = t
1
pi , i =

0, 1.

Corollary 3.6. Let 0 < pi <∞, 0 < qi, q ≤ ∞, i = 0, 1 and % ∈ Q(0, 1). If p0 6= p1, then

(
Hs
p0,q0 , H

s
p1,q1

)
%,q

= Λsq(t
1
p0 /%(t

1
p0
− 1
p1 )).

and (
Hs
p0 , H

s
p1

)
%,q

= Λsq(t
1
p0 /%(t

1
p0
− 1
p1 )).

In particular, if %(t) = tθ, then

(
Hs
p0 , H

s
p1

)
θ,q

= Hs
p,q,

1

p
=

1− θ
p0

+
θ

p1
.

According to Theorem 3.5 we have the following corollary.

Corollary 3.7. Under the hypothesis of (3) in Theorem 3.5, we have
(
Λsq(ϕ0),Λsq(ϕ1)

)
θ,q

= Λsq(ϕ
1−θ
0 ϕθ1).
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Jahrom University

Abstract

We inter relate the real interpolation space with the quasi-Banach couple (A0, A1),
(A0 +A1, A1) and (A0, A0∩A1) that Aj is cj normed. Proving among others the iden-
tities

(A0 +A1, A1)θ,q ∩A0 = (A0, A1)θ,q ∩A0 = (A0, A0 ∩A1)θ,q.

(A0 ∩A1, A1)θ,q +A0 = (A0, A1)θ,q +A0 = (A0, A0 +A1)θ,q.

for all 0 < q ≤ ∞, 0 < θ < 1, and c1/c0 ≤ 1.

Keywords: quasi-Banach spaces, interpolation space, real method of interpolation

Mathematics Subject Classification [2010]: 46M35, 47A60

1 Introduction

Our main reference to the theory of interpolation space is [1]. Let Ā = (A0, A1) be a quasi-
Banach couple, let 0 < θ < 1 and 0 < q ≤ ∞. The real interpolation space (A0, A1)θ,q
consist of all elements a ∈ A0 +A1 having a finite quasi-norm

‖a‖θ,q, =

{
(
∑

ν∈Z(2−νθK(2ν , a))q)1/q if 0 < q <∞
supν∈Z{2−νθK(2ν , a)} if q =∞ .

Here, for 0 < t <∞, we put

K(t, a) = K(t, a;A0, A1) = inf{‖a0‖A0 + t‖a1‖A1 : a = a0 + a1, aj ∈ Aj}

and similarly the J-functional for a ∈ A0 ∩A1 := 4(Ā) by

J(t, a; Ā) = max{‖a‖A0 , t‖a‖A1 : a ∈ 4(Ā)}.

For 0 < θ < 1 we abbreviate θ̄ = max(θ, 1− θ) and θ = min(θ, 1− θ).
∗Speaker
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2 Main results

We start this section by introducing the following:

In the following (A0, A1) will always denote a quasi-Banach couple that Aj is cj normed
with c1/c0 ≤ 1.

Theorem 2.1. Let (A0, A1) be a quasi-Banach couple and a ∈ A0 +A1. Then

J(t, a;A0, A1) = J(t, a;A0, A0 ∩A1) (t ≥ 1).

Theorem 2.2. Let (A0, A1) be a quasi-Banach couple. Then

(A0, A0 ∩A1)θ,q = {a ∈ A0 ∩A1|(
∑

ν∈Z
(2−νθJ(2ν , a))q)1/q, ν ≤ 0}

(A0 ∩A1, A1)θ,q = {a ∈ A0 ∩A1|(
∑

ν∈Z
(2−νθJ(2ν , a))q)1/q, ν ≥ 0}.

Proposition 2.3. Let (A0, A1) be a quasi-Banach couple. Then the following identities
hold.

(A0 +A1, A1)θ,q ∩A0 = (A0, A1)θ,q ∩A0 = (A0, A0 ∩A1)θ,q. (1)

(A0 ∩A1, A1)θ,q +A0 = (A0, A1)θ,q +A0 = (A0, A0 +A1)θ,q. (2)

Proof.
Let us prove the identity (1). The chain of inclusions ” ⊃ ” is clear, whence we have to
show (A0 + A1, A1)θ,q ∩ A0 ⊂ (A0, A0 ∩ A1)θ,q. Take a0 ∈ (A0 + A1, A1)θ,q ∩ A0. Since
a0 ∈ A0, only the behaviour of K(t, a0;A0, A0 ∩ A1) on (0, 1) matters. According to
theorem 2.3 and theorem 2.1

K(t, a0;A0, A0 ∩A1) ≤ (c0 + 1)K(t, a0;A0, A1) + c0t‖a0‖A0

= (c0 + 1)tK(t−1, a0;A1, A0) + c0t‖a0‖A0

= (c0 + 1)tK(t−1, a0;A1, A0 +A1) + c0t‖a0‖A0

= (c0 + 1)K(t,a0;A0 +A1, A1) + c0t‖a0‖A0

also
‖a0‖A0,A0∩A1 ≤ (

∑

ν∈Z
(2−νθK(2ν , a))q)1/q)

≤ (
∑

ν≤0

((C0 + 1)2−νθK(2ν , a))q)1/q + (
∑

ν≤0

(c02−νθ‖a0‖A0)q)1/q

≤ (c0 + 1)[‖a0‖A0+A1,A1 + ‖a0‖A0 ]

Now, the identity (1)follows.

To prove the identity (2), we note as before that one chain of inclusions is trivial. Take
a ∈ (A0, A0 + A1)θ,q and write a = a0 + a1 with a0 ∈ A0, a1 ∈ A1. Then by theorem 2.1
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we have

K(t, a1;A0, A1) ≤ c0[K(c1t/c0, a;A0, A1) +K(c1t/c0, a0;A0, A1)]

≤ c0[K(c1t/c0, a;A0, A1) + ‖a0‖A0 ]

for t ≥ 1, c1/c0 ≤ 1
≤ c0[K(t, a;A0, A1) + ‖a0‖A0 ]

≤ c0[K(t, a;A0, A0 +A1) + ‖a0‖A0 ]

Then
‖a1‖A0,A1 ≤ c0[‖a‖A0,A0+A1 + ‖a0‖A0 ]

And K(t, a1;A0, A1) ≤ t‖a1‖A1 for t ≤ 1. then ‖a1‖A0, A1 ≤ ‖a1‖A1 . Hence we have
a1 ∈ (A0, A1)θ,q. �

Proposition 2.4. Let (A0, A1) be a quasi-Banach couple. Then the following identities
hold.

(A0, A1)θ,q ∩ (A0, A1)1−θ,q = (A0 +A1, A0 ∩A1)θ̄,q. (3)

(A0, A1)θ,q + (A0, A1)1−θ,q = (A0 +A1, A0 ∩A1)θ,q. (4)
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Sobolev Embedding theorem for weighted variable exponent

Lebesgue space

Somayeh Saiedinezhad∗

Iran University of Science and Technology

Abstract

This paper gives some Sobolev type embedding theorems for generalized weighted

Lebesgue- Sobolev space W
1,p(x)
a(x) (Ω) where Ω is an open subset of RN (N ≥ 2) with

p ∈ C(Ω) and a(x) is a measurable, nonnegative real valued function. The main
result can be stated as follows, under some conditions we show the compact Sobolev
embedding

W
1,p(x)
a(x) (Ω) ↪→↪→ L

q(x)
b(x)(Ω).

Keywords: variable exponent Lebesgue space, variable exponent Sobolev space, com-
pact embedding.

Mathematics Subject Classification [2010]: 46E35

1 Introduction

The Sobolev space Wm,p(Ω), where p is constant, is suitable for studding of many problems
in physics and mechanics. Whereas, by introducing the problems with p(x)- growth con-
ditions that arising by studding some materials with inhomogeneities such as Electrorheo-
logical fluids, which was due to Willis Winslow in 1949, the classical Sobolev spaces do not
work and so the variable exponent Lebesgue space Lp(.)(Ω) and Sobolev space Wm,p(.)(Ω)
are defined, where p(.) is some appropriate function; [7]. Despite the sufficient reasons for
developing the Lebesgue and so the Sobolev space, the variable exponent Lebesgue and
Sobolev spaces can be seen as a mathematical generalization of the classical space which
are with constant exponent.

Hence the considerable attentions of mathematicians be involved in problems with
p(x) growth conditions since the idea of generalizing the results has always been the
incentive factor in Development of mathematics. We refer to [1] for the basic information
about variable exponent Lebesgue and Sobolev spaces. Let Ω be an open subset of RN ,
p ∈ L∞(Ω) and

p− := ess inf
x∈Ω

p(x) ≥ 1.

Moreover a(x) is a measurable, nonnegative real valued function for x ∈ Ω. The variable
exponent Lebesgue space Lp(.)(Ω) is defined by

∗Speaker
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L
p(.)
a(.)(Ω) = {u : u : Ω −→ R is measurable,

∫

Ω
a(x)|u|p(x)dx < ∞}

which is equipped with the norm

|u|
L

p(.)
a(.)

(Ω)
= inf {σ > 0 :

∫

Ω
a(x)|u

σ
|p(x)dx ≤ 1}.

The Sobolev space W
1,p(.)
a(.) (Ω) which is defined as a completion of C∞

0 (Ω) with respect to

the norm, ∥u∥ = |∇u|
L

p(.)
a(.)

(Ω)
+ |u|Lp(.)(Ω). W

1,p(.)
a(.) (Ω) is named weighted variable exponent

Sobolev space which introduced in [5].
We refer to [2, 3, 4, 5, 6] for simialr disscution and interesting results in this issue.

2 Main results

Theorem 2.1. Let p, s ∈ C(Ω), 1 < p(x), 1 < s(x) for all x ∈ Ω and a(x) be a measurable
positive and a.e. finite function in RN satisfying

(a1) 0 < a ∈ L1
Loc(Ω), a(x)

− 1
p(x)−1 ∈ L1

Loc(Ω).

(a2) a(x)−s(x) ∈ L1(Ω) where s(x) ∈ C(Ω) and s(x) > 1
p(x)−1 .

(b1) 0 < b ∈ Lβ(x)(Ω), 1 < β(x) ∈ C(Ω).

(q) q ∈ C(Ω) and 1 < q(x) < p∗
s(x)

β′(x) for all x ∈ Ω; where

p∗
s(x) =

{
p(x)s(x)N

(s(x)+1)N−p(x)s(x) , N > ps(x) := p(x)s(x)
1+s(x) ;

∞, N ≤ ps(x).

.

Then we have the following compact embedding,

W
1,p(x)
a(x) (Ω) ↪→↪→ L

q(x)
b(x)(Ω);

when 1 < q(x) < p∗
s(x)

β′(x) in Ω.

Theorem 2.2. Assume p ∈ C(Ω), 1 < p(x) for all x ∈ Ω, (a1), (b1) are satisfied and
moreover

(a3) a(x)
− ξ(x)

p(x)−ξ(x) ∈ L1(Ω) where ξ(x) ∈ C(Ω) and 1 < ξ(x) < p(x).

Then we have the following compact embedding,

W
1,p(x)
a(x) (Ω) ↪→↪→ L

q(x)
b(x)(Ω).

for every q ∈ C(Ω) and 1 < q(x) < ξ∗(x)
β′(x)
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Proof. First, we show that W
1,p(x)
a(x) (Ω) ↪→ W 1,ξ(x)(Ω) continuously. Let u ∈ W

1,p(x)
a(x) (Ω) we

have ∫

Ω
|∇u|ξ(x)dx =

∫

Ω
|∇u|ξ(x)a(x)

ξ(x)
p(x) a(x)

− ξ(x)
p(x) dx

≤ C|a(x)
− ξ(x)

p(x) |
L

p(x)
p(x)−ξ(x) (Ω)

|a(x)
ξ(x)
p(x) |∇u|ξ(x)|

L
p(x)
ξ(x) (Ω)

.

By (iii) of the main properties that recalled in the first part of preliminaries we deduce

|a(x)
− ξ(x)

p(x) |
L

p(x)
p(x)−ξ(x) (Ω)

≤ (

∫

Ω
a(x)

− ξ(x)
p(x)−ξ(x) dx + 1)

p+−ξ−
p− .

So, by assumption (a3), there exists C > 0 such that
∫

Ω
|∇u|ξ(x)dx ≤ C|a(x)

ξ(x)
p(x) |∇u|ξ(x)|

L
p(x)
ξ(x) (Ω)

. (1)

Without loss of generality, we can assume that
∫
Ω |∇u|ξ(x) > 1. By applying (iii) when∫

Ω a(x)|∇u|p(x) < 1, from (1) we obtain

|∇u|Lξ(x)(Ω) ≤ C|∇u|
p−
p+

L
p(x)
a(x)

(Ω)
.

Moreover, if
∫
Ω a(x)|∇u|p(x) > 1 we deduce,

|∇u|Lξ(x)(Ω) ≤ C|∇u|β
L

p(x)
a(x)

(Ω)
;

where β = p+ξ+

p−ξ− . So we get ∇u ∈ Lξ(x)(Ω). On the other hand, Lp(x)(Ω) ↪→ Lξ(x)(Ω);
hence

W
1,p(x)
a(x) (Ω) ↪→ W 1,ξ(x)(Ω). (2)

Now by classical Sobolev embedding (iv) we have,

W 1,ξ(x)(Ω) ↪→↪→ Lr(x)(Ω) (3)

for r(x) < ξ∗(x). Let r(x) = q(x)β′(x). So if u ∈ W
1,p(x)
a(x) (Ω) then

∫

Ω
b(x)|u|q(x)dx ≤ C|b|Lβ(x)(Ω)||u|q(x)|Lβ′(x)(Ω) ≤ C|b|Lβ(x)(Ω) min(|u|q+

Lr(x)(Ω)
, |u|q−

Lr(x)(Ω)
);

and since u ∈ Lr(x)(Ω), u ∈ L
q(x)
b(x)(Ω). Moreover if un ⇀ 0 in W

1,p(x)
a(x) (Ω) then by (2)

un ⇀ 0 in W 1,ξ(x)(Ω) and by (3) un −→ 0 in Lr(x)(Ω). Then we have
∫

Ω
b(x)|un|q(x)dx ≤ C|b|Lβ(x) ||un|q(x)|Lβ′(x) −→ 0,

which implies |un|
L

q(x)
b(x)

−→ 0 and hence we can deduce

W
1,p(x)
a(x) (Ω) ↪→↪→ L

q(x)
b(x)(Ω).
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Some C∗- algebraic results on expansion of semigroups

Bahman Tabatabaie Shourijeh∗

Shiraz University

Abstract

In this work, we present a definition of an inverse semigroup, Pr(S), which is
associated to an inverse semigroup S. Also, we show the existence of a kind of cor-
respondence between partial representations of S and representations of Pr(S), on
a Hilbert space. Some results of graded C∗-algebras over a group are extended to
pre-grading C∗-algebras over inverse semigroups.

Keywords: Inverse emigroup, Partial action, Partial representation, Partial homo-
morphism.

Mathematics Subject Classification [2010]: 20M18, 16W22

1 Introduction

During the last two decades, partial actions of groups and actions of semigroups on C∗-
algebras have played a major role in constructing some mathematical constructions. R.
Exel [2] introduced the concept of pre-grading C∗-algebra for an inverse semigroup S.
Here, we use this concept to show that what is the maximum number of subspaces of a
pre-grading C∗-algebra that we can obtain by taking the closure of its finite products?

2 The inverse semigroup associated to an inverse semigroup

The major new result of this section is Theorem 2.5. Throughout this work, by S we mean
an inverse semigroup.

Definition 2.1. By Pr(S) we mean the universal semigroup which is defined via generators
and relations, that is, we associate a generator, [s], to each s ∈ S. The generator [s] comes
from any fixed set having as many elements as S such that, for every s, t in S, the following
conditions hold
(i) [s∗] [s] [t] = [s∗] [st],
(ii) [s] [t] [t∗] = [st] [t∗],
(iii) [s] [s∗] [s] = [s].

Following [3, Proposition 2.4] we have the next Lemma.
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Lemma 2.2. For given t ∈ S, let εt = [t] [t∗]. For each s, t ∈ S the following statements
hold
(i) εt is idempotent,
(ii) [t]εs = εt s[t]
(iii) εs and εt commute.

Proposition 2.3. Let E(S) be the idempotent semilattice of S.For given e ∈ E(S) and
s ∈ S the following statement hold
(i) εe = [e], that is, [e] is idempotent,
(ii) [e] [s] = [es], and [s] [e] = [se],
(iii) εeεs = εe s.

By [1, Proposition 2.14] each element of Pr(S) can be written as a certain product.
For the definitions of concepts of partial homomorphism of an inverse semigroup in a
semigroup and partial representation of S on a Hilbert space H we will refer the reader
to [1]

Proposition 2.4. Let H be an inverse semigroup and π : S → H be a partial homomor-
phism. There exists a unique semigroup homomorphism π̃ : Pr(S)→ H such that
π̃ ◦ iS = π, [1, Proposition 2.20].

In the above Proposition, let π be the identity map on S. Obviously, this map is a
partial homomorphism of S in itself. By Proposition 2.4 there exists a semigroup homo-
morphism ∂ : Pr(S) → S such that ∂([s]) = s, for all s in S. This ∂ is called the degree
map.

For a partial representation π, it should be noted that since αα∗α = α we have
π(α)π(α∗)π(α) = π(α), that is, π(α) is a partial isometry on H. Also, if ε is an idempotent
element of S, since ε = ε∗ we have π(ε∗) = π(ε)∗ ,that is, π(ε) is a self adjoint operator in
B(H). Now, we are ready to state and prove the main Theorem of this section.

Theorem 2.5. (a) If π is a representation of S on a Hilbert space H , then π̃ such that
π̃([s]) = π(s) is a representation of Pr(S) on H .
(b) If ρ is a representation of Pr(S) on H , then π such that π(t) = ρ([t]) is a partial
representation of S on H .

3 On pre-graded C∗-algebras

This section starts with the definition of pre-grading of a C∗-algebra, say A, over an
inverse semigroup, then we shall show that Pr(S) plays an important role in describing
certain subspaces of A. After introducing the semigroup associated to the C∗-algebra A,
we state and prove Lemma 3.3 and Theorem 3.4. With the aid of Theorem 3.4 we are
able to provide an answer for the question arise in the Remark 3.1. Let M and N be two
subspaces of a C∗-algebra A. By MN we mean the closed linear span of the set of all
products xy such that x ∈ M and y ∈ N . Let A be any C∗-algebra. A pre-grading of A
over S is a family of closed linear subspaces {As}s∈S of A such that for every s, t in S, the
following statements hold
(i) AsAt ⊆ Ast,
(ii) A∗s = As∗ ,
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( iii) if s ≤ t, then As ⊆ At,
(iv) A is the closed linear span of the union of all As.
In this case, each At is called a pre-grading subspace of A. If in addition AsAt is dense
in Ast, the pre-grading is called full. Obviously, for given s, t in S, the product AsAt is
contained in Ast. This means that, not only AsAt need not coincide with Ast, but it also
may not be dense there. Hence, one could ask the following question.

Remark 3.1. What is the maximum number of subspaces of a pre-grading C∗-algebra
that we can obtain by taking the closure of its finite products? Before we proceed to
answer the above question, we should keep in mind the definition of AsAt.

Now, let At be a pre-grading subspace of A. If we define Dt := AtAt∗ , then At is a
Dt −Dt∗-Hilbert bimodule. To show this, it suffices to show that At is a left Dt-module
and a right Dt∗-module. Let multiplication maps At×Dt∗ → At and Dt×At → At be the
multiplication of A. Now, let a ∈ At, r ∈ Dt, where r = xy for some x ∈ At and y ∈ At∗ .
Then ra = xya ∈ AtAt∗At ⊆ Att∗t = At, that is, the multiplication is well-defined. Since
A is a C∗-algebra, we conclude that the above multiplication is associative. That is, At is
a left Dt-module. On the other hand if r ∈ Dt∗ we assume that r = xy where x ∈ At∗ and
y ∈ At. Now for given a ∈ At we have

ar = axy ∈ AtAt∗At ⊆ Att∗t = At.

We see that At is a right Dt∗-module since the associativity inherits from C∗-algebra A.
Now, we would like to show that At is a Dt∗-Hilbert module. For given a, b ∈ At let

< a, b >:= a∗b

be the inner product on At. For a ∈ At sinceAt∗ = A∗t we have a∗b ∈ At∗At = Dt∗ ,
therefore,
<,> mapsAt ×At into Dt∗ . Obviously, this map is conjugate linear on first component
and linear on the second one. If < a, a >= 0, then

0 = || < a, a > || = ||a∗a|| = ||a||2,

that is, a = 0 and At is a Dt∗-Hilbert module. Now, let Ba(At) be the C∗-algebra of all
adjointable operators on At∗ , and define λ : Dt → Ba(At) such that λ(a)b = ab for b ∈ At.
Obviously, λ(a)is linear and λ(a∗) = λ(a)∗, simply because, if b, c ∈ At and a ∈ Dt then

< c, λ(a)b >= c∗ab = (a∗c)∗b =< λ(a∗)c, b > .

That is λ is a *-homomorphism. Therefore, At is a Dt −Dt∗-Hilbert bimodule. Also, as
we have seen for all right modules the product AtDt∗ is coincide with At [6, 1.1.4]. This
shows that AtAt∗At = At.

Definition 3.2. For a given C∗-algebra A, let Bl(A) = {X : X is a closed linear subspace
of A}. Given X,Y in Bl(A), define the product of X,Y as mentioned before. Bl(A) with
this multiplication is a semigroup called the semigroup associated to A.

Here, we take steps to provide an answer for the question posed in the above Remark.
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Lemma 3.3. Let A = span(
⋃
s∈S As) be a pre-graded C∗-algebra over S, then for every

s, t in S we have
(i) As∗AsAt = As∗Ast,
(ii) AsAtAt∗ = AstAt∗ ,
(iii) AsAs∗As = As.

Theorem 3.4. For a given pre-graded C∗-algebra, A = span(
⋃
s∈S As), there exists a

correspondence which assigns to each α in Pr(S) a closed subspace Aα of A such that for
all α, β in Pr(S) and all s, t in S the following hold
(i) A[t] = At,
(ii) if ∂(α) = t then Aα is contained in At,
(iii) the closed linear span of the product of Aα by Aβ is exactly equal to Aαβ.

The above Theorem shows that the collection {Aα}α∈Pr(S) is closed under multiplica-
tion, that is, this collection is a subsemigroup of Bl(A) Since it contains the At’s we see
that the maximum number of different pre-grading subspaces of A = span(

⋃
s∈S As) that

we can obtain by finite product is at most the order of Pr(S), when S is finite. By [1,
Proposition 5.14] if S is a finite inverse semigroup, e ∈ E(S), Se := {s ∈ S : ss∗ = e}, and
|Se| = pe then |Pr(S)| = ∑

e∈E(S) 2pe−2(pe + 1), where by |Pr(S)| we mean the order of
Pr(S). We close this section by the following conjecture.

Conjecture 3.5. There is a one-to-one correspondence between
(a) partial representations of S on H,
(b) representations of Pr(S) on H, and
(c) C∗- algebra representations of C∗p(S) on H,
where by C∗p(S) we mean the partial inverse semigroup C∗-algebra [7].
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Abstract

In this work we investigate equivalent condition for strong unique best approxima-
tion and its uniquness and also strongly unique. Also, for finite dimensional subspace
of C(X, R), Lipschitz continuity of order 1 and strong uniqueness of order 1 are es-
sentially equivalent.

Keywords: Best approximation, Haar space, Strongly unique, Unicity space, Lips-
chitz condition

Mathematics Subject Classification [2010]: 41A50, 41A65

1 Introduction

Let X be a finite set with the discrete topology and C(X, Rk) be the space of vector-valued
functions from X to k-dimensional Euclidean space Rk. A norm for functions in C(X, Rk)
is defined as follows:

∥f∥ := max
x∈X

∥f(x)∥2,

where ∥.∥2 denotes the Euclidean norm on Rk.

Definition 1.1. Let G be a nonempty subset of a normed linear space X and let x ∈ X.
An element y0 ∈ G is called a best approximation, or nearest point to x from G, if

∥x − y0∥ = d(x, G),

where d(x,G) = inf
y∈G

∥x − y∥. The number d(x,G) is called the distance from x to G, or

the error in approximating x by G.

The set (possibly empty) of all best approximation from x to G is denoted by PG(x),
i.e.

PG(x) := {y ∈ G| d(x,G) = ∥x − y∥}.

This defines a mapping PG from X into the subsets of G called the metric projection onto
G.
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Definition 1.2. Let G be a nonempty subset of a normed linear space X. If for any x ∈ X,
the set PG(x) is a singlton (for any x ∈ X, there is unique best approximation to x from
G), then G is called a Chebyshev subset of X.

If G is a Chebyshev subspace of a normed linear space X, then G is called unicity
space.

Definition 1.3. Let f ∈ C(X, Rk) and G be a Chebyshev subset of C(X, Rk). The unique
best approximation g0 ∈ PG(f) is called strongly unique (or strong unicity) of order α if
there exists a positive constant γ (depending on f, α and G) such that

∥f − g∥α ≥ ∥f − g0∥α + γ∥g − g0∥ for g ∈ G.

It might be conjectured that uniqueness and strong uniqueness are equivalent proper-
ties in C(X, R), where X is a compact Hausdorff space. This is not true. The following
theorem has proved by Nürnberger, Singer [5].

Theorem 1.4. Let G be a finite dimensional subspace of C(X, R). Then the set of func-
tions with a strongly unique best approximant is dense in the set of functions with a unique
best approximant.

Definition 1.5. Let X be a compact Hausdorff space and let G be an n-dimensional
subspace in C(X, Rk) with dimG ≥ 1 and basis {g1, . . . , gn}. We say G is satisfied the
Haar condition (Haar space), if any g ∈ G, g ̸≡ 0, has at most n − 1 zeros in X.

The following result was proved by Haar [1918].

Theorem 1.6. An n-dimensional subspace G of C(X, R) is a unicity space if and only if
it is a Haar space.

Definition 1.7. Let G be a nonempty Chebyshev subset of a normed linear space X. We
say that, the best approximation operator PG is satisfied in Lipschitz condition of order
α at f if there exists a positive constant λ such that

∥PG(f) − PG(h)∥ ≤ λ∥f − h∥α, for any h ∈ X.

2 Main results

In C(X, Rk) the best approximation operator from a Haar subspace has Lipschitz conti-
nuity of order 1 when X is finite and in space C(X, Rk), Chebyshev subspace and unicity
subspace are equivalent and are used interchangeably [1, 2, 3, 4].

Theorem 2.1. Let X be a compact Hausdorff space and G a finite dimensional subspace
of C(X, R). For given f ∈ C(X, R), the following are equivalent.

(i) There exists a λ > 0 such that

∥f − g∥ − ∥f − PG(f)∥ ≥ λ∥g − PG(f)∥, for all g ∈ G.
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(ii) There exists a γ > 0 such that

∥PG(f) − PG(g)∥ ≤ γ∥f − g∥, for all g ∈ C(X, R).

In the assumptions of Theorem 2.1, the metric projection, PG, is said to be Lipschitz
continuous of order 1 at f if there is a positive constant λ such that

H(PG(f), PG(g)) ≤ λ∥f − g∥, for all g ∈ C(X, R),

where H denotes the Hausdorff metric. Theorem 2.1 implies that, Lipschitz continuity of
order 1 and strong uniqueness of order 1 are essentially equivalent.

Theorem 2.2. Let G be a subset of a normed linear space X, f ∈ X, and for some λ > 0,
we have

∥f − g∥ − ∥f − PG(f)∥ ≥ λ∥g − PG(f)∥, for all g ∈ G.

Then for any g ∈ X and any element of PG(g),

∥PG(f) − PG(g)∥ ≤ 2

λ
∥f − g∥.
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Some fixed point results for the sum of two mappings
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Abstract

In this paper, we obtain some new fixed point theorems for the sum of two weakly
sequentialy continuous mappings T1 and T2 on an L−embedded convex subset C in
a Banach space X, in which T1 : C → X is nonexpansive and T2 : C → X is
continuous with T2(C) being contained in a compact set. As a result, we derive fixed
point theorems on weak∗ compact convex subsets of the continuous dual X∗ of an
M−embedded Banach space X.

Keywords: nonexpansive, fixed point, L−embedded, M−embedded, weakly sequen-
tialy continuous
Mathematics Subject Classification [2010]: 37C25 ,46B25

1 Introduction

Let X be a Banach space and C be a subset of X. A mapping T : C → X is called
nonexpansive if ∥Tx − Ty∥ ≤ ∥x − y∥ for all x, y ∈ C. A point x ∈ X is called a
fixed point of T , if Tx = x. A mapping T : C → X is called compact continuous if T
is compact and continuous on C. In [4] O’Regan studied the fixed points of the sum of
a nonexpansive mapping with a compact continuous on a weakly compact subset C of X
and in [2] and [3] Krasnoselskii combined two well-known fixed point theorems (Schauder’s
fixed point Theorem and the contraction mapping principle) to gain the fixed points of
the sum of two mappings T1 and T2 on a closed convex subset C in a Banach space X,
in which T1 : C → X is a contraction and T2 : C → X is continuous with T2(C) being
contained in a compact set . In this paper, among other things we study the fixed point
of the sum of two such mapings on an L−embedded convex subset of X allowing T1 to
be a nonexpansive mapping instead of a contraction(Theorem 2.2). In [1], Lau and Zhang
called a nonempty subset C of a Banach space X, L−embedded if there is a subspace Xs

of X∗∗ such that X +Xs = X ⊕1 Xs in X∗∗ and C
w∗

⊂ C ⊕1 Xs. That is, for each x ∈ C
w∗

there are c ∈ C and ξ ∈ Xs such that x = c + ξ and ∥x∥ = ∥c∥ + ∥ξ∥. As remarked in the
same paper, (by taking Xs = 0) it is readily seen that every L−embedded subset C of a
Banach space X is weak∗−closed and hence closed. Also every weakly compact subset of
Banach space is L−embedded, but not vice-versa, [1].

Next, we use our results to derive fixed point theorems on weak∗ compact convex
subsets of the dual space X∗ of an M−embedded Banach space X (Theorem 2.4). As
in [5], a Banach space X is M−embedded if X is an M -ideal in its bidual X∗∗, i.e.
X⊥ = {φ ∈ X∗∗∗ : φ(x) = 0 for all x ∈ X} is an l1−summand in X∗∗∗.
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2 Main results

Before going through our main theorems, let us recall some results from [1], [2] and [3].
Let C and B be two nonempty subsets of a Banach space X with B bounded.

rC(B) = inf{r ⩾ 0 : ∃x ∈ C, sup
b∈B

∥x − b∥ ⩽ r}

and
WC(B) = {x ∈ C : sup

b∈B
∥x − b∥ ≤ rC(B)}

KC(B) = {x ∈ C : ∥x − b∥ ≤ rC(B), for some b ∈ B}.

The number rC(B) and the set WC(B) are, respectively, called the Chebyshev radius
and Chebyshev center of B in C and we have WC(B) ⊆ KC(B). It is proved that if C
is a nonempty convex L−embedded subset of a Banach space X and B is a nonempty
bounded subset of X, then the Chebyshev center WC(B) of B in C and KC(B) of B in C
is nonempty convex and weakly compact. It is also proved in the same paper that if C is
a weak∗ closed subset of the dual space X∗ of an M−embedded Banach space X. Then C
is L−embedded, [1, Lemma 3.2]. As a consequence of Krasnoselskii’s result [2] we arrive
at the next one which we need in the sequel.

Proposition 2.1. Let α, β ∈ (0, 1) and C be an L−embedded, convex subset of a Banach
space X. Suppose that T1 and T2 map C into X such that

(i) T1 is nonexpansive,

(ii) T2 is continuous and T2(C) is contained in a compact set or T2 is compact continuous
with C bounded,

(iii) αT1x + βT2y ∈ C, for all x, y ∈ C.

Then αT1 + βT2 has a fixed point in C.

The next theorem, which is one of our main results, asserts the existence of a fixed
point for the sum of two mappings on an L−embedded convex subset of a Banach space.

Theorem 2.2. Let C be an L−embedded, convex subset of a Banach space X. Suppose
that 0 ∈ C, T1 and T2 map C into X such that

(i) T1 is norm nonexpansive and weakly sequentialy continuous,

(ii) T2 is continuous and T2(C) is contained in a compact set and T2 is weakly sequentialy
continuous,

(iii) T1x + T2y ∈ C for all x, y ∈ C,

(iv) {x ∈ C : (1− 1

n
)T1x+(1− 1

n
)T2x = x, for some n ∈ N} ⊆ KC(B) for some bounded

subset B.

Then T1 + T2 has a fixed point in C.
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Corollary 2.3. Let C be a weakly compact, convex subset of a Banach space X. Suppose
that T1 and T2 map C into X such that

(i) T1 is norm nonexpansive and weakly sequentialy continuous,

(ii) T2 is compact and continuous and weakly sequentialy continuous,

(iii) (1 − 1

n
)T1x + (1 − 1

n
)T2y ∈ C for all x, y ∈ C, n ∈ N.

Then there exists a point x ∈ C with T1x + T2x = x.

Theorem 2.4. Let C be a weak∗ compact convex subset of the dual space X∗ of an
M−embedded Banach space X. Suppose that 0 ∈ C and T1, T2 map C into X∗ such
that

(i) T1 is norm nonexpansive and weak∗ continuous,

(ii) T2 is continuous and T2(C) is contained in a compact set and T2 is weakly sequentialy
continuous,

(iii) T1x + T2y ∈ C for all x, y ∈ C,

(iv) {x ∈ C : (1− 1

n
)T1x+(1− 1

n
)T2x = x, for some n ∈ N} ⊆ KC(B) for some bounded

subset B of C.

Then T1 + T2 has a fixed point in C.
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Abstract

In this paper, we introduce the notions of (α, β, ϕ)-contractive mapping, (α, φ, ψ)-
contractive mapping and establish some results of fixed point for this class of mappings
in the setting of non-Archimedean probabilistic Menger spaces. Also, some examples
are given to support the usability of our results.

Keywords: Continuous t-norm, non-Archimedean probabilistic Menger space, con-
tractive mapping
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1 Introduction

In 1972, Menger [1] introduced the concept of a probabilistic metric space, and a large
number of authors have done considerable work in such field [5, 6]. The notion of non-
Archimedean Menger space has been established by Istratescu and Crivat [2]. The exis-
tence of fixed point of mappings on non-Archimedean Menger space has been given by
Istratescu [3]. In this paper, we give some fixed point results for some new classes of
contractive mappings in probabilistic Menger space. We first bring notion, definitions and
known results, which are related to our work. For more details, we refer the reader to [4].

Definition 1.1. A t−norm is a function T : [0, 1]2 → [0, 1] which is associative, commu-
tative, nondecreasing in each cordinate and T (a, 1) = a for every a ∈ [0, 1].

Definition 1.2. Let X be a non-empty set and D be the set of all left-continuous distri-
bution functions. An ordered pair (X,F ) is called a non-Archimedean probabilistic metric
space (briefly a N.A PM-space) if F is a mapping from X×X → D satisfying the following
conditions:

(i) Fx,y(t) = 1, for all t > 0 if and only if x = y,

(ii) Fx,y(t) = Fy,x(t),

(iii) Fx,y(0) = 0,

(iv) If Fx,y(t) = Fy,z(s) = 1 then Fx,z(max {t, s}) = 1 for all x, y, z ∈ X and t, s > 0.
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Definition 1.3. A N.A Menger PM -space is an ordered triple (X,F, T ) where (X,F ) is
a non-Archimedean PM -space and T is a t−norm satisfying the following condition:

(iiv) Fx,y (max {t, s}) ≥ T (Fx,z(t), Fz,y(s)) for all x, y, z ∈ X and s, t ≥ 0.

2 Main results

Definition 2.1. Let f : X → X and α : X ×X → [0,∞). Then f is an α−admissible
mapping if

α(x, y) ≥ 1⇒ α(fx, fy) ≥ 1, x, y ∈ X.

Definition 2.2. Let f : X → X and β : X × (0,∞)→ [0,∞) and K : (0,∞)→ (0, 1).
Then f is a (K,β)−admissible mapping if

β(x, t) ≤
√
K(t)⇒ β(fx, t) ≤

√
K(t), x ∈ X, t > 0.

We denote by φ the class of all functions ϕ : [0, 1] → [0, 1] such that satisfying the
following conditions:

(i) ϕ is decreasing and continuous,

(ii) ϕ(λ) = 0 if and only if λ = 1.

Definition 2.3. Let (X,F, T ) be a non-Archimedean Menger PM -space and f be an
α−admissible and (K,β)−admissible mapping. If there exists ϕ ∈ φ such that :

α(x, fx) α(y, fy) ϕ (Ffx,fy(t)) ≤ β(x, t) β(y, t) ϕ (Fx,y(t)) , (1)

holds for all x, y ∈ X with x 6= y and t > 0, then f is called a (α, β, ϕ)− contractive
mapping.

Theorem 2.4. Let (X,F, T ) be a complete non-Archimedean Menger PM -space, α :
X ×X → [0,∞), β : X × (0,∞)→ [0,∞) and K : (0,∞)→ (0, 1). Assume the following
conditions hold:

(i) f is (α, β, ϕ)-contractive mapping,

(ii) there exists x0 ∈ X such that α (x0, fx0) ≥ 1 and β(x0, t) ≤
√
K(t) for all t > 0,

(iii) if {xn} is a sequence such that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x as n→
∞, then α(x, fx) ≥ 1. Then f has a fixed point. Moreover if y = fy implies α(y, fy) ≥
1 and for all x ∈ X and all t > 0, β(x, t) < 1, then f has a unique fixed point.

Definition 2.5. Let (X,F, T ) be a non-Archimedean Menger PM-space and f : X → X
be an α-admissible mapping. Also, suppose that ψ,ϕ : [0, 1] → [0, 1] are two continuous
functions such that ψ is decreasing, ψ(t) > ψ(1)− ϕ(1) and ϕ(t) > 0 for all t ∈ (0, 1). We
say, f is a (α− ϕ− ψ)-contractive mapping if

α(x, fx)α(y, fy)ψ(Ffx,fy(t)) ≤ ψ(Fx,y(t))− ϕ(Fx,y(t)), (2)

holds for all x, y ∈ X and t > 0.
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Theorem 2.6. Let (X,F, T ) be a complete non-Archimedean Menger PM-space, α : X →
[0,∞] and ψ,ϕ : [0, 1]→ [0, 1] as in definition and f be a (α−ϕ−ψ)-contractive mapping
satisfying the following conditions:

(i) there exists x0 ∈ X such that α(x0, fx0) ≥ 1,

(ii) if xn is a sequence such that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x as n → +∞,
then α(x, fx) ≥ 1. Then f has a fixed point. Moreover, if y = fy implies α(f, fy) ≥ 1,
then f has a unique fixed point.

Example 2.7. Let X = [0,∞), T (a, b) = min {a, b},

Fx,y(t) =





1

1 + max {x, y} if x 6= y,

1 if x = y,

for all t > 0, fx =
x

(2(x+ 2))
, β2(x, t) = k(t) =

1

2
, α(x, y) = 1 for all x, y ∈ X and t > 0.

Also define ϕ(t) = 1− t for all t ∈ [0, 1].

Solution. Clearly (X,F, T ) is a non-Archimedean Menger PM-space. Without loss of
generality we assume that x > y. We have

fx =
x

(2(x+ 2))
≤ x

x+ 2
=⇒ xfx+ 2fx ≤ x.

Thus
max {x, y}max {fx, fy}+ 2 max {fx, fy} ≤ max {x, y} .

Therefore

max {x, y}max {fx, fy}+ max {fx, fy}+ max {x, y} ≤ 2 max {x, y} −max {fx, fy} ,

and so

(1 + max {fx, fy}) (1 + max {x, y})
≤ 2 max {x, y} −max {fx, fy}+ 1

= 2 (1 + max {x, y})− (1 + max {fx, fy}) .

Hence, we have

1 ≤ 2 (1 + max {x, y})− (1 + max {fx, fy})
(1 + max {fx, fy}) (1 + max {x, y}) = 2Ffx,fy(t)− Fx,y(t).

Which implies

1− Ffx,fy(t) ≤
1

2
(1− Fx,y(t)).

That is

α(x, fx)α(y, fy)ϕ(Ffx,fy(t)) ≤ β(x, t)β(y, t)ϕ(Fx,y(t)),

for all x, y with x 6= y and hence f is a (α, β, ϕ)−contractive mapping. Then all the
conditions of Theorem (2.4) hold and f has a fixed point x = 0. Moreover, for all x ∈ X,
we have α(x, fx) ≥ 1 and so the fixed point of f is unique.
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Example 2.8. Let X = [1,∞), T (a, b) = min {a, b} and Fx,y(t) =
min {x, y}
max {x, y} for all

t > 0. Define

fx =

{π
3

if x ∈ [1, 3],
√

1 + x2 + ex if x ∈ (3,+∞).

Also define

α(x, y) =

{
1 if x, y ∈ [1, 3],

0 otherewise,

ψ(t) =
1

2
− t

2
and ϕ(t) = 1− t for all t ∈ [0, 1].

Solution. Clearly, (X,F, T ) is a non-Archimedead Menger PM-space, ψ,ϕ : [0, 1]→ [0, 1]
are continuous, ψ is decreasing, ψ(t) > ψ(1)− ϕ(1) and ϕ(t) > 0 for all t ∈ (0, 1).
Let x, y ∈ [1, 3]. Then ψ(Ffx,fy(t)) = 0 and hence

α(x, fx)α(y, fy)ψ(Ffx,fy(t)) = 0 ≤ ψ(Fx,y(t))− ϕ(Fx,y(t)).

Otherewise, α(x, fx)α(y, fy) = 0 and so

α(x, fx)α(y, fy)ψ(Ffx,fy(t)) = 0 ≤ ψ(Fx,y(t))− ϕ(Fx,y(t)).

Since f is α−admissible we obtain that f is a (α − ϕ − ψ)-contractive mapping. Also
conditions (i) and (ii) of Theorem(2.6) hold. Then f has a unique fixed point.
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Abstract

In this paper we introduce the concept of C∗-algebra-valued α-contractive map-
pings and then we give some fixed point theorems for these kind of mappings.
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admissible.
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1 Introduction

The notion of C∗-algebra-valued metric spaces has been investigated by Z. Ma, L. Jiang
and H. Sun [1]. They presented some fixed point theorems for self-maps with contractive
or expansive conditions on such spaces. Taking some ideas from [1, 3] we introduce the
concept of C∗-algebra-valued α-contractive mappings and C∗-algebra-valued α-expansion
mappings and then we deal with some fixed point theorems for these new ones.

We provide some notations, definitions and auxiliary facts which will be used later in
this paper.
Let A be a unital algebra with unit I. An involution on A is a conjugate-linear map a 7→ a∗

on A, such that a∗∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A. An assign to each ∗-algebra is
(A, ∗). A Banach ∗-algebra is a ∗-algebra A together with a complete submultiplicative
norm such that ∥a∗∥ = ∥a∥ for all a ∈ A. A C∗-algebra is a Banach ∗-algebra such that
∥a∗a∥ = ∥a∥2 (a ∈ A). For more details we refer the reader to [2].
Throughout this manuscript, A stands for a unital C∗-algebra with unit I. We say an
element x ∈ A a positive element, denote it by x ≽ θ, if x = x∗ and σ(x) ⊆ R+ = [0,∞),
where θ means the zero element in A and σ(x) is the spectrum of x. Using positive
elements, one can define a partial ordering ≼ as follows: x ≼ y if and only if y − x ≽ θ
(x, y ∈ A). From now on, by A+ we denote the set {x ∈ A : x ≽ θ} and |x| = (x∗x)

1
2 .

Remark 1.1. When A is a unital C∗-algebra, then for any x ∈ A+, x ≼ I if and only if
∥x∥ ≤ 1 ([2]).

Definition 1.2. ([1]) Let X be a nonempty set. Suppose the mapping d : X × X → A
satisfies:
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1) θ ≼ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
2) d(x, y) = d(y, x) for all x, y ∈ X;
3) d(x, y) ≼ d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a C∗-algebra-valued metric on X and (X, A, d) is called a C∗-algebra-
valued metric space.

Lemma 1.3. ([2]) Suppose that A is a unital C∗-algebra with unit I.
1) If a ∈ A+ with ∥a∥ < 1

2 , then I − a is invertible and ∥a(I − a)−1∥ < 1;
2) suppose that a, b ∈ A with a, b ≽ θ and ab = ba, then ab ≽ θ;
3) by A′ we denote the set {a ∈ A : ab = ba, for all b ∈ A}. Let a ∈ A′, if b, c ∈ A with
b ≽ c ≽ θ and I − a ∈ A′

+ is an invertible element, then (I − a)−1b ≽ (I − a)−1c.

Lemma 1.4. ([2]) Let a, b ∈ A+ and a ≼ b, then for any x ∈ A both x∗ax and x∗bx are
positive elements and x∗ax ≼ x∗bx.

2 Main results

Definition 2.1. Let T : X → X be a map and α : X × X → R be a function. Then T is
said to be α-admissible if

α(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1.

Definition 2.2. Let {xn} be a sequence in a C∗-algebra-valued-metric space (X, A, d).
1. {xn} is said to be a convergent to x ∈ X with respect to A, written as lim

n→∞
xn = x, if

lim
n→∞

∥d(xn, x)∥ = 0.

2. {xn} is said to be a Cauchy sequence with respect to A in X, if lim
n,m→∞

∥d(xn, xm)∥ = 0.

3. (X, A, d) is a complete C∗-algebra-valued metric space if every Cauchy sequence with
respect to A is convergent.

Definition 2.3. Let (X, A, d) be a C∗-algebra-valued metric space. We call a mapping
T : X → X is a C∗-algebra-valued α-contractive mapping on X, if T is a α-admissible
and there exists an A ∈ A with ∥A∥ < 1 such that:
α(x, y)d(Tx, Ty) ≼ A∗d(x, y)A, for each x, y ∈ X.

Theorem 2.4. Assume that (X, A, d) is a complete C∗-algebra-valued metric space and
T : X → X and α : X × X → [0,∞) are two mappings. Suppose that the following
conditions hold:
(a) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,
(b) T is a C∗-algebra-valued α-contractive mapping on X,
(c) if {xn} is a sequence in X such that xn → x as n → ∞ and α(xn, xn+1) ≥ 1, then
α(xn, x) ≥ 1 for all n ∈ N,
then T has a fixed point x∗ in X.

Proof. Let x0 ∈ X such that α(x0, Tx0) ≥ 1, we define the sequence {xn} in X such that
xn = Txn−1. Since T is α-admissible and α(x0, x1) = α(x0, Tx0) ≥ 1 we deduce that

α(x1, x2) = α(Tx0, Tx1) ≥ 1.
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By induction, for all n ∈ N we get

α(xn−1, xn) ≥ 1.

Next we will show that {xn} is a Cauchy sequence in X. For each n ∈ N we have

d(xn, xn+1) = d(Txn−1, Txn) ≼ α(xn−1, xn)d(Txn−1, Txn)

≼ A∗d(xn−1, xn)A.

By repeating the process above, we get

d(xn, xn+1) ≼ (A∗)nd(x0, x1)A
n = (A∗)nBAn, (1)

where B = d(x0, x1). Hence

∥d(xn, xn+1)∥ ≤ ∥B
1
2 An∥2

≤ ∥B∥∥A∥n.

Letting n → ∞, one observes that {xn} is a Cauchy sequence with respect to A. By the
completeness of (X, A, d), there exists an x∗ ∈ X such that lim

n→∞
xn = x∗. Using condition

(d) we get α(xn, x∗) we have

d(x∗, Tx∗) ≼ d(x∗, xn+1) + d(xn+1, Tx∗)

≼ d(x∗, xn+1) + α(xn, x∗)d(Txn, Tx∗)

≼ d(x∗, xn+1) + A∗d(xn, x∗)A.

For all n ∈ N, letting n → ∞, we obtain

d(Tx∗, x∗) = 0,

hence Tx∗ = x∗, i.e., x∗ is a fixed point of T .

Definition 2.5. Let (X, A, d) be a C∗-algebra-valued metric space. We call a mapping
T : X → X is a C∗-algebra-valued α-expansion mapping on X, if T is an α-admissible
and satisfies the following conditions:
(E1) T (X) = X;
(E2) d(Tx, Ty) ≽ α(Tx, Ty)A∗d(x, y)A, for each x, y ∈ X,
where A is an invertible element in A such that ∥A−1∥ < 1.

Theorem 2.6. Assume that (X, A, d) is a complete C∗-algebra-valued metric space and
T : X → X and α : X × X → [0,∞) are two mappings. Suppose that the following
conditions hold:
(a) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,
(b) T is a C∗-algebra-valued α-expansion mapping on X,
(c) if {xn} is a sequence in X such that xn → x as n → ∞ and α(xn, xn+1) ≥ 1, then
α(xn, x) ≥ 1 for all n ∈ N,
then T has a fixed point x∗ in X.
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Theorem 2.7. Assume that (X, A, d) is a complete C∗-algebra-valued metric space and
T : X → X and α : X × X → [0,∞) are two mappings. Suppose that the following
conditions hold: (a) T is α-admissible,
(b) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,
(c) for all x, y ∈ X, we have

α(x, y)d(Tx, Ty) ≤ A[d(Tx, y) + d(Ty, x)],

where A ∈ A and ∥A∥ < 1,
(d) if {xn} is a sequence in X such that xn → x as n → ∞ and α(xn, xn+1) ≥ 1, then
α(xn, x) ≥ 1 for all n ∈ N ,
then T has a fixed point x∗ in X.

Theorem 2.8. Let (X, A, d) be a complete C∗-algebra-valued metric space. Suppose the
mapping T : X → X satisfies the following condition for all x, y ∈ A

d(Tx, Ty) ≼ A[d(Tx, x) + d(Ty, y)],

where A ∈ A′
+ and ∥A∥ < 1

2 . Then T has a unique fixed point in X.

Theorem 2.9. Assume that (X, A, d) is a complete C∗-algebra-valued metric space and
T : X → X and α : X × X → [0,∞) are two mappings. Suppose that the following
conditions hold: (a) T is α-admissible,
(b) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,
(c) there exists B ∈ A such that σ(B) ⊆ [1, ∞) and

[d(Tx, Ty) + B]α(x,y) ≼ A∗d(x, y)A + B

(d) if {xn} is a sequence in X such that xn → x as n → ∞ and α(xn, xn+1) ≥ 1, then
α(xn, x) ≥ 1 for all n ∈ N,
then T has a fixed point x∗ in X.
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SOME INEQUALITIES FOR THE NUMERICAL RADIUS

OF OPERATORS
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Abstract

In this talk, we provide a generalization of a numerical radius inequality including
product of two operators on a Hilbert space which is sharper than original inequality
in a particular position. An application of this inequality to prove a numerical radius
inequality that involves the generalized Aluthge transform is also given. In addition,
our results generalize some known inequalities. For any A,B,X ∈ B(H) such that
A,B ≥ 0, we prepare new estimation for the numerical radius of two terms AαXBα,
AαXB1−α (0 ≤ α ≤ 1) and Heinz means. Other related inequalities are also discussed.

Keywords: Positive operator, numerical radius, Heinz means, Aluthge transform.
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1 Introduction

Recall that an operator A ∈ B(H) is called positive, denote by A ≥ 0, if 〈Ax, x〉 ≥ 0 for
all x ∈ H. The numerical radius of A ∈ B(H) is defined by

w(A) = sup{|λ| : λ ∈W (A)},

where W (A) is the numerical range of A defined by W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}.
For a comprehensive account of theory of the numerical range and numerical radius we
refer the reader to [2].

It is well known that w(·) defines a norm on B(H) such that for all A ∈ B(H),

1

2
‖A‖ ≤ w(A) ≤ ‖A‖. (1)

On the second inequality in (1), Kittaneh [3] has shown that if A ∈ B(H), then

w(A) ≤ 1

2
(‖A‖+ ‖A2‖ 1

2 ). (2)

Obviously, inequality (2) is sharper than the second inequality of (1).
Inequalities (1) are sharp. If A2 = 0, then w(A) = 1

2‖A‖, while if A is normal, then
w(A) = ‖A‖. For A ∈ B(H), let A = U |A| be the polar decomposition of A, the Aluthge
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transform of A is defined by Ã = |A| 12U |A| 12 . Here U is partial isometry and |A| = (A∗A)
1
2 .

Yamazaki [6] has established an improvement of inequality (2) as follows:

w(A) ≤ 1

2
(‖A‖+ w(Ã)). (3)

The Euclidean operator radius of two bounded linear operators in a Hilbert space denoted
by

we(B,C) = sup‖x‖=1

(
|〈Bx, x〉|2 + |〈Cx, x〉|2

) 1
2 .

Several investigation on Euclidean operator radius and its extension to n−tuples of op-
erators can be found in [4]. Dragomir [1] proved that for any A,B ∈ B(H) and for all
r ≥ 1,

wr(B∗A) ≤ 1

2
‖(A∗A)r + (B∗B)r‖, (4)

w2(A) ≤ 1

2

(
w(A2) + ‖A‖2

)
. (5)

Some interesting numerical radius inequalities improving inequalities in (1) have been
obtained in [3, 5, 6]. In this note, we first generalize inequality (4). Our generalization
of inequality (4) in a special case is sharper than this inequality. Moreover, we apply
our results to prove an extension of inequality (3) that contains the generalized Aluthge
transform. A generalization of inequality (5) for any r ≥ 1, is also obtained. Next we
present two different versions of numerical radius inequality for Heinz means. Furthermore,
upper bounds for two terms AαXBα and AαXB1−α under conditions A,B ≥ 0 and
0 ≤ α ≤ 1 are given.

2 Main Results

We start this section to give an upper bound for w(B∗A). This estimation is better than
inequality (4) in a particular case when both A and B are normal operators.

Theorem 2.1. Let A,B ∈ B(H). Then

wr(B∗A) ≤ 1

4
‖(AA∗)r + (BB∗)r‖+

1

2
wr(AB∗).

for all r ≥ 1.

By Theorem 2.1 and inequality (4), we have

wr(B∗A) ≤ 1

4
‖(AA∗)r + (BB∗)r‖+

1

2
wr(AB∗) ≤ 1

2
‖(AA∗)r + (BB∗)r‖.

Utilizing Theorem 2.1, we obtain an extension of inequality (3).

Corollary 2.2. Let A ∈ B(H) and A = U |A| be the polar decomposition of A, and let
Ã(α) = |A|αU |A|1−α be the generalized Aluthge transformation of A. Then we have

wr(A) ≤ 1

4
‖|A|2rα + |A|2r(1−α)‖+

1

2
wr(Ã(α)).

holds for r ≥ 1.
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The following proposition gives to us other bound for the numerical radius.

Proposition 2.3. Let A ∈ B(H) and f, g be nonnegative continuous functions on [0,∞)
satisfying f(t)g(t) = t, (t ≥ 0). Then

w2r(A) ≤ 1

2

(
‖A‖2r +

∥∥∥∥
1

p
fpr(|A2|) +

1

q
gqr(|(A2)∗|)

∥∥∥∥
)
.

for all r ≥ 1, p ≥ q > 1 with 1
p + 1

q = 1 and qr ≥ 2.

The next result is a generalization of inequality (5) for any r ≥ 1.

Theorem 2.4. If A ∈ B(H), then

w2r(A) ≤ 1

2

(
wr(A2) + ‖A‖2r

)
.

for any r ≥ 1.

In the rest of this section, we are going to obtain upper bounds for AαXBα and
AαXB1−α (0 ≤ α ≤ 1).

The next result detect an upper bound for power of the numerical radius of AαXB1−α

under assumption 0 ≤ α ≤ 1.

Theorem 2.5. Suppose A,B,X ∈ B(H) such that A, B are positive. Then

wr(AαXB1−α) ≤ ‖X‖r‖αAr + (1− α)Br‖.
for all r ≥ 2 and 0 ≤ α ≤ 1.

The Heinz means for matrices are defined by

Hα(A,B) =
AαXB1−α +A1−αXBα

2

For any A,B,X ∈ B(H) in which 0 ≤ α ≤ 1 and A,B ≥ 0.
The following lemma is an essential item for proving the numerical radius of Heinz

means.

Lemma 2.6. Let A,B ∈ B(H) be invertible self-adjoint operators and X ∈ B(H). Then

w(X) ≤ w
(
AXB−1 +A−1XB

2

)
.

One of our main results is to find a numerical radius inequality for Heinz means. For
this purpose, we use Theorem 2.5, the convexsity of function f(t) = tr(r ≥ 1) and Lemma
2.6.

Theorem 2.7. Suppose A,B,X ∈ B(H) such that A, B are positive. Then

wr(A
1
2XB

1
2 ) ≤ wr

(
Hα(A,B)

)

≤ ‖X‖rw
(
Ar +Br

2

)

≤ ‖X‖
r

2

(∥∥αAr + (1− α)Br
∥∥+

∥∥(1− α)Ar + αBr
∥∥
)
.

for all r ≥ 2 and 0 ≤ α ≤ 1.
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In the next result we give an additional upper bound for norm of Heinz means. Ap-
plying this norm inequality then we find an another numerical radius inequality for Heinz
means.

Theorem 2.8. Suppose A,B,X ∈ B(H) such that A,B are positive. Then

∥∥∥A
αXB1−α +A1−αXBα

2

∥∥∥
2
≤ ‖X‖2

∥∥∥A
2αr +A2(1−α)r

2

∥∥∥
1
r
∥∥∥B

2αs +B2(1−α)s

2

∥∥∥
1
s

for all r, s ≥ 1 and 0 ≤ α ≤ 1.

By putting s = r and the second inequality of (1), we reach the following result as
follows.

Corollary 2.9. Assume A,B,X ∈ B(H) such that A,B are positive. Then

w2r
(AαXB1−α +A1−αXBα

2

)
≤ ‖X‖2r

∥∥∥A
2αr +A2(1−α)r

2

∥∥∥
∥∥∥B

2αr +B2(1−α)r

2

∥∥∥.

for all 0 ≤ α ≤ 1 and r ≥ 1.

Our final result in this section provide a new bound for powers of the numerical radius.

Theorem 2.10. Suppose A,B,X ∈ B(H) such that A,B are positive. Then

wr(AαXBα) ≤ ‖X‖r‖1

p
Apr +

1

q
Bqr‖α.

for all 0 ≤ α ≤ 1, r ≥ 0 and p, q > 1 with 1
p + 1

q = 1 and pr, qr ≥ 2.
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Abstract

In this paper, by applying the concept of operator h-convex functions we prove
several singular value inequalities for operators which provide refinements of previous
results.
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1 Introduction

Let B(H) stand for the C∗-algebra of all bounded linear operators on a complex separable
Hilbert space H with inner product ⟨·, ·⟩. An operator A ∈ B(H) is positive and write
A ≥ 0 if ⟨Ax, x⟩ ≥ 0 for all x ∈ H. Let B(H)+ stand for all positive operators in B(H).

If A is a self-adjoint operator and f is a real valued continuous function on Sp(A),
then f(t) ≥ 0 for any t ∈ Sp(A) implies that f(A) ≥ 0.

The following inequality holds for any convex function f defined on R

(b − a)f

(
a + b

2

)
≤

∫ b

a
f(x)dx ≤ (b − a)

f(a) + f(b)

2
, a, b ∈ R. (1)

A real valued continuous function f on an interval I is said to be operator convex if

f((1 − λ)A + λB) ≤ (1 − λ)f(A) + λf(B), (2)

in the operator order, for all λ ∈ [0, 1] and for every self-adjoint operator A and B on a
Hilbert space H whose spectra are contained in I (see [3]).

As an example of such functions, we note that f(t) = tr is operator convex on (0, ∞)
if either 1 ≤ r ≤ 2 or −1 ≤ r ≤ 0 and is operator concave on (0, ∞) if 0 ≤ r ≤ 1 (see [1,
p.147]).

In [3], Dragomir investigated the operator version of the Hermite-Hadamard inequality
for operator convex functions asserts that if f : I → R is an operator convex function on
the interval I then, for any self-adjoint operators A and B with spectra in I the following
inequalities hold

f

(
A + B

2

)
≤

∫ 1

0
f ((1 − t)A + tB) dt ≤ f(A) + f(B)

2
. (3)
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2 Inequalities for operator h-convex function

In this section, we give Hermite-Hadamard type inequalities for operator h-convex func-
tions.

Let I, J ⊆ R, (0, 1) ⊆ J and functions f, h are real non-negative on I and J .

Definition 2.1. [8] Let h : J → R be a non-negative function, h ̸≡ 0. We say that
f : I → R is an h-convex function, or that f belongs to the class SX(h, I), if f is non-
negative and for all x, y ∈ I, λ ∈ (0, 1) we have

f(λx + (1 − λ)y) ≤ h(λ)f(x) + h(1 − λ)f(y). (4)

The following inequalities due to Sarikaya [7], gives the Hermite-Hadamard type in-
equalities for h-convex functions. Let f ∈ SX(h, I), a, b ∈ I, with a < b and f ∈ L1([a, b]).
Then

1

2h(1
2)

f

(
a + b

2

)
≤ 1

b − a

∫ b

a
f(x)dx ≤ (f(a) + f(b))

∫ 1

0
h(t)dt. (5)

Here, we define operator h-convex function.

Definition 2.2. A continuous function f : I → R is said to be operator h-convex on I if

f(λA + (1 − λ)B) ≤ h(λ)f(A) + h(1 − λ)f(B), (6)

for all λ ∈ (0, 1) and self-adjoint A,B ∈ B(H) whose spectra are contained in I.

Theorem 2.3. Let f be an operator h-convex function. Then

1

2h(1
2)

f

(
A + B

2

)
≤

∫ 1

0
f(tA + (1 − t)B)dt ≤ (f(A) + f(B))

∫ 1

0
h(t)dt. (7)

Let h(t) = ts for s ∈ (0, 1) and h(t) = t in (7) respectively, then we have

2s−1f

(
A + B

2

)
≤

∫ 1

0
f(tA + (1 − t)B)dt ≤ f(A) + f(B)

s + 1
, (8)

f

(
A + B

2

)
≤

∫ 1

0
f(tA + (1 − t)B)dt ≤

(
f(A) + f(B)

2

)
. (9)

Example 2.4. [5] Let AB + BA ≥ 0 for A,B ∈ B(H)+, (AB+BA is called symmetrized
product of A and B) then the continuous function f(t) = ts, 0 < s ≤ 1 is an operator
s-convex function on [0, ∞).

3 Some singular value inequalities for operators

In this section we give some inequalities for singular values of operators. First we recall
some preliminaries.

Let K(H) denote the two-sided ideal of compact operators in B(H). We consider
the wide class of unitarily invariant norms ||| · |||. Each unitarily invariant norm ||| · |||
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is characterized by the invariance property |||UTV ||| = |||T ||| for all operators T and all
unitary operators U and V in B(H).

We denote the singular values of an operator A ∈ K(H) as s1(A) ≥ s2(A) ≥ . . . are
the eigenvalues of the positive operator |A| = (A∗A)1/2 which repeated accordingly to
multiplicity.

The following inequality is due to Hirzallah and Kittaneh [6, Corollary 2.2] asserts that
if A,B ∈ K(H), then

sj

(
A + B

2

)
≤ sj(A ⊕ B), (10)

for j = 1, 2, . . ..

We give a refinement of above inequality for positive operators.

Theorem 3.1. Let X be an arbitrary operator in B(H). Then,

1. We have

1

2
sj

(
(A + B)1/2X

)2r
≤ sj

(∫ 1

0
(X∗(tA + (1 − t)B)X)rdt

)

≤ 2

r + 1
∥X∥2rsr

j(A ⊕ B),

for j = 1, 2, . . . where r ∈ [0, 1
2 ] and positive operators A,B ∈ K(H) such that

AB + BA ≥ 0.

2. We also have

1

2r
sj((A + B)1/2X)2r ≤ sj

(∫ 1

0
(X∗(tA + (1 − t)B)X)rdt

)

≤ sj

(
|A1/2X|2r ⊕ |B1/2X|2r

)
,

for j = 1, 2, . . . where r ∈ [−1, 0] ∪ [1, 2] and positive operators A, B ∈ K(H).

Theorem 3.2. Let A,B ∈ K(H) such that A∗AB∗B + B∗BA∗A ≥ 0. Then

3

2
√

2
s

1
2
j (AB∗) ≤ 3

2
sj

(∫ 1

0
(tA∗A + (1 − t)B∗B)

1
2 dt

)
≤ sj(|A| + |B|),

for j = 1, 2, . . ..

Above inequality gives a generalization the main inequality in [4].
The following inequality due to Bhatia and Kittaneh [2] asserts that if A,B ∈ B(H)

are positive operators and m is any positive integer, then

|||Am + Bm||| ≤ |||(A + B)m|||.

We obtain several singular value and unitarily invariant inequalities motivated by above
inequality.
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Theorem 3.3. Let A,B ∈ K(H)+ and r ∈ [−1, 0] ∪ [1, 2], then

sj(A + B)r ≤ 2rsj

(∫ 1

0
(tA + (1 − t)B)rdt

)
≤ 2r−1sj(A

r + Br), (11)

for j = 1, 2, . . ..

Corollary 3.4. Let A,B ∈ K(H)+ then

|||(A + B)r||| ≤ 2r

∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ 1

0
(tA + (1 − t)B)rdt

∣∣∣∣
∣∣∣∣
∣∣∣∣ ≤ 2r−1|||Ar + Br|||.

for r ∈ [−1, 0] ∪ [1, 2] and

|||Ar + Br||| ≤ 2

∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ 1

0
(tAr + (1 − t)Br)

1
r dt

∣∣∣∣
∣∣∣∣
∣∣∣∣
r

≤ 21−r|||(A + B)r|||.

for r ∈ [12 , 1].

Remark 3.5. Let a and b be positive real numbers. Then,

(a + b)r ≤ 2r−1(ar + br) (12)

for r ≥ 1.
The following inequality

sj(A + B)r ≤ 2r−1sj(A
r + Br),

which obtained in (11), gives an operator version of (12) for r ∈ [1, 2].
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Some properties of λ-spirallike functions with respect to

2k-symmetric conjugate points

E. Amini∗

Payame Noor University

Abstract

In the present paper, we introduce and investigate some new subclass of λ-spirallike
functions with respect to 2k-symmetric conjugate points. Also we obtain some integral
representations for functions belonging to this classes.

Keywords: λ-Spirallike functions, Differential subordination, 2k-Symmetric Points
Mathematics Subject Classification [2010]: 30C45, 30C50

1 Introduction

Let A be the class of functions of the form

f(z) = z +
∞∑

n=2

anzn. (1)

which are analytic in the open unit disc U = {z ∈ C; |z| < 1}. Let S, S∗ and SP(λ)
denote the familiar subclass of A consisting of functions which are, respectively, univalent,
starlike and λ-spirallike in U (See for details, [2, 3]).

We also let P denote the class of analytic function of the form

p(z) = 1 +

∞∑

m=1

pmzm, (z ∈ U),

which satisfy the condition that Re(p(z)) > 0.
Let f(z) and g(z) be analytic in U . The function f is said to be subordinate to g if

there exists a function h analytic in U such that |h(z)| ≤ |z| and f(z) = g(h(z)), denoted
by f(z) ≺ g(z). If g(z) is univalent in U , then subordination is equivalent to f(0) = g(0)
and f(U) ⊂ g(U) (see [2]).

A function f(z) ∈ A is in the class Sk
sc(ϕ) if f(z) satisfies the condition

2zf ′(z)

f(z) − f(−z)
≺ ϕ(z), z ∈ U ,

where ϕ(z) ∈ P. The classes Sk
sc(ϕ) of functions starlike with respect to symmetric con-

jugate point is considered recently by Ravichandran [4]. We refer to the monographs [1],
[6] for more details.
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Definition 1.1. [5] The function f ∈ A is in the class SP∗(λ, ϕ) if it is satisfies the
subordination condition

e−iλ zf ′(z)

f(z)
≺ cosλϕ(z) + i sinλ,

where ϕ ∈ P and λ real with |λ| < π/2.

In this paper, we give the definition of λ-spirallike functions with respect to k-conjugate
point and obtain the integral representation for the function belonging to this classes.

2 Main results

Definition 2.1. A function f ∈ A is said to be λ-spirallike with respect 2k-symmetric
conjugate point which satisfy the inequality

Re
(
eiλ zf ′(z)

f2k(z)

)
> 0,

where k ≥ 1 is a fixed positive integer and f2k is defined by

f2k(z) =
1

2k

k−1∑

v=0

(
ϵ−vf(ϵvz) + ϵvf(ϵvz)

)
, ϵ = exp

(2πi

k

)
. (2)

Definition 2.2. A function f ∈ A is said to be in the class SPk
sc(λ, ϕ) if it satisfies the

subordination condition

e−iλ zf ′(z)

f(z)
≺ cosλϕ(z) + i sinλ, (3)

where λ ∈ R with |λ| < π/2, ϕ ∈ P and f2k is defined by (2). Also a function f ∈ A is
said to be in the KSPk

sc(λ, ϕ) if and only if

zf ′(z) ∈ SPk
sc(λ, ϕ) z ∈ U .

Theorem 2.3. Let ϕ(z) ∈ P, then we have SPk
sc(λ, ϕ) ⊂ SP(λ) ⊂ S.

Proof. Suppose that f(z) ∈ SPk
sc(λ, ϕ), it suffices to show that f2k ∈ SP(λ). From the

condition 3 , we have

Re
{

e−iλ zf ′(z)

f(z)

}
> 0, z ∈ U ,

since Re{ϕ(z)} > 0. Substituting z by ϵµz, (µ = 0, 1, ..., k − 1), we have

Re
{

e−iλ ϵµzf ′(ϵµz)

f2k(ϵµz)

}
> 0, z ∈ U . (4)

From the inequality (4), we obtain

Re
{

e−iλ ϵµzf ′(ϵµz)

f2k(ϵµz)

}
> 0, z ∈ U . (5)
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Note that f2k(ϵ
µz) = ϵµf2k(z) and f2k(ϵµz) = ϵ−µf2k(z) the inequality (4) and (5) can be

written as

Re
{

e−iλ zf ′(ϵµz)

f2k(ϵµz)

}
> 0, z ∈ U , (6)

and

Re
{

e−iλ zf ′(ϵµz)

f2k(ϵµz)

}
> 0, z ∈ U . (7)

From the inequalities (6) and (8), we can get

Re
{

e−iλ z(f ′(ϵµz) + f ′(ϵµz))

f2k(z)

}
> 0, z ∈ U . (8)

Let µ = 0, 1, 2, ..., k − 1 in (8) respectively, and summing them we have

Re

{
e−iλ

z
(

1
2k

∑k−1
µ=0 f ′(ϵµz) + f ′(ϵµz)

)

f2k(z)

}
> 0, z ∈ U ,

or equivalently

Re
{

e−iλ zf ′
2k(z)

f2k(z)

}
> 0, z ∈ U ,

that is f2k(z) ∈ SP(λ) ⊂ S.

Theorem 2.4. Let f(z) ∈ SPk
sc(λ, ϕ), then we have

f2k(z) = (e−iλz)eiλ
exp

{
cos λ

2k

k−1∑

µ=0

∫ ξ

0

1

eiλξ

(
ϕ(w(ϵµξ)) + ϕ(w(ϵµξ))

)
dξ

}
. (9)

where f2k(z) is defined by (2) and w(z) is analytic in U and w(0) = 0, |w(z)| ≤ 1.

Proof. Let f(z) ∈ SPk
sc(λ, ϕ). From the definition of SPk

sc(λ, ϕ), we have

e−iλ zf ′(z)

f(z)
= cos λϕ(w(z)) + i sinλ, z ∈ U , (10)

where w(z) is analytic in U , w(0) = 0 and |w(z)| < 1. Substituting by εµz, (µ =
0, 1, 2, ..., k − 1) in (10), we have

e−iλ εµzf ′(εµz)

f2k(εµz)
= cos λϕ(w(εµz)) + i sinλ, z ∈ U . (11)

From the above inequality, we have

e−iλ εµzf ′(εµz)

f2k(εµz)
= cos λϕ(w(εµz)) − i sinλ, z ∈ U . (12)

Summing equalities (11) and (12), and making use of the same method as in theorem
2.3, we have

e−iλ f ′
2k(z)

f2k(z)
=

cosλ

2k

k−1∑

µ=0

1

e−iλz

(
ϕ(w(ϵµz)) + ϕ(w(ϵµz))

)
.
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From the above equality, we have

f ′
2k(z)

f2k(z)
− 1

e−iλz
=

cos λ

2k

k−1∑

µ=0

1

e−iλz

(
ϕ(w(ϵµz)) + ϕ(w(ϵµz)) − 2

)
.

By integrating this equality, we have

log
f2k(z)

(e−iλz)eiλ =
cos λ

2k

k−1∑

µ=0

∫ ξ

0

1

eiλξ

(
ϕ(w(ϵµξ)) + ϕ(w(ϵµξ))

)
dξ.

From this equality we can get (9). Hence the proof is complete.

Corollary 2.5. Let f(z) ∈ SPk
sc(λ, ϕ), then we have

f(z) =

∫ z

0
(e−iλz)eiλ

exp

{
cos λ

2k

k−1∑

µ=0

∫ ξ

0

1

eiλξ

(
ϕ(w(ϵµξ))+ϕ(w(ϵµξ))

)(
cosλϕ(w(ξ))+i sinλ

)
dξ

}
.

where f2k(z) is defined by (2) and w(z) is analytic in U , w(0) = 0 and |w(z)| ≤ 1.
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Some Results concerning 2-frames

Farideh Monfared∗

Shiraz University of Technology

sedigheh Jahedi
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Abstract

In this paper, we show that a finite sequence of vectors in 2-Hilbert space can be
a 2-frames for the linear span of their elements, and introduce the optimal 2-frame
bounds according to the frame operators.

Keywords: 2-inner product space, 2-frame, 2-frame bounds

Mathematics Subject Classification [2010]: 46C50, 42C15

1 Introduction

Let H be a Hilbert space and I a set which is finite or countable. A collection {fi}i∈I
⊆ H is called a frame for H if there exist two constants A,B > 0 such that

A‖f‖2 ≤
∑

i∈I
|< f, fi >|2≤ B‖f‖2

for all f ∈ H. The constants A and B are called frame bounds. Frames have many
applications in mathematics and engineering including wavelet theory, signal and image
processing, operator theory, harmonic analysis and so on [5, 7]. A sequence satisfying the
upper frame condition is called a Bessel sequence. For a frame {fi}i∈I of H, the operator
T : `2(N) → H defined by Tei = fi , i ∈ N is called the pre-frame operator. The frame
operator S = TT ∗ is defined by S(f) =

∑
i∈I < f, fifi. A technique for representing

the elements of a Hilbert space introduced by Duffin and Schaeffer [6] by frame theory.
Nowadays frames work an alternative to orthonormal bases in Hilbert spaces which has
many advantages [7]. In [1] A. A. Arefijamaal and Gh. Sadeghi have also introduced
definition of 2-frame for a 2-inner product space and described some properties of them.
First of all we recall the concept of 2-inner product space was first introduced by Y. J.
Cho, et al, in [3].

Definition 1.1. Let X be a linear space of dimension greater than 1 over the field F.
Suppose that (., .|.) is a function from X×X×X into F satisfying the following conditions:

(i) (x, x|z) ≥ 0 and (x, x|z) = 0 iff x and z are linearly dependent; (ii) (x, x|z) =
(z, z|x);

(iii) (y, x|z) = (x, y|z);
(iv) (αx, x|z) = α(x, x|z) for all every α ∈ F;
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(v) (x1 + x2, y|z) = (x1, y|x) + (x2, y|z).
(., . | .) is called a 2-inner product on X and (X, (., . | .)) is called a 2-inner product

space.

For more details see [8]. A 2-inner product space X is called a 2-Hilbert space if it is
complete, with respect to the 2-metric defined by 2-inner product. A sequence {xn} of X
is said to be convergent if there exists an element a ∈ X such that lim ‖ xn − a, x ‖= 0
for all x ∈ X. A subset B of a 2-normed space X is said to be compact if every sequence
{xn} of B has a convergent subsequence in B. For a 2-norm space X, consider the subsets

Bω(a, r) = {x, ‖ x− a, ω ‖< r}

and
Bω[a, r] = {x, ‖ x− a, ω ‖≤ r},

of X.

Definition 1.2. [2] Let X be a linear space of dimension greater than 2 over the field R.
Suppose that (., .|., .) is a function from X4 into R satisfying the following conditions:

(1) (a1, a2|a1, a2) > 0 if a1, a2 are linearly independent vectors;
(2) (a1, a2|b1, b2) = (b1, b2|a1, a2) for any a1, a2, b1, b2 ∈ X;
(3) (λa1, a2|b1, b2)=λ(a1, a2|b1, b2) for any scalar λ ∈ R, and any a1, a2, b1, b2 ∈ X;
(4) (a1, a2|b1, b2)=−(aσ(1), aσ(2)|b1, b2) for any odd permutation σ in the set {1, 2}, and

any a1, a2, b1, b2 ∈ X;
(5) (a1 + c1, a2|b1, b2) = (a1, a2|b1, b2) + (c1, a2|b1, b2) for any a1, a2, c1, b1, b2 ∈ X; (5)

(a1 + c1, a2|b1, b2) = (a1, a2|b1, b2) + (c1, a2|b1, b2) for any a1, a2, c1, b1, b2 ∈ X;
(6) (a1, b1, ..., bi−1, bi+1, ..., b2|b1, b2) = 0 for each i ∈ {1, 2}, then (a1, a2|b1, b2) = 0 for

arbitary vector a2.
Then the function (., .|., .) is called an generelized 2-inner product and the pair (X, (., .|., .))is

called a generelized 2-inner product space. Also know that generelized 2-inner product is
a continupous map. For more details see [2].

Remark 1.3. [2] In the special case of definition 1.2 if we consider such pairs of sets
a1, a2, b1, b2 which differ from at most one vectors for example a1 = a, b1 = b, a2 = b2 = x1,
then by putting (a, b|x1) = (a, x1|b, x1) we obtain a 2-inner product.

Definition 1.4. [1] Let (X, (., . | .)) be a 2-Hilbert space and ω ∈ X. A sequence {fi}∞i=1

of elements in X is called a 2-frame (associated to ω) if there exists A,B > 0 such that

A ‖ f, ω ‖2≤
∞∑

i=1

| (f, fi | ω) |2≤ B ‖ f, ω ‖2

for all f ∈ X. A sequence satisfying the upper 2-frame condition is called a 2-Bessel
sequence.
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2 Main results

Let (X, (., .|.)) a 2-Hilbert space and ω ∈ X. Let {fi}ki=1 be a sequence in X be such that
fi 6= 0 for all i = 1, ..., k. So by the Cauchy-Schwarz inequality, we observe that

k∑

i=1

| (f, fi | ω) |2≤
k∑

i=1

‖ fi, ω ‖|2‖ f, ω ‖2,

for all f ∈ X. Now by considering the set F = {∑k
i=1 | (f, fi | ω) |2, f ∈ span{fi}ki=1},

it can be seen that F is a compact subset of the real line and contains its infimum. In
fact F is the range of the continuouse function from span{fi}ki=1 into R. So we can find
g ∈ span{fi}ki=1 with ‖ g, ω ‖= 1 such that

A =

k∑

i=1

| (g, fi | ω) |2= inf{
k∑

i=1

| (f, fi | ω) |2: f ∈W, ‖ f, ω ‖= 1} > 0.

Then for any f ∈ span{fi}ki=1, f 6= 0, we have

k∑

i=1

| (f, fi | ω) |2 =
k∑

i=1

| ( f

‖ f, ω ‖ , fi | ω) |2‖ f, ω ‖2

≥ A ‖ f, ω ‖2 .

Then we have proved the following theorem.

Theorem 2.1. Any finite subset of a 2-Hilbert space is a 2-frame for its span.

Clearly a family of elements {fi}ki=1 in 2-Hilbert space H is a frame for H if and only if
H = span{fi}ki=1. So the frame might contains more elements than needed to be a basis.
Now if {fi}∞i=1 is a 2-frame (associated to ω), and

A ‖ f, ω ‖2≤
∞∑

i=1

| (f, fi | ω) |2≤ B ‖ f, ω ‖2

for all f ∈ X, then for optimal upper 2-frame bound B we have

B = sup‖f,ω‖=1

∞∑

i=1

| (f, fi | ω) |2 = sup‖f,ω‖=1(Sωf, f | ω)

= sup‖f‖ω=1 < Sωf, f >ω

=‖ Sω ‖ .

On the other hand
‖ Sω ‖=‖ TωT ∗ω ‖=‖ Tω ‖2,

where Sω is a 2-frame operator and Tω is a 2-pre frame operator [1]. Since {S−1ω fi}∞i=1

is also a frame for X with upper 2-frame bound A−1 and 2-frame operator S−1ω , then
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A−1 =‖ S−1ω ‖. Finally, via Theorem 5.3.7 of [4]

‖ S−1ω ‖ = sup‖f,ω‖=1

∞∑

i=1

| (f, S−1ω fi | ω) |2

= sup‖f,ω‖=1

∞∑

i=1

|< f, S−1ω fi >ω|2

= Sup‖f‖ω=1 ‖ T †ωf ‖2

=‖ T †ω ‖2,

where T †ω is the pseudo inverse 2-pre frame operator Tω. Now we are ready to give the
following theorem.

Theorem 2.2. Let (X, (., .|.)) be a 2-Hilbert space and ω ∈ X. Also {fi}∞i=1 is a 2-frame
( associated to ω) with the optimal 2-frame bounds A,B.Then A,B are given by

A =‖ S−1ω ‖−1=‖ T †ω ‖−2, B =‖ Sω ‖=‖ Tω ‖2 .
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Abstract

In this paper, we define t-remotest points and t-approximate remotest points in
fuzzy normed spaces and prove some theorems on theses concepts. In particular, we
find t-remotest points and t-approximate remotest points by considering a cyclic map.
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1 Introduction

The theory of fuzzy sets was introduced by L. Zadeh [7] in 1965. Many authors have
introduced the concept of fuzzy metric in different ways ([1]-[7]). George and Veeramani
([3], [4]) modified the concept of fuzzy metric space intoduced by Kramosil and Michálek [5]
and defined a Housdorff topology on this fuzzy metric space. In this paper we obtain the t-
remotest points and the t-approximate remotest points of the non-empty f-bounded subsets
A and B of a fuzzy normed space (X, N, ∗), by considering a cyclic map T : A∪B −→ A∪B
i.e. T (A) ⊆ B and T (B) ⊆ A.
First, we recall the basic definitions and preliminaries that is need for main results.

Definition 1.1. [3] A binary operation ∗ : [0, 1] × [0, 1] −→ [0, 1] is said to be continuous
t-norm if ([0, 1], ∗) is a topological monoid with unit 1 such that a ∗ b ≤ c ∗ d whenever
a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1] .

Definition 1.2. [6] The 3-tuple (X,N, ∗) is said to be a fuzzy normed space if X is a
vector space, ∗ is a continuous t-norm and N is a fuzzy set on X × (0, ∞) satisfying the
following conditions for every x, y ∈ X and t, s > 0,

(i)N(x, t) > 0,
(ii)N(x, t) = 1 ⇔ x = 0,
(iii)N(αx, t) = N(x, t/|α|), for all α ̸= 0,
(iv)N(x, t) ∗ N(y, s) ≤ N(x + y, t + s),
(v)N(x, .) : (0, ∞) −→ [0, 1] is continuous,
(vi) limt→∞ N(x, t) = 1.
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Lemma 1.3. [6] Let (X,N, ∗) be a fuzzy normed space. Then
(i) N(x, t) is nondecreasing with respect to t for each x ∈ X,
(ii)N(x − y, t) = N(y − x, t).

Definition 1.4. [3] Let (X, N, ∗) be a fuzzy normed space. A subset X is called fuzzy
bounded (f-bounded), if there exists t > 0 and 0 < r < 1 such that N(x, t) > 1 − r for all
x ∈ X.

Definition 1.5. [3] Let (X, N, ∗) be a fuzzy normed space and {xn} a sequence in X.
Then {xn} is said convergent to x ∈ X if for each 0 < ϵ < 1 and t ∈ (0,∞) there existe
N0 such that N(xn − x, t) > 1 − ϵ for each n ≥ N0.

Definition 1.6. Let A be a non-empty f-bounded subset of a fuzzy normed space (X, N, ∗)
for x ∈ X, t > 0, let

δ(A, x, t) =
∧

y∈A

N(y − x, t).

An element y0 ∈ A is said to be a t-farthest point of x from A if

N(y0 − x, t) = δ(A, x, t).

We shall denote the set of all elements of t-farthest points of x from A by F t
A(x); i.e.,

F t
A(x) = {y ∈ A : δ(A, x, t) = N(y − x, t)}.

If each x ∈ X has at least one t-farthest in A, then A is called a t-remotest fuzzy set.

Let (X, N, ∗) be a fuzzy normed space, A and B, f-bounded subsets of X. If there is
a pair (x0, y0) ∈ A × B for which N(x0 − y0, t) = δ(A,B, t), that δ(A,B, t) is t-remotest
fuzzy distance of A and B, define by

δ(A, B, t) =
∧

x∈A

δ(B, x, t).

Then the pair (x0, y0) is called a t-remotest pair for A and B and put

F t(A,B) := {(x, y) ∈ A × B : N(x − y, t) = δ(A,B, t)}

as the set of all remotest pairs.

2 Main results

In this section we prove existence of the t-remotest points and the t-approximate remotest
points by considering the cyclic map T on A ∪ B.

Definition 2.1. Let A and B be non-empty f-bounded subsets of a fuzzy normed space
(X,N, ∗) and T : A ∪ B −→ A ∪ B a cyclic map. The point x ∈ A ∪ B is a t-remotest
point of the map T, if N(x − Tx, t) = δ(A,B, t).
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Definition 2.2. Let A and B be non-empty f-bounded subsets of a fuzzy normed space
(X,N, ∗) and T : A∪B −→ A∪B be a cyclic map. The point x ∈ A∪B is a t-approximate
remotest point of the map T, if N(x − Tx, t) ≤ δ(A,B, t) + ϵ, for some 0 < ϵ < 1. Put

F a,t
T (A,B) = {x ∈ A ∪ B : N(x − Tx, t) ≤ δ(A,B, t) + ϵ for some 0 < ϵ < 1}.

We say that the pair (A,B) is a t-approximate remotest pair.

Example 2.3. Suppose X = R2 with usual metric, A = {(x, y) : (x − 2)2 + (y − 2)2 ≤ 1}
and B = {(x, y) : (x + 2)2 + (y − 2)2 ≤ 1}. We define T (x, y) = (−x, y) for (x, y) ∈ A ∪ B.
Let x := (x1, y1) and y := (x2, y2), define

N(x − y, t) =
t

t + d(x, y)
.

So

N((2.9, 1.9) − (−2.9, 1.9), t) =
t

t + 5.8
≤ t

t + 6
+

t

(t + 6)2
.

Therefore
N((2.9, 1.9) − (−2.9, 1.9), t) ≤ δ(A,B, t) + ϵ,

for ϵ = t
(t+6)2

. Hence the pair (A,B) is a t-approximate remotest pair.

Theorem 2.4. Let A and B be non-empty f-bounded subsets of a fuzzy normed space
(X,N, ∗). Suppose that the continuous cyclic mapping T : A ∪ B −→ A ∪ B satisfying

N(Tx − Ty, t) ≤ αN(x − y, t) + β[N(x − Tx, t) + N(y − Ty, t)] + γδ(A,B, t) (2.1)

for all x, y ∈ A ∪ B, where α, β, γ > 0 and α + 2β + γ < 1. For x0 is an arbitrary point in
A, define xn+1 = Txn for every n ≥ 0. If {x2n} has a convergent subsequence in A, then
there exists a x ∈ A with N(x − Tx, t) = δ(A,B, t).

Theorem 2.5. Let A and B be non-empty f-bounded subsets of a fuzzy normed space
(X,N, ∗). Suppose that the cyclic mapping T : A ∪ B −→ A ∪ B satisfying

lim
n→∞

N(Tnx − Tn+1x, t) = δ(A,B, t) for some x ∈ A ∪ B.

Then the pair (A,B) is a t-approximate remotest pair.

Theorem 2.6. Let A and B be non-empty f-bounded subsets of a fuzzy normed space
(X,N, ∗). Suppose that the cyclic mapping T : A∪B −→ A∪B satisfying inequality (2.1),
for all x, y ∈ A ∪ B, where α, β, γ > 0 and α + 2β + γ < 1. Then the pair (A,B) is a
t-approximate remotest pair.
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Some results on almost L-Dunford–Pettis sets in Banach

lattices
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Abstract

Following the concept of L–limited sets in dual Banach spaces, we introduce the
concept of almost L–Dunford–Pettis sets in dual Banach lattices. Then by a class
of operators on Banach lattices, so called disjoint Dunford–Pettis completely contin-
uous operators, we characterize Banach lattices with the positive relatively compact
Dunford–Pettis property.

Keywords: Dunford–Pettis set, relatively compact Dunford–Pettis property, Dunford–
Pettis completely continuous operator.
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1 Introduction

A subset A of a Banach space X is called limited (resp. Dunford–Pettis (DP)), if every
weak∗ null (resp. weak null) sequence (x∗n) in X∗ converges uniformly on A, that is

lim
n→∞

sup
a∈A
|〈a, x∗n〉| = 0.

Also if A ⊆ X∗ and every weak null sequence (xn) in X converges uniformly on A, we say
that A is an L–set.
Every relatively compact subset of E is DP. If every DP subset of a Banach space X is
relatively compact, then X has the relatively compact DP property (abb. DPrcP). For
example, dual Banach spaces with the weak Radon-Nikodym property (abb. WRNP )
and Schur spaces (i.e., weak and norm convergence of sequences in X coincide) have the
DPrcP [4] and [5]. Also we recall that a Banach space X has the DPrcP if and only if
every DP and weakly null sequence (xn) in X is norm null.
Recently, the authors in [7] and [8], introduced the class of L–limited sets and Dunford–
Pettis completely continuous (abb. DPcc) operators on Banach spaces. In fact, a bounded
linear operator T : X → Y between two Banach spaces is DPcc if it carries DP and weakly
null sequences in X to norm null ones in Y . The class of all DPcc operators from X to
Y is denoted by DPcc(X,Y ). A norm bounded subset B of a dual Banach space X∗ is
said to be an L–limited set if every weakly null and limited sequence (xn) of X converges
uniformly to zero on the set B, that is supf∈B |f(xn)| → 0. We use some techniques to
those in [2] for L–sets and almost L– sets in Banach lattices.
We refer the reader for undefined terminologies, to the classical references [1]
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2 Almost L-DP sets in Banach lattices

In this section we introduce a new class of sets and operators. Recall that a sequence (xn)
in a Banach lattice E is (pairwise) disjoint, if for each i 6= j, |xi| ∧ |xj | = 0.

Definition 2.1. Let E be a Banach lattice and X be a Banach space. Then

(a) A norm bounded subset B of a dual Banach lattice E∗ is said to be an almost L–DP
set if every disjoint weakly null and DP sequence (xn) of E converges uniformly to
zero on the set B, that is supf∈B |f(xn)| → 0.

(b) An operator T from a Banach lattice E into a Banach space X is a disjoint DP
completely continuous (abb. DP dcc) operator if the sequence (‖Txn‖) converges to
zero for every weakly null and DP sequence of pairwise disjoint elements in E.

Note that every L–DP set of a dual Banach lattice, is an almost L–DP set, but the
converse is false, in general. In fact for many Banach lattices E with the positive DPrcP
and without the DPrcP, the closed unit ball of the dual Banach lattice E∗ is an almost
L–DP set, but it is not L–DP set. As an example, the closed unit ball B`∞ of `∞ is an
almost L–DP set in `∞, but the closed unit ball B(`∞)∗ is not an almost L–DP set in
(`∞)∗.

Proposition 2.2. Let E be a Banach lattice and B be a norm bounded set in E∗. Then
the following are equivalent:

(a) B is an almost L–DP set,

(b) For each sequence (fn) in B, fn(xn) → 0, for every disjoint weakly null and DP
sequence (xn) of E.

Now, similar [2] we show that an order interval of a dual Banach lattice E∗ is an almost
L–DP set.

Proposition 2.3. Let E be a Banach lattice, then [−f, f ] is an almost L–DP set in E∗,
for each f ∈ (E∗)+.

From [1], an operator T from a Banach lattice E into another F is said to be order bounded
if for each x ∈ E+, the subset T ([−x, x]) is order bounded in F .

Proposition 2.4. Let T be an order bounded operator from a Banach lattice E into a
Banach lattice F . Then T ∗([−f, f ]) is an almost L–DP set, for each f ∈ (E∗)+.

Theorem 2.5. Let T be an order bounded operator from a Banach lattice E into a Banach
lattice F and B be a norm bounded solid subset of F ∗. Then the following are equivalent:

(a) T ∗(B) is an almost L–DP set in E∗,

(b) {T ∗fn : n ∈ N} is an almost L–DP set, for each f ∈ B+ and for each disjoint
sequence (fn) in B+.

Corollary 2.6. Let T be an order bounded operator from a Banach lattice E into another
Banach lattice F and B be a norm bounded solid subset of F ∗. Then the following are
equivalent:
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(a) T ∗(B) is an almost L–DP set in E∗,

(b) fn(Txn) → 0, for every disjoint weakly null and DP sequence (xn) of E+ and for
each disjoint sequence (fn) in B+.

Corollary 2.7. Let E be a Banach lattice and B be a norm bounded solid subset of E∗.
Then the following are equivalent:

(a) B is an almost L–DP set,

(b) {fn : n ∈ N} is an almost L–DP set for each disjoint sequence (fn) in B+.

The next result characterizes the class of DP dcc operators by almost L–limited sets.

Corollary 2.8. For an order bounded operator T from a Banach lattice E into another
Banach lattice F , the following are equivalent:

(a) T is DP dcc,

(b) T ∗(BF ∗) is an almost L– DP set, where BF ∗ is the closed unit ball of F ∗,

(c) {T ∗(fn) : n ∈ N} is an almost L–DP set for each disjoint sequence (fn) in (BF ∗)
+,

(d) fn(T (xn))→ 0, for every disjoint weakly null and DP sequence (xn) of E+ and for
each disjoint sequence (fn) in (BF ∗)

+.

Definition 2.9. A Banach lattice E has the positive DPrcP if each weakly null and DP
sequence with the positive terms is norm null.

It is clear that the DPrcP implies the positive DPrcP.

Theorem 2.10. Let E be a Banach lattice and E∗ has the weakly sequentially continuous
lattice operations. Then the following are equivalent:

(a) E has the positive DPrcP,

(b) Every weakly null and disjoint DP sequence in E converges to zero in norm.

Corollary 2.11. Let E be a Banach lattice and E∗ has the weakly sequentially continuous
lattice operations. Then the following are equivalent:

(a) E has the positive DPrcP,

(b) For each Banach lattice F , DP dcc(E,F ) = L(E,F ),

(c) DP dcc(E, `∞) = L(E, `∞).

Theorem 2.12. A Banach lattice E such that E∗ has the weakly sequentially continuous
lattice operations has the positive DPrcP iff every bounded set in E∗ is an almost L–DP
set.

In the following Theorem 2.13, we show that the positive DPrcP and the DPrcP, coincide
in the class of discrete Banach lattices. We know that, every weakly null sequence in `∞
and c0 is DP.
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Theorem 2.13. Let E be a discrete Banach lattice. Then E has the positive DPrcP, if
and only if, it has the DPrcP.

Proof. Since the positive DPrcP is inherited by closed Riesz subspaces and c0 does not
have the positive DPrcP, then E does not contain any order copy of c0. According to [6,
Corollary 2.4.12], E is KB space, and so it possesses the DPrcP by [3].

As an application of the above Theorem 2.13, L1[0, 1] does not have the DPrcP, but it has
positive DPrcP.

Lemma 2.14. Let T : E → X from a Banach lattice E such that E∗ has the weakly
sequentially continuous lattice operations to a Banach space be an operator. Then the
following are equivalent:

(a) T is DP dcc,

(b) if the sequence (‖Txn‖) converges to zero for every weakly null and DP sequence in
E+,

(c) if the sequence (‖Txn‖) converges to zero for every weakly null and DP sequence of
pairwise disjoint elements in E+
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Some Results on Best Proximity Pairs in Banach lattice

spaces
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Abstract

We are going to study best proximity pair in a lattice Banach space X with a
strong unit 1. Also we develop a theory of best pair proximity for closed upward sets.
By the way, give efcient algorithm for finding distance between two sets.

Keywords: Best proximity pair, Lattice Banach space, Upward set.
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1 Introduction

A pair (x0, y0) ∈ A × B for which ‖x0 − y0‖ = dist(A,B) is called a best proximity pair
for A B, in this case the pair (A,B) is said to have the best proximity pair in X. Now

Prox(A,B) = {(x, y) ∈ A×B : ‖x− y‖ = dist(A,B)}

is the set of all best proximity pairs for the pair (A,B).
A best proximity pair evolves as a generalization of the best approximation considered

by Beer, Pai and Veeramani [1, 2], Kima and Lee [3, 4], Sahney and Singh [5], Singer
[6] and Xu [7], of exploring some of the sufficient conditions for the non-empty of the set
Prox(A,B).

In this paper we discuss the concepts of best proximity pair on lattice Banach with
strong unit 1; Also we are intend to find an algorithm for the distance of two sets by best
proximity pair.

2 Main results

Recall that the set X endowed with partially ordered relation ≤ is said to be lattice if for
every x, y ∈ X, sup{x, y} and inf{x, y} exist in X which is denoted by (X,≤). Also vector
lattice (X,≤,+, .) is a lattice (X,≤), with a binary operation + and scalar product . such
that (X,+, .) is a vector space ( see in [2]).
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Recall that an element 1 ∈ X is called a strong unit if for each x ∈ X there exists a
0 < λ ∈ R such that x ≤ λ1. Using a strong unit 1, then

‖x‖ = inf{λ > 0 : |x| ≤ λ1}

for every x ∈ X, is a norm on X. In this case for every x ∈ X, |x| ≤ ‖x‖1. If vector
lattice (X,≤) induced by this normed that is complete is said to be Banach lattice. There
are well-know examples of vector lattices with the strong units, the lattice of all bounded
functions defined on a set X and also the lattice L∞(S,Σ, µ) of all essentially bounded
functions on a space S with a σ-algebra of Σ and measure µ.

In the following, we suppose that the Banach lattice (X,≤) with a strong unit 1
satisfies in one of the following equivalent conditions:

(1) Every non-empty lower bounded set admits an infimum,
(2) Every non-empty upper bounded set admits a supremum,

also
|x| ≤ |y| ⇒ ‖x‖ ≤ ‖y‖,

for every x, y ∈ X. For every subset B of X and for every positive real r, define

U(B, r) = {y ∈ X : inf
b∈B
‖b− y‖ ≤ r}

= {y ∈ X : inf B − r1 ≤ y ≤ supB + r1}

Recall that U ⊆ X is an upward set if u ∈ U and u ≤ x, then x ∈ U .
For instance suppose x ∈ X and U = {y ∈ X : x ≤ y}. Then U is an upward set of

X.

Let X be a conditionally complete lattice Banach space with a strong unit 1. We start
with the following result which has proved in [8]. In the rest of the paper we shall assume
that S is a non-empty bounded set in X.

Lemma 2.1. ([8], Proposition 3.1). Let W be a upward subset of X and x ∈ X. Then
the following are true:
(1) If x ∈W , then x− ε1 ∈ intW for all ε > 0.
(2) We have

intW = {x ∈ X : x+ ε1 ∈ intW for some ε > 0}.

Proposition 2.2. Let A,B be closed subsets of X such that A∩B = ∅. Then Prox(A,B) ⊂
∂A× ∂B.

In the following we show that if X do not be a vector space previous theorem is
incorrect.

Example 2.3. Suppose X := {(x, y) ∈ R2 : |x| ≥ 1} in the Euclidean plane, endowed
with the metric induced by the Euclidean metric, let

A := {(x, y) ∈ X : |x− 2| ≤ 1 and |y| ≤ 1}

B := {(x, y) ∈ X : |x+ 2| ≤ 1 and |y| ≤ 1}.
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Then Prox(A,B) = {((−1, a), (1, a)) : |a| ≤ 1}, which ∈ IntA× IntB.

U(S, r) = {y ∈ X : inf
s∈S
‖s− y‖ ≤ r}

= {y ∈ X : inf S − r1 ≤ y ≤ supS + r1}

Theorem 2.4. Let A be a closed upward subset of X and B a compact set in X. Then the
pair (A, B) has best proximity pair in X.

Example 2.5. Let X := R2 endowed by the Euclidean norm and natural order. If

A = {(x, 0) : x ∈ R} , B = {(x, y) : x ∈ R+, y ≥ 1

x
}.

Therefore B is a upward set and since A is not compact, Prox(A,B) = ∅.

Theorem 2.6. Let A be a closed upward subset of X and B a compact set in X. Then
there exists the largest element (a0, b0) := max(Prox(A,B)).

In continue we want to find an algorithm for distance of two sets A,B of normed space
X by best proximity pair.

Lemma 2.7. Let A,B be closed subsets of normed space X. If (a0, b0) ∈ A×B is a unique
best proximity pair, then there exist a decreasing sequence {αk}k≥1 and an increasing
sequence {βk}k≥1 of positive real numbers, such that

βk < ‖a0 − b0‖ < αk

and

αk − βk =
1

2k−1
(α1 − β1)

for every k ∈ N.

This theorem suggests an ”algorithm” for computing the dist(A,B).

Theorem 2.8. Let X be a normed space, A and B compact subsets of X. If (a0, b0) ∈
A×B is a unique best proximity pair for A×B, then there exists a sequence {an}n≥1 in
∂A and {bn}n≥1 in ∂B such that

lim
n→∞

an = a0 and lim
n→∞

bn = b0

and
‖a0 − an+1‖ ≤ ‖a0 − an‖ and ‖b0 − bn+1‖ ≤ ‖b0 − bn‖

for every n ∈ N .

Remark 2.9. If X is finite-dimensional, then in Theorem (2.8), we can omit the com-
pactness of A and B.
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Abstract

In this paper we state some sufficient conditions for an operator to be subspace-
hypercyclic. We also Costruct some interesting examples of subspace-hypercyclic op-
erators with special properties.

Keywords: Subspace-hypercyclic operators, Subspace-mixing operators, Subspace-
transitive operators.

Mathematics Subject Classification [2010]: 47A16, 47B37

1 Introduction

Recently Madore and Martinez-Avendano in [3] introduced the concept of subspace-
hypercyclicity for an operator as follows:

Definition 1.1. Let T ∈ B(X) and let M be a closed subspace of X. We say that T is
M -hypercyclic, if there exists x ∈ X such that orb(T, x)∩M is dense in M . Such a vector
x is called an M -hypercyclic vector for T .

Definition 1.2. Let T ∈ B(X) and let M be a closed subspace of X. We say that T is
M -transitive, if for any non-empty open sets U ⊆ M and V ⊆ M , there exists n ∈ N0

such that T−n(U) ∩ V contains a relatively open nonempty subset of M .

Theorem 1.3. ([3])Let T ∈ B(X) and let M be a nonzero closed subspace of X. If T is
M -transitive, then T is M -hypercyclic.

It is proved in [3] by Madore and Martinez-Avendano that the converse of Theorem1.3
is not always true. So there are subspace-hypercyclic operators that are not subspace-
transitive.
In [1], [2] and [5] one can find more results about subspace-hypercyclic operators.

In this paper we state some sufficient conditions for an operator to be subspace-
hypercyclic. Also we construct various examples of subspace-hypercyclic operators by
using these conditions.
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2 Main results

Throughout this paper X always is an F -space, a complete metrizable topological vector
space and B(X) is the space of bounded linear operators on X. We also denote by M a
closed nonempty subspace of X. We can also assume that M is separable, since subspace-
hypercyclicity can only occur with respect to separable and infinite dimensional subspaces
([3]).

Lemma 2.1. Let T ∈ B(X) and let M be a closed subspace of X. Suppose that for any
nonempty open subsets U ⊆ M and V ⊆ M , there is n ∈ N0 such that Tn(U) ∩ V ̸= ϕ.
Then ∪n≥n0T

n(cBM ) is dense in M for any c > 0 and any n0 ∈ N, where BM is the open
unit ball of M .

By using Lemma 2.1, we state our first sufficient condition for subspace-hypercyclicity.

Theorem 2.2. ([4]) Let T ∈ B(X) and let M be a closed subspace of X such that T
satisfies the following conditions:

(i) For any nonempty open subsets U ⊆ M and V ⊆ M , there is n ∈ N0 such that
Tn(U) ∩ V ̸= ϕ.

(ii) There exists a dense subset X0 of M such that Tnx → 0 as n → ∞, for any x ∈ X0.

Then T is M -hypercyclic.

Let T ∈ B(X). We say that T is an M -mixing operator, if for any non-empty open sets
U ⊆ M and V ⊆ M , there exists a positive integer N such that Tn(U) ∩ V is non-empty
for any n > N ([6]). If an operator be M -mixing, it satisfies condition (i) of Theorem 2.2.
So we have the following corollary:

Corollary 2.3. Let T ∈ B(X) be M -mixing. If there exists a dense subset X0 of M such
that for any x ∈ X0, Tn(x) → 0 as n → ∞, then T is M -hypercyclic.

In the next theorem we give a sufficient condition for an operator to be subspace-mixing
that also is a sufficient condition for subspace-hypercyclicity.

Theorem 2.4. ([4]) Let T ∈ B(X) and let M be a closed subspace of X. If there are
dense subsets X0 and Y0 of M and there is a map S : Y0 → Y0 such that:

(i) Tnx → 0 for any x ∈ X0.

(ii) Sny → 0 for any y ∈ Y0.

(iii) TSy = y for any y ∈ Y0.

Then T is M -mixing. Specially T is M -hypercyclic.

Proof. Let U and V be nonempty open subsets of M . Suppose that x ∈ U ∩ X0 and
y ∈ V ∩ Y0. If we define un = Sny, then un ∈ Y0 by hypothesis. Also:

un → 0 and x + un → x
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as n → ∞. So
Tn(x + un) = Tn(x) + Tn(un) → y as n → ∞

Therefore if we choose N large enough, for any n ≥ N ;

x + un ∈ U and Tn(x + un) ∈ V

That means for any n ≥ N , we have Tn(U)∩V ̸= ϕ. Hence T is an M -mixing operator.
Now since Tnx → 0 for every x ∈ X0, by Theorem 2.2, T is M -hypercyclic.

By using Theorem 2.4, we construct an operator such that for any m ∈ N , Tm is subspace-
hypercyclic.

Example 2.5. Let B be the backward shift on l2, that is for (x1, x2, x3, ...) ∈ l2 defined
as

B(x1, x2, x3, ...) = (x2, x3, ...).

Let λ be a scalar with |λ| > 1 and let T = λB. Then for any m ∈ N , Tm = (λB)m is
subspace-mixing with respect to

M = {{an}∞
n=1 : a2k+1 = 0 for all k ∈ N}.

Specially Tm is M -hypercyclic for any m ∈ N .

Proof. Consider a natural number m. Let X0 = Y0 be the subsets of M , that consist all
finite sequences. That is not hard to see that (Tm)n(x) = Tmn(x) → 0 as n → ∞. If we
define S = ( 1

λF )m, where F is the forward shift on l2, that is defined as:

F (x1, x2, x3, ...) = (0, x1, x2, x3, ...),

then the conditions (ii) and (iii) of Theorem 2.4 are satisfied. So Tm is M -mixing.
Moreover by Theorem 2.2 Tm is M -hypercyclic.

In the next example you see an operator T , that both T and T ∗, the adjoint of T , are
subspace-hypercyclic with respect to same subspace.

Example 2.6. Let K = B be the backward shift on l1(N, v) = {{xn}n∈N ; ||xn|| =∑ |xn|vn < ∞}, where for every n ∈ N , vn = 1
n+1 and

M = {{xn}n∈N ∈ l1(N, v); xn = 0 for n < m}.

Similar to Example 2.5, K is M -hypercyclic.
The adjoint of K is the forward shift F . Let T = K∗ = F . If we consider X0 = Y0, the

set of finite sequence and consider S = B, then X0, Y0 and S satisfies three conditions of
Theorem 2.4. So K∗ = F is M -mixing. Clearly for every x ∈ X0, Tn(x) → 0 as n → ∞.
So by Theorem 2.2 K∗ is M -hypercyclic too.
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Abstract

The purpose of this work is to give some new results concerning space of operators
in terms of some subsets of Banach space X. We will give equivalent characterization
of Banach spaces X in which every V ∗-subset of X is relatively compact. We also
discuss some applications of these results to the subspaces of bounded linear operators.

Keywords: L-set, DP set, V -set, V ∗-set, completely continuous operator, uncondi-
tionally converging operator
Mathematics Subject Classification [2010]: Primary 46B20; Secondary 46B25,
46B28.

1 Introduction

Throughout this talk, X and Y will denote real Banach spaces. A bounded subset A of
X is called a Dunford-Pettis (DP ) (resp. limited) subset of X if

lim
n

(sup{| x∗n(x) |: x ∈ A}) = 0

for each weakly null (resp. w∗-null) sequence (x∗n) in X∗.
A bounded subset S of X is said to be weakly precompact provided that every sequence

from S has a weakly Cauchy subsequence. The unit ball of a Banach space X is weakly
precompact if and only if X does not contain copies of `1 (by Rosentlal’s `1 theorem).
Every Dunford-Pettis set is weakly precompact , e.g., see [12], p. 377, [1], [8]. We note
that every relatively compact subset of X is limited and every limited subset of X is
Dunford-Pettis. Thus every relatively compact subset of X is DP .

A Banach space X has the Gelfand-Phillips (GP ) property if every limited subset of
X is relatively compact. The Banach space X has the Dunford-Pettis relatively compact
property (DPrcP ) (resp. the RDP ∗ property) if every Dunford-Pettis subset of X is
relatively compact (resp. relatively weakly compact) [3], [7] . Certainly, if a Banach space
X has the DPrcP , then X has the (GP ) property (since any limited set is a DP set).
Note that every Schur space has the DPrcP .

Closely related to the notions of DP sets and limited sets is the idea of an L-set, e.g.,
see Bator [2] and Emmanuele [5], [6]. A Bounded subset A of X∗ is called an L-subset of
X∗ if

lim
n

(sup{| x∗(xn) |: x∗ ∈ A}) = 0

for each weakly null sequence (xn) in X. Emmanuele and Bator [5], [2] showed that
`1 6↪→ X iff any L-subset of X∗ is relatively compact iff X∗ has the DPrcP .
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A bounded subset A of X (resp. A of X∗) is called a V ∗-subset (resp. V -subset of X∗)
of X if

lim
n

(sup{| x∗n(x) |: x ∈ A}) = 0

(resp. lim
n

(sup{| x∗(xn) |: x∗ ∈ A}) = 0)

for each wuc series
∑
x∗n in X∗ (resp.

∑
xn in X).

2 Main results

The following proposition can easily be derived directly from definitions.

Proposition 2.1. Let X be a Banach space. Then we have the following:
1. i) Every DP subset of X∗ is an L-subset of X∗.
ii) Every V ∗-subset of X∗ is a V -subset of X∗.
2. i) Every L-subset of X∗ is a V -subset of X∗.
ii) Every DP subset of X is a V ∗-subset of X.

Proposition 2.2. Let X be a Banach space. If every V -subset of X∗∗ is an L-subset of
X∗∗, then every V ∗-subset of X is a DP subset of X.

The next proposition plays a consistent and important role in this study.

Proposition 2.3. i) (Theorem 3.1 (ii), [3]) T : X → Y is completely continuous if and
only if T ∗(BY ∗) is an L-subset of X∗.

ii) T ∗ : Y ∗ → X∗ is completely continuous if and only if T (BX) is a DP subset of Y .
iii) (Theorem 36.1, [9]) T : X → Y is unconditionally converging if and only if

T ∗(BY ∗) is a V -subset of X∗.
iv) (Theorem 36.2, [9]) T ∗ : Y ∗ → X∗ is unconditionally converging if and only if

T (BX) is a V ∗-subset of

Theorem 2.4. Suppose X is a Banach space X. Then every V ∗-subset of X is a DP
subset of X if and only if for every Banach space Y , every unconditionally converging
adjoint operator T ∗ : X∗ → `∞ is completely continuous.

Recall that a Banach space X has the Dunford-Pettis property (DPP ) if every weakly
compact operator T : X → Y is completely continuous, for each Banach space Y . A
bounded subset S of X is said to be weakly sequentially compact provided that every
sequence from S has a subsequence weakly converging to an element of X. A Banach
space X has property (V ) (resp. V ∗) if every V -subset of X∗ (resp. V ∗-subset of X) is
weakly sequentially compact in the weak topology of X∗ (resp. X). Equivalently, X
has property (V ) if for every Banach space Y , every unconditionally converging operator
T : X → Y is weakly compact [10].

Corollary 2.5. Let Y be a Banach space. Then we have the following:
(i) If X has property (V ) and the Dunford-Pettis property, then every V -subset of X∗

is an L-subset of X∗.
(ii) If every V -subset of X∗ is an L-subset of X∗, then X has the Dunford-Pettis

property.
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Corollary 2.6. Let Y be a Banach space. Then we have the following:
(i) If X has property (V ∗) and the Dunford-Pettis property, then every V ∗-subset of

X is a DP subset of X.
(ii) If every unconditionally converging adjoint operator T ∗ : X∗ → `∞ is completely

continuous, then X has the Dunford-Pettis property .

A Banach space X is said to have the Reciprocal Dunford-Pettis property (RDPP ) if
for every Banach space Y , every completely continuous operator T : X → Y is weakly
compact. Banach spaces with property (V ) have the RDPP [10]. Also, Banach spaces
which which do not contain `1 have property RDPP .

Corollary 2.7. If every V -subset of X∗ is an L-subset of X∗ and the RDPP , then X
has property (V ).

Corollary 2.8. Suppose that every V -subset of X∗ is an L-subset of X∗ and `1 6↪→ X.
Then UC(X,Y ) = K(X,Y ).

Theorem 2.9. Suppose that X and Y are Banach spaces. Then every V ∗-subset of X is
relatively compact if and only if X has the DPrcP and every unconditionally converging
adjoint operator T ∗ : X∗ → `∞ is completely continuous.

Proposition 2.10. Let X is a Banach space. Then BX∗ is a V -subset of X∗ if and only
if L(X,Y ) = UC(X,Y ) for any Banach space Y .

Corollary 2.11. Suppose that X is a Banach space in which every V -subset of X∗ is an
L-subset of X∗ and Y is a Banach space. If BX∗ is a V -subset of X∗, then L(X,Y ) =
CC(X,Y ).
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Spectrum and Eigenvalues of Quaternion Matrices
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Abstract

In this paper we introduce left and right eigenvalues for quaternion-valued matrix
Q. Also, we will show that the spectrum of Q is not the set of its eigenvalues.

Keywords: Quaternion, Quaternion matrix, Right eigenvalue, Real representation

Mathematics Subject Classification [2010]: 15A45, 15A42

1 Introduction

The study of inequalities for compact operators, especially operators acting upon finite-
dimensional spaces, is frequently carried out through an analysis of the eigenvalues or
singular values. For matrices with entries in a general ring R there is no theory of eigen-
values. However, if the ring R is an algebra over algebraically closed field, then existance
of eigenvalues can be proved.

The real quaternion algebra H is known as a four dimensional vector space over the
real number field R with its basis {1, i, j, k} satisfying the multiplication laws

i2 = j2 = k2 = −1 , ijk = −1
ij = −ji = k , jk = −kj = i , ki = −ik = j

and 1 acting as unity element. In this case any element in H can be written as q =
a0 + a1i+ a2j + a3k where a′js are all real numbers.
We shall always write every quaternion q in the form q = z1 + z2j where z1 = a0 + a1i
and z2 = a2 + a3i are complex numbers.
A quaternion matrix Q therefore can be written Q = A1 + A2j, where A1and A2 are
unique complex matrices. The function φ : Mn(H)→M2n(C) then defined by

φ(Q) =

[
A1 −A2

A2 A1

]

is an injective ∗-homomorphism. The matrix φ(Q) is called the complex representation of
Q.
Various operation properties on complex representation of quaternion matrices can easily
be proved:
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Theorem 1.1. Let A,B,C ∈Mn(H) and r ∈ R be given then

a). A = B if and only if φ(A) = φ(B),

b). φ(A+B) = φ(A) + φ(B) , φ(AC) = φ(A)φ(C) , φ(rA) = φ(Ar) = rφ(A),

c). φ(A∗) = (φ(A))∗,

d). A is invertible if and only if φ(A) is invertible and φ(A−1) = (φ(A))−1,

e). A is Hermitian if and only if φ(A) is Hermitian,

f). A is unitary if and only if φ(A) is unitary.

2 Eigenvalues and eigenvectors of quaternion matrices

The spectrum σ(T ) of a linear transformation T acting on a finite-dimensional complex
vector space is the set of eigenvalues of T . For Q ∈ Mn(H), the spectrum of Q is not
generally the set of its eigenvalues. Because H is noncommutative, we have left and right
eigenvalues for quaternion matrices.

Definition 2.1. Let q ∈ H and ξ be a nonzero vector in Hn.

1. If Qξ = ξq, then q is a right eigenvalue and ξ is a right eigenvector associated with
q of Q.

2. If Qξ = qξ, then q is a left eigenvalue and ξ is a left eigenvector associated with q of
Q.

De Leo and Scolarici in [3], argue that in quaternionic quantum mechanics left eigenval-
ues do not represent the same physical quantities as those represented by right eigenvalues.
For each q ∈ H we denote the similarity orbit θ(q) of q by

θ(q) = {w−1qw : w ∈ H \ {0}} .

Proposition 2.2. If ξ is a right eigenvector of Q associated with q then for each w ∈
H \ {0}, wξ is a right eigenvector associated with w−1qw.

Proof. Q(ξw) = (Qξ)w = (ξq)w = (ξw)(w−1qw).

Thus if Q has a nonreal eigenvalue, then it has infinitely many non real right eigenval-
ues, note that the similarity orbit θ(r) of a real number r is the singleton {r}.

The following Lemma of Caylay [2] however shows that only two of these elements are
complex numbers.

Lemma 2.3. If q is a nonreal quaternion then there is a nonreal λ ∈ (C) such that

θ(q) ∩ C = {λ, λ}.

Consequently for each q ∈ H\R, the similarity orbit θ(q) contains exactly one complex
number in the closed upper halfplane C+. The following theorem characterizes the complex
eigenvalues of a quaternion matrix Q.
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Theorem 2.4. Let Q ∈Mn(H) then complex right eigenvalues of Q are exactly eigenvalues
of φ(Q).

Corollary 2.5. Every quaternion matrix Q has at least one right eigenvalue of rank 1.

In [7], Zhang discus the canonical forms, determinants, and numerical ranges of matri-
ces over quaternions. Mn(H) is a real algebra of finite dimension, hence, every Q ∈Mn(H)
satisfies a polynomial equation f(Q) = 0 for some f ∈ R[x], where R[x] is the set of all
polynomial functions of an unknown x with coefficients in R. There is a unique monic
polynomial mQ ∈ R[x] of minimal degree for which f(Q) = 0 if and only if f = g.mQ for
some g ∈ R[x]. The polynomial mQ is called the minimal annihilating polynomial of Q.
We may define therefore the spectrum σ(Q) of Q to be the set of all roots of mQ:

σ(Q) = {λ ∈ C : λ is a root of mQ} .

One of the advantages of the spectrum so defined is the polynomial spectral mapping
theorem (See [4],Theorem 2.26):

σ(f(Q)) = {f(λ) : λ ∈ σ(Q)}

for every f ∈ R[x]. However this definition of the spectrum does not completely matches
the spectrum of a complex matrix (see example below)

Example 2.6. Let Q =

[
j 0
0 i

]
. We have Q2 = −I which implies that mQ(x) = x2 + 1

and therefore σ(Q) = {i,−i} but the diagonal entry j, of the diagonal matrix Q do not
appears as an elements of the spectrum.

Among the results on the complex matrices, an important one, is that normal matrices
are unitarily similar to the diagonal ones. The following theorem shows that the same
result is valid for quaternion matrices.

Theorem 2.7. If Q ∈ Mn(H) is normal then there is a unitary matrix U ∈ Mn(H) and
a diagonal matrix D ∈ Mn(C+) such that U∗QU = D and q ∈ H is a right eigenvalue of
Q if and only if q ∈ θ(λ) for some diagonal element λ of D.

Example 2.8. The diagonal matrix Q =

[
j 0
0 k

]
is normal and its diagonal form is

U∗QU =

[
i 0
0 i

]
= Ii

where the unitary U ∈M2(H) is

U =
1√
2

[
1− k 0

0 1− j

]

This example shows another unattractive feature: Unlike the situation of complex ma-
trices the diagonal form of a quaternion diagonal normal matrix may not be the matrix
itself.
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Proposition 2.9. If Q ∈ Mn(H) is normal then Q∗ = W ∗QW for some unitary W ∈
Mn(H).

The following proposition says that the spectra of Hermitian matrices are eigenvalues
and, the same as the complex matrices, they are all real numbers.

Proposition 2.10. If Q ∈ Mn(H) is Hermitian then every right eigenvalue of Q is real
and λ ∈ σ(Q) if and only if λ is real and λ is a right eigenvalue of Q.
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Starlikeness Of A General Integral Operator On
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Abstract

We define a new integral operator Fpδ0,...,δm(f1, ..., fn) for meromorphic multivalent
functions in the punctured open unit disk. The starlikeness condition for this inte-
gral operator is determined. Several special cases are also discussed in the form of
Corollaries.

Keywords: Meromorphic functions, Integral operator, Meromorphic starlike func-
tions, Meromorphic convex functions.

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Let Σp denote the class of all meromorphic functions of the form

f(z) =
1

zp
+

∞∑

k=0

akz
k (p ∈ N = {1, 2, ...}), (1)

which are analytic and p-valent in the punctured open unit disk

U∗ = {z ∈ C : 0 < |z| < 1} = U \ {0},

where U is the open unit disk U = {z ∈ C : |z| < 1}. In particular, we set Σ1 = Σ.
A function f ∈ Σp is said to be meromorphic p-valent starlike and belongs to the class

MS∗p, if it satisfies the inequality:

−<
{
zf ′(z)
f(z)

}
> 0.

A function f ∈ Σp is said to be meromorphic p-valent convex and belongs to the class
MCp, if it satisfies the inequality:

−<
{

1 +
zf ′′(z)
f ′(z)

}
> 0.
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We note that

f ∈MCp ⇐⇒ −
zf ′

p
∈MS∗p.

In particular, we set

MS∗1 =MS∗ , MC1 =MC.

Definition 1.1. Let n ∈ N,m ∈ {0, 1, 2, ...}, δij ∈ R+∪{0}, for all i = 0, 1, 2, ...,m and j =
1, 2, ..., n and also δi = (δi1, ..., δin) for all i = 0, 1, 2, ...,m, we introduce a new general
integral operator

Fpδ0,...,δm(f1, ..., fn) : Σn
p −→ Σp,

Fpδ0,...,δm(f1, ..., fn)(z) =
1

zp+1

∫ z

0

n∏

j=1

m∏

i=0

(
(−1)i

up+i

pi
f
(i)
j (u)

)δij
du, (2)

where f
(i)
j is the derivative of the function fj of the order i .

Remark 1.2. The integral operator introduced here generalizes the integral operators
defined and studied in [1, 2, 4, 5, 6].

In order to prove the main result, we will need the following Lemma:

Lemma 1.3. (see [3]) Let ψ : C2 → C satisfy the following condition:

<{ψ(is, t)} ≤ 0,

(
s, t ∈ R; t ≤ −|a+ is|2

2

)
. (3)

If the function h(z) = a+ h1z + h2z
2 + . . . , where <(a) > 0, is analytic in U and

<
{
ψ
(
h(z), zh′(z)

)}
> 0 (z ∈ U), (4)

then <{h(z)} > 0.

2 Main results

Theorem 2.1. Let fj ∈ Σp δij ∈ R+ ∪ {0}, for all i = 0, 1, 2, ...,m and j = 1, 2, ..., n
and also δi = (δi1, ..., δin) for all i = 0, 1, 2, ...,m. If

<
{

m∑

t=0

(
−δtj

zf
(t+1)
j (z)

f
(t)
j (z)

)}
> − p

n
+

m∑

t=0

(p+ t)δtj , (5)

for all j = 1, 2, ..., n, then the general integral operator FPδ0,...,δm(f1, ..., fn) defined in Defi-
nition 1.1 belongs to the meromorphic starlike function class MS∗p.

Several special cases are also discussed in the form of Corollaries.
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Sublinear operators on two-parameter martingale spaces
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Abstract

we prove atomic decomposition theorem for the two-parameter martingale weighted
Lorentz spaces. With the help of atomic decomposition we obtain a sufficient condition
for sublinear operators defined martingale weighted Lorentz spaces to be bounded.

Keywords: Atomic decompositions, Two-parameter martingales, Lorentz spaces,
Sublinear operators.
Mathematics Subject Classification [2010]: 60G46, 60G42 and 46E30.

1 Introduction and preliminaries

Atomic decompositions of Lorentz martingales are first studied by Jiao et al. in [2], and in
[1] Ho investigated the atomic decomposition of Lorentz-Karamata martingale spaces sim-
ilarly to the idea of [2]. Riyan and Shixin [5] obtained atomic decomposition for B-valued
martingales in two-parameter case and in [3] Li and Liu proved atomic decomposition
theorems for two-parameter B-valued martingales in weak Hardy spaces. The technique
of stopping times used in the case of one–parameter is usually unsuitable for the case of
two–parameter, but the method of atomic decompositions can deal with them in the same
way. In this paper, by using some ideas of [6, 4] we prove atomic decomposition theorem
for the martingale weighted Lorentz spaces. As an application, of atomic decomposition,
we obtain a sufficient condition for sublinear operator defined on martingale weighted
Lorentz spaces to be bounded.

Let (Ω,F , P ) be a probability space. The distribution function λf of a measurable
function f on Ω is given by

λf (t) = P ({w ∈ Ω : |f(w)| > t}), (t ≥ 0)

and its decreasing rearrangement of f is the function f̃ defined on [0,∞) by

f̃(s) = inf{t > 0 : λf (t) ≤ s}, (s ≥ 0).

Let ϕ > 0 be non-negative and local integrable function on [0,∞). The classical
Lorentz spaces Λq(ϕ) is defined to be the collection of all measurable functions f for
which the quantity

‖f‖Λq(ϕ) :=





(∫∞
0

(
f̃(t)ϕ(t)

)q
dt
t

) 1
q

0 < q <∞,
sups f̃(s)ϕ(s) (q =∞)
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is finite.
Let (Ω,F , P ) be a probability space and {Fn, n ∈ N2} be an increasing family of sub-

σ–algebras of F and f = (fn, n ∈ N2) be an integrable process. Then f is a martingale
if

• f is adapted to the filtration (Fn, n ∈ N2), i.e. each fn is Fn–measurable,

• E[fm|Fn] = fn for all n ≤ m.

The maximal function of a martingale f = (fn, n ∈ N2) is denoted by

f∗n := sup
m≤n
|fm|, f∗ := sup

m∈N2

|fm|.

For a martingale f = (fn, n ∈ N2) relative to (Ω,F , P ), denote the martingale differences
by

dmf := fm1,m2 − fm1−1,m2 − fm1,m2−1 + fm1−1,m2−1,

and dmf := 0 if m1 = 0 or m2 = 0.
We define the square function and the conditional square function of f as follows:

Sm(f) :=


∑

n≤m
| dnf |2




1/2

, S(f) :=


∑

n∈N2

| dnf |2



1/2

,

sm(f) :=


∑

n≤m
En−1 | dnf |2




1/2

, s(f) :=


∑

n∈N2

En−1 | dnf |2



1/2

.

For 0 < q ≤ ∞, martingale weighted Lorentz spaces as follows are defined by

Λ∗q(ϕ) =
{
f = (fn)n∈N2 : ‖f‖Λ∗q(ϕ) := ‖f∗‖Λq(ϕ) <∞

}
,

Λsq(ϕ) =
{
f = (fn)n∈N2 : ‖f‖Λsq(ϕ) := ‖s(f)‖Λq(ϕ) <∞

}
,

ΛSq (ϕ) =
{
f = (fn)n∈N2 : ‖f‖ΛSq (ϕ) := ‖S(f)‖Λq(ϕ) <∞

}
.

Note that if ϕ(t) = t
1
p , then Λq(ϕ) = Lp,q and Λsq(ϕ) = Hs

p,q. In particular, if ϕ(t) = t
1
q ,

then Λq(ϕ) = Lq, Λ∗q(ϕ) = H∗q , Λsq(ϕ) = Hs
q and ΛSq (ϕ) = HS

q . For two non–negative
quantities A and B by A . B we mean that there exists a constant C > 0 such that
A ≤ CB, and by A ≈ B that A . B and B . A.

2 Atomic decomposition

In this section, we establish atomic decomposition theorem of martingale weighted Lorentz
spaces.

Definition 2.1. A function a ∈ Lr is called a (p, r) atom if there exists a stopping time
ν such that
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1. an := Ena = 0 if ν 6� n

2. ‖ a∗ ‖r≤ P (ν 6=∞)1/r−1/p (0 < p ≤ r, 1 < r ≤ ∞).

Theorem 2.2. If f = (fn, n ∈ N2) ∈ Λsq(ϕ), 0 < q ≤ ∞, then there exist a sequence

{(ak, νk)}k∈Z of (p, 2) atoms (0 < p ≤ 2) such that

∞∑

k=−∞
µkEna

k = fn

where µk = 2k+1
√

2P (νk 6=∞)1/p and

‖{2kw(P (νk 6=∞))}k∈Z‖lq . ‖f‖Λsq(ϕ). (1)

Moreover, if 0 < q ≤ 1, then

‖f‖Λsq(ϕ) ≈ inf ‖{2kw(P (νk 6=∞))}k∈Z‖lq
where the infimum is taken over all the preceding decompositions of f .

Applying the Theorem 2.2 for ϕ(t) = t1/q we get the next theorem

Corollary 2.3. If the martingale f ∈ Hs
p,q, 0 < q ≤ ∞, 0 < p ≤ 2 then there exist a

sequence ak of (p, 2) atoms and a sequence µ ∈ lp such that

fn =
∞∑

k=−∞
µka

k
n, n ∈ N2

and

‖(µk)k∈Z‖lq . ‖f‖Hs
p,q
.

Conversely if 0 < q ≤ 1, q ≤ p ≤ 2, and the martingale f has the above decomposition,
then f ∈ Hs

p,q and

‖f‖Hs
p,q
≈ inf ‖(µk)k∈Z‖lq .

If we take ϕ(t) = t1/p in Theorem 2.2, then we get the following result, which has
proved by Weisz [6]

Corollary 2.4. If the martingale f ∈ Hs
p , 0 < p ≤ 2 then there exist a sequence ak of

(p, 2) atoms and a sequence µ ∈ lq such that for all n ∈ N2

fn =
∞∑

k=−∞
µka

k
n, n ∈ N2

and

(

∞∑

k=−∞
| µk |p)1/p . ‖f‖Hs

p
.

Conversely if 0 < p ≤ 1, and the martingale f has the above decomposition, then f ∈ Hs
p

and

‖f‖Hs
p
≈ inf(

∞∑

k=−∞
| µk |p)1/p.
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3 Sublinear operator on martingale spaces

As an application of atomic decompositions, we get some sufficient conditions which make
the sublinear operator to be bounded from the martingale weighted Lorentz spaces to
weighted Lorentz spaces.

An operator T : X → Y is called a sublinear operator if it satisfies

|T (f + g)| ≤ |Tf |+ |Tg|, |T (αf)| ≤ |α||Tf |, (α ∈ R)

where X is a martingale spaces, Y is a measurable function space.

Theorem 3.1. Let T : Hs
2 → L2 be a bounded sublinear operator. For every atom a of

(p, 2) (0 < p < 2), if Ta = 0 on {νk = ∞}, where ν is the stopping time associated with
a, then

‖Tf‖Λ∞(ϕ) ≤ ‖f‖Λs∞(ϕ), (f ∈ Λs∞(ϕ)).

Corollary 3.2. The following imbeddings hold:

Λs∞(ϕ) ↪→ Λ∗∞(ϕ), Λs∞(ϕ) ↪→ ΛS∞(ϕ).
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Ternary (σ, τ, ξ)-Derivations on Banach Ternary Algebras
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Abstract

Let A be a Banach ternary algebra over a scalar field R or C and X be a Banach
ternary A-module. Let σ, τ and ξ be linear mappings on A. We define a ternary
(σ, τ, ξ)-derivation and a Lie ternary (σ, τ, ξ)-derivation. Moreover, we prove the gen-
eralized Hyers-Ulam-Rassias stability of ternary and lie ternary (σ, τ, ξ)-derivations on
Banach ternary algebras.

Keywords: Banach ternary A-module, Ternary (σ, τ, ξ)-derivation, Hyers–Ulam–
Rassias stability.

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Ternary algebraic operations were considered in the 19 th century by several mathemati-
cians such as A. Cayley [3] who introduced the notion of cubic matrix which in turn was
generalized by Kapranov, Gelfand and Zelevinskii in 1990 ( [4]).
A ternary (associative) algebra (A, [ ]) is a linear space A over a scalar field F = (R or C)
equipped with a linear mapping, the so-called ternary product, [ ]: A× A× A→ A such
that [[abc]de] = [a[bcd]e] for all a, b, c, d, e ∈ A. This notion is a natural generalization of
the binary case. It is known that unital ternary algebras are trivial and finitely generated
ternary algebras are ternary subalgebras of trivial ternary algebras [1].

By a Banach ternary algebra we mean a ternary algebra equipped with a complete
norm ‖.‖ such that ‖[abc]‖ ≤ ‖a‖‖b‖‖c‖.

Let A be a Banach ternary algebra and X be a Banach space. Then X is called a
ternary Banach A-module, if module operations A× A×X → X, A×X × A → X, and
X ×A×A→ X are C-linear in every variable. Moreover satisfy:

max{‖[xab]X‖, ‖[axb]X‖, ‖[abx]X‖} ≤ ‖a‖‖b‖‖x‖
for all x ∈ X and all a, b ∈ A.

Let σ, τ and ξ be linear mappings on A. A linear mapping D : (A, [ ]A)→ (X, [ ]X) is
called a ternary (σ, τ, ξ)-derivation, if

D([abc]A) = [D(a)τ(b)ξ(c)]X + [σ(a)D(b)ξ(c)]X + [σ(a)τ(b)D(c)]X (1)
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for all a, b, c ∈ A.
The stability of functional equations was first introduced by S. M. Ulam [11] in 1940.

More precisely, let G1, be a group, (G2, d) be a metric group and ε be a positive number,
S. M. Ulam asked, does there exist a δ > 0 such that if a function f : G1 −→ G2 satisfies
the inequality d(f(xy), f(x)f(y)) < δ for all x, y ∈ G1, then there exists a homomorphism
T : G1 → G2 such that d(f(x), T (x)) < ε for all x ∈ G1?. When this problem has a
solution, we say that the homomorphism from G1 to G2 is stable.

This phenomenon of stability that was introduced by Th. M. Rassias [8] is called the
Hyers-Ulam-Rassias stability, according to J. M. Rassias Theorem, as follows:

Theorem 1.1. Let f : V −→W be a mapping from a norm vector space V into a Banach
space W subject to the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) (2)

for all x, y ∈ V, where ε and p are constants with ε > 0 and p < 1. Then there exists a
unique additive mapping T : V −→W such that

‖f(x)− T (x)‖ ≤ 2ε

2− 2p
‖x‖p (3)

for all x ∈ V. If p < 0 then inequality (2) holds for all x, y 6= 0, and (3) for x 6= 0. Also, if
the function t 7→ f(tx) from R into W is continuous for each fixed x ∈ V, then T is linear.

On the other hand J. M. Rassias ( [7]) generalized the Hyers stability result by present-
ing a weaker condition controlled by a product of different powers of norms. According to
J. M. Rassias Theorem [9]:

Theorem 1.2. If it is assumed that there exist constants Θ ≥ 0 and p1, p2 ∈ R such that
p = p1 + p2 6= 1, and f : V →W is a mapping from a norm space V into a Banach space
W such that the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ Θ‖x‖p1‖y‖p2

for all x, y ∈ V holds, then there exists a unique additive mapping T : V →W such that

‖f(x)− T (x)‖ ≤ Θ

2− 2p
‖x‖p,

for all x ∈ V. If in addition for every x ∈ V, f(tx) is continuous in real t for each fixed x,
then T is linear (see [6]).

2 Ternary (σ, τ, ξ)-derivations on Banach ternary algebras

Throughout this section, assume that (A, [ ]A) is a Banach ternary algebra and (X, [ ]X)
is a ternary Banach A-module.

Lemma 2.1. Let V and W be linear spaces and let f : V → W be an additive mapping
such that f(µx) = µf(x) for all x ∈ V and all µ ∈ T1(:= {λ ∈ C ; |λ| = 1}). Then the
mapping f is C-linear. [5]

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Ternary (σ, τ, ξ)-derivations on Banach ternary algebras pp.: 2–4

635



Lemma 2.2. Let f : A→ X be a mapping such that

f(
µx+ y + z

4
) + f(

3µx− y − 4z

4
) + f(

4µx+ 3z

4
) = 2µf(x), (4)

for all x, y, z ∈ A and µ ∈ T1. Then f is C-linear. [2]

The first result is as follows:

Theorem 2.3. Let p 6= 1 and θ be nonnegative real numbers, and let f : A → X be a
mapping and σ, τ, and ξ be linear mappings on A such that

f(
µx+ y + z

4
) + f(

3µx− y − 4z

4
) + f(

4µx+ 3z

4
) = 2µf(x), (5)

for all µ ∈ T1 and all x, y, z ∈ A,

‖f([xyz]A)− [f(x)τ(y)ξ(z)]X− [σ(x)f(y)ξ(z)]X− [σ(x)τ(y)f(z)]X‖ ≤ θ‖x‖p‖y‖p‖z‖p (6)

for all x, y, z ∈ A. Then the mapping f : A→ X is a ternary (σ, τ, ξ)-derivation.

We prove the following Ulam stability problem for functional equation f(x+y+z4 ) +

f(3x−y−4z
4 ) + f(4x+3z

4 ) = 2f(x) controlled by the mixed type product-sum function

(x, y)→ θ(‖x‖p1‖y‖p2‖z‖p3 + ‖x‖p + ‖y‖p + ‖z‖p)
introduced by J. M. Rassias (see [10]).

Theorem 2.4. Let p, p1, p2, p3 be real numbers such that p 6= 1, p1 + p2 + p3 6= 1, and
θ > 0. Suppose f : A → X is a mapping for which there exist mappings g, h, k : A → A
whit g(0) = h(0) = k(0) = 0 such that

‖f(
µx+ y + z

4
) + f(

3µx− y − 4z

4
) + f(

4µx+ 3z

4
)− 2µf(x)‖

≤ θ(‖x‖p1‖y‖p2‖z‖p3 + ‖x‖p + ‖y‖p + ‖z‖p), (7)

‖g(λx+ λy)− λg(x)− λg(y)‖ ≤ θ(‖x‖p + ‖y‖p) (8)

for all µ ∈ T1 and all x, y, z ∈ A.
Also, the above equation holds for h and k.

‖f([xyz]A)− [f(x)h(y)k(z)]X− [g(x)f(y)k(z)]X− [g(x)h(y)f(z)]X‖ ≤ θ‖x‖p‖y‖p‖z‖p (9)

for all x, y, z ∈ A. Then there exist unique linear mappings σ, τ, and ξ from A to A and a
unique ternary (σ, τ, ξ)-derivation D : A→ X satisfying

‖g(x)− σ(x)‖ ≤ θ 2

| 2− 2p |‖x‖
p (10)

Also, the above equation holds for h and k.

‖f(x)−D(x)‖ ≤ 2θ
2p

| 2− 2p |‖x‖
p (11)

for all x ∈ A.
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The BSE property of semigroup algebras

Zeinab Kamali∗

Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

Abstract

The concepts of BSE property and BSE algebras were introduced and studied
by Takahasi and Hatori in 1990 and later by Kaniuth and Ülger. This abbreviation
refers to a famous theorem proved by Bochner and Schoenberg for L1(R), where R is
the additive group of real numbers, and by Eberlein for L1(G) of a locally compact
abelian group G. In this paper we investigate the BSE property for certain semigroup
algebras.

Keywords: Representation algebra, BSE algebra, Foundation semigroup, Reflexive
semigroup

Mathematics Subject Classification [2010]: 46Jxx, 22A20

1 Introduction

Let A be a commutative Banach algebra. Denote by ∆(A) and M(A) the Gelfand spec-
trum and the multiplier algebra of A, respectively. A bounded continuous function σ on
∆(A) is called a BSE-function if there exists a constant C > 0 such that for every finite
number of ϕ1, ..., ϕn in ∆(A) and complex numbers c1, ..., cn, the inequality

∣∣∣∣∣∣

n∑

j=1

cjσ(ϕj)

∣∣∣∣∣∣
≤ C.

∥∥∥∥∥∥

n∑

j=1

cjϕj

∥∥∥∥∥∥
A∗

holds. The BSE-norm of σ (‖σ‖BSE) is defined to be the infimum of all such C. The set of
all BSE-functions is denoted by CBSE(∆(A)). Takahasi and Hatori [9] showed that under
the norm ‖.‖BSE , CBSE(∆(A)) is a commutative semisimple Banach algebra.

A bounded linear operator on A is called a multiplier if it satisfies xT (y) = T (xy) for
all x, y ∈ A. The setM(A) of all multipliers of A is a unital commutative Banach algebra,
called the multiplier algebra of A.

For each T ∈ M(A) there exists a unique continuous function T̂ on ∆(A) such that

T̂ (a)(ϕ) = T̂ (ϕ)â(ϕ) for all a ∈ A and ϕ ∈ ∆(A). See [6] for a proof.
Define

M̂(A) = {T̂ : T ∈M(A)}.
A commutative Banach algebra A is called without order if aA = {0} implies a = 0

(a ∈ A).
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A commutative and without order Banach algebra A is called a BSE-algebra (or has
BSE-property) if it satisfies the condition

CBSE(∆(A)) = M̂(A).

The abbreviation BSE stands for Bochner-Schoenberg-Eberlin and refers to a famous
theorem, proved by Bochner and Schoenberg [1, 8] for the additive group of real numbers
and in general by Eberlein [3] for a locally compact abelian group G, saying that, in the
above terminology, the group algebra L1(G) is a BSE-algebra (See [7] for a proof).

It worths to note that the semigroup algebra l1(Z+) (where Z+ is the additive semi-
group of nonnegative integers) is a BSE algebra [10], but for k ≥ 1, l1(Nk) (Nk =
{k, k + 1, k + 2, ...}) is not a BSE algebra.

In [4], we established affirmatively a question raised by Takahasi and Hatori [9] that
whether L1(R+) is a BSE-algebra.

In this paper we investigate the BSE property for certain semigroup algebras. To
this aim, we first give a characterization of the L∞−representation algebra R(S) of a
foundation semigroup S with identity and then we apply this characterization in order to
prove that Ma(S), for a reflexive foundation semigroup S, is a BSE algebra. We present
examples which show that the hypothesis ’reflexive’ cannot be dropped.

we also prove that for a compact foundation semigroup S, the semigroup algebra Ma(S)
is BSE if and only if it has a ∆-weak bounded approximate identity.

2 Main results

We start this section with the following theorem which characterizes the L∞−representaion
R(S) of a foundation semigroup S.

Theorem 2.1. Let S be an abelian foundation semigroup with identity. Then the following
statements about a continuous function ϕ defined on S, are equivalent:

(a) ϕ ∈ R(S) and ‖ϕ‖R ≤ β.
(b) For every function f on Ŝ of the form

f(γ) =
n∑

i=1

ciγ(xi) (γ ∈ Ŝ),

where c1, ...cn are complex numbers and x1, ..., xn ∈ S, we have
∣∣∣∣∣
n∑

i=1

ciϕ(xi)

∣∣∣∣∣ ≤ β‖f‖∞. (II)

Remark 2.2. Note that in previous theorem ,(b) implies (a) for an arbitrary commutative
topological (not necessarily Foundation) semigroup.

As an application of the above result, in the following theorem we prove that for any
reflexive foundation semigroup S, the Banach algebra Ma(S) is a BSE algebra.

Theorem 2.3. Suppose that S is a reflexive foundation semigroup, then Ma(S) is a BSE-
algebra.
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Example 2.4. (a) For any discrete inverse semigroup S with identity, l1(S) is a BSE
algebra. For instance, if S = (Z+,max), where Z+ is the discrete semigroup of non
negative integers, then S is a reflexive semigroup and so l1(S) is a BSE algebra.

(b) Let

T = {− 1

2n
: n ∈ N} ∪ {0} ∪ { 1

2n+ 1
: n ∈ N}

with the operation
xy = yx = x if |x| ≥ |y| (x, y ∈ T ),

and the topology of T coincides with the restriction of the line topology on T = {− 1
2n :

n ∈ N}∪{0} while its restriction on { 1
2n+1 : n ∈ N} is discrete. Then T defines a compact

inverse foundation semigroup with identity (P. 65 of [2]). So by Remark 2.2 and Theorem
2.3, Ma(T ) is BSE.

If we set S := G × T , where G is an abelian topological group, then S is a reflexive
foundation semigroup and again by Theorem 2.3, Ma(S) is BSE.

(c)Let S := {0}∪ { 1n : n ∈ N} with the relative topology of the line and multiplication
given by xy = max{x, y}. Then S is a compact foundation semigroup with identity 0 (P.
34 of [2]). For any abelian locally compact group G, T = S ×G is a reflexive foundation
semigroup and by Theorem 2.3, Ma(T ) is BSE.

Theorem 2.5. Let S be a compact foundation semigroup. Then Ma(S) is a BSE-algebra
if and only if Ma(S) has a ∆-weak approximate identity.

Example 2.6. (a) Consider the semigroup S = [0, 1]n, n ∈ N with ordinary multiplication
and restriction topology of Rn . Since [0, 1]n is a compact semigroup and L1([0, 1]n) has a
bounded approximate identity, then L1([0, 1]n) is a BSE algebra, for all n ∈ N.

(b) Let T be as in part (b) and S be as in part (c) of Example 2.4. Then by Theorem
2.5, Ma(T ) and Ma(S) are BSE algebras.

(C) S = [0, 1] with the restriction topology of R and multiplication defined by xy :=
min{x + y, 1}. Then S is a compact foundation semigroup with identity (page 48 of [2])
and Ma(S) is BSE.
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the existence of efficient solutions for generalized

systems and the properties of their solution sets

Mohammad Rahimi

Department of Mathematics, Malayer Branch, Islamic Azad University,
Malayer, Iran.

Abstract

In this paper, we first give a density theorem. We will see that, under some
suitable conditions, the set of positive proper efficient solutions is dense in the set of
the efficient solutions. Finally, we discuss about the connectedness for the set of the
efficient solutions of a generalized system.

Keywords: Equilibrium problem, Efficient solution, connnectedness

1 Introduction

Throughout this paper, let X be a real Hausdorff topological vector space and let Y be a
real Hausdorff topological vector space. Let Y ∗ be the topological dual space of Y. Let C
be a closed convex pointed cone in Y. The cone C induces a partial ordering in Y defined
by

x ≤ y, if and only if y − x ∈ C.

Let
C∗ = {f ∈ Y ∗ : f(y) ≥ 0, for all y ∈ C}

be the dual cone of C. Denote the quasi-interior of C∗ by C♯, i.e.

C♯ := {f ∈ Y ∗ : f(y) > 0 for all y ∈ C \ {0}}.
Let D be a nonempty subset of Y. The cone hull of D is defined as

cone(D) = {td : t ≥ 0, d ∈ D}.
Denote the closure of D by cl(D). A nonempty convex subset M of the convex cone C

is called a base of C if C = cone(M). It is easy to see that C♯ ̸= ∅ if and only if C has a
base.

Let A be a nonempty subset of X and F : A×A → 2Y \ {∅} be a set-valued mapping.
A vector x ∈ A is called an efficient solution if

F (x, y) ̸∈ −C \ {0}, for all y ∈ A.
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The set of efficient solutions is denoted by V (A,F ). If int C ̸= ∅, a vector x ∈ A is

called a weakly efficient solution if

F (x, y) ̸∈ −int C, for all y ∈ A.

The set of weakly efficient solutions is denoted by VW (A,F ). Let f ∈ C∗ \ {0}. A vector

x ∈ A is called an f−efficient solution if

f(F (x, y)) ≥ 0, for all y ∈ A.

The set of f−efficient solutions is denoted by Vf (A,F ).

Definition 1.1. A vector x ∈ A is called a positive proper efficient solution if there exists
f ∈ C♯ such that

f(F (x, y)) ≥ 0, for all y ∈ A.

By definitions, we can get easily the followin Proposition.

Proposition 1.2. If int C ̸= ∅, then

V (A,F ) ⊂ VW (A,F )

and ∪

f∈C∗\{0}
Vf (A,F ) ⊂ VW (A,F ).

Lemma 1.3. Suppose that int C ̸= ∅ and for each x ∈ A, F (x,A) =
∪

y∈A F (x, y) is
C−convex, that is F (x,A) + C is a convex set. Then

VW (A,F ) =
∪

f∈C∗\{0}
Vf (A,F ).

2 Main results

In this section, we first give a density theorem. We will see that, under some suitable
conditions, the set of positive proper efficient solutions is dense in the set of the efficient
solutions. Finally, we discuss about the connectedness for the set of the efficient solutions.

Lemma 2.1. (See Theorem 3.1 of [4]) Let A ⊂ X be a nonempty compact convex set. Let
ψ : A → Y and φ : A × A → Y be two mappings. Assume that the following conditions
are satisfied:

1. ψ is C−lower semicontinuous;

2. φ(x, x) ≥ 0 for all x ∈ A and φ is C−monotone;

3. for each x ∈ A,φ(x, y) is C−lower semicontinuous in y and for each y ∈ A,φ(x, y)
is C−upper semicontinuous in x;

4. for each x ∈ A,ψ(y) + φ(x, y) is C−convex mapping in y.

Then, for each f ∈ C∗ \ {0Y ∗}, Vf (A,F ) is a nonempty compact convex set, where

F (x, y) = ψ(y) + φ(x, y) − ψ(x), for x, y ∈ A.
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The following result establishes an existence and uniqueness theorem for an efficient
solution for bifunctions which one can consider it as an extension of Lemma 2.8 and
Theorem 3.1 in [4] by relaxing the C−lower semicontinuity of the mapping φ in the
second variable and compactness of the set as well extending the result for the mapping
ψ is a bifunction, that is from one variable to two variables in the setting of topological
vector spaces ( more exact, we replace the locally convex topological vector space Y by
topological vector space). Further, the coercivity ( that is condition (5) in the next result
is more general than the coercivity condition used in Theorem 3.1 of [9].

Lemma 2.2. Let A ⊂ X be a nonempty convex set. Let ψ : A×A → Y and φ : A×A → Y
be two mappings. Assume that the following conditions are satisfied:

1. for each y ∈ A,ψ(x, y) + φ(x, y) is C− upper semicontinuous ( or (−C)− lower
semicontinuous) in x;

2.
ψ(x, x) + φ(x, x) = 0, for all x ∈ A;

3. for each x ∈ A,ψ(x, y) + φ(x, y) is C−convex mapping in y.

4. φ,ψ are C−strongly monotone on A×A.

5. There exist a nonempty compact convex subset B and a compact subset D of A such
that

∀y ∈ A\D, ∃x ∈ B : ψ(x, y) + φ(x, y) ∈ −intC.

Then, for each f ∈ C∗ \ {0Y ∗}, the set of f− efficient solutions, that is Vf (A,F ) is
singleton and so convex and compact, where

F (x, y) = ψ(x, y) + φ(x, y), for all x, y ∈ A.

The following result is the main goal of the paper that provides a density theorem
between the solution set of efficient solutions and properly f− efficient solutions.

Theorem 2.3. Let A ⊂ X be a nonempty compact convex set. Let ψ : A × A → Y and
φ : A×A → Y be two mappings. Assume that the following conditions are satisfied:

1. for each y ∈ A,ψ(x, y) + φ(x, y) is C− upper semicontinuous ( or (−C)− lower
semicontinuous) in x;

2.
ψ(x, x) + φ(x, x) = 0, for all x ∈ A;

3. for each x ∈ A,ψ(x, y) + φ(x, y) is C−convex mapping in y.

4. φ,ψ are C−strongly monotone on A×A.

5. Ψ(A×A) and D = {φ(x, y) : x, y ∈ A} are bounded subsets of Y.

6. C♯ ̸= ∅ and intC ̸= ∅
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Then, ∪
f∈C♯Vf (A,F ) ⊂ V (A,F ) ⊂ cl(

∪
f∈C♯Vf (A,F ))

where
F (x, y) = ψ(x, y) + φ(x, y), for all x, y ∈ A.
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The spectra of endomorphisms

of analytic Lipschitz algebras

A. Golbaharan ∗

Kharazmi University

H. Mahyar

Kharazmi University

Abstract

In this paper the spectra of certain endomorphisms of the analytic Lipschitz alge-
bras LipA(D̄, α) are determined. We consider endomorphisms T of LipA(D̄, α) defined
by T (f) = f ◦ φ for some φ ∈ LipA(D̄, α) for the case where φ has an interior fixed
point.

Keywords: Spectra, Endomorphism, Analytic Lipschitz algebra

Mathematics Subject Classification [2010]: 47A10,46J15

1 Introduction

An endomorphism of an algebra B is a linear operator T of B into itself satisfying T (ab) =
(Ta)(Tb) for all a, b ∈ B. If a Banach function algebra B on a compact Hausdorff space
X is natural, then every nonzero endomorphism T of B has the form Tf = f ◦ φ for
a self-map φ of X. We call T the endomorphism of B induced by φ. The spectrum of
an operator T on an algebra B is the set of complex numbers λ for which λ − T is not
invertible. We denote the spectrum of an operator T by σ(T ).

Let (X, d) be a metric space and 0 < α ≤ 1. The complex valued function f on X is
said to satisfy the Lipschitz condition of order α on X, if there exists a constant K > 0
such that |f(x) − f(y)| ≤ Kd(x, y)α, for all x, y ∈ X. In this case we write

pα(f) = sup{|f(x) − f(y)|
d(x, y)α

: x, y ∈ X,x ̸= y}.

Suppose that D is the open unit disc in the complex plane C. The analytic Lipschitz
algebra on the closed unit disc D̄, LipA(D̄, α) is the algebra of functions f analytic in the
open unit disc D that satisfy a Lipschitz condition of order α on D̄. It is well known that
the analytic Lipschitz algebra LipA(D̄, α) is a natural Banach function algebra with the
norm

∥f∥ = |f |D̄ + pα(f) (f ∈ LipA(D̄, α)),

where |f |D̄ = supz∈D̄ |f(z)|.
Kamowitz in [2] determined the spectra of a class of endomorphisms of the disc algebra

A(D̄), the uniform algebra of functions analytic on the open unit disc D and continuous on
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D̄. In [3] and [4], other algebras of analytic functions were considered and the techniques
and results of [2] were used to prove a generalization of theorems in there. In [1], the spectra
of compact endomorphisms of analytic Lipshictz algebras on certain compact plane sets
have been determined. In this paper, we determine the spectra of endomorphisms (not
necessarily compact) of analytic Lipschitz algebras.

We remark that it follows from Schwarz’s Lemma that if a continuous self-map φ :
D̄ → D̄ that is analytic on D has more than one fixed point in the open unit disc, then φ
is identity function z. However, such φ can have infinitely many fixed points on the unit
circle and yet it need not be equal to the identity function z. It is worth to mention that
by Denjoy-Wolf’s Theorem, every such self-map on D̄ has a fixed point in D̄.

We begin by showing that if φ has a fixed point z0 in the open unit disc, it is no
restriction to assume that z0 = 0.

Lemma 1.1. Let φ ∈ LipA(D̄, α), |φ|D̄ ≤ 1 and T be the endomorphism of LipA(D̄, α)
induced by φ. Suppose |z0| < 1 and φ(z0) = z0. Let g be the linear fractional transforma-
tion g(z) = z0−z

1−z̄0z and S the endomorphism of LipA(D̄, α) induced by ψ = g ◦ φ ◦ g. Then
ψ(0) = 0, ψ′(0) = φ′(z0) and σ(S) = σ(T ).

2 Main results

At first we consider special case that operator defined on LipA(D̄, α) is an automorphism
(a one to one and onto endomorphism).

Theorem 2.1. If T is an automorphism of LipA(D̄, α), then σ(T ) = {λ : |λ| = 1}.
The main subject is to describe the spectra of endomorphisms of LipA(D̄, α) induced

by φ in terms of function theoretic properties of φ.

Definition 2.2. Let φ ∈ LipA(D̄, α) with |φ|D̄ ≤ 1. For each nonnegative integer k, we
denote the kth iterate of φ by φk. That is, φ0(z) = z and φk(z) = φ(φk−1(z)), |z| ≤ 1.
The fixed set of φ is ∩kφk(D̄).

It is not hard to show that the fixed set of φ is a compact, connected subset of the unit
disc and that φ maps its fixed set onto itself. The spectra of the endomorphisms which
we are considering, depend on the fixed set of the inducing maps. We follow by stating
some useful lemmas.

Lemma 2.3. Let φ ∈ LipA(D̄, α), |φ|D̄ ≤ 1, φ(0) = 0 and T be the endomorphism of
LipA(D̄, α) induced by φ. Then {(φ′(0))n : n is a positive integer} ⊂ σ(T ).

We now try to investigate whether the converse of the inclusion in the above lemma
holds.

Lemma 2.4. Let φ ∈ LipA(D̄, α), |φ|D̄ ≤ 1, φ(0) = 0 and T be the endomorphism of
LipA(D̄, α) induced by φ. Assume λ ̸= (φ′(0))n for all positive integers n, and λ ̸= 0, 1.
If m is a positive integer, f, g ∈ LipA(D̄, α) with (λ − T )f = g and g(0) = g′(0) = · · · =
gm(0) = 0, then f(0) = f ′(0) = · · · = fm(0) = 0.

To investigate the spectra of these operators we require the following result which can
be easily deduced from the above lemma.
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Corollary 2.5. If λ ̸= (φ′(0))n for all positive integers n, and λ ̸= 0, 1, then λ is not an
eigenvalue.

Lemma 2.6. Let φ ∈ LipA(D̄, α), |φ|D̄ ≤ 1 and T be the endomorphism of LipA(D̄, α)
induced by φ. If f, g ∈ LipA(D̄, α) with (λ− T )f = g, then

λnf = f ◦ φn + λn−1g + λn−2g ◦ φ+ · · · + λg ◦ φn−2 + g ◦ φn−1

Lemma 2.7. Let φ ∈ LipA(D̄, α), |φ|D̄ ≤ 1, φ(0) = 0. If |z| < 1 (or in fact, if |φj(z)| < 1

for some positive integer j), then, lim supk |φk(z)|
1
k ≤ |φ′(0)|. Furthermore, (1) if φ′(0) =

0, then given ϵ > 0, and r ∈ [0, 1), there exists C > 0 so that for each positive integer m,
|φm(z)| ≤ Cϵm for all z, |z| ≤ r. (2) If 0 < |φ′(0)| < 1, then given ϵ > 0, and r ∈ [0, 1),
there exists C > 0 so that for each positive integer m, |φm(z)| ≤ C((1 + ϵ)|φ′(0)|)m for all
z, |z| ≤ r.

Theorem 2.8. Let φ ∈ LipA(D̄, α), |φ|D̄ ≤ 1 and T be the endomorphism of LipA(D̄, α)
induced by φ. Suppose φ has a fixed point in the open unit disc and that the fixed set of φ
is infinite. If T is not an automorphism, then σ(T ) = {λ : |λ| ≤ 1}..

Lemma 2.9. Let φ ∈ LipA(D̄, α), |φ|D̄ ≤ 1, φ(0) = 0 and T be the endomorphism of
LipA(D̄, α) induced by φ. Let m be a positive integer. Suppose every function in LipA(D̄, α)
with a zero of order at least (m+1) at 0 is in the range of (λ−T ), where λ ̸= 0, 1, (φ′(0))n, n
a positive integer. Then 1, z, z2, , zm are in the range of (λ− T ).

We are now ready to show that the converse of the inclusion stated in Lemma 2.3 may
be true.

Theorem 2.10. Let φ ∈ LipA(D̄, α), |φ|D̄ ≤ 1 and T be the endomorphism of LipA(D̄, α)
induced by φ. Let z0 be a fixed point of φ in the open unit disc and suppose {z0} is the
fixed set of φ. Then σ(T ) = {(φ′(0))n : n is a positive integer} ∪ {0, 1}.
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Abstract

In this paper, we study the concept of statistical limit superior and statistical
limit inferior in probabilistic normed spaces. Our results are analogous to the results
of Fridy and Orhan [Proc. Amer. Math. Soc. 125(1997), 3625-3631] but proofs are
somewhat different and interesting.

Keywords: probabilistic normed space; statistical convergence; statistical limit
superior; statistical limit inferior.
Mathematics Subject Classification [2010]: 40C05, 46S40.

1 Introduction

In [3] Menger introduced the notion of statistical metric space, now called probabilistic
metric space, which is an interesting and important generalization of the notion of a metric
space. Later on this notion was developed by many authors. The notion of probabilistic
metric space gives rise to the concept of probabilistic normed space [5] which is an impor-
tant and useful generalization of the concept of normed space. These two concepts of PM
and PN-spaces the theory of statistical conhelp us to deal with the fuzzy like situations.
The concept of statistical convergence studied by many authors. This idea was extended
for double sequences by Mursaleen and Edely [4]. The idea of statistical convergence in
probabilistic normed space has been studied by Karakus [2]. Many of the results in the
theory of ordinary convergence have been extended to convergence. In this paper, we
study the concept of statistical limit superior and statistical limit inferior in probabilistic
normed space.

Definition 1.1. A function f : R → R+
◦ is called a distributionfunction if it is non-

decreasing and left-continuous with inft∈R f(t) = 0 and supt∈R f(t) = 1 We will denote
the set of all distribution funtions byD.

Definition 1.2. A binary operationis ∗ : [0, 1] × [0, 1] → [0, 1] said to be a continuous
t-norm if it satisfies the following conditions:

(a) ∗ is associative and commutative,
(b) ∗ is continuous,
(c) a ∗ 1 = a for all a∈ [0, 1],
(d) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0, 1].
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Definition 1.3. A triplet (X, N, ∗) is called a probabilistic normed space (in short PN-
space) if X is a real vector space, N : X → D (for x ∈ X, the distribution funtion N(x)
is denoted by Nx, and Nx(t) is the value of Nx at t ∈ R) and ∗ a continuous t-norm
satisfying the following conditions:

(i) Nx(0) = 0,
(ii) Nx(t) = 1 for all t > 0 if and only if x = 0,
(iii) Nαx(t) = Nx( t

|α|) for all α ∈ R − {0},

(iv) Nx+y(s + t) ≥ Nx(s) ∗ Ny(t) for all x, y ∈ Xand s, t ∈ R+
◦ .

Definition 1.4. Let (X, N, ∗) be a PN-space. Then a sequence x = (xn) is said to be
convergent to L with respect to the probabilistic norm N if for every ε > 0 and λ ∈ (0, 1),
there exists a positive integer k◦ such that Nxn−L(ε) > 1 − λ whenever n ≥ k◦. It is
denoted by N-lim x = L or xn N−→ L as n → ∞.

Definition 1.5. Let(X, N, ∗) be a PN-space. Then a sequence x = (xn) is said to be a
Cauchy sequence with respect to the probabilistic norm N if for every ε > 0 and λ ∈ (0, 1)
there exists a positive integer k◦ such that Nxn−xm(ε) > 1 − λ for all n, m≥ k◦.

Definition 1.6. If K is a subset of N, then the natural density of K denoted by δ(K), is
dfined by

δ(K) := lim
n

1

n
|{k ≤ n : k ∈ K}|

whenever the limit exists. The natural density δ may not exist for each set K. But the
upper density δ always exists for each set K identified as follows:

δ(K) := lim sup
n

1

n
|{k ≤ n : k ∈ K}|

.

Definition 1.7. A sequence x = (xn) of numbers is said to be statistically convergent to
L if

δ({k ∈ N :| xn − L |≥ ε}) = 0

for every ε > 0. In this case we write st − lim x = L.

Definition 1.8. A sequence x = (xn) of numbers is said to be statistically bounded if
there is a number B such that

δ({k ∈ N : |xn| ≥ B}) = 0

.

Definition 1.9. The real number sequence x is said to be statistically bounded with
respect to the probabilistic norm N if there exists some t◦ ∈ R and b ∈ (0, 1) such that
δ({k : Nxk

(t◦) ≤ 1 − b}) = 0.
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2 Main results

In this section we define the concept of statistical limit superior and statistical limit inferior
in probabilistic normed spaces and demonstrate through an example how to compute these
points in a PN-space.

Definition 2.1. Let(X, N, ∗) be a PN-space. We say that a sequencein x = (xk) is
statistically convergent to L ∈ X with respect to the probabilistic norm N provided that
for every ε > 0 and b ∈ (0, 1)

δ({k ∈ N : Nxk−L(ε) ≤ 1 − b}) = 0,

In this case we write stN − lim x = L, where L = stN − limx.

Definition 2.2. Let (X, N, ∗) be a PN-space. l ∈ X is called a limit point of the sequence
x = (xk)with respect to the probabilistic norm N provided that there is a subsequence of
x that converges to l with respect to the probabilistic norm N. Let LN (x) denote the set
of all limit points of the sequence x with respect to the probabilistic norm N .

Definition 2.3. If {xk(j)
} is a subsequence of x = (xk) and K := {k(j) : j ∈ N}, then we

abbreviate {xk(j)
} by {x}K . If δ(K) = 0 then {x}K is called a subsequence of density zero

or a thin subsequence. On the other hand, {x}K is a nonthin subsequence of x if K does
not have density zero.

Definition 2.4. Let (X, N, ∗)be a PN-space. Then ξ ∈ X is called a statistical limit point
of the sequence x = (xk) with respect to the probabilistic norm N provided that there is
a nonthin subsequence of x that converges to ξ with respect to the probabilistic norm N .
In this case we say ξ is an stN -limit point of sequence x = (xk).

Let ΛN (x) denote the set of all stN -limit points of the sequence x.

Definition 2.5. Let (X, N, ∗) be a PN-space. Then η ∈ X is called a statistical cluster
point of the sequence x = (xk) with respect to the probabilistic norm N provided that for
every ε > 0 and a ∈ (0, 1),

δ({k ∈ N : Nxk−η(ε) > 1 − a}) > 0.

In this case we say η is an stN -cluster point of the sequence x. Let ΓN (x) denote the set
of all stN -cluster points of the sequence x.

Definition 2.6. The real number sequence x is said to be bounded with respect to the
probabilistic norm N if there exists some t◦ ∈ R and for every b ∈ (0, 1) such that
Nxk(t◦) > 1 − b for all k. For a real sequence x let us define the sets BN

x and AN
x by

BN
x := {b ∈ (0, 1) : δ({k : Nxk(ε) < 1 − b}) ̸= 0}

AN
x := {a ∈ (0, 1) : δ({k : Nxk(ε) > 1 − a}) ̸= 0}

Note that throughout this paper the statement δ({K}) ̸= 0 means that either δ({K}) > 0
or K does not have natural density.
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Definition 2.7. If x is a real number sequence then the statistical limit superior of x with
respect to the probabilistic norm N is defined by

stN − lim sup x :=

{
supBN

x if BN
x ̸= 0

0 if BN
x = 0

Also, the statistical limit inferior of x with respect to the probabilistic norm N is defined
by

stN − lim inf x :=

{
inf AN

x if AN
x ̸= 0

1 if AN
x = 0

Theorem 2.8. If b = stN − lim sup x is finite, then for every positive numbers ε and γ

δ({k : Nxk
(ε) < 1 − b + γ}) ̸= 0} and δ({k : Nxk(ε) < 1 − b − γ}) = 0} (1)

Conversely, if (1) holds for every positive ε and γ then b = stN − lim sup x.

Theorem 2.9. If a = stN − lim inf x is finite, then for every positive numbers ε and γ

δ({k : Nxk
(ε) > 1 − a − γ}) ̸= 0} and δ({k : Nxk(ε) > 1 − a + γ}) = 0} (2)

Conversely, if (2) holds for every positive ε and γ then a = stN − lim inf x.

Remark 2.10. From the definition of statistical cluster points in [1] we see that Theorems
1.17 and 1.18 can be interpreted as saying that stN − lim sup x and stN − lim inf x are the
greatest and the least statistical cluster points of x, respectively.

Theorem 2.11. For any sequence x, stN − lim inf x ≤ stN − lim sup x.

Theorem 2.12. In PN -space (X, N, ∗) the statistically bounded sequence x is statistically
convergent if and only if

stN − lim inf x = stN − lim sup x

.
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Abstract

In this paper we introduce an n-dimensional (n ≥ 2) distance metric over a given space
to define a universal metric space. This distance metric measures how separated every
n points of the space. One goal of this paper suggest a possible application of this
theory is clustering.

Keywords: Universal metric spaces, G-metric spaces, Clustering
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1 Introduction

The theory of metric spaces plays a major role in different fields of mathematics and
applied sciences. Gähler [1] introduced the notion of a 2-metric space. In 1992, Dhage
[2] proposed the notion of a D−metric space. They introduced a new class of generalized
metric spaces called G-metric spaces. In 2014, Dr. Dehghan Nezhad proposed the notion
of a metric spaces called Un-metric spaces as follows.

2 Universal metric spaces of dimension n

For n ≥ 2, let Xn denotes the cartesian product X × . . .×X. We begin with the following
definition.

Definition 2.1. Let X be a non-empty set. Let U : Xn −→ R+ be a function that
satisfies the following conditions:

(U1) U(x1, . . . , xn) = 0 if x1 = . . . = xn.

(U2) U(x1, . . . , xn) > 0 for all x1, ..., xn with xi ̸= xj , for some i, j ∈ {1, ..., n}.

(U3) U(x1, . . . , xn) = Un(xπ1 , . . . , xπn), for every permutation (π(1), ..., π(n)) of (1, 2, ..., n).

(U4) U(x1, x2, . . . , xn−1, xn−1) ≤ U(x1, x2, . . . , xn−1, xn) for all x1, . . . , xn ∈ X.

(U5) U(x1, x2, . . . , xn) ≤ c(U(x1, a, ..., a) + U(a, x2, ..., xn)), for all x1, . . . , xn, a ∈ X, 0 <
c ≤ 1.
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The function U is called a universal metric of dimension n, or more specifically a Un-metric
on X, and the pair (X, U) is called a Un-metric space.

In the sequel, for simplicity we assume that c = 1. The following useful properties of
a Un-metric are easily derived from the axioms.

Example 2.2. Let (X, d) be a usual metric space, then (X,Sn) and (X,Mn) are Un-metric
spaces, where

Sn(x1, . . . , xn) =
2

n(n − 1)

∑

1≤i<j≤n

d(xi, xj), (1)

Mn(x1, . . . , xn) = max{d(xi, xj) : 1 ≤ i < j ≤ n}. (2)

Proposition 2.3. Let (X, U) be a Un-metric space, then for x0 ∈ X, r > 0,
(i) If U(x0, x2, ..., xn) < r, then x2, ..., xn ∈ BU (x0, r);
(ii) If y ∈ BU (x0, r), then there exists, δ > 0 such that BU (y, δ) ⊆ BU (x0, r).

Fixed point theorems are the basic mathematical tools used in showing the existence
of solution concepts in game theory and economics [3].
In this section, we consider Un-approximate fixed point for the map T : X −→ X.

Definition 2.4. Let (X,U) be a Un-metric space. We say that the map T : X −→ X
has a Un-approximate fixed point, if for every ϵ > 0, there exists x0 ∈ X such that
U(x0, Tx0, Tx0, . . . , Tx0) < ϵ.

Theorem 2.5. Let (X, U) be a Un-metric space and T : X −→ X be a map. If for all
x ∈ X,

lim
n−→∞

U(Tnx, Tn+1x, Tn+1x, . . . , Tn+1x) = 0,

then the map T has a Un-approximate fixed point.

Theorem 2.6. Let (X, U) be a Un-metric space and T : X −→ X be a map. If for all
x1, x2, . . . , xn ∈ X,

U(Tx1, Tx2, . . . , Txn) ≤ k max{U(x1, x2, . . . , xn), U(x1, Tx1, Tx1, . . . , Tx1),

U(x2, Tx2, Tx2, . . . , Tx2), . . . , U(xn, Txn, Txn, . . . , Txn)},

where k ∈ [0, 1/2). Then T has a Un-approximate fixed point.

3 Generalized K-means clustering

Clustering is a division of data into groups of similar objects. One of the most widely
used clustering algorithm which is based on minimizing a formal objective function is
k-means clustering. It was designed to cluster numerical data in which each cluster has
a center called the mean. In this algorithm, the number of clusters k is assumed to be
fixed. There is an error function in this algorithm. The conventional k-means algorithm
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is briefly described below [4]. Let D be a data set with m instances x1, ..., xm, and let
C1, C2, ..., Ck be the k disjoint clusters of D. Then the error function is defined as

E =

k∑

j=1

∑

x∈Cj

d(x, µ(Cj)),

where µ(Cj) is the centroid of cluster (calculated by averaging the observations of each
cluster), and d(x, µ(Cj)) denotes the an ordinary distance between the point x and µ(Cj).
Here we propose a k-means algorithm that picks n − 1 points at a time and calculates
the Un distance between this points and center of clusters. Then, these n − 1 points are
assigned to that cluster having least distance between the center and n − 1 data points.
The proposed algorithm is given below:
(1) Choose integer k, the number of clusters.
(2) Assume k number of initial seed points.
(3) Randomly assign the data into k initial cluster C1,...,Ck and determine µ(C1),...,µ(Ck).
(4) Consider a subset {xi1, ..., xi(n−1)} from the data set {x1, ..., xm}, with n < m, and
calculate the dij = Un(xi1, ..., xi(n−1), µ(Cj)).
(5) Let Lj = argmin1≤j≤kdij and assign the n − 1 points to the cluster Lj .
(6) Compute the new centriods after assigning all data points to k clusters.
(7) Repeat steps (4) to (6) until the difference between the previous and current centriods
is less than the specified threshold value.
(8) Repeat steps (2) to (7) with different initial seed points until the algorithm reaches
the minimum objective function.

3.1 Experimental results

A generalized K-means clustering of distances in miles between some Italian cities. The
name of this cities is Rome, Neples, Potenza, Milan, Venice, Trento, Florence, Turin. In
this method, we use triple-linkage clustering using Un-metric spaces. The symbol of cluster
is ki and E represents the error rate. For case n = 3, first the nearest triplet of cities
are merged into a single cluster. Then we compute the distance (space) from this new
compound object to all other pairs of objects. In triple-linkage clustering the rule is that
the space of the triangle formed by the compound object with another pair of objects is
equal to the smallest space values of the triangles formed by each member of the compound
cluster with the pair of outside objects.

Ro Ne Po Mi Ve Tr Fl Tu

Ro 0 136 225 358 330 368 173 419
Ne 136 0 98 489 461 499 304 550
Po 225 98 0 578 550 588 393 639
Mi 358 489 578 0 170 150 186 86
Ve 330 468 550 170 0 98 159 250
Tr 368 499 588 150 98 0 195 221
Fl 173 304 393 186 159 195 0 246
Tu 419 550 639 86 250 221 246 0
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Members of each cluster in beginning is: k1 = [V e, F l,Ne, Tu] and k2 = [Tr, Po, Mi,Ro].
After clustering, the results are summarized in the table below:

k1 k2 E

n=2 [Ro,Ve,Fl,Tu] [Ne,Tr,Po,Mi] 2039
n=3 [Ne,Fi,Ve,Po] [Tr,Mi,Ro,Tu] 2014
n=4 [Mi,Tu,Po,Ne] [Ve,Tr,Fl,Ro] 1938

Now we compare the results (clustering of eight cities) of the case n = 2 (conventional
k − means clestering) and case n = 3 (generalized K-means clustering). Following table
show the results of applying the conventional k − means clestering and generalized K-
means clustering to our example data of eight points. Un distance for n = 3 is much better
(faster) than Euclidian distance (case n = 2). As you seen, there is minimal error in n = 4
and its value is equal 1938. so, in this case we have the best clustering.

4 Conclusion

The principal conclusion from the research in this paper that generalized G-metric spaces
into Un-metric spaces. This conclusion is justified for the following reasons. We have
shown that Un-metric spaces as an extension of classical G-metric spaces have been more
considered in recently decade. In this article we prove some Un-approximate fixed point
results for mappings that satisfy certain conditions on a Un-metric space. The primary
motivation for this work has been to develop metric based tools for applications in pro-
gram verification in theoretical computer science.
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Abstract

For suitable Banach spaces X and Y with Schauder decompositions and closed
subspace M of some compact operator spaces from X to Y , it is shown that the
complete continuity of all evaluation operators on M , is a sufficient condition for the
weak fixed point property of M ; where for each y∗ ∈ Y ∗, the evaluation operator on
M is defined by ψy∗(T ) = T ∗y∗, T ∈ M .

Keywords: weak fixed point property, evaluation operator, compact operator, com-
pletely continuous operator
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1 Introduction

If C is a subset of a Banach space X, a mapping T : C → X is called a nonexpansive map
if ∥Tx−Ty∥ ≤ ∥x− y∥ for all x, y ∈ C. We say that X has the fixed point property (fpp)
if every nonexpansive self map T : C → C of each nonempty, closed, bounded and convex
subset C of X has a fixed point. But when the same holds for every nonempty weakly
compact convex subset of X, we say that X has the weak fixed point property (wfpp). It
is evident that fpp implies the wfpp and for reflexive Banach spaces, both properties are
the same.

For example, every uniformly convex Banach space and every Banach space with uni-
form normal structure have the fpp [8], every Banach space with weak normal structure
and every Banach space with the Schur property (i.e. the weak and norm convergence of
sequences are the same), have the wfpp [12, 8].

Following the work of Maurey [10] and Dowling-Lennard [7], which proved that a closed
subspace M of the Bochner integrable function space L1([0, 1]), has the fpp if and only if
M is reflexive; it is natural to ask for a given Banach space X, what closed subspaces of
it have the (weak) fpp.

There are a few works on fpp and wfpp in operator spaces. In 1999, Dowling and
Randrianantoanina [6] along with a result of Besbes [4], have shown that a closed subspace
of K(H), of all compact operators on the Hilbert space H, has the fixed point property if
and only if it is reflexive. Also, the Banach space K(l2), and then all it’s closed subspaces
has the wfpp [4].
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On the other hands, in [5], [11] and [13] the authors proved that for some closed
subspace M of some compact operator spaces between Hilbert or Banach spaces X and
Y , compactness of all evaluation operators ϕx : M → Y and ψy∗ : M → X∗ on M is a
necessary and/or sufficient condition for the Schur property of the dual M∗ of M , where
for each x ∈ X and y∗ ∈ Y ∗, the evaluation operators on M are defined by

ϕx(T ) = Tx , ψy∗(T ) = T ∗y∗ , T ∈ M.

Since the Schur property implies the wfpp, it is natural to ask under what conditions,
a closed subspace M of an operator space has the wfpp. Here, we obtain some sufficient
conditions for the wfpp of a closed subspace of some compact operator spaces relative to
complete continuity of all evaluation operators.

Now we remember the following Lemma of Goebel and Karlovitz [9] and elementary
ultraproduct techniques in the fixed point theory [2].

Lemma 1.1. Suppose that X is a Banach space and T : X → X is a nonexpansive map.
If K is a minimal T -invariant, weakly compact and convex subset of X and (xn) is an
approximate fixed point sequence in K, then for all x ∈ X,

lim
n

∥x− xn∥ = diam(K).

Let U be a nontrivial ultrafilter on the natural numbers N, and X be a Banach space.
The ultrapower space X̃ of X is the quotient space

l∞(X) = {(xn) : xn ∈ X for all n ∈ N, ∥(xn)∥ = sup
n

∥xn∥ < ∞},

by N = {(xn) ∈ l∞(X) : limU ∥xn∥ = 0}, where limU ∥xn∥ denotes the ultraproduct limit

of the sequence (∥xn∥), [2]. We will denote the coset (xn) +N ∈ X̃ by (̃xn). Clearly

∥(̃xn)∥
X̃

= lim
U

∥xn∥.

We want to use the ultraproduct techniques to prove the main results of the article. These
techniques was originally used by Alspach and Maurey ([3] and [10]). Maurey proved that
reflexive subspaces of L1([0, 1]) have the fpp while the fact that L1([0, 1]) does not have
the fpp, is due to Alspach.

We need now some definitions and lemmas to prove the main theorem. At first, we
remember the WORTH property.

Definition 1.2. A Banach space X has the WORTH property if whenever x ∈ X and
(xn) is a weakly null sequence in X then we have

lim
n→∞

∣∣∣∥x+ xn∥ − ∥x− xn∥
∣∣∣ = 0,

For example, every Schur space has the WORTH property. The following Lemma 1.5,
establish some sufficient conditions for the WORTH property of some closed subspaces
of compact operator spaces. In order to prove this lemma, we need the following lemma
which can be proved by [1, Remark 2.3].
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Definition 1.3. An operator T between two Banach spaces is completely continuous if T
takes weakly convergent sequences into norm convergent sequences.

Lemma 1.4. Let X and Y be two Banach spaces and M be a closed subspace of L(X,Y ).
(a) If all evaluation operators ϕx are completely continuous, then for all compact operator
S ∈ K(X), the operator K 7→ KS from M into L(X,Y ) is completely continuous.
(b) If all evaluation operators ψy∗ are completely continuous, then for all compact operator
T ∈ K(Y ), the operator K 7→ TK from M into L(X,Y ) is completely continuous.

In the following, for each complemented subspace V of a Banach space X, the projec-
tion of X onto V is denoted by PV .

Lemma 1.5. Let X and Y be two Banach spaces such that Y has finite dimensional
Schauder decomposition

∑∞
n=1

⊕
Yn. Let M be a closed subspace of K(X,Y ) and lim supm ∥I−

2PWm∥ ≤ 1 whenever Wm =
∑m

i=1

⊕
Yi for all m ∈ N. If all of the evaluation operators

ψy∗ are completely continuous, then M has the WORTH property.

2 Main results

Now for the proof of the main Theorem 2.2, we need the following Lemma.

Lemma 2.1. Suppose X and Y are two Banach spaces which have Schauder decom-
positions

∑∞
n=1

⊕
Xn and

∑∞
n=1

⊕
Yn respectively, such that the decomposition of X is

shrinking, decomposition of Y is finite dimensional and M is a closed subspace of K(X,Y ).
If (Kn) is a weakly null sequence in M , then there is a subsequence (Kni) of (Kn) and a
sequence (Ui) of K(X,Y ) such that limi ∥Ui −Kni∥ = 0.

Now, we give some sufficient conditions of wfpp of some closed subspace M of compact
operators with respect to complete continuity of all evaluation operators.

Theorem 2.2. Suppose X and Y are two Banach spaces which have Schauder decomposi-
tions

∑∞
n=1

⊕
Xn and

∑∞
n=1

⊕
Yn respectively, such that the decomposition of X is shrink-

ing, the decomposition of Y is monotone and finite dimensional and lim supm ∥I−2PWm∥ ≤
1 whenever Wm =

∑m
i=1

⊕
Yi for all m ∈ N. Let M be a closed subspace of K(X,Y ) such

that all evaluation operators ψy∗ are completely continuous. Then M has the weak fixed
point property.

There are several Banach spaces that are embedded into K(X,Y ), and one can obtain
the wfpp for these spaces. In the following corollaries we give some classes of Banach spaces
such that the space of compact operators between them has the property lim supm ∥I −
2PWm∥ ≤ 1.

Corollary 2.3. Let X be a Banach space with shrinking Schauder decomposition
∑∞

n=1

⊕
Xn

and Y =
∑∞

n=1

⊕
Yn be a c0-direct sum of finite dimensional Banach spaces Yn. Let M

be a closed subspace of K(X,Y ) such that all evaluation operators ψy∗ are completely
continuous. Then M has the weak fixed point property.

Corollary 2.4. Let X be a Banach space with shrinking Schauder decomposition and Y be
an lp-direct sum of finite dimensional Banach spaces, where 1 ≤ p < ∞. Let M be a closed
subspace of K(X,Y ) such that all evaluation operators ψy∗ are completely continuous.
Then M has the weak fixed point property.
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d’Analyse Fonctionelle, Ecole Polytechnique, Palaiseau (1980-1981).

[11] S. M. Moshtaghioun and J. Zafarani, Weak sequential convergence in the dual of
operator ideals, J. Operator Theory 49, no. 1 (2003), 143–151.

[12] B. Sims, A class of spaces with weak normal structure, Bull. Austral. Math. Soc. 50
(1994), 523–528.
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Weighted Composition Operators on Spaces of Analytic

Vector-valued Lipschitz Functions
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Abstract

Let φ be an analytic self-map of D and ψ be an analytic operator-valued function
on D, where D is the unit disk. We discuss the boundedness and compactness of
weighted composition operators Wψ,φ : f 7→ ψ(f ◦ φ) on LipA(D, X, α), the space
of analytic X-valued Lipschitz functions f , where X is a complex Banach space and
α ∈ (0, 1].

Keywords: Analytic vector-valued Lipschitz functions, vector-valued Bloch spaces,
weighted composition operator, compactness.

Mathematics Subject Classification [2010]: 46E40, 47A56, 47B33.

1 Introduction

Given X and Y two complex Banach spaces, let H(D, X) be the space of analytic X-
valued functions f : D → X and S(D, X) be any subspace of H(D, X), where D is the
unit disk in the complex plane. If φ is an analytic self-map of D and ψ : D → L(X,Y ) is
an analytic operator-valued function, where L(X,Y ) is the Banach space of all bounded
linear operators from X to Y , then the weighted composition operator Wψ,φ from S(D, X)
to S(D, Y ) is defined to be the linear operator of the form Wψ,φ(f)(z) = ψz(f(φ(z)) for
every f ∈ S(D, X) and z ∈ D, where ψz is ψ(z).

Let (S, d) be a metric space and α ∈ (0, 1]. The space of all functions f : S → X for
which

pα(f) = sup

{∥f(s1) − f(s2)∥
dα(s1, s2)

: s1, s2 ∈ S, s1 ̸= s2

}
< ∞

and
∥f∥S = sup

s∈S
{∥f(s)∥ : s ∈ S} < ∞,

is denoted by Lipα(S,X). The subspace of functions f for which

lim
d(s1,s2)→0

∥f(s1) − f(s2)∥
dα(s1, s2)

= 0,

is denoted by lipα(S,X). The spaces Lipα(S,X) and lipα(S,X) equipped with the norm
∥f∥α = ∥f∥S + pα(f) are Banach spaces. These are called vector-valued Lipschitz spaces,
see e.g. [4, 3].
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If S is a compact subset of the complex plane C with nonempty interior, then the
space of all continuous X-valued functions on S which are analytic on the interior of S is
denoted by A(S,X). For α ∈ (0, 1], we define the analytic vector-valued Lipschitz spaces
as

LipA(S,X, α) = A(S,X) ∩ Lipα(S,X), lipA(S,X, α) = A(S,X) ∩ lipα(S,X).

Clearly, LipA(S,X, α) and lipA(S,X, α) are closed subspaces of Lipα(S,X). In the case
that X = C, we omit X in the notation.

Composition operators and weighted composition operators between vector-valued Lip-
schitz spaces and analytic vector-valued functions have been studied in [4, 2, 5]. The com-
position operators on analytic Lipschitz spaces in the scalar-valued case have been investi-
gated in [1, 6]. This work was motivated by finding an essential norm estimate of weighted
composition operators between analytic vector-valued Lipschitz spaces LipA(D, X, α), when-
ever α ∈ (0, 1]. However, for now, we discuss boundedness and compactness of these
operators.

For a positive real number α and a Banach space X, the vector-valued Bloch space
Bα(X), denotes the Banach space of all analytic functions f : D → X for which

sup
z∈D

(1 − |z|2)α∥f ′(z)∥ < ∞,

endowed with the norm ∥f∥Bα(X) = ∥f(0)∥ + supz∈D(1 − |z|2)α∥f ′(z)∥. Let Λα(X) =
Lipα(D, X) ∩H(D, X) for α ∈ (0, 1] and Λ0

α(X) = lipα(D, X) ∩H(D, X) for α ∈ (0, 1).
Here we adopt the notation of [2, Section 5]. Let E be a Banach subspace of H(D)

which contains the constant functions and its closed unit ball U(E) is compact for the
compact open topology. The space

∗E := {u ∈ E∗ : u|U(E) is co− continuous}
endowed with the norm induced by E∗ is a Banach space and the evaluation map E →
(∗E)∗, f 7→ [u 7→ u(f)] is an isometric isomorphism. In particular, ∗E is a predual of E.
For a Banach space X, the vector-valued space E[X] defined as

E[X] := {f ∈ H(D, X) : x∗ ◦ f ∈ E, x∗ ∈ X∗},
by the norm ∥f∥E[X] = sup∥x∗∥≤1 ∥x∗ ◦ f∥, is a Banach space. The map ∆ : D →∗ E,
∆(z) = δz, where δz is the evaluation map on E, is analytic and the linear operator
χ : L(∗E,X) → E[X], χ(T ) = T ◦ ∆ is bounded. For g ∈ E[X] and u ∈∗ E, consider
the map ψ(g)(u) : X∗ → C by ψ(g)(u)(x∗) = u(x∗ ◦ g). Clearly, ψ(g) ∈ L(∗E,X∗∗) and
ψ(g)(δz) ∈ L(∗E,X). Hence ψ : E[X] → L(∗E,X) is a bounded linear operator. Using
ψ and χ, Bonet, et al. in [2, Lemma 10] showed that the space E[X] is isomorphic to
L(∗E,X). We use this result for the spaces Λα[X] and Bα[X].

Let α ∈ (0, 1). By Hardy-Littlewood theorem, Λα = B1−α and ∥ · ∥α ≍ ∥ · ∥B1−α .
That is, there are strictly positive constants a, b such that a∥ · ∥α ≤ ∥ · ∥B1−α ≤ b∥ · ∥α.
Hence, ∗Λα =∗ B1−α, where ∗Λα and ∗B1−α are the preduals of Λα and B1−α, respectively.
Therefore, Λα[X] = B1−α[X] and

id : Λα[X]
ψ−−→ L(∗Λα, X) = L(∗B1−α, X)

χ−−→ B1−α[X]

id : B1−α[X]
ψ−−→ L(∗B1−α, X) = L(∗Λα, X)

χ−−→ Λα[X]
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are bounded. Hence, ∥ · ∥Λα[X] ≍ ∥ · ∥B1−α[X]. Since Λα(X) = Λα[X] and B1−α(X) =
B1−α[X], we conclude that

∥ · ∥Λα(X) = ∥ · ∥Λα[X] ≍ ∥ · ∥B1−α[X] = ∥ · ∥B1−α(X).

Moreover, f ∈ Λ1(X) if and only if f ′ ∈ H∞(X) (the space of bounded X-valued analytic
functions on D) and ∥f∥Λ1(X) = ∥f ′∥D + ∥f∥D. Hence the norm

∥f∥Λα(X) = ∥f∥D + sup
z∈D

(1 − |z|2)(1−α)∥f ′(z)∥, (f ∈ Λα(X))

defines an equivalent norm on Λα(X). In the sequel we use this norm for Λα(X).
Since every function in Λα(X) has a unique extension to a Lipschitz function on D,

to show the boundedness and compactness of Wψ,φ : LipA(D, X, α) −→ LipA(D, Y, β), we
characterize the boundedness and compactness of Wψ,φ : Λα(X) −→ Λβ(Y ) for α ∈ (0, 1].

2 Main Results

For every f ∈ H(D, X) and z ∈ D we have

(Wψ,φ(f))′(z) = φ′(z)ψz(f ′(φ(z))) + ψ′
z(f(φ(z))). (1)

Identifying each x ∈ X with the constant function 1x(z) = x for z ∈ D, the Banach space
X can be considered as a subspace of Λα(X). For every x ∈ X and f ∈ Λα, the function
fx defined by fx(z) = f(z)x belongs to Λα(X). Moreover, ∥fx∥Λα(X) = ∥f∥Λα∥x∥ and

(Wψ,φ(fx))
′(z) = φ′(z)f ′(φ(z))ψz(x) + f(φ(z))ψ′

z(x). (2)

In the next theorem, we characterize bounded weighted composition operators between
analytic vector-valued Lipschitz spaces.

Theorem 2.1. For 0 < α ≤ 1 the operator Wψ,φ maps Λα(X) boundedly into Λβ(Y ) if
and only if ψ ∈ Λβ(L(X,Y )) and

sup
z∈D

(1 − |z|2)1−β

(1 − |φ(z)|2)1−α |φ′(z)|∥ψz∥ < ∞. (3)

Here, we characterize compact weighted composition operators from Λα(X) into Λβ(Y ),
where α ∈ (0, 1]. For this, we use the idea of [5] and define Tψ : X → Bβ(Y ), by
Tψ(x)(z) = ψz(x). In the case that Wψ,φ is bounded, Tψ is a bounded linear operator and
∥Tψ∥X→Bβ(Y ) ≤ ∥Wψ,φ∥Bα(X)→Bβ(Y ).

Theorem 2.2. Let 0 < α, β ≤ 1 and Wψ,φ : Λα(X) → Λβ(Y ) be a bounded weighted
composition operator. Then Wψ,φ is compact if and only if Tψ is compact and

lim sup
|φ(z)|→1

(1 − |z|2)1−β

(1 − |φ(z)|2)1−α |φ′(z)|∥ψz∥ = 0. (4)

The following corollary is an immediate consequence of Theorem 2.2.

Corollary 2.3. For 0 < α, β ≤ 1, the bounded weighted composition operator Wψ,φ :
LipA(D, X, α) −→ LipA(D, Y, β) is compact if and only if Tψ is compact and (4) holds.
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Which commutators of composition operators with adjoints

of composition operators on weighted Bergman spaces are

compact?
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Abstract

For two linear-fractional self-maps of the unit disk, where at least one of them
is a non-automorphism, we show that the commutator of composition operator with
the adjoints of another composition operator is non-trivially compact on the weighted
Bergman spaces if and only if either these functions are both parabolic or both hy-
perbolic, with associated conclusions about their fixed points in each case.

Keywords: weighted Bergman spaces, composition operator, essential normality.

Mathematics Subject Classification [2010]: 47B33, 47B38

1 Introduction

In [1], Bourdon, Levi, Narayan and Shapiro determined when Cϕ is essentially normal on
the Hardy space H2 in the case when ϕ is a linear-fractional self-map of D. Here, we
say that Cϕ is essentially normal if the commutator [C∗ϕ, Cϕ] is compact, which will be
trivially true when Cϕ is either normal or compact. Recent work of Clifford, Levi and
Narayan [2] extended this line of investigation by considering the question of when, for
linear-fractional self-maps ϕ and ψ of D, the commutator [C∗ψ, Cϕ] is non-trivially compact

on H2. After that MacCluer, Narayan, and Weir in [5] investigated this problem on the
weighted Bergman spaces.

Definition 1.1. For any analytic self-map ϕ of D, we define the composition operator Cϕ
by Cϕ(f) = f ◦ ϕ, where f is analytic in D.

Definition 1.2. Recall that for α > −1, the weighted Bergman space A2
α(D) = A2

α, is the
set of functions f analytic on the unit disk, satisfying the norm condition

‖f‖2α =

∫

D
|f(z)|2wα(z)dA(z) <∞,

∗Speaker
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where wα(z) = (α+1)(1−|z|2)α and dA is the normalized area measure. When α = 0, this
gives the Bergman space A2(D) = A2. If f̂(n) is the nth coefficient of f in its Maclaurin
series, then we have another representation for the norm of f on A2 as follows:

‖f‖20 =
∞∑

n=0

|f̂(n)|2
n+ 1

<∞.

The formula above defines a norm that turns A2 into a Hilbert space whose inner product
is given by

〈f, g〉 =
∞∑

n=0

f̂(n)ĝ(n)

n+ 1

for each f, g ∈ A2 (see [4]).

Definition 1.3. The Hardy space H2(D) = H2 is defined by

H2(D) = {f analytic in D : ‖f‖2H2 = lim
r→1−

∫ 2π

0
|f(reiθ)|2 dθ

2π
<∞}.

Definition 1.4. We write H∞ for the space of bounded analytic functions on D, and
denote its natural norm by ‖.‖∞, i.e.

‖f‖∞ := sup
z∈D
|f(z)| (f ∈ H∞).

Definition 1.5. A linear-fractional self-map of D is a map of the form

ϕ(z) =
az + b

cz + d
(1)

with ad− bc 6= 0, with the property that ϕ(D) ⊆ D. We denote the set of those maps by
LFT(D).

Definition 1.6. It is well-known that the automorphisms of the unit disk, that is, the
one-to-one analytic maps of the disk onto itself, are just the functions

ϕ(z) = λ
a− z
1− az , (2)

where |λ| = 1 and |a| < 1 (see, e.g., [3]). We denote the class of automorphisms of D by
Aut(D).

Definition 1.7. If ϕ(z) = az+b
cz+d is a linear-fractional self-map of D, then the adjoint of

any linear-fractional composition operator Cϕ, acting on H2 and A2
α, is given by

C∗ϕ = TgCσϕT
∗
h ,

where σϕ(z) = (az − c)/(−bz + d) is a self-map of D, g(z) = (−bz+d)−γ , h(z) = (cz+d)γ ,
with γ = 1 for H2 and γ = α+2 for A2

α. Note that g and h are in H∞ (see [4]). If ϕ(ζ) = η
for ζ, η ∈ ∂D, then σϕ(η) = ζ. The map σϕ is called the Krein adjoint of ϕ, we will write σ
for σϕ except when confusion could arise. We will refer to g and h as the Cowen auxiliary
functions for ϕ. We know that ϕ is an automorphism if and only if σ is, and in this case
σ = ϕ−1. From now on, unless otherwise stated, we assume that σ, h and g are given as
above.
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Definition 1.8. For a bounded operators S and T on a Hilbert space, the commutator
of S and T , denoted [S, T ] is ST − TS.

Remark 1.9. Suppose that ϕ ∈ LFT(D) is not an automorphism with ‖ϕ‖∞ = 1. We
classify ϕ as follows:
• Hyperbolic non-automorphism of D which has a fixed point in ∂D of multiplicity 1.

Also it has another fixed point in the complement of ∂D.
• Parabolic non-automorphism of D with a fixed point in ∂D of multiplicity two.
• Non-automorphism with sup-norm equal to 1 such that it does not have a fixed point

in ∂D. It necessarily has a fixed point in D (see [4]).

Definition 1.10. We say that the commutator [C∗ψ, Cϕ] is non-trivially compact if [C∗ψ, Cϕ]
is compact but nonzero, and C∗ψCϕ and CϕC

∗
ψ are not compact.

Remark 1.11. For each f ∈ H∞, the radial limit

f(eiθ) = lim
r→1

f(reiθ),

exists for almost all θ (see [4]).

2 Main results

In this section, we consider the case when ϕ or ψ is non-automorphism and we find all ϕ
and ψ such that [C∗ψ, Cϕ] is non-trivially compact.

Proposition 2.1. Suppose that ϕ ∈ LFT(D) is not an automorphism and that ϕ(ζ) = η
for some ζ, η ∈ ∂D. Let α > −1 and s = ((cζ + d)/(−bη + d))α+2. Then there exists a
compact operator K on A2

α so that

C∗ϕ = sCσ +K = |ϕ′(ζ)|−(α+2)Cσ +K.

Proposition 2.2. Let ϕ and ψ be linear-fractional self-maps of D, at least one of which
is a non-automorphism. Then
(a) C∗ψCϕ is not compact on A2

α if and only if there exists points w1 and w2 in ∂D such

that ϕ−1(w1) = ψ−1(w2), and
(b) CϕC

∗
ψ is not compact on A2

α if and only if there exists points ζ1 and ζ2 in ∂D such that
ϕ(ζ1) = ψ(ζ2) ∈ ∂D.

Corollary 2.3. Let ϕ and ψ be linear-fractional self-maps of D, at least one of which is a
non-automorphism. Suppose that ϕ(ζ) = ψ(ζ) = w for some ζ, w ∈ ∂D with ζ 6= w. Then
[C∗ψ, Cϕ] is not compact on A2

α.

Proposition 2.4. Let ϕ and ψ be linear-fractional self-maps of D, at least one of which
is a non-automorphism. If [C∗ψ, Cϕ] is non-trivially compact on A2

α, then ϕ and ψ have a
common boundary fixed point.

Theorem 2.5. Let ϕ and ψ be linear-fractional self-maps of D, at least one of which is a
non-automorphism. The commutator [C∗ψ, Cϕ] is non-trivially compact on A2

α if and only
if either
(1) ϕ and ψ are both parabolic with the same boundary fixed point, or
(2) ϕ and ψ are both hyperbolic with the same boundary fixed point and with non-boundary
fixed points which are conjugate reciprocals.
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Theorem 2.6. Suppose that ϕ is a parabolic non-automorphism of D. Then [C∗ψ, Cϕ] is

compact on H2 or A2
α if and only if ψ is also parabolic, with the same fixed point as ϕ.
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d-self Center Graphs and Graph Operations

Yasser Alizadeh
Hakim Sabzevari University

Ehsan Estaji ∗

Hakim Sabzevari University

Abstract

Let G be a simple connected graph. The graph G is called d-self center if it’s
vertices are of eccentricity d. In this paper, some self center composite graphs are
investigated. Some mathematical properties of self center graphs is investigated. It
is proved that a self center graph is 2-connected. Some infinite family of asymmetric
self center graphs is constructed.

Keywords: eccentricity, d-self center graph, composite graphs
Mathematics Subject Classification [2010]: 05C12, 05C76, 05C90

1 Introduction

All considered graphs are simple and connected. Distance between two vertices is defined
as usual length of shortest path connecting them. Eccentricity of vertex v is denoted by
ε(v) is the maximum distance between v and other vertices. The maximum and minimum
eccentricity among all vertices of G are called diameter of G, diam(G) and radius of
G, rad(G) respectively. The Center of G, C(G) is the set of vertices of rad(G). Let G
be a simple connected graph. The graph G is called d-self center if it’s vertices are of
eccentricity d. Center of graph G is the set of vertices of minimum eccentricity. Then
the Center of a self center graph contains all vertices of the graph. In a series of paper,
topological indices based on eccentricity of vertices were studied and for some family of
molecular graphs such indices were calculated. For more information, we refer the reader
to [1, 2, 3, 4, 5, 6, 8, 7, 10]. In this paper, self center graphs under some graph operations
is studied. It is proved that a self center graph is 2-connected. By graph operations, some
asymmetric self center graphs is constructed.

2 Main Results

As example complete graphs Kn, cycles Cn and sierpinski graphs Sn
k are three well-known

family of self center graphs. A graph G is called vertex- transitive if for given vertices u
and v there is an auto-morphism of G, f such that f (u) = v. For example the complete
graphs and cycle graphs and Petersen graph are vertex transitive graphs. Since distance
between vertices and eccentricity are invariant under auto morphism of graphs, then the
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vertex transitive graphs are self center but the reverse is not true. The Sierpinski graphs Sn
k

are a family of self center graphs but non vertex transitive. A regular graph that is edge-
transitive but not vertex-transitive is called a semi-symmetric graph. The Gray graph
(with 54 vertices), the Tutte 12-cage (with 126 vertices) are two namely semi-symmetric
and self center graph and the Folkman graph (with 20 vertices) and the Ljubljana graph
(with 112 vertices) are other semi-symmetric graph but non self center graph. It seems an
interesting problem to characterize the self center semi-symmetric graphs. A self center
graph with n ≥ 3 vertices is a block graph or 2-connected graph.

Theorem 2.1. Let G be a self center graph with n ≥ 3 vertices. Then G is 2-connected.

There are some self center graphs such as cycles that are not 3-connected graph. Let
Aut(G) be the group automorphism of graph G. Orbit of vertex v is denoted by Orb(v) and
defined as Orb(v) =

{
f (v)| f ∈ Aut(G)

}
. The vertices of Orb (v) have the same eccentricity.

A graph G is vertex transitive if and only if G has exactly one orbit. The following example
illustrated in Figure 1. is a graph with 7 orbits but all vertices have a same eccentricity
then the graph is self center.

Figure 1: asymmetric graph with 7 orbits

Proposition 2.2. [9] If G is a 2-self center graph on n ≥ 5 vertices then G has at least 2n − 5
edges.

3 Composite graphs

In this section some self centered graph arised from graph operation are presented. We
start by join of graphs.

Theorem 3.1. Let G1 and G2 be two simple connected graphs. Then G1 + G2 is self center graph
if and only if G1 and G2 are self center graphs.

Proposition 3.2. For any n ≥ 4 there is a family of 2-self center graphs on n vertices.

It is enough to consider Km + Kp where m + p = n and m, p ≥ 2. We have a similar
statement about cartesian product of graphs.

Theorem 3.3. Let G and H be two simple connected graphs. Then G1 ×G2 is self center graph if
and only if G1 and G2 are self center graphs.
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Corollary 3.4.
n∏

i=1
Gi is self center iff each Gi is self center for 1 ≤ i ≤ n.

Corollary 3.5. Ther is an infinite family of non vertex transitive self centered .

Consider the powers of a non-vertex transitive self center graph such as the Gray
graph or the Tutte 12-cage graph.
For any two simple connected graph with at least two vertices, we can construct a self
center graph by symmetric difference operation of the graphs.

Theorem 3.6. Let G and H be two simple connected graph with at least two vertices. Then the
symmetric difference G ⊕H is 2-self center.

It is easy to see that the disjunction of two complete graphs is a complete graph and
vice versa. In the case radius of both G and H is at least 2 the disjunction G ∨ H is 2-self
center.

Theorem 3.7. Let G and H be two simple connected graph with radius at least 2. Then the
disjunction G ∨H is 2-self center.
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[6] T. Došlić, M. Saheli, Augmented Eccentric Connectivity Index, Miskolc Mathematical
Notes. 12 (2011) 149-157.

[7] M. Ghorbani, M.A Hosseinzadeh, new version of Zagreb indices, Filomat. 26:1 (2012)
93-100.

[8] A. Iranmenesh, Y. Alizadeh. Eccentric Connectivity Index of HAC5C7[p,q] and
HAC5C6C7[p,q] Nanotubes, MATCH Commun. Math. Comput. Chem. 69 (2013)
175-182.

[9] Z. Stanic, Some notes on minimal self centered graphs, AKCE J. Graphs. Combin. 7
(2010) 97-102

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

d-self center graphs and graph operations pp.: 3–4

672



[10] Z. Yarahmadi, S. Moradi, The Center and Periphery of Composite Graphs, IJMC. 5
(2014) 35-44.

Email: ehsan.estaji@hsu.ac.ir
Email: y.alizadeh@hsu.ac.ir

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

d-self center graphs and graph operations pp.: 4–4

673



Bounds on Some Variants of Clique Cover Numbers

Akbar Davoodi∗

Isfahan University of Technology

Ramin Javadi
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Behnaz Omoomi
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Abstract

A clique covering of G is defined as a family of cliques of G such that every edge
of G lies in at least one of the cliques. The weight of a clique covering is defined
as the sum of the number of vertices of the cliques. The sigma clique cover number
(resp. sigma clique partition number) of graph G, denoted by scc(G) (resp. scp(G)),
is defined as the smallest integer k for which there exists a clique covering (resp. clique
partition) for G of weight k. In this paper, among some results we prove an upper
bound on scc. Also, we provide a new lower bound on scp that improves a result of
Erdős as a corollary. Then, we explore scc and scp for complete multipartite graphs
as well as the product of graphs.

Keywords: Clique covering, Clique partition, Sigma clique covering, Sigma clique
partition
Mathematics Subject Classification [2010]: 05C70,05C62,05D05

1 introduction

Throughout the paper, all graphs are simple and undirected. By a clique of a graph G,
we mean a subset of mutually adjacent vertices of G as well as its corresponding complete
subgraph. The size of a clique is the number of its vertices.

A clique covering of G is defined as a family of cliques of G such that every edge of
G lies in at least one of the cliques comprising this family. The minimum size of a clique
covering of G is called clique cover number of G and is denoted by cc(G).

A clique covering in which each edge belongs to exactly one clique, is called a clique
partition. The minimum size of a clique partition of G is called clique partition number of
G and is denoted by cp(G).

Chung et al. in [2] and independently Tuza in [10] defined the concept of weight for
a clique covering. Let C be a clique covering for graph G. The weight of C is defined as∑

C∈C |V (C)|.
The sigma clique cover number of G, denoted by scc(G), is defined as the minimum

integer k for which there exists a clique covering C for G of weight k. In fact,

scc(G) = min
C

∑

C∈C
|C|,
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where the minimum is taken over all clique coverings of G.
Analogously, one can define sigma clique partition number of G, denoted by scp(G).

As a general upper bound, in [1, 6, 7] it was proved that for every graph G on n vertices,
scc(G) ≤ scp(G) ≤ n2/2.

Clique covering parameters have close relation to other combinatorial concepts such
as set representations, line hypergraph and pairwise balanced designed. For a survey of the
classical results on the clique coverings see [8, 9].

2 General Bounds

2.1 Upper Bound for scc

Let G be a graph on n vertices. The only known general upper bound on scc(G) is n2/2
[1, 7, 6]. In the following theorem, using the probabilistic methods, we stablish an upper
bound for scc(G).

Theorem 2.1. If G is a graph on n vertices with no isolated vertex and ∆(G) = d − 1,
then

scc(G) ≤ (e2 + 1)nd

⌈
ln

(
n− 1

d− 1

)⌉
.

Sketch of proof. Let 0 < p < 1 be a fixed number and let S be a random subset
of V (G) defined by choosing every vertex u independently with probability p. For every
vertex u ∈ S, if there exists a non-neighbour of u in S, then remove u from S. The
resulting set is a clique of G. Repeat this procedure t times, independently, to get t
cliques C1, C2, . . . , Ct of G.

Let F be the set of all the edges which are not covered by the cliques C1, . . . , Ct. The
cliques C1, . . . , Ct along with all edges in F comprise a clique covering of G. Hence,

scc(G) ≤ E

(
t∑

i=1

|Ci|+ 2|F |
)

≤ npt+ 2

(
n

2

)
e−tp

2(1−p)2(d−1)
.

Finally, set p := 1/d and t := de2d2 ln(n−1d−1 )e > 0 to get the desired corollary. �

2.2 Lower Bound for scp

Theorem 2.2. Let U and V be a partition of vertices of G into the two sets. If G has t
edges between parts U and V , then scp(G) ≥ 2(t− (p+ q)), in which p and q are number
of edges of G with both ends in U and V , respectively. Moreover, equality holds if and
only if there exists a clique partition of edges of G, say C, such that for each Ci ∈ C,
|Ci ∩ U | = |Ci ∩ V |.
Remark 2.3. Without loss of generality assume that p ≤ q. Erdős et al. in [5] proved that
cp(G) ≥ t− 2p− q. On the other hand, by Theorem 2 (ii) in [4], cp(G) ≥ scp2(G)/(2m+
scp(G)), where m is the number of edges of G. Since x2/(2m+x) is increasing for x > 0 ,
Theorem 2.2 concludes that cp(G) ≥ (t− (p+ q))2/t which improves Erdős bound if and
only if t ≤ (p+ q)2/q.
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3 Clique Covering of Special Graphs

In this section, our focus is on determining scc and scp for some well-known families
of graphs. First, we consider the Turan graphs because of their importance in covering
problems. Then, by determining the value of scc and scp for Cartesian product of graphs,
we give a tight lower bound for scp of tensor product of complete graphs and study its
asymptotic behaviour.

The complement of the union of complete graphs is the s-partite complete graph
Kt1,t2,...,ts , whose parts are of size t1, t2, . . . , ts, respectively. If each part has the same
size, t1 = t2 = · · · = ts = t > 1, then we denote the graph by Ks(t).

Theorem 3.1. Let N(t) be the maximum number of mutually orthogonal Latin squares
of order t. If N(t) ≥ s− 2, then scc(Ks(t)) = scp(Ks(t)) = st2.

Theorem 3.2. If G�H is the Cartesian product of G and H, then

scc(G�H) = n(G) scc(H) + n(H) scc(G)

scp(G�H) = n(G) scp(H) + n(H) scp(G).

For the tensor product of complete graphs, Kn ×Kn, we have the following theorem.

Theorem 3.3. scp(Kn ×Kn) ≥ n3 − n2. If n is a prime power, then equality holds.

Sketch of proof. By Theorem 2.5 in [3], for a graphG on n vertices, if max{ω(G), ω(G)} ≤
b√nc, then scp(G) + scp(G) ≥ n(

√
n+ 1).

First note that complement ofKn×Kn isKn�Kn. Since ω(Kn×Kn) = ω(Kn�Kn) = n,
we conclude that scp(Kn × Kn) ≥ n2(n + 1) − scp(Kn�Kn). Thus, the lower bound is
proved by Theorem 3.2.

Now, let n be a prime power. Thus, there exist (n − 2) idempotent MOLS(n) and
equvallently an (n, n)-orthogonal array. Consider each row of the (n, n)-orthogonal array
as a clique except the row in+ (i+ 1), for 0 ≤ i ≤ n− 1. These n2 − n cliques of size n,
form a clique partition for the edges of Kn ×Kn. �

Theorem 3.4. For large enough n, scp(Kn ×Kn)∼n3.
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Cospectral Regular graphs
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Abstract

Graphs G and H are called cospectral if they have the same characteristic polyno-
mial, equivalently, if they have the same eigenvalues considering multiplicities. Gen-
eralizing the construction of G4(a, b) and G5(a, b) due to Wang and Hao, we define
graphs Gr

4(a, b) and Gr
5(a, b) and show that they are cospectral only if r = 1 and

a + 2 = b.

Keywords: eigenvalue, cospectral graphs, adjacency matrix, integral graphs.

Mathematics Subject Classification [2010]: 05C50

1 Introduction

We consider simple graphs, that is, graphs without loops or parallel edges. For basic
notions in graph theory we refer to [4], whereas for preliminaries on graphs and matrices,
see [1]. By the eigenvalues of a graph G, we mean the eigenvalues of its adjacency matrix
A(G). Graphs G and H are said to be cospectral if they have the same eigenvalues, counting
multiplicities, or equivalently, they have the same characteristic polynomial. There is
considerable literature on construction of cospectral graphs.

This paper is motivated by [3]. Bussemaker and Cvetković [2] introduced connected
integral cubic graphs, denoted G1, G2, . . . , G13, among which G4 and G5 are cospectral.
Wang and Hao [3] constructed graphs G4(a, b) and G5(a, b) based on G4 and G5. They
showed that for any positive integer a, G4(a, a+2) and G5(a, a+2) form a pair of integral
cospectral (a + 2)−regular graphs, and concluded that there exist infinitely many pairs of
cospectral integral graphs. We first give a generalization of G4(a, b) and G5(a, b) based
on the method used in Lemma 1.1. We determine the characteristic polynomial of the
resulting graphs. We also show that G4(a, b) and G5(a, b) are cospectral if and only if
a + 2 = b.

Lemma 1.1. Suppose that X and Y are square matrices of the same order. Let

T =




X Y . . . Y
Y X . . . Y
...

...
. . .

...
Y Y . . . X


 (1)
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be an r × r block matrix. Then the eigenvalues of T are the eigenvalues of X − Y , r − 1
times, and the eigenvalues of X + (r − 1)Y .

We first recall the adjacency matrices of G4(a, b) and G5(a, b). The adjacency matrix

of G4(a, b) is

(
A0 A1

A1 A0

)
, where

A0 =




0a×a Ja×b 0a×b 0a×b

Jb×a 0b×b Ib 0b×b

0b×a Ib 0b×b B
0b×a 0b×b B 0b×b


 , A1 =




0a×a 0a×b 0a×b 0a×b

0b×a Ib 0b×b 0b×b

0b×a 0b×b 0b×b 0b×b

0b×a 0b×b 0b×b Ib


 (2)

and

B =




1 J1×(b−2) 0

J(b−2)×1 J(b−2)×(b−2) − Ib−2 J(b−2)×1

0 J1×(b−2) 1


 . (3)

The adjacency matrix of G5(a, b) is

(
M0 M1

M1 M0

)
, where

M0 =




0a×a Ja×b 0a×b 0a×b

Jb×a 0b×b Ib Ib

0b×a Ib 0b×b 0b×b

0b×a Ib 0b×b 0b×b


 , M1 =




0a×a 0a×b 0a×b 0a×b

0b×a 0b×b 0b×b 0b×b

0b×a 0b×b B 0b×b

0b×a 0b×b 0b×b B


 (4)

and B is the same as in (3).

Lemma 1.2. Let r ≥ 1 be an integer. Then

det(A0 + rA1 − λI) = (−1)a−bλa−1(λ − r)b−1(λ2 − rλ − 2)b−1

× [λ4 − 2λ3r + (−b2 + (−a + 2)b − 2 + r2)λ2 + (2 + b2 + (a − 2)b)rλ + ba(b − 1)2].

Theorem 1.3. For a positive integer r ≥ 1, suppose that Gr
4(a, b) denotes the graph whose

adjacency matrix is the (r + 1) × (r + 1) block matrix

A(Gr
4(a, b)) =




A0 A1 . . . A1

A1 A0 . . . A1
...

...
. . .

...
A1 A1 . . . A0


 , (5)

where A0 and A1 are the same as in (2). Then the characteristic polynomial of Gr
4(a, b) is

det(A(Gr
4(a, b)) − λI) = λ(r+1)(a−1)(λ − r)b−1(λ2 − rλ − 2)b−1(λ + 2)r(b−1)(λ − 1)r(b−1)(λ + 1)r(b−1)

× [λ4 − 2λ3r − (b2 − 2b + ab − r2 + 2)λ2 + (b2 + ab − 2b + 2)rλ + ba(b − 1)2]

× [λ4 + 2λ3 − (b2 − 2b + ab + 1)λ2 − (b2 + ab − 2b + 2)λ + ba(b − 1)2]r.

Lemma 1.4. Suppose that x and y are scalars and let B be the matrix as in (3). Then

det(rB + xJ + yI) = (y + r)(y − r)b−2(bx + y + rb − r).
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Lemma 1.5. If T =

(
xIa Ja×b

Jb×a xIb

)
is invertible, then

T−1 =

(
1
x(Ia + b

x2−ab
Ja) −Ja×b

−Jb×a
1
x(Ib + a

x2−ab
Jb)

)

Theorem 1.6. The characteristic polynomial of A(Gr
5(a, b)) is

det(A(Gr
5(a, b) − λI) = λ(r+1)(a−1)(λ + 2)r(λ + 1)r(b−1)(λ − 1)r(b−1)(λ − 2)r(b−2)(λ + b − 1)r

× (λ − r)(λ + r)b−2(λ − rb + r)(λ2 − rλ − 2)(λ2 + rλ − 2)b−2

× [λ3 − rλ2(b − 1) − λ(2 + ab) + rab(b − 1)][λ3 + (b − 1)λ2 − (2 + ab)λ − (b − 1)ab]r

Corollary 1.7. Let a and b be positive integers. Then Gr
4(a, b) and Gr

5(a, b) are cospectral
if and only if r = 1 and b = a + 2.
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Diameter of Γ(M1 ⊕ M2)
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Abstract

Let M1 and M2 be finietly generated multiplication R-modules such that

(0 : M1) + (0 : M2) = R.

We compare diamΓ(M1 ⊕ M2) with diamΓ(M1) and diamΓ(M2) .

Keywords: Zero-divisor graphs, Diameter of graphs, Multiplication modules.
Mathematics Subject Classification [2010]: 13C12, 13A15

1 Introduction

The notion of multiplication modules introduced by Barnard in 1981 [4], and then E-Bast
and Smith found various properties of multiplication modules to hold in 1988[6]. On the
other hand, Beck first introduced the notion of a zero-divisor graph of a ring in 1988 [5]
from the view of colorings. Since then, others, such as in [1], [3] have studied and modified
these graphs, whose vertices are the zero-divisors of R, and found various properties to
hold. Multiplication modules are natural generalizations of commutative rings, and hence
it is natural for us to generalize zero-divisor graphs of commutative rings to those of
multiplication modules.

An R-module M is called a multiplication module provided that for each submodule
N of M there exists an ideal I of R such that N = IM . We say that I is a presentation
ideal of N . Let N and K be submodules of a multiplication R-module M . Then there
exist ideals I and J of R such that N = IM and K = JM . The product of N and K,
denoted by N ∗K, is defined to be (IJ)M . By [2], the product of N and K is independent
of presentation ideals of N and K. An element x of M is called a zero-divisor element of
M if there exists a nonzero element y of M such that Rx ∗ Ry = 0 in M .

Proposition 1.1. Let M be a multiplication R-module with |M | ≥ 3. Let x, y and z be
distinct vertices of Γ(RM) such that x is adjacent to y and y is not adjacent to z. Then
there exists a nonzero element m in Ry ∗ Rz such that Rx ∗ Rm = 0.

Proposition 1.2. Let M be a multiplication module. Let x, x1, y1 and y be vertices
of Γ(RM) such that x ̸= x1, y ̸= y1, and x1 ̸= y1. Assume that x is not adjacent to
y and x1 is not adjacent to y1. If x is adjacent to x1 and y is adjacent to y1, then
(Rx1 ∗ Ry1)

∗ ⊆ Z(RM)∗ and there exists an element z in (Rx1 ∗ Ry1)
∗ such that x is

adjacent to z and z is adjacent to y.
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2 Main result

Theorem 2.1. Let M1, M2 be finitely generated multiplication R-modules such that (0 :R
M1) + (0 :R M2) = R. Then the following statements are true.

1. If P(M1) = { 0 } and P(M2) = { 0 }, then Γ(M1 ⊕ M2) is complete.

2. max{ diam(Γ(M1)), diam(Γ(M2)) } ≤ diam(Γ(M1 ⊕ M2)) ≤ 3

Let M1 = Z12, M2 = Z5. Then (9, 4) − (4, 0) − (6, 0) − (2, 3) is a shortest path (of
length 3) between (9, 4) and (2, 3). Therefore, dim(M1 ⊕ M2) = 3.
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Domination polynomial of generalized friendship graphs

Somayeh Jahari∗

University of Yazd

Saeid Alikhani

Yazd University

Abstract

Let G be a simple graph of order n. The domination polynomial of G is the
polynomial D(G, x) =

∑n
i=0 d(G, i)xi, where d(G, i) is the number of dominating sets

of G of size i. Let n and q ≥ 3 be any positive integer and Fq,n be the generalized
friendship graph formed by a collection of n cycles (all of order q), meeting at a
common vertex. We study the domination polynomials of some generalized friendship
graphs. In particular we examine the domination roots of these families, and find the
limiting curve for the roots.

Keywords: Domination polynomial; friendship graph; flower graphs.

Mathematics Subject Classification [2010]: 05C60

1 Introduction

Let G = (V,E) be a simple graph. For any vertex v ∈ V (G), the open neighborhood
of v is the set N(v) = {u ∈ V (G)|{u, v} ∈ E(G)} and the closed neighborhood of v
is the set N [v] = N(v) ∪ {v}. For a set S ⊆ V (G), the open neighborhood of S is
N(S) =

∪
v∈S N(v) and the closed neighborhood of S is N [S] = N(S)∪S. A set S ⊆ V (G)

is a dominating set if N [S] = V or equivalently, every vertex in V (G)\S is adjacent to
at least one vertex in S. The domination number γ(G) is the minimum cardinality of a
dominating set in G. Let D(G, i) be the family of dominating sets of a graph G with
cardinality i and let d(G, i) = |D(G, i)|. The domination polynomial D(G, x) of G is

defined as D(G, x) =
∑|V (G)|

i=γ(G) d(G, i)xi, where γ(G) is the domination number of G (see

[1, 2]). A root of D(G, x) is called a domination root of G. The set of distinct roots of
D(G, x) is denoted by Z(D(G, x)).

Calculating the domination polynomial of a graph G is difficult in general, as the
smallest power of a non-zero term is the domination number γ(G) of the graph, and
determining whether γ(G) ≤ k is known to be NP-complete [6]. But for certain classes
of graphs, we can find a closed form expression for the domination polynomial. The
domination polynomial of friendship graphs and its limiting curve for their domination
roots studied recently [3]. In this paper we consider generalized friendship graph (or flower
graphs), calculate their domination polynomials, exploring the nature and location of their
roots.
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2 Main results

Let us consider the graphs Fn obtained by selecting one vertex in each of n triangles
and identifying them (Figure 1). Some call them Dutch-Windmill graphs and friendship
graphs.

Figure 1: Friendship graphs F2, F3, F4 and Fn, respectively.

The generalized friendship graph Fq,n is a collection of n cycles (all of order q), meeting
at a common vertex (see Figure 2). The generalized friendship graph may also be referred
to as a flower [7].

v

Figure 2: The flowers F4,2, F4,3, F4,4 and F4,n, respectively.

The following theorem gives formula for the domination polynomial of Fn.

Theorem 2.1. [3] For every n ∈ N,

D(Fn, x) = (2x + x2)n + x(1 + x)2n.

The following theorem gives recurrence relation for the domination polynomial of F4,n.

Theorem 2.2. For every n ≥ 2,

D(F4,n, x) = ((1 + x)3 + x)D(F4,n−1, x) − (1 + 3x)(x + 3x2 + x3)n−1

+(1 + x)3xn−1 − (x2 + x)(x3 + 3x2 + 3x)n−1,

where D(F4,1, x) = x4 + 4x3 + 6x2.

The domination roots of Fn and F4,n exhibit a number of interesting properties (see
Figure 3).

If we can find an explicit formula for the domination polynomial of a graph, there are
still interesting, difficult problems concerning the roots. We have the following result:

Theorem 2.3. (i) For every odd natural number n, no nonzero real number is a domina-
tion root of Fn and F4,n.
(ii) For even natural number n, Fn has exactly three real domination roots.
(iii) For even n ≥ 4, F4,n has exactly three real domination roots.
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(a) Domination roots of graphs Fn (b) Domination roots of graphs F4,n

Figure 3: Domination roots of graphs Fn and F4,n, for 1 ≤ n ≤ 30.

It is natural to ask about the complex domination roots of Fn and F4,n. The plots in
Figure 3 suggest that the roots tend to lie on some curves. In order to find the limiting
curve, we need a definition and a well known result.

Definition 2.4. If fn(x) is a family of (complex) polynomials, we say that a number
z ∈ C is a limit of roots of fn(x) if either fn(z) = 0 for all sufficiently large n or z is a
limit point of the set R(fn(x)), where R(fn(x)) is the union of the roots of the fn(x).

The following theorem is the Beraha-Kahane-Weiss theorem [4].

Theorem 2.5. Suppose fn(x) is a family of polynomials such that

fn(x) = α1(x)λ1(x)n + α2(x)λ2(x)n + ... + αk(x)λk(x)n

where the αi(x) and the λi(x) are fixed non-zero polynomials, such that for no pair i ̸= j
is λi(x) ≡ ωλj(x) for some ω ∈ C of unit modulus. Then z ∈ C is a limit of roots of fn(x)
if and only if either

(i) two or more of the λi(z) are of equal modulus, and strictly greater (in modulus) than
the others; or

(ii) for some j, λj(z) has modulus strictly greater than all the other λi(z), and αj(z) = 0.

Theorem 2.6. [3] The limit of dominiation roots of frienship graphs is −1 together with
the hyperbola

(ℜx + 1)2 − (ℑx)2 =
1

2
.

Figure 4 shows the limiting curve. We see that this curve meet the real axis at −1 − 1√
2

≈ −1.7071 and −1 +
1√
2

≈ −0.2929. Also, in [5] a family of graphs was produced with

roots just barely in the right-half plane (showing that not all domination polynomials are
stable), but Theorem 2.6 provides an explicit family (namely the friendship graphs) whose
domination roots have unbounded positive real part. Also we think that this is true for
F4,n.
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Figure 4: Domination roots of graphs Fn, for 1 ≤ n ≤ 30 along with limiting curve.
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Notes on STP Number of a Graph

Masoud Ariannejad∗

University of Zanjan

Abstract

Spanning tree packing number of a graph G is the maximum number of edge dis-
joint spanning trees contained in G. This quantity is one of the connectivity measure
of a graph. We give two main theorems for to compute this parameter in some cases
of graphs. In particular for a positive integer n we prove that when H is a forest
subgraph of the complete graph K2n+1 with at most n edges, then the spanning tree
packing number of K2n+1 − H is equal to n. In another result we prove that when
H is a forest of at least n + 1 edges, then the spanning tree number of K2n+1 − H,
may vary depending the maximum degree vertex of the spanning tree that may be
obtained by extending H in K2n+1.

Keywords: Spanning Tree, Complete Graph, STP Number

Mathematics Subject Classification [2010]: 05C05, 05C80

1 Introduction

Let G be a graph. The spanning tree packing number of G denoted by STP (G) is defined
to be the maximum number of edge disjoint spanning trees contained in G. This concept
has an interconnection with the robustness concept of a network since any spanning tree
is merely a complete and least connection routs between all nodes. So clearlly a network
has more robustness when it has more STP number. Clearly a graph with more STP
number has more possible alternative connections whenever there is a treat over a revealed
connection. In other words a network with more STP number is a more secure network
and deserve more investments.

One of the main issues in the topic of spanning trees is to compute the STP number of a
given or known graphs. In what follows some classical results are recalled [2] (note that
⌊x⌋ denotes the greatest integer not more than x):

1. STP (Kn) = ⌊n/2⌋, where Kn is the complete graph with n vertices,

2. STP (Km,n) = ⌊ mn
m+n−1⌋, where Km,n is the complete bipartite graph,

3. STP (Qn) = ⌊n/2⌋, Where Qn is the n-cube graph [1, p.33],

4. STP (Km × Kn) = ⌊m+n−2
2 ⌋; (2 ≤ m ≤ n).
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5. STP (Km × Cn) = ⌊m+1
2 ⌋, where Cn is the cycle with n vertices,

6. STP (Pq) = STP (Cm × Cn) = 2, where Pq is the paley graph with q vertices [1, p.221].

One of the most famous and basic results in this context is obtained by Nash-Williams
and Tutte, independently[3]:

Theorem 1.1. Let G be a connected graph. Then STP (G) = k if and only if |F | ≥
k(ω(G − F ) − 1)) for every F ⊆ G, where ω(G − F ) denotes the number of connected
components of G − F .

By this theorem we obtain a sufficient condition for a graph to be 2k-edge connected.
The following basic theorem of Catlin [2] improved this idea:

Theorem 1.2. Let G be a connected graph. Then G is 2k edge connected if and only if
G − F has k edge disjoint spanning trees for any F ⊆ G with |F | = k.

2 Main results

In this note we pay our attention to the following question: By the formula 1 above, for
any positive integer n we have STP (K2n+1) = n. So one may ask how much this number
is stable within removing the subgraphs. In what follows we give a particular response to
this question showing that one can remove any forest subgraph of K2n+1 with at most n
edges while the number of edge disjoint spanning trees does not change. In other words
we show that:

Theorem 2.1. Let H be a forest subgraph of K2n+1 with at most n edges, then we have:

STP (K2n+1 − H) = n.

Proof. The proof is by induction on n. For n = 2 the claim is true since H is a one edge
subgraph and K5 − H is connected. Now let the claim be true for all m, where m ≤ n.
Let u be a leaf in H and suppose that u is connected to a vertex, say w in H. Also
let v be a vertex not incident with edges in H (there exist at least (2n + 1) − 2n = 1
vertex of this kind). Consider K2n−1 = K2n+1 − {u, v} and put H ′ = H ∩ K2n−1, which
is a forest subgraph of K2n−1 with at most n − 1 edges. Now by induction hypothesis
STP (K2n−1 −H ′) = n− 1. Let T ′

1, · · · , T ′
n−1 be a set of n− 1 edge disjoint spanning trees

in K2n−1 − H ′. Partition all 2n − 1 vertices of K2n−1 in two sets of n and n − 1 sizes, as
A = {a1, · · · , an} and B = {b1, · · · , bn−1} such that an = w. Consider T ′

i and join ai to u
and bi to v and call the new tree Ti, in other words let Ti = T ′

i ∪{aiu, biv}. The set of trees
{T1, · · · , Tn−1} are n − 1 edge-disjoint spanning trees in K2n+1. By the following method
we make another tree. Let G = K2n+1 − H − ∪

1≤i≤n−1 Ti. In G we have degG(u) = n + 1
and degG(v) = n + 2. The last tree obtained by joining u to all vertices of B and joining
v to all vertices of A plus the edge uv. This tree is the n-th edged disjoint spanning tree
in K2n+1 − H as we liked.

Note that the converse of this theorem is not true as one can see in case n = 3. In
other words one can find three edge disjoint spanning trees in K7 − C3. Now we consider
the case when a subgraph with more than n edges is removed. As above, the following
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theorem gives a particular response to this question showing that one can remove any
forest subgraph of K2n+1 with at least n + 1 edges, while the number of edge disjoint
spanning tree may vary depending the maximum degree vertex of the spanning tree that
may obtained by extending the given forest. Note that clearly any forest in a graph can
be extended to a spanning tree. Now we have:

Theorem 2.2. Let H be a forest subgraph of K2n+1 with at least n + 1 edges, then
STP (K2n+1 − H) = m − 1 if and only if H can be extended to a spanning tree TH

such that ∆(TH) = 2n + 1 − m.

The following is a different approach in identifying STP number. An ear of a graph G
is a maximal path whose internal vertices have degree 2 in G. For the definition of an ear
decomposition of G started from a subgraph H see [4, p.163]. An K1,r-ear decomposition
of G started from a subgraph H is defined similarly. Now we have:

Theorem 2.3. Let G be a connected simple graph without leaves. Then STP (G) ≥ 2 if
and only if G has a P2-ear decomposition started from a subgraph H, where STP (H) ≥ 2.

More generally we have:

Theorem 2.4. let G be a connected simple graph with no leaves. Then STP (G) ≥ r if and
only if G has an K1,r-ear decomposition started from a subgraph H, where STP (H) ≥ r.
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On the Biclique Cover of Graphs

Farokhlagha Moazami∗

Cyberspace Research Center

Shahid Beheshti University

Abstract

The biclique cover number bc(G) of a graph G is the smallest number of bicliques
of G such that every edge of G belongs to at least one of these bicliques. A k-clique
covering of a graph G, is an edge covering of G by its cliques such that each vertex is
contained in at most k cliques. The smallest k for which G admits a k-clique covering
is called local clique cover number of G and is denoted by lcc(G). In this paper, we
find the relation between bc(G) and lcc(G) of the graphs. As a consequence, we show
that if G is a graph with m edges such that G is a line graph then bc(G) ≤ 8 ln m.

Keywords: Biclique Cover, Clique Cover, Local Biclique Cover, Local Clique Cover,
Intersection Representation.

Mathematics Subject Classification [2010]: 05B40

1 Introduction

Throughout the paper, all graphs are finite and simple graph. Let V (G) denote the vertex
set of the graph G and E(G) denote its edge set. The complement G of the graph G is
the simple graph whose vertex set is V (G) and whose edges are the pairs of nonadjacent
vertices of G. The term clique stands for the complete graph and biclique for the complete
bipartite graph. The biclique (resp. clique) cover number bc(G) (resp. cc(G)) of a graph
G is the smallest number of bicliques (resp. cliques) of G such that every edge of G
belongs to at least one of these bicliques (resp. cliques). A k-biclique (resp. k-clique
)covering of a graph G, is an edge covering of G by its bicliques (resp. cliques) such
that each vertex is contained in at most k bicliques (resp. cliques). The smallest k for
which G admits a k-biclique (resp. clique) covering is called local biclique (resp. clique)
cover number of G and is denoted by lbc(G) (resp. lcc(G)). In the same manner, we
can define biclique partition number bp(G) and local biclique partition number lbp(G), if
we use partition instead of cover. These measures and its applications have been studied
extensively throughout the literature; see [2, 3, 4, 5, 6]. Finding the relation between these
parameters are also interesting and have been studied in the literature; see [8]. In [8], it has
been shown that bp(G) can be bounded in term of bc(G), in particular, they have shown
that bp(G) ≤ 1

2(3bc(G) − 1). However, they showed that the analogous result does not hold
for the local measures. In this paper, we find a relation between bc(G) and lcc(G). In

particular, we show that if G is a graph with m edges then bc(G) ≤ 1
24lcc(G) ln m. Finding
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the bounds for the biclique cover of graphs is interesting and have been investigated
extensively; see [1, 2, 3, 5]. One of the most important results in this direction is the
degree bound proved by Alon in [1]. Alon has shown that if G is a graph with n vertices
such that the maximum degree of its complement is ∆ then O(∆2 ln n) complete bipartite
graphs can cover the edges of the graph G. In this paper, we introduce some graphs such
that its complement have constant local clique cover and large maximum degree. Hence,
obtained upper bound in this paper improved the existing upper bound of the biclique
cover for these graphs.

2 Main results

Definition 2.1. An intersection representation for graph G = (V,E) is an assignment of
sets Ax of labels L to vertices x so that any two vertices x and y are adjacent if and only
if Ax ∩ Ay ̸= ∅. A k-representation is an intersection representation such that for each
x ∈ V , |Ax| ≤ k.

Theorem 2.2. If G is a graph with m edges such that G has a k-representation, then

bc(G) ≤ ln m

− ln p
,

where p = 1 − (1
2)2k−1.

Assume that G has a k-representation. For each i ∈ L, let Vi be the vertices of the
graph G such that the corresponding set in this intersection representation containing i.
The induced graph Gi on Vi is a clique of the graph G. It is not difficult to see that
the collection {Gi | i ∈ L} form a clique cover for the graph G such that each vertex
is contained in at most k cliques. On the other hand, let C = {G1, . . . , Gt} be a clique
covering such that each vertex is contained in at most k cliques. Assign to each vertex x
the set Ax = {i | x ∈ V (Gi)}. Easily one can see that with this assignment we have a
k-representation. This sets up a one-to-one correspondence between the clique coverings
of G and the intersection representations for G. (see e.g. [7]). By the aforementioned
discussion, if we define the representation dimension of a graph G to be the minimum
number k such that G has a k-representation then the representation dimension of G is
equal to lcc(G).

Corollary 2.3. Let G be a graph with m edges then

bc(G) ≤ 1

2
4lcc(G) ln m.

Proof. Let p = 1 − 1
22k−1 . Using the approximation e−x ≈ 1 − x, if we set x = 1

22k−1 , then
we can see that

1
− ln p ≈ 22k−1.

The Line graph L(G) of a graph G is the graph with vertex set E(G) in which two
vertices are joint just as corresponding edges are adjacent as edges in the graph G.
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Corollary 2.4. If G is a graph with m edges in which G is a line graph, then

bc(G) ≤ 8 ln m.

Proof. Let G be the line graph of a graph H. Let the vertices of the graph H have distinct
labels. Assign to each vertex x of the graph G that is an edge of the graph H a set Ax

containing labels of its vertices. This assignment is a 2-representation for the graph G.

By a bipartite complement of a bipartite graph G = (X ∪ Y, E) we will mean the
bipartite graph Gc = (X ∪ Y, Ec) where Ec = X × Y \ E. Jukna, in [5], proved the
following theorem.

Theorem 2.5. [5] For every bipartite n × n graph G of maximal degree ∆, bc(Gc) ≤
2e∆ln n. Where Gc is the bipartite complement of the graph G.

Let G be a bipartite graph in which (X, Y ) is its bipartition. We denote the maximum
degree in parts X and Y by ∆X and ∆Y , respectively.

Proposition 2.6. Let G be a bipartite graph such that k = min{∆X , ∆Y } then G has a
k-representation.

Proof. Without loss of generality, assume that k = ∆X . We assign to the vertices of Y ,
the distinct 1-sets. Then for each vertices of the part X assign the union of the sets of its
neighbours. It is not difficult to see that this assignment is a k-representation.

Remark 2.7. By a discussion similar to the proof of Theorem 2.2, one can obtain the
following result. If G is a bipartite graph with m edges such that Gc has a k-representation,
then

bc(G) ≤ 1

2
42k ln m. (1)

Assume that G is a bipartite graph in which min{∆X ,∆Y } for the graph Gc is 2 (or
a constant). But the maximum degree of Gc is nearly equal in size with max{|X|, |Y |}.
By (1) and Proposition 2.6 we have bc(G) ≤ 8 ln m (or bc(G) ≤ l ln m, where l is a constant
number). It will be an improvement of Theorem 2.5 for these graphs.
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On the construction of 3-way 3-homogeneous Steiner trades

Hanieh Amjadi ∗

Alzahra University

Nasrin Soltankhah

Alzahra University

Abstract

A µ-way d-homogeneous (v, k, t) Steiner trade T = {T1, T2, ..., Tµ} of volume m
consists of µ disjoint collections T1, T2, ..., Tµ, each of m blocks of size k, such that
every t-subset of v-set V occurs at most once in T1 (Tj , j ≥ 2) and each element of V
occurs in precisely d blocks of T1 (Tj , j ≥ 2). In this paper we characterize the 3-way
3-homogeneous (v, 3, 2) Steiner trades of volume v.

Keywords: Steiner trade, µ-way trade, Homogeneous trade

Mathematics Subject Classification [2010]: 05B05

1 Introduction

Let V be a set of v elements and k and t be two positive integers such that t < k < v. A
(v, k, t) trade T = {T1, T2} of volume m consists of two disjoint collections T1 and T2, each
of containing m, k-subsets of V , called blocks, such that every t-subset of V is contained
in the same number of blocks in T1 and T2. A (v, k, t) trade is called (v, k, t) Steiner trade
if any t-subset of V occurs in at most once in T1(T2). In a (v, k, t) trade, both collections
of blocks must cover the same set of elements.

The concept of µ-way (v, k, t) trade, was defined recently in [3].

Definition 1.1. A µ-way (v, k, t) trade T = {T1, T2, ..., Tµ} of volume m consists of µ
disjoint collections T1, T2, ..., Tµ, each of m blocks of size k, such that for every t-subset of
v-set V the number of blocks containing this t-subset is the same in each Ti (for 1 ≤ i ≤ µ).
In other words any pair of collections {Ti, Tj}, 1 ≤ i < j ≤ µ is a (v, k, t) trade of volume
m. It is clear by the definition that a trade is a 2-way trade. A µ-way (v, k, t) trade is
called µ-way (v, k, t) Steiner trade if any t-subset of found(T ) occurs at most once in T1

(Tj , j ≥ 2).

Definition 1.2. A µ-way (v, k, t) trade is called d-homogeneous if each element of V occurs
in precisely d blocks of T1 (Tj , j ≥ 2).

Definition 1.3. A trade T ′ = {T ′
1, T

′
2, ..., T

′
µ} is called a subtrade of T = {T1, T2, ..., Tµ},

if T ′
i ⊆ Ti for 1 ≤ i ≤ µ.
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For µ = 2, Cavenagh et al. [2], constructed minimal d-homogeneous (v, 3, 2) Steiner
trades for sufficiently large values of v, (specifically, v > 3(1.75d2 + 3) if v is divisible by 3
and v > d(4d/3+1+1) otherwise). In this paper, we aim to construct 3-way 3-homogeneous
(v, 3, 2) Steiner trades. The Latin trades are a useful tool for building these trades when
v ≡ 0 (mod 3), so we use some obtained results on 3-way 3-homogeneous Latin trades
which proved by Bagheri et al. [1].

A Latin square of order n is an n×n array L = (ℓij) usually on the set N = {1, 2, ..., n}
where each element of N appears exactly once in each row and exactly once in each column.
We can represent each Latin square as a subset of N × N × N , L = {(i, j; k)| element k is
located in position (i, j)}. A partial Latin square of order n is an n × n array P = (pij) of
elements from the set N where each element of N appears at most once in each row and
at most once in each column.

Definition 1.4. A µ-way Latin trade, (L1, L2, ..., Lµ), of volume s is a collection of µ
partial Latin squares L1, L2, ..., Lµ containing exactly the same s filled cells, such that
if cell (i, j) is filled, it contains a different entry in each of the µ partial Latin squares,
and such that row i in each of the µ partial Latin squares contains, set-wise, the same
symbols and column j, likewise. A µ-way Latin trade which is obtained from another
one by deleting its empty rows and empty columns, is called a µ-way d-homogeneous Latin
trade (for µ ≤ d) or briefly a (µ, d, m) Latin trade, if it has m rows and in each row and
each column Lr for 1 ≤ r ≤ µ, contains exactly d elements, and each element appears in
Lr exactly d times.

Lemma 1.5. If there exist two 3-way d-homogeneous (v1, 3, 2) and (v2, 3, 2) Steiner trades
of volume m1 and m2, respectively, then we have a 3-way d-homogeneous (v1 + v2, 3, 2)
Steiner trade of volume m1 + m2.

Lemma 1.6. Let (L1, L2, L3) be a 3-way d-homogeneous Latin trade of order m. For
each α ∈ {1, 2, 3}, define Tα = {{i, j, k}| (i, j; k) ∈ Lα}. Then T = {T1, T2, T3} is a 3-way
d-homogeneous (3m, 3, 2) Steiner trade.

2 3-way 3-homogeneous (v, 3, 2) Steiner trades

In this section we construct and characterize 3-way 3-homogeneous (v, 3, 2) Steiner trades.

Lemma 2.1. For every v = 8ℓ or v = 9ℓ where ℓ ∈ {1, 2, 3, · · · }, there exists a 3-way
3-homogeneous (v, 3, 2) Steiner trade of volume v.

Lemmas 2.1 and 1.5 yields the following theorem.

Theorem 2.2. For every non-zero v = 9ℓ + 8ℓ′ , where ℓ, ℓ′ ∈ {0, 1, 2, 3, · · · }, there exists
a 3-way 3-homogeneous (v, 3, 2) Steiner trade of volume v.

The following lemmas can be used for characterizing 3-way 3-homogeneous (v, 3, 2)
Steiner trades of volume v.

Lemma 2.3. There exist only four non-isomorphic 3-way (v, 2, 1) Steiner trade of volume
3.
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Lemma 2.4. Every 3-way 3-homogeneous (v, 3, 2) Steiner trade of volume v contains a
3-way 3-homogeneous (u, 3, 2) Steiner trade of volume 8 or 9, as a subtrade.

Theorem 2.5. If there exists a 3-way 3-homogeneous (v, 3, 2) Steiner trade of volume v,
then it can be represented as a union of disjoint 3-way 3-homogeneous (8, 3, 2) or (9, 3, 2)
Steiner trades of volume 8 or 9, respectively.

Define [a, b] = {c ∈ Z| a ≤ c ≤ b}.

Theorem 2.6. The 3-way 3-homogeneous (v, 3, 2) Steiner trade of volume v does not exist
for v ∈ [1, 7] ∪ [10, 15] ∪ [19, 23] ∪ [28, 31] ∪ [37, 39] ∪ {46, 47, 55}.

Theorem 2.7. For every v ≥ 8, there exists a 3-way 3-homogeneous (v, 3, 2) Steiner trade
of volume v, except for v ∈ [10, 15] ∪ [19, 23] ∪ [28, 31] ∪ [37, 39] ∪ {46, 47, 55}.

Proof. According to Theorem 2.2, it is enough to represent every v ≥ 8 in the form 9ℓ+8ℓ′,
where ℓ, ℓ′ ≥ 0 as follows:
v = 9k, where k ≥ 1
v = 9k + 1 = 9(k − 7) + 64, where k − 7 ≥ 0
v = 9k + 2 = 9(k − 6) + 56, where k − 6 ≥ 0
v = 9k + 3 = 9(k − 5) + 48, where k − 5 ≥ 0
v = 9k + 4 = 9(k − 4) + 40, where k − 4 ≥ 0
v = 9k + 5 = 9(k − 3) + 32, where k − 3 ≥ 0
v = 9k + 6 = 9(k − 2) + 24, where k − 2 ≥ 0
v = 9k + 7 = 9(k − 1) + 16, where k − 1 ≥ 0
v = 9k + 8, where k ≥ 0
Using Theorem 2.6 completes the proof.
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On the cospectrality of graphs
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Abstract

Richard Brualdi proposed in [Research problems from the Aveiro workshop on
graph spectra, Linear Algebra and its Applications, 423 (2007) 172-181.] the following
problem:
(Problem AWGS.4) Let Gn and G′

n be two nonisomorphic graphs on n vertices with
spectra

λ1 ≥ λ2 ≥ · · · ≥ λn and λ′
1 ≥ λ′

2 ≥ · · · ≥ λ′
n,

respectively. Define the distance between the spectra of Gn and G′
n as

λ(Gn, G′
n) =

n∑

i=1

(λi − λ′
i)

2
(
or use

n∑

i=1

|λi − λ′
i|
)
.

Define the cospectrality of Gn by

cs(Gn) = min{λ(Gn, G′
n) : G′

n not isomorphic to Gn}.

Let
csn = max{cs(Gn) : Gn a graph on n vertices}.

Problem A. Investigate cs(Gn) for special classes of graphs.
Problem B. Find a good upper bound on csn.
In this paper we study Problem A and determine the cospectrality of all complete
bipartite graphs by the Euclidian distance. Let Kp,q be the complete bipartite graphs
with parts of sizes p and q. We prove that for every positive integers p and q there
are some positive integers p′, q′ and a non-negative integer r such that cs(Kp,q) =
λ(Kp,q, Kp′,q′ + rK1). As a consequence we determine the cospectrality of stars.

Keywords: Spectra of graphs, Cospectrality of graphs, Measures on spectra of
graphs, Adjacency matrix of a graph

Mathematics Subject Classification [2010]: 05C50, 05C31
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1 Introduction

Throughout the paper all graphs are simple, that is finite and undirected without loops
and multiple edges. By the spectrum of a graph G, we mean the multiset of eigenvalues
of adjacency matrix of G.
Richard Brualdi proposed in [9] the following problem:
(Problem AWGS.4) Let Gn and G′

n be two nonisomorphic graphs on n vertices with spectra

λ1 ≥ λ2 ≥ · · · ≥ λn and λ′
1 ≥ λ′

2 ≥ · · · ≥ λ′
n,

respectively. Define the distance between the spectra of Gn and G′
n as

λ(Gn, G′
n) =

n∑

i=1

(λi − λ′
i)

2
(
or use

n∑

i=1

|λi − λ′
i|
)
.

Define the cospectrality of Gn by

cs(Gn) = min{λ(Gn, G′
n) : G′

n not isomorphic to Gn}.

Thus cs(Gn) = 0 if and only if Gn has a cospectral mate. Let

csn = max{cs(Gn) : Gn a graph on n vertices}.

This function measures how far apart the spectrum of a graph with n vertices can be from
the spectrum of any other graph with n vertices.

Problem A. Investigate cs(Gn) for special classes of graphs.
Problem B. Find a good upper bound on csn.

In this paper we study Problem A and determine the cospectrality of complete bipartite
graphs by the Euclidian distance, that is

λ(Gn, G′
n) =

n∑

i=1

(λi − λ′
i)

2.

For a graph G, V (G) and E(G) denote the vertex set and edge set of G, respectively.
By order of G we mean the number of vertices of G; G denotes the complement of G
and A(G) denotes the adjacency matrix of G. For two graphs G and H with disjoint
vertex sets, G + H denotes the graph with the vertex set V (G) ∪ V (H) and the edge set
E(G) ∪ E(H), i.e. the disjoint union of two graphs G and H. The complete product
(join) G∇H of graphs G and H is the graph obtained from G+H by joining every vertex
of G with every vertex of H. In particular, nG denotes G + · · · + G︸ ︷︷ ︸

n

and ∇nG denotes

G∇G∇ . . . ∇G︸ ︷︷ ︸
n

.

We denote by Spec(G) the multiset of the eigenvalues of the graph G. For positive in-
tegers n1, . . . , nℓ, Kn1,...,nℓ

denotes the complete multipartite graph with ℓ parts of sizes
n1, . . . , nℓ. Let Kn denote the complete graph on n vertices, nK1 = Kn denote the null
graph on n vertices and Pn denote the path with n vertices.
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Recently the authors study the cospectrality of graphs, see [1, 2, 3] for more details.
In [3] the authors find cs(Kn), cs(nK1), cs(K2 + (n − 2)K1) (n ≥ 2) and cs(Kn,n), for
every n ≥ 1. In particular, they find that there exists a unique graph GH such that
λ(H,GH) = cs(H) if H ∈ {Kn, nK1,K2 +(n−2)K1),Kn,n}. In [1] the authors completely
answered Problem B. Also they show that if m and n are some positive integers such that
m+2 ≤ n < m−1+2

√
m − 1, then cs(Km,n) = λ(Km,n,H) if and only if H ∼= Km+1,n−1.

In this paper we generalize this result. In fact we show that for every positive integers
m and n there are some positive integers r and s and a non-negative integer t such that
cs(Km,n) = λ(Km,n,Kr,s + tK1).

2 Main results

In this section we show that for every positive integers m and n, the minimum value of
λ(Km,n, G) is attained at a complete bipartite graph with some isolated vertices, say G.
We need the following results.

Theorem 2.1 (Theorem 9.1.1 of [6]). Let G be a graph of order n and H be an induced
subgraph of G with order m. Suppose that λ1(G) ≥ · · · ≥ λn(G) and λ1(H) ≥ · · · ≥
λm(H) are the eigenvalues of G and H, respectively. Then for every i, 1 ≤ i ≤ m,
λi(G) ≥ λi(H) ≥ λn−m+i(G).

Theorem 2.2 ([8], see also Theorem 6.7 of [5]). A graph has exactly one positive eigenvalue
if and only if its non-isolated vertices form a complete multipartite graph.

Theorem 2.3. [7] Let G be a graph without isolated vertices and let λ2(G) be the second
largest eigenvalue of G. Then 0 < λ2(G) ≤

√
2 − 1 if and only if one of the following

holds:

1. G ∼= (∇t(K1 + K2))∇Kn1,...,nm.

2. G ∼= (K1 + Kr,s)∇Kq.

3. G ∼= (K1 + Kr,s)∇Kp,q.

First we prove some lemmas that are essential to prove the main result of this paper.

Lemma 2.4. Let m and n be two positive integers and G be a graph of order n + m. If
G has K1,1,2 or (K1 + K2)∇K1 as an induced subgraph, then λ(G,Km,n) ≥ 1.

Lemma 2.5. Let m and n be two positive integers and G be a graph of order n + m.
Suppose that there is no positive integers r, s and a non-negative integer t such that
G ∼= Kr,s + tK1. If λ2(G) ≤

√
2 − 1, then λ(G,Km,n) ≥ 1.

The following theorem is the main result of the paper.

Theorem 2.6. Let m and n be two positive integers such that (m,n) 6= (1, 1). Then

cs(Km,n) = λ(Km,n,Kr,s + tK1),

for some integers r, s ≥ 1 and t ≥ 0 such that r + s + t = m + n and {r, s} 6= {m,n}.
Moreover if cs(Km,n) = λ(Km,n,H) for some graph H, then H ∼= Kr,s + tK1, where
r, s ≥ 1 and t ≥ 0 are some integers so that r + s + t = m + n.
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As a consequence we determine cs(K1,n) for any n.

Theorem 2.7. Let n ≥ 1 be an integer. Then cs(K1,n) is the following:

1. If n ≤ 2, then cs(K1,1) = λ(K1,1, 2K1) and cs(K1,2) = λ(K1,2,K1,1).

2. If n ≥ 3 is a prime number, then cs(K1,n) = λ(K1,n,K2, n+1
2

+ n−3
2 K1).

3. If n ≥ 3 is not a prime number, then cs(K1,n) = λ(K1,n,Kr,s) = 0, where r and s
are some positive integers such that r, s < n and n = rs.
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On the signed Roman domination number of graphs
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Abstract

A signed Roman dominating function (simply, a “SRDF”) on a graph G = (V,E)
is a function f : V (G) → {−1, 1, 2} satisfying the conditions that (i) the sum of its
function values over each closed neighborhood is at least one and (ii) each vertex x
for which f(x) = −1 is adjacent to at least one vertex y for which f(v) = 2. The
weight of a SRDF is the sum of its function values over all vertices. The signed Roman
domination number of G, denoted by γsR(G), is the minimum weight of a SRDF on
G. In this paper we determine γ

sR
for some important families of graphs.

Keywords: Domination, Signed Roman domination, SRDF.

Mathematics Subject Classification [2010]: 05C69, 05C78

1 Introduction

Let G = (V (G), E(G)) be a simple graph of order n = |V (G)| and of size m = |E(G)|.
When x is a vertex of G, the open neighborhood of x in G is the set NG(x) = {y : xy ∈
E(G)} and the closed neighborhood of x in G is the set NG [x] = NG(x)∪{x}. The degree
of vertex x is the number of edges adjacent to x and is denoted by degG(x) . The minimum
degree and the maximum degree of G are denoted by δ(G) and ∆(G), respectively.

A set D ⊆ V (G) is called a dominating set of G if each vertex outside D has at least
one neighbor in D. The minimum cardinality of a dominating set of G is the domination
number of G and is denoted by γ(G). For example, the domination numbers of the
n-vertex complete graph, path, and cycle are given by γ(Kn) = 1, γ(Pn) = ⌈n

3 ⌉ and
γ(Cn) = ⌈n

3 ⌉, respectively [5]. Domination is a rapidly developing area of research in
graph theory, and its various applications to ad hoc networks, distributed computing,
social networks, biological networks and web graphs partly explain the increased interest.
The concept of domination has existed and studied for a long time and early discussions
on the topic can be found in the works of Berge [3] and Ore [8]. At present, domination
is considered to be one of the fundamental concepts in graph theory with an extensive
research activity. Determining the domination number of an arbitrary graph is an NP-
complete problem. The domination number can be defined equivalently by means of a
function, which can be considered as a characteristic function of a dominating set, see [5].
A function f : V (G) → {0, 1} is called a dominating function on G if for each vertex
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x ∈ V (G),
∑

y∈NG[x] f(y) ≥ 1. The value w(f) =
∑

x∈V (G) f(x) is called the weight of f .
Now, the domination number of G can be defined as

γ(G) = min{w(f) : f is a dominating function on G}.

Analogously, a signed dominating function of G is a labeling of the vertices of G
with +1 and −1 such that the closed neighborhood of each vertex contains more +1’s than
−1’s. The signed domination number of G is the minimum value of the sum of vertex
labels, taken over all signed dominating functions of G. This concept is closely related to
combinatorial discrepancy theory as shown by Füredi and Mubayi in [4]. In general, many
domination parameters are defined by combining domination with other graph theoretical
properties.

Definition 1.1. [1] Let G = (V, E) be a graph. A signed Roman dominating function
(simply, a “SRDF”) on the graph G is a function f : V → {−1, 1, 2} which satisfies two
following conditions:

(a) For each x ∈ V ,
∑

y∈NG[x] f(y) ≥ 1,

(b) Each vertex x for which f(x) = −1 is adjacent to at least one vertex y for which
f(y) = 2.

The value f(V ) =
∑

x∈V f(x) is called the weight of the function f and is denoted by
w(f). The signed Roman domination number of G, γsR(G), is the minimum weight
of a SRDF on G.

This concept is introduced by Ahangar, Henning, et al. in [1]. They described the
usefulness of this concept in various applicative areas like “defending the Roman empire”
(see [1], [6] and [10] for more details). It is obvious that for every graph G of order n
we have γsR(G) ≤ n, because assigning +1 to each vertex yields a SRDF. In [1] Ahangar
et al. present various lower and upper bounds on the signed Roman domination number
of a graph in terms of it’s order, size and vertex degrees. Moreover, they characterized
all graphs which attain these bounds. Also, they investigate the relation between γsR

and some other graphical parameters, and the signed Roman domination number of some
special bipartite graphs. It is proved in [1] that γsR(Kn) = 1 for each n ̸= 3, γsR(K3) = 2,
γsR(Cn) = ⌈2n

3 ⌉, γsR(Pn) = ⌊2n
3 ⌋, and that the only n-vertex graph G with γsR(G) = n

is the empty graph Kn. The Signed Roman Dominiation Number of the join of graphs is
considered in [2].

Henning and Volkmann investigate the signed Roman domination number of trees in
[7]. Also, the signed Roman domination number of directed graphs is considered in [9].

Note that each signed Roman dominating function f on G is uniquely determined by
the ordered partition (V−1, V1, V2) of V (G), where Vi = {x ∈ V (G) : f(x) = i} for each
i ∈ {−1, 1, 2}. Specially, w(f) = 2|V2| + |V1| − |V−1|. For convenience, we usually write
f = (V−1, V1, V2) and, when S ⊆ V we denote the summation

∑
x∈S f(x) by f(S). If

w(f) = γsR(G), then f is called a γsR(G)-function or an optimal SRDF on G.
In this paper we determine γsR for some important families of graphs.

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

On the signed Roman domination number of graphs pp.: 2–4

702



2 Main results

For investigating the signed Roman domination number of the complete multipartite
graphs, the following two technical lemmas are useful.

Lemma 2.1. If G is a graph with ∆(G) = |V (G)| − 1, then γsR(G) ≥ 1.

Proof. Let f be an optimal signed Roman dominating function on G and let x ∈ V (G) be
a vertex of maximum degree ∆(G). Since NG(x) = V (G) \ {x}, using the definition of a
SRDF we have

γsR(G) = w(f) =
∑

v∈V (G)

f(v) = f(x) +
∑

v∈NG(x)

f(v) = f(NG[x]) ≥ 1.

Lemma 2.2. For each signed Roman domination function f of the complete multipartite
graph G = Kn1,n2,...,nk

, k ≥ 3, we have

w(f) ≥ min{2 +
2

k − 1
, n1, n2, ..., nk, n1 + 1, ..., nk + 1, 2n1 − 1, ..., 2nk − 1}.

Proof. Let f be a SRDF on G and let Xj be the partite set of G of size nj , 1 ≤ j ≤ k.
Since the label of each vertex x ∈ Xj is at most 2 and f(NG[x]) ≥ 1, we should have
w(f) − f(Xj) ≥ −1. If w(f) − f(Xj) = −1, then the label of each vertex x ∈ Xj is 2
and this implies that w(f) = f(Xj) − 1 = 2nj − 1. If w(f) − f(Xj) = 0, then none of the
vertices of Xj has label −1. This means that w(f) ≥ |Xj | = nj . If w(f) − f(Xj) = 1,
then the label of each vertex in Xj is 1 or 2. Thus, w(f) ≥ |Xj | + 1 = nj + 1. In all of
these cases we have

w(f) ≥ min{nj , nj + 1, 2nj − 1}.

Therefore, when such a situation occures for a partite set, then the result follows. Other-
wise, w(f) − f(Xj) ≥ 2 for each j ∈ {1, 2, ..., k}. This implies that

(k − 1) w(f) = k w(f) − w(f) =

k∑

j=1

(w(f) − f(Xj)) ≥ 2k,

and hence, w(f) ≥ 2k
k−1 > 2, which completes the proof.

Corollary 2.3. If ni ≥ 3 for each i ∈ {1, 2, ..., k}, then γsR(Kn1,n2,...,nk
) ≥ 3.

Proposition 2.4. The signed Roman domination number of the complete 3-partite graph
Km,m,m is given as follows:

γsR(Km,m,m) =

{
3 m ̸= 1
2 m = 1.

Theorem 2.5. Let k ≥ 3 be an integer. Then, for each complete multipartite graph
G = Kn1,n2,...,nk

we have 1 ≤ γsR(G) ≤ 7.
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The following theorem shows that the signed Roman domination number of almost all
of complete multipartite graphs is three.

Theorem 2.6. Let G = Kn1,n2,...,nk
, k ≥ 3, be a complete multipartite graph such that

nj ≥ 5 for each 1 ≤ j ≤ k. Then, γsR(G) = 3.

Theorem 2.7. Let G = Kn1,n2,...,nk
, k ≥ 3, be an n-vertex complete multipartite graph

such that γsR(G) ̸= 1 and p2 ̸= 0, where pj = |{i : ni = j}| for each j ∈ {1, 2, ..., n − 2}.
Then we have γsR(G) = 2 if and only if one of the following coditions holds.

a) p1 ≥ 1.

b) k − p1 − p2 − p4 ≥ 2.

c) p2 ≥ 2 and p4 ≥ 2.

d) p2 ≥ 2, p4 = 1 and there exists j ≥ 6 such that pj ≥ 1.

Theorem 2.8. Let G = Kn1,n2,...,nk
, k ≥ 3, be an n-vertex complete multipartite graph

such that p1 ̸= k, where pj = |{i : ni = j}| for each j ∈ {1, 2, ..., n − 2}. Then we have
γsR(G) = 1 if and only if k < 3p1 − p2.
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On the Wiener index of Sierpiński graphs

Ehsan Estaji∗
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Yasser Alizadeh
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Abstract

Wiener index of graph G is defined as sum of distances of all pairs of vertices. In
this paper, the Wiener index of Sierpiński graphs is computed and explicit formula is
obtained.

Keywords: Wiener index, Sierpiński graphs, Total distance
Mathematics Subject Classification [2010]: 05C12, 05C76, 05C90

1 Introduction

Sierpiński graphs Sn
k were introduced by S. Klavzar and Milutinovic in [2] The graph

S1
k is the complete graph in k vertices and Sn

3 are isomorphic to the tower of Hanoi
graphs. Mathematical properties of the graph Sn

k have been well studied. For example a
classification of their covering codes is given in [1] metric properties of Sierpiński graphs
were studied in [3] and [4] . The Sn

k can be defined recursively with the following process:
S1

k is a complete graph. To construct Sn+1
k , consider Sn

k and adding exactly one edge
between each pair of copies. When k = 2 then Sn

k is isomorphic to P2n and in the case k = 3
these graphs are exactly tower of Hanoi graphs. The structure of tower of Hanoi graph is
illustrated in Fig 1. The vertices of Sn

k can be identified with words of size n on alphabet

Figure 1: Structure of Sierpiński graph Sn
3

{1, 2, · · · , k}. Let u = (u1,u2, · · · ,un) and v = (v1, v2, · · · , vn) be two different vertices. u and
v are adjacent if and only if there exists i ∈ {1, 2, · · · , k} such that

• ut = vt for 1 ≤ t ≤ i − 1
∗Speaker
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• ui , vi

• ut = vi and vt = ui for i + 1 ≤ t ≤ n.

A vertex of the form (t, t, · · · , t) is called an extreme vertex. Sn
k contains k extreme vertices.

Let G be a simple connected graph. Distance between two vertices u, v, d(u, v) is
length of shortest path connecting them. Let n ≥ 2, then for i = 1, · · · , k let iSn−1

k be the
subgraph of Sn

k induced by the vertices of the form (i, v2, v3, · · · , vn). Let i , j, then the
edge (i, j, j, · · · , j)( j, i, i, · · · , i) is the unique edge between iSn−1

k and jSn−1
k .

The Wiener index of graph G is defined as

W(G) =
∑

{u,v}⊆V(G)

dG(u, v)

. Let u ∈ V(G), then distance of u is dG(u) =
∑

v∈V(G)

dG(u, v)

It is easy to see that W(G) = 1
2

∑

u∈V(G)

dG(u). The Wiener index is the first topological

index bases on distance and this graph invariant has been extensively investigated. We
refer the reader to see [5, 6, 7, 8]

In this paper, the Wiener index of Sierpiński graphs Sn
k is computed and explicit

formula is presented.

2 Main results

To find the Wiener index of Sn
k , we partition the pair of vertices into two sets: pairs of

vertices in one copy of iSn−1
k and pairs of vertices that are in two different copy of Sn−1

k .
We have

W(Sn
k ) = kW(Sn−1

k ) +
∑

1≤i≤n,x∈iSn−1
k

∑

1≤ j≤n,y∈ jSn−1
k

d(x, y)

Since there are
(k
2
)

copies of each pair of vertices in the sets. Then

W(Sn
k ) = kW(Sn−1

k ) +

(
k
2

) ∑

x∈iSn−1
k

∑

y∈ jSn−1
k

d(x, y).

Let Wn = W(Sn
k ). It is clear that W1 =

(k
2
)
. Let vi j ∈ iSn−1

k and v ji ∈ jSn−1
k be two adjacent

vertices. Since each path connecting two vertices a ∈ iSn−1
k and b ∈ jSn−1

k contains edge
vi jv ji, then d(a, b) = d(a, vi j) + d(v ji, b) and we have

∑

a∈iSn−1
k

∑

b∈ jSn−1
k

d(a, b) =
∑

a∈iSn−1
k

∑

b∈ jSn−1
k

(d(a, vi j) + 1 + d(v ji, b))

= | jSn−1
k ||dSn−1

k
(vi j)| + | jSn−1

k ||iSn−1
k | + |d jSn−1

k
(v ji)||iSn−1

k |
= kn−1diSn−1

k
(vi j) + k2(n−1) + kn−1d jSn−1

k
(v ji)
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706



There for

Wn = kWn−1 +

(
k
2

)
(kn−1dSn−1

k
(vi j) + k2(n−1) + kn−1dSn−1

k
(v ji)) (1)

Now we show that diSn
k
(vi j) = dtSn

k
(vts).

Theorem 2.1. diSn−1
k

(vi j) = d jSn−1
k

(v ji)

Proof. By induction on n. When n = 2, it is clear that diS1
k
(vi j) = dtS1

k
(vts) = k − 1.

Let vi ∈ iSn−1
k be an extreme vertex of Sn

k . dSn
k
(v) =

∑

a∈ jSn−1
k

d(v, a). It was proved that

diam(Sn
k ) = 2n − 1, therefore diSn1

k
(vi, vi j) = 2n−1 − 1 = diam(Sn−1

k ). For vertex a ∈ jSn−1
k ,

where d(vi, a) = diSn−1
k

(vi, vi j) + 1 + d jSn−1
k

(v ji, a). Then

dSn
k
(vi) = diSn−1

k
(vi) +

∑

a∈iSn−1
k , j,i

((2n−1 − 1) + 1 + d(v ji, a))

= diSn−1
k

(vi) + |k − 1||Sn−1
k |2n−1 +

∑

j,i

d jSn−1
k

(v ji)

Since dSn−1
k

(vi) = d jSn−1
k

(vi j) where dSn
k
(vi) = kdSn−1

k
(vi) + 2n−1kn−1(k − 1) and it conclude that

diSn−1
k

(vi j) = dtSn−1
k

(vst).

Now, we find an explicit formula for the distance an extreme vertex vi of iSn−1
k . Let

di = dSn
k
(vi). Then dn = kdn−1 + (k−1)kn−12n−1 , d0 = 0 and d1 = k−1. The following formula

is obtained for dn,
dn = kn−1(k − 1)(2n − 1). (2)

Relations 1 and 2 concludes

Wn = kWn−1 +

(
k
2

)
(2kn−1dn−1 + k2(n−1))

= kWn−1 + k2(n−1)(k − 1)2(2n−1
1 ) + (k2n−1(k − 1))/2.

W1 =
(k
2
)
. By solving the above reduction relations,

Wn = kn−1(k − 1)2(k + k(22 − 1) + · · · + kn−2(2n−1 − 1)) + 1/2kn(k − 1)(1 + k + . . . + kn−1)

= kn−1(k − 1)2(2k
(2k)n−1 − 1

2k − 1
− k

kn−1 − 1
k − 1

) +
1
2

kn(kn − 1) (3)

�

Example 2.2. The following figure is the Sierpiński graph S2
5. Also by above formula the

Wiener index of Sn
5 could be obtained by, W(Sn

5) = 32
9 5n(10n−1−1)−4·5n(5n−1−1)+ 1

2 5n(5n−1)
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Figure 2: The Sierpiński graph S2
5

Example 2.3. In the case k = 2, we will have W(Sn
2) = W(P2n). It was proved that

W(P2n) =
(2n+1

3
)

= 1
3 2n−1(22n − 1). Now by the relation 3, W(Sn

2) = 2n−1( 4
3 (4n−1 − 1)) −

2(2n−1 − 1) + 1
2 2n(2n − 1) = 1

3 2n−1(22n − 1). Which verifies our formula for Wiener index of
Sierpiński graph Sn

k .
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One-solely balanced sets and related Steiner trades
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Abstract

A µ-way t-solely balanced set is a µ-way (v, k, t) Steiner trade T = {T1, T2, . . . , Tµ}
such that Ti and Tj (1 ≤ i < j ≤ µ) Contains no common (t + 1)-subset. The one-
solely sets are the most important tool for building Steiner trades. In this article
we introduce some techniques for construction the one-solely sets and related Steiner
trades.

Keywords: One-Solely, 3-way (v, k, t) Steiner trade,

Mathematics Subject Classification [2010]: 05B30; 05B05

1 Introduction

The concept of trade has represented in the graph theory, design theory and latin square.
In this paper we investigate this concept in design theory. This subject is originated in the
1960s by Hedayat [3]. The concept of trade was introduced in 1916 by Cole and Cumming
in other forms. This concept have been generated in [4] recently, as µ-way (v, k, t) trade
µ ≥ 2.

Definition 1.1. A µ-way (v, k, t) trade of volume m consists of µ disjoint collections
{T1, T2, . . . , Tµ} each of m blocks, such that for every t-subset of v-set V , the number of
blocks containing this t-subset is the same in each Ti(1 ≤ i ≤ µ). In the other words any
pair of Ti’s is a (v, k, t) trade of volume m.

A µ-way (v, k, t) trade is called µ-way (v, k, t) Steiner trade if any t-subset of found(T)
occurs at most once in T1(Tj , j ≥ 2).

Definition 1.2. Let T = {T1, T2, . . . , Tµ} be a µ-way (v, k, t) Steiner trade. We say T
is µ-way (v, k) t-solely balanced if Ti and Tj(1 ≤ i < j ≤ µ) contain no common (t + 1)
subset.
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In section two, we state some (v, k) one-solely sets and their related 2-way (v+3, k+1, 2)
Steiner trade from [1] and [2]. We Construct some new one-solely sets and their related
trade in section three.

2 Preliminary Results

Following theorem will be used repeatedly in the sequel.

Theorem 2.1. [4] (i) Let T = {T1, T2, . . . , Tµ} be a µ-way (v, k, t) trade of volume m.
Then, based on T , a µ-way (v + µ, k +1, t + 1) trade T ∗ of volume µm can be constructed.
(ii) If T is t-solely balanced, then T ∗ is a Steiner trade.

Theorem 2.2. There exist a µ-way (2m + µ, 3, 2) Steiner trade of volume µm for 2 ≤
µ ≤ 2m + 1.

Proof. We know the complete graph K2m has 2m − 1 disjoint 1-factors. If we take µ 1-
factors F1, F2, . . . , Fµ as T1, T2, . . . , Tµ respectively, then T = {T1, T2, . . . , Tµ} is a µ-way
(2m, 2) one-solely set of volume m. Now, we can apply Theorem 2.1

A 3-way one-solely set can be constructed from an array A(k) of size k − 1, Let S1, S2

and S3 be the collections of elements of each of the rows, columns and forward diagonals
of A(k) respectively. We can see S1, S2 and S3 together construct a 3-way ((k −1)2, k −1)
one-solely set.

Example 2.3. A(3) :

1 2 3

4 5 6

7 8 9

One solely set:

S1 S2 S3

123 147 159
456 258 267
789 369 348

Denote A′(k, r) to be an array of size (k − 1) with each of the elements aij of the first r
rows of A(k) replaced by a′

ij

Example 2.4. A′(3, 1) :

1′ 2′ 3′

4 5 6

7 8 9

One solely set:

S1 S2 S3

1′2′3′ 1′47 1′59
456 2′58 2′67
789 3′69 3′48

In the following example we can see the construction of a 2-way (v, k, 2) Steiner trade
for the above one-solely sets.

Example 2.5. T :

T1 T2

x123 x159
x456 x267
x789 x348
y159 y123
y267 y456
y348 y789

T ∗ :

T1 T2

z1′2′3′ z1′47
z456 z2′58
z789 z3′69
x1′47 x1′2′3′

x2′58 x456
x3′69 x789

T and T ∗ are two 2-way (11, 4, 2) Steiner trade of volume 6. Now T + T ∗ is a 2-way
(15, 4, 2) Steiner trade of volume 10.
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3 New Constructions

In this section, we construct some new one-solely sets. Then we apply Theorem 2.1 and
obtain some new 3-way Steiner trades. We can construct a 4-way one-solely set as follows.

Example 3.1. Consider the following table.

1 2 3 4 5

6 7 8 9 a

b c d e f

g h i j k

l m n o p

q r s t u

x y z w v

A B C D E

F G H I J

K L M N O

P Q R S T

Now consider the following four classes.

12345 1QMIE 16bgl 28ekP
6789a 26RNJ q27ch 39fKQ
bcdef 37bOS mr38d 4aFLR
ghijk 48cgT ins49 5AGMS
lmnop 59dhl ejot5 17djp
qrstu aeimq afkpu 6ciou
xyzwv fjnrx xAFKP bhnt7
ABCDE kosyA yBGLQ gmswE
FGHIJ ptzBF zCHMR lrzDJ
KLMNO uwCGK wDINS qyCIO
PQRST vDHLP vEJOT xBHNT

Now, we can apply the Theorem 2.1 to obtain a 3-way (v, 6, 2) Steiner trade. In the
next example we generalized the idea which stated in the previous section.

Example 3.2. Consider the following three matrices.

A :

1 2 3

4 5 6

7 8 9

B :

1 2 3

x y z

w u v

C :

1 2 3

a b c

d e f

Now consider the following 3-way one solely sets:

SA :
123 147 159
456 258 267
789 369 348

SB :
123 1xw 1yv
xyz 2yu 2zw
wuv 3zv 3xu

SC :
123 1ad 1bf
abc 2bc 2cd
def 3ef 3ae

Then we construct three 3-way (12, 4, 2) Steiner trades of volume 9. The following
trades have the common block x̃123. By adding these trades, we have a 3-way (12, 4, 2)
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Steiner trade of volume 9 + 9 + 9 − 1 = 27.

TA :

T1 T2 T3

x̃123 x̃147 x̃159
x̃456 x̃258 x̃267
x̃789 x̃369 x̃348

ỹ147 ỹ159 ỹ123
ỹ258 ỹ267 ỹ456
ỹ369 ỹ348 ỹ789

z̃159 z̃123 z̃147
z̃267 z̃456 z̃258
z̃348 z̃789 z̃369

TB :

T1 T2 T3

ŷ123 ŷ1xw ŷ1yv
ŷxyz ŷ2yu ŷ2zw
ŷwuv ŷ3zv ŷ3xu

x̃1xw x̃1yv x̃123
x̃2yu x̃2zw x̃xyz
x̃3zv x̃3xu x̃wuv

ẑ1yv ẑ123 ẑ1xw
ẑ2zw ẑxyz ẑ2yu
ẑ3xu ẑwuv ẑ3zv

TC :

T1 T2 T3

ý123 ý1ad ý1bf
ýabc ý2bc ý2cd
ýdef ý3ef ý3ae

ź1ad ź1bf ź123
ź2bc ź2cd źabc
ź3ef ź3ae źdef

x̃1bf x̃123 x̃1ad
x̃2cd x̃abc x̃2bc
x̃3ae x̃def x̃3ef

Theorem 3.3. There exist a µ-way (q2 +µ, q+1, 2) Steiner trade of volume m = qµ, µ =
2, ...q + 1 When q is a prime power.

Proof. We know, there exists a (q2, q, 1) resolvable block design with q + 1 parallel classes
for q be a prime power. Let P1, P2, ..., Pq+1, be (q+1) parallel classes of (q2, q, 1) resolvable
block design. We can construct a 3-way (q2, q, 1) one-solely set of volume q as follows.

T1 .... Tq+1

P1 .... Pq+1

Now we can apply Theorem 2.1 to construct the µ-way (q2 + µ, q + 1, 2) Steiner trade of
volume m = qµ, µ = 3, ...q + 1.
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Permutation Representation of Graphs
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Abstract

There are many geometric and algebraic representations of graphs. Recently, we
introduce a new representation of graphs by use of permutations and present some
results about this representation and related parameter.
Let G be a graph. A k-permutation representation of G is a map π of V (G) to
symmetric group Sk, such that for any two vertices v and u, v ∼ u if and only if for
each i ∈ {1, 2, 3, · · · , k} we have π(v)(i) 6= π(u)(i). In other words, π(v) ◦ π(u)−1 ∈
Dk where Dk denote the set of all derangements of Sk. We define the permutation
representation number pr(G) to be the minimum of k such that G has a k-permutation
representation. In addition, we find upper and lower bounds for this parameter of
graphs.

Keywords: Permutation, Representation of graph, Cayley graph

Mathematics Subject Classification [2010]: 05C62,

1 Introduction

There are many geometric and algebraic representations of graphs. In this paper, we
introduce a new representation of graphs by use of permutations and present some results
about this representation and related parameters.

2 Main results

Definition 2.1. Let G be a graph. A k-permutation representation of G is a map π of
V (G) to symmetric group Sk, such that for any two vertices v and u, v ∼ u if and only if
for each i ∈ {1, 2, 3, · · · , k} we have π(v)(i) 6= π(u)(i). In other words, π(v) ◦π(u)−1 ∈ Dk

where Dk denotes the set of all derangements of Sk.

In this representation, we have a common adjacency rule and so for defining a graph,
we only need to introduce the vertex set of graph.

Definition 2.2. The permutation representation number, pr(G), is the minimum of k
such that G has a k-permutation representation.

Example 2.3. Consider graph Kn. We have pr(Kn) = n. In fact any permutation
representation of Kn give us a latin square of order n.
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As you know, Cayley theorem is one of the main theorems in group theory.

Theorem 2.4. [1854] Every group is isomorphic to a subgroup of Sn for some n.

Definition 2.5. [1971] For every finite group µ(G) = min{n| G ∼= H ≤ Sn}.

Theorem 2.6. f(|G|) ≤ µ(G) ≤ |G|, where f(n) = max{k| k! ≤ n}.

Example 2.7. µ(Z6) = 5. In fact Z6
∼=< (12)(345) > that is a subgroup of S5.

Definition 2.8. For a subset S of a group G such that the identity e /∈ S and S = S−1

(where S−1 = {s−1|s ∈ S}), the Cayley graph Γ = Cay(G,S) is the graph with vertex set
G such that x ∼ y if and only if xy−1 ∈ S.

We call the following theorem Cayley type theorem for graphs.

Theorem 2.9. Every graph is an induced subgraph of Cay(Sn, Dn) for some n where Dn

is the set of all derangements of Sn.

Theorem 2.10. Let G be a finite group with µ(G) = m and ϕ be an isomorphism from
G to a subgroup of Sm. Then

µ(G) ≥ pr(Cay(G,G ∩ ϕ−1(Dm))).

Theorem 2.11. Let G be a graph of order n. Then χ(G) ≤ pr(G) ≤ n(n−1)
2 .

Remark 2.12. The lower bound in Theorem 2.11 is sharp. For example consider Kn.
We have pr(Kn) = χ(Kn) = n.
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Relations between some packing and covering parameters of

graphs∗

Hamideh Hosseinzadeh†

Nasrin Soltankhah

Department of Mathematics, Alzahra University, Tehran, Iran

Abstract

Many packing and covering parameters have been associated to an arbitrary graph
G = (V,E) which studying relations between them is very interesting problem in
graph theory. In this paper we consider some of well-known packing and covering
parameters such as matching ,vertex covering, domination and irredundance number
and find interesting relations between them.

Keywords: Total domination number, Irredundance number, Matching number

Mathematics Subject Classification [2010]: 05C69

1 Introduction

Let G = (V,E) be a simple graph. A set D ⊆ V is a dominating set of G if every vertex
in V − D has a neighbor in D. The cardinality of a minimum dominating set of G is
denoted by γ(G). If, in addition, the induced subgraph 〈D〉 has no isolated vertex, then
D is called a total dominating set. The cardinality of a minimum total dominating set of
G is denoted by γt(G). for more details about domination parameters you can see [1] or
[4].

Definition 1.1. If every vertex of V − D has exactly one neighbor in D and 〈D〉 is an
empty induced subgraph of G, then we call D a perfect code or efficient dominating set.

Definition 1.2. If every vertex of V − D is adjacent to exactly one vertex of D and
induced subgraph 〈D〉 is also a matching, then we call D a total perfect code or efficient
open dominating set.

Definition 1.3. The set X ⊆ V is an OO-irredundant set if and only if for each v ∈ X,
N(v) − N(X \ {v}) 6= ∅. The minimum cardinality among all maximal OO-irredundant
set denoted by ooir(G) and called OO-irredundance number of the graph G.

∗Will be presented in English
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A set M ⊆ E of graph G is called a matching if no vertex is incident to more than one
edge in M . We use ν(G) to denote the size of a maximum matching of the graph G. A
dual pair of matching problem is called vertex covering. A set U ⊆ V is a vertex cover if
each edge has at least one endpoint in S. We use τ(G) to denote the size of a minimum
vertex cover of the graph G.

We can see matching as a disjoint subgraph, isomorphic to K2. So it is possible to
generalize it as follows:

Definition 1.4. For a graph G a set of edge disjoint induced subgraphs isomorphism to
Kr is called Kr-packing and Kr-packing of maximum size is denoted by νr(G). Its dual
parameters is minimum number of edges cover all induced subgraph isomorphism to Kr

in G which is denoted by τr(G) and called Kr-covering number of G.

By Definitions it is easy to see that νr(G) ≤ τr(G) ≤
(
r
2

)
νr(G).

All graph parameters can be modeled by linear programming which their real relaxations
are fractional parameters. For example fractional matching and fractional dominations
are defined as follows:

ν∗(G) = max{1Tx : x(δ(v)) 6 1 ∀v ∈ V ;x > 0}

(where δ(v) denotes the set of edges incident to v. )

γ∗(G) = min{1Tx
∑

u∈N [v]

xu ≥ 1 ∀v ∈ V ; x ≥ 0}

and
γ∗t (G) = min{1Tx

∑

u∈N(v)

xu ≥ 1 ∀v ∈ V ; x ≥ 0}

2 Main results

2.1 Domination parameters

In [3] it is proved that for the family of claw-free graphs with minimum degree at least
three and for the family of k-regular graphs when k ≥ 3, γt(G) ≤ ν(G). We can prove
similar result for relevant fractional parameters in almost all graphs.

Theorem 2.1. For almost all graphs γ∗t (G) ≤ ν∗(G).

In the following theorems we can see very interesting relation between irredundance
and domination parameters of some class of graphs which domination numbers is easy to
determine but their irredundance number is still NP-hard.

Theorem 2.2. If G has a total perfect code then γt(G) = ooir(G).

Also we can see that:

Theorem 2.3. If G has a total perfect code then γt(G) ≤ ν(G).
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2.2 Kr-packing and covering1

A famous König theorem says that for a bipartite graphG, τ(G) = ν(G). Tuza’s conjecture
is a famous conjecture about relations between τ3(G) and ν3(G) [5].
Tuza’s Conjecture: For a graph G, τ3(G) ≤ 2ν3(G).
This conjecture is proved for tripartite graphs in [2], in that paper authors conjectured it
may possible to improve this bound to a constant close to 1. By using Maxflow-Mincut
theorem we can prove their conjecture for special tripartite graphs in the following lemma.

Lemma 2.4. We call a graph G purple of order k ∈ N if and only if there is a bipartite
graph H with bipartition (X,Y ) such that

V (G) = X ∪ Y ∪ {u1, . . . uk}

and
E(G) = E(H) ∪ {zu1, . . . zuk | z ∈ X ∪ Y }.

If G is a purple graph of order k, then

τ3(G) = ν3(G).

Also by algebraic topology methods we can prove the following for K4-packing and
covering.

Theorem 2.5. If G is a 4-partite graph then τ4(G) ≤ 5ν4(G).
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Roman k-Domination Number Upon Vertex and Edge

Removal

Hamid Reza Golmohammadi∗

University of Tafresh
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Abstract

Let k ≥ 1 be an integer. A Roman k-dominating function on a graph G with vertex
set V is a function f : V → {0, 1, 2} such that every vertex v ∈ V with f(v) = 0 has
at least k neighbors u1, u2, · · · , uk with f(ui) = 2 for i = 1, 2, · · · , k. The weight of a
Roman k-dominating function is the value f(V ) =

∑
v∈V f(v). The minimum weight

of Roman k-dominating functions on a graph G is called the Roman k-domination
number, denoted by γkR(G). In this paper, we consider the effects of vertex and edge
removal on the Roman k-domination number of a graph. Some of our results improve
these one given by Kämmerling and Volkmann in [6] for the Roman k-domination
number.

Keywords: Roman domination, Roman k-domination number, Roman k-dominating
function.

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

For terminology and notation on graph theory not given here, the reader is referred to
[5, 10]. In this paper, G is a simple graph with vertex set V = V (G) and edge set
E = E(G). The order |V | and the size |E| are denoted by n = n(G) and m = m(G). For
disjoint subsets A and B of vertices we denote by E(A,B) the set of edges between A and
B. The open and closed neighborhoods of a vertex v ∈ V are NG(v) = {u ∈ V |uv ∈ E}
and NG[v] = NG(v) ∪ {v}, respectively. Also the open and closed neighborhoods of a
subset S ⊆ V (G) are NG(S) = ∪v∈SNG(v) and NG[S] = NG(S) ∪ S, respectively. The
degree of a vertex v ∈ V is degG(v) = |NG(v)|. The minimum and maximum degree of a
graph G are denoted by δ(G) and ∆(G), respectively. For a subset S ⊆ V (G), the induced
subgraph G[S] is the subgraph of G with the vertex set S and for two vertices u, v ∈ S,
uv ∈ E(G[S]) if and only if uv ∈ E(G). We write Kp,q for the complete bipartite graph
with bipartition X and Y such |X| = p and |Y | = q. If ω(G) is the number of components
of G, then c(G) = m − n + ω(G) is the well-known cyclomatic number of G.
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A subset S ⊆ V (G) is a k-dominating set of G if |NG(v) ∩ S| ≥ k for every vertex in
V \ S. The k-domination number γk(G) is minimum cardinality among the k-dominating
sets of G. The concept of k-domination was introduced by Fink and Jacobson in [4]. If
k = 1, then the k-domination number is the classical domination number.

Let f : V (G) → {0, 1, 2} be a function and let (V0, V1, V2) be the ordered partition of
V (G) induced by f , where Vi = {v ∈ V (G)|f(v) = i} for i = 0, 1, 2. We notice that there is
an obvious one-to-one correspondence between f and the ordered partition (V0, V1, V2) of
V (G). Therefore one can write f = (V0, V1, V2). Let k ≥ 1 be an integer. The function f =
(V0, V1, V2) is a Roman k-dominating function, abbreviated RkDF, on G, if |NG(v)∩V2| ≥ k
for every v ∈ V0. The weight of f is the value f(V (G)) =

∑
v∈V (G) f(v) = |V1| + 2|V2|.

The Roman k-domination number γkR(G) is the minimum weight of an RkDF on G, and
we say that a function f = (V0, V1, V2) is a γkR(G)-function if it is an RkDF on G and
f(V (G)) = γkR(G). The Roman k-domination number was introduced by Kämmerling
and Volkmann in [6], and it has been studied, for example in [1, 7].

If k = 1, then the Roman k-domination number is called Roman domination number
denoted by γR(G), which was given implicitly by Steward in [9] and by ReVelle and Rosing
in [8]. More details on Roman domination have been given in many papers, see for example
[2, 3, 9].

In this paper, we are interested in studying the effects that a graph modification has
on the Roman k-domination number. More precisely, we first study the changes of the
Roman k-domination number upon the removal of any vertex. Then, we study the changes
of the Roman k-domination number upon the removal of any edge.

2 Main results

In this section, we investigate the effects of vertex and edge removal on the Roman k-
domination number and we present lower and upper bounds on the Roman k-domination
number in graphs.

Lemma 2.1. Let G be a graph of order n ≥ 2. If v is a vertex of G, then

γkR(G) ≤ γkR(G − v) + 1.

Proof. If f = (V0, V1, V2) is a γkR(G − v)-function, then g = (V0, V1 ∪ {v}, V2) is an RkDF
on G and therefore γkR(G) ≤ γkR(G − v) + 1.

Corollary 2.2. Let G be a graph of order n ≥ 2, and let f = (V0, V1, V2) be a γkR(G)-
function. If v ∈ V1, then

γkR(G − v) = γkR(G) − 1.

Proof. Since g = (V0, V1 − {v}, V2) is an RkDF on G − v, we deduce that γkR(G − v) ≤
|V1 − {v}| + 2|V2| = γkR(G) − 1. According to Lemma 2.1, γkR(G) ≤ γkR(G − v) + 1 and
thus γkR(G − v) = γkR(G) − 1.

Proposition 2.3. Let G be a graph of order n ≥ 2, and let f = (V0, V1, V2) be a γkR(G)-
function. If v ∈ V0, then

γkR(G − v) ≤ γkR(G).
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Proof. If we define g = (V0−{v}, V1, V2), then g is an RkDF on G−v, and thus γkR(G−v) ≤
g(V (G − v)) = |V1| + 2|V2| = γkR(G).

Theorem 2.4. Let G be a graph of order n and uv ∈ E(G). Then

γkR(G) ≤ γkR(G − uv) ≤ γkR(G) + 1.

Proof. If g is a γkR(G−uv)-function, then g is an RkDF on G and thus γkR(G) ≤ γkR(G−
uv). Now let f = (V0, V1, V2) be a γkR(G)-function. If uv ∈ E(G[V0]), uv ∈ E(G[V1]),
uv ∈ E(G[V2]), uv ∈ E(V1, V2) or uv ∈ E(V0, V1), then f is an RkDF on G−uv and hence
γkR(G−uv) ≤ γkR(G). Thus γkR(G−uv) = γkR(G) in these cases. Let now uv ∈ E(V0, V2).
Without loss of generality, suppose that f(u) = 0. Then g = (V0 \ {u}, V1 ∪ {u}, V2) is an
RkDF on G − uv, and so γkR(G − uv) ≤ γkR(G) + 1.

Theorem 2.5. [6] Let G be a graph of order n. If k ≥ 2, then

γkR(G) ≥ min{n, n + 1 − c(G)}.

Next we improve the lower bound in Theorem 2.5 for any graph of order n and k ≥ 3.

Theorem 2.6. Let G be a graph of order n. If k ≥ 2 is an integer, then

γkR(G) ≥ min{n, n + k2 − k − 1 − c(G)}.

Theorem 2.7. Let k ≥ 2 be an integer, and let G be a graph of order n. If γkR(G) ≤ n−1,
then

γkR(G) ≤ γR(G) + (k − 1)

(
n − 3k

2

)
.
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Abstract

A Roman entire dominating function on a graph G = (V, E) is a function h : Z =
V ∪E → {0, 1, 2} satisfying the condition that each element x ∈ Z for which h(x) = 0
is either adjacent to or incident with at least one element y ∈ Z with h(y) = 2. The
weight of a Roman entire dominating function is the value w(h) =

∑
x∈Z

h(x). The

Roman entire domination number of a graph G, denoted by γren(G), is the minimum
weight of a Roman entire dominating function on G. In this paper, we obtain several
bounds for γren(G). We also investigate the behavior of γren(G) when a vertex or an
edge is deleted.

Keywords: Dominating set, Entire dominating set, Roman dominating function,
Roman entire dominating function.

Mathematics Subject Classification [2010]: 05C69.

1 Introduction

Cockayne et al. [3] introduced the concept of Roman dominating function (RDF) (See
also [2, 4, 6]). A Roman dominating function on a graph G = (V, E) is a function f : V →
{0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at
least one vertex v such that f(v) = 2. The weight of a Roman dominating function is the
value w(f) =

∑
u∈V

f(u). The Roman domination number of a graph G, denoted by γr(G),

is the minimum weight of a Roman dominating function on G.
A Roman edge dominating function (REDF) on a graph G = (V,E) is a function g : E →
{0, 1, 2} satisfying the condition that every edge e1 for which g(e1) = 0 is adjacent to at
least one edge e2 such that g(e2) = 2. The weight of a Roman edge dominating function is
the value w(g) =

∑
e∈E

g(e). The Roman edge domination number of a graph G, denoted by

γre(G), is the minimum weight of a Roman edge dominating function on G. This concept
was studied by Soner et al. in [7].
In this paper, we introduce the concept of Roman entire dominating function and initiate
a study of the Roman entire domination number.
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2 Basic Results

Theorem 2.1. Let h = (Z0, Z1, Z2) be a γren-function of G. Then the following are true.

(i) No element of Z1 is adjacent to an element of Z2.

(ii) The set V ∩ Z1 is independent.

(iii) Each element of Z0 is adjacent to at most two elements of Z1.

(iv) Z2 is a γen-set of the induced subgraph H = ⟨Z0 ∪ Z2⟩.
(v) Each x ∈ Z2 has at least two Z2-private neighbors in H.

(vi) If x is isolated in ⟨Z2⟩ and has precisely one external Z2-private neighbor y ∈ Z0 in
H, then N(y) ∩ Z1 = ∅.

Proposition 2.2. Let G be a graph without isolated vertices and let h = (Z0, Z1, Z2) be a
γren-function of G such that |Z1| is minimum. Then

(i) Z1 is independent,

(ii) Z0 ≻ Z1 and

(iii) each element of Z0 is adjacent to at most one element of Z1.

Theorem 2.3. Let G be a graph. Then γen ≤ γren ≤ 2γen. Further, γen = γren if and only
if G = Kc

p. Also, γren = 2γen if and only if there exist a γren-function h = (Z0, Z1, Z2)
with Z1 = ∅.
Theorem 2.4. Let G be any graph. Then max{γr(G), γre(G)} ≤ γren(G) ≤ γr(G) +
γre(G).

Remark 2.5. For the star G = K1,n, n ≥ 2, we have γr(G) = γre(G) = γren(G) = 2
and hence γren(G) = max{γr(G), γre(G)}. Also for the graph G = K4 − e, we have
γr(G) = γre(G) = 2, γren(G) = 4 and hence γren(G) = γr(G) + γre(G). Thus the bounds
given in Theorem 2.4 are sharp.

The following theorem gives the effect of the removal of a vertex or an edge on γren(G).

Theorem 2.6. Let G be any graph with γren(G) = k. Let v ∈ V (G) and e ∈ E(G). Then

(i) k − 1 ≤ γren(G − e) ≤ k + 2 and

(ii) k − 2 ≤ γren(G − v) ≤ max{k, k − 2 + deg(v)}.

Proposition 2.7. Let G be any graph with γren(G) = k, e ∈ E(Gc). Then k − 2 ≤
γren(G + e) ≤ k + 1.

We give sharp lower and upper bounds for the Roman entire domination function of a
graph.

Theorem 2.8. For any graph G with maximum degree ∆(G) ≥ 1,⌈
p+q+γen(G)

∆(G)+1

⌉
≤ γren(G).

The bound of Theorem 2.8 is sharp for Pp such that p ̸≡ 4 (mod 5), K1,p−1, (p ≥ 2),
Cp, 3 ≤ p ≤ 5 and mK2.

Theorem 2.9. For any graph G, γren(G) ≤ p and the bound is sharp.
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3 Roman Entire Domination Number

In this section we determine the value of γren(G) for several classes of graphs.

Proposition 3.1. For the path Pp with p ≥ 2,

γren(Pp) =





2⌊2p−1
5 ⌋ if r = 0 ,

2⌊2p−1
5 ⌋ + 1 if r = 1 ,

2⌊2p−1
5 ⌋ + 2 otherwise.

where 2p − 1 ≡ r (mod5), 0 ≤ r ≤ 4.

Proposition 3.2. For cycle Cp with p ≥ 3,

γren(Cp) =





2⌊2p
5 ⌋ if r = 0 ,

2⌊2p
5 ⌋ + 1 if r = 1 ,

2⌊2p
5 ⌋ + 2 otherwise.

where 2p ≡ r (mod5), 0 ≤ r ≤ 4.

Proposition 3.3. For wheel Wp with p ≥ 4,

γren(Wp) =





4 if p = 4 or 5,

2 + ⌈2(p−1)
3 ⌉ otherwise.

Proposition 3.4. For complete bipartite graph G = Km,n with m ≤ n, γren(G) = 2m.

Lemma 3.5. Let h = (Z0, Z1, Z2) be any γren-function of the complete graph Kp. Then
|Z2 ∩ V (Kp)| ≤ 1.

Proposition 3.6. For the complete graph Kp, γren(Kp) = p.

Proposition 3.7. For any graph G of order p ≥ 2, γren(G) = 2 if and only if G is a star
or G = Kc

2.

Theorem 3.8. Let T be a tree with p ≥ 2, then γren(T ) ≤ 2β1(T ). And this bound is
sharp for K1,p−1, P4, P5, P7, P9.

Proposition 3.9. Let G be any unicyclic graph. Then γren(G) ≤ 2β1(G) + 1. Further,
the equality holds for K3.

Theorem 3.10. For given any integer k ≥ 0, there exist a tree T for which 2β1(T ) −
γren(T ) = k.

Theorem 3.11. Let G be any graph. Then γren(G) ≤ 2(p − β0(G)). And this bound is
sharp for K1,p−1, C4, P4, P5, P7, P9.
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Proposition 3.12. For any graph G of order p ≥ 3, γren(G) = 3 if and only if G is
isomorphic to one of the graphs: Kc

3, K1,p−2 ∪ K1 or K1,p−1 + {e}.

Lemma 3.13. If G is a connected graph and γren(G) = γen(G)+1, then 1 ≤ diam(G) ≤ 2.

Theorem 3.14. For any connected graph G, γren(G) = γen(G) + 1 if and only if there is
a vertex v ∈ V (G) of degree p − 1 and the remaining vertices of degree at most 2.

Lemma 3.15. If T is a tree and γren(T ) = γen(T ) + 2, then 3 ≤ diam(T ) ≤ 5.

Theorem 3.16. If T is a tree of order p ≥ 4, then γren(T ) = γen(T ) + 2 if and only if
either (i) T is a double star (ii) T is obtained by subdividing the center edge of double star
at most twice.

The following theorem gives the bound of |Z0|, |Z1| and |Z2| for a γren(G)-function h =
(Z0, Z1, Z2).

Theorem 3.17. Let h = (Z0, Z1, Z2) be any γren(G)-function of a connected graph G of
order p greater than or equal to three. Then

(i) 1 ≤ |Z2| ≤ p
2 .

(ii) 0 ≤ |Z1| ≤ p − 2.

(iii) q + 1 ≤ |Z0| ≤ p + q − 1.
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Abstract

A k-hypergraph with vertex set V and edge set E is called t-regular if every t-
element subset of V lies in the same number of elements of E. In this note, we prove
the existence of some new families of 2-regular self-complementary k-hypergraphs for
k=4,5.
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1 Introduction

A k-uniform hypergraph of order v is an ordered pair H = (V, E), where V = V (H)
is a v-set (called vertex set) and E = E(H) (called edge set) is a subset of the set of
all k-subsets of V (Pk(V )). We call a k-uniform hypergraph simply a k-hypergraph [4].
A k-hypergraph H of order v is t-subset-regular (for short t-regular) if there exists a
positive integer λ (called the t-valence of H), such that each element of Pt(V ) is a subset
of exactly λ elements of E(H). Henceforth, we denote such a structure by RHG(t, k, v).
Two k-hypergraphs H1 and H2 are isomorphic, if there is a bijection θ : V (H1) → V (H2),
such that θ induces a bijection from E(E1) into E(H2). A k-hypergraph H is called
self -complementary if H is isomorphic to H

′
= (V, Pk(V ) \ E(H)). An antimorphism

of self complementary hypergraph H, is an isomorphism between H and H
′
. Henceforth,

we denote this structure by SRHG(t, k, v). An easy counting argument shows that an
SRHG(t, k, v) is also an SRHG(i, k, v) for 0 ≤ i ≤ t. Hence a set of necessary conditions
for the existence of an SRHG(t, k, v) is that

(
v−i
k−i

)
is an even integer for all i = 0, 1, ..., t.

The following theorem gives the necessary conditions in terms of some congruence rela-
tions. Let p be a prime number and r and m be positive integers. Then by r[m] we denote
the remainder of division r by m and by r(p) we denote the largest integer i such that pi

divides r.

Theorem 1.1. [2] If there exists an SRHG(t, k, v), then there exists an integer q, where
k(2) < q ≤ min{i : 2i > k} such that v[2q ] ∈ {t, t + 1, ..., k[2q ] − 1}.

It should be noted that in [2] the above theorem is stated for large sets of t-designs. We
may obtain more hypergraphs from a given hypergraph as the following theorem suggests
(see [4]). The proof is clear by successive applying of the above remark.
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Theorem 1.2. If there exists an SRHG(t, k, v) with an antimorphism having at least t
fixed points, then there exists SRHG(t − i, k − j, v − l) for all 0 ≤ j ≤ l ≤ i ≤ t.

2 Some New Partitionable Sets

A powerful method in constructing large sets is obtained from the notion of partitionable
sets [1]. In what follows we generalize this method to construct hypergraphs with different
parameters.

Let H1, H2 ⊆ Pk(V ). We say that H1 and H2 are t-equivalent if every t-subset of V
appears in the same number of members of H1 and H2. If there exists a partition of H ⊆
Pk(V ) into N mutually t-equivalent subsets, then H is called an (N, t)-partitionable set.
If H = {H1,H2} is a (2, t)-partitionable set such that there is a permutation σ on V which
maps H1 onto H2, then H is called a (σ, 2, t)- partitionable set.

Let V1 and V2 be two disjoint sets and Hi ⊆ Pki
(Vi) for i = 1, 2. In what follows we

need the following definition:

H1 ∗ H2 = {h1 ∪ h2|h1 ∈ H1, h2 ∈ H2}.

The following Lemma is a minor revision of a lemma given in [3] in terms of large sets of
t-designs. We only need to prove the existence of their corresponding permutations.

Lemma 2.1. Let V1 and V2 be two disjoint sets and let Hi ⊆ Pki
(Vi) for i = 1, 2. Also

let σ1 and σ2 be permutations on V1 and V2, respectively. Suppose that H1 is a (σ1, 2, t1)-
patitionable set.

(i) If H2 is a (σ2, 2, t1)-patitionable set, then there is a permutation (say σ) on V1 ∪ V2

such that H1 ∗ H2 is a (σ, 2, t1)-partitionable set.

(ii) If H2 has a partition into two t2-equivalent sets and σ2 induces a permutation on
each part, then there is a permutation (say σ) on V1 ∪ V2, such that H1 ∗ H2 is a
(σ, 2, t1 + t2 + 1)-partitionable set.

(iii) If H2 is a (σ2, 2, t1)-patitionable set, then there is a permutation (say σ) on V1 ∪ V2

such that the union of H1 and H2 is also a (σ, 2, t1)-partitionable set.

3 A Recursive Method

In this section, we present a recursive method to construct SRHG(t, k, v) using (σ, 2, t)-
partitionable sets.

Theorem 3.1. Assume that there exist SRHG(t, i, v1) for all t + 1 ≤ i ≤ k with θ1 as
an antimorphism and also suppose there exists SRHG(t, i, v2) such that θ2 be an antimor-
phism, then an SRHG(t, k, v1 + v2 − t) exists.
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Let θ be a permutation on a v-set with at least t fixed points.

Corollary 3.2. If there exist an SRHG(t, i, v) for t+1 ≤ i ≤ k with θ as an antimorphism
and also there exist SRHG(t, k, u) with an antimorphism having at least t fixed points, then
there exist SRHG(t, k, u + l(v − t)) for all l ≥ 1.

Corollary 3.3. If there exist an SRHG(t, t + 1, v + t) with an antimorphism having at
least t fixed points, then there exist SRHG(t, t + 1, lv + t) for all l ≥ 1.

4 The existence

In this section we give some existence results on SRHG(2, k, v). At first step note to the
following corollary of Theorem 1.1. This corollary presents a necessary condition to the
existence of SRHG(2, k, v).

Corollary 4.1. Suppose that there exists an SRHG(2, k, v). Then

(i) If k = 4, then v ≡ 2, 3 (mod 8);

(ii) If k = 5, then v ≡ 2, 3, 4 (mod 8);

Now we show that the necessary conditions for the existence of SRHG(2, k, v) for
k = 4, 5 are sufficient.

Theorem 4.2. There exist an SRHG(2, 4, v) if and only if v ≡ 2, 3 (mod 8).

Theorem 4.3. There exist an SRHG(2, 5, v) if and only if v ≡ 2, 3, 4 (mod 8).
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Abstract

In this paper, we discussed some properties of the µ−complement of bipolar fuzzy
graphs. Busy vertices and free vertices in bipolar fuzzy graphs are introduced and their
image under an isomorphism are studied. Finally, we investigated some properties of
isomorphism on bipolar fuzzy graphs.
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1 Introduction

Presently, science and technology is featured with complex processes and phenomena for
which complete information is not always available. For such cases, mathematical models
are developed to handle various types of systems containing elements of uncertainty. A
large number of these models is based on an extension of the ordinary set theory, namely,
fuzzy sets. Graph theory has numerous application to problem in computer science, elec-
trical engineering, system analysis, operations research, economics, networking routing,
and transportation. In 1965 Zadeh [10] introduced the notion of a fuzzy subset of a set
as a method for representing uncertainty. In 1975, Rosenfeld [4] introduced the notion of
fuzzy graphs and proposed another definitions including paths, cycles, connectedness and
etc. The complement of a fuzzy graph was defined by Mordeson and Nair [3] and further
studied by Sunitha and Kumar [9].

In 1994, Zhang initiated the concept of bipolar fuzzy sets as a generalization of fuzzy
sets. Bipolar fuzzy sets are an extension of fuzzy sets whose membership degree range
is [−1, 1]. In a bipolar fuzzy set, the membership degree of an element means that the
element is irrelevant to the corresponding property, the membership degree (0, 1] of an
element indicates that the element somewhat satisfies the property, and the membership
degree [−1, 0) of an element indicates that the element somewhat satisfies the implicit
counter-property. The first definition of bipolar fuzzy graphs was proposed by Akram [1].
Rashmanlou et al. [2, 5, 6, 7] investigated bipolar fuzzy graphs with categorical properties,
product of bipolar fuzzy graphs and their degree, domination in vague graphs and a study
on bipolar fuzzy graphs.
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2 Main result

Let X be a non-empty set. A bipolar fuzzy set B in X is an object having the form B =
{(x, µP

B(x), µN
B (x)) | x ∈ X}, where µP

B : X → [0, 1] and µN
B : X → [−1, 0] are mappings.

Let X be a non-empty set. Then we call a mapping A = (µP
A, µN

A ) : X×X → [0, 1]×[−1, 0]
a bipolar fuzzy relation on X such that µP

A(x, y) ∈ [0, 1] and µN
A (x, y) ∈ [−1, 0].

Let A = (µP
A, µN

A ) and B = (µP
B, µN

B ) be bipolar fuzzy sets on a set X. If A = (µP
A, µN

A )
is a bipolar fuzzy relation on a set X, then A = (µP

A, µN
A ) is called a bipolar fuzzy relation

on B = (µP
B, µN

B ) if µP
A(x, y) ≤ min(µP

B(x), µP
B(y)) and µN

A (x, y) ≥ max(µN
B (x), µN

B (y)) for
all x, y ∈ X.

Definition 2.1. By a bipolar fuzzy graph G = ⟨V, E, A, B⟩ of a graph G∗ = (V, E) we
mean a pair G = (A,B), where A = (µP

A, µN
A ) is a bipolar fuzzy set on V and B = (µP

B, µN
B )

is a bipolar fuzzy relation on E such that
µP

B(xy) ≤ min(µP
A(x), µP

A(y)) and µN
B (xy) ≥ max(µN

A (x), µN
A (y)) for all xy ∈ E.

Definition 2.2. Let G1 and G2 be two bipolar fuzzy graphs. A homomorphism f from
G1 to G2 is a mapping f : V1 → V2 which satisfies the following conditions:
(a) µP

A1
(x1) ≤ µP

A2
(f(x1)), µ

N
A1

(x1) ≥ µN
A2

(f(x1)),

(b) µP
B1

(x1y1) ≤ µP
B2

(f(x1)f(y1)), µ
N
B1

(x1y1) ≥ µN
B2

(f(x1)f(y1)) for all x1, y1 ∈ V1, x1y1 ∈
E1.

Definition 2.3. Let G1 and G2 be two bipolar fuzzy graphs. An isomorphism f from G1

to G2 is a bijective mapping f : V1 → V2 which satisfies the following conditions:
(c) µP

A1
(x1) = µP

A2
(f(x1)), µ

N
A1

(x1) = µN
A2

(f(x1)),

(d) µP
B1

(x1y1) = µP
B2

(f(x1)f(y1)), µ
N
B1

(x1y1) = µN
B2

(f(x1)f(y1))
for all x1, y1 ∈ V1, x1y1 ∈ E1.

Definition 2.4. Let G1 and G2 be two bipolar fuzzy graphs. Then, a weak isomorphism f
from G1 to G2 is a bijective mapping f : V1 → V2 which satisfies the following conditions:
(e) f is homomorphism
(f) µP

A1
(x1) = µP

A2
(f(x1)), µ

N
A1

(x1) = µN
A2

(f(x1)), for all x1 ∈ V1. Thus a weak isomor-
phism preserves the weights of the nodes but not necessarily the weights of the arcs.

Theorem 2.5. Let G1 and G2 be bipolar fuzzy graphs. If G1
∼= G2, an arc in G1 is strong

if and only if the corresponding image arc in G2 is also strong.

Theorem 2.6. Let G1 and G2 be bipolar fuzzy graphs and G1 be isomorphic to G2. Then
G1 is connected if and only if G2 is connected.

Definition 2.7. Let G = (A,B) be a bipolar fuzzy graph. The µ−complement of G is
denoted by Gµ = (Aµ, Bµ), where Aµ = A, Bµ = (µµ

BP , µµ
BN ) and

µµ
BP (xy) =

{
µP

A(x) ∧ µP
A(y) − µBP (xy) if µBP (xy) > 0

0 if µBP (xy) = 0,

µµ
BN (xy) =

{
µN

A (x) ∨ µN
A (y) − µBN (xy) if µBN (xy) < 0

0 if µBN (xy) = 0.

Several properties have been investigated for this graph.
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Proposition 2.8. Let G1 and G2 be bipolar fuzzy graphs, if G1 and G2 are isomorphic,
then their µ−complements, Gµ

1 and Gµ
2 , are also isomorphic.

Theorem 2.9. Let G1 = (A1, B1) and G2 = (A2, B2) be two bipolar fuzzy graphs of
G∗

1 = (V1, E1) and G∗
2 = (V2, E2) such that V1 ∩ V2 = ϕ. Then, (G1 + G2)

µ ∼= Gµ
1 ∪ Gµ

2 .

Theorem 2.10. Let G1 = (A1, B1) and G2 = (A2, B2) be two bipolar fuzzy graphs of
G∗

1 = (V1, E1) and G∗
2 = (V2, E2) such that V1 ∩ V2 = ϕ. Then, (G1 ∪ G2)

µ ∼= Gµ
1 ∪ Gµ

2 .

Definition 2.11. The busy value of a node v of a bipolar fuzzy graph G = (A,B) is

defined to be D(v) = (DP (v), DN (v)) where DP (v) =
∑

i

µAP (v) ∧ µAP (vi) and DN (v) =

∑

i

µAN (v)∨µAN (vi) which vi are neighbors of v and the busy value of a bipolar fuzzy graph

G is defined to be the sum of the busy values of all vertices of G, i.e. D(G) =
∑

i

D(vi)

where vi are vertices of G.

Definition 2.12. A vertex v of a bipolar fuzzy graph G = (A,B) is said to be
(i) a partial free vertex if it is a free vertex in both G and Gµ.
(ii) a fully free node if it is a free vertex in G, but it is a busy vertex in Gµ.
(iii) a partial busy vertex if it is a busy vertex in both G and Gµ.
(iv) a fully busy vertex if it is a busy vertex in G, but it is a free vertex in Gµ.

Lemma 2.13. Let G1
∼= G2 and h be an isomorphism from G1 to G2. Then deg(x) =

deg(h(x)) for all x ∈ V .

Theorem 2.14. If G1
∼= G2 and if v is a busy vertex in G1, then it is a busy vertex in

G2 also.

Theorem 2.15. Let a bipolar fuzzy graph G1 be weak isomorphism to G2. If u ∈ V1 is a
busy vertex in G1, then its image under a weak isomorphism in G2 is also busy.

Theorem 2.16. For any two isomorphism bipolar fuzzy graphs, their order and size are
same.

Theorem 2.17. If the bipolar fuzzy graphs be co-weak isomorphism then, their size are
same. But, if the bipolar fuzzy graphs are of same size need not to be co-weak isomorphic.

Theorem 2.18. If G1 and G2 be isomorphic bipolar fuzzy graphs then, the degrees of their
vertices are preserved
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Abstract

In this paper we define the relative non-commuting graph ΓH,G where G is a non-
ablian group and H a subgroup of G . We obtain upper bounds for diameter and girth
of this graph. We discuss about dominating set and planarity of ΓH,G. Moreover, we
explain a connection between ΓH,G and the commutativity degree of G. Furthermore,
we prove that if (H1, G1) and (H2, G2), are relative isoclinic then ΓH1,G1

∼= ΓH2,G2

under special condition. consequent, we discuss about the energy of ΓH,G in some spe-
cial cases. Finally we compute the number of spanning trees for some certain groups .

Keywords: non-commuting graph; non-ablian group; commutativity degree ;relative
isoclinism

1 Introduction

Study of algebraic structures, by using the properties of graphs, becomes an exciting
research topic in the last twenty years. This fact leading to many fascinating results and
questions. There are many papers on assigning a graph to a ring or group and investigation
of algebraic properties of ring or group using the associated graph, for instance see [1, 3].
A simple graph ΓG is associated to a group G, whose vertex set is G \ Z(G) and the
edge set is all pairs (x, y), where x and y are distinct non-central elements such that
[x, y] = x−1y−1xy 6= 1. This graph the non-commuting graph of G and was introduced by
Erdös and by asking whether there is a finite bound for the cardinalities of cliques in ΓG,
if ΓG has no infinite clique. This problem was posed by Neumann in [8] and a positive
answer was given to Erdös question. In the next section, after introducing the relative
non-commuting graph ΓH,G, we state some of basic graph theoretical properties of ΓH,G
which are mostly new or a generalization of some results in [2],
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2 THE RELATIVE NON COMMUTING GRAPH

Definition 2.1. the relative non-commuting graph ΓH,G where G is a non-ablian group
and H a subgroup of G . Take G\CG(H) as the vertices of the graph and two distinct
vertices x and y join,whenever x or y in H and [x, y] 6= 1.

Theorem 2.2. For non-abelian group G ,and its subgroup H with trivial center, diam(ΓH,G) =
2. Also girth(ΓH,G) = 3

Theorem 2.3. Let H be a subgroup of non-abelian group G. If x is a dominating set for
ΓH,G, then CG(H) = 1, x2 = 1 and CG(x) =< x > , where x is a non-trivial element of
H.

Lemma 2.4. Let H be a subgroup of non-abelian group G then S = HCG(H) − CH(G)
is a dominating set for ΓH,G.

For any finite group G, the commutativity degree of G, denoted by d(G) is the prob-
ability that two randomly chosen elements of G commute with each other [6]. It can be
defined az the following ratio:

d(G) =
1

|G|2 |{(x, y) ∈ G×G : [x, y] = 1}|.

Similarly if H is the subgroup of G then the relative commutativity degree of H in G is
defined as follows

d(H,G) =
1

|H||G| |{(h, g) ∈ H ×G : [h, g] = 1}|.

It is clear that if G is abelian or H is central subgroup then d(H,G) = 1. There are many
results concerning the above degrees in series of papers for instance see [8]. What we
would like to mention in this section is to establish some relations between commutativity
degrees d(G), d(H,G) and the graphs ΓG and ΓH,G for non-abelian group G.

Lemma 2.5. Let H be a subgroup of non-abelian group G . Then the number of edges for
the relative non-commuting graph is obtained by,

|E(ΓH,G)| = |H||G|(1− d(H,G))− |H|
2

2
(1− d(H)). (1)

Example 2.6. (i) Suppose G = D8 = 〈a, b : a4 = b2 = 1, ab = a−1〉 is the dihedral
group of order 8 and H = {1, a, a2, a3} Obviously V (ΓH,G) = {a, a3, b, ab,
a2b, a3b}, d(H,G) = 3

4 and d(H) = 1, |E(ΓH,G)| = 8.

(ii) Suppose G = D10 = 〈a, b : a5 = b2 = 1, ab = a−1〉 is the dihedral group of order
10,and H = {1, b} by a simple computing we have V (ΓH,G) = {a, a2, a3, a4, b, ab,
a2b, a3b, a4b}, d(H,G) = 3

5 , d(H) = 1 and |E(ΓH,G)| = 8.

(iii) Let S3 = {e, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)} be the symmetric group on 3 symbols
and H = {1, (1 2)} V (ΓH,G) = {(1 2), (1 3), (2 3), (1 2 3), (1 3 2)} . It is clear that
again d(H,G) = 2

3 , d(H) = 1 and |E(ΓH,G)| = 4.
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Theorem 2.7. If ΓH1,G1
∼= ΓH2,G2, |H1\Z(H1)| = |H2\Z(H2)| and ΓH1,G1 has a vertex

of degree p, where p is an odd prime, then H1
∼= H2 or |H1| = |H2|.

We convent that, if (H1, G1) and (H2, G2) are relative 1-isoclinic, then denote it by
abbreviate form (H1, G1) ∼ (H2, G2) and called relative isoclinism. Furthermore, if Hi =
Gi and n = 1 then we obtain isoclinism.

Theorem 2.8. Let Hi ≤ Gi, (i = 1, 2) and (H1, G1) ∼ (H2, G2) be relative isoclinic. If
|Z(G1) ∩H1| = |Z(G2) ∩H2| and |Z(G1)| = |Z(G2)| then ΓH1,G1

∼= ΓH2,G2 .

Now,let us start to discuss about the concept of energy graph [4, Section 3.4] and
adjacency matrix [4, chapter 3] of the ΓH,G in special case.

Remark: For any graph G the energy of the graph is defined as ε(G) =

n∑

i=1

|λi|, where

λ1, ..., λn are the eigenvalues of the adjacency matrix of G

Example 2.9. (i) Let D8 = 〈a, b : a4 = b2 = 1, ab = a−1〉 be dihedral group of order 8.
V (ΓH,G) = {a, a3, b, ab, a2b, a3b}, Similarly, |E(ΓH,G)| = 8. The following matrix is
the adjacency matrix of ΓH,G,

A=




0 0 1 1 1 1
0 0 1 1 1 1
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0




Now, we obtain the eigenvalues of the adjacency matrix λ1 = 2.82, λ2 = −2.82, λ3 =
0, λ4 = 0 , λ5 = 0and λ6 = 0. Hence ε(G) =

∑6
i=1 |λi| = 5.64.

(ii) Suppose S3 = {e, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)} be the symmetric of order 6 ,
it is clear that V (ΓH,G) = {(1 2), (1 3), (2 3), (1 2 3), (1 3 2)} ,which implies that ,
|E(ΓH,G)| = 4. The following matrix is the adjacency matrix of ΓH,G,

A=




0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0




Now, we obtain the eigenvalues of the adjacency matrix λ1 = 2, λ2 = −2, λ3 =
0, λ4 = 0 and λ5 = 0. Hence ε(G) =

∑5
i=1 |λi| = 4.

Now,let us start to discuss about the concept of spaning tree [4, Theorem 4.11] and
laplacian matrix [4, chapter 4] of the ΓH,G in special case.

Example 2.10. (i) Let D8 = 〈a, b : a4 = b2 = 1, ab = a−1〉 be dihedral group of order
8. Similarly V (ΓH,G) = {a, a3, b, ab, a2b, a3b}, The following matrix is the laplacian
matrix of ΓH,G,
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L=




4 0 −1 −1 −1 −1
0 4 −1 −1 −1 −1
−1 −1 2 0 0 0
−1 −1 0 2 0 0
−1 −1 0 0 2 0
−1 −1 0 0 0 2




Now, we obtain the eigenvalues of the laplacian matrix λ1 = 6, λ2 = 4 , λ3 =
2, λ4 = 2, λ5 = 2and λ6 = 0. Thus the number of spaning tree equal 192.

(ii) Suppose S3 = {e, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)} be the symmetric of order 6 ,
more over V (ΓH,G) = {(1 2), (1 3), (2 3), (1 2 3), (1 3 2)} . The following matrix is
the laplacian matrix of ΓH,G,

L=




4 −1 −1 −1 −1
−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1




Now, we obtain the eigenvalues of the laplacian matrix λ1 = 5, λ2 = 1, λ3 =
1, λ4 = 1and λ5 = 0. Thus the number of spaning tree equal 5.
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Some results on the annihilator graph

of a commutative ring

Reza Nikandish∗

Jundi-Shapur University of Technology, Dezful, Iran

Abstract

Let R be a commutative ring with identity, and let Z(R) be the set of zero-divisors
of R. The annihilator graph of R is defined as the undirected graph AG(R) with
the vertex set Z(R)∗ = Z(R) \ {0}, and two distinct vertices x and y are adjacent
if and only if annR(xy) 6= annR(x) ∪ annR(y). In this talk, some relations between
annihilator graph and zero-divisor graph associated with a commutative ring are stud-
ied. Moreover, we give some conditions under which the annihilator graph and the
zero-divisor graph associated with a ring are identical.

Keywords: Annihilator graph, Zero-divisor graph, Associated prime ideal

Mathematics Subject Classification [2010]: 13A15, 13B99, 05C99

1 Introduction

Recently, a major part of research in algebraic combinatorics has been devoted to the
application of graph theory and combinatorics in abstract algebra. There are a lot of
papers which apply combinatorial methods to obtain algebraic results in ring theory, see
for example [1, 2, 3, 5] and [7].

Throughout this talk, all rings are assumed to be non-domain commutative rings with
identity. We denote by Nil(R) and Z(R), the set of all nilpotent elements and the set
of zero-divisors elements of R, respectively. Let A ⊆ R. The set of annihilators of A is
denoted by annR(A) and by A∗, we mean A \ {0}. The ring R is said to be reduced, if
Nil(R) = 0. A prime ideal P of R is called an associated prime ideal, if annR(x) = P , for
some non-zero element x ∈ R. The set of all associated prime ideals of R is denoted by
Ass(R).

Let G = (V,E) be a graph, where V = V (G) is the set of vertices and E = E(G) is
the set of edges. By G, we mean the complement graph of G. The girth of a graph G is
denoted by gr(G). We write u−v, to denote an edge with ends u, v. A graph H = (V0, E0)
is called a subgraph of G if V0 ⊆ V and E0 ⊆ E. Moreover, H is called an induced subgraph
by V0, denoted by G[V0], if V0 ⊆ V and E0 = {{u, v} ∈ E |u, v ∈ V0}. Let G1 and G2 be
two disjoint graphs. The join of G1 and G2, denoted by G1∨G2, is a graph with the vertex
set V (G1 ∨G2) = V (G1) ∪ V (G2) and edge set E(G1 ∨G2) = E(G1) ∪ E(G2) ∪ {uv |u ∈
V (G1), v ∈ V (G2)}. Also G is called a null graph if it has no edge. For a vertex x in G,
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we denote the set of all vertices adjacent to x by NG(x). A complete bipartite graph of
part sizes m,n is denoted by Km,n. If m = 1, then the complete bipartite graph is called
star graph. Also, a complete graph of n vertices is denoted by Kn.

Any undefined notation or terminology which we use in this talk may be found in
[4, 8, 9].

The annihilator graph of a ring R is defined as the graph AG(R) with the vertex
set Z(R)∗ = Z(R) \ {0}, and two distinct vertices x and y are adjacent if and only if
annR(xy) 6= annR(x) ∪ annR(y). This graph was first introduced and investigated in [5]
and many of interesting properties of annihilator graph were studied. For example, it was
proved the annihilator graph is a connected graph of diameter at most 2. Also, the author
in [5], studied some relations between two graphs AG(R) and Γ(R), where Γ(R) is the
zero-divisor graph of a ring R. The zero- divisor graph of a ring R, denoted by Γ(R), is
a graph with the vertex set Z(R)∗ and two distinct vertices x and y are adjacent if and
only if xy = 0. In this talk, we continue the study of annihilator graphs associated with
commutative rings. Especially, we focus on the conditions under which the annihilator
graph is identical to the zero-divisor graph. For instance, for a non-reduced ring R, it is
proved that the annihilator graph and the zero-divisor graph of R are identical to the join
of a complete graph and a null graph if and only if annR(Z(R)) is a prime ideal if and
only if R has at most two associated primes.

2 Main results

We begin with the following lemma.

Lemma 2.1. Let R be a ring.
(1) Let x, y be distinct elements of Z(R)∗, and suppose that Z(R) = annR(x)∪annR(y).

Then x− y is an edge of Γ(R) if and only if x− y is an edge of AG(R).
(2) Let x, y, z be elements of Z(R)∗, and suppose that annR(x) = annR(y). Then x−z

is an edge of AG(R) if and only if y − z is an edge of AG(R).
(3) Let Γ(R) = K1,n for some n ≥ 1 such that x is adjacent to every other vertex. If

annR(x) = annR(y) for some y ∈ Z(R)∗, then either x = y, or Γ(R) = AG(R) = K1,1.

By using Lemma 2.1, we provide a simple proof of [5, Theorem 3.17].

Theorem 2.2. ([5, Theorem 3.17]) Let R be a commutative ring such that AG(R) 6= Γ(R).
Then the following statements are equivalent:

(1) Γ(R) is a star graph;
(2) Γ(R) = K1,2;
(3) AG(R) = K3.

Proof. Since AG(R) 6= Γ(R), (3) ⇒ (1) and (3) ⇔ (2) are obvious. We have only to
prove (1) ⇒ (3). Let a be the center of the star graph Γ(R). Since Γ(R) is a star graph
and AG(R) 6= Γ(R), we deduce that |Z(R)∗| ≥ 3 and annR(x) = annR(y) = {0, a},
for every x, y ∈ Z(R) \ {0, a}. Furthermore, by [3, Theorem 2.5] and [5, Theorem 3.6],
Z(R) = annR(a) for a non-zero element a ∈ R. To complete the proof, we show that
|Z(R)∗| = 3. Suppose to the contrary, a, b, c, x are distinct elements of Z(R)∗. With no
loss of generality, one may assume that b−x is an edge of AG(R) (AG(R) 6= Γ(R)). Since
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annR(b) = annR(c), Part (2) of Lemma 2.1 implies that c − x is also an edge of AG(R).
Similarly, the equality annR(c) = annR(x) shows that c − b is an edge of AG(R). Since
bx 6= 0 and annR(bx) 6= annR(b)∪annR(x), we have annR(bx) = annR(a). By Part (3) of
Lemma 2.1, bx = a. Similarly, cx = a and cb = a. Hance x(b−c) = b(c−x) = c(b−x) = 0
and so b− x = c− x = b− c = a, a contradiction.

To prove Theorem 2.5, the following lemma is needed.

Lemma 2.3. Let R be a ring and x ∈ Z(R)∗. Then
(1) If annR(x) is a prime ideal of R, then NΓ(R)(x) = NAG(R)(x).
(2) If x ∈ Nil(R)∗ and NΓ(R)(x) = NAG(R)(x), then annR(x) is a prime ideal of R.

In light of Lemma 2.3, we have the following corollary.

Corollary 2.4. Let R be a ring. If Γ(R) = AG(R), then for every x ∈ Nil(R)∗,
annR(x) ∈ Ass(R).

Theorem 2.5. Let R be a ring such that for every edge of AG(R), say x − y, either
annR(x) ∈ Ass(R) or annR(y) ∈ Ass(R). Then Γ(R) = AG(R).

Let R be a Noetherian ring and Σ = {annR(x) | 0 6= x ∈ R}. Recall that the set of all
maximal elements of Σ (under ⊆) is a subset of Ass(R). We set Σ∗ = Σ \ {(0)}. Now, we
are ready to present the following result.

Corollary 2.6. Let R be a ring. If Σ∗ = Ass(R), then Γ(R) = AG(R).

We finish this talk with the following result.

Theorem 2.7. Let R be a non-reduced ring. Then the following statements are equivalent:
(1) Γ(R) = AG(R) = Kn ∨Km

, where n = |Nil(R)∗| and m = |Z(R) \Nil(R)|;
(2) annR(Z(R)) is a prime ideal of R;
(3) Σ∗ = Ass(R) and |Σ∗| ≤ 2.

Proof. (1) ⇒ (2) With no loss of generality, one may assume that m 6= 0. Since Γ(R) =
Kn ∨ Km

, every vertex of Kn is adjacent to all other vertices of Γ(R) and there is no
edge between vertices of K

m
. Thus annR(Z(R)) = V (Kn) ∪ {0}, xy 6= 0 and annR(x) =

annR(y) = annR(Z(R)), for every x, y ∈ V (K
m

). Now, we show that annR(Z(R)) is a
prime ideal of R. To see this, let xy ∈ annR(Z(R)), x /∈ annR(Z(R)) and y /∈ annR(Z(R)).
Thus x 6= y, and hence Z(R) = annR(xy) 6= annR(x) ∪ annR(y) = annR(Z(R)). There-
fore, x − y is an edge of AG(R), a contradiction. So, annR(Z(R)) is a prime ideal of
R.

(2) ⇒ (1) Assume that annR(Z(R)) is a prime ideal of R. Thus xy = 0, for all
x, y ∈ annR(Z(R)), and xy 6= 0, for all x, y ∈ Z(R) \ annR(Z(R)). Now, it is not
hard to see that Γ(R)[annR(Z(R))∗] and Γ(R)[Z(R) \ annR(Z(R))] are two subgraph of
Γ(R) such that Γ(R)[annR(Z(R))∗] is complete, Γ(R)[Z(R) \ annR(Z(R))] is null and
Γ(R) = Γ(R)[annR(Z(R))∗] ∨ Γ(R)[Z(R) \ annR(Z(R))]. To complete the proof, we have
only to show that Γ(R) = AG(R). Let x, y be non-adjacent vertices of Γ(R). Then
x, y, xy ∈ Z(R) \ annR(Z(R)). Since annR(Z(R)) is a prime ideal of R, we conclude that
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ann(x) = ann(y) = annR(xy) = annR(Z(R)), i.e., x, y are not adjacent in AG(R), as
desired.

(2) ⇒ (3) Since annR(Z(R)) is a prime ideal of R, for every x ∈ Z(R)∗, either
annR(x) = annR(Z(R)) or annR(x) = Z(R). Hence Σ∗ = {annR(Z(R)), Z(R)} and
so Σ∗ = Ass(R) and |Σ∗| ≤ 2.

(3) ⇒ (2) Let annR(x) and annR(y) be elements of Σ∗. Since Σ∗ = Ass(R), by
Corollary 2.6, Γ(R) = AG(R) and hence it follows from [5, Theorem 3.15] that Z(R)
is an ideal of R. This, together with the fact Z(R) = annR(x) ∪ annR(y) imply that
either annR(x) ⊆ annR(y) or annR(y) ⊆ annR(x). With no loss of generality, suppose
that annR(x) ⊆ annR(y). Thus Z(R) = annR(y). Now, we have only to show that
annR(x) = annR(Z(R)). We consider the following two cases:

Case 1. Let a, b ∈ annR(x). Then either annR(a) = annR(x) or annR(a) = Z(R).
Thus ab = 0.

Case 2. Let a ∈ annR(x) and b /∈ annR(x). Then it is easily seen that annR(b) =
annR(x) and so ab = 0.

The proof is complete.
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Total domination number of a family of graph product
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Abstract

Let G = (V,E) be a simple finite graph and γt(G) shows the cardinality of the
smallest total dominating set, when a total dominating set is a vertex subset such that
every vertex is adjacent to at least one vertex of it. In this paper, we study the total
domination number of the Cartesian product Pm�Cn.

Keywords: Cartesian product graph, total domination number, cylindrical grid
graphs
Mathematics Subject Classification [2010]: 05C69.

1 Introduction

Let G = (V,E) be a graph with vertex set V of order n(G) and edge set E of size m(G).
The open neighborhood and the closed neighborhood of a vertex v ∈ V are NG(v) = {u ∈
V | uv ∈ E} and NG[v] = NG(v) ∪ {v}, respectively. The degree of a vertex v is also
degG(v) =| NG(v) |. The minimum and maximum degree of G are denoted by δ = δ(G)
and ∆ = ∆(G), respectively. We write Kn, Pn and Cn for the complete graph, the path
and the cycle of order n, respectively.

The Cartesian product G�H of two graphs G and H is a graph with V (G�H) =
V (G) × V (H) and two vertices (g1, h1) and (g2, h2) are adjacent if and only if either
g1 = g2 and (h1, h2) ∈ E(H), or h1 = h2 and (g1, g2) ∈ E(G). The Cartesian product
graph Pm�Cn is known as cylindrical grid graph. Here, we assume that

V (Pm�Cn) = {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n},
and

E(Pm�Cn) = {((i, j), (i, j + 1)) | 1 ≤ i ≤ m, 1 ≤ j ≤ n (to modulo n)}
∪ {((i, j), (i+ 1, j)) | 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n}.

The study of total domination number of graphs was initiated by Cokayne, Dawes and
Hedetemini [1]. The literature on this subject has been surveyed in [2]. A subset D of V
is called a total dominating set, abbreviated TDS, of G if every vertex x ∈ V is adjacent
to at least one vertex of D. The total domination number γt(G) of G is the cardinality of
the smallest total dominating set.

Total domination number of Cartesian products of two paths were intensively inves-
tigated (see [4, 5, 6]). Here, we study the total domination number of cylindrical grid
graphs. The next known results are useful for our investigations.
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Proposition 1.1. (Henning, Kazemi [3] 2010) If G is a graph of order n with no
isolated vertices, then γt(G) ≥ d n

∆(G)e.

Proposition 1.2. (Klobučar [5] 2004) Let n 6= 6 be an integer at least 2. Then
γt(P5�Pn) = b3n+4

2 c.

2 total domination number of Pm�Cn, when m = 2, 3, 4, 5

Proposition 2.1. For any integer n ≥ 3, we have

γt(P2�Cn) =

{
d2n

3 e+ 1 if n ≡ 1 (mod 3) and n 6= 7,
d2n

3 e otherwise.

Proposition 2.2. For any n ≥ 3, we have γt(P3�Cn) = n.

Proposition 2.3. For any integer n ≥ 3, we have

γt(P4�Cn) =





6dn5 e if n ≡ 0, 4, (mod 5),
6dn5 e − 4 if n ≡ 1 (mod 5),
6dn5 e if n ≡ 3 (mod 5), and n is even,
6dn5 e − 2 if n ≡ 3 (mod 5), and n is odd,
6dn5 e − 3 if n ≡ 2 (mod 5) and n is odd,
6dn5 e − 2 if n ≡ 2 (mod 5) and n is even.

Proposition 2.4. Let n ≥ 3 be a positive integer. Then

γt(P5�Cn) =

{
3n
2 if n ≡ 0 (mod 4),

5n
3 n = 3, 6.

Proposition 2.5. Let n 6= 3, 6 be a positive integer. If n ≡ r (mod 4) and r 6= 0, then

6bn4 c+ r − α ≤ γt(P5�Cn) ≤ 6bn4 c+ r + 2,

where α = 0 if r = 3 and α = 1 otherwise.
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Abstract

A 2-rainbow dominating function (2RDF ) of a graph G is a function f from the
vertex set V (G) to the set of all subsets of the set {1, 2} such that for any vertex v ∈
V (G) with f(v) = ∅ the condition

∑
u∈N(v) f(u) = {1, 2} is fulfilled, where N(v) is the

open neighborhood of v. The weight of a 2RDF is the value w(f) =
∑

v∈V (G) |f(v)|.
The 2-rainbow domination number of a graph G, denoted by γr2(G), is the minimum
weight of a 2RDF of G. In this paper, for a directed graph D we define twin 2-rainbow
dominating function in which a vertex of label ∅ has {1, 2} both in its in-neighbourhood
and its out-neighbourhood. We investigate it for some well-known graphs and then
obtain a Nordhaus Gaddum inequality for the twin 2-rainbow domination number.
Also, we provide upper bounds on this parameter in terms of the diameter of the
graph.

Keywords: 2-rainbow domination, cartesian product, Harary graphs, Petersen graphs,
Nordhaus Gaddum inequality
Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

For the basic terminology on graphs and digraphs (directed graphs) we refer the reader to
[2]. Rainbow domination and other related concepts have been widely studied for undi-
rected graphs, see [1] and [6]. The respective analogues on directed graphs however have
not received the same amount of interest.
A function f : V (G)({1, ..., k}) is called a k-rainbow dominating function (for short kRDF )
of G if

∑
u∈N(v) f(u) = {1, ..., k} for each vertex v ∈ V (G) with f(v) = ∅. By w(f) we

mean
∑

v∈N(v) |f(v)| and we call it the weight of a k-rainbow dominating function f in G.
The minimum weight of a kRDF of G is called the k-rainbow domination number of G
and it is designated by γrk(G). An assignment f is called a γrk-function if it is a kRDF
of G and w(f) = γrk(G). For more information about k-rainbow dominating functions
consult [3] and [5].
We consider the case k = 2 in this paper. The 2-rainbow dominating functions are ex-
tensively studied in recent literature. Here we define twin 2-rainbow dominating function
and study the parameter for complete graphs, paths, cycles, Harary graphs and Petersen
graphs. A similar definition, so-called twin dominating function, has been already offered
for graphs. Refer to [4].
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Definition 1.1. A twin 2-rainbow dominating function is an assignment of subsets of
{1, 2} to the vertices of G in which a vertex of label ∅ has {1, 2} both in its in-neighbourhood
and its out-neighbourhood.

In the following some preliminary results are provided to better understand the con-
cept.

Proposition 1.2. For an arbitrary graph G, max{γ+
r2, γ

−
r2} ≤ γ∗

r2 ≤ γ+ + γ−.

Theorem 1.3. For directed paths and cycles, γ∗
r2 = n.

Theorem 1.4. for any graph G, γ∗
r2 ≤ γ∗

R.

2 Main results

Proposition 2.1. There is an orientation of a complete graph for which γ∗
r2 = 4.

Proposition 2.2. For the joint graph of G and K2, say G ◦ K2, there is an orientation
for which γ∗

r2 = 4.

Theorem 2.3. For a graph G of order n ≥ 3 there exists an orientation D for which
γ∗

r2(D) = 4 if and only if G contains K2,n−2, K3,n−3 or K4,n−4 as a spanning subgraph.

Theorem 2.4. There exists an orientation of a Petersen graph P (m, s) such that γ∗
r2 ≤

3

2
m whenever (m, s) = 1 and m is even.

Proposition 2.5. For a bipartite graph with a minimum degree δ ≥ 2 the twin rainbow
domination number γ∗

r2 ≤ 8.

Theorem 2.6. Consider a directed Harary graph H4,n. Then γ∗
r2 ≥ ⌈n

2
⌉. Also, there is

an orientation of H4,n for which γ∗
r2 ≤ 2⌈n

3
⌉.

Lemma 2.7. Consider a graph G. Let u and v be two vertices in G that have the maximum
number of common neighbours, say k. Then, there exists an orientation D for G such that
γ∗

r2(D) ≤ n − k + 2.

Proof. Assign to u and v label {1, 2} and to their common neighbours ∅. To all other
vertices assign {1} or {2} and call this function D. Adding up the weights over all vertices
gives γ∗

r2(D) ≤ n − (k + 2) + 4 = n − k + 2.

In the following a Nordhaus Gaddum inequality is obtained for an arbitrary graph G
using the lemma above.

Theorem 2.8. Assume a graph G. Let u and v be two vertices that have the maximum
number k of common neighbours. Let s be the number of non-common neighbours of u
and v (except u and v if they are adjacent). Then

γ∗
r2(G) + γ∗

r2(Ḡ) ≤ n + s + 6

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Twin 2-rainbow dominating sets in graphs pp.: 2–4

745



Proof. Assume first that u and v are not adjacent. Then they will have n − 2 − (N(u) +
N(v) − k) common neighbours in Ḡ. So, according to Lemma 2.7,

γ∗
r2(Ḡ) ≤ n − (n − 2 − N(u) − N(v) + k) + 2 = n − n + 2 + N(u) + N(v) − k + 2 =

N(u) + N(v) − k + 4.

Hence,

γ∗
r2(G)+γ∗

r2(Ḡ) ≤ n−k+2+N(u)+N(v)−k+4 = n+N(u)+N(v)−2k+6 = n+s+6.

In case that u and v are adjacent, the number of their common neighbours in Ḡ is n− 2−
(N(u) + N(v) − k − 2). Using Lemma 2.7 again, we obtain

γ∗
r2(Ḡ) ≤ n − (n − 2 − (N(u) + N(v) − k − 2) + 2 =

n − n + 2 + N(u) + N(v) − k − 2 + 2 = N(u) + N(v) − k + 2.

Replacing this in our inequality gives

γ∗
r2(G)+γ∗

r2(Ḡ) ≤ n−k+2+N(u)+N(v)−k+2 = n+N(u)+N(v)−2k−2+2+4 = n+s+6.

Theorem 2.9. There exists an orientation of Cm�Cn for which the twin rainbow domi-

nation number is γ∗
r2(Cm�Cn) =

mn

4
if m and n are even and

(m − 1)(n − 1)

4
+m+n−1

if they are odd.

Proof. Assume that n is an even. Orient every edges on each row forward and every edges
on each column downward. Assign sets ∅ and {1} alternatively in odd rows and sets {2}
and ∅ alternatively in even rows. If n is odd, we do the same for the first n − 1 rows
unless for the last vertices of odd rows for which we assign {1}. For the last row, we assign
alternatively {2} and {1} to the first n − 1 vertices and to the last vertex we assign ∅.
Then this will be a twin rainbow dominating function.

Theorem 2.10. For an arbitrary graph whose background is k-regular, γ∗
r2 ≥ 4n

k + 4
.

Proof. Let D be a directed graph whose background, G is k-regular. Assume that f is
a twin 2RDF for D. Also, set S = {x ∈ V (G)|f(x) ̸= ∅}. Obviously, ∀u ∈ V (G) \ S,
f(N+(u)) ≥ 2 and f(N−(u)) ≥ 2. Summing up these two inequalities over all vertices out
of S gives

∑

u∈V (G)\S

f(N+(u)) ≥ 2(|V (G)| \ |S|) ≥ 2(n − γ∗
r2)

and
∑

u∈V (G)\S

f(N−(u)) ≥ 2(|V (G)| \ |S|) ≥ 2(n − γ∗
r2).

Every vertex in S is adjacent to k vertices of V (G) \ S. So,

kγ∗
r2(G) ≥

∑

u∈V (G)\S

f(N+(u)) +
∑

u∈V (G)\S

f(N−(u)) =
∑

u∈V (G)\S

f(N+(u)) + f(N−(u)) ≥

4(n − γ∗
r2)
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which results in (k + 4)γ∗
r2 ≥ 4n or γ∗

r2 ≥ 4n

k + 4
.

Proposition 2.11. For a caterpillar all of whose vertices are of degree 4, there exists an

orientation for which γ∗
r2(D) ≤ n − ⌊diam(G) − 1

2
⌋.

Proof. Orient the edges of the diameter forwardly and assign the sets {1} and ∅ alter-
natively to its vertices. To the leaves other than the two corresponding to the diameter
assign {2} and {1} alternatively from left to right and orient all of them downward.

Proposition 2.12. If any vertex in a caterpillar be of degree 3 then there exists an ori-

entation for which γ∗
r2(D) ≤ n − ⌊diam(G) − 1

4
⌋.

Proof. Assign to the vertices of the diameter {1}, {∅}, {1, 2}, ∅, {2}, {∅}, {1, 2}, ∅ suc-
cessively and orient them to the forward. To all other vertices assign {1} and orient them
downward.
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Abstract

Let R be a commutative ring. The annihilator graph of R, denoted by AG(R), is
an undirected graph with all nonzero zero-divisors of R as vertex set, and two distinct
vertices x and y are adjacent if and only if annR(xy) ̸= annR(x) ∪ annR(y), where
for z ∈ R, annR(z) = {r ∈ R | rz = 0}. In this paper, we characterize all finite
commutative rings R with planar, outerplanar or ring graph annihilator graphs. We
also characterize all finite commutative rings R whose annihilator graphs have clique
number 1, 2 or 3.

Keywords: Annihilator graph, Planar graph, Ring graph, Clique number

Mathematics Subject Classification [2010]: 05C75, 13A99, 05C99

1 Introduction

Let R be a commutative ring with nonzero identity. We denote the sets of all zero-divisors
and nilpotent elements of R by Z(R) and Nil(R), respectively. In 1999, Anderson and
Livingston introduced the zero-divisor graph of R, denoted by Γ(R), that is the graph
with vertices Z(R)∗ = Z(R)\{0} and distinct vertices x and y are adjacent in Γ(R) if
and only if xy = 0. Beck introduced this concept in 1988 but he allowed all the elements
of R as vertices and was mainly interested in colorings. Recently, in [4], the concept
of the annihilator graph is defined and studied. The annihilator graph of R, denoted
by AG(R), is an undirected graph with vertex set Z(R)∗, and two distinct vertices x
and y are adjacent if and only if annR(xy) ̸= annR(x) ∪ annR(y), where for z ∈ R,
annR(z) = {r ∈ R | rz = 0}. By [4, Lemma 2.1], zero-divisor graph Γ(R) is a (spanning)
subgraph of the annihilator graph AG(R). In [2], the authors studied the situations that
the unit, unitary and total graphs are ring graph or outerplanar. Also, in [1], they studied
the ring graph and outerplanarity for comaximal and zero-divisor graphs. In the second
section of this paper, we completely characterize all finite commutative rings with planar,
outerplanar or ring graph annihilator graphs. Also we characterize all finite commutative
rings R, whose annihilator graphs have clique number 1, 2 or 3.

Now, we recall some definitions and notations on graphs. Let G be a simple graph with
vertex set V (G) and C be a cycle of G. A chord in G is any edge joining two nonadjacent
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vertices in C. A primitive cycle is a cycle without chord. Moreover, if any two primitive
cycles intersect in at most one edge, then we say G has the primitive cycle property (PCP).
The number of primitive cycles of G is the free rank of G and is denoted by frank(G). We
have rank(G) := q − n + r, where q, n and r are the number of egdes of G, the number of
vertices of G and the number of connected components of G, respectively.

A graph G is called planar if it can be drawn in the plane without crossing edges. A
graph G is an outerplanar graph if it can be drawn in the plane without crossing in such
a way that all of the vertices belong to the unbounded face of the drawing. The precise
definition of a ring graph can be found in section 2 of [6]. Also, in [6], the authors showed
that the following conditions are equivalent:

(i) G is a ring graph,

(ii) rank(G) = frank(G),

(iii) G satisfies PCP and G does not contain a subdivision of K4 as a subgraph.

So every ring graph is planar. Moreover, in [6], authors showed that every outerplanar
graph is a ring graph. Also we denote the complete graph with n vertices by Kn and we
denote the complete bipartite graph by Km,n. We denote the star graph by K1,n. Let k
be a positive integer. For a graph G, a k-coloring of the vertices of G is an assignment of
k colors to the vertices of G in such a way that no two adjacent vertices receive the same
color. The chromatic number of G, denoted by χ(G), is the smallest number k such that
G admits a k-coloring. Any subgraph of G is called a clique if it is complete and the size
of a largest clique in a graph G is denoted by cl(G). A graph G is called weakly perfect
provided χ(G) = cl(G).

2 Ring graphs and outerplanar annihilator graphs

In this section, we investigate all finite commutative rings R such that their annihilator
graphs are planar, outerplanar or ring graph. Throughout this section, R is a finite
commutative ring with nonzero identity and F is a finite field. Specially, F4 is a field with
four elements.

Theorem 2.1. The annihilator graph AG(R) is planar if and only if R is isomorphic to
one of the following rings:

(i) Z2 × Z2 × Z2,

(ii) Z2 × Z4, Z2 × Z2[x]/(x2), Z2 × F, Z3 × F,

(iii) Z4, Z2[x]/(x2), Z8, Z2[x]/(x3), Z4[x]/(2x, x2 − 2), Z2[x, y]/(x, y)2,
Z4[x]/(2x, x2), Z9, Z3[x]/(x2), F4[x]/(x2), Z4[x]/(x2 + x + 1), Z25, Z5[x]/(x2).

In the following theorem, we characterize all rings with ring graph annihilator graphs.

Theorem 2.2. The annihilator graph AG(R) is a ring graph if and only if R is isomorphic
to one of the following rings:

(i) Z2 × F, Z3 × Z3,
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(ii) Z4, Z2[x]/(x2), Z8, Z2[x]/(x3), Z4[x]/(2x, x2 − 2), Z2[x, y]/(x, y)2,
Z4[x]/(2x, x2), Z9, Z3[x]/(x2), F4[x]/(x2), Z4[x]/(x2 + x + 1).

In the next theorem, by using the fact that every outerplanar graph is a ring graph
in conjunction with Theorem 2.2, we determine all rings R with outerplanar annihilator
graphs.

Theorem 2.3. The annihilator graph AG(R) is outerplanar if and only if R is isomorphic
to one of the following rings:

(i) Z2 × F, Z3 × Z3,

(ii) Z4, Z2[x]/(x2), Z8, Z2[x]/(x3), Z4[x]/(2x, x2 − 2), Z2[x, y]/(x, y)2,
Z4[x]/(2x, x2), Z9, Z3[x]/(x2), F4[x]/(x2), Z4[x]/(x2 + x + 1).

Now we show that the annihilator graph of the product of three fields is weakly perfect.

Lemma 2.4. Let K1,K2 and K3 be fields. Then cl(AG(K1 × K2 × K3)) = χ(AG(K1 ×
K2 × K3)) = 3.

In following theorem we charaterize all finite rings R whose annihilator graphs have
clique number 1, 2 or 3.

Theorem 2.5. Let R be a finite commutative ring and let K1, K2 and K3 be finite fields.
Also let F4 be a field with four elements. Then the following statements hold.

(a) cl(AG(R)) = 1 if and only if R is isomorphic to Z4 or Z2[x]/(x2).

(b) cl(AG(R)) = 2 if and only if R is isomorphic to one of the following rings:

K1 × K2, Z2 × Z4, Z2 × Z2[x]/(x2), Z9, Z3[x]/(x2).

(c) cl(AG(R)) = 3 if and only if R is isomorphic to one of the following rings:

K1 × K2 × K3, Z3 × Z4, Z3 × Z2[x]/(x2), Z8, Z2[x]/(x3), Z4[x]/(2, x)2,
F4[x]/(x2), Z4[x]/(x2 + x + 1), Z2[x, y]/(x, y)2, Z4[x]/(2x, x2 − 2).
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Abstract

Let G = (V,E) be a simple and undirected graph. For some real number α
with 0 < α ≤ 1, a set D ⊆ V is called an α-dominating set in G if every vertex
v outside D has at least α · dv neighbor(s) in S where dv is the degree of v. The
cardinality of a minimum α-dominating set in a graph G is called the α-domination
number of G and denoted by γα(G). In this paper, we introduce a generalization of
α-dominating set, that we call it fdeg-dominating set. Given a function fdeg where
fdeg is as fdeg : N→ R where N = {1, 2, 3, . . .}, and fdeg may not be an integer-value
function. A set D ⊆ V is called an fdeg-dominating set in G if for every vertex v
outside D, |N(v)∩D| ≥ fdeg(dv). In this paper, for this new concept, we will present
some results on the its NP-completeness, APX-completeness and inapproximability.

Keywords: Domination, α-Domination, k-Domination, APX-Complete, NP-Complete

Mathematics Subject Classification [2010]: 05C69, 11Y16

1 Introduction

Let G = (V,E) be an undirected and simple graph. A set D ⊆ V is called a dominating
set if every vertex outside D has at least one neighbor in D. The cardinality of a minimum
dominating set is called the domination number of G denoted by γ(G). In 2000, Dunbar
et al. [5], introduced the concept of α-domination. Let α be a real number with 0 <
α ≤ 1. A set D ⊆ V is called an α-dominating set in G if for every vertex v outside D,
|N(v) ∩ D| ≥ α × dv where N(v) is the set of all neighbors of v in G, and dv := |N(v)|
is the degree of v. Also, let k be a real number with k ≥ 1. A set D ⊆ V is called a
k-dominating set in G if for every vertex v outside D, |N(v) ∩D| ≥ k.

Now consider the definition of α-dominating. One generalization of this concept is
that instead of having at least α × dv neighbors in D for each vertex v 6∈ D, we have
at least f(dv) neighbors in D, for some special function f . By selecting f(x) = αx, the
definition match the α-dominating. It seems that this generalization is much near to the
reality. Hence, in this paper, we define the fdeg-dominating set. Given a function fdeg
where fdeg is as fdeg : N → R where N = {1, 2, 3, . . .}, and fdeg may not be an integer-
value function. A set D ⊆ V is called an fdeg-dominating set in G if for every vertex v
outside D, |N(v) ∩D| ≥ fdeg(dv). In this paper, we consider the graphs with no isolated
vertices. We can easily extend the results for the graphs with isolated vertices. In this
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paper, we prove the NP-completeness of the following problem: given a graph G and a
positive integer k, decide whether G has an fdeg-dominating set S with |S| ≤ k. Moreover,
we prove that the problem of finding a minimum fdeg-dominating set when fdeg(x) = k
(in the other words, the k-dominating set) for any integer k ≥ 1 is APX-complete (there
is no PTAS). Also, we present some inapproximability result for the problem of finding a
minimum fdeg-dominating set for constant function fdeg(x) = k.

2 NP-completeness result

In this section, we will prove that the problem of finding the fdeg-domination number of
a graph is NP-complete, for every given function fdeg with some special properties. It is
well known that the following decision problem, denoted by 3-REGULAR DOMINATION
(3RDM), is NP-complete [6]: given a 3-regular graph G = (V,E) and a positive integer k,
does G has a dominating set S with |S| ≤ k? Now, consider the following decision problem,
denoted by f -DOMINATION (fDM): given a graph G = (V,E) without isolated vertices
and a positive integer k, does G has an fdeg-dominating set S with |S| ≤ k?

We will show that fDM is NP-complete for some special functions. We will extend
the proof of the result in which that α-domination is NP-complete (see [5]).

Theorem 2.1. If an increasing function fdeg with domain N satisfies
a. ∀x ∈ N, 0 < fdeg(x) ≤ x,
b. ∃x0 > 0 such that ∀x ≥ x0, x+ 1 ≥ fdeg(x+ 3).
c. For every two integers x and y, fdeg(y + x) ≤ fdeg(y) + fdeg(x),
d. For a given x ∈ N, there is y ∈ N, such that y > x and fdeg(y) ≤ x,
then, the problem fDM is an NP-complete problem.

Sketch of Proof. Let fdeg be an arbitrary function that has the conditions of the theo-
rem. We fix the function f . We can easily see that fDM ∈ NP . Now, we proof the
completeness. We make a transformation from 3RDM to fDM. Suppose that x is the
smallest integer such that (x + 1) ≥ fdeg(x + 3), and y is the largest integer with y > x
and x ≥ fdeg(y). Consider the complete graph Ky+1 and assume that U = {v1, v2, . . . , vx}
is a subset of vertices of Ky+1 with x elements. We call the vertex set of Ky+1 by W .

We transform a 3-regular graph G to a graph denoted by Ĝ by joining each vertex of
set U to all vertices of G. Assume that S is a dominating set in G such that |S| ≤ k.
Consider the set D = S ∪ U . Using the conditions b and d, it is easy to see that D is an
fdeg-dominating set in Ĝ with |D| ≤ x+ k.

Now, we assume that D is an fdeg-dominating set in Ĝ with |D| ≤ x + k. Among all

fdeg-dominating set in Ĝ with |D| ≤ x+ k, we suppose that D is the one with maximum
|D ∩ U |. Also, without loss of generality we can suppose that there is a vertex in W − U
that is outside D. Using conditions a, b, c, and d, it is not hard to prove that the set
D ∩ V (G) is a dominating set in G with |D ∩ V (G)| ≤ k. Because 3RDM is NP-complete
[6], fDM is also NP-complete for the function f that satisfies the conditions of Theorem
2.1.

There are many functions that satisfy the conditions of Theorem 2.1, such as
√
x, lnx

and x
2 .
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3 APX-completeness result

In this section, we prove that the problem of finding a minimum fdeg-dominating set of a
graph with maximum degree k+ 2 and fdeg(x) = k for any k ≥ 1 is APX-complete (there
is no PTAS). We denote the problem of finding a minimum fdeg-dominating set of a graph
where fdeg(x) = k by Min k-Dom Set, and when the problem is restricted to the graphs
with maximum degree k + 2, we call it Min k-Dom Set-(k + 2).

At first, we recall the L-reduction.

Definition 3.1. (L-reduction)[2]. Given two NP optimization problems F and G and a
polynomial transformation f from instances of F to instances of G, we say that f is an
L-reduction if there are two positive constants α and β such that for every instance x of F

1. optG(f(x)) ≤ αoptF (x)

2. for every feasible solution y of f(x) with objective value mG(f(x), y) = c2 we can, in
polynomial time, find a solution y′ of x with mF (f(x), y′) = c1 such that |optF (x)−
c1| ≤ β|optG(f(x))− c2|.

To prove that a problem F is APX-complete, it is sufficient to prove that F ∈APX
and there is an L-reduction from some APX-complete problem to problem F .

Theorem 3.2 ([4]). For a graph G, Min k-Dom Set can be approximated in polynomial
time by a factor of ln(2∆(G)) + 1 where ∆(G) is the maximum degree of G.

Theorem 3.3. Min k-Dom Set-(k + 2) is an APX-complete problem for any k ≥ 1.

Sketch of Proof. The case k = 1 proved in [1]. Consider k > 1. Clearly, by Theorem 3.2,
if the degree of vertices of the graph is bounded by a constant then the approximation
ratio is constant. Thus the problem Min k-Dom Set-(k + 2) is in APX. Suppose that
G = (V,E) is a graph of bounded degree 3. Construct a graph Gk = (Vk, Ek) of bounded
degree k + 2 as follows. Create a set Sv of k − 1 new vertices for each vertex v. Join each
vertex v ∈ V to k − 1 vertices of Sv. Given a k-dominating set Dk of Gk = fk(G) (fk is a
transformation from G to Gk. Recall Definition 3.1), we can find a dominating set D in

G as D = Dk −
(⋃

v∈V (G) Sv

)
. So γ(G) ≤ |D| = |Dk| − (k − 1)n, where n = |V |. Also,

given a dominating set D of G, clearly the set Dk =
(⋃

v∈V (G) Sv

)
∪D is a k-dominating

set in Gk. So γk(Gk) ≤ |Dk| = |D| + (k − 1)n. Hence, we can easily conclude that
γk(Gk) = γ(G) + (k − 1)n.

Finally, using the above argument, we can find an L-reduction with parameters α =
4k − 3 and β = 1. So, the problem Min k-Dom Set-(k + 2) is APX-complete.

4 Inapproximability result on Min k-Dom Set

In this section, we presents some inapproxmabillity result for Min k-Dom Set.

Theorem 4.1 ([3]). For any constant ε > 0 there is no polynomial time algorithm approx-
imating Min 1-Dom Set within a factor of (1− ε) lnn unless NP ⊆ DTIME(nO(log logn)).
The same result holds for bipartite graphs.
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Theorem 4.2. For every k ≥ 1 and every ε > 0, there is no polynomial time algorithm
approximating Min k-Dom Set for bipartite graphs within a factor of (1− ε) lnn, unless
NP ⊆ DTIME(nO(log logn)).

Sketch of Proof. It is sufficient that, we make some modifications in the proof of Theorem
4.1. We make a reduction from domination on a bipartite graph G with n vertices such
that n + 2k − 2 ≤ n1+ε and γ(G) ≥ 2(k−1)(1+2ε)

ε2
. Then we transform the bipartite graph

G = (V1, V2, E) into a bipartite graph G′ by adding to it two sets K1 and K2 each have
k − 1 new vertices inducing a graph with no edges. Join each vertex of V1 to each vertex
of K2 and join each vertex of V2 to each vertex of K1. We can easily prove that γk(G

′) ≤
γ(G) + 2k − 2. Now, suppose that there is a polynomial time approximation algorithm
that computes a k-dominating set D′ for G′ such that |D′| ≤ (1− ε) ln(|V (G′)|)γk(G′). It
is easy to see that D := D′ ∩ V (G) is a dominating set in G. So,

|D| ≤ |D′|
≤ (1− ε)(ln |V (G′)|)γk(G′) (suppose that n := |V (G′)|)
≤ (1− ε)(lnn)(1 + ε+ ε2)γ(G)

= (1− ε′)(lnn)γ(G),

where ε′ = ε3 > 0. Therefore, the set D approximates a minimum dominating set in G
within factor (1−ε′) lnn. But this contradicts Theorem 4.1. This completes the proof.
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Abstract

The capacitated vehicle routing problems with heterogeneous vehicles (HCVRP)
arise in many logistics and distribution problems. The vehicles in these problems can
be variant in their capacities or per unit distance costs. In this paper, we present
an approximation algorithm for the HCVRP where there exist a fixed number of
heterogeneous vehicles at the depot and the fleet of vehicles is non-uniform in their
capacity and per unit distance cost and the objective is to minimize the total cost
of travel. We have assumed that the distance between two locations/customers is
symmetric and satisfies the triangle inequality.

Keywords: Heterogeneous Capacitated Vehicle Routing Problem (HCVRP), Ap-
proximation Algorithms, Generalized assignment problem

Mathematics Subject Classification [2010]: 68W25, 90B99, 05C99.

1 Introduction

The vehicle routing problem (VRP) is one of the most important and more studied combi-
natorial optimization problems. It calls for the determination of the optimal set of routes
to be performed by a fleet of vehicles to serve a given set of customers. Logistics man-
agement and distribution are two central places for variants of these problems, specially
capacitated VRP (CVRP). In logistical and transportation problems the company uses
multiple vehicles in parallel for the distribution. The objective in this case is to minimize
the number of tours or the overall cost of travel. The vehicles may be identical (i.e. have
same capacity and cost) or heterogeneous (have different capacity or different per unit
distance cost). The routes have to be designed according to the characteristics (i.e. ca-
pacity and cost) of vehicles. In this article, vehicles are considered to be heterogeneous if
they differ in capacity and per unit cost of distance travel. There exists a good survey for
vehicle routing problems in [4], [1]. A related work is heterogeneous traveling salesman
problem with 2 depots and the objective function of minimizing the total cost of travel [2].
The vehicles at the depots differ in per unit cost of distance travel. In that manuscript Bae
and Rathinam obtained a 2-approximation for HTSP by the use of primal-Dual technique.
The first result in this area is related to Yadlapalli et al. which obtains a 8-approximation
ratio [6]. Recently they have improved this result to a 3-approximation ratio [7]. The main
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goal of this article is to develop an approximation algorithm for the HCVRP to measure
the performance of heuristics. Γ is an α− approximation algorithm for a minimization
problem if it runs in polynomial time and on every instance, the cost of the solution
obtained by Γ is at most α− times the cost of an optimal solution [5].

1.1 Problem Formulation

The demand locations are assumed as vertices of the graph G = (V, E) in a finite metric
space (V, d) . The edge set E = {(i, j) : i, j ∈ V, i ̸= j} represents the distance between
two locations. The distance function d : V × V → R+ is symmetric and satisfies the
triangle inequality. There exists a depot r ∈ V , a set of heterogeneous vehicles indexed
by {1, 2, ..., N} stationed at the depot with capacities {Q1, Q2, ..., QN} and per unit costs
of distance travel {C1, C2, ..., CN} . The required item is identical for all the demands
and we have an infinite amount of it at the depot. The request function q : V → N is
un-splittable in the sense that each request must be served entirely by a vehicle. The
objective is to find a set of tours starts and ends at the depot that covers all the vertices
in V such that the overall cost of travel become minimum. The only constraint on the
tours is the capacity of the corresponding vehicle. Qmaxis the maximum capacity of the
vehicles and qmin is the minimum request.

2 Approximation Algorithm

Heterogeneous CVRP is a generalization of both variable bin packing and travelling sales-
man problem. The important problem in our HCVRP is the existence of a feasible solu-
tion. This problem is NP-complete by a reduction from the bin-packing problem. One
can observed that if there exists a feasible solution for the variable bin packing, a simple
algorithm obtains a 3 /2.n− approximation ratio for vehicles with uniform per distance
unit cost and (3Cmax/2Cmin)n− approximation for non-uniform vehicles. In this paper,
we show that if the problem satisfies some conditions then there exists a feasible solution
of 4 ⌈Qmax/qmin⌉− approximation ratio for HCVRP which in some ways obtains a better
approximation ratio than the other one. The last ratio depends on the number of vehicles
denoted by n but the main algorithm ratio depends on the maximum number of items
which could be located in a vehicle. Indeed, if the number of items serviced by a vehicle
is bounded, our main algorithm gives a constant factor approximation ratio for HCVRP.
An algorithm for a generalized assignment problem is used as a sub-routine algorithm.
we have assumed each vehicle as a machine whose capacity is at most the capacity of the
vehicle and each location as a job that needs time at most the demand of the related
customer. There exists an edge from each vehicle to each location/customer where the
cost of the edges is the multiplication of the per unit distance travel cost of the vehicles
and the total distance from depot to the corresponding demand location. The Generalized
Assignment Problem (GAP) is the problem of minimizing the cost of assigning n different
items to m agents, such that each item is assigned to precisely one agent, subject to a
capacity constraint for each agent. This problem can be formulated as
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min
m∑

i=1

n∑
j=1

cijxij

s.t.
n∑

j=1
aijxij ≤ bi, i = 1,..., m

m∑
i=1

xij= 1, j = 1,..., n

xij ∈ {0, 1}, i = 1,..., m, j = 1,..., n. (1)

Here, cij is the cost of assigning item j to agent i, aij is the claim on the capacity of
agent i by item j , and bi is the capacity of agent i . An approximation algorithm of
(2, 1) -approximation ratio is given for this problem in [3]. By this algorithm if there
is a feasible solution for the linear relaxed problem then there exists a solution for the
integer problem (1) of cost at most the optimal cost where the capacity of the vehicles
is twice the capacity of the vehicles used in the related linear problem. Furthermore,
by deleting one item from each vehicle, one obtains a feasible solution for GAP. We
have used this algorithm as sub-routine algorithm to approximate our HCVRP. Now, we
present our approximation algorithm for HCVRP. Let M = {(v, u)| v ∈ {vehicles}, u ∈
{demands}, xvu = 1} be the obtained solution of the generalized assignment problem. We
order the demands corresponding to each vehicle increasingly according to their distance
from the depot(vehicle): d(u1, v) ≤ d(u2, v) ≤ ... ≤ d(uh(v), v), and construct the tours as
follows:

D = {(v, u1, u2, ..., uh(v), v)|v ∈ {vehicles}}

Theorem 2.1. cos t(D) ≤ 2. cos t(M).

Lemma 2.2. If the set of vehicles could be splitted into two sets V1, V2 in a way that∑
1≤i≤n

qi ≤ ∑
Qi∈Vj

Qi and the number of same vehicles are equal in each set, then there is a

feasible solution for (1) of cost at most 2OPT (GAP ) (i.e. cost(M) ≤ 2OPT (GAP )).

Theorem 2.3. Under the assumptions of lemma 2.2, cos t(M) ≤ 2 ⌈Qmax/qmin⌉ . cos t(OPTHCV RP ).

Proof. Let D∗ = {(v, u∗
v,1, u

∗
v,2, ..., u

∗
v,h∗(v), v)|v ∈ {vehicles}} be the optimal solution for

the heterogeneous capacitated vehicle routing problem. Here, h∗(v) denotes the number
of requests served by the vehicle v. We construct M∗ as follows: M∗ = {(v, u)| v ∈
{vehicles}, u ∈ {demands}}.

cos t(M) ≤ 2cost(OPTGAP ) ≤ 2 cos t(M∗) ≤ 2
∑

v∈{vehicles}
[
h∗(v)∑
j=1

d(v, u∗
v,j)]

≤ 2
∑

v∈{vehicles}
[
h∗(v)∑
j=1

d(v, u∗
v,1) +

j∑
i=2

d(u∗
v,i−1, u

∗
v,i) + d(uh∗(v), v)]

≤ 2
∑

v∈{vehicles}
h∗(v).[d(v, u∗

v,1) +
h∗(v)∑
i=2

d(u∗
v,i−1, u

∗
v,i) + d(uh∗(v), v)]

≤ 2 ⌈Qmax/qmin⌉ .
∑

v∈{vehicles}
[d(v, u∗

v,1) +
h∗(v)∑
i=2

d(u∗
v,i−1, u

∗
v,i) + d(uh∗(v), v)]

= 2 ⌈Qmax/qmin⌉ . cos t(OPTHCV RP ).
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The first inequality arises from lemma 2.2. The fourth inequality is due the triangle
inequality.

Lemma 2.4. The main algorithm under the assumptions of lemma 2.2 gives 4⌈Qmax/qmin⌉−
approximation algorithm for the HCVRP.

Lemma 2.5. The main algorithm without the assumptions of lemma2.2 gives a solution
of (2, 2⌈Qmax/qmin⌉)− approximation ratio for the HCVRP.
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Abstract

We give explicit formulas for the number of distinct elliptic curves over a finite
field in the family of Doche-Icart-Kohel curves of cryptographic interest.
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1 Introduction

An elliptic curve is a smooth projective genus 1 curve, with a given rational point. Tradi-
tionally, an elliptic curve E over a filed F is represented by the Weierstrass equation

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, (1)

where the coefficients a1, a2, a3, a4, a6 ∈ F. Elliptic curves can be represented by several
other models (see [3, Chapter 2]). In the past few years, these alternative models have
been revisited duo to cryptoraphic applications. Moreover, some new families of elliptic
curves have been proposed following the cryptographic interests. In the cryptographic
settings the curves are usually considered over finite fields Fq of q element.

In this work, we consider the family of elliptic curves introduced by C.Doche, T.Icart
and D.R.Kohel (DIK) over finite fields Fq of characteristic p ≥ 3

ED,u : Y 2 = X3 + uX2 + 16uX, (2)

where u ∈ Fq and u 6= 0, 64, since the curve is nonsingular. Doche et. al. have build this
family of elliptic curves for which the isogeny of doubling splits into 2 isogenies of degree
2 and proposed more efficient doubling formulas leading to a fast scalar multiplication
algorithm. Notice, an elliptic curve defined over Fq with a rational 2-torsion subgroup can
be expressed in the latter form (up to twists). Accordingly a natural question arises about
the number of distinct (up to isomorphism) elliptic curves over Fq in the family (2).

Throughout the paper, for a field F, we denote its algebraic closure by F. The letter
p always denotes a prime number and the letter q always denotes a prime p power. As
usual, Fq is a finite field of size q. Let χ2 denote the quadratic character in Fq, where
p ≥ 3. Then, for any q where p ≥ 3, we have u = w2 for some w ∈ F∗q if and only if
χ2(u) = 1. The cardinality of a finite set S is denoted by #S, and the cardinality of the
set of projective points on an elliptic curve E over a field F is denoted by E(F).
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2 Main results

2.1 Preliminaries

Here, we briefly recall some words on isomorphisms between elliptic curves, see [2, 3] for
a general background on isomorphisms and elliptic curves. Two elliptic curves given by
Weierstrass equations (1) are isomorphic over a field F if and only if there is a change of
variables between them of the form:

(x, y)→ (α2x+ r, α3y + α2sx+ t),

where α 6= 0, and α, r, s, t ∈ F. We use E1
∼=F E2 to denote the elliptic curves E1 and E2

are F-isomorphic. If α, r, s, t ∈ F, the two elliptic curves are called isomorphic over F or
twists of each other.

The elliptic curve E over F given by the Weierstrass equation (1) has the non-zero
discriminant

∆E = −b22b8 − 8b34 − 27b26 + 9b2b4b6,

b2 = a21 + 4a2, b4 = a1a3 + 2a4, b6 = a23 + 4a6, b8 = a21a6 − a1a3a4 + 4a2a6 + a2a
2
3 − a24.

And, the j-invariant of E is explicitly defined as

j(E) = (b22 − 24b4)
3/∆E .

It is known that two elliptic curves E1, E2 over a field F are isomorphic over F if and only
if j(E1) = j(E2), see [2, Proposition III.1.4(b)]. However, two elliptic curves with the
same j-invariant need not be isomorphic over F.

In this work, we count the number of distinct Fq-isomorphism classes of DIK curves
given by (2) over a finite field Fq. The j-invariant of ED,u is obtained as j(ED,u) = F (u)

where F (U) = (U−48)3
(U−64) . The number of distinct elliptic curves ED,u up to isomorphism

over Fq equals the number of distinct values F (u), for all u ∈ Fq\{0, 64}. To compute this
number, we consider the bivariate rational function F (U)−F (V ) = g(U, V )/h(U, V ) with
two relatively prime polynomials g and h. For u ∈ Fq\{0, 64} we let the polynomial gu to
be gu(V ) = g(u, V ). We have

gu(V ) = (u− 64)V 2 + (u2 − 208u+ 9216)V + (−64u2 + 9216u− 331776).

Therefore, for v 6= u, two curves ED,u and ED,v are isomorphic if and only if gu(v) =
g(u, v) = 0. We denote the discriminant of gu by ∆u and the set of its Fq roots by Zu.
So, we have

∆u = u(u− 64)(u− 48)2 and Zu = {v : v ∈ Fq\{u, 0, 64}, gu(v) = 0}.
For all u ∈ Fq\{0, 64}, one can easily show that

#Z48 = 1, #Z72 = 1, #Zu = 1 + χ2(u/(u− 64)), u 6= 48, 72. (3)

For u ∈ Fq\{0, 64}, also let

Ju = {ED,v : v ∈ Fq\{0, 64}, ED,v ∼=Fq ED,u}, Iu = {ED,v : v ∈ Fq\{0, 64}, ED,v ∼=Fq ED,u}.

Let Nq and N q denote the number of isomorphisms between distinct elliptic curves in the
family (2) over Fq and Fq respectively, and let

nq = #N q, nq = #Nq, ci = #{Ju : u ∈ Fq\{0, 64}, #Ju = i} for i = 1, 2, 3.
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2.2 Number of Fq-isomorphism classes

Here, we give the number of distinct doubling Doche-Icart-Kohel curves up to Fq-isomorphism
classes.

Theorem 2.1. For any finite field Fq of characteristic p ≥ 3, for the number JD(q) of
distinct values of the j-invariant of family (2), we have

JD(q) =





(2q − 3)/3 if q ≡ 0 (mod 3),

(2q + 1)/3 if q ≡ 1 (mod 3),

(2q − 1)/3 if q ≡ 2 (mod 3).

Proof. According to (3), if we define C := {(x, y) ∈ F2q : x(x− 64) = y2}, then

c3 =
1

3
# {x : x ∈ Fq\{0, 64, 48, 72} , (x, y) ∈ C} =





#C − 2

6
if q ≡ 0 (mod 3),

#C − 5− χ2(−3)

6
if q 6≡ 0 (mod 3).

We have χ2(−3) = 1 if q ≡ 1 (mod ), χ2(−3) = −1 if q ≡ 2 (mod ) and #C = q − 1.
Since JD(q) = c1 + c2 + c3 = q− 2− 3c3 + 0 + c3 = q− 2− 2c3, the proof is complete.

2.3 Number of Fq-isomorphism classes

In order to compute ID(q), we need to know how many Fq-isomorphisms there are between
distinct curves of family (2).

Lemma 2.2. Suppose p ≥ 3. For every u, v ∈ Fq\{0, 64} such that u 6= v and ED,u ∼=Fq
ED,v, we have ED,u ∼=Fq ED,v iff there are a, b ∈ Fq so that u, v, a and b lie in the following
equations

L1 : 16a2 =
b(b+ 32)

2(b+ 24)
,

{
a2v = u+ 3b,

u = (−b2)/(b+ 16).

In fact b always exists and (u, v) uniquely determines (a2, b) and vice versa.

Proof. Suppose ED,u and ED,v are Fq-isomorphic. According to [2] the curves are Fq-
isomorphic iff there are elliptic curve isomorphism ψ and elements a, b ∈ Fq such that

{
ψ : ED,u → ED,v,

ψ(x, y) = (a2x+ b, a3y),
and





a2v = u+ 3b,

16a4v = 16u+ 2bu+ 3b2,

b(16u+ bu+ b2) = 0.

A simple computation completes the proof.

One can check that if q ≡ 0 (mod 3), then there are q−2 points on L1. In other cases,
except for a few points, all of the other points on L1 and the ellipic curve L, defined as
bellow, are one to one correspondent to each other.

L : a′2 = b′(b′ + 1)(b′ + 3/4) (4)
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Since points on L, except for a few points, are one to one correspondent to Fq-
isomorphisms in family (2), subtracting the exceptional points on L, we have

nq =





q − 5 if q = 32k,

q − 3 if q = 32k+1,

#L(Fq)− 12 if q ≡ 1 (mod 12),

#L(Fq)− 8 if q ≡ 5, 7 (mod 12),

#L(Fq)− 4 if q ≡ 11 (mod 12).

where #L(Fq) denotes the number of Fq-rational points on elliptic curve (4).
Since there are c3 classes of cardinality three and each Fq-isomorphism class has twelve

Fq-isomorphisms, nq = 12c3. For each Fq-isomorphism class of cardinality three like Ju =
{ED,u, ED,v1 , ED,v2}, at least two of the curves are Fq-isomorphic, for each curve in Fq-
isomorphism class is either Fq-isomorphic to another curve in the class or to its nontrivial
quadratic twist. Hence Ju = Iu or Ju = Iu ∪ Iv1 or Ju = Iu ∪ Iv2 . This shows that
some of Fq-isomorphism classes have eight Fq-isomorphisms more than Fq-isomorphisms.

Therefore ID(q)− JD(q) =
nq−nq

8 , which gives us the following theorem.

Theorem 2.3. For any finite field Fq of characteristic p ≥ 3, for the number ID(q) of
Fq-isomorphism classes of the family (2), we have

ID(q) =





(19q − 27)/24 if q = 32k,
(19q − 33)/24 if q = 32k+1,
(11q + 1)/12−N/8 if q ≡ 1 (mod 12),

(11q − 7)/12−N/8 if q ≡ 5 (mod 12),

(11q − 5)/12−N/8 if q ≡ 7 (mod 12),

(11q − 13)/12−N/8 if q ≡ 11 (mod 12).

where N = #L(Fq), the number of Fq-rational points on elliptic curve (4) (including
infinity).
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Abstract

Solving the sparse and large size linear systems is an important problem in lin-
ear algebra and have so many complex applications. One of the iterative methods
for solving linear systems is Full Orthogonalization Method (FOM). In this paper,
the iterative FOM method is described and for faster convergence some Incomplete
preconditioners and Incremental Incomplete preconditioners are Combined with this
method and results show converage rate of this preconditioners are faster.
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1 Introduction

One of the most important problems in linear algebra is solving the linear system Ax=b.
Two types of methods for solving linear systems are Direct methods and Iterative methods.

The direct methods consist of a finite number of steps that all must be performed for
any given instance before the solution is obtained, on the other hand, iterative methods are
by choosing initial solution x and computing a sequence of approximations to the solution
x and computation stops whenever a certain desired accuracy is obtained or after certain
number of iterations [3].

The iterative methods are used primarily for large and sparse systems and should write
the system Ax=b in an equivalent form:

x = Bx+ r (1)

then, starting with an initial approximation x(1) of the solution vector x and generate a
sequence of approximation

{
x(k)

}
iteratively defined by

x(k+1) = Bx(k) + r k = 1, 2, · · · . (2)

One of these methods is Full Orthogonalization Method(FOM) .
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1.1 Full Orthogonalization Method

For the original linear system Ax=b if we have initial guess vector x0 , an orthogonal
projection method takes κ = κm(A, r0), where

κm (A, r0) = Span
{
r0, Ar0, A

2r0, · · · , Am−1r0
}

and r0 = b − Ax0. This method seeks an approximate solution xm from the affine
subspace x0 + κm of dimension m by imposing the Galerkin condition b−Axm⊥κm.

If in Arnoldi’s method v1 = r0
‖r0‖2 and we set β = ‖r0‖2, then V T

mAVm = Hm and

V T
m r0 = V T

m (βv1) = βe1. So the approximate solution using the above m-dimensional
subspaces is xm = x0 + Vmym where ym = H−1m (βe1).

A method based on this approach is called the Full Orthogonalization Method(FOM)
[4].

1.2 Preconditioners

Preconditioning transforms the problem conditions into a form that is more suitable for
numerical solution, and solving the problem mathematically be more easy. Preconditioning
typically reduces condition number of the problem. Preconditioners are also useful in
iterative methods to solve a linear system Ax = b for x since the rate of convergence
for most iterative linear solvers increases as the lower condition number of a matrix.
Preconditioned iterative solvers are typically used for large and especially sparse matrices.
Some of the preconditioners are based on LU factorization. In the following some examples
of these methods are described.

1.2.1 Incomplete LU factorization(ILU)

Incomplete LU (ILU) factorization process computes a sparse lower triangular matrix L
and a sparse upper triangular matrix U such that the residual matrix R = LU - A satisfies
certain constraints( for example having zero entries in some locations). A general algorithm
for Incomplete LU factorizations can be derived by performing Gaussian elimination and
dropping some elements in predetermined nondiagonal positions. The simplest form of
the ILU preconditioners is ILU(0).

The ILU(0) factorization is any pair of unit lower triangular matrices L and upper
triangular matrices U so that the elements of A− LU are zero in the locations of NZ(A)
where NZ(A) is the set of pairs (i, j) ∈ A, 1 ≤ i, j ≤ nsuchthatai,j 6= 0. In general,
infinitely many pairs of matrices L and U are exist which satisfy these requirements, for
more detail see [1].

1.2.2 Alternating L–U descent methods (MERLU)

Suppose we have an approximate factorization in the form of A = LU + R, where R is
an error matrice for the approximate factorization. The best factorization is when R=0,
so our goal is to minimize error matrix R or equivalently finding sparse matrices XL and
XU , such that L + XL and U + XU be a better pair of factors than L,U . Now we can
write R as:

A− (L+XL)(U +XU ) = (A− LU)−XLU − LXU −XLXU (3)

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Projection method combining preconditioners for solving large and sparse . . . pp.: 2–4

766



We would like to make the right-hand side equal to zero. By replacing the matrix (A-LU)
by R, we have:

XLU + LXU +XLXU −R = 0 (4)

Now we would like to approximately solve nonlinear system 4 because of pair of unknowns
XL and XU . In equation 4, we choice XL = 0 and update U while L is kept frozen. XU

should minimizes F (XU ) = ‖A− L(U +XU )‖2F = ‖R− LXU‖2F .
the optimum XU is equals to L−1R. Here, we seek an approximation only to this

exact solution. A method based on this approach is Alternating L–U descent methods
(MERLU).

1.2.3 ALTERNATING SPARSE-SPARSE ITERATION(ITALU)

In Equation 4 we set XU = 0. If U is nonsingular we obtain:

XLU = R→ XL = RU−1 (5)

Thus, the correction to L can be obtained by solving a sparse triangular linear system
with a sparse right-hand side matrix, i.e. the system UTXT

L = RT . However, as was
noted before, the updated matrix L + XL obtained in this way is not necessarily unit
lower triangular so we use lower triangular of L+XL or unit lower triangular of XL. This
procedure can be repeated by freezing U and updating L and vice versa alternatively. A
method based on this approach is Alternating Sparse-Sparse Iteration(ITALU).

1.2.4 Left-Preconditioned FOM

The left preconditioned FOM algorithm defines as the FOM algorithm applied to the
system,

M−1Ax = M−1b

Where M is a matrice that derived by using preconditioners to matrice A.

2 Main results

For each matrice described in table.1 we run FOM method with left preconditioner Algo-
rithm for all described preconditioners and table.2 shows performance and coverage rate
of FOM method with and without pereconditioners.

Relative tolerance is set to droptol = 0.2 and Matlab’s estimated condition number
yields cond(A) ≈ 4.03E + 05. In preconditioner MERLU(1) we run MERLU algorithm
two times and the output of first ruing time is used for L0 and U0 in next iteration. The
preconditioner ITALU(1) also have the same definition.

The results show the FOM method with preconditioner is faster than without precondi-
tioner and more than it, the FOM method with preconditioners ITALU(1) and MERLU(1)
converges faster than preconditioner ILU(0).
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Table 1: Matrices Properties

No Name nx ny nz ax ay az shift size Condest

1 Fd3d-2250 15 15 10 0.1 0.2 0.1 0.3 2250× 2250 4.6906e+003
2 Fd3d-2000 20 10 10 0.1 -0.2 0.1 0.1 2000× 2000 189.1547
3 Fd3d-1800 15 15 8 -0.3 0.5 1 0.5 1800× 1800 193.2077
4 Fd3d-1000a 10 10 10 -0.8 2 0.1 -0.5 1000× 1000 28.6727
5 Fd3d-1000b 10 10 10 0.1 -0.2 -1.2 0.1 1000× 1000 126.9967
6 Fd3d-500a 10 10 5 0.1 0.1 0.1 0.3 500× 500 142.8448
7 Fd3d-500b 10 10 5 0.1 -0.2 0.1 0.1 500× 500 55.3150
8 Fd3d-500c 10 10 5 -0.9 2 1.1 0.3 500× 500 52.4005

Table 2: Performance of FOM method

FOM without pre FOM with ILU(0) FOM with MERELU(1) FOM with ITALU(1)

No iter residual iter residual iter residual iter residual

1 106 7.433130e-007 80 7.838e-007 31 5.588294e-007 16 5.921434e-007
2 64 6.894008e-007 27 3.563e-007 16 4.297365e-007 10 1.566921e-007
3 45 3.396037e-007 20 1.240e-007 12 8.271740e-008 5 4.630272e-008
4 40 7.213034e-007 14 2.318e-007 11 3.029245e-007 5 8.964088e-009
5 48 4.198608e-007 19 2.995e-007 14 6.115026e-007 8 5.584333e-007
6 44 2.406152e-007 20 1.537e-007 14 3.278705e-007 9 1.581423e-008
7 41 4.036493e-007 16 1.814e-007 13 6.504595e-008 7 6.949785e-008
8 38 4.182589e-007 13 1.782e-007 12 4.871453e-008 5 5.435241e-008
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A Neurodynamic model for solving invex optimization

problems
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Abstract

In this paper, a neural network model is constructed to solve general invex pro-
gramming problems. Based on the Saddle point theorem, the equilibrium point of the
proposed neural network is proved to be equivalent to the optimal solution of the invex
programming problem. By employing Lyapunov function approach, it is also shown
that this model is globally convergent and stable in the sense of Lyapunov at each
equilibrium points. The simulation result shows that the proposed neural network is
efficient.

Keywords: Invex function, Neural network, Nonconvex optimization, Global opti-
mality conditions
Mathematics Subject Classification [2010]: 90C26, 90C30

1 Introduction and Preliminaries

Most of the theory and computational procedures in mathematical programming have
been developed in which the various functions are convex. This is a severe limitation
in practical applications and much effort has been devoted to removing this limitation.
Usually, generalized convex functions have been introduced in order to weaken as much as
possible the convexity requirements for results related to optimization theory, to optimal
control problems, to variational inequalities, etc. A very broad generalization of convexity,
now known as invexity, was introduced by Hanson [3].

Definition 1.1. Assume X ⊆ Rn is an open set.The differentiable function f : X → R is
invex function if there exists some function η : X×X → Rn such that for each x 1, x 2 ∈ X,

f(x 2) ≥ f(x 1) + ∇f(x )Tη(x 1,x 2).

Consider the following optimization problem:

min f(x )

s.t. G(x ) ≤ 0, (1)

where G(x ) = [g1(x ), g2(x ), ..., gm(x )], f and gi, i = 1, ..., m are continuously differentiable
functions. If f and gi, i = 1, ...,m be invex, then problem (1) is called invex programming
problem.
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Definition 1.2. f is said to be a pseudoinvex function if ∇f(x )Tη(x 1,x 2) ≥ 0 implies
that f(x 2) ≥ f(x 1). Similarly f is said to be a quasi-invex if f(x 2) ≤ f(x 1) implies that
∇f(x )Tη(x 1,x 2) ≤ 0.

We say that f and g are η-invex, if a common η, with respect to which both f and g
are invex, exists.

Theorem 1.3. [2] Let f : X → R be differentiable. Then f is invex if and only if every
stationary point is a global minimizer.

Corollary 1.4. [2] If f has no stationary points, then f is invex.

Theorem 1.5. [7] Let f1 , f2 , ..., fm : X → R are all η-invex on the open set X ⊆ Rn.
Then:

1. For each α ∈ R, α > 0, the function αfi, i = 1, ...,m, is η-invex.

2. The linear combination of f1 , f2 , ..., fm, with nonnegative coefficients is η-invex.

Theorem 1.6. [7] Let f : X → R, g : X → R be invex. f and g are η-invex if and only
if ∀x, y ∈ X either

(i) ∇f(x) ̸= λ∇g(x) for any λ > 0 or

(ii) ∇f(x) = −λ∇g(x) for some λ > 0 and f(y) − f(x) ≥ −λ[g(y) − g(x)].

Theorem 1.7. [7] Let f : X → R, g : X → R be invex. f and g are η-invex if and only
if f + λg is invex for all λ > 0.

Consider problem (1) and let x ∗ be a feasible solution and I = {i : gi(x
∗) = 0}.

Suppose that there exists scalar λ∗ ∈ Rm
+ such that (x ∗, λ∗) satisfies the Karush-Kuhn-

Tucker (KKT) conditions for problem (1).

Theorem 1.8. [1] Let x∗ be a KKT point. Then x∗ is a optimal solution if one of the
following conditions hold:

(i) f and gi for i ∈ I are all η-invex.

(ii) f is η-pseudoinvex and gi, i ∈ I, are η-quasi-invex.

2 Neurodynamic model

Let x (.), λ(.) and y(.) be some time dependent variables. We propose a recurrent neural
network model for solving (1), whose dynamical system for initial point (xT

0 , λT
0 )T is

defined as follows:

dx

dt
= −(∇f(x ) + ∇G(x )Tλ),

dλi

dt
= (λi + gi(x ))+ − λi, i = 1, ..., m,

where (z )+ = [(z1)
+, ..., (zn)+]T and (zi)

+ = max{0, zi}. Define

H(y) =

[
−(∇f(x ) + ∇G(x )Tλ)

(λ + g(x ))+ − λ

]
. (2)
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We propose the following neural network model:

{
dy
dt = MH(y),
x (t) = (In,0 )y(t)

(3)

where y(t) = (x (t)T, λ(t)T)T is the state vector, x (t) is the output vector and M is a
nonsingular matrix.

Proposition 2.1. Let Ω∗ be a set of equilibrium points of the recurrent neural model (3)
in Rn+m. Then y∗ ∈ Ω∗ if and only if the KKT conditions hold at x∗ with multiplier λ∗.

Lemma 2.2. [6] For any initial point y0 there exists a unique continuous solution y(t)
for model (3).

Theorem 2.3. Assume that there exists ℵ ⊆ Rn+m such that for any y = (xT, λT)T ∈ ℵ
we have the Jacobian matrix ∇H(y) of the mapping H defined in (2) is a negative semi-
definite matrix. Let Ω∗ ⊆ ℵ, then
(i) the equilibrium point of the proposed neural network model (3) is stable in the sense of
Lyapunov,
(ii) the proposed neural network model (3) is globally convergent to the stationary point
y∗ = ((x∗)T, λ∗T)T of (3), where x∗ is the local optimal solution of the problem (1).

3 Simulation result

Example 3.1. [4] Consider an invex optimization problem as follows

min f(x ) = 1 + x2
1 − ex2

2

s.t. x2
1 − x2 + 0.5 ≤ 0, 2x2 − x2

1 − 3 ≤ 0.

The objective function f has one stationary point, namely x ∗ = (0, 0), and x ∗ is a global
minimizer of f , so f is invex as depicted in Figure 1. The constraint function g1(x ) =
x2

1−x2+0.5 is convex and consequently is invex and g2(x ) = 2x2−x2
1−3 has no stationary

point thus is invex. The feasible region S = {x ∈ R2|g1(x ) ≤ 0, g2(x ) ≤ 0} is not a
convex set. This invex optimization problem has a unique KKT point (0, 0.5), which is
the global minimum solution by Theorem 1.8. We solve this problem by using proposed
model (3) with M = In+m. Simulation results show that the proposed neural network
model can globally convergent to the global optimal solution to the invex optimization
problem. Figure 2 (a) illustrates the transient behaviors of the proposed neural network
from 10 random initial states. Figure 2 (b) shows the 2-dimensional phase plot from 10
random initial states.
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Abstract

In this paper for the numerical solution of Burger equation, a nonstandard finite
difference (NSFD) scheme is constructed. In continuation the main properties of
NSFD schemes, i.e., positivity and boundedness, are established for proposed NSFD
scheme. The efficiency of our scheme are demonstrated by presenting some numerical
results.

Keywords: Boundedness, Burger equation, Nonstandard finite difference scheme,
Positivity.
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1 Introduction

The non-linear partial differential equation plays an important role in physical science
and engineering. Recently, the non-linear equations have attracted much attention of
researchers. There are various powerful mathematical methods, including the first inte-
gral method, the variational iteration method, the homotopic mapping method, the tanh
method and the other methods have been proposed to obtain exact or approximate ana-
lytic solutions for the non-linear equations [1, 3]. In this paper we consider Burger equation
of the form

ut + uux = µuxx, (1)

where µ is the diffusion coefficient. Analytical solution of this equation is given by

u(x, t) =
1

1 + e
1
2µ

(x− 1
2
t)
. (2)

In order to solve Burger equation numerically, many researchers have proposed various
numerical methods. Among various techniques for solving partial differential equations,
the NSFD schemes have been proved to be one of the most efficient approaches in recent
years.
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2 Analysis of NSFD scheme

NSFD schemes were firstly proposed by Mickens [2] for partial differential equations and,
successively, their use have been investigated in several fields.

In the classical sense, the first derivative approximation can be represented as ut
∼=

(un+1
j − un

j )/∆t and ux
∼= (un

j+1 − un
j )/∆x. In our sense, the discrete derivative is gener-

alized as follows [2].

ut
∼=
un+1

j − un
j

ψ(∆t, λ)
, ψ(∆t, λ) = ∆t+O((∆t)2),

ux
∼=
un

j+1 − un
j

ϕ(∆x, ξ)
, ϕ(∆x, ξ) = ∆x+O((∆x)2),

where λ, ξ are parameters that may be appeared in the differential equation and un
j is

an approximation to u(xj , tn). Similar to the classical difference scheme, we can obtain a
NSFD scheme for the Burger equation as follows:

un+1
j − un

j

Ψ
+

1

2

un+1
j (un

j − un
j−1) + un

j (un
j − un

j−1)

Φ
= µ

(un
j+1 − 2un

j + un
j−1)

Γ
. (3)

Comparing equation (3) with equation (1), we note the non-linear on the left hand side of
equation (1) is in the form

u(xj , tn)ux(xj , tn) =
1

2
(2u(xj , tn)ux(xj , tn)) ≈ 1

2

un+1
j (un

j − un
j−1) + un

j (un
j − un

j−1)

Φ
.

By setting R1 = Ψ/Φ and R2 = Ψ/Γ, equation (3) can be rewritten in the following
form

un+1
j = −

(R1u
n
j −R1u

n
j−1 + 4µR2 − 2)un

j − 2µR2u
n
j+1 − 2R2u

n
j−1

R1un
j −R1un

j−1 + 2
. (4)

We can write the following theorem to ensure the positivity and boundedness.

Theorem 2.1. If 1 −R1 > 0 and 2µR2 < 1 −R1, the numerical solution (4) satisfies

0 ⩽ un
j ⩽ 1 =⇒ 0 ⩽ un+1

j ⩽ 1,

for all relevant values of n and j.

Proof. It is obvious that −R1(u
n
j )2−4µR2u

n
j +2un

j < −R1(u
n
j )2+R1u

n
j−1u

n
j −4µR2u

n
j +2un

j

therefore if R1 < 2 and R2 <
1
4

2−R1
µ , then the discrete-time solution (4) is positive. Using

the upside of (4) minus downside, we get

−R1(u
n
j )2 +R1u

n
j u

n
j−1 − 4µR2u

n
j + 2µR2u

n
j−1 + 2µR2u

n
j+1

+ 2un
j −R1u

n
j +R1u

n
j−1 − 2 ≤ −R1(u

n
j )2 +R1u

n
j − 4µR2u

n
j

+ 4µR2 + 2un
j −R1u

n
j +R1 − 2
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Now, assumptions of Theorem imply

−R1(u
n
j )2 +R1u

n
j − 4µR2u

n
j + 4µR2 + 2un

j −R1u
n
j +R1 − 2 < 0.

There are numerous choices for the stepsize functions Ψ, Φ and Γ, but according to
the analytical solution of problem and Theorem 2.1 the stepsize functions Ψ = 4µ(1 −
e
− 1

4µ
∆t

), Φ = 2µ(1 − e
− 1

2µ
∆x

) and Γ = 2µΦ(e
1
2µ

∆x − 1) are good choices. With these
choices of the stepsize functions and ∆t = 1

5(∆x)2 the conditions of Theorem 2.1 still
hold.

3 Numerical results

To verify the efficiency of proposed NSFD scheme we simulate the initial-boundary value
problem:

ut + uux = µuxx, 0 ≤ x ≤ 1, t ≥ 0,
u(x, 0) = 1

1+e
1
2µ x

, 0 ≤ x ≤ 1,

u(0, t) = 1

1+e
− 1

4µ t
, t ≥ 0,

u(0, t) = 1

1+e
1
2µ − 1

4µ t
, t ≥ 0.

(5)

The numerical results of the problem (5) are shown in Figs 1 and 2. The Figs. 1 and 2
compare the numerical results with the exact one for µ = 1.5 and µ = 0.2, respectively in
3D form up to time t = 5.

4 Conclusion

In this paper, we present a NSFD scheme for Burger equation based on the analytical
solution. The proposed step function depends on ∆x, ∆t and NSFD scheme for Burger
equation can be constructed using the method in Mickens papers. Numerical experiments
for a particular example are given. The results show that the numerical solutions of
our scheme meet the properties that the relevant solutions should have in their physical
manner.
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(a) Exact and NSFD solutions.
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Figure 1: NSFD and exact solutions of the Burger equation for µ = 1.5 with ∆x = 0.1.

(a) Exact and NSFD solutions.

(b) Error between exact and NSFD solutions.

Figure 2: NSFD and exact solutions of the Burger equation for µ = 0.2 with ∆x = 0.02.
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A Numerical Method for Discrete Fractional–Order Chen

System Derived from Nonstandard Numerical Scheme

Mehdi Zeinadini∗
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Mehran Namjoo
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Abstract

In this paper, the nonstandard finite difference (NSFD) scheme is implemented
to study the dynamic behaviors in the fractional–order Chen chaotic system. The
Grünwald–Letnikov method is used to approximate the fractional derivatives. Nu-
merical results show that the NSFD approach is easy to implement and accurate
when applied to fractional-order Chen chaotic system.

Keywords: Chaos, Fractional calculus, Fractional–order Chen system, Nonstandard
finite difference scheme
Mathematics Subject Classification [2010]: 37M05, 34A08, 34H10

1 Introduction

In the recent years there is increasing interest in fractional calculus which deals with in-
tegration/differentiation of arbitrary orders. The list of applications of fractional calculus
has been evergrowing and includes control theory, viscoelasticity, diffusion, turbulence,
electromagnetism and many other physical processes. An exhaustive treatment of frac-
tional calculus in this respect can be found in references [2]. Recently, most of the dynam-
ical systems based on the integer–order calculus have been modified into the fractional
order domain due to the extra degrees of freedom and the flexibility which can be used
to precisely fit the experimental data much better than the integer–order modeling. The
study of chaotic systems is an important aspect of dynamical systems that finds applica-
tions in different areas ranging from engineering to ecology. Although more than three
decades have passed since the existence of ”chaotic solutions” was demonstrated, still we
do not have a theory of chaos from which the existence of chaotic solutions can be pre-
dicted. Extensive numerical work has been carried out in order to understand chaos in
dynamical systems. Lu and Chen [1] have studied the dynamic of the fractional–order
generalization of the well–known Chen system.

This paper is devoted to the construction of a nonstandard discretization scheme
given by Mickens to the Grünwald–Letnikov (GL) discretization process for solving the
fractional–order Chen chaotic system.
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2 Preliminaries

Derivatives of fractional–order have been introduced in several ways. In this paper we con-
sider GL approach. The GL method of approximation for the one–dimensional fractional
derivative takes the following form [2]

Dqx(t) = f(t, x(t)), x(0) = x0, t ∈ [0, tf ], (1)

Dqx(t) = lim
h→0

h−q

[t/h]∑

j=0

(−1)j

(
q

j

)
x(t − jh),

where 0 < q ≤ 1, Dq denotes the fractional derivative, h is the step size and [ t
h ] represents

the integer part of t
h . Therefore, Eq. (1) is discretized in the next form

n∑

j=0

cq
jx(tn−j) = f(tn, x(tn)), n = 1, 2, 3, ...

where tn = nh and cq
j are the GL coefficients defined as

cq
j = (1 − 1 + q

j
)cq

j−1, cq
0 = h−q, j = 1, 2, 3, ...

The nonstandard discretization technique is a general scheme where we replace the step
size h by a function ϕ(h) [3]. By applying this technique and using the GL discretization
method, it yields the following relations

x(tn+1) = c−q
0

(
−

n+1∑

j=1

cq
jx(tn+1−j) + f(tn+1, x(tn+1))

)
, n = 0, 1, . . .

where cq
0 = ϕ(h)−q.

3 NSFD scheme for fractional–order Chen chaotic system

Consider a fractional–order generalization of the Chen system [1]. In this system, the
integer–order derivatives are replaced by fractional–order derivatives, as follows:

Dq1x(t) = a(y(t) − x(t)),

Dq2y(t) = (c − a)x(t) − x(t)z(t) + cy(t),

Dq3z(t) = x(t)y(t) − bz(t),

where 0 < qi ≤ 1, for i = 1, 2, 3 and x, y, z are the state variables and (a, b, c) ∈ R3. If
q1 = q2 = q3 = q then the Chen system is called commensurate otherwise incommensurate,
a minimal order q for chaotic behavior can be determinned [1] and it is q ≥ 0.8244. This
system is equivalent to the classical integer–order Chen system when q = 1, which is
chaotic at (a, b, c) = (35, 3, 28). The stability analysis of such kind of system have been
studied in [1].

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

A numerical method for discrete fractional–order Chen system derived from . . . pp.: 2–4

779



Applying Mickens scheme by replacing the step size h by a function ϕ(h) and using
the GL discretization method, it can be seen that

n+1∑

j=0

cq1
j x(tn+1−j) = a(y(tn) − x(tn+1)),

n+1∑

j=0

cq2
j y(tn+1−j) = (c − a)x(tn+1) − x(tn+1)z(tn) + cy(tn), (2)

n+1∑

j=0

cq3
j z(tn+1−j) = x(tn+1)y(tn+1) − bz(tn+1).

Invoking some algebraic manipulations to Eqs. (2), the following relations are obtained

x(tn+1) =

−
n+1∑

j=1

cq1
j x(tn+1−j) + ay(tn)

cq1
0 + a

,

y(tn+1) = c−q2
0

(
−

n+1∑

j=1

cq2
j y(tn+1−j) + (c − a)x(tn+1) − x(tn+1)z(tn) + cy(tn)

)
,

z(tn+1) =

−
n+1∑

j=1

cq3
j z(tn+1−j) + x(tn+1)y(tn+1)

cq3
0 + b

,

where
cq1
0 = ϕ1(h)−q1 , cq2

0 = ϕ2(h)−q2 , cq3
0 = ϕ3(h)−q3 ,

with

ϕ1(h) =
eah−1

a
, ϕ2(h) =

ebh−1

b
, ϕ3(h) =

ech − 1

c
.

4 Numerical results and conclusion

In this section, numerical results from the implementation of NSFD scheme for the fractional–
order Chen chaotic system are presented.

In Fig. 1a and Fig. 1b are depicted the simulation results of the Chen system, where
system parameters are a = 35, b = 3 and c = 28 commensurate orders of the derivatives
are q = 1 and q = 0.9 with the initial conditions are (x0, y0, z0) = (−9, −5, 14) for the
simulation time t = 100s and time step h = 0.005.

In Fig. 2a and Fig. 2b are depicted the simulation results of the Chen system, where
system parameters are a = 35, b = 3 and c = 28 incommensurate orders of the derivatives
are q1 = 0.8, q2 = 1, q3 = 0.9 with the initial conditions are (x0, y0, z0) = (−9, −5, 14) for
the simulation time t = 30s and time step h = 0.001.
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Figure 1: Simulation result of the Chen system in state space for parameters: a = 35,
b = 3, c = 28 with initial conditions (x0, y0, z0) = (−9, −5, 14).
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(a) q1 = 0.8, q2 = 1, q3 = 0.9
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Figure 2: Chaotic attractor of the Chen system projected into 3D state space and 2D phase
planes parameters: a = 35, b = 3, c = 28 with initial conditions (x0, y0, z0) = (−9, −5, 14).

From the graphical results in Figs. 1 and 2, it is concluded that the approximate
solutions obtained using Mickens nonstandard discretization method is in good agreement
with the approximate solutions obtained in [1].
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Abstract

In this paper, a new combination of the Adomian decomposition method and
the Sumudu transform (ADST) is introduced for solving nonlinear partial differential
equations (PDEs). The main objective of this paper is to present a reliable approach
to compute an approximate solution of PDEs.

Keywords: Sumudu transform, Adomian decomposition method

Mathematics Subject Classification [2010]: 65Mxx, 34A34

1 Introduction

Nonlinear partial differential equations are widely used to describe complex phenomena
in many fields of applied sciences, such as chemistry, physics, fluid dynamics, plasma
physics, hydrodynamics and engineering disciplines. The application of the Adomian
decomposition method (ADM) [1], in nonlinear problems has been used by scientists and
engineers, since this method continuously deform the under study nonlinear equation into
a simple problem which is easy to solve. In recent years, Wazwaz etc., [2], improved
the ADM and expanded fields of its application. Recently, Watugala introduced a new
transform and named it as Sumudu transform. This transform is used to find the solution
of ordinary differential equations and control engineering problems, [3]. Very recently,
Singh et al. [4], have proposed a new approach named homotopy perturbation Sumudu
transform method (HPSTM) to solve the nonlinear partial differential equations. The
homotopy perturbation Sumudu transform method (HPSTM) is a combination of Sumudu
transform method, HPM and Hes polynomials and is mainly due to Ghorbani [5] Singh and
Shishodia [6]. The basic motivation of this paper is to propose a new modification of ADM
and Sumudu transform algorithm. By using this new method, which is a combination of
the Adomian decomposition method and Sumudu transform ADST, all conditions will be
satisfied.
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2 Methodology: Analysis of this method

In this section, the basic idea of the Adomian decomposition Sumudu transform method
ADST will be given. Consider a nonlinear non-homogenous partial differential equation
of the form

[L+R+N ] f (t1, ..., tm) = g (t1, ..., tm) , (1)

where the differential operator L may be considered as the highest order derivative in the
equation, R is the remainder of the differential operator, N expresses the nonlinear terms,
f is an unknown function and g(t1, ..., tm) is an inhomogeneous term. We can rewrite Eq.
(1) down a correction functional as follows

Lti [f (t1, ..., tm)] = g (t1, ..., tm) − [R+N ] f (t1, ..., tm) , (2)

where Lti [f (t1, ..., tm)] = ∂h

∂tih [f (t1, ..., tm)] and h is the order of differential operator L.

Applying Sumudu transform on both sides of Eq. (2) one get

F (u (t1, ..., tm)) =
h−1∑

k=0

ukf (k) (t1, ..., ti−1, 0, ti+1, ..., tm) + uhS [g, ti;u] − uhS [[R+N ] f, ti;u] .

(3)

Now applying the inverse Sumudu transform on both sides of Eq. (3) and also by using
the convolution theorem, we have

f (t1, ..., tm) = S−1

[
h−1∑

k=0

ukf (k) (t1, ..., ti−1, 0, ti+1, ..., tm) + uhS [g, ti;u] , u; ti

]

−
∫ ti

0
[R+N ] f (t1, ..., ti−1, ξ, ti+1, ..., tm)w (ti − ξ)dξ, (4)

for simplicity put B = S−1

[
h−1∑
k=0

ukf (k) (t1, ..., ti−1, 0, ti+1, ..., tm) + uhS [g, ti;u] , u; ti

]
. Let

f (t1, ..., tm) =
∞∑

n=0
fn (t1, ..., tm) and Nf (t1, ..., tm) =

∞∑
n=0

An [(f0, ..., fn) (t1, ..., tm)] where

for every k, Ak is the Adomian polynomial. Substituting these relations to Eq. (4), one
obtain

∞∑

n=0

fn (t1, ..., tm) = B

−
∫ ti

0

{
R

[ ∞∑

n=0

fn (t1, ..., ξ, ..., tm)

]
+

∞∑

n=0

An (f0, ..., fn) (t1, ..., tm)

}
w (ti − ξ)dξ. (5)

Accordingly, by the Adomian decomposition method we can obtain the following recur-
sively formula

f0 (t1, ..., tm) = B,

fn+1 (t1, ..., tm) = −
∫ ti

0

{R [fn (t1, ..., ξ, ..., tm)] +An [(f0, ..., fn) (t1, ..., ξ, ..., tm)]}w (ti − ξ)dξ,
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Example 2.1. Consider the nonlinear PDE of the form

fyy + f2
x + f − f2 = ye−x, f(x, 0) = 0, fy(x, 0) = e−x.

Applying Adomian decomposition Sumudu transform method and using the initial condi-
tions result in

f0 (x, y) = B = S−1
[
f(x, 0) + ufx(x, 0) + u2S

[
ye−x, y;u

]
, u; y

]
= ye−x +

1

3!
y3e−x,

fn+1 (x, y) = −
∫ y

0
{fn (x, ξ) +An [(f0, ..., fn) (x, ξ)]} (y − ξ)dξ = −

∫ y

0
ψ[n; ξ] (y − ξ)dξ,

where ψ[n; ξ] = fn (x, ξ) + An [(f0, ..., fn) (x, ξ)] and An are Adomian polynomials that
represent the nonlinear term f2

x − f2, and given by

A0 = f2
0x

− f2
0 , ψ[0; ξ] = f0 + f2

0x
− f2

0 ,

A1 = 2f0xf1x − 2f0f1, ψ[1; ξ] = f1 + 2f0xf1x − 2f0f1,

A2 = f2
1x

+ 2f0xf2x − f2
1 − 2f0f2, ψ[2; ξ] = f2 + f2

1x
+ 2f0xf2x − f2

1 − 2f0f2,

Applying the recursive relation, we obtain

f1 = −
∫ y

0

1

6
ξe−x

(
6 + ξ2

)
dξ = − 1

3!
y3e−x − 1

5!
y5e−x,

f2 = −
∫ y

0
− 1

5!
ξ3e−x

(
20 + ξ2

)
dξ =

1

5!
y5e−x +

1

7!
y7e−x,

f3 = −
∫ y

0

1

7!
ξ5e−x

(
42 + ξ2

)
dξ = − 1

7!
y7e−x − 1

9!
y9e−x,

Therefore, the solution in a series form is given by

f (x, y) = ye−x +
1

3!
y3e−x − 1

3!
y3e−x − 1

5!
y5e−x +

1

5!
y5e−x +

1

7!
y7e−x + · · · .

Which is converge to closed form solution f (x, y) = ye−x.

Example 2.2. Consider the following nonlinear partial differential equation

fyy = fxx + f + f2 − xy (1 + xy) , 0 ≤ x ≤ π, 0 ≤ y < 1, (6)

subjected to the following boundary and initial conditions

BC :

{
f(0, y) = 0,
f(π, y) = πy,

, IC :

{
f(x, 0) = 0,
fy(x, 0) = x.

By using the Adomian decomposition Sumudu transform method, we use fifteen terms

approximation and hence, f(x, y) =
14∑
i=0

fi(x, y), to examine the accuracy of the ADST.

The absolute errors of the 15-terms approximate solutions are plotted in figures 1(a)-(b).
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(a) y = 0.25 (b) y = 0.50

Figure 1: Graphs of the absolute error functions for different values of y

3 Conclusion

This paper is about a new combination of the Sumudu transform technique and the Ado-
mian decomposition method for solving nonlinear partial differential equations. The ca-
pabilities of the proposed method were demonstrated by some tested problems. It is
concluded from the given figures that the ADST is an accurate and efficient algorithm to
solve the nonlinear differential equations.
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Abstract

In this paper, a set of orthogonal rational Chebyshev functions in L2(0,+∞) is
generated by the orthogonal Chebyshev polynomials. Moreover a new computational
method based on these new basis functions is proposed for solving KdV equations
on the semi–infinite interval with initial–boundary conditions. In this way, a weak
formulation for the above mentioned problems is obtained, and also a Galerkin method
using these basis functions is applied. Some numerical examples are included for
demonstrating the efficiency of the method.
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1 Introduction

In 1895 Kurteweg and de Vries proposed the equation

ut + uux + uxxx = 0 (1)

as a model for water waves in shallow regions. This equation, which has been known as
KdV equation [8], is a well-known equation in the field of nonlinear waves. In 1965 Zabusky
and Kruskal used the leap-frog method for discretizing the KdV equation [9].Two years
later, Gardner, Greene, Kruskal and Miura discovered that assuming the solutions decay
at infinity with sufficient rates, equation (1) can be efficiently solved via a method called
the Inverse Scattering Method [5]. In 1982, Christov [4] and Boyd [3, 2] developed some
spectral methods on infinite intervals by using orthogonal systems of rational functions. In
2000, Guo [7] developed a rational spectral method based on a weighted orthogonal system
consisting of rational function built from Legendre polynomials with a rational transfor-
mation. Recently, Zhang and Ma [10] proposed a combined Petrov-Galerkin scheme using
orthogonal Legendre rational functions for solution of the following problem:





ut + uux + uxxx = f(x, t) , x ∈ [0,+∞] , t ∈ (0, T ]
u(0, t) = lim

x→+∞
u(x, t) = lim

x→+∞
ux(x, t) = 0 ,

u(x, 0) = u0(x).

(2)
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In this paper, a set of orthogonal rational Chebyshev functions in L2(0,+∞) is generated
by using the orthogonal Chebyshev polynomials. Moreover a new computational method
based on these new basis functions is proposed for solving KdV equations on the semi–
infinite interval with initial–boundary conditions. In this method, a weak formulation for
the above mentioned problems is obtained, and also a Galerkin method using these basis
functions is applied.

2 Rational Chebyshev functions

The rational Chebyshev function of order n is defined on [0,+∞) by the formula:

Rn(x) =
1

x+ L
Tn

(
x− L
x+ L

)
, n ∈ N ∪ {0} (3)

where the parameter L sets the length scale of the mapping and Tn(x) is the Chebyshev
polynomial. The rational Chebyshev functions are orthogonal on [0,+∞) with respect to

the weight function wR(x) = (x+ L)
√

L
x and we have

∫ ∞

0
Rm(x)Rn(x)wR(x)dx =





π , m = n = 0
π
2 , m = n 6= 0
0 , m 6= n

(4)

3 Explanation of the method

We consider the inhomogeneous KdV equation

ut + uux + uxxx = f(x, t) , x ∈ [0,+∞] , t ∈ (0, T ] (5)

accompanied with the initial-boundary conditions:

u(0, t) = lim
x→+∞

u(x, t) = lim
x→+∞

ux(x, t) = 0, u(x, 0) = u0(x). (6)

For non-negative integer N, we define RN = span{Rn(x)|n = 0, 1, ..., N} where Rn(x) is
the rational Chebyshev function introduced in (3). Also we put R0

N = RN ∩H1
0 (0,+∞)

where H1
0 (0,+∞) = W 1,2

0 (0,+∞) and W 1,2
0 (0,+∞) is a special case of W s,p

0 (0,+∞), that
is the closure of the space C∞0 (0,+∞) in the Sobolev space W s,p(0,+∞) [1].

Now we first obtain the weak formulation for problem 5. In this direction we consider
the test functions space:

T = {v ∈ H1
0 [0,+∞)|v(0, t) = vx(0, t) = lim

x→+∞
v(x, t) = lim

x→+∞
vx(x, t) = 0}. (7)

Then for any v ∈ T we have:
∫ ∞

0
utvdx+

∫ ∞

0
uuxvdx+

∫ ∞

0
uxxxvdx =

∫ ∞

0
fvdx. (8)

Integrating
∫∞
0 uuxvdx and

∫∞
0 uxxxvdx by parts we have:

∫ ∞

0
utvdx−

1

2

∫ ∞

0
u2vxdx−

∫ ∞

0
uvxxxdx =

∫ ∞

0
fvdx (9)
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Finally in the weak formulation for problem (5) we are seeking a function u ∈ H2(0,+∞)∩
H1

0 (0,+∞) such that for any v ∈ H1
0 (0,+∞), we have:

{
(ut, v)− 1

2(u2, vx)− (u, vxxx) = (f, v) , t ∈ (0, T ]
(u(0), v) = (u0, v)

(10)

where (u, v) =
∫∞
0 u(x)v(x)wR(x)dx.

A discrete spectral method for solution of problem (5) is to find uN ∈ R0
N such that for

any v ∈ R0
N we have:
{

(∂tuN , v)− 1
2(PCN u

2
N , ∂xv)− (u, ∂3xv) = (PCN f, v) , t ∈ (0, T ]

(u(0), v) = (PCN u0, v)
(11)

where PCN u(x) = (1 − y)ICN
v(y)
1−y where ICN is the Chebyshev–Gauss interpolation operator

on (−1, 1), and y = x−L
x+L such that v(y) = u(x). Now, we propose a numerical scheme

for the solution of (11) by discretizing the KdV equation. Dividing the interval (0, T ] in
n equal parts with lengths ∆t = T

n and putting tk = k∆t , k = 0, 1, ..., n and using the
symbols:

uk = uk(x) = u(x, tk), u
k =

uk+1 + uk−1

2
, ukt =

uk+1 − uk−1
2∆t

, (12)

we apply the Crank-Nicolson and leap-frog schemes on discrete KdV equation:
{ (

ukt , v
)
− 1

2

(
PCN (ukN )2, ∂xv

)
−
(
ukN , ∂

3
xv
)

=
(
PCN f

k
, v
)
, t ∈ (0, T ]

(u(0), v) = (PCN u0, v).
(13)

To access a more efficient algorithm, we choose a suitable set of basis functions, and put
[6]: φn(x) = Rn(x) + Rn+1(x) and ψn(x) = 2

1+xφn(x) Then we can write ukN in terms of
ψn’s:

ukN (x) =

N−2∑

n=0

uknψn(x) (14)

putting v = φm(x) , 0 ≤ m ≤ N −2 in relation (13), we obtain the following linear system
(A+ ∆tB)uk+1 = gk where Amn = (ψn, φm), Bmn = −

(
ψn, ∂

3
xφm

)
and

gk =
N−2∑

n=0

uk−1n

(
ψn −∆t ∂3xφn

)
+ ∆t ∂x P

C
N

(
ukN

)2
+ 2∆t PCN f

k
(15)

4 Main results

In this section, two test problems will be solved by using the above method.

Example 4.1. [10] We consider the following KdV equation

ut + uux + uxxx = f(x, t) , x ∈ [0,+∞] , t ∈ (0, T ] (16)

u(0, t) = lim
x→+∞

u(x, t) = lim
x→+∞

ux(x, t) = 0,

u(x, 0) = sech2(ax− c),

f(x, t) =
−2 sinh (ax− bt− c)

(
4 a3 cosh2 (ax− bt− c)− b cosh2 (ax− bt− c)− 12 a3 + a

)

cosh5 (ax− bt− c)
with the exact solution u(x, t) = sech2(ax− bt− c) where a = b = 1, c = 0.
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Table 1: Errors for test problem 1

N τ L∞ error L2 error

16 1E-3 9.8652E-3 1.2654E-2
32 1E-3 4.1536E-6 8.2874E-6
48 1E-3 1.0356E-7 3.9851E-7
64 1E-3 1.0852E-7 6.8523E-7
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An approximation of a two-dimensional Volterra-Fredholm

integral equations via Inverse Multiquadric RBFs
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Abstract

The main purpose of this article is to present an approximate solution for the mixed
two-dimensional nonlinear Volterra-Fredholm integral equations using inverse multi-
quadric (IMQ) functions as two-dimensional RBFs. In this method, we interpolate the
given function by these RBFs. Also we obtain good results for error by different shape
parameters in comparison with the approximation by multiquadric (MQ) RBFs. The
numerical results are compared with MQ method to display efficiency of the proposed
method.

Keywords: Mixed volterra-Fredholm integral equation, Inverse Multiquadric, Multi-
quadric, Radial basis function.

Mathematics Subject Classification [2010]: 65R20, 45D05, 45B05

1 Introduction

Integral equations have recieved considerable interest in the mathematical applications
in different areas of sciences. RBFs interpolations were evaluated as the most accurate
techniques. This method allows scattered data to be easily used in computation. There
are many works on developing and analyzing numerical methods for solving Volterra-
Frdeholm integral equations (IE) in [5, 6]. Alipanah et. al. [1], used RBFs method for
solving a nonlinear integral equation in the one-dimensional case. Here we want to propose
a method to approximate a class of mixed two-dimensional nonlinear Volterra-Fredholm
integral equations on the interval [−1, 1] by using IMQs radial basis functin.
The outline of this paper is as follows: At first we introduce the Volterra-Fredholm IEs, and
IMQs interpolation. Next we describe the Legendre-Gauss-Lobatto quadrature, briefly.
In the next section we discuss how to solve the integral equation by using the suggested
method. In section 3 one numerical example shows the accuracy of the method.

1.1 Preliminaries and notaions

In this paper, we consider a mixed Volterra-Fredholm integral equation

f(s, t) = g(s, t) +

∫ s

0

∫ 1

0
U

(
s, t, x, y, f(x, y)

)
dydx, (1)

∗Nasim Chamangard Khorram Abad
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where f(s, t) is an unknown function, g(s, t) is a continuous function defined on [0, T ] ×
[0, 1], and U

(
s, t, x, y, f(x, y)

)
is defined on S = {(s, t, x, y, f) : 0 ≤ x ≤ s ≤ T, t, y ∈ [0, 1]}.

We transform the interval [0, T ] to [−1, 1] and assume

U
(
s, t, x, y, f

)
= K(s, t, x, y)[f(s, t)]p for the given positive integer p.

Suppose ϕ(x, y) be the IMQ radial function. Then we can interpolate f(x, y) as

f(x, y) ≃
N∑

i=0

M∑

j=0

Cijϕij(x, y) = CTψ(x, y), (2)

where

ϕij = ϕij(x, y) = ϕ(∥(x, y) − (xi, yj)∥) =
1√

(∥(x, y) − (xi, yj)∥)2 + c2
, (3)

i = 0, · · · , N, j = 0, · · · ,M.

where (xi, yi) are the Legendre-Gauss-Lobatto nodes [2]. Let pN be the Legendre poly-
nomials of order N on the interval [−1, 1] . The Legendre-Gauss-Lobatto nodes L-G-L
are

x0 = −1 < x1 < · · · < xN−1 < xN = 1, (4)

where xm, 1 ≤ m ≤ N − 1 are the zeros of ṗN (x) and ṗN (x) is derivative it. There is no
explicit formula for calculating the nodes xm , but they are computed numerically using
the existing subroutines. Also

∫ 1
−1 f(x)dx =

∑N
i=0wif(xi) where wi = 2

N(N+1) · 1
(pN (xi))2

and xi, are the L-G-L weights and nodes, respectively [2].

2 Solving the problem

Consider the above Volterra-fredholm IEs (1). We produce

CTψ(s, t) = g(s, t) +

∫ s

0

∫ 1

0
U

(
s, t, x, y, CTψ(x, y)

)
dydx. (5)

We transform the the region to [−1, 1] taking the change of variables η1 = 2
si
x − 1 and

η2 = 2y − 1. Next by using the L-G-L quadrature we have

CTψ(si, tj) = g(si, tj)+
si

4

r1∑

k=0

r2∑

l=0

wkwlU
(
si, tj ,

si

2
(η1+1),

η2 + 1

2
, CTψ(

si

2
(η1+1),

η2 + 1

2
)
)
,

(6)

i = 0, · · · , N, j = 0, · · · ,M.

Eq (6) generates a nonlinear system of equations that can be solved by the Newton’s
iteration method.
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3 Illustrative example

In this section, one numerical example is included to demonstrate the validity and efficiency
of the proposed technique. In order to demonstrate the error of method, we introduce the
notation e(x, y) = |f(x, y) − f̄(x, y)| on the interval [0, 1] × [0, 1] where f(x, y) and f̄(x, y)
are the exact and approximate solutions, respectively.

Example 3.1. consider a nonlinear Volterra-Fredholm IE [6]
f(s,t)=s2e2t − 1/5s5 + t2 +

∫ s
0

∫ 1
0 t

2e−4x[f(x, y)]2dydx, 0 ≤ s < 1.
We apply the presented method and solve the Eq (3.1). Numerical results are presented in
Tables (1), (2) and Figure (1). Table (2) shows the error e(x, y) at L-G-L points together
with the obtained results by the method of [3].

Table 1: Errors for example (3.1) with c = 0.4, 1.4 for N = 2, 3.

(s, t) N = 2, c = 0.4 N = 2, c = 1.4 N = 3, c = 0.4 N = 3, c = 1.4

(0, 0) 6.6407743E − 02 3.3231627E − 02 2.8317723E − 02 4.5141715E − 03
(0.1, 0.1) 1.6736290E − 02 6.5679240E − 03 2.4730265E − 03 8.8969007E − 03
(0.2, 0.2) 5.6443366E − 03 6.0700325E − 02 3.0909447E − 02 3.8696836E − 02
(0.3, 0.3) 2.8808737E − 02 1.1655871E − 01 9.4390555E − 02 9.3426757E − 02
(0.4, 0.4) 9.2085286E − 02 1.7603972E − 01 1.5690233E − 01 1.7043149E − 01
(0.5, 0.5) 2.6640362E − 01 2.6737589E − 01 2.0808878E − 01 2.6555843E − 01
(0.6, 0.6) 6.4390002E − 01 4.3144954E − 01 3.0491358E − 01 3.8220809E − 01
(0.7, 0.7) 1.1866665E + 00 6.7102704E − 01 6.1011560E − 01 5.4014225E − 01
(0.8, 0.8) 1.4910882E + 00 8.8205118E − 01 1.1707949E + 00 7.4794170E − 01
(0.9, 0.9) 6.5492677E − 01 8.0901973E − 01 1.2352508E + 00 9.1729544E − 01

Figure 1: Errors for example (3.1) with c = 0.7 for N = 5.
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Table 2: Errors for example (3.1) with L-G-L as points for N = 4, c = 0.4 and N = 5,
c = 0.6.

(s, t) IMQ N = 4 IMQ N = 5 MQN = 4 MQ N = 5

(0.9869533, 0.9869533) 4.6647953E − 01 9.2278386E − 01 8.094732E − 01 9.908731E − 01
(0.9325317, 0.9325317) 1.1242569E + 00 9.9628259E − 01 9.958854E − 01 9.476697E − 01
(0.8397048, 0.8397048) 9.8781039E − 01 7.6975636E − 01 8.241093E − 01 7.636676E − 01
(0.7166977, 0.7166977) 4.7715018E − 01 5.3442056E − 01 5.489545E − 01 5.587436E − 01
(0.5744372, 0.5744372) 3.1408675E − 01 3.6335572E − 01 3.617686E − 01 3.530029E − 01
(0.4255628, 0.4255628) 2.1037328E − 01 1.9398081E − 01 1.853911E − 01 1.815405E − 01
(0.2833023, 0.2833023) 9.0310392E − 02 8.4702606E − 02 7.947958E − 02 8.810770E − 02
(0.1602952, 0.1602952) 1.9001185E − 02 2.6175707E − 02 2.752501E − 02 2.581437E − 02
(0.6746832, 0.6746832) 1.6014702E − 04 3.5617186E − 03 2.861469E − 03 1.743795E − 03
(0.1304674, 0.1304674) 1.0960145E − 02 1.3724430E − 03 7.603924E − 03 3.630280E − 03

4 Conclusion

In this paper we apply the IMQ method for the numerical solution a class of mixed two-
dimensional nonlinear Volterra-Fredholm integral equations, by different shape parameters
and compare the results with MQ method. The results show validity and good accurate
of the proposed method.
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Comparison between the Direct and local discontinuous

Galerkin methods for the third order kdv equation
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Abstract

In this article, a class of Discontinuous Galerkin method(DG) for solving KdV
equation containing the third derivative term in one space dimention, which is called
Direct Discontinuous Galerkin (DDG) method has been mainly discussed. Numer-
ical examples are shown to illustrate the accuracy and capability of the method in
comparison with Local Discontinuous Galerkin method.

Keywords: Direct discontinuous Galerkin method, Korteweg de Vries, Stability.

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

This work is concerned with the numerical approximation for the one dimensional gener-
alized Kortewegde Vries (KdV) [1] equation

ut + f(u)x + ϵuxxx = 0, (1)

where ϵ is a given constant, and f is a smooth function. This equation is a nonlinear
dispersive partial differential equation for u with two real variables x space and time t.
The original form of the KdV equation is corresponds to ϵ = 1 and f = −3u2.

In this paper, we discuss about a class of finite element method using completely
discontinuous piecewise-polynomial spaces for the numerical solution of problems. These
DG methods have several attractive properties, for instance it can be easily designed for
any order of accuracy. The method at first is performed for diffusion problems by Liu
and Yan [2]. In this study we apply the direct discontinuous Galerkin method for the
KdV equation and then we compare the numerical results with the Local Discontinuous
Galerkin (LDG) method. Also the nonlinear L2-norm stability of the method is illustrated.
It has been shown that the numerical results for the KdV equation have high accuracy in
comparison with LDG method.
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2 DDG method

In this section, we consider the general form of the KdV equation as follows:

ut + f(u)x + (r′(u)g(r(u)x)x)x = 0, x ∈ (L,R), t > 0. (2)

This equation will be considered in the mesh Ij = [xj−1/2, xj+1/2] (j = 1, · · · , N), with

the center of the cell denoted by 1
2(xj−1/2 +xj+1/2) and the size of each cell ∆x = xj+1/2 −

xj−1/2. Denote v−
j+1/2 and v+

j+1/2 for the value of the left and right limit of v, respectively
at the interface where v is discontinuous. We replace test functions v, w and z with
piecewise polynomials of degree at most k. This means that v, w and z are belong to V∆x ,
where:

V∆x = {v : v ∈ P k(Ij), j = 1 : N}. (3)

This method will be achvied through multiplying Eq (2) by three test functions v, w and z
respectively, integrate over the interval Ij , and integrate by parts.Thus we seek piecewise
polynomial solutions u, p and q ∈ V∆x where V∆x is defined in (3), such that for all test
functions v, w and z we have, for j = 1, · · · , N , the following relations:

∫
utvdx −

∫
f(u) + r′(u)p)vxdx + (f̂ + r̂′p̂)j + 1/2v−

j+1/2

−f̂ + r̂′p̂j−1/2v
+
j−1/2 = 0,

∫
pwdx +

∫
g(q)wxdx − ĝj+1/2w

−
j+1/2 + ĝj−1/2w

+
j−1/2 = 0,

∫
qzdx +

∫
r(u)zxdx − r̂j+1/2z

−
j+1/2 + r̂j−1/2z

+
j−1/2 = 0, (4)

where all the integrals will be taken over interval Ij . In order to design the DDG method,
the following notations will be define as follows:

u± = u(x ± 0, t), [u] = u+ − u−, u =
u+ − u−

2
.

Now we introduce a numerical flux formula at the cell interface xj±1/2 as follows:

f̂ = β0
[u]

∆x
+ β1(∆x)[uxx] + β2(∆x)3[uxxxx] + · · · . (5)

Choosing β0 = 7
6 , β1 = 1

12 , the numerical flux (5) enables us to obtain the optimal 3rd
orders of accuracy. It should be noted that in the LDG method the flux is:

f̂(u−, u+) =
1

2
(f(u−) + f(u+) − α(u+ − u−)), (6)

where α = max
u

|f ′ (u)| [3].

Definition 2.1. The L2 norm stability of DDG method for the KdV equation is defined
as:

d

dt

∫

Ij

(u2(x, t))

2
dx + (Ĥj+1/2 − Ĥj−1/2), (7)

where, Ĥj+1/2, Ĥj−1/2 are numerical entropy fluxes.
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Proposition 2.2. (cell entropy inequality)There exist numerical entropy fluxes Ĥj+1/2

such that the solution of the Eq (4) is

d

dt

∫

Ij

(
u2(x, t)

2
)dx + (Ĥj+1/2 − Ĥj−1/2) ≤ 0. (8)

Proof. See [3].

Example 2.3. In order to see the accuracy of DDG method for nonlinear problems, we
compute the classical soliton solution for the KdV equation

ut − 3(u2)x + uxxx = 0, (9)

with the given initial condition u(x, 0) = −2sech2(x), where −10 ≤ x ≤ 12. Using this
method the exact solution of this problem is u(x, t) = −2sech2(x − 4t).

Table 1: The comparison of L2-Error between LDG and DDG methods for k =2, 3, t=1
in Example (2.3).

uniform.mesh DDG LDG order

N=40 2.7071e-02 1.7869e-01 2.50
2.0350e-03 1.78692e-01 3.00
3.2212e-04 8.73187e-03 3.50

N=80 4.9216e-03 1.20167e-02 2.50
2.0344e-04 1.20205e-02 3.00
1.8451e-05 5.3600e-04 3.50

N=160 7.5751e-04 1.0681e-03 2.50
2.4988e-05 7.5839e-04 3.00
1.1715e-06 7.5751e-04 3.50

Table 2: The comparison of L2-Error between LDG and DDG methods for k =3, t=0.5
in Example (2.3).

uniform.mesh DDG LDG order

N=40 0.1e-04 0.5e-01 2.50
0.2e-04 1.0e-01 3.00
0.3e-04 1.5e-01 3.50

N=80 0.5e-05 0.4e-01 2.50
1.5e-05 0.9e-01 3.00
2.5e-05 1.4e-01 3.50

N=160 2.2e-06 1.2e-01 2.50
1.2e-06 1.2e-01 3.00
2.5e-06 0.6e-01 3.50
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(a) DDG-Method (b) LDG-Method

Figure 1: Graph of L2-Error with 40 mesh for t = 0.5 and k = 3 in example 2.3.

3 conclusion

In this study, we have designed a class of direct discontinuous Galerkin method and lo-
cal discontinuous Galerkin method for solving KdV type equations containing the third
derivatives. Results revealed that these methods seemed to have a reasonabl proficiency
for solving the nonlinear equations. Numerical example by means of selecting suitable
numerical fluxes appeared to illustrate the accuracy and capability of the DDG method
compared to LDG method in the 3rd order for solving the KdV equation.
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exponential population growth models with mixture noise

Ramzan Rezaeyan∗

University of Kharazmei

Mohammad Ali Jafari

University of Kharazmei

Abstract

we consider the stochastic exponential population growth model. We suppose the
noise in the population growth model be the mixture noise. The expectations and
variances of solutions are obtained. However, the confidence interval for the solution
of stochastic exponential population growth model where the so-called parameter,
population growth rate is not completely definite and it depends on some random
environmental effects is obtained.

Keywords: Stochastic differential equation, Ito integral, Mixture noise, Population
growth model, Confidence interval
Mathematics Subject Classification [2010]: 60H10, 60H05

1 Introduction

Population growth is the change in population over time. Environmental scientists use
two models to describe how populations grow over time, the exponential growth model
and the logistic growth model. In exponential growth, the population size increases at
an exponential rate over time. As such as, the growth rate at time t is not completely
definite and it depends on some random environment effects. Braumann[1] proposed the
applications of stochastic differential equations to population growth. Matisa and Kiffe[2],
Andreis and Ricci[3] used of the stochastic exponential population growth model in their
studies. We know, the growth rate is depended to many different random environment
effect. So, in this here, we let that the this random effects were to the linear combination
of some white noise[5]. Then, we consider the perturbation effects the mixture noise on
the growth rate of population model. The organization of this paper is as follows: In this
next section, we will define the calculus stochastic and mixture noise. In section 3, we
will consider the stochastic exponential population growth model with mixture noise. In
section 4, We construct a confidence interval for number of population obtained.

2 Preliminaries

There are two main stochastic calculus, Ito and Stratonovich calculus. They yield different
solutions and even qualitatively different predictions. In this here, we consider the Ito
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calculus for random population growth rate model. The goal of this section is to recall
notations and definition of the Ito integral and stochastic differential equation that are
important for this paper.

Definition 2.1. Let 0 = t0 < t1 < · · · < tN = T be a grid of points on the interval [0, T].
The Ito integral is the limit:

∫ T

0
f(t)dW (t) = lim

4t→0
Σn
i=1f(ti−1)4Wi

where 4Wi = W (ti)−W (ti−1), a step of Brownian motion across the interval.

The differential is a notional convenience, thus, I =
∫ T
0 f(t)dW (t) is expressed in differ-

ential form as dI = fdWt The differential dWt of Brownian motionWt is called white noise.

Definition 2.2. A diffusion process is modeled as a differential equation involving de-
terministic, or drift terms, and stochastic, or diffusion terms, the latter represented by a
wiener process, as in the equation:

dXt = f(t,Xt)dt+ g(t,Xt)dWt, (1)

or the form integral equation is,

Xt = X0 +

∫ T

0
f(s,Xs)ds+

∫ T

0
g(s,Xs)dWs. (2)

The equation (1) is the stochastic differential equation (SDE) and the meaning of the last
integral in (2) is called the Ito integral.

Definition 2.3. A mixture noise may be interpreted as any linear combination of Wiener
processes. The process Xt is a mixture noise if it satisfy the linear additive SDE:

dXt =

n∑

k=1

αkWk(t), Σn
k=1αk = 1, (3)

where, Wk(t) = dBk(t)
dt are one dimensional white noise processes, Bk(t) are the one di-

mensional Brownian motion and αk are constants.

3 Stochastic exponential population growth model with mix-
ture noise

Let N = N(t) be the size at time t ≥ 0 of a population. However, we assume dN
dt be the

total growth rate and to the per capita growth rate at = 1
N

dN
dt simply by growth rate.
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Consider the following simple population growth model:

dN(t)

dt
= a(t)N(t), N(0) = N0, (4)

where, N0 is the initial number at time t = 0 and a(t) is the growth rate at time. If
a(t) = r(t) be the nonrandom function, then N(t) = N0 exp(

∫ t
0 r(s)ds). Now, suppose

that a(t) depends on some random environment effects, i.e. a(t) = r(t)+”mixturenoise”,
where r(t) is a nonrandom function, ” mixture noise”=

∑n
k=1 αkWk(t).

Theorem 3.1. Let

dN(t)

dt
= (r(t) +

n∑

k=1

αk
dBk(t)

dt
)N(t), N(0) = N0 (5)

be stochastic exponential model, then the solution is given by

N(t) = N0 exp(

∫ t

0
[r(s)− 1

2

n∑

k=1

∫ t

0
α2
k(s)]ds+

n∑

k=1

∫ t

0
αk(s)dB(s)) (6)

Proof. See [5].

Theorem 3.2. In (5), if N0 and Bk(t) (k = 1, 2, · · · , n) be independent random variables,
then the expected value and variance of is: E(Nt) = E(N0) exp(

∫ t
0 r(s)ds)

V ar(Nt) = exp(2

∫ t

0
r(s)ds){(V ar(N0) + E2(N0)) exp(

n∑

k=1

∫ t

0
α2(s)ds)− E2(N0)} (7)

Proof. See [5].

4 Confidence interval

Since N(t) is a random process, we can construct an confidence interval for it.

Theorem 4.1. Let α(t) be non-random such that
∫ t
0 α

2(s)ds < ∞.then (1− ε) confidence
interval for N(t) is given by:

D(t) exp(−Z ε
2

√√√√
n∑

k=1

∫ t

0
α2
k(s)ds) ≤ N(t) ≤ D(t) exp(Z ε

2

√√√√
n∑

k=1

∫ t

0
α2
k(s)ds)

D(t) = N0 exp(
∫ t
0 [r(s)− 1

2

∑∫
α2
k(s)]ds).
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Proof. It is easy to see that if α(t) is non-random such that
∫ t
0 α

2(s)ds < ∞ then its Ito

integral Y (t) =
∑n

k=1

∫ t
0 αk(s)dB(s) is a Gaussian process with zero mean and variance

given by
∑n

k=1

∫ t
0 α

2
k(s)ds. So we can rewrite (6) as

N(t) = N0 exp(

∫ t

0
[r(s)− 1

2

∑∫
α2
k(s)]ds. exp(

n∑

k=1

∫ t

0
αk(s)dB(s)).

N(t) = D(t) exp(
∑n

k=1

∫ t
0 αk(s)dB(s)) , D(t) = N0 exp(

∫ t
0 [r(s)− 1

2

∑∫
α2
k(s)]ds).

Thus,
∑n

k=1

∫ t
0 αk(s)dB(s) = ln N(t)

D(t) → N(0,
∑n

k=1

∫ t
0 α

2
k(s)ds).

So we can put:

−Z ε
2

√√√√
n∑

k=1

∫ t

0
α2
k(s)ds ≤ ln

N(t)

D(t)
≤ Z ε

2

√√√√
n∑

k=1

∫ t

0
α2
k(s)ds

We know Zε is the area under the standard normal curve to its right equals ε. So, the
critical region for testing the null hypothesis µ = E(N(t)) = µ0 against the alternative

hypothesis µ 6= µ0 = E(N(0)) is |Z ε
2
| where Z = E(N(t))−µ0√

V ar(N(t))
.

If ε = 0.05, the dividing lines, or critical values, of the criteria are -1.96 and 1.96 for the
two-sided alternatives hypothesis.

Conclusion

we considered the stochastic exponential population growth model. We supposed the noise
in the population growth model be the mixture noise. The expectations and variances of
solutions obtained. However, the confidence interval for the solution of stochastic expo-
nential population growth model obtained.
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Continuous Single-Species Population Model with Delay

Tayebe Waezizadeh∗

Shahid Bahonar University of Kerman

Abstract

In this paper, the logistic equation with two different delay times is considered.
Firstly, consider time delay depends on food resources in population and stability at
equilibrium point is investigated. Secondly, consider delay distributed over time and
the stability conditions at equilibrium point is determined.

Keywords: Dynamical system, logistic equation, Time Delay, Population dynamic

Mathematics Subject Classification [2010]: 37C75, 34D05

1 Introduction

Time delay have been incorporated into biological models to represent resource regener-
ation times. By many researchers such as, Cushing(1977), Gopalsamy(1992) and Kuang
(1993) time delay differential equations in Biology have investigated [3, 4].
Delay differential equations exhibit much more complicated dynamics than ODEs. Since
a time delay could cause a stable equilibrium to become unstable.
In this paper, consider logistic equation for population model. Let r(> 0) be intrinsic
growth rate and K(> 0) be the carry capicity of the population. The logistic model is

dX

dt
= rX(t)(1 − X(t)

K
) (1)

where X(t) is the population size. Set X(t)
K = x(t), so

dx

dt
= rx(t)(1 − x(t)) (2)

In model 2, when x is small, the population grows and when x is large the number of the
species compete with each other for the limit resources. In the above logistic equation,
it is assumed that the growth rate of a population at any time t depends on the relative
number of individuals at time t. But in fact, the population size at time t is not only
dependent at that time but also at time (t − τ), where τ is time delay. Thus the model is

dx

dt
= rx(t)(1 − x(t − τ)) (3)
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In the model 3, τ is constant. But in many species the time delay depends on the rate of
available food. Therefore, we introduce the following model

dx

dt
= rx(t)(1 − x(t − τ(a))) (4)

where a is the rate of available food in population.
in the next section, stability conditions at equilibrium points are investigated.
In the last section, consider delay distributed over time and stability conditions at equi-
librium point is determined.

2 Stability of equilibrium points

Consider, the time delay, τ , is constant, so the logistic equation with discrete delay is

dx

dt
= rx(t)(1 − x(t − τ)) (5)

Notice that equation 5 has equilibrium x = 0 and x = 1. Small perturbation from x = 0
satisfy the linear equation dx

dt = rx, which shows x = 0 is unstable with exponential
growth. Hence we consider the stability of the equilibrium point x = 1.

Theorem 2.1. [1] i) If 0 ≤ rτ < π
2 , then the equilibrium point x = 1 of equation 5 is

asymptotically stable.
ii) If rτ > π

2 , then x = 1 is unstable.

As follow, consider τ is a function of parameter a ( a is the rate of food available in
the population). The logistic equation is

dx

dt
= rx(t)(1 − x(t − τ(a))) (6)

where τ(a) satisfies the following conditions
i) 0 ⩽ τ(a) ⩽ τ0 for some τ0 > 0 (i.e. τ is a bounded map).
ii) τ is deceasing function.
By above explains, we can see easily x = 0 is unstable. Now consider the stability of
equilibrium point x = 1. Let X = x − 1. Then

dX

dt
= −rX(t)X(t − τ(a)) − rX(t − τ(a)). (7)

The linearized equation is
dX

dt
= −rX(t − τ(a)). (8)

We look for solutions of the form X(t) = ceλt, where c is constant and the eigenvalues λ
are solutions of the characteristic equation

λ + re−λτ(a) = 0. (9)

Set λ = µ+ iν. Separating the real and imaginary parts of characteristic equation, obtain

µ + re−µτ(a)cosντ(a) = 0 (10)
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ν − re−µτ(a)sinντ(a) = 0 (11)

If there is a0 such that τ(a0) = 0, so ν = 0 and µ = −r < 0. Hence x = 1 is asymptotically
stable. In this case, there is not time delay in the population. Therefore the model is the
original logistic equation.
We seek conditions on a such that Reλ changes from negative to positive. By continuity,
there must be some value of a, say a1 at which µ(τ(a1)) = 0.
Set Re λ = µ(τ(a)) = 0, so using equation 10, cosντ(a) = 0. Therefore τ(ak) = 1

r (2kπ +
π
2 ) k = 0, 1, 2, ....

Also by equation 11, ν = re−µτ(ak)sinντ(ak) = r. τ is decreasing function, so dµ
da |a=a1 =

4r2

4+π2
dτ
da |a=a1 < 0. . Hence µ(a) < 0 for all a > a1.

Theorem 2.2. i) If a > a1, then x = 1 is asymptotically stable.
ii) If a < a1, then x = 1 is unstable.

3 Delay distributed over time

More generally, we could assume a delay distributed over time. If the probability that
the delay is between u and u + ∆u is approximately p(u)∆u, when p(u) is nonnegative
function with

∫ ∞
0 p(u)du = 1[1, 2]. Then we are led to the integrodifferential equation

dx

dt
= x(t)

∫ ∞

0
(1 − x(t − u))p(u)du. (12)

Which is transferred by the change of variable t − u = s to the equivalent form

dx

dt
= x(t)

∫ ∞

0
(1 − x(s))p(t − s)ds. (13)

The average time delay will then be
∫ ∞
0 up(u)du. One form of continuous delay frequently

used in population models is

p(u) =
u

T 2
e

−u
T (14)

which is not difficult to verify that
∫ ∞
0 p(u)du = 1 and

∫ ∞
0 up(u)du = 2T . p(u) has a

maximum for u = T .

Definition 3.1. An equilibrium of the differential equation

dx

dt
= x(t)(1 − x(t − T )) (15)

is a value x∞ such that x∞(1 − x∞) = 0, so that x(t) = x∞ is constant solution of
differential equation.

Let u(t) = x(t) − x∞, so

du

dt
= (x∞ + u(t))

∫ ∞

0
(1 − x∞ − u(t − s))p(s)ds. (16)
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Set g(x∞ + u(t − s)) = 1 − x∞ − u(t − s) and using Taylor’s theorem, obtaining

du

dt
= x∞g(x∞) + g(x∞)u(t) + x∞g

′
(x∞)

∫ ∞

0
u(t − s)p(s)ds (17)

we know x∞g(x∞) = 0. Set a = g(x∞) = 1 − x∞ and b = x∞g
′
(x∞) = −x∞. Therefore

du

dt
= au(t) + b

∫ ∞

0
u(t − s)p(s)ds. (18)

The solution is u(t) = ceλt, so the equation 18 is transferred λ = a + b
∫ ∞
0 e−λsp(s)ds =

a + bL{p(s)} and, we know p(s) = s
T 2 e− s

T , so L{p(s)} = 1
(Tλ+1)2

.

Thus, λ = a + b
(Tλ+1)2

and the characteristic equation is

λ3 + a2λ
2 + a1λ − a0 = 0

where a0 = −a+b
T 2 , a1 = 1−2aT

T 2 and a2 = 2−aT
T .

By above discussions, the following theorem is true

Theorem 3.2. If a < 2
5T , then x∞ is asymptotically stable.
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Direct meshless local Petrov-Galerkin (DMLPG) method for

numerical solution of 2D nonlinear Klein-Gordon equation

Ali Shokri

University of Zanjan

Erfan Bahmani∗

University of Zanjan

Abstract

In this paper, we propose a direct meshless local Petrov-Galerkin (DMLPG) method
for solving the 2D nonlinear Klein-Gordon equation. This method is based on a gen-
eralized moving least square and a local weak form of the Klein-Gordon equation.

Keywords: Local weak form, Direct meshless local Petrov-Galerkin (DMLPG) method,
Klein-Gordon equation, Generalized moving least square approximation
Mathematics Subject Classification [2010]: 35Q55, 35J66

1 Introduction

The nonlinear Klein-Gordon (KG) equation is used to model many nonlinear phenomena
such as solid state physics, plasma physics, fluid dynamics, mathematical biology and
chemical kinetics [1]. The 2D nonlinear KG is given by

∂2u

∂t2
+ α∇2u+ ψ(u) = f(x, t), x ∈ Ω ⊂ R2, t ≥ 2 (1)

with the initial and boundary conditions

u(x, t) = g1(x), ut(x, 0) = g2(x), x ∈ Ω, (2)

u(x, t) = uD(x, t), x ∈ ΓD, t > 0, (3)

n(x).∇u = uN (x, t), x ∈ ΓN , t > 0, (4)

where u = u(x, t) shows the wave movement at position x and time t, α is known constant
and ψ is the nonlinear force.The nonlinear KG equation has been solved by several methods
like radial basis functions (RBFs) [1], the boundary integral equation (BIE) and the dual
reciprocity boundary elemement method (DRBEM) [4].

There have been many meshless techniques based on the MLS approximation for the
numerical solution of differential equations in recent years. The Meshless Local Petrov–
Galerkin (MLPG) method is one of the popular meshless methods that has been used very
successfully to solve several types of boundary value problems since the late nineties (see
[2] and refernces therein).

The direct MLPG (DMLPG) technique, using a generalized moving least squares
(GMLS) approximation, was first introduced by Mirzaei and Schaback [2]. In the fol-
lowing, we recall the GMLS approximation in a form very similar to [2].
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2 GMLS approximation

Let u ∈ Cm(Ω), for somem ≥ 0, and let {λj(u)}Nj=1 be a set of continuous linear functionals
from the dual Cm(Ω)∗ of Cm(Ω). For a fixed functional λ ∈ Cm(Ω)∗, the GMLS method

approximates the value of λ(u) from the values {λj(u)}Nj=1. The approximation λ̂(u) of
λ(u) is a linear function of λj(u) as follows

λ̂(u) =

N∑

j=1

aj(λ)λj(u), (5)

and the coefficients aj should be linear in λ. As in the classical MLS, we assume the approx-
imation equation (5) to be exact for a finite dimensional subspace P = span{p1, p2, . . . , pQ},
in which P is the space of d-variate polynomials of degree at most m.

The GMLS approximation λ̂(u) of λ(u) can also be obtained as λ̂(u) = λ(p∗), where
p∗ ∈ P is minimizing the weighted least-squares error functional

N∑

j=1

(
λj(u)− λj(p)

)2
ωj , (6)

among all p ∈ P and ωj are given non-negative weights. Even if a different numerical
method is used to minimize (6), the optimal solution a∗(λ) ∈ RN can be written as

a∗(λ) = WP T (PWP T )−1λ(p), (7)

where W is the diagonal matrix carrying the weights ωj on its diagonal, P is the N ×Q
matrix of values λj(pk), 1 ≤ j ≤ N, 1 ≤ k ≤ Q, and λ(p) ∈ RQ is the vector with values
λ(p1), . . . , λ(pQ) of λ on the basis of P. It should be noted that the weight function ω in
GMLS depends on functional λ and since all our functionals are finally considered as point
evaluation functionals at point x, we can choose the same ω(x) for all. Moreover, a small
domain Ωj containing xj is associated with node j such that ω(x, xj) equals zero outside
Ωj . In this paper, the Gaussian weight function is used for all computations, which is

ω(x, xj) =





exp
(
−(‖ x− xj ‖2 /c)2

)
− exp

(
−(δ/c)2

)

1− exp (−(δ/c)2)
, 0 ≤‖ x− xj ‖2≤ δ,

0, elsewhere

(8)

where c is a constant controlling the shape of the weight function and δ is the size of the
support domains.

3 Weak form and DMLPG formulation

In meshless methods, everything write entirely in terms of scattered nodes as X =
{x1, x2, . . . , xN} located in the spatial domain Ω and its boundary Γ. In every type of
MLPG methods, a small sub-domain Ωs ⊂ Ω ∪ Γ is chosen around each node such that
integrations over Ωs are comparatively cheap. On these sub-domains, the KG equation
(1) including boundary conditions is stated in the following weak form

∫

Ωs

ν(
∂2u

∂t2
+ α∇2u+ ψ(u)− f)dΩ = 0, (9)
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where ν is an appropriate test function. Applying integration by parts, and using Diver-
gence theorem, we get

∂2

∂t2

∫

Ωs

uνdΩ +

∫

∂Ωs

α
∂u

∂n
νdΓ−

∫

Ωs

α∇uνdΩ =

∫

Ωs

fνdΩ−
∫

Ωs

ψ(u)νdΩ. (10)

The DMLPG method is based on the local weak form (10). All integrals in (10) can be
approximated by GMLS method as

λ1,k(u) :=

∫

Ωs

uvdΩ ≈ λ̂1,k(u) =
∑N

j=1 a1,j(xk)u(xj), (11)

λ2,k(u) := −
∫

Ωs

k∇u.∇vΩ ≈ λ̂2,k(u) =
∑N

j=1 a2,j(xk)u(xj), (12)

λ3,k(u) :=

∫

∂Ωs

α
∂u

∂n
vdΓ ≈ λ̂3,k(u) =

∑N
j=1 a3,j(xk)u(xj). (13)

Now, we have the following time-dependent system

A(1) ∂
2

∂t2
u(t) +A(`)u(t) = b(t), ` = 2 or 3 (14)

where u(t) =
(
u(x1, t), . . . , u(xN , t)

)T ∈ RN is the time-dependent vector of nodal values,
and b(t) is the collection of right-hand sides with components

bk(t) =

∫

Ωs

f(x, t)νdΩ−
∫

Ωs

ψ(u)νdΩ−
∫

∂Ωs∩ΓN

αuN (x, t)νdΓ, (15)

and A
(`)
kj = a`,j(xk), ` = 1, 2, 3. The k-th row of A(`) is

a
(`)
k = WP T (PWP T )−1λ`,k(p) (16)

where

λ1,k(P) =
[ ∫

Ωs

p1vdΩ,

∫

Ωs

p2vdΩ, · · · ,
∫

Ωs

pQvdΩ
]T
, (17)

λ2,k(P) = −
[ ∫

Ωs

α∇p1.∇vdΩ,

∫

Ωs

α∇p2.∇vdΩ, · · · ,
∫

Ωs

α∇pQ.∇vdΩ
]T
, (18)

λ3,k(P) =
[ ∫

∂Ωs

α
∂p1

∂n
vdΓ,

∫

∂Ωs

α
∂p2

∂n
vdΓ, · · · ,

∫

∂Ωs

α
∂pQ
∂n

vdΓ
]T
. (19)

In DMLPG1, where we used in this paper, the (19) can be omitted because of the test
function ν vanishes on the ∂Ωs. To discretize the time derivative in (14), we consider the
following finite difference approximations

∂2

∂t2
u(t) ' 1

(dt)2

[
u(k+1) − 2u(k) + u(k−1)

]
, (20)

u(t) ' 1

3

[
u(k+1) + u(k) + u(k−1)

]
, b(t) ' 1

2

[
b(k+1) + b(k)

]
(21)

where u(k) = u(kdt). By using of (20)-(21), system (14) can be written as

(
A(1) + ξA(`)

)
u(k+1) =

(
2A(1)− ξA(`)

)
u(k)−

(
A(1) + ξA(`)

)
u(k−1) +

1

2

(
b(k+1) +B(k)

)
, (22)

where ξ = (dt)2/3.
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4 Numerical results

Consider the nonlinear 2D KG equation with ψ = u2 − 2u and α = 1 in the domain
Ω = [0, π]× [0, π]. The exact solution is

u(x, y, t) = sin(x)sin(y)cosh(t). (23)

The initial conditions and right-hand side function f are obtained from the exact solution
and the boundary conditions are chosen as Dirichlet type. The L∞ and RMS errors and
CPU times are obtained in Table 1 at t = 1, 2, 3s with dt = 0.01 on the 33 × 33 nodes.
The numerical results demonstrate the good accuracy of this scheme.

Table 1: L∞ and RMS errors, and CPU times.

t L∞ − error RMSerror CPU time

1 3.1505× 10−3 1.4085× 10−3 9.8s
2 1.9693× 10−2 9.6031× 10−3 18.4s
3 4.9913× 10−2 2.4856× 10−2 27.7s
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Discrete mollification method and its application to solving

backward nonlinear cauchy problem

Soheila Bodaghi∗

K. N. Toosi University of Technology

Ali Zakeri

K. N. Toosi University of Technology

Abstract

In this article a nonlinear backward cauchy problem consisting of two unknown
functions is considered. A space marching algorithm based on discrete mollification
method is presented to solve this problem. Finally we illustrate some numerical ex-
amples to show efficiency of the proposed method.

Keywords: Nonlinear backward cauchy problem, Space marching algorithm, Discrete
mollification

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Consider a nonlinear backward inverse problem governed by

∂u

∂t
=

∂

∂x
((a(x) + b(x)u2)

∂u

∂x
) + f(x, t); 0 < x < 1, 0 < t < T, (1)

u(x, T ) = φ(x); 0 ≤ x ≤ 1, (2)

u(0, t) = g1(t); 0 ≤ t ≤ T, (3)

ux(0, t) = g2(t); 0 ≤ t ≤ T, (4)

where f(x,t), a(x) > 0, b(x), φ(x), g1(t) and g2(t) are known.We are going to determine
u(x, t) and u(x, 0) satisfying (1)-(4). Now, we add random noise ,with maximum level of ε,
in the initial data φ(x), g1(t) and g2(t). These noisy data are represented by φε(x), gε

1(t) and
gε
2(t) ,respectively. The particular difficulty of the backward problem is its ill-possedness,

on the other hand since we have noise in the problem’s data so should first regularize this
problem by discrete mollification method [2]. The stabilized problem is described as

∂v

∂t
=

∂

∂x
[(a(x) + b(x)v2)

∂v

∂x
] + f(x, t); 0 < x < 1, 0 < t < T, (5)

v(x, T ) = Jδ1φ
ε(x); 0 ≤ x ≤ 1, (6)

v(0, t) = Jδ2g
ε
1(t); 0 ≤ t ≤ T, (7)
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vx(0, t) = Jδ3g
ε
2(t); 0 ≤ t ≤ T. (8)

Where Jδg
ε
1(t) is discrete mollification of gε

1(t) with respect to t,which is defined by [2]

Jδg
ε
1(t) =

N∑

j=0

(

∫ sj+1

sj

ρδ(t − s)ds)gε
1(tj),

ρδ,p(t) and sj are defined as follows

ρδ,p(t) =

{
Apδ

−1 exp(− t2

δ2 ), |t| ≤ pδ
0 |t| > pδ

sj =
tj + tj+1

2
, j = 1, .., N − 1

s0 = 0, sN = 1

such that Ap = (
∫ p
−p exp(−s2)ds)−1. We usually take p=3.

The mollification parameters δ1, δ2 and δ3 are selected automatically by GCV method [4].
Stability and consistency properties of the discrete mollification are stated and proved in
[2]. Now, we implement a space marching finite difference method on problem (5)-(8) to
find v(x, t) which satisfy in this problem. Let h = 1/M, k = 1/N be the parameters of finite
difference discretization, xj = jh, j = 0, .., M and tn = nk, n = 0, .., N . The computed
approximations of the v(jh, nk), vt(jh, nk), vx(jh, nk), f(jh, nk), a(jh), b(jh) are denoted
by Un

j ,Wn
j , Rn

j , fn
j , aj , bj respectively. The space marching scheme for this problem is

Un
j+1 = Un

j + hRn
j , (9)

Rn
j+1 =

1

aj+1 + bj+1(Un
j+1)

2 ((aj + bj(U
n
j )2)Rn

j + h(Wn
j − Fn

j )), (10)

Wn
j+1 = Wn

j + hDt(JδR
n
j ). (11)

2 Main results

Example 2.1. In this section by illustrating a numerical example, the role of mollification
in stabilization of the problem is investigated. Consider the function

u(x, t) = x(t + 1)ex

as exact solution of problem (1)-(4) with

a(x) = 3x2e2x,

b(x) = 1,

φ(x) = xex,

g1(t) = 2t,

and
g2(t) = et.

In this example we take ε = 0.1 ,h=1/50, k=1/50, p=3.
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Table 1: Numerical result for u(x,t)

t Exact solution u(x,0.5) computed solution u(x,0.5) with mollification

0.2 0.989233 0.945873
0.4 1.15460 1.08744
0.6 1.31898 1.23065
0.8 1.48385 1.37885

0.2 0.4 0.6 0.8 1.0

1.2

1.4

1.6

Figure 1: Exact solution u(x,t) at x=0.5

0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

(a) Computed solution with mollification

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

1.5

2.0

(b) computed solution without mollifica-
tion

Figure 2: Computed solution u(x,t) at x=0.5 with and without mollification with space
marching algorithm.
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Dynamic analysis of a fractional-order prey-predator model

Zohreh Sadeghi∗

Shahrekord University

Reza Khoshsiar

Shahrekord University

Abstract

In this paper, we introduce a fractional-order prey-predator model. First we obtain
equilibrium point of the system, and determine stability and dynamical behaviors of
the equilibria of this system. Dynamical behaviors is investigated from the point of
view of local stability. Further by numerical solution of the fractional system and
numerical simulation, we reveal more dynamical behaviors of the model.

Keywords: Fractional Prey-predator model, Stability of equilibrium, Dynamical be-
havior

Mathematics Subject Classification [2010]: 34A08

1 Introduction and Preliminaries

In this paper we consider a planar autonomous differential equation introduced in [3]. This
model which is a prey-predator interaction is define as follows:





dx

dt
= (1 − x

k
) − βyx

1 + ax
dy

dt
= −γy +

cβyx

1 + ax

(1)

Where x, y denote prey and predator population respectively at any time t, and α, k, γ,
β, a, c are all positive constants. α represent the intrinsic growth rate and k the carrying
capacity of the prey; γ is death rate of the predator; β/a is the maximum number of
prey that can eaten by each predator in unit time; 1/a is the density of prey necessary to
achieve one half that rate; c is the conversion factor denoting the number of newly born
predator for each captured prey.

This paper extends the above model by incorporating a refuge protecting mx of the
prey, where m ∈ [0, 1) is constant. This leaves (1 − m)x of the prey available to the
predator, and modifying system(1) as follow:





dx

dt
= (1 − x

k
) − β(1 − m)yx

1 + a(1 − m)x
dy

dt
= −γy +

cβ(1 − m)yx

1 + a(1 − m)x

(2)
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We introduce the fractional order derivative of this model by Caputo-type derivative to
obtain the following fractional order system:





dnx

dtn
= (1 − x

k
) − β(1 − m)yx

1 + a(1 − m)x
dny

dtn
= −γy +

cβ(1 − m)yx

1 + a(1 − m)x

(3)

2 Dynamic behavior

Theorem 2.1. [1]. The autonomous system dnx
dtn = Ax, x(0) = x0, with 0 < n ≤ 1,

x ∈ Rn, is asymptotically stable if and only if | arg(λi)| > θπ
2 is satisfied for all eigenvalues

of matrix A. Also this system is stable if and only if | arg(λi)| ≥ θπ
2 is satisfied for all

eigenvalues of matrix A whit those critical eigenvalues satisfying | arg(λi)| = nπ
2 having

geometric multiplicity of one.

Theorem 2.2. [2]. consider the following commensurate fractional-order system: dnx
dtn =

f(x), x(0)=0, with 0 < n ≤ 1, x ∈ Rn, the equilibrium of the system (3) are calculated
by solving the following equation: f(x) = 0 .this point are locally asymptotically stable if
all eigenvalues of the jacobian matrix J = ∂f

∂x evaluated at the equilibrium point satisfy:
| arg(λi)| > nπ

2 .

The system has three equilibrium; P0(0, 0), P1(k, 0), P2(x
∗, y∗) where:

x∗ =
γ

(cβ − γa)(1 − m)
, y∗ =

ac

k
[
k(cβ − γa)(1 − m) − γ

(cβ − γa)(1 − m)2
].

3 Numerical simulation

In order to solve (3), we use a numerical method introduce by Atanackovic and Stankovic
[4] to solve the linear fractional differential equation. For a function f(t), the Caputo
derivative of order n with 0 < n ≤ 1 may be expressed as follow:

Dnf(t) ≃ 1

Γ(2 − n)
×

{ f (1)(t)

tn−1
[1+

M∑

p=1

Γ(p − 1 + n)

Γ(n − 1)p
]−[

n − 1

tn
f(t)+

M∑

p=2

Γ(p − 1 + n)

Γ(n − 1)(p − 1)!
(
f(t)

tn
+

vp(f)(t)

tp−1+n
)]}, (4)

Where
d

dt
vp(f) = −(p − 1)tp−2f(t), p = 2, ..., M. (5)

We can rewrite Eq.(4) as follow:

Dnf(t) ≃ Ω(n, t, M)f (1)(t) + Φ(n, t, M)f(t) +

M∑

p=2

A(n, t, M)
vp(f)(t)

tp−1+n
, (6)

Where

Ω(n, t,M) =
1 +

∑M
p=1

Γ(p−1+n)
Γ(n−1)p!

γ(2 − n)tn−1
, R(n, t) =

1 − n

tnΓ(2 − n)
, (7)
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A(n, t, p) = − Γ(p − 1 + n)

Γ(2 − n)Γ(n − 1)p!
, Φ(n, t,m) = R(n, t) +

M∑

p=2

A(n, t, M)

tn
. (8)

We set vp(x)(t) = wp(t), vp(y)(t) = up(t), p = 2, 3....
We use (4) and (6) and rewrite system (3) as a system of ordinary differential equation

and solve this system by Rung-Kutta method of order fourth.

Figure 1: Phase portrait of system (3), for n=0.99, 0.85 and m=0.1.

Figure 2: Phase portrait of system (3), for n=0.95, 0.9 and m=0.3.

Figure 3: Phase portrait of system (3), for n=.99 and n=.91.
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Figure 4: Numerical values x(t), y(t) of system(3) for n=0.95 and m=0.4, 0.3.

The values of constant parameters are M = 5, δ = 0.01, α = 10, k = 100, a = 0.02,
γ = 0.09, β = 0.6, c = 0.02 and in fig.1 (I) m = 0.1, x0 = 9.8, y0 = 19.65 free parameters
are n = 0.99, .85. In fig.1 (II) m = 0.3, x0 = 12.6,y0 = 24.5 and free parameters are
n = 0.95, .9. In fig.2 initial conditions are x0 = 12.6, y0 = 24.5, x0 = 17.65, y0 = 32.3,
x0 = 9.8, y0 = 19.65, x0 = 13, y0 = 25.09 and free parameters are (a) m = 0.3, n = 0.99.
(b) m = 0.3, n = 0.91. In fig.4 n = 0.95, x0 = 12.6, y0 = 24.5 and free parameters are
m = 0.3, 0.4.
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Existence and uniqueness of the mild solution for fuzzy

fractional semilinear initial value problems

Monir Mirvakili∗

Payame Noor University

Marziyeh Alinezhad

Payame Noor University

Tofigh Allahviranloo

Islamic Azad University

Abstract

In this paper we will study the existence and uniqueness of mild solution for the
fuzzy fractional semilinear initial value problem:

{
uη(t) = Au(t) + f(t, u(t), Gu(t), Su(t)), t > t0, η ∈ (0, 1],
u(t0) = u0,

where f(t, u(t), Gu(t), Su(t)) is a given function that is satisfied in Lipschitz condition
and fuzziness in this fractional problem occurs as a result of fuzzy initial value. To
this aim, we introduce Caputo-differentiability concept and purpose mild solution for
fuzzy fractional differential equation.

Keywords: Fuzzy fractional differential equations, Existence and uniqueness, Caputo-
differentiability, Fuzzy mild solution, Fuzzy-valued function

Mathematics Subject Classification [2010]: 34A12, 94D05, 34A08

1 Introduction

The importance and popularity of fractional differential equations have been increased
during the recent decades, mainly due to its widespread use in numerous variety fields of
science and engineering. The existence and uniqueness of the crisp mild solution for the
fractional semilinear initial value functions have been studied before, [3], [4]. Since a little
uncertainty in data such as uncertainty in the initial value or ambiguity in function as a
result of vagueness in one of its constant elements, can change the crisp case of fractional
differential equation to fuzzy one, recently fuzzy fractional differential equation has been
also regarded, so the existence and uniqueness of solution for this type of equations must
be considered. In this paper, we study the existence and uniqueness of mild solution
for the fuzzy fractional semilinear initial value problem. To this regards, the uniqueness
and existence of the mild solution for fuzzy fractional semilinear initial value problems is
proved.
The fuzzy semilinear initial value problem of non-integer order which is considered here is

{
uη(t) = Au(t) + f(t, u(t), Gu(t), Su(t)), t > t0, η ∈ (0, 1],
u(t0) = u0,

(1)
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where, A is the generator of strongly semigroup {T (t), t ≥ 0} on Banach space E and
f : [t0, T ]× E × E × E → E is continuous in t and f satisfies the following condition:
d(f(t, u(t), Gu(t), Su(t), f(t, v(t), Gv(t), Sv(t))) ≤ L1(t)d(u, v)+L2(t)d(Gu,Gv)+L3(t)d(Su, Sv)
and

Gu(t) =

∫ t

t0

K(t, s)u(s) ds, K ∈ C[D,R+], Su(t) =

∫ t

t0

H(t, s)u(s) ds, H ∈ C[D,R+]

where
D = {(t, s) ∈ R2; 0 ≤ s ≤ T} D0 = {(t, s) ∈ R2 : 0 ≤ t, s ≤ T}

2 Fuzzy fractional semilinear initial value problem

Consider the fuzzy semilinear initial value problem (1), here we purpose the mild solution
for fuzzy fractional semilinear initial value problem by using the definition of its crisp case
[3], [4].

Definition 2.1. A continuous fuzzy solution u(t) of the integral equation

u(t) = T (t− t0)u0 +
1

Γ(η)

∫ t

t0

(t− s)η−1T (t− s)f(s, u(s), Gu(s), Su(s)) ds (2)

will be called a mild solution of the initial value problem (1), if u is C [(i)−η]-differentiable
and if u is C [(ii)− η]-differentiable the mild solution is

u(t) = T (t− t0)u0 	 (−1)
1

Γ(η)

∫ t

t0

(t− s)η−1T (t− s)f(s, u(s), Gu(s), Su(s)) ds (3)

Here we need to use the Caputo-differentiability, so the following theorem is presented.

Theorem 2.2. Let f : (a, b) → E and x0 ∈ (a, b), 0 < η < 1 such that for all 0 ≤ α < 1
then
(1) If f(x) be a C [(i)−η)]-differentiable then

(
cDη

a+
f
)

(x0, α) =
[
cDη

a+
f(x0, α),cDη

a+
f̄(x0, α)

]

(2) If f(x) be a C [(ii)−η)]-differentiable then
(
cDη

a+
f
)

(x0, α) =
[
cDη

a+
f̄(x0, α),cDη

a+
f(x0, α)

]

where cDη
a+
f(x0, α) = 1

Γ(1−η)

∫ x0
a (x0 − t)−ηf ′(t, α) dt

and cDη
a+
f̄(x0, α) = 1

Γ(1−η)

∫ x0
a (x0 − t)−ηf̄ ′(t, α) dt

Proof. See [2].

Lemma 2.3. The initial value problem (1) is equivalent to the nonlinear integral equation

u(t) = u0+
1

Γ(η)

∫ t

t0

(t−s)η−1Au(s) ds+
1

Γ(η)

∫ t

t0

(t−s)η−1T (t−s)f(s, u(s), Gu(s), Su(s)) ds

(4)
for case C [(i)− η)]-differentiability, and we have

u(t) = u0	(−1)

(
1

Γ(η)

∫ t

t0

(t− s)η−1Au(s) ds+
1

Γ(η)

∫ t

t0

(t− s)η−1T (t− s)f(s, u(s), Gu(s), Su(s)) ds

)

(5)
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for case C [(ii)− η]-differentiablity, where 0 ≤ t0 < t ≤ t0 + a and provided that the men-
tioned Hukuhara differences exists. In other words, every solution of the integral equation
(4) or (5) is also solution of our original initial value problem (1) and vice versa.

Proof. The above theorem can be proved using the definition (2.1) and theorem (2.2).

3 The main result

In this section we shall prove our main result. We prove a theorem concerned with the
existence and uniqueness of mild solution for the semilinear initial value problem (1),
which was proved for non-fuzzy case [3].

Lemma 3.1. let u(t) and v(t) be fuzzy functions and f(t) be a crisp function, then we
have d(f(t)u(t), f(t)v(t) = ‖f(t)‖d(u(t), v(t))

Proof. By defining the differential value it will be proved easily.

Theorem 3.2. Let f : [t0, T ]×E×E×E → E be continuous in t ∈ [t0, T ] and uniformly
Lipschitz continuous (with constant L) on E0 if A is generator of strongly continuous
semigroup T (t); t ≥ 0 on E then for every u0 ∈ E, the initial value problem (1) has a
unique mild solution u ∈ C([t0, T ], E).

Proof. Let u0 ∈ E be fixed. We define a mapping F : C([t0, T ], E)→ C([t0, T ], E) by

(Fu)(t) = T (t−t0)u0+
1

Γ(η)

∫ t

t0

(t−s)η−1T (t−s)f(s, u(s), Gu(s), Su(s)) ds, t0 ≤ t ≤ T.

Now we show that F is contraction. For u, v ∈ C([t0, T ], E) it follows from the definition
of F that
d((Fu)(t), (Fv)(t)) = d(T (t− t0)u0 + 1

Γ(η)

∫ t
t0

(t−s)η−1T (t−s)f(s, u(s), Gu(s), Su(s)) ds =

d(T (t−t0)u0+ 1
Γ(η)

∫ t
t0

(t−s)η−1T (t−s)f(s, u,Gu, Suds, T (t−t0)u0+ 1
Γ(η)

∫ t
t0

(t−s)η−1T (t−
s)f(s, v,Gv, Sv) ds)
= d( 1

Γ(η)

∫ t
t0

(t−s)η−1T (t−s)f(s, u(s), Gu(s), Su(s)) ds, 1
Γ(η)

∫ t
t0

(t−s)η−1T (t−s)f(s, v(s), Gv(s), Sv(s)) ds)

≤ M
Γ(η)

∫ t
t0
‖(t− s)η−1‖(L1(s)d(u, v) + L2(s)d(Gu(s), Gv(s)) + L3(s)d(Su(s), Sv(s))) ds

Now
M

Γ(η)

∫ t
t0
‖(t−s)η−1‖L2(s)d(Gu(s), Gv(s)) ds ≤ M

Γ(η)

∫ t
t0
‖(t−s)η−1‖L2(s)

∫ t
t0
‖K(s, z)‖d(u(z), v(z)) dz ds

≤ M
Γ(η)

∫ t
t0
‖(t− s)η−1‖L2(s)d(u(s), v(s))

∫ t
t0
‖K(s, z)‖ dz ds

≤ M
Γ(η)

∫ t
t0
‖(t− s)η−1‖L2(s)d(u(s), v(s))K∗ ds ≤MK∗IηL2(t)d(u, v)

Similarly

M

Γ(η)

∫ t

t0

‖(t− s)η−1‖L3(s)d(Su(s), Sv(s)) ds ≤MH∗IηL3(t)d(u(s), v(s)),

M

Γ(η)

∫ t

t0

‖(t− s)η−1‖L1(s)d(u(s), v(s)) ds ≤MIηL1(t)d(u(s), v(s))

then we have d((Fu)(t), (Fv)(t)) ≤ MIηL1(t)d(u(s), v(s)) + MK∗IηL2(t)d(u(s), v(s)) +
MHIηL3(t)d(u(s), v(s)) ≤MIηL(t)d(u(s), v(s))(1 +K∗ +H∗) ≤ d(u(s), v(s))
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Therefore, F is a contraction operator on C([t0, T ], E) and has a fixed point Fu(t) = u(t).
Hence the initial value problem (1) has a solution.
This fixed point is the desired solution of the integral equation

u(t) = T (t− t0)u0 +
1

Γ(α)

∫ t

t0

(t− s)η−1T (t− s)F (s, u(s), Gu(s), Su(s)) ds

To prove the uniqueness of u(t) let v(t) be another mild solution of (1) with the initial
value v0 then

d(u(t), v(t)) ≤ d(T (t− t0)u0, T (t− t0)v0)

+
1

Γ(η)

∫ t

t0

‖(t− s)η−1T (t− s)‖d(f(s, u(s), Gu(s), Su(s)), f(s, v(s), Gv(s), Sv(s))) ds

and based on Gronwalls inequality we get d(u(t), v(t)) ≤MeML(T−t0)d(u0, v0) which yields
the uniqueness of u(t). We proved this for case C [(i) − η)]-differentiability of u, if u be
C [(i)− η)]-differentiable we define mapping F as follow:

(Fu)(t) = T (t− t0)u0 	 (−1)(
1

Γ(η)

∫ t

t0

(t− s)η−1T (t− s)f(s, u(s), Gu(s), Su(s)) ds)

and the proof is similar to the pervious case.

4 Conclusion

For solving real problems, which is formulated with fuzzy fractional differential equation,
with numerical methods, we need to know the existence of solution. To this regard, in
this paper we study the existence and uniqueness of the mild solution for fuzzy fractional
semilinear initial value problems, which is proved in crisp case later.
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Existence of infinitely many solutions for coupled system of

Schrödinger-Maxwell’s equations

Gholamreza Karamali∗
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Morteza Koozehgar Kalleji

Shahid Sattari Aeronautical University of Science and Technology

Abstract

In this paper we study the existence of infinitely many large energy solutions for the
coupled system of Schrödinger-Maxwell’s equations via the Fountain theorem under
Cerami condition. More precisely, we consider the More general case and weaken
conditions with respect to [2].

Keywords: SchrödingerMaxwell system ,Cerami condition,Variational methods, Strongly
indefinite functionals.

Mathematics Subject Classification [2010]: 35Pxx, 46Txx

1 Introduction

In this paper, we study the nonlinear coupled system of Schrödinger-Maxwell’s equations





−∆u+ V (x)u+ φu = Hv(x, u, v) in R3

−∆φ = u2 in R3

−∆v + V (x)v + ψv = Hu(x, u, v) in R3

−∆ψ = v2 in R3,

(1)

where V ∈ C(R3,R) and H ∈ C1(R3,R) which are satisfied in some suitable conditions. In
the classical model, the interaction of a charge particle with an electromagnetic field can
be described by the nonlinear Schrödinger-Maxwell’s equations. In this article, we want to
study the interaction of two charge particles Simultaneously with same potential function
V (x) and different scalar potential φ and ψ which are satisfied in suitable conditions. More
precisely, we have to solve the system 1 if we want to find electrostatic-type solutions.

Existence of solutions are obtained via Fountain theorem in critical point theory. More
precisely, in this paper we consider the more general case and weaken the condition of V1
in [2] and we assume that the potential V is non-periodic and sing changing. We assume
the following conditions :
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V ∗1 ) V ∈ C(R3,R) and there exists some M > 0 such that the set ΩM = {x ∈
R3 ; V (x) ≤M} is not nonempty and has finite Lebesgue measure.

H1) H ∈ C1(R3 × R2,R) and for some 2 < p < 2∗ = 6, and M1,M2 > 0,

|Hu(x, u, v)| ≤M1|u|+M1|u|p−1 and |Hv(x, u, v)| ≤M2|v|+M2|v|p−1,

for a.e x ∈ R3 and u, v : R3 → R, and also

lim
u→0

Hu(x, u, v)

u
= 0 and lim

u→0

Hv(x, u, v)

v
= 0,

uniformly for x ∈ R3 and u, v ∈ R.
H2) lim

|(u,v)|→∞
H(x,u,v)
|(u,v)|4 = +∞, uniformly in x ∈ R3 and (u, v) ∈ R2 and

H(x, 0, 0) = 0, H(x, u, v) ≥ 0

for all (x, u, v) ∈ R3 × R× R.
H3) There exists a constant θ ≥ 1 such that

θĤ(x, u, v) ≥ Ĥ(x, su, sv)

for all x ∈ R3, (u, v) ∈ R2 and t, s ∈ [0, 1], where

Ĥ(x, u, v) = Hu(x, tu, v)tu+Hv(x, u, sv)sv − 4H(x, tu, sv).

H4) H(x,−u, v) = H(x, u, v) and H(x, u,−v) = H(x, u, v) for all x ∈ R3 and (u, v) ∈
R2.
Here, we express the Cerami condition which was established by G. Cerami in [1]

Definition 1.1. Suppose that functional I is C1 and c ∈ R, if any sequence {un} satisfying
I(un)→ c and (1 + ‖un‖)I ′(un)→ 0 has a convergence subsequence, we say the I satisfies
Cerami condition at the level c.

To approach the main result, we need the following critical point theorem.

Theorem 1.2. (Fountain theorem under Cerami condition) Let X be a Banach space
with the norm ‖.‖ and let Xj be a sequence of subspace of X with dimXj < ∞ for any
j ∈ N. Further, X = ⊕j∈NXj, the closure of the direct sum of all Xj . Set Wk = ⊕kj=0Xj ,

Zk⊕∞j=kXj . Consider an even functional I ∈ C1(X,R), that is , I(−u) = I(u) for any
u ∈ X. Also suppose that for any k ∈ N, there exist ρk > rk > 0 such that

I1) ak := maxu∈Wk,‖u‖=ρk I(u) ≤ 0,
I2) bk := infu∈Zk,‖u‖=rk I(u)→ +∞ as k →∞,
I3) the Cerami condition holds at any level c > 0. Then the functional I has an

unbounded sequence of critical values.
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2 Main results

Now, we consider the function space

E := {u ∈ H1(R3) |
∫

R3

|∇u|2 + u2dx <∞}.

Then E is Hilbert space with the inner product

(u, v)E :=

∫

R3

(∇u.∇v + V (x)uv)dx (2)

and the norm ‖u‖E := (u, u)
1
2
E . We set

XE := E × E, YHD := H1(R3)×D1,2(R3) and ZED := E ×D1,2(R3).

Hence , we can define an inner product on XE as

((u, v)(w, z))XE := (u,w)E + (v, z)E (3)

and the corresponding norm on XE by this inner product as following

‖(u, v)‖XE := (‖u‖2E + ‖v‖2E)
1
2 = ((u, u)E + (v, v)E)

1
2 . (4)

Proposition 2.1. The following statements are equivalent :
i) ((u, φu), (v, ψv)) ∈ ZED × ZED is a critical point of J ;
ii) (u, v) is a critical point of functional I and (φ, ψ) = (φu, ψv).

Proposition 2.2. under the conditions H1−H3, the functional I(u, v) satisfies the Cerami
condition at any positive level.

Now, our main result is the following :

Theorem 2.3. Let V ∗1 , H1 − H4 be satisfied. Then the system 1 has infinitely many
solutions {((uk, φk), (vk, ψk))} in product space YHD × YHD (see section 2)which satisfies
in

1

2

∫

R3

[ |∇uk|2 + |∇vk|2 + V (x)(u2k + v2k) ]dx− 1

4

∫

R3

[ |∇φk|2 + |∇ψk|2 ]dx

+
1

2

∫

R3

[ φku
2
k + ψkv

2
k ]dx−

∫

R3

H(x, u, v)dx→ +∞.
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Existence results for a k-dimensional system of multi-term

fractional integro-differential equations with anti-periodic

boundary value problems

Sayyedeh Zahra Nazemi∗

Azarbaidjan Shahid Madani University

Abstract

In this paper, we establish the existence and uniqueness of solutions for a k-
dimensional system of multi-term fractional integro-differential equations with an-
tiperiodic boundary conditions by applying some standard fixed point results. We
include an example to show the applicability of our results.

Keywords: Caputo fractional derivative, k-dimensional system, fractional integro-
differential equations, Fixed point

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Fractional differential and integro-differential equations have been proved that they are
very valued tools in the modeling of many phenomena in various fields of science and en-
gineering, such as, viscoelasticity, electrochemistry, electromagnetism, economics, optimal
control and so forth. Anti-periodic boundary value problems occur in the mathematical
modeling of a variety of physical processes (see for example, [1], [2]). The study of a
coupled system of fractional differential equations is also very significant because this kind
of system can often occur in applications (see for example, [3], [4]).

Let T > 0 and I = [0, T ]. In this paper, we study the existence and uniqueness of so-
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lutions for the k-dimensional system of multi-term fractional integro-differential equations





cDα1x1(t) = f1

(
t, x1(t), x2(t), . . . , xk(t), ϕ11x1(t), ϕ12x2(t), . . . , ϕ1kxk(t),

cDµ11x1(t),
c Dµ12x2(t), . . . ,

c Dµ1kxk(t),
c Dβ11x1(t),

c Dβ12x2(t), . . . ,
c Dβ1kxk(t)

)
,

cDα2x2(t) = f2

(
t, x1(t), x2(t), . . . , xk(t), ϕ21x1(t), ϕ22x2(t), . . . , ϕ2kxk(t),

cDµ21x1(t),
c Dµ22x2(t), . . . ,

c Dµ2kxk(t),
c Dβ21x1(t),

c Dβ22x2(t), . . . ,
c Dβ2kxk(t)

)
,

...

cDαkxk(t) = fk

(
t, x1(t), x2(t), . . . , xk(t), ϕk1x1(t), ϕk2x2(t), . . . , ϕkkxk(t),

cDµk1x1(t),
c Dµk2x2(t), . . . ,

c Dµkkxk(t),
c Dβk1x1(t),

c Dβk2x2(t), . . . ,
c Dβkkxk(t)

)
, (t ∈ I),

(1)
with anti-periodic boundary conditions xi(0) = −xi(T ), cDpixi(0) = −cDpixi(T ) and

cDqixi(0) = −cDqixi(T ) for i = 1, 2, . . . , k, where cD denotes the Caputo fractional
derivative, αi ∈ (2, 3], pi, µij ∈ (0, 1), qi, βij ∈ (1, 2) for i, j = 1, 2, . . . , k, (ϕijxj)(t) =∫ t

0
λij(t, s)xj(s)ds and fj ∈ C(I × R4k, R), λij : I × I → [0, ∞) are continuous functions

for all i, j = 1, 2, . . . , k.

2 Preliminaries

In this section we introduce preliminary facts and some basic results, which are used
throughout this paper.

Lemma 2.1. For each y ∈ C([0, T ]), the unique solution of the boundary value problem

{
cDαx(t) = y(t), (t ∈ [0, T ], T > 0, 2 < α ≤ 3)
x(0) = −x(T ), cDpx(0) = −cDpx(T ), cDqx(0) = −cDqx(T ), (0 < p < 1, 1 < q < 2),

is given by x(t) =

∫ T

0
Gα(t, s)y(s)ds, where Gα(t, s) is the Green’s function defined as

Gα(t, s) =





(t−s)α−1− 1
2
(T−s)α−1

Γ(α) + Γ(2−p)(T−2t)(T−s)α−p−1

2Γ(α−p)T 1−p

− [pT 2−4Tt+2(2−p)t2]Γ(3−q)(T−s)α−q−1

4(2−p)Γ(α−q)T 2−q , s ≤ t,

− (T−s)α−1

2Γ(α) + Γ(2−p)(T−2t)(T−s)α−p−1

2Γ(α−p)T 1−p

− [pT 2−4Tt+2(2−p)t2]Γ(3−q)(T−s)α−q−1

4(2−p)Γ(α−q)T 2−q , t ≤ s.
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Theorem 2.2. Let E be a Banach space, T : E −→ E a completely continuous operator.
Suppose that the set V = {u ∈ E : u = µTu, 0 ≤ µ ≤ 1} is bounded. Then T has a fixed
point in E.

We shall use the last two results for solving the problem (1).

3 Main results

Let us introduce the space X = {u(t) : u(t) ∈ C2(I)} endowed with the norm ∥x∥X =
supt∈I |x(t)| + supt∈I |x′(t)| + supt∈I |x′′(t)|. In fact, (X, ∥.∥X) and the product space
(Xk = X × X × · · · × X︸ ︷︷ ︸

k

, ∥.∥∗) endowed with the norm ∥(x1, x2, . . . , xk)∥∗ = ∥x1∥X +

∥x2∥X + · · · + ∥xk∥X are Banach spaces.
For each i = 1, 2, . . . , k, put

Mi =

(
3

2Γ(αi + 1)
+

Γ(2 − pi)

2Γ(αi − pi + 1)
+

(4 − pi)Γ(3 − qi)

4(2 − pi)Γ(αi − qi + 1)

)
Tαi

+

(
1

Γ(αi)
+

Γ(2 − pi)

Γ(αi − pi + 1)
+

Γ(3 − qi)

(2 − pi)Γ(αi − qi + 1)

)
Tαi−1+

(
1

Γ(αi − 1)
+

Γ(3 − qi)

Γ(αi − qi + 1)

)
Tαi−2

and

M = min
1≤j≤k

{
1 −

k∑

i=1

Mi

(
bij + cijλ

0
ij + dij

T 1−µij

Γ(2 − µij)
+ eij

T 2−βij

Γ(3 − βij)

)}
,

where λ0
ij = supt∈I

∣∣∣∣
∫ t

0
λij(t, s)ds

∣∣∣∣ for all i, j = 1, 2, . . . , k.

Define the operator T : Xk −→ Xk by

T (x)(t) =




T1(x)(t)
T2(x)(t)
...
Tk(x)(t)


 ,

where x = (x1, x2, . . . , xk) and

Ti(x)(t) =

∫ T

0
Gαi(t, s)f̃i(s, x(s))ds

for i = 1, 2, . . . , k, where

f̃i(s, x(s)) = fi(s, x1(s), x2(s), . . . , xk(s), ϕi1x1(s), ϕi2x2(s), . . . , ϕikxk(s),

cDµi1x1(s),
c Dµi2x2(s), . . . ,

c Dµikxk(s),
c Dβi1x1(s),

c Dβi2x2(s), . . . ,
c Dβikxk(s)).

Theorem 3.1. The operator T : Xk −→ Xk is completely continuous.
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Theorem 3.2. Assume that there exist positive constants ai > 0, bij ≥ 0, cij ≥ 0, dij ≥ 0,
eij ≥ 0 (i, j = 1, 2, . . . , k) such that

|fi(t, x1, x2, . . . , xk, y1, y2, . . . , yk, z1, z2, . . . , zk, w1, w2, . . . , wk)|

≤ ai +

k∑

j=1

bij |xj | +

k∑

j=1

cij |yj | +

k∑

j=1

dij |zj | +

k∑

j=1

eij |wj |

and
∑k

i=1 Mi

(
bij + cijλ

0
ij + dij

T 1−µij

Γ(2−µij)
+ eij

T 2−βij

Γ(3−βij)

)
< 1 for all xi, yi, zi, wi ∈ R, t ∈ I

and i, j = 1, 2, . . . , k. Then problem (1) has at least one solution.

Theorem 3.3. Suppose that there exist non-negative constants ηij ≥ 0, θij ≥ 0, νij ≥ 0,
ξij ≥ 0 for i, j = 1, 2, . . . , k such that

|fi(t, x1, x2, . . . , xk, y1, y2, . . . , yk, z1, z2, . . . , zk, w1, w2, . . . , wk)

−fi(t, x
′
1, x

′
2, . . . , x

′
k, y

′
1, y

′
2, . . . , y

′
k, z

′
1, z

′
2, . . . , z

′
k, w

′
1, w

′
2, . . . , w

′
k)|

≤
k∑

j=1

ηij |xj − x′
j | +

k∑

j=1

θij |yj − y′
j | +

k∑

j=1

νij |zj − z′
j | +

k∑

j=1

ξij |wj − w′
j |

and
k∑

j=1

ηij +

k∑

j=1

θijλ
0
ij +

k∑

j=1

νij
T 1−µij

Γ(2 − µij)
+

k∑

j=1

ξij
T 2−βij

Γ(3 − βij)
≤ 1

2kMi

for all t ∈ I, xi, yi, zi, wi, x
′
i, y

′
i, z

′
i, w

′
i ∈ R and i = 1, 2, . . . , k. Then the problem (1) has a

unique solution.
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Green’s function for fractional differential equation with

Hilfer derivative

Shiva Eshaghi∗

Shahrekord University

Alireza Ansari

Shahrekord University

Abstract

In this article, as an interpolation between the Reimann-Liouville and Caputo
fractional derivatives (Hilfer fractional derivative), we obtain the associated Green’s
function for the fractional boundary value problem. We use the Laplace transform to
derive the associated Green’s function.

Keywords: Green’s function, Hifer fractional derivative, Caputo fractional derivative,
Reimann-Liouville fractional integral and derivative, Laplace transform.

Mathematics Subject Classification [2010]: 26A33, 44A15, 65M80.

1 Introduction and Preliminaries

Recently Ferreira has obtained the Green’s functions for the fractional boundary value
problems with the Caputo and Reimann-Liouville fractional derivatives and used these
functions for obtaining Lyapunov type inequalities for these problems [1, 2]. In this paper
as generalization, we consider the following fractional boundary value problem including
the Hilfer fractional derivative

Dα,β
a+ y(t) + q(t)y(t) = 0, (1)

with the boundary conditions
y(a) = y(b) = 0, (2)

where 1 < α < 2, 0 ≤ β ≤ 1 and q : [a, b] −→ R is a continuous function. We intend
to change our boundary value problem as an equivalent integral equation. At first, we
consider the Hilfer fractional derivatives and some properties of it.

Definition 1.1. For n− 1 < α < n, the fractional Caputo derivative of order α is defined
as [5]

CDα
a+y(t) = In−αa+ Dn

a+y(t) =
1

Γ(n− α)

∫ t

a
(t− s)n−1−α d

n

dtn
y(u)du, (3)
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where Iαa+ and Dα
a+ are the Reimann-Liouville fractional integral and derivative of order

α, respectively, that are

(
Iαa+y

)
(t) =

1

Γ(α)

∫ t

a

f(u)

(t− u)1−α
dt, α ∈ C,<(α) > 0, (4)

and (
Dα
a+y

)
(t) =

( d
dt

)n(
In−αa+ y

)
(t), α ∈ C,<(α) > 0, n = [<(α)] + 1. (5)

Remark 1.2. The fractional Caputo derivative has the Laplace transform

L{CDα
a+y(t); s} = sαY (s)−

n−1∑

k=0

sα−k−1y(k)(0), n− 1 < α ≤ n, (6)

and the Laplace transform of the fractional Riemann-Liouville integral is

L{Iαa+y(t); s} =
1

sα
Y (s), (7)

where Y (s) is the Laplace transform y(t).

Lemma 1.3. If y(t) ∈ C(a, b) ∩ L(a, b), then

CDα
a+I

α
a+y(t) = y(t). (8)

Also, if y(t) and its fractional derivative of order α > 0 belong to C(a, b) ∩ L(a, b), then
for cj ∈ R we have

Iαa+
CDα

a+y(t) = y(t)+c0+c1(t−a)+c2(t−a)2+ . . .+cn(t−a)n−1, n−1 < α ≤ n. (9)

Definition 1.4. (Hilfer derivative) The right-sided fractional derivative Dα,β
a+ and the

left-sided fractional derivative Dα,β
a− of order α and type β are defined by [3, 4]

(
Dα,β
a± f

)
(x) =

(
± Iβ(1−α)a±

d

dx

(
I
(1−β)(1−α)
a± f

))
(x), −∞ ≤ a < t < b ≤ ∞. (10)

The generalization (10), for β = 0 coincides with the Riemann-Liouville derivative (5)
and for β = 1 coincides with the Caputo derivative (3). From relation (10) we deduce the
following lemma.

Lemma 1.5. Let −∞ ≤ a < t < b ≤ ∞, 0 < α < 1 and 0 ≤ β ≤ 1, then the relation

Dα,β
a+ y(t) = CDα

a+y(t) +
t−αy(a+)

Γ(1− α)
, (11)

is valid between the Hilfer and Caputo fractional derivatives and shows that it is indepen-
dent of parameter β.
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Proof. By using the relation (10) and applying the following relation

Iαa+I
µ
a+ = Iα+µa+ = Iµa+I

α
a+, (12)

we obtain

Dα,β
a+ y(t) =

(
I
β(1−α)
a+

d

dt

(
I
(1−β)(1−α)
a+ y

))
(t)

=
(
I
β(1−α)
a+ I

(1−β)(1−α)
a+

d

dt
y
)

(t) + I
β(1−α)
a+

tβα−β−αy(a+)

Γ(1− β − α+ βα)

= I1−αa+

d

dt
f(t) +

t−αy(a+)

Γ(1− α)
= CDα

a+y(t) +
t−αy(a+)

Γ(1− α)
.

2 Main Theorem

Theorem 2.1. The fractional boundary value problem

Dα,β
a+ y(t) + q(t)y(t) = 0, y(a) = y(b) = 0, (13)

is equivalent to the integral equation

y(t) =

∫ b

a
G(t, u)q(u)y(u)du+

y(a+)

Γ(1− α)

∫ b

a
G(t, u)u−αdu, (14)

where the Green’s function G is given by

G(t, u) =
1

Γ(α)

{ t−a
b−a(b− u)α−1 − (t− u)α−1, a ≤ u ≤ t ≤ b,

t−a
b−a(b− u)α−1, a ≤ t ≤ u ≤ b. (15)

Proof. Applying the relation (11) and using the Lemma (1.3), we have

y(t) = − 1

Γ(α)

∫ t

a
(t− u)α−1q(u)y(u)du

− y(a+)

Γ(α)Γ(1− α)

∫ t

a
(t− u)α−1u−αdu+ c0 + c1(t− a), (16)

where c0 and c1 are real constants. Now, by employing the boundary conditions we can
obtain the coefficients c0 and c1 as follows

y(a) = 0⇔ c0 = 0,

y(b) = 0⇔ c1 =
1

(b− a)Γ(α)

∫ b

a
(b− u)α−1q(u)y(u)du

+
y(a+)

(b− a)Γ(α)Γ(1− α)

∫ b

a
(b− u)α−1u−αdu.
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Therefore, the unique solution of (13) is

y(t) = − 1

Γ(α)

∫ t

a
(t− u)α−1q(u)y(u)du− y(a+)

Γ(α)Γ(1− α)

∫ t

a
(t− u)α−1u−αdu

+
1

(b− a)Γ(α)

∫ b

a
(b− u)α−1(t− a)q(u)y(u)du

+
y(a+)

(b− a)Γ(α)Γ(1− α)

∫ b

a
(b− u)α−1u−α(t− a)du,

or equivalently

y(t) =
1

Γ(α)

∫ t

a

((b− u)α−1

b− a (t− a)− (t− u)α−1
)
q(u)y(u)du

+
1

Γ(α)

∫ b

t

(b− u)α−1

b− a (t− a)q(u)y(u)du

+
y(a+)

Γ(α)Γ(1− α)

∫ t

a

((b− u)α−1

b− a (t− a)− (t− u)α−1
)
u−αdu

+
y(a+)

Γ(α)Γ(1− α)

∫ b

t

(b− u)α−1

b− a (t− a)u−αdu

=

∫ b

a
G(t, u)q(u)y(u)du+

y(a+)

Γ(1− α)

∫ b

a
G(t, u)u−αdu.
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Hopf bifurcation in a general class of delayed BAM neural

networks

Elham Javidmanesh∗

Ferdowsi University of Mashhad

Abstract

In this paper, Hopf bifurcation analysis of delayed BAM neural networks, which
consist of one neuron in the X-layer and other neurons in the Y-layer, will be discussed.
Here, the number of neurons can be chosen arbitrarily. The associated characteristic
equation is studied by classification according to the number of neurons. Numerical
examples are also presented.

Keywords: Hopf bifurcation, Time delay, Characteristic equation

Mathematics Subject Classification [2010]: 34C23, 34K18, 37C75

1 Introduction

Since Hopfield constructed a simplified neural network (NN) model [1], the dynamical
characteristics of artificial neural networks have been applied in many sciences such as
mathematics, physics and computer sciences. As time delays always occur in the signal
transmission, Marcus and Westervelt proposed an NN model with delay [2].

The bidirectional associative memory (BAM) networks were first introduced by Kasko
(see [3]). It is well known that BAM NNs are able to store multiple patterns, but most
of NNs have only one storage pattern or memory pattern. BAM NNs have practical
applications in storing paired patterns or memories and possess the ability of searching
the desired patterns through both forward and backward directions. It should be noted
that periodic solutions can be resulted from the Hopf bifurcation in delay differential
equations. In fact, various local periodic solutions can arise from the different equilibrium
points of BAM NNs by applying Hopf bifurcation technique.

The delayed BAM neural network is described as follows:

{
ẋi(t) = −µixi(t) +

∑m
j=1 cjifi(yj(t − τji)) + Ii (i = 1, 2, . . . , n)

ẏj(t) = −υjyj(t) +
∑n

i=1 dijgj(xi(t − σij)) + Jj (j = 1, 2, . . . , m)
(1)

where cji and dij are the connection weights through the neurons in two layers: the X-layer
and the Y-layer. The stability of internal neuron processes on the X-layer and Y-layer
are described by µi and υj , respectively. On the X-layer, the neurons whose states are
denoted by xi(t) receive the input Ii and the inputs outputted by those neurons in the
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Y-layer via activation function fi, while the similar process happens on the Y-layer. Also,
τji and σij correspond to the finite time delays of neural processing and delivery of signals.
For further details, see [3].

Since the exhaustive analysis of the dynamics of such a large system is complicated,
some authors have studied the dynamical behaviors of simplified forms of (1). For example,
the simplified three-neuron and six-neuron BAM NNs with multiple delays have been
studied in [5, 6]. In [4], we studied a five-neuron model with two neurons in the X-layer
and three neurons in the Y-layer.

In this paper, Hopf bifurcation analysis of the n-neuron BAM neural network with two
time delays will be discussed. In fact, the number of neurons is arbitrary. However, in the
previous works, the authors considered models with a determined number of neurons. To
be more precise, we consider the following general class of delayed BAM neural network:

{
ẋ1(t) = −µ1x1(t) +

∑n−1
j=1 cj1f1(yj(t − τ2)) + I1

ẏj(t) = −υjyj(t) + d1jgj(x1(t − τ1)) + Jj (j = 1, 2, . . . , n − 1)
(2)

whereµ1 > 0, υj > 0(j = 1, 2, . . . , n−1) and cj1, d1j(j = 1, 2, . . . , n−1) are real constants.
The time delay from the X-layer to another Y-layer is τ1, while the time delay from the
Y-layer back to the X-layer is τ2, and there are one neuron in the X-layer and other n-1
neurons in the Y-layer. In the next section, we study Hopf bifurcation on the system (2).
To illustrate our theoretical results, numerical examples are also given.

2 Main results

System (2) can be rewritten as the following equivalent system:





u̇1(t) = −µ1u1(t) + c11f1(u2(t − τ)) + c21f1(u3(t − τ))
+ . . . + c(n−1)1f1(un(t − τ))

u̇2(t) = −υ1u2(t) + d11g1(u1(t))
u̇3(t) = −υ2u3(t) + d12g2(u1(t))

.

.

.
u̇n(t) = −υn−1un(t) + d1(n−1)gn−1(u1(t))

(3)

where u1(t) = x1(t − τ1), u2(t) = y1(t), u3(t) = y2(t), . . ., un(t) = yn−1(t) and τ = τ1 + τ2.
Under the hypothesis

(H1) f1, gj ∈ C1, f1(0) = gj(0) = 0, (j = 1, 2, . . . , n − 1)

the associated characteristic equation is as follows:

det




λ + µ1 −α21e
−λτ −α31e

−λτ . . . −αn1e
−λτ

−α12 λ + υ1 0 . . . 0
−α13 0 λ + υ2 . . . 0

. . . .

. . . .

. . . .
−α1n 0 0 . . . λ + υn−1




= 0,
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where αi1 = c(i−1)1f
′
1(0), α1i = d1(i−1)g

′
i−1(0) for i = 2, . . . , n. It can be rewritten as the

following equation:

λn + a1λ
n−1 + a2λ

n−2 + . . . + an−1λ + an + (b1λ
n−1 + b2λ

n−2 + . . . + bn)e−λτ = 0. (4)

In order to have Hopf bifurcation, we need to study the existence of pure imaginary roots
of (4). Letting λ = iω and substituting this into (4), we have the following four cases:
case I: n = 4k (k ∈ N) , case II: n = 4k − 2 (k ∈ N) , case III: n = 4k − 1 (k ∈ N)
and case IV: n = 4k − 3 (k ∈ N). In each of the above cases, seperating the real and
imaginary parts of (4) and doing some simplifications such as squaring both sides and
adding them up leads to:

zn + p1z
n−1 + p2z

n−2 + . . . + pn−1z + pn = 0 (5)

where z = ω2.

Lemma 2.1. If pn < 0, then equation (5) has at least one positive root.

Proof. Let h(z) = zn + p1z
n−1 + p2z

n−2 + . . . + pn−1z + pn. Since h(0) = pn < 0 and
limz→+∞ h(z) = +∞, it can be resulted that there exists at least one z0 > 0 such that
h(z0) = 0.

Now, we can state the following main theorem:

Theorem 2.2. If pn < 0, then at τ = τ0, Hopf bifurcation occurs in (3) and a family of
periodic solutions bifurcate from the origin.

Proof. By using Lemma 2.1, we are sure that (5) has at least one positive root. Let ω0 =√
z0 where z0 is the positive root of (5). Then, by substituting sinω0τ = ±

√
1 − cos2ω0τ ,

we get an equation that all the coeficients are known except cosω0τ . Thus, τ0 can be
computed. Therefore, by using the Hopf bifurcation theory, the proof is complete.

To illustrate our theoretical results, we consider the following example:

Example 2.3. Consider the following five-neuron BAM neural network model:





ẋ1(t) = −2x1(t) + tanh(y1(t − τ2)) − tanh(y2(t − τ2))
+tanh(y3(t − τ2)) + tanh(y4(t − τ2))

ẏ1(t) = −2y1(t) + tanh(x1(t − τ1))
ẏ2(t) = −y2(t) + tanh(x1(t − τ1))
ẏ3(t) = −0.5y3(t) + tanh(x1(t − τ1))
ẏ4(t) = −y4(t) + tanh(x1(t − τ1))

(6)

In fact, here, n=5 and case IV happens. When τ = τ1 + τ2 passes through the critical
value τ0, Hopf bifurcation occurs and a family of periodic solutions bifurcates from the
origin. See Figure 1, where periodic solutions are given with respect to the five neurons
namely, x1, y1, y2, y3 and y4.
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(a) (b) (c)

(d) (e)

Figure 1: A family of periodic solutions bifurcate from the origin.
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Irreducible Smale spaces

Sarah Saeidi Gholikandi ∗

Tarbiat Modares university

Massoud Amini
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Abstract

Irreducible spaces play an important role in topological dynamical systems. There
exists several equivalent definition for irreducible shift of finit type spaces which are
the simplest Smale spaces. In this paper, we generalize them to Smale spaces and
then get some results about the degree of factor maps on Smale spaces.

Keywords: Degree of factor maps, Irreducible spaces, Shift of finite type, Smale
spaces

Mathematics Subject Classification [2010]: 37B10, 37D99

1 Introduction

1.1 Smale spaces

Definition 1.1. [1] A dynamical system is a pair (X,φ) where X is a topological space
and φ is a homeomorphism of X.

Definition 1.2. [3] A dynamical system (X,φ) is said to be irreducible if, for every
(ordered) pair of non-empty open sets U , V , there is a positive integer N such that
φN (U) ∩ V is non-empty.

Definition 1.3. [3, 4] Suppose that (X,φ) is a compact metric space and φ is a home-
omorphism of X. Then (X,φ) is called a Smale space if there exist constants εX and
0 < λ < 1 and a continuous map from

△εX = {(x, y) ∈ X ×X | d(x, y) ≤ εX }

to X (denoted with [, ]) such that:

B 1 [x, x] = x,
B 2 [x, [y, z]] = [x, z],
B 3 [[x, y], z] = [x, z],
B 4 [φ(x), φ(y)] = [x, y],
C 1 d(φ(x), φ(y)) ≤ λ d(x, y), whenever [x, y] = y,
C 2 d(φ−1(x), φ−1(y) ≤ λ d(x, y), whenever [x, y] = x, whenever both sides of an

equation are defined.
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Examples of Smale spaces include solenoids, substitution tiling spaces, the basic sets
for Smale’s Axiom A systems and shifts of finite type.[3]

Definition 1.4. [3] Two points x and y in X are stably (or unstably) equivalent if

lim
n→+∞

d(φn(x), φn(y)) = 0 (or lim
n→−∞

d(φn(x), φn(y)) = 0, resp.).

Let Xs(x) and Xu(x) denote the stable and unstable equivalence classes of x, respectively.

We recall that a factor map between two Smale spaces (Y, ψ) and (X,φ) is a continuous
function π : Y → X such that π ◦ ψ = φ ◦ π. Of particular importance in this paper are
factor maps which are s-bijective: that is, for each y in Y , the restriction of π to Y s(y) is
a bijection to Xs(π(y)). There is obviously an analogous definition of a u-bijective factor
map, which will not be needed here.[3]

1.2 Shifts of finite type

[2, 3] A graph G consists of finite sets G0 and G1 and maps i, t : G1 → G0. The elements of
G0 are called vertices and the elements of G1 are called edges. The notation for the maps
is meant to suggest initial and terminal and the graph is drawn by depicting each vertex
as a dot and each edge e as an arrow from i(e) to t(e). To any graph G, we associate the
following dynamical system:

ΣG = { (en)n∈Z | en ∈ G1, t(en) = i(en+1) for all n ∈ Z},

(σ(e))n = en+1.

For any e in ΣG and K ≤ L, we let e[K,L] = (eK , eK+1, . . . , eL). It is also convenient to
define e[K+1,K] = t(eK) = i(eK+1). We use the metric

d(e, f) = inf{1, 2−K−1 | K ≥ 0, e[1−K,K] = f[1−K,K]}

on ΣG. It is then easy to see that (ΣG, σ) is a Smale space with constants εX = λ = 1
2

and

[e, f ]k =

{
fk k ≤ 0
ek k ≥ 1.

Definition 1.5. [2] A point x in a shift of finite type space X is doubly transitive if every
block in X appeara in x infinitely often to the left and to the right.

Theorem 1.6. [2] The set of doubly transitive points of a shift of finite type space X is
nonempty if and only if X is irreducible.

2 Main results

Theorem 2.1. Let (X,φ) be a dynamical system with X compact, metric. If it is ir-
reducible, then the set of all points x with dense forward orbit is a dense Gδ subset of
X.
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Proof. Take a finite open cover of X. Look at the set of all points whose forward orbit
meets each element of the cover. It is pretty easy to see this set is open. A short argument
using irreducibilty implies that it is dense. Finally, intersect these sets over a sequence of
finite open covers that generate the topology of X.

Theorem 2.2. Let (X,φ) be a Smale space. Suppose x is a point whose forward orbit
limits on every periodic point of X. Then (X,φ) is irreducible.

Proof. Let y be an accumulation point of the backward orbit of x. It is clearly non-
wandering and so there are periodic points arbitrarily close. It follows that y is also a
limit point of the forward orbit of x. By patching the forward orbit of x that gets close
to y with part of the backward orbit of x that begins close to y we can form pseudo-
orbits from x to itself. It follows then that x is in the non-wandering set and lies in one
irreducible component. The orbit of x will remain in the same irreducible component of
the non-wandering set and for this forward orbit to limit on every periodic point, X has
only a single irreducible component.

Theorem 2.3. Let (Y, ψ) and (X,φ) be Smale spaces and let π : (Y, ψ) → (X,φ) be an
s-bijective factor map. Assume that x, x′ are in X and x has a dense forward orbit. (This
implies that (X,φ) is irreducible.) Then we have ♯π−1(x) ≤ ♯π−1(x′) which ♯ denote the
number of the finite set.

Proof. List ♯π−1(x) = {y1, ..., yI}. Since the orbit of x is dense, we may find an increasing
sequence of positive integers nk such that φnk(x) converges to x. Passing to a subsequence,
we may assume that for each 1 ≤ i ≤ I, the sequence ψnk(yi) converges to some point of
y and by continuity these points must all lie in π−1(x′). We claim that no two sequences
can have the same limit. This will complete the proof. If they do, then for some i, j we
have d(ψnk(yi), ψ

nk(yj)) tends to zero as k goes to infinity. Notice that

π(ψnk(yi)) = ψnk(π(yi)) = ϕnk(x) = ψnk(π(yj)) = π(ψnk(yi))

By Prop. 2.5.2 of [3], for k suciently large, we have

ψnk(yi) ∈ Y u(ψnk(yj), επ).

and this implies that yi ∈ Y u(yj , λ
nkεπ) Since this is true for all k, yi = yj and we are

done.

Definition 2.4. If π : (Y, ψ) → (X,φ) is an s-bijective factor map and that (X,φ) is
irreducible. We define the degree of π denoted deg(π) to be ♯π−1{x}, where x is any point
of X with a dense forward orbit.

Lemma 2.5. Let π : Y → X be a finite-to-one continuous function. The set {x ∈
X|♯π−1} = 1} is a Gδ subset of X. (Of course, the set might be empty.)

Proof. It follows from Lemma 2.5.9 of [3] that for any positive integer n,

{x ∈ X|diam(π−1{x}) <
1

n
} is open. Intersecting over all n yields the result.

Remark 2.6. Notice that this result combines nicely with Theorem 2.1 : for a degree one
factor map onto an irreducible Smale space, the points with a dense forward orbit and a
one-point pre-image are a dense Gδ.

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Irreducible Smale spaces pp.: 3–4

839



References

[1] N. Aoki and K. Hiraida, Topological Theory of Dynamical Systems: Recent Advances,
North-Holland, Amsterdam-London-New York-Tokyo, 1994.

[2] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge
Univ. Press, Cambridge, 1995.

[3] I. F. Putnam, A homology theory for Smale spaces, to appear, Mem. A.M.S.

[4] D. Ruelle, Thermodynamic Formalism, Encyclopedia of Math. and its Appl. 5,
Addison-Wesley, Reading, 1978.

Email: s.saeadi@modares.ac.ir
Email: mamini@modares.ac.ir

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Irreducible Smale spaces pp.: 4–4

840



Isospectral Matrix Flows and Numerical Integrators on Lie

Groups∗
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Abstract

This paper illustrates how classical integration methods for differential equations
on manifolds can be modified in order to preserve certain geometric properties of the
exact flow. Runge-Kutta-Munthe-Kass method is considered and some examples are
shown to verify the efficiency of the method.

Keywords: Isospectral matrix flow, Lie group, Geometric integration, Differential
equation on manifold.
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1 Introduction

Isospectral matrix flows on the space of real n× n matrices Mn are characterized by the
matrix differential equation

dA

dt
= [A,F (A)], A(0) = A0, (1)

where A ∈ Mn, F : [0,∞) ×Mn → Mn is a matrix operator, [X,Y ] = XY − Y X is the
matrix commutator (also known as the Lie bracket) and A0 is a given n× n matrix. The
function A and F that obey the differential equation (1) are usually called a Lax pair.
Many interesting problems can be written in this form. We just mention the Toda system,
the continuous realization of QR-type algorithms, projected gradient flows, and inverse
eigenvalue problems, see Chu [2] and Calvo, Iserles and Zanna [1].

Lemma 1.1. Consider a matrix differential equation (1). Then, all eigenvalues of A(t),
the solution of (1), are independent of t, so that the flow (1) is isospectral flow.

Proof. To prove the isospectrality of the flow, we define U(t) by

dU

dt
= −F (A(t))U(t), U(0) = In, (2)

∗Will be presented in English
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where In is the identity matrix. Then, we have

d

dt
(U(t)−1A(t)U(t)) = U−1(Ȧ−AF + FA)U = 0,

and hence the matrix function U(t)−1A(t)U(t) is time independent. Hence U(t)−1A(t)U(t) =
const = A0 and A(t) = U(t)A0U(t)−1. This proves the result.

In many important examples, the matrix function F is skew-symmetric. Then the
equation (2) is an orthogonal flow, since its solution is an orthogonal matrix, i.e. UUT =
UTU = In, hence we have A(t) = U(t)A0U(t)T . It is easy to see that if A0 ∈ Sn, then
A(t) ∈ Sn. Then Sn is invariant under (1). Moreover, A(t) has the same spectrum as A0,
so that the flow (1) is an isospectral matrix flow.

While isospectral flows are interesting from a theoretical point of view, sooner or later
you’ll probably want to solve one numerically. Standard numerical methods such as linear
multistep method and Runge-Kutta (RK) do not preserve the eigenvalue of an isospectral
flow in general. This was proven by Calvo, Iserles and Zanna in [1].

The proof of Lemma 1.1 suggests an interesting approach for the numerical solution
of (1). For n = 1, 2, ..., we solve numerically

dU

dt
= −F (UAnU

T )U(t), U(0) = In, (3)

and we put An+1 = ÛAnÛ
T , where Û is the numerical approximation Û ≈ U(h) after one

step. If F (A) is skew-symmetric for all matrices A, then UTU is a quadratic invariant of (3)
and some methods such as Runge-Kutta with some conditions will produce an orthogonal
Û . Consequently, An+1 and An have the same eigenvalues, and they remain symmetric.

In this paper, we use one class of method called Runge-Kutta-Munthe-Kaas method,
which is guaranteed to preserve the eigenvalue of an isospectral flow for solving isospectral
flows. This method is based on geometric interpretation.

2 Main results

Isospecrality is a geometric constraint on the flow. An isospectral flow evolves on a smooth
subset of Mn, for each initial value A0, which is called the isospectral manifold for A0. This
manifold is naturally parameterized by a Lie group, which has an associated algebra. All
the manifolds we are interested in are manifold of matrices. This manifolds exist naturally
as surfaces embedded in Rn2

, then the following definition will suffice.

Definition 2.1. A d-dimensional manifoldM is a d-dimensional smooth surfaceM⊆ Rn
for some n ≥ d.

Many manifolds of interest can be described as the zero set of a smooth function
g : Rn → Rm. For example, the group of orthogonal matrices O(n) is the zero set of
g(X) =‖ XXT − I ‖2F .

Definition 2.2. Let M be a d-dimensional manifold. The tangent space at X ∈ M,
denoted by TXM, is vector space of vectors V ∈ Rn such that

V =
dµ(s)

ds

∣∣∣
s=0
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for some smooth path µ in M such that µ(0) = X.

Definition 2.3. Consider a differential equation

ẏ = f(y), y(0) = y0. (4)

We say that the differential equation is on the manifold M, if y0 ∈ M implies y(t) ∈ M
for all t.

Theorem 2.4. The problem (4) is a differential equation on the manifold M if and only
if

f(y) ∈ TyM for all y ∈M.

For more details, see [4].

Definition 2.5. A Lie group is a group G which is a manifold. Additionally, the group
action must be a smooth map G × G → G. A matrix Lie group is a Lie group whose
elements are matrices, with matrix multiplication as the group operation.

Definition 2.6. Let G be a matrix Lie group and let g = TIG (Lie algebra) be the tangent
space at the identity. The Lie bracket [A,B] = AB −BA defines an operation g× g→ g
which is bilinear, skew-symmetric ([A,B] = −[B,A]), and satisfies the Jacobi identity

[A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0.

Definition 2.7. Let G be a Lie group and M be a manifold. Then a Lie group action Λ
is a smooth map Λ : G ×M→M such that the following two properties hold:

1. Λ(I,X) = X,

2. Λ(P,Λ(Q,X)) = Λ(PQ,X).

Theorem 2.8. For a Lie group action Λ : G×M→M, C1 function A : [0,∞)×M→M,
smooth map φ : g→ G such that φ(O) = I, and X0 ∈M, the solution X of

Ẋ(t) = λ(A(t,X(t)))(X(t)), X(0) = X0,

which evolves in M, can be expressed as

X(t) = Λ(φ(Ω(t)), X0),

where Ω : [0,∞)→ g satisfies

Ω̇(t) = dφ−1
Ω A(t,Λ(φ(Ω(t)), X0)), Ω = O. (5)

Remark 2.9. Let G = GL(n) = {Y |detY 6= 0},M = gl(n) = {A|arbitrary matrix} and
group action Λ(P,X) = PXP−1. Then λ(A)(X) = [A,X].

Remark 2.10. The primary example for a smooth function φ with property φ(O) = I is
exp. Then we have

dexp−1
Ω (A) =

∑

k≥0

Bk
k!
adkΩ(A), (6)

where Bk are the Bernoulli numbers 1,−1/2, 1/6, 0, ... and ad0
Ω(A) = A, adΩ(A) = [Ω, A],

ad2
Ω(A) = [Ω, [Ω, A]] and so on. For more details, see [4].
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2.1 Runge-Kutta-Munthe-Kaas method

The idea of the Munthe-Kaas method [5] consists of solving the differential equation (5)
with an arbitrary RK scheme (truncating dexp−1 to appropriate order), so that, once
Ω1 = Ω(h) is known, one can approximate

Xn+1 = Λ(exp(Ω1), Xn).

Lie algebra is a linear space that is closed under the Lie bracket, so any one step method
involving only linear operation and Lie brackets is guaranteed to stay in the Lie algebra,
which is then mapped back to the manifold. Therefore, this method is guaranteed to
evolve on M.

Example 2.11. Consider the Toda flow

dA

dt
= [A,S] = AS − SA, A(0) = A0,

for A ∈ Sn, where S = A+T − A+, and A+ is the upper triangular part of A. It is well
known that the Toda flow is an isospectral flow. Gladwell showed that, if A0 be TP (all
the minors are (strictly) positive), then A(t), the solution of the Toda flow, has the same
property [3]. Take initial matrix A0 in 3× 3 case as

A0 =




5 4 1
4 6 4
1 4 5


 .

We can easily check that A0 is TP . The eigenvalues of A0 are 4, 11.6568 and 0.3431. We
applied the Runge-Kutta-Munthe-Kaas method on the Toda flow with given A0. Numer-
ical results confirms the analytic properties.
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Lie group classification of the Kuramoto-Sivashinsky equation
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Abstract

In this paper, the Lie symmetry analysis is performed for Kuramoto-Sivashinsky
equation(KS). The exact solutions and similarity reductions generated from the sym-
metry transformations are provided. Furthermore, the all exact explicit solutions and
similarity reductions based on the Lie group method are obtained, some new method
and techniques are employed simultaneously. Such exact explicit solutions and similar-
ity reductions are important in both applications and the theory of nonlinear science.

Keywords: Similarity solutions, Lie symmetry, Kuramoto-Sivashinsky equation, In-
variant solution, Optimal system.
Mathematics Subject Classification [2010]: 22E70, 81R05, 70G65, 34C14.

1 Introduction

Symmetry is one of the most important concepts in the area of partial differential equa-
tions, especially in integrable systems, which exist infinitely many symmetries. To find
the Lie point symmetry of a nonlinear equation, some effective methods have been intro-
duced, such as the nonclassical method and the direct method . In this paper we will
consider the following variable coefficients KuramotoSivashinsky equation (KS) by using
the compatibility method.
The Kuramoto-Sivashinsky (KS) equation

ut + uux + uxx + uxxxx = 0 (1)

is a simple nonlinear PDE which exhibits complex spatio-temporal dynamics. It has been
derived in the context of plasma ion mode instabilities by LaQuey et al. reaction-diffusion
systems by Kuramoto and Tsuzuki, laminar flame fronts by Sivashinsky and viscous liquid
flows on an inclined plane by Sivashinsky and Michelson.

2 Main results

In this section, we will perform Lie symmetry analysis for Eq.(1) firstly.The vector field
associated with the group of transformations can be written as

V = ξ1(x, t, u)
∂

∂x
+ ξ2(x, t, u)

∂

∂t
+ ϕ(x, t, u)

∂

∂u
(2)
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The symmetry group of Eq.(1) will be generated by the vector field of the form Eq.(2).
Applying the fourth prolongation pr(4)V to Eq.(1), we find that the coefficient functions
ξ1(x, t, u), ξ2(x, t, u) and ϕ(x, t, u).We obtain the vector field of Eq.(1) is:

V1 =
∂

∂x
, V2 =

∂

∂t
, V3 = t

∂

∂x
+

∂

∂u
(3)

It is easy to check that the two vector fields V1, V2, V3 are closed under the Lie bracket,
respectively. For example, for Eq.(1), we have:

Table 1: Commutator of the Lie algebra of the Eq. (1)

V1 V2 V3

V1 0 0 0
V2 0 0 −V1

V3 0 V1 0

Remark 2.1. V1 is the casimir operator.

Theorem 2.2. The Lie algebra of Eq. (1)

1. is solvable,

2. is nilpotent,

3. is not semi-simple.

Then from the the commutation Table 1, we will obtain the following Table 2:

Table 2: Adjoint representation of the Lie algebra of the Eq. (1)

V1 V2 V3

V1 V1 V2 V3

V2 V1 V2 V3 + εV1

V3 V1 V2 − εV1 V3

Theorem 2.3. The optimal system of one-dimensional subalgebras corresponds to Eq.(1)is
expressed by

1. αV2 + V3, where α ∈ {−1, 0, 1}.

2. αV1 + V2,where α ∈ {−1, 0, 1}

3. V1,

Using a straightforward analysis, the characteristic equations used to find similarity
variables are:

dx

ξ1
=

dt

ξ2
=

du

ϕ
= dε. (4)

Integration of first order differential equations corresponding to pairs of equations involving
only independent variables of (4) leads to similarity variables. We distinguish three cases:
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1. For the linear combination V = αV2 + V3, we have:

ζ = αx − t2

2
, S(ζ) = αu − t

By substituting above equations into the Eq. (1) we obtain:

1 + SS′ + α2S′′ + α4S(4) = 0 (5)

by numerical solution we obtain Fig.1.

0

5

x

0

1

2

3

t

-50

0

50

Figure 1: Solution curves of the nODE (5) generated by different initial values, S(1) = 1, S′(1) =
1, S′′(1) = 1, S(3)(1) = 1, α = 1

2. For the linear combination αV1 + V2, we have:

ζ = αt − x, S(ζ) = u

By substituting above equations into the Eq. (1) we obtain:

αS′ − SS′ + S′′ + S(4) = 0 (6)

by numerical solution we obtain Fig.2.

3. For the generator V = V1,the invariants are:

ζ = t, S(ζ) = u

We reduce Eq. (1) to the following ODE:

S′ = 0 (7)

therefore, S(ζ) = c, where c is arbitrary constant.
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0

5

x

0

1

2

3

t

-2

-1

0

1

2

Figure 2: Solution curves of the nODE (6) generated by different initial values, S(1) = 1, S′(1) =
1, S′′(1) = 1, S(3)(1) = 1, α = −1
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Abstract

Hepatitis E virus is an enterically transmitted disease that mainly effects people
in developing countries. The dynamics and the factors causing outbreaks of these
diseases can be better understood using mathematical models, which are fit to data.
Here we investigate the dynamics of a Hepatitis E outbreak in internally displaced
persons (IDP) camps in Sudan and Uganda during 2007 to 2009. We use the data
to determine that R0 is approximately 2.25 for the outbreak. Secondly, we use a
model to estimate that the critical level of latrine and bore hole coverages needed
to eradicate the epidemic is at least 16% and 17% respectively. Lastly, we further
investigate the relationship between the co-infection factor for Malaria and Hepatitis
E on the value of R0 for Hepatitis E. Taken together, these results provide us with a
better understanding of the dynamics and possible causes of Hepatitis E outbreaks.

Keywords: Mechanistic models, Dynamic models, Reproduction number

Mathematics Subject Classification [2010]: 37N25, 92B05

1 Introduction

HEV is classified in the genus Hepevirus of the family Hepeviridae. Outbreaks of diseases
such as Avian Influenza, SARS and West Nile Virus have alerted us to the potentially
grave public health threat from emerging and re-emerging pathogens [2, 3]. The recent
outbreak of Hepatitis E in northern Uganda, has left many dead and a number of infec-
tives that continue to spread the infection . Hepatitis E is caused by infection with the
Hepatitis E virus (HEV) which has a fecal-oral transmission route. The Kitgum outbreak,
which we study here, has been linked to contaminated water or food supplies . Another
possible factor that could be implicated in the outbreak of Hepatitis E is its possible
relationship with Malaria. Malaria has been shown to disarm the immune system and
increase susceptibility to viral infections such as HIV . Recently, in a 3-month follow-up
study the pattern of co-infection of Plasmodium falciparum Malaria and acute Hepatitis
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A (HAV), in 222 Kenyan children under the age of 5 years was observed [1]. In this paper,
mathematical models are used to study the effects of both environmental conditions and
Malaria on Hepatitis E infections. The models designed are fit to data from the Kitgum
outbreak, to estimate the basic reproduction number and to relate them to the level of
contamination of the environment.

2 Formulation of the Model Equations

2.1 Variables and Parameters of the Existing Model

Definition 2.1. The simplest compartmental disease transmission model that includes
an environmental reservoir needs four compartments. Three of these compartments relate
to the disease status in an individual with Susceptible (S), Infective (I) and Recovered
(R) classes. After successful infection, the individual is now exposed to HEV and moves
to the exposed class E.
In the human population, susceptibles, S, are recruited at a rate µ that equals to the
per capita natural mortality rate for each group. This assumption is made to keep the
population constant, while keeping a turnover of individuals in the population. We assume
that a fraction b of the population has access to clean bore hole water and cannot become
infected, β is the transmission rate of HEV, Individuals recover from the disease and move
into the recovered class at a rate γ, Of the total infected individuals, a fraction of them
die due to the infection, and recover to join the immune group, The incubation period
takes a mean period of days.

2.2 The Equations of the Existing Model

Theorem 2.2. The dynamics of the population is governed by the following system of
ordinary differential equations:

dS

dt
= µ − βρ(1 − N)(1 − b)IS − µS,

dE

dt
= βρ(1 − N)(1 − b)IS − (µ + σ)E, (1)

dI

dt
= σE − (µ + g)I,

dR

dt
= (1 − P )γI − µR,

where S + E + I + R = N .

3 Model Analysis

In this section we consider the existence of equilibrium states, the effective reproduction
number and the stability of the equilibrium states.
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3.1 Endemic Steady State (EEP)

The endemic stationary state is given by

S∗ =
1

R0
,

E∗ =
µ(µ + γ)

σβρ(1 − N)(1 − b)
(R0 − 1), (2)

I∗ =
µ

βρ(1 − N)(1 − b)
(R0 − 1),

R∗ = N − S∗ − E∗ − I∗.

where

R0 =
σβρ(1 − N)(1 − b)

(µ + σ)(µ + γ)
.

(3)

is the basic reproduction number for HEV. The term σ
µ+σ is the proportion of the exposed

humans that survive the incubation period. The other fraction, βρ(1−N)(1−b)
(µ+γ) is transmission rate

of HEV during the infectious period of the human.

Theorem 3.1. If R0 < 1, then The disease-free equilibrium point is stable and When R0 > 1 the
endemic equilibrium point in equation (1) exists and is stable.

3.2 The Co-infection Model

In addition to Hepatitis E, individuals in the Kitgum region were at a risk of acquiring Malaria
which is endemic to Uganda. To model possible co-infection we adopt the model to include a sus-
ceptible group which comprises both those with and without Malaria. That is, the total susceptible
population S

′
= S + M where M is the proportion of individuals infected with Malaria.

Proposition 3.2. The Malaria dynamics will not be modelled in detail here but an assumption
is made that Malaria continuously invades the population, and individuals move back and forth
between infection and recovery from the disease. This implies that

dS

dt
= −fS + rM,

dM

dt
= −rM + fS,

(4)

The equilibrium state for this model is given by

S∗ =
r

f + r
,

M∗ f

f + r
,

(5)

Our concern here, however, is how background levels of Malaria effect transmission dynamics of
HEV.
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Lemma 3.3. Using the next generation method [4], the basic reproduction number for Hepatitis E
in presence of Malaria is given by

Rc =
βρσ(1 − N)(1 − b)[S + ζM ]

(µ + σ)(µ + γ)
= [S(t) + ζM(t)]R0, (6)

where R0 is as defined in equation (2) When Rc < 1 infected individuals will have more chances
of recovery than of transmitting the disease further hence the epidemic will die out. When Rc > 1,
there exists an endemic equilibrium point as shown in Supporting Information S2 given by

I∗ =
ζ(µ + f) + (µ + r)

2ζβρ(1 − N)(1 − b)

[
− 1 ± 2

√
ζm(µ + Nf + Nr)

ζ(µ + f) + (µ + r)

√
[ζ(µ + Nf) + (µ + Nr)]2

4ζµ(µ + Nf + Nr)
− 1

]
, (7)

If [ζ(µ+Nf)+(µ+Nr)]2

4ζµ(µ+Nf+Nr) < 1, then the roots of the quadratic equation in I∗ are complex conjugates

and of the form a + bi, where i =
√

−1.

4 Main results

This paper provides a case study of how a simple epidemic model can be fit to such an outbreak
disease. Two fitting methods have been used; the first, an analytical method and the other based
on a freely available fitting tool. Using these methods, a reliable estimate of R0 ≈ 2.2 has been
provided.
We then use the model to find the measures to keep R0 < 1. The necessary levels of latrine and
bore hole coverages needed to eradicate the epidemic are both around 16 to 18%. Although the
cost of construction of the required number of latrines is a one off cost, the benefits are large.
We have also considered co-infection with Malaria. If we assume that presence of Malaria during
a Hepatitis E outbreak increases persistence infection, then we estimate that a Malaria infective
can be infected with Hepatitis E up to 16 times more than one without Malaria.
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Nehari Manifold approach to p- Laplacian eigenvalue problem

with variable exponent terms
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Abstract

The multiplicity of positive solutions for problem

(P)

{
−∆pu = λa(x)|u|q(x)−2u + b(x)|u|r(x)−2u; in Ω

u ≡ 0; on ∂Ω.

is discussed. This investigation is based on Nehari manifold technique and variational
argument.

Keywords: Nehari Manifold, fibering map, variable exponent Lebesgue space, vari-
able exponent Sobolev space.

Mathematics Subject Classification [2010]: 35J20, 35R01

1 Introduction

The classes of problems dealing with variable exponent Lebesgue and Sobolev space have
attracted steadily increased interest over the last ten years, although their history goes
back to W. Orlicz (see for example [5]). We mention briefly, some of the basic definition
and refer to [2, 3, 4, 5, 6] for the fundamental properties of these spaces. The basic
definition of variable exponent Lebesgue space is mentioned in the following. Let Ω be an
open subset of RN , q ∈ L∞(Ω) and

q− := ess inf
x∈Ω

p(x) ≥ 1.

The variable exponent Lebesgue space Lq(.)(Ω) is defined by

Lq(.)(Ω) = {u : u : Ω −→ R is measurable,

∫

Ω
|u|q(x)dx < ∞};

which is a considered by the norm

|u|Lq(.)(Ω) = inf {σ > 0 :

∫

Ω
|u
σ

|q(x)dx ≤ 1}.

We have consider problem (P) with the following conditions:
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(I) Ω is a bounded subset of RN with sufficiently smooth boundary and N ≥ 3.

(II) 1 < p < N and q, r are Lipschitz continuous functions which belongs to L∞(Ω) with
1 < q− ≤ q+ < p < r− ≤ r+ < p∗ := NP

N−p in which q+ := ess supx∈Ω q(x).

(III) 0 < a, b ∈ L∞(Ω)

The appropriate Sobolev space to study the problem (P) is the space W1,p
0 (Ω), defined

as a completion of C∞
0 (Ω) with respect to the norm ∥u∥ = |∇u|Lp .

The Euler functional associated with problem (P) is

Eλ(u) =

∫

Ω

1

p
|∇u|pdx − λ

∫

Ω

a(x)

q(x)
|u|q(x)dx −

∫

Ω

b(x)

r(x)
|u|r(x)dx.

It is well known that the weak solutions of P corresponds to critical points of Eλ on
X = W1,p(Ω).
In many problems, such as P, Eλ is not bounded below on X, but it is bounded below on
an appropriate subset of X and there is a minimizer on this set (if it exists), and is usually
a critical point of Eλ, thus the weak solution of the corresponding elliptic equation.
A good coordinate for an appropriate subset of X is called Nehari Manifold, which is
introduced by

M(λ) = {u ∈ X \ {0}; < E′
λ(u), u >= 0}.

The Nehari Manifold is closely linked to the behavior of the functions of the form
ϕλ,u : t −→ Eλ(tu); (t > 0). It is easy to see that for t > 0, tu ∈ M(λ) if and only if
ϕ′

λ,u(t) = 0. It is natural to divide M(λ) in to tree subset M+(λ), M−(λ) and M0(λ)
corresponding to local minima, local maxima and points of inflection of Fibering maps.
Hence, we define M+(λ), M−(λ) and M0(λ) with u ∈ M(λ) where ϕ′′

λ,u(1) > (<,=)0
respectively. Also It can be shown that

Lemma 1.1. Suppose that u0 is a local minimizer of Eλ on M(λ) and u0 /∈ M0(λ) then
u0 is a critical point of Eλ.

Here we refer to [1] for application of intuitive insight about fibering map approach
which is used by Kenneth Brown and Tsung-Fang Wu.

2 Main results

We shall now describe the nature of the Fibering maps for all possible situations. Let
Au :=

∫
Ω a(x)|u|q(x)dx, Bu :=

∫
Ω b(x)|u|r(x)dx, µλ,u(t) = tp∥u∥p − λtq

+
Au − tr

+
Bu and

νλ,u(t) = tp∥u∥p − λtq
−
Au − tr

−
Bu. Hence,

µλ,u(t)χ[1,+∞)(t) + νλ,u(t)χ(0,1)(t) ≤ ϕ′
λ,u(t) ≤ νλ,u(t)χ[1,+∞)(t) + µλ,u(t)χ(0,1)(t). (1)

For sufficiently small λ the graph of µλ,u and νλ,u can be described as it shown in the
Figure 2-4.

By inequalities (1), we obtain the graph of ϕ′
λ,u(t) is between two graphs µλ,u(t) and

νλ,u(t). Hence for λ sufficiently small the graphs of µλ,u and νλ,u for u ∈ M+(λ) and
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Figure 2-4

Figure 2-5 Figure 2-6

u ∈ M−(λ) are shown in Figure 2-5 and Figure 2-6, respectively, and so ϕ′
λ,u would be

placed in the gray space between them.
It follows that ϕλ,u has at least two critical points; a local minimum at t1 = t1(u) and

a local maximum at t2 = t2(u) which for u ∈ M+(λ), t1 = 1 < t2 and t2u ∈ M−(λ) and
for u ∈ M−(λ), t1 < t2 = 1 and t1u ∈ M+(λ).

Moreover, ϕλ,u is decreasing in (0, t1), increasing in (t1, t2) and deceasing in (t2, +∞).
It follows from the last argument that there exist λ1 > 0 such that for 0 < λ < λ1 we have
when ϕ′

λ,u(t) = 0 i.e tu ∈ M(λ), then tu ̸∈ M0(λ) and so we have the following lemma.

Lemma 2.1. There exist λ1 > 0 such that for 0 < λ < λ1, we have M0(λ) = ∅. Moreover
λ1 is positive and independent of u.

Theorem 2.2. If λ < λ1, there exist a minimizer of Eλ on M+(λ).

Proof. Since Eλ is bounded below on M(λ) and so on M+(λ), there exists a minimizing
sequence {un} ⊆ M+(λ) such that limn→∞ Eλ(un) = infu∈M+(λ) Eλ(u). Since Eλ is
coercive, {un} is bounded in X. Thus, we may assume that, without loos of generality
un ⇀ u0 in X and by the compact embedding, we have un → u0 in Lp(x)(Ω) and in
Lr(x)(Ω). Now, we shall prove un → u0 in X. Otherwise, suppose un ̸→ u0 in X, then

∫

Ω
∇u0|pdx < lim inf

n→∞

∫

Ω
|∇un|pdx. (2)

ϕ′
λ,un

(t) =

∫

Ω
tp−1|∇un|pdx − λ

∫

Ω
a(x)tq(x)−1|un|q(x)dx −

∫

Ω
b(x)tr(x)−1|un|r(x)dx.

By arguments of the previous section, we know there exists t0 = t0(u0) such that t0u0 ∈
M+(λ), and hence, ϕ′

λ,u0
(t0) = 0 and by (2), we deduce,

lim
n→∞

ϕ′
λ,un

(t0) = tp−1
0 lim

n→∞

∫

Ω
(|∇un|p − |∇u0|p)dx > 0.

Hence, ϕ′
λ,un

(t0) > 0, for sufficiently large n. Since {un} ⊆ M+(λ), by taking notice to

the possible maps for ϕ′
λ,u when u ∈ M+(λ), as is shown in Figure 2-5, it is easy to see
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that ϕ′
λ,un

(t) < 0 for 0 < t < 1 and ϕ′
λ,un

(1) = 0; for all n; so, we must have t0 > 1. But
by considering the possible form of the Fibering maps, we deduce,

ϕλ,t0u0(1) < ϕλ,t0u0(t); t < 1.

Let t = 1
t0

, hence Eλ(t0u0) = ϕλ,t0u0(1) < ϕλ,t0u0(
1
t0

) = Eλ(u0). So Eλ(t0u0) < Eλ(u0) <

limn→∞ Eλ(un) = infu∈M+(λ) Eλ(u), which is contradicted by t0u0 ∈ M+(λ). Hence,
un −→ u0 in X and

Eλ(u0) = lim
n→∞

Eλ(un) = inf
u∈M+(λ)

Eλ(u).

Since un −→ u0 in X, un ⊂ M+(λ) and X ↪→↪→ Lq(x), Lr(x) hence

∫

Ω
|∇u0|pdx − λ

∫

Ω
a(x)|u0|q(x)dx =

∫

Ω
b(x)|u0|r(x)dx.

and since M0(λ) = ∅ we obtain

∫

Ω
p|∇uo|pdx > λ

∫

Ω
a(x)q(x)|u0|q(x)dx −

∫

Ω
b(x)r(x)|u0|r(x)dx.

Thus u0 ̸= 0.

By the same arguments the following theorem can be proved, in which we omit its
proof.

Theorem 2.3. If λ < λ1, there exists a minimizer of Eλ on M−(λ).

Corollary 2.4. Equation (P ) has at least two positive solutions for 0 < λ < λ1.
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Positive solutions of nonlinear fractional differential inclusions
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Abstract

In this paper, we study fractional differential inclusions with integral boundary
value conditions. We prove the existence of a solution under both convexity and
nonconvexity conditions on the multi-valued right-hand side. The proofs rely on
Bohnenblust-Karlin’s fixed point theorem, and Covitz and Nadlers fixed point the-
orem for multivalued contractions.

Keywords: Fractional differential inclusions; Fractional derivative; Fractional inte-
gral; Fixed point

Mathematics Subject Classification [2010]: 34A60, 34B18, 34B15

1 Introduction

The purpose of this paper is to study a fractional differential inclusions with multi-point
boundary conditions given by

{
cDα

0+u(t) ∈ F (t, u(t)), t ∈ (0, 1), 2 < α < 3,

u(0) = u′′(0), u(1) = λ
∫ 1
0 u(s)ds

(1)

where cDq
0+

is the Caputo’s fractional derivative, 2 < α < 3, and 0 < λ < 2, F :
[0, 1]× R→ P (R) is a multivalued map, P (R) is the family of all subsets of R.

We establish existence results for the problem (1), when the right-hand side is con-
vex as well as non-convex valued. The first result relies on Bohnenblust-Karlin’s fixed
point theorem. In the second result, we shall use the fixed point theorem for contraction
multivalued maps due to Covitz and Nadler.

In this section we sum up some basic facts that we are going to use later.
For a normed space (X, ‖ · ‖), let

P (X) = {Y ⊂ X : Y 6= ∅}
Pcp(X) = {Y ∈ P (X) : Y is compact}
Pc(X) = {Y ∈ P (X) : Y is convex}
Pcl(X) = {Y ∈ P (X) : Y is closed}
Pb(X) = {Y ∈ P (X) : Y is bounded}
Pcp,c(X) = {Y ∈ P (X) : Y is compact and convex}
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A multi-valued map G : X → P (X) is convex (closed) valued if G(x) is convex (closed)
for all x ∈ X.

Let C(J) denote the Banach space of all continuous mapping u : J −→ R with norm

‖u‖ = sup{|u(t)| : t ∈ J}

.
Let L1(J,R) be the Banach space of measurable functions x : J → R which are

Lebesgue integrable and normed by

‖x‖L1 =

∫ 1

0
|x(t)|dt.

Let (X, d) be a metric space induced from the normed space (X; ‖.‖). Consider Hd :
P (X)× P (X)→ R ∪ {+∞} given by

Hd(A,B) = max{supa∈Ad(a,B), supb∈Bd(A, b)},

where d(A, b) = infa∈Ad(a; b) and d(a,B) = infb∈Bd(a; b). Then (Pb,cl(X), Hd) is a metric
space and (Pcl(X), Hd) is a generalized metric space.

Definition 1.1. A multivalued operator N : X → Pcl(X) is called:
(a)γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y) for each x, y ∈ X;

(b) a contraction if and only if it is γ-Lipschitz with γ < 1.

Definition 1.2. ([5])The Riemann-Liouville fractional integral of order q is defined as

Iαg(t) =
1

Γ(α)

∫ t

0

g(s)

(t− s)1−αds, α > 0

provided the integral exists.

Definition 1.3. ([5]).For at least n-times continuously differentiable function g : [0,∞)→
R, the Caputo derivative of fractional order q is defined as

cDαg(t) =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1g(n)(s)ds, n− 1 < α < n, n = [α] + 1,

where [α] denotes the integer part of the real number α.

Lemma 1.4. ([ Bohnenblust-Karlin])[2].Let X be a Banach space, D a nonempty subset
of X, which is bounded, closed, and convex. Suppose F : D → P (D) is u.s.c. with closed,
convex values, and such that F (D) ⊂ D and F (D) compact. Then F has a fixed point.

Lemma 1.5. ([ Covitz and Nadler])[4]. Let (X, d) be a complete metric space. If N :
X → Pcl(X) is a contraction, then FixN 6=∞.
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2 Main results

2.1 Convex case

Let us introduce the following hypotheses:
(H1) F : J ×R→ Pb,cl,c(R) is measurable with respect to t for each y ∈ R, u.s.c. with

respect to y for a.e. t ∈ J , and for each fixed y ∈ R the set

SF,y =
{
f(t) ∈ L1(J,R) : f(t) ∈ F (t, y) for a.e. t ∈ J

}

is nonempty.
(H2) For each r > 0, there exists a function mr ∈ L1(J,R+) such that

‖F (t, y)‖ = sup{|v| : v(t) ∈ F (t, y)} ≤ mr(t)

for each (t, y) ∈ J × R with |y| ≤ r, and

lim inf
r→∞

∫ 1
0 mr(t)dt

r
= γ <∞.

Theorem 2.1. Suppose that (H1) and (H2) are satisfied. Then the problem (1) has at
least one solution on J, provided that

γ <
Γ(α)(2− λ)

2
. (2)

proof.We transform the problem (1) into a fixed point problem. Consider the multi-
valued map N : C(J)→ P (C(J)) defined by

N(y) := {h ∈ C(J) : h(t) =

∫ 1

0
G(t, s)f(s) : f ∈ SF,y}

Next we shall show that N satisfies all the assumptions of Lemma 1.4, and thus N has
a fixed point which is a solution of the problem (1). For the sake of convenience, we
subdivide the proof into several steps.
Step 1. N(y) is convex for each y ∈ C(J).
Step 2. For each constantr > 0, let Br = {y ∈ C(J) : ‖y‖ ≤ r}. Then Br is a bounded
closed convex set in C(J).
Step 3. N(Br) is equi-continuous.
Step 4. N has closed graph.

Therefore, N is a compact multi-valued map, u.s.c. with convex closed values. As a
consequence of Lemma 1.4, we deduce that N has a fixed point y which is a solution of
the problem (1). �

2.2 The nonconvex case

Now we prove the existence of solutions for the problem (1) with a nonconvex valued
right-hand side by applying a fixed point theorem for multivalued map due to Covitz and
Nadler [4].
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Theorem 2.2. Assume that the following conditions hold:
(H3)F : J × R→ Pcp(R) is such that F (., x) is measurable for each x ∈ R.
(H4) Hd(F (t, x(t))− F (t, y(t)) ≤ m(t)‖x− y‖ for almost all t ∈ J , and x, y ∈ R whit

m ∈ L1(J,R+), d(0, F (t, 0)) ≤ m(t) for almost all t ∈ J .
Then the boundary value problem (1) has at least one solution on J if

2

(2− λ)Γ(α)
‖m‖L1 < 1

proof. We show that the operator N(y), defined in the beginning of proof of Theorem
2.1, satisfies the assumptions of Lemma 1.5. Firstly we show that N(y) ∈ Pcl(C(J)),
Finally, we show that N(y) is a contraction on C1(J,R).

Since N(y) is a contraction, it follows by Lemma 1.5 that N(y) has a fixed point y
which is a solution of (1). This completes the proof.�
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Product Integration Method for numerical solution of a heat

conduction problem
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Abstract

In this paper we reduce a heat conduction problem to a weakly singular Volterra
integral equation of the second kind. The integral equation is solved by the product
integration technique, which is explained in Section3. Numerical implementation of
the method is illustrated by benchmark problem originated from heat conduction.

Keywords: Heat equation, Weakly singular Volterra integral equation, Product in-
tegration method

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

In this work we consider the following heat conduction problem in one spatial dimension

ut = uxx, 0 < x <∞, 0 < t, (1)

u(x, 0) = f(x), 0 < x <∞, (2)

ut(0, t) + α(t)ux(0, t) + β(t)u(0, t) = g(t), 0 < t, (3)

and
|u(x, t)| ≤ C1 exp

{
C2x

2
}
. (4)

Here u(x, t) is the temperature and is unknown, Ci, i = 1, 2, are positive constants, and
the known functions f, α, β, g, are explained in theorem 2.4.

2 Equivalent Integral Equation

We give some definitions, lemmas and theorems associated with this section

Definition 2.1. The fundamental solution of heat equation is denoted byK(x, t), the Neu-
mann’s function is denoted by N(x, ξ, t) and the Green’s function is denoted by G(x, ξ, t),

K(x, t) :=
1√
4πt

exp

{
−x

2

4t

}
, N(x, ξ, t) := K(x−ξ, t)+K(x+ξ, t), G(x, ξ, t) := K(x−ξ, t)−K(x+ξ, t).
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Lemma 2.2. For any integrable function f that satisfies |f(x)| ≤ C1 exp{C2x
2}, where

C1 and C2 are positive constants, limt↓0
∫∞
−∞K(x − ξ, t)f(ξ)dξ = f(x), 0 < t, at the

point x of continuity of f .

Proof. See Lemma 3.4.3 of [8].

Lemma 2.3. At a point of continuity of g, limx↓0−2
∫ t
0
∂K
∂x (x, t− τ)g(τ)dτ = g(t).

Proof. See Lemma 4.2.1 of [8].

Theorem 2.4. The problem of determining the unique bounded solution u that satisfies
(1)- (4), where Ci, i = 1, 2, are positive constants, f , is twice continuously differentiable,
and α, β, g are continuous, is equivalent to the problem of determining the unique contin-
uous solution φ to the integral equation,φ(t) +α(t)

∫∞
0 N(0, ξ, t)f ′(ξ)dξ− 2α(t)

∫ t
0 K(0, t−

τ)φ(τ)dτ +β(t)f(0) +β(t)
∫ t
0 φ(τ)dτ = g(t), 0 < t. And the solution u has the represen-

tation, u(x, t) = −2
∫ t
0
∂K
∂x (x, t− τ)

(∫ τ
0 φ(s)ds+ f(0)

)
dτ +

∫∞
0 G(x, ξ, t)f(ξ)dξ.

Proof. We are going to search u(x, t) = u1(x, t) + u2(x, t), such that u1, u2 satisfy heat
equation and each of them establish one of the equations (2), (3). For this aim define
φ(τ) = ut(0, τ), and hence u(0, τ) =

∫ τ
0 φ(s)ds + f(0). For 0 < x < ∞, 0 < t, let

u1(x, t) = −2
∫ t
0
∂K
∂x (x, t − τ)

(∫ τ
0 φ(s)ds+ f(0)

)
dτ, u2(x, t) =

∫∞
0 G(x, ξ, t)f(ξ)dξ. From

[8], chapter one, both of u1 and u2 are solutions of equation (1). Lemma 2.2 leads u(x, 0) =
u2(x, 0) = limt↓0

∫∞
0 G(x, ξ, t)f(ξ)dξ = limt↓0

∫∞
−∞K(x − ξ, t)fo(ξ)dξ = f(x), where fo is

the odd extension of f to −∞ < x <∞. Equation (3) equivalent with φ(t)+α(t)ux(0, t)+
β(t)

∫ t
0 φ(τ)dτ + β(t)f(0) = g(t). Now we evaluate ux(0, t), for this purpose we have

ux(x, t) = −2

∫ t

0

∂2K

∂x2
(x, t− τ)

(∫ τ

0
φ(s)ds+ f(0)

)
dτ +

∫ ∞

0
Gx(x, ξ, t)f(ξ)dξ

= −2

∫ t

0

∂K

∂t
(x, t− τ)

(∫ τ

0
φ(s)ds+ f(0)

)
dτ +

∫ ∞

0

[
∂K

∂x
(x− ξ, t)− ∂K

∂x
(x+ ξ, t)

]
f(ξ)dξ

= −2

∫ t

0
−∂K
∂τ

(x, t− τ)

(∫ τ

0
φ(s)ds+ f(0)

)
dτ +

∫ ∞

0

[
−∂K
∂ξ

(x− ξ, t)− ∂K

∂ξ
(x+ ξ, t)

]
f(ξ)dξ

= 2

[
K(x, t− τ)

(∫ τ

0
φ(s)ds+ f(0)

) ∣∣∣∣∣

τ=t

τ=0

−
∫ t

0
K(x, t− τ)φ(τ)dτ

]
−
∫ ∞

0

∂N

∂ξ
(x, ξ, t)f(ξ)dξ

= −2K(x, t)f(0)− 2

∫ t

0
K(x, t− τ)φ(τ)dτ −


N(x, ξ, t)f(ξ)

∣∣∣∣∣

ξ=∞

ξ=0

−
∫ ∞

0
N(x, ξ, t)f ′(ξ)dξ




= −2K(x, t)f(0) +N(x, 0, t)f(0) +

∫ ∞

0
N(x, ξ, t)f ′(ξ)dξ − 2

∫ t

0
K(x, t− τ)φ(τ)dτ

=

∫ ∞

0
N(x, ξ, t)f ′(ξ)dξ − 2

∫ t

0
K(x, t− τ)φ(τ)dτ, (5)

where the following implementations are used

1. K is a solution of heat equation (1), and this is used in row 2,
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2. the chain rule is applied in row 3,

3. integration by parts is used in row 4,

4. limξ→+∞N(x, ξ, t) = limξ→+∞ 1√
4πt

exp(−ξ2) = 0 is used in row 5,

5. N(x, 0, t)f(0) = 2K(x, t)f(0), is used in row 6.

For x = 0, ux(0, t) =
∫∞
0 N(0, ξ, t)f ′(ξ)dξ − 2

∫ t
0 K(0, t − τ)φ(τ)dτ. By substitution

ux(0, t) we obtain φ(t)+α(t)
∫∞
0 N(0, ξ, t)f ′(ξ)dξ−2α(t)

∫ t
0 K(0, t−τ)φ(τ)dτ+β(t)f(0)+

β(t)
∫ t
0 φ(τ)dτ = g(t). By consideration of chapter3 of [8] the solution u in the class (4) is

unique, and hence the proof is completed.

3 Product integration technique

For development of the method we consider the following integral equation

φ(t) = g(t) +

∫ t

0
p(t, τ)k(t, τ, φ(τ))dτ, t ∈ [0, b]. (6)

Here p is weakly singular and k is smooth. Suppose 0 ≤ t0 < t1 < ... < tN ≤ b be the
N + 1 nodal points in [0, b]. We are going to evaluate φ(t) at the nodal points, and for
this purpose let the numerical approximation to φ(tn) is written as φn. Algorithm of the
product integration method is as follow

step1 Put t = tn in (6); i.e., φ(tn) = g(tn) +
∫ tn
0 p(tn, τ)k(tn, τ, φ(τ))dτ .

step2 substitute LN (k, tn; τ) =
∑N

j=0 lN,j(τ)k(tn, tj , φ(tj)) instead of k(tn, τ, φ(τ)) in

step1 and get φn = g(tn)+
∑N

j=0 ωj(tn)k(tn, tj , φj), where ωj(t) =
∫ t
0 p(t, τ)lN,j(τ)dτ .

step3 compute φj from Step 2. and obtain φN (t) = g(t) +
∑N

j=0 ωj(t)k(t, tj , φj), as a
Nystrom approximation for φ(t).

For more details about the method and its convergence analysis, see [7, 6, 1, 2]. Another
convergence analysis is obtained in [3], for the linear Volterra integral systems. Some
applications of the method are obtained in [4, 5].

4 Numerical results

In the problem (1)-(4), for f(x) = cosx, α(t) = 1, β(t) = 0, g(t) = − exp{−t}, the exact
solution is u(x, t) = exp{−t} cosx. The integral equation associated with this problem is,

φ(t)− 2√
π
DawsonF (

√
t)− 1√

π

∫ t
0

φ(τ)√
t−τ dτ = −e−t, which has the exact solution φ(t) = −e−t.

In Table 1, column2 shows absolute errors of φ̃ at t = 0.02i, i = 1, 2, 3, 4, 5 with b = 0.1, φ
is exact solution and φ̃ is evaluated by product integration technique.
In Table 1, columns 3, 4, 5, 6, 7, shows absolute errors of ũ at (x, t) = (0.02i, 0.02j), i, j =
1, 2, 3, 4, 5 with b = 0.1, u is exact solution and ũ is the approximated solution evaluated
numerically by substitute of φ̃, instead of φ in u representation formula. Here eij , i, j =
1, 2, 3, 4, 5 is the absolute error of ũ at (0.02i, 0.02j), and for example 3.36D − 12 means
3.36× 10−12. As we see in the error of ũ the bad behavior, is near t = 0, and it improve
as t keeps aloof from zero. All of programs written by Mathematica programming.
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Table 1: absolute errors of φ̃ and ũ

i |φ− φ̃|i ei1 ei2 ei3 ei4 ei5
1 3.36D − 12 1.62D − 4 1.55D − 6 6.66D − 9 3.27D − 10 7.82D − 12
2 1.37D − 11 9.59D − 4 1.06D − 5 1.01D − 8 3.98D − 8 2.08D − 9
3 2.08D − 10 4.24D − 3 1.13D − 4 2.19D − 7 4.44D − 7 1.91D − 8
4 1.48D − 9 1.16D − 3 1.53D − 4 1.82D − 5 1.46D − 6 4.08D − 8
5 1.99D − 9 6.54D − 3 5.72D − 4 1.53D − 5 2.05D − 6 4.69D − 7
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Abstract

This paper deals with a ratio-dependent functional response predator-prey model,
with a threshold harvesting in the predator equation. We study the equilibria of
the system before and after the threshold. Furthermore, we show that the threshold
harvesting can improve the undesirable behavior, such as nonexistence of interior
equilibria. Finally, some numerical simulations are performed to support our analytic
results.

Keywords: Predator-prey model, functional response, threshold harvesting
Mathematics Subject Classification [2010]: 37N25, 92D25

1 Introduction

Classically a predator-prey model is defined as the following system
{

ẋ = rx(1 − x
k ) − F (x, y)y

ẏ = β F (x, y)y − δy,
(1)

where x and y are the number of prey and predator, respectively. In this model, in the
prey equation, the parameter r > 0 is the prey intrinsic growth rate and k represents the
environmental carrying capacity. The function F (x, y) describes predation and is called
the functional response. In the predator equation, the parameter β accounts for conversion
rate to change prey biomass into predator reproduction, and δ is the predator’s death rate.
Moreover, from the point of view of human needs, it is necessary to consider the harvesting
of populations in some models [5]. An important harvesting policy for the predator-prey
model is the threshold harvesting function. It works as follows:

when population is above of certain level or threshold T , harvesting occurs; when the
population falls below that level, harvesting stops. The policy was first studied by Collie
and Spencer [2], and additional analysis has been done since then [1]. So the continuous
threshold function proposed as the following

H(z) =

{
0 z ≤ T
h(z−T )
h+z−T z > T,

(2)
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for z = x or z = y [3]. In (2), T is the threshold population size that determines when
harvesting starts or stops and h is the rate of harvesting limit. The model allows managers
to smoothly increase the harvesting rate as the population increases. So in this paper,
we consider the ratio-dependent functional response model with a predator threshold har-
vesting policy in the predator equation. Some numerical simulations has been done in the
final section to support the analytic results.

2 Equilibria and the stability

In this section, we consider the following ratio-dependent functional response predator-
prey model, with a predator threshold harvesting policy and some time delay in predator
equation 




ẋ = x(1 − x) − αxy
x+y

ẏ = y
(
−δ + βx

x+y

)
− H(y),

(3)

where

H(y) =

{
0 y ≤ T
h(y−T )
h+y−T y > T,

(4)

and the initial conditions x(0) > 0, y(0) > .

Theorem 2.1. The boundary equilibria of the system (3) in the first quadrant, are the
co-extinction point O = (0, 0) and the predator-free point E = (1, 0). If β > δ and
β − αβ + αδ > 0, then the unharvested model has a co-existence equilibrium E∗ = (x∗, y∗)
defined by

x∗ = β−αβ+αδ
β , y∗ = β−δ

δ x∗ = x∗(x∗−1)
1−α−x∗ = β2−αβ2+2αδβ−βδ−αδ2

βδ . (5)

Furthermore if y∗ ≤ T , then E∗ is an equilibrium of the harvested model too. If y∗ > T
then the harvested model has a co-existence equilibrium E∗∗ = (x∗∗, y∗∗) defined by





y = x(x−1)
1−α−x

x = δ(h+y−T )y2+h(y−T )y
(β−δ)(h+y−T )y−h(y−T ) .

(6)

and we have x∗∗ > x∗, T < y∗∗ < y∗.

The general jacobian matrix of system (3) around an arbitrary point (x, y) equals

J =




1 − 2x − αy2

(x+y)2
− αx2

(x+y)2

βy2

(x+y)2
−δ + βx2

(x+y)2
− dH(y)

dy


 . (7)

By Hartman-Grobman theorem for hyperbolic equilibria and the following outcome we
prove our stability results. For the proof of the following result see for instance [4].

Theorem 2.2. Consider the linear system ẋ = Ax.
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1. If Det(A) < 0, then the system has a saddle at the origin.

2. If Det(A) > 0, Tr2(A) − 4Det(A) ≥ 0, then the system has a node at the origin; it
is stable if Tr(A) < 0 and unstable if Tr(A) > 0.

3. If Det(A) > 0, Tr2(A) − 4Det(A) < 0, then the system has a focus at the origin; it
is stable if Tr(A) < 0 and unstable if Tr(A) > 0.

4. If det(A) > 0, Tr(A) = 0, then the system has a center at the origin.

Theorem 2.3. The extinction point (0, 0) is a saddle for the system (3).

Theorem 2.4. At the point E = (1, 0),the trace and the determinant of (7) are Tr(J)(1,0) =
−1 − δ + β and Det(J)(1,0) = δ − β. Therefore

1. if δ − β < 0 then E is a saddle.

2. If δ − β > 0 then E is a stable node.

3. If δ − β = 0 then E remains a stable node.

Theorem 2.5. Let

M =
(β − δ)(−αδβ2 + αδ2β + β2δ)

β3
, N =

−β2 + α(β2 − δ2) − βδ(β − δ)

β2
.

1. If M < 0, then E∗ is a saddle.

2. If M > 0 and N < 0, then E∗ is a stable node or focus.

3. If M > 0 and N > 0, then E∗ is an unstable node or focus.

Note that at the equilibrium (x∗∗, y∗∗) the trace and the determinant of the jacobian
matrix equals

Tr(J) = C − B2

α
− δ +

βA2

α2
− φ,Det(J) = C(

β

α2
A2 − φ − δ) +

1

α
B2(δ + φ),

where φ = h2

h−T− x∗∗B
A

, A = 1 − α − x∗∗, B = x∗∗ − 1, C = 1 − 2x∗∗.

Theorem 2.6.

1. If C − 1
αB2 > βCA2

α2(φ+δ)
, then E∗∗ is a saddle point.

2. If C − 1
αB2 < βCA2

α2(φ+δ)
and C − 1

αB2 < δ + φ − βA2

α2 , then E∗∗ is a stable node or

focus.

3. If δ + φ − βA2

α2 < C − 1
αB2 < βCA2

α2(φ+δ)
, then E∗∗ is a unstable node or focus.
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Figure 1: α = 1.3, β = 0.8, δ = 0.1, without harvesting.
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Figure 2: α = 1.3, β = 0.8, δ = 0.1, T = 0.1, h = 1.

3 Numerical simulations

In this section, we present some numerical simulations to illustrate our theoretical analysis.
In the following example the harvesting create a co-existence equilibrium when it does not
exits in unharvested model. By Theorem 2.1 we know that if β > δ, β −αβ +αδ ≤ 0, then
the system (3) has no interior equilibria and the extinction of the species is inevitable.

Example 3.1. In Fig. 1, the phase portrait of the system with the parameter values
α = 1.3, β = 0.8, δ = 0.1 without harvesting has been shown. The system has no co-
existence equilibria since β − αβ + αδ < 0. Then in Fig. 2, the threshold harvesting
function with the parameter values h = 1, T = 0.1 is added to the system. In this case the
system has a stable interior equilibrium.
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Abstract

In this paper, Sinc-Galerkin method is used to solve a two-dimensional nonlinear
inverse parabolic problem and a stable numerical solution is determined. To do this,
the Levenberg-Marquardt method is applied to deal with the ill-posedness of the dis-
cretized system. The accuracy and reliability of the proposed method is demonstrated
by a test problem.

Keywords: Sinc-Galerkin method, Inverse parabolic problem, Levenberg-Marquardt
method.
Mathematics Subject Classification [2010]: 35R30, 35K55

1 Introduction

In this paper, a two-dimensional nonlinear inverse parabolic problem of the form

ut − ∆u = G(x, y, t, u), (x,y) ∈ Ω ⊂ R2, t > 0, n > 1, (n ∈ N),
u(x, y, 0) = 0, (x,y) ∈ Ω ⊂ R2,

u(x, y, t) = 0, (x,y) ∈ ∂Ω ⊂ R2, t > 0,
(1)

is considered, where ∂Ω is the boundary of Ω = [0, 1] × [0, 1], G(x, y, t, u) = f(x, y) +
H(x, y, t) − un such that H(x, y, t) is known a function and the functions f(x, y) and
u(x, y, t) are unknown. If f = f(x, y) is given, then the problem (1) is called the direct
problem (DP). The existence and uniqueness of the DP (1) have been investigated in [1].
To find the pair (u, f), we use the overposed measured data

u(x∗, y∗, ti) = E(ti), 0 < x∗, y∗ < 1, i = 1, 2, . . . , I. (2)

Let us denote by the notation u[x, y, t; f ] the solution of the DP (1). Then from the
additional condition (2) it is seen that the nonlinear inverse parabolic problem (1) consists
of solving the following nonlinear functional equation

u[x∗, y∗, ti; f ] = E(ti), 0 < x∗, y∗ < 1, i = 1, 2, . . . , I. (3)

In general, instead of solving the functional equation (3), an optimization problem is
solved, where objective function is minimized by an effective regularization method. This
objective function is defined by
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S(f) =

I∑

i=1

(u[x∗, y∗, ti; f ] − E(ti))
2. (4)

In this paper, we attempt to obtain an approximate solution for the unknown function
f(x, y). For this purpose, first let

f(x, y) ≃ f̄(x, y) =
n∑

i=1

m∑

j=1

ei,jSinc(
x − ih

h
)Sinc(

y − jh

h
), (5)

be a linear combination of Sinc functions, where h is increment of x and y variables and
ei,j ’s are unknown parameters that should be derived. In other words, the nonlinear inverse
parabolic problem is reduced to a parameter approximation problem. These parameters
are determined by minimizing the objective function (4). Due to this the Levenberg-
Marquardt method is used. This method is applied to the solution of linear problems that
are too ill-conditioned [2].

2 Mathematical formulation

The Sinc function is defined on the whole real line −∞ < x < ∞ by

Sinc(x) =

{
sin(π x)

π x x ̸= 0
1 x = 0.

For hx, hy, ht > 0, the translated Sinc functions with evenly spaced nodes for space and

time variables are given as S(k, hx)(x) = Sinc(x−khx
hx

), S(k, hy)(y) = Sinc(
y−khy

hy
) and

S(k, ht)(t) = Sinc( t−kht
ht

), k = 0, ±1, ±2, . . .. To construct approximations on the inter-

vals (0, 1) and (0, ∞), which are used in this paper, we should apply φ(z) = ln
(

z
1−z

)

and Υ(t) = ln(t), respectively. In other words, the compositions Sj(x) = S(j, hx)oφ(x),
Sj(y) = S(j, hy)oφ(y) and S∗

j (t) = S(j, ht)oΥ(t) define the basis elements on the intervals
(0, 1) and (0,∞), respectively. Now, to find the unknown function f(x, y) of the problem
(1), a computational algorithm is provided.

Algorithm: Identification of the unknown function f(x, y)

Step 1. Let (5) ba an approximation of the unknown function f(x, y).
Step 2. Using Sinc-Galerkin method, obtain an approximate solution for u[x, y, t, f̄ ].

Due to this, set umx,my ,mt(x, y, t) =
Nx∑

i=−Mx

Ny∑
j=−My

Nt∑
k=−Mt

ui,j,kSi(x)Sj(y)S∗
k(t) be an ap-

proximate solution of the DP (1), where mx = Mx + Nx + 1, my = My + Ny + 1 and
mt = Mt + Nt + 1 and ui,j,k = u(xi, yj , tk) are unknown coefficients. These unknown
coefficients are determined by orthogonalizing the residual with respect to the functions
Sl,γ,λ. This yields the discrete system

(
ut − ∆u + un − f̄(x, y) − H(x, y, t), Sl,γ,λ

)
= 0,

−Mx 6 l 6 Nx, −My 6 γ 6 Ny, −Mt 6 λ 6 Nt, where Sl,γ,λ = Sl(x)Sγ(y)S∗
λ(t). The

weighted inner product is defined by (f, g) =
∞∫
0

1∫
0

1∫
0

f(x, y, t)g(x, y, t)v(x)w(y)τ(t)dxdydt,
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where v(x)w(y)τ(t) is a product weight function. The method of approximating the in-
tegrals, begins by integrating by parts to transfer all derivatives from u to Sl,γ,λ. Then,
by choosing v(x) = 1√

φ′(x)
, w(y) = 1√

φ′(y)
and τ(t) =

√
Υ′(t) and the Sinc trapezoidal

quadrature rule we have

(ut − (uxx + uyy) + un − F (x, y, t), Sl,γ,λ) ≃

−hxhyht

N∑
p=−Mx

Ny∑
q=−My

Nt∑
r=−Mt

u(xp, yq, tr)Sl(xp)Sγ(yq)
v(xp)w(yq) ∂

∂t
(Sλ(t)τ(t))|t=tr

φ′(xp)φ′(yq)Υ′(tr)

−hxhyht

N∑
p=−Mx

Ny∑
q=−My

Nt∑
r=−Mt

u(xp,yq ,tr)Sγ(yq)w(yq)Sλ(tr)τ(tr) ∂2

∂x2 (Sl(x)v(x))
∣∣∣x=xp

φ′(xp)φ′(yq)Υ′(tr)

−hxhyht

N∑
p=−Mx

Ny∑
q=−My

Nt∑
r=−Mt

u(xp,yq ,tr)Sl(xp)v(xp)Sλ(tr)τ(tr) ∂2

∂y2 (Sγ(y)w(y))
∣∣∣y=yq

φ′(xp)φ′(yq)Υ′(tr)

−hxhyht

N∑
p=−Mx

Ny∑
q=−My

Nt∑
r=−Mt

(u(xp,yq ,tr))2Sl(xp)v(xp)Sγ(yq)w(yq)Sλ(tr)τ(tr)
φ′(xp)φ′(yq)Υ′(tr)

−hxhyht

N∑
p=−Mx

Ny∑
q=−My

Nt∑
r=−Mt

F (xp,yq ,tr)Sl(xp)v(xp)Sγ(yq)w(yq)Sλ(tr)τ(tr)
φ′(xp)φ′(yq)Υ′(tr) = 0,

where F (x, y, t) = f̄(x, y) + H(x, y, t) and xp = φ−1(phx), yq = φ−1(qhy) and tr =

Υ−1(rht). We note that [3], [S(i, hx)oφ(x)]
∣∣∣x=xk

= δ
(0)
i,k , d

dφ [S(i, hx)oφ(x)]
∣∣∣x=xk

= 1
hx

δ
(1)
i,k

and d2

dφ2 [S(i, hx)oφ(x)]
∣∣∣x=xk

= 1
h2

x
δ
(2)
i,k . The similar formulas are satisfied for Sj(y) =

S(j, hy)oφ(y) and S∗
j (t) = S(j, ht)oΥ(t). Thus, we have a nonlinear system of mx×my×mt

equations of the mx ×my ×mt unknown coefficients ui,j,k. These coefficients are obtained
for example by using Newton’s method. [3].

Step 3. Obtain the m×n unknown parameters ei,j , based on the minimization of the

least squares norm S(f) =
∑I

i=1(umx,my,mt
(x∗, y∗, ti) − E(ti))

2. Since, the obtained sys-
tem of algebraic equations is ill-conditioned, therefore the Levenberg-Marquardt method
according to step 4 is used.

Step 4. Levenberg-Marquardt regularization [2]. Suppose that,

Umx,my ,mt(f) = [U1, U2, . . . , UI ]
T ,

E = [E1, E2, . . . , EI ]
T ,

and f = [e1,1, e2,1, . . . , en,1, e1,2, e2,2, . . . , en,2, . . . , e1,m, e2,m, . . . , en,m]T , where Ei = E(ti)
and Ui = umx,my,mt

(x∗, y∗, ti), i = 1, 2, . . . , I. Then the matrix form of the functional is

given by S(f) =
[
E − Umx,my,mt(f)

]T [
E − Umx,my ,mt(f)

]
, in which

[
E − Umx,my ,mt(f)

]T ≡
[E1 − U1, E2 − U2, . . . , EI − UI ]. The superscript T denotes the transpose and I is the to-
tal number of measurements. To minimize the least squares norm, the derivatives of S(f)
with respect to each unknown parameters {ei,j}i=n,j=m

i=1,j=1 are equated to zero. That is

∇S(f) = 2

[
−

∂UT
mx,my,mt

(f)

∂f

]
[
E − Umx,my ,mt(f)

]
= 0.

The sensitivity matrix is defined by J(f) =

[
∂UT

mx,my,mt
(f)

∂f

]T

(see [2]). Now, in the follow-

ing the computational algorithm for the Levenberg-Marquardt regularization is provided
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[2]. Suppose an initial guess for the vector of unknown coefficients f is available. Denote
it with f (0).
1. Set µ0 be an arbitrary regularization parameter (for example 0.001 ) and k = 0.
2. Compute Umx,my ,mt(f

(0)) and S(f (0)).
3. Compute the sensitivity matrix Jk and Ωk = diag[(Jk)T Jk], by using the current values
of f (k).
4. Solve the following linear system of algebraic equations

[
(Jk)

T
Jk + µkΩk

]
∆fk = (Jk)T

[
E − Umx,my,mt(f

k)
]
,

in order to compute ∆fk = fk+1 − fk.
5. Compute fk+1 = ∆fk + fk.
6. If S(fk+1) ≥ S(fk) replace µk by 10µk and go to 4.
7. If S(fk+1) < S(fk) accept fk+1 and replace µk by 0.1µk.
8. Assume that tol (tolerance) is given. If

∥∥fk+1 − fk
∥∥ ≤ tol, then an acceptable approx-

imation is obtained. Otherwise, replace k by k + 1 and go to 3.

3 Numerical example

In this section, to show the validation of the introduced method a numerical example is
given. In this example, we put n = 2 and H(x, y, t) = 2t(y − y2) cos(x) + (2t(1 − x) + ty +
(1+ t)(−xy −y2 +xy2)) sin(x)+ t2(1−x)2(1−y)2y2 sin2(x). Thus, the exact solutions are
u(x, y, t) = ty(1 − x)(1 − y) sin(x) and f(x, y) = y sin(x). Also, the additional condition is
considered as u(0.5, 0.5, t) = E(t) = 0.6t.
Table 1 shows the L1−norm error of the introduced method. As we observe, the results
show the efficiency and accuracy of the method. Also, Fig. 1 shows the exact and approxi-
mate solutions of f(x, y). These results are obtained by using Mx = Nx = 6, My = Ny = 3,

Mt = Nt = 2, h =
√

π, hx =
√

π
6 , hy =

√
2π
3 , ht =

√
π and

f(x, y) ≃ f̄(x, y) = e1,1Sinc(
x − h

h
)Sinc(

y − h

h
) + e22Sinc(

x − 2h

h
)Sinc(

y − 2h

h
).

Table 1: The L1−norm error of the introduced method

∥∥f(x, y) − f̄(x, y)
∥∥

1
0.07257 0.12183 0.00297 0.03906 0.05702 0.00406

x 0.1 0.1 0.4 0.4 0.7 0.7
y 0.3 0.9 0.1 0.6 0.3 0.9
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Abstract

In this talk we discuss the possible applications of techniques from computational
algebraic geometry in germ computations of smooth local singular normal forms. Due
to the algebraic nature of these techniques, we need to address the ideal and module
membership problem. Here, as a part of our ongoing project, we briefly describe
how we utilize concepts from algebraic geometry like local rings, Mora normal form,
and standard bases to obtain an algorithm for computing the normal forms for such
bifurcation problems. This work contributes into enhancement of our developed Maple
library, called “Singularity”.

Keywords: Normal form; Standard basis; Singularity theory; Local ring.

Mathematics Subject Classification [2010]: 34C20; 13P10; 14H20.

1 Introduction

The bifurcation theory of singular smooth vector and scalar valued germs is an important
subject and has many applications in engineering problems; see [5–9]. The applications
include bifurcation control and designing effective controllers for uncontrollable singular
systems; see [8]. In order to achieve this, we need to compute certain ideals and modules.
Hence, a convenient answer to the ideal and module membership problem is a desirable
goal. There are various ways to answer the ideal membership problem: the first method
is to find a convenient representation of the ideals or module structures such as the use of
intrinsic ideals and module representations. The other approach is by the use of efficient
algorithms through a symbolic computer algebra system. Given the local nature of our
problem, our rings constitute a local ring and therefore, techniques such as Gröbner basis
does not properly work here. Thereby, we shall use Standard basis and Mora remainder
instead of the usual Gröbner remainder. Mora normal form is a more common terminology
in the literature than Mora remainder, yet we prefer Mora remainder since it does not
confuse with the normal form of a singular germ. The results presented in this talk has
some contributions in Singularity. Singularity is an end-user friendly symbolic library
for bifurcation analysis of singularities. We hereby announce that the first version of
Singularity will soon be released for public use and it will be enhanced and updated as
our research progresses.
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The aim of this conference paper is to compute the normal form of a smooth germ
given by g(x, λ). Here, x is a state variable and λ is treated as a control parameter. The
normal form of a map g is a simple representative of the class of all germs equivalent to g.
The equivalence relation depends on its applications. Here we use contact equivalence as it
is the most natural equivalence relation that preserves the zero structures of smooth maps.
Denote E for the ring of smooth germs whose base point is the origin and g(x, λ) ∈ E .
Additional parameters may have adverse effects on the qualitative type of the associated
bifurcation diagrams. The study of these is important and is usually dealt with them
through the universal unfolding which is not discussed here.

The rest of this conference paper is summarized as follows. Section 2 is devoted to
a brief long history of the subject. We then present algebraic formulation needed for
computations in Section 3. Finally, our approach is proposed in Section 4.

2 Literature Review

Armbruster and Kredel proposed to study the universal unfolding of singular germs by
using Gröbner basis; see [1]. However, Gröbner basis is inappropriate tool for computations
of singularities as it leads to wrong results in certain circumstances; also see [3]. Gatermann
and Lauterbach [4] used the standard basis for study of equivariant bifurcation problems.
There are two important local rings that they are contained in E and are of our central
attention. The first one is the local ring of fractional germ maps, i.e.,

K[x, λ]〈x,λ〉 = {f
g
| f, g ∈ K[x, λ], g(0, 0) 6= 0}

and the second one is the ring of formal power series denoted by K[[x, λ]]. The following
Lemma provides an example of an efficient approach for computations, when its hypothesis
is satisfied. This is because it allows us to use smaller rings rather than using the ring of
smooth germs.

Lemma 2.1. Let gi ∈ K[x, λ]〈x,λ〉 ⊂ E , I = 〈g1, . . . , gn〉E , J = 〈g1, . . . , gn〉K[x,λ]〈x,λ〉, and

Mk := 〈x, λ〉K[x,λ]〈x,λ〉
k ⊆ J.

Then for f ∈ K[x, λ]〈x,λ〉,

f ∈ J if and only if f ∈ I.

Proof. Let f ∈ I. We claim that I ∩ K[x, λ]〈x,λ〉 ⊆ J . Let I = 〈g1, . . . , gn〉E and J =
〈g1, . . . , gn〉K[x,λ]〈x,λ〉 . Choose

n∑

i=1

aipi ∈ I ∩K[x, λ]〈x,λ〉

where ai ∈ E and pi ∈ K[x, λ]〈x,λ〉. Therefore we may write

n∑

i=1

aipi =
f

g
, (1)
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with
f, g ∈ k[x, λ], and g(0, 0) 6= 0.

If we substitute ai by its (k− 1)-jet, i.e., Jk−1ai, Equation (1) is valid moduloMk. Since
Mk ⊆ J , the germ f/g belongs to J. Now consider f ∈ I. By hypothesis f ∈ K[x, λ]〈x,λ〉,
we have

f ∈ I ∩K[x, λ]〈x,λ〉 ⊂ J and f ∈ J.
The if part is trivial since J ⊆ I.

3 Algebraic Objects

In this section we recall some basic concepts from singularity theory and algebraic geom-
etry; see [2, 10]. An ideal I is called intrinsic if for any f ∈ I,

g ∼s f =⇒ g ∈ I.

Here, ∼s denotes strongly equivalence relation. For a given singularity g, P(g) and S (g)
are defined by

P(g) = Itr(J (g)) for J (g) = 〈xg, λg, x2gx, λgx〉,

and

S (g) = Σ(α1,α2){M α1〈λα2〉 | ∂
α1

∂xα1

∂α2

∂λα2
g(0, 0) 6= 0}.

Here Itr(I) is the largest intrinsic ideal in I. The ideal P(g) represents the ideal of higher
order terms while S (g) is the smallest intrinsic ideal containing g. Monomials of the form
xα1λα2 are called intrinsic generators of S (g).

4 Computational approach

The most challenging part of normal form computation is to give a suitable presentation
for ideal P(g). Intrinsic ideals admit the following form

M k + M k1〈λl1〉+ · · ·+ M ks〈λls〉, (2)

satisfying k > k1 + l1 > · · · > ks + ls and 0 < l1 < · · · < ls; see [10]. The intrinsic repre-
sentation (2) is computed by the standard basis computation and follows the Hironaka’s
lemma. Details of intrinsic computations shall be discussed in our talk presentation while
they are skipped in this page-limited extended abstract conference paper.

To obtain normal form of germ g, we first omit higher order terms from g. This leads
to an alternative equivalent germ f . Next, we detect the intermediate order terms. This
is performed via the vector space

P(f)⊥ −S (f)⊥.

Applying all possible effective transformation generators on f , we find the maximal solv-
able associated subsystem. This gives rise to the desirable simplest normal form.
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We apply our above mentioned algorithmic approach on

g(x, λ) = λ2 − cos(x) + xλ+ 1.

Therefore, P(g) = M 3 and this concludes that

f(x, λ) = λ2 + x2 + xλ

is contact-equivalent to g. Then, algebraic computations lead to

P(f) = M 3, S (f) = M 2, and P(f)⊥ −S (f)⊥ = R{xλ}.
One may find the simplest normal form

x2 +
3

4
λ2

by applying x → ax + bλ (for a > 0 and arbitrary b) in f and solving the corresponding
maximal solvable subsystem, that is, to remove the intermediate order term xλ from f .
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Abstract

In this paper we intend to offer a numerical method to solve linear fuzzy fredholm
integral equations system of the second kind. This method converts the given fuzzy
system into a linear system of algebraic equations by using triangular orthogonal
functions. The proposed method is illustrated by an example and also results are
compared with the exact solution by using computer simulations.

Keywords: Fuzzy number, Fuzzy Fredholm integral equations system, Triangular
functions

Mathematics Subject Classification [2010]: 45D05, 03E72

1 Introduction

There are many numerical methods which have been focused on the solution of fuzzy
integral equations. Recently, introduced a new set of triangular orthogonal functions have
been applied for solving integral equation by Babolian et al. [1]. Mr Mirzaee et al. [2]
have used the triangular functions for solving fuzzy Fredholm integral equation of second
kind (FFIE-2). The aim of this paper is to apply the triangular functions for the linear
fuzzy Fredholm integral equations system of the second kind (FFIES-2).

2 Preliminaries

Definition 2.1. ([1]) Two m-sets of triangular functions (TFs) are defined over the interval
[0,T] as:

T1i(t) =

{
1 − t−ih

h , ih ≤ t < (i + 1)h,
0, o.w

, T2i(t) =

{
t−ih

h , ih ≤ t < (i + 1)h,
0, o.w

,

where i = 0, 1, · · · ,m − 1, h = T
m , with a positive integer value for m.

In this paper, it is assumed that T = 1. Consider the first m terms of T1i and T2i,we
can write them concisely as m-vectors:

T1(t) = [T10(t), T11(t), · · · , T1m−1(t)]
T , T2(t) = [T20(t), T21(t), · · · , T2m−1(t)]

T .
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We denote the TF vector T (t) as T (t) = [T1(t) T2(t)]T . So, we have

∫ 1

0
T (t)T T (t)dt ≃

(
h
3 Im

h
6 Im

h
6 Im

h
3 Im

)
= D2m×2m. (1)

Also, let f(s, t) ∈ L2([0, 1) × [0, 1)), the expansion of f(s, t) with respect to TFs, can be
defined as follows

f(t, s) ≃ T1T (t).F11.T1(s) + T1T (t).F12.T2(s) + T2T (t).F21.T1(s) + T2T (t).F22.T2(s),

or
f(t, s) ≃ T T (t).F.T (s) (2)

where F11, F12, F21 and F22 are m × m matrices and (F11)ij = f(ih, jh), (F12)ij =
f(ih, (j + 1)h), (F21)ij = f((i + 1)h, jh) and (F22)ij = f((i + 1)h, (j + 1)h), for i, j =
0, 1, . . . , m − 1, and T (t), T (s) are 2m1 and 2m2 dimensional TFs and F is a 2m1 × 2m2

TFs coefficient matrix [1]. For convenience, we put m1 = m2 = m, so we can write

F =

(
(F11)m×m (F12)m×m

(F21)m×m (F22)m×m

)
. (3)

Definition 2.2. ([2]) A fuzzy number is a fuzzy set u : R1 → [0, 1] such that (1): u is
upper semi-continuous, (2): u(x) = 0 outside some interval [a, d], (3): There are real
numbers b, c such as a ≤ b ≤ c ≤ d and (i) u(x) is monotonically increasing on [a, b], (ii)
u(x) is monotonically decreasing on [c, d], (iii) u(x) = 1, b ≤ x ≤ c. The set of all fuzzy
numbers is denoted by E1 and is a convex cone.

Definition 2.3. ([2]) A fuzzy number u is a pair (u, u) of functions u(r) and u(r), 0 ≤ r ≤
1, such that (1): u(r) is abounded monotonic increasing left continuous function, (2): u(r)
is abounded monotonic decreasing left continuous function, (3): u(r) ≤ u(r), 0 ≤ r ≤ 1.

For arbitrary fuzzy numbers u = (u(r), u(r)), v = (v(r), v(r)) and k ≥ 0, we define
(1): addition, u ⊕ v = (u(r) + v(r), u(r) + v(r)),
(2): scalar multiplicationand, k ⊙ u = (ku(r), ku(r)),
(3): D(u, v) = max{sup0≤r≤1 |u(r) − v(r)|, sup0≤r≤1 |u(r) − v(r)|}, is distance between u
and v. ( For More details about the properties of the fuzzy integral see [2] )

3 Solving linear fuzzy Fredholm integral equations system

In this section, we present a TFs method to solve linear FFIES-2. The FFIES-2 is in the
form

U(x) = G(x) ⊕ Λ ⊙ KU(x) (4)

where

U(x) = [u1(x), u2(x), . . . , un(x)]T , G(x) = [g1(x), g2(x), . . . , gn(x)]T ,

KU(x) =

∫ 1

0
K(x, t) ⊙ U(t)dt, K(x, t) = [kij(x, t)], Λ = [λij ],
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where kij(x, t) is an orbitary kernel function over the square 0 ≤ x, t ≤ 1 and λij ̸= 0
for i, j = 1, 2, . . . , n are real constants. In system (4), the fuzzy function gi(x) and kernel
kij(x, t) are given and assumed to be sufficiently differentiable with respect to all their
arguments on the interval 0 < x, t < 1. Also ui(x) is a fuzzy real valued function, and
U(x) = [u1(x), u2(x), . . . , un(x)]T is the solution to be determined. For convenience, we
consider the ith equation of Eq.(4) as

ui(x) = gi(x) ⊕
n∑

j=1

λij ⊙
∫ 1

0
kij(x, t) ⊙ uj(t)dt, (5)

Let (g
i
(x, r), gi(x, r)) and (ui(x, r), ui(x, r)), 0 ≤ r ≤ 1 and x ∈ [0, 1) be parametric forms

of gi(x) and ui(x), respectively. In this paper, we assumed that kij(x, t) ≥ 0. Now, for
solving (4) we write the parametric form of the given fuzzy integral equations system as
follows

ui(x, r) = g
i
(x, r) +

n∑

j=1

λij

∫ 1

0
kij(x, t)uj(t, r)dt, (6)

ui(x, r) = gi(x, r) +
n∑

j=1

λij

∫ 1

0
kij(x, t)uj(t, r)dt, (7)

for i, j = 1, 2, . . . , n. Let us expand ui(x, r), g
i
(x, r) and kij(x, t) by using Eq.(2) as follows

ui(x, r) ≃ T T (x).Ui.T (r), g
i
(x, r) ≃ T T (x).Gi.T (r), kij(x, t) ≃ T T (x).Kij .T (t), (8)

where Ui, Gi and Kij are in the form of eq.(3). substituting the Eqs.(8) in Eq.(6):

T T (x)UiT (r) ≃ T T (x)GiT (r) +
n∑

j=1

λijT
T (x)Kij

(∫ 1

0
T (t)T T (t)dt

)
UjT (r) (9)

substituting the Eqs. (1) in Eq. (9), we can write

T T (x)UiT (r) ≃ T T (x)GiT (r) + T T (x)(

n∑

j=1

λijKijDUj)T (r) ⇒ Ui = Gi +

n∑

j=1

λijKijDUj

Then we get the following system

n∑

j=1

(∆ij − λijKijD) Uj = Gi, ∆ij =

{
I i = j
0 i ̸= j

(10)

for i, j = 1, 2, . . . , n, and I is a 2m × 2m identity matrix. By solving this matrix system,
we can find matrix Ui, for i = 1, . . . , n. So ui(x, r) ≃ T T (x)UiT (r). The same trend hold
for ui(x, r). Therefore, for solving system (4), we need to solve two systems of (10).

Theorem 3.1. (Convergence Analysis) Let kij(x, t), i, j = 1, 2, . . . , n and 0 ≤ x, t ≤ 1 are
bounded and continuous, then approximate solution of system (4), converges to the exact
solution.
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Proof. suppose that ũi(x) is approximate solution of exact solution ui(x). Therefore
ũi(x) ≃ UT

i T (x) [1], and by using the properties of the fuzzy integral [2], we can write

lim
m→∞

D(ui(x), ũi(x)) ≤ M
n∑

j=1

∫ 1

0
lim

m→∞
D

(
uj(t), UT

j T (t)
)
dt → 0,

where M = max0≤x,t≤1 |λijkij(x, t)| < ∞. So the proof is completed.

Example 3.2. Consider the system of fuzzy linear Fredholm integral equations with

(g
1
(x, r), g1(x, r)) = x2(r2 + 2r + 2, 7 − 2r) +

x

3
(r2 + r + 1, 4 − r)

(g
2
(x, r), g2(x, r)) = x(r2 + 3r + 3, 10 − 3r), 0 ≤ x, t ≤ 1, for 0 ≤ r ≤ 1,

k11(x, t) = x, k12(x, t) = 2x2,k21(x, t) = 4xt, k22(x, t) = 2x, λij = −1, i, j = 1, 2

The exact solution in this case is given by (u1(x, r), u1(x, r)) = x2(r2 + r + 1, 4 − r),
(u2(x, r), u2(x, r)) = x(r + 1, 3 − r). After solving this system by the proposed method,
we see that the absolute error is zero. (see Table 1)

Table 1: Numerical results for Example 3.2, with x = 0.5,m = 32.

r Absolute error Absolute error Absolute error Absolute error
u1(x, r) u1(x, r)) u2(x, r) u2(x, r)

0.1 3.3792e-07 1.3604e-04 7.7449e-05 2.7208e-04
0.3 1.0099e-05 1.2906e-04 9.6989e-05 2.5813e-04
0.5 6.1044e-05 1.2209e-04 1.2209e-04 2.4417e-04
0.7 1.7806e-05 1.1511e-04 1.5280e-04 2.3022e-04
0.9 5.5473e-05 1.0813e-04 1.8907e-04 2.1627e-04

4 Conclusion

In this paper, we introduce TFs method for approximating the solution of linear FFIES-2.
The structural properties of TFs are utilized to reduce the FFIES-2 to a system of algebraic
equations, without using any integration. In the above presented numerical example we
see that the proposed method well performs for linear FFIES-2.
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Abstract

In this paper we establish the properties of Fractional singular Sturm-Liouville
problem. Our main issue is to investigate the spectral properties for the operator.
Furthermore, we prove new results according to the fractional Sturm-Liouville prob-
lem.
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1 Introduction

We consider the following SturmLiouville problem with factional derivative in the leading
term {

−cDα
0+u(t) + q(t)u(t) = λu(t), 0 < t < 1,

u(0) = u(1) = 0, α ∈ (1, 2)
(1)

Definition 1.1. [2] ( RiemannLiouville fractional integrals)We define the left and the
RiemannLiouville fractional integrals by

Iα0+f(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds,

where Γ(·) is the Euler gamma function.

Definition 1.2. [2] The Riemann-Liouville fractional derivative of order α > 0, n − 1 <
α < n, n ∈ N is defined as

cDα
0+f(t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1f (n)(s)ds,

where the function f(t) have absolutely continuous derivatives up to order (n− 1).
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Proposition 1.3. [2] Let α, β > 0 and ∈ Lp(a, b)(1 ≤ p ≤ ∞) Then, equations

Iαa+I
β
a+
f(t) = Iα+β

a+
f(t)

are satisfied.

Proposition 1.4. [2] Let α > 0 and f ∈ Lp(a, b)(1 ≤ p ≤ ∞) then the following is true:

Dα
a+I

α
a+f(t) = f(t)

cDα
0+I

α
0+f(t) = f(t)

for almost all t ∈ [0, 1]. If function f is continuous, then the composition rules hold for
all t ∈ [0, 1].

Proposition 1.5. [2] Let β ∈ R+ and p ≥ 1 The fractional integral operator Iβ
a+

is
bounded in Lp(a, b):

‖Iβ
a+
‖Lp ≤ Kβ‖f‖Lp , Kβ =

(b− a)β

Γ(β + 1)
.

2 Main results

We shall replace the analysis of the unbounded Sturm- Liouville operator from 1 (denoted
as L) with the inverse integral and bounded operator (denoted as T) The following is a
displayed formula with a number to being able to refer to it, like formula

Lu(x) = (−cDα
0+ + q(x))u(x) = λu(x)

1

λ
u(x) = −Iαa+Fλ(u(x)) + Iαa+Fλ(u(x))|x=0x = Tu(x)

Where
Fλu(x) = (q(x)− λ)u(x)

Let us observe that operator T can be expressed as the following integral operator with
kernel K

u(x) =

∫ 1

0
K(x, s)u(s)ds

where the form of the kernel is:

K(x, s) =
1

Γ(α)

{
−(x− s)α−1 + x(1− s)α−1, s < x
(1− s)α−1x, x < s

(2)

Theorem 2.1. Fractional Sturm-Liouville operator T is compact.
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Proof. First, let us note that operator T is correctly defined as an operator mapping
L2(a, b)→ L2(a, b). In order to prove its compactness, it is enough to show that

∫ 1

0

∫ 1

0
K2(x, s)dxds <∞ (3)

This integral can be rewritten as

∫ 1

0

∫ 1

0
K2(x, s)dxds =

∫ 1

0

[ ∫ x

0
K2(x, s)ds+

∫ 1

x
K2(x, s)ds

]
dx (4)

For the first of the above integrals, we have the following valid inequality:

∫ x

0
K2(x, s)ds <

2

[Γ(α+ 1)]2

and ∫ 1

x
K2(x, s)ds <

2

[Γ(α+ 1)]2

By applying the above derived estimations for parts of integral 4, we obtain for the kernel
of operator T the inequality:

∫ 1

0

∫ 1

0
K2(x, s)dxds <∞

which implies that T is indeed a compact operator on L2(a, b).

Remark 2.2. Let us observe that in the case α > 1, operator T defined using the kernel
given in 2 is also compact. This fact results from the fact that the kernel is then a function
continuous in [0, 1]× [0, 1]. Thus 3 is fulfilled.

Theorem 2.3. The unique continuous eigen-function yλ for fractional Sturm-Liouville
problem with potential 1 corresponding to each eigenvalue obeying

‖q − λ‖ ≤ 1

Mϕ + ϕ(1)
(5)

exists and such an eigenvalue is simple. where

ϕ(x) = Iα0+1 =
−(x− t)α
Γ(α+ 1)

∣∣∣
x

0
=

xα

Γ(α+ 1)
,Mϕ = ‖ϕ(x)‖

Proof. We have to say that equation

yλ = −Iαa+Fλ(y) + Iαa+Fλ(y)|x=0x (6)

can be interpreted as a fixed point condition on the function space C[0, 1],

yλ = Tyλ,

where the mapping on the right-hand side for any continuous function g ∈ C[0, 1] is
defined as
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gλ = −Iαa+Fλ(g) + Iαa+Fλ(g)|x=0x

The following inequality will be useful in further estimations:

‖Fλ(g)− Fλ(r)‖ = ‖(q − λ)g − (q − λ)r‖ ≤ ‖q − λ‖‖g − r‖

By performing necessary operations for the distance between images Tg and Tr for a pair
of arbitrary continuous functions g, r ∈ C[0, 1],

‖Tg − Tr‖ =
∥∥− Iα0+Fλ(g) + Iα0+Fλ(r)

∣∣∣
x=1

x+ Iα0+Fλ(r)− Iα0+Fλ(r)
∣∣∣
x=1

x
∥∥∥

≤
∥∥Iα0+

(
Fλ(g)− Fλ(r)

)
− Iα0+

(
Fλ(g)− Fλ(r)

)∣∣∣
x=1

x
∥∥

≤ ‖g − r‖‖q − λ‖
∥∥ϕ(x)− ϕ(1)‖

≤ ‖g − r‖‖q − λ‖
(
Mϕ + ϕ(1)

)
≤ L‖g − r‖

where constant L = ‖q − λ‖
(
Mϕ + ϕ(1)

)
. By means of 5, we state that mapping T is a

contraction on the space (C[0, 1], ‖.‖)

‖Tg − Tr‖ ≤ L‖g − r‖, L ∈ (0, 1)

Hence, a unique fixed point enounced asyλ ∈ C[0, 1] exists that solves equation 6, 1
provided 5 is applied. In that case, such eigenvalues are simple. The proof is completed.
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Spectral solutions of time fractional telegraph equations
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Abstract

In this paper, A spectral scheme is proposed to approximate the solution of time
fractional telegraph equations. Eigenfunctions of second order self-adjoint differential
operator are used for discretization of spatial variable and Shifted Legendre polyno-
mials are applied to discretization of time variable. Numerical results are presented
for some problems to demonstrate the usefulness and accuracy of this approach. The
method is easy to apply and produces very accurate numerical results.

Keywords: Fractional telegraph equation, Spectral method, Fractional differential
operational matrix, Shifted Legendre polynomial
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1 Introduction

Consider time fractional telegraph equation as

Dβ
c U(x, t) + k1D

α
c U(x, t) + k2U(x, t) =

∂2U

∂x2
(x, t) + f(x, t), (1)

(x, t) ∈ [0, 1]× [0, 1], 0 < α ≤ 1 < β ≤ 2,

subject to the homogeneous boundary condition

U(x, 0) = U(x, 1) = 0, (2)

and the initial condition

U(x, 0) = f0(x), Ut(x, 0) = f1(x), (3)

which k1 and k2 are constant and Dα
c is the Caputo-type fractional derivative of order α.

These equations , when β = 2 and α = 1, are commonly used in the study of wave prop-
agation of electric signals in a cable transmission line and also in wave phenomena. And
also they have been used in modeling the reactiondiffusion processes in various branches
of engineering sciences and biological sciences by many researchers (see [1] and references
therein).
The advantage of fractional derivatives [2, 3] become apparent in modeling mechanical and
electrical properties of real materials, as well as in the description of rheological properties
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of rocks, and in many other fields. So we consider the equation with fractional derivative
on time variable.
Spectral methods play an important role in recent researches for numerical solution of
differential equations in regular domains. These methods have shown their efficiency and
convergence in solving numerous problems [4]. In [5], Saadatmandi and Dehghan proposed
an operational matrix of derivatives with fractional order for Legendre polynomials and
used it for solving ordinary fractional differential equation.
In this article, first, eigenfunctions of second order self-adjoint differential operator are
used for discretization of spatial variable and reduce the problem to a system of fractional
differential equation then shifted Lengendre tau method is applied to solve this system.

2 Description of the proposed scheme

As we know, the operator L = ∂2

∂x2
, on the defined domain asD = {v ∈ L2([0, 1])|v satisfy (3)},

is self-adjoint which lead to a countable infinite set of real eigenvalues {λm = −(mπ)2}
and corresponds to the set of orthonormal eigenfunctions vm(x) =

√
2 sin(mπx).

By expanding the function U(x, t) and f(x, t) in terms of the finite eigenfunctions
vm(x) of the operator L as

U(x, t) =

M∑

m=1

um(t)vm(x) = ~UT (t) ~V (x), (4)

f(x, t) =
M∑

m=1

< f(x, t), vm(x) > vm(x) = ~F T (t) ~V (x), (5)

where

~U(t)
T

(t) = [u1(t), u2(t), · · · , uM (t)], (6)

~V (x)
T

(x) = [v1(x), v2(x), · · · , vm(x)], (7)

~F (t)
T

(t) = [< f, v1 >,< f, v2 >, · · · , < f, vM >], (8)

which < f, vm >=
∫ 1
0 f(x, t)vm(x)dx and T stands for a vector transpose and the definition

of eigenfunctions, the Eq. (1) will be transformed to

Dβ
c
~UT (t) ~V (x) + k1D

α
c
~UT (t) ~V (x) + k2~U

T (t) ~V (x) = ~UT (t)ΛM ~V (x) + ~F T (t) ~V (x), (9)

which ΛM is a M ×M diagonal matrix that is obtained from eigenfunction definition with
corresponding eigenvalues of ∂2

∂x2
on its diagonal i. e.

ΛM = diag [λm = −(mπ)2], m = 1, 2, · · · ,M.

Taking the dot product of resulting expression (9) by ~V (x), and integrating with respect
to x over the [0, 1], and imposing transpose operator on the result follows

Dβ
c
~U(t) + k1D

α
c
~U(t) + k2~U(t) = ΛM ~U(t) + ~F (t). (10)
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Up to Now, we have a system of fractional differential equations with M equations that
we want to solve it by shifted Legendre tau method. Shifted Legendre polynomials and
their operational matrix of fractional differential equation are presented in [5] so we refer
enthusiastic reader to it for more details. They define on the interval [0, 1] and can be
obtained as follows:

pi+1(t) =
(2i+ 1)(2t− 1)

(i+ 1)
pi(t)−

i

i+ 1
pi−1(t), i = 1, 2, ..., (11)

where p0(t) = 1 and p1(x) = 2t− 1.
Suppose

~U(t) = A.L(t), (12)

which A is a M × (N + 1) unknown matrix and L(t) = [p0(t), p1(t), ..., pN (t)]T is vec-
tor of shifted Legendre polynomials (11). Substituting (12) in (10) and using fractional
operational matrix of shifted Legendre polynomials [5] lead to the following residual

R ' (A.D(β) + k1A.D
(α) + k2A− ΛM .A)L(t)− F (t), (13)

where D(α) and D(β) are operational matrix of fractional differential operator of shifted
Legendre polynomial proposed in [5].
As in a typical tau method [4, 5] we generate M(N − 1) linear equations, and with a
similar process from initial conditions we obtain 2M equations. So we reach to a linear
system that can be easily solved. Now , numerical results are presented for some problems
to demonstrate the usefulness and accuracy of this approach.
Note: We use the first (N-1) shifted Legendre polynomials as test function.

Example 2.1. Consider the problem Eqs. (1)-(3) with following assumption

α =
3

4
, β =

7

4
, (14)

k1 = 1 = k2,

f0(x) = sin(πx), f1(x) = 0,

and exact solution as U(x, t) = cos(t)sin(πx).

Solution. The absolute error of founded approximated solution of problem by our scheme
with N = 6 and M = 10 for some point shown in Table 1. And also 3D plot of the error
[U(x, t) − UM,N (x, t)] is presented in Figure 1. This typical example and other examples
clearly imply the accuracy and effectiveness of our scheme.
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Table 1: The absolute errors of solution for M = 10, N = 7 for Example 2.1

x t=0.25 t=0.5 t=0.75 t=1

0.25 2.1 ∗ 10−10 8.9 ∗ 10−9 1.4 ∗ 10−8 1.6 ∗ 10−8

0.5 3 ∗ 10−10 1.3 ∗ 10−8 2 ∗ 10−8 2.3 ∗ 10−8

0.75 2.1 ∗ 10−10 8.9 ∗ 10−9 1.4 ∗ 10−8 1.6 ∗ 10−8

Figure 1: 3D plot of the error [U(x, t)− UM,N (x, t)] for M = 10, N = 7
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Abstract

This paper is devoted to study of solutions of a Steklov problem for a three-
dimensional Helmholtz equation with an eigenvalue parameter λ in the non-local
boundary conditions on the two-party smooth boundary of a connected bounded do-
main.The derived necessary conditions construct a system of second kind Fredholm
integral equations with multi-dimensional singular integrals. Finally,a new method for
regularization of these singularities is represented.

Keywords: Steklov problem, Fundamental solution, Fredholm integral equation
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1 Introduction

Our method for investigation of Steklov problem has been used for the first and second
order elliptic equations such as Cauchy-Riemann and Laplace equations, respectively, in a
two-dimensional bounded domain [1], [2] and we apply this method for a three-dimensional
Helmholtz equation

Lu(x) = (∆ + k2)u(x) = 0 in Ω ⊂ R3, (1)

with the non-local boundary conditions

lju(x) =

3∑

k=1

[αjk(x
′)
∂u(x)

∂xk
|x3=γ1(x′) + βjk(x

′)
∂u(x)

∂xk
|x3=γ2(x′)] = λu(x′, γj(x′)) x′ ∈ S,

u(x′, γj(x′)) = 0 j = 1, 2, x′ ∈ ∂S. (2)

where Ω is a simply connected bounded domain in R3 and its boundary Γ, is in the form
of Lyapunov surface which contains two parts; Γ = Γ1 ∪Γ2, Γ1 : x3 = γ1(x′) , Γ2 : x3 =
γ2(x′) such that γ2(x′) < γ1(x′), x′ ∈ S and S is the projection of the domain Ω on the
plane Ox1x2.
Here ∆ is the Laplace operator in R3, λ ∈ C is a spectral parameter and αjk(x

′), βjk(x′)
j = 1, 2, k = 1, 2, 3, are given sufficiently smooth functions.
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1.1 Necessary conditions

By means of the fundamental solution U(x− ξ) of (1) which is given as follows [3],

U(x− ξ) = − 1

4π|x− ξ|e
ik|x−ξ|. (3)

we get the first necessary condition:
∫

Γ
u(x)

∂U(x− ξ)
∂n

dx−
∫

Γ
U(x− ξ)∂u(x)

∂n
dx =

∫

Ω
(∆ + k2)U(x− ξ)u(x) dx

=

∫

Ω
δ(x− ξ)u(x) dx =





u(ξ), ξ ∈ Ω,
1/2u(ξ), ξ ∈ Γ,
0, ξ /∈ Ω̄,

(4)

In a similar way, the rest of three necessary conditions are obtained;

∫

Γ

∂u(x)

∂xj

∂U(x− ξ)
∂n

dx+

∫

Γ

∂U(x− ξ)
∂xj

∂u(x)

∂n
dx+ k2

∫

Γ
u(x)U(x− ξ) cos(n, xj)dx

−
∫

Γ
cos(n, xj)∇u(x) · ∇U(x− ξ) dx =

∫

Ω
δ(x− ξ)∂u(x)

∂xj
dx =





∂u(ξ)
∂ξj

, ξ ∈ Ω,

1/2 ∂u(ξ)
∂ξj

, ξ ∈ Γ,

0, ξ /∈ Ω̄,

(5)

where n is the outer unit normal vector on Γ and ∇ = ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

).

Theorem 1.1. Let Ω ⊂ R3 be a convex bounded domain along the direction x3 with its
boundary Γ which is a Lyapunov’s surface. Then any solution of (1) in Ω satisfies in the
necessary conditions (4) and (5).

1.2 Separation of singularities and regularization

Computing of the first order derivatives of (3) we obtain

u(ξ) =
1

2π

∫

Γ
eik|x−ξ|(

1

|x− ξ|2 −
ik

|x− ξ|)u(x) cos(x− ξ, n) dx

+
1

2π

∫

Γ

eik|x−ξ|

|x− ξ|
∂u(x)

∂n
dx, ξ ∈ Γ. (6)

Theorem 1.2. On the conditions of theorem 1.1,the obtained first necessary (6) is regular.

On the other hand

∂u(ξ)

∂ξj
=

1

2π

∫

Γ

eik|x−ξ|

|x− ξ|2 (
3∑

m=1

∂u(x)

∂xm
Kjm(x, ξ)) dx+ · · · . (7)

where

Kjm(x, ξ) = cos(x− ξ, xj) cos(n, xm)− cos(x− ξ, xm) cos(n, xj); j,m = 1, 2, 3.

and ”· · · ” denotes all of integrals with weak singularities.
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Theorem 1.3. On the conditions of theorem 1.1, the necessary conditions (7) are singular.

Opening the surface integrals in (7), we obtain

∂u(ξ)

∂ξj
|ξ3=γp(ξ′) =

(−1)p−1

2π

∫

S

eik|x−ξ|p

|x′ − ξ′|2Lp(x′, ξ′)
K

(p)
jm(x′, ξ′)

∂u(x)

∂xm
|x3=γp(x′)

dx′

cos(np, x3)
+

(−1)p−1

2π

∫

S

eik|x−ξ|p

|x′ − ξ′|2Lp(x′, ξ′)
K

(p)
jn (x′, ξ′)

∂u(x)

∂xn
|x3=γp(x′)

dx′

cos(np, x3)
+ · · · ,

(8)

where

K
(p)
jm(x′, ξ′) = Kjm(x, ξ)|

x3 = γp(x
′)

ξ3 = γp(ξ
′)

p = 1, 2, m, n, j = 1, 2, 3; m,n 6= j

|x− ξ|p = |(x− ξ)p|; (x− ξ)p = (x1 − ξ1, x2 − ξ2, γp(x
′)− γp(ξ′)),

Lp(x
′, ξ′) = 1 +

2∑

m=1

(
∂γp(x

′)
∂xm

)2 cos2(x′ − ξ′, xm) +O(|x′ − ξ′|).

Constructing special linear combinations of necessary conditions (8), applying the bound-
ary conditions (2) and finally regularization them by a new method, we get the following
theorem:

Theorem 1.4. In boundary problem (1)-(2),if the coefficients αjk(x
′); j = 1, 2, k = 1, 2, 3

belong to some Holder’s class, then the obtained linear combinations of (8) are regular.

2 Main results

Under conditions theorem 1.4, we obtain a system of six second order Fredholm integral
equations for the boundary values of first order derivatives which are regular. Finally, we
combine the system with regular necessary conditions (6) and get the system of second
kind Fredholm integral equations with respect to the eight unknowns

u(ξ1, ξ2, γp(ξ1, ξ2)),
∂u(ξ)

∂ξ1
|ξ3=γp(ξ1,ξ2),

∂u(ξ)

∂ξ2
|ξ3=γp(ξ1,ξ2); p = 1, 2. (9)

So, the boundary problem (1)-(2) is reduced to the system of second Fredholm integral
equations with unknowns (9) which has no singularity in the kernel.
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Using Chebyshev polynomials zeros as mesh points for

numerical solution of linear and nonlinear PDEs by

differential quadrature method- based RBFs
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Abstract

In this paper Differential Quadrature (DQ) method- based Radial Basis Functions
(RBFs) is applied to find the numerical solution of the linear and nonlinear Partial
Differential Equations (PDEs). The Multiquadric (MQ) RBF as basis function will
introduce and applied to discretized PDEs. DQ method will introduce briefly and
then we obtain the numerical solution of the PDEs by propose DQ method.

Keywords: Radial basis function, Differential quadrature, Partial differential equa-
tion

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Definition 1.1. If f be a real value function that defined on the real line R, then the
function φ : Rd −→ R that φ(rj) = f(rj) and rj = ∥x − xj∥, x, xj ∈ Rd is said a radial
function.

∥.∥ Is the Euclidian norm and xj ∈ Rd is a special mesh point and called the center of
radial function. Some of RBFs has a shape parameter c and we named them parametric
RBFs. Parametric RBFs are smooth and infinitely differentiable. In interpolation or
solving PDEs with RBFs, their system matrix is nonsingular and hence the problem of
solving PDE with RBFs has a unique solution. It is well known that the value of c strongly
influences the accuracy of approximation solution. Thus, there exists a problem of how to
select a ”good” value of c so that the numerical solution of PDEs can achieve satisfactory
accuracy. In general, there are three main factors that could affect the optimal shape
parameter c for giving the most accurate results. These three factors are the scale of
supporting region, the number of supporting nodes, and the distribution of supporting
nodes [1]. Most popular RBFs are shown in Table 1.
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Table 1: Most popular RBFs

RBF Name formula

Multiquadric φ(rj) =
√

r2
j + c2

Inverse multiquadric φ(rj) = 1√
r2
j +c2

Thin plate spline φ(rj) = r2
j ln(r2

j + c2)

Gaussian φ(rj) = e−cr2
j

2 Differential Quadrature (DQ) method

The DQ method was introduced by Richard Bellman and his associates in the early of
1970s [3,4]. The basic idea of the DQ method is that any derivative at a mesh point can
be approximated by a weighted linear sum of all the functional values along a mesh line
[4]. Currently, the DQ method has been extensively applied in engineering. DQ method
is a numerical method for solving PDEs or ODEs. In this method, we approximate the
spatial derivatives of the function f at mesh points xj ∈ Rd using linear weighted sum
of all the functional values at points in the domain of the problem. We assume N grid
points on the real axis with step length. The discretization of the nth and the mth order
derivatives by DQ method at a point (xi, yi) with respect to x and y, respectively, is given

by the below equations that f
(n)
x is nth order derivative of f with respect to x and f

(m)
y

is mth order derivative of f with respect to y.

f (n)
x (xi, yi) =

N∑

j=1

w
(n)
ij f(xj , yj) , i = 1, 2, . . . , N (1)

f (m)
y (xi, yi) =

N∑

j=1

v
(m)
ij f(xj , yj) , i = 1, 2, . . . , N (2)

Where w
(n)
ij and v

(m)
ij are unknown weighting coefficients. There are many approaches

to find these coefficients such as Bellmans approaches [5] and Shu’s approach [1]. From
these approaches, Shu’s approach is very general approach in the recent years. The func-
tion f(x, y) in above equations is called test functions and for obtain the weighting co-
efficients we need a suitable test function. Some of the most general test functions are:
Legendre polynomials, Lagrange interpolation polynomials, Lagrange interpolated cosine
and RBFs. We use RBFs and in particular Multiquadric (MQ) as test functions. For

obtaining the coefficients w
(n)
ij and v

(m)
ij we substitute the function MQ with equation

φk(x, y) =
√

(x − xk)2 + (y − yk)2 + c2

In the equations (1) and (2) and obtain the below equations:

φ
(n)
kx (xi, yi) =

N∑

j=1

w
(n)
ij φk(xj , yj) , i = 1, 2, . . . , N (3)

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Using Chebyshev polynomials zeros as mesh points for numerical solution . . . pp.: 2–4

894



φ
(n)
ky (xi, yi) =

N∑

j=1

v
(m)
ij φk(xj , yj) , i = 1, 2, . . . , N (4)

That φ
(n)
kx and φ

(m)
ky are nth and mth order derivatives of φk with respect to x and y

respectively. For the any given i, any of equation systems of (3) and (4) has N unknowns
with N equations. So, with solving this equation system, we can obtain the weighting
coefficients.

3 Numerical Examples

Example 3.1. Consider the 2-dimansion Poisson equation in a square domain [−1, 1] ×
[−1, 1]

∂2u

∂x2
+

∂2u

∂y2
= −2π2 sin(πx) sin(πy)

With below exact solution
u(x, y) = sin πx sin πy

The numerical solution by propose method is evaluate for this example, and existence of
analytical solution helps to measure the accuracy of numerical method. The numerical
computations have been done with the help of Matlab software. In numerical experiments

L2 error is calculated by formula L2 =
√

ΣN
i=1(ui − ui)2, where ui is exact solution and ui

is numerical solution. The numerical results are shown in Table 2.

Table 2: Numerical result for linear PDE with DQ method

N L2 Optimal c

4 6.9902×10−2 0.1066
9 3.4423 ×10−3 0.4233
49 5.02182 ×10−5 0.9218
64 1.2641 ×10−4 1.0315
100 9.5520 ×10−3 1.4252

From Tables 2, It can be seen that within the certain number of mesh points, the accuracy
of numerical results can be improved by increasing the number of mesh points. However,
when the number of mesh points is further increased after a critical value, the accuracy of
numerical results is decreased. The reason may be due to the fact that, when the number
of mesh points is increased, the condition number of the matrix becomes very large and
the matrix tends to be ill-conditioned.

Example 3.2. Consider the below 2-dimansion nonlinear PDE that we suppose that
[−1, 1] × [−1, 1] be the domain of this problem.

∂2u

∂x2
+

∂2u

∂y2
+ u(

∂u

∂x
+

∂u

∂y
) − 2(x + y)u = 4 (5)

With the below Dirichlet boundary condition for the four edges of the square domain
{

u(x = −1) = 1 + y2 , u(x = 1) = 1 + y2

u(y = −1) = 1 + x2 , u(y = 1) = 1 + x2 (6)
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The exact solution of this problem is u(x, y) = x2 + y2 . This problem is nonlinear and
hence, the system of equations that we obtain from discretization of (5) is nonlinear. we
have discretized the equation (5) as follow

∂2u(xi, yi)

∂x2
+

∂2u(xi, yi)

∂y2
+ u(

∂u(xi, yi)

∂x
+

∂u(xi, yi)

∂y
) − 2(xi + yi)u(xi, yi) = 4 (7)

That, in (7) we have i = 1, 2, . . . , N . Now with applying DQ method we have:

N∑

j=1

aijuj + ui

N∑

j=1

bijuj − 2(xi + yi)ui = 4 , i = 1, 2, . . . , N (8)

And in above we have aij = w
(2)
ij + v

(2)
ij and bij = w

(1)
ij + v

(1)
ij . However, (8) is a nonlinear

system of equations and we solved it with Jacobi iteration method and obtained the
numerical results in Table 3.

Table 3: Numerical result for nonlinear PDE with DQ method

N L2 Optimal c

4 3.2504×10−2 0.1066
9 9.0273 ×10−3 0.4233
49 1.0883 ×10−4 0.9218
64 5.6075 ×10−2 1.0315
100 9.0471 ×10−2 1.4252

From Table 2, we see that the optimal shape parameter c achieved in the example (3.1)
works very well for the nonlinear case.
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Arbitrage and curvature

Mohammad Jelodari Mamaghani∗

Allameh Tabataba’i University

Department of mathematics
Tehran

Abstract

In this article we describe the relation between the financial concept of arbitrage
and the geometric concept of curvature. To this end we construct the projective
space corresponding to the financial market. Using This space as a manifold we study
parallel transports along the paths on this manifold which has a nice relatioship with
both curvatures of paths on the manifold and arbitrage on the market. It is shown
that existence of arbitrage corresponds to the non-zero curvature of a path on the
manifold.

Keywords: Arbitrage, Curvature, relative price, projective market

Mathematics Subject Classification [2010]: 91B70, 91B24, 91B25

1 Introduction

The field of mathematical finance is an active field of research that unifies subjects from
other fields such as economics, calculus, differential equations, stochastic processes, dif-
ferential geometry, and physics. The idea of linking the concepts arbitrage and curvature
is due to Iliniski who introduced the topic ”Gauge theory of arbitrage”[8]. This topic
has grown up to a branch in mathematical finance in the last decade due to the works
of Morisawa [9], Farinelli [5] and many others. Also, there is a bridge between arbitrage
theory and classical Kirchhoff theory of electrical circuits introduced by Ellerman [4].

2 Arbitrage

Arbitrage is one of the keywords of the theory of finance. It is a situation in market
that makes it possible to earn money without taking any risk or even without any real
investment. Mispricing, misdistribution of information, political events, inefficiency of the
market are some origions of arbitrage possibility. Arbitrage possibility is the possibility of
instants. Arbitrage is it’s own enemy and disappears soonly by market arbitraguers and
speculators. They buy for low prices (so rise the prices) and sell in high prices(and so
lower the prices), and soforce the market in equilibrium. They short sell, i.e. they first
sell the asset (get loan) then deliver the asset(get money), after all pay the loan and get

∗Speaker

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Arbitrage and curvature pp.: 1–4

898



the profit. The exess money they get as profit prevents the cycle to be closed. But partly
we have:

get − loan → get − money → pay − loan

A real cycle can occur in exchange market. Let the spot rate of changing one USD into 1
PS at time t be r(t), and the rate of interest of these moneies be r1 and r2 respectively,
then after 1 unit of time we have the following partial cycle. We observe that they begin
by 1 USD, do they end with the same PS’s?

1(D) → 1 + r1 → (1 + r1)r(t)(P ),

1(D) → r(t) → (1 + r2)r(t + 1)(P ).

Therefore the no-arbitrage (arbitrage-free) conditions in the market are very important
to investigate. In fact our main question is: In terms of cycles when does there occur
arbitrage possibility?

3 Geometry

In this section we will connect the notion of cycle above with the notion of connection, and
hence parallel translation, and hence curvature. To do so let us fix a filtered probability
space (Ω, F, F , p), the so called objective probability space. Consider a market consisting
of n risky assets and one non-risky asset, say bank account. Let Si(t), i = 1, . . . , n be the
price of the i−th asset and S0(t) > 0 the price of the non-risky asset at time t, 0 ≤ t ≤ T .
Let h(t) = (h1(t), . . . , hn(t)), 0 ≤ t ≤ T be a self financing portfolio of risky assets and
S(t) = (S1(t), . . . , Sn(t)), 0 ≤ t ≤ T . Consider the curve α(t) = (h(t), S(t)) and let
σ(h, S) =

∑n
1 fi(h, S)ei, which associates to each vector-price an other portfolio. Now

define the total differential of σ, the total differential of σ in the direction of α̇ as follows:

∇0σ =

n∑

1

dfi(h, S)ei, (1)

∇0
α̇σ =

n∑

i=1

{
n∑

j=1

∂fi

∂hj

dhj

dt
+

∂fi

∂Sj

dSj

dt
}ei. (2)

Using these notions we will define the notion of economical covariant derivative of σ, and
then proceed to study parallel translation and curvature properly.

4 Projective Market

By definition the price vector of the risky assets with respect to the numeraire S0(t) > 0

is Z = (Z1(t), . . . , Zn(t)), where Zi(t) = Si(t)
S0(t) . The projective conterpart of this vector is:

Y =
Z1(t)

||Z|| e1 + . . . +
Zn(t)

||Z|| en, (3)

where
||Z|| =

√
Z1(t)2 + . . . + Zn(t)2,

ei ∈ Rn is the unit vector with zero components every where except 1 at the i−th place.
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Definition 4.1. The projective market consists of all traded assets whose projective price
vector is an element of the projective space RPn, such as Y in (1).

As the following proposition shows the projective market(P−market) has the main
properties of the S−market.

Theorem 4.2. The P−market is

• arbitrage free if and only if the S−market is.

• self-financing if and only if the S−market is.

Proof. The first assertion is the result of the S− value process of a portfolio is positive if
and only if it’s P− value process is positive.
To prove the second assertion we assume the S− prices follow Ito diffusions and use
stochastic differentiation formula.

In S−market the price vector of the portfolio H = (h1, . . . , hn) is (h1S1, . . . , hnSn)
which corresponds to the price vector

1

||H.Z||(h1Z1, . . . , hnZn)

in P−market.

Definition 4.3. The distance between two price vectors X = (X1, . . . , Xn) and Y =
(Y1, . . . , Yn) of the projective market is

d(X, Y ) = cos−1| < X, Y > |,

where < X,Y > is the usual inner product in Rn.

We see that d(X, Y ) is the small arc length between X and Y in a plane passing
through X , Y and the origion that intersects the unit sphere in a great circle part of
which is the small arc mentioned above.

Definition 4.4. The transition probability passing from X to Y or vise versa is

p(X, Y ) = Cos2d(X, Y ) =
1

2
(1 + 2cos2d(X, Y )). (4)

We observe that p(X, Y ) = 0 if and only if the angle between X and Y is π
2 , i.e. it is

impossible to reach from X to Y in P− market.
p(X, Y ) = 1 if and only if Y = X or Y = −X i.e. (X, Y ) is only one point in the projective
market.
In the case 0 < p(X,Y ) < 1 one can reach from the portfolio X to portfolio Y with a
positive probability.
consider a smooth curve γ on the projective space and let VA be the tangent vector to γ
at A ∈ γ. Parallel transport of VA along γ to the point B ∈ γ may not coincide to VA, i.e.
they have non-zero angle. This is called the angle of holonomy.
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5 Main result

One of the most important notions in mathematical finance is the notion of arbitrage
opportunity or in short arbitrage, which means getting profit without investing. It is nice
to notice that due to it’s nature arbitrage opportunity occur’s in short time intervals and
cannot live for a long time. Arbitraguers in the market buy low and sell high rapidly
untill they bring the goods in equilibrium. On the contrary in a complete arbitrage free
market every asset has a unique price. In the market it is not important which numeraire
is used, this is termed as the prices are gague invariant. Mathematically this means that
the transformations like

X(t) → C(t)X(t)

do not affect the prices, they may change Rials to Tomans, but do not chan Choosing suit-
ably the notions from manifold geometry one can formulate the relation between existence
of arbitrage and non-zero curvature as follows.

Theorem 5.1. The arbitrage opportunity in the market occurs if and only if some paths
in the projctive market have non-zero curvature.
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Numerical solution of stochastic optimal control problems:

experiences from Merton portfolio selection model

B. Kafash∗

Engineering Department, University of Ardakan, Ardakan, Iran.

Abstract

In this paper, the variational iteration method (VIM), is applied for solving stochas-
tic optimal control(SOC) problems. First, SOC problems are transferred to Hamilton-
JacobiBellman (HJB) equation. Then, the basic VIM is applied to construct the value
function and the corresponding optimal strategy. Also, we solve Merton’s portfolio
selection model as a problem of portfolio optimization to highlight the applications
of SOC problems. Convergence of the method is proved by using Banach’s fixed
point theorem and some illustrative examples are presented to show the efficiency and
reliability of the presented method.

Keywords: Stochastic optimal control(SOC) problems, Hamilton-Jacobi-Bellman
(HJB) equation, Variational iteration method (VIM), Banach’s fixed point theorem

Mathematics Subject Classification [2010]: 91G80, 93E20, 97M30

1 Introduction

Optimal controls models play a prominent role in a range of application areas, including
aerospace, chemical engineering, robotic, economics and finance. It deals with the problem
of finding a control law for a given system such that a certain optimality criterion is
achieved. A controlled process is the solution to an ordinary differential equation which
some parameters of the ordinary differential equation can be chosen. Hence, the trajectory
of the solution is obtained. Each trajectory has an associated cost, and the optimal control
problem is to minimize this cost over all choices of the control parameter. Stochastic
optimal control is the stochastic extension of this; In fact, a stochastic differential equation
with a control parameter is given. Each choice of the control parameter yields a different
stochastic process as a solution to the stochastic differential equation. Each path wise
trajectory of this stochastic process has an associated cost, and we seek to minimize the
expected cost over all choices of the control parameter. Recently, Kushner has presented a
survey of the early development of selected areas in nonlinear continuous-time stochastic
control [1].
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2 SOC problems and HJB Equation

Consider the following stochastic controlled system with initial condition:
{
dX(t) = f(t,X(t), u(t))dt+ σ(t,X(t), u(t))dw(t),
X(s) = y,

(1)

where y is a given vector in Rn. Also, X(t) is the state process, u(t) is the control process,
w(t) is a Wiener process, f is defined as a drift, and σ is diffusion. The optimal control
rule µ, that determines the control u, is Markovian and is presented by u(t) = µ(t, x(t))
and is chosen so as to minimize J(s, y;u) where,

J(s, y;u) = Esy

[∫ T

s
L(τ,X(τ), u(τ))dτ + ψ(X(T ))

]
,

here, L is running cost and ψ(x) is terminal cost. Principle of optimality, dynamic
programming, was first proposed by Bellman; for details, see [2]. This lead to derive
an equation for solving optimal control problems. In fact, a family of fixed initial point
control problems is considered in dynamic programming. We can shown that V solves the
HJB equation:

(HJB)

{
∂V
∂t + L(s, y, ϕ) + f(s, y, ϕ).DyV + 1

2

∑n
i,j=1 aij(s, y, ϕ)Vyiyj = 0,

V (T, x) = ψ(x),
(2)

Now it is clear how we might use this to solve a SOC problem; we first solve HJB equation
to obtain V (s, y) and hopefully in the process divine the optimal control u∗(.) is found.
HJB equation is a sufficient condition for optimality and it is not possible to solve this
equation analytically. Thus finding an approximate solution is at least the most logical
way to solve it. Here, solutions for the value function and the corresponding optimal
strategies of a SOC are obtained by using VIM. Correction functional for equation (2) can
be written as:

Vn+1(t, x) = Vn(t, x) +
∫ T

t
λ(ξ)

(
∂Vn(ξ,x)

∂ξ + L(s, y, ϕ)

+f(ξ, x, ϕ).∂Ṽn(ξ,x)
∂x + 1

2

∑n
i,j=1 aij(ξ, x, ϕ)∂2Ṽn(ξ,x)

∂xixj
)
)
dξ,

(3)

Note that, this is a modified general Lagrange’s multiplier method, presented by Inokuti
[4]. This technique was proposed by He [5] and was successfully applied for solving de-
terministic optimal control problems [6]. In equation (3), λ(ξ) is the Lagrange multiplier,

here it may be a constant or a function of ξ, and Ṽn is a restricted value with δṼn = 0.
Taking the variation of both sides of (3) with respect to the independent variable Vn.
After some detailed calculations, we obtain:

δVn+1(t, x) = δVn(t, x) + δ
( ∫ T

t
λ(ξ)∂Vn(ξ,x)

∂ξ dξ
)
, (4)

by using δH = 0 where

H(s, y,DyV,D
2
yV ) = min

v∈U

[
L(s, y, v) + f(s, y, v).DyV + 1

2Tr
(
a(s, y, v)D2

yV
)]
,

Integrating the integral of (4) by parts we obtain:

δVn+1 = δ
(
1 − λ(ξ)

∣∣∣
ξ=t

)
Vn − δ

( ∫ T

t
λ′(ξ)Vn(ξ, x)dξ

)
. (5)

The extremum condition of Vn+1 requires that δVn+1 = 0 then the left hand side of (5)
is 0, and as a result the right hand side should be 0. This yields the stationary conditions
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(1 − λ(ξ))|ξ=t = 0 and (−λ(ξ)′)|ξ=t = 0. This in turn gives λ(ξ) = 1. Substituting this
value of the Lagrange multiplier into the functional (3) gives the iteration formula:

Vn+1(t, x) = Vn(t, x) +
∫ T

t

(
∂Vn(ξ,x)

∂ξ + L(s, y, ϕ)

+f(ξ, x, ϕ).∂Ṽn(ξ,x)
∂x + 1

2

∑n
i,j=1 aij(ξ, x, ϕ)∂2Ṽn(ξ,x)

∂xixj
)
)
dξ,

(6)

Now, with final condition V (T, x) = ψ(x) of HJB equation. Considering the given condi-
tion, we can select the zeroth approximation V0(t, x) = ψ(x). The successive approxima-
tions Vn+1(t, x), n ≥ 0 of the solution V (t, x) will be obtained readily upon using correction
functional (6) and by using any selective function V0. With λ(ξ) determined, then several
approximations Vn, n ≥ 0 follow immediately. Consequently, the exact solution may be ob-
tained as V (t, x) = limn→∞ Vn(t, x). Note that, theoretical treatment of the convergence
of the approximated solution of the VIM has been considered in [6].

3 Merton’s portfolio selection problem: Application of SOC
problem in Financial Mathematics

Suppose we are an investor with two investment options. We can either invest money in
a back with a fixed rate of return r, or we can invest money in a risky stock with an
expected rate of return µ > r but with volatility σ. Let u(s) be the proportion of our
money invested in the stock at time s. Letting x(s) be our money at time s, we have that
x(.) satisfies the following stochastic differential equation [7]:

{
dX(t) = X(t)(r + u(t)(b− r))dt+X(t)u(t)σdw(t),
X(0) = x0

Suppose we wish to maximize F (X(T )) where F is some concave utility function. For

this we take F (x) =
1

γ
Xγ , 0 < γ < 1. That is, in our standard framework we seek to

minimize the cost functional:

J(t, x;u) = Esy{F (X(T ))}.

Here we take U = L∞([0, T ]; [0, 1]). We compute,

H(t, x, Vx, Vxx) = min
v∈U

{
Vx

(
rx(t) + (b− r)x(t)v

)
+

1

2
σ2x2v2Vxx

}
,

which optimal control is as u∗ = Vx(r−b)
xσ2Vxx

, then, the HJB equation is as follow:

HJB





Vt − (r−b)2V 2
x

2σ2Vxx
+ xrVx = 0,

V (T, x) =
1

γ
xγ .

(7)

The correction functional for this equation leads to the iteration formula,

Vn+1(t, x) = Vn(t, x) +
∫ T
t

(
∂Vn(ξ,x)

∂ξ − (r−b)2(
∂Vn(ξ,x)

∂x
)
2

2σ2 ∂2Vn(ξ,x)

∂x2

+ xr ∂Vn(ξ,x)
∂x

)
dξ.

For the purpose of illustration, the following parameters have been chosen: r = 0.05,
b = 0.11, σ = 0.1 and γ = 1

2 . In this case, we have selected V0(t, x) = 2
√
x from the given
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initial condition yields the successive approximations:

V0(t, x) = 2
√
x,

V1(t, x) = (2.0725 − 0.0725 t)
√
x,

V2(t, x) =
(
2.073814062 − 0.075128125 t+ 0.0013140625 t2

)√
x,

V3(t, x) =
(
2.073829940 − 0.07517575977 t+ 0.001361697266 t2 − 1.587825521 × 10−5 t3

)√
x,

...

We can calculate control variable approximately after choosing of an approximation for
V (t, x). The approximated solution for the performance index is J = 2.073830086 which
is exact solution of J . The results show the advantage using proposed method for this
problem.

4 Conclusion

A classical financial problem is the modeling of optimal investment-consumption decisions
under uncertainty. This was solved in the pioneering work of Merton as an application of
dynamic programming. In the Merton dynamic programming result a nonlinear differential
equation is derived on the optimal controls. Here, stochastic optimal control problems
are transferred to HJB equation as a nonlinear first order hyperbolic partial differential
equation. Then, the basic VIM is applied to construct a nonlinear optimal feedback control
law.
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In this paper we extend the definition of risk measure from L∞ to an arbitrary
Polish space with special conditions. For this purpose we present a measure preserving
transformation between two Polish spaces with special conditions.
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1 Introduction

Risk management is a very important concept in financial mathematics and specially in a
financial market.
For managing risk in a financial market we need to compute risk measure in a financial
market which in [1, 2, 4, 5] is defined on L∞. In this paper we extend the definition
of risk measure from L∞ to an arbitrary uncountable Polish space. For this purpose
we construct a measure preserving transformation between two Polish spaces which have
special conditions.

2 Risk Measure

Risk measure is widely used as instrument to control risk. In fact risk measures assign a
real number to a risk in a financial market. As usual in actuarial sciences we assume that
X describes a potential loss, but we allow X to assume negative values. Let (Ω, F , P ) be
a probability space and expectation of a random variable X with respect to P is denoted
by E[X].

Definition 2.1. [2, 3] Let X be the set of all functions f : Ω → R. A mapping ρ : X → R
is called a risk measure if it has the following conditions.

• Monotonicity: If X ≤ Y then ρ(X) ≤ ρ(Y );

• Translation invariance: if m ∈ R, then ρ(X + m) = ρ(X) + m;

• Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y );

• Positive homogeneity: if λ > 0, then ρ(λX) = λρ(X);

∗Speaker

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Risk measure in a financial market pp.: 1–3

906



• Convexity: ρ(λX + (1 − λ)Y ) = λρ(X) + (1 − λ)ρ(Y ) for all λ ∈ [0, 1];

• Law invariance: If PX = PY , then ρ(X) = ρ(Y ).

According to Artzner et al. [2] a functional is called a coherent risk measure, if it
is monotone, translation invariant, subadditive and positively homogeneous. They show
that any coherent risk measure has a representation

ρ(X) = sup
Q∈Q

EQ(X), (1)

where Q is some set of probability measures. This means that ρ(X) is the worst expected
loss under Q, where Q varies over some set of probability measures. Follmer and Schied [6]
introduced the weaker concept of ρ being a convex risk measure if it satisfies the condition
of monotonicity, translation invariance and convexity. They show that any convex risk
measure is of the form

ρ(X) = sup
Q∈Q

(EQ(X) − α(Q)), (2)

where is a penalty function, which can be chosen to be convex and lower semi-continuous
with α(Q) ≥ −ρ(0).

Definition 2.2. Let (Ω, F , µ) be a probability space. Call for a partition P of Ω consisting
of elements of F , supI∈P µ(I) the norm of P, w.r.t. µ and denote it by |P|µ.

Definition 2.3. [7] For a probability space (Ω, F , µ) a sequence {△n}n≥1 of partitions
of Ω is called a system of partitions if:

1. for each n ≥ 1, △n is a countable collection of elements of F ;

2. the collection ∪n≥1△n of subsets of Ω generates F ;

3. limn→∞ |△n|µ = 0.

Call a system of partitions decreasing if for each n ≥ 1, △n+1 is a refinement of △n.
Henceforth △n, n ≥ 1, denotes a system of partitions of Ω.

Definition 2.4. For ω ∈ Ω, n ≥ 1 , let In(ω) be the unique element of △n containing ω.
Call the sequence In(ω), n ≥ 1, the ω− tower in the system.

Remark 2.5. Euclidean spaces and more generally, locally compact second countable
Hausdorff topological spaces and hence complete separable, i.e. Polish, metric spaces,
with Borel σ− algebras and diffuse probability measures, when they admit such measures,
yield decreasing systems of partitions which generate the Borel σ− algebra.

3 Main results

In this section we extend the definition 2.1. For this purpose we present some theorems.

Let [0, 1] be equipped by the Borel σ− algebra B and the Lebesgue measure m. Let
Ω be a Polish space and µ a non atomic probability measure on F . Consider Ω and [0, 1]
equipped by the system of partition ∆ and ∆′, respectively.

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Risk measure in a financial market pp.: 2–3

907



Theorem 3.1. [7] There is a transformation X̂ : Ω → [0, 1] which has the following
properties:

1. X̂ yields a natural one to one correspondence between the collection of towers of △
and △′;

2. X̂ is F -B measurable and in fact X̂−1(B) = F ;

3. X̂ transforms the measure µ on Ω to the Lebesgue measure m on I0.

Theorem 3.2. Let Ω1 and Ω2 be uncountable and Polish spaces. Then there is a measure
preserving transformation between them.

Theorem 3.3. By above theorem, the definition of risk measure is extendable from L∞

to an arbitrary uncountable Polish space.
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Abstract

In this paper, we study G-backward stochastic differential equations with random
terminal time . We explain how to extend the results of the case of fixed terminal time
to the case of a random terminal time. We present the existence and uniqueness of
a solutions for G-backward stochastic differential equations with a random terminal
time.
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equations, Random terminal time.
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1 Introduction

We consider the G-backward stochastic differential equations with the random terminal
time τ in the following form:

Yt = ξ +

∫ τ

t∧τ

f(s, Ys, Zs)ds +

∫ τ

t∧τ

g(s, Ys, Zs)d⟨B⟩s −
∫ τ

t∧τ

ZsdBs − (Kτ − Kt∧τ ), (1)

where τ is a stopping time with respect to natural filtration F, the processes Y, Z and K
are unknown and the random functions f and g , said generators, and the random variable
ξ, said terminal value, are given. We present the existence and uniqueness of a solution
(Y, Z,K) for G-BSDE (1).

2 Preliminaries

Let Ω be a given set and let H be a linear space of random variables defined on Ω. We
assume the functions on H are all bounded. Let (Ω,H,E) be the G-expectation space.
We denote by lip(Rn) the space of all bounded and Lipschitz real functions on Rn.
In this paper we set G(a) = 1

2(a+ −σ2
0a

−), where a ∈ R and σ0 ∈ [0, 1] is fixed. We extend
some notations and conditions of the case of fixed terminal time to the case of a random
terminal time.
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Definition 2.1. [1] Let Ω = R and H = lip(R), X ∈ H with the G-normal distribution
(with mean x ∈ R and variance t > 0) is characterized by its G-expectation defined by

E[φ(x+
√
tX)] = P t

G (φ(x)) := u(t, x),

Where φ ∈ lip(R) and u = u(t, x) is a bounded continuous function on [0,∞) × R which
is the solution of the following G-heat equation

∂tu−G(∂2
xxu) = 0, u(0, x) = φ(x).

Let Ω = C0(R+) be the space of all R-valued continuous paths (ωt)t∈R+with ω0 = 0.
We set, for each t ∈ [0,∞)

Wt := {ω.∧t : ω ∈ Ω},
Ft := Bt(W ) = B(Wt),

Ft+ := Bt+(W ) =
∩

s>t

Bs(W ),

F :=
∨

s>t

Fs.

Then (Ω, F ) is the canonical space. Let F be the natural filtration generated by ω =
(ωt)t≥0. This space is used throughout the rest of this paper.

Let τ be a stopping time with respect to F and let us assume that τ is finite. We
consider the following space of random variables

l0ip(Fτ ) := {X(ω) = φ(ωt1 , . . . , ωtm), ∀m ≥ 1, t1, . . . , tm ∈ [0, τ(ω)], ∀φ ∈ lip(Rm)}.

We further define l0ip(F ) :=
∪∞

n=1 l
0
ip(Fn∧τ ).

Definition 2.2. [2] The canonical process Bt(ω) = ωt is called a G-Brownian motion
under a nonlinear expectation E defined on l0ip(F ) if

1. For each s, t ≥ 0 and ψ ∈ lip(R), Bt and Bt+s −Bs are identically distributed:

E[ψ(Bt+s −Bs)] = E[ψ(Bt)] = P t
G(ψ).

2. For each m = 1, 2, · · · , 0 ≤ t1 < t2 < · · · < tm < ∞, the increment Btm − Btm−1

is backwardly independent from Bt1 , · · · , Btm−1 in the following sense: for each ψ ∈
lip(Rm),

E[ψ(Bt1 , · · · , Btm−1 , Btm)] = E[ψ1(Bt1 , · · · , Btm−1)],

where ψ1(x1, · · · , xm−1) = E[ψ(x1, · · · , xm−1, Btm−Btm−1+xm−1)] and x1, · · · , xm−1 ∈
R.

It is easy to check that E[.] defines a nonlinear expectation on the vector lattice l0ip(Fτ )

as well as on l0ip(F ), It follows that E[|X|] where X ∈ l0ip(Fτ ) (resp. l0ip(F )) forms a norm

and that l0ip(Fτ ) (resp. l0ip(F )) can be continuously extended to a Banach space, denoted

by L1
G(Fτ ) (resp. L1

G(F )). For a given p > 1, we also denote Lp
G(F ) = {X ∈ L1

G(F ), |X|p ∈
L1

G(F )}. Lp
G(F ) is also a Banach space under the norm ||X||p := (E[|X|p])

1
p .
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Definition 2.3. Let Mp,0
G (0, τ) be the collection of processes in the following form: for a

given partition πτ = {t0, . . . , tN} of [0, τ(ω)]

µt(ω) =

N−1∑

j=0

ξj(ω)I[tj ,tj+1)(t),

Where p ≥ 1 and ξj ∈ Lp
G(Ftj ), are given.

We need to introduce further notation. Let us consider p > 1 and α ∈ R. We set

||η||Hp,α
G

=
[
E

[(∫ ∞
0 eαs|ηs|2ds

) p
2

]] 1
p
, ||η||Mp

G
=

[
E

[∫ τ
0 |ηs|pds

]] 1
p and denote by Hp,α

G (R) ,

Mp
G(0, τ) the completions of Mp,0

G (0, τ) under the norms ||η||Hp,α
G

, ||η||Mp
G

respectively.

Let Sp,0
G (0, τ) =

{
h(t, Bt1∧t, . . . , Btn∧t) : t1, . . . , tn ∈ [0, τ(ω)], h ∈ lip(Rn+1)

}
. For η ∈

Sp,0
G (0, τ), set ||η||Sp,α,τ

G
=

[
E

[
supt≥0 e(p/2)α(t∧τ)|ηt|p

]] 1
p . Denote by Sp,α,τ

G (R) the com-

pletion of Sp,0
G (0, τ) under the norm ||η||Sp,α,τ

G
.

Definition 2.4. For each η ∈ M2,0
G (0, τ) with the form ηt(ω) =

∑N−1
j=0 ξj(ω)I[tj ,tj+1)(t),

we define

I(η) =

∫ τ

0
η(s)dBs :=

N−1∑

j=0

ξj(Btj+1 −Btj ).

The mapping I : M2,0
G (0, τ) → L2

G(Fτ ) is a linear continuous mapping and thus can
be continuously extended to I : M2

G(0, τ) → L2
G(Fτ ).

Definition 2.5. We define, for a fixed η ∈ M2
G(0, τ), the stochastic integral

∫ τ

0
η(s)dBs := I(η).

We consider the following type of G-BSDEs for simplicity

Yt = ξ +

∫ τ

t∧τ
f(s, Ys, Zs)ds−

∫ τ

t∧τ
ZsdBs − (Kτ −Kt∧τ ), (2)

Where f(t, ω, y, z) : R+ × Ω × R2 → R. It is clear that Zt = 0 if t > τ . Moreover since τ
is finite, (2) implies that Yt = ξ if t ≥ τ .

We present an existence and uniqueness result for the G-BSDE (2) under assumptions
which are very similar to the case of G-BSDEs with fixed terminal times. We make the
following assumptions:

H1. there exist constants γ ≥ 0, µ ∈ R, c ≥ 0, p > 1 and κ ∈ {0, 1} such that

1. ∀t, y, (z, z′), |f(t, y, z) − f(t, y, z′)| ≤ γ|z − z′|,
2. ∀t, z, (y, y′), (y − y′). (f(t, y, z) − f(t, y′, z)) ≤ −µ|y − y′|2,
3. ∀y, z, f(., ., y, z) ∈ Mp

G(0, τ),

4. ∀t, y, z, |f(t, y, z)| ≤ |f(t, 0, z)| + c(κ+ |y|p),
5. ∀t, z, y → f(t, y, z) is continuous.
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H2. ξ ∈ L2p
G (Fτ ) and there exists a real number ρ such that ρ > γ2 − 2µ and

E
[
κeρτ + {eρτ + epρτ}|ξ|2p +

(∫ τ

0
eρs|f(s, 0, 0)|2ds

)p

+

(∫ τ

0
e(ρ/2)s|f(s, 0, 0)| ds

)2p ]
< ∞.

Remark 2.6. In the case ρ < 0, which may occure if τ is an unbounded stopping time,
our integrability conditions are fulfilled if we assume that

E
[
eρτ |ξ|2p +

(∫ τ

0
e(ρ/2)s|f(s, 0, 0)|2 ds

)p]
< ∞.

3 Main results

In this section, we deal with the existence and uniqueness of the solutions of the G-BSDE
(2) with random terminal time τ , under the assumptions (H1) and (H2).

3.1 Existence and Uniqueness of the solutions

Theorem 3.1. Assume that ξ ∈ L2
G(Fτ ) and (H1) and (H2) are satisfied by f . Then the

G-BSDE (2) has at most one solution (Y, Z,K) ∈ S2,α,τ
G (R) ×H2,α

G (R) × L2
G(Fτ ).

Theorem 3.2. Under the assumptions (H1) and (H2), the G-BSDE (2) has a unique
solution (Y, Z,K) in the space S2,α,τ

G (R) ×H2,α
G (R) × L2

G(Fτ ).
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Abstract

In this study an optimal investment policy of a firm which is finance by issuing
bond and convertible bond was examined by means of real option framework by using
of stopping game. The interaction between bondholder and shareholder was studied
and the effect of each bonds on investment timing and optimal bankruptcy, convert
and call threshold were investigated. Also the impact of volatility on these thresholds
was investigated.
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1 Introduction

One of the most important topics in firms is the optimal investment strategies. Deciding
to investment composes of two parts: when and how much to invest. First part is decision
for investment time and second is decision for asset allocation. To decide the investment
timing a standard framework called real options approach is used. On the other side
financing can done via share and bond or other financial instruments. One of the financial
instruments is hybrid security that is a compound of debt and equity. An example this
instrument is convertible bonds that embodied the characteristics of both straight bond
and equities. The bondholder receives coupons periodically and has right to convert
the bonds to previously defined equity[1]. Bonds contract can include put option (for
bondholder) and call option (for investor) or without any extra option. Interaction between
bondholder and shareholder can affect the value of this bond considerably. In this study
financing by bond and convertible bond after investment by means of stopping game was
investigated.

2 Model

We consider a firm with an option to invest at any time by paying a fixed investment
cost. The firm partially finances the cost of investment with bond and convertible bond.
According to feature of convertible bond, issuer and bondholder performance after the
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investment can be consider as a two player game. We suppose that block conversion that
is all bondholders exercise the conversion option simultaneously. Also assume that xt is
the firms instantaneous EBIT. Suppose that xt is given by a geometric Brownian motion
[2]:

dxt
xt

= µdt+ σdBt.

where µ and σ are the risk-adjusted expected growth rate and the volatility of xt. Maturity
of bond is infinity and bondholders will receive coupon payment amounting cdt in every
time interval (t, dt) before convert, call or firm bankruptcy. Also bondholder has right
to convert their bonds for some amount common shares. The bond can be convert λ
percentage of the firm value. After convert bondholder will obtain λx amount. Another
characteristics is the call option with strike price K for issuer. When issuer calling, the
bondholder must select the strik price or exercise the conversion right immediately by
force. There for the bond value will be max{k, λx}. The firm enjoys tax credit κcdt by
serving coupon payment. In the case of asset reduction ρx of the asset value is lost. If
1−ρ > λ bondholder can convert the bond. When 1−ρ < λ bankruptcy will happened and
(1 − ρ)x return to bondholder. When x is EBIT and denote the conversion, bankruptcy
and call time by τcon, τb and τcal respectively. E(x) and D(x) bond and equity values.
Therefore according to the consider strategy we have following revised equation [1, 3]:

E(x) = sup
τd,τcal>0

E[

∫ τd∧τcal∧τcon

τ
e−r(u−τ)(1− κ)(xu − c) du+ 1{τcon < τd ∧ τcal} (1)

(1− λ)

∫ ∞

τcon

e−r(u−τ)(1− κ)xu du+ 1{τcal < τd ∧ τcon}{
∫ ∞

τcal

e−r(u−τ)(1− κ)xu du

−e−r(τcal−τ)max(K,λ

∫ ∞

τcon

e−r(u−τ)(1− κ)xu du)} | x0 = x]

Dc(x) = sup
τcon>0

E[

∫ τd∧τcal∧τcon

τ
e−r(u−τ)cdu+1{τcon < τd∧τcal}λ

∫ ∞

τcon

e−r(u−τ)(1−κ)xu du

(2)
+1{τd < τcon ∧ τcal}e−r(τd−τ)(1− ρ)ε(xτd) + 1{τcal < τcon ∧ τd}e−r(τcal−τ)

.max(K,λ

∫ ∞

τcon

e−r(u−τ)(1− κ)xu du)} | x0 = x]

The aim of bond holder and issuer is to maximize their benefit. Bondholder chooses when
to convert and the issuer selects both bankruptcy and call time. This creates a two player-
game as each stopping time is equilibrium. Stopping problem is an important and well
developed class of stochastic control problem and is used when there are several deciders
whit different aims. For obtaining stopping points problems (1) and (2) must be solved at
the same time. Optimal bankruptcy, convert and call time is defined as following:

τ∗d = inf{τd ∈ [0,∞) | xτd ≤ xd} (3)

τ∗con = inf{τcon ∈ [0,∞) | xτcon ≥ xcon} (4)

τ∗d = inf{τcal ∈ [0,∞) | xτcal ≥ xcal} (5)
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As xd, ccon and xcal are bankruptcy, convert and call thresholds respectively. According
to following differential equations[3]:

1

2
σ2x2

∂2E

∂x2
+ µx

∂E

∂x
− rE + (1− κ)(x− c) = 0 (6)

1

2
σ2x2

∂2Dc

∂x2
+ µx

∂Dc

∂x
− rDc + c = 0 (7)

Problems were solved numerically. Next a firm was considered which has an option of the
investment that is financed straight debt whit coupon payment s. Once the investment
option has been exercised, the optimal bankruptcy policy is established from the issue of
debt. The optimal equity value E(x) is given by:

E(x) = sup
τd>0

E[

∫ τd

τ
e−r(u−τ)(1− κ)(xu − s) du (8)

And the debt value Ds(x) is according to following. Notably debt holder has no right to
stop the game [4].

Ds(x) = E[

∫ τd

τ
e−r(u−τ)sdu+ e−r(τd−τ)(1− ρ)ε(xd) (9)

3 Main results

In this research the effect of financing by bond and convertible bond on investment timing
and bondholders and shareholders strategy after investment was studied and thresholds
were calculated. Numerical value was obtained via newton method by fsolve function in
MATLAB software. For this purpose primary parameters µ = 0.01, σ = 0.2, r = 0.05,
I = 5, ρ = 0.3, s = 0.4, c = 0.4 and κ = 0.3 was used. convertible bond investment
threshold is X∗ = 0.74. Figure (1) and (2) showed the behavior of bond, convertible bond
and equity. Also the optimal thresholds after investment were observable. According to the
figure bond in comparison whit convertible bond has stable behavior and this is because
of the presence of conversion right. Table (1) shows investment and bankruptcy bond
threshold for different amount σ and I. also figure (3) illustrates the effect of volatility on
convertible bond thresholds. According to the figure, by increasing risk, bankruptcy will
happen earlier.

Figure 1: Equity and bond value, and stopping point
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(a) Convert before call (b) Call before convert

Figure 2: Equity and convertible bond value after investment, and stopping points

Table 1: Effect of investment cost and volatility on investment and bankruptcy threshold

I=5 I=3 I=1

X∗ = 0.558 X∗ = 0.384 X∗ = 0.263 σ = 0.2
Xd = 0.183 Xd = 0.183 Xd = 0.183
X∗ = 0.732 X∗ = 0.464 X∗ = 0.258 σ = 0.3
Xd = 0.135 Xd = 0.135 Xd = 0.135

(a) Convert before call (b) Call before convert

Figure 3: Effect of volatility on convertible bond thresholds
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A generalization of contact metric manifolds
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Abstract

We consider quasi contact metric manifolds and give a necessary and sufficient
condition for a quasi contact metric manifold, to be contact metric manifold and K-
contact, then we prove that a quasi contact metric manifold is not nearly cosymplectic.

Keywords: Almost contact metric manifold, Quasi contact metric manifold, Kähler
manifold.

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

A quasi Kähler manifold (see[2]) is an almost Hermitian manifold (M, J, g), that the Levi-
Civita connection satisfies:

(∇J
X)Y + (∇J

JX)JY = 0, X, Y ∈ τ(M).

A quasi contact metric manifold was primary introduced by Y. Tashiro ([4]) as hypersur-
face of a quasi Kähler manifold, and named O∗ − manifold by him. Then J. H. Kim and
his colleagues gived a characterization of a contact metric manifold as a special almost
contact metric manifold and discussed an almost contact metric manifold which is a nat-
ural generalization of the contact metric manifolds introduced by Y. Tashiro and proved
that ([3]) an almost contact metric manifold (ϕ, ξ, η, g) is a quasi contact metric manifold
if and only if it satisfies the following relation:

(∇φ
X)Y + (∇φ

φX)φY = 2g(X, Y )ξ − η(Y )(X + η(X)ξ + hX)

in which h = 1
2Lξφ.

In this paper we consider conditions on quasi contact metric manifolds, endowed with
which, being contact and K−contact. Also we show that quasi contact metric manifolds
can not be nearly cosymplectic.
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2 Main results

An almost contact metric manifold M = (φ, ξ, η, g) satisfying the followin relation for
every X and Y in τ(M) is called a quasi contact metric manifold([3]):

(∇φ
X)Y + (∇φ

φX)φY = 2g(X, Y )ξ − η(Y )(X + η(X)ξ + hX) (1)

The relation (1), holds in every contact metric manifold([1], page116) , thus contact metric
manifolds are quasi contact metric manifold, and quasi contact metric manifolds can be
regarded as a generalization of contact metric manifolds. We can show easily that the
following properties all satisfy in the quasi contact metric manifold.

Theorem 2.1. In a quasi contact metric manifold M = (φ, ξ, η, g), the following relations
hold:

(a) ∇φ
ξ = 0

(b) ∇ξ
ξ = 0

(c) ∇ξ
X = −φX − φhX

(d) ηoh = 0

(e) (∇η
X)Y + (∇η

φX)φY = 2g(X, φY )

(f) φh + hφ = 0.

Let M = (φ, ξ, η, g) be a (2n + 1)−dimensional almost contact metric manifold and
M = M × R be the product manifold of M and the real line R. It is proved that ([1]) M
can be equipped by an almost Hermitian structure (J̄ , ḡ). J̄ is said to be integrable if its
Nijenhuis torsion,

NJ̄(X, Y ) := [J̄X, J̄Y ] − [X,Y ] − J̄ [J̄X, Y ] − J̄ [X, J̄Y ]

vanishes. Computing the Nijenhuis torsion of J̄ , leads to define four tensors :

N (1)(X, Y ) : = [φ,φ](X,Y ) + 2dη(X, Y )ξ

N (2)(X, Y ) : = (LφXη)Y − (LφY η)X

N (3) := Lξφ

N (4) := Lξη.

It is proved that in an almost contact manifold, vanishing of N (1) , implies the vanishing
of N (2) , N (3) and N (4) and if M is contact, then N (2) and N (4) vanish , and moreover
if M is K−contact, say ξ is a killing vector field. Then N (3) vanishes. Now we have the
following theorem for quasi contact metric manifolds:
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Theorem 2.2. For a quasi contact metric manifold M = (φ, ξ, η, g), N (4) vanishes. More-
over, N (2) vanishes if and only if M is contact , and N (3) vanishes if and only if M is
K−contact.

Proof. Let M = (φ, ξ, η, g) be a quasi contact metric manifold. Then we have:

N (4)(X) = (Lξη)(X)

= ξ(η(X)) − η([ξ,X])

= (∇η
ξ )X − g(∇ξ

X , ξ)

= (∇η
ξ )X

= 0,

the last equality is obtained by theorem 2.1(b). It is evident that every contact metric
manifold is quasi contact metric manifold. Now let M = (φ, ξ, η, g) be a quasi contact
manifold in which N (2) vanishes, so

0 = N (2)(X, Y )

= (LφXη)(Y ) − (LφY η)(X)

= φX(η(Y )) − η([φX, Y ]) − φY (η(X)) + η([φY, X])

= (∇η
φX)Y − (∇η

Y )φX − (∇η
φY )X + (∇η

X)φY

= 2g(φX, φY ) + (∇η
X)φY − (∇η

Y )φX − 2g(φX, φY ) − (∇η
Y )φX + (∇η

X)φY

= 2(∇η
X)φY − 2(∇η

Y )φX

= 2(g(∇ξ
X , φY ) − g(∇ξ

Y , φX)).

Substituting Y by φY , we get

−g(∇ξ
X , Y ) = g(∇ξ

φY , φX).

By the above equality we have

dη(X, Y ) =
1

2
[g(∇ξ

X , Y ) − g(∇ξ
Y , X)]

=
−1

2
[g(∇ξ

φY , φX) + g(∇ξ
Y , X)]

=
−1

2
((∇η

φY )φX + (∇η
Y )X)

= −g(Y, φX)

= Φ(X,Y ).

Thus the manifold is contact.
Now let N (3) vanishes, then:

0 = N (3) = −2h,

thus by (c) of theorem 2.1 we have

∇ξ
X = −φX.
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Considering the above equality we have

dη(X,Y ) =
1

2
[g(∇ξ

X , Y ) − g(∇ξ
Y , X)]

=
1

2
[g(−φX, Y ) − g(−φY, X)]

= Φ(X, Y ).

Thus the manifold is contact and we know that in a contact manifold, N (3) vanishes if
and only if it is K−contact.

Theorem 2.3. A quasi contact structure can not be cosymplectic.

Proof. We know that a cosymplectic manifold is a normal almost contact manifold in which
dη = 0. But by the above theorem it is evident that a normal quasi contact manifold is
contact and thus dη ̸= 0 and it is a contradiction.

Proposition 2.4. In a quasi contact metric manifold M = (ϕ, ξ, η, g) we have dη ̸= 0.

Corollary 2.5. Nearly cosymplectic manifolds which was defined by ([1]), is an almost
contact manifold (ϕ, ξ, η) that satisfies dη = 0 and dϕ = 0. By the above Proposition it is
convenient that a quasi contact manifold can not be nearly cosymplectic.

References

[1] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in
mathematics 203, Brikhauser Boston-Basel-Berlin, 2002.

[2] A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and
their linear invariant, Ann Math No4, 1980..

[3] J. H. Kim, J. H. Park and K. Sekigawa A generalization of contact metric manifolds,
Balkan journal of geometry and its aplication,vol. 19, No.2, 2014.

[4] Y. Tashiro, On contact structure of hypersurfaces in complex manifold II, Tohoku Math
J. 1963.

Email: malek@kntu.ac.ir
Email: samani108@yahoo.com

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

A generalization of contact metric manifolds pp.: 4–4

921



A note on an ideal of C(X) with λ- compact support

Simin Mehran∗

Shoushtar Branch Islamic Azad University, Shoushtar, Iran

Abstract

We introduce and investigate some properties of the set of functions in C(X) with
λ-compact support which is denoted by Cλ

K(X), where λ is an infinite regular cardinal
number. We extend some of the basic results concerning CK(X) (i.e., the family of
all elements of C(X) having compact support) for Cλ

K(X). For instance, the purity of
Cλ

K(X) is studied and characterized through Pλ-spaces and λ-locally compact spaces
which are not λ-compact. Finally some relations between topological properties of the
space X and algebraic properties of the ideal Cλ

K(X) are investigated.

Keywords: λ-compact, support, purity , λ-locally compact.

Mathematics Subject Classification [2010]: Primary: 54C30, 54C40, 54C05,
54G12; Secondary: 13C11, 16H20.

1 Introduction

Let C(X) be the ring of all continuous real-valued functions on a completely regular
Hausdorff space X. Throughout this article ideals are assumed to be proper ideals. For
each f ∈ C(X), let Z(f) = {x ∈ X : f(x) = 0} and cozf = X \ Z(f). If I is an ideal of
C(X), we put cozI =

∪
f∈I cozf . The support of f is the closure of X \ Z(f) and CK(X)

is the set of functions in C(X) with compact support, see [4]. The concept λ-compact
in [5] and [7], motivates us to introduce Cλ

K(X). Our main purpose in this article is the
study of the ideal structure of Cλ

K(X) and of the relation between topological properties
of the subspaces of X and algebraic properties of the ideal Cλ

K(X). The space X is called
λ-compact whenever each open cover of X can be reduced to an open cover of X whose
cardinality is less than λ, where λ is the least infinite cardinal number with this property.
We remind that the space X is Pλ-spaces if and only if every intersection with cardinality
less than λ of open sets (i.e., Gλ-set) be open. The space X is called λ-locally compact
space whenever every element of X has a λ-compact neighborhood, see [7]. For undefined
terms and notations the reader is referred to [3] and [4].

2 Functions in C(X) with λ-compact support

We need the following definition.
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Definition 2.1. Cλ
K(X) denote the family of all functions in C(X) having λ-compact

support.

We investigate certain properties of Cλ
K(X) compared with CK(X).

Lemma 2.2. Cλ
K(X) is a z-ideal of C(X).

Remark 2.3. CK(X) ⊆ Cλ
K(X). If X is compact, CK(X) = Cλ

K(X) = C(X) and also if
X is λ-locally compact, Cλ

K(X) = C(X). We note that if X is Pλ-space, then suppf = cozf .
Hence Cλ

K(X) = {f ∈ C(X) : cozf is λ − compact}.

Example 2.4. It is known that CK(Q) = (0), since Q has not a compact neighborhood
but Cℵ1

K (Q) = {f ∈ C(Q) : suppf is ℵ1 − compact} = C(Q).

The following properties and corollary are proved in [7]. They will be used in the
following discussion.

Proposition 2.5. If µ ≤ λ is a cardinal number, then every µ-compact subspace of a
Hausdorff Pλ-space is closed.

Notice that for every subset F of a space X, dc(F ) ≤ dc(X), see[7, proposition 6.1.2].
Also if X is P -space then suppf is finite for each f ∈ CK(λ(X), since every pseudo
compact P -space is finite.

Corollary 2.6. Every subspace A of a Pλ-space of X is closed and discrete, where |A| < λ.

Now, by previous corollary we have the following proposition.

Proposition 2.7. Let X be Pλ+-space and A is a λ-compact closed subset of X, then A
has the cardinality less than λ.

Proof. If |A| ≥ λ, then we get a contradiction. At first, we suppose |A| = λ by Corollary
2.6, A is discrete and closed. So A is λ+-compact, which is impossible. Now, let |A| > λ,
in this case there exists a subspace of A with cardinality λ, say B, see [7, Proposition
5.2.3]. Consequently, B is λ+-compact which is absurd.

Corollary 2.8. If X is a Pλ+-space, then cardinality of suppf is less than λ for every
f ∈ Cλ

K(X).

Theorem 2.9. Let X be a Pλ+-space. Then Cλ
K(X) is a free proper ideal if and only if

X is λ-Locally compact but not λ-compact.

Theorem 2.10. Let X be a Pλ-space. Then Cλ
K(X) is free in C(X) if and only if for

every λ-compact set A there exists f ∈ I having no zero in A.

Recall that an ideal I of C(X) is called P -ideal if cozI is a P -space and I is pure(i.e.,
for every f ∈ I there exists g ∈ I such that f = fg and in the case g = 1 on suppf).
P -ideal is a concept which was originally defined and characterize by David Rudd , see [6].
The motivation, we extend the P -ideal to Pλ-ideal. In this paper we extend this concept
and define the Pλ-ideals.

Definition 2.11. An ideal I of C(X) is called Pλ-ideal if cozI =
∪

f∈I cozf is a Pλ-space.
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If X is a Pλ-space then every ideal of C(X) is a Pλ-ideal. But the converse is not true.
Note the following example:

Example 2.12. Let X = N∗ = N ∩ {ω} be the one-point compactification of the discrete
space of the natural numbers and I be the ideal of functions which are eventually zero
(i.e., I = {f ∈ C(X) : f = 0, except on a finite set}). Since Z(f) is open for each f ∈ I,
we conclude that I is a Pℵ1-ideal but X is not a Pℵ1-space.

Theorem 2.13. Let X be an arbitrary topological space and I is a Pλ- pure ideal of C(X).
The following holds:

1. Z(f) is open for each f ∈ I.

2. Every ideal of I is pure.

3. I is a regular ring.

Proof. Since every Pλ-space is a P -space, the above statements hold, see[2].

For our the other results, we need the following lemma in [2] and the concept of λ-
discrete.

Lemma 2.14. If I is a pure ideal, then suppf ⊆ cozI for each f ∈ I.

Definition 2.15. An element x ∈ X is called a λ-isolated point if x has been a neighbor-
hood with cardinality less than λ.

If every point of topological space of X is λ-isolated, thenX is called a λ-discrete space.

Theorem 2.16. If Cλ
K(X) is a Pλ+-ideal then coz(Cλ

K(X)) is λ-discrete.

3 Relation between purity Cλ
K(X) and the subspace λ-locally

compact of X

In trying to characterize the properties of Cλ
K(X), we introduce the subspace of all points

with λ-compact neighborhoods which we will denote by Xλ
L. X is nowhere λ-locally

compact if and only if Xλ
L = ϕ.

Lemma 3.1. Let X is Pλ- space, then Xλ
L = coz(Cλ

K(X)).

Corollary 3.2. Xλ
L is a open λ-locally compact subspace of X.

Our main purpose, investigate purity of CK(X) using the subspace Xλ
L.

Lemma 3.3. If I is a pure ideal of C(X), then cozI =
∪

f∈I suppf .

Proof. see lemma, 2.14 and [1, Lemma 3.1].

Theorem 3.4. Let I = Cλ
K(X) is Pλ+-ideal, then I is pure ideal if and only if cozI =∪

f∈I suppf .

The following theorem generalize the results in [1] which it was proved for CK(X). At
first, we give the following lemma which is needed in the sequel, see [7].
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Lemma 3.5. Let X and Y be two topology spaces and f : X −→ Y is a continuous
function. If A ⊆ X in X, is λ-compact then f(A) is β-compact in Y , where β ≤ λ, see[7,
lemma4.1.2].

Theorem 3.6. Let Cλ
K(X) and Cλ

K(Y ) be pure ideals. Then Xλ
L is homeomorphic to Y λ

L

if and only if Cλ
K(X) is isomorphic to Cλ

K(Y ).
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An extension of CF (X)

Mehrdad Namdari

Shahid Chamran University of Ahvaz
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Petroleum University of Technology

Abstract

Let CF (X) be the socle of C(X) (i.e., the sum of minimal ideals of C(X)). We
define LCF (X) =

{
f ∈ C(X) : Sf = X

}
, where Sf is the union of all open subsets U

in X such that |U\Z(f)| <∞, LCF (X) is called the locally socle of C(X) and it is a
z-ideal of C(X) containing CF (X). We characterize spaces X for which the equality
in the relation CF (X) ⊆ LCF (X) ⊆ C(X) is hold. We determine the conditions such
that LCF (X) is not prime in any subrings of C(X) which contains the idempotents
of X. We investigate the primness of LCF (X) in some subrings of C(X).

Keywords: Socle, Locally socle, Compact space, Prime ideal, Scattered space.
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1 Introduction

C(X) denotes the ring of all real valued continuous functions on a topological space X.
We recall that a nonzero ideal E in a commutative ring R is called essential if it intersects
every nonzero ideal nontrivially. Let I be an ideal in C(X), then Z[I] = {Z(f) : f ∈ I}
and Z(X) = {Z(f) : f ∈ C(X)}. If Z−1[Z[I]] = I, then I is called a z-ideal. Let
Cc(X) = {f ∈ C(X) : |f(X)| ≤ ℵ0} and CF (X) = {f ∈ C(X) : |f(X)| < ∞}, see
[6] and [7]. The socle of C(X) (i.e., CF (X)) which is in fact a direct sum of minimal
ideals of C(X) is characterized topologically in [10, Proposition 3.3], and it turns out
that CF (X) = {f ∈ C(X) : |X\Z(f)| < ∞} is a useful object in the context of C(X),
see [10], [1], [5], [2], and [3]. This motivates us to investigate the locally socle of C(X).
We define LCF (X) =

{
f ∈ C(X) : Sf = X

}
, where Sf is the union of all open subsets

U in X such that |U\Z(f)| < ∞, LCF (X) is called the locally socle of C(X) and it is
a z-ideal of C(X) containing CF (X). We characterize spaces X for which the equality
in the relation CF (X) ⊆ LCF (X) ⊆ C(X) holds. In fact, we show that X is an almost
discrete space if and only if LCF (X) = C(X). We note that if X is an infinite space,
then CF (X) ( C(X). We also observe that |I(X)| <∞ if and only if CF (X) = LCF (X).
Moreover, it is shown that if |I(X)| <∞, then LCF (X) is never essential in any subring
of C(X), while LCF (X) is an intersection of essential ideals of C(X). We determine the
conditions such that LCF (X) is not prime in any subrings of C(X) which contains the
idempotents of X. We investigate the primness of LCF (X) in some subrings of C(X). All
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topological spaces that appear in this article are assumed to be infinite completely regular
Hausdorff, unless otherwise mentioned. For undefined terms and notations the reader is
referred to [8] and [4].

2 Locally socle

Definition 2.1. Let f ∈ C(X) and Sf be the union of all open subsets U ⊆ X such that
U\Z(f) is finite. We denote the locally socle of C(X) by LCF (X) and define it to be the
set of all f ∈ C(X) such that Sf is dense in X. i.e.,

Sf =
⋃

U⊆X
|U\Z(f)|<∞

U

LCF (X) = {f ∈ C(X) : Sf = X}

Lemma 2.2. Sf = X if and only if for each open subset G ⊆ X, there exists an open
subset U ⊆ X such that |U\Z(f)| <∞ and U ∩G 6= ∅ if and only if for each open subset
G ⊆ X, there exists an open subset U ⊆ X such that |U\Z(f)| <∞ and U ⊆ G.

We note that if U is a finite open subset in a Hausdorff space X and x ∈ U , then x is
isolated and

⋃
|U |<∞ U = X if and only if I(X) = X.

Proposition 2.3. Let U, V be open in X. Then

Sf =
⋃

U⊆X
|U\Z(f)|<∞

U =
⋃

V⊆X
|V \Z(f)|≤1

V

Lemma 2.4. If f, g ∈ C(X), then the following statements hold.

1. Sf+g ⊇ Sf ∩ Sg.

2. Sfg ⊇ Sf ∪ Sg.

3. S|f | = Sf .

4. If f, g ∈ LCF (X), then Sf ∩ Sg = X.

Proposition 2.5. LCF (X) ⊆ LF (X).

Proposition 2.6. LCF (X) is an ideal of C(X).

Proposition 2.7. LCF (X) is a z-ideal in C(X).

Proposition 2.8. If X is a connected space, then CF (X) = LCF (X) = (0).
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3 The equality in the relation CF (X) ⊆ LCF (X) ⊆ C(X)

If X is an uncountable scattered space, then CF (X) ( LCF (X) = C(X). If X is a
connected space, then (0) = LCF (X) ( C(X).

Proposition 3.1. |I(X)| <∞ if and only if CF (X) = LCF (X).

Proposition 3.2. If X is discrete, then LCF (X) = C(X).

Theorem 3.3. X is an almost discrete space if and only if LCF (X) = C(X).

Corollary 3.4. If X is an scattered space, then LCF (X) = C(X).

The converse of the above corollary does not hold. For instance, let at each point
x ∈ Q, the basic neighborhood of x be the singleton {x}, and for x ∈ Qc, the basic
neighborhood of x be the usual open interval containing x. This constitutes a topology
on R and clearly R with this topology is Hausdorff normal which is almost discrete for,
I(X) = Q. Hence LCF (X) = C(X), but R is not scattered.

4 The primeness of LCF (X) in some subrings of C(X)

Theorem 4.1. Let X has finite components and at least two of them are infinite, then
LCF (X) is never prime in any subring of C(X) which contains the idempotents of C(X).

Theorem 4.2. If |I(X)| < ∞ and X\I(X) is disconected, then LCF (X) is never prime
in any subring of C(X) which contains the idempotents of C(X).

Theorem 4.3. Let |I(X)| < ∞ and R be a subring of C(X). LCF (X) is prime in R, if
every f ∈ R is constant on X\I(X). Conversely, if LCF (X) is prime in R and R contains
the idempotents of C(X), then X\I(X) is connected.

Corollary 4.4. If |I(X)| <∞ and X\I(X) is connected, then LCF (X) is prime in Cc(X)
and CF (X).

Theorem 4.5. Let A be a submodule of the ring C, then A is an intersection of essential
submodules of C if and only if Soc(C) ≤ A.

Proof. See [9].

Proposition 4.6. LCF (X) is an intersection of essential ideals.

Finally, we investigate the essentiality of the locally socle of C(X) and the socle of
C(X), whenever the space X has finite isolated points.

Proposition 4.7. If |I(X)| <∞, then LCF (X) is never essential in any subring of C(X)
containing LCF (X).
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Classification pseudosymmetric (κ, µ)-contact metric

manifolds

Nasrin Malekzadeh∗
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Esmaiel Abedi
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Abstract

This paper deals with a classification of the pseudosymmetric contact metric man-
ifolds under the condition that the characteristic vector field ξ belong to the (κ, µ)-
nullity distribution in the R. Deszcz sense.

Keywords: Pseudosymmetric, Semisymmetric, (κ, µ)-nullity distribution, Contact
manifold
Mathematics Subject Classification [2010]: 53D10, 53C35

1 Introduction

Chaki [3]and Deszcz [4] introduced two difierent concept of a pseudosymmetric manifold.
In both senses various properties of pseudosymmetric manifolds have been studied. We
shall study properties of pseudosymmetric manifolds in the Deszcz sense. A Riemannian
manifold is called semisymmetric if R(X,Y ) . R = 0. Deszcz [4] generalized the concept
of semisymmetry and introduced pseudosymmetric manifolds. Let (Mn, g), n ≥ 3 be a
Riemannian manifold. Let ∇ and R denote the Levi-Civita connection and the curvature
tensor of (M, g). We define endomorphism X ∧ Y by

(X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y. (1)

For a (0, k)-tensor field T , the (0, k + 2) tensor fields R.T and Q(g, T ) are defined by [4]

(R.T )(X1, ..., Xk;X,Y ) = (R(X,Y ).T )(X1, ..., Xk)
= −T (R(X,Y )X1, X2, ..., Xk)− ...− T (X1, ..., Xk−1, R(X,Y )Xk),

(2)

Q(g, T )(X1, ..., Xk;X,Y ) = ((X ∧ Y ).T )(X1, ..., Xk)
= −T ((X ∧ Y )X1, X2, ..., Xk)− ...− T (X1, ..., Xk−1, (X ∧ Y )Xk),

(3)

A Riemannian manifold M is said to be pseudosymmetric if the tensors R.R and Q(g,R)
are linearly dependent at every point of M , i.e. R.R = LRQ(g,R). This is equivalent to

(R(X,Y ).R)(U, V,W ) = LR[((X ∧ Y ).R)(U, V,W )] (4)

holding on the set UR = {x ∈ M : Q(g,R) 6= 0 at x}, where LR is some function on
UR [4]. The manifold M is called a pseudosymmetric of constant type if L is constant.
Particularly if LR = 0 then M is a semisymmetric manifold. Papantoniou classified
semisymmetric (κ, µ)-contact metric manifolds [5]. As a generalization, in this paper, we
study pseudosymmetric (κ, µ)-contact metric manifolds.
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2 Preliminaries

A contact manifold is an odd-dimensional C∞ manifold M2n+1 equipped with a global
1-form η such that η ∧ (dη)n 6= 0 everywhere. Since dη is of rank 2n, there exists a unique
vector field ξ on M2n+1 satisfying η(ξ) = 1 and dη(ξ,X) = 0 for any X ∈ χ(M) is called
characteristic vector field of η. A Riemannian metric g is said to be an associated metric if
there exists a (1,1) tensor field ϕ such that dη(X,Y ) = g(X,ϕY ), η(X) = g(X, ξ), ϕ2 =
−I + η ⊗ ξ. The structure (ϕ, ξ, η, g) is called a contact metric structure and a manifold
M2n+1(ϕ, ξ, η, g) is said to be a contact metric manifold. Given a contact metric structure
(ϕ, ξ, η, g), we define a tensor field h by h = (1/2)Lξϕ where L denotes the operator of
Lie differentiation. A contact metric manifold is said to be a Sasakian manifold if

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X and R(X,Y )ξ = η(Y )X − η(X)Y. (5)

The (κ, µ)-nullity distribution of a contact metric manifold M is a distribution [2]

N(κ, µ) : p −→ Np(κ, µ) = {W ∈ TpM |R(X,Y )W = κ[g(Y,W )X − g(X,W )Y ]
+µ[g(Y,W )hX − g(X,W )hY ]},

where κ, µ are real constants. Hence if the characteristic vector field ξ belongs to the
(κ, µ)-nullity distribution, then we have

R(X,Y )ξ = κ{η(Y )X − η(X)Y }+ µ{η(Y )hX − η(X)hY }, (6)

We easily check that Sasakian manifolds are (κ, µ)-manifolds with κ = 1 and h = 0 [2].

3 Pseudosymmetric (κ, µ)-manifolds

We know that [1] if M2n+1 be a contact metric manifold and RXY ξ = 0 for all vector fields
X and Y , then M2n+1 is locally isometric to the Riemannian product of a flat (n + 1)-
dimensional manifold and an n-dimensional manifold of positive constant curvature 4. In
[2] Blair et al. studied the condition of (κ, µ)-nullity distribution on a contact manifold
and obtain the following Theorem.

Theorem 3.1. Let M2n+1(ϕ, ξ, η, g) be a contact manifold with ξ belonging to the (κ, µ)-
nullity distribution. If κ < 1 then for any X orthogonal to ξ; the sectional curvature of a
plan section {X,Y } normal to ξ is given by

K(X,Y ) =





i) 2(1 + λ)− µ if X,Y ∈ D(λ)
ii) −(κ+ µ)[g(X,ϕY )]2 for any unit vectors X ∈ D(λ), X ∈ D(−λ)
iii) 2(1− λ)− µ if X,Y ∈ D(−λ), n > 1

(7)

When κ < 1, the nonzero eigenvalues of h are ±
√

1− κ each with multiplicity n. Let λ
be the positive eigenvalue. Then M2n+1 admits three mutually orthogonal and integrable
distributions D(0), D(λ) and D(−λ) defined by the eigenspaces of h [2]. Firstly we give
the following propositions.
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Proposition 3.2. Let M2n+1 be a (κ, µ)-contact metric pseudosymmetric manifold. Then
for any unit vector fields X,Y ∈ χ(M) orthogonal to ξ and g(X,Y ) = 0 we have:

{(κ− LR)K(X,Y ) + µg(hX,R(X,Y )Y )− κ(κ− LR)− µ(κ− LR)g(hY, Y )− µ2g(hX,X)
g(hY, Y ) + µ2g2(hX, Y )}ξ − (κ− LR)η(R(X,Y )Y )X − µη(R(X,Y )Y )hX = 0.

(8)

Proposition 3.3. Every pseudosymmetric Sasakian manifold with LR 6= 1 is of constant
curvature 1.

Theorem 3.4. Let M2n+1, n > 1 be a (κ, µ)-contact metric pseudosymmetric manifold.
Then M2n+1 is either

1) A Sasakian manifold of constant sectional curvature 1 if LR 6= 1 or

2) Locally isometric to the product of a flat (n+1)-dimensional Euclidean manifold and
an n-dimensional manifold of constant curvature 4.

Proof. If κ = 1 then M is a Sasakian manifold and result get from Proposition 2. Let
κ < 1 and X,Y are orthonormal vectors of the distribution D(λ). Applying the relation
(8) for hX = λX, hY = λY and taking inner product with ξ we get

i) K(X,Y ) = κ+ λµ or ii) κ = −λµ+ LR (9)

Comparing part (i) of equations (7) and (9) gives

µ = 1 + λ. (10)

Similarly for X,Y ∈ D(−λ) and g(X,Y ) = 0 we have

i) K(X,Y ) = κ− λµ or ii) κ = λµ+ LR (11)

Comparing the equations (7)(iii) and (11)(i) we have

i) µ = 1− λ or ii) λ = 1. (12)

In the case X ∈ D(λ), Y ∈ D(−λ) and X ∈ D(−λ), Y ∈ D(λ) we prove that

i) K(X,Y ) = κ− λµ or κ = −λµ+ LR (13)

i) K(X,Y ) = κ+ λµ or κ = λµ+ LR. (14)

By the combination now of the equation (9)(ii), (10), (11)(ii), (12), (13) and (14) we
establish the following nine systems among the unknowns κ, λ, µ and LR.

1) {µ = 1− λ, µ = 1 + λ, λ = 0}

2) {κ = −λµ+ LR, κ = λµ+ LR, µ = 0, λ > 0}

3) {κ = −λµ+ LR, λ = 1, µ = 0}

4) {κ = −λµ+ LR, λ = 1, µ = LR}
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5) {K(X,Y ) = κ+ λµ, K(X,Y ) = κ− λµ, µ = 1− λ, κ = −λµ+ LR}
6) {µ = 1 + λ, λ = 1, LR = ±2}
7) {µ = 1 + λ, K(X,Y ) = κ− λµ, K(X,Y ) = κ+ λµ}
8) {κ = −λµ+ LR, µ = 1− λ, K(X,Y ) = κ+ λµ}
9) {µ = 1 + λ, κ = λµ+ LR, K(X,Y ) = κ− λµ}

From the first system we get easily µ = 1 and since λ2 = 1 − κ we have κ = 1, which is a
contradiction, since we required that κ < 1. The systems 2, 3, 4 and 5 have as the only solution
κ = 0, µ = 0, λ = 1, LR = 0. Then RXY ξ = 0 for any X,Y ∈ χ(M) and M is locally isometric
to the product En+1(0) × Sn(4) [1]. We show that remainder systems can not occur. In system
6, from λ = 1 we have µ = 0 and κ = 0. Using equation (13) (or (14) ) and (7)(ii) we have
[g(X,ϕY )]2 = −1 and this is a contradiction. From system 7, one can get easily λµ = 0. But
λ 6= 0 (since κ < 1) and then µ = 0. Therefore λ = µ − 1 = −1 and this is a contradiction with
λ > 0. In two last systems for all X,Y ∈ χ(M) we have

K(X,Y ) = LR, (15)

Let Y = ϕX in (15) and comparing it with equation (7)(ii) we get

LR = −(κ+ µ), (16)

Replacing κ and µ of two last systems in (16) we get

i)(1− λ)2 = −2LR, ii)(1 + λ)2 = −2LR. (17)

Then in systems 8 and 9 LR ≤ 0. In system 8, by virtue of κ = −λµ + LR and κ = 1 − λ2,
we have 2λ2 − λ + (LR − 1) = 0. This quadratic equation has two roots λ = 1 ± √9− 8LR. If
λ = 1 +

√
9− 8LR and replacing it in (17)(i) we get LR = 1.5 and if λ = 1 − √9− 8LR, since λ

is positive, we get LR > 1. Then in the both case we get contradction whit LR ≤ 0. The roots of
equation (17)(ii) in last system are λ = −1±√−2LR and since λ > 0 then λ = −1 +

√−2LR and
hence µ =

√−2LR. Substituting λ and µ in κ = λµ+LR and κ = 1−λ2 we get LR = −2 and then
λ = 1, µ = 2 and κ = 0 which are not acceptable since from (13) (or (14)) we get a contradiction
from (7)(ii) and this complete the proof.
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COMPLETE CGC HYPERSURFACES IN HYPERBOLIC

SPACE

Sahar Masoudian

Tarbiat Modares University

Abstract

In this paper, we deal with complete and connected Hypersurfaces immersed in
the Hyperbolic space with constant scalar curvature, and constant Gauss- kronecker
curvature. Let φ : Mn → Hn+1 be an orientable hypersurface with constant scalar
curvature R , which has zero Gauss Kronecker curvature.Then Mn is a totally geodesic
hypersurface.

Keywords: Complete hypersurfaces, Gauss-Kronecker curvature, Hyperbolic space,
Scalar curvature, Totally umblicial hypersurfaces

Mathematics Subject Classification [2010]: 53B30, 53C21, 53C17

1 Introduction

In this paper, we are interested in the study of the geometry of a complete hypersurface
isometrically immersed in Hn+1, and the correlation between r-th elementary symmetric
functions of Mn, Scalar curvature, and r-th mean curvature Hr of Mn. Also, we give some
correction to a mistake happend in a paper about Gauss mapping of hypersurfaces with
constant scalar curvature in Hn+1 [2].

We deal with Minkowski space Rn+2
1 as the real vector space Rn+2 endowed with the

Lorentzian metric g given by

g(u, v) =

n+1∑

i=1

uivi − un+2vn+2,

for u, v ∈ Rn+2
1 .

The (n+ 1)-dimensional hyperbolic space

Hn+1 = {x ∈ Rn+2
1 ;< x, x >= −1, xn+2 > 1}.

is a spacelike hypersurface in Rn+2
1 .

Let Mn be a connected and oriented isometrically immersed hypersurface φ : Mn →
Hn+1, and denote A : TpM

n → TpM
n as the shape operatore of the immersion φ at the

point p ∈M .
At each point the linear operator A on Tp(M

n) is self-adjoint (c.f [4], chapter4), so
the real eigenvalues of the operator A are called the Principal curvatures, and we will be
denoted by k1, . . . , kn.
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For a suitably chosen local field of orthonormal frames {e1, . . . , en} on Mn, we have

Aei = kiei i = 1, · · · , n

Definition 1.1. Associated to the shape operator A one has, for each 0 6 r 6 n algebraic
invariants Sr given by

Sr = σr(k1, . . . , kn) =
∑

i1<···<ir
ki1 . . . kir .

Where σr ∈ R[X1, . . . , Xn] is the r-th elementary symmetric polynomial on the indetermi-
nates X1, . . . , Xn.

Definition 1.2. The r-th mean curvature Hr of the hypersurface is then defined by

Hr =
1(
n
r

)
∑

i1<···<ir
ki1 . . . kir

=

(
n

r

)−1

Sr.

Remark 1.3. From above equality and using definition (1.1), we have

S0 = 1,

S1 =
n∑

i=1

ki = tr(A) = nH1, (1)

Nothe that when r = 1, H1 is the mean curvature, and when r = n, Hr is the Gauss-
Kronecker curvature. Therefore, det(A) = k1 . . . kn, is called Gauss-Kronecker curvature.

Also, we consider the traceless operator T : TpM → TpM , which is given by

T (Xp) = A(Xp)−H1(Xp),

For all Xp ∈ TpMn.
And the Hilbert-schmidt norm of oprator T is given by

|T |2 =
1

n
(ki − kj)2.

The next results, due to previous definition, and Gauss Weingarten equation, to use
them for proving the rigidity theorem.

Lemma 1.4. Let k1, . . . , kn be real eginvalues of operator A, suppose that S1, S2 are the
first, and the second elementary symmetric functions of Mn, we have

|A|2 + 2S2 = S2
1 . (2)

Now we are ready to correct the mistake in [2].

Proposition 1.5. S2 is a constant function on Mn if, and only if the scalar curvature R
of Mn is constant.
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Proof. from Gauss equation we have that the Ricci curvature tensor of Mn, denoted by
RicM , is given by

RicM (X,Y ) = (1− n) < X,Y > +nH1 < AX,Y > − < AX,AY >, (3)

for all X,Y ∈ TMn. on the other hand, from 3 we have that the scalar curvature R of
Mn satisfies

R =
n∑

i=1

Ric(ei, ei) = n(1− n) + n2H2
1 − |A|2. (4)

we use 2 to conclude that

R = n(1− n) + S2
1 − |A|2

= n(1− n) + 2S2.

2 Main result

Now, we are finally in position to prove the following theorem.

Theorem 2.1. Let φ : Mn → Hn+1, n > 3, be a hypersurface immersed in Hn+1. suppose
that scalar curvature of Mn is R = n(1− n), and the Gauss-Kronecker curvature is zero.
Then Mn is a totally geodesic hypersurface.

Proof. We observe that our hypothesis under the scalar curvature of Mn, and our propo-
sition, amounts to the fact that, S2 is zero on Mn, so by using 2 we have that |A|2 = S2

1 =
n2H2

1 . where A is the wiengarten operator of Mn. Since the Hilbert- schmidt norm of T
satisfies |T |2 = |A|2 − nH2

1 , we get that

|φ|2 = n(n− 1)H2
1 , (5)

Also, we have
tr(T 3) = (n− 2)H1|T |2,

Therfore, from 5 we have

|tr(T 3)| = n− 2√
n(n− 1)

|T |3.

And it follows from lemma (c.f [1]) that at least n− 1 of eigenvalues of T are equal, and
hence at least n− 1 of eigenvalues of A are equal. Denoted by

k1 = · · · = kn−1 = a kn = b

On the other hand, Hn = 0. so, Sn = k1 . . . kn = (a)n−1b = 0. Therfore, ab = 0 on Mn,
and we have that

S2 = (n− 2)2a2 + (n− 2)ab = 0.

Hence,a = 0.
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Let θij is the 2D subspace of TxM
n generated by ei and ej . Therfore, from Gauss

equation (c.f[4]) we have
K(θij) = −1 + kikj ,

From S2 and Sn, we get that
K = −1.

For all 1 6 i, j 6 n. Thus, since Mn is a hypersurface of constant sectional curvature -1,
we have from [4] that Mn is isometric to Hn.Therfore, Mn must be a totally umblicial
hypersurface immersed in hyperbolic space.

Moreover, sinceS2 = 0 we can conclude that Mn must be a totally geodesic hypersur-
face in hyperbolic space.

Example 2.2. Consider an integer λ satisfying 0 6 λ < n. Let

φ : Mn = Sλ(τ)×Hn−λ(
√

1 + τ2)→ Hn+1,

Be a hypersurface immersed in hyperbolic space. [2] showed that Mn is a totally umblical
hypersurface, but the scalar curvature R = 1

τ2
n(n− 1) 6= n(1− n), and we have Hn 6= 0.

Consequently, our theorem is not a biconditional theorem. There are quite a few examples
to show the same result.

Acknowledgment. This paper was started while the author was visiting the De-
partment of Pure Mathematics of Tarbiat Modares University. She would like to thank
Dr.S.M.B Kashani for his hospitality and support during that visit.
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Containment problem for the ideal of fatted almost collinear

closed points in P2

Mohammad Mosakhani∗

Mathematics Faculty, K. N. Toosi University of Technology

Hassan Haghighi

Mathematics Faculty, K. N. Toosi University of Technology

Abstract

In this paper, we study the containment problem for the ideal of a zero dimensional
closed subscheme Z = cp0 + p1 + · · · + pn of P2, where all points pi except p0, lie on a
line and p0 is considered with multiplicity c. We determine some numerical invariants
of the ideal of this type of configuration, that is, the least degree of the generators of
I(Z)(r), the resurgence of I(Z) as well as the Waldschmit’s constant of I(Z).

Keywords: Symbolic power, Resurgence, Fat point

Mathematics Subject Classification [2010]: 14N20, 13F20

1 Introduction

Let R = K[PN ] = K[x0, x1, . . . , xN ] be the homogeneous coordinate ring of the projective
space PN , where K is an algebraically closed field of arbitrary characteristic. Let I be a
nontrivial homogeneous ideal of R. The rth symbolic power of I is defined to be the ideal

I(r) = ∩P∈Ass(I)(R ∩ IrRP ).

Equivalently, I(r) is the contraction of the ideal IrRU to R, i.e.,

I(r) = R ∩ IrRU ,

where U is the multiplicative closed set R − ∪P∈Ass(I)P.
A natural algebraic operation for investigating the algebraic structure of I is to study the
behavior of its ordinary power Ir, for each positive integer r, i.e., the ideal generated by
products of r elements of I. On the other hand, Ir determines a closed subscheme of
PN , a geometric object that is defined by the intersection of those primary components
of Ir which their radical are strictly contained in ⟨x0, x1, . . . , xN ⟩, denoted by I(r). But
contrary to Ir, the generators of I(r) can not be obtained easily. A natural way to obtain
information about the generators of I(r), is to compare its generators with the generators
of different ordinary powers of I. In this direction, it can be easily proved that Im ⊆ I(r)
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if and only if m ≥ r. If I(r) ⊆ Im then it follows m ≤ r. However, nearly less is known
about pairs of integers (r,m), where the containment I(r) ⊆ Im holds. Since this question
is of interest for both commutative algebraist and algebraic geometers it has motivated
a lot of research on this topic and the related subjects in both these communities. The
recent the survey article [5] reflects the current status of the question.
To determine how much the symbolic power I(r) deviates from containment in ordinary
power Im, Bocci and Harbourne introduced an asymptotic measure, so called resurgence
of I, which is defined for a non-trivial homogeneous ideal of R as:

ρ(I) = sup{ r

m
| I(r) ⊈ Im}.

If r/m ≥ ρ(I), as an immediate consequence of this definition, it follows I(r) ⊆ Im. More-
over, by [4], the containment I(mN) ⊆ Im always holds, which implies ρ(I) ≤ N . In
addition, by the definition of ρ(I), it follows ρ(I) ≥ 1.
Computing the symbolic power of a nontrivial homogeneous ideal of R is not so straight-
forward. However, in some cases one can progress toward it further. For example if the
ideal I, can be represented as Im1

1 ∩ Im2
2 ∩ · · · ∩ Ims

s , where for each 1 ≤ j ≤ s, mj is a
positive integer and the ideal Ij is a complete intersection, then by unmixedness theorem,
I(r) = Irm1

1 ∩ Irm2
2 ∩ · · · ∩ Irms

s . In particular, since the ideal of forms which vanish on
a closed point p ∈ PN is a complete intersection, if I is the ideal of forms which vanish
with multiplicity at least mi, 1 ≤ i ≤ s, at each point of the set {p1, . . . , pn} in PN , then
I = ∩n

i=1I(pi)
mi and

I(r) = ∩n
i=1I(pi)

rmi . (1)

In this case, I is known as the ideal of a fat points subscheme of PN , which is denoted
by Z = m1p1 + m2p2 + · · · + mnpn, and I(r) is the ideal of the fat points scheme rZ =
rm1p1+· · ·+rmnpn. Due to this simple description of symbolic power these type of ideals,
it is natural to restrict to these ideals to understand about the structure of pairs (r,m)
such that I(r) ⊆ Im.

2 Main results

The closed subscheme of points of P2 which we will consider have a special structure,
which are defined as follows.

Definition 2.1. Let Z = p0 +p1 + · · ·+pn, where n ≥ 3, be a zero dimensional subscheme
of P2. Z is called an almost collinear subscheme of n+1 points if all these points except p0,
lie on a line L. Moreover, if 1 ≤ c ≤ n is an integer, the subscheme Z = cp0 +p1 + · · ·+pn

is called a fatted almost collinear points with multiplicity c subscheme.

Let Z be a fatted almost collinear subscheme of P2, and let I = I(Z) be the ideal of
forms vanishing on Z. Without loss of generality, we may assume the collinear points
p1, . . . , pn all lie on the line z = 0 and let p1 be the intersection point of the lines
x = 0 and z = 0. For each 2 ≤ i ≤ n, let pi be the intersection point of the lines
z = 0 and x − ℓiy = 0, where ℓis are non zero distinct elements of K. Moreover,
we may assume p0 is the intersection point of the lines x = 0 and y = 0. Then
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I = I(Z) = (x, y)c∩(z, F ), where F = x(x−ℓ2y) . . . (x−ℓny) is a homogeneous polynomial
in x, y of degree n. Since the ideals (x, y) and (z, F ) are complete intersection, by (1),
I(r) = ((x, y)c)(r) ∩ (z, F )(r) = (x, y)cr ∩ (z, F )r.
Let i be a nonnegative integer, then by division algorithm i = an+ e, with 0 ≤ e < n. We
show the polynomial xeF a by Hi.

.

.

.

p0

..
p1

..
p2

..
p3

..
p4

.
. . .

..
pn

. z = 0.

L1

.

L2

.

L3

.

L4

.

. . .

.

Ln

.

Fatted almost collinear point configuration

Now let I be the ideal of a (n + 1) fatted almost collinear points. One of the main results
of this note is the computation of resurgence of this I. For this purpose, we use [3, Lemma
2.2], which gives a K-vector space basis for the ring R = K[x, y, z] consisting of elements
in the form Hiy

jzl.

Lemma 2.2. A K-basis of R is given by BR = ∪i≥0Bi, where

Bi = {Hiy
jzl | i = an + e, 0 ≤ e < n, Hi = xeF a, and i, j, l ≥ 0}.

Lemma 2.3. Let m ≥ 1. Then

(a) Hiy
jzl ∈ I(r) if and only if i, j, l ≥ 0, i + ln ≥ rn, and i + j ≥ cr.

(b) Moreover, I(r) is the K-vector space span of the elements of the form Hiy
jzl, con-

tained in I(r).

Lemma 2.4. Let m ≥ 1. Then

(a) The ideal Im is K-vector space span of the elements of the form Hiy
jzl ∈ Im. In

addition, if Hiy
jzl ∈ Im, then Hiy

jzl is a product of m elements of I.

(b) Moreover, Hiy
jzl ∈ Im if and only if i, j, l ≥ 0, and either;

(1) l < j
c and i + nl ≥ mn, or

(2) j
c ≤ l < i+j

c and i + j + (n − c)l ≥ mn, or

(3) i+j
c ≤ l and m ≤ i+j

c .

Theorem 2.5. Let I be the ideal of an n+1 fatted almost collinear points. Then I(r) ⊈ Im

if and only if r ≤ n2m−n
n2−nc+c2

. In particular, ρ(I) = n2

n2−nc−c2
.

Remark 2.6. In the Definition 2.1, we assumed that the multiplicity of p0 to be 1 ≤ c ≤ n.
In fact, since c ≤ n, we have (x, y)n ⊂ (x, y)c, and since F = x(x−ℓ2) . . . (x−ℓny) ∈ (x, y)n,
we have F ∈ (x, y)c and therefore,

I = (x, y)c ∩ (z, F ) = (zxc, zxc−1y, . . . , zxyc−1, zyc, F ).
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We need this description of I for computational purposes. Moreover, if we assume c > n,
we can not use the above theorem to compute the resurgence of I, because with this
assumption, we obtain ρ(I) < 1, which is impossible.
However, if we consider the case c > n, then by a computer algebra system (such as
Singular [2]), one can easily check I(r) = Ir.

For a homogeneous ideal I of the ring R = K[PN ], let α(I) be the least degree of the of
a non-zero homogeneous element of I. It is trivial that α(I) is an invariant of I. Moreover,
for any r, α(Ir) = rα(I). On the other hand, the behavior of α(I(r)) is not similar to the
behavior of the ordinary power of I. In fact, since Ir ⊆ I(r), we have α(I(r)) ≤ rα(I).
For any homogeneous ideal I of R, by [1, Lemma 2.3.1], the limit

γ(I) = lim
r→∞

α(I(r))

r
(2)

exits and is called the Waldschmit constant of I. This is also one of the invariants of I.
For a general homogeneous ideal, computing α(I(r)) as well as its resurgence is not so
easy. However, if I is the ideal of a fatted almost collinear points, then in the following
theorems, α(I(r)) and γ(I) are given explicitly.

Theorem 2.7. Let I be the ideal of a fatted almost collinear points with multiplicity c.
Then

α(I(m)) = ⌈m(1 + c)n − c

n
⌉.

Theorem 2.8. Let I be the ideal of a fatted almost collinear points with multiplicity c.
Then

γ(I) = (1 + c) − c

n
.
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Curvature of multisymplectic connections of order 3

Masoud Aminizadeh∗

University of Vali-e-Asr

Abstract

In this paper we show that on multisymplectic manifold (m,ω) of order 3 there
is at leat a multisymplectic connection. Then we study the curvature tensor of a
multisymplectic connection of order 3.

Keywords: Multisymplectic manifold, Multisymplectic connection, Curvature tensor

Mathematics Subject Classification [2010]: 53D05, 53C05

1 multisymplectic connection of order 3

Multisymplectic structures in field theory play a role similar to that of symplectic struc-
tures in classical mechanics. A multisymplectic manifold (M,ω) of order 3 is a manifold
M endowed with a closed 3-form ω on M which is nondegenerate. Nondegeneracy of ω
meas that for a vector field X on M

iXω = 0 if and only if X = 0.

A connection ∇ on (M,ω) is called multisymplectic connection it is both symmetric
(∇XY − ∇YX = [X,Y ]) and compatible to the ω (∇ω = 0). If ∇ be a connection
on M then ∇ω = 0 if and only if

V (ω(X,Y, Z)) = ω(∇XV , Y, Z) + ω(X,∇YV , Z) + ω(X,Y,∇ZV ), (1)

for any vector field X,Y, Z, V .
Also ω is closed if and only if

X(ω(Y,Z, V ))− Y (ω(X,Z, V )) + Z(ω(X,Y, V ))− V (ω(X,Y, Z))− (2)

ω([X,Y ], Z, V )+ω([X,Z], Y, V )−ω([X,V ], Y, Z)−ω([Y, Z], X, Y )+ω([Y, V ], X, Z)−ω([Z, V ], X, Y ) = 0

for any vector field X,Y, Z, V .
Let (M,ω) be a multisymplectic manifold of order 3 and ∇ be a connection on M . If
x1, ..., xn are local coordinates, introduce the Christoffel symbols Γkij by ∇∂i∂j = Γkij∂k.
The components of ω in these coordinates are ωijk = ω(∂i, ∂j , ∂k). It is sufficient to write
(1) for X = ∂i, Y = ∂j , Z = ∂k and V = ∂l. This gives

∂lωijk = ω(∇∂l∂i, ∂j , ∂k) + ω(∂i,∇∂l∂j , ∂k) + ω(∂i, ∂j ,∇∂l∂k)
∗Speaker
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= ωλjkΓ
λ
li + ωiλkΓ

λ
lj + ωijλΓλlj = Γjkli − Γiklj + Γijlk,

where Γijlk = ωijλΓλlk.
The equality dω = 0 means

∂iωjkl − ∂jωikl + ∂kωijl − ∂lωijk = 0.

Consider Π be another symmetric connection on M . We have Πijkl = Πijlk = −Πjikl.

Proposition 1.1. Let Π be a symmetric connection. If we define Γijkl = ∂lωkij + Πijkl −
Πjilk −Πlikj + Πljik then Γ compatible to the ω.

Proof. Since dω = 0, we have ∂lωijk = ∂iωljk − ∂jωlik + ∂kωlij . It is easy to show that
Γjkli − Γiklj + Γijlk = ∂lωijk. So ∇ω = 0.

2 Curvature of multisymplectic connections of order 3

If ∇ be a multisymplectic connection of order 3 on M . The curvature ∇ is defined by
usual formula

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

The components of the curvature tensor are introduce by

R(∂i, ∂k)∂j = Rmijk∂m.

The curvature Rmklt satisfies the tensor equations

Rmklt +Rmltk +Rmtkl = 0.

And
∇sRmklt +∇lRmkts +∇tRmksl = 0.

Denote also
Rijklt = ωijmR

m
klt = ω(∂i, ∂j , R(∂l, ∂t)∂k).

The components of the curvature tensor in terms of the Christoffel symbols has the stan-
dard form;

Rlijk = ∂jΓ
l
ki − ∂kΓlij + ΓmkiΓ

l
mj − ΓmijΓ

l
km.

Instead of Rijklt we can also consider R(X,Y, Z, V,W ) which is a multilinear function on
any tangent space TxM :

R(X,Y, Z, V,W ) = ω(X,Y,R(V,W )Z).

So that
Rijklt = R(∂i, ∂j , ∂k, ∂l, ∂t).

It is obvious that
Rijklt = −Rijktl.

And
Rij(klt) = Rijklt +Rijltk +Rijtkl = 0.
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Proposition 2.1. For any multisymplectic connection of order 3

Rjkilt −Rikjlt +Rijklt = 0.

Proof. Let us consider

∂t∂lωijk = ∂t(ω(∇∂l∂i, ∂j , ∂k) + ω(∂i,∇∂l∂j , ∂k) + ω(∂i, ∂j ,∇∂l∂k)

= ω(∇t∇l∂i, ∂j , ∂k) + ω(∇l∂i,∇t∂j , ∂k) + ω(∇l∂i, ∂j ,∇t∂k)
= ω(∇t∂i,∇l∂j , ∂k) + ω(∂i,∇t∇l∂j , ∂k) + ω(∂i,∇l∂j ,∇t∂k)
= ω(∇t∂i, ∂j ,∇l∂k) + ω(∂i,∇t∂j ,∇l∂k) + ω(∂i, ∂j ,∇t∇l∂k).

Changing places t, l and subtracting the result, we obtain

0 = ω([∇∂l ,∇∂t ]∂i, ∂j , ∂k) + ω(∂i, [∇∂l ,∇∂t ]∂j , ∂k)ω(∂i, ∂j , [∇∂l ,∇∂t ]∂k)

= ω(Rmilt∂m, ∂j , ∂k) + ω(∂i, R
m
jlt∂m, ∂k) + ω(∂i, ∂j , R

m
klt∂m)

= ωmjkR
m
ilt + ωimkR

m
jlt + ωijmR

m
klt = Rjkilt −Rikjlt +Rijklt.
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Curvature properties and totally geodesic hypersurfaces of

some para-hypercomplex Lie groups∗

Mansour Aghasi
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Abstract

In this paper we study some geometrical properties of four-dimensional para- hy-
percomplex Lie groups. In fact we first explicitly give all totally geodesic hypersurfaces
on four types of these homogeneous spaces. Then we investigate Einstein like metrics
on these spaces. The existence of four-dimensional para-hypercomplex Lie groups with
parallel or cyclic Ricci tensor are also proved.

Keywords: Totally geodesic hypersurfaces, Para-hypercomplex Lie groups, Parallel
Ricci tensor
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1 Introduction

Hypercomplex and para-hypercomplex structures are interesting structures in mathemat-
ics which have many important applications in physics. In [3] Barberis studied four dimen-
sional Lie groups which admit hypercomplex structures and gave a classification for these
spaces. Four dimensional real Lie algebras which admit para- hypercomplex structures
are classified in [4] by Blazic and Vukmirovic. Then in [7] Salimi Moghaddam considered
connected Lie groups corresponding to some of these Lie algebras and gave the exact form
of their Levi-Civita connections and sectional curvatures. Also in [1] we have studied
harmonicity of invariant vector fields and left-invariant Ricci solitons on these homoge-
neous spaces. Our aim in this paper is to describe explicitly totally geodesic hypersurfaces
on these homogeneous spaces. We also prove the existence of four- dimensional para-
hypercomplex Lie groups whose Ricci tensor is parallel or cyclic.

2 Four-dimensional para-hypercomplex Lie groups

Here we report the following classification which is given in [4].

Theorem 2.1. Up to an isomorphism the only four-dimensional Lie algebras G admitting
an integrable para-hypercomplex structure are either abelian or isomorphic to one of the
following Lie algebras

∗Will be presented in English
†Speaker
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(A1) [X1, X2] = X3, (A2) [X1, X2] = X1, (A3) [X1, X3] = X1, [X2, X4] = X2,
(A4) [X1, X2] = X4, [X2, X4] = −X1, [X4, X1] = X2, (A5) [X1, X2] = X2, [X1, X4] = X4,
(A6) [X1, X3] = X1, [X1, X4] = X2, [X2, X3] = X2, [X2, X4] = aX1 + bX2,
(A7) [X1, X2] = X3, [X1, X4] = X1 + aX2 + bX3, [X4, X2] = X2,
(A8) [X3, X4] = X3, [X2, X4] = X2, [X1, X4] = cX1 + aX2 + bX3,
(A9) [X2, X1] = X3, [X4, X3] = cX3, [X4, X1] = 1

2X1 +aX2 + bX3, [X4, X2] = (c− 1
2)X2.

where c 6= 0, a, b ∈ R and {X1, X2, X3, X4} is an orthonormal basis.

Here we consider connected Lie groups which correspond to Lie algebras of this classi-
fication and by using the results from [7] which are on the cases (A1), · · · , (A6), we obtain
the exact form of totally geodesic hypersurfaces on four types of these spaces. For this
purpose we first recall the following definition and for more details we refer to [2] and [5].
Let F : Mn → Nn+1 be an isometric immersion of Riemannian manifolds (M,<,>) and
(N,<,>) with the Levi-Civita connections ∇M and ∇. Also let ξ be a unit normal vector
field on the hypersurface M , h be the second fundamental form h(X,Y ) =< SX, Y > and
S be the shape operator SX = −∇Xξ. Then the Gauss formula is given by

∇XY = ∇MX Y + h(X,Y )ξ, (1)

which yields the following Codazzi equation

< R(X,Y )Z, ξ >= (∇Mh)(Y,X,Z)− (∇Mh)(X,Y, Z), (2)

where R is the curvature tensor of M and (∇Mh) is defined by (∇Mh)(X,Y, Z) =
X(h(Y,Z))−h(∇MX Y,Z)−h(Y,∇MX Z). The hypersurface M is said to be totally geodesic,
if the second fundamental form vanishes identically i.e., h = 0.

Lemma 2.2. Let F : M3 → G be a non-degenerate hypersurface of a four-dimensional
para-hypercomplex Lie group G. Also let ξ be a unit normal vector field on M and
{X1, . . . , X4} be the orthonormal frame field on G. The second fundamental form of this
immersion is a Codazzi tensor if and only if there exists a local function θ on M3 such
that ξ has one of the following forms
(a) For the type (A1), ξ = ±X1,±X2,±X3,±X4, or cosθX1 + sinθX2.
(b) For the type (A2), ξ = ±X1,±X2,±X4, cosθX1 + sinθX2, or cosθX3 + sinθX4.
(c) For the type (A3), ξ = ±X1,±X3,±X4, cosθX1 + sinθX3, or cosθX2 + sinθX4.
(d) For the type (A4), ξ = ±X1,±X2, ±X3, ±X4 or cosθX2 + sinθX4.

Proof. Assume that ξ =

4∑

i=1

biXi is a unite normal vector field on the hypersurface M,

where bi : U ⊆ M → R are some functions. Then V1 = b1X2 − b2X1, V2 = b1X3 − b3X1,
V3 = b1X4 − b4X1, V4 = b3X2 − b2X3, V5 = b4X2 − b2X4, and V6 = b4X3 − b3X4 are
tangent to the hypersurface M3. First we assume that h is a Codazzi tensor. Then by (2)
we have < R(Vi, Vj)Vk, ξ >= 0, where i, j, k ∈ {1, . . . , 6}. In particular for the type (A2)
from < R(V1, V2)V1, ξ >= 0 we have b1b3(b

2
1 + b22) = 0, which implies the following three

cases b1 = 0, b3 = 0 and b2 = b1 = 0.
Case 1: b1 = 0. In this case from < R(V1, V4)V1, ξ >= 0 we have b32b3 = 0, which
gives us b3 = 0 and b2 = 0. If b3 = 0, then from < R(V1, V5)V1, ξ >= 0 we have
b32b4 = 0 which yields that ξ = ±X2 and ξ = ±X4. If b2 = 0, then for all i, j, k we have
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< R(Vi, Vj)Vk, ξ >= 0, which implies that ξ = cosθX3 + sinθX4.
Case 2: b3 = 0. In this case from < R(V1, V5)V1, ξ >= 0 we have b2b4(b

2
2 + b21) = 0

which gives us three subcases: b2 = 0, b4 = 0 and b1 = b2 = 0. If b2 = 0, then from
< R(V1, V3)V1, ξ >= 0 we have b31b4 = 0 which gives us ξ = ±X1 and ξ = ±X4. If b4 = 0,
then ξ = cosθX1 + sinθX2. Also if b1 = b2 = 0, it yields that ξ = ±X4.
Case 3: b1 = b2 = 0. In this case we have ξ = cosθX3 + sinθX4.
Conversely, If ξ has one of the forms given in the case (b), then for all i, j and k we have
< R(Vi, Vj)Vk, ξ >= 0, which gives us that h is totally geodesic.
Types (A1), (A3) and (A4) have a similar proof.

Theorem 2.3. Let F : M3 → G be a totally geodesic hypersurface of a simply connected
four-dimensional para-hypercomplex Lie group G with the Lie algebra G. If G has one of
the types (A1), . . . , (A4), then there exists a local coordinate (w1, w2, w3) on M3 such that,
the immersion with respect to these coordinates, up to isometrics is given by one of the
following expressions:

F (w1, w2, w3) = (w1, w2, w3, 0), F (w1, w2, w3) = (0, w1, w2, w3),

F (w1, w2, w3) = (A,B,w2, w3), F (w1, w2, w3) = (w1, C, w3, D),

F (w1, w2, w3) = (w1, w2, 0, w3), F (w1, w2, w3) = (w1, w2,−sinθw3, cosθw3),

F (w1, w2, w3) = (A,w2, B,w3), (3)

where A = −
∫
sin(2tan−1(ew1−k1))dw1, B =

∫
cos(2tan−1(e−w1−k1))dw1, C = −

∫
sin

(2tan−1(ew1−k1))dw2, D =
∫
cos(2tan−1(e−w1−k1))dw2 and k1 is a real constant.

Proof. Assume that M is a totally geodesic hypersurface. Then ξ has one of the forms
(a), (b), (c) and (d) which are given in the lemma 2.2. Let us consider the case (b). If
ξ = cosθX3 + sinθX4, then Y3 = −sinθX3 + cosθX4, Y1 = X1 and Y2 = X2 span the
tangent space to M at each point and the non-zero Levi-Civita connections of M are

∇Y1Y1 = −Y2, ∇Y1Y2 = Y1, ∇Y1Y3 = −Y1(θ)ξ, ∇Y2Y3 = −Y2(θ)ξ, ∇Y3Y3 = −Y3(θ)ξ.

Then by the Gauss formula (1) h = 0 gives us θ is constant. If we put Yi = ∂wi with i =
1, . . . , 3 and denote the immersion of the hypersurface M by F : M → G : (w1, w2, w3) 7→
(F1(w1, w2, w3), . . . , F4(w1, w2, w3)), then we have

(∂w1F1, ∂w1F2, ∂w1F3, ∂w1F1) = (1, 0, 0, 0)

(∂w2F1, ∂w2F2, ∂w2F3, ∂w2F1) = (0, 1, 0, 0)

(∂w3F1, ∂w3F2, ∂w3F3, ∂w3F1) = (0, 0,−sinθ, cosθ).

From these equations, we have F (w1, w2, w3) = (w1, w2,−sinθw3, cosθw3), where θ is
constant. If ξ = ±X4, then Y1 = X1, Y2 = X2, Y3 = X3 span the tangent space to
M at each point and the non-zero Levi-Civita connections of M are ∇Y1Y1 = −Y2 and
∇Y1Y2 = Y1. Then by the Gauss formula (1) for i, j = 1, . . . , 3 we have h(Yi, Yj) = 0 which
gives us the totally geodesic hypersurface F (w1, w2, w3) = (w1, w2, w3, 0). If ξ = ±X1,
then by a similar way F (w1, w2, w3) = (0, w1, w2, w3) is a totally geodesic hypersurface.
If ξ = cosθX1 + sinθX2, then Y1 = −sinθX1 + cosθX2, Y2 = X3, Y3 = X4 span the
tangent space to M at each point and h(Yi, Yj) = 0 which gives us Y1(θ) = −sinθ and
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Y2(θ) = Y3(θ) = 0. Then by considering the coordinate system ∂
∂wi

= Yi, i = 1, 2, 3, the
hypersurface F (w1, w2, w3) = (A,B,w2, w3) is totally geodesic, where for a real constant
k1, A = −

∫
sin(2tan−1(ew1−k1))dw1 and B =

∫
cos(2tan−1(e−w1−k1))dw1. The cases

(a), (c) and (d) have a similar proof.

Einstein like metrics are defined through conditions on the Ricci tensor, as follows.
A Riemannian manifold (M, g) belongs to the class A if and only if its Ricci tensor is
cyclic-parallel, more exactly ∇XiρXjXk +∇jρXkXi +∇kρXiXj = 0, and it belongs to the
class B if and only if its Ricci tensor is Codazzi tensor i.e., ∇XiρXjXk = ∇XjρXiXk . Also it
belongs to P if and only if its Ricci tensor is parallel that is ∇XiρXjXk = 0, where Xi, Xj

and Xk are tangent vectors on M(see [6]).

Theorem 2.4. Let G be a simply connected four-dimensional para-hypercomplex Lie group
with the Lie algebra G. If G has one of the types (A1) and (A4), then G is cyclic and if it
has the types (A2) and (A3), it is parallel.

Proof. For the type (A4) the non-zero components are

∇X2ρX1X4 = 1, ∇X2ρX4X1 = 1, ∇X4ρX1X2 = −1, ∇X4ρX2X1 = −1. (4)

Since ∇X1ρX2X4 6= ∇X2ρX1X4 it is not Codazzi. The other types have a similar proof.
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Abstract

In this paper introducing the cohomology of generalized Lie groups, we characterize
the extensions for generalized Lie groups by elements of the second cohomology group.
Moreover we identify a cohomological obstruction to the existence of extensions in
non-Abelian case.

Keywords: Generalized Lie groups, Cohomology, Group extensions
Mathematics Subject Classification [2010]: 22N99, 57T10, 22E99

1 Introduction

The problem of extending a group in terms of cohomology can be found in [2]. This prob-
lem can be generalized to Lie groups and their generalizations. A special generalization
of Lie groups is called generalized Lie groups or top spaces which was introduced by M.
R. Molaei in 1998, [4]. In this generalized field, several authors (Araujo, Molaei, Mehrabi,
Oloomi, Tahmoresi, Ebrahimi, etc.) have studied different aspects of generalized groups
and top spaces [4], [3], [5].

Definition 1.1. [3] A top space T is a non-empty Hausdorff smooth d-dimensional dif-
ferentiable manifold which is endowed with an operation ”.” called multiplication such
that:

i. (t1.t2).t3 = t1.(t2.t3), for all t1, t2, t3 ∈ T .

ii. For each t ∈ T , there exists a unique e(t) in T such that t.e(t) = e(t).t = t.

iii. For each t ∈ T , there exists s ∈ T such that t.s = s.t = e(t).

iv. e(t1.t2) = e(t1).e(t2), for all t1, t2 ∈ T .

v. The mappings
. : T × T → T, (t1, t2) 7→ t1.t2,

−1 : T → T, t 7→ t−1,

are smooth.
∗Speaker
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Throughout this paper by Ta we mean T ∩ e−1(e(a)).

Definition 1.2. [5] If T and S are two top spaces, then a homomorphism f : T → S is
called a morphism if it is also a C∞ map.

By fa we mean f |e−1(e(a)), where f is a morphism of top spaces. There exist a cor-
respondence between an action σ of a top space on a manifold M and partial actions
{σi}i∈e(T ) of e−1(i) on M , for any i ∈ e(T )[6]. Also, in the same reference, we get that if
T is a top space, then there is an isomorphism between T and e(T ) n {Ti}i∈e(T ), where
Ti = e−1(i), for all i ∈ e(T ) and e(T )n {Ti}i∈e(T ) = {(i, t)|t ∈ Ti}, by the production rule

(i1, t1)n (i2, t2) = (i1i2, t1t2), i1, i2 ∈ e(T ), t1 ∈ Ti1 , t2 ∈ Ti2 .

2 Extensions of top spaces and cohomology

Definition 2.1. Let T,K be top spaces. A top space T̃ is said to be an extension of T
by K if K is a top generalized normal subgroup of T̃ , i.e K ≺ T̃ , and T̃ /K = T .

Lemma 2.2. In terms of exact sequences, adapting the notations of [5], [6] and the last
remark of the previous section, definition (2.1) is equivalent to saying that

e(a) // Ka
// T̃a // Ta // e(a)

is exact for all a ∈ e(T ); thus Ka is injected into T̃a and T̃a projected onto Ta by the
canonical homomorphism so that Ta = T̃a/Ka.

Let AutK be the group of all automorphisms of K. Then there exist functions fa :
T̃a → AutKa, such that t 7→ [t̃] where [t̃] is defined by

[t̃] : k ∈ Ka 7→ t̃kt̃−1 ∈ Ka .

The kernel of fa is the centeralizer CT̃a(Ka) of Ka in T̃a. Thus, we have the following
exact sequence of top space homomorphisms:

e(a) // CT̃a(Ka) // T̃a
fa // AutKa .

The center CKa of Ka is top generalized normal subgroup in CT̃ (K); if Ha denotes the
quotient group Ha = CT̃a(Ka)/CKa ,

e(a) // CKa // CT̃a(Ka) // Ha
// e(a)

is exact.
Let T be a top space, and A a Lie group, on which T operates through the homo-

morphism σ : T →AutA = Out A (since A is Abelian, Int A is reduced to the trivial
automorphism). So there exist a family of partial actions

σa : Ta → AutAa, a ∈ e(T ).
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To construct a cohomology for top spaces, we need to introduce the n-cochain maps.
A mapping αn : T × . . .× T → A is a n-cochain, i.e.

αn : (t1, . . . , tn) 7→ αn(t1, . . . , tn) ∈ A .

The n-cochains form an Abelian top space, i.e. a Lie group, which will be denoted
Cn(T,A). Note that αa for all a ∈ e(T ) is defined on Ta × . . .× Ta with values in Aa. So
we may consider Cn(Ta, Aa). The operator δa : Cn :→ Cn+1 (the coboundary operator)
can be defined according to the way that the action σ(t) ∈ AutA of the elements t of T is
defined on A[1]. Consider the following sequence of Abelian top spaces:

C0
a

δ0a // C1
a

δ1a // C2
a

// . . .
δna // Cn+1

a
// . . . .

for every a ∈ e(T ), we define

Znσa := kerδna ≡ {cocycles},

Bn
σa := rangeδn−1a ≡ {coboundaries}.

Both Znσa and Bn
σa are Lie subgroups of Cn(Ta, Aa).

The quotient group

Hn
σa(Ta, Aa) := Znσa(Ta, Aa)/B

n
σa(Ta, Aa)

is called the n-th cohomology of Ta with values on Aa for every a ∈ e(T ).
As in the case of abstract groups, the elements of the second cohomology group, char-

acterize the extensions T̃ of the top space T by the Abelian top space A for the given
action σ of T on A[1].

We are here concerning about extensions of the top space T by K in the case where K
is not Abelian. The main difference from the Abelian case is that not every top space is
associated with one or more extensions, i.e. not every top space is extendible. In fact, one
of the aims of this chapter is to show that the top space K determines an obstruction to
the extension in the form of a certain three-cocycle; the top space T is extendible if this
cocycle is, by an abuse of language, trivial.

For every a ∈ e(T ), consider the following exact sequence

e(a) // IntKa
// AutKa

// OutKa
// e(a),

which makes AutKa as an extension of OutKa by IntKa. Let ga be a trivializing section
and let αa = ga ◦ σa be defined by

Ta

yy
σ

��
e(a) // IntKa

// AutKa
// OutKa

ga
oo // e(a).

It is clear that there exists an element ha(t
′, t) ∈ Ka such that

αa(t
′)αa(t) = [ha(t

′, t)]αa(t′t). (2.1)
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Consequently, (2.1) defines a mapping

[h]a : Ta × Ta → IntKa, [h]a : (t′, t) 7→ [ha(t
′, t)],

[ha(t
′, t)]k := ha(t

′, t)kh−1a (t′, t).

The associative property in AutKa, leads to the two-cocycle property for [ha(t
′, t)] ∈

Z2
αa(Ta, IntKa), where

[(αa(t
′′)ha(t′, t))ha(t′′, t′t)] = [ha(t

′′, t′)ha(t′′t′, t)]. (2.2)

The above equation implies that the elements

(αa(t
′′)ha(t′, t))ha(t′′, t′, t), ha(t′′, t′)ha(t′′t′, t)

of Ka determine the same element of IntKa. Thus they differ by an element of the center
CKa . Therefore the equality (2.2) in IntKa leads to an equality in Ka,

(αa(t
′′)ha(t′, t))ha(t′′, t′t) = fa(t

′′, t′, t)ha(t′′, t′)ha(t′′t′, t); (2.3)

note that ha(t
′, t) would itself be a two-cocycle for fa = e(a). Equation (2.3) determines

a mapping fa : Ta× Ta× Ta → CKa , i.e. a three-cochain on Ta with values in the Abelian
top space CKa .

Theorem 2.3. The map fa ∈ Z3
(σ0)a

(Ta, CKa) for (σ0)a(t) = σa(t) acting on CKa , where

it coincides with αa(t) for all a ∈ e(T ).

Theorem 2.4. Non-Abelian top space K together with the action σ characterize an
element of the third cohomology group H3

(σ0)a
(Ta, CKa) for every a ∈ e(T ).

Theorem 2.5. A top space T is extendible if and only if the cocycle fa which it determines
for every a ∈ e(T ) is a three-coboundary for such a.
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Abstract

In this paper, first, we investigate some new results on relations between the struc-
tures J (on almost Hermitian manifold M) and Σ (on almost contact metric manifold
N) with the induced almost contact metric structure Σ on M × N by the mentioned
structures.

Keywords: Almost complex structure (Hermitian, Kählerian), Almost contact struc-
tures (Cosymplectic, Kenmotsu, Sasakian), Product manifolds
Mathematics Subject Classification [2010]: 53C15, 53D15

1 Preliminaries

1.1 Almost Hermitian and almost hypercomplex structures

Let M be an even-diminational differentiable manifold. An almost Hermitian structure on
M is by definition a pair (J, g) on almost complex structure J and a Riemannian metric
g satisfying

J2X = −X, g(JX, JY ) = g(X,Y ) (1)

for any vector fields X, Y on M .
The fundamental form Ω of an almost Hermitian structure is defined by

Ω(X,Y ) = g(JX, Y )

for any vector fields X, Y and is skew-symmetric. An almost Hermitian manifold is called
an almost Kähler manifold if its fundamental form Ω is closed, that is, dΩ = 0.

The Neijenhuis (or the torsion) tensor of an almost complex structure J is defined dy

N (X, Y ) = [X,Y ] − [JX, JY ] + J [X,JY ] + J [JX, Y ] (2)

for any vector fields X , Y on M . An almost complex structure is said to be integrable if
it has no torsion. It is well known that an almost complex structure is a complex structure
if and only if it is integrable ([6]). A complex manifold with a Hermitian structure (J, g)
is said to be Kählerian if its fundamental form is closed, which is equvalent to

∇J = 0. (3)
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1.2 Almost contact metric structure

Let M be an odd-dimensional differentiable manifold. An almost contact structure on M
is by definition a pair (Σ, g) of an almost contact structure Σ = (ϕ, ξ, η) and a Riemannian
metric g, where ϕ is a tensor field of type (1, 1), ξ is a vector field and η is a 1−form,
satisfying the following conditions

ϕξ = 0, η(ϕX) = 0, η(ξ) = 1, ϕ2X = −X + η(X)ξ. (4)

for any vector field X on M ([2]). A Riemannian metric g is called compatible with this
structure if

g(X, Y ) = g(ϕX, ϕY ) + η(X)η(Y ). (5)

for any vector fields A and Y on M and (Σ, g) is called an almost contact metric structure.
Also we have g(X, ξ) = η(X). If it satisfies

dη(X, Y ) = g(ϕX, Y ). (6)

for any vector fields X and Y on M , then (M, Σ, g) is called a contact Riemannian mani-
fold. If ∇Xξ = −ϕX, for any X in TM,M is called a k−contact manifold.

Let M be an almost contact manifold and define an almost complex structure J on
M × R by

J(X + f
d

dt
) = ϕX − fξ + η(X)

d

dt
. (7)

for any vector field X on M , where f is a C∞ function on M × R. An almost contact
structure is called to be normal if J is integrable.

A cosympletic structure is a normal almost contact metric structure (Σ, g) with both
η and Φ closed, given by Φ(X,Y ) = g(ϕX, Y ) for any vector fields X, Y on M ([2]).

1.3 Induced almost contact structure on product manifolds

Let (M, J) be an almost complex manifold and (N,Σ) = (ϕ, ξ, η) an almost contact man-
ifold. In [9], Oubiña has defined an almost contact structure Σ = (ϕ, ξ, η) on M × N as
follows

ϕ(X + Y ) = JX + ϕY, η(X + Y ) = η(Y ), ξ = ξ (8)

for any vector fields X ∈ TM and Y ∈ TN .

2 Main Results

Theorem 2.1. Let (M,J) and (N,Σ) be an almost complex manifold and an almost
contact manifold resp. Then by product metric, (M × N, Σ) can not be a contact metric
manifold.

Theorem 2.2. For the above mentioned structures, the following statements are equiva-
lent:
(i) M × N is normal.
(ii) M and N are Kähler and normal respectively.
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Theorem 2.3. By the above assumptions, the following statements hold:
(i) M × N is cosymplectic if and only if M be Kähler and N cosymlectic.
(ii) M × N is almost cosymplectic if and only if M be almost Kähler and N almost
cosymlectic.

Theorem 2.4. M × N can not be a k−contact manifold.
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On a subalgebra of C(X) containing Cc(X)
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Abstract

Let Cc(X) = {f ∈ C(X) : |f(X)| ≤ ℵ0}, CF (X) = {f ∈ C(X) : |f(X)| <∞}, and
Lc(X) = {f ∈ C(X) : Cf = X}, where Cf is the union of all open subsets U ⊆ X such
that |f(U)| ≤ ℵ0, and CF (X) be the socle of C(X) (i.e., the sum of minimal ideals of
C(X)). It is shown that if X is a locally compact space, then Lc(X) = C(X) if and
only if X is locally scattered. We observe that Lc(X) enjoys most of the important
properties which are shared by C(X) and Cc(X).

Keywords: Functionally countable space, Zero-dimensional space, Locally scattered
space.
Mathematics Subject Classification [2010]: Primary: 54C30, 54C40, 54C05,
54G12; Secondary: 13C11, 16H20.

1 Introduction

C(X) denotes the ring of all real valued continuous functions on a topological space X.
In [4] and [5], Cc(X), the subalgebra of C(X), consisting of functions with countable
image are introduced and studied. It turns out that Cc(X), although not isomorphic to
any C(Y ) in general, enjoys most of the important properties of C(X). This subalgebra
has recently received some attention, see [4], [1], and [5]. Since Cc(X) is the largest
subring of C(X) whose elements have countable image, this motivates us to consider a
natural subring of C(X), namely Lc(X), which lies between Cc(X) and C(X). Our aim
in this article, similarly to the main objective of working in the context of C(X), is to
investigate the relations between topological properties of X and the algebraic properties
of Lc(X). In particular, we are interested in finding topological spaces X for which
Lc(X) = C(X). An outline of this paper is as follows: We show that if X is a locally
compact space, then Lc(X) = C(X) if and only if X is locally scattered, which is somewhat
similar to a classical result due to Rudin in [10], and Pelczynski and Semadeni in [8] (of
course, by no means as significant). This classical result says that a compact space X
is scattered if and only if C(X) = Cc(X). Let us for the sake of the brevity, call the
latter classical result, RPS-Theorem. If X is an almost discrete space or a P -space, then
L1(X) = LF (X) = Lc(X) = C(X), where LF (X) and L1(X) are the locally functionally
finite (resp., constant) subalgebra of C(X), see Definition 2.3.

All topological spaces that appear in this article are assumed to be infinite completely
regular Hausdorff, unless otherwise mentioned. For undefined terms and notations the
reader is referred to [6], [3].
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2 The subalgebra Lc(X) of C(X)

Definition 2.1. Let f ∈ C(X) and Cf be the union of all open sets U ⊆ X such that
f(U) is countable. We define Lc(X) to be the set of all f ∈ C(X) such that Cf is dense
in X, i.e.,

Cf =
⋃

U⊆X
|f(U)|≤ℵ0

U

Lc(X) = {f ∈ C(X) : Cf = X}
We shall briefly and easily notice that, Lc(X) is a subalgebra as well as a sublattice of
C(X) containing Cc(X), and we call it the locally functionally countable subalgebra of
C(X).

It is manifest that CF (X) ⊆ CF (X) ⊆ Cc(X) ⊆ Lc(X) ⊆ C(X), where CF (X) = {f ∈
C(X) : |f(X)| <∞}, see [4].

Corollary 2.2. Lc(X) is a sublattice of C(X).

Definition 2.3. Let f ∈ C(X) and CFf be the union of all open sets U ⊆ X such that

f(U) is finite. We define LF (X) to be the set of all f ∈ C(X) such that CFf is dense in X,
and call it locally functionally finite subalgebra of C(X). In particular, let f ∈ C(X) and
Ccf be the union of all open sets U ⊆ X such that f(U) is constant. We define L1(X) to
be the set of all f ∈ C(X) such that Ccf is dense in X, and we call it locally functionally
constant subalgebra of C(X). Clearly, LF (X) and L1(X) are subalgebras of Lc(X). It is
evident that CF (X) ⊆ LF (X).

Remark 2.4. We note that Corollary 2.2 are also valid for LF (X) and L1(X).

Remark 2.5. It is manifest that Cc(X) = R, where X = [0, 1]. But the Cantor function
f is a monotonic nonconstant continuous function, and Ccf = [0, 1]\C = [0, 1], where C is
the Cantor set, see [2]. Therefore R ( L1([0, 1]), hence R ( Lc([0, 1]). We emphasize that
Cc(X) = R, but R ( Lc(X), and this can be considered as an advantage of Lc(X) over
Cc(X), in this case.

3 The equality between C(X) an Lc(X)

We are interested in characterizing topological spaces X for which Lc(X) = C(X). In the
following proposition we have a simple result, which is similar to RPS-Theorem. Let us
recall that in a commutative ring R by an annihilator ideal I, we mean I = Ann(S) =
{r ∈ R : rS = 0}, where S 6= {0} is a nonempty subset of R.

Proposition 3.1. If X is an almost discrete space (i.e., I(X), the set of isolated points
of X, is dense in X), then L1(X) = LF (X) = Lc(X) = C(X). In particular, if every
annihilator ideal of C(X), where X is any space, contains a nonzero minimal ideal, then
the latter equalities hold.

Proposition 3.2. If X is a scattered space, then L1(X) = LF (X) = Lc(X) = C(X). In
particular, if X is a compact scattered space, then the latter rings coincide with Cc(X).

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

On a subalgebra of C(X) containing Cc(X) pp.: 2–4

957



In view of RPS-Theorem we may naturally define a compact space X to be scattered
if given any f ∈ C(X) and any x ∈ X, there exists a compact neighborhood Vf of x such
that |f(V ◦f )| ≤ ℵ0. Motivated by this we give the following definition.

Definition 3.3. A space X is called locally scattered if given any f ∈ C(X) and a
nonempty open set G, there exists a compact subset Vf of X in G, with ∅ 6= V ◦f ⊆ G and
|f(V ◦f )| ≤ ℵ0.

The space βX where X is discrete is locally scattered. Clearly, every scattered space
is a locally scattered space, but the converse is not true. For example, βN is a locally
scattered space which is not scattered, for βN\N has no isolated point (note, each clopen
subset of βN\N has the same cardinality as βN\N, see [6, 6S(4)]).

Lemma 3.4. Let X be a locally scattered space. Then every open C-embedded subset of
X (e.g., any clopen subset) is also locally scattered.

Let us recall that a Hausdorff space X is locally compact if and only if each point in X
has a compact neighborhood. Clearly, every compact Hausdorff space is locally compact.
The following result is somewhat similar to RPS-Theorem.

Theorem 3.5. Let X be a compact space. Then Lc(X) = C(X) if and only if X is locally
scattered. In particular, if X is a discrete space and Y is a non-scattered clopen subset of
βX (e.g., X = N and Y = βN), then Lc(Y ) = C(Y ) = C∗(Y ) 6= Cc(Y ).

The previous proof immediately yields the following fact, too.

Corollary 3.6. Let X be a locally compact space. Then Lc(X) = C(X) if and only if X
is locally scattered.

An interesting result due to A. W. Hager asserts that a P -space X is functionally
countable (i.e., C(X) = Cc(X)) if and only if it is pseudo-ℵ1-compact (i.e., each locally
finite family of open sets is countable), see [7, Proposition 3.2]. This result is extended to
Cc(X) = CF (X) in [5, Proposition 4.1]. The following is also a counterpart of the latter
result.

Proposition 3.7. If PX = X (in particular, if X is a P -space), then L1(X) = LF (X) =
Lc(X) = C(X).

We note that βN is not a P -space while L1(βN) = LF (βN) = Lc(βN) = C(βN). By [6,
6V(6)], βN\N has a dense set of P -points, hence L1(βN\N) = LF (βN\N) = Lc(βN\N) =
C(βN\N).

Definition 3.8. A topological space X is called locally functionally countable if every
point x ∈ X is countably P -point , in the sense that there exists an open neighborhood Ux
of x such that C(Ux) = Cc(Ux).

The following result implies that if a space X is second countable or a compact space,
then X is locally functionally countable if and only if it is functionally countable (i.e.,
C(X) = Cc(X)).

Proposition 3.9. Let X be a Lindelöf space. Then X is locally functionally countable if
and only if it is functionally countable.

Proposition 3.10. If X is a locally functionally countable space, then Lc(X) = C(X).

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

On a subalgebra of C(X) containing Cc(X) pp.: 3–4

958



Acknowledgment

I am grateful to professor O. A. S. Karamzadeh for introducing the topic of this study to
us and for his advice and encouragement during the preparation of this article.

References

[1] P. Bhattacharjee, M. L. Knox, W. Wm. Mcgovern, The classical ring of quotients of
Cc(X), App. Gen. Topol. 15, no 2(2014), 147–154.

[2] O. Dovgoshey, O. Martio, V. Ryazanov, M. Vuorinen, The Cantor function, Expo.
Math. 24 (2006), 1–37.

[3] R. Engelking, General Topology, Heldermann Verlag Berlin, 1989.

[4] M. Ghadermazi, O. A. S. Karamzadeh, M. Namdari, On the functionally countable
subalgebra of C(X), Rend. Sem. Mat. Univ. Padova, 129 (2013), 47–69.

[5] M. Ghadermazi, O. A. S. Karamzadeh, M. Namdari, C(X) versus its functionally
countable subalgebra, submitted in 2013.

[6] L. Gillman, M. Jerison, Rings of continuous functions, Springer-Verlag, 1976.

[7] R. Levy, M. D. Rice, Normal P -spaces and the Gδ-topology, Colloq. Math. 47 (1981),
227–240.

[8] A. Pelczynski, Z. Semadeni, Spaces of continuous functions (III), Studia Mathematica
18 (1959), 211–222.

[9] M. E.Rudin, W. Rudin, Continuous functions that are locally constant on dense sets,
J. Funct. Anal. 133 (1995), 120–137.

[10] W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc.
Amer. Math. g. 8 (1957), 39–42.

Email: Soltanpour.math@gmail.com

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

On a subalgebra of C(X) containing Cc(X) pp.: 4–4

959



On conservative generalized recurrent structures

Mohammad Bagher Kazemi∗

University of Zanjan

Fatemeh Raei

University of Zanjan

Abstract

In the present paper we study conservative generalized recurrent manifolds. We
investigate their Ricci tensor and show these manifolds are quasi Einstein manifolds.
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1 Introduction

The notion of generalized recurrent manifolds was introduced by U.C.De and N.Guha [4].

Definition 1.1. A Riemannian manifold (Mn, g) is called generalized recurrent manifold
if its curvature tensor R satisfies the condition

(∇W R)(X,Y, Z) = A(W )R(X, Y )Z + B(W )(g(Y, Z)X − g(X, Z)Y ), ∀X,Y, Z ∈ TM,

where A and B are two none zero 1-forms such that A(W ) = g(ρ,W ), B(W ) = g(ρ́,W )
and ρ, ρ́ are two none zero vector fields associated with the 1-forms A and B, respectively.

This type of manifolds are denoted by (GK)n and it is obvious that if B = 0, then
(GK)n reduces to a recurrent manifold.

Definition 1.2. A Riemannian manifold (Mn, g)(n > 2) is said to be quasi Einstein
manifold ((QE)n), if its Ricci tensor S is not zero identically and satisfies the condition

S(X, Y ) = ag(X,Y ) + bA(X)A(Y ), ∀X, Y ∈ TM, (1)

where a and b ̸= 0 are scalars and A is none zero 1-form such that g(X, U) = A(X), ∀ X
∈ TM and U is a unit vector field.

The conformal curvature (Weyl) tensor of M is said to be conservative if the divergence
of C be zero, i.e. divC = 0. It is well known [3] that M is conservative if and only if

(∇XS)(Y, Z) − (∇Y S)(X, Z) =
1

2(n − 1)
[dr(X)g(Y, Z) − dr(Y )g(X, Z), ∀X, Y, Z ∈ TM.

(2)
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2 On the conservative generalized recurrent manifold

Proposition 2.1. Let (Mn, g) be a conservative generalized recurrent manifold. Then the
Ricci tensor of M satisfies

S(X, Y ) = ag(X, Y ) + bA(X)A(Y ) + cA(X)B(Y ) + A(X)C(W ). (3)

Proof. Since M is a (GK)n, we have

(∇XR̃)(Z, Y, W,U) = A(X)R̃(Z, Y, W,U)+B(X)(g(Y,W )g(Z,U)−g(Y, U)g(Z, W )). (4)

By contracting (4) on Z and U , we get

∇XS(Y,W ) = A(X)S(Y, W ) + (n − 1)B(X)(g(Y,W ) − g(Y, W )), (5)

and
∇Y S(X, W ) = A(Y )S(X, W ) + (n − 1)B(Y )(g(X, W ) − g(X, W )). (6)

Equations (5) and (6), imply

∇XS(Y,W ) − ∇Y S(X, W ) = A(X)S(Y, W )+ (7)

(n − 1)B(X)(g(Y,W ) − g(Y, W ) − A(Y )S(X, W ) + (n − 1)B(Y )(g(X, W ) − g(X, W )).
On the other hand, M is conservative, thus

∇XS(Y, W ) − ∇Y S(X, W ) =
1

2(n − 1)
(g(Y, W )dr(X) − g(X,W )dr(Y )). (8)

Comparing (7) and (8) we obtain

A(X)S(Y, W ) + (n − 1)B(X)(g(Y,W ) − g(Y,W ) − A(Y )S(X,W )+ (9)

(n − 1)B(Y )(g(X,W ) − g(X,W )) =
1

2(n − 1)
(g(Y, W )dr(X) − g(X,W )dr(Y )).

Replacing X and ρ in the latest equation, we get

S(Y, W ) = [−(n−1)B(ρ)+
dr(ρ)

2(n − 1)
]g(Y,W )+A(W )[(n−1)B(Y )− dr(Y )

2(n − 1)
]+A(Y )S(ρ,W ).

(10)
By contracting (6) on X and W we have

dr(Y ) = A(Y )r + n(n − 1)B(Y ). (11)

So from (10) and (11), we get

S(Y, W ) = [−(n − 1)B(ρ) +
dr(ρ)

2(n − 1)
]g(Y, W )− (12)

r

2(n − 1)
A(W )A(Y ) +

n − 2

2
A(W )B(Y ) + A(Y )S(ρ,W ).
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Proposition 2.2. let M be a conservative (GK)n which admit a unit concircular vector
field ρ then its Ricci tensor satisfies

S(Y,W ) = ag(Y, W ) + bA(Y )A(W ) + cA(W )B(Y ).

Proof. Since ρ is a unit concircular vector field so

(∇XA)(Y ) = α[g(X, Y ) − A(X)A(Y )]. (13)

Applying Ricci identity on (13) we get

A(R(X, Y )Z) = −α2[g(X,Z)A(Y ) − g(Y, Z)A(X)]. (14)

Contracting this equation on Y, Z we obtain

S(ρ,X) = (n − 1)α2A(X). (15)

Using (15) in (12) follows

S(Y, W ) = [−(n − 1)B(ρ) +
dr(ρ)

2(n − 1)
]g(Y, W )+ (16)

[− r

2(n − 1)
+ (n − 1)α2]A(W )A(Y ) +

n − 2

2
A(W )B(Y ).

Theorem 2.3. Let M be a (Gk)n manifold. If ∇C = 0 and C ̸= 0 then M is a quasi
Einstein manifold.

Proof. Since ∇C = 0 and C ̸= 0, M is locally symmetric (∇R = 0), so (4) implies

A(X)R̃(Z, Y, W,U) = −B(X)(g(Y, W )g(Z, U) − g(Y, U)g(Z, W )).

Contracting on Z, U and putting X = ρ imply

A(Y )S(ρ,W ) = (1 − n)B(Y )A(W ). (17)

By using (17) in (12), it follows

S(Y, W ) = [−(n − 1)B(ρ) +
dr(ρ)

2(n − 1)
]g(Y, W ) − r

2(n − 1)
A(W )A(Y ) +

−n

2
A(W )B(Y ).

(18)
Moreover, ∇R = 0, so the scalar curvature is constant, it means that dr = 0 and from
(11), we have

B(Y ) =
−r

n(n − 1)
A(Y ), (19)

by putting (19) in (18), it follows

S(Y,W ) = [(1 − n)B(ρ)]g(Y,W ) − (
r

2(n − 1)
)(

n − r − 1

n − 1
)A(Y )A(W ). (20)
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Abstract

In this talk, after reviewing concepts of covering, semicovering and generalized
covering subgroups introduced by J. Brazas, we give a new criterion for a subgroup
H ≤ π1(X, x0) to be a generalized covering subgroup.

Keywords: Genertalized covering subgroup, Fundamental group, covering map, semi-
covering map
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1 Introduction

Recently, the notion of covering space has been extended using eliminating some of its
properties and keeping some others [1,2,3,5]. For instance, semicoverings are introduced by
eliminating the evenly covered property and keeping local homeomorphismness and unique
path lifting property [2]. In the case of generalized coverings, local homeomorphismness
has been replaced with unique lifting property [1,3,5]. It is well-khown that for connected
and locally path connected spaces every covering is a semicovering and every semicovering
is a generalized covering. Let p : (X̃, x̃0) → (X,x0) be a map and H = p∗π1(X̃, x̃0) ≤
π1(X,x0). Then H is called a covering, a semicovering or a generalized covering subgroup
if p is covering, semicovering or generalized covering map, respectively. It is shown that H
is a covering subgroup if and only if it contains an open normal subgroup of πqtop

1 (X, x0)
[2,6]. Brazas showed that H is a semicovering subgroup if and only if it is an open subgroup
of πqtop

1 (X, x0). He also proved that H is a generalized covering subgroup if and only if
pH : X̃H → X has the uniqe path lifting property, where pH : X̃H → X is the well-known
endpoint projection [3]. Now in this talk, we show that for a connected and locally path
connected space X, a subgroup H of π1(X, x0) is a generalized covering subgroup if and

only if (pH)∗π1

(
X̃H , eH

)
= H.

2 Notations and Preliminaries

Definition 2.1. A pointed continuous map p : (X̃, x̃0) → (X, x0) has UL (unique
lifting) property if for every connected, locally path connected space (Y, y0) and every
continuous map f : (Y, y0) −→ (X, x0) with f∗π1(Y, y0) ⊆ p∗π1(X̃, x̃0) , there exists a
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unique continuous lifting f̃ with p ◦ f̃ = f and f̃(y0) = x̃0. If X̃ is a connected,
locally path connected space and p : X̃ −→ X is surjective with UL property, then X̃
is called a generalized covering space for X. A subgroup H ≤ π1(X,x0) is called
a generalized covering subgroup of π1(X, x0) if there is a generalized covering map

p :
(
X̃, x̃0

)
−→ (X, x0) such that H = p∗π1(X̃, x̃0).

Definition 2.2. A map f : Y −→ X has UPL (unique path lifting) property if it
has UL property for the closed interval I = [0, 1]. A map f : Y −→ X has UPL

′
(only

unique path lifting) property if any two paths α, β : [0, 1] → Y are equal whenever
f ◦ α = f ◦ β and α (0) = β(0).

Definition 2.3. Let H be a subgroup of π1(X,x0) and P (X,x0) = {α : (I, 0) → (X, x0)| α
is a path} be a path space. Then α1 ∼ α2 mod H if both α1 (1) = α2 (1) and

[
α1 ∗ α2

−1
]

∈
H. It is easy to check that this is an equivalence relation on P (X, x0). The equivalence

class of α is denoted by ⟨α⟩H . Now one can define the quotient space X̃H = P (X,x0)
∼ and

the map pH : (X̃H , eH) → (X, x0) by pH(⟨α⟩H) = α(1), where eH is the class of constant
path at x0.

For α ∈ P (X,x0) and an open neighborhood U of α(1), a continuation of α in U is
a path β ∈ P (X, x0) of the form β = α ∗ γ, where γ(0) = α(1) and γ(I) ⊆ U . Thus we
can define a set ⟨U, ⟨α⟩H⟩ = {⟨β⟩H ∈ XH | β is a continuation of α in U}. It is shown
that the subsets ⟨U, ⟨α⟩H⟩ as defined above form a basis for a topology on X̃H for which
the function pH : (X̃H) → X is continuous [7, Theorem 10.31]. Moreover, if X is path
connected, then pH is surjective. This topology on X̃H is called the Whisker topology [4].

Some properties of the space X̃H and the map pH are as follows: The map pH : X̃H →
X has the path lifting property. Moreover, every path α in X beginning at x0 can be
lifted to a path α̃ in X̃H beginning at eH and end at ⟨α⟩H [7, Theorem 10.32]. For every
H ≤ π1(X,x0) the space X̃H is path connected [7, Corollary 10.33].

Brazas [3, theorem 24] showed that a subgroup H ≤ π1(X, x0) is a generalized covering
subgroup of π1(X, x0) if and only if pH : X̃H −→ X has UPL

′
property.

3 Main results

In the trivial case H = 1, clearly H ≤ (pH)∗π1(X̃H , eH). Fischer and Zastrow [5] using
this fact found an equivalent condition for UPL property in pe : X̃e → X. They also
showed that a space X admits a generalized universal covering if and only if pe : X̃e → X
has UPL

′
property [5, Lemma 2.8]. Then Brazas extended the result for every generalized

covering subgroup [3, Lemma 21] and showed that for any subgroup H ≤ π1 (X, x0),
H ≤ (pH)∗π1(X̃H , eH) [3, corollary 20]. Moreover, he showed that if pH : X̃H → X has
UPL property, then H = (pH)∗π1(X̃H , eH) [3, Lemma 21]. In the following theorem we
investigate the convers of the above result.

Theorem 3.1. For any H ≤ π1 (X, x0), if (pH)∗π1(X̃H , eH) ≤ H, then pH : X̃H → X
has UPL property.

The following corollary is the main result of this talk.

Corollary 3.2. Let H ≤ π1(X,x0). Then the end point projection pH : X̃H → X is a

generalized covering map if and only if (pH)∗π1

(
X̃H , eH

)
= H.
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Proof. Brazas showed that H ≤ (pH)∗π1(X̃H , eH) for any subgroup H of π1(X, x0) [3,

Corollary 20]. Combining this fact with Theorem 3.1 implies that if (pH)∗π1

(
X̃H , eH

)
=

H, then pH : X̃H → X has UPL (unique path lifting) property. The convers holds
using [3, Lemma 21].

Brazas [3, Theorem 15] showed that for any collection of generalized covering subgroups
of π1 (X,x0), the intersection of them is also a generalized covering subgroup. But its proof
is too long and need to use pullbacks. We will give a simple proof using Corollary 3.2.

Corollary 3.3. If {Hj | j ∈ J} is any set of generalized covering subgroups of π1 (X, x0),
then H = ∩j∈JHj is a generalized covering subgroup.

Proof. At first, we show that (pH)∗π1

(
X̃H , eH

)
≤ ∩

(
pHj

)
∗π1

(
X̃Hj , eHj

)
= H

then, use Theorem 3.1 and assume that [α] = [pH ◦ α̃] = (pH)∗ [α̃] ∈ (pH)∗π1

(
X̃H , eH

)

where α̃ :I → X̃H is a loop in X̃H at eH with α̃ (t) = ⟨βt⟩H . We define for every j ∈ J ,
α̃j : I → X̃Hj by α̃j (t) = ⟨βt⟩Hj

. It is clear that α̃j is a loop at eHj , pH ◦ α̃ = pHj ◦ α̃j and

so [pHoα̃] =
[
pHjoα̃j

]
= [α] for every j ∈ J . Therefore, (pH)∗ ≤ H. Now using Theorem

3.1 the result holds.

For a pointed space (X, x0) we define: πgc
1 (X, x0) =

∩{H ≤ π1(X,x0)|H is a gener-
alized covering subgroup}.

Corollary 3.4. For a pointed space (X, x0), πgc
1 (X, x0) is a generalized covering subgroup.
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Abstract

In this paper we study the flag curvature of bi-invariant Randers metrics. We first
correct a minor error which occurred for the flag curvature formula of a bi-invariant
Randers metric. Then we improve this formula on a connected Lie group G and as an
application we explicitly give this formula for the Lie groups SO(4) and U(3) which
show that these spaces are of non-negative flag curvatures. Some results on the flag
curvature formula of a naturally reductive Randers metric are also improved.

Keywords: Flag curvature, Bi-invariant Randers metrics, Connected Lie groups
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1 Introduction

The study of invariant structures on Lie groups and homogeneous manifolds is an interest-
ing subject in differential geometry. In the last decade a generalization of these concepts
from the Riemannian geometry into the Finsler geometry, specially Randers metrics have
been done [1, 2, 3, 4, 5, 6]. One of these invariant structures are bi-invariant metrics and
the study of the flag curvature of bi-invariant metrics as a generalization of sectional cur-
vatures in the Riemannian geometry has absorbed a special attention of the mathematics
scientists. In particular in [6] an explicit formula for the flag curvature of bi-invariant
Randers metrics is given which has a minor error. Our aim in this paper is to correct this
formula. We also improve this formula and apply it for calculating the flag curvature of
the compact Lie groups SO(4) and U(3). Some interesting results for the flag curvature
of naturally reductive are also proved.

2 The flag curvature of a bi-invariant Randers metric

The following formula

K(P, y) =
< [y, [u, y]], V >0 . < V, u >0 + < [y, [u, y]], u >0 (1+ < V, y >0)

4(1+ < V, y >0)2(1− < V, y >0)
, (1)

is given in [6] for the flag curvature of a Randers metric which is defined by a bi-invariant
Riemannian metric g0 and a left-invariant vector field V which is parallel with respect to
g0. In the correct way it can be written as

∗Will be presented in English
†Speaker

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

On the flag curvature of bi-invariant Randers metrics pp.: 1–4

967



Theorem 2.1. Suppose that g0 is a bi-invariant Riemannian metric on a Lie group G
and Ṽ is a left invariant vector field on G such that g0(Ṽ , Ṽ ) < 1 and Ṽ is parallel
with respect to g0. Then we can define a left invariant Randers metric F as follows:
F (x, y) =

√
g0(x)(y, y) +g0(x)(Ṽx, y). Assume that (P, y) is a flag in TeG such that {y, u}

is an orthonormal basis of P with respect to < ., . >0. Then the flag curvature of the flag
(P, y) in TeG is given by

K(P, y) =
< [y, [u, y]], V >0 . < V, u >0 + < [y, [u, y]], u >0 (1+ < V, y >0)

4(1+ < V, y >0)3
. (2)

Proof. Since for a Randers metric we have gy(u, v) =< u, v >0 + < V, u >0< V, v >0

+<u,v>0<V,y>0√
<y,y>0

− <v,y>0<u,y>0<V,y>0

<y,y>0
√
<y,y>0

+ <V,v>0<u,y>0√
<y,y>0

+ <V,u>0<v,y>0

<y,y>0
, where 0 6= y, u, v are

tangent vectors in TxG, then gy(u, u) = 1+ < V, y >0 + < V, u >2
0, gy(y, y) = (1+ <

V, y >0)
2 and gy(y, u) =< V, u >0 + < V, y >0< V, u >0, where {y, u} is an orthonormal

basis of P , which yields that gy(u, u)gy(y, y)− gy(y, u)2 = (1+ < V, y >0)
3. By replacing

this equation in the flag curvature formula K(P, y) =
gy(R(u,y)y,u)

gy(u,u)gy(y,y)−gy(y,u)2 and using the

equation (9) from [6] we obtain the equation (2).

To improve theorem 2.1 for a connected Lie group, we prove the following result.

Proposition 2.2. Let the connected Lie group G equipped with a left invariant Randers
metric F defined by the left invariant Riemannian metric ã = ãijdx

i ⊗ dxj and the left
invariant vector field V . Then the following conditions are equivalent.
(1) F is bi-invariant.
(2) F is naturally reductive.
(3) ã is bi-invariant and V is parallel with respect to ã.

Proof. By theorem 3.5 in [2] and theorem 3.2 in [3] F is naturally reductive if and only if
F is bi-invariant. In order to prove that (2) is equivalent with (3), we suppose that F is
naturally reductive. Then F has the following cases simultaneously
Case 1: By theorem 4.1 in [4] (G, ã) is naturally reductive, and ã is bi-invariant.
Case 2: By theorem 3.2 in [2] (G,F ) is of Berwald type, and V is parallel with respect
to ã. Cases 1 and 2 give us the condition (3). Conversely, since ã is bi-invariant, it is
naturally reductive and since V is parallel with respect to ã, F is of Berwald type. Then
by theorem 4.2 in [4], (G,F ) is naturally reductive which implies (2).

By proposition 2.2 to improve the formula (2) it is sufficient to obtain the flag curvature
of a naturally reductive homogeneous Randers space. So we have

Lemma 2.3. Let (GH , F ) be a naturally reductive homogeneous Randers space with F
defined by the Riemannian metric ã = ãijdx

i ⊗ dxj and the vector field V . Let (P, y) be a
flag in M such that {y, u} is an orthonormal basis of P with respect to ã. Then the flag
curvature of the flag (P, y) in M is given by

K(P, y) =
1

(1 + ã(V, y))2
(
1

4
‖ [u, y]M ‖2 +ã([[u, y]H, u]M, y)). (3)
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Proof. It is proved in [2] that for this case we have

K(P, y) =
1

(1 + ã(V, y))2
(
1

4
‖ [u, y]M ‖2 +ã([[u, y]H, u]M, y))

+
ã(V, u)

(1 + ã(V, y))3
(
1

4
ã([u, y]M, [V, y]M) + ã([u, y]H, [V, y]M)). (4)

Since (GH , F ) is naturally reductive, by theorem 4.1 in [4] (M, ã) is naturally reductive.
i.e., for all x, y, z ∈M we have ã(z, [y, x]M) + ã(x, [y, z]) = 0, which implies that

ã([u, y]M, [y, V ]M) + ã([y, [u, y]M]M, V ) = 0. (5)

Also, since (GH , F ) is naturally reductive, by theorem 3.5 in [2] we have ã([y, [u, y]M]M, V ) =
0. If we replace this equation in the equation (5) we get

−ã([u, y]M, [V, y]M) = ã([u, y]M, [y, V ]M) = 0. (6)

Also by using the fact that M is orthogonal to H with respect to the inner product ã(, ),
we have ã([u, y]H, [x, y]M) = 0. So by replacing this equation and the equation (6) in the
equation (4) we have the equation (3).

Proposition 2.2 and Lemma 2.3 imply the following result.

Corollary 2.4. Let G be a connected Lie group with a left invariant Randers metric F
defined by the left invariant Riemannian metric ã = ãijdx

i ⊗ dxj and the left invariant
vector field V . If F has one of the three cases given in proposition 2.2, then the flag
curvature formula is given by K(P, y) = 1

4(1+ã(V,y))2
‖ [u, y] ‖2 .

Corollary 2.4 improved the flag curvature formula 2 in theorem 2.1 for a connected Lie
group. So theorem 2.1 for a connected Lie group G can be expressed as follows.

Theorem 2.5. Suppose that g0 is a bi-invariant Riemannian metric on a connected Lie
group G and Ṽ is a left invariant vector field on G such that g0(Ṽ , Ṽ ) < 1 and Ṽ is
parallel with respect to g0. Then we can define a left invariant Randers metric F as
follows: F (x, y) =

√
g0(x)(y, y) + g0(x)(Ṽx, y). Assume that (P, y) is a flag in TeG such

that {y, u} is an orthonormal basis of P with respect to < ., . >0. Then the flag curvature

of the flag (P, y) in TeG is given by K(P, y) = <[u,y],[u,y]>0

4(1+<V,y>0)2
.

Also by corollary 2.4, the flag curvature formula given in the corollary 3.5 in [3] for a
connected Lie group G can be improved as follows.

Theorem 2.6. Let G be a connected Lie group with a bi-invariant Randers metric F
defined by the Riemannian metric ã = ãijdx

i ⊗ dxj and the vector field V . Also let (P, y)
be a flag in G such that {y, u} is an orthonormal basis of P with respect to ã = aijdx

i⊗dxj.
Then the flag curvature of the flag (P, y) in G is given by K(P, y) = 1

4(1+ã(V,y))2
‖ [u, y] ‖2,

where ‖ [u, y] ‖2 denotes the norm of [u, y] with respect to ã = ãijdx
i ⊗ dxj.

Here as an application we explicitly give the flag curvature formula for the compact
Lie groups SO(4) and U(3). By theorem 1 in [5] every connected Lie group admits a
bi-invariant metric, so we have the following result.
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Theorem 2.7. Let G be one of the compact Lie groups So(4) and U(3) with a bi-invariant
Randers metric F . Then for the orthonormal basis {y, u} of P the flag curvatures of the
flag (P, y) in G for So(4) and U(3) are given respectively by

K(P, y) =
1

4
{(b21 + b26)(

∑

i=2,3,4,5

a2i ) + (b23 + b24)(
∑

i=1,2,5,6

a2i ) + (b22 + b25)(
∑

i=1,3,4,6

a2i )},

where u =
∑6

i=1 aiei, v =
∑6

i=1 biei and {e1, . . . , e6} is an orthonormal base for SO(4).

K(P, y) =
1

4
{b21(

∑

i=2,3,4,6

a2i ) + b22(
∑

i=1,4,5,6,7,8

a2i + 8a23) + b23(
∑

i=1,4,5,6,7,8

a2i + 8a22)

+ b24(
∑

i=1,2,3,7,8,9

a2i + 8a26) + b25(
∑

i=2,3,7,8

a2i ) + b26(
∑

i=1,2,3,7,8,9

a2i + 8a24)

+ b27(
∑

i=2,3,4,5,6,9

a2i + 8a28) + b28(
∑

i=2,3,4,5,6,9

a2i + 8a27) + b29(
∑

i=4,6,7,8

a2i )}.

where u =
∑9

i=1 aiei, v =
∑9

i=1 biei and {e1, . . . , e9} is an orthonormal base for U(3).

Proof. Since for SO(4) the non-zero Lie brackets are

[e1, e2] = e4, [e1, e3] = e5, [e1, e4] = −e2, [e1, e5] = −e3, [e2, e3] = e6, [e2, e4] = e1,

[e2, e6] = e4, [e1, e3] = e5, [e1, e4] = −e2, [e1, e5] = −e3, [e2, e3] = e6, [e2, e4] = e1,

Then by calculating the non-zero Levi-Civita connection ∇ the parallel vector field is
V = 0. So by using the flag curvature formula which is given in theorem 2.6 we have the
result. For U(3) we have a similar proof.

Theorem 2.7 shows that flag curvature formulae in both cases are non-negative.
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Abstract

In the present work a generalization of Riemannian Yamabe solitons for inequalities
is studied and among the others it is shown that every Riemannian complete nontrivial
shrinking Yamabe soliton has finite fundamental group and its first cohomology group
vanishes, whenever the scalar curvature is bounded. As well the fundamental group
of the sphere bundle, and its cohomology group vanishes.

Keywords: Yamabe soliton, shrinking, fundamental group.

Mathematics Subject Classification [2010]: 53C20; 53C25

1 Introduction

In recent decades the geometric flows are studied by many mathematicians specially the
Fields Medalists. A geometric flow is the gradient flow associated to a functional on a
manifold which has a geometric interpretation, usually related to some curvatures. Geo-
metric flows are of fundamental interest in the calculus of variations, and include several
famous problems and theories. Among them Yamabe flow is introduced by R.S. Hamilton
in order to study Yamabe’s conjecture, stating that any metric is conformally equivalent
to a metric with constant scalar curvature, cf., [3]. Yamabe flow is an evolution equation
on a Riemannian manifold (M, g) defined by

∂g

∂t
= −Rg, g(t = 0) := g0,

where R is the scalar curvature. Under Yamabe flow, the conformal class of a metric
does not change and is expected to evolve a manifold toward one with constant scalar
curvature. Yamabe solitons are special solutions of the Yamabe flow and naturally arise
as limits of dilations of singularities in the Yamabe flow. Let (M, g) be a Riemannian
manifold, a quad (M, g,X, λ) is said to be a Yamabe soliton if g satisfies the equation

LXg = (λ−R)g, (1)

where X is a smooth vector field on M , LX the Lie derivative along X and λ a real
constant. A Yamabe soliton is said to be shrinking, steady or expanding if λ > 0, λ = 0
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or λ < 0, respectively. If the vector field X is gradient of a potential function f , then
(M, g,X) is said to be gradient and (1) takes the familiar form

∇∇f = (λ−R)g.

The Yamabe soliton is said to be compact (resp. complete) if (M, g) is compact (resp.
complete). It is well known the scalar curvature of any compact gradient Yamabe soliton is
constant, cf., [2, 4]. A complete shrinking gradient Yamabe solitons under suitable scalar
curvature assumptions have finite topological type, cf., [7]. We note that the Yamabe flow
has some similarities to Ricci flow. Moreover, as Ricci solitons are self similar solutions of
Ricci flow, Yamabe solitons are self similar solutions of Yamabe flow. It is natural to ask
whether classical results for Ricci solitons remain valid for Yamabe solitons.

2 Main results

In the present work an extension of Riemannian Yamabe solitons for inequalities is studied
and the following theorems are proved. First we obtain an estimation for the distance
function of complete Yamabe solitons for inequalities as follows.

Theorem 2.1. Let (M, g) be a complete Riemannian manifold satisfying

LXg > (λ−R)g, (2)

and R 6 Λ < λ, where, λ > 0, Λ is a constant and V = vi(x) ∂
∂xi

is a vector field on M .
Then, for any p, q ∈M

d(p, q) 6 max
{

1,
1

λ− Λ

(
‖Xp‖+ ‖Xq‖

)}
. (3)

It is well known a compact shrinking Yamabe soliton satisfying (1), for λ > 0, has the
constant scalar curvature R = λ. This shows that the Theorem 2.1 can not be for compact
shrinking Yamabe solitons. Therefore, we discuss the complete non-compact cases in the
following theorem.

Theorem 2.2. Let (M, g) be a complete non-compact Riemannian manifold with bounded
above scalar curvature satisfying (2). Then the fundamental group π1(M) of M is finite
and its first cohomology group vanishes, i.e., H1

dR(M) = 0.

We illustrate an example for Theorem 2.2 and show that the inequality R 6 Λ < λ
is sharp. Let us denote by SM the sphere bundle defined by SM :=

⋃
x∈M

SxM where,

SxM := {v ∈ TxM |g(v, v) = 1}. SM is a subbundle of the tangent bundle TM which has
some applications in extension of Riemannian geometry.

Corollary 2.3. Let (M, g,X, λ) be a complete non-compact shrinking Yamabe soliton with
the bounded above scalar curvature R 6 Λ < λ. Then the fundamental group π1(SM) of
the sphere bundle SM is finite and therefore the de Rham cohomology group H1

dR(SM)
vanishes.

The following example illustrates Theorem 2.2 and shows that the inequality R 6 Λ <
λ is necessary for this result.
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Example 2.4. Let (Rn, δij) be the Euclidean space with the standard metric. Assuming
λ = 1 and f = 1

2 |x|2 we have a shrinking gradient Yamabe soliton. On the other hand,
we know that the fundamental group of Rn, i.e., π1(Rn) vanishes.

Note that the condition R 6 Λ < λ is necessary in Theorem 2.2. In fact being X = 0
in (M, g) chosen to be the Riemannian product of a hyperbolic manifold and a standard
sphere, with factor metrics scaled so that the resulting (constant) scalar curvature is
positive. As the equality version of (2) is preserved, in an obvious sense, under Riemannian
products, and one can use a factor of the type described earlier to make the fundamental
group infinite.
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Abstract

In the present paper, we first prove that the space of Finslerian metrics is an
infinite dimensional manifold. Next, we introduce some inner products in the space of
Finslerian metrics. Then it is given decomposition for the tangent space of this infinite
dimensional manifold by means of Riemannian metric and the Berger-Ebin theorem.

Keywords: Berger-Ebin theorem, Differential operator, Finite type PDE
Mathematics Subject Classification [2010]: 53B40, 58B20, 58E11

1 Introduction

Let (M, g) be a connected, compact Finsler manifold. That is, there is a function F on
the tangent bundle TM satisfying the following conditions:

• F is a smooth function on the entire slit tangent bundle TMo.

• F is a positive homogeneous function on the second variable, y.

• The matrix (gij), gij(x, y) = 1
2
∂2F 2

∂yi∂yj
is non-degenerate.

Geodesics of a Finsler structure F are characterized locally by d2xi

dt2
+ 2Gi(x, dxdt ) = 0,

where Gi = 1
4g
ih( ∂2F 2

∂yh∂xj
yj − ∂F 2

∂xh
) are called geodesic spray coefficients. Let Gij = ∂Gi

∂yj
be

the coefficients of a nonlinear connection on TM . By means of this nonlinear connection,
the tangent space TMo splits into horizontal and vertical subspaces. TTM0 spanned by
{ δ
δxi
, ∂
∂yi
}, where δ

δxi
:= ∂

∂xi
− Gji ∂

∂yj
are called Berwald bases and their dual bases are

denoted by {dxi, δyi}, where δyi := dyi +Gijdx
j . Furthermore, this nonlinear connection

can be used to define a linear connection called the Berwald connection and its connection

1-forms are defined locally by πij = Gijkdx
k where Gijk =

∂Gij
∂yk

. The connection 1-forms of

the Cartan connection are defined by ∇̃ ∂
∂xi

= ωji
∂
∂xj

, where ωij = Γijkdx
k + Cijkδy

k such
that

Γijk =
1

2
gim(

∂gmj
∂xk

+
∂gmk
∂xj

− ∂gkj
∂xm

)− (CijsG
s
k + CiksG

s
j − CkjsGsi),

and

Cijk =
1

2
gim(

∂gmj
∂yk

+
∂gmk
∂yj

− ∂gkj
∂ym

), (1)

Hence we have ∇̃ = ∇+∇̇ where, ∇ is the horizontal coeffiecients of the Cartan connection
and ∇̇ is the vertical coeffiecients of the Finslerian(Cartan) connection.
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2 Main results

The space of Riemannian metrics on a given manifold is an infinite dimensional manifold.
It is easy to see this property since the Riemannian metrics space is the open and convex
set of the space of all sections of S2T ∗M . Ebin used the manifold structure in [1] and gave
a Riemannian structure to the manifold of Riemannian metrics on a compact manifold
M . The aim of this section is to consider the geometry of the space of Finslerian metrics.
Dealing with Finslerian case is not as easy as Riemannian case because of PDEs and
integrability conditions for defining the Finsler metrics. The outline of the proof is to
start by the generalized Lagrange metrics and restricted it to find a suitable PDE for
introducing Finsler metric space. The generalized Lagrange metric is a metric structure
on π∗TM or V TM and is defined as follows:

Definition 2.1. A generalized Lagrange metric, briefly a GL-metric on an n-dimensional
manifold M , is a (0, 2) d-type tensor field gij(x, y) on TM satisfying the following

• gij(x, y) = gji(x, y), i.e. it is symmetric,

• detgij(x, y) 6= 0, i.e. it is regular,

• The quadratic form gij(x, y)XiXj , X ∈ Rn has a constant signature.

If we only consider positive signature, then g(x, y) is a Euclidean product of the vector
space π∗|zTM for each z = (x, y) ∈ U ⊂ TM . So π∗TM is a Riemann vector bundle over
TM . A GL-metric is called a Lagrange metric, if there is a potential function L : TM → R
such that

gij(x, y) =
1

2

∂2L

∂yi∂yj
(x, y), (2)

are components of a positive definite matrix. A GL-metric is reducible to a Lagrange
metric if and only if the Cartan tensor (1) is symmetric in all three indices. This condition

is equivalent to the integrability condition of the system (2) i.e.
∂gij
∂yk

= ∂gik
∂yj

is satisfied. It

signifies that the equation (1) is reduced to the form Cijk = 1
2
∂gij
∂yk

= 1
2∂kgij . Furthermore,

the coefficients of a Finslerian metric are zero homogeneous, so they are lying on SM .
Hence a Lagrange metric is reduced to a Finsler metric if and only if the coefficients of the
metric are satisfied with a system of the linear partial differential equations, yk

∂gij
∂yk

= 0,

see [4] for more details. So the problem of introducing the space of Finsler metrics is
reduced to finding the solution space of the following system:

{
yi∂igjk = 0; i, j, k = 1, . . . , n
g(X,X) > 0; X ∈ Γ(π∗TM0)

(3)

We note that since these equations are defined in L-metrics space so the potential function
is always defined by L(x, y) = gij(x, y)yiyj . for the solutions of (3). It means that the
integrability condition is satisfied for these solutions. Now, the procedure is to define
another system of equations which is equivalent to (3). A GL-metric is a field of cones on
S2π∗T ∗M , that is

k : TM → S2π∗T ∗M (4)

z → k(z) ⊂ Ez
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where k(z) = {gij ∈ S2π∗T ∗M |detgij > 0}∪ {gij ∈ S2π∗T ∗M |detgij < 0}. So the space of
GL-metrics is a symmetric 2-forms bundle over TM endowed with a field of cones which
is denoted by E := [S2π∗T ∗M ;K]. Let F be the subbundle of J1E which is spanned at
each point z ∈ TM by (uij , uijk , u

ij
α , u

ij
ξ ) where, ξ = yk ∂

∂yk
is the vertical Liouville vector

field. Suppose that P : Γ(E) → Γ(F ) is a linear first order differential operator which is
defined by P (g) := Φoj1(g) = yk∂kgij . The symbol of P is defined by:

σ(P ) : T ∗(TM)⊗ E → F

σt(P ) = P (fg),

where t = df . In local coordinate, we have P (fg) = yk∂k(fgij). So by means of the
integrability condition for system (3), the kernel of this symbole is {fg|f ∈ C∞(M)}. For
any s ≥ 3, the vector space

Vs := (T ∗TM ⊗ E) ∩ (Ss−1T ∗TM ⊗ ker(σ(P ))),

is vanish. Therefore, the system (P,E, F ) is of finite type. So the equation P (g) = 0
is equivalent to the closed system of PDEs of the form ∂kgij = ψk(ij) where, ψk(ij)
are a combination of the homogeneous functions of order −1 of yi, L(x, y), ∂L

∂yi
(x, y) and

∂2L
∂yi∂yj

(x, y). Hence the system of equations (3) is equivalent to the following system:

{
∂kgij = ψk(ij) ; i, j, k = 1, . . . , n
g(X,X) > 0 ; X ∈ Γ(π∗TM0).

(5)

It will thus be sufficient to prove that the system (5) has a solution. Since this system is
of finite type, i.e. the higher order derivatives can be written in lower order derivatives,
the integrability condition is always true for this system.

Proposition 2.2. The system of PDEs (5) has a solution.

Theorem 2.3. The completion space of all Finsler metrics on a compact manifold M has
a Riemannian structure.

It is well known that π∗TM is isomorphic to V TM . Let us consider a section s : M →
TM . The pullback bundle s∗V TM is a vector bundle over M and for all x ∈ M there is
an isomorphism Πx : (V TM)s(x) → (s∗V TM)x ∼= (s∗π∗TM)x. We use this isomorphism
frequently without notification in this work . Consider a vector field V ∈ Γ(TM) and
denote by ηt the 1-parameter local flow of V . Let η̃ be the natural extension of η on
TM defined by η̃t : (xi, yi) → (xi + tvi, yi + tym ∂vi

∂xm ). Clearly, V̂ := d
dt |t=0η̃t is the

complete lift of the vector field V on TM . Let X = Xi ∂
∂xi

be a section of π∗sTM where
πs : SM → M . Consider the canonical linear mapping % : TzTM → π∗sTxM which is
defined by %z(

δ
δxi

) = ∂
∂xi
|z and %z(

∂
∂yi

) = 0 in local coordinates. Now, Let X̂ be the
complete lift of a vector field X on M . The Lie derivative of metric g in local coordinates
is

LX̂gij = ∇iXj +∇jXi + 2ym∇mXkCkij . (6)
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Lemma 2.4. Let (M, g) be a compact Finslerian manifold and h an arbitrary symmetric
2-form in S2π∗sT

∗M . Then the adjoint of Lie derivative of h in local coordinates is given
by

δh = −(∇ihik − hkj∇0C
j + Ċkijh

ij + Ckij∇ohij), (7)

Theorem 2.5. The Berger-Ebin decomposition of TgMF ⊂ S2π∗sT
∗M is TgMF = {h|h =

LX̂g} ⊕ ST where ST := {h|δgh = 0}.
The point-wise conformal deformation of a Finslerian metric g is defined g̃(x, y) =

f(x)g(x, y) where, f is a smooth positive function on M . Since there is a one to one
correspondence between the space of positive functions and space of exponential functions
by f → ef , we can write g̃ = efg. Let P be the product group of positive functions on M
that acts on MF as follows:

A : P ×MF →MF

A(f, g) := fg,

This action is free and smooth. The orbit of this action at g ∈ MF is defined by Ag =
{fg|f ∈ P} which is a submanifold of MF . The tangent space of this submanifold at
g is defined by Fg = {h = kg|k ∈ C∞(M)} which is a subbundle of S2π∗sT

∗M at each
point g ∈MF . The orthogonal subspace of Fg with respect to the global inner product is
ST := {h ∈ S2π∗sT

∗M |
∫
SM kghη = 0} = {h ∈ S2π∗sT

∗M |tr(h) = 0}. On the other hand,
by means of the variation of volume forms [3], tr(h) = 0 if and only if SM has constant
volume. So the orthogonal space of Fg is the space of 2-forms which preserve volume SM
through metric variations. Thus, there is a point-wise decomposition like

TgMF = Fg ⊕ ST . (8)

Theorem 2.6. The York decomposition of B ⊂ TgMF is B = Fg ⊕ STT ⊕ (ST ∩ Imτg),
where B is defined as the solution space of the system

∂hij
∂yk

= 0, where STT = {h ∈
TgMF |tr(h) = 0, div(h) = 0}, and τg is a map from Γ(TM) to TgMF .
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On topologies generated by subrings of the algebra of all

real-valued functions

Mehdi Parsinia ∗

Shahid Chamran University of Ahvaz

Abstract

LetX be a topological space andR be a subring of RX . Associated with the subring
R, we generalize the separation axioms on X. Moreover, we specify three topologies
on X, namely Z(R)-topology, Coz(R)-topology and the weak topology induced by R.
Comparsion and coincidence of each pair of these topologies are investigated. Using
these topologies, a one-one correspondence between points of X and fixed maximal
ideals of R is given

Keywords: Z(R)-topology, Coz(R)-topology, weak-topology, maximal fixed ideal.

Mathematics Subject Classification [2010]: 54C30, 46E25.

1 Introduction

Throughout this article, RX denotes the algebra of all real-valued functions on X and
C(X) (resp., C∗(X)) denotes the subalgebra of RX consisting of all continuous functions
(resp., bounded continuous functions). Note that X is not necessarily a Tychonoff space.
For each f ∈ RX , Z(f) = {x ∈ X : f(x) = 0} denotes the zero-set of f and Coz(f)
denotes the complement of Z(f) with respect to X. For a subring R of RX , Z(R) denotes
{Z(f) : f ∈ R}, cleary Z(C(X)) = Z(X) = {Z(f) : f ∈ C(X)}. Also, we use Mx(R) to
denote {f ∈ R, x ∈ Z(f)}. An ideal I in R is called free, if

⋂
f∈I Z(f) = ∅. Otherwise,

it is called fixed. By a maximal fixed ideal of R, we mean a fixed ideal that is maximal
in the set of all fixed ideals of R. Clearly, fixed maximal ideals in C(X) coincide with
maximal fixed ideals and have the form Mx = {f ∈ C(X) : x ∈ Z(f)}, for x ∈ X. Note
that for a subset A of X, MA denotes {f ∈ C(X) : A ⊆ Z(f)}. The intersection of
all the free ideals in C(X) is denoted by CK(X). It is well-known that CK(X) is the
subset of C(X) consisting of all functions with compact support. Note that clXCoz(f)
is called the support of f for every f ∈ C(X). The annihilator of f ∈ R is defined by
AnnR(f) = {g ∈ R : fg = 0}. Assume that P and Q are partially ordered sets, then a
function f : P −→ Q is called an order-homomorphism if whenver a ≤ b, then f(a) ≤ f(b).
The function f is called an order-isomorphism if it is moreover bijective and f−1 : Q −→ P
is also an order-homomorphism. For terms and notations not defined here we follow the
standard text of [4].
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2 Main results

Definition 2.1. Let P be a family of subsets of a set X and x ∈ X. Then x is called a
P − T0 point, if for each y ∈ X with x 6= y, there exists A ∈ P which contains only one
of the points. Similarly, we can define P − T1 and P − T2 (or P-Hausdorff) points of X.
Also, if X is P − Ti at each point, then X is called a P − Ti space, for each 0 ≤ i ≤ 2.

The implications (P−T2) =⇒ (P−T1) =⇒ (P−T0) are clear. Evidently, the converse
of these implications may be true for some special P, but this not true for the case
P = Z(R). The following examples shows these facts. Note that in these examples S is a
subring of R such that S ∩Z = {0}, also, F (X,S) denotes the collection of all real-valued
functions on X with values in S. Moerover, for each D ⊆ X we set κD = 1− χD in which
χD is the characteristic function of D.

Example 2.2.
(1) Let A,B ⊆ X are such that X = A ∪B and A ∩B, A \B and B \A have more than
one point. Set R = {n + rκA + sκB : n ∈ Z, r, s ∈ S}. Then R is a subring of RX and
no point of X is Z(R)− T0.
(2) Let X = N∗ = N∪{a} be the one-point compactification of N and let An = {a, n, n+
1, ...}, also put R = Z + [Ma + (

∑∞
n=1MAn ∩ F (X,S))]. It is easy to see that X is a

Z(R)-T0-space but X is Z(R)-T1 at no point; while N as a subspace of X is Z(R)-T2.
(3) Let X be an infinite discrete space and R = Z + (CK(X) ∩ F (X,S)). Then X with
the Z(R)-topology is a cofinite space and so it is a T1-space and anti-Hausdorff (i.e., no
two points of X can be separated by disjoint open sets).

The next example reveals the necessity of F (X,S) in constructing the above examples.

Example 2.3.
Let X be a topological space, I be an ideal in C(X), A =

⋂
Z[I] and R = Z + I.

Consider X with Z(R)-topology, then
(a) Two distinct points a, b ∈ X are separated by open sets if and only if one of them

is not in A.
(b) X is a Z(R)-Hausdorff space if and only if A has at most one point.
(c) If A has more than two points, then x ∈ X is T1-point at f and only if x 6∈ A.

In addition, X is a T1-space if and only if A is at most a one-point set.

Definition 2.4. Clearly, Z(R) constitutes a base for a topology on X which we call it
Z(R)-topology and denote it by τZ(R). The topology induced by Coz(R) is denoted by
τCoz(R) and is called Coz(R)-topology. Also, the weak topology induced by R is denoted
by τR.

Lemma 2.5. If R ⊆ R, then the following families are both subbases for the weak
topology induced by R.

(a) D1 = {f−1((0, 1n)) : f ∈ R, n ∈ N}.
(b) D2 = {f−1((0,+∞)) : f ∈ R, n ∈ N}.

Corollary 2.6. If R ⊆ R, then B1 = {⋂k
i=1 f

−1
i (0, 1n) : fi ∈ R, k, n ∈ N} and

B2 = {⋂k
i=1 f

−1
i (0,+∞) : fi ∈ R, k ∈ N} are both bases for the weak topology induced
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by R.

Now, we compare the determined topologies. It is evident that τCoz(R) ⊆ τR and the
inclusion may be strict. For example, if X = R, f = idX and R = {∑n

i=1 aif
i : ai ∈

Z, n ∈ N}, then R is a subring of C(R) and for each g ∈ R, Coz(g) is a finite-complement
set which implies that τCoz(R) 6= τR.

Proposition 2.7. τCoz(R) = τR if and only if R ⊆ C(X, τCoz(R)).
Proof. ⇒) Let f ∈ R, we are to show that f ∈ C(X, τCoz(R)). Let U be open in R, then
f−1(U) ∈ τR = τCoz(R) and so f ∈ C(X, τCoz(R)).
⇐) It suffices to show that τR ⊆ τCoz(R) and this is clear, since τR is the smallest

topology on X under which the elements of R are continuous. �

By the above proposition, if X is Coz(R)-T2-space and R ⊆ C(X, τCoz(R)), then
(X, τCoz(R)) is a Tychonoff space.

Definition 2.8. Two subsets S1, S2 ⊆ RX are called zero-set equivalent, if Z(S1) =
Z(S2).

Lemma 2.9. Let S and C(R) be two zero-set equivalent subsets of RR and R be a subring
of RX , if for each f ∈ R and each g ∈ S we have gof ∈ R, then Z(R) = {f−1(A) : f ∈
R and A ⊆ R is closed}.

Proposition 2.10. Let R be a subring of RX , if S and C(R) are zero-set equivalent
subsets of RR and gof ∈ R, for each f ∈ R and each g ∈ S, then

(a) Coz(R) is a base for τR, i.e., τR = τCoz(R).
(b) τCoz(R) = τR ⊆ τZ(R) and the equality does not hold, in general.
Proof. (a). By Lemma 2.9, it is clear.
(b). We are to show that Coz(R) ⊆ τZ(R). If x 6∈ Z(f) where f ∈ R, then there

is g ∈ S such that x ∈ Z(g) and f−1(Z(g)) ∩ Z(f) = ∅. Then gof ∈ R, x ∈ Z(gof)
and Z(gof) ∩ Z(f) = ∅. Now, we show that the inclusion may be proper. Let X be a
completely regular space that has at least one non-open zero-set Z and set R = C(X),
then τCoz(R) = τR = τX , whereas Z 6∈ τX , consequently, τCoz(R) = τR ( τZ(R). �

Theorem 2.11. The following statements are equivalent.
(a) τCoz(R) ⊆ τZ(R).
(b) Every Z ∈ Z(R) is clopen under Z(R)-topology.
Proof. (a ⇒ b). Let f ∈ R and x 6∈ Z(f). Then x ∈ Coz(f) ∈ τCoz(f) ⊆ τZ(R).

Therefore, there exists Z(g) ∈ Z(R) such that x ∈ Z(g) ⊆ Coz(f).
(b ⇒ a). Let f ∈ R and x ∈ Coz(f), so x 6∈ Z(f) and by (2), there exists g ∈ R such

that x ∈ Z(g) and Z(f) ∩ Z(g) = ∅. Hence, x ∈ Z(g) ⊆ Coz(f) and therefore Coz(f) is
open in Z(R)-topology. �

Theorem 2.12. The following statements are equivalent.
(a) τZ(R) ⊆ τCoz(R).
(b) Z(f) is clopen in the space (X, τCoz(R)) for every f ∈ R.
(c) For each f ∈ R, Z(f) =

⋃
g∈AnnR(f)Coz(g).

(d) For each f ∈ R, (AnnR(f), f) is a free ideal.
Proof. (a ⇒ b). By 2.12, it is clear.
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(b ⇒ c). It is evident.
(c ⇒ d). If f ∈ R and I is an ideal in R, then

⋂
h∈(I,f) Z(h) =

⋂
g∈I(Z(f) ∩ Z(g)).

Thus, by (c), Z(f) =
⋃
g∈AnnR(f)Coz(g). Hence

⋂
g∈AnnR(f)(Z(f) ∩ Z(g)) = ∅, which

implies
⋂
g∈(AnnR(f),I) Z(g) = ∅ and it means that the ideal (AnnR(f), f) is free.

(d ⇒ a). Let f ∈ R and x ∈ Z(f). By (d), there exists g ∈ AnnR(f) such that
x 6∈ Z(f) ∩ Z(g). Hence, x 6∈ Z(g) and g ∈ AnnR(f). Therefore, x ∈ Coz(g) ⊆ Z(f) and
so Z(f) ∈ τCoz(R). �

An immediate consequence of Theorems 2.11 and 2.12 is that τCoz(R) = τZ(R) if and
only if Z(f) is clopen under both Z(R)-topology and Coz(R)-topology.

In part (b) of the following theorem we assume that ”=” is a partial order on X.

Theorem 2.13. For a subring R of RX the following statements hold.
(a) The mapping x −→Mx(R) is a one-one correspondence if and only if (X, τZ(R)) is

a T0-space.
(b) The mapping x −→ Mx(R) is an order-isomorphism between X and the set of all

maximal fixed ideals of R if and only if (X, τZ(R)) is a T1-space.
Proof. (a ⇒). Let x, y are distinct points of X, so Mx(R) 6= My(R) , say Mx(R) 6⊆

My(R). Hence, there is an f ∈Mx(R) \My(R). Thus, x ∈ Z(f) and y 6∈ Z(f).
(a ⇐). If x, y are distinct points of X. By our hypothesis, there is a f ∈ R such that

x ∈ Z(f) and y 6∈ Z(f) and hence f ∈Mx(R) \My(R) (i.e., Mx(R) 6= My(R)).
(b⇒). Suppose that x and y are two distinct points of X. Since Mx(R) ⊆My(R) and

so there exists f ∈Mx(R) \My(R). Consequently, x ∈ Z(f) and y 6∈ Z(f).
(b ⇐). Suppose that x ∈ X and I is a fixed ideal in R containing Mx(R). Take

y ∈ ∩f∈IZ(f). Clearly, Mx(R) ⊆ I ⊆ My(R). It is enough to show x = y. On the
contrary suppose that x 6= y. By our hypothesis, there exists f ∈ R such that x ∈ Z(f)
and y 6∈ Z(f). Therefore, Mx(R) ⊆ My(R) and this is a contradiction. To complete the
proof, it is enough to show that every maximal fixed ideal is of the form Mx(R). On the
contrary suppose that Mx(R) is not a maximal fixed ideal in R. Hence, there is y ∈ X
such that y 6= x and Mx(R) ⊆My(R), but then x = y.
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Recurrent second fundamental form in submanifolds of

Kenmotsu manifolds

Mohammad Bagher Kazemi∗

University of Zanjan

Abstract

In this paper, we study recurrent submanifolds of Kenmotsu manifolds. We show
that they are totally geodesic. Moreover, generalized recurrent submanifolds of Ken-
motsu manifolds are investigated.

Keywords: Kenmotsu manifold, Second Fundamental form, Submanifold
Mathematics Subject Classification [2010]: 53C50, 53C15

1 Preliminaries

Let (M̃, ϕ, ξ, η, g̃) be a 2n + 1 dimensional almost contact manifold, where ϕ, ξ, η and g̃
are (1, 1)-tensor field, vector field, 1-form and a Riemannian metric respectively, which
satisfy the following conditions

ϕξ = 0, η(ϕX) = 0, η(ξ) = 1,

ϕ2X = −X + η(X)ξ , g̃(ξ,X) = η(X),

(∇̃Xη)(Y ) = g(X,Y ) − η(X)η(Y ), ∀X,Y ∈ T M̃.

An almost contact manifold is said to be a Kenmotsu manifold if

(∇̃Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX, (1)

where ∇̃ is the Riemannian connection of g̃ [2]. In a Kenmotsu manifold the following
relation holds

(∇̃Xξ) = X − η(X)ξ. (2)

Let (M, g) be a submanifold of a Riemannian manifold (M̃, g̃). If ∇ be the Levi-Chivita
connections of M , then from Gauss and Weingarten formulas we have [5]

∇̃YX = ∇YX +B(X,Y ) , ∇̃Y V = DY V −AV Y, (3)

for any X and Y in T M and V in (T M)⊥. In (3), B, A and D are the second fundamental
form, associated second fundamental form (shape operator) and normal connection on the
(T M)⊥, respectively.

Let M be a submanifold of an almost contact manifold (M̃, ϕ, ξ, η, g̃). M is said to be
an invariant submanifold if the vector field ξ is tangent to M and ϕTp(M) ⊂ TpM for all
p ∈ M . Also, M is said to be an anti-invariant, if ϕTp(M) ⊂ Tp(M)⊥ for all p ∈ M [4] .
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2 Main results

Definition 2.1. A manifold is called totally geodesic if its second fundamental form
vanishes identically (B=0).

Moreover, M is called a parallel submanifold [1] if

∇̄ZB(X,Y ) = 0, ∀X,Y, Z ∈ T M.

As a generalization of the previous definitions we have the following definitions.

Definition 2.2. A submanifold M is said to be a recurrent submanifold if there exists a
1-form ω such that B satisfies

∇̄ZB(X,Y ) = ω(Z)B(X,Y ). (4)

Definition 2.3. A submanifold is said to be generalized recurrent submanifold [3] if there
exist 1-forms ω and ψ in M and normal vector field V such that B satisfies

∇̄ZB(X,Y ) = ω(Z)B(X,Y ) + ψ(Z)g(X,Y )V. (5)

Theorem 2.4. A recurrent submanifold of a Kenmotsu manifold is totally geodesic.

Proof. Let X ∈ T M , from (3),

∇̃Xξ = ∇Xξ +B(X, ξ).

On the other hand, from (2) we have ∇̃Xξ = (X)−η(X)ξ ∈ T M . Since B(X, ξ) ∈ (T M)⊥,
thus,

B(X, ξ) = 0. (6)

On the other hand, since M is a recurrent submanifold, Equation (4) leads to

ω(Z)B(X,Y ) = ∇̄ZB(X,Y ) = DZB(X,Y ) −B(∇ZX,Y ) −B(X,∇ZY ).

Now, by substituting Y by ξ and using (6), we have B(X,ϕZ) = 0, then by substituting
Z by ϕZ implies B(X,Z) = 0, thus B = 0.

Theorem 2.5. Any invariant generalized recurrent submanifolds of Kenmotsu manifolds
are totally geodesic.

Proof. We have
∇̄ZB(X,Y ) = ω(Z)B(X,Y ) + ψ(Z)g(X,Y )V. (7)

In the same way of the previous theorem, we can show that

B(X, ξ) = 0. (8)

So,
B(X,Z) = ψ(ϕZ)η(X)V, (9)

and
0 = B(ξ, Z) = ψ(ϕZ)V ∀Z ∈ T M.

Therefore, ψ(ϕZ) = 0, which emply B = 0.
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Now, we suppose that the structure vector field ξ ∈ T M⊥.

Theorem 2.6. Let M be a submanifold of Kenmotsu manifold such that ξ ∈ T M⊥, then
B(X,Y ) = −g(X,Y )ξ.

Proof. Since ξ ∈ T M⊥, Equations (3) and (2) imply −AξX = X. So B(X,Y ) =
−g(X,Y )ξ.
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Ricci Codazzi homogeneous pseudo-Riemannian manifolds

of dimension four∗

Amirhesam Zaeim†

University of Payame Noor

Ali Haji-Badali

University of Bonab

Abstract

We study pseudo-Riemannian homogeneous four dimensional manifolds with non-
trivial isotropy and completely classify those cases where the Ricci tensor is Codazzi.
Specially, proper examples of Codazzi manifolds which are not conformally �at have
been presented.

Keywords: Ricci tensor, Codazzi equation, conformally �at

Mathematics Subject Classi�cation [2010]: 53C50, 53C30

1 Introduction

A pseudo-Riemannian manifold (M, g) is called homogeneous, if I(M), the group of isome-
tries ofM , acts transitively onM . Equivalently, for any given points p, q ∈M , an isometry
φ of M exists such that φ(p) = q [8]. Homogeneous manifolds, for their wide geometrical
and physical applications, were studied by several authors in the di�erent dimensions and
signatures[4, 5, 7]. Some geometric properties, like Ricci solitons, homogeneous structures
and Einstein-like manifolds considered on the homogeneous pseudo-Riemannian manifolds
[1, 2, 3].

Let (M, g) be a (pseudo-)Riemannian manifold. We say that, (M, g) admits a Codazzi

Ricci tensor, or belongs to class B, if

(∇XRic)(Y, Z) = (∇YRic)(X,Z), (1)

for all X, Y , Z ∈ X(M). This condition which is famous as a kind of Einstein-like property,
is in fact the generalization of Einstein and Ricci-parallel metrics.

In this paper, refereing to [7], we take four dimensional homogeneous pseudo Rieman-
nian manifolds with non-trivial isotropy under consideration and fully classify examples of
class B which are mentioned above. Finally, we classify proper examples of class B, i.e.,
those cases which are not conformally �at.
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2 Examples of class B
Referring to case numbering of the paper [7], all examples of class B is determined in the
following theorem.

Theorem 2.1. Let (G/H, g) be an arbitrary non-Ricci-parallel pseudo-Riemannian four-
dimensional homogeneous space with non-trivial isotropy, equipped with an invariant metric
g. Then (G/H, g) is in class B if belongs to one of the cases of the following Table I.

case invariant metric class B

1.11 : 1
2aθ1θ3 + bθ2θ2 + 2cθ2θ4 + dθ4θ4

, a(c2 − bd) 6= 0
b = 0, a 6= ±c

1.11 : 2 " b = 0, p 6= 0, 1
2

1.12 : 1
aθ1θ1 + bθ2θ2 + 2cθ2θ4 + aθ3θ3 + dθ4θ4

, a(c2 − bd) 6= 0
b = 0

1.12 : 2 " b = 0, p 6= 0, 1

1.31 : 2
−2aθ1θ4 + 2aθ2θ3 + bθ3θ3 + 2cθ3θ4 + dθ4θ4

, a 6= 0
λ 6= 0

1.31 : 4 " X
1.31 : 5 " λ 6= 0 or λ = 0, µ 6= 0, 2

1.31 : 7 " X
1.31 : 12 " µ 6= λ± 1

1.31 : 13 " λ 6= − 1
2
, 3
2

1.31 : 14 " λ 6= 0, 1
1.31 : 15, 16,
19, 22, 26− 29

" X

1.31 : 21, 24, 25 " λ 6= 0, 2

1.31 : 30 " λ 6= 1 or λ = 1, µ 6= ±1
1.41 : 2

−2aθ1θ3 + aθ2θ2 + bθ3θ3 + 2cθ3θ4 + dθ4θ4

, ad 6= 0
p = 3, b 6= 0

1.41 : 9 " d 6= −2a(h2 + h+ r)

1.41 : 10 " r 6= −h− h2
1.41 : 11 " d 6= −2ar
1.41 : 12 " r 6= 0

2.21 : 2 2aθ1θ3 + 2aθ2θ4 + bθ2θ2, a 6= 0 p 6= 0,±2
2.21 : 3 " X
2.51 : 3− 4 2aθ1θ3 + 2aθ2θ4 + bθ3θ3, a 6= 0 2h− h2 + 4g 6= 0

2.52 : 2 2aθ1θ3 + aθ2θ2 + bθ3θ3 + aθ4θ4, a 6= 0 r2 + p 6= 0

3.31 : 1 2aθ1θ3 + 2aθ2θ4 + bθ3θ3, a 6= 0 p 6= 0

3.32 : 1 2aθ1θ3 + aθ2θ2 + bθ3θ3 + aθ4θ4, a 6= 0 p 6= 0

Table I: Strict examples of class B.

In the Table I, {θ1, . . . , θ4} is the dual basis of {u1, . . . , u4} and X means that all of

the invariant metrics belong to class B.
Proof. The proof is based on case by case study of Komrakow's list. We bring the details
of the case 1.11 : 1 and just apply the similar arguments for the other cases. For this homo-
geneous pseudo-Riemannian four-manifold M = G/H, there exists a basis {h1, u1, · · ·u4}
of g, where the non-zero brackets are

[h1, u1] = u1, [h1, u3] = −u3, [u1, u3] = [u2, u4] = u2, [u3, u4] = u3,

and the isotropy is h = span{h1} [7]. Then, by taking m = span{u1, · · ·u4}, the invariant
metric with respect to {θi}, the dual basis of {ui}, is:

g = 2aθ1θ3 + bθ2θ2 + 2cθ2θ4 + dθ4θ4 (2)
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for some real constants a, b, c, d. The metric g in this case is non-degenerate if and only
if a2(c2 − bd) 6= 0. It is obvious that if bd > c2 the manifold is Lorentzian, otherwise if
bd < c2 then g is of signature (2, 2). Levi-Civita connection can be found by using well
known Koszul formula and the curvature tensor will be determined dy direct calculations.
To keep brevity, we don't present the components of the curvature tensor and just bring
the Ricci tensor as following:

Ric = 2

(
b

2a
+

ab

c2 − bd

)
θ1θ3+

b2

2

(
− 1

a2
+

4

c2 − bd

)
θ2θ2−2

(
bc

2a2
− 2bc

c2 − bd

)
θ2θ4−

(
3

2
+

c2

2a2
− 2c2

c2 − bd

)
θ4θ4.

(3)

Moreover, we have the following nonzero components for the covariant derivatives of the
Ricci tensor

Λ1Ric23 = b2(a2−c2+bd)
2a2(bd−c2) , Λ1Ric34 = b(a−2c)(a2−c2+bd)

4a2(c2−bd) , Λ2Ric24 = b2(a2−c2+bd)
2a2(bd−c2) ,

Λ2Ric44 = bc(a2−c2+bd)
a2(bd−c2) , Λ3Ric12 = b2(a2−c2+bd)

2a2(c2−bd) , Λ3Ric14 = b(a+2c)(a2−c2+bd)
4a2(c2−bd) ,

Λ4Ric24 = bc(a2−c2+bd)
2a2(bd−c2) , Λ4Ric44 = c2(a2−c2+bd)

a2(bd−c2) ,

(4)

where by ΛiRicjk we mean (∇uiRic)(uj , uk). According to the Equation (4), the Equation

(1) satis�es if and only if either b = 0 or d = c2−a2
b . The second solution yields that the

Ricci tensor is parallel and we also must exclude the Ricci-parallel solutions from the
�rst solution. Clearly c 6= ±a since the invariant metric is Ricci parallel if and only if
bd = c2 − a2.

Now, we study the conformally �at cases. Conformal �atness translates into the fol-
lowing system of algebraic equations:

Wijkh = Rijkh−
1

2
(gik%jh + gjh%ik− gih%jk− gjk%ih) +

r

6
(gikgjh− gihgjk) = 0,∀i, j, k, h = 1, . . . , 4,

where W denotes the Weyl tensor and r is the scalar curvature. To belong to class
B is a necessary condition for being conformally �at. A complete classi�cation of four-
dimensional conformally �at homogeneous pseudo-Riemannian manifolds were obtained in
[6]. As a conclusion of the Theorem 2.1, we have the following corollary.

Corollary 2.2. Let (G/H, g) be a pseudo-Riemannian four-dimensional homogeneous
space of the Table I. Then (G/H, g) properly belongs to strict class B (i.e., it is not con-
formally �at), if it is one of the cases of the following Table II.

case proper class B case proper class B
1.31 : 2 d 6= 0 1.31 : 24 (b− 2d(λ2 − λ))(λ− 2

3
) 6= 0

1.31 : 4 d 6= 0 1.31 : 25 (b+ 2d(λ2 − λ))(λ− 2
3
) 6= 0

1.31 : 5
bµ(µ− 1) 6= 2cλ(µ− 1)− d(λ2 + µ)
and (2c+ dλ)2 + µ2 6= 0

1.31 : 28 b 6= 2d

1.31 : 7 d 6= bλ− 2c 1.31 : 29 b 6= −2d
1.31 : 12 b(λ+ µ− 1)(µ− 1

2
) 6= 0 1.31 : 30 b+ d− λd− µb 6= 2c

1.31 : 15 b 6= −d 1.41 : 9
d2 + (p2 + p− r)2 6= 0
and (p+ 1

2
)2 + (4ar + a+ 4d)2 6= 0

1.31 : 16 b 6= d 1.41 : 10 r 6= h+ h2

1.31 : 19 b 6= 0 2.52 : 2 s 6= 0

1.31 : 21 b(λ− 1
2
) 6= 0

Table II: Proper examples of strict class B.
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Proof. We consider cases by case the strict examples of class B, which are presented in the
Table I. For the case 1.11 : 1, the non-zero components of the Weyl tensor are:

W1223 = − b2(a2−2bd+2c2)
12a(bd−c2) , W1234 = b(a2c−2bcd+2c3−3abd+3ac2)

12a(bd−c2) ,

W1313 = b(a2−2bd+2c2)
6(bd−c2) , W1324 = − b

2 ,

W1423 = − b(a2c−2bcd+2c3+3abd−3ac2)
12a(bd−c2) , W1434 = bd(a2−2bd+2c2)

12a(bd−c2) ,

W2424 = − b(a2−2bd+2c2)
6a2

.

Thus, the Weyl tensor vanishes identically if and only if b = 0 and so the strict examples
of class B, belonging to the case 1.11 : 1, are conformally �at and so are not contained in
the Table II. The other cases were checked by similar arguments.

Note that, as also showed by the above Corollary 2.2, di�erently from the Riemannian
case, a (locally) homogeneous conformally �at pseudo-Riemannian manifold need not to
be (locally) symmetric (see also [6]).
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Abstract

In this paper, we study four-dimensional pseudo-Riemannian homogeneous four
spaces with non-trivial isotropy and we will determine examples with semi-symmetric
curvature operators. We also present non-trivial examples of semi-symmetric homo-
geneous four-manifolds which are not locally symmetric.
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1 Introduction

A pseudo-Riemannian manifold (M, g) is said to be semi-symmetric if its curvature tensor
R satisfies

R(X,Y ) ◦R = 0, (1.1)

for all vector fields X,Y on M . Here, R(X,Y ) acts as a derivation on R. Equation (1.1)
is the integrability condition of the equation ∇R = 0, which determines locally symmetric
spaces.

Riemannian semi-symmetric spaces have been extensively studied in literature. Since
they are defined through a condition on the curvature tensor, their definition extends at
once to the pseudo-Riemannian manifolds. Locally symmetric spaces are obviously semi-
symmetric, but the converse does not hold: in any dimension greater than two, there
exist Ricmannian semi-symmetric spaces which are not locally symmetric [2, 9]. However,
semi-symmetry implies local symmetry in several classes of Riemannian manifolds. Some
examples may be found in [2, 5]. In particular, a locally homogeneous semi-symmetric
Riemannian manifold is locally symmetric. In the pseudo-Riemannian case, the following
result has been proved by the first author and et al.

Theorem 1.1. [7] A there dimensional Lorentzian manifold is semi-symmetric if and only
if it is curvature Ricci commuting.
∗Will be presented in English
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Let M = G/H (with H connected) be a homogeneous pseudo-Riemannian manifold, g
is the Lie algebra of G and the isotropy subalgebra is h. The factor space is m = g/h which
identifies with a subspace of g complementary to h . The pair (g, h) uniquely defines the
isotropy representation

ψ : g→ gl(m), ψ(x)(y) = [x, y]m for all x ∈ g, y ∈ m.

A bilinear form on m is determined by the matrix g with respect to a basis of g by
{h1, · · · , hr, u1, · · · , un} , where {hj} and {ui} are bases of h and m for 1 ≤ j ≤ r = dimH
and 1 ≤ i ≤ n = dimM , respectively. Such a bilinear form is invariant if and only if
tψ(x) ◦ g + g ◦ ψ(x) = 0 for all x ∈ h. It is well known that invariant pseudo-Riemannian
metrics ĝ on the homogeneous space M = G/H are in a one-to-one correspondence with
nondegenerate invariant symmetric bilinear forms g on m [8]. The invariant bilinear form
g uniquely defines its invariant linear Levi-Civita connection, described in terms of the
corresponding homomorphism of h-modules Λ : g → gl(m), such that Λ(x)(ym) = [x, y]m
for all x ∈ h, y ∈ g. Explicitly, one has

Λ(x)(ym) =
1

2
[x, y]m + v(x, y), for all x, y ∈ g, (1.2)

where v : g× g→ m is the h-invariant symmetric mapping uniquely determined by

2g(v(x, y), zm) = g(xm, [z, y]m) + g(ym, [z, x]m), for all x, y, z ∈ g.

The curvature tensor is then determined by

R :m×m→ gl(m)

(x, y)→ [Λ(x),Λ(y)]− Λ([x, y]), (1.3)

the Ricci tensor % of g, will be deduced in terms of its components with respect to {ui},
by

%(ui, uj) =
4∑

r=1

Rri(ur, uj), i, j = 1, · · · , 4. (1.4)

2 Semi-symmetric examples

Here we focus on Four dimensional homogeneous manifold according to the classification
of the reference [8].

Theorem 2.1. Let (M = G/H, g) be a four-dimensional non-Einstein homogeneous man-
ifold with non-trivial isotropy, then (M = G/H, g) is semi-symmetric if and only if be
curvature-Ricci commuting.

Proof. It is well known that in the case when the curvature operator commutes with the
Ricci operator, the manifold is called curvature-Ricci commuting. The proof is based on
case by case considering according to the classification in Komrakov’s list [8]. First of
all we compute the invariant metric tensor of each case, then the connection, curvature
operator and Ricci operator of each case will be compute respectively. A straightforward
but long computation in each case such that R(x, y)%(z, w) = %(z, w)R(x, y) will show
some condition over metric coefficients, on the other hand we use (1.1) formula in order
to obtain semi-symmetric condition for each case, it will appear that in all cases both two
conditions are the same.
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Theorem 2.2. Let (M = G/H, g) be a homogeneous four-manifold with non-trivial isotropy,
semi-symmetric non-locally symmetric cases are specified in the following Table I:

case invariant metric semi-symmetric non-locally symmetric

1.11 : 1 2aθ1θ3 + bθ2θ2 + 2cθ2θ4 + dθ4θ4, a(c2 − bd) 6= 0 b = 0, bd 6= −a2 + c2

1.11 : 2 " b = 0, p(p− 1
2
) 6= 0

1.12 : 1 aθ1θ1 + bθ2θ2 + 2cθ2θ4 + aθ3θ3 + dθ4θ4, a(c2 − bd) 6= 0 b = 0, bd 6= c2 + 4a2

1.12 : 2 " b = 0, p(p− 1) 6= 0

1.31 : 2 −2aθ1θ4 + 2aθ2θ3 + bθ3θ3 + 2cθ3θ4 + dθ4θ4, a 6= 0 λ 6= 0

1.31 : 3− 4 " X
1.31 : 5 " µ2 + λ2 6= 0, and

(b + d)2 + λ2 + (µ− 2)2 6= 0

1.31 : 6− 7 " X
1.31 : 8 " b 6= 0

1.31 : 9 " bλ(λ + 1) 6= 0

1.31 : 10 " X

1.31 : 12 "

b2 + (λ− µ± 1)2 6= 0, and

µ2 + (λ± 1)2 6= 0, and

λ2 + (µ± 1)2 6= 0, and

(µ− 1
2
)2 + (λ + 1

2
)2 6= 0, and

(µ− 1
2
)2 + (λ− 3

2
)2 6= 0,

1.31 : 13− 16 " X
1.31 : 19 " X
1.31 : 20 b 6= 0

1.31 : 21 " λ(b2 + (λ− 2)2) 6= 0

1.31 : 22 " X
1.31 : 23 " X
1.31 : 24 " λ((b + 4d)2 + (λ− 2)2) = 0

1.31 : 25 " λ((b + 4d)2 + (λ− 2)2) 6= 0

1.31 : 26− 29 " X
1.31 : 30 " c2 + (µ− 1)2 + (λ− 1)2 6= 0

1.41 : 2 −2aθ1θ3 + aθ2θ2 + bθ3θ3 + 2cθ3θ4 + dθ4θ4, ad 6= 0 p = 1, b 6= 0

1.41 : 9 "

(d + 4a)2 + (r − 2)2 + (p + 1)2 6= 0,
and

(d + 4a)2 + r2 + (p + 2)2 6= 0, and

(d + a)2 + (r − 3
4
)2 + (p + 1

2
)2 6= 0

1.41 : 10 " (r2 + p2)(r2 + (p− 1)2) 6= 0

1.41 : 11 " (d + 4a)2 + (r − 2)2 6= 0

1.41 : 12 " r 6= 0

1.41 : 13 " X
1.41 : 15 " a 6= −d
1.41 : 16 " a 6= d

1.41 : 17 " X
1.41 : 18 " a 6= −d
1.41 : 19 " a 6= d

1.41 : 20 " X
2.21 : 2 2aθ1θ3 + 2aθ2θ4 + bθ2θ2, a 6= 0 λ(λ± 2) 6= 0

2.21 : 3 " X
2.51 : 3 2aθ1θ3 + aθ2θ4 + bθ3θ3 (g − 2)2 + (h + 2)2 + k2 6= 0

2.51 : 4 " g 6= −h
2

+ h2

4

2.51 : 5 " X
2.52 : 2 2aθ1θ3 + aθ2θ2 + bθ3θ3 + aθ4θ4, a 6= 0 (p + r2)2 + s2 6= 0

2.52 : 3 2aθ1θ3 + aθ2θ2 + bθ3θ3 + aθ4θ4, a 6= 0 s 6= 0

3.31 : 1 2aθ1θ3 + 2aθ2θ4 + bθ3θ3, a 6= 0 λ 6= 0

3.32 : 1 2aθ1θ3 + aθ2θ2 + bθ3θ3 + aθ4θ4, a 6= 0 λ 6= 0

Table I: Non-locally symmetric semi-symmetric examples of homogeneous spaces G/H
with non-trivial isotropy.

Here {θ1, . . . , θ4} is the dual basis of {u1, . . . , u4} and X means that all of the invariant
metrics are semi-symmetric non-locally symmetric.
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Proof. We will consider all the spaces included in Komrakov’s classification of M = G/H,
four-dimensional homogeneous pseudo-Riemannian with nontrivial isotropy witch is ap-
peared in Theorem 2 of [8], and checked the condition (1.1) for each case in Komrakov’s
clasificasion. So by straightforward but long computation and using the formula (1.2) and
(1.3) for each cases, we will have the result which is shown in Table I.
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limhh lk In this talk, we introduce some subgroupoids of the fundamental groupoid
of locally wild spaces by using the recently emerged subgroups of the fundamental
group, πs1(X,x), πsg1 (X,x) and πsp1 (X,x), for a given space X which is not semi-
locally simply connected. Also, we use the advantages of covering groupoid theory to
find categorical universal covering of these spaces.
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1 Introduction

A groupoid G is a small category in which each morphism is an isomorphism. In a groupoid
G, we call morphisms as elements of G and for x, y ∈ O(G) = objec(G) we write G(x, y)
for the set of all morphisms with initial point x and final point y. The object group at
x is G(x) = G(x, x). For x ∈ O(G), by starGx we mean the set of all the elements of G
such that initiate at x.

A morphism of groupoids G̃ and G is a functor, i.e., it consists of a pair of functions
f : G̃ −→ G, O(f) : O(G̃) −→ O(G) preserving all the structure. Let f : G̃ −→ G be
a morphism of groupoids. Then f is called a covering morphism if for each x̃ ∈ G̃, the
restriction star

G̃
x̃ −→ starGf(x̃) of f is bijective.

Let G be a groupoid. A subgroupoid of G is a subcategory H of G such that a ∈ H
implies that a−1 ∈ H; that is, H is a subcategory which is also a groupoid. A subgroupoid
N of G is called normal if N is wide in G (as a subcategory) and, for any objects x, y
of G and a in G(x, y), aN(x)a−1 ⊆ N(y). If N is a normal subgroupoid of G such that
N(x, y) = ∅ for x 6= y, the quotient groupoid of G by N is a groupoid G/N by object set
as same as G and G/N(x, y) = {aN(x) : a ∈ G(x, y)}, for any x, y ∈ Object(G/N) with
the multiplication that if a ∈ G(x, y) and b ∈ G(y, z) then bN(y)aN(x) = baN(x).

For a topological space X, the homotopy classes of the paths in X form a groupoid on
X. The composition of paths in X induces a composition of the homotopy classes. This
groupoid is called fundamental groupoid and denoted by π1X. (see [1])

When the space X is not semi-locally simply connected, some subgroups of the funda-
mental group will emerge that have important role in the classification of the categorical
universal covering.
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Definition 1.1. ([5]) A loop α : (I, ∂I) −→ (X,x) is small if and only if there exists a
representative of the homotopy class [α] ∈ π1(X,x) in every open neighborhood U of x.
The small loop group πs1(X,x) of (X,x) is the subgroup of the fundamental group π1(X,x)
consisting of all homotopy classes of small loops. The SG subgroup of π1(X,x), denoted
by πsg1 (X,x), is the subgroup generated by the following set

{[α ∗ β ∗ α−1] | [β] ∈ πs1(X,α(1)), α ∈ P (X,x)},

where P (X,x) is the space of all paths in X with initial point x.

Definition 1.2. [3] If U is an open cover of X, then consider the subgroup of π1(X,x)
consisting of the homotopy classes of loops that can be represented by a product of the
form

n∏

j=1

ujvju
−1
j ,

where the uj ’s are arbitrary paths starting at the base point x and each vj is a loop inside
one of the neighborhoods Ui ∈ U . This group is called the Spanier group with respect to U ,
denoted by π(U , x). The Spanier group of the space X, denoted by πsp1 (X,x) is as follows:

πsp1 (X,x) =
⋂

open covers U
π(U , x),

Pakdaman et. al [4, 5, 6, 7] introduced three categorical universal covering related to
these new subgroups of the fundamental group. For the existence of them, they use clas-
sical relation between covering spaces and fundamental groups. In this article, at first we
introduce some normal subgroupoids of the fundamental groupoid which are constructed
by πs1(X,x), πsg1 (X,x), πsp1 (X,x) and then by using covering groupoid theory, we prove
that with some local properties, these groups can be image subgroups by some covering
maps.

2 Main results

In this section we assume that all the spaces are locally path connected and by the universal
covering we mean the categorical sense, that is, a covering p : X̃ −→ X with the property
that for every covering q : Ỹ −→ X with a path connected space Ỹ there exists a covering
f : X̃ −→ Ỹ such that q ◦ f = p.

Definition 2.1. For a topological space X, small generated fundamental groupoid is a
groupoid denoted by πsgX with O(πsgX) = X, πsgX(x) = πsg1 (X,x) and πsgX(x, y) = ∅,
for x 6= y ∈ X.

Proposition 2.2. For a given space X, πsgX is a totally disconnected normal subgroupoid
of πX.

Definition 2.3. For a topological space X, Spanier fundamental groupoid is a groupoid
denoted by πspX with O(πspX) = X, πspX(x) = πsp1 (X,x) and πspX(x, y) = ∅, for
x 6= y ∈ X.
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Proposition 2.4. For a given space X, πspX is a totally disconnected normal subgroupoid
of πX.

R. Brown and G. Danesh-Naruie [2] showed that when N is a totally disconnected
normal subgroupoid of the fundamental groupoid of a locally path connected and semi-
locally simply connected space X, the the topology of X can be lifted on πX

N so that it
becomes a topological groupoid over X.

Definition 2.5. [2] Let G be a groupoid and X = O(G). If the set of morphisms of G
and X have both topologies such that the source and target maps s, t : G −→ X, the
difference map δ : G×G −→ G defined by δ(a, b) = a ◦ b−1 and the unit map 1 : X −→ G
by 1(x) = 1x are continuous.

Theorem 2.6. [2] Let X be a semi-locally simply connected space, and let N be a totally
disconnected normal subgroupoid of πX. Then the set of elements of the quotient groupoid
πX
N may be given a topology such that:

i) πX
N becomes a topological groupoid over X with discrete object groups.

ii) For each x ∈ X the subspace starπX
N
x is the covering space determined by the subgroup

N(x) of π1(X,x).

Definition 2.7. [4, 5, 6] i) A space X is a semi-locally small generated space if and only if
for each x ∈ X there exists an open neighborhood U of x such that i∗π1(U, x) ⊆ πsg1 (X,x),
where i : U −→ X is the inclusion map.
ii) A space X is a semi-locally Spanier space if and only if for each x ∈ X there exists
an open neighborhood U of x such that i∗π1(U, x) ⊆ πsp1 (X,x), where i : U −→ X is the
inclusion map.

Theorem 2.8. Let X be a semi-locally small generated space. Then the set of elements
of the quotient groupoid πX

πsgX may be given a topology such that:
i) πX

πsgX becomes a topological groupoid over X with discrete object groups πsg1 (X,x).
ii) For each x ∈ X the subspace star πX

πsgX
x is the covering space determined by the subgroup

πsg1 (X,x) of π1(X,x).
Sketch of the proof: Let U be the open cover of X consisting of all open, path connected
subsets U of X such that i∗π1(U, x) ⊆ πsg1 (X,x), for the inclusion i : U −→ X and x ∈ U .
For each U ∈ U and x ∈ U , define Lx : U −→ πX

πsg1 (X,x)
by Lx(x′) = [α]πsg1 (X,x), where

α : I −→ U is a path from x to x′. The condition semi-locally small generated makes that
Lx be independent of the choice of α. Let Ũx = Lx(U). Then for every a ∈ πX

πsgX (x, y)

the sets ṼyaŨ
−1
x for all U, V ∈ U such that x ∈ U and y ∈ V forms a base for the lifted

topology on πX
πsgX .

We have a similar result for Spanier fundamental groupoid as follow:

Theorem 2.9. Let X be a semi-locally Spanier space. Then the set of elements of the
quotient groupoid πX

πspX may be given a topology such that:
i) πX

πspX becomes a topological groupoid over X with discrete object groups πsp1 (X,x).
ii) For each x ∈ X the subspace star πX

πspX
x is the covering space determined by the subgroup

πsp1 (X,x) of π1(X,x).
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By using the results of [7] we can prove the following corollary.

Corollary 2.10. For a semi-locally Spanier space X, there exists a covering map p :
X̃ −→ X such that p∗π1(X̃, x̃) = πsp1 (X,x). Moreover, this covering map is universal
covering of X.
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[3] H. Fischer, D. Repovš, Z. Virk and A. Zastrow, On semilocally simply connected spaces,
Topology and its Applications. 158 (2011), 397–408.

[4] A. Pakdaman, H. Torabi, and B. Mashayekhy, Small loop spaces and covering theory
of non-homotopically Hausdorff spaces, Topology and its Application. 158 (2011), 803–
809.

[5] H. Torabi, A. Pakdaman, B. Mashayekhy, Topological fundamental groups and small
generated coverings, To appear in Mathematica Slovaca.

[6] B. Mashayekhy, A. Pakdaman and H. Torabi, Spanier spaces and covering theory of
non-homotopically path Hausdorff spaces, Georgian Mathematical Journal. 20 (2013),
303–317.

[7] A. Pakdaman, H. Torabi and B. Mashayekhy, On the Existence of Categorical Universal
Coverings, arXiv:1111.6736.

Email: a.pakdaman@gu.ac.ir
Email: freshte.shahini@gmail.com

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Some new subgroupoids of topological fundamental groupoid pp.: 4–4

996



Some properties of multi-Fedosove supermanifolds of order 3
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University of Vali-e-Asr

Abstract

In this paper we define multi-Fedosove supermanifolds and show that every mul-
tisymplectic supermanifold of order 3 is a multi-Fedosove supermanifolds. Then we
study the curvature tensor of a multi-Fedosove supermanifolds.

Keywords: Multisymplectic supermanifold, multi-Fedosove supermanifolds, curva-
ture tensor

Mathematics Subject Classification [2010]: 58A50, 53D05

1 multi-Fedosove supermanifolds

A supermanifold M of dimension n|m is a pair (M,OM), where M is a Hausdorff topo-
logical space and OM is a sheaf of commutative superalgebras with unity over R locally
isomorphic to Rm|n = (Rn,ORn ⊗ Λη1,...,ηm), where ORn is the sheaf of smooth functions
on Rn and Λη1,...,ηm is the grassmann superalgebra of m generators.

Definition 1.1. Let ξ be a locally free sheaf of OM-supermodules on M, a connection
on ξ is a morphism ∇ : TM ⊗R ξ → ξ of sheaves of supermodules over R such that

∇fXv = f∇Xv, ∇Xfv = (Xf) + (−1)X̃f̃f∇Xv and ∇̃Xv = ṽ + X̃,
for all homogeneous function f , vector fields X and section v of ξ.

Let us consider a multisymplectic supermanifold of degree k (M, ω), i.e. a superman-
ifold M with a closed non-degenerate graded differential k-form ω.

Definition 1.2. A multisymplectic connection on M is a connection for which:
i- The torsion tensor vanishes, i.e.

∇XY − (−1)X̃Ỹ∇YX = [X,Y ].

ii- It is compatible to the multisymplectic form, i.e. ∇ω = 0.

A multi-Fedosov supermanifold (M, ω,∇) is defined as a multisymplectic supermani-
fold (M, ω) equipped with a a multisymplectic connection ∇.
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If ∇ be a connection on multisymplectic supermanifold M of order 3 then ∇ω = 0 if and
only if

X(ω(Y, Z, V )) = (−1)X̃ω̃ω(∇YX , Z, V ) + (−1)X̃(ω̃+Ỹ )ω(Y,∇ZX , V ) (1)

+(−1)X̃(ω̃+Ỹ+Z̃)ω(Y,Z,∇VX),

for any vector field X,Y, Z, V .
If (ηi) is a system of coordinates on U ⊆M,

∇∂i∂j = Γkij∂k

gives well-defined elements Γkij ∈ OM(U) of parity

Γ̃kij = η̃i + η̃j + η̃k

. The components of ω in these coordinates are ωijk = ω(∂i, ∂j , ∂k). It is sufficient to write
(1) for X = ∂i, Y = ∂j , Z = ∂k and V = ∂l. This gives

∂lωijk = (−1)εlω̃ω(∇∂l∂i, ∂j , ∂k)+(−1)εl(εi+ω̃)ω(∂i,∇∂l∂j , ∂k)+(−1)εl(εi+εj+ω̃)ω(∂i, ∂j ,∇∂l∂k)

= (−1)εlω̃ωλjkΓ
λ
li + (−1)εl(εi+ω̃)ωiλkΓ

λ
lj + (−1)εl(εi+εj+ω̃)ωijλΓλlj

= (−1)εlω̃Γjkli − (−1)εl(εi+ω̃)Γiklj + (−1)εl(εi+εj+ω̃)Γijlk,

where Γijlk = ωijλΓλlk and ∂̃i = εi.

The equality dω = 0 means

(−1)εiω̃∂iωjkl − (−1)εj(εi+ω̃)∂jωikl + (−1)εk(εi+εj+ω̃)∂kωijl − (−1)εl(εi+εj+εk+ω̃)∂lωijk = 0.

Let Π be a symmetric connection. If we define Γijkl = ∂lωkij+Πijkl−Πjilk−Πlikj+Πljik

then Γ compatible to the ω.

2 Curvature of multi-Fedosove supermanifoldsof order 3

If ∇ be a multisymplectic connection of order 3 on M. The curvature ∇ is defined by
usual formula

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Then we have

− < R(X,Y )Z, V >= (−1)X̃Ỹ < R(Y,X)Z, V >= (−1)Z̃Ṽ < R(X,Y )V,Z > .

< R(X,Y )Z, V >= (−1)(X̃+Ỹ )(Z̃+Ṽ ) < R(Z,W )X,Y > .

And
R(X,Y )Z + (−1)Z̃(X̃+Ỹ )R(Z,X)Y + (−1)X̃(Ỹ+Z̃)R(Y,Z)X = 0.
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The components of the curvature tensor are introduce by

R(∂i, ∂k)∂j = Rmijk∂m.

The curvature Rmklt satisfies the tensor equations

Rimjk = −(−1)εjεkRimkj .

And
(−1)εmεkRimjk + (−1)εjεmRijkm + (−1)εjεkRikmj = 0.

Denote also
Rijklt = ωijmR

m
klt = ω(∂i, ∂j , R(∂l, ∂t)∂k).

The components of the curvature tensor in terms of the Christoffel symbols has the stan-
dard form;

Rlijk = (−1)εjεk∂jΓ
l
ki − ∂kΓlij + (−1)εjεiΓmkiΓ

l
mj − (−1)εk(εi+εj)ΓmijΓ

l
km.

Instead of Rijklt we can also consider R(X,Y, Z, V,W ) which is a multilinear function on
any tangent space TxM:

R(X,Y, Z, V,W ) = ω(X,Y,R(V,W )Z).

So that
Rijklt = R(∂i, ∂j , ∂k, ∂l, ∂t).

Then we have

Rijklt = −(−1)εtεlRijktl.

And
Rij(klt) = 0.
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Some results on Φ-reflexive property
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Abstract

We propose Φ-reflexive property which is generalization of the reflexive concept in
[2]. So, we prove some properties of this new concept. Finally, we used Φ-reflexive
property to prove some results on manifold theory, Frölicher spaces, differential spaces
and diffeology spaces.

Keywords: Φ-reflexive property, Manifold, Frölicher space, Differential space, Diffe-
ology

Mathematics Subject Classification [2010]: 51-06, 51H25.

1 Introduction

The concept of smooth manifold generalized by some mathematicians: Roman Sikroski
presented the differential spaces in the 1971s [6]; The diffeological spaces offered by Jean-
Marie Souriau in the 1980s and developed by his students Paul Donato and Patrick Iglesias
[5]; In the 1982s, the Frölcher spaces introduced by Alfred Frölicher [4]; The (X,Γ)-
structure is an another generalization of smooth manifold which consists of all above
structures. This structure proposed by the authors in the 2015s [3].

In this paper, we obtain the interesting results about of some above structures by
Φ-reflexive property concept.

2 Φ-reflexive property

Batubenge and others offer reflexive concept and used to compare the subcategories of
above structures [2]. In this paper, we present Φ-reflexive property which is a generaliza-
tion reflexive concept in [2]. So, we obtain some interesting results of this concept.

Definition 2.1. [2] Suppose that M is a nonempty set and assume that D0 is a collection
of parametrizations from some open subsets of Rn’s to M. Let F0 be a family of real
functions on M. We define the following sets:

ΦD0 ∶= {f ∶M → R∣∀(p ∶ U →M) ∈ D0, f ○ p ∈ C∞(U)},
ΠF0 ∶= {parametrizations p ∶ U →M ∣∀f ∈ F0, f ○ p ∈ C∞(U)}

We said D0 or F0 are reflexive if and only if D0 = ΠΦD0 or F0 = ΦΠF0(resp).
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Definition 2.2. Suppose that X is a topological space and M is a nonempty set. A map
ϕ ∶ U →M from some open subset of X into M is called an X-parametrization on M. A
map f ∶M →X from M into X is called an X-function on M.

Definition 2.3. Suppose that X1 and X2 are topological spaces. Assume that Φ is a
collection of continuous X1-parametrizations on X2 and let M is a nonempty set. Let P0

be an X1-parametrizations collection on M and let F0 is an X2-functions family on M.
We define two following sets:

Φ∗P0 ∶= {f ∶M →X2∣f ○ p ∈ Φ, ∀p ∈ P},
Φ∗F0 ∶= {p ∶ U →M ∣U is an open subset of X1 and f ○ p ∈ Φ, ∀f ∈ F}.

Remark 2.4. The above operators is inclusion-reserving. Also, we always have the fol-
lowing conditions:

Φ∗Φ∗P0 ⊇ P0, Φ∗Φ∗F0 ⊇ F0.

Definition 2.5. By the above assuming, we say F0 has Φ-reflexive property if Φ∗Φ∗F0 =F0. Similarly, we say P0 has Φ-reflexive property if Φ∗Φ∗P0 = P0.

The following example show that the Φ-reflexive property is a generalization of defini-
tion 2.1.

Example 2.6. Assume that Φ is all smooth maps from the open subsets of Rn’s to R
(n ∈ N). Let P0 is a parametrizations collection from some open subsets Rn’s to M and F0

be a family of real function on M. Then F0 and P0 are reflexive in concept of definition
2.1 if and only if have Φ-reflexive property.

Lemma 2.7. Assume that Φ is a collection of continuous X1-parametrizations on a topo-
logical space X2 and let M is a nonempty set. Let P0 is an X1-parametrizations collection
on M and F0 is an X2-functions family on M. Then

• The X2-functions family F ∶= Φ∗P0 on M has Φ-reflexive property.

• The X1-parametrizations collection P ∶= Φ∗F0 on M has Φ-reflexive property.

Lemma 2.8. Let Φ is a collection of continuous X1-parametrizations on a topological
space X2. Then Φ has Φ-reflexive property.

Lemma 2.9. Consider that Φ is a continuous collection of X1-parametrizations on a
topological space X2 and M be a nonempty set. Let F0 be an X2-function family on M
and let P0 be an X1-parametrizations collection on M. Denote TF0 by the weakest topology
on M such that all elements of F0 are continuous and TP0 is the strongest topology on M
such that all elements of P0 are continuous. If we have f ○ p ∈ Φ, for any f ∈ F0 and for
all p ∈ P0, then

TF0 ⊆ TP0 .

Definition 2.10. Let X be a topological space and M1, M2 are nonempty sets and let
ζ ∶M1 →M2 is a map.
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• The X-parametrizations collections P1 on M1 and P2 on M2 are ζ-related, writtenP1 ∼ζ P2 provided ζ#(P1) ∶= {ζ ○ p∣p ∈ P1} ⊆ P2.

• The X-functions families F1 on M1 and F2 on M2 are ζ-related, written F1 ∼ζ F2

provided ζ#(F2) ∶= {f ○ ζ ∣f ∈ F2} ⊆ F1.

Lemma 2.11. Consider the above assuming, then

• If P1 ∼ζ P2, then the map ζ ∶ (M1,TP1)→ (M2,TP2) is continuous.

• If F1 ∼ζ F2, then the map ζ ∶ (M1,TF1)→ (M2,TF2) is continuous.

Lemma 2.12. Suppose that Φ is a collection of continuous X1-parametrizations on a
topological space X2. Let M1, M2 are nonempty sets and ζ ∶M1 →M2 is a map.

i) If two X1-parametrizations collections P1 on M1 and P2 on M2 are ζ-related. Then
Φ∗P1 on M1 and Φ∗P2 on M2 are ζ-related, too.

ii) If two X2-functions families F1 on M1 and F2 on M2 are ζ-related. Then Φ∗F1 on
M1 and Φ∗F2 on M2 are ζ-related, too.

iii) If P0 is an X1-parametrizations collection on M1, then ζ#ϕ∗ζ#P0 ⊆ ϕ∗P0.

iv) If F0 is an X2-functions family on M2, then ζ#ϕ∗ζ#F0 ⊆ ϕ∗F0.

Definition 2.13. Assume that Φ is a collection of continuous X1-parametrizations on a
topological space X2 and M is a nonempty set. Let V is an open subset of X1 and let F0

is an X2-functions family on M. We define two following sets:

Φ∗∣V F0 ∶= {p ∈ Φ∗F0∣dom(p) ⊆ V },
ΦV∗ F0 ∶= {p ∈ Φ∗F0∣dom(p) = V }.

We called an X2-functions family F0 (X1-parametrizations collection P0) has Φ∣V -
reflexive property if Φ∗Φ∗∣V F0 = F0 (Φ∗∣V Φ∗P0 = P0).

Similarly, we said an X2-functions family F0 (X1-parametrizations collection P0) has
ΦV -reflexive property if Φ∗ΦV∗ F0 = F0 (ΦV∗ Φ∗P0 = P0).

Definition 2.14. [3] A pseudomonoid on a topological space X is a collection of contin-
uous maps Γ = {f ∶ Uf →X ∶ Uf ⊆X is an open subset} satisfies the following properties:

• idX ∈ Γ,

• If f, g ∈ Γ and image(g) ⊆ Uf , then f ○ g ∈ Γ,

• If f ∈ Γ, and V ⊆ Uf is an open subset of X, Then f ∣V ∈ Γ.

Lemma 2.15. Consider Γn is the pseudomonoid on Rn consists of all locally diffeomor-
phisms of Rn and let M be a nonempty set. Let P be an Rn-parametrizations collection
on M such that M = ∪p∈Pdom(p). Then P is a maximally n-manifold atlas on M if and
only if P has Γn-reflexive property.
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Lemma 2.16. Let Γ be the pseudomonoid consists of all smooth real function on the open
subsets of R and let M be a nonempty set.

• Let C is an R-parametrizations collection on M. Then (C,Γ∗C) is a Frölicher struc-
ture on M if and only if C has ΓR-reflexive property.

• Let F is a real functions family on M. Then (ΓR∗F ,F) is a Frölicher structure on
M if and only if F has ΓR-reflexive property.

Proposition 2.17. Suppose that Φ is a collection of continuous X1-parametrizations on
a topological space X2. Let V be an open subset of X1 and M is a nonempty set.

i) Suppose that PΦ denote all X1-parametrizations collections on M which have Φ-
reflexive property. Let FΦ denote all X2-functions families on M which have Φ-
reflexive property. Then the operator Φ∗∣PΦ

∶ PΦ → FΦ is bijective and the inverse of
its is Φ∗∣FΦ

.

ii) Let P∣V and F∣V denote all X1-parametrizations collections and all X2-functions
families on M(resp) which have Φ∣V -reflexive property. Then the operators Φ∗∣P∣V
and Φ∗∣V are inverse of each other.

iii) Let PV and FV denote all X1-parametrizations collections and all X2-functions fam-
ilies on M(resp) which have ΦV -reflexive property. Then the operators Φ∗∣PV and
ΦV∗ are inverse of each other.

Lemma 2.18. Consider the Φ presented in example 2.6. Let DΦ be all diffeologies which
have Φ-reflexive on M and SΦ be all differential structures on M which have Φ-reflexive
property. Then ϕ∗∣DΦ

and Φ∗∣SΦ
are the inverse each other.
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Frölicher and differential spaces. Preprint, Available at:http://www.math.illinois.
edu/jawatts/papers/reflexive.pdf.

[3] A. Dehghan Nezhad and S. Shahriyari, Some results on pseudomonoids, J. Adv. Stud.
Topol, Vol 6, No 2, 2015, 43-55.
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Abstract

We give a topological classification of an orbit space M
G , arising from isometric

action of a connected Lie group G on a flat Riemannian manifold M , under the con-
ditions that the fixed point set of the action is nonempty and dimM

G ≤ 3.

Keywords: Riemannian manifold, orbit space, cohomogeneity

1 Introduction

A G-manifold is a complete differentiable manifold M with a differentiable action of a Lie
group G on M . The orbit space which is the collection of all orbits {G(x) : x ∈ M} will
be denoted by M

G . dimM
G is called the cohomogeneity of M under the action of G. The

most studied families of G-manifolds are cohomogeneity zero G-manifolds ( also called
homogeneous manifolds), for which the space of orbits consists of a single point. The
topology and geometry of these spaces is for the most part well-understood. The next
important family of G-manifolds are cohomogeneity one G-manifolds. Mostert proved in
[9] that for a compact Lie group G, the orbit space M

G of a cohomogeneity one G-manifold
M is either a circle or interval (i.e., it is homeomorphic to S1, [0, 1], [0,+∞) or (−∞,+∞).
Mostert’s theorem has been generalized for proper actions with non-compact G. Moreover,
If M is endowed with a Riemannian metric, and G is a closed and connected subgroup
of the isometries of M , there are more interesting results about the orbit spaces. It is
proved that if M is a Riemannian manifold of negative curvature and G is a connected
and closed subgroup of isometries of M , acting on M with cohomogeneity one, then the
orbit space is not homeomorphic to [0, 1], so by (generalized) Mostert’s theorem, it would
be homeomorphic to (0, 1) or S1 or R, and if in addition M is simply connected, then the
orbit space is homeomorphic to (0, 1) or R. This result, generalized to flat Riemannian
manifolds in [7].
Theorem A. Let Mn, n > 2, be a flat Riemannian manifold which is of cohomogeneity
two, under the action of a connected and closed Lie group G of isometries. If MG ̸= ∅,
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then G is compact and one of the following is true:
(a) M is isometric to Rn and principal orbits are homogeneous hypersurfaces of spheres.
MG has only one point, or it is isometric to R.
(b) M is isometric to Rn

Γ , where Γ is isomorphic to (Z,+). Each principal orbit is
isometric to Sn−2(c)( c depends onorbits), and MG is homeomorphic to S1.
Theorem B. Let M be a flat Riemannian manifold, dimM > 2, and let G be a closed
and connected subgroup of the isometries of M . If M is a cohomogeneity two G-manifold
and MG ̸= ∅, then M

G is homeomorphic to one of the following spaces:

[0,+∞) ×R, S1 × [0,∞)

Theorem C. Let M be a flat nonsimply connected Riemannian manifold, dimM > 3,
and let G be a closed and connected subgroup of the isometries of M such that M is a
cohomogeneity three G-manifold and MG ̸= ∅. Then M

G is homeomorphic to one of the
following spaces:
(1) [0,+∞) ×R× S1

(2) [0,+∞) ×B such that B is a compact surface with π1(B) = π1(M).

2 Preliminaries and Proofs

Let M be a connected manifold and G be a connected subgroup of the diffeomorphisms
of M , and M̃ be its universal covering manifold with the covering map κ : M̃ → M .
Let G∗ be the universal covering group of G with the projection π : G∗ → G, and let
Θ : G×M → M be the diffeomorphic action of G on M . One can show that there is an
action Θ∗ : G∗ × M̃ → M̃ that covers Θ and commutes with each deck transformation δ
of M̃ ( i.e., Θ∗(g∗, δx̃) = δΘ∗(g∗, x̃) (see [2], pages 62, 63). If the action of G is effective
but the action of G∗ is not effective, we can replace G∗ by its effective factor G̃.

In the following, M is supposed to be a complete and connected Riemannian manifold
and G is supposed to be a closed and connected subgroup of Iso(M), the isometry group

of M . So, M̃ will be a Riemannian manifold and G̃ will be a closed and connected sub-
group of Iso(M̃). We will denote by ∆ the deck transformation group of the covering

κ : M̃ → M . For simplicity we will denote Θ(g, x) by gx ( similarly, Θ∗(g̃, x̃) by (g̃x̃)).
The set of the fixed points of the action of G on M ({x ∈ M : gx = x for all g ∈ G}) is
denoted by MG. The map M → M

G , x → G(x), is called the canonical projection onto
the orbit space. According to the arguments in [2] pages 62-64, one can show that the
assertions in the following fact are true.

Fact 2.1.
(1) dimM

G = dimM̃

G̃
and each deck transformation δ maps G̃-orbits on to G̃-orbits.

(2) If x ∈ M and x̃ ∈ M̃ such that κ(x̃) = x then κ(G̃(x̃)) = G(x).

(3) If G has a fixed point in M then G̃ = G and (M̃)G̃ = κ−1(MG).

(4) Following (3), if G̃ has only one fixed point then M̃ = M .
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Fact 2.2. Following Fact 2.1, Put

∆′ = {δ ∈ ∆ : δ(G̃(x)) = G̃(x), ∀x ∈ M̃}

and

∆̃ =
∆

∆′ .

If ∆′ is a normal subgroup of ∆ then ∆̃ acts effectively on Ω̃ and Ω = Ω̃

∆̃
.

By Fact 2.2 we get the following Fact:

Fact 2.3. If ∆ acts effectively on Ω̃ then Ω = Ω̃
∆ .

Lemma 2.4. If all elements of a non-trivial subgroup H ⊂ ∆ leave invariant a fixed
geodesic L, the H is infinite cyclic.

Lemma 2.5. let Rn be of cohomogeneity k under the action of G a closed and con-
nected subgroup of the isometries, and let (Rn)G ̸= ∅ . Then
(1) If k = 1 then Ω̃n,G,1 = [0,∞).

(2) If k = 2 then Ω̃n,G,2 = [0,∞) ×R.

Fact 2.6. Let M be a flat Riemannian manifold and consider M̃ = Rn, its universal
covering manifold. Let G be a closed and connected subgroup of the isometris of M which
acts by cohomogeneity k on M . Consider the covering group G̃ of G as mentioned in Fact

2.1, and let dimM̃ G̃ = m > 0. Then
(1) k > m and Ω̃

n,G̃,k
= Ω̃

n−m,G̃,k−m
×Rm.

(2) ∆ acts effectively on Ω̃
n,G̃,k

and
Ω̃

n,G̃,k

∆ = Ω̃
n−m,G̃,k−m

× Rm

∆ .

Proof: Put L = M̃ G̃. It is known that L is a totally geodesic submanifold of Rn, so
it is an affine subspace of Rn. Since the elements of G̃ and ∆ are commutative then
∆(L) = L. If a ∈ L then denote by Wa the affine subspace of Rn which is perpendicu-
lar to L at a and dimL + dimWa = n. Without lose of generality we can suppose that
L = {o} × Rm ⊂ Rn−m × Rm = Rn. Since G̃ leaves L invariant point wisely, then G̃
decomposes as G̃ = Ĝ × {I}, where Ĝ ⊂ SO(n − m) and I is the identity map on Rm.
Then for all (x1, x2) ∈ Rn−m × Rm, G̃(x1, x2) = Ĝ(x1) × {x2}. So, for all a ∈ L and all
x ∈ Wa, G̃(x) ⊂ Wa. Since G̃ has fixed point, it is compact and G̃(x) must be compact.
Then dimG̃(x) < dimWa = n−m. If k ≤ m then dimG̃(x) < dimWa = n−m ≤ n− k.
This means that the cohomogeneity of G̃ action on Rn must be less than k, and M must
be a G-manifold of cohomogeneity less than k, which is a contradiction. Therefore, k > m.
Now, it is easy to show that the following map is a homeomorphism:

{
ψ : Ω̃

n,G̃,k
= Rn

G̃
→ Ω̃n−m,Ĝ,k−m ×Rm

ψ(G̃(x)) = (Ĝ(x1), x2) , x = (x1, x2) ∈ Rn−m ×Rm

Ĝ is isomorphic to G̃, so in the following we will denote it by G̃. Since by assumption,
∆(L) = L, L = {o}×Rm ≃ Rm, we can consider the following action of ∆ on Ω̃

n−m,G̃,k−m
×
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Rm, which is effective.
{

∆ × (Ω̃
n−m,G̃,k−m

×Rm) → Ω̃
n−m,G̃,k−m

×Rm

(δ, (A, b)) → (A, δ(b))

Then we have
Ω̃

n−m,G̃,k−m
×Rm

∆
= Ω̃

n−m,G̃,k−m
× Rm

∆

Since the elements of ∆ are commutative with the elements of G̃, it is easy to show that
the homeomorphism ψ maps ∆-orbits of Ω̃

n,G̃,k
on to ∆-orbits of Ω̃

n−m,G̃,k−m
× Rm.

This means that ψ induces a homeomorphism between
Ω̃

n,G̃,k

∆ and
Ω̃

n−m,G̃,k−m
×Rm

∆ (=

Ω̃
n−m,G̃,k−m

× Rm

∆ ).

Proof of Theorem B: Consider M̃ = Rn, the universal Riemannian covering mani-

fold of M , and consider the symbols used in Fact 2.1. Put L = M̃ G̃. Since MG ̸= ∅ then

by Fact 2.1(3), M̃ G̃ ̸= ∅. Put m =dimM̃ G̃. By Fact 2.6(1), we have 2 > m, so m = 0 or
m = 1.
Proof of Theorem C: Similar to the proof of Theorem B, put L = M̃ G̃. L is a totally
geodesic submanifold of M̃ = Rn. Since M is supposed to be non-simply connected then
by Fact 2.1(4), dimL ≥ 1. If dimL ≥ 3 then as like as the proof of previous theorem, we
can show that cohomogeneity of the action of G̃ on Rn must be bigger than three which
is contradiction. Thus, dimL = 1 or 2.
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Unique Path Lifting from Homotopy Point of View and

Fibrations

Mehdi Tajik∗

University of Ferdowsi

Ali Pakdaman

Goragan University

Behrooz Mashayekhy

Ferdowsi University

Abstract

The aim of this paper is to introduce the concepts of path homotopically lifting and
its role in the category of fibrations. At first, we have some various notions, closely
related to path lifting and unique path lifting; and their relations are supplemented by
examples. Then, we study some results in the category of fibration with these notions
instead of unique path lifting.

Keywords: Homotopically lifting, Unique path lifting, Fibration
Mathematics Subject Classification [2010]: 57M10, 57M12, 54D05, 55Q05

1 Introduction

A map p : E → B is called a fibration if it has homotopy lifting property with respect
to an arbitrary space X, namely, given maps f̃ : X → E and F : X × I → B such that
F ◦ j = p ◦ f̃ for j : X → X × I by j(x) = (x, 0), there is a map F̃ : X × I → E such
that F̃ ◦ j = f̃ and p ◦ F̃ = F . Also, a map p : E → B is said to have unique path lifting
property (upl) if, given paths w and w′ in E such that p ◦ w = p ◦ w′ and w(0) = w′(0),
then w = w′.

Fibrations with upl, as a generalization of covering spaces are important. It is well
known that every fiber (inverse image of a singleton) of a fibration with unique path lifting
has no nonconstant path [4, Theorem 2.2.5].

In fact, unique path lifting causes a lot of results about a fibration p : E → B, like
injectivity of p∗, uniqueness of lifting of a given map and being homeomorphic of any two
fibers [4]. Unique path lifting has an important role in the various topological concepts
such as covering theory and new generalizations of covering theory, for example [1, 2, 3].
At first, we consider path lifting in the homotopy category and also will discuss about the
uniqueness of this type of path lifting and classical path lifting. In fact, their relations
will be introduced by some examples. Then, in the last section we would supplement the
relations between these new notions in the presence of fibrations. For example, we call a
map p : E → B has weakly unique path homotopically lifting property (wuphl) if, given
paths w and w′ in E such that w(0) = w′(0), w(1) = w′(1), p ◦ w ≃ p ◦ w′ rel {0, 1}, we
have, w ≃ w′ rel{0, 1}. We will show that every loop in each fiber of a fibration with wuphl
is nullhomotopic, which is a homotopy analogue of the same result when we have unique
path lifting. Throughout this paper, a map f : X → Y means a continuous function and
f∗ : π1(X, x) → π1(Y, y) will denote the homomorphism induced by f .
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2 Main results

Path lifting is the lifting of paths in the category Top. We can consider path lifting
problem in the htop and get a new feature of lifting problem.

Definition 2.1. Let p : E → B be a map. A path α̃ : I → E is called a homotopically
lifting of a path α if poα̃ ≃ α rel {0, 1}.

Definition 2.2. Let p : E → B be a map and α̃ and β̃ be paths in E, then we say that
(i) p has unique path lifting (upl) if

α̃(0) = β̃(0), poα̃ = poβ̃ ⇒ α̃ = β̃.

(ii) p has homotopically unique path lifting (hupl) if

α̃(0) = β̃(0), poα̃ = poβ̃ rel {0, 1} ⇒ α̃ ≃ β̃ rel {0, 1}.

(iii) p has weekly homotopically unique path lifting (whupl) if

α̃(0) = β̃(0), α̃(1) = β̃(1), poα̃ = poβ̃ ⇒ α̃ ≃ β̃ rel {0, 1}.

(iv) p has unique path homotopically lifting (uphl) if

α̃(0) = β̃(0), poα̃ ≃ poβ̃ rel {0, 1} ⇒ α̃ ≃ β̃ rel {0, 1}.

(v) p has weekly unique path homotopically lifting (wuphl) if

α̃(0) = β̃(0), α̃(1) = β̃(1), poα̃ ≃ poβ̃ rel {0, 1} ⇒ α̃ ≃ β̃ rel {0, 1}.

Example 2.3. Every continuous map from a simply connected space to any space has
wuphl and whupl. Note that every injective map has upl and also, for injecive map, wuphl
and uphl are equivalent.

By a direct verification we have the following proposition

Proposition 2.4. Let p : E → B be a map and e ∈ p−1(b), for b ∈ B. Then
i) Injectivity of p∗ : π1(E, e) → π1(B, b) is equivalent to wuphl.
ii) Injectivity of p∗ : π1(E, e) → π1(B, b) implies that p has whupl.

It is notable that that converse of (ii) is not necessarily true, for seeing this, refer to
Example 2.8.
In the next proposition, we show that in Top, uniqueness and homotopically uniqueness
of path lifting are equivalent.

Proposition 2.5. upl ⇔ hupl
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Proof. By definitions, upl =⇒ hupl. Now let p : E → B be a map with hupl and α̃ and β̃
be paths in E such that α̃(0) = β̃(0), p ◦ α̃ = p ◦ β̃. Define, for every t ∈ I, α̃t, β̃t : I → E
such that α̃t(s) = α̃(st) and β̃t(s) = β̃(st). By definitions, α̃t(0) = β̃t(0) and p◦ α̃t = p◦ β̃t.
Then hupl imply that α̃t ≃ β̃t rel {0, 1}, specially α̃t(1) = β̃t(1) which implies α̃(t) = β̃(t)
and since t is arbitrary, α̃ = β̃.

Proposition 2.6.
(i) upl ⇒ whupl,
(ii) uphl ⇒ whupl,
(iii) uphl ⇒ wuphl,
(iv) uphl ⇒ upl,
(v) wuphl ⇒ whupl.

Proof. Use definitions. Just for (iv), a method like in the proof of the previous proposition
is needed.

Since, uphl imply upl and also, a map with upl has unique lifting property for path
connected space, we have

Corollary 2.7. If a map has uphl, it has the unique lifting property for path connected
spaces.

The following example shows that the converse of all the parts of Proposition 2.6 is
not true.

Example 2.8.
For, (i) wuphl ; uphl, (ii) whupl ; uphl and (iii) whupl ; upl, let E = {0}×[0, 1]×[0, 1]
and B = {0} × [0, 1] × {0}, and p : E → B is the vertical projection.
Also, for (iv) upl ; uphl and (v) whupl ; wuphl, let E = {(x, y, 2) ∈ R3} − {(0, 0, 2)},
B = {(x, y, 0) ∈ R3} and p : E → B be again the vertical projection.

Remark 2.9. Moreover, there is no relation between upl and wuphl, because the part (i)
of the example 2.8 imply that, wuphl ; upl and by (ii), we have, upl ; wuphl.

3 fibrations and homotopically liftings

In this section, we compare and study the notions introduced in section 2 in presence of
fibrations.

Proposition 3.1. For fibrations we have:
(i) upl (hupl) ⇒ uphl
(ii) upl (hupl) ⇒ wuphl

Proof. For (i) see [4, Lemma 2.3.3], also, (ii) come from definition and (i).

Corollary 3.2. For fibrations, upl (hupl) and uphl are equivalent.

Remark 3.3. We already saw that even within assumption fibration, the converse of (i)
of this proposition is true, moreover, the map in example 2.8 (i), is a fibration with wuphl
which has not upl, then, the converse of (ii) is failed.
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In the following theorem, we show that considering lifting in the homotopy category
makes that paths in fibers are homotopically constant.

Theorem 3.4. If p : E → B is a fibration, then p has wuphl if and only if every loop in
each fiber is nullhomotopic.

Proof. Refer to preprint.

Similarly, we can replace, wuphl with whupl, then

Theorem 3.5. A fibration p : E → B has whupl if only if every loop in each fiber is
nullhomotopic.

Corollary 3.6. If p : E → B is a fibration then whupl and wuphl are equivalent.

So, the relation between this five kinds of the paths lifting is as the following

upl upl

uphl uphl

hupl hupl

wuphl wuphl

whupl whupl



�



�

?

6

?

6

w

N N

- -

- -
~ ~

3

-
with fibration

? ?

7

/

7

References

[1] J. Brazas, Generalized covering maps and the unique path lifting property. Per-
sonal hompage.

[2] J. Brazas, Semicoverings: a generalization of covering space theory, Homology
Homotopy Appl. 14 (2012), 3363.

[3] H. Fischer, A. Zastrow, Generalized universal coverings and the shape group,
Fund. Math. 197 (2007) 167−196.

[4] E.H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

Email: azi−1392@yahoo.com

Email: Alipaky@yahoo.com
Email: bmashf@um.ac.ir

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Unique Path Lifting from Homotopy Point of View and Fibrations pp.: 4–4

1011



Web geometry of Lorentz dynamical system

Rohollah Bakhshandeh-Chamazkoti∗

Department of Mathematics, Faculty of Basic Science,

Babol University of Technology, Babol, Iran.

Abstract

The paper is devoted to solve Cartan equivalence problem for a dynamical system
that is called Lorenz equations under a web transformation.
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1 Introduction

The method of equivalence of E. Cartan (see [1], [3] and [4]) provides a powerful tool for
constructing differential invariants which solve the problem of deciding when two geometric
objects are really the same up to some preassigned group of coordinate transformations.
In [2] R. B. Gardner gave some examples of solving these problems. For example, he has
given the local equivalence problem for y′ = f(x, y) under diffeomorphisms of the form
Φ(x, y) = (ϕ(x), ψ(y)). We generalize this problem to a system of n first order autonomous
ODEs.

We generalize this local equivalence problem to one of the most famous dynamical
systems which exhibits chaotic behavior that is the Lorentz equations





ẋ = −σ(x− y)
ẏ = rx− y − xz
ż = xy − bz

(1)

where σ, r, b > 0 and “.” represents derivative with respect to arc length t, under the
group of coordinate transformations defined by

Φ(t, x, y, z) = (ξ(t), ϕ1(x), ϕ2(y), ϕ3(z)). (2)

that is called the pseudo-group of web transformations.
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2 The Cartan equivalence method

Let G ⊂ GL(m) be a Lie group. Let ω and ω be coframes defined, respectively, on the
m-dimensional manifolds M and M . The G-valued equivalence problem for these coframes
is to determine whether or not there exists a local diffeomorphism Φ : M → M and a
G-valued function g : M → G with the property that

Φ∗(ω) = g(x)ω. (3)

Let U ⊂ M and the lifted differential forms ω = SωU on U × G was defined. We may
differentiate the lifted forms to find

dω = dS ∧ ωU + SdωU

= dSS−1 ∧ SωU + SdωU .

The matrix dSS−1 is the Maurer-Cartan matrix of right invariant forms on G, therefore

(dSS−1)ij =
∑

ρ

aijρπ
ρ, (4)

where πρ is a basis for the Maurer-Cartan forms and the aijρ are constants, [5].
Recalling that the forms ωU are basic, that is, both coefficients and differentials can

be expressed in terms of coordinates on U alone, we can write the exterior derivatives in
the group-fiber representation

dωi =
∑

aijρπ
ρ ∧ ωj +

1

2

∑
γijk(u, S)ωj ∧ ωk, (5)

Thus let us write the exterior derivatives in the following form,

dωi =
∑

∆i
j ∧ ωj , (6)

where no assumption is made on the ∆i
j . If we now subtract the group-fiber representation

(5) from the above representation we find

dωi =
∑

(∆i
j − aijρπρ) ∧ ωj −

1

2

∑
γijkω

j ∧ ωk, (7)

Theorem 2.1. ([2]) (Cartan’s lemma) Let {ωi} be an independent set of 1-forms, and
let {πi} be an arbitrary set of 1-forms of the same finite cardinality; then

∑
πi ∧ ωi = 0, (8)

holds if and only if πi =
∑
Cijω

j, where Cij is a symmetric matrix.

3 Main Results

Lorenz arrived at these equations when modeling a two dimensional fluid cell between
two parallel plates which are at different temperatures. We try to plot some solutions of
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Figure 1: A solution of Lorenz system (1) for σ = 5, r = 12, b = 3
2

Lorenz equation (1) using Maple 14, with initial values x(0) = 10, y(0) = 2, z(0) = 15 and
0 < t < 0.5.

The system (1) is invariant under the transformation

(x, y, z) −→ (−x,−y, z). (9)

Moreover, the z axis is an invariant manifold since

x(t) = 0, y(t) = 0, z(t) = z0e
−bt (10)

is a solution of our system.

Theorem 3.1. All web transformations preserving the Lorentz system (1) are

Φ(t, x, y, z) = (t, ax, ay, az). (11)

Proof. Applying the equivalence method of Cartan, the necessary and sufficient conditions
for equivalence of two Lorentz system (1) under web transformation (2) is given. The
contact 1-forms for Lorentz system are

ω0 = dt,

ω1 = dx+ σ(x− y)dt,

ω2 = dy − (rx− y − xz)dt, (12)

ω3 = dz − (xy − bz)dt.

There is a one-to-one correspondence between vector fields

X =
d

dt
− σ(x− y)

∂

∂x
+ (rx− y − xz) ∂

∂x
+ (xy − bz) ∂

∂x
, (13)
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and Lorentz systems (1). Using duality of vector field (13), we may choose the following
two coframes

Θ0 = dT,Θ1 = − 1

σ(X − Y )
dX,Θ2 =

1

rX − Y −XZ dY,Θ3 =
1

XY − bZ dZ,(14)

θ0 = dt, θ1 = − 1

σ(x− y)
dx, θ2 =

1

rx− y − xz dy, θ3 =
1

xy − bz dz, (15)

and smooth function g : R4 → G which satisfy in Φ∗Θ = g.θ relation with structure group

G = {a I4 | a ∈ R \ {0}} , (16)

where I4 is the 4× 4 identity matrix. Note that the coframe (12) is equivalent to coframe
(15). Choosing web transformation (2) and equivalence conditions leads to:

Φ∗Θ0 = Φ∗(dT ) = ξ̇(t)dt = dt,

Φ∗Θ1 = Φ∗
(
− 1

σ(X − Y )
dX

)
= − 1

σ(x− y)
ϕ̇1(x) dx = − a

σ(x− y)
dx,

Φ∗Θ2 = Φ∗
(

1

rX − Y −XZ dY

)
=

1

rx− y − xz ϕ̇2(y) dy =
a

rx− y − xz dy,

Φ∗Θ3 = Φ∗
(

1

XY − bZ dZ

)
=

1

xy − bz ϕ̇3(z) dz =
a

xy − bz dz.

Therefore

ξ̇(t) = 1, ϕ̇1(x) = ϕ̇2(y) = ϕ̇3(z) = a,

which concludes that all web transformations preserving the Lorentz system are (11) where
a ∈ R \ {0}, [4].
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A compact finite difference method without using Hopf-Cole

transformation for solving 1D Burgers’ equation

Rahman Akbari∗, Reza Mokhtari

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran

Abstract

A new compact finite difference (CFD) method for solving one-dimensional (1D)
Burgers’ equation without using the Hopf-Cole transformation is analyzed. This
method leads to a system of linear equations involving tridiagonal matrices and the
rate of convergence of the method is of order O(k2+h4) where k and h are the time and
space step sizes, respectively. Numerical results obtained by the proposed method are
compared with the exact solutions and the results obtained by some other methods.

Keywords: Burgers’ equation, compact finite difference method

Mathematics Subject Classification [2010]: 65M06, 65M12

1 Introduction

Burgers’ equation was formulated by Bateman in 1915 [2] and later treated by Burgers
[3]. This equation is also called the nonlinear advection-diffusion equation, and can be
regarded as a qualitative approximation of the Navier-Stocks equations. Recently, Xie
et al. [4] applied the Hopf-Cole transformation method to linearize the equation and
constructed a CFD method which is unconditionally stable and its accuracy is second-
and fourth-order accurate in time and space, respectively. We aim to construct a CFD
method for the 1D Burgers’ equation without using the Hopf-Cole transformation.

2 Construction of the method

We consider the following one-dimensional nonlinear Burgers’ equation

ut + uux − νuxx = 0, a < x < b, 0 < t < T, (1)

where ν = 1/Re in which Re is the Reynolds’ number. The following boundary and initial
conditions are also considered

u(a, t) = 0, u(b, t) = 0, 0 ≤ t ≤ T, u(x, 0) = f(x), a ≤ x ≤ b,

where f is a given function. In order to construct a CFD method, we select integers
M, N > 0 and define h = (b − a)/M, k = T/N . The grid points for this situation are
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(xi, tn), where xi = a + ih for i = 0, 1, . . . , M and tn = nk for n = 0, 1, . . . , N . Assuming
un

i = u(xi, tn), we use the following notations for simplicity

u
n+1/2
i =

un+1
i + un

i

2
, ∂tu

n+1
i =

un+1
i − un

i

k
, δ2

xun
i = un

i+1 − 2un
i + un

i−1.

Setting V = ut and F = ux, Eq. (1) at the intermediate point (xi, tn+ 1
2
) can be written

as

V
n+1/2
i + (uF )

n+1/2
i − ν(uxx)

n+1/2
i = 0. (2)

To obtain a fourth-order scheme with tridiagonal nature, we use the following relation,

(uxx)
n+1/2
i =

δ2
x

h2(1 + 1
12δ2

x)
u

n+1/2
i + O(h4), Fi =

δx

h(1 + 1
6δ2

x)
ui + O(h4),

to change (2) to

(1 +
1

12
δ2
x)(V

n+1/2
i + (uF )

n+1/2
i ) =

ν

h2
δ2
xu

n+1/2
i + O(h4), (3)

which is nonlinear. For obtaining a simpler implementation, we apply the following lin-
earized approximation [1],

(uF )n+1 = Fnun+1 + unFn+1 − (uF )n + O(k2),

and write Eq. (3) as

2(un+1
i+1 + 10un+1

i + un+1
i−1 ) + k

(
un

i+1F
n+1
i+1 + 10un

i Fn+1
i + un

i−1F
n+1
i−1

)
+

k
(
Fn

i+1u
n+1
i+1 + 10Fn

i un+1
i + Fn

i−1u
n+1
i−1

)
− 12kν

h2 (un+1
i+1 − 2un+1

i + un+1
i−1 )

= 2(un
i+1 + 10un

i + un
i−1) + 12kν

h2 (un
i+1 − 2un

i + un
i−1) + O(k2 + h4),

which is linear and leads to the following approximate matrix form

(I + A)Un+1 = (I + B)Un, (4)

where

Un = (Un
1 , . . . , Un

M−1)
T ≃ Un

e = (un
1 , . . . , un

M−1)
T ,

A = 3k
2h(DT−1

1 T 2 + C ) − 6kν
h2 T−1

3 T 4, B = 6kν
h2 T−1

3 T 4,

T 1 = 6I + T 4, T 3 = 12I + T 4 D = diag(Un
1 , . . . , Un

M−1),

T 2 =




0 1 0 . . . 0

−1 0 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 0 1

0 . . . 0 −1 0




, T 4 =




−2 1 0 . . . 0

1 −2 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 −2 1

0 . . . 0 1 −2




,
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and C = diag(T−1
1 T 2U

n).
The numerical stability of the scheme (3) is investigated by using the energy method in
the following theorem which can be proved without difficulty (see [1, 4]).

Theorem 2.1. If scheme (3) has a unique solution Un and k is sufficiently small, then
we have

∥Un∥2
L2

≤ 2∥U0∥2
L2

, 1 ≤ n ≤ N.

By applying Theorem 2.1, we obtain the following discrete ∥.∥L∞-norm inequality

∥Un∥2
L∞ ≤ M2

0 ∥Un∥2
H1 ≤ 2M2

0 ∥U0∥2
H1 , 1 ≤ n ≤ N. (5)

where M0 = max{
√

b − a, 1/
√

b − a} and ∥u∥2
H1 = ∥u∥2

L2
+ ∥ux∥2

L2
. Inequality (5) shows

that (3) is an unconditional stable scheme.

Theorem 2.2. Assume that the exact solution u of the initial-value problem for the Burg-
ers’ equation is sufficiently smooth, and U is the numerical solution of (3). Under some
mild conditions (see e.g. [1]), if k is sufficiently small, then there exists a constant B such
that

∥u(·, nk) − Un∥L2 ≤ B(k2 + h4).

Theorem 2.2 can be proved without difficulty (see [1, 4]).

3 Numerical results

The accuracy of the scheme is measured by using the L∞ =∥ Uapp −Uexact ∥∞ error norm.

Example 3.1. We consider the shock-like solution of the Burgers’ equation. The exact
solution is

u(x, t) =
x/t

1 +
√

t/t0 exp(x2/4νt)
, t ≥ 1 (6)

where t0 = exp(1/8ν). The initial condition is taken from (6) by setting t = 1 and the
boundary conditions are considered as u(a, t) = u(b, t) = 0. The numerical solution is
obtained by the present method at different nodes and times and compared with the exact
solution as well as the compact finite difference method presented in [4]. Errors displayed
in Table 1 show that the present method has higher accuracy.

Example 3.2. We consider the exact solution of (1) as

u(x, t) =
γ + µ + (µ − γ) exp(η)

1 + exp(η)
, t ≥ 0

where η = γ(x−µt−ε)/ν, and γ, ε, and µ are constants. The initial condition is obtained
from the exact solution by setting t = 0, and the boundary conditions u(0, t) = 1 and
u(1, t) = 0.2 are used. The smaller value of ν gives the steeper wave. We simulate the
movement of the solution by taking parameters γ = 0.4, µ = 0.6, and ε = 0.125. To
show that the method has fourth-order convergence rate with nonhomogeneous boundary
conditions, we initially set h = 0.02 and k = 0.02, then reduce them by a factor of 2 and
4, respectively, in Table 2.
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Table 1: Comparison of the numerical and exact solutions, and errors of Example 3.1 for
ν = 0.001, h = 0.005, k = 0.01 and [a, b] = [0, 1.2].

x T Xie[4] Present Exact

0.6 1.7 0.3507 0.3529 0.3529
L∞ 0.0143 0.0019

0.8 2.4 0.0038 0.0033 0.0033
L∞ 0.0089 0.00069

0.8 3.1 0.2573 0.2581 0.2581
L∞ 0.0054 0.00037

Table 2: Order of convergence for Example 3.2 with T = 0.02, h = 0.02, k = 0.02 and
ν = 0.005

h, k h
2 , k

4
h
4 , k

16
h
8 , k

64
h
16 , k

256

E = L∞ 0.0109 7.4519e − 004 4.7102e − 005 2.9337e − 006 1.8476e − 007

r = E(h,k)

E(h
2
, k
4
)

- 14.6271 15.8208 16.0555 15.8784

Order = log2 r - 3.82454 3.97753 4.00693 3.98478

4 Conclusion

A CFD method for one-dimensional nonlinear Burgers’ equation is introduced and ana-
lyzed. This method is shown to be second- and fourth-order accurate in time and space,
respectively. This method successfully simulates the physical behaviors of the motion of
solutions. Our numerical experiments show that the present method offers higher accuracy,
and they also confirm very well obtained theoretical results.
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A computational algorithm for the inverse of positive definite

tri-diagonal matrices

T. Dehghn Niri∗

Yazd University

Abstract
In this paper, employing the general Cholesky Q.I.F. factorization, an efficient

algorithm is developed to find the inverse of a general positive definite tridiagonal
matrix.

Keywords: Cholesky Q.I.F. factorization, Positive definite tridiagonal.
Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

The linear system of equations whose coefficient matrix is of tri-diagonal type of the
form

T =




a1 c1 ◦ · · · ◦
c1 a2 c2

. . .
...

◦ c2 a3
. . . ◦

...
. . .

. . .
. . . cn−1

◦ · · · ◦ cn−1 an




(1.1)

is of special importance in many scientific and engineering applications. For example in
parallel computing and in solving differential equations using finite differences.

2 Cholesky Q.I.F. factorization

Consider the linear system Ax = f , where A is an n×n symmetric positive definite matrix.
Suppose n = 2m− 2. Assume that there exists a matrix W such that , A = WW T ,where

W =




w1,1 w1,2 · · · · · · w1,n

◦ w2,2 · · · · · · w2,n ◦
◦ . . . . ◦

... wm−1,m−1 wm−1,m ◦

...
... ◦ ◦ wm,m ◦ ...

...
◦ . . ◦

◦ ◦ wn−1,3 · · · · · · wn−1,n−1 ◦
◦ wn,2 · · · · · · · · · · · · wn,n
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Note that W has a ”butterfly” or a ”bowtie” structure.
Suppose w1, w2, · · · , wn are columns of W , then we have W = [w1, w2, · · · , wn]T . Each wi
for i = 1, 2, · · · , n is of the following form

wi =

{
[w1,i, · · · , wi,i, ◦, · · · , ◦, wn−i+2,i, · · · , wn,i]T for i = 1, ...,m− 1

[w1,i, · · · , wn−i+1,i, ◦, · · · , ◦, wi,i, · · · , wn,i]T for i = m, ..., n
.

Algorithm 2.1. To compute elements of W .

for k = 1, ...,m− 1, wm+k−1,m+k−1 =
√
a
(k)
m+k−1,m+k−1

for i = 1, ...,m− k, and, m+ k, ..., n,wi,m+k−1 = a
(k)
i,m+k−1/wm+k−1,m+k−1

wm−k,m−k =
√
a
(k)
m−k,m−k − w2

m−k,m+k−1

for i = 1, ...,m−k−1, and, m+k, ..., n, wi,m−k = (a
(k)
i,m−k−wi,m+k−1wm−k,m+k−1)/wm−k,m−k

if(k 6= m− 1), Ak+1 = Ak − wm+k−1w
T
m+k−1 − wm−kwTm−k

Assume the matrix A is the Positive definite tridiagonal matrix, after Cholesky Q.I.F.
factorization, we have W in the following form




w1,1 ◦ · · · · · · · · · · · · · · · ◦ ◦
w2,1 w2,2 ◦ · · · · · · · · · · · · ◦ ◦
◦ . . .

. . . · · · · · · · · · · · · ...
...

... · · · . . .
. . . · · · · · · · · · ...

...
◦ · · · wm−1,m−2 wm−1,m−1 ◦ ◦ · · · ◦ ◦
◦ · · · ◦ wm,m−1 wm,m wm,m+1 ◦ · · · ◦
◦ ◦ · · · ◦ ◦ wm+1,m+1 wm+1,m+2 · · · ◦
...

... · · · · · · . . .
. . .

. . . · · · ...
◦ ◦ · · · · · · · · · · · · ◦ wn−1,n−1 wn−1,n

◦ ◦ ◦ · · · · · · · · · ◦ ◦ wn,n




where W is a tridiagonal matrix. To find the inverse matrix W−1 one can use the Gaussian
elimination method:

W−1 =




R1,1 ◦ ◦ · · · · · · · · · · · · ◦ ◦
R2,1 R2,2 ◦ ◦ · · · · · · · · · ◦ ◦
◦ . . .

. . .
. . . · · · · · · ...

...

◦ . . .
. . .

. . . · · · · · · ...
...

Rm,1 Rm,2 · · · · · · Rm,m Rm,m+1 · · · · · · Rm,n
◦ ◦ · · · · · · ◦ Rm+1,m+1 · · · · · · Rm+1,n
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
◦ ◦ · · · · · · · · · · · · ◦ ◦ Rn,n



n×n

3 computational algorithm

In this section, we present a new computational algorithm for inverting a positive definite
tridiagonal matrix using Cholesky Q.I.F. factorization.
Now A = WW T gives A−1 = (WW T )−1 = (W T )−1W−1 = (W−1)TW−1.
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We see that the inverse matrix A−1 of the matrixA may be obtained once the inverse
matrix W−1 is available.
Algorithm 3.1. INPUT Dimension n; m and elements of A. OUTPUT the entries Ti,j ,
(1 ≤ i, j ≤ n) of the inverse matrix T = A−1 of A.
step 1. Compute W
w1,1 =

√
a1,1, w2,1 = a2,1/w1,1, wn,n =

√
an,n, wn−1,n = an−1,n/wn,n

for i = 2, ...,m− 2, wi,i =
√
ai,i − w2

i,i−1, wi+1,i = ai+1,i/wi,i

wn+1−i,n+1−i =
√
an+1−i,n+1−i − w2

n+1−i,n+2−i, wn−i,n+1−i = an−i,n+1−i/wn+1−i,n+1−i

wm−1,m−1 =
√
am−1,m−1 − w2

m−1,m−2, wm,m−1 = am,m−1/wm−1,m−1,

wm,m =
√
am,m − w2

m,m−1 − w2
m,m+1.

step 2. Compute W−1

for i = 1, ..., n, Ri,i = 1/wi,i
for i = 2, ...,m, Ri,i−1 = −wi,i−1/wi,iwi−1,i−1

for i = 3, ...,m, j = i− 2, ..., 1, Ri,j = Ri−1,jRi,j+1/Ri−1,j+1

for i = n− 1, ...,m, Ri,i+1 = −wi,i+1/wi,iwi+1,i+1

for i = n− 2, ...,m, j = n, ..., i+ 2, Ri,j = Ri,j−1Ri+1,j/Ri+1,j−1

step 3. Compute A−1

for i = 1, ...,m, Ti,i =
∑m

k=iR
2
k,i

for i = m+ 1, ..., n, Ti,i =
∑i

k=mR
2
k,i

for i = m, ..., n, j = 1, ...,m, Ti,j = Rm,jRm,i
for i = 2, ...,m− 1, j = 1, ..., i− 1, Ti,j =

∑m
k=iRk,jRk,i

for i = m+ 2, ..., n, j = m+ 1, ..., n− 1, Ti,j =
∑i−1

k=mRk,iRk,j
for i = 1, ..., n− 1, j = i+ 1, ..., n, T (i, j) = T (j, i)

4 Example

Example 4.1. Consider the 6× 6 matrix A given by

A =




2 1 ◦ ◦ ◦ ◦
1 3 1 ◦ ◦ ◦
◦ 1 4 2 ◦ ◦
◦ ◦ 2 5 1 ◦
◦ ◦ ◦ 1 6 1
◦ ◦ ◦ ◦ 1 6




a) after Cholesky factorization of matrix A, compute A−1 by using,
A−1 = (LLT )−1 = (LT )−1L−1 = (L−1)TL−1.

L =




1.4142 ◦ ◦ ◦ ◦ ◦
◦.7 ◦ 71 1.5811 ◦ ◦ ◦ ◦
◦ ◦.6325 1.8974 ◦ ◦ ◦
◦ ◦ 1. ◦ 541 1.972◦ ◦ ◦
◦ ◦ ◦ ◦.5 ◦ 71 2.3964 ◦
◦ ◦ ◦ ◦ ◦.4173 2.4137
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L−1 =




◦.7 ◦ 71 ◦ ◦ ◦ ◦ ◦
− ◦ .3162 ◦.6325 ◦ ◦ ◦ ◦
◦.1 ◦ 54 − ◦ .21 ◦ 8 ◦.527◦ ◦ ◦ ◦
− ◦ . ◦ 563 ◦.1127 − ◦ .2817 ◦.5 ◦ 71 ◦ ◦
◦. ◦ 119 − ◦ . ◦ 238 ◦. ◦ 596 − ◦ .1 ◦ 73 ◦.4173 ◦
− ◦ . ◦ ◦21 ◦. ◦ ◦41 − ◦ . ◦ 1 ◦ 3 ◦. ◦ 186 − ◦ . ◦ 721 ◦.4143




A−1 =




◦.6144 − ◦ .2289 ◦. ◦ 722 − ◦ . ◦ 299 ◦. ◦ ◦51 − ◦ . ◦ ◦ ◦ 9
− ◦ .2289 ◦.4577 − ◦ .1443 ◦. ◦ 598 − ◦ . ◦ 1 ◦ 2 ◦. ◦ ◦17
◦. ◦ 722 − ◦ .1443 ◦.36 ◦ 8 − ◦ .1494 ◦. ◦ 256 − ◦ . ◦ ◦43
− ◦ . ◦ 299 ◦. ◦ 598 − ◦ .1494 ◦.269◦ − ◦ . ◦ 461 ◦. ◦ ◦77
◦. ◦ ◦51 − ◦ . ◦ 1 ◦ 2 ◦. ◦ 256 − ◦ . ◦ 461 ◦.1793 − ◦ . ◦ 299
− ◦ . ◦ ◦ ◦ 9 ◦. ◦ ◦17 − ◦ . ◦ ◦43 ◦. ◦ ◦77 − ◦ . ◦ 299 ◦.1716




b) Now by Algorithm 3.1. we have

W =




1.4142 ◦ ◦ ◦ ◦ ◦
◦.7 ◦ 71 1.5811 ◦ ◦ ◦ ◦
◦ ◦.6325 1.8974 ◦ ◦ ◦
◦ ◦ 1. ◦ 541 1.9281 ◦.414◦ ◦
◦ ◦ ◦ ◦ 2.4152 ◦.4 ◦ 82
◦ ◦ ◦ ◦ ◦ 2.4495




W−1 =




◦.7 ◦ 71 ◦ ◦ ◦ ◦ ◦
− ◦ .3162 ◦.6325 ◦ ◦ ◦ ◦
◦.1 ◦ 54 − ◦ .21 ◦ 8 ◦.527◦ ◦ ◦ ◦
− ◦ . ◦ 576 ◦.1153 − ◦ .2881 ◦.5187 − ◦ . ◦ 889 ◦. ◦ 148
◦ ◦ ◦ ◦ ◦.414◦ − ◦ . ◦ 69◦
◦ ◦ ◦ ◦ ◦ ◦.4 ◦ 82




A−1 =




◦.6144 − ◦ .2289 ◦. ◦ 722 − ◦ . ◦ 299 ◦. ◦ ◦51 − ◦ . ◦ ◦ ◦ 9
− ◦ .2289 ◦.4577 − ◦ .1443 ◦. ◦ 598 − ◦ . ◦ 1 ◦ 2 ◦. ◦ ◦17
◦. ◦ 722 − ◦ .1443 ◦.36 ◦ 8 − ◦ .1494 ◦. ◦ 256 − ◦ . ◦ ◦43
− ◦ . ◦ 299 ◦. ◦ 598 − ◦ .1494 ◦.269◦ − ◦ . ◦ 461 ◦. ◦ ◦77
◦. ◦ ◦51 − ◦ . ◦ 1 ◦ 2 ◦. ◦ 256 − ◦ . ◦ 461 ◦.1793 − ◦ . ◦ 299
− ◦ . ◦ ◦ ◦ 9 ◦. ◦ ◦17 − ◦ . ◦ ◦43 ◦. ◦ ◦77 − ◦ . ◦ 299 ◦.1716




5 Conclusion

It can be readily verified that in Algorithm 3.1 the arithmetical operations counts in steps
2 and 3 are considerably reduced compared to existing methods.
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A fast iterative method for solving first kind linear integral

equations

Meisam Jozi∗

Persian Gulf University

Saeed Karimi

Persian Gulf University

Abstract

In this paper, we study the LS-algorithm for solving linear integral equations of
the first kind. This method is based on the reducing the solution of first kind linear
integral equations to the solution of a least squares problem with bidiagonal matrix.
Then applying the QR factorization method leads to a simple recurrence formula for
generating the sequence of approximate solutions. Some properties and convergence
theorem are proposed. Moreover, regularization property of the new method with a
suitable stopping rule is studied. Finally, some numerical examples are presented to
show the efficiency of the new method.

Keywords: Linear operators, Compact operators, Ill-posed problems, First kind
equations
Mathematics Subject Classification [2010]: 45N05,45Q05,47B34.

1 Introduction

Integral equations of the first kind with a continuous or weakly singular kernel provide a
typical example for the following equation

Lu = f, (1)

where L : V → W is a compact linear operator from a Hilbert space V into a Hilbert
spaceW. Due to the compactness, the operator L is not boundedly invertible. Hence, the
equation (1) is ill-posed in the sense of Hadamard [2]. This makes it difficult to solve by
straightforward application of numerical methods, developed to solve well-posed problems.
A general strategy for solving problem (1) is regularization technique [1, 2]. So far, many
regularization schemes have been proposed including Tikhonov’s method, Landweber’s
iteration [2]. Two problems with most regularization methods are first the right choice
of the regularization parameter and second they have high computation time. Iterative
methods have an inherent regularization property when applied straight to (1). In fact
the number of iteration plays the role of the regularization parameter which is controlled
by an suitable stopping rule. In this paper, we apply the LS-algorithm [1], to compute
the minimum norm solution of (1). Also, we study the regularization properties of the
new method by using the discrepancy principle, introduced by Morozov [2], in context of
iteration methods.
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2 The proposed method

The new method, LS-algorithm, is based on a bidiagonalization process, called L-Bidiad,
for the linear operator L. This process generates two orthonormal sets of functions namely
ψ1, ψ2, . . . ∈ V and φ1, φ2, . . . ∈ W. We use the same symbols 〈., .〉 and ‖.‖ for the inner
products and their corresponding norms on the Hilbert spaces V and W.
L-Bidiag process:

β1φ1 = f, α1ψ1 = L∗φ1,

βi+1φi+1 = Lψi − αiφi,
αi+1ψi+1 = L∗φi+1 − βi+1ψi, i = 1, 2, · · · , (2)

where φi ∈ W, ψi ∈ V and the scalars αi ≥ 0 and βi ≥ 0 are chosen so that ‖φi‖ = ‖ψi‖ =
1. With the definitions

Ψk = [ψ1, ψ2, . . . , ψk], Φk = [φ1, φ2, . . . , φk],

Gk =




α1

β1 α2

. . .
. . .

βk αk
βk+1



,

and by using Definitions 3.4 and 3.5 in [1], the recurrence formula (2) can be rewritten as

Φk+1 ? (β1e1) = f,

LΨk = Φk+1 ? Gk,

L∗Φk+1 = Ψk ? G
T
k + αk+1ψk+1e

T
k+1, (3)

where GT denotes the transpose of G.
LS-algorithm form solution estimates uk = Ψk ? Λk for some Λk ∈ Rk at kth stage
to minimize the corresponding residual rk = Luk − f . By using (2) and (3) and by
orthonormality of Φk+1, the subproblem

min
Λk
‖β1e1 −GkΛk‖,

is obtained which can be solved by using QR factorization. Finally as [1] the LS-algorithm
is summarized as follows.
LS-algorithm

1. Set u0 = 0 as a zero function

2. β1 = ‖f‖, φ1 = f
β1
, α1 = ‖L∗φ1‖, ψ1 = L∗φ1

α1
, ω1 = ψ1, ω1 = β1, τ1 = α1

3. For i = 1, 2, . . . until convergence, Do

4. χi = Lψi − αiφi
5. βi+1 = ‖χi‖, φi+1 = χi

βi+1

6. $i = L∗φi+1 − βi+1ψi
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7. αi+1 = ‖$i‖, ψi+1 = $i
αi+1

8. τi =
√
τ2
i + β2

i+1

9. ci = τ i
τi

10. si = βi+1

τi

11. ηi+1 = siαi+1

12. τ i+1 = −ciαi+1

13. µi = ciµi

14. µi+1 = siµi

15. ui = ui−1 + φi
τi
ωi

16. ωi+1 = ψi+1 − ηi+1

τi
ωi

17. If |µi+1| is small enough then stop

18. EndDo

The proof of the following theorem is similar to Theorem 2.23 of [2].

Theorem 2.1. Let L and L∗ are injective and assume the LS-algorithm does not stop
after finitely many steps. Then

‖ Luk − f ‖−→ 0 as k →∞,

for every f ∈ W.

Now we return to the regularization of the operator equation (1). for this end, we
consider the perturbed equation Luδ = f δ where ||f δ − f || ≤ δ. We use the following
stopping rule which is the discrepancy principle in context of the iteration methods [2].
Stopping rule: Fix ` > 1 and terminate the algorithm at the first time, k = k(δ), that
|µk+1| ≤ `δ.
Now, we let (µj , xj , yj) be a singular system of L [2]. The following theorem shows that
the LS-algorithm is optimal under the above stopping rule.

Theorem 2.2. Let f, f δ /∈ span{y1, y2, ..., yN} for all N ∈ N and let f ∈ (L∗L)
ν
2 (V) for

some ν > 0 and ‖ u ‖ν≤ R. If the LS-algorithm is stopped after k(δ) steps according to
mentioned stopping rule with fixed parameter ` > 1, then there exist c > 0 such that

||uδk(δ) − u|| ≤ cR
ν
ν+1 δ

ν
ν+1 .

Example 2.3. We consider the following first kind Fredholm integral equation

∫ 1

0
(t2 + s2)

1
2u(s)ds =

(1 + t2)
3
2 − t3

3
,

with the exact solution u∗(t) = t.
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Table 1: Numerical results for the Example 2.3for 17-point Simpson’s rule.

t |u∗(t)− u3(t)| |u∗(t)− uS(t)|
0 3.99e− 04 1.06e− 2

0.25 2.08e− 04 2.46e+ 00
0.5 2.39e− 06 6.44e+ 1
0.75 3.82e− 04 2.00e+ 1

1 7.49e− 04 9.55e+ 00

For this example we compare the 17-point Simpson quadrature rule (Nÿstom like
method) with the LS-algorithm when the involved definite integrals in each iteration
are approximated by mentioned quadrature rule. The numerical results are given in Table
2. In this table |u∗(t)−uk(t)| and |u∗(t)−uS(t)| are the absolute solution errors of the LS-
algorithm and Nÿstrom, respectively. We see that the LS-algorithm is clearly superior.

Example 2.4. We consider symm’s equation

− 1

2π

∫ 2π

0
(ln(4sin2 t− s

2
)+K(t, s))u(s) = f(t), K(t, s) =

{
− 1

2π ln |σ(t)−σ(s)|2
4 sin2 t−s

2

, t 6= s

− 1
π ln |σ·(t)|, t = s,

where σ(t) = (cost, 2sint). We use the exact solution u∗(t) = e3sint and define f(t)
accordingly.

We approximate the smooth part and weakly singular part by using the trapezoidal
rule and trigonometric interpolation, respectively. Here, The node points are tj = jπ/n,
j = 0, 1, ..., 2n − 1 with n = 60. And we perturbed the right hand side of the discretized
form by uniformly distributed random vector depended on δ. The results shown in Table
2, confirm the theorem 2.2. In this table, U δk(δ) and U are approximated solution, obtained

from the stopping rule, and exact solution in node points, respectively. Also, ||U ||2n = ||U ||
2n

where ||.|| is Euclidean norm.

Table 2: Numerical results for the Example 2.3for 17-point Simpson’s rule.

δ 0.1 0.01 0.001 0

‖ U δk(δ) − U ‖n 1.51e-01 3.17e-02 5.7e-03 4.83e-13
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A greedy meshless method for solving boundary value

problems

Yasin Fadaei∗

Shahid Bahonar University of Kerman

Mahmoud Mohseni Moghadam

Shahid Bahonar University of Kerman

Abstract

In this paper we use a meshless method based on a greedy algorithm to solve
boundary value problems (BVPs). This method is greedy Kansa’s method that use the
optimal trial points. In the greedy algorithm , the optimal trial points for interpolation
obtained among a huge set of initial points are used for numerical solution of BVPs.
This paper shows that selection nodes greedily yields the better conditioning and good
approximation in contrast with the usual Kansa method. A well known BVP is solved
and compared with the usual Kansa’s method.

Keywords: Greedy algorithm, Meshless method, Radial basis function
Mathematics Subject Classification [2010]: 65N35, 65N22

1 Introduction

A greedy algorithm is an algorithm that follows the problem solving heuristic of making
the locally optimal choice at each stage with the hope of finding a global optimum. A
recent survey of the approximation properties of such algorithms is given in [1]. Schaback
and Muller [3] has shown that representations of kernel-based approximants in terms of
the standard basis of translated kernels are notoriously unstable. They introduced the
Newton bases functions with a recursively computable set of basis functions and vanishing
at increasingly many data points turn out to be more stable. In [4] adaptive calculation of
Newton bases is used, which turns out to be stable, complete, orthonormal computable.
In this work, we will apply the greedy method to meshless method for solving a linear
PDE problem is given in the form

Lu = f, in Ω, (1)

Bu = g on ∂Ω

with a linear differential operator L and a linear boundary operator B. Consider smooth
symmetric positive definite kernel K : Ω × Ω → R on spatial domain Ω. This means
that for all finite sets X := {x1, · · ·xN} ⊆ Ω the kernel matrix A := (K(xj , xk))1≤j,k≤N
is symmetric and positive definite. It is well-known that this kernel is reproducing in
a ”native” Hilbert space Nk = span{K(x, .) : |x ∈ Ω} of functions on Ω in the sense
〈u,K(x, .)〉Nk = u(x) ∀x ∈ Ω, ∀u ∈ Nk.
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2 Greedy Algorithm

Here a greedy algorithm will be described in the context of radial basis functions for PDEs.
It is based on paper [4]. In this algorithm we let Ω ⊂ Rd be a bounded domain with a
continuous positive definite kernel K on it. Also we take a large finite subset X as data
points. For a fixed domain, a fixed kernel and a fixed scale, this algorithm gives the first
n Newton basis functions on N points, and provides a subset of best trial points among
the data site X. Then we shall use these greedy points as trial points for the collocation
method on the same domain with the same kernel and scale. The complexity of this algo-
rithm is O(Nn2) and it requires a total storage of O(Nn).

Algorithm 1: Adaptive calculation of Newton basis on optimal points

Data: X ∈ RN×d: data points; nmax: maximal number of points to be finally
selected; ε: power function tolerance; The symmetric positive definite kernel
K : Ω× Ω→ R

Result: I: the indices of greedy selected points from X;
Initialize Inmax×1 := 0;
k := (K(x1, x1), . . . ,K(xN , xN ))T ; % [x1; . . . ;xN ] = X
i := argmax1≤t≤N (kt);
z := ki;
v1 := K(X,xi)√

ki
; % component-by-component root and division

w := v2
1; % component-by-component square

I1 := i;
for j := 2 to nmax do

i := argmax1≤t≤N (kt −wt); z := ki −wi;
if z < ε then

j := j − 1;
break;

k0 := K(X,xi);
for k := 1 to j − 1 do

k0 := k0 − vk,i ∗ vk;

vj := k0√
ki−wi ; % component-by-component root and division

w := w + v2
j ; % component-by-component square

Ij := i;

return: I.

3 Meshless methods

The algorithm 1 suggests the best trial points and we use them for Kansa’s method. It
sufficients to run the algorithm for predetermined kernel, scale and domain Ω. Then
selected points are used for PDE solution in the same domain with a possibly different set
of test points.
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Table 1: RMS-errors and condition number for test problem

Greedy method Usual Kansa method
N RMS-error Condition Number RMS-error Condition Number

80 0.0302 1.8825e+007 0.0946 4.2819e+010
120 2.5534e-004 1.3433e+009 0.0065 1.3176e+011
160 5.2268e-004 6.9924e+010 0.0012 2.8090e+011
200 8.5355e-005 2.0741e+012 2.0152e-004 2.3162e+013
240 2.4113e-005 5.6810e+013 6.2529e-005 3.7933e+016

4 Numerical Example

In the following numerical result some well known PDE are solved by the greedy Kansa’s
method and compared with the full Kansa’s method. We compare the stability of both
methods by examining the condition number of their coefficient matrices. Also, for com-
paring the accuracy we examin the maximum errors (MAX) and the root mean square
(RMS) errors. The maximum errors evaluated by

MAX = max
1≤j≤N

|uj − ũj |,

and the root mean square errors evaluated by

RMS =


 1

N

N∑

j=1

(uj − ũj)2


1/2

,

4.1 Test Problem

Consider the following Poisson problem with Dirichlet boundary conditions:

∆u = 4ex
2+y2 + 4(x2 + y2)ex

2+y2 ,

u = ex
2+y2 ,

and ∂Ω is an ellipse whose equation is x2 + 4y2 − 1 = 0. In this case the exact solution
is given by u(x, y) = ex

2+y2 . By Algorithm 1 we generated different n numbers of trial
points also we selected n random points to use in first method. Figure 1 shows the first
80 selected points and the decay of the maximum of the power function for this case.
A comparsion between greedy Kansa method and usual Kansa for different n values is
implementated and the results are reported in Table 1. It shows that using the Algorithm
1 causes the errors is minimized and the condition number is improved. Decay of power
function in Figure 1 and MAX-errors in Figure 2 guarantee the accuracy of greedy kansa
method.
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A method of particular solutions with Chebyshev basis

functions for systems of multi-point boundary value problems

Elham Malekifard∗

Kharazmi University

Esmail Babolian

Kharazmi University

Abstract

This paper presents a new semi-analytic numerical method for solving system of
multi-point boundary value problems. The method is based on the use of the particular
solutions of the linearized equation. Numerical implementation confirms the validity,
efficiency and applicability of the method.

Keywords: Particular solutions, System of Multi-point boundary value problems,
Chebyshev basis functions.

Mathematics Subject Classification [2010]: 34B15, 35J57

1 Introduction

We consider the following multi-point boundary value problem (MPBVPs):

u(s) = F (u, u′, . . . , u(s−1), x), x ∈ [0, 1], (1)

s−1∑

j=0

aj,ku
(j)(ξj,k) = dk, 0 ≤ ξj,k ≤ 1, k = 1, . . . , s, (2)

where some of the coefficients aj,k, dk could be equal to zero. Sometimes we write the
equation in the form

u(s) = F (u, u′, . . . , u(s−1), x) + f(x) (3)

highlighting that f(x) does not depend on u. The linear analogs of (3)

u(s) =

s−1∑

k=0

Aku
(k)(ξ) + f(x), x ∈ [0, 1], (4)

is also considered in the paper. We assume that F ; Ak and f are smooth enough functions
with respect to their arguments.
In this paper we use the semi-analytic method proposed earlier in[1, 3, 4] to solve nonlinear
two-point BVPs. This method is described in detail in the next section. Then we apply
it to solve the system of nonlinear two-point BVPs. A numerical example illustrating the
applicability of the method is placed in Section 3.
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2 Main algorithm

Let ϕm(x) be some system of basis functions on [0, 1], here we consider the Chebyshev
basis functions

φ1(x) = 1, φ2(x) = x,

φm(x) = 2xφm−1(x) − φm−2(x), m = 3, . . . , M. (5)

The particular solutions of the equation ϕ
(s)
m (x) = φm(x), which correspond to the basis

functions φm are:

ϕm(x) =
1

(s − 1)!
.

∫ x

0
(x − t)s−1φi(t)dt. (6)

We denote
Φm(x) = ϕm(x) + cm,0 + cm,1x + . . . + cm,s−1x

s−1. (7)

So, Φ
(s)
m satisfies Φ

(s)
m (x) = ϕ

(s)
m (x) = φm(x). The free coefficients cm,i in (7) are chosen in

such a way that Φm satisfy the homogeneous boundary conditions (2):

s−1∑

j=0

aj,kΦ
(j)
m (ξj,k) = 0, k = 1, . . . , s. (8)

Substituting (7) in (8), one gets a linear system for cm,0, cm,1, . . . , cm,s−1. We assume that
the nonlinear term in (3) can be approximated by the linear combinations of the basis
functions φm(x):

F (u, u′, . . . , u(s−1), x) =
M∑

m=0

qmϕm(x). (9)

Substituting this approximation in the initial equation (3), one gets

u
(s)
M (x) =

M∑

m=0

qmϕm(x) + f(x). (10)

Let uf (x) satisfy the equation u
(s)
f (x) = f(x) and the boundary conditions (2):

s−1∑

j=0

aj,ku
(j)
f (ξj,k) = dk. (11)

When there exists a particular solution up(x) in explicit analytic form, then it can be
written in the form:

uf (x) = up(x) + c0 + c1x + . . . + cs−1x
s−1. (12)

When there are no particular solution, f(x) is joined to the nonlinear term and we get
us

f (x) = 0, and uf (x) = c0 + c1 + . . . + cs−1x
s−1. Substituting uf (x) in (11), one gets a

linear system for c0, c1, . . . , cs−1. So

uM (x,q) = uf (x) +

M∑

m=1

qmΦm(x), q = (q1, . . . , qM ) (13)
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satisfies Eq. (10) and the boundary conditions of the initial problem (2). To get unknowns
q1, . . . , qM we substitute uM (x,q) in (9)

F
(
uM (x,q), u

(1)
M (x,q), . . . , u

(s−1)
M (x,q), x

)
=

M∑

m=1

qmϕm(x). (14)

Note that we can always get the uf (x) in the analytic way when f(x) is a simple com-
bination of elementary functions, e.g., quasipolynomial (b0 + b1x + . . . + bpx

p)exp(µx).
Otherwise we can use the formula

uf (x) =
1

(n − 1)!

∫ x

x0

(x − t)s−1f(t)d(t) + c0 + c1 + . . . + cs−1x
s−1 (15)

and evaluate the integral numerically. Another approach is to join the term f(x) to the
nonlinear term F . To solve (14) we use the following algorithm. Let 0 6 x1 < x2 < . . . <
xM 6 1 be collocation points. In particular, we use the Chebyshev collocation points

xn =
1

2

[
1 + cos

(
π(n − 1)

M − 1

)]
. (16)

We write the collocation of (14) at these points and get the system of M nonlinear equa-
tions

F
(
uM (xn,q), u

(1)
M (xn,q), . . . , u

(s−1)
M (xn,q), xn

)
=

M∑

m=1

qmϕm(xn), n = 1, . . . , M. (17)

We solve this system of equations. Dealing with linear problems (4), one gets

f(xn) +
s−1∑

k=0

Ak(xn)

[
u

(k)
f (xn) +

M∑

m=1

qmΦ(k)
m (xn)

]
=

M∑

m=1

qmϕm(xn) (18)

instead of (17). Rewriting in the form

M∑

m=1

[
s−1∑

k=0

Ak(xn)Φ(k)
m (xn) − ϕm(xn)

]
= −f(xn) −

s−1∑

k=0

Ak(xn)u
(k)
f (xn), (19)

we get the linear system for q1, . . . , qM and the linear system is solved by Maple. After de-
termining q1, . . . , qM we get the approximate solution uM (x,q) (13). We use the maximal
absolute errors emax to evaluate the exactness of the solution.

3 Illustration of the method

As a sample we consider the following system of nonlinear BVP with the equations of the
second order [2]:





u
′′
(x) + u′(x) + xu(x) + v′(x) + 2xv(x) = f1(x),

v
′′
(x) + v(x) + 2u′(x) + x2u(x) = f2(x),

u(0) = u(1) = 0, v(0) = v(1) = 0,

(20)
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Table 1: The maximum absolute errors for different numbers of the basis functions

M 5 10 15

emax for u(x) 0.0010063093 0.00000449789 1.5493 × 10−7

emax for v(x) 0.0015402899 0.0000019050 4.92 × 10−8

where 0 ≤ x ≤ 1, f1(x) = −2(1+x) cos(x)+π cos(πx)+2x sin(πx)+(4x−2x2 −4) sin(x),
and f2(x) = −4(x − 1) cos(x) + 2(2 − x2 + x3) sin(x) − (π2 − 1) sin(πx) with the exact
solutions uexact(x) = 2 sin(x)(1 − x) and vexact(x) = sin(πx).

For equations (20) we have s = 2. We define φi(x) and ϕi(x) as said in the previous
section and Φi(x) = ci,0 + ci,1x. The coefficients ci,0 and ci,1 will be determined by substi-
tuting Φi(x) in the homogenous boundary conditions. Also, we set uf (x) = c1,0+c1,1x and
vf = c2,0 + c2,1x and they will be determined by solving the system of equations achived
from substituting uf and vf in the non-homogenous boundary conditions. Now we set

uM (x) = uf (x) +

M∑

m=1

qmΦm(x), (21)

vM (x) = vf (x) +
M∑

m=1

qM+mΦm(x) (22)

To get unknowns q1, . . . , q2M we substitute uM (x) and vM (x) in (20) and use collocation
method. The maximum absolute errors emax are shown in Table 1 for different numbers
of the basis functions M .
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A New Adaptive Element Free Galerkin Algorithm Based on

the Background Mesh∗

Maryam Kamranian†
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Abstract

In this work we present an adaptive element free Galerkin procedure based on
background mesh for meshless methods using MLS. It comprises a cell energy error
estimate and a local domain refinement technique. The error estimate differs from
conventional point wise approaches in that it evaluates error based on individual cells
instead of points. In this technique, each node is assigned a scaling factor to control
local nodal density and achieve high efficiency in domain refinement. Refinement of the
neighborhood of a node is accomplished simply by adjusting its scaling factor. Some
challenging problems are discussed to show that the proposed adaptive procedure is
effective, efficient and convergent.

Keywords: Meshless methods, Adaptive Element Free Galerkin (EFG) method, A
posteriori error estimate, Moving Least Squares (MLS) approximation, Crack problem.

Mathematics Subject Classification [2010]: 65M99

1 Introduction

The Element Free Galerkin (EFG) method [2, 3] may be regarded as an alternative to
the finite element method especially for problems with discontinuities, e.g. crack prop-
agation problems. The EFG method differs from the FEM by using the Moving Least
Squares (MLS) approximation. In practical implementations, EFG formulation requires a
background mesh for domain integration.

A posteriori error estimates, initiated in [1], are computable quantities in terms of
the discrete solution and known data that measure the actual discrete errors without the
knowledge of exact solutions. They are essential in designing algorithms for mesh refine-
ment which optimize the computation. The ability of error control and the asymptotically
optimal approximation property make the adaptive finite element methods attractive for
complicated physical and industrial processes.

∗Will be presented in English
†Speaker
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2 Adaptive element free Galerkin method

Let Ω be a bounded polyhedral Lipschitz domain in Rd, d ≥ 2. In what follows we will
study the following second order elliptic equation: Find u ∈ VD

{
Lu(x) := −div(A∇u) + cu = f, in Ω,
u = 0, on Γ,

(1)

where VD := {u ∈ H1(Ω) : u|Γ = 0 in the sense of traces}. For any f ∈ L2(Ω), the weak
formulation of the problem (1) reads as follows: Find u ∈ VD such that

∫

Ω
A∇u.∇v + cuv =

∫

Ω
fv +

∫

Γ
gv, ∀v ∈ VD. (2)

Let X = {x1, ..., xN} ⊆ Ω be a set of meshless points scattered over Ω. The MLS method
approximates the function u by its values at points xj , j = 1, 2, ..., N , by

ũ(x) =
N∑

j=1

φj(x)u(xj), x ∈ Ω, (3)

where φj(x) are MLS shape functions obtained in such way that ũ(x) be the best ap-

proximation of u(x) in polynomial subspace Pm(Rd) = span{p1, ..., pQ}, Q =
(
m+d
d

)
, with

respect to a weighted, discrete and moving l2 norm (see [4, 5, 6] for more detailes).
Now suppose that Vh is a subspace built using MLS shape functions, that is, Vh =

span{ϕ1, ϕ2, . . . , ϕN}. Then the EFG solution of this problem is to find uh ∈ Vh such that

∫

Ω
A∇uh.∇vh + cuhvh =

∫

Ω
fvh +

∫

Γ
gvh, ∀vh ∈ Vh, (4)

which leads to the following system
Ku = b, (5)

where Kij =
∫

Ω A∇ϕi.∇ϕj + cϕiϕj and bi =
∫

Ω fϕi +
∫

Γ gϕi.

2.1 Adaptive strategy

In the following discussion we will consider a sequence of background cells T0, T1, T2, . . .,
where T0 is a given (coarse) mesh and each Tl+1 is the standard refinement of Tl. Now
we shall give a brief description and some properties of the new adaptive algorithm. Our
adaptive algorithm is implemented on Adaptive Element Free Galerkin (AEFG) package,
which is developed for solving PDEs by authors of the current work. We define the local
a posteriori error estimator over an element T ∈ Tl by

ηl(T )2 := h2
T ‖L|Tul − f‖2L2(T ), (6)

for all T ∈ Tl and all l ∈ N. Here hT is the radius of ΩT , the domain of definition of T .
The global a posteriori error estimate over Tl is defined as the l2 sum of the element

wise contributions
η2
l =

∑

T∈Tl
ηl(T )2. (7)
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Figure 1: The final nodes distribution, contour curves and elevations of the EFG solution
after 20 iterations for the L-shaped domain.

Now we describe the adaptive algorithm used in this paper.

Algorithm 2.1. Input: Initial triangulation T0 and adaptivity parameter 0 < θ ≤ 1.
Loop: For l = 0, 1, 2, . . . do 1-4

1. Compute discrete solution ul of (5)

2. Compute refinement indicators ηl(T ) for all T ∈ Tl and ηl.

3. Determine set Ml ⊆ Tl of minimal cardinality such that

θη2
l ≤

∑

T∈Ml

ηl(T )2. (8)

4. Refine (at least) the marked elements T ∈Ml to obtain the triangulation Tl+1.

Output: Approximate solutions ul and error estimators ηl for all l ∈ N.

We remark that this loop can be controlled by a stopping criterion based on the
a posteriori error estimator ηl, avoiding too many iterations on coarse meshes. After
reaching to a desirable tolerance, values of u(x) at any point x can be approximated by
MLS approximation.

3 Numerical Examples

This section reports some numerical results regarding the singularities. In this section we
demonstrate the performance of the implicit error estimator (6) applied to the second order
elliptic equation with singularities on a domain Ω ⊂ R2. Our implementation uses MLS
approximation with first order polynomials. In all numerical results, the experimental
parameter θ is set 0.5.

Example 3.1. (L-shaped domain) The first experiment is to solve the Laplace equation
with Dirichlet boundary condition in the L-shaped domain Ω = (−1, 1)× (0, 1)∪ (−1, 0)×
(−1, 0], where the exact solution is given by u(r, θ) = r2/3 sin

(
2
3

)
. The elevations and con-

tour plots of the adaptive EFG solution and the final nodes distribution after 20 iterations
are shown in Fig. 1.
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Figure 2: The final nodes distribution, contour curves and elevations of the EFG solution
after 20 iterations for crack problem.

Example 3.2. (Crack problem) Let Ω = {|x| + |y| < 1} {0 ≤ x ≤ 1, y = 0}, and the
solution u satisfies the Poisson equation

−∆u = 1 in Ω,

u = g on ∂Ω, (9)

and g is chosen so that the exact solution is u(r, θ) = r1/2 sin
(
θ
2

)
− 1

4r
2. The elevations

and contour plots of the adaptive EFG solution and the final nodes distribution after 20
iterations are shown in Fig. 2.
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A new iterative method for solving free boundary problems

Maryam Dehghan∗

Persian Gulf University

Saeed Karimi

Persian Gulf University

Abstract

In this paper, an efficient iterative method is proposed to approximate the solution
of free boundary problems (FBP). This method is based on hybrid of the radial basis
function (RBF) collocation and finite difference (FD) methods. Finally, a numerical
example is given to illustrate the good performance of the new method.

Keywords: Free boundary problem, Multiquadric radial basis functions.
Mathematics Subject Classification [2010]: 35R35, 65N06

1 Introduction

A free-boundary problem is a partial differential equation that in which some part of the boundary
is not known, but is to be determined. The segment Γ of the boundary of domain which is not
known is called the free boundary. Then, both the free boundary and the solution of the differential
equation should be determined.

Let Ω be a bounded open subset of Rn, n ≥ 1 with smooth boundary ∂Ω. Assume further that
g ∈ W 1,2(Ω) and takes both positive and negative values over ∂Ω, and λ± : Ω → R are positive
Lipschitz-continuous functions. The study of the following FBP is suggested by Weiss in [3]. Find
a weak solution u ∈ W 1,2(Ω) of ∆u = λ+χ{u>0} − λ−χ{u<0}, in Ω such that u − g ∈ W 1,2

0 (Ω) for
a given g ∈W 1,2(Ω), where χA denotes the characteristic function of the set A. This problem can
be modeled as follows

{
∆u = λ+χ{u>0} − λ−χ{u<0}, x ∈ Ω;
u = g, x ∈ ∂Ω.

(1)

If, in addition, we assume that λ− = 0 and g be non-negative on the boundary then we have the
one-phase obstacle problem.
The free boundary problems (1) have been studied from different viewpoints, see [1, 2].

In this study, we propose an efficient iterative method to solve two-phase problem, one-phase
obstacle problem and FBP of the form





∆u = −
{
λ+u, if u > 0;
0 if u ≤ 0.

, x ∈ Ω;

u = g, x ∈ ∂Ω.
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2 Main results

In this section, we present a new iterative method to solve the two-phase boundary problem (1)
and the free boundary problem (2). Also, this method is capable for solving one phase obstacle
problem. To do so, we consider a uniform mesh on Ω ⊂ R2 and let ∆x = ∆y = h. For simplicity
let Ω = [−1, 1]× [−1, 1] ⊂ R2 and

pi,j = (−1 + (i− 1)h,−1 + (j − 1)h), i, j = 1, . . . ,m, h =
2

m− 1
, N = m2.

We define xl = pi,j , i, j = 1, . . . ,m, and

ūl =
1

4
[u(pi−1,j) + u(pi+1,j) + u(pi,j−1) + u(pi,j+1)], i, j = 2, . . . ,m− 1, (2)

where l = j + (i − 1)m and ūl = ū(xl). Consider xl, l = 1, 2, . . . , N , as collocation points. Let
M of them are located in the domain and N −M of them on the boundary of the problem. The
unknown solution u is approximated by a linear combination of the form

u(x) ≈ ũ(x) =
N∑

i=1

αiφi(x), (3)

where φi(x) =
√
c2 + ||x− x̄i||2 is the Multiquadric RBF and x̄i, i = 1, 2, . . . , N , are the centers

of RBF. Also, αi, i = 1, 2, . . . , N are the unknown coefficients to be determined. Note that, here
we consider the centers of RBF and collocation points the same. Hence, we present an iterative
method which is based on combination of RBF collocation and FD methods for solving them. This
method has been described as follows. For N −M nodal points are located on the boundaries
(xl ∈ ∂Ω), the Dirichlet boundary condition is imposed by

ũk+1
l = gl, (4)

at iteration k+1. For nodes which are located in the interior of the domain, we present two methods
for two-phase problem (1) and free boundary problem (2).
Method A
Consider the two-phase problem (1). In the interior points of domain, this problem is equivalent
with the following problem





∆u = λ+, if u > 0;
∆u = −λ−, if u < 0;
u = 0, otherwise.

(5)

By using FD method, the system (5) can be written as





u(pi−1,j) + u(pi+1,j) + u(pi,j−1) + u(pi,j+1)− 4u(pi,j) = λ+
l h

2, if ūl − λ+
l h

2

4 > 0;

u(pi−1,j) + u(pi+1,j) + u(pi,j−1) + u(pi,j+1)− 4u(pi,j) = −λ−l h2, if ūl +
λ−
l h

2

4 < 0;
u(pi,j) = 0, otherwise;

(6)

where λ+
l = λ+(xl), λ

−
l = λ−(xl). Hence, for the two-phase problem, for each node located in the

domain (xl in Ω), we have the following iterative procedure by combining finite difference and RBF
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collocation methods
{

ũk+1
l = 0, if ûkl ≤ 0 and ˆ̂ukl ≥ 0;

∆ũk+1(x) |x=xl= λ+
l χûkl >0 − λ−l χˆ̂ukl <0, otherwise;

(7)

where ûkl = ūkl −
λ+
l h

2

4 , ˆ̂ukl = ūkl +
λ−
l h

2

4 and

ūkl =
1

4
[uk(pi−1,j) + uk(pi+1,j) + uk(pi,j−1) + uk(pi,j+1)], k = 0, 1, . . . , (8)

i, j = 2, 3, . . . ,m− 1, l = j + (i− 1)m.

Putting equations (4) and (7) together results in a linear system of equations.
Method B
Consider the FBP (2). In the interior points of domain, this problem is equivalent with





∆u = −λ+u, if u > 0;
∆u = 0, if u < 0;
u = 0, otherwise.

(9)

By using FD method, system (9) can be written as





u(pi−1,j) + u(pi+1,j) + u(pi,j−1) + u(pi,j+1)− 4u(pi,j) = −λ+
l h

2u(pi,j), if ūl

1−λ
+
l
h2

4

> 0;

u(pi−1,j) + u(pi+1,j) + u(pi,j−1) + u(pi,j+1)− 4u(pi,j) = 0, if ūl < 0;
u(pi,j) = 0, otherwise.

(10)

Let M̄ = max
xl∈Ω

√
λ+
l . If we choose h such that h < 2/M̄ , then 1− λ+

l h
2

4 > 0, for every xl in Ω. Thus

system (10), is reduced to





u(pi−1,j) + u(pi+1,j) + u(pi,j−1) + u(pi,j+1)− 4u(pi,j) = −λ+
l h

2u(pi,j), if ūl > 0;
u(pi−1,j) + u(pi+1,j) + u(pi,j−1) + u(pi,j+1)− 4u(pi,j) = 0, if ūl < 0;
u(pi,j) = 0, if ūl = 0.

(11)

Then, similar to method A, For each node located in the domain (xl in Ω), we have the following
iterative procedure {

ũk+1
l = 0, if ūkl = 0;

∆ũk+1(x) |x=xl= −λ+
l ũ

k+1
l χūkl >0, otherwise;

(12)

where k = 0, 1, 2, . . ..
Two above methods are summarized as the following algorithm.
algorithm

step 1: Choose an initial guess as u0
l =

{
0, if xl in Ω;
gl, if xl on ∂Ω

step 2: For k = 0, 1, 2, . . ., until convergence, Do

step 3: Compute ūkl from equation (8)
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step 4: Solve the linear system obtained from method A or B

step 5: Set the approximate solution ũk(x) =
N∑

i=1:N

αki φi(x), where αk = (αk1 , α
k
2 , . . . , α

k
N )T

is the solution obtained from step 4

step 6: Put uk = ũk

step 7: EndDo

3 Numerical results

Example 3.1. consider the following problem ∆u = −uχ{u>0}, (x, y) ∈ (−4, 4)2, with the

analytical solution u(x, y) =

{
J0(r), if r < rc,
A ln rc

r , ifr ≥ rc, where r2 = x2 + y2 and rc ≈ 2.404826 is the

first zero of J0(r) and A ≈ 1.248459. By applying the proposed method for solving this problem,
after 6 iterations, we obtain ||e||∞ = 5.2586e − 04 (max error) and eRMS = 2.0659e − 04 (RMS
error) with m = 31 and c = 0.4. The numerical results are depicted Figure 1.
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Figure 1: The numerical solution of problem (left), the level set of solution (middle), the error
solution (right) for Example 3.1.
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A new method for Lane-Emden type equation in terms of

shifted orthonormal Bernestein polynomial
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Abstract

In this paper, we introduce shifted orthonormal Bernstein polynomials (SOBPs)
and drive the operational matrix of integration of these functions. Then, we apply
Galerkin method with numerical integration to solve linear and nonlinear Lane-Emden
type singular initial value problems (IVPs). The idea of obtaining our algorithm is
essentially based on converting the differential equation with its initial conditions to a
system of linear or nonlinear algebraic equations. Numerical results with comparison
are given to confirm the validity, efficiency and applicability of the method.

Keywords: shifted orthonormal Bernstein polynomials , operational matrix, Galerkin
method with numerical integration

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Recently, the studies on (IVPs) for second order ordinary differential equations (ODEs)
have been the focus of considerable attention. One of the second order equations describing
this type of problem is the Lane-Emden singular IVPs, which can be written in the form
of

y′′(x) +
α

x
y′(x) + f(x, y) = g(x), α ≥ 0, 0 ≤ x ≤ L, (1)

subject to initial conditions

y(0) = A, y′(0) = B, (2)

where A and B are constants, f(x, y) is a continuous real valued function, and g(x) ∈
C[0, L]. In this study, a new method based on SOBPs defined on the interval [0, L] is
developed for approximate solution of the nonlinear differential equations of Lane-Emden
type. Recently, some other approximate solutions of Lane-Emden equations are obtained
[1, 2].
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2 Shifted Orthonormal Bernstein Polynomials

The explicit representation of the orthonormal Bernstein polynomials of mth degree are
defined on the interval [0, 1] as

ψj,m(t) =
√

2(m− j) + 1(1 − t)m−j
j∑

k=0

(−1)k

(
2m+ 1 − k

j − k

)(
j

k

)
tj−k,

j = 0, · · · ,m. (3)

The shifted orthonormal Bernestein polynomials on [0, L] can easily be obtained by using
the transformation t = x

L in (3)

φi,m(x) =
1√
L
ψi,m(

x

L
), i = 0, . . . ,m,

which are shifted orthonormal polynomials on [0, L] respect to weight function w(x) = 1.

2.1 Expansion of SOBPs in Terms of Taylor Basis

By using Taylor expansion, φj,m(x), x ∈ [0, L] can be represented as

φj,m(x) = Zj+1Tm(x), j = 0, . . . ,m,

where Zj+1 is a row vector of Taylor coefficients and

Tm(x) = [1, x, x2, . . . , xm]T .

we denote by Z the matrix whose jth row is Zj , (j = 1, · · · ,m+ 1).

2.2 Function Approximation

Theorem 2.1. For any u ∈ L2
ω(I) and m ∈ N, there exists a unique q∗

m ∈ Pm such that,

∥u− q∗
m∥L2

ω
= inf

qm∈Pm

∥u− qm∥L2
ω
,

The SOBPs are orthogonal with respect to the weight function ω(x) = 1 over I = (0, L).
Therefore, if f is an arbitrary element in L2(0, L), by theorem 1, f has the unique best
approximation πmf , such that

πmf =

m∑

k=0

ckφk,m, ck = (f, φk,m), k = 0, . . . ,m.

2.3 SOBPs Operational Matrix of Integration

Let P be the (m+ 1) × (m+ 1) operational matrix of integration, i.e.

∫ x

0
Φ(t)dt ≃ PΦ(x), 0 ≤ x ≤ L, (4)
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it can be obtained as
P = ZΛB,

which Φ(x) = [φ0,m(x), . . . , φm,m(x)]T , and Λ and B can be expressed as follows

Λ =




1 0 0 . . . 0
0 1

2 0 . . . 0
...

...
...

...
0 0 0 . . . 1

m+1


 ,

B = [Z−1
2 , Z−1

3 , . . . , Z−1
m+1, C

T
m+1]

T ,

and

Cm+1 =

∫ L

0
xm+1Φ(x)dx.

3 Description of method to solve Lane-Emden equations

Now, let us consider Lane-Emden equation (1) subject to the initial conditions (2). If we
approximate y(x), f(x, y) and g(x) by the SOBPs as

y′′(x) ≃ CT Φ(x), x ∈ [0, L], (5)

integrating from 0 to x on both sides of (5) and using (4), and initial conditions (2) lead
to

y′(x) ≃ CTPΦ(x) +B, y(x) ≃ CTP 2Φ(x) +Bx+A, x ∈ [0, L].

On the other hand, we have

f(x, y) ≃ f(x,CTP 2Φ(x) +Bx+A),

also, we expressed function g(x) as

g(x) ≃ GT Φ(x),

where CT = [c0, c1, . . . , cm], and GT = [g0, g1, . . . , gm].
Using operational matrix of integration SOBP, the residual Rm(x) for(1) can be written
as

Rm(x) = CT Φ(x) +
α

x
(CTPΦ(x) +B) + f(x,CTP 2Φ(x) +Bx+A) −GT Φ(x). (6)

If we apply the Galerkin method with numerical integration, then (6) is reduce to (m+1)
linear or nonlinear equations, namely

⟨Rm(x), φi,m(x)⟩n =

n∑

j=0

Rm(xj)φi,m(xj)wj , i = 0, . . . ,m, (7)

where {xj , wj}n
j=0 being the set of shifted Legendre-Gauss quadrature nodes and weights.

The system (7) can be solved with the aid of Newton’s iteration method for the unknown
components of vector C, and hence the approximate solution πmy(x) can be obtained.
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Table 1: Comparison of y(x), between present method and methods [3, 4], for Example 2

.

x present method HFC [3] Wazwaz [4] Padé approximate
(n = 20,m = 15) (N = 30) [24,24]

0.0 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.1 -0.0016658339 -0.0016664188 -0.0016658339 -0.0016658339
0.2 -0.0066533671 -0.0066539713 -0.0066533671 -0.0066533671
0.5 -0.0411539573 -0.0411545150 -0.0411539573 -0.0411539573
1.0 -0.1588276775 -0.1588281737 -.15882767752 -0.1588276775
1.5 -0.3380194248 -0.3380198308 -0.3380194248 -0.3380194248
2.0 -0.5598230043 -0.5598233120 -0.5598230043 -0.5598230043
2.5 -0.8063408706 -0.8063410846 -0.8063408706 -0.8063408706

4 Numerical results

Example 1. We consider the isothermal gas spheres equation as follows

y′′(x) +
2

x
y′(x) + ey(x) = 0, x ≥ 0,

subject to the boundary conditions

y(0) = 0, y′(0) = 0.

This equation has been solved by [3]. We solve the equation with m = 15, n = 20. In
Table 1 we lists a comparison between the values of y(x) obtained by the present method
and those obtained by Padé approximate and methods in [3, 4]. The results show that
our approach is more accurate.
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A non-standard finite difference method for HIV infection of

CD4+T cells model

Morteza Bisheh Niasar∗

Department of Applied Mathematics, Faculty of Mathematical Science, University of Kashan, Kashan, Iran

Abstract

A dynamical model of HIV infection of CD4+T cells is solved numerically using a
non-standard finite difference(NSFD) method. This new discrete system has the same
properties as the continuous model. Through discrete Lyapunov function, the global
asymptotical stability of the steady-state solution(when the basic reproduction number
R0 ≤ 1)is determined. The Schur-Cohn criteria is used for local asymptotical stability
of the steady-state solution, when R0 > 1 as well. Finally, numerical simulations are
provided to illustrate the theoretical results.

Keywords: non-standard finite difference method, asymptotical stability, Lyapunov
function, basic reproduction number.
Mathematics Subject Classification [2010]: 65Q10, 65M06

1 Introduction

Consider the dynamic model for HIV infection of CD4+T cells[1]:





∂T
∂t = λ − αT + rT (1 − T+I

Tmax
) − kV T,

∂I
∂t = kV T − βI,
∂V
∂t = NβI − γV.

, T (0) ≥ 0 , I(0) ≥ 0 , V (0) ≥ 0. (1)

where T (t), I(t) and V (t) denote concentration of uninfected, infected and viruse popu-
lation of CD4+T cells by HIV in the blood. Tmax is maximum level of CD4+T cells in
the body, r is the rate at which T cells multiply through mitosis, λ is the constant rate
which the body produces CD4+T cells, α is the death rate of CD4+T cells, β is the death
rate of infected cells and γ is the death rate of virus particles. k is the rate of infection of
T cells by virus and each infected CD4+ T cell is assumed to produce N virus particles
during its life time. All the coefficients of Eq(1) are positive real numbers. Eq(1) has two
steady states as follows:

E0 = (T0, I0, V0) = (
Tmax(r − α +

√
(α − r)2 + 4rλ/Tmax

2r
, 0, 0)

E1 = (T1, I1, V1) = (
γ

kN
,

λkN
γ + r − α − rγ

TmaxkN

r
Tmax

+ kNβ
γ

,
Nβ

γ
I1).

∗Speaker

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

A non-standard finite difference method for HIV infection of CD4+T cells . . . pp.: 1–4

1049



and the basic reproduction number of infection is given by R0 = kNT0
γ [2] . This type

of models has been considered by several researchers [3, 4]. This paper is organized as
follows: In section 2 an NSFD method will be develope for Eq(1) and its steady-states
are introduced. The asymptotical stabilities of the steady state solutions are analysed in
section 3. In section 4 we will present some numerical simulations.

2 Discretization of the Model

For discretization of Eq(1), consider uniform step size ∆t = h on t axis. Notationally
Tn, In, and Vn will be approximate T (t), I(t), and V (t) at nh. With this notation we
propose the following NSFD method for Eq(1):





Tn+1−Tn

ϕ(h) = λ − αTn+1 + rTn − r TnTn+1

Tmax
− r Tn+1In

Tmax
− kVnTn+1

In+1−In

ϕ(h) = kVnTn+1 − βIn+1
Vn+1−Vn

ϕ(h) = NβIn+1 − γVn+1

(2)

where ϕ(h) = h + O(h2) . It is easy to chek that Eq(2) has also the steady state solutions
E0, E1. In the next thorem, we want to show positivity of the solutions.

Theorem 2.1. For arbitary h > 0, the solution of Eq(2) satisfies Tn ≥ 0, In ≥ 0, and
Vn ≥ 0 for all n ∈ N .

Proof. The Eq(2) is equivalent to

Tn+1 =
λϕ(h) + (1 + rϕ(h))Tn

1 + αϕ(h) + rϕ(h)Tn+In
Tmax

+ kϕ(h)Vn

, In+1 =
In + kϕ(h)VnTn+1

1 + βϕ(h)
, Vn+1 =

Nβϕ(h)In+1 + Vn

1 + γϕ(h)
. (3)

For n = 0, we have T0 ≥ 0, I0 ≥ 0, and V0 ≥ 0. Assume that Tn ≥ 0, In ≥ 0 and Vn ≥ 0.
Then Eq(3) implies Tn+1 ≥ 0, In+1 ≥ 0 and Vn+1 ≥ 0.

3 Stability Analysis of the Model

Theorem 3.1. for arbitary h > 0, if R0 ≤ 1, then steady state E0 is globally asymptotically
stable.

Proof. Consider the Lyapunov function Ln = 1
ϕ(h)

[
NIn +(1+γϕ(h))Vn

]
. It is easy to see

thatLn ≥ 0 and equality is obtained only in E0. However Ln+1 − Ln = NkVnTn+1 − Vn =
Vn(NkTn+1 − γ) = γVn(R0

Tn+1

T0
− 1). For all n we have Tn ≤ T0[1]. Hence for R0 ≤ 1, we

will deduce that Ln+1 − Ln ≤ 0. It means that {Ln} is a monotone decreasing sequance
and there exist a constant L̄ ≥ 0 such that limn→∞ Ln = L̄. Thus limn→∞(Ln+1−Ln) = 0.
Therefor we have the following conclusion:
(i)If R0 < 1, then limn→∞ Vn = 0 and via the first and second equation in Eq(2), limn→∞ Tn =

T0 and limn→∞ In = 0.
(ii) If R0 = 1 we have limn→∞ Tn = T0 or limn→∞ Vn = 0 that both imply previous

results.

To investigate the infection when R0 > 1, we examine the local stability of E1. The
Jacobian matrix of Eq(3) is defined as M = ∂(Tn+1,In+1,Vn+1)

∂(Tn,In,Vn) . Let P (s) be the characteristic
polynomial of M .
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Lemma 3.2. (Jury condition, Schur-Cohn criteria, n=3) Suppose the characteristic poly-
nomail P (s) = s3 + p1s

2 + p2s + p3 is given. The solutions si, i = 1, 2, 3 of P (s)satisfy
|si| < 1 if the following three conditions are held:(i) P (1) > 0. (ii) (−1)3P (−1) > 0. (iii)
1 − (p3)

2 > |p2 − p3p1|.
Theorem 3.3. Suppose that P (s) = s3 + p1s

2 + p2s + p3 is the characteristic polynomail
M . If R0 > 1 and 1−(p3)

2 > |p2−p3p1|, then steady state E1 will be locally asymptotically
stable.

Proof. According to the linearized stability theorem, If all the roots of the characteris-
tic polynomial have absolute values less than one, then the equilibrium point E1is lo-
cally asymptotically stable. Hence we must investigate if conditions in above lemma
are satisfied. The first condition for M is equivalent to N2Tmaxk2λ − NTmaxαkγ +
NTmaxkγr − γ2r > 0. By definition R0, it is equivalent to R0 > 1. In the scond condition
ρ(r) = Ar2 + Br + C must be positive, where

A = γ2ϕ(3NTmaxβkγϕ2 + 2NTmaxβkϕ + 4NTmaxkγϕ − βγ2ϕ2 + 8NTmaxk − 2γ2ϕ − 4γ)

B = NTmaxkγ(3NTmaxβ2kγϕ3 + Nβkλγϕ3 + 4NTmaxβ2kϕ2 + 4NTmaxβkγϕ2

+αβγ2ϕ3 − β2γ2ϕ3 + 2Nkλγϕ2 + 8NTmaxβkϕ + 2αβγϕ2 − 2β2γϕ2 + 2βγ2ϕ2 + 4Nkλϕ

+4γ2ϕ + 8γ),

C = N2T 2
maxβk2(Nβkλγϕ3 + αβγ2ϕ3 + 2Nβkλϕ2 + 2Nkλγϕ2 + 4βγ2ϕ2

+4Nkλϕ + 4βγϕ + 4γ2ϕ + 8γ).

Above coefficients are positive, becouse Tmax is much larger than others. However, the
scond condition is satisfied and for locally asymptotically stable state, only the third
condintion in above lemma must be satisfied and this concludes the proof.

4 numerical simulations
In this section, the results are checked by doing numerical simulations. For this, we used
the maple17 and matlabR2010a software. Conside the initial conditions as follows[1]:

T (0) = 0.1, I(0) = 0, V (0) = 0.1, γ = 2.4, k = 0.0027,

λ = 0.1, α = 0.02, β = 0.3, Tmax = 1500.

If r = 0.001, then the basic reproduction number will be R0 = 0.0591. Theorem (3.1),
proves that for R0 ≤ 1, the steady state E0 of Eq(2) is globally asymptotically stable. That
is , the disease will die out. Figure 1 presents the graph of numerical solution connected to
T (t) with ϕ(h) = h = 0.5. Now if we consider r > 0.021, then R0 > 1.Theorem (3.3) shows
that if R0 > 1 , the steady state E1 of the NSFD method Eq(2) is locally asymptotically
stable if 1 − (p3)

2 > |p2 − p3p1| is true. Now if ϕ(h) = 0.05, then E1 will be locally
asymptotically stable for 0.021 ≤ r < 0.10002 or r > 1.7408. Figure 2 displays the graphs
of numerical solutions connected to T (t), V (t) when r = 4, 0.05 .
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Figure 1: r = 0.001, R0 = 0.0591, ϕ(h) = h = 0.5.

Figure 2: when r = 0.05, R0 = 10.1623(top), r = 4, R0 = 16.790(down).
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A numerical study for the MHD Jeffery-Hamel problem

based on orthogonal Bernstein polynomials

Amir Reza Shariaty Nasab∗

Yazd University

Ghasem Barid Loghmani

Yazd University

Mohammad Heydari

Yazd University

Abstract

In this investigation, a collocation method based on orthogonal Bernstein poly-
nomials for solving MHD Jeffery-Hamel problem is introduced. The validity of the
proposed method is ascertained by comparing our results with fourth-order Runge-
Kutta method (RK4) results.

Keywords: Orthogonal Bernstein polynomials, Jeffery-Hamel flows, Fluid mechanics

Mathematics Subject Classification [2010]: 34B15, 76A10

1 Introduction

The problem of an incompressible, viscous fluid between nonparallel walls, commonly
known as the Jeffery-Hamel flow, is an example of one of the most applicable type of flows
in fluid mechanics [1]. Consequently, this problem has been well studied in literature, see
for example, [2, 3].The classical Jeffery-Hamel problem was extended in [4] to include the
effects of an external magnetic field on an electrically conducting fluid. In this study, we
are going to introduce and implement a collocation method based on orthogonal Bernstein
polynomials [5] to find the approximate solution of the MHD Jeffery-Hamel problem.

2 Mathematical formulation

Consider the steady two-dimensional flow of an incompressible conducting viscous fluid
from a source or sink at the intersection between two rigid plane walls, where the angle
between them is 2α as shown in Fig. 1. We assume that the velocity is only along the radial
direction and depends on r and θ,V (u(r, θ), 0) [1]. Using continuity and the Navier-Stokes
equations in polar coordinates,

ρ∂

r∂r
(ru(r, θ)) = 0, (1)
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Figure 1: Geometry of the MHD Jeffery-Hamel flow in convergent cannel; (a) 2-D view
and (b) Schematic setup of problem.

u(r, θ)
∂u(r, θ)

∂r
= −1

ρ

∂p

∂r
+ v

[
∂2u(r, θ)

∂r2
+

1

r

∂u(r, θ)

∂r
+

1

r2

∂2u(r, θ)

∂θ2
− u(r, θ)

r2

]
, (2)

− 1

ρr

∂p

∂θ
+

2v

r2

∂u(r, θ)

∂θ
= 0. (3)

The continuity equation (1) implies that,

f(θ) ≡ ru(r, θ). (4)

Using dimensionless parameters,

F (x) ≡ f(θ)

fmax
, x ≡ θ

α
(5)

and eliminating p between (2) and (3), we obtain an ordinary differential equation for the
normalized function profile F (x) as:

F ′′′(x) + 2αReF (x)F ′(x) + (4 − H)α2F ′(x) = 0. (6)

Since we have a symmetric geometry, the boundary conditions will be

F (0) = 1, F ′(0) = 0, F (1) = 0. (7)

The Reynolds number is

Re ≡ fmaxα

v
=

Umaxrα

v

(
divergent channel : α > 0, Umax > 0

convergent channel : α < 0, Umax < 0

)
. (8)

3 Solution of the problem

In this section, we apply the orthogonal Bernstein collocation method (OBCM) to find
solutions for MHD Jeffery-Hamel problem (6) which satisfy the boundary conditions (7).
The orthogonal Bernstein polynomials are defined on the interval [0, 1] by [5]:

ϕj,n(x) =
(√

2(n − j) + 1
)

(1 − x)n−j
j∑

k=0

(−1)k

(
2n + 1 − k

j − k

)(
j

k

)
xj−k. (9)
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These polynomials can be written in a simpler form in terms of the original non-orthogonal
Bernstein basis functions as:

ϕj,n(x) =
√

2(n − j) + 1

j∑

k=0

(−1)k

(
2n+1−k

j−k

)(
j
k

)
(
n−k
j−k

) Bj−k,n−k(x) (10)

where Bj,n(x), j = 0, 1, . . . , n are Bernstein polynomials as follows:

Bj,n(x) =

(
n

j

)
xj(1 − x)n−j , j = 0, 1, . . . , n. (11)

Let the unknown function F (x) be approximated by a truncated series of orthogonal
Bernstein polynomials as:

F (x) ≃ Fn(x) =

n∑

j=0

fjϕj,n(x). (12)

Then, we construct the residual function by substituting F (x) by Fn(x) in the equation
(6):

RES(x) = F ′′′
n (x) + 2αReFn(x)F ′

n(x) + (4 − H)α2F ′
n(x), (13)

The equations for obtaining the coefficients fis come from equalizing RES(x) to zero at
collocation points xi i = 0, 1, . . . n − 3 plus three boundary conditions as follows:

RES(xi) = 0, i = 0, 1, . . . n − 3, (14)

Fn(0) = 1, F ′
n(0) = 0, Fn(1) = 0, (15)

where

xi =
1

2

(
1 + cos

(
(2i + 1)π

2n − 4

))
, i = 0, 1, . . . n − 3. (16)

Equations (14) and (15) generate a set of n + 1 nonlinear equations that can be solved by
Newton’s method for the unknown coefficients fis.

4 Numerical Results

Table 1 shows the numerical data for F (x) using DTM, HPM, HAM [6] and numerical
Rung-Kutta method for validity of the presented method (OBCM) with n = 30 when
α = 3◦, Re = 110 and H = 0. Fig. 2 display the effects of Reynolds number Re and steep
angle α of the channel on velocity profile of fluid.
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Table 1: Comparison of the numerical results when α = 3◦, Re = 110 and H = 0.

x DTM[6] HPM[6] HAM[6] OBCM Numerical
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Figure 2: Velocity diagram via OBCM for different values of Re (a) and velocity diagram
via OBCM for different values of α (b).
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A preconditioned method for approximating the generalized

inverse of large matrices

Saeed Karimi∗
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Abstract

In this paper, the preconditioned global least squares algorithm is applied to ap-
proximate the generalized inverse of nearly singular or rectangular matrices. This
preconditioner is based on the C-orthogonalization process, where C a symmetric pos-
itive definite matrix. Finally, some numerical experiments are given to illustrate the
efficiency of the new preconditioner.

Keywords: preconditioner, matrix equation, GL-LSQR algorithm, pseudo-inverse.
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1 Introduction

Throughout this paper, the following notations are used. ||.||F denotes the Frobenius
norm. We define the C-inner product by (x, y)C =< Cx, y >2 where C is symmetric
positive definite and x, y ∈ Rn.

Consider the following matrix equation

AXA = A. (1)

The solution of (1) is called the generalized inverse of A. The main objective of this paper
is computing the generalized inverses of nearly singular matrices and rectangular full rank
matrices.

Usually, iterative methods are applied to solve matrix equations with the large and
sparse coefcient matrices. Sometimes, these iterative methods may fail or have a low
convergence rate. To overcome this problem, one can use an appropriate preconditioner.
Recently [3], Toutounian and Karimi proposed the global least squares (GL-LSQR) method
for obtaining the approximate solution of matrix equation AX = B. Their method is a
global version of least squares method for solving linear system of equations with multiple
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right hand sides.
In this paper, we present a new preconditioning technique to find the approximate general-
ized inverses of nearly singular matrices and rectangular matrices by using the GL-LSQR
algorithm. This preconditioner is based on the C-orthogonalization, where C is a symmet-
ric positive-denite matrix.

2 The preconditoning technique

In this section, our main goal is to present a right preconditioner for the GL-LSQR algo-
rithm, denoted by R-PGLS, to solve the matrix equation (1). This preconditioner is based
on the C-inner product, where C is a symmetric positive matrix. We apply the GL-LSQR
algorithm 2 of [1] to the transformed matrix equation

ARY A = A, X = RY, (2)

where R is the inverse factor of the upper factorization (ATA)−1 = RRT . We demonstrate
that the incomplete inverse factor R can be implemented as a preconditioner.

More recently in [2], Karimi et al. presented a block preconditioner for the block
partitioned matrices. They used the incomplete inverse factor R̂ of ATA as a right precon-
ditioner for the GL-LSQR algorithm for solving the partitioned matrix equations.

Now we want to use the approximate inverse factor R̂ of ATA as a right preconditioner
for the GL-LSQR algorithm to solve (1). We let C ∈ Rn×n be a SPD matrix. In the follow-
ing we find the inverse factor of C. By using the set of unit basis vectors e1, e2, . . . , en ∈ Rn
, where ej is jth column of the identity matrix of order n, we can construct a C-orthogonal
set of vectors z1, z2, . . . , zn ∈ Rn by conjugate Gram-Schmidt with respect to the C-inner
product (3). Written as a modified Gram-Schmidt process, the algorithm starts by setting
zj = ej , for j = 1, 2, . . . , s and then performs the following nested loop:

zi ←− zi −
(zi, zj)C
(zj , zj)C

zj , j = 1, 2, . . . , n− 1 i = j + 1, . . . , n. (3)

Let Z = [z1, z2, . . . , zn] and D = diag(d1, . . . , dn), where dj = (zj , zj)C , j = 1, 2, . . . , n, we
obtain the inverse upper-lower factorization

C−1 = ZD−1ZT . (4)

Since D is a diagonal matrix with positive diagonal elements, we can define R = ZD− 1
2 .

So we have the inverse upper-lower factorization C−1 = RRT .
An inverse approximate factorization C−1 ≈ R̂R̂T , can be obtained by carrying out the
updates in the process (3) incompletely. Given a dropping tolerance 0 < τ < 1, the entries
of zi are scanned after each update and entries that are smaller than τ in absolute value
are discarded. We denote ẑi the sparse of zi and by setting

Ẑ = [ẑ1, ẑ2, , · · · , ẑn],
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we have R̂ = ẐD− 1
2 as the incomplete inverse factor of C.

Therefore, the C-orthogonalization algorithm can be summarized as follows.
C-orthogonalization process

1. Let zj = ej , j = 1, 2, · · · , s
2. For j = 1, 2, · · · , s− 1 Do

3. For i = j + 1, j + 2, · · · , s Do

4. zi = zi − (zi,zj)C
(zj ,zj)C

zj

5. Use a dropping strategy for the ele-
ments of the vector zi

6. EndDo

7. EndDo

Now we consider matrix equation (1) and suppose that A be full column rank matrix.
So ATA is SPD matrix and by taking C = ATA in the above C-orthogonalization process,
we can obtain the incomplete inverse factor R̂ of ATA. We apply this inverse factor as
a right preconditioner and present the right preconditioned GL-LSQR algorithm, namely
R-PGLS algorithm. The main steps of this algorithm are as follows.
R-PGLS algorithm

1. Compute approximate inverse factor R̂
of ATA by using C-orthogonalization
process

2. Set Y0 = 0

3. β1 = ‖A‖F , U1 = A
β1

4. Q1 = ATU1A
T , α1 = ‖R̂TQ1‖F

5. V1 = R̂TQ1

α1

6. Set W1 = V1, φ̄1 = β1, ρ̄1 = α1

7. For i = 1, 2, · · · until convergence, Do

8. Pi = R̂ViR̂
T
B

9. W i = APiA− αiUi
10. βi+1 = ‖W i‖F
11. Ui+1 = W i

βi+1

12. Qi+1 = ATUi+1A
T

13. Si = R̂TQi+1 − βi+1Vi

14. αi+1 = ‖Si‖F
15. Vi+1 = Si

αi+1

16. ρi =
√
ρ2i + β2i+1,

17. ci = ρi
ρi

18. si = βi+1

ρi

19. θi+1 = siαi+1

20. ρi+1 = −ciαi+1

21. φi = ciφi
22. φi+1 = siφi

23. Yi = Yi−1 + φi
ρi
Wi

24. Wi+1 = Vi+1 − θi+1

ρi
Wi

25. If |φi+1| is small enough then

compute Xi = R̂Yi as a approximate
solution

26. EndDo

For more details about R-PGLS algorithm, One can refer to [1].

3 Numerical results

In this section, For the numerical experiment, we use two general matrices WELL1013
and PDE225 from Harwell-Boeing collection [4]. We apply the GL-LSQR and R-PGLS
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algorithms for solving the linear matrix equation (1), where the coefficient matrix A =
WELL1033, rand(700, 500) and A1, where 225 by 100 matrix A1 is the same PDE225 in
which the last 125 columns are removed. We compare both algorithms in terms of number
of iterations. In this examples, the initial iteration matrix is zero and the algorithm stops
when the current iterate satisfies

RError =
||Rk||F
||R0||F

≤ ε,

where Rk is the residual of the kth iterate and ε is a proper stopping tolerance. We
applied the GL-LSQR and R-PGLS algorithms for solving this problem, the results are
shown in Figure 1. As we see from this figure , the GL-LSQR algorithm (middle and right
figures) does not converge or stagnates while the R-PGLS algorithm converges very fast
and this shows that the R-PGLS algorithm is clearly superior. Note that in this example,
we have taken the drop tolerance τ = 10−4, for discarding the entries of ẑi that are smaller
than τ in absolute value. However, if one takes τ = 0.1, 0.01, 0.001 then the R-PGLS
algorithm will converge in more iterations. For example, if we take τ = 0.1, 0.01, 0.001 for
A = WELL1033 then the R-PGLS algorithm will stop after 4142, 1372 and 810 iterations,
respectively (with almost RError=9.62e-15).
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Figure 1: Convergence history of R-PGLS algorithm versus GL-LSQR algorithm.
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A preconditioner based on the shift-splitting method for

generalized saddle point problems
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Abstract

In this paper, we propose a preconditioner based on the shift-splitting method for
generalized saddle point problems with nonsymmetric positive definite (1,1)-block and
symmetric positive semidefinite (2, 2)-block. The proposed preconditioner is obtained
from an basic iterative method which is unconditionally convergent. We also present
a relaxed version of the proposed method. Some numerical experiments are presented
to show the effectiveness of the method.

Keywords: Generalized saddle point, preconditioner, shift-splitting, Navier-Stokes.
Mathematics Subject Classification [2010]: 65F10, 65F50

1 Introduction

We consider the solution of the following large and sparse generalized saddle point problem

Au =

(
A BT

−B C

)(
x
y

)
=

(
f
−g

)
= b, (1)

where A ∈ Rn×n is nonsymmetric positive definite (xTAx > 0 for all 0 6= x ∈ Rn), C ∈
Rm×m is symmetric positive semidefinite, the matrix B ∈ Rm×n is of full row rank, x, f ∈
Rn, y, g ∈ Rm and m ≤ n. It can be verified that the system (1) has a unique solution
[1, Lemma 1.1]. Saddle point problems of the form (1) arise from finite difference or
finite element discretization of the Navier-Stokes problem (see [2] and references therein).
Several iterative method have been presented to solve system (1) or some special cases
of it in the literature. The main methods have been reviewed in [2]. In [1], Benzi and
Golub presented the Hermitian and skew-Hermitian splitting (HSS) method to solve (1).
Since, in general, the HSS method is too slow to be used to solve (1), they used the
GMRES method in conjunction with the preconditioner extracted from the HSS method
to solve (1). Recently, when the matrix A is symmetric positive definite, Salkuyeh et al.
in [6] have presented a stationary iterative method based on the shift-splitting method
to solve (1). The proposed method naturally serves a preconditioner for the problem
(1). More recently, Cao et al. in [3] have considered the same iterative method to solve
the system (1) when C = 0. In this paper, we consider the problem (1) in its general
form and investigate the convergence properties of the proposed iterative method and the
corresponding preconditioner.

∗Speaker

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

A preconditioner based on the shift-splitting method for generalized saddle . . . pp.: 1–4

1061



2 Main results

For the sake of the simplicity we use the nations used in [6]. Assuming α, β > 0, Salkuyeh
et al. in [6] considered the splitting A = Mα,β − Nα,β for the saddle point problem (1)
with A being symmetric positive definite, where

Mα,β =
1

2

(
αI +A BT

−B βI + C

)
and Nα,β =

1

2

(
αI −A −BT

B βI − C

)
. (2)

This splitting gives the following basic iterative method (hereafter is denoted by the MGSS
iteration scheme)

Mα,βu
(k+1) = Nα,βu(k) + b (3)

for solving the linear system (1), where u(0) is an initial guess. In continuation, we show
that the symmetry of the matrix A can be omitted. From Eq. (3), we see that the iteration
matrix of the proposed method is Γα,β =M−1

α,βNα,β. Hence, the method is convergent if
and only if the spectral radius of Γα,β is less than 1, i.e., ρ(Γα,β) < 1.

Lemma 2.1. ([6, Lemma 1]) Assume that α and β are two positive numbers. If λ is an
eigenvalue of the matrix Γα,β, then λ 6= ±1.

Lemma 2.2. Let A ∈ Rn be a nonsymmetric positive definite matrix. Then, <(x∗Ax) > 0,
for any 0 6= x ∈ Cn.

Proof. Let x = r + is, where r, s ∈ Rn. Obviously, both of the vectors r and s can not be
zero simultaneously. On the other hand,

x∗Ax = (rT − isT )A(r + is) = rTAr + sTAs+ irT (A−AT )s.

Hence, <(x∗Ax) = rTAr + sTAs > 0.

Theorem 2.3. Let λ be an eigenvalue of the matrix Γ and α, β > 0. Then |λ| < 1.

Proof. Let u = (x; y) be an eigenvector corresponding to the eigenvalue λ of Γα,β. Then,
we have Nα,βu = λMα,βu which is equivalent to

(αI −A)x−BT y = λ(αI +A)x+ λBT y, (4)

Bx+ (βI − C)y = −λBx+ λ(βI + C)y. (5)

According to Theorem 1 in [6] we have x 6= 0.
Without loss of generality it is assumed that ‖x‖2 = 1. Premultiplying both sides of

(4) by x∗ yields

α− x∗Ax− (Bx)∗y = λ(α‖x‖22 + x∗Ax) + λ(Bx)∗y. (6)

Since A is positive definite, according to Lemma 2.2 we have <(x∗Ax) > 0. If Bx = 0,
then Eq. (6) implies

|λ| = |α− x
∗Ax|

|α+ x∗Ax| =

√
(α−<(x∗Ax))2 + (=(x∗Ax))2√
(α+ <(x∗Ax))2 + (=(x∗Ax))2

< 1.
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We now assume that Bx 6= 0. In this case, from Eq. (5) we obtain

Bx =
β(λ− 1)

λ+ 1
y + Cy. (7)

Substituting Eq. (7) in (6) yields

(1− λ)α− (1 + λ)x∗Ax = (1 + λ)

(
β
λ− 1

1 + λ
y∗y + y∗Cy

)
.

Letting p = x∗Ax, q = y∗y, and r = y∗Cy, it follows from the latter equation that

αω + βqω = p+ r, with ω =
1− λ
1 + λ

. (8)

Since α, β,<(p) > 0 and q, r ≥ 0, form (8) we see that

<(w) =
<(p) + r

α+ βq
> 0.

Hence, we have

|λ| = |1− ω||1 + ω| =

√
(1−<(ω))2 + =(ω)2

(1 + <(ω))2 + =(ω)2
< 1,

which completes the proof.

Theorem 2.3 shows that the MGSS method is convergent and therefore it provides
the preconditioner PMGSS =Mα,β for a Krylov subspace method such as GMRES, or its
restarted version GMRES(m) for solving the saddle point problem (1). Implementation
of the method is as described in [6]. We can also use a relaxed version of the MGSS (say
RMGSS) preconditioner

PRMGSS =

(
A BT

−B βI + C

)
.

for the saddle point problem (1). Similar to Theorem 2 in [6] one may discuss about the
eigenvalues distribution of the coefficient matrix of the preconditioned system.

3 Numerical experiments

We consider the steady-state Navier-Stokes equation

{
−ν4u + (u.∇)u +∇p = f ,

∇.u = 0,
in Ω = [0, 1]× [0, 1],

where ν > 0. By the IFISS package [4], this problem is linearized by the Picard iteration
and then discretized by using the stabilized Q1-P0 finite elements (see [5]). The stabiliza-
tion parameter is set to be 0.1. This yields a generalized saddle point problem of the form
(1). The right-hand side vectors f and g are taken such that x and y are two vectors of
all ones. In Table 1, the generic properties of the coefficient matrix have been given.

We use GMRES(30) in conjunction with the preconditioner PMGSS to solve the saddle
point problem (1). Numerical results are given in Table 1. In this table “Iters” and
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Table 1: Numerical results for the test problem with ν = 1/50.

GMRES(30) MGSS

Grid m n Iters CPU(s) Iters CPU(s)

8× 8 162 62 59 0.08 6 0.90

16× 16 578 256 115 0.28 8 2.02

32× 32 2178 1024 608 4.95 12 3.58

64× 64 8450 4096 3554 110.1 28 21.48

“CPU” stand, respectively, for the number of iterations and the CPU time (in seconds)
for the convergence. To show the effectiveness of the methods we also give the results of
GMRES(30) without preconditioning. We use a null vector as an initial guess and the
stopping criterion ‖b−Ax(k)‖2 < 10−9‖b‖2. In the implementation of the preconditioner
PMGSS (see Algorithm 1 in [6]), we use the Cholesky factorization of βI + C and the
GMRES(10) method to solve the inner systems. It is noted that, the inner iteration is
terminated when the residual norm is reduced by a factor of 102 and the maximum of the
inner iterations is set to be 40. In the MGSS method the parameters α and β are set to
be 0.01 and 0.001, respectively. As seen, the proposed preconditioner is very effective in
reducing the number of iterations and CPU times.
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A Quick Numerical Approach for Solving high order

Integro-Differential Equations

Fariba Fattahzadeh∗

Islamic Azad University (Central Tehran Branch)

Abstract

A direct method for solving high order integro-differential equations by using
Chebyshev wavelet basis is presented. We use operational matrix of integration (OMI)
for Chebyshev wavelets to reduce this type of equations to a system of algebraic equa-
tions. Some quadrature formula for calculating inner products have been operated by
Fast Fourier Transform (FFT).

Keywords: High order integro-differential equations, Chebyshev wavelets, Opera-
tional matrix of integration

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

In this paper a fast computational method for solving second (or higher) order integro-
differential equations is presented. We would like to use Chebyshev Wavelet basis to span
the approximating space. The main advantage of this method is that inner products for
setting up the matrices can be done at most by O(N2lnN) operations as those of the Fast
Galerkin scheme [1], which can be compared with at least O(N3) operation count of early
methods.

Definition 1.1. Chebyshev wavelets ψn,m = ψ(k, n,m, t), have introduced as

ψn,m(t) =

{
2k/2T̃m(2kt− 2n+ 1), n−1

2k−1 ≤ t < n
2k−1 ,

0, otherwise
(1)

where

T̃m(t) =

{ 1√
π
, m = 0,√
2
πTm(t), m > 0,

(2)

are orthonormal Chebyshev polynomials of the first kind of degree m (m = 0, 1, . . . ,M −
1), n = 1, 2, . . . , 2k−1 which are orthogonal with respect to the weight function ω(t) =
1/
√

1− t2, on the interval [-1,1].
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If we consider truncated series in (3), we obtain

x(t) '
2k−1∑

n=1

M−1∑

m=0

cn,mψn,m(t) = CTΨ(t), (3)

( M is specified positive integer which denotes the degree of chebyshev polynomials) where
C and Ψ(t) are 2k−1M × 1 matrices.

2 Fast Direct Method

Consider the following second order integro-differential equation,

a2x
′′(s) + a1x

′(s) + a0x(s) + λ

∫ 1

0
k(s, t)x(t)dt = y(s), x(0) = x0, x′(0) = x′0, (4)

where a2, a1, a0 and λ are constants and y(s) ∈ L2
ω[0, 1], k ∈ L2

ω[0, 1]× [0, 1] and x(t) is an
unknown function.

If we approximate functions and initial values by Chebyshev wavelets as x′′(t) '
XT

2 Ψ(t) also

k(s, t) ' ΨT (s)KΨ(t), y(s) ' YTΨ(s), x(0) ' X0
0
T

Ψ(t), x′(0) ' X0
1
T

Ψ(t)

then we get

x′(s) =
∫ s
0 x
′′(t)dt+ x′(0) '

∫ s
0 X

T
2 Ψ(t)dt+X0

1
T

Ψ(s)

' XT
2 PΨ(s) +X0

1
T

Ψ(s)

= (XT
2 P +X0

1
T

)Ψ(s)

and with same integration we obtain

x(s) = (XT
2 P

2 +X0
1
T
P +X0

0
T

)Ψ(s).

Now by substituting into main equation, we have by orthonormality of Chebyshev wavelets

∫ 1

0
Ψ(t)ΨT (t)dt = I,

ΨT (s)[a2I+a1P
T+a0P

2T+λKP 2T ]X2 = ΨT (s)[Y−(a1I+(a0I+λK)P T )X0
1−(a0I+λK)X0

0 ],

where I is identity matrix and this equation holds for each s in interval [0, 1], therefore we
should solve the following linear system

[a2I+a1P
T +a0P

2T +λKP 2T ]X2 = Y − (a1I+ (a0I+λK)P T )X0
1 − (a0I+λK)X0

0 . (5)
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Finding vector X2 leads to an approximation of the unknown function x(s) by

x(s) = (P 2TX2 + P TX0
1 +X0

0 )TΨ(s).

The elements of matrices of our method have calculated by using (p+1)-point closed
Gauss-Chebyshev quadrature rule we have, [1]

〈y, ψil〉 =
∫ 1
0 y(s)ψilωl(s)ds

=
∫ l/2k−1

(l−1)/2k−1 2k/2y(s)T̃i(2
ks− 2l + 1)ω(2ks− 2l + 1)ds

= 2−k/2
∫ 1
−1 y(2−k(u+ 2l − 1))T̃i(u)ω(u)du

' 2−k/2 πp

p∑

m=0

′′y(2−k(cos(πm/p) + 2l − 1)) cos(πim/p)δi

for i = 1, 2, . . . , 2k−1 and l = 0, 1, . . . ,M−1, where 〈., .〉 denotes the inner product, double
prime denotes that the first and the last terms are halved, and δi is defined as

δi =





√
1
π i = 0,√
2
π i 6= 0.

In this and some similar methods we have to calculate the N elements of vector Y and N2

(where N = M.2k−1) elements of matrix K. The number of elements for Hybrid Taylor-
Block Pulse, Hybrid Legendre- Block Pulse and Legendre wavelets methods cost at least
O(N2) operations for calculating vector Y and O(N3) operations for calculating matrix K,
but Chebyshev wavelets basis functions and the Fast Fourier Transform (FFT) technique
have been used to evaluate Y in O(N lnN) operations and same as above relations can
be done to calculate the elements of matrix K by two dimensional Gauss Chebyshev
quadrature formulae in O(N2 lnN) operations, [1].
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An algorithm for Jacobi inverse eigenvalue problem

Azim Rivaz∗
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Somayeh Zangoei Zadeh
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Abstract

In this paper, for given n eigenvalues λ1, λ2, ..., λn, we construct a Jacobi ma-
trix J ∈ Rn×n. Also, the algorithm and numerical examples of this method will be
expressed.

Keywords: eigenvalue problem, Inverse eigenvalue problem, Jacobi matrix.
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1 Introduction

Jacobi inverse eigenvalue problem, is of the great value for many application, including
control theory, vibration theory and structural design. This kind of problem is a problem
in which the Jacobi matrix is constructed using the spectral data matrix that consist of
spectral data, which can possibly include part of the eigenvalues, eigenvectors or both.

Hochstadt [3] in 1974 constructed a Jacobi matrix using the eigenvalues of matrix and
leading principal submatrix; also see [5, 2]. In this paper, we will construct a Jacobi matrix
using only it’s eigenvalues.

A Jacobi matrix is a tridiagonal symmetric matrix of the form

Jn =




β1 α1 0

α1 β2
. . .

. . .
. . . αn−1

0 αn−1 βn




, (1)

where αi > 0 for i = 1, . . . , n − 1 and βi ∈ R for i = 1, . . . , n.
We denote Jn Jacobi matrix by Jn = J(β1, β2, . . . , βn; α1, α2, . . . , αn−1), and its leading
principle submatrices by Ji; i = 1, . . . , n − 1.

Let {λi}n
i=1be the set of eigenvalues of matrix Jn and {µi}n

i=1 be the set of eigenvalues
of leading principle submatrix of Jn i.e. Jn−1. It is well known [1] that the eigenvalues of
Jn are distinct and {λi}n

i=1 and {µi}n
i=1 satisfy in the following interlacing property

λ1 < µ1 < λ2 < µ2 < . . . < λn−1 < µn−1 < λn. (2)
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Two polynomials p(x) and q(x) are said to be discrete orthogonal relation to the weight
function w(x) > 0, if

⟨p, q⟩ =
n∑

i=1

wip(ξi)q(ξi) = 0, (3)

where (wi)
n
i=1 > 0 and (ξi)

n
i=1 are n points, satisfying ξ1 < ξ2 < . . . < ξn.

Theorem 1.1. Suppose pn(λ) is characteristic polynomial of matrix Jn whose eigenvalues
are λ1 < λ2 < . . . < λn, and pn−1(λ) is characteristic polynomial of Jn−1, then

pn−1(λi) =
γ

wip′
n(λi)

, (4)

where

γ =
n∏

j=2

j−1∏

k=1

(λj − λk).

Theorem 1.2. Let Jn = SΛS∗ be the spectral decomposition of an unreduced Jn. Then
the associated inner product of the from (3) is given by

ξi = λi, wi = δs2
1i, i = 1, ..., n (5)

for any positive δ;
∑n

i=1 wi = δ.

2 Main result

Suppose λ1 < λ2 < ... < λn are the eigenvalues of the Jacobi matrix Jn. It is clear that Jn

is characterized by the 2n− 1 unknown entries {αi}n−1
i=1 and {βi}n

i=1. Thus it is intuitively
true that 2n − 1 pieces of information are needed to solve the inverse problems where
λ1, λ2, ..., λn are n pieces of information and the rest are considered w1, w2, ..., wn−1.
The following Theorem, states the process of construction Jacobi matrix Jn.

Theorem 2.1. Let λ1 < λ2 < . . . < λn be eigenvalues of

Jn = J(β1, β2, . . . , βn; α1, α2, . . . , αn−1),

and suppose that pn(λ), pn−1(λ), . . . , p1(λ) are characteristic polynomials of Jn, Jn−1, ..., J1

such that
pi(λ) = kiλ

i + siλ
i−1 + . . . , (6)

for i = 1, . . . , n, then

αi =
ki−1

ki
, βi = −(

si

ki
− si−1

ki−1
), (7)

and eigenvector corresponding to λi is Xi = (p0(λi), p1(λi), . . . , pn−1(λi))
T .

Proof. Since characteristic polynomials of Jn are orthogonal, we can write

pi(λ) = (aiλ − bi)pi−1(λ) − cipi−2(λ); i = 2, . . . , n (8)
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Since pi(λ) = kiλ
i + siλ

i−1 + . . ., by direct computation we have

ai =
ki

ki−1
, bi = ai(

si−1

ki−1
− si

ki
), ci =

kiki−2

k2
i−1

. (9)

We can rewrite equation (8) as follow

λpi−1(λ) =
1

ai
pi(λ) +

bi

ai
pi−1(λ) +

ci

ai
pi−2(λ).

Since
1

ai
=

ki−1

ki
,

ci

ai
=

ki−2

ki−1
,

thus we have
λpi−1(λ) = αipi(λ) + βipi−1(λ) + αi−1pi−2(λ), (10)

where

αi =
ki−1

ki
, βi =

bi

ai
= −(

si

ki
− si−1

ki−1
).

Now, if we set

p(λ) = (p0(λ), . . . pn−1(λ))T , u = (0, . . . , 0, 1)T , Jn = J(β1, β2, . . . , βn;α1, α2, . . . , αn−1).

then
λp(λ) = Jnp(λ) + αnpn(λ)u.

In other hand, {λi}n
i=1 are zeroes of pn(λ), so

Jnp(λj) = λjp(λj), (11)

and the proof is completed.

By the previous theorem, we know that the first element for all of the eigenvectors of
Jn is equal. Therefore based on Theorem 1.2, all of the weights w1, . . . , wn are equal. At
first, we choose wi = 1 for i = 1, . . . , n.
Suppose that pn(λ) =

∏n
i=1(λ − λi) is characteristic polynomial of matrix Jn. Thus

from Theorem 1.1 we can compute pn−1(λi). Now if we interpolate (λi, pn−1(λi)) for
i = 1, . . . , n, then we obtain pn−1(λ)[4]. So, we can compute αn and βn by using equation
(7) and pn−2(λ) by recursive relation (10). By continuing this method, we will obtain all
of αi and βi.

Note that for computing pi−2(λ) in recursive relation (10), we replace αi−1 with ki−2

ki−1
.

Also, p0(λ) is a constant polynomial which k0 = p0(λ) and s0 = 0 for it.
Therefore, we can construct Jacobi matrix J by n given eigenvalues. Also we will

enable to compute eigenvector Xi corresponding to eigenvalue λi after obtaining pi(λ); i =
0, 1, . . . , n in recursive relation (10).

Now, consider wi = w for i = 1, . . . , n, where w is a positive number and unequal to
1. In this case, one verified easily that pi(λ) for i = 0, . . . , n − 1 is the product of 1

wi
and

pi(λ) corresponding to w = 1. Therefore, we conclude from formula (7) that the choice of
the weight w dose not have any influence on the computation of αi for i = 1, . . . , n − 1
and βi for ı = 1, . . . , n.

The above description leads to the following theorem.
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Theorem 2.2. Let {λi}n
i=1 be a set of real numbers that λ1 < λ2 < . . . < λn. Then, there

exists a unique Jacobi matrix Jn such that {λi}n
i=1 are eigenvalues of Jn.

In sequel, we give an algorithms and numerical examples.
Algorithm(*JIEP*)
1. Input Λ = {λ1, λ2, ..., λn} and λi; (%λ1 < λ2 < ... < λn).
2. Compute pn(λ) =

∏n
i=1(λ − λi).

3. For i = 1, . . . , n

4. pn−1(λi) =
∏n

j=2

∏j−1
k=1(λj−λk)

wip′
n(λi)

; wi = 1 .
5. End For
6. Compute pn−1(λ) using interpolating (λi, pn−1(λi)) for i = 1, ..., n.

7. Set αn := kn−1

kn

9. Set βn := −( sn
kn

− sn−1

kn−1
)

10. For i = n, . . . , 2
11. Compute pi−2(λ) by λpi−1(λ) = αipi(λ) + βipi−1(λ) + αi−1pi−2(λ)

12. Set αi−1 := ki−2

ki−1

13. Set βi−1 := −( si−1

ki−1
− si−2

ki−2
)

14. End For
15. Set Jn = J(β1, β2, . . . , βn; α1, α2, . . . , αn−1).
16. Set Xi = (p0(λi), p1(λi), . . . , pn−1(λi))

T

Example 2.3. Suppose that Λ = (2, 3, 5, 7, 9). Then by using the above algorithm, we
have the following result:

J5 = J (5.2000, 5.7268, 5.7123, 5.0657, 4.2951; 2.5612, 1.9367, 1.7159, 1.5673)

Example 2.4. Suppose that Λ = (1, 3, 6, 8, 9, 13).Then eigenvector corresponding to the
eigenvalue 8 is:

X4 =
(
7.7690 × 106, 2.6264 × 106, −7.3147 × 106, −4.5687 × 106, 3.1331 × 106, 1.4515 × 107

)T
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Bernoulli operational matrix for solving optimal control

problems
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Abstract

In this paper, we use the Bernoulli operational matrix of derivatives and the collo-
cation points, for solving linear and nonlinear optimal control problems (OCPs). By
Bernoulli polynomials bases, the Two-Point Boundary Value Problem (TPBVP), de-
rived from the Pontryagins maximum principle, transforms into the matrix equation.

Keywords: Optimal control problems; Bernoulli polynomials; Hamiltonian system.
Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Optimal control problems (OCPs) appear in engineering, science, economics, and many
other fields. Since most practical problems are rather too complex to allow analytical
solutions, numerical methods are unavoidable for solving these complex practical problems.
There are numerous computational methods for solving various practical optimal control
problems.

2 Main results

In this paper, we consider following linear optimal control problem (OCP)

ẋ = Ax(t) + Bu(t), x(t0) = x0,

(1)

J =
1

2
x(tf )T Sx(tf ) +

1

2

∫ tf

t0

(xT Px + 2xT Qu + uT Ru)dt,

where x ∈ Rn, u ∈ Rm, A ∈ Rn×n and B ∈ Rm×n. The control u(t) is an admissible
control if it is piecewise continuous in t for t ∈ [t0, tf ]. Its values belong to a given closed
subset U of R+. The input u(t) is derived by minimizing the quadratic performance index
J , where S ∈ Rn×n, P ∈ Rn×n and Q ∈ Rn×m are positive semi-definite matrices and
R ∈ Rm×m is positive definite matrix.
we consider Hamiltonian for system (1) as

H(x, u, λ, t) =
1

2
(xT Px + 2xT Qu + uT Ru) + λT (Ax + Bu), (2)
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where λ ∈ Rn is co-state vector.
According to the Pontryagin’s maximum principle, we have

λ̇ = −∂H

∂x
= −Px − Qu − AT λ, (3)

∂H

∂u
= QT x + Ru + BT λ = 0. (4)

The optimal control is computed by

u∗ = −R−1QT x − R−1BT λ, (5)

where λ and x are the solution of the Hamiltonian system:





ẋ = [A − BR−1QT ]x − BR−1BT λ,

λ̇ = [−P + QR−1QT ]x + [QR−1BT − AT ]λ,

x(t0) = x0, x(tf ) = xf ,

(6)

Because the initial value of λ is not known, Thus we rewrite Two-Point Boundary Value
Problem (TPBVP) in (6) as following:





ẋ = [A − BR−1QT ]x − BR−1BT λ,

λ̇ = [−P + QR−1QT ]x + [QR−1BT − AT ]λ,

x(t0) = x0, λ(t0) = α,

(7)

where α ∈ R is an unknown parameter.

Remark 2.1. For identifing of λ(t0), by considering the final state condition x(tf ) = xf ,
and since the approximations of Bessel polynomials are functions of both t and α, we have
xk(tf , α) = xf . That is, α should be a real root of xk(tf , α) − xf = 0.

3 Method of solution

Let the solution of (7) is approximated by the first N + 1-terms Bernoulli polynomials.
Hence if we write

xN (t) =

N∑

n=0

a1,nBn(t) = B(t)A, (8)

λN (t) =
N∑

n=0

a2,nBn(t) = B(t)A, (9)

where the Bernoulli coefficient vector A and the Bernoulli vector B(t) are given by

AT =
[

a0 a1 . . . aN

]
,

B(t) =
[

B0(t) B1(t) . . . BN (t)
]

(10)
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then the kth derivative of yN (t) can be expressed in the matrix form by

y
(k)
N (t) = B(k)(t)A (11)

Example 3.1. Consider a single-input scalar system as follows:

.
x= −x(t) + u(t), (12)

J =
1

2

∫ 1

0
(x2(t) + u2(t))dt, (13)

with free terminal condition and the initial condition

x(0) = 1. (14)

The analytical solution of the problem defined above is

x(t) = cosh(
√

2t) + βsinh(
√

2t),

u(t) = (1 +
√

2β)cosh(
√

2t) + (
√

2 + β)sinh(
√

2t),

where

β = −cosh(
√

2) +
√

2sinh(
√

2)√
2cosh(

√
2) + sinh(

√
2)

.

According to (6) we have

ẋ = −x(t) − λ(t), (15)

λ̇ = −x(t) + λ(t), (16)

x(0) = 0, λ(0) = α, (17)

we can obtain the following optimal control law

u∗(t) = −λ(t), (18)

we also require that

λ(1) = 0, (19)

using Remark 2.1 and considering the final state conditions, we should have α = 0.38582,
therefore

ẋ = −x(t) − λ(t), (20)

λ̇ = −x(t) + λ(t), (21)

x(0) = 0, λ(0) = 0.38582. (22)

Now, we get the approximate solutions by applying the present method for N = 6. In
Figs. 1-2, the approximate solutions x(t) and u(t) of the present method applied for N = 6
are compared with the exact solution. For the approximate solutions x(t) and u(t) gained
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by the present method for N = 6, we denotes the error functions obtained the accuracy
of the solution given by Eqs. (15) and (15) in Figs. 3-4.
Table 2
Comparison of the exact solution whit the present method (N = 6).

t Abs error Bernoulli (control) Abs error Bernoulli (state)

0 1.4038e-006 0

0.2 1.6091e-006 5.2807e-007

0.4 2.1335e-006 7.2335e-007

0.6 2.8071e-006 1.0185e-006

0.8 3.5868e-006 1.6320e-006

1.0 8.1492e-006 4.3328e-006
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Fig. 1. The optimal state (N = 6), Fig. 2. The optimal control (N = 6).
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Fig. 3. The absolute error function of state, Fig. 4. The absolute error function of control.
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B-spline collocation method to solve the nonlinear fractional

Burgers’ equation
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Abstract

In this paper, to approximate the solution of nonlinear fractional Burgers’ equa-
tion, we give a cubic B-spline finite element algorithm. To investigate the stability
conditions, we use von-Neumann analysis and finally some numerical results is pre-
sented to show the applicability of the new scheme.

Keywords: Fractional Burgers’ equation, B-spline functions, Collocation method
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1 Introduction

We denote the following fractional nonlinear Burgers’ equation as an initial-boundary
value problem:

uαt + uux − νuxx = f(x, t), x ∈ [a, b], t ∈ [0, T ], 0 < α < 1,

u(a, t) = g1(t), u(b, t) = g2(t),

u(x, 0) = u0(x) (1)

where ν > 0 is the coefficient of kinematic viscosity. f , u0, g1 and g2 are smooth enough
functions in time and space scales. Let subscripts x and t the space and time differentia-
tions, respectively; and superscript α the order of fractional derivative.

Definition 1.1. The Caputo fractional derivative is defined as

uαt (x, t) =
1

Γ(1− α)

∫ t

0

us(x, s)

(t− s)αds, 0 < α < 1, (2)

where Γ(α) is the Gamma function.
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2 Numerical method and main results

For the numerical purpose, we first define a uniform partition 0 = t0 < t1 < · · · < tn = T
on [0, T ] with ∆t = tj+1 − tj , j = 0, 1, · · · , n − 1. To discretization of time fractional
derivative, we use the L1-formula [4].

uαt (x, tk+1) =
(∆t)−α

Γ(2− α)

k∑

j=0

(uk−j+1 − uk−j) (3)

where uk = u(x, tk) and bj = (j + 1)1−α − j1−α. Linearizing the nonlinear term uux by
newton’s method, and substituting (3) in (1), for r = (∆t)−αΓ(2− α), (1) leads to

uk+1 + ruk+1ukx + rukuk+1
x − rνuk+1

xx = bku
0 +

k∑

j=0

(bj − bj+1)uk−j + rukukx + rfk+1 (4)

where fk+1 = f(x, tk+1). To space discretization, let the solution domain [a, b] is par-
titioned into uniformly sized finite elements as a = x0 < x1 < · · · < xN = b, with
h = xm+1 − xm, m = 0, 1, · · · , N − 1. In this uniform mesh, the cubic B-spline function
Qm(x) is given by:

Qm(x) =
1

h3





(x− xm−2)3 x ∈ [xm−2, xm−1]

(x− xm−2)3 − 4(x− xm−1)3 x ∈ [xm−1, xm]

(xm+2 − x)3 − 4(xm+1 − x)3 x ∈ [xm, xm+1]

(xm+2 − x)3 x ∈ [xm+1, xm+2]

0 otherwise.

(5)

Since {Qm(x)}N+1
m=−1 is a basis for the functions over the solution domain, the approximate

solution in cubic B-splines collocation method can be considered as:

u(x, t) ' U(x, t) =
N+1∑

m=−1

δm(t)Qm(x), (6)

where δm(t) are unknown time dependent parameters that should be computed from the
initial and boundary conditions in collocation method process.

From definition (5), the values of U , Ux and Uxx at the nodal points are as follows:




U(xm, t) = δm−1(t) + 4δm(t) + δm+1(t),

h Ux(xm, t) = 3(δm+1(t)− δm−1(t)),

h2 Uxx(xm, t) = 6(δm−1(t)− 2δm(t) + δm+1(t)).

(7)

Let δkm = δm(tk). Substituting (7) in (4), the completed discretized form of main problem
for m = 0, 1, · · · , N can written as:

βm1δ
k+1
m−1 + βm2δ

k+1
m + βm3δ

k+1
m+1 = bk(δ

0
m−1 + 4δ0

m + δ0
m+1)

+
k−1∑

j=1

(bj − bj+1)(δk−jm−1 + 4δk−jm + δk−jm+1) + βm4δ
k
m−1 + βm5δ

k
m + βm6δ

k
m+1 (8)
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where

βm1 = 1 + r1km − r1zm − 2r2, βm4 = (b0 − b1) + r1km,

βm2 = 4 + 4r1km + 4r2, βm5 = 4βm4,

βm3 = 1 + r1km + r1zm − 2r2, βm6 = βm4, (9)

and

r1 =
3r

h
, r2 =

3rν

h2
, km = δkm+1 − δkm−1, zm = δkm−1 + 4δkm + δkm+1. (10)

When k = 0, the system obtained from (8) can be converted into matrix form as:

A1δ
1 = (b0D1 +B1)δ0 + C1 (11)

where δk = (δk−1, δ
k
0 , δ

k
1 , · · · , δkN+1). The coefficient matrices, A1, D1 and B1 are tridiagonal

and their dimensions are (N + 1)× (N + 3). To make the system solvabe, parameters δk−1

and δkN+1 may be eliminated from the system by boundary conditions.
With continue this process for various k, we have a recurrence matrix system as:

Aδk+1 = D

[
bkδ

0 +
k−1∑

j=1

(bj − bj+1)δk−j
]

+Bδk + Ck+1 (12)

This system can be solved iteratively. To start the iteration process and obtain the initial
vector δ0, we use the initial condition of the problem. From (7), we have

u0(xm) = u(xm, 0) ' δ0
m−1 + 4δ0

m + δ0
m+1, m = 0, 1, · · · , N. (13)

Finally, system (13) with uxx(xm, 0) = u′′0(xm), m = 0, N , gives us the matrix system as:

A0 δ
0 = B0. (14)

To investigate the stability conditions , we use von-Neumann analysis. To this, we first
linearize the nonlinear term uux by taking the solution u as a constant m and then, let
f = 0. Applying (3) and (7) in linearized form of the equation, we have:

(1− r1m− 2r2)ek+1
m−1 + 4(1 + r2)ek+1

m + (1 + r1m− 2r2)ek+1
m+1

= bk(e
0
m−1 + 4e0

m + e0
m+1) +

k∑

j=0

(bj − bj+1)(ek−jm−1 + 4ek−jm + ek−jm+1). (15)

with ekm as the error of scheme at time level k. Then substituting the fourier mode
ekm = qkeipρ into (15) results

qk+1 = Q{bkq0 +
k−1∑

j=0

(bj − bj+1)qk−j} (16)

where Q =
2+4 cos2( ρ

2
)

2+4 cos2( ρ
2

)+8r2 sin2( ρ
2

)+2ir1m sin(ρ)
with i =

√
−1. It is easy to verify that |Q| ≤ 1.

Let |q{k}|max = max{|q0|, |q1|, |q2|, · · · , |qk|}. Therefore, for equation (16) we have,

|qk+1| ≤ |q{k}|max. (17)

(17) shows that |ek| ≤ |e0|, i.e., the error of this method in time level k, for every k, does not
growth and is smaller than or equal to its initial error. So, the method is unconditionally
stable.
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3 Numerical test

Denote the fractional nonlinear Burger equation defined in (1) with f(x, t) = 2t2−αex
Γ(2−α) +

t4e2x − νt2ex, where the initial and boundary conditions are

u(0, t) = t2, u(1, t) = et2, t ≥ 0,

u(x, 0) = 0, 0 ≤ x ≤ 1. (18)

The exact solution of problem is u(x, t) = t2ex. The numerical errors between the exact
solution and approximate solution have been shown in Tables 1 and 2.

Table 1: Error norms for α = 0.5, ∆t = 0.00025, T = 1 and ν = 1

N = 10 N = 20 N = 40 N = 80

L2-norm 1.9138e− 3 5.0021e− 4 6.7823e− 5 3.5127e− 5
L∞-norm 3.2114e− 3 8.2431e− 4 2.0010e− 4 5.8125e− 5

Table 2: Error norms of problem for α = 0.5, h = 0.025, T = 1 and ν = 1

∆t = 0.002 ∆t = 0.001 ∆t = 0.0005

L2-norm 4.5721e− 4 1.7811e− 4 5.9451e− 5
L∞-norm 6.5122e− 4 2.6511e− 4 2.0025e− 4

4 Conclusion

In the present study, a new scheme based on B-spline basis functions and collocation
finite element method is applied to solve the fractional nonlinear Burger’s equation with
initial and boundary conditions. In the solution process, the discretized Caputo fractional
derivative is denoted same as used in [4]. The unconditional stability of the scheme is
presented and finally a test example is included to demonstrate the applicability of the
new scheme.
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Abstract

In this paper, we first introduce block pulse functions and the block pulse oper-
ational matrices of the fractional order integration. Also the block pulse operational
matrices of the fractional order differentiation are obtained.Then we present a com-
putational method based on the above results for solving a class of fractional partial
differential equations.

Keywords: Block pulse functions, Operational matrix, Fractional partial differential
equations.
Mathematics Subject Classification [2010]: 34A08, 35R11

1 Introduction

Fractional differential equations are generalized from integer order ones, which are achieved
by replacing integer order of derivatives by fractional ones. Compared with differential
equations of integer order, their advantages are more accurate in natural physical process
and dynamic systems [2].
In this paper, our study focuses on a class of fractional partial differential equations as
the following form:

∂αu

∂tα
= −∂βu

∂xβ
+ λu(x, t) + g(x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ T. (1)

subject to the initial-boundry conditions:

u(0, t) = p(t), u(x, 0) = v(x), (2)

where ∂αu(x,t)
∂xα and ∂βu(x,t)

∂tβ
are fractional derivative in Caputo sense, g(x, t) is the known

continuous function, u(x, t) is the unknown function, 0 < α ≤ 1 and 1 ≤ β ≤ 2.
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2 Fractional calculus

In this section, we give some necessary definition and preliminaries of the fractional cal-
culus theory which will be used in this article. For more details see [3, 4].

Definition 2.1. The Riemann-Liouville fractional integral operator Iα, α ≥ 0 for function
u(t) is given by:

Iαu(t) :=
1

Γ(α)

∫ t

0
(t − s)α−1u(s) ds, α > 0, (3)

I0u(t) := u(t). (4)

Definition 2.2. The Caputo fractional derivative operator of order α ≥ 0 for function
u(t) is defined as:

Dα
⋆ u(t) =

{
dru(t)

dtr α = r ∈ N+,
1

Γ(r−α)

∫ t
0

ur(s)
(t−s)α−r+1 ds, 0 ≤ r − 1 < α < r.

(5)

The relation between the Riemann-Liouville operator and Caputo operator is given by the
following expressions:

Dα
⋆ Iαu(t) = u(t), (6)

IαDα
⋆ u(t) = u(t) −

r−1∑

k=0

u(k)(0+)
(t)k

k!
, t > 0. (7)

3 Block pulse functions (BPFs)

Definition 3.1. For a given positive integer m, the BPFs are defined as:

bi(t) =

{
1, (i − 1)h ≤ t < ih,
0, otherwise,

(8)

where i = 1, 2, · · · ,m and h = 1
m . Some useful properties of BPFs are listed below [1].

Proposition 3.2. For i = 1, 2, · · · ,m and j = 1, 2, · · · ,m we have the following:

1. supp{bi(x)} = [ i−1
m , i

m ].

2. Disjointness:

bi(t)bj(t) =

{
bi(t), i = j,
0, i ̸= j.

(9)

3. Orthogonality:

∫ 1

0
bi(t)bj(t) =

{
h, i = j,
0, i ̸= j.

(10)
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4. Completenss: For every f ∈ L2([0, 1)) when m approach to the infinity, Parseval’s
identity holds: ∫ 1

0
f2(x) dx =

∞∑

i=0

f2
i ∥bi(x)∥2, (11)

where

fi =
1

h

∫ 1

0
f(x)bi(x) dx. (12)

5. A function f(x) ∈ L2([0, 1)), can be expressed as:

f(x) ∼=
m∑

i=1

fibi(x) = fT Bm(x), (13)

where f = [f1, f2, · · · , fm]T and Bm(x) = [b1(x), b2(x), · · · , bm(x)]T ,
such that fi for i = 1, 2, · · · ,m are defined in (12).

Remark 3.3. Every two dimensional function u(x, t) ∈ L2([0, 1)× [0, 1)) can be expressed
as:

u(x, t) ∼= BT (x)UB(t). (14)

where

U =




u1,1 u1,2 · · · u1,m2

u2,1 u2,2 · · · u2,m2

...
...

. . .
...

um1,1 um1,2 · · · um1,m2


 , ui,j =

1

h1h2

∫ 1

0

∫ 1

0
u(x, t)bi(x)bj(t) dxdt,

h1 =
1

m1
, h2 =

1

m2
and B(x) = [b1(x), · · · , bm1(x)]T , B(t) = [b1(t), · · · , bm2(t)]

T . (15)

3.1 BPFs-operational matrix of fractional integration

In this part, we introduce the operational matrix of fractional integration of block pulse
functions.

Definition 3.4. α-Fractional integration order of the BPFs-vector can be expressed by
themselve as:

IαB(x) ∼= PαB(x),

where

Pα =

(
1

m

)α 1

Γ(α + 2)




1 ϵ1 ϵ2 · · · ϵm−1

0 1 ϵ1 · · · ϵm−2

0 0 1 · · · ϵm−3
...

...
...

. . .
...

0 0 0 · · · 1




.

and ϵk = (k + 1)α+1 − 2kα+1 + (k − 1)α+1. Here Pα is called the block pulse operatinal
matrix of fractional integration.
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4 Solution of the fractional partial differential equation

In this section, we suppose m1 = m2 = m. Consider the fractional partial differential
equation given by Eq. (1). We approximate the function ∂βu

∂xβ by the BPFs, it can be
written as:

∂βu

∂xβ
∼= BT (x)UB(t). (16)

By applying the operator Iβ
x on Eq. (16) and using Eq. (7) we have:

Iβ
x (

∂βu

∂xβ
) ∼= Iβ

x [BT (x)UB(t)] = u(x, t) − u(0, t). (17)

=⇒ u(x, t) = p(t) + BT (x)P T
β UB(t). (18)

Now, we approximate p(t) by BT (x)XB(t), then we have:

u(x, t) = BT (x)[X + P T
β U ]B(t). (19)

Hence, by substituting Eqs. (16) and (19) in Eq. (1), we have:

∂αu

∂tα
= −BT (x)UBT (t) + λBT (x)[X + P T

β U ]B(t) + BT (x)GB(t). (20)

By using Eq. (7)

u(x, t) = BT (x)[−U + G + λ(X + P T
β U)]PαB(t). (21)

From Eqs. (19) and (21) and using (10) we have:

[X + P T
β U ] = [−U + G + λ(X + P T

β U)]Pα, (22)

Finally, we have:

(I − λP T
β )−1P T

β U + UPα + (I − λP T
β )−1[X − (G + λ X)Pα] = 0, (23)

which is a sylvester equation.
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Abstract

In this paper, a complete pivoting strategy to compute the IULBF preconditioner
is presented.

Keywords: pivoting, IULBF preconditioner.
Mathematics Subject Classification [2010]: 65F10, 65F50, 65F08.

1 Introduction

Consider the linear system of equations of the form Ax = b, where the coefficient matrix
A ∈ Rn×n is nonsingular, large, sparse and nonsymmetric and also x, b ∈ Rn. An IUL
preconditioner M for this system is in the form of M = UDL ≈ A. This preconditioner
will change the original system to the left preconditioned system M−1Ax = M−1b. For a
proper preconditioner, instead of solving the original system, it is better to solve the left
preconditioned system by the Krylov subspace methods [4]. In [1, 2], we have proposed
an IUL preconditioner for system Ax = b. This preconditioner is termed the IULBF .

Algorithm 1 ( IULBF preconditioner )
Input: A ∈ Rn×n and τz , τw, τl, τu ∈ (0, 1) be drop tolerances parameters.
Output: A ≈ UDL
1. for i = n to 1 do

2. w
(0)
i = eTi , z

(0)
i = ei.

3. for j = i + 1 to n do

4. p
(i−1)
j = eTi Az

(n−j)
j q

(i−1)
j = w

(n−j)
j Aei

5. Uij =
p
(i−1)
j

djj
, Lji =

q
(i−1)
j

djj

6. If |Lji| < τl, then set Lji = 0. Also if |Uij | < τu, then set Uij = 0

7. z
(j−i)
i = z

(j−i−1)
i −

q
(i−1)
j

djj
z
(n−j)
j , w

(j−i)
i = w

(j−i−1)
i −

p
(i−1)
j

djj
w

(n−j)
j

8. For all l ≥ j, if |z(j−i)
li

| < τz and |w(j−i)
il

| < τw , then set z
(j−i)
li

= 0 and w
(j−i)
il

= 0

9. end for

10. dii = w
(n−i)
i Aei

11. end for
12. Return U = (Uij)1≤i,j≤n, D = diag(dii)1≤i≤n and L = (Lji)1≤j,i≤n.

Algorithm 1, computes the IULBF preconditioner. In this algorithm, matrices L and
U are computed column-wise and row wise, respectively.

∗rafiei.am@gmail.com, a.rafiei@hsu.ac.ir.
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2 Pivoting strategy for the IULBF preconditioner

Algorithm 2, computes the IULBF preconditioner which is coupled with complete pivoting
strategy. The pivoting strategy of this algorithm is based on the complete pivoting strategy
of the Backward IJK version of Gaussian Elimination process. In lines 16 and 35 of this
algorithm we use the parameter α ∈ (0, 1] to control the pivoting process.

Algorithm 2 (IULBF preconditioner coupled with complete pivoting strategy)
Input: Let A ∈ Rn×n, U = L = Π = Σ = In, τz , τw, τl, τu ∈ (0, 1) be drop tolerances and prescribe a pivoting tolerace α ∈ (0, 1].
Output: ΠAΣ ≈ UDL.

1. for i = n to 1 do
2. mi = ni = iter = 0

3. satisfied p = satisfied q = false
4. while not satisfied p do
5. iter = iter + 1

6. z
(0)
i = ei

7. for j = i + 1 to n do

8. q
(i−1)
j = w

(n−j)
j (ΠAΣ)ei

9. z
(j−i)
i = z

(j−i−1)
i − (

q
(i−1)
j

djj
)z

(n−j)
j

10. For all l ≥ j, if |z(j−i)
li

| < τz , then set z
(j−i)
li

= 0.

11. end for

12. If iter = 1, then set p
(i−1)
i = eTi (ΠAΣ)z

(n−i)
i . Otherwise set p

(i−1)
i = q

(i−1)
i

13. for j = i− 1 to 1 do

14. p
(j−1)
i = eTj (ΠAΣ)z

(n−i)
i

15. end for

16. if |p(i−1)
i | < α maxm≤i|p

(m−1)
i | then

17. mi = mi + 1, π
(i)
mi

= In.

18. satisfied q = false

19. Choose k such that |p(k−1)
i | = maxm≤i|p

(m−1)
i |.

20. interchange the rows i and k of π
(i)
mi

and the elements p
(i−1)
i and p

(k−1)
i

21. Π = π
(i)
mi

Π

22. end if
23. satisfied p = true
24. if not satisfied q then

25. w
(0)
i = eTi

26. for j = i + 1 to n do

27. p
(i−1)
j = eTi (ΠAΣ)z

(n−j)
j

28. w
(j−i)
i = w

(j−i−1)
i − (

p
(i−1)
j

djj
)w

(n−j)
j

29. For all l ≥ j, if |w(j−i)
il

| < τw , then set w
(j−i)
il

= 0.

30. end for

31. q
(i−1)
i = p

(i−1)
i

32. for j = i− 1 to 1 do

33. q
(j−1)
i = w

(n−i)
i (ΠAΣ)ej

34. end for

35. if |q(i−1)
i | < α maxm≤i|q

(m−1)
i | then

36. ni = ni + 1, σ
(i)
ni

= In

37. satisfied p = false

38. Choose l such that |q(l−1)
i | = maxm≤i |q

(m−1)
i |.

39. interchange the columns i and l of σ
(i)
ni

and the elements q
(i−1)
i and q

(l−1)
i

40. Σ = Σσ
(i)
ni

41. end if
42. satisfied q = true
43. end if
44. end while

45. dii = p
(i−1)
i

46. for j = i + 1 to n do

47. Lji =
q
(i−1)
j

djj
, Uij =

p
(i−1)
j

djj

48. If |Lji| < τl, then set Lji = 0. Also if |Uij | < τu, then set Uij = 0.

49. end for
50. end for
51. Return L = (Lji)1≤j,i≤n, D = diag(dii)1≤i≤n, U = (Uij)1≤i,j≤n, Π and Σ.
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3 Numerical results

In this section, we have considered 8 artificial linear systems where the coefficient matrices
are downloded from [3] and the exact solution of these systems is the vector [1, · · · , 1]T .
We have used two parameters 0.75 and 1.0 as α to compute the IULBF preconditioner
with complete pivoting strategy. We have used the command GMRES in Matlab soft-
ware to solve the original and the left precoditioner systems. We have used 10 as the
number of restarts for the GMRES method. The stopping criterion for all linear systems
is satisfied when the relative residual is less than 10−6. We have considered the zero vector
as the initial solution for all linear systems. The density of all preconditioners is defined as:

density =
nnz(L) + nnz(U)

nnz(A)
,

where nnz(L), nnz(U) and nnz(A) refer to the number of nonzero entrries of matrices L,
U and A, respectively. To compute all of the precoditioners we have considered all of the
drop tolerance parameters equal to 0.1 .
Table 1, shows the matrix properties and the information of GMRES method to solve
the original linear systems. In this table, n and nnz are the dimension and the number of
nonzero entries of the matrix.

Table 1: matrix properties and information of the GMRES(10) method

Matrix n nnz without preconditioner

outer inner flag Itime
bfwa62 62 450 161 2 0 0.5252
tub100 100 396 724 10 1 12.5472
bwm200 200 796 5000 10 1 14.3536
saylr1 238 1128 5000 10 1 13.2154
cage7 340 4380 2 8 0 0.0134
tols340 340 2196 3881 10 1 13.5088
bfwb398 398 1654 3 9 0 0.0778
olm500 500 1996 4023 10 1 9.0694

In all the tables, the parameters outer, inner and flag indicate the outer iterations,
the inner iterations and the status of the convergence for GMRES(10) method.

Table 2: properties of the IULBF preconditioner

Method IULBF

Matrix density outer inner flag

bfwa62 0.9111 2 8 0
tub100 1.0051 1 10 0
bwm200 1 4 4 0
saylr1 0.9592 4 7 0
cage7 0.4841 1 8 0
tols340 0.9039 2 10 0
bfwb398 0.8368 1 6 0
olm500 1.1839 4 7 0

In Tables 1 – 3, when flag is equal to 0, it means that the method has been converged
to the desired tolerance within the 2500 outer iterations. flag = 1 shows that we can not
obtain the convergence in 2500 number of iterations.
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Table 3: properties of the IULBFP(0.75) and IULBFP(1.0) preconditioners

Method IULBFP(0.75) IULBFP(1.0))

Matrix density Rpiv Cpiv outer inner flag density Rpiv Cpiv outer inner flag

bfwa62 0.9022 3 2 2 8 0 0.9000 4 4 2 8 0
tub100 1.0657 24 22 1 10 0 1.1086 23 23 1 9 0
bwm200 1.1131 51 45 12 9 0 1.1256 51 51 10 2 0
saylr1 0.9592 0 0 4 7 0 0.9592 0 0 4 7 0
cage7 0.4780 0 0 1 8 0 0.4780 0 0 1 8 0
tols340 0.3679 37 76 1 7 0 0.3657 40 77 1 7 0
bfwb398 0.8368 0 0 1 6 0 0.8368 0 0 1 6 0
olm500 0.9965 499 249 3 6 0 0.9965 499 249 3 6 0

In Tabe 3, notation IULBFP (α) refers to the IULBF preconditioner with complete
pivoting strategy which is computed by the parameter α. The columns Rpiv and Cpiv
show the total number of row and column pivoting. In Tables 2 and 3, the information in
the columns flag, outer and inner associated to the three preconditioners indicate that
for all of the matrices, one of the preconditioners IULBFP (1.0) or IULBFP (0.75) gives
better results of the GMRES(10) method than the IULBF preconditioner. This means
that the complete pivoting strategy with one of the values α = 1.0 or α = 0.75 has a good
effect on the quality of the IULBF preconditioner.
If we compare the columns flag, outer and inner in Table 2 by the columns flag, outer
and inner of Table 1, then it is clear that the two preconditioners IULBFP (1.0) and
IULBFP (0.75) are useful tools to decrease the number of iterations of the GMRES(10)
method.
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Constructing an H-matrix via Randomized Algorithms
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Abstract

The key point in constructing an H-matrix is to approximate certain subblocks
DDDn′×m′ of a dense matrix AAAn×m by data-sparse low-rank matrices that can be repre-
sented as RRRn′×m′ = UUUn′×k ·VVV Tk×m′ , with k � min{n′,m′} as the actual rank of RRR. To
obtain RRR from DDD, the most accurate method is based on SVD which is computation-
ally expensive and needs O(n′m′min{n′,m′}) operations. In this paper, we consider
various randomized algorithms to obtain such approximations with cost O(m′n′k).
We confirm the advantages of these algorithms applied to a BEM model numerically.

Keywords: Hierarchical matrices, low-rank approximation, randomized algorithm

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

H-matrices provide an inexpensive but sufficiently accurate approximation to dense ma-
trices as they appear in boundary element methods (BEM). Solving integral equations by
BEM, finally lead to a linear system of equations:

AAA · xxx = bbb. (1)

The resulting matrixAAAn×n is dense and requires complexity O(n2) for its storage as well as
matrix-vector multiplication. For computing matrix-matrix multiplication and inversion,
this cost would be O(n3), which for large-scale computations is prohibitively expensive.
The hierarchical matrix technique provides a data-sparse structure by which all H-matrix
arithmetic can be performed in almost optimal complexity O(n logq n) with moderate
constant q.

To build an H-matrix approximation AAAH to a given dense matrix AAA, a tree like data-
sparse structure is used to store AAA such that the leaves of the tree are dense or low-
rank matrices (R(k)-matrices). A low-rank matrix stored in so-called R(k)-format in the
following sense:

Definition 1.1. A matrix block RRRn′×m′ , is called to be stored in an R(k)-matrix repre-
sentation, if we have RRR = UUU · VVV T , where the two matrices UUUn′×k and VVV m′×k are dense
matrices. We call RRR a low-rank or R(k)-matrix.
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The rank k is assumed to be small compared to the matrix size n′,m′. Therefore,
we obtain considerable savings in the storage and work complexities of an R(k)-matrix
compared to a full matrix, i.e., (n′ + m′)k versus n′m′ memory cells. In the other hand,
if a subblock can not be approximated by an R(k)-matrix, it will be represented by a full
ran dense matrix.

1.1 Model problem

As an application of H-matrices we consider a realistic example, namely discretization of
boundary integral operator associated with Laplace’s equation:

αu(x) +

∫

Γ
κ(x, y)u(y)dsy = F(x), x ∈ Γ := ∂([0, 1]d) ⊂ Rd, d = 2, 1, (2)

with a given right-hand side F . The kernel function κ(x, y) is chosen as 1
4π

1
|x−y| and

− 1
2π log |x− y| for d = 2 and d = 1 respectively. In order to solve equation (2) numerically,

the domain of integration Γ is divided into triangles Γ = ∪i∈Iπi, I = {0, . . . , n − 1}.
Applying the standard Galerkin method with piecewise constant ansatz functions {ϕi}i∈I ,
the equation (2) will be transformed to a linear system with the coefficient matrix AAA :=
(aij)i,j∈I , aij :=

∫
Γ

∫
Γ ϕi(x)κ(x, y)ϕj(y)dsydsx.

Examples of approximated H-matrix AAAH of AAA with n = 1024, rank k = 7, and in one
and two dimensions are shown in Fig. 1, where the dense blocks are represented in red
color while the green blocks are those that approximated by low-rank matrices.
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Figure 1: H-matrices corresponding to BEM model for d = 1 (left), and d = 2 (right).

1.2 Low-rank approximations

Now, the question is how we can obtain a low-rank matrix from a dense matrix? There
are several ways to generate a low-rank approximant for each capable block of the original
matrix. A class of analytical methods are including but not limited to Taylor series
approximation, multipole expansion, and interpolation. On the other hand, algebraic
techniques are singular value decomposition (SVD), pseudo-skeletal approximation, cross
approximation and its variants, rank-revealing LU and QR factorization.

In this work our focus is on obtaining such approximations based on the SVD that
enables us to compute the optimal low-rank approximation of a matrix . An algorithm for
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constructing a low-rank matrix RRR = UUUVVV T (UUU ∈ Rn′×k,VVV ∈ Rm′×k) from a dense matrix
DDDn′×m′ can be computed by applying a direct SVD [1] as follows:

DDD = ÛUUn′×pΣ̂ΣΣp×pV̂VV
T

p×m′ ≈ ŨUUn′×kΣ̃ΣΣk×kṼVV
T
k×m′ = (ŨUUn′×k)(Σ̃ΣΣk×kṼVV

T
k×m′) = UUUVVV T ,

where p = min{n′,m′}, ŨUU, ṼVV are the first k columns of the unitary matrices ÛUU, V̂VV and the
diagonal matrix Σ̃ΣΣ = diag(s0, s1, · · · , sk′−1, 0, · · · , 0) is obtained by retaining the first k
diagonal elements of Σ̂ΣΣ with s0 ≥ s1 ≥ · · · ≥ sk−1 ≥ 0 as singular values. The cost of this
algorithm is O(n′m′min{n′,m′}+m′k), which is impractical for large problem sizes.

2 Main results

2.1 Randomized algorithms

Recently, randomized algorithms has been considered as a class of simple but highly ef-
ficient tool for computing approximate factorization of matrices that have low numerical
rank [3]. Given a matrix DDDn′×m′ , these randomized algorithms operate in two stages. In
the first stage, by means of randoms sampling, a low-dimensional subspace is constructed
to approximate the range of DDD. The second stage devoted to restricting DDD to the obtained
subspace and performing a standard deterministic factorization (e.g., QR and SVD) of the
reduced matrix. To be more precise, the following algorithm will compute an R(k)-matrix
factorization of a dense matrix DDDn′×m′ such that DDD = UUUVVV T .

procedure build Rk(DDD,n′,m′, k,RRR = UUUVVV T )
1: Draw an m′ × k Guassian random matrix GGG;
2: Form an n′ × k sample matrix WWW = DDDGGG;
3: Form an n′ × k orthogonal matrix QQQ s.t. WWW = QQQWRRRW ;
4: Form the k ×m′ matrix BBB = QQQTWDDD;

5: Compute the SVD of the small matrix BBB: BBB = ÛUUΣ̂ΣΣV̂VV
T

;
6: Form the matrix UUU = QQQW ÛUU ;
7: Form the matrix VVV = V̂VV Σ̂ΣΣ;
end;

Algorithm 2.1: Building an R(k)-matrix with fixed rank k from a dense matrix DDD.

In the following we use two modifications of the previous original randomized algo-
rithm. In the first one, to avoid of taking the SVD of the k ×m′ matrix BBB, the eigende-
composition of the smaller k × k matrix BBBBBBT is exploited. We refer to this as RandSVD1.

Thus, only the lines 5-7 will be changed as follows: Let BBB = ÛUUΣ̂ΣΣV̂VV
T

, then
{
BBBBBBT = (QQQ∗WDDD)(QQQ∗WDDD)T = ÛUUΣ̂ΣΣ

2
ÛUU
T
,

BBBT ÛUU = V̂VV Σ̂ΣΣÛUU
T
ÛUU = V̂VV Σ̂ΣΣ,

=⇒ DDD := (QQQW ÛUU)(Σ̂ΣΣV̂VV
T

) = UUUVVV T . (3)

As the second modification, namely RandSVD2, we perform an economic QR factorization
ofBBBT instead of formingBBBBBBT . LetBBBT = Q̂QQQQQQQQR̂RR, where R̂RR is a k×k matrix. Next performing

the SVD gives us R̂RR = ÛUUΣ̂ΣΣV̂VV
T

. Therefore we have

DDD = QQQWBBB = QQQW (Q̂QQQQQQQQÛUUΣ̂ΣΣV̂VV
T

)T = (QQQW V̂VV Σ̂ΣΣ)(ÛUU
T
Q̂QQQQQQQQ) = UUUVVV T .

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Constructing an H-matrix via Randomized Algorithms pp.: 3–4

1090



Note that, the cost of both algorithms is bounded by O(n′m′k). We test our randomized
algorithm numerically when applied to our BEM model and compare the obtained results
with applying a direct SVD to construct an H-matrix in one and two dimensions.

SVD RandSVD1 RandSVD2
n t[s] t[s] t[s]

64 0.001 0.001 0.0001
128 0.007 0.003 0.006
256 0.021 0.011 0.014
512 0.127 0.042 0.041
1024 1.149 0.158 0.160
2048 11.130 0.631 0.631
4096 138.572 2.536 2.554
8192 1483.809 10.174 10.247
16384 13036.270 40.896 41.106
32768 104290.160 164.459 165.362
65536 730031.120 851.235 860.943
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Figure 2: Timing and corresponding plotting for different n in H-matrix construction with
rank k = 10 for d = 1.

SVD RandSVD1 RandSVD2
n t[s] t[s] t[s]

1024 1.186 0.954 0.950
4096 48.103 15.181 14.189
16384 5219.187 238.980 239.299
65536 835069.92 3793.331 3811.280
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Figure 3: Timing and corresponding plotting for different n in H-matrix construction with
rank k = 10 for d = 2.
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Global CMRH method for solving general coupled matrix
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Abstract

In the present paper, we propose a global CMRH method for solving the large
and sparse general coupled matrix equations. We consider the general coupled matrix
equations as a linear operator and to give a natural way to derive this new method.
A numerical example is given to illustrate the effectiveness of the presented method.

Keywords: linear matrix equations, CMRH method, global Hessenberg

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

We consider the solution of the general coupled matrix equations of the form

p∑

j=1

AijXjBij = Ci, i = 1, . . . , p, (1)

where Aij ∈ Rm×m, Bij ∈ Rn×n, Ci ∈ Rm×n, i, j = 1, 2, ..., p, are given matrices and
Xi ∈ Rm×n, i = 1, 2, ..., p, are the unknown matrices.

For applying the global CMRH method to Eq. (1), as [5], we define the linear operator
M as follows

M : Rm×n × . . . × Rm×n
︸ ︷︷ ︸

p

−→ Rmp×n

X = (XT
1 , XT

2 , . . . , XT
p )T −→ M(X) = (A1(X)T ,A2(X)T , . . . , Ap(X)T )T ,

where

Ai(X) =

p∑

j=1

AijXjBij , i = 1, 2, . . . , p.
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Using the linear operator M, we can write Eq. (1) as

M(X) = C, (2)

where C = (CT
1 , CT

2 , . . . , CT
p )T . In the next section, we use the linear matrix operator M

to present a global CMRH method for solving Eq. (1). As [2], we use the matrix product
∗, for the following product

Vk ∗ α =

k∑

j=1

αjVj ,

where Vk = [V1, V2, . . . , Vk], Vj ∈ Rm×n, j = 1, . . . , k and α ∈ Rk. By the same way, we set

Vk ∗ H = [Vk ∗ H(:, 1), Vk ∗ H(:, 2), . . . , Vk ∗ H(:, k)]

where H is an k × k matrix and H(:, j) denotes the jth column of H. It is easy to see
that the following relations are satisfied

Vm ∗ (α + β) = Vm ∗ α + Vm ∗ β

2 Main results

In this section, we propose a new global CMRH method for solving (1). Let X(0) =

(X
(0)T
1 , X

(0)T
2 , . . . , X

(0)T
p )T ∈ Rmp×n be a given initial approximate solution of the exact

solution of Eq. (1) and R(0) = C − M(X(0)) its associated residual. By assuming k is
smaller than the grade of R(0), we define the matrix Krylov subspace as follows

Kk(M, R(0)) = span{R(0), M(R(0)), . . . , M(k−1)(R(0))}.

By using the global Hessenberg process with maximum strategy [1], we can construct a
Krylov basis V1, V2, . . . , Vk of Kk(M, R(0)). As known [1], this process generates Vk =
[V1, V2, ..., Vk] and the (k +1)× k upper Hessenberg matrix H̃k which satisfy the following
relation

M(Vk)
.
= [M(V1), M(V2), . . . , M(Vk)] = Vk+1 ∗ H̃k. (3)

At the kth iterate, a correction W (k) is determined in the matrix Krylov subspace Kk(M, R(0))
such that

X(k) − X(0) = W (k) ∈ Kk(M, R(0)).

By using the basis Vk = [V1, V2, ..., Vk] constructed via the global Hessenberg process, we
can write

X(k) = X(0) + Vk ∗ dk,

where dk ∈ Rk. The corresponding residual is then expressed by

R(k) = R(0) − M(Vk) ∗ dk.
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From the fact that R(0) = βV1 = Vk+1 ∗ (βe
(k+1)
1 ), where β = |(R(0))i0,j0 | with i0 and j0

such that |(R(0))i0,j0 | = max{(R(0))i,j}1≤j≤n

1≤i≤mp, the use of Eq. (3) implies that

R(k) = Vk+1 ∗ (βe
(k+1)
1 − H̃kdk)

The vector dk can be obtained by imposing the following minimizing norm condition

∥ R(k) ∥F = min
d∈Rk

∥ Vk+1 ∗ (βe
(k+1)
1 − H̃kd) ∥F . (4)

To solve this problem is equivalent to the global GMRES method. As global CMRH
method [1] and CMRH method [4], instead of solving Eq. (4), we will solve a smaller
problem, namely, minimizing just the Euclidean norm of the coefficient vector in Eq. (4).
So, we will obtain dk from the minimization problem

min
d∈Rk

∥ (βe
(k+1)
1 − H̃kd) ∥2 (5)

In practice, the computational and storage requirement grow with iterations. So, we have
to use a restarting strategy. The main steps of the restarting global CMRH (denoted by
Gl-CMRH) method for solving the general coupled matrix equations can be summarized
as shown in Algorithm 1.

Algorithm 1: Gl-CMRH(k) Method

1. Choose X(0), k, and a tolerance ϵ. Compute R(0) = C − M(X(0)).

2. Determine i0 and j0 such that |(R(0))i0,j0 | = max{(R(0))i,j}1≤j≤n

1≤i≤mp;

β = |(R(0))i0,j0 |; V1 = R(0)/β; p1,1 = i0; p1,2 = j0;

3. Construct the basis V1, V2, . . . , Vk and the matrix H̃k by the
global Hessenberg process with maximum strategy [1].

4. Determine dk as the solution of mind∈Rk ∥ βe
(k+1)
1 − H̃kd ∥2 .

Compute the approximate solution X(k) = X(0) + Vk ∗ dk.
5. Compute R(k) = C − M(X(k)).

If ∥ R(k) ∥F ≤ ϵ, Stop;
else X(0) = X(k), R(0) = R(k); goto 2.

3 Numerical results

In this section, some numerical results are presented to compare the performance of the
Gl-CMRH method with Gl-GMRES method [3]. We consider the general coupled matrix
equations

{
A11X1B11 + A12X2B12 = C1,

A21X1B21 + A22X2B22 = C2,

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Global CMRH method for solving general coupled matrix equations pp.: 3–4

1094



Table 1

Gl-GMRES(5) Gl-CMRH(5)

m iters CPU-Time Err iters CPU-Time Err

100 48 1.83 5.514703e-006 41 0.81 5.933826e-006

200 46 6.80 7.772339e-006 40 3.98 7.399977e-006

300 44 18.03 1.087575e-005 40 11.61 8.847238e-006

400 44 39.80 1.087349e-005 39 26.30 1.099325e-005

where the coefficient matrices are m × m matrices and

A11 = tridiag(−1, 6, −1), B11 = tridiag(1, 8, −1),

A12 = 0.1Im, B12 = tridiag(1, 0, 1),

A21 = 0.1Im, B21 = tridiag(−2, 1, −2),

A22 = tridiag(−1, −3, −1), B22 = tridiag(1, 6, 2).

The right-hand side of the corresponding system M(X) = C was taken such that X =
(X1, X2) is the exact solution of the system with X1 = Im and X2 = Em, where Em is
m × m matrix that all of components are equal to one. The initial guess was taken to
be zero and the stopping criterion ∥Rj∥F /∥R0∥F < 10−8 was used for the Gl-CMRH(5)
method with Gl-GMRES(5) method. The numerical results are given in Table 1. In
this table, ”iters” and ”CPU-Time” represent the number of iterations and CPU-Time(s)
needed for the convergence, respectively, and ”Err”stands for

Err = ∥(X1, X2) − (X̄1, X̄2)∥∞,

where (X̄1, X̄2) is the approximate solution computed by the numerical methods. As we
observe, for this example, the numerical results in terms of iterations and CPU-Time(s) for the
Gl-CMRH(5) are better than those of the Gl-GMRES(5) proposed in [3]. From our experiments.
we saw that, Gl-CMRH(k) algorithm in general is more suitable than the Gl-GMRES algorithm
proposed in [3] for solving the general coupled matrix equations, especially for the large problems.
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Abstract

We present a method to detect an original signature from a fictitious signature
with high probability.
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1 Introduction

It is well-known that signature is used for verification purpose. Based on the application,
verification can be performed either Offline or Online. Online systems use dynamic infor-
mation of a signature captured at the time that the signature is made. Offline systems
work on the scanned image of a signature. Khatra in [3], has been used various geometric
features to distinguish signatures of different persons. In [1], Chadha et al. introduced
a novel method for signature recognition using radial basis function network. In this pa-
per, we want to present a method for offline verification of signatures via isogeometry
techniques with smooth multiple knot B-spline functions.

2 Reconstruction

For simplicity, we consider the nodal points in [0, 1]. We define the simple curve f and the
reconstructed curve c as follows:

f : [0, 1] −→ Ω ⊂ R2

f(t) =

[
x(t)
f(t)

]
,

and

c : [0, 1] −→ Ω ⊂ R2

c(t) =

[
x(t)
c(t)

]
,

where Ω is a polygon domain.
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Definition 2.1. Given n control points d1, ..., dn and a knot vector J = {t1, t2, . . . , tn+m+1}
where t1 ≤ t2 ≤ . . . ≤ tn+m+1, the B-spline curve defined by the control points and the
knot vector is

c(t) =
n∑
i=1

diBi,m,J (t), t ∈ [0, 1],

where Bi,m,J ’s are B-spline basis functions of order m.

We should derive the knot vector J as well as the control points di’s to calculate

min
di,ti
‖f − c‖2L2([0,1])

= min
di,ti
‖f −

n∑
i=1

diBi,2,J ‖2L2([0,1])
.

In continue, we want to find the nodal and control points, simultaneously. Since, we
consider the knot vector J ⊂ [0, 1], the first node t1 = 0 and the end node tn+3 = 1. Also,
we use the notation

f (k)(t) :=

[
x(k)(t)

f (k)(t)

]
, k = 0, 1, 2, t ∈ [0, 1].

and define the following sets:

I1 := {0, 1},
I2 := {t ∈ [0, 1] | f ′(t) no exists, (the critical points)},
I3 := {t ∈ [0, 1] | x′(t) no exists, (the critical point)},
I4 := {t ∈ [0, 1] | x′(t) = 0 (the critical point)},
I5 := {t ∈ [0, 1] | f ′(t) = 0, (the critical points)},
I6 := {t ∈ [0, 1] | f ′′(t) = 0, (the inflection points)},

I7 := {t ∈ [0, 1] | t /∈
6⋃
j=1
Ij & t is the local maximum of the curvature function κ(t)}.

Also, we find the nodal and control points such a way that the points in
7⋃
j=1
Ij of c and f

are coincided. For details, we refer to [4].

3 Algorithm

In this section we present a method how to recognize the fictitious signature. To this end,
we remove the noisy effects that are usually happen because of hand motion during the
signaturing.

Definition 3.1. The point

[
x(t∗)
y(t∗)

]
, is a vertex of the noisy curve

f : [0, 1] −→ Ω ⊂ R2

f(t) =

[
x(t)
f(t)

]
,
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Figure 1: Simulations of a signature (top left signature is original and the other are
simulated signatures).

if for a given δ > 0 and t ∈ (t∗ − δ, t∗ + δ)
1. one of the following conditions holds:

x(t) ≤ x(t∗),
x(t) ≥ x(t∗),

y(t) ≤ y(t∗),
y(t) ≥ y(t∗),

2. there exists an ε > 0 such that:

‖x(t)− x(t∗)‖ > ε and ‖y(t)− y(t∗)‖ > ε.

To characterize a fictitious signature, our strategy is finding the curvature on some
specified points. Now, we state the main algorithm to detect the fictitious signature from
an original one.

Algorithm 1: Recognition of a fictitious signature

1. Scan the signature;
2. Use erosion techniques for thinning the signature curve [2];
3. S := ∅;
4. For e = 1, 2, . . .

5. Find p ∈ Ae :=
7⋃
i=1
Ij where Ijs are located on the simple curve ce;

6. Find the control and nodal points;
7. Derive the B-spline curve Be;
8. Put Ae := Ae ∪He where He is made up of auxiliary points that lie in the middle of
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both consecutive points in Ae;
9. Find the curvature κ of the points in Ae on the B-spline curve Be;
10. Put Ee := {i ∈ N : xi ∈ Ae};
11. Compute S := S +

∑
i∈Ee
‖κce(xi)− κBe(xi)‖`2 where κce and κBe are the curvature of

the original curve ce and B-spline curve Be on the points in Ae, respectively;
12. EndFor
13. If S > ε, then the signature would be fictitious.

In Algorithm 1, the identification of a signature depends on the value ε. As an example,
the first signature in Figure 1 (top left) is original. The three other signatures would be
fictitious if ε > 0.1 for top right, ε > 0.7 for down left and ε > 0.5 for down right signatures.
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Abstract

Consider an n×n matrix polynomial P (λ) and a set Σ consisting of k ≤ n distinct
complex numbers. A perturbation of P (λ), such that the spectrum of the perturbed
matrix polynomial includes the specified set Σ, was recently constructed by Kokabifar,
Loghmani, Psarrakos and Karbassi (2015). In this article, we briefly discuss on inverse
eigenvalue problem for the case of matrix polynomials as a conceivable application of
the topic of the paper.

Keywords: Matrix polynomial, Eigenvalue, Perturbation, Inverse eigenvalue prob-
lems

Mathematics Subject Classification [2010]: 15A18, 65F35, 65F18

1 Introduction

Let A be an n×n complex matrix and letM be the set of all n×n complex matrices that
have µ ∈ C as a multiple eigenvalue. Malyshev [5] obtained a singular value optimization
characterization for the spectral norm distance from A to M. Malyshev’s work can be
considered as a solution to Wilkinson’s problem, that is, the computation of the distance
from a matrix A ∈ Cn×n with all its eigenvalues simple to the n × n matrices that have
multiple eigenvalues.

In 2008, Papathanasiou and Psarrakos [6] generalized Malyshev’s results for the case of
matrix polynomials, introducing a (weighted) spectral norm distance from an n×n matrix
polynomial P (λ) to the matrix polynomials that have a prescribed µ ∈ C as a multiple
eigenvalue, and obtaining an upper and a lower bounds for this distance. A spectral
norm distance from P (λ) to matrix polynomials that have two distinct eigenvalues, or any
k ≤ n prescribed eigenvalues, was obtained by Kokabifar, Loghmani, Nazari and Karbassi
[3] and Kokabifar, Loghmani, Psarrakos and Karbassi [4], respectively, while constructing
a perturbation of P (λ) was also considered.

In this article, we are interested to present some conceivable applications of the topic
of [4]. Considering the numerous applications of matrices and development of the study
and implementation of matrix polynomials, let us concentrate on the subject of finding
a matrix polynomial with some ordered eigenvalues, extending inverse eigenvalue problem
for the case of matrix polynomials and approximating a matrix polynomials with another
one that some or all of its eigenvalues are located at desired positions.
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For Aj ∈ Cn×n (j = 0, 1, . . . ,m) and a complex variable λ, we define the matrix
polynomial

P (λ) = Amλ
m +Am−1λm−1 + · · ·+A1λ+A0 =

m∑

j=0

Ajλ
j . (1)

If for a scalar µ ∈ C and some nonzero vector υ ∈ Cn, it holds that P (µ)υ = 0, then the
scalar µ is called an eigenvalue of P (λ) and the vector υ is known as a (right) eigenvector
of P (λ) corresponding to µ. The spectrum of P (λ), denoted by σ(P ), is the set of its
eigenvalues. The singular values of P (λ) are the nonnegative roots of P (λ)∗P (λ), and they
are denoted by s1 (P (λ)) ≥ · · · ≥ sn (P (λ)) (i.e., they are considered in a nondecreasing
order) [2].

As it mentioned Kokabifar and etal constructed a perturbation of P (λ) such that the
perturbed matrix polynomial includes Σ in its spectrum. From now on, for the sake of
simplicity and intelligibility some of the results obtained of [4] are reviewed briefly.

Definition 1.1. Let P (λ) be a matrix polynomial as in (1) and let ∆j ∈ Cn×n (j =
0, 1, . . . ,m) be arbitrary matrices. Consider perturbations of the matrix polynomial P (λ)
of the form

Q(λ) = P (λ) + ∆(λ) =
m∑

j=0

(Aj + ∆j)λ
j . (2)

For ε > 0 and a set of given nonnegative weights w = {ω0, . . . , ωm}, with ω0 > 0, define
the class of admissible perturbed matrix polynomials

B(P, ε, w) = {Q(λ) as in (2) : ‖∆j‖ ≤ εωj , j = 0, 1, . . . ,m} ,

and the scalar polynomial w(λ) = ωmλ
m + ωm−1λm−1 + · · ·+ ω1λ+ ω0.

Definition 1.2. Consider a complex function f and k distinct scalars µ1, µ2, . . . , µk ∈ C.
The divided difference relative to µi and µi+t (1 ≤ i ≤ k − 1, 1 ≤ t ≤ k − i) is denoted by
f [µi, . . . , µi+t] and is defined by the following recursive formula:

f [µi, . . . , µi+k] =
f [µi, µi+1, . . . , µi+k−1]− f [µi+1, µi+2, . . . , µi+k]

µi − µi+k
.

Definition 1.3. Suppose that P (λ) is a matrix polynomial as in (1) and a set of distinct
complex numbers Σ = {µ1, µ2, . . . , µk} (k ≤ n) is given. For any scalar γ ∈ C, define the
nk × nk matrix

Fγ [P,Σ] =




P (µ1) 0 · · · 0
γP [µ1, µ2] P (µ2) · · · 0

...
...

. . .
...

γk−1P [µ1, . . . , µk] γk−2P [µ2, . . . , µk] · · · P (µk)




Now, we construct an n × n matrix polynomial ∆γ(λ) such that the given set Σ =
{µ1, µ2, . . . , µk} (k ≤ n) is included in the spectrum of the perturbed matrix polynomial
Qγ(λ) = P (λ) + ∆(λ). Without loss of generality, hereafter we can assume that the
parameter γ is real nonnegative. Also, for convenience, we set ρ = nk − k + 1.
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Definition 1.4. Suppose that u(γ) = [u1(γ), · · · , uk(γ)]T , v(γ) = [v1(γ), · · · , vk(γ)]T ∈
Cnk, is a pair of left and right singular vectors of sρ (Fγ [P,Σ]), respectively, such that
uj(γ), vj(γ) ∈ Cn for every j = 1, . . . , k. Define the n×k matrices U(γ) = [u1(γ) · · · uk(γ) ] , V (γ) =
[ v1(γ) · · · vk(γ) ] .

Suppose that γ > 0 and rank(V (γ)) = k. Consider the quantities θij = γ
µi−µj , 1 ≤

i < j ≤ k, and for p = 2, 3, . . . , k define the following vectors

v̂1(γ) = v1(γ), v̂p(γ) = vp(γ) +

p−1∑

i=1


(−1)i




p−1∏

j=p−i
θjp


 vp−i(γ)


 ,

the vectors ûp(γ), p = 1, . . . , p are defined similarly. Analogously to Definition 1.4, we de-
fine the matrices Û(γ) = [ û1(γ), · · · , ûk(γ)] , V̂ (γ) = [ v̂1(γ), · · · , v̂k(γ)] . We also consider
the quantities

αi,s =
1

w (|µi|)
m∑

j=0

((
µ̄i
|µi|

)j
µjsωj

)
and βs =

1

k

k∑

i=1

αi,s, i, s = 1, . . . , k,

where we set αi,s = 1 whenever µi = 0. Then, for nonzero quantities βi, (i = 1, . . . , k),
define

∆γ = −sρ(Fγ [P,Σ])Û(γ) diag

{
1

β1
,

1

β2
, . . . ,

1

βk

}
V̂ (γ)†,

where V̂ (γ)† denotes the Moore-Penrose pseudoinverse of V̂ (γ), and the n × n matrix

polynomial ∆γ (λ) =
m∑
j=0

∆γ,jλ
j , where

∆γ,j =
1

k

k∑

i=1

(
1

w (|µi|)

(
µ̄i
|µi|

)j
ωj∆γ

)
, j = 1, 2, . . . , k. (3)

Straightforward computations verify that the matrix polynomial ∆γ (λ) satisfies ∆γ (µi) =
βi∆γ , for i = 1, . . . , k. Notice that rank(V (γ)) = k implies v̂i(γ) 6= 0, (i = 1, . . . , k) and
V̂ (γ)†V̂ (γ) = Ik. Moreover, since u(γ), v(γ) is a pair of left and right singular vectors
of sρ (Fγ [P,Σ]), we have Fγ [P,Σ]v(γ) = sρ (Fγ [P,Σ])u(γ). Substituting û1(γ), . . . , ûk(γ)
and v̂1(γ), . . . , v̂k(γ) into these equations yields sρ (Fγ [P,Σ]) ûi(γ) = P (µi) v̂i(γ), i =
1, 2, . . . , k. Therefore, for the matrix polynomial

Qγ(λ) = P (λ) + ∆γ(λ) =

m∑

j=0

(Aj + ∆γ,j)λ
j (4)

and for every i = 1, 2, . . . , k, it follows Qγ (µi) v̂i(γ) = P (µi) v̂i(γ) + ∆γ (µi) v̂i(γ) = 0.
As a consequence, if rank(V (γ)) = k, then µ1, µ2, . . . , µk are eigenvalues of the matrix
polynomial Qγ(λ) in (4) with v̂1(γ), v̂2(γ), . . . , v̂k(γ) as their associated eigenvectors, re-
spectively.

One of straightforward usage of the results is obtaining a matrix polynomial with
some prespecified eigenvalues, which can be considered as inverse eigenvalue problem for
the case of matrix polynomials. In respect of matrices, an inverse eigenvalue problem
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concerns the reconstruction of a matrix from prescribed spectral data. Inverse eigenvalue
problem has a long list of applications in areas such as control theory, mechanics, signal
processing and numerical analysis [1].

Returning to the inverse eigenvalue problem for a matrix polynomial, assume that we
are asked to find a matrix polynomial having given scalars µ1, . . . , µl ∈ C where l ≤ n. For
doing this, one can consider an arbitrary matrix polynomial, namely, P (λ) in the craved
size. Next, by following procedure briefly described above, the desired matrix polynomial
which µ1, . . . , µl are some of its eigenvalues is computable. See the following example.

Example. Suppose that the set Σ = {1 + i,−2, 3} is given and we have find a 3 × 3
matrix polynomial such that Σ is subset of its spectrum. Consider the matrix polynomial

P (λ) =




7 9 −2
0 −2 0
6 −3 −1


λ2 +




9 −3 3
−5 8 10
4 −3 0


λ+



−5 0 5
−2 −2 10
1 9 2


 ,

where its coefficients are random matrix generated by MATLAB and assume the set of
weights w = {12.0731,14.8523,11.7991} which are the norms of the coefficient matrices.
Then, the matrix polynomial Q1.9457(λ) = P (λ) + ∆1.9457(λ) is a perturbation of P (λ)
that includes Σ in its spectrum. Where

∆1.9457 (λ) =



−1.5517 + 0.5809i −3.6695− 3.7570i 3.2116− 2.4259i
−1.4161 + 1.1256i 0.8042− 3.6739i 1.4734 + 0.2202i
−4.9540 + 1.3307i −0.2218− 0.1724i −0.1600− 2.5569i


λ2

+



−1.0060 + 0.6912i −3.2915− 2.0334i 1.8646− 2.3054i
−0.8122 + 1.0565i −0.0784− 2.7695i 1.0925− 0.1046i
−3.3050 + 1.8322i −0.1892− 0.0838i −0.5691− 1.7995i


λ

+



−2.1745− 1.0097i 0.1466− 7.5978i 5.7620 + 0.8473i
−2.5983− 0.3167i 4.6039− 2.9017i 1.2692 + 1.7425i
−6.4023− 3.7556i −0.0475− 0.4037i 2.4733− 2.7615i


 .
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Inverse eigenvalue problem of nonnegative bisymmetric

matrices of order ≤ 4
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Abstract

In this paper we solve the inverse eigenvalue problem of nonnegative bisymetric
matrices. We try to present some necessary and sufficent conditions to solve this
problem for order 3 and 4.

Keywords: Bisymmetric matrices, Bisymmetric nonnegative inverse eigenvalue prob-
lem, Spectrum of a matrix, Perron eigenvalue
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1 Introduction

Bisymmetric matrices have been widely discussed since 1939, and are very useful in com-
munication theory, engineering and statistics [1].

Definition 1.1. A real n × n matrix A = (ai,j) is called a bisymmetric matrix if its
elements satisfy the properties

ai,j = aj.i, ai,j = an−j+1,n−i+1.

The set of all n × n bisymmetric matrices is denoted by BSRn×n.

Clearly, a bisymmetric matrix is a square matrix that is symmetric about both of its
main diagonals.

The bisymmetric nonnegative inverse eigenvalue problem is the problem of finding
necessary and sufficient conditions for a list of n real numbers to be the spectrum of an
n × n bisymmetric nonnegative matrix. If there exists an n × n bisymmetric nonnegative
matrix A with spectrum σ, we say that is realizable and that A realizes σ. We will denote
by Nn the set of all realizable lists of n real numbers.

The nonnegative inverse eigenvalue problem for symmetric matrices is very difficult
and it is solved only for n = 3 by Loewy and London and for matrices with trace 0 of
order n = 4 by Reams , respectively.

Through this paper the following notation is used. The spectral radius of nonnegative
matrix A denoted by ρ(A). There is a right and a left eigenvector associated with the
Perron eigenvalue with nonnegative entries. The Perron eigenvalue is denoted by λ1.
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Some necessary conditions on the list of real number σ = (λ1, λ2, ..., λn) to be the
spectrum of a nonnegative matrix are listed below.

(1) The Perron eigenvalue max {|λi|, λi ∈ σ} belongs to σ (Perron- Frobenius theorem).
(2) sk =

∑n
i=1 λk

i ≥ 0
(3)sm

k ≤ nm−1skm,m = 1, 2, ....
This article is organized as follows. First, we discuss the specified properties and

structure of bisymmetric matrices and introduce some lemmas to be used in the subsequent
sections in Section 2, then find a solution for BSNIEP by a recursive method.

In recent paper [2] solved this problem in speacial condition of order 2, 3 and 4. In
this paper we try to solve BSNIEP problem in more complete condition.

This article is organized as follows. In section 2, we introduce a theorem for 2 × 2
nonnegative bisymmetric matrix from [2]. In section 3, we find necessary and sufficient
conditions for finding a 3 × 3 nonnegative bisymmetric matrix and in section 4 we discuss
the inverse eigenvalue problem of a 4 × 4 nonnegative bisymmetric matrix.

2 The case n = 2

Theorem 2.1. Let σ = {λ1, λ2}be a set of two real numbers such that λ1 ≥ |λ2|. Then σ
is the set of eigenvalues of a bisymmetric nonnegative matrix such that define as

A =

(
λ1+λ2

2
λ1−λ2

2
λ1−λ2

2
λ1+λ2

2

)
.

3 The case n = 3

Theorem 3.1. Let σ = {λ1, λ2, λ3} be a set of real numbers, then

d = d,

a =
1

2
(λ1 + λ2 + λ3 − d),

c =
1

2
(λ1 + λ2 − λ3 + d),

b =
1

2

√
2(−d2 + d(λ1 + λ2) − λ1λ2).

are necessary and sufficient conditions for finding a bisymmetric matrix

A =




a b c
b d b
c b a


 ,

such that σ is spectrum of A.

If we want to solve the inverse eigenvalue problem of nonnegative bisymetric matrices,
then we must choose some conditions that all of element of matrix A are nonnegative. For
instance it is very impotrtant that min λi ≤ d ≤ max λi.
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Theorem 3.2. Let σ = {λ1, λ2, λ3}, the necessary and sufficent condtion that σ be a
spectrum of nonnegative bisymmetric matrix of A is

λ1 + λ2 + λ3 > 0, λ1 > |λi|, i = 2, 3.

Remark 3.3. The solution of problem of Theorem 3.2 is not unique.

Example 3.4. Assume σ = {6, 5, 3}, then two nonnegative bisymmetric matrices are as
following

A1 =




11/2 0 1/2
0 3 0

1/2 0 11/2


 ,

and

A2 =




5 1 0
1 4 1
0 1 5


 .

The matrices A1 and A2 are nonnegative bisymmetric matrices and their eigenvalues are
{6, 5, 3}.

4 The case n = 4

Theorem 4.1. Let σ = {λ1, λ2, λ3, λ4} be a set of real numbers, If

f = f,

d = d,

a =
1

2
(λ1 + λ2 − λ3) +

3

2
λ4 − f,

h =
1

2
(λ1 + λ2 + λ3) − 3

2
λ4 − d,

and find b and c from solve system following

f + a + d + h +
√

(a + d − f − h)2 + 4(b + c)2 = 2λ1,

f + a − d − h −
√

(a − d − f + h)2 + 4(b − c)2 = 2λ4,

then there exist a bisymmetric matrix as




a b c d
b f h c
c h f b
d c b a


 ,

such that σ is spectrum of A.

If we want to solve the inverse eigenvalue problem of nonnegative bisymetric matrices,
then we must choose some conditions that all of element of matrix A are nonnegative.
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Theorem 4.2. Let σ = {λ1, λ2, λ3, λ4}, with λ1 + λ2 + λ3 > 0, and λ1 > |λi| for i = 2, 3,
the necessary and sufficient condtions that σ be a spectrum of nonnegative bisymmetric
matrix of A is

λ1 + λ2 > λ3 − 3λ4,

λ1 + λ2 > −(λ3 − 3λ4).

Remark 4.3. The solution of problem of Theorem 4.2 is not unique.

Example 4.4. Assume σ = {10, 6, 4, 1}, then we can find two nonnegative bisymmetric
matrices as following

A1 =




5 0 0 1
0 11

2
9
2 0

0 9
2

11
2 0

1 0 0 5


 ,

and

A2 =




11
2

1
2

√
3 1

2

√
3 3

2
1
2

√
3 5 4 1

2

√
3

1
2

√
3 4 5 1

2

√
3

3
2

1
2

√
3 1

2

√
3 11

2


 .

It is easy to see that A1 and A2 are nonnegative bisymmetric matrices and their eigenvalues
are {10, 6, 4, 1}.
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Abstract

In this paper, a matrix version of a nested splitting conjugate gradient (NSCG)
iteration method and its convergence conditions are presented for solving generalized
Sylvester matrix equation that coefficient matrices are large and nonsymmetric. This
method is inner/ outer iterate, which its inner iterations are CG-like method to ap-
proximate each outer iterate, while each outer iteration is induced by a convergent
and symmetric positive definite splitting of the coefficient matrices.

Keywords: Matrix NSCG, contractive, CG.

Mathematics Subject Classification [2010]: 65F10, 65F50

1 Introduction

In this paper, we consider the generalized Sylvester matrix equation

p∑

j=1

AjXBj = C, (1)

where Aj ∈ Rn×n, Bj ∈ Rm×m, C,X ∈ Rn×m. The generalized Sylvester equation (1) arises
in several areas of applications. They play a cardinal role in the control and communication
theory and image restoration; for further details see [2].
Note that the linear matrix equation (1) can be reformulated by the following nm × nm
linear system:

Avec(X) = vec(C), (2)

where A =
∑p

j=1(B
T
j ⊗ Aj). However, it is quite costly and ill-conditioned to solve this

linear equation system.
In this paper, we present an iterative method for solving the matrix equation (1) by using
the symmetric and skewsymmetric splitting of the matrices Aj and Bj , j = 1, 2, ..., p
in a matrix variant of the nested splitting conjugate gradient (NSCG) method, and give
sufficient conditions for convergence. In [1], this method proposed for solving the system of
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linear equations Ax = b, where A ∈ Rn×n is a large sparse nonsingular matrix, x, b ∈ Rn.
Thoroughout this paper, we use the following notations. Let Rn×p be the set of n× p real
matrices. The symbols AT , ‖A‖2 and trace(A) will denote the transpose, 2-Norm and
trace, respectively, of a matrix A ∈ Rn×p. For any matrices A and B in Rn×p, the inner
product < A,B >F= trace(ATB) denotes the inner product. The associated norm is the
Frobenius norm obtained by ‖.‖F .
Further, vec(.) will stand for the vec operator, i.e. vec(C) = (cT1 , c

T
2 , ..., c

T
m)T for the

matrix C = (c1, c2, ..., cm) ∈ Rn×s, where cj , j = 1, 2, ..., p is the j-th column of C and
A ⊗ B = (aijB) denotes the Kronecker product of the matrices A and B. First, we give
some definitions and lemmas that we used them.

Definition 1.1. ([3]) Let H be a symmetric positive definite matrix, we denote H− norm

of a matrix B ∈ Rn×n by using the ‖B‖H and define as ‖B‖H = ‖H 1
2BH− 1

2 ‖2.
Lemma 1.2. ([3]) Let A,B ∈ Rn×n be two symmetric matrices. Then

λmax(A+B) < λmax(A) + λmax(B), λmin(A+B) > λmin(A) + λmin(B).

2 The NSCG method

In this section, we consider the scheme of the NSCG iteration method and its convergence
property. A = H−S is called a splitting of the matrix A if H is nonsingular. This splitting
is convergent if ρ(H−1S) < 1, a contractive splitting if ‖(H−1S)‖ < 1 for some matrix
norm and symmetric positive definite splitting(spd) if H is spd matrix.
Let A = H − S is a splitting symmetric positive definite of matrix A. Then the linear
systems (2) is equivalent to the fixed point equation: Hx = Sx + c. Assume that this
splitting is contractive. Given an initial guess x(0) ∈ Rn. By using CG-like method, we
have computed the approximations x(1), ..., x(l) to the solution x∗ of (2). Then the next
approximation x(l+1) is a solution of the following linear equation system:

Hx = Sx(l) + c.

Now, we apply NSCG method for generalized Sylvester equation as follows:
First, we split Aj , Bj , j = 1, 2, ..., p into symmetric and skew-symmetric parts:

Aj = HAj − SAj , Bj = HBj − SBj , j = 1, 2, ..., p,

and applying the vec(.) operator, (1) is converted to:

Σp
j=1((HBj ⊗HAj )− (SBj ⊗ SAj ))x = Σp

j=1((HBj ⊗ SAj )− (SBj ⊗HAj ))x+ c,

where x = vec(X) and c = vec(C). Define

H = Σp
j=1((HBj ⊗HAj )− (SBj ⊗ SAj )),S = Σp

j=1((HBj ⊗ SAj )− (SBj ⊗HAj )). (3)

It is easy to see that H and S are symmetric and skew-symmetric parts of the matrix A,
respectively. By using lemma 1.2, we have:

λmin(H) ≥
p∑

j=1

(min(λ(HBj )λ(HAj ))−max(λ(SBj )λ(SAj ))) := t.
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If t > 0 then H is a spd matrix. Then, we can apply the NSCG method is said to be in
the above with H and S in (3) for solving Ax = c.
An implementation of the NSCG method is given by the following algorithm.

Algorithm 1 NSCG method for generalized Sylvester matrix equation

1: X(0,0) = X(0); R(0) = C −∑p
j=1AjX

(0)Bj .
2: for l = 0 : lmax do
3: Ĉ =

∑p
j=1HAjX

(l,0)SBj +
∑p

j=1 SAjX
(l,0)HBj + C.

4: R̂(l,0) = Ĉ −∑p
j=1HAjX

(l,0)HBj −
∑p

j=1 SAjX
(l,0)SBj ; P (0) = R̂(l,0).

5: for k = 0 :kmax do

6: W (k) =
∑p

j=1HAjP
(k)HBj +

∑p
j=1 SAjP

(k)SBj ; αk =
〈R̂(l,k), R̂(l,k)〉F
〈W (k), R̂(l,k)〉F

.

7: X(l,k+1) = X(l,k) + αkP
(k); R̂(l,k+1) = R̂(l,k) − αkW (k).

8: if ‖R̂(l,k+1)‖F ≤ ε2‖R̂(l,0)‖F then
9: go to 19.

10: else

11: βk =
〈R̂(l,k+1), R̂(l,k+1)〉F
〈R̂(l,k), R̂(l,k)〉F

; P (k+1) = R̂(l,k+1) + βkP
(k).

12: end if
13: end for
14: X(l+1) = X(l,k+1),
15: if ‖R(l+1)‖F ≤ ε1 then
16: stop.
17: end if
18: X(l+1,0) = X(l+1); l = l + 1.
19: end for

In the following we will give the analysis of the convergence property of the NSCG
iteration method:

Lemma 2.1. Let H and S are as in (3). If t > 0 and θ3τ < t, then
A = H − S is a contractive splitting (with respect to the ‖.‖H − norm), i.e,
‖H−1S‖H < 1,where:

τ = (

p∑

j=1

[−min(λ2(HBj )λ
2(SAj ))−min(λ2(HAj )λ

2(SBj )) + λmax(HBjSBj ⊗ SAjHAj

+ SBjHBj ⊗HAjSAj )] +

p∑

j>i

p−1∑

i=1

[λmax(HBiHBj ⊗ STAiSAj +HBjHBi ⊗ STAjSAi)

+ λmax(SBiS
T
Bj ⊗HAiHAj + SBjS

T
Bi ⊗HAjHAi)] +

p∑

j=1
j 6=i

p∑

i=1

λmax(HBiSBj ⊗ SAiHAj

+ SBjHBi ⊗HAjSAi))
1
2 , s =

p∑

j=1

[max
(
λ(HAj )λ(HBj )

)
−min

(
λ(SBj )λ(SAj )

)
],
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t =

p∑

j=1

[min
(
λ(HBj )λ(HAj

)
−max

(
λ(SBj )λ(SAj )

)
], θ = (

s

t
)
1
2 .

Theorem 2.2. Let H and S are as in (3). They are symmetric and skew-symmetric parts
of the nonsingular and nonsymmetric matrix A, respectively. Let t > 0, η < 1, the NSCG
method is started from an initial guess X(0) ∈ Rn×n that produces an iterative sequence
{X(l)}∞l=0, where X(l) ∈ Rn×n is the lth approximation of X∗ ∈ Rn×n to (1).
For the error matrix E(l) = X(l)−X∗ and the residual matrix R(l) = C−∑p

j=1AjX
(l)Bj,

we have the following results: For l = 1, 2, ...,
a)‖∑p

j=1HAjE
(l)HBj+

∑p
j=1 SAjE

(l)SBj‖F ≤ ω(l)‖∑p
j=1HAjE

(l−1)HBj+
∑p

j=1 SAjE
(l−1)SBj‖F ,

b)‖∑p
j=1HAjR

(l)HBj+
∑p

j=1 SAjR
(l)SBj‖F ≤ ω̃(l)‖∑p

j=1HAjR
(l−1)HBj+

∑p
j=1 SAjR

(l−1)SBj‖F ,
where:

ω(l) =

(
2

(
θ − 1

θ + 1

)kl
(1 + η) + η

)
θ, ω̃(l) = ω(l) 1 + η

1− η .

τ, s, t are as in lemma 2.1, θ = ( st )
1
2 and η = θ3τ

t .

Moreover, for η ∈ (0, 1θ ) and some ω ∈ (ηθ, 1), if kl ≥
Ln

(
ω − ηθ

2θ(1 + η)

)

Ln

(
θ − 1

θ + 1

) , l = 1, 2, 3, ..., then

we have ω(l) ≤ ω and the sequence {X(l)}∞l=0 converges to the solution X∗ of (1).

For η ∈
(

0,

√
(θ + 1)2 + 4θ − (θ + 1)

2θ

)
, and some ω̃ ∈

(
(1 + η)ηθ

(1− η)
, 1

)
, if

kl ≥
Ln

(
ω̃(1− η)− ηθ(1 + η)

2θ(1 + η)2

)

Ln

(
θ − 1

θ + 1

) , l = 1, 2, ..., then we have ω̃(l) ≤ ω̃ and the residual

sequence {R(l)}∞l=0 converges to zero.

References

[1] O. Axelsson, Z.- Z. Bai, and S.-X. Qiu, A class of nested iterative schemes for linear
systems with a coefficient matrix with a dominant positive definite symmetric part,
Numer, Alg. , 35 (2004), pp. 351–372.

[2] F. P. A. Beik and D. K. Salkuyeh On the global Krylov subspace methods for solving
general coupled matrix equation, Comput. Math. Appl. 62 (2011), pp. 4605 4613.

[3] Ke. Yi-Fen, and Ma. Chang-Feng , A preconditioned nested splitting conjugate gradient
iterative method for the large sparse generalized Sylvester equation, Comput. Math.
Appl. , (2014), pp. 1–12.

Email: malihe.sh.1369@gmail.com
Email: atajadini@uk.ac.ir
Email: yaghoobi@uk.ac.ir

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Nested splitting conjugate gradient method for solving generalized . . . pp.: 4–4

1111



Numerical solution for nth order linear Fredholm

integro-differential equations by using Chebyshev wavelets

integration operational matrix

Reza Ezzati, Atiyeh Mashhadi Gholam, Hajar Nouriani∗

Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran

Abstract

In this paper, a numerical method for solving nth order linear Fredholm integro-
differential equations is proposed. Proposed method is based on using Chebyshev
wavelets integration operational matrix (CWIOM). Numerical tests to illustrate ap-
plicability of the new approach are presented.

Keywords: Fredholm integro-differential equations, Chebyshev wavelets, Operational
matrix.
Mathematics Subject Classification [2010]: 13D45,39B42

1 Introduction

In recent years, numerical solution of integral equations and integro-differential equations
by using Haar wavelets, Chebyshev wavelets, Legendre wavelets, CAS wavelets and other
hybrid functions based on wavelets via integration operational matrix was discussed by
many authors [1, 2, 3, 4]. Here, we consider the following nth order linear Fredholm
integro-differential equation




y(n)(x) = f(x) + y(x) +
1∫
0

k(x, t)
(
y(n−1)(t) + y(n−2)(t) + · · ·+ y′(t) + y(t)

)
dt

y(0) = y0, y
′(0) = y1, y

′′(0) = y2, · · · , y(n−1)(0) = yn−1,
(1)

and proposed a new method based on CWIOM. In [1], the authors a numerical method
based on for solving linear Fredholm integro-differential equation as





y(n)(x) = f(x) + y(x) +
1∫
0

k(x, t)y(t)dt

y(0) = y0, y
′(0) = y1, y

′′(0) = y2, · · · , y(n−1)(0) = yn−1,
(2)

The main advantage of the proposed method in this paper is that in this method by using
CWIOM and without any need to integration, we obtain the approximate solution of
equation (1). The paper is organized as follows: In Sections 2 and 3, we recall properties
of Chebyshev wavelets, function approximation and the operational matrix, respectively.
In Section 4, the proposed method is applied to solve of the nth order linear Fredholm
integro-differential equations. Some numerical examples are presented in Section 5.
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2 Wavelets and properties of Chebyshev wavelets

Wavelet ψa,b(t) is a mother wavelet, where a and b are dilation parameter and translation
parameter, respectively. They are defined by [2, 3, 4]

ψa,b(t) = |a|− 1
2ψ

(
t− b
a

)
, a ∈ R, a 6= 0. (3)

Chebyshev wavelets ψ(n,m, k) have three arguments; k = 1, 2, · · · , n = 1, 2, · · · , 2k−1
and m is the degree for Chebyshev polynomials. They are defined on the interval [0, 1) by

ψn,m(x) =

{
2
k
2 T̂m

(
2kx− 2n+ 1

)
, x ∈

[
n−1
2k−1 ,

n
2k−1

)

0, otherwise,
(4)

where

T̂m(x) =

{ 1√
π
, m = 0√
2
πTm(x), m > 0,

and m = 0, · · · ,M−1. Tm(x), m = 0, 1, 2, · · · are Chebyshev polynomials of the first kind

degree m which are with respect to the weight function w(x) = (1−x2)− 1
2 on the interval

[−1, 1], and satisfy the following recurrence relation

T0(x) = 1, T1(x) = x, Tm+1(x) = 2xTm(x)− Tm−1(x), m = 1, 2, · · · .

Using the Chebyshev wavelets the weight function w(x) is

wn(x) =

(
1−

(
2kx− 2n+ 1

)2)− 1
2

.

For function f(x) ∈ L2[0, 1) using the orthogonal basis functions Tm(x), is defined as

f(x) =
∞∑

n=1

∞∑

m=0

cn,mψn,m(x), (5)

where
cn,m = (f(x), ψn,m(x))wn , (6)

in which (., .) denotes the inner product. Now, if the infinite series in equation (5) is
truncated, then equation (5) can be written as

f(x) '
2k−1∑

n=1

M−1∑

m=0

cn,mψn,m(x) = CTΨ(x), (7)

where C and Ψ(x) are 2k−1M × 1 matrices.
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3 Integration operational matrix

The integration of the vector Ψ(x) can be written as
x∫
0

Ψ(s)ds = PΨ(x), where P is an

2k−1M × 2k−1M called the integration operational matrix and is given by [2, 3, 4]

P =




L F F · · · F
O L F · · · F
O O L · · · F
...

...
...

. . .
...

O O O · · · L



, F =

1

2k




2 0 · · · 0
0 0 · · · 0
...

...
. . .

...√
2
2

(
1−(−1)r+1

r+1 − 1−(−1)r−1

r−1

)
0 · · · 0

...
...

. . .
...√

2
2

(
1−(−1)M

M − 1−(−1)M−2

M−2

)
0 · · · 0




,

and L, that you can see the matrix in [2]. The integration of the product of two Chebyshev

wavelets vector functions is written as
1∫
0

Ψ(x)Ψ(x)Tdx = I. Also, Ψ(x)Ψ(x)TC = ĈΨ(x).

For more details, see [2, 3].

4 Method solution

Consider the nth order linear Fredholm integro-differential equation (1). To this end, we
have:

y(n)(x) ' y(n)TΨ(x),

y(n−1)(x) ' y(n)TPΨ(x) + y
(n−1)T
0 Ψ(x),

y(n−2)(x) ' y(n)TP 2Ψ(x) + y
(n−1)T
0 Ĉ1Ψ(x) + y

(n−2)T
0 Ψ(x)

...

y′(x) ' y(n)TPn−1Ψ(x) + y
(n−1)T
0 Ĉn−2Ψ(x) + · · ·+ y′′T0 Ĉ1Ψ(x) + y′T0 Ψ(x),

y(x) ' y(n)TPnΨ(x) + y
(n−1)T
0 Ĉn−1Ψ(x) + · · ·+ y′′T0 Ĉ2Ψ(x) + y′T0 Ĉ1Ψ(x) + yT0 Ψ(x).

(8)

Finally, substituting equation (8) in equation (1), we conclude that

[
I −K(P T + · · ·+ Pn

T
)− PnT

]
y(n) = X +

[
K(I + ĈT1 + · · ·+ ĈTn−1) + ĈTn−1

]
y
(n−1)
0

+
[
K
(
ĈT1 + · · ·+ ĈTn−2

)
+ ĈTn−2

]
y
(n−2)
0 + · · ·+

[
K(I + ĈT1 ) + ĈT1

]
y′0 + (I +K)y0.

(9)

5 Numerical examples

In this section, we compute the following integro-differential equations.
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Example 5.1. Consider the following third order integro-differential equation with exact
solution y(x) = x2,





y′′′(x) = −5
3x− x2 + y(x) +

1∫
0

xt (y′(t) + y′′(t)) dt

y(0) = y′(0) = 0, y′′(0) = 2,

Example 5.2. Finally consider the linear fourth order integro-differential equation




y(4)(x) = 24x− ex2 − x5

5 + y(x) +
1∫
0

x2et
4
y′′(t)dt

y(0) = y′(0) = y′′(0) = y′′′(0) = 0,

where the exact solution is y(x) = x5

5 .

Table 1: Numerical results of Example 5.1−5.2 for M=3, k=3

x Absolute error for Example 5.1 x Absolute error for Example 5.2

0 1.31110× 10−5 0 1.90854× 10−5

0.1 7.87173× 10−6 0.1 2.75047× 10−5

0.2 9.69928× 10−5 0.2 2.68595× 10−6

0.3 3.96844× 10−4 0.3 1.52273× 10−4

0.4 1.39139× 10−3 0.4 1.99042× 10−5

0.5 3.42384× 10−3 0.5 3.67240× 10−4

0.6 6.92173× 10−3 0.6 2.97938× 10−4

0.7 1.29729× 10−2 0.7 3.52965× 10−4

0.8 2.19557× 10−2 0.8 6.67151× 10−4

0.9 3.53960× 10−2 0.9 4.78840× 10−4
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Numerical solution of an inverse source problem of the

time-fractional diffusion equation using a LDG method

Somayeh Yeganeh∗, Reza Mokhtari

Isfahan University of Technology, Department of Mathematical Sciences, Isfahan 84156-83111, Iran.

Abstract

This paper is devoted to determine a time-dependent source term in a time-
fractional diffusion equation using a fully discrete local discontinous Galerkin (LDG)
method. This method is based on a finite difference scheme in time and a local dis-
continous Galerkin method in space, is numerically stable and has the convergence of
order O((∆x)k+1 + (∆t)2 + (∆t)

α
2 (∆x)k+

1
2 + (∆t)α).

Keywords: LDG method, time-fractional diffusion equation, inverse source problem.

Mathematics Subject Classification [2010]: 65M32.

1 Introduction

In this paper, we consider the following initial-boundary value problem for the time-
fractional diffusion equation





Dα
t u = uxx + f(x)p(t), 0 < x < 1, 0 < t < T,

u(0, t) = k0(t), 0 6 t 6 T,
u(1, t) = k1(t), 0 6 t 6 T,
u(x, 0) = φ(x), 0 6 x 6 1.

(1)

Problem (1) is a forward problem when all of the functions f , φ, k0, k1 and p are given
appropriately. The inverse source problem which is considered here is to determine the
source term p based on problem (1) and the following additional condition

u(x∗, t) = g(t), 0 ≤ t ≤ T,

where x∗ ∈ (0, 1) is an interior measurement location. Dα
t is the Caputo fractional deriva-

tives of order α, i.e.

Dα
t u =

1

Γ(1− α)

∫ t

0

∂u(·, s)
∂s

ds

(t− s)α , 0 < α < 1, (2)

where Γ(.) is the Gamma function. The inverse source problem mentioned above has
been solved numerically by Wei et al. [1] using a regularized method. We aim to apply
the discontinuous Galerkin method to the above mentioned inverse source problem. Of
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course, some DG methods have been applied successfully for the forward fractional diffu-
sion equation. For example, Hesthaven et. al. [2] have been solved some space-fractional
diffusion equations using a local discontinuous Galerkin method in a semi-discrete regime
while Wei et al. [3] have been applied a fully-discrete LDG for solving a time-fractional
diffusion equation.

In the following, we consider a spatial grid 0 = x 1
2
< x 3

2
< · · · < xN+ 1

2
= 1 with cells

Ij = [xj− 1
2
, xj+ 1

2
], for j = 1, . . . , N , the cell lengths ∆xj = xj+ 1

2
− xj− 1

2
, 1 ≤ j ≤ N, and

h = ∆x = max
1≤j≤N

∆xj . We denote by u+
j+ 1

2

and u−
j+ 1

2

the values of u at xj+ 1
2
, from the right

cell Ij+1 and from the left cell Ij . We define the piecewise-polynomial space V k
h as the space

of polynomials of degree up to k in each cell Ij , i.e., V k
h =

{
v : v ∈ P k(Ij), j = 1, . . . , N

}
.

We point out that the norm ‖ · ‖ denotes the usual norm of the L2[0, 1] space.
Let M be a positive integer, ∆t = T/M be the time meshsize, and tn = n∆t, for

n = 0, 1, . . . ,M be the mesh points. An approximation to time fractional derivative (2)
can be obtained by simple quadrature formule given as [4],

Dα
t u(·, tn) =

(∆t)1−α

Γ(2− α)

n−1∑

i=0

bi
u(·, tn−i)− u(·, tn−i−1)

∆t
+ γn(·), (3)

where bi = (i+ 1)1−α− i1−α, and γn is the truncation error with ‖γn‖ ≤ C(∆t)2−α where
C is a constant depending on α, u, and T . It is easy to check that bn → 0 as n → ∞,
bi > 0, i = 0, 1, . . ., and 1 = b0 > b1 > b2 > · · · .

2 Main results

We rewrite (1) as a first-order system: q = ux, Dα
t u(x, t)−qx = f(x)p(t). Let unh, q

n
h ∈ V k

h

be the approximation of u(., tn), q(., tn) respectively, and pn = p(tn), gn = g(tn). After
some manipulations, the following fully discrete local discontinuous Galerkin scheme is
obtained: find unh, q

n
h ∈ V k

h , such that for all test functions v, w ∈ V k
h ,





∫

Ω
unhvdx+ β



∫

Ω
qnhvxdx−

N∑

j=1

((q̂nhv
−)j+ 1

2
− (q̂nhv

+)j− 1
2
)


 = βpn

∫

Ω
f(x)vdx

+

n−1∑

i=1

(bi−1 − bi)
∫

Ω
un−ih v + bn−1

∫

Ω
u0
hvdx,

∫

Ω
qnhwdx+

∫

Ω
unhwxdx−

N∑

j=1

((ûnhw
−)j+ 1

2
− (ûnhw

+)j− 1
2
) = 0,

unh(x∗) = gn,
(4)

where β = (∆t)αΓ(2−α) and without lose of generality we assume that x∗ is a grid point.
The“hat” terms in (4) in the cell boundary terms are the so-called “numerical fluxs”, which
are single valued functions defined on the cell boundaries and should be designed based
on different guiding principles for different equations for ensuring the numerical stability.
Among suitable choices, we choose the following numerical fluxs ûnh = (unh)−, q̂nh = (qnh)+,
or ûnh = (unh)+, q̂nh = (qnh)−. We remark that the choice for the fluxes is not unique. In fact
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the crucial part is taking ûnh and q̂nh from opposite sides [5]. The proof of the following
Theorems have been presented in [6].

Theorem 2.1. Assume that uxx(x∗, ·) is bounded and f is a continuous function on [0, 1].
For periodic or compactly supported boundary conditions, the fully-discrete LDG scheme
(4) is unconditionally stable, and the numerical solution unh satisfies

‖unh‖ ≤ ‖u0
h‖+ κ, n = 1, . . . ,M, (5)

where κ is a constant depending on ∆t, f and uxx.

Theorem 2.2. If u(·, tn) is the exact solution of the problem (1) which is sufficiently
smooth with bounded derivatives and unh is the numerical solution of the fully discrete
LDG scheme (4), then there holds the following error estimate

‖u(·, tn)− unh‖ ≤ C(hk+1 + (∆t)2 + (∆t)
α
2 hk+ 1

2 + c(∆t)α), (6)

where C is a constant depending on u and T , and c is a constant depending on f and uxx.

2.1 Numerical results

In this section, we carry out some numerical tests for confirming theoretical results and
also investigating the effciency of the proposed method. For simplicity, we set T = 1,
∆t = 1/M , and h = 1/N . To check the accuracy of the numerical solutions, we compute

the relative root mean square error by ε(p) = (
M∑

n=1

(pnh−p(tn))2/
M∑

n=1

p(tn)2)1/2, where pnh is

an approximation of the exact value of p(tn) which obtained by the proposed method. For
noisy data, we use gδ(tn) = g(tn)(1+ δ · rand(n)), where g(tn) is the exact data, rand(n) is
a random number uniformly distributed in [−1, 1] and the magnitude δ indicates a relative
noise level.

Example 2.3. In this example all of the functions f , φ, k0, k1 and g are extracted from
the exact solution u(x, t) = e−t cos(2πx) and we set α = 1, M = 1000, δ = 0 and x∗ = 0.5.
L2 and L∞ error norms and the numerical orders of accuracy for the function u and the
relative root mean square error ε(p) are reported in Table (a) for piecewise P 1 and P 2

polynomials as the basis functions. In Fig. 1, we show the errors in L∞-norm, L1-norm and
L2-norm confirming thired-order accuracy for piecewise P 2 polynomials as we expected.

Example 2.4. In this example, we solve a direct problem using the following data:
u(x, 0) = sin(2πx), k0(t) = k1(t) = 0, f(x) = x2, and

p(t) =

{
1, t ∈ [0.25, 0.75],
0, t ∈ [0, 0.25) ∪ (0.75, 1],

and obtain an approximation to g with the aid of the LDG method for α = 0.5, 0.95. Then
using obtained g, we solve an inverse problem with the help of the LDG method to get an
approximation to p. In Table (b), we show the relative root mean square errors ε1(p) and
ε2(p), respectively without and with regularization method using the proposed method in
[1], and ε3(p) for the proposed LDG method without applying any regularization methods.
Our results are considerably better than results reported in [1]. Exact and numerical p
with various noise levels δ = 5%, 10%, 15% are presented in Fig. 2.
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N ε(p) L2-norm Order L∞-norm Order

k = 1 10 3.2 × 10−2 1.0 × 10−2 - 5.5 × 10−3 -

20 5.4 × 10−3 2.6 × 10−3 2.0 1.2 × 10−3 2.2

30 1.6 × 10−3 1.1 × 10−3 2.0 5.2 × 10−4 2.1

40 6.7 × 10−4 6.4 × 10−4 2.0 2.9 × 10−4 2.1

k = 2 10 2.3 × 10−4 3.8 × 10−4 - 2.8 × 10−4 -

20 1.4 × 10−5 4.7 × 10−5 3.0 3.4 × 10−5 3.1

30 1.3 × 10−5 1.4 × 10−5 3.0 1.0 × 10−5 3.0

40 1.2 × 10−5 6.0 × 10−6 2.9 4.0 × 10−6 3.2

(a) Accuracy test for Example 1 with k = 1, 2.

δ 5% 10% 15%

α = 0.5 ε1(p) 0.1279 0.1617 0.2056

ε2(p) 0.1167 0.1185 0.1185

ε3(p) 4.12 × 10−7 6.23 × 10−7 8.27 × 10−7

α = 0.95 ε1(p) 0.7368 1.4563 2.1783

ε2(p) 0.1235 0.1436 0.1580

ε3(p) 8.84 × 10−5 1.62 × 10−4 2.59 × 10−4

(b) The relative mean square error of Example 2.

−3.8 −3.6 −3.4 −3.2 −3 −2.8 −2.6 −2.4 −2.2
−13
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                               log(h)                                 
Fig. 1. Order of convergence for Example 1.
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Numerical solution of the time fractional Fokker-Planck

equation using local discontinuous Galerkin method

Jafar Eshaghi∗

Amirkabir University of Technology

Hojatollah Adibi

Amirkabir University of Technology

Abstract

In this article, we will offer the numerical solutions of time fractional Fokker-Planck
equations (TFFPE). Two methods for discretization in time variable are investigated.
The first method is based on a fractional finite difference scheme (FFDS) and in
the second method the time fractional derivative is replaced by the Volterra integral
equation which could be computed by the trapezoidal quadrature scheme (TQS). Then
we have applied the local discontinuous Galerkin method in space for both methods.
Some linear and nonlinear test problems have been considered to show the validity
and convergence of two proposed methods. The results show that FFDS and TQS are
of 2 − α and second–order accurate in time variable, respectively.

Keywords: Time fractional Fokker-Planck equation; discontinuous Galerkin method.

Mathematics Subject Classification [2010]: 45D05; 45G05; 41A30.

1 Introduction

Fractional calculus have a long history, having been mentioned by Leibniz in a letter to
L’Hospital in 1695.
This paper mainly focuses on a numerical algorithm for finding the approximate solution
of the nonlinear fractional Fokker–Planck equations with time–fractional derivative of the
form:

∂αu

∂tα
= [− ∂

∂x
A(x, t, u) +

∂2

∂x2
B(x, t, u)]u(x, t), t > 0, α > 0, (1)

2 Main results

In this section we give some basic definitions and properties of the fractional calculus
theory which are needed next.
Definition 2.1. The Caputo derivative is defined as follows:

Dα
∗ f(x) =

1

Γ(n− α)

∫ x

0
(x− t)n−α−1d

nf(t)

dxn
dt, α ∈ (n− 1, n], n ∈ N,
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where α > 0 is the order of the derivative and n is the smallest integer greater than α.
Definition 2.2. For n to be the smallest integer that exceeds α, the Caputo time-
fractional derivative operator of order α > 0, is defined as,

Dα
∗ u(x, t) =

∂αu(x, t)

∂tα
=

{
1

Γ(n−α)

∫ t
0 (t− τ)n−α−1 ∂nu(x,τ)

∂τn dτ, if α ∈ (n− 1, n),
∂nu(x,t)

∂tn , if α = n ∈ N.

2.1 Local discontinuous Galerkin method

Discontinuous Galerkin (DG) methods are a class of finite element methods using dis-
continuous piecewise polynomial space for the numerical solution and the test functions.
Since the basis functions can be discontinuous, these methods have the flexibility which is
not shared by typical finite element methods.
For equations with higher order spatial derivatives, it is not suitable to design DG meth-
ods. Local discontinuous Galerkin method is a class of DG methods for solving time
dependent partial differential equations (PDEs) with higher derivatives, which are termed
local DG (LDG) methods. The idea of LDG methods is to suitably rewrite a higher order
PDE into a first order system, then apply the DG method to the system. A key ingredient
for the success of such methods is the correct design of interface numerical fluxes.

3 Method of trapezoidal quadrature formula

Now we spot the following fractional ordinary differential equation,

Dα
∗ u(t) = f(u(t), t), u(0) = u0, 0 < α < 1 (2)

which is equivalent to the Volterra integral equation,

u(t) = u(0) +
1

Γ(α)

t∫

0

(t− τ)α−1f(u(τ), τ)dτ (3)

in the sense that a continuous function is a solution of the initial value problem (2) if and
only if it is a solution of (3). For the numerical computation of (3), the integral is replaced
by the trapezoidal quadrature formula at point tn+1

tn+1∫

0

(tn+1 − τ)α−1g(τ)dτ ≈
tn+1∫

0

(tn+1 − τ)α−1g̃n+1(τ)dτ, (4)

where g(τ) = f(τ, u(τ)) and g̃n+1(τ) is the piecewise linear interpolation of g with nodes
and knots chosen at tj , j = 0, 1, 2, ..., n+ 1. After some elementary calculations, the right
hand side of (4) gives [2]

tn+1∫

0

(tn+1 − τ)α−1g̃n+1(τ)dτ =
kα

α(α+ 1)

n+1∑

j=0

aj,n+1g(tj), (5)
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where

aj,n+1 =





nα+1 − (n− α)(n+ 1)α, if j = 0
(n− j + 2)α+1 − 2(n− j + 1)α+1 + (n− j)α+1, if 1 ≤ j ≤ n
1, if j = n+ 1

(6)

and k is the stepsize(the uniform mesh is used). From (4) we immediately get that

∣∣∣∣

tn+1∫

0

(tn+1 − τ)α−1g(τ)dτ −
tn+1∫

0

(tn+1 − τ)α−1g̃n+1(τ)dτ

∣∣∣∣ ≤

max
0≤t≤tn+1

∣∣∣∣g(t) − g̃n+1(t)

∣∣∣∣

tn+1∫

0

|(tn+1 − τ)α−1|dτ, (7)

so that error bounds and orders of convergence for product integration follow from standard
results of approximation theory. For a piecewise linear approximation to a smooth function
g(t) the product trapezoidal is second order[3].
Combining the above method with the method of lines, the numerical scheme for TFFPE
is the following:

Dα
∗ u(x, t) = −Ax(x, t, u)u(x, t) −A(x, t, u)ux(x, t) +Bxx(x, t, u)u(x, t)

+2Bx(x, t, u)ux(x, t) +B(x, t, u)uxx(x, t), x ∈ (a, b), t ≥ 0,
u(x, 0) = ψ(x), x ∈ (a, b)
u(a, t) = φ1(t), u(b, t) = φ2(t), t ≥ 0

where ψ(x), φ1(t), φ2(t) are the initial and boundary conditions, respectively. We can take
the numerical fluxes as follows:

ûn
h = (un

h)−, p̂n
h = (pn

h)+, or ûn
h = (un

h)+, p̂n
h = (pn

h)−. (8)

The above equation is trapezoidal quadrature formula that will used in the numerical
solution of example.

4 Numerical results

We consider the problem 1 but, without loss of generality, add a force term f(x, t) on the
right–hand side [1]. Now the problem has the analytical solution p(x, t) = t2(x−a)2(x−b)2
if taking A(x, t, u) = −3, B(x, t, u) = 1. It can be checked that the corresponding initial
condition and force term are, respectively:

ψ(x) = 0,

f(x, t) = 2Γ(2)
Γ(3−α) t

2−α(x− a)2(x− b)2 − 6t2((x− a)(x− b)2 + (x− a)2(x− b))

− 2t2((x− a)2 + (b− x)2 + 4(x− a)(x− b)).

We compute the errors ∥ue(T ) − ua(T )∥L2(ω) and ∥ue(T ) − ua(T )∥L∞(ω) for both FFDS
and TQS at time T = 1 and with time fractional order α = 0.8. In Tables 1,2 appear
that the obtaining solutions are of 2 − α and second–order accurate for FFDS and TQS,
respectively.
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Table 1: Example 1: The errors with different space step lengths and α = 0.8, dt = 0.0005

L∞, FFDS L2, FFDS convergent rate L∞, TQS L2, TQS convergent rate

N = 5 6.07 × 10−4 2.56 × 10−4 6.07 × 10−4 2.56 × 10−4

N = 10 8.79 × 10−5 3.81 × 10−5 2.74 8.79 × 10−5 3.81 × 10−5 2.74

N = 20 1.17 × 10−5 5.22 × 10−6 2.86 1.17 × 10−5 5.22 × 10−6 2.86

N = 40 1.51 × 10−6 6.82 × 10−7 2.93 1.51 × 10−6 6.82 × 10−7 2.93

N = 80 1.92 × 10−7 8.72 × 10−8 2.96 1.92 × 10−7 8.72 × 10−8 2.96

N = 160 2.42 × 10−8 1.10 × 10−8 2.98 2.42 × 10−8 1.10 × 10−8 2.98

N = 320 3.04 × 10−9 1.38 × 10−9 2.99 3.04 × 10−9 1.38 × 10−9 2.99

N = 640 3.80 × 10−10 1.75 × 10−10 2.98 3.80 × 10−10 1.75 × 10−10 2.98

N = 1280 5.75 × 10−11 4.01 × 10−11 2.12 5.75 × 10−11 4.01 × 10−11 2.12

Table 2: Example 1: The errors with different time step lengths and α = 0.8, h = 0.00125

L∞, FFDS L2, FFDS convergent rate L∞, TQS L2, TQS convergent rate

dt = 0.1 2.35 × 10−4 1.61 × 10−4 2.01 × 10−6 1.38 × 10−6

dt = 0.05 1.03 × 10−4 7.07 × 10−5 1.18 5.03 × 10−7 3.46 × 10−7 2.00

dt = 0.025 4.50 × 10−5 3.08 × 10−5 1.19 1.26 × 10−7 8.66 × 10−8 2.00

dt = 0.0125 1.96 × 10−5 1.34 × 10−5 1.20 3.15 × 10−8 2.16 × 10−8 2.00

dt = 0.00625 8.24 × 10−6 5.86 × 10−6 1.19 7.92 × 10−9 5.42 × 10−9 1.99

dt = 0.003125 3.72 × 10−6 2.55 × 10−6 1.20 2.00 × 10−9 1.35 × 10−9 2.00

dt = 0.0015625 1.61 × 10−6 1.11 × 10−6 1.19 5.18 × 10−10 3.47 × 10−10 1.95

Conclusion

In this article, we employed two methods for discretization in time variable TFFPE that
one of them is based on the fractional finite difference scheme and another is based on the
trapezoidal quadrature scheme. Using the second order polynomials as shape functions
gave the third–order for linear TFFPE and the maximum second–order of accuracy for
nonlinear TFFPE in space variable. It should note that the convergence order of time
discretization for FFDS and TQS are O(τ2−α) and O(τ2), respectively in time variable.
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Numerical Treatment of Coupling of Two Hyperbolic

Conservation Laws By Local Discontinuous Galerkin Methods

Mohammad Izadi∗

Shahid Bahonar University of Kerman,

Abstract

In this work, the local discontinuous Galerkin (LDG) method is used to treat a
system of differential equations consisting of two hyperbolic conservation laws. The
cell entropy inequality is obtained when the upwind flux is utilized. In the linear case,
we derive optimal convergence rates of order O(hk+1) in the L2-norm, in domains
where the exact solution is smooth; here h is the mesh width and k is the degree of
the (orthogonal Legendre) polynomial functions spanning the finite element subspace.
We justify the advantages of the LDG method in a series of numerical examples.

Keywords: Discontinuous Galerkin, coupling equations, error estimates
Mathematics Subject Classification [2010]: 65F05, 65Y05, 5Y20

1 Introduction

The main goal of this paper is to devise, analyze, and implement the local discontinuous
Galerkin method (LDG) for the solution of the following coupling of two conservation laws
in one space dimension: Find u : (x, t) ∈ R× R+ −→ u(x, t) ∈ R such that





ut + [fR(u)]x = 0, x > 0, t > 0,
ut + [fL(u)]x = 0, x < 0, t > 0,
u(x, 0) = u0, x ∈ R,

(1)

and also a suitable “continuity” condition

u(x, t) = ub(t) t ≥ 0,

at the interface x = 0, to be compatible with initial condition u0, where u0 : R −→ R is
a given function and fα : R −→ R, for α = L,R, denote two “smooth” functions ([1, 3]).
This type of phenomenon appears for example in an increasing number of problems of
fluid mechanics, among others, we emphasize the case of coupled problems involving Euler
equation on one side of the interface and Navier-Stokes equation on the other side, as well
as modelling certain plasma physical problems cf [1].

For last decades, the technique of discontinuous Galerkin (DG) investigated as an
higher-order accurate scheme for treating differential equations specially for those prob-
lems with hyperbolic nature and developing discontinuities [2]. The DG methods can
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be viewed as a combination of both finite element methods (FEMs), allowing for dis-
continuous discrete function, and finite volume methods, with more than one degree of
freedom per mesh element. This extended scheme offers great opportunities relative to
traditional FEMs when used to discretized hyperbolic problems. The main benefits of the
DG methods can be summarized in terms of accuracy, flexibility, and parallelizability.

The purpose of this paper is to investigate the performance of the LDG method when
applied to the system (1). The main focus is to implement, derive a priori error estimate
of O(hk+1) theoretically, and justify this fact numerically.

1.1 Basic Notations

To start, we begin with the first equation of system (1) and reformulate it as the following
initial boundary value problem: Find u such that

ut + [fR(u)]x = 0, (x, t) ∈ Ω, (2a)

subject to initial and periodic boundary conditions

u(x, 0) = u0(x) x ∈ Ωa, (2b)

u(0, t) = u(a, t) t ∈ ΩT , (2c)

where our computational domain is Ω = Ωa × ΩT with Ωa = (0, a), ΩT = (0, T ), and
a, T > 0. For the simplicity we assumed that our boundary conditions are periodic. Let us
triangulate the space domain Ωa with the partition Th = {Kj}Nj=1 where Kj = [xj− 1

2
, xj+ 1

2
]

for 1 ≤ j ≤ N , and 0 = x 1
2
< x 3

2
< . . . < xN+ 1

2
= a. We set for 1 ≤ j ≤ N

xj =
1

2
(xj− 1

2
+ xj+ 1

2
), hj = xj+ 1

2
− xj− 1

2
; h = max

1≤j≤N
hj .

We assume that the mesh is quasi-uniform in the sense that there is a constant c indepen-
dent of h such that hj ≥ ch for all 1 ≤ j ≤ N . To the mesh Th, we associate the finite
element space Vkh , which is defined as piecewise polynomials space

Vkh := {v ∈ L1(Ωa) : v|K ∈ Pk(K)},

where, Pq(K) denotes the set of polynomials of degree less than or equal to q on the cell
K ∈ Th. We also write

v(x±
j± 1

2

) = v±
j± 1

2

= lim
s−→0±

v(xj± 1
2

+ s), u(x±
j± 1

2

, t) = lim
s−→0±

u(xj± 1
2

+ s, t).

The LDG Formulation: We can now formulate the discrete version of the weak forms (2a)-
(2c) which are obtained by restricting the trial and test functions to finite dimensional
subspace Vkh and by exploiting the numerical flux FR(u) at the interfaces. Thus the semi-
discrete LDG for solving (2) is defined as follows: Find the unique function uh = uh(t) ∈ Vkh
such that for all test functions vh ∈ Vkh and for all 1 ≤ j ≤ N we have

∫

Kj

uh,tvhdx−
∫

Kj

fR(uh)vh,xdx+ F j+
1
2

R vh(x−
j+ 1

2

)−F j−
1
2

R vh(x+
j− 1

2

) = 0, (3a)

∫

Kj

uh(x, 0)vhdx =

∫

Kj

u0(x)vhdx, (3b)
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where we have used the notation F j±
1
2

R = FR(uh(x−
j± 1

2

, t), uh(x+
j± 1

2

, t)).

For the periodic boundary conditions (2c), we choose the upwind flux which depends
on fR(u). Depending on whether ∂

∂ufR(u) > 0 or < 0, we take accordingly

F j+
1
2

R =

{
fR(uh(x−

N+ 1
2

)), j = 0,

fR(uh(x−
j+ 1

2

)), j = 1, . . . , N,
F j+

1
2

R =

{
fR(uh(x+

j+ 1
2

)), j = 0, . . . , N − 1,

fR(uh(x+
1
2

)), j = N.

(4)

2 Main results

The next lemma will help us to prove the basic stability estimates for the LDG scheme (3).

Lemma 2.1 (Cell entropy inequality). The solution uh to the semi-discrete DG scheme (3)
satisfies the following cell entropy inequality

d

dt

∫

Kj

U(uh)dx+ F̂ j+
1
2

R − F̂ j−
1
2

R ≤ 0, (5)

for the square entropy U(u) = u2/2 and for some consistent entropy flux

F̂ j+
1
2

R = F̂R(uh(x−
j+ 1

2

, t), uh(x+
j+ 1

2

, t)),

satisfying F̂R(u, u) = F (u).

A trivial consequence of the cell entropy inequality is an L2-stability of the DG scheme:

Corollary 2.2 (L2-stability). The solution of uh to the semi-discrete DG scheme (3)
satisfies the following L2-stability

d

dt

∫

Ωa

(uh)2dx ≤ 0, or ‖uh(., t)‖L2(Ωa) ≤ ‖uh(., 0)‖L2(Ωa). (6)

In the next theorem, we show the optimal convergent rate property of the DG solutions
toward a particular projection of the exact solution when the upwind fluxes are used:

Theorem 2.3. Let u be the smooth exact solution of (2a) with fR(u) = aRu, and let uh
be the numerical solution of the LDG scheme (3) with the upwind flux (4), then

‖u− uh‖ ≤ Chk+1‖u‖k+1,Ωa , (7)

where C is a constant independent of h and u.

2.1 Numerical Experiments

By putting fα(u) = aαu (α = L,R) in (1) and restricting ourselves to the computational
domain Ω = (−1, 1)× (0, T ), we get the linear case of our model problem





ut + aRux = 0, x ∈ (0, 1), t ∈ (0, T ),
ut + aLux = 0, x ∈ (−1, 0), t ∈ (0, T ),
u(0, t) = ub(t), t ∈ (0, T ),
u(x, 0) = u0(x), x ∈ (−1, 1).

(8)
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We solve this problem using the DG method on uniform meshes with the mesh width
h obtained by partitioning the domain [−1, 1] into N subintervals with N = 2s, s =
4, 5, · · · , 11 and using the spaces Pk with k = 1, 2, · · · , 10. The time interval [0, T ] is
divided into nt = T/∆t small time-step ∆t = h

2k+1 , where h = 2/N . Here, the final time
is taken as T = 0.5. We also calculate the L2-norm error, namely ‖e‖ = ‖uh−uexact‖, and
the order of convergence rate of the LDG scheme. The relative error norms of numerical
solutions uh and the convergence ratio are defined by

Eh =
‖uh − uexact‖
‖uexact‖

, r =
Eh
Eh/2

. (9)

Example 2.4. We consider the coupling of two advection equations (8) with wave speeds
aL = 0.05 and aR = −0.05 and initial data u0(x) = G(x), where G(x) is a smooth Gaussian
pulse centered at x = 0, which is defined by G(x) = e−256x2 .

In the following table we use different number of cells and measure the errors in the L2-
norm for various number of polynomials degrees k = 0, 1, · · · , 6. Furthermore, to confirm
the obtained theoretical error bounds (7), we calculate the ratios r defined in (9) for a fixed
k while the mesh size h is increased. The numerical experiments shown in Table 1 indicate

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
N Eh log2 r Eh log2 r Eh log2 r Eh log2 r Eh log2 r Eh log2 r Eh log2 r

16 4.07E-2 - 1.61E-1 - 1.68E-1 - 7.78E-2 - 1.30E-2 - 5.52E-3 - 1.67E-3 -
32 2.03E-1 -2.31 1.69E-1 -0.08 5.27E-2 1.67 6.20E-3 3.65 1.04E-3 3.64 1.87E-4 4.88 7.38E-6 7.82
64 1.31E-1 0.63 4.73E-2 1.84 5.59E-3 3.24 3.60E-4 4.10 4.02E-5 4.68 2.46E-6 6.25 1.64E-7 5.50
128 7.06E-2 0.89 1.01E-2 2.23 8.06E-4 2.79 3.05E-5 3.56 1.35E-6 4.90 3.73E-8 6.04 1.28E-9 7.00
256 3.73E-2 0.92 2.30E-3 2.13 1.01E-4 3.00 1.71E-6 4.16 3.51E-8 5.26 5.84E-10 6.00 2.31E-11 5.79
512 1.93E-2 0.95 5.49E-4 2.07 1.26E-5 3.00 1.04E-7 4.03 1.19E-9 4.88 8.99E-12 6.02 2.42E-12 3.25
1024 9.87E-3 0.97 1.34E-4 2.03 1.57E-6 3.00 6.40E-9 4.03 3.78E-11 4.98 4.37E-13 4.36 2.63E-13 3.21
2048 4.99E-3 0.98 3.32E-5 2.02 1.97E-7 3.00 3.99E-10 4.00 1.14E-12 5.05 3.02E-13 0.53 3.71E-13 -0.50
4096 2.51E-3 0.99 8.25E-6 2.01 2.46E-8 3.00 2.49E-11 4.00 5.37E-13 1.09 6.59E-13 -1.12 7.68E-13 -1.05

Table 1: Relative L2 errors and the corresponding convergence rates at time t = T for
∆t = h/(2k + 1) for different N and k.

that achieving an arbitrary order of accuracy is possible if one use the LDG method. In
fact, an accuracy of (k + 1)th order of convergence is achieved while the number of cells
N is increased.
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Abstract

In this paper we investigate the existence, uniqueness and Hyers-Ulam stability for
Volterra type integral equations and extension of this type of integral equations. The
result is obtained by using the iterative method in the framework of Banach space
X = C([a, b];R). Finally, we give an example to illustrate the applications of our
results.
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1 Introduction

Integral equations play an important role in characterizing many social, physical, biologi-
cal, and engineering problems. For example, Volterra [l] was investigating the population
growth, focusing his study on the hereditary influences, and several authors, (see [2-4]),
discussed the integrodifferential modeled integral equations in the field of heat transfer
and diffusion process in general neutron diffusion. Generally, several systems are mostly
related to uncertainty and un exactness. The problem of un exactness is considered in
general exact science, and that of uncertainty is considered as vagueness or fuzzy and
accident.
The solutions of integral equations have a major role in the fields of science and engineer-
ing. A physical event can be modeled by the differential equation, an integral equation,
an integro-differential equation or a system of these. Investigation on existence theorems
for diverse nonlinear functional-integral equations has been presented in other references
such as [5].

In this paper we intend to prove existence, uniqueness and Hyers-Ulam stability (HUs)
of the solutions of the following nonhomogeneous nonlinear Volterra integral equations.

u(x) = f(x) + ψ
(∫ x

a
F (x, t, u(t))dt

)
≡ Tu, u ∈ X, (1)

∗Speaker
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where x, t ∈ [a, b], −∞ < a < b < ∞, f : [a, b] → R is a mapping and F is a continuous
function on the domain D := {(x, t, u) : x ∈ [a, b] , t ∈ [a, x) , u ∈ X}.

In this study, we will use an iterative method to prove that equation (1) has the
mentioned cases under some appropriate conditions. On the other hand, in this paper,
we prove the HUs theorem of (1) under generalized Lipschitz condition on F . Finally, we
offer some examples that verify the application of this kind of nonlinear functional-integral
equations.
The stability problem of functional equations originated from a question of Ulam in 1940,
concerning the stability of group homomorphisms. Let (G1, .) be a group and let (G2, ∗)
be a metric group with the metric d(., .). Given ε > 0, does there exist a δ > 0, such
that if a mapping h : G1 −→ G2 satisfies the inequality d(h(x.y), h(x) ∗ h(y)) < δ for all
x, y ∈ G1, then there exists a homomorphism H : G1 −→ G2 with d(h(x), H(x)) < ε for all
x ∈ G1?. In the other words, under what condition does there exists a homomorphism near
an approximate homomorphism?. The concept of stability for functional equation arises
when we replace the functional equation by an inequality which acts as a perturbation of
the equation. In 1941, D. Hyers provided a first partial affirmative answer to the question
of Ulam for Banach spaces. Let f : X −→ Y be a mapping between Banach spaces such
that

‖f(x+ y)− f(x)− f(y)‖ ≤ δ
for all x, y ∈ X, and for some δ > 0. Then there exists a unique additive mapping A :
X −→ Y such that

‖f(x)−A(x)‖ ≤ δ
for all x ∈ X. Ever since, the stability problems of functional equations have been exten-
sively investigated by several mathematicians. In below we introduce some preliminaries
and use them to obtain our aims in Section 2 and 3. Finally in Section 4 we offer some
examples that verify the application of this kind of nonlinear functional-integral equations.

Definition 1.1. Let Ψ denoted the class of those functions ψ : R → R such that there
exists Lψ > 0 that for all s, t ∈ R, |ψ(s)− ψ(t)| ≤ Lψ|s− t|.

For example every linear function on R belong to Ψ.

Definition 1.2. Let Φ denoted the class of those functions φ : [0,∞) → [0,∞) which
satisfies the following condition
(i) φ is increasing,
(ii) for each x > 0, φ(x) < x,
(iii) φ : [0,∞) → [0,∞) is a upper semi–continuous function such that φ(t) = 0 if and
only if t = 0 and also for any sequence {tn} with limn→∞ tn = 0, there exists k ∈ (0, 1)
and n0 ∈ N, such that φ(tn) ≤ ktn for each n ≥ n0.

For example, φ(t) = µt, where 0 ≤ µ < 1, φ(t) = t2

t+1 and φ(t) = t− ln(1 + t
2) are in Φ.
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2 Existence and uniqueness of the solution of nonlinear in-
tegral equations

Now we consider the equation (1) under the following conditions:
(i) ψ : R→ R is belong to Ψ.
(ii) F : D → R and f : [a, b]→ R are continuous.
(iii) There exists a continuous function p : [a, b]× [a, b]→ R and φ ∈ Φ such that

|F (x, t, u)− F (x, t, v)| ≤ p(x, t)φ(|u− v|),

for each x, t ∈ [a, b] and u, v ∈ R.

(iv) supx∈[a,b]
∫ b
a p(x, t)dt ≤ 1

Lψ(b−a) .

Theorem 2.1. Under the assumptions (i) − (iv) the integral equation (1) has a unique
solution in X.

3 Stability of Nonlinear Integral Equations

In this section, we prove that the nonlinear integral equation in (1) has the HUs.

Theorem 3.1. The equation Tx = x, where T is defined by (1), has the Hyers–Ulam
stability that is for every ξ ∈ X and ε > 0 with

d(Tξ, ξ) ≤ ε,

there exists a unique solution u ∈ X such that

Tu = u,

and
d(ξ, u) ≤ Kε,

for some K ≥ 0.

4 Applications

In this section, for efficiency of our theorem, some examples are introduced. Maleknejad
et al. presented some examples that the existence of their solutions can be established
using their theorem. Generally Examples 4.1 and 4.2 are introduced for first-time in this
work.

Example 4.1. Consider the following nonlinear Volterra integral equation

u(x) = sin(
1

1 + x
) +

x

9

∫ x

0

cos(x2t)

(1 + xt)2
arctan(u(t))dt, (x ∈ [0, 1]). (2)

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

On existence, uniqueness and stability of solutions of a nonlinear integral . . . pp.: 3–4

1130



We write

|F (x, t, u)− F (x, t, v)| = | x cos(x2t)

9(1 + xt)2
(arctan(u)− arctan(v))|

≤ |x cos(x2t)

(1 + xt)2
||u− v

9
|.

Take p(x, t) = x cos(x2t)
(1+xt)2

and φ(t) = t
9 . Since supx∈[0,1]

∫ 1
0 p

2(x, t)dt ≤ 1, then the equation

(2) has a unique solution in C([0, 1],R).

Example 4.2. Consider the following singular Volterra integral equation

u(x) = f(x) + λ

∫ x

0
(x− t)−αu(t)dt, (x ∈ [0, T ]), (3)

where 0 ≤ λ < 1 and 0 < α < 1
2 . Then

|F (x, t, u)− F (x, t, v)| = |λ(u− v)(x− t)−α| ≤ |λ||u− v||(x− t)|−α.

Put p(x, t) = (x− t)−α and φ(t) = λt. We have

sup
x∈[0,T ]

∫ T

0
p2(x, t)dt = sup

x∈[0,T ]

∫ T

0
|(x− t)|−2αdt =

T 1−2α

1− 2α
.

It follows that if T 1−α ≤ (1 − 2α)1/2, then the equation (3) has a unique solution in
complete metric space C([0, T ],R).
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Abstract

In this work, an adaptive wavelet galerkin method (AWGM) with optimal computa-
tional complexity is parallelized. The method is applied to the solution of the second
order elliptic BVPs. With tensor product wavelet basis, the rate of the AWGM is dimen-
sion independent. The numerical results indicate the method converge with optimal
rate. Our results demonstrate that the AWGM can be implemented in a multiprocessor
environment and is scalable.

Keywords: Adaptive method, Tensor product wavelets, Parallel computation
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1 Introduction

This paper deals with the implementation of the AWGM in shared-memory parallel pro-
gramming. Recently multiprocessing platforms are available with multi-core processors
sharing memory. An efficient way for performing the applications in high performance
computing fields is to parallelize them in multiprocessing schemes. In order to achieve the
best speed up as possible, Synchronization is a natural and essential part of parallel pro-
grams. We strongly notice that this main task of parallelization cannot be avoided in the
adaptive methods. Shared-memory computing are rendered parallel with threading model
extensions such as OpenMP and Pthreads. In this context, A thread is a sequence of such
instructions within a program that can be executed independently of other code. In fact,
OpenMP and Pthreads programming are two well known and dominant shared-memory
programming models.

OpenMP is a portable interface for implementing fork-join parallelism on shared mem-
ory multiprocessor machines. It is a library which implemented with “omp.h”. OpenMP
provides suitable level of abstraction to a programmer. It extends and defines a set of
directives and library routines for Fortran and C/C++ [1] . Actually it consists of the set
of directives, clauses and functions that enables creating, managing, communicating and
synchronizing parallel threads.
One of the advantages of the programming in OpenMP is that the resulting parallel code
is close to its sequential version. It explicitly decalres parallel regions but much of the
synchronizations are managed implicitly. The execution performance of the program in
OpenMP is highly dependent on the quality of the OpenMP implementation. An efficient
way for designing the data structure of adaptive methods is hash table. In multi core
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processing, It turns out often that a number of threads try to create different records si-
multaneously on the same bucket of hash table. Therefore in this case, a good protection
management is necessary. To resolve this problem, we can consider data lock. To lock
data, we associate a lock variable for each bucket in the hash table. To create records
by a group of threads on the same bucket, we set the lock variable of the specific bucket.
After inserting, the lock variable should be released. To implement lock data, the following
directives can be exploited in OpenMP C/C++

omp lock t //Declaration of a lock variable
omp init lock //Initialization of a lock variable

omp set lock //Blocking thread execution until a lock is available

omp unset lock //Releasing ownership of a lock

2 Elliptic boundary value problems and the AWGM

The variational formulation of a second order elliptic boundary value problem on a domain
Ω ⊂ Rn with homogeneous Dirichlet boundary conditions reads as Bu = f , where

(Bu)(v) :=

∫

Ω
(A∇u · ∇v + (b · ∇u)v + cuv)dx.

If A ∈ L∞(Ω)n×n, b ∈ L∞(Ω)n, c ∈ L∞(Ω), c ≥ 0 (a.e.),∇ · b = 0 (a.e.) and, for some
δ > 0, A ≥ δ > 0 (a.e.), then B is coercive and boundedly invertible. Assume that for

any n, the normalized tensor product basis Ψ := {ψλ := ⊗nm=1ψ
(m)
λm

/‖ ⊗nm=1 ψ
(m)
λm
‖B : λ ∈

∇ :=
∏n
m=1∇(m)}, is a Riesz basis for H1

0 (�) where Ω = � := (0, 1)n. This space is

equipped with energy norm ‖.‖B and ψ
(m)
λm

for λm ∈ ∇(m) is univariate wavelet function
in mth-coordinate.

By writing u = u>Ψ :=
∑

λ∈∇ uλψλ, we infer that the problem can equivalently be
written as the bi-infinite matrix vector problem Bu = f where f is the load vector and B
is the boundedly invertible matrix. We solve this equation with the AWGM that is described
here. More details about the AWGM, we refer to [3].
AWGM[ε]→ wε :
% Input: ε > 0.
% Parameters: µ ∈ (0, κ(B)−

1
2 ) and γ ∈ (0, µκ(B)−1).

i := 0, Λi := ∅, w(i) := 0, r(i) := f

while‖r(i)‖ > ε do

Λi+1 := EXPAND[Λi, r
(i), µ‖r(i)‖]

w(i+1) := GALERKIN[Λi+1,w
(i), ‖r(i)‖, γ‖r(i)‖]

r(i+1) := f −Bw(i+1)

i := i+ 1
enddo

wε := w(i)

GALERKIN[Λ,w, δ, ]→ w̄ :
% Input: , δ > 0, Λ ⊂ ∇, a w ∈ `2(Λ) with ‖f |Λ −A|Λ×Λw‖ ≤ δ.
% Output: w̄ ∈ `2(Λ) with ‖f |Λ −A|Λ×Λw̄‖ ≤ in O(log(δ/)#Λ) operations.
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EXPAND[Λ,g, σ]→ Λ̄ :
% Input: Λ ⊂ ∇, a finitely supported g ∈ `2(∇), and a scalar σ ∈ [0, ‖g‖`2(∇)].
% Output: Λ ⊂ Λ̄ ⊂ ∇ with ‖PΛ̄g‖ ≥ σ and such that, up to some absolute multiple,
% #(Λ̄ \ Λ) is minimal over all such Λ̄, and the cost of the call is O(#Λ ∪#suppg),

where PΛ̄ is the operator that replaces coefficients outside Λ̄ by zeros.

3 Hash-Storage Technique

Looking for an efficient way to implement the AWGM, one can use hash storage strategy. A
basic hash table consists of a set of slots. Each entry of the given data has a key or index.
The size of a hash table is slightly larger than the size of the input data. Each item of
the input data is mapped to one these slots by hash function. Each entry of the given
data has a key and hash function operates key and associates a unique position in the set
of slots. Generally, hash function is not injective function because there are many more
possible different entries than different addresses in the hash table. When two or more
items try to occupy the same address in hash table, a Collision occurs.

In the AWGM implementation, the key is multi index λ ∈ ∇ and uλ is stored and can
be retrieved at address in the hash table which produced by hash function. Since the
AWGM has optimal O(N) complexity for N unknowns, thus we keep in mind that access
to a specific entry in hash table should be performed in constant time. Regarding to this
important issue, we should provide a good hash function to minimize collisions as possible.
We remark that there is no magic and perfect hash function which produces a unique set
of integers within some suitable range.

Hence there exists an isomorphism between Nn0 and ∇, then w.l.o.g. we can assume
that the multi index λ = (λ1, · · · , λn) ∈ Nn0 . By using the modulo arithmetic %, in one
dimension we define the simple hash function H : N0 → {0, 1, · · · , p−1} with H(λ) := λ%p
such that the prime number p is the size of the storage space, i.e., the length of hash
table. This hash function will create a uniform distribution of addresses in hash table.
An obvious choice for hash function in multi index is to define H : Nn0 → {0, · · · , p −
1} as H(λ) :=

∑n
i=1H(λi). This is not good alternative for H because

∑n
i=1H(λi) =

H(
∑n

i=1 λi). Therefore in this case all λ with equal `1-norm get the same bucket in the
hash table. In order to have less collisions, we define a profitable isomorphism between Nn0
and N denoted by K(n, ·) : Nn0 → N0. We figure out that the isomorphism K(n, λ) fulfill
the recursive formula

K(n, λ) =

( ‖λ‖1
n− 1

)
+ K(n− 1, (λ1, · · · , λn−1)).

By setting s1 := λ1, s2 := λ1 + λ2, · · · , sn = λ1 + · · ·+ λn, then

K(n, λ) =

(
sn + n− 1

n

)
+

(
sn−1 + n− 2

n− 1

)
+ · · ·+

(
s1

1

)
,

and so we define H(λ) := K(n, λ)%p. In the strategy known as separate chaining, each slot
of the bucket array is a pointer to a linked list that contains the pairs (key,value) which
hashed to the same location. In order to have less and less dynamic memory operations,
we will store one record of each chain in the slot array itself. In single thread or serial
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computations, a satisfactory data structure of the wavelet coefficient u consists of a hash
table and a linked list of the support of wavelet coefficients, i.e., a linked list containing
{λ : uλ 6= 0,∀λ ∈ ∇}. This data structure is not designed suitably for parallel programs
in shared-memory computation. Because if more than one threads try to insert records
on the same slot then the slot and the keys linked list should be protected for one thread
against the other threads. To prepare an efficient algorithm in parallel environment, we
should use the right locks. We can remove the locks on the keys linked list. This goal can
be done by using q2 linked lists where q is the number of threads. The support of wavelet
coefficients u is separated equally by q-threads and each thread accesses to q linked lists
without any lock mechanism.

4 Numerics

Using quartic (with order d = 5) wavelets, with discontinuous piecewise quartic duals as
constructed in [2], we solved the Poisson problem of finding u ∈ H1

0 (�) such that
∫

Ω
∇u · ∇v = f(v) (v ∈ H1

0 (�)),

by applying the AWGM in OpenMP where � = (0, 1)n . This method produces a sequence
of approximations from the span of the basis that converges in H1(Ω)-norm with the best
possible rate. Assuming a sufficiently smooth right-hand side, this rate is d − 1 = 4 . In
this example, for our convenience we took as right hand side function f = 1. We consider
the speedups of the AWGM in Table 1. We use T1 as the time for the full simulation on
one processor. We calculate the speedup SP = Tp/T1 where Tp is the observed time on p
processors. The results show that the speedup of the AWGM in parallel computing is almost
better than the sequential implementation.

p 1 2 4 8 16

n = 2, Sp 1 1.6 3.05 5.8 11.05

n = 3, Sp 1 1.5 2.9 5.4 10.1

Table 1: The AWGM on p=1, 2, 4, 8, and 16 processors with speedup Sp for n=2, 3
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Pivoting strategy for an ILU preconditioner

A. Rafiei∗

Hakim Sabzevari University

Mahdi Mohseni and Fatemeh Rezaei Fazel†

Hakim Sabzevari University

Abstract

In this paper, a complete pivoting strategy for the right-looking version of RIF −
NS preconditioner is presented.

Keywords: preconditioning, pivoting, right-looking version of RIF −NS precondi-
tioner
Mathematics Subject Classification [2010]: 65F10, 65F50, 65F08.

1 Introduction

Consider the linear system of equations of the form Ax = b, where the coefficient matrix
A ∈ Rn×n is nonsingular, large, sparse and nonsymmetric and also x, b ∈ Rn. An ILU
preconditioner M of this system is in the form of M = LDU ≈ A. This preconditioner
will change the original system to the left preconditioned system M−1Ax = M−1b. For a
proper preconditioner, instead of solving the original system, it is better to solve the left
preconditioned system by the Krylov subspace methods [3]. In [1], we have proposed an
ILU preconditioner for system Ax = b. This preconditioner is termed the RIF −NS and
has two left- and right-looking versions.

2 Pivoting strategy for the right-looking RIF −NS precon-
ditioner

Algorithm 1, uses the complete pivoting strategy to compute the right-looking version
of RIF − NS preconditioner. Here we explain the step i of this algorithm. At the
beginning of this step, Π = Πi−1...Π1 and Σ = Σ1...Σi−1 are the row and the column
permutation matrices, respectively. For k < i, the matrices Πk and Σk are the row and
the column permutation matrices associated to step k of this algorithm. At the beginning
of this step, the parameters mi, ni, iter, satisfied p and satisfied q are initialized in
line 3. At the end of this step, mi and ni will be the total number of row and column
pivoting associated to step i. The parameter iter is used to compute the pivot entry in
this step. satisfied p (satisfied q) shows whether or not we need to the row (column)

pivoting strategy. In line 7 of the algorithm, the vector (q
(i−1)
i , · · · , q(i−1)n ) is computed.

Suppose that |q(i−1)k | = maxm≥i+1|q(i−1)m |. If the criterion |q(i−1)i | < α |q(i−1)k | is satisfied for

∗rafiei.am@gmail.com, a.rafiei@hsu.ac.ir.
†Speaker, mmohsenidehsorkh@yahoo.com, rezaeefazel@gmail.com
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α ∈ (0, 1], then the row pivoting strategy is applied in lines 8-11 of the algorithm. Suppose

that |p(i−1)l | = maxm≥i+1|p(i−1)m |. If the criterion |p(i−1)i | < α |p(i−1)l | is satisfied for an
α ∈ (0, 1], then the column pivoting strategy is applied in lines 17-20 of the algorithm.
After the column pivoting, satisfied p is set to true in line 22 and the algorithm will
alternate between the row and the column pivoting. After the internal while loop, the

pivot entry dii is set equal to q
(i−1)
i . In lines 25-28 of the algorithm, the i-th column of

matrices W and L, and the i-th row of matrix U are computed.

3 Numerical results

In this section, we have formed 6 artificial linear systems where the coefficient matrices
are downloaded from [2] and the exact solution of these systems is the vector [1, · · · , 1]T .
We have used two parameters 0.1 and 1.0 as α to compute the right-looking version of
RIF −NS preconditioner with complete pivoting strategy. We have used The command
bicgstab in Matlab software to solve the original and the left preconditioned systems by
the BICGSTAB method. The stopping criterion for all linear systems is satisfied when
the relative residual is less than 10−6. We have considered the zero vector as the initial
solution for all systems. The density of the preconditioners is defined as :

density =
nnz(L) + nnz(U)

nnz(A)
,

where nnz(L), nnz(U) and nnz(A) are the number of nonzero entries of matrices L, U
and A. Table 1, shows the matrix properties and the information of BICGSTAB method
to solve the original linear systems. In this table, n and nnz are the dimension and the
number of nonzero entries of the matrix. In Tables 1 and 2, the parameters it and flag
indicate the number of iterations and the status of the convergence. The parameter iter
can be an integer+0.5 indicating convergence halfway through an iteration. When flag is
equal to 0, it means that the method has been converged to the desired tolerance within
the 2500 iterations. flag = 2 shows that the preconditioner is ill-conditioned and flag = 4
indicates that one of the scalar quantities calculating during the method became too small
or too large to continue computing.
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Algorithm 1 Right-looking version of RIF −NS with complete pivoting
Input: A ∈ Rn×n and τw, τl, τu ∈ (0, 1) be drop tolerances. Output: ΠAΣ ≈ M = LDU

1. w(0)
i = ei, 1 ≤ i ≤ n

2. for i = 1 to n do
3. mi = ni = 0, iter = 0, satisfied p = satisfied q = false

4. while not satisfied q do
5. iter = iter + 1

6. If iter = 1, then set q
(i−1)
i = (w

(i−1)
i )T (ΠAΣ)ei. Otherwise set q

(i−1)
i = p

(i−1)
i .

7. q
(i−1)
j = (w

(i−1)
j )T (ΠAΣ)ei, i + 1 ≤ j ≤ n

8. if |q(i−1)
i | < α maxm≥i+1|q

(i−1)
m | then

9. mi = mi + 1, π
(i−1)
mi

= In and satisfied p = false

10. Choose k such that |q(i−1)
k

| = maxm≥i+1|q
(i−1)
m |. Then, interchange columns i and k of W − I and rows i and k of

π
(i−1)
mi

and L− I. Also interchange elements q
(i−1)
i and q

(i−1)
k

and do the update Π = π
(i−1)
mi

Π

11. end if
12. satisfied q = true
13. if not satisfied p then

14. p
(i−1)
i = q

(i−1)
i

15. p
(i−1)
j = (ΠAΣ)ij , i + 1 ≤ j ≤ n.

16. p
(i−1)
j = p

(i−1)
j − LikdkkUkj for k = 1 to i− 1 and j = i + 1 to n

17. if |p(i−1)
i | < α maxm≥i+1|p

(i−1)
m | then

18. ni = ni + 1, σ
(i−1)
ni

= In and satisfied q = false

19. Choose l such that |p(i−1)
l

| = maxm≥i+1 |p
(i−1)
m |. Then, interchange columns i and l of σ

(i−1)
ni

and U − I. Also,

interchange elements p
(i−1)
i and p

(i−1)
l

and do the update Σ = Σσ
(i−1)
ni

20. end if
21. end if
22. satisfied p = true
23. end while

24. dii = q
(i−1)
i

25. for j = i + 1 to n do

26. w
(i)
j = w

(i−1)
j − (

q
(i−1)
j
dii

)w
(i−1)
i and for all l ≤ i, if |w(i)

lj
| < τw , then set w

(i)
lj

= 0

27. Lji =
q
(i−1)
j
dii

, Uij =
p
(i−1)
j
dii

. If |Lji| < τl, then set Lji = 0. If |Uij | < τu, then set Uij = 0.

28. end for
29. end for
30. Return L = (Lij)1≤i,j≤n, U = (Uij)1≤i,j≤n, D = diag(dii)1≤i≤n, Π and Σ.

Table 1

Matrix n nnz without preconditioner

it flag
bwm200 200 796 109.5 0
str 400 363 3157 0 4
tols90 90 1746 28 4
str 0 363 2454 0 4
tub100 100 396 106.5 0

08blocks 300 592 1 4

In Table 2, the notation RLRIF − NSP (α) refers to the right-looking version of
RIF − NS preconditioner with complete pivoting strategy which is computed by using
the parameter α.

Table 2

Method RLRIF-NSP(0.1) RLRIF-NSP(1.0) RLRIF-NS

Matrix density Rpiv Cpiv iter flag density Rpiv Cpiv iter flag density iter flag

bwm200 1.0012 0 0 23.5 0 1.2073 84 81 19.5 0 1.0012 23.5 0
str 400 0.5854 357 5 11 0 0.6097 383 57 0 2 5.5958 0 2
tols90 0.1523 18 0 2.5 0 0.4370 20 3 2.5 0 0.3070 12 0
str 0 0.5028 358 0 2 0 0.5676 362 29 2 0 3.9238 0 2
tub100 1.0050 0 0 8 0 1.1591 62 59 7.5 0 1.0050 8 0

08blocks 1.4797 292 0 1.5 0 118.3513 32 5 0 2 2 0.5 4
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The RLRIF − NS is a notation for the right-looking version of RIF − NS pre-
conditioner. The columns Rpiv and Cpiv show the total number of row and column
pivoting. In this table, the information in the columns flag and iter associated to the
three preconditioners indicate that for all of the matrices, one of the preconditioners
RLRIF − NSP (1.0) or RLRIF − NSP (0.1) gives better results of the BICGSTAB
method than the RLRIF − NS preconditioner. This means that the complete pivoting
strategy with one of the values α = 1.0 or α = 0.1 has a good effect on the quality of the
right-looking version of RIF −NS preconditioner.
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Abstract

This paper presented a numerical method for solving Fredholm integral equations
by reproducing kernel method (RKM). On the basis of reproducing kernel Hilbert
spaces theory, an iterative algorithm for solving some integral equations is presented.
We present two examples which have better results than others.

Keywords: Reproducing kernel, Fredholm integral, Approximate solution.

Mathematics Subject Classification [2010]: 45B05, 74H15, 41A10.

1 Introduction

The opinion integral equations play an important role in both mathematics and other
applicable areas. This kind equations have been investigated in many application domains.
Here, we study Fredholm integral equations [1].

y(x) = g(x) +

∫ b

a
k(x, t)y(t)dt, (1)

where the function g(x) and k(x, t) are given, and the unknown function y(t) is to be de-
termined. A new method of solving solution for Fredholm integral equations is proposed
in a reproducing kernel Hilbert space in this paper. It is called reproducing kernel method.
Reproducing kernel theory has important applications in numerical analysis, differential
equations, integral equations, probability and statistics, learning theory and so on. Re-
producing kernel methods for solving a variety of integral equations were introduced by
Jin [2], Du [3], Chen [4], Shen [5].
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2 Reproducing kernel Hilbert space

To solve (1), first, we construct reproducing kernel spaces oW 4[a, b].

Definition 2.1. oWm[a, b] = {u(m−1)(x) is an absolutely continuous real function, u(m)(x) ∈
L2[a, b], u(a) = 0}.

The inner product and norm in oWm[a, b] are given respectively by

⟨u, v⟩ =

m−1∑

i=0

u(i)(a)v(i)(a) +

∫ b

a
u(m)(x)v(m)(x) dx, (2)

and
∥u∥m =

√
⟨u, u⟩m, u, v ∈ oWm[a, b]. (3)

By [6], oW 4[a, b] is a reproducing kernel space and its reproducing kernel Ry(x) can be
obtained.
Let Rx(y) be

Ry(x) =

{
R1(x, y) =

∑8
i=1 ci(y)x

i−1, y ≤ x,

R2(x, y) =
∑8

i=1 di(y)x
i−1, y > x,

(4)

where coefficients ci(y), di(y), {i = 1, 2, · · · , 8}, could be obtained by solving the following
equations

∂iRy(x)

∂xi
|x=y+0 =

∂iRy(x)

∂xi
|x=y−0, i = 0, 1, 2, 3, 4, 5, 6, (5)

∂7Ry(x)

∂x7
|x=y+0 − ∂7Ry(x)

∂x7
|x=y−0 = 1, (6)

and 



∂iRy(a)
∂xi − (−1)3−i ∂7−iRy(a)

∂x7−i = 0, i = 1, 2, 3,
∂7−iRy(b)

∂x7−i = 0, i = 0, 1, 2, 3,

Ry(a) = 0.

(7)

3 Solving Eq. (1) in the Reproducing Kernel Space

To solve Eq. (1), we define operator L : oW 4[a, b] → L2[a, b] as follows:

(Ly)(x) = y(x) −
∫ b

a
k(x, t)y(x) dt. (8)

Lemma 3.1. L is a bounded linear operator.

Let {xi}∞
i=1 be a dense subset of interval [a, b]. Put φi(x) = Rx(xi) and ψi(x) =

L⋆φi(x), L⋆ is the adjoint operator of L and

ψi(x) = [LyRy(x)](xi) = R(x, xi) −
∫ b

a
k(x, t)R(x, t) dt. (9)
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The orthonormal system {ψ̄i(x)}∞
i=1 of oW 4[a, b] can be derived from the Gram-Schmidt

orthogonalization process of {ψi(x)}∞
i=1,

ψ̄i(x) =

i∑

k=1

βikψk(x), (βii > 0, i = 1, 2, · · · ). (10)

According to [6], we have the following theorems:

Theorem 3.2. If {xi}∞
i=1 is dense on [a, b] and solution of (1) is unique, then

(i) the exact solution of Eq. (1) can be represented by

u(x) =

∞∑

i=1

i∑

k=1

βikf(xk)ψ̄i(x), (11)

(ii) the approximate solution u(x) can be obtained by taking finitly many terms in the
series representation of u(x) and

un(x) =

n∑

i=1

i∑

k=1

βikf(xk)ψ̄i(x). (12)

Theorem 3.3. Suppose ∥un(x)∥oW 4 is bounded in (12), if {xi}∞
i=1 is dense in [a, b], then

the n-term approximate solution un(x) converges to the exact solution u(x) of Eq. (1) and
the approximate solution is expressed as

un(x) =
n∑

i=1

i∑

k=1

βikf(xk)ψ̄i(x). (13)

4 Numerical experiments

Our new method has been tested for the following two equations.

Example 4.1. Consider the following Fredholm integral equation:

y(x) −
∫ π

2

0
k(x, t)y(t) dt = g(x), (14)

where g(x) = sin(x) − x, k(x, t) = xt. The exact solution is y(x) = sin(x) and x ∈ [0, π
2 ].

Using the method presented in section 3, taking n = 10 and n = 20, xi = π
2(n+1) × i, i =

1, 2, . . . , n. The approximate solution, the absolute errors |un(x) − u(x)| for n = 10 and
20 are graphically shown in figure 1, respectively. However, by increasing n, the behavior
improves.

Example 4.2. Consider the following Fredholm integral equation:

y(x) −
∫ 1

0
k(x, t)y(t) dt = g(x), (15)

where g(x) = ex − ex+1−1
x+1 , k(x, t) = ext. The exact solution is y(x) = ex and x ∈ [0, 1].

Using the method presented in section 3, taking n = 10 and n = 20, xi = 1
n+1 × i, i =

1, 2, . . . , n. The approximate solution, the absolute errors |un(x) − u(x)| for n = 10 and
n = 20 are graphically shown in figure 2, respectively. However, by increasing n, the
behavior improves.
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Figure 1: The approximate solution, the absolute errors for n = 10 and 20, respectively.
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Figure 2: The approximate solution, the absolute errors for n = 10 and 20, respectively.
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Abstract

In this paper, semiconvergence of the iterative Monte Carlo method to solve sin-
gular linear systems is discussed. First, sufficient conditions for the semiconvergence
of this method are given. Then, Monte Carlo method is employed based on semicon-
vergence conditions. Finally, the numerical experiment is presented to illustrate the
efficiency of the proposed method.
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1 Introduction

Let us consider the linear system of n equations

Ax = b, (1)

where A ∈ Rn×n is singular and b, x ∈ Rn with b known and x unknown. We assume that
the system (1) is solvable, i.e., it has at least one solution. In order to solve the system
(1) with plain iterative Monte Carlo (MC) method, the coefficient matrix A is splitted to
A = M − N , where M is nonsingular. Hence, a stationary iterative method for solving
(1) can be presented in the following form

x(k+1) = Tx(k) + f, k = 0, 1, 2, . . . , (2)

where f = M−1b and the matrix T = M−1N is called the iteration matrix of the iterative
method. According to the essential theorem of iterative methods [1], we know that the
method (2) is convergent if and only if ρ(T ) < 1 (ρ(T ) is the spectral radius of T ). For
continuity, we recall some basic concepts.

Definition 1.1. [5] The index of square matrix A is the smallest nonnegative integer k
such that the following statement is true,

rank(Ak) = rank(Ak+1).
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Let λ is an eigenvalue for A. In this case, the index of the eigenvalue λ is defined to be
the index of the matrix λI − A. In the other words, index(λ) = index(λI − A). Of course
the index of the eigenvalue λ can be calculated from Jordan canonical form of matrix A.
For singular systems, the method (2) is semiconvergent if it converges to a solution of (1)
which depends on the initial guess x0. From [1], it can be known that the iterative method
(2) is semiconvergent if and only if each of the following conditions is established.

(1) ρ(T ) = 1;
(2) index(I − T ) = 1, which means that index(λ = 1) = 1;
(3) If µ ∈ σ(T ) with |µ| = 1, then µ = 1, i.e., υ(T ) = {|µ|, µ ∈ σ(T ), µ ̸= 1} < 1,

where σ(T ) is spectrum of T . The semiconvergence of the iterative method (2) has been
investigated by many authors [6].

2 Main results

The stationary iterative MC method is based on the iterative presentation method (2).
The plain MC method has been constructed from the convergence of the iterative method
(2) in [3]. In this paper, MC method is produced from the semicovergence of the iterative

method (2). So, consider the inner product < h, x >=
n∑

i=1

hixi, where h ∈ Rn is a

known vector and x ∈ Rn is the exact solution of the linear algebraic system (1). In the
MC approach, we consider an initial density vector p ∈ Rn, where its entries satisfy in

pi ≥ 0, i = 1, . . . , n and
n∑

i=1

pi = 1 conditions. Also, consider a transition density matrix

P = [pij ] ∈ Rn×n, where its entries satisfy in pij ≥ 0, i, j = 1, . . . , n and

n∑

j=1

pij = 1, for

any i = 1, . . . , n. The initial density vector p and the transition density matrix P have
the following properties

{
pi > 0, when hi ̸= 0 and pi = 0, when hi = 0 for i = 1, . . . , n,
pij > 0, when tij ̸= 0 and pij = 0, when tij = 0 for i, j = 1, . . . , n.

It is obvious that under the above conditions the Markov chains (the random trajectories
constructed) never visit zero elements of the matrix T . Suppose the terminated Markov
chain i0 → i1 → i2 → . . . → ik of length k with n states, starting from i0. As [2, 3, 4], we
define the weights on the Markov chain in the following form





wm =
ti0i1

ti1i2
···tim−1im

pi0i1
pi1i2

···pim−1im
, m = 0, 1, 2, . . . , k,

wm = wm−1
tim−1

im

pim−1
im

, w0 ≡ 1.

The random variable ηk(h) is defined as

ηk(h) =
hi0

pi0

k∑

m=0

wmfim .
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Theorem 2.1. Let x be a solution of the system (1) and the matrix T satisfy in the
semiconvergence conditions. Then the mathematical expectation of the random variable
ηk(h) is equal to the inner product < h, x(k+1) >, i.e.,

E[ηk(h)] =< h, x(k+1) > . (3)

It is noteworthy that if we set h = (0, 0, . . . , 0, 1︸︷︷︸
j

, 0, . . . , 0)T then from (3) we obtain

the jth element of the solution x i.e. xj . Generally, we simulate n random trajectories

i
(s)
0 → i

(s)
1 → i

(s)
2 → . . . → i

(s)
k , s = 1, 2, . . . , n and we consider the sample mean (MC

estimation) of η
(s)
k (h), s = 1, 2, . . . , n. Based on the Strong Law of Large Numbers (SLLN),

we have




θk = 1
n

n∑

s=1

η
(s)
k (h) ≈< h, x(k+1) >,

if h = (0, 0, . . . , 0, 1︸︷︷︸
j

, 0, . . . , 0)T = ej then θk =
1

n

n∑

s=1

η
(s)
k (h) ≈ xj ,

where θk is the MC estimation for the jth element of the solution x. In this way, better
estimation of the parameter can be obtained. Similarly, by changing the vector h, we can
obtain the other elements of the solution x. In this paper we assume that random walking
is realized based on the MAO and UM Monte Carlo methods. The MAO and UM Monte
Carlo methods are arisen from constructed transition density matrices; see for example [4]

and references therein. The number of Markov chains is given by n ≥ (0.6745
ϵ . ∥f∥

1−∥T∥)2 and
the length of Markov chains can be obtained from

k ≤ log(δ/∥f∥)

log(∥T∥)
,

where ϵ and δ are given positive real numbers [2, 3].

3 A numerical example

Consider the linear system of equations (1), where

A =
1

4




1 −2 1 −2
−1 −1 −1 −1
4 −2 4 −2
2 −4 2 −4


 , b =

1

4




−2
−4
4

−4


 .

The matrix A is singular and b = A(1, 1, 1, 1)T .Hence, the system (1) is solvable and
x = (1, 1, 1, 1)T is a solution of this system. By choosing the matrix M such that M is
nonsingular, we have

M =




2 0 0 −1
0 2 −1 −1
0 0 2 0
0 0 0 −2


 , T = M−1N =

1

4




4 0 0 0
0 4 0 0

−2 1 2 1
1 −2 1 2


 .
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It is easy to compute that σ(T ) = {1, 1, 3
4 , 1

4}, index(I − T ) = 1, which means that index
of λ = 1 is equal to 1 and υ(T ) = 3

4 < 1. Therefore the semiconvergence conditions is
satisfied. Comparison of the computational complexity of the UM and MAO Monte Carlo
methods are given in the Table 1 and Table 2. By assuming ϵ = 0.05, approximate solution
converges to a exact solution (0, 0, 2, 2)T .

Table 1: Numerical results by MAO Monte Carlo method

components of approximate solution absolute error computational time(s) iterations

x1 = 0.000012 0.000012 0.025 6
x2 = 0.000104 0.000104 0.021 7
x3 = 2.000123 0.000123 0.017 5
x4 = 2.000051 0.000051 0.020 8

Table 2: Numerical results by UM Monte Carlo method

components of approximate solution absolute error computational time(s) iterations

x1 = 0.000033 0.000033 0.031 8
x2 = 0.000169 0.000169 0.025 8
x3 = 2.000301 0.000301 0.023 7
x4 = 2.000093 0.000093 0.027 10
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Abstract

The septic B-spline collocation scheme is implemented to find numerical solution
of one dimensional Cahn-Hillird equation. The scheme is based on the finite-difference
formulation for time integration and septic B-spline functions for space integration.
Stability and Convergence of the scheme are discussed. The accuracy of the proposed
method is demonstrated a test problem.

Keywords: septic B-spline, Collocation, Cahn-Hillird equation
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1 Introduction

Consider the one-dimensional Cahn-Hilliard equation

∂u

∂t
+ γ

∂4u

∂x4
− ∂2φ(u)

∂x2
= 0, x ∈ (a, b), t ≥ 0, (1)

with initial condition

u(x, 0) = ϕ(x), x ∈ [a, b], (2)

and the boundary conditions

∂u(a, t)

∂x
=
∂u(b, t)

∂x
= 0,

∂3u(a, t)

∂x3
=
∂3u(b, t)

∂x3
= 0, t ≥ 0, (3)

where φ(u) = dψ(u)
du and ψ(u) = 1

4r2u
4 + 1

3r1u
3 + 1

2r0u
2. The constant γ is positive,

and r0, r1, r2 are given constants. It is known if the initial data u0 ∈ H2
E([a, b]) =

{f ∈ H2([a, b]) : ∂f∂x = 0 on a and b} then the problem (1)-(3) has a unique solution for
all times [1].There are many algorithms for numerical solution of the C-H equations in
literature, using different methods (for example see references [2, 3, 4]).

In current work, we will use septic B-spline to solve the Cahn-Hillird partial differential
equation (1). The main purpose is to analyze the efficiency of the septic B-spline-difference
method for such problems with sufficient accuracy. The time derivative is replaced by
horizontal method of line finite-difference representation and the space derivatives by septic
B-spline. In comparison with the existing well-known methods, our method is simple with
better numerical stability and lower computational cost. Numerical computations show
that our results are well accepted.

∗Speaker

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Septic B-spline solution of one dimensional Cahn-Hillird equation pp.: 1–4

1148



2 Temporal discretization

We consider a uniform mesh with the grid points Ri,j to discretize the region (a, b)×(0, T ).
Each Ri,j is the vertices of the grid point (xi, tj) with xi = a + ih, i = 0, 1, 2, ..., N and
tj = jk, j = 0, 1, 2, ...,M , where h and k are mesh sizes in the space and time directions,
respectively, h = (b− a)/N and k = T/M .

We discretize the problem (1)-(3) in the temporal direction by means of the θ-finite
difference method, θ ∈ [12 , 1]. In this case, we get a system of ordinary differential equations
with boundary conditions. Discretization by the proposed method yields the following
system of differential equations:

uj+1(x) + kγθ
∂4uj+1(x)

∂x4
− kθ

∂4φ(uj+1(x))

∂x2
= F (x, tj), j = 0, 1, ...,M − 1, (4)

F (x, tj) = uj(x) + k(1 − θ)(−γ ∂
4uj(x)

∂x4
+
∂2φ(uj(x))

∂x2
),

where

u0 = ϕ(x), (5)

∂uj+1(a)

∂x
=
∂uj+1(b)

∂x
= 0,

∂3uj+1(a)

∂x3
=
∂3uj+1(b)

∂x3
= 0. (6)

Here u(x, tj) approximate the exact solution U(x, t) at the time level tj = jk. For θ = 1
2 ,

our method reduces to the Crank-Nicolson method and for θ = 1, our method reduces
to the back-ward Euler method. Now in each time level we have a nonlinear ordinary
differential equation in the form of (4) with the boundary conditions (6) which can be
solved by using septic B-spline collocation method.

3 Numerical scheme in spatial direction

Let Bi be septic B-splines with knots at the points xi, i = 0, 1, ..., N . The set of splines
{B−3, B−2, ..., BN+2, BN+3} forms a basis for functions defined over [a, b]. Thus, an ap-
proximation uj+1(x) to the exact solution U j+1(x) can be expressed in terms of the septic
B-splines as trial functions:

uj+1(x) =

N+3∑

i=−3

αiBi(x), (7)

where αi’s are time dependent quantities to be determined from boundary conditions and
collocation form of the differential equations.
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Septic B-splines Bi with the required properties are defined by

Bi(x) =
1

h7





(x− xi−4)
7, x ∈ [xi−4, xi−3],

(x− xi−4)
7 − 8(x− xi−3)

7, x ∈ [xi−3, xi−2],
(x− xi−4)

7 − 8(x− xi−3)
7 + 28(x− xi−2)

7, x ∈ [xi−2, xi−1],
(x− xi−4)

7 − 8(x− xi−3)
7 + 28(x− xi−2)

7 − 56(x− xi−1)
7, x ∈ [xi−1, xi],

(xi+4 − x)7 − 8(xi+3 − x)7 + 28(xi+2 − x)7 − 56(xi+1 − x)7, x ∈ [xi, xi+1],
(xi+4 − x)7 − 8(xi+3 − x)7 + 28(xi+2 − x)7, x ∈ [xi+1, xi+2],
(xi+4 − x)7 − 8(xi+3 − x)7, x ∈ [xi+2, xi+3],
(xi+4 − x)7, x ∈ [xi+3, xi+4],
0, otherwise,

(8)
i = −3,−2, 0, ..., N + 2, N + 3.

By using the approximation (7), septic B-splines (8), the nodal value uj+1 and its first,
second, third, fourth and fifth derivatives with respect to variable x at the nodes xi are
obtained in terms of the element parameters as

uj+1(xi) = αi−3 + 120αi−2 + 1191αi−1 + 2416αi + 1191αi+1 + 120αi+2 + αi+3,

uj+1
x (xi) = 7

h(−αi−3 − 56αi−2 − 245αi−1 + 245αi+1 + 56αi+2 + αi+3),

uj+1
xx (xi) = 42

h2 (αi−3 + 24αi−2 + 15αi−1 − 80αi + 15αi+1 + 24αi+2 + αi+3),

uj+1
xxx(xi) = 210

h3 (−αi−3 − 8αi−2 + 19αi−1 − 19αi+1 + 8αi+2 + αi+3),

uj+1
xxxx(xi) = 840

h4 (αi−3 − 9αi−1 + 16αi − 9αi+1 + αi+3),

uj+1
xxxxx(xi) = 2520

h5 (−αi−3 + 4αi−2 − 5αi−1 + 5αi+1 − 4αi+2 + αi+3).

(9)

Using Eqs. (7)-(9) and putting the values of Bi(x) and its derivatives in Eqs. (1)-(3)
we have

ACj+1 − kθPj+1 = F j + T , (10)

with Cj+1 = [α−1, α0, ..., αN , αN+1]
T , A = A0 + kγθ

h4 A1 + kγθ
h5 A2, T = O(h3) and

A0 =




0 0 0 0 0
594 2416 1788 240 2

114.5 1191 2421.5 1192 120 1
1 120 1191 2416 1191 120 1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

1 120 1191 2416 1191 120 1
1 120 1192 2421.5 1191 114.5

2 240 1788 2416 594
0 0 0 0 0




, F j =




Gj0
F j0
F j1
...

F jN
GjN




,

P (u, ux, uxx) =
∂2φ(u)

∂x2
, G(x, tj) = uj(x) + k(1 − θ)(−γ ∂

5ujx(x)

∂x5
+ uj(x)

∂3φ(uj(x))

∂x3
),
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A1 =




0 0 0 0 0
45360 13440 −60480 0 1680
−4620 −7560 18060 −6720 0 840
840 0 −7560 −13440 −7560 0 840
. . .

. . .
. . .

. . .
. . .

. . .
. . .

840 0 −7560 −13440 −7560 0 840
840 0 −6720 18060 −7560 −4620

1680 0 −60480 13440 45360
0 0 0 0 0




,

A2 =




−226800 0 226800 0
0 0 0 0

. . .
. . .

. . .

0 0 0
−226800 0 226800



, Pj+1 =




0

P j0
P j1
...

P jN
0




.

4 Stability and Convergence

Theorem 4.1. The time semi-discrete method (4)-(6) is unconditionally stable for all
values of θ ∈ [12 , 1].

Theorem 4.2. The septic-spline approximation uj+1 converges to the exact solution U j+1

of the boundary value problem defined by Eqs. (4)-(6) with order three by the ∥.∥∞ norm,
i.e., ∥U j+1 − uj+1∥∞ = O(h3).
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Sinc-Finite difference collocation method for time-dependent

convection diffusion equations

Zinat Taghipour∗

Iran University of Sience and technology

Jalil Rashidinia

Iran University of Sience and technology

Abstract

In this paper, Sinc-collocation method is used for time-dependent convection-
diffusion equations. Sinc-collocation method based on double exponential transfor-
mation(DE) is used for space dimension and finite difference method is used for time
dimension. The error in the approximation of the solution is shown to converge at an
exponential rate, and the numerical results confirm that compared with the results
based on single exponential transformation(SE), our method is of high accuracy and
of good convergence.

keywords:Sinc-collocation method, Convection diffusion problems, finite difference
method

1 Introduction

Sinc methods have been studied extensively and found to be a very effective technique
for the solution ODEs and PDEs, particularly for problems with singular solutions and
those on unbounded domain.Despite all advantages, it is difficult for the traditional Sinc
method to solve some types of two or more dimensional boundary value problem. In these
types of problems, it is better to divide a PDE into some ODEs and incorporated the Sinc
method with other methods[4]. Now it is known that the Sinc-collocation method based
on DE transformation converges more rapidly for some class of equations under proper
conditions[3, 5].

2 Notation and background

Definition 2.1. [1]. Let h be a positive constant which represents mesh size of discretiza-
tion and k = ◦,±1,±2, ... .. The Sinc basic functions is defined for all x∈ R by

Sinc(
x− kh

h
) = S(k, h) =





sinπ(
x− kh

h
)

π(
x− kh

h
)

x ̸= kh

1 x = kh
(1)
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Definition 2.2. [2].Dd is a restricted trip with |2d| width containing real axis.

Dd = {z ∈ C , |Imgz| < d}

If x belongs to a subinterval of R, at first, this subinterval must be transferrd to Dd

by a proper conformal one-to-one map. Let ϕ be this map and

xk = ϕ−1(kh) ∈ D , ϕ−1 = ψ

Now we consider second-order two boundary value equation:

Lu(x) ≡ −u′′
(x)+p(x)u

′
(x)+q(x)u(x) = f(x) a < x < b , u(a) = u(b) = ◦

(2)
Sinc interpolation formula ,is:

u(x) ≃ um(x) =

M∑

k=−M

ukS(k, h)ϕ(x) k = −M, ...,M m = 2M + 1

(3)
Given that there is no guarantee that derivative of u

′
m approximates the u

′
as well as um

approximates u. in order to get rid of this problem, we can apply the following change of
variable

ν(ξ) = (ϕ
′
)lu)o(ψ(ξ)) , ξ = ϕ(x) ∈ Dd (4)

Following [1,2], by choosing a proper ϕSE and ϕDE( SE and DE transformation
respectively) , u

′
m andu

′′
m can approximate u

′
and u

′′
inDd . For m = 2M+1 and n = 1, 2 ,

we have

vm(ξ) =

M∑

k=−M

v(kh)S(k, h)(ξ) ,
dn

dξn
vm(ξ) =

M∑

k=−M

v(kh)
dn

dξn
S(k, h)(ξ)

(5)
Choice of l is dependent on conditions of the problem, for example l = 1/2 is more
convenient for self-adjoint problem [2].Substitute (4),(5)into (2), then we have

(
−

M∑

k=−M

[
d2

dξ2
S(k, h)(ξ) + µp(ξ)

d

dξ
S(k, h)(ξ) + γq(ξ)S(k, h)(ξ)

])
v(kh) =

(
ψ

′
(ξ)
)2−l

f (ψ(ξ))

(6)

µp(ξ) = µp(ϕ(x)) = (2l − 1)
ϕ

′′
(x)

(ϕ′(x))2
+

p(x)

ϕ′(x)

γq(t) = γq(ϕ(x)) = − 1

(ϕ′(x))2−l

(
1

(ϕ
′
(x))l

)′′

− lϕ
′′
(x)p(x)

(ϕ′(x))3
+

q(x)

(ϕ′(x))2

by solving this system of equation find υ, then (ϕ
′
)−lυ gives us u.
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3 Sinc- Finite difference method

In our approach, the given problem discretized in time direction so that the problem can
be converted to an ordinary differential equation in each time level. By using solutions of
each level and applying forwarding finite difference method we can approximate solution
of next level.Suppose the following convection diffusion equation

∂

∂t
u(x, t) +H(x)

∂

∂x
u(x, t) +R(x)

∂2

∂x2
u(x, t) = f(x, t) (7)

u(x, ◦) = g(x) a < x < b ’ u(a, t) = u(b, t) = ◦ ◦ < t ≤ τ

Rewrite the above equation in the following form

−uxx − H

R
ux =

1

R
(ut − f) , ut =

uj+1 − uj

△t

−uj+1
xx − H

R
uj+1

x − 1

R△ t
uj+1 =

1

R
(−f j+1 − uj

△t)

uj is a vector of solution at jth- level of time. For each j we obtain an ODE equation, so
it can be writen in the form of(6) . We compare DE and SE transformation which shown
by ϕSE , ϕDE respectively

ϕSE = ln

(
x− a

b− x

)
, ϕDE = Arcsinh

(
2

π
Arctgh

( −2

a− b
x+

a+ b

a− b

))

To investigate the convergence of SE and DE methods, refer to [1,6] . Note that, if u
in (7) does not vanish at boundary points and u(a, t) = p(t), u(b, t) = q(t) the following

conversion can be considered w(x, t) = u(x, t) +
x− b

b− a
p(t) +

a− x

b− a
q(t) , we have

4 Numerical examples

Example 4.1. We consider following problem with exact solution uexact (x, t) = x (1 − x) t exp(−t)
∂

∂t
u(x, t) − ∂2

∂x2
u(x, t) = [x(1 − x)(1 − t) + 2t]e−t

u(◦, t) = u(1, t) = ◦ t > ◦
u(x,◦) = ◦ ◦ < x < 1

let M=32 and ∆t = 0.001 For both methods,E represents maximum error of approxi-
mating exact solution by um on the Sinc grids. The results are listed in table 1

Example 4.2. Consider following problem with true solution u = (t2+1)e−(1+ 1
κ
)t (sin(πx) + (1 − x))

∂

∂t
u(x, t) + κ

∂

∂x
u(x, t) − ∂2

∂x2
u(x, t) = f(x, t) ,

u(◦, t) = (t2 + 1)exp(−(1 + 1
κ)t) , u(1, t) = ◦ t > ◦

u(x,◦) = sin (πx) + (1 − x) ◦ < x < 1 ,

Let M=32, K = 100 and ∆t = 0.1. The results are shown in figure1
As expected, the DE transformation converges more rapidly.
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Table 1

T EDE ESE

m=5 m=20 m=5 m=20

1 1.34 × 10−4 5.9 × 10−6 1.08 × 10−3 1.73 × 10−5

5 1.28 × 10−5 2.81 × 10−7 1.06 × 10−4 1.06 × 10−6

10 1.73 × 10−7 5.19 × 10−9 1.45 × 10−6 1.43 × 10−7

20 1.57 × 10−11 5.34 × 10−13 1.32 × 10−8 1.30 × 10−11

Figure 1
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Sinc-Galerkin method for solving parabolic equations
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Abstract

In this paper Sinc-galerkin method is used for a class of time-dependent parabolic
equation. The method based on double exponential transformation(DE) and used for
both space and time directions and it has been tested the accuracy of method on an
example. Finally the obtained results based on DE transformation compared with
this method based on single exponantial transformation(SE) . The results confirm
that the accurate nature of our method .

Keywords: Sinc-Galerkin, double exponential transformation, parabolic equation,
numerical comparision

1 Introduction

We consider the one dimentional time-depndent parabolic equation

∂

∂t
u(x, t) + H(x)

∂

∂x
u(x, t) + R(x)

∂2

∂x2
u(x, t) = f(x, t), (1)

u(x, ◦) = g(x) a < x < b , u(a, t) = γ(t) , u(b, t) = δ(t), t > ◦
convection-diffusion and heat equation are a special model of this model.Many methods

have been propsed for this type of equation that mixed Sinc-Galerkin with other methods
and also in [2] there are some kind of this problem that solved by Sinc-Galerkin method
based on SE transformation.

2 Sinc-Galerkin method

We explain the method on a heat equation with homogenious boundary conditions,but
the method can be applied for other parabolic equations

∂

∂t
u(x, t) − ∂2

∂x2
u(x, t) = f(x, t) , u(0, t) = u(t, b) = 0 t > ◦ , u(0, x) = 0 0 < x < 1

(2)
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Definition 2.1. For a mesh size h > ◦ and k = ◦,±1, ±2, ... , the basic Sinc functions on
the real axis is defined by

Sinc(
x − kh

h
) = S (k, h) =





sinπ(x−kh
h )

π(x−kh
h )

x ̸= kh

1 x = kh
(3)

Definition 2.2. Dd is a restricted trip with |2d| width containing real axis. Dd =
{z ∈ C : |Im(z)| < d}[2].

If x or t belong to a subinterval of R like D, at first, they must be transferred to Dd

by a one-to-one conformal map . Let ϕ be the conformal map for space dimension and Υ
for time dimension.

Definition 2.3. [2, 3] δi and matrix Ii = [δi] for i = ◦, 1, 2 are definde

δ
(◦)
jk ≡ [S(j, h)oϕ(x)]|x=xk =

{
◦ j = k
1 j ̸= k

δ
(1)
jk ≡ h

d

dϕ
[S(j, h)oϕ(x)]|x=xk =





◦ j = k
(−1)k−j

k − j
j ̸= k

(4)

δ
(2)
jk ≡ h2 d2

dϕ2
[S(j, k)oϕ(x)]|x=xk =





−π

3
j = k

−2(−1)k−j

(k − j)2
j ̸= k

(5)

Now we proposed some formula and definition in one dimension, x then, use them for
both x and t dimension

Definition 2.4. If f and g belong to L2((a, b)), the weighted inner product is defined by

< f, g >=

∫ b

a
f(x)g(x)w(x)dx (6)

Definition 2.5. [1] If f be an analytic function on (a, b) and | f

ϕ
′ | ≈ O(exp(−αe(−β|ϕ(x)|)))

(it means f/ϕ
′
decades double exponentially), by choosing a proper h the Sinc Quadrature

is defined by
∫ b

a
f(x)dx ≈

M∑

k=−M

f(kh)

∫ ∞

−∞
S(k, h)o(x)dx = h

M∑

k=−M

f(kh)

ϕ′(kh)
(7)

applying (4), (5) and (6), we have

∫ b

a
u(x)([S(j, h)oϕ]w)

′
(x)dx = h

M∑

k=−M

(uw)(xk)
δ
(1)
jk

h
+ h(

u(w)
′

ϕ′ )(xj)| (8)

∫ b

a
u([S(j, h)oϕ]

′′
w)(x)dx = h

N∑

k=−M

u(xk)[
δ
(2)
jk

h2
(ϕ

′
w)(xk)+

δ
(1)
jk

h
(
ϕ

′′

ϕ′ +2w
′
)(xk)]−h(

w
′′
u

ϕ′ )(xj)

(9)
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The basic functions for two dimension space and time is defined by Skl = SkS
∗
l =

S(k, h)oϕ(x)S(l, h)oΥ(t) and the inner product is

< f, g >=

∫ ∞

0

∫ b

a
f(x, t)g(x, t)w(x)ν(t)dx , (10)

where w and ν are the proper weight functions for space and time dimension respec-
tively.The approximate solution to (2) is defined by Sinc interpolation

umx,mt(x, t) =

Mt∑

j=−Mt

Mx∑

i=−Mx

uijSij(x, t) (11)

Applying the inner product to (2) and integrating by parts, twice in x and once in t , we
have

∫ ∞

0
− ∂

∂t
S∗

l ν

(∫ b

a
u(x, t)(− ∂2

∂x2
[Skw(x)]dx)

)
dt+Pu =

∫ ∞

0

∫ b

a
f(x, t)SkS

∗
l w(x)dxdt ,

(12)
where, Pu is some terms containig u

′
and u

′′
.There is no guarantee that the the partial

derivative u
′
mx,mt

and u
′′
mx,mt

approximates the u
′
andu

′′
as well as umx,mt

approximates
u. To get rid of this problem we apply integrating by parts then, choose a proper weight
functions to vanish Pu, such as w(x) = 1√

ϕ
′ and ν(t) =

√
Υ′ for this problem.

First of all, we apply (9) for fixed t for the inner integration , then applying (8) to the
first term in left hand side of (12) , then by using Ii in the definition 2.3 we can obtaine
the folowing matrix form

AxV + V CT
t = G (13)

G = D(w)FD(
ν√
Υ′ ) , V = D(w)UD(

ν√
Υ′ )

Ax = D(ϕ
′
)

[
− 1

h2
I(2) − 1

h
I(1)D(

ϕ
′′

(ϕ′)2
+

2w
′

ϕ′w
) − D(

w
′′

(ϕ′)2w
)

]
D(ϕ

′
) ,

Ct = D(
√

Υ′)

[
−1

h
I(1) − D(

ν
′

ν ′ν
)

]
D(

√
Υ′) ,

where, D represents diagonal matrix at Sinc grids xk = ϕ−1(kh) and tl = Υ−1(lh) and CT
t

is transpose of Ct and F is a matrix with elements f(xk, tl).

3 Selection of ϕ and Υ

In this paper, we choose

ϕDE(x) = Arcsinh
(

2
πArctgh

(
−2
a−bx + a+b

a−b

))
, ΥDE(t) = Arcsinh(

2

π
ln(t))

these functions transferred the domain of the given problem into Dd we can convert the
equation (2) for fixed time tl to the second order ODE with respect to x as

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Sinc-Galerkin method for solving parabolic equations pp.: 3–4

1158



{−uxx(x, tl) = f(x, tl) − ut(x, tl) ≡ fl(x) , ◦ < x < 1 , −Mt ≤ l ≤ Mt , u(a, tl) = u(b, tl) = ◦

similarly, for a fixed x we can convert (2) as the first orderODE with respect to t

{ut = f(xk, t) + uxx(xk, t) ≡ gk(t) , t > ◦ ; , −Mx ≤ k ≤ Mx , u(xk, ◦) = ◦

If these ODEs are satisfied the proper conditions defined in theorem2.3 of [3] and also by
choozing a proper mesh size h we expected the order of this method be ||u − umx,mt || ≃
O( −k

′
Mx

log(Mx)) for some k
′
> ◦

4 Numerical result

Example 4.1. We consider equation (2) in the case f(x, t) = t3/2e−t[( 3
2t − 1)xln(x) − 1

x ]

with exact solution u(x, t) = t3/2e−txln(x) and applied our method to this problem and
compare our results with the results in [4] which used SE transformation to the problem.

we choose the mesh size,h = log(π2Mx/16)
Mx

and M = Mx = Mt. e represents maximum error
of approximating u by um at mesh grids, the results tabulated in Table1 and confirm that
our method is more accurate.

Table 1

M hSE [4] eSE hDE eDE

4 1.57 4.1 × 10−3 0.225 2.5 × 10−3

8 1.11 1.1 × 10−3 0.199 4.92 × 10−4

16 0.785 2.1 × 10−4 0.143 8.7 × 10−7

32 0.555 2.6 × 10−5 0.093 8.8 × 10−9
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Solving a multi-order fractional differential equation using the

method of particular solutions

Elham Malekifard∗
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Abstract

This paper presents a new semi-analytic numerical method for solving multi-order
fractional differential equations. The method is based on the use of the particular
solutions of the linearized equation. Numerical implementation confirms the validity,
efficiency and applicability of the method.

Keywords: Particular solution, Fractional differential equation, Multi-point bound-
ary value problem.

Mathematics Subject Classification [2010]: 34A08, 35M12

1 Introduction

Fractional differential equations have been found to be effective to describe some physical
phenomenas. In this paper, the method of particular solutions is applied to solve the
multi-order fractional differential equation:

Dαu(t) = f(t, u(t), Dβ1u(t), . . . , Dβnu(t)) = 0, u(k)(0) = ck, k = 0, . . . ,m, (1)

where m < α ≤ m + 1, 0 < β1 < β2 < . . . < βn < α and Dα denotes Caputo fractional
derivative of order α. It should be noted that f can be non linear in general. In Daftardar-
Gejji and Jafari [1], it was proved that the Eq.(1) can be represented as a system of
fractional differential equations (FDEs)

Dαiui(t) = ui+1, i = 1, 2, . . . , n− 1,

Dαnui(t) = f(t, u1, u2, . . . , un);

uki (0) = cik, 0 ≤ k ≤ mi, mi ≤ αi ≤ mi + 1, 1 ≤ i ≤ n. (2)

For more details we refer to [3].
In Section 2, we describe the particular solution method for the solution of multi-point

boundary value problems (MPBVPs) and then we present this method to solve multi-order
fractional differential equations. A numerical example illustrating the applicability of the
method is placed in Section 3.
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2 Main algorithm

Consider the following multi-point boundary value problem

u(s) = F (u, u′, . . . , u(s−1), x), x ∈ [0, 1], (3)

s−1∑

j=0

aj,ku
(j)(ξj,k) = dk, 0 ≤ ξj,k ≤ 1, k = 1, . . . , s, (4)

where some of the coefficients aj,k, dk could be equal to zero. Sometimes we write the
equation in the form

u(s) = F (u, u′, . . . , u(s−1), x) + f(x) (5)

highlighting that f(x) that does not depend on u.
Let φm(x) be some system of basis functions on [0, 1], here we consider the monomials:

ϕm(x) = xm−1, m = 1, . . . ,M. (6)

The particular solutions of the equation φ
(s)
m (x) = ϕm(x), which correspond to the basis

functions ϕm are:

φm(x) =
xm+s−1

m(m+ 1) . . . (m+ s− 1)
. (7)

We denote
Φm(x) = φm(x) + cm,0 + cm,1x+ . . .+ cm,s−1xs−1. (8)

So, Φ
(s)
m satisfies Φ

(s)
m (x) = φ

(s)
m (x) = ϕm(x). The free coefficients cm,i in (8) are chosen

in such a way that Φm satisfies the homogeneous boundary conditions (4):

s−1∑

j=0

aj,kΦ
(j)
m (ξj,k) = 0, k = 1, . . . , s. (9)

Substituting (8) in (9), one gets a linear system of equations for cm,0, cm,1, . . . , cm,s−1. We
assume that the nonlinear term in (5) can be approximated by the linear combinations of
the basis functions ϕm(x):

F (u, u(1), . . . , u(s−1), x) =

M∑

m=0

qmφm(x). (10)

Substituting this approximation in the initial equation (5), one gets

u
(s)
M (x) =

M∑

m=0

qmφm(x) + f(x). (11)

Let uf (x) satisfies the equation u
(s)
f (x) = f(x), and the boundary conditions (4):

s−1∑

j=0

aj,ku
(j)
f (ξj,k) = dk. (12)
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When there exists a particular solution up(x) in explicit analytic form, then it can be
written in the form:

uf (x) = up(x) + c0 + c1x+ . . .+ cs−1xs−1. (13)

When there are no particular solutions, f(x) is joined to the nonlinear term and we get
usf (x) = 0, and uf (x) = c0 + c1x + . . . + cs−1xs−1. Substituting uf (x) in (12), one gets a
linear system for c0, c1, . . . , cn−1. So

uM (x,q) = uf (x) +
M∑

m=1

qmΦm(x), q = (q1, . . . , qM ), (14)

satisfies Eq. (11) and the boundary conditions of the initial problem (4). To get unknowns
q1, . . . , qM we substitute uM (x,q) in (10)

F
(
uM (x,q), u

(1)
M (x,q), . . . , u

(s−1)
M (x,q), x

)
=

M∑

m=1

qmφm(x). (15)

Note that we can always get the uf (x) in the analytic way when f(x) is a simple com-
bination of elementary functions, e.g., quasipolynomial (b0 + b1x + . . . + bpx

p)exp(µx).
Otherwise we can use the well known formula

uf (x) =
1

(n− 1)!

∫ x

x0

(x− t)s−1f(t)d(t) + c0 + c1 + . . .+ cs−1xs−1 (16)

and evaluate the integral numerically. Another approach is to join the term f(x) to the
nonlinear term F . To solve (15) we use the following algorithm. Let 0 6 x1 < x2 < . . . <
xM 6 1 be collocation points. In particular, we use the Chebyshev collocation points

xn =
1

2

[
1 + cos

(
π(n− 1)

M − 1

)]
. (17)

We write the collocation of (15) at these points and get the system of M nonlinear equa-
tions

F
(
uM (xn,q), u

(1)
M (xn,q), . . . , u

(s−1)
M (xn,q), xn

)
=

M∑

m=1

qmφm(xn), n = 1, . . . ,M. (18)

We solve this system of equations.
Dealing with linear problems (5), one gets

f(xn) +
s−1∑

k=0

Ak(xn)

[
u
(k)
f (xn) +

M∑

m=1

qmΦ(k)
m (xn)

]
=

M∑

m=1

qmφm(xn) (19)

instead of (18). Rewriting in the form

M∑

m=1

[
s−1∑

k=0

Ak(xn)Φ(k)
m (xn)− φm(xn)

]
= −f(xn)−

s−1∑

k=0

Ak(xn)u
(k)
f (xn), (20)

we get the linear system for q1, . . . , qM and the linear system is solved by maple. After
determining q1, . . . , qM we get the approximate solution uM (x,q) (14). We implement this
method to some multi-order FDE in the next section.
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3 Illustration of the method

We consider the following initial value problem in case of the inhomogeneous Bagley-Torvik
equation [2]:

D2u(t) + +D1.5u(t) + u(t) = 1 + t, u(0) = 0, u′(0) = 1 (21)

with the exact solution uexact(t) = 1 + t. Similar to (2) it can be viewed as the following
system of FDE:

D1.5u1 = u2, u1(0) = u′1(0) = 1, (22)

D0.5u2 = −u2 − u1 + 1 + t, u2(0) = 0. (23)

We apply the method of particular solutions to the system of equations (22) and (23 ) with
different number of basis functions M . Here we assume ϕm(t) as said in (6), but φm(t)
will be different because of the type of the derivatives here, i.e. here we have derivatives
of type Caputo. We have s1 = 1.5 and s2 = 0.5, so φi,m(t), i = 1, 2, will be as follows:

φi,m(t) =
1

Γ(si)

∫ t

0
(t− ξ)si−1ϕm(ξ)dξ, i = 1, 2. (24)

We consider Φ1,m(t) = φ1,m(t) + c1,m,0 + c1,m,1t and Φ2,m(t) = φ2,m(t) + c2,m, 0 and
u1,f (t) = c1,0 + c1,1t and u2,f (t) = 0. After determining unknown coefficients as said at
the previous section, finally we set

ui,M (t) = ui,f (t) +

M∑

m=1

qmΦi,m(t), i = 1, 2, (25)

and substitute (25) in the equations (22) and (23) and determine unknowns q1, . . . , qM by
collocation method. We find u1,M (t) = 1 + t and u2,M (t) = 0 and so uM (t) = u1,M (t) +
u2,M (t) = 1 + t will be the approximate solution of (21). Notice that for each number of
basis functions this method gives us the exact solution.
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Solving Large Sparse Linear Systems by Using

QR-Decomposition whit Iterative Refinement
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Abstract

In this article, for solution of a system of linear algebraic equations Ax = b
with a large sparse coefficient matrix A, the QR-decomposition with iterative re-
finement (QRIR) is compared with the QR-decomposition by means of Givens rota-
tions(QRGR), which is without iterative refinement and leads to direct solution. We
verify by numerical experiments that the use of sparse matrix techniques with QRIR
may result in a reduction of both the computing time and the storage requirements.

Keywords:large sparse linear systems, QR-decomposition with Givens rotations(QRGR),
QR-decomposition with iterative refinement(QRIR)

1 Introduction

A system of linear algebraic equations is

Ax = b (1)

where A is a nonsingular, large, sparse and nonsymmetric matrix of order n and b is
a given column vector of order n. To solve the linear system (1) one can try several
different algorithms. One method is to find the inverse and multiply it on both sides,
which is expensive computationally. Another method is to make a guess of the solution and
iteratively refine that guess until the error is suitably small. The method proposed here is
an iterative refinement based on the QR-decomposition method. The QR-decomposition of
a matrix is a decomposition of a matrix A into a product A = QR of an orthogonal matrix
Q and an upper triangular matrix R. There are several methods for actually computing
the QR-decomposition, such as the Gram-Schmidt process, Householder transformations,
or Givens rotations. Householder transformation has greater numerical stability than the
Gram-Schmidt method. Givens rotation procedure is used here, which does the equivalent
of the sparse Givens matrix multiplication, without the extra work of handling the sparse
elements. The Givens rotation procedure is useful in situations where only a relatively few
off diagonal elements need to be zeroed, and is more easily parallelized than Householder
transformations. The factorization operation count with Givens rotation is always smaller
than other methods. In this paper for computing the QR-decomposition, we use Givens
rotations algoritm for sparse matrices[2].
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2 QRIR Algorithm

The QR-decomposition method intermediates Givens rotations are useful for dissolving
system of linear algebraic equations where A is a nonsingular, large and sparse matrix.
An approximate QR-decomposition of the matrix A is

A = Q̃R̃ + E (2)

where E is an error matrix. The approximate solution of the system (1) is computed by

Q̃R̃x(0) = b (3)

Assume that some technique such as a QR-decomposition is used in the computation of
(2) in the decomposition stage and (3) in the solution stage. The decomposition stage (2)
is performed by using QR-decomposition with Givens rotation(QRGR). It is well known
that the factorization stage is much more expensive than the solution stage. Therefore, it
may be advantageous to use Givens rotation to control the sparsity. If this is done, then
normally the computing time needed to obtain x(0) and the storage needed for the nonzero
entries of Q̃ and R̃ are reduced ( For more details see[2] ). However, the approximation
x(0) so computed may be crude and an attempt to regain the accuracy lost by iterative
refinement has to be carried out. This means that the computations should be continued
after the solution stage (3) by the following formulae:

r(i) = b − Ax(i) (4)

Q̃R̃d(i) = r(i) (5)

x(i+1) = x(i) + d(i) (6)

for i = 0, 1, 2, . . .

Different criteria must be used to stop the iterative process (4)-(6) if the accuracy has not
been achieved or if the process does not converge. Normally single precision computations
are used in (5) and (6), while the residual vectors r(i) , for i = 0, 1, 2, . . ., are accumulated
in double precision and then rounded to single precision. If x(i) is accepted as a solution
of (1), then it is said that the system is solved directly or that x(i) is a QR-decomposition
direct solution with Givens rotation (QRGR). The solution obtained by the use of (4)-(6)
is called the QR-decomposition iteratively refined solution (QRIR) by using storage tech-
nique[2]. Therefore we can write QRIR algorithm. This algorithm has three steps:

Step 1. QR-decomposition by using Givens rotations by implementing storage
technique [2].

Step 2. Solving system R̃x(0) = Q̃tb for x(0) by using back substitution.

Step 3. Improvement by using The technique of iterative refinement:

for i = 0, 1, 2, . . . until the desired accuracy is achieved (say, 10−16)

I. Compute r(i) = b − Ax(i);
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II. Solving system R̃d(i) = Q̃tr(i) for d(i);

III. Compute x(i+1) = x(i) + d(i).
First Step of this algorithm is usful for redusing the computing time and the storage
requirements. Step 3 of the Algorithm is optional. If hoping that ∥x(0) − x∥ ≤ ϵ,we can
accept x(0) for solving system. If the third Step is carried out and if the process converges,
then x̃ = x(i) and ∥x(i) − x∥ ≤ ϵ . The iteratively refined solution (QRIR) is normally
more accurate than x(0) and an estimation of ∥x̃ − x∥ is computed by ∥d(i)∥.

3 Numerical examples

The computational environment used for the tests was an Intel Core i7-3537U, 2.0GHz
CPU with 6GB RAM, and the matrices used in the experiments are chosen randomly.
Example 1: Consider the system (1) whose nonzero entries of the coefficient matrix A
are given by aij = 1/(i+j+1) . The matrix A is ill-conditioned for even modest size n and
it has a large condition number. It is used to illustrate the performance of the algorithms.
In this example, the dimensions of the matrices considered are n = 10, 40, 100.
In Examples 2-4 , we consider linear systems (1) whose coefficient matrices A are of order
n with nz nonzero entries on the diagonal and sparsely distributed throughout, and those
are chosen randomly with n = 200, 400, 1000 where k(A) is condition number of A:
Example 2: n = 200, nz = 638, k(A) = 15.716318.
Example 3: n = 400, nz = 1276, k(A) = 16.10840.
Example 4: n = 1000, nz = 2190, k(A) = 15.04919.
The matrices given in Examples 2-4 are well-conditioned. The QR-decomposition obtained
by (2) is not so accurate. The same is true for the solution x(0) obtained by (3). However,
full machine accuracy is often achieved by the iterative process (4)-(6). The computing
time may be reduced when QR-decomposition with iterative refinement (QRIR) is used for
sparse systems (which may never happen in the case where the matrix is dense). Denote
by t1 , the computing time needed to solve the system by QRIR and by t2 the computing
time for the QR-decomposition with direct solution (QRGR). Our experiments show that
t1 < t2 for the accuracy shown in Table 1.

Table 1: The computing time (in seconds) and the number of iterations obtained by using
QRIR for Examples 1-4.

Example n nz k(A) t2 t1 Iter.

1 10 26 452.549 Negl. Negl. 8
1 40 122 1231.3812 Negl. Negl. 6
1 100 457 831.435 0.0136 Negl. 13
2 200 638 15.716318 0.0165 Negl. 2
3 400 1276 16.10840 0.1524 0.0138 2
4 1000 2190 15.04919 0.2037 0.0564 3
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4 Conclusion

In this paper, for solving large sparse linear systems, the QR-decomposition with iter-
ative refinement (QRIR) was compared with the QR-decomposition with Givens rota-
tions(QRGR), which is without iterative refinement. We verify by numerical experiments
that the use of sparse matrix techniques with QRIR may result in a reduction of both the
computing time and the storage requirements. If the condition number of the coefficient is
large (see Example 1), then the Step3 of algorithm may converge slowly. In this way, one
may obtain an answer of acceptable (but unknown) accuracy. Assume that A is dense.
Consider the solution of (1) by QRGR and by QRIR. Then we have: (i) extra storage
is needed when QRIR is used, (ii) the iterative process (4)-(6) requires extra comput-
ing time, and (iii) the solution obtained by QRGR is satisfactory, in general. Therefore,
QRGR is preferred when the matrix is dense. If the matrix is sparse and QRGR is used,
we have found that the solution is satisfactory because the stability requirements in QR-
decomposition are satisfied by using Givens rotations. However, it is also possible to use
QRIR if the accuracy is more important (but not computing time and computer storage).
Moreover, the QRIR procedure converges to the true solution even though the matrix A
is ill-conditioned.
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Solving nonlinear fuzzy differential equations by the

Adomian-Tau method

Tayebeh Aliabdoli Bidgoli ∗

Shahid Bahonar University of Kerman

Abstract

In this paper, a numerical method for nonlinear fuzzy differential equations is
presented. The method is based on Adomian-Tau method. Numerical examples are
presented to verify the efficiency and accuracy of the proposed method.

Keywords: fuzzy differential equation, generalized differentiable, Adomian-Tau method.

Mathematics Subject Classification [2010]: 34A07

1 preliminary

In this section,we present definitions and concepts that need in throughout papers.
Let us denote by RF the class of fuzzy subsets of the real axis u : R→ [0, 1], such that u
is normal, upper semicontinuous and convex fuzzy set with compact support. Then RF is
called the space of fuzzy numbers. For 0 < α ≤ 1, denote [u]α = {x ∈ R;u(x) ≥ α} and
[u]0 = {x ∈ R;u(x) > 0}. Then it is well- known that for any α ∈ [0, 1], [u]α is a bounded
closed interval. For u, v ∈ RF , and λ ∈ R, the sum u+ v and the product λ.u are defined
by [u + v]α = [u]α + [v]α, [λ.u]α = λ[u]α,∀α ∈ [0, 1], where [u]α + [v]α = {x + y : x ∈
[u]α, y ∈ [v]α} means the usual addition of two intervals of R and λ[u]α = {λx : x ∈ [u]α}
means the usual product between a scalar and a subset of R.
Let D : RF × RF → R+ ∪ {0}, D(u, v) = supα∈[0,1] max{|uα − vα|, |uα − vα|}, be the

Hausdorff distance between fuzzy numbers, where [u]α = [uα, uα], [v]α = [vα, vα]. The
following properties are well-known

• D(u+ w, v + w) = D(u, v), ∀u, v, w ∈ RF ,

• D(k.u, k.v) = |k|D(u, v), ∀k ∈ R, u, v ∈ RF ,

• D(u+ v, w + e) ≤ D(u,w) +D(v, e),∀u, v, w, e ∈ RF ,

and (RF , D) is a complete metric space.

Definition 1.1. Let x, y ∈ RF . If there exist z ∈ RF such that x = y + z, then z is called the
H− difference of x and y and it is denoted by x	 y.

In this paper the ” 	 ” sign stands always for H− difference and let us remark that x 	 y 6=
x+ (−1)y.

Definition 1.2. [1] Let f : (a, b)→ RF and x0 ∈ (a, b), then f is strongly generalized differential
on x0, if there exists an element f ′(x0) ∈ RF , such that
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(i) for all h > 0 sufficiently small, ∃f(x0 + h)	 f(x0), f(x0)	 f(x0 − h) and the limits (in the
metric D)

lim
h→0

f(x0 + h)	 f(x0)

h
= lim
h→0

f(x0)	 f(x0 − h)

h
= f ′(x0), or

(ii) for all h > 0 sufficiently small, ∃f(x0)	 f(x0 + h), f(x0 − h)	 f(x0) and the limits

lim
h→0

f(x0)	 f(x0 + h)

(−h)
= lim
h→0

f(x0 − h)	 f(x0)

(−h)
= f ′(x0), or

(iii) for all h > 0 sufficiently small, ∃f(x0 + h)	 f(x0), f(x0 − h)	 f(x0) and the limits

lim
h→0

f(x0 + h)	 f(x0)

h
= lim
h→0

f(x0 − h)	 f(x0)

(−h)
= f ′(x0), or

(iv) for all h > 0 sufficiently small, ∃f(x0)	 f(x0 + h), f(x0)	 f(x0 − h) and the limits

lim
h→0

f(x0)	 f(x0 + h)

(−h)
= lim
h→0

f(x0)	 f(x0 − h)

h
= f ′(x0).

Theorem 1.3. Let f : (a, b)→ RF and x0 ∈ (a, b).

• (i) If f is strongly generalized differentiable on x0 as in (i) of Definition 1.2 (i-differentaible)
then

[f ′(x0)]α = [(fα)′(x0), (f
α

)′(x0)], ∀α ∈ [0, 1],

• (ii) If f is strongly generalized differentiable on x0 as in (ii) of Definition 1.2 (ii-differentiable)
then

[f ′(x0)]α = [(f
α

)′(x0), (fα)′(x0)], ∀α ∈ [0, 1].

2 Adomian-Tau method

Consider the following nonlinear differential equations system

{
y′1(x) = f2(x, y1(x), y2(x)), y1(x0) = λ1
y′2(x) = f1(x, y1(x), y2(x)), y2(x0) = λ2.

(1)

Assume that yin(x), i = 1, 2 is a polynomial approximation of degree n for yi(x), i = 1, 2 then, one
can write:

yin =

n∑

j=0

aijx
j = a

i
X (2)

where a
i

= [ai0, ai1, ai2, ..., ain, 0, ...] and X = [1, x, x2, ...]T . The tau method converts differential
equations to algebraic equations. The effect of differentiation or shifting on coefficients P

n
=

[p0, p1, p2, ..., pn, 0, ...] of polynomial Pn(x) = P
n
X is the same as that of the post-multiplication

of Pn by either matrix η or µ, defined by:

µ =




0 1 0 0
0 1 0

0 1
...

0

. . .
. . .



, η =




0
1 0

0 2 0
...

0 0 3 0

. . .
. . .



. (3)
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Lemma 2.1. [3] Let Pn(x) be a polynomial of the form Pn(x) =
∑n
i=0 Pix

i = PnX, then

i) dk

dxkPn(x) = Pnη
kX, i = 0, 1, 2, ...,

ii) xkPn(x) = Pnµ
kX

By using Lemma 2.1, one can write

y′i(x) = aiηX, i = 1, 2. (4)

We now use Adomian decomposition, to simplify the non-linear term of Equations (1).
By setting f̃i(x) = fi(x, y1, y2), and substituting yi(x) =

∑∞
j=0 aijx

j , we get

f̃i(x) = fi


x,

∞∑

j=0

a1jx
j ,

∞∑

j=0

a2jx
j


 =

∞∑

j=0

Afij x
j = AfiX, i = 1, 2,

where Afi = [Afi0 , A
fi
1 , ...], with

Afik =
1

k!

{
dk

dxk fi

(
x,
∑∞
j=0 a1jx

j ,
∑∞
j=0 a2jx

j
)}∣∣∣∣

x=0

=
f̃i

(k)
(0)

k!
,

i = 1, 2, k = 0, 1, ...

which depends on a10, a11, ..., a1k, a20, a21, ..., a2k, for k = 0, 1, ... . From Relations (4) and (5) the
matrix form of Equations (1) can be written as

aiηX = AfiX, i = 1, 2, (5)

which yields
aiη = Afi , i = 1, 2, (6)

since X is a base vector. Consequently the unknown coefficients in Relation (2) can be determined
from Relation (6). In fact, we use initial conditions to write

ai0 = λi, i = 1, 2.

and determined other coefficients by forward substituting from the following systems:





a1j =
Af1j−1
j

a2j =
Af2j−1
j

forj = 1, 2, ..., n. (7)

3 Numerical Example

Example 3.1. Consider the following fuzzy differential equation

y′(t) = 2ty(t) + t(r − 1), y(0) = (−1, 0, 1) t ∈ [0, 1]. (8)

In this case (i)-different, the exact solution is

[Y (t)]α = [Y α, Y
α

(t)] = [
1

2
(3et

2 − 1)(α− 1),
1

2
(3et

2 − 1)(1− α)],
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and Equation (8) is equivalent with system
{

yα = 2tyα + t(α− 1), yα(0) = α− 1
yα = 2tyα + t(1− α), yα(0) = 1− α. (9)

Using Adomian-Tau method if yα =
∑n
j=0 ajx

j and yα =
∑n
j=0 bjx

j for n=6 we have

{
y = (α− 1)(1 + 3

2 t
2 + 3

4 t
4 + t6

4 )

y = (1− α)(1 + 3
2 t

2 + 3
4 t

4 + t6

4 )
(10)

As well as, (ii)-different exact solution is

[y(t)]α = [Y α, Y
α

(t)] = [
1

2
(3e−t

2 − 1)(α− 1),
1

2
(3e−t

2 − 1)(1− α)]

and Equation (8) in this case is equivalent with system
{

yα = 2ty + t(1− α), yα(0) = α− 1
yα = 2ty + t(α− 1), yα(0) = 1− α. (11)

By apply Adomian-Tau method the same as above approximation for n = 6 we have
{
yα = (α− 1)(1− 1

2 t
2 + 3

4 t
4 − 1

4 t
6)

yα = (1− α)(1− 1
2 t

2 + 3
4 t

4 − 1
4 t

6)
(12)

Example 3.2. Consider the following fuzzy nonlinear differential equation from [2]

y′(t) = ty2(t) y(0) = (1.1, 1.2, 1.3), t ∈ [0, 1] (13)

where the exact solution in the (i)-differentiable case for α ∈ [0, 1] is

[y(t)]α = [Y α, Y α(t)] = [
−(2α+ 22)

(α+ 11)t2 − 20
,
−(2α− 26)

(α− 13)t2 + 20
]

and Equation (13) in this case is equivalent with system
{
y = ty2, y(0) = 1.1 + 0.1α
y = ty2, y(0) = 1.3− 0.1α.

(14)

If y(t) approximate by y
α

(t) =
∑n
j=0 ajt

j and yα(t) =
∑n
j=0 bjt

j , hence





y
α

(t) = (1.1 + 0.1α) +
(1.1 + 0.1α)2

2
t2 +

(1.1 + 0.1α)3

4
t4 +

(1.1 + 0.1α)4

24
t6

yα(t) = (1.3− 0.1α) +
(1.3− 0.1α)2

2
t2 +

(1.3− 0.1α)3

4
t4 +

(1.3− 0.1α)4

24
t6.

(15)

References

[1] B. Bede, I.J. Rudas and A.L. Bencsik, First order linear fuzzy differential equations under
generalized differentiability Information Sciences, 177, (2007), pp.1648–1662.

[2] Sohrab Effati , Morteza Pakdaman , Artificial neural network approach for solving fuzzy dif-
ferential equations, Information Sciences, 180, (2010), pp. 1434-1457,

[3] A. Khani and S. Shahmorad, The Adomian-Tau Method for Solving a System of Non-linear
Differential Equations, Computer Science & Engineering and Electrical Engineering, 17(1)
(2010), pp. 39–45.

Email: tayebeh.aab@gmail.com, tayebeh.aab@math.uk.ac.ir

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Solving nonlinear fuzzy differential equations by the Adomian-Tau method pp.: 4–4

1171



Solving the Black-Scholes equation through a higher order

compact finite difference method

Rahman Akbari∗, Mohammad Taghi Jahandideh

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran

Abstract

In this paper a new compact finite difference (CFD) method for solving Black-
Scholes equation is analyzed. Thise method leads to a system of linear equations
involving tridiagonal matrices and the rate of convergence of the method is of order
O(k2 + h8) where k and h are the time and space step-sizes, respectively. Numerical
results obtained by the proposed method are compared with the exact solution.

Keywords: Option pricing, Black-Scholes equation, compact finite difference scheme
Mathematics Subject Classification [2010]: 62P05, 65M06

1 Introduction

The Black-Scholes model [4, 5] is a powerful tool for valuation of equity options. This
model is used for finding prices of stocks. Analytical approach and Numerical techniques
are two ways for solving the European options. In [2] Mellin transformation was used
to solve this model. They required neither variable transformation nor solving diffusion
equation. R. Company et. al. [3] solved the modified Black-Scholes equation pricing option
with discrete dividend. They used a delta-defining sequence of generalized Dirac-Delta
function and applied the Mellin transformation to obtain an integral formula. Finally,
they approximated the solution by using a numerical quadrature approximation.
Our contribution in this paper is the use of a high-order CFD method [1] for the pricing
of options under the standard Black-Scholes model.

2 Construction of the method

Consider following Black-Scholes equation

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂2V

∂S2
− rV = 0, (1)

where S is the asset value, σ is the volatility and r is the risk-free interest rate. If we
denote the current price of the underlying by S, then the payoffs at expiry, T , for a given
exercise price, K, of European Calls and Puts is

C(S, T ) = max(S − K, 0), P (S, T ) = max(K − S, 0). (2)
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The closed form solution for the European Put option is

P (S, t) = Ke−r(T−t)N(−d2) − SN(−d1),

where

d1 =
log S

K + (r + 1
2σ2)(T − t)

σ
√

T − t
, d2 = d1 − σ

√
T − t, N(x) =

1√
2π

∫ x

−∞
e− 1

2
s2

ds.

Consider the transformations of the independent variables S = Kex, t = T − 2τ
σ2 and the

dependent variable

v(x, τ) =
1

K
V (S, t) =

1

K
V (Kex, T − 2τ

σ2
).

By the chain rule for functions of several variables, the Black-Scholes equation (1) trans-
forms to a constant coefficient one, i. e.

vτ = vxx +

(
2r

σ2
− 1

)
vx − 2r

σ2
v,

where the subscripts represent the partial derivatives with respect to the corresponding
variables. The transformation can be defined by

v(x, τ) = e−αx−β2τu(x, τ) where γ =
2r

σ2
, α =

1

2
(γ − 1), β =

1

2
(γ − 1) = α + 1.

Consequently, the equation that to be satisfied by the transformed dependent variable
u = u(x, τ) is the dimensionless form of the heat equation, i. e.

uτ = uxx. (3)

In this paper we will now price a European Put using the compact finite difference method.
We first consider the following heat Black-Scholes PDE equation

uτ = uxx, Xmin = a < x < b = Xmax, 0 < τ <
σ2

2
T, (4)

where

Xmin = ln(
Smin

K
), Xmax = ln(

Smax

K
)

and we cannot, of course, discretely solve for all values of x up to infinity!. The initial and
boundary conditions for the European Put are

u(x, 0) = max{eαx − eβx, 0}, u(a, τ) = eαa+(β2−γ)τ , u(b, τ) = 0. (5)

To construct a CFD method, we select integers M,N > 0 and define h = (b − a)/M, k =
σ2

2 T/N . The grid points for this situation are (xi, τn), where xi = ih for i = 0, 1, . . . , M
and τn = nk for n = 0, 1, . . . , N . Assuming un

i = u(xi, τn), we use the following notations
for simplicity

u
n+1/2
i =

un+1
i + un

i

2
, ∂τu

n+1
i =

un+1
i − un

i

k
, δ2

xun
i = un

i+1 − 2un
i + un

i−1. (6)
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To obtain a eighth-order scheme with tridiagonal nature, (3) at the intermediate point
(xi, tn+ 1

2
) can be written as

∂τu
n+1/2
i =

δ2
x

h2(1 + 1
12δ2

x + 1
360δ4

x + 1
20160δ6

x)
u

n+1/2
i + O(k2 + h8)

=
δ2
x

h2 p(δ2
x)

u
n+1/2
i + O(k2 + h8), (7)

where p(δ2
x) =


1 +

1
12

δ2
x

1−
1
30 δ2x

1− 1
56 δ2x


. With the aid of the approximate matrix B for δ2

x, (7)

can be written as

(I + A)Un+1 = (I − A)Un, (8)

where

Un = (Un
1 , . . . , Un

M−1)
T , B =




−2 1 0 . . . 0

1 −2 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 −2 1

0 . . . 0 1 −2




and A = − k
h2 p(B).

The stability of the (7) is investigated by using the matrix method. The error en at the
nth time level is given by en = un

exact − un
app, where un

exact and un
app are the exact and the

numerical solutions at the n-th time level, respectively. The error equation for (8) can be
written as

en+1 = H en,

where H = (I +A)−1(I −A). From above argument we have the following theorem that
can be proved without difficulty.

Theorem 2.1. The numerical scheme (7) is stable if ∥H∥2 ⩽ 1, which is equivalent to
ρ(H) ⩽ 1, where ρ(H) denotes the spectral radius of the matrix H.

By using theorem 2.1 it can be seen that the stability is assured if ρ(H ) satisfy the
following condition ∣∣∣∣

1 − ρ(A)

1 + ρ(A)

∣∣∣∣ ⩽ 1.

This shows that the scheme (7) is unconditionally stable if ρ(A) ⩾ 0.

3 Numerical results

The accuracy of the scheme is measured by using the L∞ =∥ Uapp − Uexact ∥∞ error
norm. In Table 1, numerical solution for Put options obtained by the present method at
different asset values are displayed and compared with the exact solution and the well-
known Crank-Nicolson method. To show that the method has eighth-order convergence
rate, we initially set h = 0.034 and k = 0.02, then reduce them by a factor of 2 and 16,
respectively, in Table 2.
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Table 1: Comparison of numerical and exact solutions for Smin = 1, Smax = 150, σ = 0.2,
T = 1, r = 0.05, h = 0.034 and k = 0.02.

S0 K Crank-Nicolson Present Exact L∞(CN) L∞(Present)

10 30 18.5854 18.5368 18.5369 0.0486 4.5213e − 05
60 47.1220 47.0736 47.0738 0.0482 1.8430e − 04
100 85.1707 85.1228 85.1229 0.0478 1.8026e − 04

Table 2: Rate of convergence with Smin = 1, Smax = 100, σ = 0.2, T = 1, r = 0.05,
k = 0.02 and h = 0.034.

h, k h
2 , k

16
h
22 , k

162
h
23 , k

163
h
24 , k

164

E = L∞ 4.588e − 05 6.707e − 07 1.865e − 09 8.978e − 12 3.421e − 14

R = E(h,k)

E(h
2
, k
16

)
− 68.4097 359.5560 207.7704 262.4291

Order = log2 R − 6.0961 8.4901 7.6988 8.0358
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Solving two-dimensional FitzHugh-Nagumo model with

two-grid compact finite difference (CFD) method

Hamid Moghaderi∗

Amirkabir University of Technology

Mehdi Dehghan
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Abstract

The aim of this paper is to propose a two-grid compact finite difference (CFD)
method to obtain the numerical solution of the two-dimensional FitzHugh-Nagumo
model. We use the fourth-order CFD and second-order central finite difference meth-
ods for discretizing the spatial and time derivatives, respectively. The obtained system
has been solved by two-grid (TG) method, where the TG method is used for solving
the large sparse linear systems. Also, in the proposed method the spectral radius with
local Fourier analysis is calculated for different values of h and ∆t.

Keywords: FitzHugh-Nagumo equations (FHN), two-grid method, multigrid tech-
nique, compact finite difference method

Mathematics Subject Classification [2010]: 35K57, 35K20, 65N55, 65N06.

1 Introduction

The FHN equations exhibit excitability, a feature in common with Hodgkin-Huxley and
other ionic models [3]. The FHN equations [3, 4] (the modelling of propagation of action
potentials through excitable tissue for which v represents the non-diffusive gating variable)
with diffusion can be written as

{
∂u
∂t = D1∇2u+ 1

εf(u, v),
∂v
∂t = g(u, v),

(1)

with homogeneous Neumann boundary conditions, where elements D1, known as the
diffusion coefficient for u. In the present paper, the second kinetic model studied is
the classic cubic FHN local dynamics [3] with the local ion dynamics are defined by
f(u, v) = u(1 − u)(u − a) − v, g(u, v) = αu − γv where a, α and γ are dimensionless
constants.

The finite difference approximations for derivatives are one of the simplest and of the
oldest methods to solve differential equations. One approach to achieve accurate solutions
is to use higher-order or locally exact discretization methods for solving the convection-
diffusion equation [5, 8]. One of high-order finite difference methods can be noted compact
finite difference method, that was planned by researchers such as Gupta et al. [1, 2].
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Table 1: The Eh and Enτ errors for u and v obtained by the presented method when ν1 = ν2 = 5
and T = 1.

∆t = 0.001 h = 200/26

h Eh for u Eh for v ∆t Enτ for u Enτ for v

200/25 4.33 × 10−2 1.26 × 10−4 0.0064 4.88 × 10−3 1.17 × 10−5

200/26 8.09 × 10−3 1.91 × 10−5 0.0032 4.53 × 10−3 1.13 × 10−5

200/27 2.44 × 10−3 6.64 × 10−6 0.0016 3.87 × 10−3 9.80 × 10−6

200/28 4.24 × 10−4 1.30 × 10−6 0.0008 2.57 × 10−3 6.57 × 10−6

200/29 1.58 × 10−5 5.25 × 10−8 − − − − − −− − − −−

For problems of large scale and complicated systems, direct solution methods based on
Gaussian elimination techniques are expensive and are not efficient in terms of memory
usage and CPU time. For this reason, we can consider multigrid method as an effective
method that has least computational cost among of iterative methods. Multigrid (MG)
schemes in numerical analysis are a group of algorithms for solving differential equations
using a hierarchy of discretizations. The studies by J. Zhang [9, 10] show that the fourth-
order compact schemes work well with fast iterative solution methods, e.g. the multigrid
methods.

2 Main results

Simply substituting the compact and forward finite difference schemes in Eq. (1), we get




un−un−1

∆t = D1

(
δ2
x

h2(1+ 1
12
δ2
x)
un +

δ2
y

h2(1+ 1
12
δ2
y)
un
)

+ 1
ε

(
− aun − vn + (1 + a)(un−1)2 − (un−1)3

)
,

vn−vn−1

∆t = αun − γvn.

Now, vn is computed using the second relation of Eq. (2) and then by plugging the result
in the first relation of Eq. (2) and with some manipulation, we obtain value of un. As that
from the model is clear the value of vn must be calculated according to following equation

vn =
1

1 + γ∆t
(α∆tun − vn−1).

Now, in the following, the standard two-grid algorithm [7] is expressed.

Algorithm 1: Two-grid method uh ← TG(uh, fh, ν1, ν2)

1) Relax ν1 times on Ahvh = fh on Ωh with arbitrary initial guess uh.
2) Compute rh = fh −Ahuh.
3) Compute r2h = I2h

h rh.
4) Solve A2he2h = r2h on Ω2h.
5) Correct fine-grid solution uh ← uh + Ih2he2h.
6) Relax ν2 times on Ahvh = fh on Ωh with initial guess uh.

According to the algorithm expressed in above, iterative matrix form of two-grid
method is as follows:

MTG = Sν2
h (Ih − TTG)Sν1

h ,

which TTG = Ih2hA
−1
2h I

2h
h Ah and Ih is the identity matrix. We identify the coarse-grid

operator A2h = Ih2hAhI
2h
h .

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Solving two-dimensional FitzHugh-Nagumo model with two-grid compact . . . pp.: 2–4

1177



Table 2: Two-grid convergence factors ρloc when ν1 = ν2 = 5 and ω = 0.9417.

∆t = 0.0005 h = 200/27

h ρloc ∆t ρloc
200/26 9.77 × 10−5 0.004 9.36 × 10−5

200/27 9.74 × 10−5 0.002 9.58 × 10−5

200/28 9.58 × 10−5 0.001 9.69 × 10−5

200/29 8.95 × 10−5 0.0005 9.74 × 10−5

Also, we use the local Fourier analysis to show that the spectral radius of the itera-
tion matrix in the two-grid method (ρ(MTG)) is low for 2D FitzHugh-Nagumo equations.
Note that the interested readers can refer to [7] for the asymptotic convergence and error
reduction factors with their respective definitions and theorems.

3 Numerical results

In the current paper, we don’t have the exact solutions, thus to examine the numerical
stability of time difference and the convergence of full discrete schemes, we employ strategy
of the reference solution. Thus, we consider WN and SNh as two reference solutions and
set Wm and SIh as numerical solutions and also apply the following error relations

Enτ = ‖WN −Wm‖∞, Eh = ‖SNh − SIh‖∞.
It should be noted that in this case the iterative method used is the method of ω-Jacobi
by ω = 0.9417. We will investigate the FitzHugh-Nagumo monodomain model for kinetic
model (II) [6], with homogenous Neumann boundary conditions for both u and v by
D1 = 1, a = 0.15, ε = 1, α = 0.005 and γ = 0.025, over the square domain Ω =
[−100, 100]× [−100, 100]. Also we use the following initial condition

{
u(x, y, 0) = exp(−((x− 30)2 + (y − 30)2)/16),

v(x, y, 0) = 0.

Table 1 represents errors obtained corresponding to Eh and Enτ . In this table, we
considered the present method with ∆t = 0.001, D1 = 1, ε = 1, a = 0.15, α = 0.005, γ =
0.025 and h = 200

26 . Table 2 presents the corresponding two-grid convergence factor. As we
can see in Table 2, for the case of fixed value ∆t and different h, the two-grid convergence
factor decreases. In the case of a fixed value h and different ∆t, the two-grid convergence
factor does not noticeably change.

Graphs of approximation solution for u, v of equations for kinetic model (II) using
the present method at T = 100 on rectangular domain Ω = [−100, 100] × [−100, 100]
with M = 128, ∆t = 0.001 and ν1 = ν2 = 5 are shown in Fig. 1. The asymptotic
convergence factor and error reduction factor with ∆t = 0.0005 and M = 128 computed
by the presented method and can be observed in Fig. 2.

Conclusion

In the current paper, we employed a numerical algorithm based on the two-grid compact
finite difference method for solving two-dimensional FitzHugh-Nagumo model. Numerical
simulations show the efficiency of the new technique. It should be said that the present
method can be used with some changes for other differential equations.
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Figure 1: Graphs of approximation solution using the present method with M = 128, ∆t = 0.001 and ν1 = ν2 = 5 at T = 100
on rectangular domain Ω = [−100, 100] × [−100, 100] for kinetic model (II) and D1 = 1, a = 0.15, α = 0.005, γ = 0.025.
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Figure 2: Graphs of the asymptotic convergence factor and error reduction factor by the presented method is computed with
∆t = 0.0005 and M = 128.
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The Interval Matrix Equation AXB = C

Somayeh Zangoei Zadeh∗

University of Kerman

Abstract

In this paper, we define a solution set for the interval matrix equation AXB = C,
where A and B are the known square interval matrices of dimensions m × m and
n × n, respectively, C is a rectangular interval matrix of dimension m × n and the
unknown matrix X is also of dimension m×n. Afterwards, some conditions bounding
the solution set will be studied. We also present a number of methods for solving the
aforementioned interval matrix equation. Finally, we show that whenever A and B
are inverse positive, hull of solution set can be described explicitly.

Keywords: Interval matrix, Interval linear systems, Linear matrix equations, Solu-
tion set.

Mathematics Subject Classification [2010]: 65F30

1 Introduction

Matrix equations have numerous applications in sciences and engineering, including cal-
culation for electromagnetic scattering, structural mechanics and computation of the fre-
quency response matrix in control theory.
An example of these matrix equations is in the form of:

AXB = C, (1)

where A, B and C, are the known real matrices of dimensions m × m, n × n and m × n,
respectively, while the unknown matrix X is a real matrix with dimension of m × n.

In practical applications, the elements of A, B and C are usually obtained from experi-
ments and thus they may appear with uncertainties. The uncertain elements are shown in
interval forms. Therefore with the presence of uncertainties in data, the matrix equations
(1) is transformed to the following interval matrix equation

AXB = C (2)

where A, B and C are interval matrices. Note that bold-face letters are used to show
intervals.

In this paper, we use notations R and Rm×n as the field of real numbers and the vector
space of m×n real matrices, respectively. We denote the set of all m×n interval matrices
by IRm×n.
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For the interval matrix A = [A, A], the center matrix denoted by mid(A) or Ǎ and
the radius matrix denoted by rad(A) are respectively defined as

Ǎ =
1

2
(A + A) , rad(A) =

1

2
(A − A).

It is clear that A = [Ǎ − rad(A), Ǎ + rad(A)].
We assume that the reader is familiar with a basic interval arithmetic and interval

operators on the interval matrices; for more detail, refer to [1, 2].
If Σ is a bounded set of m × n real matrices, then interval hull of Σ denoted by Σ is

defined as
Σ = [inf(Σ), sup(Σ)].

An n×n interval matrix A = [A,A] is said to be regular if each A ∈ A is nonsingular. An
inverse positive matrix is a regular square matrix A ∈ IRn×n with nonnegative inverse.

For two interval matrices A ∈ IRm×n and B ∈ IRk×t, the Kronecker product denoted
by ⊗ is defined by the following mk × nt block interval matrix

A ⊗ B = (aijB) .

Also vec(A) is defined as an mn-interval vector and obtained by stacking the columns of
A, i.e.,

vec(A) = (A.1,A.2, · · · ,A.n)T ,

where A.j is the jth column of A.

2 Main results

Consider the matrix equation (2). The solution set for this equation is defined as follows:

Σ(X) =
{
X ∈ Rm×n| AXB = C for some A ∈ A, B ∈ B, C ∈ C

}
. (3)

Much like the solution for interval linear systems presented in other studies, the solution
set of an interval matrix equation generally has a complicated structure, [2]. However, we
can show that Σ(X) is closed and moreover it is connected and compact if A and B are
regular. If Σ(X) is bounded, we look for an enclosure of this set, i.e. for an interval
matrices X satisfying Σ(X) ⊆ X. The special case in which, A and B are inverse positive,
we can present the interval hull of solution set.

2.1 Description and properties of solution set

In this section, we present some properties and descriptions of Σ(X) and the conditions
that imply boundedness of it. The following theorem shows that the solution set is always
a closed set.

Theorem 2.1. The solution set defined by (3) is closed.

In the above theorem, we do not suppose A and B to be regular. With this assumption,
Σ(X) will be connected and compact.
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Theorem 2.2. Suppose that A and B in the interval matrix equation (2) are regular.
Then for each interval matrices C ∈ IRm×n, the solution set is compact and connected.

The following theorem give us a description of a superset of Σ(X).

Theorem 2.3. The solution set Σ(X) defined by (3) satisfies

Σ(X) ⊆
{

X ∈ Rm×n :
|ǍXB̌ − Č| ≤
|Ǎ||X|rad(B) + rad(A)|X||B| + rad(C)

}
. (4)

The following theorems express some conditions for boundedness of Σ(X).

Theorem 2.4. Let C ∈ IRm×n be arbitrary. The solution set of interval matrix equation
(2) is bounded if and only if A and B are regular.

Theorem 2.5. For all interval m×n matrices C the solution set defined by (3) is bounded
if one of the following inequalities has only the trivial solution X = 0.

{
|ǍXB̌| ≤ |A||X|rad(B) if A is thin,

|ǍXB̌| ≤ rad(A)|X||B| if B is thin.
(5)

2.2 Obtaining of enclosure of solution set

In this section, we look for interval matrix X as an enclosure of the solution set of the
interval matrix equation (2) whenever the solution set is bounded. It is clear that for each
enclosure X, the inclusion C ⊆ AXB is valid.

The matrix equation AXB = C can be transformed to the following form

Gz = d, (6)

where G = BT ⊗ A, d = vec(C) and z = vec(X). So, by finding interval vector z as an
enclosure of solution set of the interval linear system (6), we can specify the columns of
the interval matrices X. To solve the interval linear system (6) see [2].

Example 2.6. Consider the interval matrix equation AXB = C, in which

A =

[
[1, 2] [2, 2.5]

[−2, −1] [5, 6]

]
, B =

[
[3, 4] [−1, 0]
[1, 1] [6, 8]

]
, C =

[
[6, 7] [1, 3]
[8, 9] [6, 8]

]
.

By using Matlab toolbox Intlab [4] and Verintervalhull.m code of Versoft [3] for solving
the interval linear system Gz = d, we obtain the enclosure of the solution set as

X =

[
[−0.2264, 1.7081] [−0.7964, 0.7098]
[0.2838, 0.9075] [0.0589, 0.4545]

]
,

that is shaper than the enclosure of the previous example.

However this method may not succeed because due to interval dependencies, it is
possible for G to be singular even if A and B are regular. Therefore, we try to find an
enclosure X of Σ(X) by an easier and better technique.

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

The interval matrix equation AXB = C pp.: 3–4

1182



We can reduce the interval matrix equation AXB = C to the two interval matrix
equations AY = C and XB = Y, where Y is an enclosure for the solution set of AY = C.
Thus we need to solve two interval matrix equation such as AX = B. To this end, we
consider an interval linear system of the form

AX.j = B.j ,

where X.j and B.j are jth columns of X and B, respectively.

Example 2.7. Consider the interval matrix equation in previous example . By using the
above method and Matlab toolbox Intlab we obtained the following result:

Y =
[

[0.4999,3.2501] [−2.0001,0.7501]
[1.5172,2.5556] [0.7272,1.5834]

]
,X =

[
[0.0899,1.1945] [−0.3334,0.2895]
[0.3008,0.8216] [0.0909,0.3846]

]
.

Theorem 2.8. In the interval matrix equation (2), suppose A and B are inverse positive.
Then

1. Σ(X) = [A
−1

CB
−1

, A−1CB−1] when C ≥ 0,

2. Σ(X) = [A−1CB−1, A
−1

CB
−1

] when C ≤ 0,

3. Σ(X) = [A−1CB−1, A−1CB−1] when C ≤ 0 ≤ C.

Example 2.9. Consider the interval matrix equation AXB = C, in which

A =

[
[30,30] [−12,−1] [−12,−1]

[−12,−1] [30,30] [−12,−1]
[−12,−1] [−12,−1] [30,30]

]
, B =

[
[25,27] [−4,−2] [−3,−2]
[−2,−1] [20,23] [−2,−2]
[−4,−1] [−4,−2] [30,30]

]
, C =

[
[2,4] [4,5] [1,2]
[0,2] [3,4] [5,6]
[1,2] [8,9] [4,6]

]
.

Since A and B are inverse positive and C ≥ 0, from the above theorem it follows that

Σ(X) =




[0.0028, 0.0289] [0.0067, 0.0608] [0.0021, 0.0308]
[0.0005, 0.0274] [0.0055, 0.0599] [0.0061, 0.0338]
[0.0020, 0.0279] [0.0126, 0.0660] [0.0056, 0.0342]


 .
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The use of a tau method based on Bernstein polynomials for

solving the viscoelastic squeezing flow between two parallel

plates
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Abstract

In this paper, a numerical method based on Bernstein polynomials for solving the
viscoelastic squeezing flow between two parallel plates is introduced. This method
expands the desired solutions in terms of a set of Bernstein polynomials over a closed
interval and then makes use of the tau method to determine the expansion coefficients
to construct approximate solutions.

Keywords: Squeezing flow; Bernstein polynomials; Tau method.

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Many of the mathematical modeling, which appears in many areas of scientific fields such
as fluid dynamics, plasma physics and solid state physics, can be modeled by nonlinear
ordinary or partial differential equations. Apart of a limited number of these problems,
most of them do not have an exact solution, so these nonlinear equations should be solved
using approximate methods. Therefore, several attempts have been made to develop the
new techniques for obtaining analytical or numerical solutions which reasonably approx-
imate the exact solutions. These known methods are for example, Runge-Kutta method
spectral methods, the Adomian decomposition method, the variational iteration method,
the homotopy perturbation method and the homotopy analysis method.
Here, we have considered the viscoelastic squeezing flow between two parallel plates. This
problem studied first by Ran et al. [1] in 2009 and solved by using homotopy analysis
method (HAM). Zodwa et al. [2] used the successive linearization method (SLM) to solve
this problem. In this study, we are going to introduce and implement a new algorithm
based on Bernstein polynomials [3] to find the approximate solution of the viscoelastic
squeezing flow between two parallel plates. Bernstein polynomials have many useful prop-
erties, such as, the positivity, the continuity, and unity partition of the basis set over the
interval [a, b][3].
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2 Flow analysis and mathematical formulation

The description of the physical problem closely follows that of Zodwa et al. [2]. The
problem under consideration is that of a two-dimensional quasi-steady axisymmetric flow
of an incompressible viscous fluid between two infinite parallel plates. The velocity is
u = [ur(r, z, t), 0, uz(r, z, t)]and the governing equations can be expressed as

∂p

∂r
+
ρ

r

∂2ψ

∂t∂z
− ρ

∂ψ

∂r

E2ψ

r2
− µ

r

∂E2ψ

z
= 0, (1)

∂p

∂r
− ρ

r

∂2ψ

∂t∂z
− ρ

∂ψ

∂z

E2ψ

z2
+
µ

r

∂E2ψ

z
= 0, (2)

where r and z are the radial and axial coordinates respectively, ρ is the fluid density, µ is
the coefficient of kinematic viscosity, p is the pressure, ψ(r, z) is the Stokes stream function

and E = ∂2

∂r2
− 1

r
∂
∂r + ∂2

∂z2
.

Eliminating the pressure term from (1) and (2) by the integrability condition ∂2p
∂r∂z =

∂2p
∂z∂r , we get the compatibility equation

ρ

[
1

r

∂E2ψ

∂t
− ∂(ψ, E

2ψ
r2

)

∂(r, z)

]
=
µ

r
E4ψ. (3)

For small values of the approach velocity v of the two plates, the gap 2H changes slowly
with time and can be assumed to constant, hence from 3 we write

−ρ
[
∂(ψ, E

2ψ
r2

)

∂(r, z)

]
=
µ

r
E4ψ, (4)

with the boundary conditions

{
ur = 0, uz = −V, at z = H,

uz = 0, ∂ur
∂z = 0, at z = 0.

(5)

Using the stream function ψ (r, z)=r2F ∗(Z) and introducing the non-dimensional param-
eters F ∗=2F

V , Z
∗= Z/H and M =ρHV/µ equation (4) and boundary conditions (5) be-

come
F (iv) (z) +MF (z)F

′′′
(z) = 0, (6)

F (0) = 0, F ′′(0) = 0, F (1) = 1, F ′(1) = 0. (7)

3 Bernstein polynomials

The Bernstein polynomials of degree n are defined on the interval [0, 1] as [4]

Bi,n (x) =

(
n

i

)
xi(1 − x)n−i, i = 0, 1, · · · , n. (8)

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

The use of a tau method based on Bernstein polynomials for solving the . . . pp.: 2–4

1185



These Bernstein polynomials form a basis on [0, 1]. There are n+1, nth-degree polynomials.
For convenience, we set Bi,n (x) = 0 if i < 0 or i > n. Moreover, the recursive definition
for the Bernstein polynomials over the interval [0, 1] is as follows:

Bi,n (x) = (1 − x)Bi,n−1 (x) + xBi−1,n−1 (x) . (9)

Suppose that H = L2[0, R] where R ∈ R, let {B0,n(x), B1,n(x), · · · , Bn,n(x)} ⊂ H be the
set of Bernstein polynomials of nth degree, and suppose that

Y = span{B0,n(x), B1,n(x), · · · , Bn,n(x)}.

Theorem1. For every given x in a Hilbert space H and every given closed subspace Z of
H there is a unique best approximation to x from Z.
Proof. See [5].
Since H = L2[0, R] is Hilbert space and Y is finite-dimensional subspace, so Y is a closed
subspace of H, therefore Y is a complete subspace of H. So, if f be an arbitrary element
in H, by Theorem 1, f has unique best approximation from Y such as f∗, that is

∃f∗ ∈ Y ; ; ∀g ∈ Y ||f − f∗||2 ≤ ||f − g||2,

where ||f ||2 =
√

⟨f, f⟩. Since f∗ ∈ Y , there exist unique coefficients f0, f1, · · · , fn such
that

f(x) ≈ f∗(x) =

n∑

i=0

fiBi,n(x),

where the coefficients f0, f1, · · · , fn can be obtained by solving the following linear system

n∑

i=0

fi ⟨Bi,n (x) , Bj,n (x)⟩ = ⟨f (x) , Bj,n (x)⟩ , j = 0, 1, · · · , n.

4 Solution of the problem

The tau approach is a modification of the Galerkin method that is applicable to problems
with non-periodic boundary conditions. In this section we apply Bernstein-tau method
(BTM) for the computation of the viscoelastic squeezing flow between two parallel plates
based on the Bernstein polynomials.

For an arbitrary natural number n, we suppose that the approximate solution F (Z)
of (6) is as follows:

F (z) ≈
n∑

i=0

fiBi,n(z), (10)

and the residual function associated to the differential equations (6) is

RESF (z) = F (iv) (z) +MF (z)F
′′′

(z) . (11)

By substituting (10) in the above residual function, we obtain

RESF (z) ≈
n∑

i=0

fiB
(iv)
i,n (z),+M

(
n∑

i=0

fiBi,n(z)

)(
n∑

i=0

fiB
′′′
i,n(z)

)
. (12)
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Figure 1: Effect of M on F (z) when n = 15. Figure 2: Effect of M on F ′(z) when n = 15.

In tau method we get the inner product of the above equations with Bs,n(z):

⟨RESF (η) , Bs,n (η)⟩ = 0, s = 0, 1, · · · , n− 4, (13)

where ⟨f, g⟩ =
∫ 1
0 f (z) g (z) dz.

Also by imposing the boundary conditions (7), we have

n∑

i=0

fiBi,n(0) = 0,

n∑

i=0

fiB
′′
i,n(0) = 0,

n∑

i=0

fiBi,n(1) = 1,

n∑

i=0

fiB
′
i,n(1) = 0. (14)

From (13) and (14), a nonlinear system of n+ 1 equations and n+ 1 unknown coefficients
is resulted. Solving this system, we can obtain unknown coefficients fi i = 0, 1, · · · ,n and
therefore F (z) is identified.

5 Results and discussion

The nonlinear ordinary differential equation (6) subject to boundary conditions (7) has
been solved using exponential Bernstein-tau method (BTM) for some values of the parame-
ter. Figs. 1 and 2 represent the effects of the parameter M on F (z) and F ′(z), respectively,
when n = 15. Fig. 1 shows that F (z) increases with increasing the parameter M .
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Two-stage waveform relaxation method for linear system of

IVPs with non-constant HPD coefficients

Davod Khojasteh Salkuyeh

University of Guilan

Zeinab Hassanzadeh ∗

University of Guilan

Abstract

In this paper, a two-stage waveform relaxation method is introduced to solve the
system of initial value problems in the form y′(t) + A(t)y(t) = f(t). Convergence
of this method is analyzed when A(t) is Hermitian positive definite matrix for every
t ∈ [t0, T ]. Finally, a numerical example is presented to illustrate efficiency of the
method.

Keywords: Two-stage method, Waveform relaxation, Hermitian positive definite,
P-regular splitting.
Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

In [3], the two-stage waveform relaxation (TSWR) method was applied to solve the linear
system of ordinary differential equations y′(t) + Ay(t) = f(t), where A is an M-matrix.
Indeed this method was obtained by combining the waveform relaxation (WR) method
with two-step iterative strategy. Afterwards, in [2, 4] the TSWR was investigated to
solve linear systems of ordinary differential equations (ODEs) and differential-algebraic
equations, when the coefficient matrices are Hermitian positive definite and Hermitian
positive semi-definite. Recently the TSWR method has been applied to solve the linear
system of ODEs

{
y′(t) + A(t)y(t) = f(t),
y(t0) = y0, t ∈ [t0, T ],

(1)

where A(t) : [t0, T ] −→ Cm×m is a nonsingular M-matrix for every t ∈ [t0, T ] with contin-
uous entries and f(t) : [t0, T ] −→ Cm is supposed to be continuous (see [1]). In this paper,
we study the WR and TSWR methods for (1), when A(t) is Hermitian positive definite
for every t ∈ [t0, T ]. We will use the notation A(t) ≻ 0 (A(t) ≽ 0) for a matrix function
A(t) to be Hermitian positive (semi-)definite for every t ∈ [t0, T ].

Definition 1.1. The splitting A(t) = C(t)−D(t) is called P-regular if CH(t)+D(t) ≻ 0,
and Hermitian P-regular splitting if C(t) ≻ 0 and D(t) ≽ 0.

Definition 1.2. We say that the splitting A(t) = M(t) − N(t) − D(t) is composite P-
regular if C(t) = M(t) − N(t) and A(t) = C(t) − D(t) are both P-regular splittings, and
a composite Hermitian P-regular splitting if M(t) ≻ 0, N(t) ≽ 0 and D(t) ≽ 0.
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2 Main results

2.1 Two-stage waveform relaxation method

Similar to [1], we consider the splitting A(t) = C(t) − D(t). Based on this splitting WR
iterative method is generated in the form

{
yk+1

n+1 = (I + hCn+1)
−1(yk+1

n + hDn+1y
k
n+1 + hf(tn+1)),

yk+1
0 = y0, k = 0, 1, . . . , n = 0, 1, . . . , N − 1,

(2)

where yk
n is an approximation for yk(tn) and for brevity of notation, C(tn) and D(tn)

are denoted by Cn and Dn, respectively. By substituting the composite splitting A(t) =
M(t) − N(t) − D(t) in Eq. (1) the TSWR method is defined (see [1]) as

{
zv+1
n+1 = Hn+1z

v+1
n + hbn+1(v, k),

zv+1
0 = yk

0 = y0, k = 0, 1, . . . , v = 0, 1, . . . , s − 1,
(3)

where
{

bn(v, k) = (I + hMn)−1(Nnzv
n + Dnyk

n + f(tn)),
Hn = (I + hMn)−1.

Furthermore, we assume that the number of inner iterations steps is fixed for all outer
iterations, for example vk ≡ s, k = 0, 1, . . . , where s is a positive integer. Similar to [1]
the TSWR iterative method (3) can be written in the following matrix form

yk+1
n = Tsy

k
n + Ssgn + ps,n(k). (4)

2.2 Convergence analysis

Similar to Theorems 5.4, 5.5 and 5.6 in [4] we state the following theorem and propositions.

Theorem 2.1. (Convergence theorem of TSWR method). Let An ≻ 0 and An = Mn −
Nn − Dn is a composite P-regular splitting. If Cn = Mn − Nnis a Hermitian matrix,
Dn ≽ 0, h > 0 and s ≥ 1, then ρ(Ts) < 1.

Proposition 2.2. Let An ≻ 0 and A = Mn − Nn − Dn is a composite Hermitian P-
regular splitting of An and Nn ≻ 0, h > 0. Let us indicate with Ts1 and Ts2 the matrices of
convergence of TSWR method with s1 and s2 inner iterations, respectively. If 1 ≤ s2 < s1,
then ρ(Ts1) < ρ(Ts2) < 1.

Proposition 2.3. Let An ≻ 0 and A = Mn − Nn − Dn a composite Hermitian P-regular

splitting of An. Let us indicate with T
(1)
s and T

(2)
s the matrices of convergence of TSWR

method with h1 and h2, respectively and 0 < h1 < h2. If Mn, Nn and Dn ≻ 0, for s ≥ 1

then it is ρ(T
(1)
s ) < ρ(T

(2)
s ) < 1.
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Table 1: Values of ρ(Ts) for TSWR method at t = 0.2.

s h = 0.1 h = 0.3 h = 0.5 h = 0.8 h = 1

1 0.1878346 0.3795026 0.4768109 0.5571723 0.5903373
2 0.0608407 0.1744693 0.2596036 0.3423428 0.3797674
3 0.0448056 0.1222679 0.1807858 0.2415781 0.2715328
4 0.0425690 0.1078366 0.1562064 0.2076859 0.2326671
5 0.0422571 0.1037697 0.1475036 0.1936632 0.2161418
6 0.0422136 0.1026236 0.1444222 0.1878613 0.2088976
7 0.0422075 0.1023006 0.1433312 0.1854608 0.2057219
...

...
...

...
...

...
∞ 0.0422065 0.1021738 0.1427331 0.1837667 0.2032431

3 A numerical example

Example 3.1. In initial value problem (1) assume that A(t) : [t0, T ] → Cm×m is defined
as

A(t) =




4t t2

t2 4t t2

t2 4t t2

. . .
. . .

. . .

t2 4t




.

The function f(t) is computed such that the exact solution is given by

y(t) = [t, t2, t3, t4, t5, . . . , t, t2, t3, t4, t5]T ∈ Cm.

We set t0 = 0.1, T = 1 and m = 25 and consider splitting matrices

M(t) = diag(16t), N(t) = tridiag(t2, 2t, t2), D(t) = M(t) − N(t) − A(t).

Since t ∈ [0.1, 1] and from eigenvalue analysis of tridiagonal matrices, we deduce that
A(t) ≻ 0 and A(t) = M(t) − N(t) − D(t) is a composite Hermitian P-regular splitting.
According to propositions 2.2 and 2.3, the numerical results given in Table 1 and Table
2 indicate the monotonicity of ρ(Ts) at varying of s and h, at t = 0.2 and t = 0.9,
respectively.

In continuation, we compare the numerical results of the WR and TSWR methods.
For the two methods, we set h = 0.1, N = 10 and all of our computations terminate once
the current iterations obey ∥yk+1

n − yk
n∥∞ ≤ 10−3, n = 0, 1, . . . , N − 1 or k > 1000. In the

TSWR method the number of the inner iterations is set to be s = 5. The number of outer
iterations is 15 for the TSWR method but it is 25 for the WR method.
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Table 2: Values of ρ(Ts) for TSWR method at t = 0.9.

s h = 0.1 h = 0.3 h = 0.5 h = 0.8 h = 1

1 0.5530098 0.7609082 0.8227706 0.8622005 0.8761973
2 0.4012300 0.6492013 0.7332346 0.7892482 0.8095910
3 0.3496918 0.5970103 0.6880012 0.7506266 0.7737566
4 0.3321915 0.5726260 0.6651494 0.7301800 0.7544776
5 0.3262491 0.5612333 0.6536047 0.7193554 0.7441054
6 0.3242313 0.5559105 0.6477724 0.7136248 0.7385252
7 0.3235461 0.5534236 0.6448259 0.7105909 0.7355230
...

...
...

...
...

...
∞ 0.3231939 0.5512428 0.6418174 0.7071779 0.7320269
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A Delayed-Projection Neural Networks to solve Bilevel

Programming Problems

Soraya Ezazipour∗

Iran University of Science and Technology

Ahmad golbabai

Iran University of Science and Technology

Abstract

Projection-type methods are a class of simple methods for solving mathematical
programming problems. In this paper we proposed a new neural network model,
delayed-projection neural network, to solve bilevel optimization problems. The prop-
erties of the neural network are analyzed and the conditions for Lyapunov stability,
global convergently are presented. Simulation experiments on numerical examples
demonstrated to show the applicability and validity of the network.

Keywords: Bilevel programming problem, Delayed-projection neural network, Lya-
punov stability, global convergently

Mathematics Subject Classification [2010]: 65k05, 90C26

1 Introduction

Bi-level programming (BLP) is a hierarchical optimization problem in which the constraint
region is implicitly determined by another optimization problem. In this paper, we will
consider BLP as follows:

(UP ) min
x,y

F (x, y)

s.t H(x, y) ≤ 0,

(LP ) y ∈





miny f(x, y)
s.t a ≤ x ≤ b

c ≤ y ≤ d
. (1)

where x ∈ Rn, y ∈ Rm, F : Rn×m → R1, f : Rn×m → R1 and H : Rn×m → R1

are continuous differentiable functions. The term (UP) is called the upper-level problem
and (LP) is called the lower-level problem. This problem arises in numerous areas of
applications such as resource allocation, nance budget, price control, transaction network.
In modern science and technology, real time solutions of optimization problems are desired.
However, usual numerical methods may not be efficient in such occasions, specially in large
scale problems, because of stringent requirements on computing time. The most important
advantages of the neural networks are massively parallel processing and fast convergence.
According to these points, in past two decades, applications of neural networks have been
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widely investigated [1]-[4]. It is well known that, in the hardware implementation of neural
networks, time delays inevitably occur in the signal communication among the neurons.
This may lead to the oscillation phenomenon or instability of networks. Therefore, the
study on the dynamical behavior of the delayed neural network is attractive both in theory
and in practice[5]. In this paper a specific delayed- neural network model based on globally
projected dynamical system, is proposed in order to solve problem 1.

2 Neural network for BLP

An appealing way to deal with general BLP is the so called Karush-Kuhn-Tucker (KKT)
approach where the lower level constraint, that y is a global minimizer of the program LP,
is firstly relaxed to the condition that y is a local minimizer of LP [6]. The latter condition
is then replaced by the KKT-conditions.

∇yf(x, y) = 0

Let Ω = {(x, y) ∈ Rn×m|a ≤ x ≤ b, c ≤ y ≤ d}. So the problem 1 will reduce to the
following one-level problem:

min
x,y

F (x, y) (2)

s.t. H(x, y) ≤ 0,

g(x, y) = ∇yf(x, y) = 0,

(x, y) ∈ Ω

Definition 2.1. [3] Let C be a closed convex set in Rn. Then for each x ∈ Rn, there
exists a unique point y ∈ C such that ∥x − y∥ ≤ ∥x − z∥ , ∀z ∈ C. The projection of x
on the set C with respect to Euclidean norm is y = PC(x ) = arg min

z∈C
∥x − z∥.

By the well-known projection theorem [1], it follows that is a solution of 2 if and only
if it satises the following projection equation:

u∗ = ps0(u
∗ − αG(u)). (3)

where s0 = {u = ((x, y), z1, z2)
T |(x, y) ∈ Ω, z1 ≥ 0}, and

G(u) =




∇x,yF (x, y) + ∇x,yH(x, y)T z1 + ∇x,yg(x, y)T z2

−H(x, y)
−g(x, y)


 .

Let w = (x, y)T . Based on 3 and delayed methods, we proposed the following delayed
neural network for solving BLP:




du
dt = d

dt




w
z1

z2


 =

λ




PΩ(w − (∇wF (w) + ∇wH(w)T z1 + ∇wg(w)T z2)) − 2w(t) + w(t − τ)
(z1 − H(w))+ − 2z1(t) + z1(t − τ)

g(w) − z2(t) + z2(t − τ)


 ,

u(t) = ϕ(t) t ∈ [t0 − τ, t0] .

(4)
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Where τ ≥ 0 denotes the time delay, ϕ(t) ∈ C([t0 − τ, t0] , Rn+m). Also, k+ =
(k+

1 , k+
2 , ..., k+

n+m), (ki)
+ = max{0, ki} and

PΩ(xi) =





ai xi > ai

xi ai ≤ xi ≤ bi

bi xi < bi

.

3 Stability and convergence analysis

In this section, we state the global convergence and Lyapunov stability of the proposed
delayed neural network model 4 for solving problem1.

Definition 3.1. [1] A continuous-time neural network is said to be globally convergent,
if for any given initial point, the corresponding trajectory of the related dynamic system
converges to an equilibrium point.

Definition 3.2. [1] The equilibrium point u∗ of the delayed projection neural network
is Lyapunov stable if, for each ϵ > 0, there is δ > 0 such that if ∥u0 − u∗∥ < δ, then
∥u(t) − u∗∥ < ϵ, for t ≥ t0.

Lemma 3.3. For any initial point u0 = (w(t0)
T , z1(t0)

T , z2(t0)
T ) there exists a unique

continuous solution for proposed neural network model. Morover, if u0 ∈ s0 then u(t) ∈ s0.

Theorem 3.4. If ∇2
wF(w)+∇2

wH(w)T z1 +∇2
wg(w)T z2 be positive definite on s0 then the

delayed projection neural network 4 is stable in the Lyapunov sense and globally convergent
to a stationary point u∗ = ((w∗)T , (z∗

1)
T , (z∗

2)
T ), where w∗ is the solution of BLP.

4 Illustrative example

Example 4.1. Consider the following bilevel optimization problem:

min
x,y

(x1 − 30)2 + (x2 − 20)2 − 20y1 + 20y2

s.t. x1 + 2x2 − 30 ≤ 0,

−x1 − x2 + 20 ≤ 0,

0 ≤ x1, x2 ≤ 15,

min
y

(x1 − y1)
2 + (x2 − y2)

2

0 ≤ y1, y2 ≤ 15.

Solution. This problem has a theoretical optimal solution w∗ = (x ∗
1,x

∗
2,y

∗
1,y

∗
2) =

(15, 7.5, 15, 7.5). All simulation results show that the delayed-projection neural network
4, is Lyapanov stable at w∗. Figure 1 shows the trajectories of proposed model 4, with the
five initial function ϕk(t) = (sin(kt), kt, − cos(kt), kt)T , k = 1, ..., 5 and τ = 1. According
to the simulation result, all the trajectories are convergent to w∗.
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Figure 1: The transient behavior of the neural network mode (4) with five various initial
functions.
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A Genetic Algorithm For Finding The Semi-Obnoxious

(k,l)-core Of A Network
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Abstract

Let G = (V, E) be a graph, with | V |= n . A (k, l)-core of G is a subtree with at
most k leaves and with a diameter of at most l which the sum of the distances from
all vertices to this subtree is minimized. In this paper, we present a genetic algorithm
for finding the (k, l)-core of a graph with pos/neg weight.

Keywords: Core, Genetic algorithm, Median subtree, Semi-obnoxious

Mathematics Subject Classification [2010]: 90B90, 90B06

1 Introduction

The core of a graph is defined in [6] as a path in the graph minimizing the sum of the
distances of all vertices of the graph from the path. This problem is extended to finding a
core of specied size l on tree networks in [2, 5, 7]. Peng et al. [8] considered problem with a
constraint on numbers of leaves and presented an algorithm for constructing a k-tree core
on trees which has time complexity of O(kn). After that, problem is extended to finding
a subtree of tree with at most k leaves and with a diameter of at most l so that the sum
of the weighted distances from all vertices to the subtree is minimized. This subtree is
called a (k, l)-core of tree. Becker et al. [3] presented an efficient algorithm for finding a
(k, l)-core of a tree with time complexity of O(n2logn).
If some of the vertices have positive weights and some negative weights the problem is
referred to as the semi-obnoxious location problem. Burkard and Krarup [4] showed that
the positive or negative (for simplicity we write pos/neg) 1-median, problem on a cactus
can be solved in linear time.
Many genetic algorithms are applied to solve some location problems such as median
problem and hub location problem[1].
In this paper, we consider (k, l)-core of G that is a subtree with at most k leaves and with
a diameter of at most l which the sum of the distances from all vertices to this subtree
is minimized. Then present a genetic algorithm for finding the (k, l)-core of a graph with
pos/neg weight.
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2 Problem formulation

Let T = (V, E) be a tree, that |V | = n, w(vi) be the weight of vertex vi ∈ V (for simplicity
we write wi) and a(i, j) be the length of edge (i, j). Then w(T ) =

∑n
i=1 wi is the weight

of the tree T . Also let d(vi, vj) be the length of path from vi to vj , then the length of
shortest path between path p and vertex v is given by

d(p, v) = minu∈p d(u, v).

The diameter dT of T is the maximum distance between two vertices of T and any path
whose length equals dT is a diameter path.
Suppose T ′ = (V ′, E′) be a subtree of T. Let d(v, T ′) be the minimum distance from v /∈ V ′

to a vertex in T ′. We show the sum of distances from T ′ to all the vertices that they are
not in V ′ by d(T ′), that is called DISTSUM of T ′.
A (k, l)-core of a tree is a subtree with at most k leaves and with a diameter of at most
l minimizing the sum of the distances of all vertices of the tree to this subtree. In other
words, the following function is minimized:

F (T ′) =
∑

vi /∈V ′
w(vi)d(vi, T

′)

3 The genetic algorithm

In this section we present a genetic algorithm for finding the (k, l)-core of a graph with
pos/neg weight. In the GAs each chromosome corresponds to a solution for the problem.
At first, an initial population of solutions is generated. Then, by using crossover and
mutation operators, new chromosomes are produced. If the new member there is not in
population and its fitness value is better than the worst fitness value in the population,
then the worst member is replaced by the new one.
Genetic algorithm
Input: A graph G with pos/neg weight.
Output: A (k, l)-core S∗ of G and its DISTSUM fbest.

Initial(T).
For t := 0 to t := 2n do the following:
Select T1 ∈ S with minimum f and T2 ∈ S randomly.
Crossover(T1, T2).
Replace(Tcrossover, S).
Select randomly a subtree Tm ∈ S.
Mutation(Tm).
Replace(Tmutaion, S).
Find a subtree Tf in S with minimum f.
Set Tbest := Tf , fbest := f(Tf ), t:=t+1.
End for

End
Procedure Initial(T)
Input: A graph G with pos/neg weight.
Output:A set S of subtrees of G.
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Set S := ∅.
For each vertex v ∈ V with maximum weight that is not already selected and The

size of the population do the following:
fbest := f(v), S(v) := v.
P (v) := v, EndP := v.
While Adj1 := {u ∈ V |u /∈ P (v), u is adjacent to EndP} is not empty and

L(p) ≤ L do the following
Select a vertex u ∈ Adj1 with maximum weight.
Add u to P (v) and EndP := u.
If f(p) < fbest then fbest := f(p), S(v) := P (v).

End while
While Adj2 := {u ∈ V |u /∈ P (v), u is adjacent to internal vertices of P} is not

empty and K ≤ k do the following
Select a vertex u ∈ Adj2 with maximum weight.
Add u to P (v) and K:=K+1.
If f(p) < fbest then fbest := f(p), S(v) := P (v).

End while
S := S ∪ {S(v)}.

End for
End
Procedure Crossover(T1, T2)
Input: Two subtrees T1, T2 of G.
Output: A subtree Tcrossover of G.

Set the common edges in T1, T2 to Tnew.
For each two vertices u and v that cause a disconnection in Tnew

do the following:
Find the shortest path Puv from u to v.
If by adding Puv to Tnew, Tnew does not contain any cycle insert it to Tnew.
Else if by adding path from u to v in T1 to Tnew, Tnew does not contain any cycle

insert this path to Tnew.
Else delete v and all vertices after it in Tnew that make a connected subpath.
fcrossover := f(Tnew),Tcrossover := Tnew.
Let x be the end vertex of Tnew.
While Adj3 := {y ∈ T1 ∪ T2 \ Tnewy is adjacent to x} is not empty and L(Tnew) ≤ L

do the following:
Select vertex y ∈ Adj3 with maximum weight.
Add y to the end of Tnew.
If f(Tnew) < fcrossover then fcrossover := f(Tnew), Tcrossover := Tnew.
Set x = y.

End while
While Adj4 := {t ∈ V |u /∈ Tnew, t is adjacent to internal vertices of Tnew} is not

empty and K ≤ k do the following
Select a vertex t ∈ Adj4 with maximum weight.
Add t to Tnew and K:=K+1.
If f(Tnew) < fcrossover then fcrossover := f(Tnew), Tcrossover := Tnew.

End while
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End
Procedure Mutation(Tm)
Input: A subtree Tm of G.
Output: A subtree Tmutation of G.

For each leaf v of Tm do the following:
Set Adj5 := {y ∈ G \ Tm, y is adjacent to fother of v}.
Select a vertex y ∈ Adj5 with maximum weight.
Replace v by y.
End For
Set Tmutation := Tm

End
Procedure Replace(Tnew, S)

If Tnew is not in the population and f(Tnew) < fworst then do the following:
Replace the worst member by Tnew.
Update the worst member of the population and its tness value, fworst.
If f(Tnew) < fbest, set fbest = f(Tnew).

End
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Abstract

In this paper, we propose a Newton-type algorithm for nonconvex multiobjective
optimization problems. The presented terminates, when the termination conditions
are satisfied. Convergence of the algorithm is considered.

Keywords: Multiobjective optimization, Newton-type method, Pareto optimality,
Critical point.
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1 Introduction

In multiobjective optimization, several conflicting objectives have to be minimized, simul-
taneously. Generally, no unique solution exists but a set of mathematically equally good
solutions can be identified, by using the concept of Pareto optimality. For solving large
scale nonlinear multiobjective optimization problem, iterative methods are very effective.
Recently, some iterative approaches for solving multiobjective optimization problems were
developed [1, 4]. Newton’s method for single objective optimization problems was ex-
tended to multiobjective optimization problems by Fliege et al. [1], which uses convexity
assumption. Now in this paper, we present a Newton-type algorithm that works for non-
convex functions also under suitable assumptions, denote its global convergence. The
necessary assumption is that the objective functions are twice continuously differentiable
but no other parameters or ordering of the functions are needed.

2 Basic Definitions

In this paper, we consider the following unconstrained nonconvex multiobjective optimiza-
tion problem

min F (x) = (F1(x), . . . , Fm(x))

s.t. x ∈ U ⊂ Rn

where F = (F1, . . . , Fm)T : U → Rm is continuous differentiable and U ⊂ Rn is the domain
of F which is assumed to be open. Let I = {1, 2, . . . , m}, for any u, v ∈ Rm, we define

u ≤ v ⇐⇒ v − u ∈ Rm
+ ⇐⇒ vj − uj ≥ 0, j ∈ I,
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u < v ⇐⇒ v − u ∈ Rm
++ ⇐⇒ vj − uj > 0, j ∈ I,

where Rm
+ := {y ∈ Rm|y ≥ 0} and Rm

++ := {y ∈ Rm|y > 0}.

Definition 2.1. A feasible solution x∗ ∈ U is local Pareto optimal of F if and only if there
exists a neighborhood V ⊂ U such that there does not exist x ∈ V with F (x) ≤ F (x∗),
and F (x) ̸= F (x∗).

Definition 2.2. A point x∗ ∈ U is critical (or stationary) for F , if

R(▽F (x∗)) ∩ (−Rm
++) = ∅, (1)

where R(▽F (x)) denotes the range or image space of the gradient of the continuously
differentiable function F at x.

Note that for m = 1, relation (1) reduces to the “gradient-equal-zero” condition.
Clearly, if x∗ is critical for F , then for all s ∈ Rn there exists j0 ∈ I such that

▽Fj0(x
∗)T s ≥ 0.

Note that if x ∈ U is noncritical, then there exists s ∈ Rn such that ▽Fj(x)T s < 0 for all
j = 1, . . . ,m. In this case, since F is continuously differentiable, we have:

lim
α→0

Fj(x + αs) − Fj(x)

α
= ▽Fj(x)T s < 0, j = 1, . . . , m. (2)

So s is a descent direction for F at x, i. e., there exists α0 > 0 such that

F (x + αs) < F (x) for all α ∈ (0, α0].

3 Main Results

A descent direction s is a direction that reduces every objective function value. Relation
(2) implies that s ∈ Rn is a descent direction for F at x if and only if

▽Fj(x)T s < 0, ∀j ∈ I.

Lemma 3.1. x∗ ∈ U is critical if and only if either one of the following two conditions
are satisfied:
(i) There does not exist s ∈ Rn such that for all j ∈ I

▽Fj(x
∗)T s < 0.

(ii) In the special case, there also exists at least one j0 ∈ I such that

▽Fj0(x
∗) = 0.

Proof. The proof can be found in [3].
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We now proceed by defining a Newton direction for the multiobjective problem under
consideration. For x ∈ U , given sufficient small ϵ > 0, we define s(x), the Newton direction
at x, as the optimal solution of

SPϵ(x)





min t

s.t. ▽Fj(x)T s + 1
2sT ▽2Fj(x)s ≤ t, j ∈ I

∥s∥ ≤ 1, t ≤ −ϵ, (t, s) ∈ R × Rn

The constraint ∥s∥ ≤ 1 is used to improve performance as ∥s∥ ≤ 1 eliminates the possible
case ∥s∥ → ∞.
Let θ(x) be the optimal objective function value for subproblem SPϵ(x).

Lemma 3.2. Given x ∈ U . For a sufficient small positive scalar ϵ, if the feasible set of
SPϵ(x) is empty, then x is a critical point for F .

Proof. Assume that the feasible set is empty. We show that does not exist a descent
direction. By contradiction, assume that there exists a direction s ∈ Rn, such that

▽Fj(x)T s < 0, ∀j ∈ I.

The above inequality implies that there is a positive scalar α such that for any α ∈ (0, α],

α ▽ Fj(x)T s +
1

2
α2sT ▽2Fj(x)s < 0.

If for any α ∈ (0, α], we define −ϵ = α ▽ Fj(x)T s + 1
2α2sT ▽2Fj(x)s, then we can see that

αs is feasible to SPϵ(x). This contradicts that the feasible set of SPϵ(x) is empty.

Lemma 3.3. If point x is noncritical then θ(x) < 0.

Proof. See [1].

The following theorem will be a criterion for accepting a step in the multiobjective
Newton-type direction.

Theorem 3.4. If x ∈ U is a noncritical point for F, then for any 0 < β < 1 there exists
α ∈ (0, 1] such that

x + αs(x) ∈ U and Fj(x + αs(x)) ≤ Fj(x) + βαθ(x)

holds for all α ∈ [0, α] and j ∈ {1, . . . , m}.
Proof. Since U is an open set and x ∈ U , there exists 0 < α1 ≤ 1 such that x+αs(x) ∈ U
for α ∈ [0, α1]. Therefore, for α ∈ [0, α1] and j = 1, . . . ,m, we have,

Fj(x + αs(x)) =Fj(x) + α ▽ Fj(x)T s(x) +
α2

2
s(x)T ▽2Fj(x)s(x) + oj(α),

where limα→0+ oj(α)/α = 0. As α2 ≤ α, for α ∈ [0, α1] and j = 1, . . . , m, we conclude
that:

Fj(x + αs(x)) ≤ Fj(x) + α ▽ Fj(x)T s(x) +
α

2
s(x)T ▽2Fj(x)s(x) + oj(α)

≤ Fj(x) + αβθ(x) + α[(1 − β)θ(x) +
oj(α)

α
].

Now observe that, since x is noncritical, θ(x) < 0 (Lemma 3.3) and so, for α ∈ [0, α1] small
enough, the last term at the right hand side of the above equations is non-positive.
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The method proposed in [1] uses convexity assumption, while the following algorithm
works for non-convex functions, too.

Step 1: (Initialization) Choose x0 ∈ Uand 0 < β < 1. Give a sufficient small positive
scalar ϵ. Set k := 0.

Step 2: (Main loop) Solve the direction search program SPϵ(xk) to obtain s(xk) and
θ(xk). Terminate, if either one of the following two conditions are satisfied:
(i) the problem is infeasible,
(ii) ▽Fj(xk)

T s(xk) ≥ 0 for some j ∈ {1, . . . , m} and problem is feasible.
Else, proceed to the line search, Go to step 3.

Step 3: (Line Search) Choose αk as the largest α such that

xk + αs(xk) ∈ U,

Fj(xk + αs(xk)) ≤ Fj(xk) + αβθ(xk), j = 1, . . . , m.

Step 4: (Update) Define xk+1 = xk + αks(xk) and set k := k + 1. Go to Step 2.

We denote the global convergence of the above algorithm. First we make some basic
assumptions.
A1. Assume that the level set L0 = {x ∈ Rn : F (x) ≤ F (x0)} is bounded.
A2. Assume that for sufficient large k, the step-length αk = 1 is accepted.

Theorem 3.5. Denote by {xk}k a sequence generated by the above algorithm. Suppose
that there is a constant c such that ∥ ▽2 Fj(x)∥ ≤ c, for any x ∈ L0 and j ∈ I. Under our
assumptions A1 and A2, every accumulation point of the sequence {xk} is critical for F.

Proof. The proof is similar to that of Theorem 5 in [3].

4 Conclusion

We proposed a Newton-type method for computing the critical points of smooth multi-
objective optimization problems under non-convexity. Under suitable assumptions, global
convergence established.
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Abstract

Data envelopment analysis (DEA) is a methodology for measuring the relative effi-
ciencies of a set of decision making units (DMUs) that use inputs to produce multiple
outputs. The conventional DEA, requires crisp input and output data, but the ob-
served values of the input and output data in real word applications are sometimes
imprecise. This paper proposes a methodology for a fuzzy three-stage DEA model,
where input-output data are treated as fuzzy numbers. A pair of two-level math-
ematical programs is formulated to calculate the upper bound and lower bound of
the fuzzy efficiency score. Then can be transform this pair of two-level mathematical
programs into a pair of conventional mathematical programs to calculate the bounds
of the fuzzy efficiency score.

Keywords: Data Envelopment Analysis, Two-stage, Decision Making Unit, Fuzzy
Data

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Suppose the operation of a DMU can be divided into three stages. The first process applies
input xij (i = 1, . . . ,m) to produce intermediate products z1tj (t = 1, . . . , G) and all of
this intermediate products in the second process produce another intermediate products
denote by z2kj (t = 1, . . . , F ), also in the third process this intermediate products applies
to produce outputs yrj (r = 1, . . . , s). The three-stage model to calculating the efficiency
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of DMUp in set of n DMUs is as follows:

Ek = Max
s∑

r=1

uryrp/
m∑

r=1

vixip

s.t.
G∑

t=1

w1
t z

1
tj/

m∑

i=1

vixij ≤ 1 ∀j
F∑

k=1

w2
kz

2
kj/

G∑

t=1

w1
t z

1
tj ≤ 1 ∀j

s∑

r=1

uryrj/
F∑

k=1

w2
kz

2
kj ≤ 1 ∀j

ur, vi, w
1
t , w

2
k ≥ ε

(1)

This model is extension of conventional CCR model[1].

2 Main results

Denote x̃ij , z̃
1
tj , z̃

2
kj and ỹrj as the fuzzy counterparts of xij , z

1
tj , z

2
kj and yrj respectively.

Model (1) for fuzzy observations can be formulate as[2]:

Ẽk = Max

s∑

r=1

urỹrp/

m∑

r=1

vix̃ip

s.t.

G∑

t=1

w1
t z̃

1
tj/

m∑

i=1

vix̃ij ≤ 1 ∀j
F∑

k=1

w2
kz̃

2
kj/

G∑

t=1

w1
t z̃

1
tj ≤ 1 ∀j

s∑

r=1

urỹrj/
F∑

k=1

w2
kz̃

2
kj ≤ 1 ∀j

ur, vi, w
1
t , w

2
k ≥ ε

(2)

Assume (xij)α = [(xij)
L
α, (xij)

U
α ], (z1tj)α = [(z1tj)

L
α, (z

1
tj)

U
α ], (z2kj)α = [(z2kj)

L
α, (z

2
kj)

U
α ] and

(yrj)α = [(yrj)
L
α, (yrj)

U
α ] as the α−cuts of x̃ij , z̃

1
tj , z̃

2
kj and ỹrj , respectively. To find the

membership function µẼk(e), it is suffices to find the lower and upper bounds of the α−cuts

of Ẽk(e), (Ẽk)α = [(Ek)
L
α, (Ek)

U
α ], where

(Ek)
L
α =min{e | µẼk(e) ≥ α} (3)

(Ek)
U
α =max{e | µẼk(e) ≥ α} (4)

Above expression can be written as follows:

(Ek)
U
α =Max Ek(x, z

1, z2, y)
s.t. (xij)

L
α ≤ xij ≤ (xij)

U
α

(z1tj)
L
α ≤ z1tj ≤ (z1tj)

U
α

(z2kj)
L
α ≤ z2kj ≤ (z2kj)

U
α

(yrj)
L
α ≤ yrj ≤ (yrj)

U
α

∀i, t, k, r, j

(5)
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(Ek)
L
α =Min Ek(x, z

1, z2, y)
s.t. (xij)

L
α ≤ xij ≤ (xij)

U
α

(z1tj)
L
α ≤ z1tj ≤ (z1tj)

U
α

(z2kj)
L
α ≤ z2kj ≤ (z2kj)

U
α

(yrj)
L
α ≤ yrj ≤ (yrj)

U
α

∀i, t, k, r, j

(6)

where Ek(x, z
1, z2, y) was defined in Model (2). Models (5) and (6) are two-level programs.

Two-level programs are used for modeling, and they must be converted to a one-level pro-
gram to can be solved. This model can be converted to one-level mathematical programs
as follows:

(Ek)
U
α =Max

s∑

r=1

ur(yrp)
U
α /

m∑

i=1

vi(xip)
L
α

s.t.

G∑

t=1

ẑ1tp/

m∑

i=1

vi(xip)
L
α ≤ 1

G∑

t=1

ẑ1tj/
m∑

i=1

vi(xij)
U
α ≤ 1 ∀j, j 6= p

F∑

k=1

ẑ2kj/
G∑

t=1

ẑ1tj ≤ 1 ∀j
s∑

r=1

ur(yrp)
U
α /

F∑

k=1

ẑ2kp ≤ 1

s∑

r=1

ur(yrj)
L
α/

F∑

k=1

ẑ2kj ≤ 1 ∀j, j 6= p

w1
t (z

1
tj)

L
α ≤ ẑ1tj ≤ w1

t (z
1
tj)

U
α

w2
k(z

2
kj)

L
α ≤ ẑ2kj ≤ w2

k(z
2
kj)

U
α

vi, w
1
t , w

2
k, ur ≥ ε

(7)

(Ek)
L
α =Min θ

s.t. θ(xip)
U
α − [λ1p(xip)

U
α +

n∑

j=1,j 6=p
λ1j (xij)

L
α] ≥ 0 ∀i

n∑

j=1

λ1jz
1
tj −

n∑

j=1

λ2jz
1
tj ≥ 0 ∀t

n∑

j=1

λ2jz
2
kj −

n∑

j=1

λ3jz
2
kj ≥ 0 ∀k

λ3p(yrp)
L
α +

n∑

j=1,j 6=p
λ3j (yrj)

U
α ≥ (yrp)

U
α ∀r

(z1tj)
L
α ≤ z1tj ≤ (z1tj)

U
α ∀t, j

(z2kj)
L
α ≤ z2kj ≤ (z2kj)

U
α ∀k, j

λ1, λ2, λ3 ≥ 0

(8)
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Abstract

In this paper, we state an algorithm to solve constrained polynomial optimization
problems using Computational Algebra methods. The efficiency of our algorithm
relies on the intensive properties of Gröbner basis for zero dimensional ideals which
carries the problem into Linear Algebra. In order to use Gröbner basis, we assign the
KKT ideal to the given optimization problem whose affine variety contains all feasible
points. Then, we state an efficient criterion to determine the optimum value.

Keywords: Constrained optimization, Gröbner basis, KKT conditions

Mathematics Subject Classification [2010]: 13P10, 13P25

1 Introduction

Mathematical optimization has a wide broad of applications for instance in mathematics,
computer science, economics, management science, model predictive control together with
lots of methods an algorithms to solve optimization problems. On the other hand, Com-
puter Algebra contains some novel computational tools such as Gröbner basis to solve lots
of problems dealing with algebraic equations [1]. In this paper we use intensive properties
of Gröbner basis to solve constrained optimization problems. So we continue to recall the
necessary concepts of polynomial rings and some properties of Gröbner basis which are
important in this text.

Let K be a field and x = x1, . . . , xn be n (algebraically independent) variables. Each
power product xα = xα1

1 · · · xαn
n is called a monomial where α = (α1, . . . , αn) ∈ Zn

≥0.
We can sort the set of all monomials over K by special types of total orderings so called
monomial orderings, recalled in the following definition.

Definition 1.1. The total ordering ≺ on the set of monomials is called a monomial
ordering whenever ≺ is well-ordering and for each monomials xα,xβ and xγ we have
xα ≺ xβ ⇒ xγxα ≺ xγxβ

Among the monomial orderings, we point to pure and graded reverse lexicographic
orderings denoted by ≺lex and ≺grevlex as follows: assuming xn ≺ · · · ≺ x1, we say that
xα ≺lex xβ whenever α1 = β1, . . . , αi = βi and αi+1 < βi+1 for an integer 1 ≤ i < n, and
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xα ≺grevlex xβ if
∑n

i=1 αi <
∑n

i=1 βi breaking ties when there exists an integer 1 ≤ i < n
such that αn = βn, . . . , αn−i = βn−i and αn−i−1 > βn−i−1.

Each K−linear combination of monomials is called a polynomial on x over K. The set of
all polynomials has the ring structure with usual polynomial addition and multiplication,
and is called the polynomial ring on x over K and denoted by K[x]. Let f be a polynomial
and ≺ be a monomial ordering. The greatest monomial w.r.t. ≺ contained in f is called
the leading monomial of f , denoted by LM(f) and the coefficient of LM(f) is called the
leading coefficient of f which is pointed by LC(f). Further, if F is a set of polynomials,
LM(F ) is defined to be {LM(f)|f ∈ F} and if I is an ideal, in(I) is the ideal generated
by LM(I) and is called the initial ideal of I. We are now going to remind the concept of
Gröbner basis of a polynomial ideal.

Definition 1.2. Let I be a polynomial ideal of K[x] and ≺ be a monomial ordering. The
finite set G ⊂ I is called a Gröbner basis of I if in(I) = ⟨LM(G)⟩.

Let {f1 = 0, · · · , fk = 0} be a polynomial system and I = ⟨f1, . . . , fk⟩. We define the
affine variety associated to the above system or equivalently to the ideal I to be

V(I) = V(f1, . . . , fk) = {α ∈ Kn|f1(α) = · · · = fk(α) = 0}
where K is the algebraic closure of K.

Definition 1.3. Let I ⊂ K[x] be an ideal. If there exists no variable u for which I∩K[u] =
{0} then we say that I is a zero dimensional ideal.

For a zero dimensional ideal I, the vector space K[x]/I is finite dimensional and its
basis can be easily found by reading the leading monomials of a Gröbnr basis. As an
important fact, the set B = M \ in(I) constructs a basis for K[x]/I where M is the
set of all monomials in K[x]. The following theorem describes a novel property of zero
dimensional ideals which is also one of the main theorems in this paper. But we need to
the following definition.

Definition 1.4. Let I be a zero dimensional polynomial ideal and B be a basis for K[x]/I.
For each polynomial h ∈ K[x] we define the linear transformation φh as follows:

φh :
K[x]

I
→ K[x]

I
f + I 7→ hf + I

Let also Mh be the matrix representation of φh with respect to B. Then Mh is called the
multiplication matrix of h with respect to I.

Theorem 1.5. The set of eigenvalues of Mh is the set of possible values of h over V(I).

2 The new idea

In this section we go back to the optimization problem. Consider the general form of an
optimization problem as

Minimum f(x)
subject to g1(x) ≤ 0, · · · , gm(x) ≤ 0

h1(x) = 0, · · · , hk(x) = 0
(1)
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where f(x), gi(x) and hj(x) : Rn → R are continuously differentiable and bi and cj are
fixed constants for i = 1, . . . , m and j = 1, . . . , k. The feasible set of the above problem is

Ω = {x ∈ Rn | gi(x) ≤ 0, hj(x) = 0, i = 1, . . . , m, j = 1, . . . , k}

There are some necessary conditions on the minimizer point x∗ ∈ Ω which are known as
Karush–Kuh–Tucker (KKT) conditions. Posing these condition on the problem causes to
a system of equalities and inequalities whose solution set is a superset for critical points. In
addition to KKT conditions, some constraint qualifications like (LICQ) must be checked
on the minimizer point. Because of the simplicity, we will assume that LICQ holds for the
given proble. We can know state the KKT conditions in the following theorem.

Theorem 2.1. Let x∗ be a minimizer of the Problem (1) for which LICQ holds. Then
there exist µ∗

i for i = 1, . . . ,m and λ∗
j for j = 1, . . . , k such that





∇f(x∗) +
∑m

i=1 µ∗
i ∇gi(x

∗) +
∑k

j=1 λ∗
j∇hj(x

∗) = 0

µ∗
i gi(x

∗) = hj(x
∗) = 0

gi(x
∗) ≤ 0

µ∗
i ≥ 0

These necessary conditions let us to compute a superset containing all feasible points.
For this purpose, we state the concept of KKT ideal. By the KKT ideal associated to the
Problem (1), we mean the ideal:

⟨∇f(x) +

m∑

i=1

µi∇gi(x) +

k∑

j=1

λj∇hj(x), µigi(x), hj(x) | i = 1, . . . , m, j = 1, . . . , k⟩

which is defined in R[x]. Fotiou et al in [2] have suggested to compute the variety of
the KKT ideal by computing the eigenvalues of multiplication matrices associated to each
variable and multiplier. In doing so it is needed to compute the cartesian product of
eigenvalues as a superset of variety which is usually very larger than feasible set. Then
they must check the variety elements one by one to find the feasible points which is of
course very time consuming. And finally, they must examine the feasible points to figure
out the minimizer. However this process makes a large number of points to be checked. In
our idea, it is enough just to compute the eigenvalues of Mf(x). It is worth noting that, as
we don’t import inequalities in the generating set of KKT ideal, some of eigenvalues may
be incompatible with inequalities. Thus we need to an appropriate criterion to determine
compatible eigenvalues. In doing so, we apply the theory of G2V algorithm [3] which is
the most efficient known algorithm to compute Gröbner basis.

Proposition 2.2. (G2V-based criterion) Let I be the KKT ideal of the optimization prob-
lem (1) and G be a Gröbner basis for I. Let also M be the reduced row form of Mf(x)−e·Id
where e is an eigenvalue and Id is the identity matrix. Suppose now that H is the set of
polynomials obtained from the non-zero rows of M . Then e is a compatible eigenvalue if
and only if H has a real solution satisfying G equations and gi(x) ≤ 0 for each i = 1, . . . , m.

Theorem 2.3. The following algorithm solves the Optimization problem 1:
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Algorithm 1 Min-Value

Require: E; the set of eigenvalues of Mf(x)

Ensure: The minimum value of f(x)
F := E;
flag := false;
while not flag do

e := min(F );
F := F \ {e};
if e is compatible then

flag := true;
end if

end while
Return(e)

Example 2.4. Consider the following optimization problem:

Minimum y2x − x2y
subject to 0 ≤ x ≤ 10, 0 ≤ y ≤ 10, y ≤ x2 + x + 1

Constructing the KKT ideal, we receive to the following set of real eigenvalues:

E = {−145 − 55
√

37, −250, 0, −145 + 55
√

37, 250, 112110}

where the minimum member is −145 − 55
√

37. To test whether this eigenvalue is com-
patible or not, we use G2V-based criterion which shows that 729 + (5

√
37 − 14)x3 ∈ H

which implies x < 0, and so −145 − 55
√

37 is an incompatible eigenvalue. Therefore we
continue with −250. After a compatibility test, we see that the system has the real so-
lution x = 10, y = 5 which shows that the eigenvalue is compatible and so the minimum
value is −250.
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An optimal algorithm for reverse obnoxious center

location problems on graphs
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Abstract

This paper is concerned with a reverse obnoxious center location problem on graphs
in which the aim is to modify the edge lengths within a given budget such that a
predetermined facility location on the underlying graph becomes as far as possible from
the existing customer points under the new edge lengths. We develop a combinatorial
algorithm which solves this problem in linear time.

Keywords: Obnoxious center location; Reverse optimization; Combinatorial opti-
mization.

Mathematics Subject Classification [2010]: 90C27, 90B80, 90B85, 90C35

1 Introduction

Location problems are basic optimization models in the area of operation research which
have significant applications in practice and theory. These problems ask to find the best
locations of facilities on graphs or on real spaces in order to serve the existing clients.
The facilities on a system could be either desirable or undesirable (obnoxious), where the
aim of an obnoxious facility location model is to establish one or more facilities as far as
possible from the clients while fulfill their demands.

In practice, some times we are faced with the situations that we should change some
input patameters of the graph in order to improve the existing locations of the facilities.
Such problems are mainly categorized into inverse and reverse location problems in the
literature. Whereas, in an inverse location problem the goal is to modify certain parameters
of the problem under investigation at minimum total cost such that predetermined facility
locations become optimal, the task of a reverse location model is to improve the given
locations by changing some parameters within a given budget constraint. In this case, the
improved graph works as efficient as possible.

For the reverse 1-center location problem on an unweighted tree, an algorithm with
running time O(n2 log n) was proposed by Zhang et al. [5]. In 2009, Alizadeh et al.
[2] considered the inverse 1-center location problem with edge length augmentation on
tree networks and developed an O(n log n) time combinatorial algorithm using a set of
suitably extended AVL-search trees. Later, Alizadeh and Burkard [1] showed that the
inverse absolute and vertex 1-center model can be solved in O(n2) time provided that no
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topology change occurs on the tree. For the general case, they proposed an O(n2rv) time
algorithm, where the parameter rv is bounded by n. The same authors in 2013 investigated
the inverse obnoxious center location problem with edge length modification on graphs [3]
and proposed a linear time solution algorithm. Recently, Nguyen [4] proposed an O(n2)
time method for the uniform cost reverse 1-center location problem on weighted trees. In
this paper we investigate the reverse obnoxious center location problems on graphs and
provide a linear time solution mehod.

2 Problem statement and basic properties

Let a connected graph N = (V (N), E(N)) with vertex set V (N), |V (N)| = n, and edge
set E(N), |E(N)| = m, be given such that every edge e ∈ E(N) has a positive length
l(e). The shortest path distance between two vertices u and v on N with respect to edge
lengths l is defined by

dl(u, v) = min





∑

e∈P (u,v)

l(e) : P (u, v) is a path between u and v



 ,

where l = {l(e) : e ∈ E(N)}. We say that point p lies in N , p ∈ N , if p coincides with a
vertex or lies on an edge e ∈ E(N). In the latter case p is fixed by choosing a parameter
λ, 0 < λ < 1, such that dl(u, p) = λl(e). In a classical obnoxious center location problem
the aim is to find an optimal solution for the following model

max min
v∈V (N)

v ̸=p

dl(v, p)

s.t. p ∈ V (N),

where we assume that the facility location does not coincide with customer points (Drop-
ping the preceeding assumption, the problem is trivial, since any vertex of graph N in this
case is an optimal solution). An optimal solution p∗ ∈ V (N) is called an obnoxious center
location on graph N .

We are now going to state the reverse obnoxious center location problem: Consider
the underlying graph N with edge lengths l. Let s be a prespecified vertex of N as the
existing facility location and a known budget B > 0 is given. The task is to use the budget
in order to change the length of some edges such that the minimum of distances between
s and customers v ∈ V (N), v ̸= s is maximized under the new edge lengths. We are not
allowed to modify the edge lengths arbitrarily, so let u+(e) and u−(e) be the maximum
permissible amounts for increasing and decreasing l(e), e ∈ E(N), respectively. Suppose
that we incur the nonnegative cost c+(e) if l(e) is increased by one unit and nonnegative
cost c−(e) if l(e) is decreased by one unit.

Therefore, we can state the reverse obnoxious center location problem (ROCLP for
short) on the given graph N as follows:

Increase the edge lengths l(e), e ∈ E(N) by an amount x(e) or decrease it by an amount
y(e), such that with l̃(e) = l(e) + x(e) − y(e), the following three statements hold:
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i. The budget constraint
∑

e∈E(N)

(c+(e)x(e) + c−(e)y(e)) ≤ B

is fulfilled.

ii. The objective value minv∈V (N),v ̸=s dl̃(s, v) is improved under new lengths l̃.

iii. The increase and decrease amounts lie within given modification bounds, namely:

x(e) ≤ u+(e) for all e ∈ E(N),

y(e) ≤ u−(e) for all e ∈ E(N).

According to the above problem statement, one can formulate ROCLP on the graph N as
the following nonlinear optimization model:

max min
v∈V (N)

v ̸=s

dl̃(s, v)

s.t.
∑

e∈E(N)

(c+(e)x(e) + c−(e)y(e)) ≤ B,

l̃(e) − x(e) + y(e) = l(e) ∀ e ∈ E(N),

0 ≤ x(e) ≤ u+(e) ∀ e ∈ E(N),

0 ≤ y(e) ≤ u−(e) ∀ e ∈ E(N).

From the special structure of the problem, we can observe that any edge length reduc-
tion imposes an additional cost. Then we conclude that

Lemma 2.1. In order to solve ROCLP, it is sufficient to increase the edge lengths of the
underlying graph N .

According to Lemma 2.1, we conclude that any optimal modification on the edge
lengths contains y(e) = 0 for all e ∈ E(N). The following lemma describes which edges of
N must be considered for modification:

Lemma 2.2. Let s be a prespesified vertex on the given graph N . The value of minv∈V,v ̸=s dl(s, v)
is equal to the length of shortest edge incident to s.

Let deg(s) denote the degree of the prespecified vertex s. Now, define the star graph
S = (V (S), E(S)) by

V (S) ={vi : vi is adjacent to s; i = 1, · · · , deg(s)},

E(S) ={ei = (s, vi) : i = 1, · · · , deg(s)}.

Moreover, for simplicity we consider the following definition.

Definition 2.3. Corresponding to the edge lengths l, the critical-distance of S is defined
by

CD(l) = min{l(e) : e ∈ E(S)}.
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3 Main solution idea

The considerations and results mentioned above lead to the following generic solution
strategy: increase only the lengths of some edges on star graph S such that the cor-
responding critical-distance CD(l̃) of S under the new lengths l̃ is maximized and the
budget and bound constraints are satisfied.

Let z∗ = CD(l∗) denote the optimal critical distance of the underlying graph under
the optimal new edge lengths l∗. Our solution approach is summarized as follows:

i. Obtain the optimal objective value z∗.

ii. An optimal solution of the original problem is determined by

x∗(e) =

{
z∗ − l(e) if e ∈ E(S), l(e) < z∗,
0 otherwise,

y∗(e) =0 ∀ e ∈ E(N).

Note that the optimal objective value z∗ can be computed in O(n) time. Then, we
conclude that

Theorem 3.1. The reverse obnoxious center location problem can be solved in O(n) time
on a graph with n vertices.

Finally, it should be pointed out that the problem under the Chebyshev norm and
Hamming distance is also solved in linear time.
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Control of fractional discrete-time linear systems by partial

eigenvalue assignment
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Abstract

In this article to control of fractional-order discrete-time linear system a special
form of state feedback matrix is proposed to assign suitable eigenvalues to closed-loop
monodromy matrix of the discrete-time system. It makes large monodromy matrix
and changing all of eigenvalues make some problems. By reassigning a part of good
spectrums of monodromy matrix, leaving the rest of the spectrums invariant, we have
lower oreder matrix to modify the dynamic response of linear system and we lie the
poles of this systems at the unit circle by less expenses. The effectiveness of our
algorithm is illustrated by an example.

Keywords: fractional, partial pole assignment, discrete-time, linear system

Mathematics Subject Classification [2010]: 93B55,93B52,93D15

1 Introduction

In this article to control of fractional discrete-time system we proposed a special form of
state feedback matrix to assign suitable eigenvalues to closed-loop monodromy matrix of
system. It makes large monodromy matrix and the conventional numerical methods (e.g.
the QR based and Schur methods) for EVA problem do not work well. Furthermore, in
most of these applications only a small number of eigenvalues are responsible for instability
and others need to be reassigned. Clearly, a complete eigenvalue assignment, in case when
only a few eigenvalues are bad, does not make sense.These consideration gives rise to the
following partial eigenvalue assignment problem (PEVA) for the linear control system.

2 Preliminaries and definitions

2.1 Fractional-order derivatives

Definition 2.1. The disctere-time fractional derivative defined by Grunwald−Letnikov is

GDαx(tk) = lim
h→0

1

hα

k∑

i=0

(−1)i

(
α
i

)
x(tk−i),

(
α
i

)
=

Γ(α + 1)

Γ(α + 1 − i) × Γ(i + 1)
(1)
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The generalization of the integer-order difference to a non-integer order (or fractional-
order) difference with zero initial time is defined as follows [4].

∆αxk = ∆αx(tk) =

k∑

i=0

(−1)i

(
α
i

)
x(tk−i) (2)

2.2 Fractional-order discrete-time linear systems

In this section we consider the commensurate fractional discrete-time linear system

∆αxk+1 = Axk + Buk (3)

xk+1 = (A + αIn)xk +
k∑

i=1

cixk−i + Buk, ci = (−1)i

(
α

i + 1

)
(4)

Stability of this kind of systems is tested by practical stability [4].

3 Stability of fractional discrete-time linear systems

By (4) the sequence ci converges to zero. Getting ci = 0 for i > L (greater L is better)
the system (4) will be a time delay system with L delays .

xk+1 = (A + αIn)xk +

L∑

i=1

cixk−i + Buk (5)

Xk+1 = AXk + Buk (6)

Xk =




xk

xk−1

xk−2

.

.

.
xk−L




, A =




A + αIn c1I c2I · · · cL−1I cLI
I 0 0 · · · 0 0
0 I 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · I 0




, B =




B
0
0
...
0




(7)

3.1 New special form of state feedback law

With a state feedback law of the form

u(k) =

L∑

i=0

Fxk−i (8)

where Fk(i) is a feedback gain, applied to the system (5). The closed-loop system is

xk+1 = (A + αIn + BF )xk +

L∑

i=1

(ciIn + BF )xk−i (9)
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defining

Γ =




A + αIn + BF c1I + BF · · · cLI + BF
I 0 · · · 0
0 I 0 · · ·
...

...
. . .

...
0 · · · I 0




(10)

the system (9) changes to a standard closed-loop system Xk+1 = ΓXk.

3.2 Partial pole assignment of the closed-loop system

Defining
F = [F F · · · F ], Γ = A + B F (11)

The feedback matricx can be obtained by the algorithm given by Karbassi and Bell [3].
Supposing pair (A; B) is controllable. The algorithm given by [2] is
1- Let {λi|λi ∈ C} be the set of the eigenvalues of A.
2- The bad eigenvalues Ω(A) = {λ1, · · · , λp} (the set of eigenvalues that |λi| ≥ 1) should
be changed to S = {µ1, · · · , µp} and the remaining eigenvalues be invariant.
3- Find a real feedback matrix F such that

Ω(Γ) = Ω(A + B F ) = {µ1, · · · , µp; λp+1, · · · , λn} (12)

4- Let Y = {y1, y2, · · · , yp} be the left eigenvectors of A corresponding to {λ1, · · · , λp}
5- Let A′

p×p = diag(λ1, · · · , λp) , B′
p×m = Y HB

6- Finding feedback matrix F ′
m×p such that eig(A′ + B′F ′) = {µ1, · · · , µp}

7- Let F = F ′ × Y H

8- Now we have big(A + B F ) = {µ1, · · · , µp; λp+1, · · · , λn}

4 Numerical examples

In this section, we give two examples to show the success of the proposed method.

Example Check the practical stability of the fractional system

∆0.8xk+1 = Axk + Buk (13)

where

A =




−0.625 1.8 0.9
0.7 0 0.2
1 1.2 −0.8


 , B =




3.2 0.8
4.1 1
0 0


 (14)

Aα =




.175 1.8 .9
0.7 0.8 .2
1 1.2 0


 A =




Aα 0.08I3 0.032I3

I3 0 0
0 I3 0




9×9

B =

[
B

06×2

]
(15)
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Figure 1: Coverging of xi(t) to zero

The method adopted for obtaining the feedback matrix by partial pole assignment algo-
rithm is: The eigenvalues of A are

{2.1637, −1.0210, 0.3402, 0.2025, −0.2559 ± 0.1691i,−0.0219 ± 0.1196i,−0.1548} (16)

we want to change only two first spectums to 0.1 and leave other ones.

F = [FFF ] =

[
−19.86 0.01 11.07 0.6 −0.66 −0.74 0.45 −0.33 −0.45
80.09 −1.5 −45.53 −2.47 2.64 2.98 −1.83 1.34 1.84

]

(17)
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Abstract

In this paper we focus on large-scale linear programming problems. By consider-
ing the vague nature of human judgements, we assume that the decision maker may
consider linear programming problem with fuzzy variables. In this paper, using rank-
ing function of fuzzy triangular numbers for the master problem, the corresponding
nonfuzzy programming problem is introduced then Dantzig-Wolfe decomposition is
applicable.

Keywords: Decomposition method, block angular structure, fuzzy programming,
ranking function, master problem
Mathematics Subject Classification [2010]: 90B99

1 Introduction

A lot of actual large-scale optimization problems can be formulated as mathematical
programming problems with block angular structure. From such a point of view, since
G.B.Dantzig and P.Wolfe [1] proposed the decomposition principle for block angular linear
programming problems at the beginning of 1960,s, researches for block angular mathemat-
ical programming problems have been done actively [4]. In classical optimization model,
the objective function and the constraints are represented very precisely under certainty.
However, many of the constraints are externally controlled and the variations cannot be
predicted to a reliable extent. This may cause difficulties in representing these interacting
variables for optimization. To overcome these limitation, Zimmermann [2] introduced
fuzzy goal and the fuzzy constraint into the linear programming problem. In this paper
we use decomposition algorithm for fuzzy variable linear programming problem.

Definition 1.1. If X is a collection of objected generically by x, then a fuzzy set Ã in X
is a set of ordered pairs:

Ã = {(x, µA(x))|x ∈ X}
µA(x) is a called the membership function. The family of all fuzzy sets in X is denoted
by F(X).

Definition 1.2. A fuzzy set Ã is a convex set if:

µÃ(λx1 + (1− λ)x2) ≥ min(µÃ(x1), µÃ(x2)), x1, x2 ∈ X and λ ∈ [0, 1]
∗Speaker
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Definition 1.3. Let A1,A2,· · · ,An are fuzzy sets. We define the convex combination of
fuzzy sets as follows:

c = λ1A1 + λ2A2 + · · ·+ λnAn
λ1 + λ2 + · · ·+ λn = 1
λi ≥ 0, i = 1, 2, · · · , n

Where membership function of this set is:

µc(x) = λ1µA1(x) + λ2µA2(x) + · · ·+ λnµAn(x)

Definition 1.4. A ray is a collection of the form {x̃0 + λd̃ : λ ≥ 0} , where vector d̃ is a
nonzero fuzzy vector.

Definition 1.5. Given a fuzzy convex set, a nonzero fuzzy vector d̃ is called direction of
the set, if for each x̃0 in the set, the ray {x̃0 + λd̃ : λ ≥ 0} also is the set.

1.1 Ranking function

In fact, an efficient approach for ordering the elements is to define a ranking function
< : F (R) −→ R which maps for each fuzzy numbers in to the real line, where a natural
order exists. we define orders on by:

Ã ≥ B̃ If and only if <(Ã) ≥ <(B̃)

Ã ≤ B̃ If and only if <(Ã) ≤ <(B̃)

Ã = B̃ If and only if <(Ã) = <(B̃)

Here we introduce a linear ranking function that is similar to the ranking function [3].
For any arbitrary fuzzy number Ã = (A(r), Ā(r)), we use ranking function as follows:

<(Ã) = A+
1

4
(A′′ −A′)

2 The decomposition algorithm for solving linear program-
ming problems with fuzzy variables

Consider the following linear program with fuzzy variables:

Min z̃ = cX̃

s.t. AX̃ = b̃

DX̃ = d̃

X̃ ≥ 0̃

(1)

where Dx̃ = d̃ is a set of constraints with special structure, the coefficient matrix A is m×n
matrix, c ∈ Rn, b̃ ∈ (FT (R))m, and x̃ ∈ (FT (R))n where b̃i = (bi, b

′
i, b
′′
i ), i = 1, 2, · · · ,m.

Any point x̃ with Dx̃ = d̃ and x̃ ≥ 0̃ can be represented as a convex combination of the
finite number of extreme points of X̃ and nonnegative linear combination of the extreme
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directions of X̃. If X̃1, · · · , X̃t are extreme points and d̃1, · · · , d̃l are extreme directions
then we have

X̃ =
∑t

j=1 λj X̃j +
∑l

j=1 µj d̃j∑t
j=1 λj = 1

λj ≥ 0 j = 1, 2, · · · , t
µj ≥ 0 j = 1, 2, · · · , l

The primal problem can be transformed into the problem with variables λ1, λ2, · · · , λt and
µ1, µ2, · · · , µl as follows:

Min z̃ =
∑t

j=1 (cX̃j)λj +
∑l

j=1 (cd̃j)µj

s.t.
∑t

j=1 (AX̃j)λj +
∑l

j=1 (Ad̃j)µj = b̃
∑t

j=1 λj = 1

λj ≥ 0, j = 1, 2, · · · , t
µj ≥ 0, j = 1, 2, · · · , l.

(2)

linear programming (2) is a linear programming with fuzzy variables that it is equivalent
with the following linear programming.

Min <(z̃) =
∑t

j=1 (c(<(X̃j))λj +
∑l

j=1 (c<(d̃j))µj

s.t.
∑t

j=1 (A<(X̃j))λj +
∑l

j=1 (A<(d̃j))µj = <(b̃) (3.1)
∑t

j=1 λj = 1 (3.2)

λj ≥ 0, j = 1, 2, · · · , t
µj ≥ 0, j = 1, 2, · · · , l.

(3)

Suppose that we have a basic feasible solution of the foregoing problem with basis B,
and let w and α be the dual variables corresponding to Equations (3.1) and (3.2). Further

suppose that B−1, (w,α) = ĉBB
−1 (ĉB is the cost of the variables), and b̄ = B−1

(
<(b̃)

1

)

are known. and displayed.

BASIS INVERSE RHS

(w,α) ĉB b̄

B−1 b̄

Recall that the current solution is optimal to the overall problem if zj − ĉj ≤ 0 for each
variables. In particular, the following conditions must hold at optimality:

For λj nonbasic:

zj − ĉj = (w,α)

(
A<(X̃j)

1

)
− c<(X̃j) = wA<(X̃j)− c<(X̃j) + α ≤ 0 (4)

For µj nonbasic:

zj − ĉj = (w,α)

(
A<(d̃j)

0

)
− c<(d̃j) = wA<(d̃j)− c<(d̃j) ≤ 0 (5)
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Since the number of nonbasic variables is very large, checking conditions (4) and (5) by
generating the corresponding extreme points and directions computationally infeasible.
However, we may determine whether or not these conditions hold by solving the following
subproblem.

Max (wA− c)<(X̃) + α

s.t. <(DX̃) = <(d̃)

<(X̃) ≥ <(0̃)

First, suppose that the optimal solution value of the subproblem is unbounded. Recall
that this is only possible if an extreme direction is found such that (wA−c)<(d̃k) > 0.This
means that condition (5) is violated. Moreover, zk − ĉk = (wA − c)<(d̃k) > 0 and µk is

eligible to enter the basis. In this case

(
A<(d̃k)

0

)
is updated by premultiplying by B−1

and the resulting column

(
zk − ĉk
yk

)
is inserted in the foregoing array and the revised

simplex method is continued. Now consider the case where the optimal solution value is
bounded. A necessary and sufficient condition for boudedness is that (wA− c)<(d̃j) ≤ 0
for all extreme directions and so equation (5) holds. Now we check whether (4) holds.
Let X̃k be an optimal extreme point and consider the optimal objective, zk − ĉk, to the
subproblem. If zk − ĉk ≤ 0, then by optimality of X̃k, for each extreme point X̃j , we have

(wA− c)<(X̃j) + α ≤ (wA− c)<(X̃k) + α = zk − ĉk ≤ 0

and hence condition (4) holds and we stop with an optimal solution. If, on the other
hand, zk− ĉk > 0, then λk is introduced in the basis. This is done by inserting the column(
zk − ĉk
yk

)
in to the foregoing array and pivoting, where yk = B−1

(
A<(X̃k)

1

)
. Note that,

as in the bounded case, if the master problem includes slack or other explicitly present
variables, then the zj − ĉj values for these variables must be checked before deducing
optimality.
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Abstract

In this paper, we consider an optimimization problem in which some (all) parame-
ters in the objective function intervals and constraints are linear fractional functions.
Indeed, we investigate KKT conditions. A numerical example is carried out to show
the efficiency of our method.

Keywords: KKT Condition, Interval Variables, Interval-Valued Objective Function,
Linear-Fractional.
Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

In conventional mathematical programming problems, system parameters or model coefficients.
are usually determined as crisp values. However, in the real world prob- lems, these parameters
are not exactly known. Generally, Interval, stochastic and fuzzy programming approaches are often
used to describe imprecise and uncertain components existing in a real decision problem.

Interval programming assumes that the information about the range of variation of some (or
all) of the parameters is available, which allows to specify a model with interval coefficients. Some
pioneering works about intervals have been done by Moore [1,2]. Since then, a number of interval
ordering definitions [3,4] have been developed in different ways. Moreover, there have been many
studies about interval optimization problems. For instance, Inuguichi et al. [5] proposed a goal
programming approach to solve the interval programming problem.

In this paper, we investigate KKT condition for an optimization programming with interval
objective function and linear fractional constraints. Indeed, we investigate this condition for this
kind of non-convex programming problems. Finally, using an example we show that the condition
which we achieve works succesfully. [5,6]

2 Preliminaries

We consider the following interval-valued mimimization problem:

min f(x) = [fL(x), fU (x)] (D)

s.t x ∈ S = {x : x > 0, gi(x) =
Pi(x)

Di(x)
=

∑n
j=1 pj

ixj + p0
i

∑n
j=1 dj

ixj + d0
i
> bi}
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Definition 1. [5] Let A = [aL, aU ] and B = [bL, bU ] be two closed intervals in R. We write

A �LU B if aL 6 bL and aU 6 bU

For details on interval analysis, we refer to Moore [1].

Definition 2. [5] Let f(x) = [fL(x), fU (x)] be an interval-valued function defined on a convex
set X ⊆ Rn. We say that f is LU -convex at x? if

f(λx? + (1− λ)x) �LU λf(x?) + (1− λ)f(x)

for each λ ∈ (0, 1) and each x ∈ X.

Definition 3. [6] Suppose that X is a nonempty, open, convex set in Rn. The function f(x) :
X → R .

a) f is quasiconvex if f(λx+ (1− λ)y) ≤ max{f(x), f(y)}, ∀x, y ∈ X, ∀ λ ∈ [0, 1].
b) f is quasiconcave if −f is quasiconvex.

Definition 4. [6] Suppose X is a convex set in Rn. The defferentiable function f(x) : X → R
is a pseudoconvex function if

∇f(x)
t
(y − x) ≥ 0⇒ f(y) ≥ f(x). ∀x, y ∈ X

Definition 5. [5] Let x? be a feasible point. We say that x? is a type-I solution of problem (D)
if there exists no x̄ ∈ X such that f(x̄) ≺LU f(x?).

We write A ≺LU B if and if only if A �LU B and A 6= B. Equivalenty, A ≺LU B if and only if
{
aL < bL

aU 6 bU
or

{
aL 6 bL
aU < bU

or

{
aL < bL

aU < bU
. (1)

Definition 6. [5] Let A = [aL, aU ] and B = [bL, bU ] be two closed intervals in R and let
aC = 1

2 (aL + aU ) and bC = 1
2 (bL + bU ) and also let aW = 1

2 (aU − aL) and bW = 1
2 (bU − bL) so we

write A �CW B if and only if aC 6 bC and aW 6 bW .

Definition 7. [5] Let x? be a feasible point. We say that x? is a type-II solution of problem
(D) if there exists no x̄ ∈ X such that f(x̄) ≺LU f(x?) or f(x̄) ≺CW f(x?).

Theorem 1. Let X be a a convex subset of Rn and f be an interval-valued function defined on
X. Then f is LU-convex at x? if and only if fL and fU are convex at x?.

Proof. Proof is straitforward.

Remark 1. Let x? be a feasible solution. If x? is a type-I solution of problem (D) then x? is also
a type -II solution of problem (D).

3 KKT Sufficient Conditions

Theorem 2. Let x? be a feasible solution of (D), and suppose x? together with multipliers u
satisfies

∇f(x?) +∇g(x?)tu = 0,

u ≤ 0, (KKT)

uigi(x
?) = 0, i = 1, ...,m.

If f(x) is a pseudoconvex function, gi(x), i = 1, ...,m are quasiconcave functions, then x? is a global
optimal solution of (D).
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Proof. Obviosly, the feasibele set is convex. Let I = {i | gi(x?) = bi} denote the index of active
constraints at x?. Let x be a feasible point different from x?. Then λx+ (1− λ)x? is feasible for
all λ ∈ (0, 1). Thus for i ∈ I we have

gi(λx+ (1− λ)x?) = gi(x
? + λ(x− x?)) ≥ bi = gi(x

?).

for any λ ∈ (0, 1), and since the value of gi(.) dose not increase by moving in the direction x− x?,
we must have ∇gi(x?)t(x− x?) ≥ 0 for all i ∈ I. Thus, from the KKT conditions,

∇f(x?)t(x− x?) = −
(
∇g(x?)tu

)t
(x− x?) ≥ 0

and by pseudoconvexity, f(x) ≥ f(x?) for any feasible x.

Consider problem (D), Let x? ∈ S. Suppose that gi, i = 1, ...m, be quasiconcave on Rn and
continuously differentiable at x?. Now we are in a position to present the Karush-Kuhn- Tucker
optimality conditions for problem (D).

Theorem 3. Suppose that the linear- fractional constraint functions gi, i = 1, ...,m, of problem
(D) satisfy the KKT assumptions at x? and the interval-valude objective function f is LU-convex
and weakly continuously differentiable at x?. If there exist (Lagrange) multipliers 0 < λL, λU ∈ R
and 0 6 µi ∈ R, i = 1, ...,m, such that

1. λL∇fL(x?) + λU∇fU (x?) +
∑m
i=1 µi∇gi(x?) = 0;

2. µigi(x
?) = 0 ∀i = 1, ...,m

then x? is a type-I and type-II solution of problem (D).

Proof. Since f(x) = [fL(x), fU (x)], we can define a real-valued function

f̄(x) = λLfL(x) + λUfU (x). (2)

Since f LU-convex and weakly continuously differentiable at x?, by theorem 1, we see that the
real-valued functions fL and fU are convex and continuously differentiable at x?. Therefore, f̄ is
also convex and continuously differentiable at x?. Since

∇f̄(x?) = λL∇fL(x?) + λU∇fU (x?).

according to conditions 1 and 2 of this theorem, we obtain the following two new conditions

(i) ∇f̄(x?) +

m∑

i=1

µi∇gi(x?) = 0;

(ii) µigi(x
?) = 0 ∀i = 1, ...,m.

using theorem 2 we see that x? is an optimal solution of the real-valued objective function f̄ subject
to the same constraints of problem (D), i.e ,

f̄(x?) 6 f̄(x̄) (3)

for any x̄(6= x?) ∈ X. We are going to prove this theorem by contradiction. Suppose that x? is
not a type-I solution of problem (D). Then, according to defintion 5, there exists on x̄ ∈ X such
that f(x̄) ≺LU f(x?), i.e.,

{
fL(x̄) < fL(x?)

fU (x̄) 6 fU (x?)
or

{
fL(x̄) 6 fL(x?)

fU (x̄) < fU (x?)
or

{
fL(x̄) < fL(x?)

fU (x̄) < fU (x?)
. (4)
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Therefore, from expessions (2) and (4), we see that f̄(x̄) < f̄(x?) (since λL > 0 and λU > 0)
which contradicts (3). From Remark (1), it also shows that x? is a type-II solution of problem
(D). This completes the proof.

Example 1. Let us consider the following interval-valued minimization problem with linear- frac-
tional constraints.

min f(x) = [x2 + x+ 1, x2 + 3]

s.t
−x+ 6

x+ 2
> 1

x > 0.

we write g1(x) = −x+6
x+2 − 1 ≥ 0 and g2(x) = x. Then the assumptions presented in theorem 3 are

satisfied, and the KKT conditions are given below:

1. λL(2x? + 1) + λU2x? + µ1
−8

(x?+2)2 + µ2 = 0;

2. µ1(−x?+6
x?+2 − 1) = 0 = µ2x

?.

Let us take x? = 0. Then condition 2 µ1 = 0 and conditin 1 λL = µ2. Let us take the multipliers
λL = λU = µ2 = 1 and µ1 = 0. Then theorem 3 shows that x? = 0 is a type-I and type-II solution.

Theorem 4. Under the same assumptions of Theorem 3, let k be any integer with 1 < k < m. if
there exist (Lagrange) multipliers 0 > µi ∈ R, i = 1, ...,m, such that

(i) ∇fL(x?) + Σki=1µi∇gi(x?) = 0;

(ii) ∇fU (x?) + Σmi=k+iµi∇gi(x?) = 0;

(iii) µigi(x
?) = 0 for all i = 1, ...,m,

then x? is a type-I and type-II solution of problem (D).

Proof. Proof is a direct result of theorem 3.

Theorem 5. Under the same assumptions of Theorem 3, let fC = 1
2 (fL + fU ). If there exist

(Lagrange) multipliers 0 < λU , λC ∈ R and 0 > µi ∈ R, i = 1, ..,m, such that

(i) λU∇fU (x?) + λC∇fC(x?) + Σmi=1µi∇gi(x?) = 0;

(ii) µigi(x
?) = 0 ∀i = 1, ..,m,

then x? is a type-I and type-II solution of problem (D).

Proof. Proof is a direct result of theorem 3.
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Abstract

In this paper a numerical technique is proposed for solving linear control systems.
Multiwavelets Galerkin method is applied for solving the extreme conditions obtained
from the Pontryagin’s maximum principle.
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1 Introduction

Optimal control theory has many successful practical applications in areas ranging from
economics to various engineering disciplines. The optimal control problem has been stud-
ied by many researchers [1]. In this paper, we consider linear optimal problem (OCP)

ẋ = Ax(t) + Bu(t), x(t0) = x0,

J = 1
2x(tf )T Sx(tf ) + 1

2

∫ tf
t0

(xT Px + 2xT Qu + uT Ru)dt,
(1)

where x ∈ Rn, u ∈ Rm, A ∈ Rn×n and B ∈ Rm×n. The control u(t) is an admissible control
if it is piecewise continuous in t for t ∈ [t0, tf ]. The input u(t) is derived by minimizing the
quadratic performance index J , where S ∈ Rn×n, P ∈ Rn×n and Q ∈ Rn×m are positive
semi-definite matrices and R ∈ Rm×m is positive definite matrix.

2 Optimality conditions for linear optimal control system

In this section, we try to get the optimal control law u∗(t) = −k(t)x(t) for system (1) by
using PMP [2]. For this purpose, one can consider Hamiltonian as

H(x, u, λ, t) =
1

2
(xT Px + 2xT Qu + uT Ru) + λT (Ax + Bu), (2)
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where λ ∈ Rn is co-state vector. According to the PMP, one has λ̇ = −∂H
∂x = −Px −

Qu − AT λ and ∂H
∂u = QT x + Ru + BT λ = 0. The optimal control is computed by

u∗ = −R−1QT x − R−1BT λ, where λ and x are the solution of Hamiltonian system

{
ẋ = [A − BR−1QT ]x − BR−1BT λ,

λ̇ = [−P + QR−1QT ]x + [QR−1BT − AT ]λ,
(3)

with the condition x(t0) = x0. The terminal condition is assumed as λ(tf ) = Sx(tf ).
Assuming that the solution of system (3) is

(
x
λ

)
=

(
F (t, tf ) G(t, tf )
L(t, tf ) M(t, tf )

)(
x(tf )
λ(tf )

)
(4)

It can be show that the above-mentioned system can be rewritten in the following form





V̇ = [A − BR−1QT ]V (t) − BR−1BT W (t),

Ẇ = [−P + QR−1QT ]V (t) + [QR−1BT − AT ]W (t),
V (tf ) = I, W (tf ) = S,

(5)

where V (t) = F (t, tf ) + G(t, tf )S and W (t) = L(t, tf ) + M(t, tf )S.

3 Interpolating scaling functions

Assume that Pr is the Legendre polynomial of order r and r is any fixed nonnegative
integer number. Let τk denotes the roots of Pr for k = 0, ..., r − 1. Also suppose ωk is the
Gauss-Legendre quadrature weight ωk = 2(rP ′

r(τk)Pr−1(τk))
−1. By these assumptions,

the interpolating scaling functions (ISF ) are given

ϕk(t) =

{ √
2

ωk
Lk(2t − 1), t ∈ [0, 1],

0, otherwise,

where Lk(t) is the Lagrange interpolating polynomial. In this system of wavelets, we
assume that Φr

0 = {ϕk}r−1
k=0 be an orthonormal basis for the Hilbert subspace V r

0 :=
span{ϕk : 0 ≤ k ≤ r−1} ⊂ L2[0, 1). Then we can define the projection P0 : L2([0, 1)) → V r

0

via

PJ(f)(x) :=

r−1∑

k=0

2J−1∑

l=0

⟨f, ϕk
J,l⟩ϕk

J,l ≈
r−1∑

k=0

2J−1∑

l=0

2−J/2

√
ωk

2
f

(
2−J(τ̂k + l)

)
ϕk

J,l = F T Φr
J . (6)

3.1 The Operational Matrix of Derivative

Suppose that the derivative of f(x) in (6) be given by

d

dt
f(x) ≈ PJ(f ′)(x) =

r−1∑

k=0

2J−1∑

l=0

f̃k
Jlϕ

k
Jl(x) = F̃ T Φr

J(x), (7)
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One can express a relation between F and F̃ by F̃ = DϕF where Dϕ is the operational
matrix of the derivative for the ISFs and express as a block tridiagonal matrix as [3]

Dϕ = 2J




R H
−HT R H

. . .
. . .

. . .

. . .
. . .

. . .

−HT R H
−HT R




N×N

,

where, each block is an r × r matrix and N = r2J . Also for k, i = 0, ..., r − 1, we
have

[R]k+1,i+1 =
1

2
ϕi(1)ϕk(1) − ϕi(0)ϕk(0) − qk+1,i+1, [q]k+1,i+1 =

√
ωi

2

d

dt
ϕk(τ̂i).

[R]k+1,i+1 =
1

2
ϕi(1)ϕk(1) − 1

2
ϕi(0)ϕk(0) − qk+1,i+1, [H]k+1,i+1 =

1

2
ϕi(0)ϕk(1),

[
R

]
k+1,i+1

= ϕi(1)ϕk(1) − 1

2
ϕi(0)ϕk(0) − qk+1,i+1,

4 Description of the Method

Assume that we expand V (t) and W (t) using interpolating scaling functions as

V (t) ≈ VT ⊗ Φr
J(t), W (t) ≈ WT ⊗ Φr

J(t), (8)

where V and W are (n×1) unknown vectors and ⊗ is the Kronecker product. Using
equations (8) and operational matrix of derivative for equation (5), we obtain




VT ⊗ DΦr
J(t) = [A − BR−1QT ]VT ⊗ Φr

J(t) − BR−1BT WT ⊗ Φr
J(t),

WT ⊗ DΦr
J(t) = [−P + QR−1QT ]VT ⊗ Φr

J(t) + [QR−1BT − AT ]WT ⊗ Φr
J(t),

VT ⊗ Φr
J(tf ) = I, WT ⊗ Φr

J(tf ) = S,
(9)

The entries of vector Φr
J(t) is independent, so from (9) we get





VT ⊗ D = [A − BR−1QT ]VT − BR−1BT WT ,
WT ⊗ D = [−P + QR−1QT ]VT + [QR−1BT − AT ]WT ,
VT ⊗ Φr

J(tf ) = I, WT ⊗ Φr
J(tf ) = S,

(10)

From equation (10), one has 2nN equations which can be solved for V and W . Then
we be able to obtain the unknown coefficients and approximate V (t) and W (t).

5 Numerical results

In this section to illustrate the effectiveness of the multiwavelets Galerkin method,
we consider example of optimal control of linear systems. Consider a single-input
scalar system as follows

ẋ = −x(t) + u(t),

J = 1
2

∫ 1

0
(x2(t) + u2(t))dt,

(11)
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Table 1: Comparison of the presented method with r = 5 and BCM.

J = 2 J = 3 BCM
t V (t) W (t) V (t) W (t) V (t) W (t)

0.2 3.5e − 07 1.1e − 07 1.1e − 08 4.1e − 09 6.2e − 08 1.3e − 06
0.6 1.9e − 07 5.1e − 08 5.4e − 09 9.7e − 10 5.3e − 07 1.9e − 06
1.0 1.3e − 07 2.2e − 49 3.8e − 09 2.2e − 49 7.5e − 06 8.3e − 11

According to system (1), we have A = −1, B = 1, S = 0, Q = 1, R = 1 and tf = 1.
By using system (5), we have

V̇ (t) = −V (t) − W (t), Ẇ (t) = −V (t) + W (t), (12)

The analytical solution of the above-mentioned problem is




V (t) = cosh(
√

2t) + β sinh(
√

2t)

W (t) = (1 +
√

2β) cosh(
√

2t) + (
√

2 + β) sinh(
√

2t)

β = − cosh(
√

2)+
√

2 sinh(
√

2)√
2 cosh(

√
2)+sinh(

√
2)

Table 1 consist of absolute error with r = 5, J = 2, 3 also we compared the approx-
imate solution obtained from the method presented in this paper with the solutions
of obtained using Bessel collocation method(BCM) [4].
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Solving bi-level integer programming problems with multiple

linear objectives at lower level by using particle swarm

optimization
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Abstract

Bilevel programming problems are hierarchical optimization problems that consist
of the objective of the leader at its first level and that of the follower at the second level.
In this paper, we propose a method for solving bi-level integer programming problems
with multiple linear objectives at lower level. We begin by finding the convex hull of its
original set of constraints using the cutting-plane algorithm. Then, we apply particle
swarm optimization (PSO) algorithm to solve this problem. A numerical example
illustrates the proposed method.

Keywords: Bi-level optimization, Multiobjective optimization, Particle swarm opti-
mization.
Mathematics Subject Classification [2010]: 90c08,90c10

1 Introduction

Bilevel programming involves two optimization problems where the constraint region of
the first level problem is implicitly determined by another optimization problem. Gavete
and Gale [1] consider the bilevel problems for which the lower level problem is a linear
multiobjective program and constraints at both levels define polyhedra, they proved that
the feasible region consists of faces of the polyhedron defined by the constraints. Particle
swarm optimization (PSO) is an optimization algorithm proposed by Kennedy and Eber-
hart in 1995 [2]. The bi-level integer programming with multiple linear objective functions
at lower level problem (BIPMLO) can be formulated as:

min
x1

f(x1, x2)

s.t A1
1x1 + A1

2x2 ≤ b1

x1 ≥ 0, integer

(1)

where x2 solves

min
x2

(d1x2, . . . , dkx2)

s.t A2
1x1 + A2

2x2 ≤ b2

x2 ≥ 0, integer

(2)
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x1 ∈ Rn1 and x2 ∈ Rn2 are the vectors of variables which controlled by the leader and
follower, respectively. f : Rn1 ×Rn2 → R, b1 ∈ Rm1 , b2 ∈ Rm2 and A1

1, A
2
1, A

2
2 are matrices

of suitable dimensions. Also, we introduce the following sets:

T =
{
(x1, x2) ∈ Rn1 × Rn2 : A1

1x1 + A1
2x2 ≤ b1, A2

1x1 + A2
1x2 ≤ b2, x1 ≥ 0, x2 ≥ 0 and integers

}

T1 = {x1 ∈ Rn1 : ∃x2 ∈ Rn2 such that (x1, x2) ∈ T}
V =

{
(x1, x2) ∈ Rn1 × Rn2 : A1

1x1 + A1
2x2 ≤ b1, x2 ≥ 0, integer

}

S =
{
(x1, x2) ∈ Rn1 × Rn2 : A2

1x1 + A2
2x2 ≤ b2, x2 ≥ 0, integer

}

In what follows, an equivalent problem (BIPMLO) associated with problem (1), (2) can
be stated with the help of cutting- plane technique.The equivalent bi-level programming
with multiple linear objective functions at lower level problem (BPMLO) can be written
in the following form:

min
x1

f(x1, x2)

s.t A1
1x1 + A1

2x2 ≤ b1

x1 ≥ 0

(3)

where x2 solves

min
x2

(d1x2, . . . , dkx2)

s.t A2
1x1 + A2

2x2 ≤ b2

x2 ≥ 0

(4)

2 The Algorithm

In this section, we firstly set up parameters, including Nmaxl the number of iterations of
the algorithm PSOL, Nmaxu the number of iterations of the algorighm PSOU, the number
of particles (N max), the number of maximum generations (T size) inertial weight (w),
two acceleration coefficient (c1 and c2), two random variables, rand 1 and rand 2, are in
the interval 0, 1. Now we are ready to present the algorithm:

Step 1: Convert the problem (BIPMLO) into the equivalent problem (BPMLO), go to
step 2.

Step 2: Use Balinski algorithm [3] to find all the vertices of the feasible region T .

Step 3: Set i = 1.

Step 4: Select one of the non-integer vertices x1 = (x1
1, x

1
2, . . . , x

1
n) of the solution space.

In the tableau of this vertex, choose the row vector where the basic variable has the
largest fractional value and construct its corresponding Gomory’s fractional cut in
the form hix ≤ ri.

Step 5: Add the first cut to the original set of the constraints T . This will yield a new
feasible region T i. If the vertices of the solution space all are integers then go to
step 7, otherwise go to step 6.
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step 6: Set i = i + 1, go to Step 3.

Step 7: Eliminate (drop) all the redundont constraints of the applied cuts.

Step 8: Add all the constraints of applied s-efficent cuts to the original set of constraints
T to get [T ].

Step 9: Formulate the equivalent problem (BPMLO)

Step 10: Generate upper level’s variables, x̃1, randomly.

Step 11: Solve the lower level problem.

substep 11.1: Generate lower level varibles, x̃2, randomly.

substep 11.2: set n := 1.

substep 11.3: Solve the lower level problem with given x̃1 from step 10.
In order to check if (x̃1, x̃2) ∈ IR or not, we use Benson’s approach and check if the
optimal objective value of following problem is zero:

max
k∑

i=1

zi

s.t dix2 + zi = dix̃2, i = 1, . . . , k

A2
2x2 ≤ b2 − A2

1x̃1

x2 ≥ 0

z1, . . . , zk ≥ 0

(5)

substep 11.4: Use PSOL for improving the variable x2.

substep 11.5: Check if N < Nmaxl go to 11.6, otherwise go to 11.7.

substep 11.6: set n := n + 1 and go to 11.3.

substep 11.7: set x∗
2 as the optimal solution of problem (5) and go to step 12.

step 12: Solve the following problem:

max
x1

f(x1, x2)

s.t A1
1x1 + A1

2x2 ≤ b1

A2
1x1 + A2

2x
∗
2 ≤ b2

x1 ≥ 0

(6)

substep 12.1: Generate upper level variable xli , randomly.

substep 12.2: Set n := 1.

substep 12.3: Solve the upper level problem with given x∗
2 from step 11.
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substep 12.4: Improve the variables with Psou.

substep 12.5: If n < Nmaxu go to 12.7.

substep 12.6: Set n = n + 1 and go to 12.3.

substep 12.7: Set x∗
1 as the optimal solution of problem (6).

step 13: (x∗
1, x

∗
2) can be considered as an optimal solution for BIPMLO.

Example 2.1. Consider the following problem:

min
x≥0, integer

F (x, y) = x − 4y

min
y≥0, integer

(y, 2y)

x − y ≤ −3

− 2x + 4y ≤ 0

2x + y ≤ 12

− 3x + 2y ≤ −4

(7)

This example is taken from [4]. The swarm size are set to 25, the number of maximum
generations, T size is set to 50, acceleration cofficient C1 = chi ∗ phi1, C2 = chi ∗ phi2,
inertia weigth W = chi, where phi1 = 2 : 05, phi2 = 2 : 05, phi = phi1 + phi2, chi =
2/(phi − 2 + sqrt(phi2 − 4 ∗ phi)).

For this problem, we have (x∗, y∗) = (2, 1) and then F ∗(x, y) = −2.
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Solving Fuzzy LR Interval Linear Systems Using Ghanbari

and Mahdavi-Amiri’s Method

Mahnoosh Salari∗
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Abstract

Here, we propose a method for solving fuzzy LR interval linear systems with fuzzy
coefficients matrix and fuzzy hand-right vector based on the method proposed by
Ghanbari and Mahdavi-Amiri for solving fuzzy LR linear systems.

Keywords: Fuzzy LR interval, Fuzzy LR interval linear systems, Least squares model.

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Ghanbari and Mahdavi-Amiri in [1] developed the method for solving fuzzy LR triangular
linear systems Ax̃ = b̃ based on a least squares model. Here, we study the following fuzzy
LR interval linear systems:

Ãx = b̃. (1)

To compute an approximate or an exact solution for (1), the proposed method is inspired
by Ghanbari and Mahdavi-Amiri’s method [1].

2 Basic Concepts and Notations

Definition 2.1. [4] A fuzzy interval ã is of LR type, if there exist shape functions L and R
(for left and right), and scalars α ≥ 0, β ≥ 0 and al and ar with the following membership
function

µã(x) =





L
(

al−x
α

)
, al − α ≤ x ≤ al,

1, al ≤ x ≤ ar,

R
(

x−ar
β

)
, ar ≤ x ≤ ar + β,

0, o.w.

The corresponding membership function of a fuzzy LR interval , µã(x) , denoted by
(al, ar, α, β)LR .

Definition 2.2. [4] Let ã = (al, ar, aα, aβ)LR, b̃ = (bl, br, bθ, bγ)LR and δ ∈ R. Then:
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1. δ ≥ 0 =⇒ δã = (δal, δar, δaα, δaβ)LR.

2. δ ≤ 0 =⇒ δã = (δar, δal, −δaβ, −δaα)LR.

3. ã
⊕

b̃ = (al + bl, ar + br, aα + bθ, aβ + bγ)LR.

Remark 2.3. we denote the set of LR fuzzy intervals by I
(
ℜ1

)
LR

.

Definition 2.4. The system,
Ãx = b̃

where, Ã = (Al, Ar, Aα, Aβ)LR ∈ I(ℜm×n)LR, and b̃ = (bl, br, bα, bβ)LR ∈ I(ℜm)LR and
x ∈ ℜn is an unknown vector to be found, is called a fuzzy LR interval linear system
(FLRILS).

Corresponding to unknown vector x, we define the two following matrix

x+ =

{
xj xj ≥ 0,
0 xj < 0,

x− =

{
xj xj < 0,
0 xj ≥ 0,

(2)

for j = 1, ..., n. and,

Ãx = (Alx
+ + Arx

−, Arx
+ + Alx

−, Aαx+ − Aβx−, Aβx+ − Aαx−).

Theorem 2.5. (Fundamental Theorem of FLRILS) Let Ã ∈ I(ℜm×n)LR, and b̃ ∈ I(ℜm)LR

and x ∈ Rn is a solution of (1) ,if and only if, (x+T
, x−T

)T is solution of the two following
systems:

[
Al Ar

Ar Al

] [
x+

x−

]
=

[
bl

br

]
(3)

and
[

Aα −Aβ

Aβ −Aα

] [
x+

x−

]
=

[
bα

bβ

]
, x+ ≥ 0, x− ≤ 0. (4)

(5)

Proof. the proof is similar to the proof in [2].

3 FLRILS

Here, We define an approximate solution using the concept proposed in [1] and Ming
distance function [3]. For two fuzzy LR interval vector x̃ and ỹ defined the following
distance function :

2D2
n(x̃, ỹ) = 2(xl − yl)

T (xl − yl) + 2(xr − yr)
T (xr − yr) − 2(xl − yl)

T (xα − yα)
+2(xr − yr)

T (xβ − yβ) + (xα − yα)T (xα − yα) + (xβ − yβ)T (xβ − yβ)
(6)

Now, for every x, we define the residual at x as follows:

r(x) = 2D2
n(Ãx, b̃) (7)
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to compute an approximate solution, we must solve the following optimization problem:





min r(x) = 2D2
n(Ãx, b̃)

s.t.
x ∈ Rn.

(8)

Thus,

r(x) = 2(Alx
+ + Arx

− − bl)
T (Alx

+ + Arx
− − bl)

+ 2(Arx
+ + Alx

− − br)
T (rx

+ + Alx
− − br)

+ (bβ − Aβx+ + Aαx−)T (bβ − Aβx+ + Aαx−)

+ (bα − Aαx+ + Aβx−)T (bα − Aαx+ + Aβx−) (9)

+ 2(Alx
+ + Arx

− − bl)
T (bα − Aαx+ + Aβx−)

− 2(Arx
+ + Alx

− − br)
T (bβ − Aβx+ + Aαx−)

Now, let

S = 4Al
T Al + 4Ar

T Ar + 2Aβ
T Aβ + 2Aα

T Aα − 4Al
T Aα + 4Ar

T Aβ

R = 4Al
T Ar + 4Ar

T Al − 2Aβ
T Aα − 2Aα

T Aβ + 4Al
T Aβ − 4Ar

T Aα

T = −4Al
T bl − 4Ar

T br − 2Aβ
T bβ − 2Aα

T bα + 2Al
T bα + 2Aα

T bl − 2Ar
T bβ − 2Aβ

T br

K = −4Ar
T bl − 4Al

T br + 2Aα
T bβ + 2Aβ

T bα + 2Ar
T bα − 2Aβ

T bl − 2Al
T bβ + 2Aα

T br

Therefore,

r(x) =
1

2
[x+T

x−T
]Q

[
x+

x−

]
+ fT

[
x+

x−

]
+ c, (10)

where,

Q =

[
S R
R S

]
, f =

[
T
K

]
(11)

and

c = 2bl
T bl + 2br

T br + bα
T bα + bβ

T bβ − 2bl
T bα + 2br

T bβ. (12)

Now, to compute an approximate solution, we can solve the following quadratic program-
ming problem:





min 1
2 [x+T

x−T
]Q

[
x+

x−

]
+ fT

[
x+

x−

]
+ c

s.t.
x+T ≥ 0
x− ≤ 0
x+T x− = 0.

(13)
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Conclusions

Here, We proposed a method for solving fuzzy LR interval linear systems with fuzzy
coefficients matrix and fuzzy hand-right vector using the method proposed by Ghanbari
and Mahdavi-Amiri based on a least squares model and obtained the approximate solutions
for this systems.
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Using Chebyshev Wavelet in State-control Parameterization

Method for Solving Time–varying system
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Abstract

In this paper, a new algorithm based on state-control parameterizatiom method
to obtain the solution of time-varying control problem is presented. The state and
control variables are expanded by Chebyshev wavelet basis with unknown coefficients
and are used to convert optimal control problem into NLP poblem. Applicability of
this method is presented by an illustrative example.

Keywords: State-control parameterization, Chebyshew wavelet, Linear time-varying
system

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Indirect methods have some drawbacks to obtain the solution of systems that are de-
scribed by strongly nonlinear differential equations. Thus, many reasearchers proposed
direct methods to solve these problems. The direct methods convert optimal control prob-
lems into NLP problems and then use existing NLP techniques to solve them.
Direct methods are classified into either discretization [9] or parameterization [8] of the
state and/or the control variables. In order to solve various classes of optimal control
problems several direct methods that use orthogonal polynomials have been proposed.
Wavelets as one of these orthogonal polynomials have good property to approximate func-
tions with discountinous or sharp changes. Many authors have used wavelets for solving
optimal control problems such as Haar wavelets [1], harmonic wavelet [4], Shannon wavelet
[5], Legendre wavelet [6].
In this paper, the focus is on introducing a state-control parameterization method based on
Chebyshev wavelet to find optimal solution for a time-variant system. This work is done as
follows: First, a brief description of control problem and Chebyshev wavelet polynomials
is given. A mathematical description of proposed state-control parameterization method
is presented and finally by presenting an example, we compare our proposed method with
other reasearchers to determine the validity of the solution of this example.
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2 Problem statement

Find the optimal control that minimizes the quadratic performance index

J =

∫ tf

0
(
{
x′Qx

}
+

{
u′Ru

}
)dt, (1)

Subject to:
ẋ = A(t)x(t) + B(t)u(t), x(0) = x0. (2)

where x(.) : I → Rs is the state variable, u(.) : I → Rr is the control variable of system.
Also, A(t) and B(t) are time-varying matrices, Q is positive semidefinite matrix and R is
a positive definite matrix.

3 The Chebyshev wavelet polynomials

In this section, we briefly describe Chebyshew wavelet polynomials that are used in the
next section. By dialation and translation of a single function called the mother wavelet,
a family of wavelets can be constructed. An applicable family of wavelets is Chebyshev
wavelet ϕnm(t) = ϕ(k,m, n, t) that defined on the interval [0, 1) by following:

ϕnm =

{
αm2

k
2√

π
Tm(2k+1t − 2n + 1), n−1

2k ≤ t ≤ n
2k

0, O.W.

where k = 1, 2, ...,n = 1, 2, 3, ..., 2k,m is the order for Chebyshev polynomials and

αm =

{ √
2, m = 0

2, m = 1, 2, ....

Tm(t) are the well-known Chebyshev polynomials that satisfy the following recursive for-
mula:

T0(t) = 1, T1(t) = t, Tm+1(t) = 2tTm(t) − Tm−1(t).

4 Main results

In this section, a new state-control parameterization based on Chebyshev wavelet is in-
troduced. Let Q ⊂ C1([0, 1]) be set of all functions that satisfy initial condition. Also, let
Qm ⊂ Q be the class of combinations of Chebyshew wavelet polynomials of degree up to
m. We can approximate the state and control variables as follows:

x̂(t) =
2k∑

n=1

M−1∑

m=0

anmϕnm(t), û(t) =
2k∑

n=1

M−1∑

m=0

bnmϕnm(t). (3)

where

ϕ(t) = [ϕ10(t), ϕ11(t), ..., ϕ1M−1(t), ϕ20(t), ϕ21(t), ..., ϕ2M−1(t), ..., ϕ2k0(t), ϕ2k1(t), ..., ϕ2kM−1(t)],

a(t) = [a10, a11, ..., a1M−1, a20, a21, ..., a2M−1, ..., a2k0, a2k1, ..., a2kM−1],

b(t) = [b10, b11, ..., b1M−1, b20, b21, ..., b2M−1, ..., b2k0, b2k1, ..., b2kM−1].
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Now, we consider the minimization of J on Qm with a and b as unknowns.
By substituting these approximations of the state and control variables, the performnce
index J can be written as:

Ĵ(a10, a11, . . . , a2kM−1, b10, b11, . . . , b2kM−1) =

∫ tf

0
(
{
x̂′Qx̂

}
+

{
û′Rû

}
)dt. (4)

We replace equality consraints (2) by (5) to get the initial condition and other constraints
as following:

˙̂x = A(t)x̂(t) + B(t)û(t),

x̂(t0) =

2k∑

n=1

M−1∑

m=0

anmϕnm(t)
∣∣∣
t=t0

= x0. (5)

Also, we must add some constraints in order to get the continuity of the state variables
between the different sections. 2k −1 points exist that the continuity of the state variables
have to be ensured. These points are:

ti =
i

2k
, i = 1, 2, . . . , 2k − 1

So there are 2k − 1 equality constraints that must be satisfied.
These process cause to find solution of problem by a new nonlinear programming problem
that has 2n + 2 unknowns as follows:

min
z∈R2k+1M

{
z′Hz

}
, (6)

Subject to
Pz = Q. (7)

where z′ = (a′,b′).
Solving this problem is easier than the original problem by well developed optimization
algorithms.

Example 4.1. Find the optimal control u∗(t) which minimizes

J =
1

2

∫ 1

0
(x2 + u2)dt.

Subject to:
ẋ = −tx + u, x(0) = 1.

The obtained solution for J by our proposed method together with comparison by
other researchers for solving this problem is reported in Table 1.

As we see from Table 1, our proposed method has acceptable solution in compare with
other methods.
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Table 1: Comparison between different reasearches for J value

Research name Jaddu [7] Elnagar [3] Elaydi[2] Our proposed method

J 0.4842676003768 0.48427022 0.484267810538982 0.4842677532
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Vitality of Nodes in Networks Carrying Flows Over Time
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Abstract

In this paper finding most vital node of networks carrying flows over time is studied,
a mathematical model is generalized and a fully combinatorial algorithm is provided
adapting an iterative procedure. Given a network and a time horizon T , Most Vital
Node Over Time (MVNOT) problem seeks for a node whose removal from network
results greatest decrease in the value of maximum flow over time up to time horizon
T between two terminal nodes.

Keywords: most vital nodes; maximum flow over time; combinatorial algorithm.

Mathematics Subject Classification [2010]: 90C11

1 Introduction

Vitality problem on networks is firstly introduced by Wolmer [4] at 1963. Wolmer [4]
studied looking for a link whose removal from network results greatest decrease in the value
of deterministic maximum flow between two predefined nodes. Later, many extensions of
the original problem is studied in literature [2]. Recently, a new version of most vital
link problem is introduced and studied by Morowati and Mehri [2] which differs from
traditional models in the sense that it studies vitality on networks carrying flows over
time [3] instead of traditional static flows.

In this paper we study the problem of finding most vital node of a network which aims
to transfer maximum flow over time between two terminal nodes up to a predefined time
horizon T . The MVNOT problem may simply be reduced to a most vital link problem but
this reduction increase problem size significantly. Therefore, providing a direct solution
method motivated us to provide an iterative algorithm for MVNOT problem.

2 Preliminaries

Let G = (N,A,u, τ , s, t) is given, where N is the set of nodes, A is the set of directed
links with a positive capacity u = (uij)(i,j)∈A and positive transit times τ = (τij)(i,j)∈A,
s is source node and t is terminal node. A static s-t-flow is a real valued mapping x on
the links of G that satisfies capacity constraints 0 ≤ xij ≤ uij for all (i, j) ∈ A and flow
conservation constraints

∑
j∈N :(j,i)∈A xji −

∑
j∈N :(i,j)∈A xij = 0, for all i ∈ N \ {s, t}. The

value of a static s-t-flow x is equal to |x| = ∑j∈N :(j,t)∈A xjt −
∑

j∈N :(t,j)∈A xtj .
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Given G and a time horizon T ∈ <+, a flow over time on G is defined as an array of
nonnegative functions such as f = (fij)(i,j)∈A, where for each link (i, j) ∈ A, fij : < → <+

is a Lebesgue-integrable function which vanishes for all θ ∈ < \ [0, T − τij).
Let f , θ ∈ [0, T ) and i ∈ N is given then, define the operator F (f , θ, i) as follows

Fτ (f , θ, i) =

∫ θ

0
[

∑

j∈N :(j,i)∈A
fji(η − τji)−

∑

j∈N :(i,j)∈A
fij(η)]dη.

Given G and T , maximum flow over time problem seeks a flow over time which has max-
imum value (i.e. |f | = Fτ (f , T, t))) among all feasible flows over time. This complicated
problem can be formulated as [3]

maxf{vf (T ): f ∈ Ω(τ )}, (1)

where Ω(τ ) = {f | Fτ (f , θ, i) ≥ 0, ∀i ∈ N̄ , θ ∈ [0, T ); Fτ (f , T, i) = 0; Fτ (f , T, s) =
−Fτ (f , T, t) = vf (T ) and 0 ≤ fij(θ) ≤ uij ,∀(i, j) ∈ A, θ ∈ [0, T )} and N̄ = N \ {s, t}.
Using the concept of temporary repeated flows [3] it is demonstrated that the optimum
value of maximum flow over time up to time horizon T is equal to optimum value of
following static circulation problem which is defined on the extended network G′ assigning
an additional artificial link (t, s) with cost −T and infinite capacity:

max
x
{Txts −

∑

i∈N

∑

j∈N :(i,j)∈A
τijxij : x ∈ Λ},

where Λ = {x :
∑

j∈N :(j,i)∈A xji −
∑

j∈N :(i,j)∈A xij = 0, ∀i ∈ N ; xij ≤ uij , ∀(i, j) ∈
A; xij ≥ 0, ∀(i, j) ∈ A′} and A′ = A ∪ {(t, s)}.

3 Mathematical Formulation and Solution Method

To formulate MVNOT problem we define a set of binary variables φi assigned to each
node i ∈ N . We mean by φi = 1 that node i is blocked and otherwise node i is not
blocked(φi = 0). Using these considerations, let Φ be the set of all possible elections for
the most vital node in G; that is Φ = {φ ∈ {0, 1}|N | :

∑
i∈N φi = 1}. As is obvious, Φ

is the set of all vectors ei1 , ei2 , · · · , ei|N| . To block a node i in mathematical model, we
can simply increase traverse time of all its outgoing links to a number greater than T ,
because if the traverse time of these links be grater than T then the traverse time of every
i-crossing route will be greater than T , therefore in a maximum flow over time pattern no
flow arrives to t from such routes up to time horizon T .

By these notations we can formulate MVNOT problem as following min-max problem:

min
φ∈Φ

H(φ) = maxf{vf (T ): f ∈ Ω((τij + Tφi)(i,j)∈A,)} (2)

which is a very complicated problem and can not be solved directly therefore, we must do
some reformulations on this initial model to provide a solution method. According to the
discussion in section 2, for a fixed and constant φ ∈ Φ, optimum value of inner maximum
flow over time problem in (2) is equal to that’s of following circulation problem

MP(φ, T ) : max
x
{Txts −

∑

i∈N
Tφi(

∑

j∈N :(i,j)∈A
τijxij) : x ∈ Λ}.
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Notice that for a fixed φ, if φi = 1 then the penalized traverse time of all its outgoing
links (i, j) is τij +T . As a result, the traverse time of every i-crossing route is greater than
T . Therefore every positive flow on such routes decreases objective function of MP(φ, T ).
This implies that if φi = 1 then fij(θ) = 0 for all j ∈ N : (i, j) ∈ A and all θ ∈ [0, T ), in
an optimal flow over time pattern. Since H(φ) equals optimum value of MP(φ, T ), then
(2) may be reformulated as following min-max problem

min
φ∈Φ

H(φ) = max
x
{Txts −

∑

i∈N
Tφi(

∑

j∈N :(i,j)∈A
τijxij) : x ∈ Λ}. (3)

Now, for fixed φ according to strong duality theorem, by taking dual of inner problem in
(3) and releasing φ, we can transform (2) to following mixed integer programming problem

min
φ,α,µ

{
∑

(i,j)∈A
uijµij : (φ,α,µ) ∈ Γ}, (4)

where Γ = {(φ,α,µ) ∈ {0, 1}|N | × <|N | × <+|A| : µij + αat − αah + Tφi ≥ −τij , ∀(i, j) ∈
A; αt − αs ≥ T ;

∑
i∈N φi = 1}. We have transformed the complicated problem (2) into

the mixed linear minimization problem (4) which is solvable by all existing methods for
solving mixed linear programming problems.

To provide computationally efficient solution method, using special structure of (4)
we have provided an improved Benders decomposition based algorithm [1] to MVNOT
problem which is a fully combinatorial algorithm.

According to special structure of (4), since all variables of its equivalent problem (4)
can be decomposed into two groups (i.e. binary variable φ and continuous variables µ
and α) and the feasible region of its dual (i.e. MP(φ, T )) does not depend on φ, therefore
Benders decomposition algorithm [1] is a suitable tool for solving (4). To apply the Benders
decomposition algorithm [1] on (4) we must reformulate (4) as min-max programming
problem as follows, which makes the Benders decomposition algorithm applicable on it.

[Msr(X̂)] min
φ∈Φ
{q : Txts −

∑

i∈N
Tφi(

∑

j∈N :(i,j)∈A
τijxij) ≤ q; ∀x ∈ X̂}

[Sub(φ)] max
x
{Txts −

∑

i∈N
Tφi(

∑

j∈N :(i,j)∈A
τijxij) : x ∈ Λ},

where X is the set of all extreme points of feasible region of inner maximization problem
and X̂ is a subset of X which is updated in each iteration by adding a new extreme point.
Note that X̂ starts by X̂ = {0} initially.

Similar to basic Benders decomposition algorithm, the proposed algorithm solves
Sub(φ) in each iteration and updates X̂ by adding a new extreme point and then Msr(X̂)
seeks for the suboptimal φ to improve previous φ by examining all x in updated X̂. Note
that in each iteration Msr(X̂) provides a lower bound and Sub(φ) provides an upper bound
on optimal solution of original problem. The algorithm terminates when upper bound and
lower bound be equivalent. The proposed algorithm superior to basic Benders algorithm
in the sense that it solves no integer programming problem in Msr(X̂) directly and solves
it using an iterative procedure as follows.
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An Iterative and Fully Combinatorial Algorithm

Input: G = (N,A,u, τ , s, t) and T . Output: φ∗ defining the most vital node.

Step 0. UB ← +∞; LB ← −∞; X̂ ← ∅; φ̂← 0; z← −∞|N |.
Step 1. Solve MP(φ̂, T ) to obtain optimal solution x∗(φ̂).

Step 2. X̂ ← X̂ ∪ x∗(φ̂); s← Tx∗ts(φ̂)−∑(i,j)∈A τijx
∗
ij(φ̂).

Step 3. IF s < UB THEN UB ← s and φ∗ ← φ̂.

Step 4. IF UB = LB then STOPφ∗is optimal. ELSE, go to Step 5.

Step 5. For all i ∈ N , IF −Tx∗ij(φ̂) + s > zi THEN zi ← −Tx∗ij(φ̂) + s.

Step 6. Select a node i′ such that zi′ = mini∈N{zi}; LB ← zi′ .

Step 7. IF UB=LB, STOP; i′ is the most vital link. ELSE φ̂← ei′ ; and go to Step 1.

Theorem 3.1. The Step 5 and Step 6 of the algorithm is equivalent with solving mater
problem Msr(X̂)in basic Benders algorithm; that is, Step 5 and Step 6 of the iterative
algorithm solves Msr(X̂) correctly.

Proof. Consider that we are in iteration k and X̂ contains x1,x2, · · · ,xk. After Step 5 of
the algorithm for each ī ∈ N , zī is equal to max{Txts −

∑
i∈N
i 6=i′

Tφi(
∑

j∈N :(i,j)∈A τijxij)−
Tφi′(

∑
j∈N :(i′,j)∈A τi′jxi′j) : xi ∈ X̂}. Step 6 selects node i′ which has minimum value of zi′ ;

Notice that zi′ is minimum value which Txts−
∑

i∈N Tφi(
∑

j∈N :(i,j)∈A τijxij) ≤ zi′ holds for

all xi ∈ X̂. Since Msr(X̂) seeks minimal q∗ such that Txts−
∑

i∈N Tφi(
∑

j∈N :(i,j)∈A τijxij) ≤
q∗ hold for all xi ∈ X̂; this implies that zi′ = q∗.
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Directionally Uniform Distributions and their applications

Erfan Salavati
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Abstract

One of the main properties of the Gaussian distribution is the existence of a mul-
tivariate version which its directional marginals give Gaussian distributions with pre-
scribed covariance. In this article we study the same property for uniform distribution.
We formulate the concept of directionally uniform distributions and then prove that
in dimensions 2 and 3 such distribution exist but in dimensions greater than 3 it does
not exist.

Keywords: Uniform Distribution, Bochner’s Theorem, Characteristic Function, Di-
rectionally Uniform distributions

Mathematics Subject Classification [2010]: 60E05, 60E10

1 Introduction

Among continuous distributions, the normal distribution is probably the most interesting
because of its several useful properties. One of its properties is the existence of the
multivariate Gaussian distribution, which all of its linear combinations are Gaussian. This
property make the Gaussian distribution computationally efficient and can be used to
generate families of normal variables with prescribed mean and covariance.

One could ask if such multivariate version exists for other continuous distributions. In
this article we study this problem for uniform distribution.

In section 2 we define the directionally uniform distribution in Rn. In Theorem 2.2
and 2.4 we prove that this distribution exists only in 2 and 3 dimensions.

We also provide an application of the directionally uniform distribution in R3.

2 Main Results

2.1 Definition

Definition 2.1. By an n dimensional directionally uniform distribution we mean a prob-
ability measure on Rn with the property that its projection on any direction is a uniform
distribution on an interval.

The first problem is the existence of such distributions. We will show that in dimensions
2 and 3 it exists but for n ≥ 4 it does not exist.
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2.2 Dimensions 2 and 3

Theorem 2.2. For n = 2, 3, the directionally uniform distribution on Rn exists.

Proof. It suffices to prove the statement for n = 3, since then the projection of the
distribution on x − y plane would satisfy the condition for n = 2.

For n = 3, let µ be the uniform distribution on the surface of a 3-sphere. We claim
that the projection of µ on any direction is a uniform distribution.

Let x = (x1, x2, x3) be the standard coordinate on R3 and let S2 be the surface of the
unit sphere:

S2 = {x : x2
1 + x2

2 + x2
3 = 1}

Since µ is rotationally invariant, it suffices to prove the claim for just one direction,
say, x1 direction.

Note that µ, the surface measure of S2 can be written in coordinates as

dµ =
1

4πx1
dx2dx3

Let π : R3 → R be the projection π(x) = x1. We show that π∗µ is a uniform
distribution on [−1, 1]. For this, we compute

π∗µ([1 − a, 1]) =

∫

x1∈[1−a,1]
dµ =

1

4π

∫

x1∈[1−a,1]

1

x1
dx2dx3

Now, write the last integral in the polar coordinates for (x2, x3),

=
1

4π

∫

x1∈[1−a,1]

1

x1
rdrdθ =

1

2

∫

x1∈[1−a,1]

rdr

x1

By change of variable r =
√

1 − x2
1,

=
1

2

∫ 1

1−a
dx1 =

a

2

Which shows that π∗µ is uniform on [−1, 1].

2.3 Dimension n ≥ 4

In order to prove the non-existence of directionally uniform distribution for n ≥ 4, we
study some elementary properties of these distributions.

Let µ be a directionally uniform distribution in Rn.

Lemma 2.3. µ has bounded support.

Proof. Let πi for i = 1, . . . , n be the projection on the direction of xi. By definition, π∗µ is
a uniform distribution in some finite interval Ii. Hence µ is supported in I1 ×· · ·× In.
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By lemma 2.3, all of the moments of µ are finite. Hence by translation we can assume
that its mean is zero, i.e

∫
xµ(dx) = 0.

Since the projection of µ on any direction is non-degenerate, hence its covariance
matrix is non-degenerate. So, by applying a linear transformation we may assume that
the covariance matrix of µ is 1

3I, i.e

∫
xxT µ(dx) =

1

3
I

This implies that for any u ∈ Rn,

∫
∥u.x∥2µ(dx) =

1

3
∥u∥2 (1)

Now let X be a random vector with distribution mu. By assumption, u.X is a uniform
distribution with mean zero and by equation (1), it’s variance is 1

3∥u∥2, hence it should
have a uniform distribution on [−∥u∥, ∥u∥].

Now, we can compute the characteristic function of µ,

ϕµ(u) =

∫
eiu.xµ(dx) = E(eiu.X)

Now, note that the characteristic function of uniform distribution on [−a, a] is sin(ta)
ta ,

hence

ϕµ(u) =
sin ∥u∥

∥u∥
We are ready to prove the theorem.

Theorem 2.4. For n ≥ 4, there is no directionally uniform distribution on Rn.

Proof. It suffices to prove the statement for n = 4.
By the above arguments, If a directionally uniform distribution exists, then one can

find a directionally uniform distribution with characteristic function

ϕµ(u) =
sin ∥u∥

∥u∥ , u ∈ R4

We claim that ϕµ(u) is not a positive definite function and hence can not be the
characteristic function of a probability distribution.

Recall the definition of positive definiteness:
A function ϕ : Rn → C is called positive definite if for any u1, . . . , uk ∈ Rn, the

matrix [ϕ(ui − uj)]k×k is positive definite. By Bochner’s theorem [1], ϕ : Rn → C is the
characteristic function of a probability distribution if and only if ϕ(0) = 1, ϕ is continuous
at 0 and ϕ is positive definite. (We actually use the obvious side of Bochner’s theorem.)

To show that sin ∥u∥
∥u∥ is not positive definite on R4, we have implemented a simple MAT-

LAB code which for randomly generated u1, . . . , u20 ∈ R4, computes the least eigenvalue

of the matrix
sin ∥ui−uj∥

∥ui−uj∥ and observed that it is negative. The values of u1, . . . , u20 and

the least eigenvalue are shown in table 1.
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Table 1

u1 2.071661 -1.52947 -0.12509 -0.47156
u2 -0.10042 -0.60975 1.196003 0.872045
u3 0.27824 -0.09717 2.352896 -0.80128
u4 0.157121 -0.21488 -0.44896 -0.34094
u5 -0.70237 0.197078 -0.22346 -0.67959
u6 1.164527 0.91031 2.075903 0.20048
u7 -0.32273 -1.90679 -0.99754 0.153502
u8 -1.02664 2.121854 -0.30072 1.829166
u9 -0.98766 1.928701 1.167703 -0.45846
u10 0.075282 -0.66725 -0.99968 -1.33551
u11 1.050265 1.385223 -0.63016 -0.91293
u12 1.699063 0.042737 -0.5005 0.661253
u13 -0.45907 1.229852 0.112322 -0.15984
u14 -0.42368 -1.02792 1.080404 1.944249
u15 -0.02356 -0.03711 -1.44475 -2.42517
u16 -0.91353 -0.14023 1.773574 0.384946
u17 -1.76742 -0.28037 0.333058 -0.77013
u18 1.171953 -0.36592 0.784256 1.821137
u19 0.39525 0.436417 -0.49054 -1.01394
u20 -0.80148 0.541668 -0.22287 -1.1707

Least eigenvalue -0.1548

3 Application

As an application of the directionally uniform distribution introduced in section 2, we show
how it can be used to generate correlated uniform variables with prescribed covariance
matrix.

Let X be a uniform point on the surface of S2. If X = (X1, X2, X3), then by symmetry,
X1, X2 and X3 have mean zero and covariance matrix 1

3I. Hence, for any 3 × 3 matrix A,
AX will be a random vector with covariance matrix 1

3AAT .

Therefore if we are given a covariance matrix C, we can put A = (3C)
1
2 such that

1
3AAT = C and then AX gives us three uniform variables with covariance matrix C.

4 General Distributions

The method used in proof of theorem 2.4 is a general method that can be used to study
the existence of distributions with given directional marginals.
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Abstract

The focus of this approach is on parameter estimation in multiple regression model
in the presence of multicollinearity and outliers. Some improved ridge M-estimators
are define and their performance is evaluated in a real example.

Keywords: M-Estimator; Multicollinearity; Outliers; Ridge regression; Shrinkage
M-estimator.
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1 Introduction

A traditional linear regression model has form

yn = (y1, . . . , yn)T = Xnβ + εn, εn = (ε1, . . . , εn)T , (1)

where β = (β1, β2, . . . , βp)
T is the vector of unknown (regression) parameters, Xn is an

n× p (design) matrix of known regression constants, n > p ≥ 1, and the εis are errors.
There are four assumptions that must be verified before implementing the model: (i)

linearity and additivity of the relationship between dependent and independent variables,
(ii) statistical independence of the errors, (iii) homoscedasticity, and (iv) normality of
the error distribution. When all of the assumptions are true, the best estimator for

unknown parameter β is the ordinary least squares (OLS) estimator defined as β̂
OLS

n =
(XT

nXn)−1XT
n yn

In real world, we may encounter a data set that doesn’t satisfy one or more of the above
assumptions, resulting on inappropriateness of the OLS method. Sometimes, there exist
highly correlated two or more variables in collection of predictors in a regression setup.
This phenomena is called multicollinearity that has been studied by many researchers
in different aspects. Horel and Kennard [1] introduced the ridge regression approach to
combat multicollinearity, which was already known as Tikhonov regularization. Another
common problem in regression analysis is to take normality assumption for the errors,
when they are not so in practice, like as fat tailed distributions, that can produce outliers.
When outliers exist in the data, the use of robust estimators reduces their effects. When the
regressors are fixed, so only allowing for outliers in the dependent variable (the response),
it is suggested to use M-estimation, which introduced by Huber [2].
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In practice, it may happen that both the multicollinearity and outliers exist simulta-
neously. For this case, in 1991, Silvapull [3] suggested a method that was a combination
of ridge and M-estimation methods.

In some situations it is possible to have some non-sample information usually subjected
to the model as constraints. Our interest is to focus on an estimation problem where
both the multicollinearity and outliers exist and some prior information about unknown
parameters are also available.

Throughout, we may assume that Xn is of rank p, and consider the partitioning (where
p = p1 + p2, p1 ≥ 0, p2 ≥ 0)

β =
( p1 × 1 p2 × 1

βT1 βT2
)

and Xn =
(n× p1 n× p2
Xn1 Xn2

)
, (2)

so that (1) may also be written as

Y n = Xn1β1 +Xn2β2 + εn. (3)

We are interested in the estimation of β1 when it is plausible that β2 is “close to” 0.

2 Main Results

For the global (unrestrained) model in (2), we denote an M-estimator of β by β̃
(M)
n =

(β̃
(M)T
1n , β̃

(M)T
2n )T , so that β̃

(M)
1n is an unrestrained M-estimator (UME) of β1. The UME,

β̃
(M)
n = (β̃

(M)T
1n , β̃

(M)T
2n )T of β is a solution to Mn(b) = 0, where

Mn(b) = (Mn1(b), . . . ,Mnp(b))
T =

n∑

i=1

xiψ(yi − xTi b), XT
n = (x1, . . . ,xn), x, b ∈ Rp.

(4)
and ψ(·) is the score function [2]. We also write Mn(b) = (MT

n1(b1, b2),M
T
n2(b1, b2))

T ,
where for Mn and b, we use the same partitioning as in (2). Let

Cn = XT
nXn =

[
XT
n1Xn1 XT

n1Xn2

XT
n2Xn1 XT

n2Xn2

]
=

[
Cn11 Cn12
Cn21 Cn22

]
, (5)

and assume that there exists a positive definite (p.d.) matrix C, such that as n→∞,

n−1Cn → C =

[
C11 C12

C21 C22

]
, and max

1≤i≤n

{
xTi C

−1
n xi

}
= O

(
n−

1
2

)
= o(1). (6)

For the restrained model Xn = Xn1β1 + εn (i.e. β2 = 0), let β̂
(M)

1n be the corresponding
M-estimator of β1; This estimator is termed a restrained M-estimator (RME) of β1 and
it is a solution to Mn(1)(b1,0) = 0. Following Singer and Sen [4], we can rewrite the
restricted estimator as

β̂
(M)

1n = β̃
(M)
1n + C−1n11Cn12β̃

(M)
2n . (7)

This RME generally performs better than the UME when β2 is 0 (or very close to 0). Often
to incorporate uncertain prior information on β2 in the estimation of β1, a suitable (M-)
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test statistics (for testing H0 : β2 = 0) is taken into consideration. In a preliminary test

M-estimation (PTME) formulation, the β̂
(M)PT

1n is chosen as the RME or UME, according
as the preliminary test leads to the acceptance or rejection of H0.

For the PTME and SME, we need to introduce a suitable (M-) test statistic for testing
the null hypothesis H0 : β2 = 0. Toward this, we proceed as in Singer and Sen [4] let

M̂n(2) = Mn(2)(β̂
(M)

1n ,0),

S2
n = n−1

n∑

i=1

ψ2
(
Yi − xTi(1)β̂1n

)
, xTi = (xTi(1),x

T
i(2)), i ≥ 1,

Cnrr.s = Cnrr − CnrsC−1nssCnsr, for r 6= s = 1, 2. (8)

Then, an appropriate (aligned M-) test statistic is

T (M)
n = S−2n

{
M̂

T
n(2)Cn22.1M̂n(2)

}
. (9)

Under H0, T
(M)
n has asymptotically the chi-square distribution function with p2 degrees

of freedom (d.f.) where p2 ≥ 1. The PTME is then defined by

β̂
(M)PT

1n = β̃
(M)
1n I

(
T (M)
n ≥ χ2

p2,α

)
+ β̂

(M)

1n I
(
T (M)
n < χ2

p2,α

)
, (10)

where I(A) stands for the indicator function of the set A.
The Shrinkage M-estimatior (SME), based on the usual James-Stein [5] rule, incorpo-

rates the same test statistic in a smoother manner. It is defined as

β̂
(M)S

1n = β̃
(M)
1n − (p2 − 2)[T (M)

n ]−1(β̃
(M)
1n − β̂

(M)

1n ). (11)

We also consider the following positive-rule SME:

β̂
(M)S(+)

1n = β̂
(M)S

1n − (1− (p2 − 2)[T (M)
n ]−1)I(T (M)

n < p2 − 2)(β̃
(M)
1n − β̂

(M)

1n ), (12)

where a+ is equal to a∨ 0. For more details about these estimators, see Sen and Saleh [6].

2.1 Ridge M-Regression

Following Hoerl and Kennard [1], we define a Rn(k) matrix as analogy to ordinary ridge
regression as (Ip1 + kC−111.2)

−1 that it satisfied in the following equation.

lim
n→∞

Rn(k) = [Ip + kCn11]
−1 = [Ip + kC11]

−1 = R(k). (13)

We define the unrestricted RR M-estimator (URRME), restricted RR M-estimator (RRRME),
preliminary test RR M-estimator (PTRRME), shrinkage RR M-estimator (SRRME) and
the positive rule RR M-estimator (PRRRME) are, respectively, as follows:

β̃
(M)
1n (k) = Rn(k)β̃

(M)
1n , β̂

(M)

1n (k) = Rn(k)β̂
(M)

1n , β̂
(M)PT

1n (k) = Rn(k)β̂
(M)PT

1n ,

β̂
(M)S

1n (k) = Rn(k)β̂
(M)S

1n , β̂
(M)S+

1n (k) = Rn(k)β̂
(M)S+

1n . (14)

Since for β2 the pivot is taken as 0, we consider a shrinkage neighborhood of 0 and toward
this, we consider the sequence {Kn} of alternative, where

K(n) : β2 = β2(n) = n−
1
2 ξ, ξ = (ξp1+1, . . . , ξp)

T ∈ Rp2 , (15)

so that the null hypothesis H0 reduces to H0 : ξ = 0.
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Table 1: Average prediction errors and standard deviations

URRME RRRMRE PTRRME SRRME PRRRME
mean 328.2775 325.9454 328.2774 328.2768 328.2765
sd 561.3188 577.2734 577.2734 577.2711 577.2711

3 Application

To evaluate the performance of various estimators, a real 10-factor data set of Gorman
and Toman [7] is used. This data set is taken from routine operation for a petroleum
refining unit. The first column of this data is the response on the log scale, the remaining
columns are the predictors. This data contains 36 observations. The variance inflation
factor (VIF) values for this data are 56.27, 354.92, 68.55, 20.07, 216.68, 120.04, 899.31,
8.65, 2.051, and 8.14. It reveals severe multicollinearity problem. Also, the Bonfroni test
for identifying outliers is done. The result of Bonferonni probabilty (0.50703) shows the
existences of outliers.

The performance of the estimators are evaluated using average 10-fold cross validation
error. Prediction error, as a squared version of difference between the observed and pre-
dicted values of the response variable, is used to evaluate the performance of estimators.
Table 1 shows the average and standard deviation of the prediction errors for 1000 rep-
etition of the process. It can be seen that the new estimator PRRRME performs better
than others.
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Abstract

In this paper, the interval estimation is discussed for a general class of exponential
type distributions which includes several well-known lifetime models such as exponen-
tial, Burr XII, Weibull, Pareto and Rayleigh. A numerical example is presented to
illustrate the proposed interval estimates.

Keywords: Exponential distribution, Interval estimation, Joint confidence region.

Mathematics Subject Classification [2010]: 62F25, 62E15.

1 Introduction

The most common censoring schemes are Type-I and Type-II censoring. In the con-
ventional Type-I and Type-II censoring schemes, we are not allowed to remove units at
points other than the terminal point of the experiment. Type-II progressive censoring
scheme is a more general censoring which allows for removal of units at points other than
the terminal point of the experiment. The progressive Type-II censoring, after start-
ing the life-testing experiment with n units, arises as follows. Immediately following
the first failure, R1 surviving units are removed from the test at random. Then, im-
mediately following the second failure, R2 surviving units are removed from the test at
random. This process continues until, at the time of the m-th failure, all the remaining
Rm = n − R1 − R2 − · · · − Rm−1 −m units are removed from the experiment. Here, the
Ri’s are fixed prior to study. If R1 = R2 = · · · = Rm = 0, then n = m which corresponds
to the complete sample situation. If R1 = R2 = · · · = Rm−1 = 0, we have Rm = n −m
which corresponds to the conventional Type-II right censoring scheme. For more details,
see [1] and [2].

Let us consider the continuous random variable X with cumulative distribution func-
tion (cdf) and probability density function (pdf) given by

F (x;β, θ) = 1− exp{−βQ(x; θ)}, 0 < x <∞, (1)

and

f(x;β, θ) = βq(x; θ) exp{−βQ(x; θ)}, (2)
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where β and θ are the model parameters, Q(x; θ) is increasing in x with Q(0; θ) = 0 and
Q(∞; θ) = ∞, and q(x, θ) = ∂

∂xQ(x, θ) > 0. This family is a general class of exponential
type distributions and is useful in estimating the survival function for right censored data.
It includes several well-known lifetime models such as exponential, Burr type XII, Weibull,
Pareto, Rayleigh and so on.

Suppose X1:m:n, · · · , Xm:m:n be a progressive Type-II censored sample from the above
family with censored scheme R1, · · · , Rm. Here a 100(1− α)% confidence interval for θ is
constructed. Further, we present an exact joint confidence region for (β, θ).

2 Main Results

For i = 1, ...,m, let us define Yi:m:n = − ln[1 − F (Xi:m:n;β, θ)] = β Q(Xi:m:n; θ). Then,
it can be shown that Y1:m:n, · · · , Ym:m:n are the progressive Type-II censored sample from
a standard exponential distribution. For notation simplicity, let us write Xi for Xi:m:n.
If we define Z1 = nY1, Z2 = (n − R1 − 1)(Y2 − Y1), · · · , Zm = (n − R1 − ... − Rm−1 −
(m− 1))(Ym−Ym−1), then Z1, Z2, ..., Zm are independent and identically distributed (iid)
EXP(1) random variables (see [1]). Hence

V = 2Z1 = 2nY1 ∼ χ2
(2), and U = 2

m∑

i=2

Zi = 2

[
m∑

i=1

(1 +Ri)Yi − nY1
]
∼ χ2

(2m−2),

and U and V are independent. Let us define

T1 =
U/(2m− 2)

V/2
=

1

m− 1

[∑m
i=1(1 +Ri)Yi − nY1

nY1

]
∼ F(2m−2,2),

and

T2 = U + V = 2
m∑

i=1

(1 +Ri)Yi ∼ χ2
(2m).

So, we have

T1 =
1

m− 1

[∑m
i=1(1 +Ri)Q(xi, θ)− nQ(x1, θ)

nQ(x1, θ)

]
∼ F(2m−2,2),

and

T2 = 2β
m∑

i=1

(1 +Ri)Q(xi, θ) ∼ χ2
(2m).

It is clear that T1 and T2 are independent. Also, based on Lemma 1 in [4], T1 is an
increasing function of θ. Therefore, we can construct a confidence interval for θ and
a joint confidence region for (θ, β). An exact confidence interval for θ is given in the
following theorem.

Theorem 2.1. Suppose that X1, · · · , Xm is a progressively Type-II censored sample from
the family in (1). Then, for any 0 < α < 1, the interval

(
ϕ[x1, ..., xm, F(2(m−1),2)(1−

α

2
)], ϕ[x1, ..., xm, F(2(m−1),2)(

α

2
)]
)
,
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is a 100(1 − α)% confidence interval for θ, where ϕ(x1, ..., xm, t) is the solution of θ for
the equation

1

m− 1

[∑m
i=1(1 +Ri)Q(xi, θ)− nQ(x1, θ)

nQ(x1, θ)

]
= t.

An exact joint confidence region for (β, θ) is given in the following theorem.

Theorem 2.2. Suppose that X1, · · · , Xm is a progressively Type-II censored sample from
the family in (1). Then, the following inequalities determine a 100(1−α)% joint confidence
region for (β, θ):

ϕ(x1, ..., xm, F(2(m−1),2)(
1 +
√

1− α
2

)) < θ < ϕ(x1, ..., xm, F(2(m−1),2)(
1−
√

1− α
2

)),

χ2
(2m)(

1+
√
1−α
2 )

2
∑m

i=1(1 +Ri)Q(xi, θ)
< β <

χ2
(2m)(

1−√1−α
2 )

2
∑m

i=1(1 +Ri)Q(xi, θ)
,

where ϕ(x1, ..., xm, t) is the solution of θ for following equation

1

m− 1

[∑m
i=1(1 +Ri)Q(xi, θ)− nQ(x1, θ)

nQ(x1, θ)

]
= t.

3 Example

Here we use a special case of the model (1) with Q(x, θ) = ln(1 + xθ), which corresponds
to the Burr XII model with cdf F (x, β, θ) = 1− (1 + xθ)β, x > 0, β > 0, θ > 0. We apply
the proposed estimation methods to the real data set reported in [3]. Data are the time to
breakdown of an insulating fluid in an accelerated life test conducted at a voltage of 34 kV.
Zimmer et. al. [5] indicated that the Burr type XII distribution is acceptable for these
data. A progressively Type II censored sample of size m = 8 was randomly generated
from these observations. The censoring scheme and corresponding observed sample are
presented in Table 1.

Table 1: Progressively Type-II censored sample generated from the times to breakdown
data.

i 1 2 3 4 5 6 7 8

xi 0.19 0.78 0.96 1.31 2.78 4.85 6.50 7.35

Ri 0 0 3 0 3 0 0 5

By Theorem 2.1 and using the S-PLUS package, the 95% confidence interval for θ is
(0.44791, 2.717365) with length 2.26946. By Theorem 2.2 and by solving non-linear equa-
tion, we obtain the following 95% joint confidence region for β and θ:

0.38777 < θ < 3.06367,

8.57797

2
∑m

i=1(1 +Ri) ln(1 + xθi )
< β <

36.70271

2
∑m

i=1(1 +Ri) ln(1 + xθi )
.
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The area of above joint confidence region for β and θ is 1.10082. Figure 1 shows the shape
of the 95% joint confidence region for β and θ.

Figure 1: The 95% joint confidence region.
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Abstract

In this paper a generalized matrix gamma distribution including generalized hyper-
geometric function and zonal polynomials is introduced. Some important statistical
characteristics such as the Laplace transformation and expectation of determinant are
given.

Keywords: Generalized hypergeometric function, Matrix variate hypergeometric
gamma distribution, Multivariate gamma function, Zonal polynomials.
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The inverted matrix variate gamma (IMG) distribution, which is the distribution of
the inverse of the gamma matrix (GM), is the generalized form of the inverted Wishart
(IW) distribution. It can be found in Iranmanesh et al.(2013). It is well known and well
documented that the IW and IMG distributions have many applications in inferential
problems concerning the covariance matrix. In Bayesian analysis they are used as the
conjugate prior for the covariance matrix of a multivariate normal distribution. recently
Nagar et al. (2013) defined an extended matrix variate gamma distribution by extending
the multivariate gamma function.
In the present article, an attempt has been made to give a generalized definition of MG and
IMG distribution including generalized hypergeometric function and zonal polynomials
and study some of their properties.

1 Introduction

Definition 1.1. The multivariate gamma function, denoted by Γm(a) is defined

Γm(a) =

∫

X>0
etr(−X)(detX)a− (m+1)

2 d X,

= πm(m−1)/4
m∏

j=1

Γ

(
a − j − 1

2

)
, (1)

where Re(a) > m−1
2 , etr(.) ≡ exp tr(.) and X(m × m) > 0 is a m × m positive definite

matrix. The integral is over the space of positive definite (and hence symmetric) m × m
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matrices.See Gupta and Nagar(2000) and Muirhead(1982). A more generalized integral
representation of the multivariate gamma function can be obtained as

Γm(a) = det(Y )a

∫

R>0
etr(−Y R) det(R)a− (m+1)

2 d R. (2)

where Re(a) > m−1
2 and Re(Y ) > m−1

2 .

The above result can be stablished for real Y > 0 by substituing X = Y 1/2RY 1/2

with the jacobian J(X → Y ) = det(Y )
(m+1)

in (1), see Mathai(1997).

Definition 1.2. The generalized hypergeometric function of one matrix, defined in con-
stantine(1963), is given by

pFq(a1, ..., ap; b1, ..., bq; X) =

∞∑

k=0

∑

κ

(a1)κ...(ap)κ

(b1)κ...(bp)κ

Cκ(X)

k!
, (3)

where ai, i = 1, ..., p, bj , j = 1, ..., q are arbitrary complex numbers; X(m×m) is a complex
symmetric matrix; Cκ(X) is the zonal polynomial of complex symmetric matrix X(m×m)
corresponding to the ordered partition κ = (k1, ..., km), k1 ≥ ... ≥ km ≥ 0, k1+ ...+km = k.
The generalized hypergeometric coefficient (a)κ used above is defined by

(a)κ =

m∏

i=1

(
a − i − 1

2

)

ki

, (4)

where (a)k = a(a + 1)...(a + k − 1), r = 1, 2, ... with (a)0 = 1.

due to Dia’z Garcia (2009) assume p ≤ q; for Re(a) > m−1
2 , we have

∫

X>0
etr(−XZ) pFq(a1, ..., ap; b1, ..., bq; XU) det(X)α− (m+1)

2 d X

= det(Z)−α
p+1Fq(a1, ..., ap; b1, ..., bq; UZ−1). (5)

Definition 1.3. A random matrix X of order m is said to have a matrix hypergeometric
gamma (MHG) distribution with parameters α, β, Σ and U denoted by
X ∼ MHG(α, β,Σ,U), if its density function is given by

f(X) =
det(Σ)−α

βαpΓp(α) p+1Fq(a1, ..., ap; b1, ..., bq; UβΣ)
etr

(
− 1

β
Σ−1X

)

×det(X)α−(m+1)/2
pFq(a1, ..., ap; b1, ..., bq;XU). (6)

special cases
1. For β = 1 and Σ = I ,the distribution of (6) reduces to the matrix gamma distribution
proposed by Roux (1971).
2. For U = 0 the distribution of (6) reduces to the MG distribution introdused by
Iranmanesh et al.(2013).
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Theorem 1.4. Let X ∼ MHG(α, β,Σ, U). Then Y = X−1 has inverse MHG (IMHG)
distribution denoted by Y ∼ IMHGp(α, β,Σ, U) with the following density function

f(Y ) =
det(Σ)−α

βαpΓp(α) p+1Fq(a1, ..., ap; b1, ..., bq;UβΣ)
etr

(
− 1

β
Σ−1X−1

)

×det(Y )−α−(m+1)/2
pFq(a1, ..., ap; b1, ..., bq;Y

−1U), Y > 0. (7)

Proof. The proof follows from the fact that the Jacobian of transformation is given by
J(X → Y ) = det(Y )−(m+1).

2 Main results

In this section, various properties of the MHG and IMHG distributions are derived.

Theorem 2.1. Let X ∼ MHG(α, β,Σ,U). Then the Laplace transformation of X is

φX(T ) =
p+1Fq(a1, ..., ap; b1, ..., bq; U(T + 1

βΣ−1)−1)

p+1Fq(a1, ..., ap; b1, ..., bq; UβΣ)
det(Ip + βΣT )−α, (8)

where T is a m × m matrix.

Theorem 2.2. Let X ∼ MHG(α, β,Σ, U). Then

E(det(X)h) =
Γp(α + h)

Γp(α)
βhp det(Σ)h.

Theorem 2.3. Let X1 and X2 be independent, X1 ∼ MHG(α1, β,Σ, U) and

X2 ∼ MGp(α2, β,Σ). Then the p.d.f of Z = X
−1/2
2 X1X

−1/2
2 is given by

f(Z) =
det(Z)α1− m+1

2 det(Z + Im)−(α1+α2)

Γm(α1)Γm(α2)

×p+1Fq(a1, ..., ap; b1, ..., bq;ZUβ(Z + Im)−1Σ)

p+1Fq(a1, ..., ap; b1, ..., bq; UβΣ)
. (9)

Theorem 2.4. Let Y ∼ IMHG(α, κ,Σ, U). Then

E(det(Y )h) =
Γp(α − h)

Γp(α)
det(Σ)−hβ−hp.

Theorem 2.5. Let Y ∼ IMHG(α, β,Σ, U) and A(m × m) be a constant symmetric
matrix. Then

AWA′ ∼ IMHGp(α, β, A′−1
ΣA−1, AUA′).
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Preliminary test shrinkage estimator in the exponential

distribution under progressively Type-II censoring
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Abstract

In this paper and based on progressively Type-II censored samples, we propose
the preliminary test shrinkage estimation (SPTE) for the unknown parameter of the
exponential distribution. It is shown that the proposed estimator dominates the cor-
responding classical estimators in the neighborhood of null hypothesis.

Keywords: Exponential distribution; MSE; Preliminary test shrinkage estimation;
Progressively Type-II censoring, Relative efficiency.

Mathematics Subject Classification [2010]: 62F03, 62F10, 62F30

1 Introduction

The progressive Type-II censoring, after starting the life-testing experiment with n units
can be described as follows: n units are put on life test at time 0. Immediately following the
first failure, R1 surviving units are removed from the test at random. Then, immediately
following the second failure, R2 surviving units are removed from the test at random.
This process continues until, at the time of the m-th failure, all the remaining Rm =
n − R1 − R2 − ... − Rm−1 − m units are removed from the experiment. The Ri’s are fixed
prior to study. If R1 = R2 = ... = Rm = 0, we have n = m which corresponds to the
complete sample situation. If R1 = R2 = ... = Rm−1 = 0, then Rm = n − m which
corresponds to the conventional Type-II right censoring scheme. For more details, see
Balakrishnan and Aggarwala (2000).

Based on complete, censored and record data, the preliminary test and preliminary test
shrinkage estimators have been discussed by some authors in exponential distribution . See
for example, Baklizi (2010) and Golam Kibria and Saleh (2010). But these estimators have
not been discussed in the literature based on progressively type-II censored data. In this
paper, we consider the preliminary test shrinkage estimator for the unknown parameter
of the exponential distribution under progressively Type-II censoring.
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2 Main results

Let X1:m:n = X1, · · · , Xm:m:n = Xm be a progressively Type-II censored sample from the
exponential distribution with the probability density function (pdf)

f(x) =
1

θ
e− x

θ , x > 0, θ > 0. (1)

The maximum likelihood estimator (MLE) and the best linear unbiased estimator (BLUE)
of θ is (see Balakrishnan and Aggarwala, 2000)

θ̂ =

∑m
i=1(Ri + 1)Xi

m
. (2)

Further, using the property of spacings, it can be shown that (see Balakrishnan and
Aggarwala, 2000)

T =
2mθ̂

θ
=

2
∑m

i=1(Ri + 1)Xi

θ
∼ χ2

2m.

Now, let 1 − α = F2m(c2) − F2m(c1), where F2m(.) stands for the χ2 cdf with 2m
degrees of freedom, 1−α/2 = F2m(c2) and α/2 = F2m(c1) where c1 and c2 are the critical
values from the chi-square distribution with 2m degrees of freedom. Our aim is to obtain
a preliminary test shrinkage estimator of θ, when a priori suspected θ = θ0 is available.
Often the information on the value of θ is available from knowledge or previous experiment.
This non-sample prior information can be expressed in the form of following test of the
hypothesis

H0 : θ = θ0, vs. Ha : θ ̸= θ0.

Now we will choose θ̂ or θ0 based on the rejection of H0 or do not reject of H0. The
preliminary test (PT) estimator of θ denoted by , θ̂PT , is defined as follows: θ̂PT = θ0 if
we do not reject H0 and θ̂PT = θ̂ if we reject H0. By likelihood ratio test, we reject H0

when χ2
(2m) ∈ Ā, where

A = {T : c1 < T < c2} , c1 = χ2
α/2,(2m), c2 = χ2

1−α/2,(2m).

For 0 ≤ k ≤ 1, the preliminary test shrinkage (PTS) estimator of θ is defined by (see
Baklizi, 2010)

θ̂PTS = θ̂(1 − I(A)) + [kθ̂ + (1 − k)θ0]I(A). (3)

For k = 0, this estimator reduces to the preliminary test estimator (PTE)

θ̂PTE = θ̂(1 − I(A)) + θ0I(A). (4)

Notice that

E(I(A)) = P (c1 < T < c2) = 1 − α.
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2.1 Comparison of PTS estimator and usual estimator

The MSE of the MLE is

MSE(θ̂) = var(θ̂) =
θ2

m
. (5)

Now, let us define λ = θ0
θ . The MSE of the PTS estimator can be shown to be

MSE(θ̂PTS) =
θ2

m
+

θ2
0(m + 1)(k2 − 1)

mλ2
{F2m+4(c2) − F2m+4(c1)}

− 2λθ2(k2 − k){F2m+2(c2) − F2m+2(c1)} + θ2[(1 − k)λ2 − 2λ](1 − k)(1 − α)

+ 2(1 − k)θ2{F2m+2(c2) − F2m+2(c1)} (6)

Now, the relative efficiency of θ̂PTS compare to θ̂ is

RE(θ̂PTS , θ̂) =
MSE(θ̂)

MSE(θ̂PTS)

= [1 + (m + 1)(k2 − 1){F2m+4(c2) − F2m+4(c1)}
− 2mλ(k2 − k){F2m+2(c2) − F2m+2(c1)}
+ m(1 − k)(1 − α){(1 − k)λ2 − 2λ}
+ 2m(1 − k){F2m+2(c2) − F2m+2(c1)}]−1. (7)

Figure 1 shows several relative efficiency graphs for various values of m. From this Figure,
we can see that the θ̂PTS dominates the usual estimator θ̂ in the neighborhood of the null
hypothesis. Table 1 presents the range of λ for which θ̂PTS dominates θ̂ for k = 0.5 and
different m and α. From the table, it is also evident that the proposed PTS estimator
dominates the usual estimator near the null hypothesis.
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Figure 1: Relative efficiency of θ̂PTS for different values of m

3 Numerical example

Here we consider the progressively type-II censored data reported in Viveros and Balakr-
ishnan (1994). Data present the results of a life-test experiment in which specimens of a
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Table 1: Range of λ for which θ̂PTS dominates θ̂ for k = 0.5 and different m , α

m α = 0.01 α = 0.05 α = 0.1

5 [0.425,1.623] [0.352,1.679] [0.265,1.743]
10 [0.584,1.440] [0.534,1.481] [0.477,1.527]
20 [0.702,1.310] [0.668,1.339] [0.629,1.372]
30 [0.755,1.252] [0.727,1.277] [0.697,1.304]

type of electrical insulating fluid were subject to a constant voltage stress(34 KV /min-
utes). The observations and the censoring scheme applied, are reported in Table 2. For

Table 2: Progressively censored data given in the Example.

i 1 2 3 4 5 6 7 8

Xi 0.19 0.78 0.96 1.31 2.78 4.85 6.50 7.35
Ri 0 0 3 0 3 0 0 5

the progressively censored data reported in Table 2, the MLE of θ is θ̂ = 14.258. Let us
now consider the estimation of θ, when the prior guess is θ0 = 7. Therefore, we want to
test H0 : θ = 7, vs. H1 : θ ̸= 7. The value of the test statistic is

T0 =
2mθ̂

θ0
=

2(16)(14.258)

7
= 32.589

Since T0 /∈ (χ2
2m,α/2, χ

2
2m,1−α/2) = (6.907, 28.845), the preliminary test rejects the null

hypothesis that θ = 7, hence the preliminary test shrinkage estimation θ̂PTS is equal to
the MLE. If we consider the prior guess as θ0 = 14, then since T0 = 2(16)(14.258)

14 = 16.294 ∈
(6.907, 28.845), the null hypothesis is not rejected by the preliminary test. In this case,
the PTS estimator for θ is θ̂PTS = 14.129.
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Abstract

The traditional estimation of mixture regression models is based on the normal
assumption of component errors and thus is sensitive to outliers or heavy-tailed errors.
A robust mixture regression model based on the slash distribution by extending the
mixture of slash distributions to the regression setting is proposed. Using the fact
that the slash distribution can be written as a scale mixture of a normal and a latent
distribution, this procedure is implemented by an EM algorithm. Finally, the proposed
method is compared with other procedures, based on a real data set.

Keywords: EM algorithm, Normal mixture regression, Outliers
Mathematics Subject Classification [2010]: 62J05, 62F35

1 Introduction

Mixture regression models (MRM) are well known as switching regression models in the
econometrics literature, which were introduced by Goldfeld and Quandt [4]. These mod-
els have been widely used to investigate the relationship between variables coming from
several unknown latent homogeneous groups and applied in many fields, such as business,
marketing, and social sciences.

In general, a normal mixture regression model (N − MRM) is defined as: let Z be a
latent class variable such that given Z = j, the response y depends on the p-dimensional
predictor x in a linear way

Y = x⊤βj + ǫj, j = 1, . . . ,m, (1)

where m is the number of groups (also called components in mixture models) in the
population, the βj are unknown p-dimensional vectors of regression coefficients and ǫj ∼
N(0, σ2

j ) is independent of x. Suppose P (Z = j) = πj and Z is independent of x, then
the conditional density of Y given x, without observing Z, is
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ψ(y;x, δ) =
m∑

j=1

πjφ(y;x⊤βj , σ
2
j ), (2)

where φ(·;µ, σ2) is the density function of N(µ, σ2) and δ = (δ⊤
1 , . . . , δ

⊤
m)⊤ with δj =

(πj,β
⊤
j , σ

2
j )

⊤.
The MLE δ in (2) works well when the error distribution is normal. However, the

normality based MLE is sensitive to outliers or heavy-tailed error distributions. Markatou
[2] proposed using a weight factor for each data point to robustify the estimation procedure
for mixture regression models. Neykov et al. [3] proposed robust fitting of mixtures using
the trimmed likelihood estimator.

In this article, we propose a robust mixture regression model based on slash distribution
by extending the mixture of slash distribution to the regression setting. In Section 2,
we present the slash-MRM, including the EM algorithm for maximum likelihood (ML)
estimation. Finally, a real example is given to illustrate the performance of the proposed
method.

2 The proposed model

In order to more robustly estimate the mixture regression parameters, we assume that
the error density function in (1) is a slash distribution with parameter qj > 0 and scale
parameter σj > 0:

f(ǫj;σj , qj) =
qj
σj

∫ 1

0
uqjφ

(
uǫj
σj

; 0, 1

)
du, ǫj ∈ R, j = 1, . . . ,m.

The mixture regression model with slash distribution can be formulated in a similar way
to the model defined in (2) as follows:

g(y;x,Θ) =
m∑

j=1

πjf(y − x⊤βj ;σj , qj),

where f(·;σ, q) is the density function of the slash distribution and Θ = (θ⊤
1 , . . . ,θ

⊤
m)⊤

with θj = (πj,β
⊤
j , σj , qj)

⊤.

2.1 Maximum likelihood estimation via EM algorithm

In this subsection, we present an EM algorithm for the ML estimation of the mixture
regression model with slash distribution. For j = 1, . . . ,m, and i = 1, . . . , n, denote Zij

as latent Bernoulli variables such that

zij =

{
1, if the ith observation is from the jth component,
0, otherwise.

If the complete data set T = {(xi, yi, zij); i = 1, . . . , n, j = 1, . . . ,m} is observable, the
complete log likelihood function of Θ can be written as

ℓ(Θ;T) =

n∑

i=1

m∑

j=1

zij log
{
πjf

(
yi − x⊤

i βj ;σj, qj

)}
.

Note that the above maximizer does not have explicit solutions for β⊤
j , σj and qj . The

computation can be further simplified based on the fact that the slash distribution can be
considered a scale mixture of normal distributions. Let u be the latent variable such that
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ǫ|u ∼ N(0, σ2/u2), u ∼ Beta(q, 1),

where Beta(α, β) has density f(u;α, β) = b(α, β)uα−1(1 − u)β−1, 0 < u < 1, where
b(α, β) is the Beta function. Then, marginally ǫ has a slash distribution with parameter
q and scale parameter σ. Therefore, we can simplify the computation of M step of the
proposed EM algorithm by introducing another latent variable u. Therefore, the complete
log likelihood function for (u,T) is

ℓc(Θ;T,u) =

n∑

i=1

m∑

j=1

zij log πj +

n∑

i=1

m∑

j=1

zij log(qj) +

n∑

i=1

m∑

j=1

zij(qj − 1) log(ui)

+

n∑

i=1

m∑

j=1

zij

{
−1

2
log(2πσ2

j ) + log(ui) − u2
i

2σ2
j

(
yi − xT

i βj

)2
}
,

where u = (u1, . . . , un) is independent of z = (z11, . . . , znm).
Based on the EM algorithm principle, in E-step on the (k + 1)th iteration, we need

to calculate the conditional expectation of the log-likelihood function of complete data,
which is E

(
ℓc(Θ;T,u)|y,X,Θ(k)

)
. Based on the above argument, the E-step requires

the calculations of p
(k+1)
ij = E

(
Zij |y,X,Θ(k)

)
, u

(k+1)
ij = E

(
U2

i |y,X, zij = 1,Θ(k)
)

and

l
(k+1)
ij = E

(
log(Ui)|y,X, zij = 1,Θ(k)

)
. Thus, the EM algorithm can be written as:

(1) Choose some initial value Θ(0) = (π
(0)
1 ,β

(0)
1 , σ

(0)
1 , q

(0)
1 , . . . , π

(0)
m ,β

(0)
m , σ

(0)
m , q

(0)
m )⊤.

(2) E-step: On the (k + 1)th iteration, according to Bayes theorem, we can compute
conditional expectations as follows:

p
(k+1)
ij =

π
(k)
j f(yi − x⊤

i β
(k)
j ;σ

(k)
j , q

(k)
j )

m∑
l=1

π
(k)
l f(yi − x⊤

i β
(k)
l ;σ

(k)
l , q

(k)
l )

, l
(k+1)
ij =

∫ 1

0

qju
qj

i log(ui)e
− u2

i (yi−x⊤
i βj)2

2σ2
j

σj

√
2πf(yi − x⊤

i βj;σj , qj)
dui,

and

u
(k+1)
ij =





qj2
qj
2

(
(yi−x⊤

i βj)2

σ2
j

)−
qj+3

2

σj
√

πf(yi−x⊤
i βj ;σj ,qj)

Γ
(

qj+3
2

)
G

(
(yi−x⊤

i βj)2

2σ2
j

;
qj+3

2 , 1

)
, if yi − x⊤

i βj 6= 0,

qj

qj+3
1

σj

√
2πf(0;σj ,qj)

, if yi − x⊤
i βj = 0,

where Γ(·) and G(·; r, 1) are the complete gamma function and the cdf of the gamma
distribution with parameters shape r and scale 1, respectively.

(3) M-step: On the (k+ 1)th iteration, compute the estimator of parameters which max-
imize the expected complete log-likelihood. The estimators can be written as:

π
(k+1)
j =

n∑

i=1

p
(k+1)
ij

n
, β

(k+1)
j =

(
n∑

i=1

xix
⊤
i p

(k+1)
ij u

(k+1)
ij

)−1( n∑

i=1

xiyip
(k+1)
ij u

(k+1)
ij

)
,

σ
(k+1)
j =





n∑
i=1

p
(k+1)
ij u

(k+1)
ij (yi − x⊤

i β
(k+1)
j )2

n∑
i=1

p
(k+1)
ij





1/2

, and q
(k+1)
j = −

n∑
i=1

p
(k+1)
ij

n∑
i=1

p
(k+1)
ij l

(k+1)
ij

.
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(4) Repeat the E-step and M-step until the convergence is obtained. One stopping rule
we can choose is to stop the iteration when the change of the likelihood value is
smaller than 106 or runs are more than 500.

3 A real example

We illustrate our proposed methods with a data set obtained from Cohen [1], representing
the perception of musical tones by musicians. In The experiment recorded 150 trials from
the same musician. The overtones were determined by a stretching ratio, which is the ratio
between adjusted tone and the fundamental tone. The purpose of this experiment was
to see how this tuning ratio affects the perception of the tone and to determine whether
either of two musical perception theories was reasonable.

These data were analyzed recently by Yao et al. [5], leading them to propose a robust
mixture regression using the t-distribution. Now we revisit this data set with the aim
of expanding the inferential results to the slash distribution. Table 1 present the ML
estimates of the parameters from the normal, t and slash models. For comparing purposes
of various models, we used Akaike (AIC) and Bayesian (BIC) information criteria.

Table 1: Fitted various models on the tone perception data set.

Model β̂01 β̂11 β̂02 β̂12 σ̂1 σ̂2 q̂1 q̂2 π̂ ℓ̂ AIC BIC
Normal -0.039 1.008 1.892 0.056 0.084 0.084 - - 0.325 107.257 -200.513 -179.439
t 0.006 0.998 1.978 0.017 0.011 0.011 1 1 0.485 202.804 -387.608 -360.513
Slash 0.003 0.999 1.954 0.029 0.002 0.020 0.569 1.455 0.443 229.436 -440.871 -413.776

From Table 1, it appears that the slash model present a better fit than all other models.
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Abstract

Sequential order statistics (SOS) coming from non-homogeneous exponential dis-
tributions are considered in this paper. The generalized likelihood ratio (GLRT) and
the Bayesian tests are derived for testing homogeneity of the exponential populations.
It is shown that the GLRT in this case is also scale invariant. The maximum likelihood
and the Bayesian estimates of parameters are derived on the basis of observed SOS
samples. Explicit expression for SOS-based Bayes factor (BF) are derived.

Keywords: Bayes, GLRT, Sequential order statistics, Estimation
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1 Introduction

Let X1, · · · , Xn be independent and identically distributed (i.i.d.) random variables with

a common distribution function (DF), say F , and denoted by X1, · · · , Xn
i.i.d.∼ F . Denote

in magnitude order of X1, · · · , Xn by X1:n ≤ · · · ≤ Xn:n, which are called order statistics
(OSs). In engineering system reliability analyses, lifetimes of r-out-of-n systems, say T ,
coincide to Xr:n in which X1, · · · , Xn stand for component lifetimes. When the component

lifetimes X1, · · · , Xn
i.i.d.∼ F , the OSs are used for describing the system lifetime. Notice

that failing a component does not change here the lifetimes of the surviving components.
Motivated by Cramer and Kamps [1], the failure of a component may result in a higher
load on the surviving components and hence causes the lifetime distributions change. In
these cases, the system lifetimes may be adequate to model by the concept of sequential
order statistics (SOSs) as an extension of OSs. Cramer and Kamps [1] considered the
problem of estimating the parameters on the basis of s independent SOSs samples under
a conditional proportional hazard rates (CPHR) model, defined by F̄j(t) = F̄

αj

0 (t) for
j = 1, · · · , r, where the underlying CDF F0(t) is the exponential distribution, i.e.

F0(x; σ) = 1 − exp
{

−
(x

σ

)}
, x > 0, σ > 0. (1)

This paper develops testing Statistical Hypothesis for homogeneity of the exponential
populations in section 2. In section 3, the Bayesian approach is used and Bayes factor is
derived for evaluating support of data for homogeneity of populations.
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2 SOS-based likelihood analysis

We here assume that s ≥ 2 independent SOS samples of equal size r from s heterogeneous
populations are available. The data may be represented by x = [[xij ]]1≤i≤s,1≤j≤r where
the i-th row of the matrix x denotes the SOS sample coming from the i-th population.
The LF of the available data is then

L(F ;x) = (
n!

(n − r)!
)s

s∏

i=1




r−1∏

j=1


f

[i]
j (xij)

(
F̄

[i]
j (xij)

F̄
[i]
j+1(xij)

)n−j

 f [i]

r (xir)F̄
[i]
r (xir)

n−r


 , (2)

where F = {F
[i]
j , i = 1, · · · , s, j = 1, · · · , r} and for i = 1, · · · , s, j = 1, · · · , r, F̄j

[i]
(x) =

1 − F
[i]
j (x). By substituting Equation (1) into Equation(2), under the earlier mentioned

CPHR model, the LF of the available data reduces to

L(σ1, · · · , σs, α;x) = (
n!

(n − r)!
)s




r∏

j=1

αj




s(
s∏

i=1

1

σi

)r

exp
{

−
s∑

i=1

r∑

j=1

(xijmj

σi

)}
. (3)

where α= (α1, · · · , αr), and for j = 1, · · · , r, αj > 0, and mj = (n− j +1)αj − (n− j)αj+1

with convention αr+1 ≡ 0. We consider the problem of homogeneity testing on the basis
of independent SOS samples from different exponential populations, i.e.,

H0 : σ1 = · · · = σs v.s H1 : σi ̸= σj ∃i ̸= j. (4)

Following Cramer and Kamps [2] and Esmailian and Doostparast [4], two cases are consid-
ered in sequel: (i) α known, and (ii) α unknown. First suppose that the vector parameter
α in Equation (3) is known. By Theorem 8.1 in Cramer and Kamps [3] and under the null
hypothesis H0 in (4), the unique ML estimate of the common mean of the s exponential
populations, say σ0, is

σ̂0 =

∑s
i=1

∑r
j=1 xijmj

rs
=

∑s
i=1

∑r
j=1(n − j + 1)αjDij

rs
, (5)

where Dij = xij − xi,j−1, for j = 1, · · · , r. When the baseline exponential populations are
heterogeneous, from Equation (5), the unique ML estimate of σi (i = 1, · · · , s) is derived
as

σ̂i =

∑r
j=1 xijmj

r
=

∑r
j=1(n − j + 1)αjDij

r
. (6)

The generalized likelihood ratio test (GLRT) statistic for testing the problem (4) is

Λ1 =
supΩ0

L(σ1, · · · , σs;x)

supΩ L(σ1, · · · , σs;x)
=

s∏

i=1

(
σ̂i

σ̂0

)r

exp
{ s∑

i=1

r∑

j=1

( 1

σ̂i
− 1

σ̂0

)
mjxij

}
, (7)

The null hypothesis H0 is rejected if A(T, α) > c, where T = (T1, · · · , Ts) and A(T, α) =
−∑s

i=1 log(Ti/
∑s

j=1 Tj). Since under the CPHR with the one-parameter exponential base-
line CDF, we have Ti =

∑r
j=1(n − j + 1)αjDij ∼ Γ(r, σi), for i = 1, · · · , s (Cramer and

Kamps [2]), the rejection region of GLRT reads A(T, α) > χ2r,1−γ/2.
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Remark 2.1. The family of distribution (3) is invariant with respect to the group of the
scale transformations G = {ga : ga(x) = ax = {ax⋆

ij}1≤i≤s,1≤j≤r, a > 0}. Also, the problem

of hypotheses testing (4) remains invariant under G since Ḡ(Ω) = Ω and Ḡ(Ω0) = Ω0

where Ω = {(σ1, · · · , σs) : σi > 0, i = 1, · · · , s} = R+s, Ω0 = {(σ1, . . . , σs) : σ1 = · · · = σs}
and Ḡ = ḡa(σ1, · · · , σs) = a(σ1, · · · , σs) is the induced group of transformations on the
parameter space Ω by the group of scale transformations G. Fortunately, the GLRT is
invariant with respect to the group of the scale transformations.

Remark 2.2. The unique MLEs have asymptotically the multivariate normal distribution
with mean vector (σ1, · · · , σs) and the variance-covariance matrix [i(σ̂1, · · · , σ̂s)]

−1; See,

e.g., [7]. An approximate equi-tailed confidence interval for σi is (σ̂i − zγ/2

√
σ̂2

i /r, σ̂i +

zγ/2

√
σ̂2

i /r), where zγ stands for the γ-percentile of the standard normal distribution.

Now assume that the vector parameter α in Equation (3) is unknown. After some
algebraic manipulations, the likelihood equations are

ˆ̂σi =

∑r
j=1 xijm̂j

r
=

∑r
j=1(n − j + 1)α̂jDij

r
, i = 1, · · · , s, (8)

and
α̂j =

s

(n − j + 1)
∑s

i=1 Dij/ˆ̂σi

, j = 1, · · · , r. (9)

The ML estimates of the parameters are obtained numerically by solving the likelihood
equations given by Equations (8) and (9). Consider again the hypotheses testing problem
(4). It is easy to verify that the unique ML estimates of the parameters under the null
hypothesis H0 are

ˆ̂σ0 =

∑s
i=1

∑r
j=1 xijm̂0,j

rs
=

∑s
i=1

∑r
j=1(n − j + 1)α̂0,jDij

rs
, (10)

and

α̂0,j =
sˆ̂σ0

(n − j + 1)
∑s

i=1 Dij
, j = 1, · · · , r, (11)

where m̂0,j = (n − j + 1)α̂0,j − (n − j)α̂0,j+1, with convention α̂0,r+1 ≡ 0. Therefore, the
GLRT statistic for the hypotheses testing problem (4) is

Λ2 =

r∏

j=1

(
α̂0,j

α̂j

)s s∏

i=1

(
ˆ̂σi

ˆ̂σ0

)r

exp
{ s∑

i=1

r∑

j=1

(m̂j

σ̂i
− m̂0,j

ˆ̂σ0

)
xij

}
, (12)

where m̂j = (n − j + 1)α̂j − (n − j)α̂j+1. The null hypothesis H0 rejects if −2 log Λ2 > c.

3 SOS-based Bayes analysis

We here consider the problem of estimating unknown parameters via a strict Bayesian
approach. To do this, we assume that α is known and suggest the conjugate prior dis-
tributions for the scale parameters σi, i = 1, · · · , s, i.e. σi ∼ IG(ai, bi), i = 1, · · · , s, be
independent random variables. which implies
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σi | x ∼ IG
(
ai + r,

∑r
j=1(n − j + 1)αjDij + bi

)
, i = 1, · · · , s. As we expected given

x, the parameter σi are independent.
An equi-tailed credible set at level γ for σi (i = 1, · · · , s) is obtained as

CIi(γ) =

(∑r
j=1(n − j + 1)αjDij + bi

χ2(ai+r),(1+γ)/2
,

∑r
j=1(n − j + 1)αjDij + bi

χ2(ai+r),(1−γ)/2

)
. (13)

Therefore, a conservative simultaneously credible set at level γ is CI1(γ
1/s)×· · ·×CIs(γ

1/s)
where “×” stands for the Cartesian product in Euclidean space.

3.1 Bayesian Test

Under the null hypothesis H0 : σ1 = · · · = σs, we assume that the common value of
σi (i = 1, · · · , s), say σ, follows the IG(a0, b0)-distribution where a0 and b0 are known
positive hyper parameters. Therefore, the Bayes factor is

BF =
Γ(sr + a0)

Γ(a0)

ba0
0

(
∑s

i=1 Ti + b0)
sr+a0

s∏

i=1

(Ti + bi)
ai+1

aib
ai
i

. (14)

Under the “0 − K” loss function, the Bayes test rejects the null hypothesis H0 if BF <
(K0π1)/(K1π0), where πi and Ki, for i = 1, 2, are prior rpobability for the hypothesis Hi

and the loss of the accepting Hi when Hj(j ̸= i) is true, respectively.
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Abstract

In this paper, we introduce the exponentiated G-power series (EGPS)distributions
which is obtained by compounding a new exponentiated family and power series distri-
butions. We obtain several properties of the EGPS distribution such as its probability
density function, quantiles, moments, order statistics, mean residual life and reliability
function. Sub-models of this family are studied in a real example.

Keywords: Exponentiated family, Maximum likelihood estimation, Power series
distributions.

Mathematics Subject Classification [2010]: 60E05, 62E10

1 Introduction

The exponential distribution is commonly used in many applied problems, particularly in
lifetime data analysis. A generalization of this distribution is the exponentiated family.
It is a lifetime distribution and is often applied to describe the distribution of adult life
spans by actuaries and demographers. The exponentiated family is considered for the
analysis of survival in some sciences such as biology, gerontology, computer, and marketing
science. A random variable X is said to have a Exp-G denoted by X ∼ Exp−G(α), if its
cumulative distribution function (cdf) and the probability density function (pdf) are given
by Hα(x; Θ) = [G(x; Θ)]α and hα(x; Θ) = αg(x; Θ)[G(x; Θ)]α−1 respectively. This family
contains many exponentiated distributions such as exponentiated Weibull, exponentiated
exponential, exponentiated Pareto and etc.

In this paper, we compound the exponentiated G family and power series distribu-
tions, and introduce a new class of distribution. This procedure follows similar way that
was previously carried out by some authors: The exponential power series distribution
is introduced by [1] ; the Weibull-power series distributions is introduced by [3] and the
generalized exponential power series distribution is introduced by [2]

The remainder of our paper is organized as follows: In Section 2, we give the pdf and
cdf of EGPS model. Some properties such as quantiles, moments, order statistics, mean
residual life, reliability function and maximum likelihood estimator(MLE) are given in
Section 3. An application of EGPS model is given in the Section 4.
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2 The EGPS model

A discrete random variable, N is a member of power series distributions (truncated at
zero) if its probability mass function is given by

pn = P (N = n) =
anλ

n

C(λ)
, n = 1, 2, . . . , (1)

where an ≥ 0, C(λ) =
∞∑
n=1

anλ
n, and λ ∈ (0, s) is chosen in a way such that C(λ) is

finite and its first, second and third derivatives are defined and shown by C ′(.), C ′′(.)
and C ′′′(.). This family of distributions includes many of the most common distributions,
including the binomial, Poisson, geometric, negative binomial. We define the Exp-G class

of distributions as F (x) =
∞∑
n=1

an(λHα(x))n

C(λ) = C(λ(G(x))α)
C(λ) ,

and denote by EGPS(α, λ,Θ). The pdf of EGPS(α, λ,Θ) is given by

f(x) =
λαg(x)(G(x))α−1C ′ (λ(G(x))α)

C(λ)
. (2)

This class of distributions can be applied to reliability problems. Some properties of EGPS
model are presented in the following propositions.

Proposition 2.1. The pdf’s of EGPS class can be expressed as infinite linear combination
of density of order distribution, i.e. it can be written as

f(x) = αλg(x)
(G(x))α−1C ′(λ(G(x))α)

C(λ)
=
∞∑

n=1

pnhnα(x), (3)

where hnα(x) is the pdf of Y(n) = max(Y1, Y2, ..., Yn), given by hnα(x) = nαg(x)[G(x)]nα−1,
i.e. Exp-G distribution with parameter nα. Also, we obtained

F (x) =
∞∑
n=1

pnHnα(x) =
∞∑
n=1

pn(G(x))nα. So, the EGPS distribution is a mixture of

Exp-G family.

Proposition 2.2. limλ→0+ F (x) = [G(x)]cα, which is a Exp-G distribution with parameter
cα , where c = min{n ∈ N : an > 0}.

Proposition 2.3. If G(x) = 1−exp(−βx), then F (x) = C(λ(1−e−βx)α)
C(λ) . In fact, it is the cdf

of the generalized exponential-power series (GEPS) class of distribution and is introduced

by [2]. Aslo, if G(x) = 1 − e−
β
γ

(eγx−1)
, then F (x) = C(λ[1−e−

β
γ (eγx−1)

]α)
C(λ) . This is the cdf

of the generalized Gompertz-power series (GGPS) class of distribution. The GGPS model
contains several lifetime models such as: generalized Gompertz-binomial (GGB), gener-
alized Gompertz-Poisson (GGP), generalized Gompertz-geometric (GGG) and generalized
Gompertz-logarithmic (GEL) distributions, generalized Gompertz (GG) as special cases.

Proposition 2.4. The hazard rate function of the EGPS class of distributions is

r(x) =
λαg(x)(G(x))α−1C ′ (λ(G(x))α)

C(λ)− C(λG(x))
.
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3 Statistical properties

In this section, quantiles, moments, order statistics, mean residual life and reliability
function of EGPS distribution are obtained.

Proposition 3.1. If U has a uniform U(0, 1) distribution, the solution of the nonlinear

equation X = H−1{C−1(C(λ)U)
λ } has the EGPS(α, λ,Θ) distribution, where C−1(.) is the

inverse function of C(.).

Proposition 3.2. The moment generating function of EGPS class can be expressed as

MX(t) =
∞∑
n=1

pnMY(n)(t). Also, µr = E[Xr] =
∞∑
n=1

pnE[Y r
(n)].

Proposition 3.3. The pdf of ith- order statistic is obtained as

fi:m(x) =
m!

(i− 1)!(m− i)!
∞∑

n=1

m−i∑

j=0

(−1)j
(
m− i
j

)
pnhnα(x)[

C(λHα(x))

C(λ)
]j+i−1.

Proposition 3.4. An explicit expression of mean residual life function of X are obtained
as

m(t) = E[X − t|X > t] =

C(λ)
∞∑
n=1

pnE[ZI(Z>t)]

C(λ)− C(λHα(x))
− t.

Proposition 3.5. In the stress - strength model, R = P (X > Y ) is a measure of compo-
nent reliability . It has many applications especially in engineering concept. The quantity
R for EGPS can be expressed as

R =
∞∑

n=1

pn

∫ ∞

0
hnα(x)

C(λGα(x))

C(λ)
dx.

Proposition 3.6. Let x1, ..., xn be observed value from the EGPS distribution wit param-
eters ξ = (α, λ,Θ)T . The total log-likelihood function for ξ is given by

ln = ln(ξ;x) = n[log(α) + log(λ)− log(C(λ))] +
n∑

i=1

log[g(xi; Θ)]

+ (α− 1)
n∑

i=1

log ti +
n∑

i=1

log(C ′(λ(ti)
α)),

where ti = G(xi; Θ). The MLE of ξ, say ξ̂, is obtained by solving the nonlinear system
U(ξ;x) = (∂ln∂α ,

∂ln
∂λ ,

∂ln
∂Θ )T = 0. We cannot get an explicit form for this nonlinear system of

equations and they can be calculated by using a numerical method, like the Newton method
or the bisection method.
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4 Real example

In this section, we consider the data consisting of the strengths of 1.5 cm glass fibers given
in [4] and fit the Gompertz, GG, GGG, GGP, GGB (with m = 5), and GGL distribu-
tions. The MLE’s of the parameters (with standard deviations) for the distributions are
obtained. To test the goodness-of-fit of the distributions, we calculated the maximized log-
likelihood, the Kolmogorov-Smirnov (K-S) statistic with its respective p-value, the AIC
(Akaike Information Criterion), AICC (AIC with correction) and BIC (Bayesian Informa-
tion Criterion) for the six distributions. The results are given in Table 1 and show that
the GGG distribution yields the best fit among the GGP, GGB, GGL, GG and Gompertz
distributions.

Table 1: Parameter estimates (with std.), K-S statistic, p-value, AIC, AICC and BIC.

Distribution Gompertz GG GGG GGP GGB GGL

β̂ 0.0088 0.0356 0.7320 0.1404 0.1032 0.1705

s.e.(β̂) 0.0043 0.0402 0.2484 0.1368 0.1039 0.2571
γ̂ 3.6474 2.8834 1.3499 2.1928 2.3489 2.1502
s.e.(γ̂) 0.2992 0.6346 0.3290 0.5867 0.6010 0.7667
α̂ — 1.6059 2.1853 1.6205 1.5999 2.2177
s.e.(α̂) — 0.6540 1.2470 0.9998 0.9081 1.3905

θ̂ — — 0.9546 2.6078 0.6558 0.8890

s.e.(θ̂) — — 0.0556 1.6313 0.5689 0.2467
−log(L) 14.8081 14.1452 12.0529 13.0486 13.2670 13.6398
K-S 0.1268 0.1318 0.0993 0.1131 0.1167 0.1353
p-value 0.2636 0.2239 0.5629 0.3961 0.3570 0.1992
AIC 33.6162 34.2904 32.1059 34.0971 34.5340 35.2796
AICC 33.8162 34.6972 32.7956 34.78678 35.2236 35.9692
BIC 37.9025 40.7198 40.6784 42.6696 43.1065 43.8521
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A generalization of the Mertens’ formula and analogue to the

Wallis’ product over primes
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Abstract

In this paper, we study the asymptotic expansion of the product
∏

p⩽x(1 + α
p ) for

each fixed real α > −2 where the p runs over the prime numbers. As an application,
we study the Wallis’ product and its generalizations, running over primes p, which are
analogue to Wallis product for π

2 running over positive integers.

Keywords: Prime numberse, Wallis’ product, analytic computations.

Mathematics Subject Classification [2010]: 11A41, 11Y35 , 11N99

1 Introduction

A generalization of the Mertens formula. Among his interesting three results in
number theory related to the density of the primes, Mertens [2] proved a result asserting,
in todays notation, that

∏

p⩽x

(
1 − 1

p

)
=

e−γ

log x

(
1 + O

( 1

log x

))
(1)

where the product runs over primes and γ denotes the Eulers constant. Several general-
izations, and also improvements on the O-term in the above formula are obtained [3]. In
this note we study the following generalization.

Theorem 1.1. Assume that α > −2 and α ̸= 0 is a fixed real, and define the constant
C(α) by

C(α) = eαγ
∏

p

(
1 − 1

p

)α(
1 +

α

p

)
. (2)

Then for each x > 1 we have

∏

p⩽x

(
1 +

α

p

)
= C(α)(log x)α

(
1 + O

( 1

log2 x

))

Moreover, if we assume that the Riemann Hypothesis is true, then one may reduce the
above O-term up to O(x

1
2 log x).
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Figure 1: Graphs of C(α) for α ∈ (−2, 2) (left) and for α ∈ [0.5, 1] (right), where it attains
a local maximum.

Appearance of the constant C(α) is an important part of the above generalization. As
classical results we have

C(−1) = e−γ and C(1) =
eγ

ζ(2)
=

6eγ

π2

While it doesnt seem easy to determine other values of C(α) in terms of well-known
constants, we establish a method to compute its values for α ∈ (−2, 2) in terms of rapidly
convergent series.
The following result describes this method.

2 Main results

Theorem 2.1. For each α ∈ (−2, 2) we have

C(α) = eαM+S(α), (3)

where M is the Meissel-Mertens constant,

S(α) =

∞∑

n=2

(−1)n−1αnP (n)

n
, (4)

and P is the prime zeta function, defined for complex s with ℜ(s) > 1 by

P (s) =
∑

p

1

ps
.

related to the prime zeta function.
and consequently, the series of S(α) defined by 4 converges rapidly for α ∈ (−2, 2).

This allows us to compute S(α) for α ∈ (−2, 2) numerically, and to generate a graph of
C(α) for α ∈ (−2, 2) . Moreover, we use the approximate value

M ≊ 0.261497212847642783755426838609,

for the Meissel-Mertens constant. Figure 1 pictures the graph of C(α) forα ∈ (−2, 2).
As this figure and more precisely numerical computations show, C(α) attains a local
maximum at αmax ≊ 0.73738444 with the value

max
α∈(−2,2)

C(α) ≊ 1.09280370325023524.
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Figure 2: Graphs of d
dαC(α) (left) and M + d

dαS(α) (right) for α ∈ (−2, 2)

More precisely, we have

d

dα
C(α) =

(
M +

d

dα
S(α)

)
C(α) =

(
M +

∞∑

n=2

(−1)n−1αn−1P (n)
)
C(α),

and αmax is the unique solution of the equationM+ d
dαS(α) = 0 in (−2, 2). The right graph

in Figure 2 pictures M + d
dαS(α) for (−2, 2). By numerical solving the above equation,

we get more precise value

αmax ≊ 0.737384438154806861.

Wallis product over primes. As a consequence of Theorem 1.2, we obtain the
following.

Corollary 2.2. For each α ∈ (−2, 2) we have C(α)C(α) = e−T (α), with

T (α) =

∞∑

n=1

P (2n)α2n

n
.

The function T (α) is useful to formulate an analogue to Wallis product over primes.
We recall the Wallis product formula for π, which asserts that

lim
n→∞

∞∏

n=1

( 2n

2n − 1

2n

2n + 1

)
=

π

2
.

A formulation of the Wallis product over primes in a more general form is as follows.

Theorem 2.3. Assume that a is a fixed real with |a| > 1
2 . Then we have

Wa =
∏

π

( ap

ap − 1

ap

ap + 1

)
= eT ( 1

a
). (5)

Corollary 2.4. we have

W2 =
∏

π

( 2p

2p − 1

2p

2p + 1

)
= exp

( ∞∑

n=1

P (2n)

n22n

)
≊ 1.1225029494299445172.

Remark 2.5. As numerical computations reported in Table 1 , also know that both S(α)
and T (α) are continuous functions for ∈ (2, 2). It follows immediately that Wa → 1 as
a → ∞.
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a Wa = eT ( 1
a
)

1 1.6449340668482264364724151666460251892189499012068
2 1.1225029494299445171776898915538506025772573240898
3 1.0520419006999488008574935610892686827816227562072
9 1.0056048283030987269017677824391643342543568800620

10 1.0045365888603880522959429628014286647886951159790
50 1.0001809214921512146616681538748770618197138977805

100 1.0000452261496469672340363027559610240466672008116
200 1.0000113062734768999250275966977247497149360978003
500 1.0000018089919323336766173136957541025539760633609

Table 1: Values of Wa = eT ( 1
a
) for several values of a (by using Wolfram Mathematica 9.0)

proof of theorem 2.3. For each fixed real a with|a| > 1
2 we define the partial generalized

Wallis product over primes by

Wa(x) =
∏

p⩽x

ap

ap − 1

ap

ap + 1
,

and we let
Wa = lim

x→∞
Wa(x) and Fα(x) =

∏

p⩽x

(
1 +

α

p

)

We have

Wa(x) =
(
F− 1

a
(x)F 1

a
(x)

)−1

and hence Corollary 2.2 implies that

∏

p

ap

ap − 1

ap

ap + 1
= Wa =

(
C(−1

a
)C(−1

a
)
)−1

= eT ( 1
a
).

This completes the proof.
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Abstract

In this paper, we present a method for image compression on the basis of eigenvalue de-
composition of normal matrices. The proposed method is convenient and self-explanatory,
requiring fewer and easier computations as compared to some existing methods. Through
the proposed technique, the image is transformed to the space of normal matrices. Then, the
properties of spectral decomposition are dealt with to obtain compressed images. Experimen-
tal results are provided to illustrate the validity of the method.

Keywords: Image compression, Transform, Normal matrix, Eigenvalue
Mathematics Subject Classification [2010]: 15A18, 94A08, 47B15

1 Introduction

Nowadays, digital images and other multimedia files can become very large in size and, therefore,
occupy a lot of storage space. In addition, owing to their size, it takes more time to move them
from place to place and a larger bandwidth to download and upload them on the Internet. So,
digital images may pose problems if we regard the storage space as well as file sharing. To tackle
this problem, image compression which deals with reducing the size of an image (or any other
multimedia) file can be used. Image compression actually refers to the reduction of the amount of
image data (bits) required for representing a digital image without causing any major degradation
of the image quality. By eliminating redundant data and efficiently optimizing the contents of
a file image, provided that as much basic meaning as possible is preserved, image compression
techniques, make image files smaller and more feasible to share and store.

The study of digital image compression has a long history and has received a great deal of attention
especially with respect to its many important applications. References for theory and practice of
this method are [5, 6], to name but a few.

With respect to the influences of singular values of A in compressing an image, and considering
the important point that the singular values of A are the positive square roots of the eigenvalues of
matrices A∗A and AA∗, the present study concerns itself with the eigenvalue of the normal matrices
A+A∗ and A−A∗ on the purpose of establishing certain technique for image compression that is
efficient, leads to desirable results and needs fewer calculations.
∗Speaker
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2 Image compression method

In this section, first we review the definition and some properties of normal matrices. See [2, 4]
and the references mentioned there as the suggested sources on a series of conditions on normal
matrices. Then, we will describe the proposed method on the basis of these presented properties.

A matrix M ∈ Cn×n is called normal if M∗M = MM∗, where ∗ denotes complex conjugate trans-
pose. Assuming M as an n-square normal matrix, there exists an orthonormal basis of Cn×n that
consists of eigenvectors of M, and M is unitarily diagonalizable. That is, let the scalars λ1, . . . ,λn,
counted according to multiplicity, be eigenvalues of the normal matrix M and let u1, . . . ,un be its
corresponding orthonormal eigenvectors. Then, the matrix M can be factored as the following:

M =UΛU∗ =
n

∑
i=1

λiuiu∗i , Λ = diag(λ1, . . . ,λn), U = [u1, . . . ,un],

where the matrix U satisfies UU∗ = In. Maintaining the generality, assume that eigenvalues are
ordered in a non-ascending sequence of magnitude, i.e., |λ1| ≥ |λ2| . . .≥ |λn|. If all the elements of
the matrix M are real, then M∗ = MT , where MT refers to the transpose of the matrix M. A square
matrix M is called symmetric if M = MT and called skew-symmetric if M =−MT . That symmetric
and skew-symmetric matrices are normal is easy to see. Also, the whole set of the eigenvalues of
a real symmetric matrix are real, but all the eigenvalues of a real skew-symmetric matrix are
purely imaginary. A general square matrix M satisfies M = B+C, for which the symmetric matrix
B = (M +MT )/2 is called the symmetric part of M and, similarly, the skew-symmetric matrix
C = (M−MT )/2 is called the skew-symmetric part of M. As a consequence, every square matrix
may be written as the sum of two normal matrices: a symmetric matrix and a skew-symmetric
one. We specially use this point in the proposed image compression technique.

In what follows, a method for image compression is presented using normal matrices. To this
purpose, the matrix representing the image is transformed into the space of normal matrices. Next,
the properties of its eigenvalue decomposition are utilized, and some less significant image data
are deleted. Finally, by returning to the original space, the compressed image can be constructed.

Let X be an n×n matrix to represent the image. What is noticeable is that finding the eigenvalues
and eigenvectors of a matrix requires fewer calculations than finding its singular values and sin-
gular vectors. Moreover, it is possible to calculate the eigenvalues and eigenvectors of a normal
(especially symmetric or skew-symmetric) matrix by explicit formulas and, therefore, may yet
again need less computation [1, 3].

A new method is presented here about both symmetric and skew-symmetric parts of the matrix X
in order to compress the image which is found to be of a remarkably high reliability. Assume BX

and CX as the symmetric and skew-symmetric parts of the matrix X . The normal matrices BX and
CX can be factored as in the following:

BX =UBX ΛBXU∗BX
=

n
∑

i=1
λBX ,iuBX ,iu

∗
BX ,i
, ΛBX = diag(λBX ,1 , . . . ,λBX ,n),

CX =UCX ΛCXU∗CX
=

n
∑

i=1
λCX ,iuCX ,iu

∗
CX ,i
, ΛCX = diag(λCX ,1 , . . . ,λCX ,n).

Now, compress the symmetric and skew-symmetric parts of the image by wiping off the small
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enough eigenvalues of BX and CX . If k of the larger eigenvalues remains, then there is

B̃X =
k

∑
i=1

λBX ,iuBX ,iu
∗
BX ,i

C̃X =
k

∑
i=1

λBX ,iuCX ,iu
∗
CX ,i
, ; k ≤ n. (1)

where reserving the matrix B̃X , k(n+1) storage spaces are required for saving the matrix C̃X . As a
result, the total storage requirement for X is 2k(n+1). Also, through (1), the compressed image
X will be X = B̃X +C̃X .

3 Experimental results

In this section, the validity and the influence of the proposed image compression method is ex-
amined. The Peak Signal to Noise Ratio (PSNR) is calculated to measure the quality of the com-
pressed image. In the case of gray scale images of size M×N, whose pixels are represented with
8 bits, PSNR is computed as follows:

PSNR = 10log
2552
MSE
10 ; MSE =

1
MN ∑

i, j

∣∣Xi, j−Xi, j
∣∣2,

where Xi, j and Xi, j refer to the elements of the original and the compressed images respectively.
In addition, Compression Ratio (CR) may be calculated as an important index to evaluate how
much of an image is compressed. Where

CR =
Original Image Size

Compressed Image Size
.

In the experiments conducted in this study, a 512× 512 gray scale image Lena considered. The
PSNR results are shown in Table 1 for some integer values of k. Also, the CR results are given
in Table 2 for a 512× 512 image. The results obtained by this technique are compared to those
achieved by image compression method using Singular Value Decomposition (SVD) [7]. Further-
more, Figure 1 shows the original and compressed image Lena obtained by the proposed technique
as well as image compression method using SVD, for k = 100.

Table 1: PSNR results for Lena

k Proposed Method SVD Method

10 22.0050 22.4065
30 26.9531 27.2243
50 29.8129 30.1761
75 32.6763 33.1093

100 35.1047 35.6641
150 39.2938 39.8988
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Table 2: CR results for an image of size 512×512

k Proposed Method SVD Method

10 25.5501 25.5750
20 12.7750 12.7875
50 5.1100 5.1150
75 3.4067 3.4100

100 2.5550 2.5575
150 1.7033 1.7050

Original Image Proposed Method SVD Method

Figure 1: Original and compressed image Lena for k = 100.
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Adaptive backstepping control of nonlinear systems based on

singular perturbation theory
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Abstract

This paper studies adaptive backstepping control of nonlinearly parameterized
systems with completely non-affine property. Using parameter separation and time
scale separation in back-stepping control procedure, virtual/actual control inputs are
defined as solutions of a series of fast dynamic equations. Moreover, the class of
systems under consideration is much more general than the previouse work and for
deriving the adaptation law of unknown parameters, it is not need to designe state
predictor.

Keywords: parameter separation, singular perturbation theory, nonlinear parame-
terization, non-affine property.

1 INTRODUCTION

Among different nonlinear systems, pure feedback systems can represent more practical
process such as biochemical process, aircraft flight control system [1], mechanical systems
[2], etc. In the past few years, the control of various pure-feedback systems were con-
sidered such as uncertain non-affine pure feedback systems with unknown dead zone [3],
with hysteresis input [4], with output constraints [5]. Despite these efforts, control prob-
lem of completely non-affine pure-feedback systems with nonlinear parameterization has
remained largely open. These systems has been considered in [6]. In this paper, adap-
tive control of non-linearly parameterized completely non-affine pure-feedback systems is
investigated.

2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 Preliminaries on singular perturbation theory

Consider the problem of solving the state equation [7]
ẋ(t) = f(t, x(t), z(t), ε),

εż(t) = g(t, x(t), z(t), ε), (1)
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It is assumed that the functions f and g are continuously differentiable in their arguments
for (t, x, z, ε) ∈ [0,∞)×Dx ×Dz × [0, ε0] andDz ⊂ Rm and Dx ⊂ Rm are open connected
sets, ε0 � 0. if g(t,x,z,0)=0 has l ≥ 1 for each isolated real roots z=ha(t,x), a=1,2,. . . ,l,
for each (t,x) ∈ [0,∞)×Dx when ε = 0 , we say that the model (1) is in standard form.
Let ν=z-h(t,x). From singular perturbation theory, the reduced system is represented by

ẋ(t) = f(t, x(t), h(t, x(t)), 0), (2)

and the boundary layer system with the new time scale τ = t/ε is defined as

dν

dτ
= g(t, x, ν + h(t, x(t)), 0), (3)

2.2 Problem statement

Consider the following pure feedback system with nonlinear parameterization
ẋi(t) = fi1(x̄i(t), xi+1(t)) + fi2(x̄n(t), θ), i = 1, . . . , n− 1,

ẋn(t) = fn1(x̄n(t), u(t) + fn2(x̄n(t), θ) (4)

where x̄i = [x1, x2, . . . , xi]
T ∈ Ri, and u ∈ R are the system states and control input,

respectively.
The control objective is to design a control law u(t) for system (4) such that the origin of
the system is asymptotically stable.

Remark 2.1. The argumentx̄n(t) in the term fi2 and fn2 leads to larger class of nonlinear
systems in comparison to [18].

Definition 2.2. we assume ( ∂fi1
∂xi+1

)> 0 and (∂fn1∂u )> 0.

Definition 2.3. There exist continues functions Γi2(x̄i(t), θ) ≥ 0, i = 1, . . . , n

Lemma 2.4. For any real-valued continuous function f(x, y) where x ∈ Rm, y ∈ Rn,there
are smooth scalar functions a(x) ≥ 0, b(y) ≥ 0, c(x) ≥ 0 and d(y) ≥ 1,such that

|f(x, y)| ≤ a(x) + b(y), (5)

|f(x, y)| ≤ c(x)d(y), (6)

a constructive proof is given in [8].

Remark 2.5. According to Lemma 2.4, there exist two smooth functions γi(x̄i) ≥ 1 and
Λi(θ) ≥ 1 satisfying

|fi2(x̄n, θ)| ≤ Γi2(x̄i(t), θ) ≤ γi(x̄i)Λi(θ), i = 1, . . . , n (7)

Let Θ =
∑n

i=1 Λi(θ) be a new unknown constant. Using remark 2.5, it is deduced that

|fi2(x̄n, θ)| ≤ γi(x̄i)Θ, i = 1, . . . , n. (8)
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3 CONTROLLER DESIGN

Similar to the backstepping method, This design procedure contains n steps. The design
procedure is presented in the following. Introduce the change of coordinates zi = xi−αi−1

where i = 1, . . . , n, α0 = 0
The derivative of zi is expressed as
żi = fi1(x̄i(t), xi+1(t)) + fi2(x̄n(t), θ))− α̇i−1.
we should find αi such that fi1(x̄i, zi+1 + αi) + fi2(x̄n, θ) − α̇i−1 = −kizi where ki > 0 is
is the ith positive control gain. To overcome the non-affine property, the ith approximate
virtual controller can be designed as the following ith fast dynamics

εiα̇i = −sign(
∂Qi
∂αi

)Qi(z̄i+1, αi, Θ̂), (9)

where αi(0) = αi,0, εi � 1, z̄i+1 = [z1, z2, . . . , zi+1]T , Qi(z̄i+1, αi, θ̂) = kizi + fi1(x̄i, zi+1 +
αi) + sat(zi/µ)γi(x̄i)Θ̂− ˙αi−1

Let αi = hi(z̄i+1, Θ̂) be an isolated root of Qi(z̄i+1, αi, Θ̂) = 0. Then the reduced system
is defined as

żi = −kizi + fi2(x̄n, θ)− sat(zi/µ)γi(x̄i)Θ̂. (10)

and the boundary layer system can be represented by

dyi
dτi

= −sign(
∂Qi
∂αi

)Qi(z̄i+1, yi + hi(z̄i+1, Θ̂), Θ̂), (11)

where yi = αi − hi(z̄i+1, Θ̂) and τi = t/εi. Considering the control Lyapunov function
Vi = Vi−1 + 1

2z
2
i , i = 1, . . . , n and V = Vn + 1

2Θ̃2. Using the reduced system (10), it is
deduced that

V̇n ≤
n−1∑

j=1

−kjz2
j+|zj |γj(x̄jΘ̃)−knz2

n+|zn|fn2(x̄n, θ)−znsat(zn/µ)γn(x̄n)θ̂ ≤
n∑

j=1

−kjz2
j+|zj |γj(x̄j)Θ̃

(12)

V̇ ≤
n−1∑

j=1

−kjz2
j + |zj |γj(x̄j − Θ̃)Θ̃ (13)

Finally, we can eliminate the Θ̃ term from (13) by designing the adaptation law as
˙̂
Θ =∑n

j=1 |zj |γj(x̄j). Therefore, the derivative of V is V̇ ≤ ∑n
j=1−kjz2

j . In this design, it
is assumed that αn = u and z̄n+1 = z̄n. By using the Lasalles Theorem, this Lyapunov
function guarantees the asymptotic stability of the origin of reduced system (10).

Theorem 3.1. Consider the singular perturbation problem of the pure feedback system
(4) and the controller (9). Assume that the following conditions are satisfied for all
(z̄i+1, αi − hi(z̄i, Θ̂)) ∈ Dz̄i+1 × Dyi for some domains Dz̄i+1 ⊂ Ri+1 and Dyi ⊂ R,which
contain their respective origins, where i = 1, . . . , n, z̄n+1 = z̄n, Dz̄n+1 = Dz̄n and αn = u.

B1) fi1(0, 0) = 0, fi2(0, θ) = 0, Qi(0,0,θ̂)
B2) On any compact subset of Dz̄i+1×Dyi the equation 0 = Qi(z̄i+1, αi, Θ̂) has an isolated

root αi = hi(z̄i+1Θ̂) such that hi(0, θ̂) = 0.
B3) The functions Qi, hi and their first partial derivatives respect to their arguments are
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bounded.
B4) (z̄i+1, yi) 7→ (∂Qi/∂αi)(z̄i+1, yi + hi(z̄i+1, Θ̂)) is bounded below by some positive con-
stant for all zi+1 ∈ Dzi+1So the origins of (11) are exponentially stable. Then, there exists
a positive constant ε∗ such that for all ε < ε∗ the origin of (4) is asymptotically stable

Proof. It should be verified that the conditions in theorem 1 satisfy all assumptions in the-
orem 11.4 in [7]. First, Assumptions (B1) - (B3) directly imply the first three assumptions
in theorem 11.4 hold respectively. Second, we show from Remark 1 that assumption (A4)
holds. The exponential stability of the boundary layer system (11) can be easily obtained
locally by linearization with respect toyi[7]. Using Assumption 1 and (B4) yields

sign(
∂Qi
∂αi

) = sign(
∂fi1
∂αi

) > 0 (14)

This confirms that the boundary layer system has a locally exponentially stable origin.
Finally, in previous section we showed that the origin of reduced system (10) is asymptot-
ically stable and the derivative of Lyapunov function of reduced system is V̇ ≤ −K||z||2
.Therefore theorem 11.4 can be applied. Accordingly, there exists a constant ε∗i > 0 such
that for 0 < ε < ε∗ , the origins of the systems (9) and (10) are asymptotically stable. It
follows that zi → 0 and αi → 0 as t → ∞. Since xi = zi + αi−1it can be concluded that
the origin of the nonlinearly parameterized pure feedback system (4) is asymptotically
stable.
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Abstract

Since the notion of bags was introduced, several works have been done using this
new concept. However, existing some drawbacks in the first definition of bags, reveal
the necessity of a revision of this notion. The proposed definition by Delgado et al.
has improved these drawbacks. Considering the vast application of bags, more study
on them seems necessary. In this regard, here, algebraic structure of bags and fuzzy
bags are studied and it is shown that both sets of bags and fuzzy bags equipped with
appropriate operations are complete Boolean algebra.

Keywords: Algebraic structure, Bags, Fuzzy bags, Representation by levels

Mathematics Subject Classification [2010]: 08A72,03E72

1 Introduction

The notion of bag was introduced by Yager [6] as an algebraic set-like structure where an
element can appear more than once. Some operations were defined and studied from an
algebraic point of view [4, 5]. So far, bags have been used for knowledge representation. For
instance, bags have been used in flexible querying, representation of relational information,
decision problem analysis, criminal career analysis and even in fields such as biology [1,
3, 6]. In [4], Delgado et al. claimed that although bags are algebraically well defined,
they were not well suited with real-world information. Also, they showed that the initial
definition for bags has some deficiencies and then, they proposed new definitions for bags
and fuzzy bags. They defined fuzzy bags based on the theory of representation by levels
(RL) and called it RL-bags. For more details about RL theory see [2].

In this work, we consider proposed definitions in [4] and study the algebraic structure
of bags and fuzzy bags.
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2 Preliminaries

Definition 2.1. [4] Let P and O be two universes (sets) called ”properties” and ”objects”,
respectively. A bag Bf is a pair (f,Bf ), where f : P → P(O) is a function and Bf is the
following subset of P ×N

Bf = {(p, card(f(p))), p ∈ P and f(p) 6= ∅},

where N is the set of natural numbers, P(O) is the power set of O and card(X) is the
cardinality of the set X.

Example 2.2. [5] Let the set of objects be O = {John, Mary, Bill, Tom, Sue, Stan,
Harry} and P = {17, 21, 27, 35}. Let f1, f2, f3, f4 : P → P(O) be the functions in Table 1.

Table 1: Several functions: age-people

p 17 21 27 35
f1(p) {Bill,Sue} {John,Tom} ∅ ∅
f2(p) {Bill,Sue} {John,Tom,Stan} ∅ {Harry}
f3(p) ∅ {Stan} {Mary} {Harry}
f4(p) {Bill} {John,Stan} ∅ ∅

So, we can define bags Bfi = (fi, B
fi), 1 ≤ i ≤ 4, where

Bf1 = {(17, 2), (21, 2)}, Bf2 = {(17, 2), (21, 3), (35, 1)},
Bf3 = {(21, 1), (27, 1), (35, 1)}, Bf4 = {(17, 1), (21, 2)}.

In the following, we restate some results about bags.

Definition 2.3. [4] Let ∗ ∈ {∪,∩, \}. Then Bf ∗ Bg = Bf∗g = (f ∗ g,Bf∗g), where
f ∗ g : P → P(O) such that (f ∗ g)(p) = f(p) ∗ g(p) for all p ∈ P .

Example 2.4. [5] Table 2 shows some operations between functions in Example 2.2.
Where, the corresponding summaries are

Bf1∪f2 = {(17, 2), (21, 3), (35, 1)}, Bf2∩f3 = {(21, 1), (35, 1)},
Bf1\f3 = {(17, 2), (21, 2)}, Bf3\f2 = {(27, 1)}.

Table 2: Operations on functions from Example 2.2

p 17 21 27 35
(f1 ∪ f2)(p) {Bill,Sue} {John,Tom,Stan} ∅ {Harry}
(f2 ∩ f3)(p) ∅ {Stan} ∅ {Harry}
(f1 \ f3)(p) {Bill,Sue} {John,Tom} ∅ ∅
(f3 \ f2)(p) ∅ ∅ {Mary} ∅

Definition 2.5. Set B(P,O) as the set of all bags Bf = (f,Bf ) defined in Definition 2.1.

Remark 2.6. [4] Operations ∩ and ∪ in B(P,O) satisfy in the idempotent, commutative,
associative and distributive laws.
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Definition 2.7. [5] a) A bag Bf is a subbag of Bg, denoted by Bf v Bg if f(p) ⊆ g(p) for
all p ∈ P .
b) Two bags Bf and Bg are equal, denoted by Bf = Bg if Bf v Bg and Bg v Bf .

Definition 2.8. [4] Let Bf = (f,Bf ). Then, complement of Bf is (Bf )c = Bfc = (f c, Bfc),
where f c : P → P(O) such that f c(p) = O \ f(p) for all p ∈ P .

Now, we quote the definition of RL-bags or fuzzy bags and restate some results about
them.

Definition 2.9. [4] A fuzzy bag or a RL-bag B̃f is a pair (Λf , ρf ) where Λf is a finite set
of levels and ρf : Λf → B(P,O) is a function that maps each level into a crisp bag.

It is clear that a crisp bag Bg is a particular case of fuzzy bag where Λg = {1} and
Bg = ρg(1) = (g,Bg) [4].

For each level α ∈ Λf we consider the associated bag in that level, (fα, B
fα) and the

corresponding summary is denoted by B̃f (α) (or sometimes for the sake of simplicity by
B̃fα) using the same count operation as in the crisp case [4].

Definition 2.10. [4] Let ∗ ∈ {∪,∩, \} and B̃f , B̃g be two fuzzy bags. Then, B̃f ∗ B̃g =
B̃f∗g = (Λf∗g, ρf∗g) is actually a fuzzy bag, where Λf∗g = Λf ∪ Λg and

ρf∗g(α) = (fα ∗ gα, Bf∗g(α)) for all α ∈ Λf∗g,

where fα ∗ gα : P → P(O) such that (fα ∗ gα)(p) = fα(p) ∗ gα(p) for all p ∈ P , α ∈ Λf∗g.

Definition 2.11. Set B̃Λ(P,O) as the set of all fuzzy bags B̃f = (Λ, ρf ) defined in
Definition 2.9.

Remark 2.12. [4] Operations ∩ and ∪ in B̃Λ(P,O) satisfy in the idempotent, commuta-
tive, associative and distributive laws.

Definition 2.13. [4] a) A fuzzy bag B̃f is a subbag of B̃g, denoted by B̃f ṽB̃g, if fα(p) ⊆
gα(p) for all p ∈ P, α ∈ Λf ∪ Λg.
b) Two fuzzy bags B̃f and B̃g are equal, denoted by B̃f = B̃g, if B̃f ṽB̃g and B̃gṽB̃f .

Note that that Definition 2.13 is direct extension of the crisp case. Actually, it reduces
to the crisp bags [4]. The next definition introduces the concept of complement.

Definition 2.14. Let B̃f = (Λf , ρf ) be a fuzzy bag. Then, complement of B̃f is (B̃f )c =
B̃fc = (Λfc , ρfc), where Λfc = Λf and ρfc(α) = (Bf (α))c = Bfc(α) for all α ∈ Λfc .

Remark 2.15. Definition 2.14 is a revised form of Definition 16 in [4] in order to obtain
some consistency in the complement of fuzzy bags.

3 Algebraic structure of bags and fuzzy bags

In this section, we characterize some algebraic structure of bags and fuzzy bags or RL-bags.
Let v be the relation defined in Definition 2.7. We have the following results.

Theorem 3.1. (B(P,O),v) is a Boolean algebra.
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Proof. Clearly, B(P,O) is a lattice. Define B0 = (0, B0) and B1 = (1, B1) where, 0(p) = ∅,
1(p) = O for all p ∈ P , B0 = {(p, 0), p ∈ P} and B1 = {(p, card(O)), p ∈ P}. Clearly,
B0,B1 ∈ B(P,O), sup(B0,Bf ) = Bf and inf(B1,Bf ) = Bf . So, (B(P,O),v) is bounded.
By Definition 2.8, for each Bf ∈ B(P,O), we have Bfc ∈ B(P,O). But, sup(Bf ,Bfc) = B1

and inf(Bf ,Bfc) = B0. Thus, (B(P,O),v) is complemented. By Remark 2.6, property of
distributivity holds. So, (B(P,O),v) or (B(P,O),∪,∩,c ,B0,B1) is a Boolean algebra.

Corollary 3.2. (B(P,O),∪,∩,c ,B0,B1) is a De Morgan algebra.

Theorem 3.3. (B(P,O),∪,∩,c ,B0,B1) is a complete Boolean algebra.

In what follows, we study the algebraic structure of the set of all fuzzy bags. Let ṽ be
the relation defined in Definition 2.13. We have the following results.

Theorem 3.4. (B̃Λ(P,O), ṽ) is a Boolean algebra.

Proof. It is clear that (B̃Λ(P,O), ṽ) is a lattice. Define B̃0 = (Λ, ρ0) and B̃1 = (Λ, ρ1),
where, ρ0 and ρ1 maps all α ∈ Λ to B0 and B1, respectively. Clearly, B̃0, B̃1 ∈ B̃Λ(P,O) and
also, sup(B̃0, B̃f ) = B̃f and inf(B̃1, B̃f ) = B̃f . So, (B̃Λ(P,O), ṽ) is bounded. By Definition
2.14, for each B̃f ∈ B̃Λ(P,O), we have B̃fc ∈ B̃Λ(P,O). But, sup(B̃f , B̃fc) = B̃1 and
inf(B̃f , B̃fc) = B̃0. Thus, (B̃Λ(P,O), ṽ) is complemented. By Remark 2.12, property of
distributivity holds. So, (B̃Λ(P,O), ṽ) or (B̃Λ(P,O),∪,∩,c , B̃0, B̃1) is a Boolean algebra.

Corollary 3.5. (B̃Λ(P,O),∪,∩,c , B̃0, B̃1) is a De Morgan algebra.

Theorem 3.6. (B̃Λ(P,O),∪,∩,c , B̃0, B̃1) is a complete Boolean algebra.
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Abstract

Many edge detection methods which based on wavelet transform, use this transform
to approximate the gradient of image and detect edges by searching the modulus
maximum of gradient vectors. In this paper we present an edge detection scheme
based on Legendre multiwavelets. The results of this algorithm are compared with
Sobel edge detector.

Keywords: Wavelet transform, Edge detection, Legendre multiwavelets
Mathematics Subject Classification [2010]: 65T60, 68U10, 94A08

1 Introduction

Edge is the important characteristic of image. Edges are among objects, regions, between
objects and backgrounds. If all edges in an image identify accurately, all the objects can be
located. Edge detection plays an important role in medical imaging [1], computer vision
and machine vision [2] and recognition Persian characters [3]. The large class of edge
detectors look up points where the gradient of the image has local maximum.

In recent decades, wavelet analysis fostered as a useful research method. Wavelet anal-
ysis is a new development in the area of applied mathematics [5]. Parallelly, the theory of
wavelets got more demystified and has become an important tool for image processing like
edge detection [4]. Some edge detector such as Canny edge detector use wavelet trans-
form. However, multiwavelet system can simultaneously provide perfect reconstruction
while preserving length due to orthogonality of filters, good performance at the bound-
aries, and a high order of approximation (vanishing moments). In this paper we used
Legendre multiwavelets to introduce an edge detection scheme.

2 Multiwavelet Transform

Like wavelets, multiwavelets were also based upon multiresolution analyses (MRA). MRA
using wavelets comprises of one scaling function ϕ(x) and one wavelet function ψ(x), where
as multiwavelets possess many number of scaling functions under one vector denoted as

Φ(x) = [ϕ0(x), ϕ1(x), · · · , ϕN (x)]T , (1)

∗Speaker

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

An edge detection scheme with legendre multiwavelets pp.: 1–4

1299



and many wavelet functions denoted by

Ψ(x) = [ψ0(x), ψ1(x), · · · , ψN (x)]T . (2)

Multiwavelets satisfying the followig dilations equations,

Φ(x) =
∑

k

H(k)Φ(2x− k), (3)

Ψ(x) =
∑

k

G(k)Φ(2x− k), (4)

where H(k) and G(k) are N × N matrices. In other words, the coefficients H(K) and
G(K) are N ×N matrices instead of scalar values.

Multiwavelet decomposition produces N low pass subbands and two high pass sub-
bands in each dimension. In image processing, wavelet decomposition yields four subbands
after one level of decomposition, whereas in multiwavelets N4 subbands result after first
level of decomposition. When N is two the next figure shows image subband structure for
first level of decomposition.

Figure 1: filtering along (a) horizontal direction (b) vertical direction after horizontal direction

Linear Legendre wavelets is an exmaple of multiwavelet with N = 2 [6]. One can define
a pair of Linear Legendre scaling functions ϕ0(x) and ϕ1(x) as

{
ϕ0(x) = 1 0 ≤ x < 1

ϕ1(x) =
√

3(2x− 1) 0 ≤ x < 1
(5)

These scaling function hold in
[
ϕ0(x)
ϕ1(x)

]
= H(0)

[
ϕ0(2x)
ϕ1(2x)

]
+H(1)

[
ϕ0(2x− 1)
ϕ1(2x− 1)

]
(6)

where

H(0) =




1 0

−
√

3

2

1

2


 and H(1) =




1 0√
3

2

1

2




In this case, Ψ(x) satisfying

[
ψ0(x)
ψ1(x)

]
= G(0)

[
ϕ0(2x)
ϕ1(2x)

]
+G(1)

[
ϕ0(2x− 1)
ϕ1(2x− 1)

]
(7)
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where

G(0) =




0 −1

1

2
−

√
3

2


 and G(1) =




0 1

−1

2

√
3

2




Now, one can use these lowpass filters H(0), H(1) and highpass filters G(0), G(1) to
decompose an image. Images can be considered as two variables functions f(x, y), so, the
edges of image may be detected by looking up for modulus maximum points according to
[7].

Mf(x, y) =
√

|W 1f(x, y)|2 + |W 2f(x, y)|2, (8)

Here we use the Legendre multiwavelet transform which it treats like wavelet transform.

3 Experimental Results

This section consists of experimental results for a set of standard images. In order to
verify the efficiency and accuracy of the proposed algoerithm, some images are used as
experimental subjects. We compare the proposed method for three standard testing images
with Sobel edge detector.

Figure 2: (a) Original Image (b) Edges of Sobel (c) Edges of proposed method

Figure 3: (a) Original Image (b) Edges of Sobel (c) Edges of proposed method
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Figure 4: (a) Original Image (b) Edges of Sobel (c) Edges of proposed method

As the experimental results show, the proposed method detected more correct edge
pixels in copmaring with Sobel edge detectors. The edges of three images were detected
to show the efficiency of our method.
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Abstract

The object of this article is to demonstrate the possibilities of games theory as an
instrument for study of social science .The approach to be used describe elementary
games theoretic models as on integral part of social science with a collection of example
to understand subject better. This paper addressed to theoreticians and practitioners
of social science not particularly versed in games theory, rather than to those who are
fluent in its mathematical language and intricacies.

Keywords: Best strategies, Game theory, Nash equilibrium, Social science

Mathematics Subject Classification [2010]:

1 Introduction

Social science of game theory just as microeconomic theory has sometimes been said to
be applied branch of calculus. The following examples present a simplified application of
game theory.These provides an opportunity to describe the main steps needed to construct
a game theoretical model of real events and also to elaborate on same of the contributions
that game theory can make to the study of social science. Reader must know to that
target of this article is to avoid from complex mathematical calculation and with a large
number of example help reader to be skill to give number to social science events. We
hope that we are successful in reaching to this target. We will start with a simple example
which all of us have done in childhood.

Example 1.1. “the warfare Game”
This game helps government to solve bad social Phenomenon of begging this game

advice which strategy is better to face this phenomenon:
(1)
We can consider that there is not Nash equilibrium. We can understand best strategy

for government when the beggar decide to work is supporting, and when they decide to
begging is unsporting.
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Figure 1: EXAM 1

Example 1.2. “Battle of couple ”
Man and women decided to go to garden with trees of apple and peach w game theory

can suggest which decision is better for them to be happy which we can show in following
table :

(2)

Figure 2: EXAM 2

In this game man interest to apple tree and woman like peach tree. Look to pay matrix
result show that in this game we have Nash equilibrium which means it is better man and
woman be with together. Question is we have two Nash equilibrium which one is better?
By mixed Nash equilibrium we can find best strategy as follow: To find Ne of q using Man
payoff

MAN

{
apple : 2q + 0(1− q)
peach : 0q + 1(1− q)

}
=⇒ 2q = 1(1− q) =⇒ q =

1

3

To find Nash equilibrium of p using woman payoff
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WOMAN

{
apple : 1p+ 0(1− p)
peach : 0p+ 2(1− p)

}
=⇒ 1p = 2(1− p) =⇒ p =

2

3

P = 2/3 is BR for man :

apple→ 2(13) + 0(23)
peach→ 0(13) + 1(23)

}
=

2

3

Man : p→ 2
3 [23 ] + 1

3 [23 ] = 2
3

No strictly profitable pure deviation either
NE = [(23 ,

1
3), (13 ,

2
3)] −→ [MAN2

3 ,WOMAN2
3 ]

Payoffs is low because they fail to meet sometimes.
Prob(meet) = [23

1
3 + 1

3
2
3 ] = 4

9

Example 1.3. we know that in each country steering of car is left or right. in this example
we consider which one is better for society?

(3)

Figure 3: EXAM 3

We can check that NE is on (L,L) and (R,R) but again we can see that (L,L) is
better for all countaries.

Next example is about Traffic light game.

Example 1.4. “Traffic light”
If driver is one side and police in another side.
In this game

d:delay

D: congestion

p:Probability to catch by traffic police
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F:fine for jumping
(4)

Figure 4: EXAM 4
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Hunter’s Lemma for Forest Algebras∗
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Abstract

Forest algebras are defined for investigating forests [ordered sequences] of unranked
trees, where a node may have more than two [ordered] successors [3]. We define a new
version of syntactic congruence of a subset of the free forest algebra, not just a forest
language, which leads to more general results. We show that for a inverse zero action
subset and a forest language which is the restriction of the inverse zero action subset to
the horizontal monoid, the two versions of syntactic congruences coincide. We define
on the free forest algebra a pseudo-ultrametric associated with a pseudovariety of forest
algebras. We show that the basic operations on the free forest algebra are uniformly
continuous, this pseudo-ultrametric space is totally bounded, and its completion is
a forest algebra. We show that the analog of Hunter’s Lemma [5] holds for metric
forest algebras, which leads to the result that zero-dimensional compact metric forest
algebras are residually finite.

Keywords: Forest Algebra, metric, Hunter’s Lemma.

Mathematics Subject Classification [2010]: 68R99

1 Introduction

We recall the forest algebra structures defined in [1]. After that, for a subset K of a forest
algebra, we define a binary relation vK of K and we show that the relation vK define
a congruence relation of elements of S. Then we define a syntactic forest algebra which
is the quotient of a forest algebra by vK for some subset K of the forest algebra the so
called syntactic congruence of K. Then we show that for a inverse zero action subset K
of a forest algebra the quotient of the forest algebra by vK is a forest algebra. Then,
we define a metric on the free forest algebra A∆ with respect to a pseudovariety of finite
forest algebras V whence the basic operations with respect to this metric are contractive.
We establish a lemma similar to Hunter’s Lemma[5].

Over a finite alphabet A, finite unranked ordered trees and forests are expressions
defined inductively. If s is a forest and a ∈ A, then as is a tree where a is the root of
the tree and it is the direct ancestor of the root of each tree in the forest s. Suppose that
t1, . . . , tn is a finite sequence of trees, if we put each tree ti on the right side of the tree
ti−1 for i = 2, 3, . . . , n denoted by t1 + · · ·+ tn then the result is a forest. This applies as
well to the empty sequence of trees, which thus gives rise to the empty forest, denoted by

∗Will be presented in English
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0. The set of all forests is called the horizontal set. A set L of forests over A is called a
forest language. If we take a forest and replace one of the leaves by a special symbol hole,
which is denoted by �, we obtain a context. A forest s can be substituted in place of the
hole of a context p; the resulting forest is denoted by ps. There is a natural composition
operation on contexts, the context qp is formed by replacing the hole of q with p. The set
of all contexts is called the vertical set [3, 2].

Definition 1.1. A forest algebra S consists of a pair (H,V ) of distinct monoids, subject
to some additional requirements, which we describe below.

We write the operation in V , the vertical monoid, multiplicatively and the operation
in H, the horizontal monoid, additively, although H is not assumed to be commutative.
We accordingly denote the identity of V by � and that of H by 0.

We require that V acts on the left of H. That is, there is a map

(v, h) ∈ V ×H 7→ vh ∈ H

such that w(vh) = (wv)h, for every h ∈ H and every v, w ∈ V . We also require that this
action be monoidal, that is, �.h = h, for every h ∈ H.

We further require that for every h ∈ H and v ∈ V , V contains elements h + v and
v + h such that for every x ∈ S,

(v + h)x = vx+ h and (h+ v)x = h+ vx,

where vx is given by the action of v on x if x is a forest and by composition (multiplication)
if x is a context.

We call the equational axioms of forest algebras, the preceding axioms on the elements
of the forest algebras.

And also we require that the action be faithful, that is, if vh = wh, for every h ∈ H,
then v = w.

Note that, a forest algebra S = (H,V ) is finite if and only if H is finite.
A morphism α : (H1, V1) → (H2, V2) of algebras has equational axioms of forest alge-

bras is a pair of monoid homomorphisms γ : H1 → H2 and δ : V1 → V2 such that, for
every h ∈ H and every v ∈ V , γ(vh) = δ(v)γ(h) and

δ(h+ v) = γ(h) + δ(v) , δ(v + h) = δ(v) + γ(h).

However, we will abuse notation slightly and denote both component maps by α.

Definition 1.2. A subalgebra of a forest algebra is a subset of a forest algebra has the
equational axioms of forest algebras.

Definition 1.3. A subset K of a forest algebra S = (H,V ) is called a inverse zero action
subset if, for every context v, v ∈ K if and only if v0 ∈ K.

Let S = (H,V ) be a forest algebra and K a subset of S. We take H ′ = K ∩ H
and V ′ = K ∩ V . We may define on S a relation vK= (σK , σ

′
K), the so-called syntactic

congruence of K, as follows:

• for h1, h2 ∈ H, h1 σK h2 if for all t, w, r ∈ V :
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I. th1 ∈ K ⇐⇒ th2 ∈ K;

II. t(rh1 + w) ∈ K ⇐⇒ t(rh2 + w) ∈ K;

III. t(w + rh1) ∈ K ⇐⇒ t(w + rh2) ∈ K.

• for u, v ∈ V , u σ′K v if for all t, w ∈ V and h ∈ H:

I. tuh σK tvh;

II. tuw ∈ K ⇐⇒ tvw ∈ K.

It is easy to check that σK and σ′K are equivalence relations and the following result holds.

Lemma 1.4. For a forest algebra S and a subset K of S, the equivalence relations σK
and σ′K are congruences with respect to the basic operations of S.

Lemma 1.4, guarantees that the quotient of the forest algebra S with respect to equiv-
alence vK is well defined. In this quotient, if faithfulness holds then, since the equational
axioms of forest algebras are preserved by taking quotients, it is a forest algebra.

Definition 1.5. The syntactic forest algebra for K is the quotient of S with respect to
the equivalence vK , where the horizontal semigroup HK consists of equivalence classes
σK of forests in S, while the vertical semigroup VK consists of equivalence classes σ′K of
contexts in S. The syntactic morphism αK = (γK , δK) : S −→ S/vK assigns to every
element of S its equivalence class in (HK , VK).

Proposition 1.6. The syntactic congruence of K is the largest one that saturates K.

Definition 1.7. A nonempty class V of finite forest algebras is called a pseudovariety if
the following conditions hold:

(i) if S ∈ V and B is a forest subalgebra of S, then B ∈ V;

(ii) if S ∈ V and S → B is an onto morphism, then B ∈ V;

(iii) V is closed under finite direct products.

For two elements u, v ∈ A∆ and a forest algebra B if for every morphism ϕ : A∆ → B
the equality ϕ(u) = ϕ(v) holds, then we say that B satisfies the identity u = v and we
write B � u = v. For a pseudovariety of finite forest algebras V, define:

r(u, v) = min {|B| | B ∈ V and B 2 u = v}

and d(u, v) = 2−r(u,v) where we take min ∅ =∞ and 2−∞ = 0.

Proposition 1.8. Let V be a pseudovariety of finite forest algebras. The function d is a
pseudo-ultrametric on A∆, the basic operations are contractive and the pseudo-ultrametric
space (A∆, d) is totally bounded.

Note that, by [4, Theorem 1.15], every metric space has a completion. It is natural to

consider the completion of A∆, denoted {AV, as the union of the completions of HA and
V A which denoted respectively {VHA and {VV A. Since operations on A∆ are uniformly
continuous, they do extend to uniformly continuous operations on {AV. Hence, {AV has
naturally equational axioms of forest algebras. One can easily show that {AV is a forest
algebra.
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Lemma 1.9. Let K = (H ′, V ′) be a inverse zero action subset of a compact metric forest
algebra S = (H,V ). Then H ′ is a clopen subset of H if and only if V ′ is a clopen subset
of V .

Lemma 1.10. (Similar to Hunter’s Lemma) Let K be a clopen inverse zero action subset
of a compact and zero-dimensional metric forest algebra S. Then there is a continuous
morphism ψ : S → T into a finite forest algebra T such that K = ψ−1 ◦ ψ(K).

Proof. It suffices to show that the classes of the syntactic congruence of K are open.
Then there are only finitely many of them since S is a compact forest algebra. So that
S/vK = (H/σK , V/σ

′
K) is a finite forest algebra and the natural mapping S → S/vK is

a continuous morphism.

Theorem 1.11. A zero-dimensional and compact metric forest algebra is residually finite.

We defined a metric on the free forest algebra with respect to a pseudovariety of finite
forest algebras and we showed that the basic operations with respect to this metric are
contractive. We showed that the completion of the free forest algebra with respect to the
defined metric exists and is a forest algebra. We established in this context an analog of
Hunter’s Lemma [5]. And we can easily show that the Hausdorff completion of the free
forest algebra with respect to a pseudovariety W of finite forest algebras is pro-W. So,
one can easily establish an analog of Reiterman’s Theorem, for a pseudovariety V of finite
algebras a simple basis may be seen as a formalization of a simple algebraic criterion for
membership in V.
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Abstract

This paper presents a brief review on Support Vector Machine (SVM) and L2-
SVM problems and a new one-layer Recurrent Neural Network (RNN) for L2-SVM
learning. The L2-SVM problem is first converted into a new reformulation, which has
some advantage over its original form, then a neural network for its primal is proposed.
The proposed neural network is guaranteed to obtain solution of L2-SVM. Moreover,
this neural network can converge globally to the optimal solution of L2-SVM and the
rate of the convergence is dependent to a scaling parameter, not to the size of data
set. Simulation examples based on Iris and Fisher-Iris problems are discussed to show
the excellent performance of the proposed neural network.

Keywords: Support vector machine, L2-SVM problem, Primal SVM training, Re-
current neural network, Convex programming, Lyapanov function.

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

In recent machine learning probelms, Support Vector Machine (SVM) has a great role in
binary classification. The main feature of this problem is to classify data in two disjoint
classes and its range of application is expanded in manifold fields. As a result, diefferent
kind of SVMs such as L2-SVM, Least Square Supprot Vector Machine (LS-SVM) and
so forth are introduced. These problems are modeled as convex optimization problems
and dealing with them are based on convex programming methods. For instance, SVM
and L2-SVM are modeld as a quadratic optimization porblem and different methods for
solving them are presented [1, 2].
On the other hand, Recurrent Neural Networks (RRNs) have been received an extreme at-
tention for optimizing problems in recent decades. A great number of RNNs are presented
to solve convex, non-convex, smooth and non-smooth problems with different structures
[3, 4].
Implementing the structure of RNNs, many engineering problems are solved by RNNs. In
[5], Xia and Wang have proposed a one-layer RNN for SVM dual problem. In this paper,
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we present a reformulation of SVM and L2-SVM problems and propose our one-layer RNN
for L2-SVM in its primal learning. Moreover, the convergence of proposed neural network,
its performance and its convergence rate are analyzed on real-world data sets.

2 Problem Statement

2.1 SVM Learning

Let {xi, yi} be a set of data points where xi ∈ Rn is the ith data in n-dimensional space
and yi shows the label of xi, in binary classification case yi ∈ {−1, 1}. The SVM problem
is to divide these data points into two disjoint groups by a hyperplane such that it has
the maximum margin of both classes. In addition, this hyperplane must separate the
data of the similar class in the same group. When data are linearly separable, the desired
hyperplane wTx+b can be obtained by solving the following convex optimization problem

min 1/2wTw + cΣli=1ξi

s.t. yi(w
Txi + b) ≥ 1− ξi, i = 1, ..., l, (1)

ξi ≥ 0, i = 1, ..., l

where w is a n×1 vector, b ∈ R, xi is a vector of n-dimensional , c > 0 is a regularization
parameter for the tradeoff between model complexity and training error and ξi measures
the difference between wTxi + b and yi.

2.2 L2-SVM Learning

The major difference between SVM and L2-SVM appears in dealing with slack variables,
and L2-SVM is modeled as follows

min 1/2wTw + cΣli=1ξ
2
i

s.t. yi(w
Txi + b) ≥ 1− ξi, i = 1, ..., l. (2)

3 The New Reformulation

In following, we investigate a refomulation of (1) to propose our new recurrent neural
network. To do this, let z = (wT , b)T , problem (1) can be reformulated as

min 1/2zTQz + 1/2ξCξ

s.t. 1l×1 −Az − ξ ≤ 0. (3)

where C is a matrix such that cIl×l, 1l×1 denotes a l × 1 vector with elements one, Q is
a symmetric and semi-definite positive matrix

Q =

[
In×n 0

0 0

]
, A =




y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...
0 0 . . . yl


×




xT1 1
xT2 1
...

...
xTl 1
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and xi = (xi1, xi2, . . . , xin)T .
According to Karush-Kuhn-Tucker (KKT) conditions, (z, ξ) is the solution of (3) if and
only if there exist u ∈ Rl such that (z, ξ, u) satisfies the following conditions





(
Qz

Cξ

)
+ (uT , uT )

(
−A
−Il×l

)
= 0

Qz −ATu = 0, z is free

Cξ − u = 0,

uT (1l×1 −Az − ξ) = 0, u ≥ 0

(4)

The second term implies that ξ = C−1u. Hence, using the well-known projection theorem,
one can easily obtain the following lemma.

Lemma 3.1. (z∗, ξ∗) is the solution to (3) if and only if there exist non-negative u∗ ∈ Rl
such that (z∗, ξ∗, u∗) satisfies





ATu∗ −Qz∗ = 0

P+(u∗ + 1l×1 −Az∗ − C−1u∗) = u∗

ξ∗ = C−1u∗
(5)

where P+(x) = max{0, x}.
Based on the above equivalent formulation, we propose a RNN for solving (1), with

dynamical system given by

d

dt

(
z
u

)
= α

(
−Qz +ATu

P+(u+ 1l×1 −Az − C−1u)− u

)
(6)

where α > 0 is a scaling parameter.

4 Convergence Analysis

Definition 4.1. A continuous-time nueral network is said to be globally convergent if
for any initial point, the trajectory of the corresponding dynamic system converges to an
equilibrium point.

Lemma 4.2. Let X ∈ Rn be a closed convex set, and PX(.) denotes the projection function
defined by

PX(u) = argmin
v∈X
‖ u− v ‖,

then for all u, v ∈ Rn and x ∈ X

(u− PX(u))T (PX(u)− x) ≥ 0 ‖PX(u)− PX(v)‖ ≤ ‖u− v‖.

Lemma 4.3. For any initial point s0 = (zT0 , u
T
0 )T there exist a unique continuous solution

s(t) = (z(t)T , u(t)T )T for (6). Moreover the equilibrium point of (6) solves problem (3).

Theorem 4.4. The proposed nueral network (6) with the initial point s0 ∈ Rn+1 × Rl is
stable in the sense of Lyapunov and globally converges to the solution of (3).
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Figure 1

5 Experiment Results

In this section, to illustrate the performance of the proposed recurrent neural networks,
we present several simulation results on empirical data sets, Fisher-iris data sets.
To this, let α = 10, Fig. 1 show the convergence of the trajectory of (6) with the initial
point one and zero. These results confirm the globally convergence of proposed neural
network.
In addition, the performance of (6) to classify data sets, Iris and Fisher-Iris, is brought in
Fig. 1.
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Abstract

This paper proposes a modified method for solving optimization problems by quan-
tum genetic algorithms. This method according to mutation after measurement pro-
cess, improves the efficiency and accuracy of searching the optimal solution of the
optimization problem. To show the advantages of proposed method an example sim-
ulation is presented.

Keywords: Quantum Genetic Algorithm, Mutation, Qubit

Mathematics Subject Classification [2010]: 68Q12, 68W20

1 Introduction

Quantum genetic algorithm (QGA) is the product of the combination of quantum com-
putation and genetic algorithms, and it is a new evolutionary algorithm of probability
[2]. It was proposed by Narayanan and Moore in 1996. QGA is based on the concept
and principles of quantum computing such as qubits and superposition of states. The
quantum state vector is introduced in the Genetic Algorithm to express genetic code, and
quantum logic gates are used to realize the chromosome evolution [3]. By these means,
better results are achieved, but there are still some problems in conventional QGA. In this
paper we improve the performance of QGA by mutation of chromosomes before rotating
the Genes. This paper is organized as follows. In section 2 a description of the basic
concept of quantum computing and QGA principles is presented. Section 3 describes the
structure of QGA. An experimental simulation and Concluding remarks follow in Section
4.

2 QGA principles

2.1 Qubit and Its Representation

In quantum information theory, the state |ψ > of a (finite dimensional) quantum system
encodes information. In particular, in typical implementations, the information is encoded
in a number of two level systems called qubits [1]. The qubit is a two-state quantum
system. These two states of a qubit are represented by the computational basis vectors
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|0 > and |1 > in a two-dimensional Hilbert space. An arbitrary qubit state|ψ > maintains
a coherent superposition of the basis states |0 > and |1 > according to the expression:

|ψ >= α|0 > +β|1 >; |α|2 + |β|2 = 1

where α and β are the complex numbers which are called the probability amplitude of
corresponding state of qubit.

2.2 Structure of Quantum Chromosomes

A chromosome is a string of m qubits that forms a quantum register. And the jth indi-
vidual chromosome of the tth generation is defined as follows:

qtj =

(
αt11 αt12 ... αt1k|αt21 αt22 ... αt2k|...|αtm1 αtm2 ... αtmk
βt11 βt12 ... βt1k|βt21 βt22 ... βt2k|...|βtm1 βtm2 ... βtmk

)

where k represents the number of qubit encoding of each gene; m represents the number
of genes in the chromosome. Initialize the quantum encoding (α, β) of each individual in
the population with ( 1√

2
, 1√

2
), which indicates that when t = 0, the probability of collapsing

the superposed state into each basic states is equal.

2.3 Quantum Rotating Gates

The construction of Quantum rotating gates is the key issue of QGA, it can be designed
according to the practical problems and usually can be defined as

U(θi) =

(
cos(θi) −sin(θi)
sin(θi) cos(θi)

)

The updated process is

(
αi
′

βi
′

)
= U(θi)

(
αi
βi

)
=

(
cos(θi) −sin(θi)
sin(θi) cos(θi)

)(
αi
βi

)

where (αi, βi)
T and (αi

′, βi′)T are the probability amplitudes of the ith qubit in chro-
mosome before and after the quantum rotating gates updating, respectively; θi is the
rotating angle. Here we use following table to update chromosomes.

Figure 1: Adjustment strategy of rotating angle

the value and the sign of θi are determined by the adjustment strategy. xi is the ith
bit of the current chromosome; besti is the ith bit of the current optimal chromosome;
f(x) is the fitness function; s(αi, βi) is the direction of the rotating angle; δθi is the value
of the rotating angle. The value of δθi is generally a constant value is around 0.01π.
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3 Structure of Genetic Algorithm (GA) and Quantum Ge-
netic Algorithm (QGA)

In [3], an operation named quantum mutation operation that can completely reverse the
individuals evolutionary direction by swapping the value of probability amplitude of qubits
(α, β), is introduced as an improvement method of quantum genetic algorithms. Quantum
NOT gates is adopted to realize chromosomal variation. Quantum mutation operation
helps to increase the diversity of the population and reduce the probability of premature
convergence. Figure 2.a shows the QGA structure with the Quantum mutation. In this
paper we add the mutation operator for measured qubits, that is classic genes mutates
with a little mutation rate. The structure of proposed method is shown in figure 2.b.

(a) mutation after updating chromo-
somes

(b) mutation before updating chromo-
somes(proposed method)

Figure 2: QGA structure with mutation operation

4 Simulation results

A simple example: find the optimal solution in the binary function:

Minf(x) = sin(x)

0 ≤ x ≤ 10

The conventional quantum genetic algorithm and improved quantum genetic algorithm
are encoded by the binary; the evolution generation is 100; the size of population is 20; the
length of each binary variable is 8; fitness function is the objective function. The results
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Figure 3: Minimization of f(x) = sin(x) with conventional QGA

(a) mutation after updating chro-
mosomes

(b) mutation of measured chromo-
somes(before updating Q(t))

Figure 4: Minimization of f(x) = sin(x) with improved QGA

of the conventional quantum genetic algorithm, QGA with quantum mutation operator
and QGA with mutation operator on measured qubits are shown in figures 3, 4.a and
4.b, respectively. The x-axis represents the evolutionary generations; y-axis represents the
best fitness of every generation. Comparing above figures, we see that the convergence of
QGA with mutation of measured qubits (fig 4.b), is more stable than the case of adding
quantum mutation (fig 4.a). The modified method presented in this paper causes arising
performance ratio of convergence and robustness of algorithm.
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Abstract

In this paper, some (v, 3, 1)-packing designs are used to construct a class of nonbi-
nary QC-LDPC codes whose parity-check matrices have uniform column-weight two.
The main advantage of this approach is that, the constructed nonbinary QC-LDPC
codes can achieve the large girth 36. Simulation results show that the constructed non-
binary QC-LDPC codes perform better than the nonbinary progressive edge growth
(PEG) QC-LDPC codes and nonbinary codes from lifting girth-8 cycle codes for mod-
erate block length and low code rate.

Keywords: Nonbinary QC-LDPC codes, Packing Design, Girth.
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1 Introduction and Preliminaries.

Nonbinary LDPC codes are applicable to match underling modulation in multicarrier
underwater acoustic communications. It is feasible via developing a code design procedure
to obtain nonbinary LDPC codes with significant performance. It has shown in [1], a code
construction method that replaces an appropriate portion of the columns in the parity
check matrix of a cycle code by columns having a weight equal or greater than two in
order to increasing the codes minimum distance and decreasing the multiplicities of low
weight codewords. Due to short cycles in the parity-check matrices create correlation
of the extrinsic information during iterative decoding, and cause decoding performance
degradation, many approach have been studied to construct nonbinary LDPC codes with
large girth. Some girth-8 cycle codes, whose parity-check matrices with girth 24 proposed
in [4].

For construct parity-check matrix of column-weight two nonbinary LDPC codes with
large girth, We simply employ (v, 3, 1)-packing design. A (v, 3, 1)-packing design of order
v, block size 3, and index one is a collection with k, 3-element subsets, called blocks, of
a v-set,V = {1, 2, · · · , v} , such that every 2-subset of V occurs in at most one block.
We associate with (v, 3, 1)- packing design a binary incidence matrix D = (dij) of v rows
and k columns. Every row of D corresponds to a block and every column corresponds
to one object in V , such that dij = 1 if the i-th object belongs to the j-th block and
dij = 0, otherwise. In [2] has provided the details of the design construction. For t ≥ 7,
let Xt = {1, 3, · · · , 2⌈t/2⌉ − 1} and Yt = {2, 4, · · · , 2⌊t/2⌋} be the odd and even positive
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integers not greater than t, respectively. Set W = Yt × Xt = {(y, x) : y ∈ Yt, x ∈ Xt}.
Define the relation R on W by (y1, x1) R (y2, x2) ⇔ y1 − x1 ≡ y2 − x2 (mod 2⌈ t

2⌉). It is
easy to see that R is an equivalent relation on W.

Lemma 1.1. [2] For positive integers 1 ≤ i < j ≤ ⌈ t
2⌉, we have (2, 2i − 1) ̸R(2, 2j − 1).

For each t ≥ 7 and 1 ≤ i ≤ ⌈ t
2⌉, let Ri = [(2, 2i − 1)] be the equivalence class of

(2, 2i − 1) under the relation R. By Lemma 1.1, the equivalence classes Ri, 1 ≤ i ≤ ⌈ t
2⌉,

are distinct. Each Ri has ⌊ t
2⌋ elements. Set Ki = {{y, x, t + 1 + ui} : (y, x) ∈ Ri}, where

ui = 1 − i (mod ⌈ t
2⌉), and Kt =

∪
i Ki. Clearly Kt is a (v, k)−design on V = {1, · · · , v},

where k = ⌈t/2⌉⌊t/2⌋ and v = ⌈3t/2⌉.
The incidence matrix Dt of Kt can be used to construct a base matrix of a nonbinary

codes with uniform column-weight two. This means that each row and column of the
incidence matrix correspond to points and each nonzero entry of the incidence matrix
correspond to lines. So that each line is composed of two points and there is one and only
one line between two points. Each pair of lines has at most one common point. Now, label
each point and line by a pair (i, j), where i and j are the row and column indices of base
matrix Bt = (bij), such bij = 1 if the i-th point lies on the j-th line and bij = 0, otherwise.
Figure 1, shows an example of a Tanner graph of K7 and corresponding incidence matrix
B7. Hereinafter, in order to properly apply the notations, we show the base matrix Bt by

Figure 1: Tanner graph of K7 and corresponding incidence matrix B7.

a (m,n) block-design B = [B1, B2, . . . , Bn], i.e. a list of blocks Bi ⊆ M = {1, 2, . . . , m},
where Bi, 1 ≤ i ≤ n, is the row-indices of non-zero elements in the ith column of Bt. The
number of blocks of Bt depend on choice of t, is (t/2)⌈3t/2⌉ for even t and 3⌈t/2⌉⌊t/2⌋,
otherwise. Also, for each t ≥ 7, the girth of base matrix Bt is 12. Let Ct be the nonbinary
QC-LDPC codes with the parity-check matrices Ht. The following theorem states that
for each t ≥ 7, Bt is irregular (the proof is clear).

Theorem 1.2. If t is even, then Bt has ⌈3t/2⌉ rows of weight t
2 and ⌈t/2⌉⌊t/2⌋ rows of

weight 3. Moreover, if t is odd, then Bt has ⌊t/2⌋ rows of weight ⌈t/2⌉, 2⌈t/2⌉ rows of
weight ⌊t/2⌋ and ⌈t/2⌉⌊t/2⌋ rows of weight 3.

It has been shown in [2], while the girth of base matrix of QC-LDPC codes is 2g, the
maximum achievable girth of QC-LDPC codes is at least 6g. So, according to this fact,
for each t ≥ 7 the maximum girth of parity-check matrix of nonbinary QC-LDPC code
Ct is at least 36. Let g, m and n be some positive integers such that g ≥ 6 and m < n.
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For given positive integer P and base matrix Bt with corresponding block-design B, let
A = (a1, a2, · · · , an) be a slope-vector, such that each ai belongs to {0, 1, 2, . . . , P − 1}.
By H, we mean the mP × nP parity-check matrix of a binary code with CPM size P
which is obtained by replacing each zero and (i, j) non-zero element of Bt by the P × P
zero matrix and Iai , respectively. Iai is P × P identity matrix by cyclic shifting of each
column ai position. For each j, 1 ≤ j ≤ n, if Bj = {j1, j2}, j1 < j2, then we define
aj1,j2 := aj and aj2,j1 := −aj mod P . Let for z ≤ n, g(a1, · · · , az) be the minimum 2l
cycle in H, such that aj0,j1 + aj1,j2 + · · · + ajl−2,jl−1

+ ajl−1,j0 ≡ 0 mod P , where for each
0 ≤ k ≤ l − 1, we have jk ̸= jk+1 mod l, and if bk = {jk, jk+1 mod l}, then bk ̸= bk+1 mod l

and {b0, · · · , bl−1} ⊆ {B1, B2, · · · , Bz}. For enough large P , the following algorithm finds
A, such that g(H) ≥ 2g.
Algorithm.

1. Select an arbitrary positive integer t ≥ 7.

2. Set P = 1.

3. Set W = {0, 1, ..., P − 1}, z = 1, W1 = W .

4. If z = 0 then z → z + 1 and go to 3.

5. If Wz = ∅, then Wz−1 → Wz−1 − {az−1},z → z − 1, and go to step 4.

6. Select arbitrary element az ∈ Wz.

7. If z < n then z → z + 1.

8. If z = n then go to step 10.

9. Let Wz := {a ∈ W |g(a1, · · · , az−1, az := a) ≥ 2g} and go to step 5.

10. Print a = (a1, · · · , an) as a solution.

11. END

Then the nonzero elements of the parity-check matrix H is replaced by some nonzero
elements of GF (q), randomly, to generate an ensemble of nonbinary QC-LDPC codes
with different lengths and girths.

2 Simulation Results

In this section, we have provided some bit-error-rate (BER) performance comparisons
between the constructed nonbinary column-weight two QC-LDPC codes, on one hand,
and some other nonbinary QC-LDPC codes. In Figure 2, NB(gb) and NC(gb) are used
to denote constructed nonbinary codes and cycle codes in [4], respectively, with girth b.
This figure shows that the constructed nonbinary code with girth 24 performs remarkably
better than nonbinary codes [4] and PEG [3] codes. Moreover, Figure 3, has provided
some performance comparisons between the constructed nonbinary codes with different
girth and it shows that the nonbinary constructed code having base matrices with girth
36 have greatly improved error correction performance than other codes.
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Figure 2: Nonbinary constructed code versus nonbinary PEG and cycle code in[4].
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Figure 3: Performance comparison nonbinary constructed code with different girth.
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Abstract

In this paper, a multi-dimensional inverse source problem for the time-fractional
diffusion equation is investigated. Uniqueness results have been proved under some
conditions on the problem. The fractional differentiation is considered to be of Riesz-
Caputo type.

Keywords: time-fractional equation, uniqueness result, heat source, inverse problem,
parabolic heat equation.
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1 Introduction

In recent years, fractional differential equation have attracted wide attentions. Various
models using fractional partial differential equations have been successfully applied to
describe problems in biology, physics, chemistry and biochemistry, and finance. These
new fractional-order models are more adequate than the integer-order models, because
the fractional order derivatives and integrals enable the description of the memory and
hereditary properties of different substance. Time-fractional diffusion equation is deduced
by replacing the standard time derivative with a time fractional derivative and can be
used to describe the superdiffusion and subdiffusion phenomena. The direct problems,
i.e., initial value problem and initial boundary value problems for time-fractional diffusion
equation have been studied extensively in recent years, for instances, on maximum prin-
ciple, on some uniqueness and existence results, on numerical solutions by finite element
methods and finite difference methods, on exact solutions [7]. The early papers on inverse
problems were provided by Murio in [1, 2] for solving sideways fractional heat equations
by mollification methods. After that, some works have been published. In [3], Cheng et
al. considered an inverse problem for determining the order of fractional derivative and
diffusion coefficient in fractional diffusion equation and gave a uniqueness result. In [4],
Liu and Yamamoto solved a backward problem for the time-fractional diffusion equation
by a quasi- reversibility regularization method. Zheng and Wei in [5, 6] solved the Cauchy
problems for time fractional diffusion equation on a strip domain by a Fourier regulariza-
tion and a modified equation method. In [7] the one dimentional initial-boundary value
problem for time fractional diffusion equation has been dealt with in terms of left-sided
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Caputo fractional derivative. Following the ideas in [8], in this paper we are going to prove
a uniqueness result for the inverse multi-dimentional problem





RC
0 Dα

Tu+ Lu = f(x) in Ω × (0, T ), 0 < α < 1,
u = 0 on Γ × (0, T ),
u(x, 0) = u0(x) for x ∈ Ω,

(1)

with additional information
u(x, T ) = ψT (x), (2)

where RC
0 Dα

Tu is the Riesz-Caputo fractional derivative of u taken in terms of the time
variable.

2 Main resulte

Definition 2.1.

1) The left and right Riemann-Liouville fractional integrals of order α are defined respec-
tively by

aI
α
x y(x) = 1

Γ(α)

∫ x
a (x− t)α−1y(t)dt and xI

α
b y(x) = 1

Γ(α)

∫ b
x (t− x)α−1y(t)dt.

2) The Riesz fractional integral R
a I

α
b y is given by

R
a I

α
b =

1

2
(aI

α
x y(x) + xI

α
b y(x)).

3) The left and right Riamann-Liouville fractional derivatives of order α are defined re-
spectively by

aD
α
xy(x) = 1

Γ(1−α)
d
dx

∫ x
a (x− t)−αy(t)dt and xD

α
b y(x) = −1

Γ(1−α)
d
dx

∫ b
x (t− x)−αy(t)dt.

4) The Riesz fractional derivative R
aD

α
b y is given by

R
aD

α
b y(x) =

1

2
(aD

α
xy(x) − xD

α
b y(x)).

5) The left and right Caputo fractional derivatives of order α are defined respectively by

C
a D

α
xy(x) = 1

Γ(1−α)

∫ x
a (x− t)−α d

dxy(t)dt and C
xD

α
b y(x) = −1

Γ(1−α)

∫ b
x (t− x)−α d

dxy(t)dt.

6) The Riesz-Caputo fractional derivative RC
a Dα

b y is given by

RC
a Dα

b y(x) =
1

2
(C
a D

α
xy(x) − C

xD
α
b y(x)).

Lemma 2.2. Let aI
α
x y(x),

R
a I

α
b y, aD

α
xy(x),

R
aD

α
b y(x),

C
a D

α
xy(x),

RC
a Dα

b y(x) be as above.
Then we have

∫ T

0

RC
0 Dα

Tu(s) · RC
0 D2α

T u(s)ds =

1

2
R
0 I

1−α
T

(
RC
0 Dα

Tu(s)
)2 |Ts=0 +

1

4Γ(1 − α)

∫ T

0

(RC
0 Dα

Tu(T )

(T − s)α
−

RC
0 Dα

Tu(0)

sα

)
RC
0 Dα

Tu(s)ds.
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Theorem 2.3. Consider a linear differential operator

Lu(x, t) = ∇ · (−A(x)∇u(x, t)) + bt(x)∇u(x, t) + c(x)u(x, t),

with bounded (dis-continuous) coefficients obeying

∀u : (Lu, u) ≥ 0,

and Lu does not change sign. Let u0, ψT ∈ L2(Ω). Then there exists at most one
spacewise-dependent heat source f ∈ L2(Ω) such that (1) together with condition (2) hold.
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Abstract

Hindman’s theorem states that for every coloring of N with finitely many colors,
there is an infinite set A such that the set of numbers which can be written as a sum
of distinct elements of A is monochromatic. In this paper, we survey some interesting
questions concerning this theorem.

Keywords: Reverse mathematics, Hindman’s theorem, Ultrafilters
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1 Introduction

Let N be the set of nonnegative integers. Given X ⊆ N let FS(X) be the set of all sums
of finite nonempty subsetes of X. Hindma’s theorem is the following statement.

Theorem 1.1. (Hindman) If N = C0 ∪ . . . ∪ Cl, then there exists an infinite set X ⊆ N
such that FS(X) ⊆ Ci for some i ≤ l.

There are four proofs of Hindman’s theorem:
(1) The original combinatorial proof due to Hindman [6];
(2) The simplified combinatorial proof due to Baumgartner [1];
(3) The dynamical proof due to Furstenberg and weiss [2];
(4) The ultrafilter proof due to Glazer [4].

The notion of an ultrafilter is a powerful tool in set theory, combinatorics and topology.
We here give a short proof of Hindman’s theorem using ultrafilters. For more details see
[3]. An ultrafilter on a set X is a set of subsets F ⊆ P(X) satisfying

1. X ∈ F and ∅ 6∈ F .

2. If A ∈ F and B ∈ F then A ∩B ∈ F .

3. For all A ⊆ X, either A ∈ F or Ac ∈ F .

Theorem 1.2. Let F be an ultrafilter on a set X.
1. If B is such that A ∩B 6= ∅ for all A ∈ F then B ∈ F .
2. If A and B are such that A ∪B ∈ F then at least one of A,B ∈ F .
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Proof. We prove the second and left the first as an exercise. If we have both A,B 6∈ F
then by the first statement there are C,D ∈ F with A ∩ C = ∅ and B ∩ D = ∅ so
(A ∪B) ∩ (C ∪D) = ∅, so A ∩B 6∈ F since C ∩D ∈ F .

By induction, one can extend the second statement above: If F is an ultrafilter and A ∈ F
then whenever we write A = A1∪· · ·∪An as a disjoint union of finitely many sets, exactly
one of the Ai is in F . An ultrafilter on X is called nonprincipal if it is not of the form
F(x) = {A : x ∈ A} for some x ∈ X. It is known that for infinite X, there is a nonprincipal
ultrafilter on X.

Let βX be the set of all ultrafilters on X. If X is finite then |X| = |βX| with a natural
bijection: x 7→ F(x). If X is infinite, βX again contains a copy of X, the collection of
principle ultrafilters {F(x) : x ∈ X}. We’ll just consider here the simple case X = N. We
define a binary operation + : βN× βN→ βN as follows. For F ,G ∈ βN,

F + G = {A ⊆ N : {n ∈ N : A− n ∈ G} ∈ F},

where A− n = {a− n : a ∈ A}. It it shown that for all F ,G ∈ βN, F + G ∈ βN. Another

important property is the following.

Theorem 1.3. (Idempotent lemma) There is F ∈ βN with F + F = F .

For A ⊆ N, let A′ = {n ∈ N : A− n ∈ F}, then by Idempotent lemma,

F + F = {A ⊆ N : A′ ∈ F} = F .

So for all A ∈ F , A′ ∈ F and so A ∩ A′ ∈ F . We are now ready to prove the Hindman’s
theorem.

Proof. (Proof of theorem 1.1) Fix a colouring χ. We’ll inductively construct sequences
A0 ⊇ A1 ⊇ A2 ⊇ . . . and distinct a1, a2, . . . with the properties that ai ∈ Ai−1, Ai ∈ F ,
and ai+1 + Ai+1 ⊆ Ai, and with χ constant on A0. This will give the result, for consider
any finite sum from among the ai’s, say

a7 + a4 + a3.

We have a7 ∈ A6 ⊆ A5 ⊆ A4, so a7 + a4 ∈ A3, so a7 + a4 + a3 ∈ A2 ⊆ A1 ⊆ A0.
To complete the proof, fix an idempotent ultrafilter F ∈ βN. There is a unique colour
i with A0 := {n ∈ N : χ(n) = i} ∈ F . Since F is idempotent, A′0 ∈ F and so also
A0 ∩ A′0 ∈ F . Select a1 ∈ A0 ∩ A′0 and set A1 = A0 ∩ (A0 − a1) − {a1} So A1 ⊆ A0,
a1 + A1 ⊆ A0, and A1 ∈ F (removing one element from a set in F does not take it
out of F , since F is nonprincipal). Having defined An, select an+1 ∈ An ∩ A′n and set
An+1 = An ∩ (An − an+1)− {an+1}.

As a corrolary to Hindman’s theorem one can prove that for every coloring of N with
finitely many colors, there is an infinite set A such that finite products of elements of A
lie entirely inside one partition class. That raises a natural question:

Conjecture. whenever the natural numbers are partitioned into finitely many classes,
it is possible to find an infinite set A such that both finite sums and products of A lie
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entirely inside one partition class.

The following simple case is only known when the number of classes is two.

Conjecture. Whenever the natural numbers are partitioned into finitely many classes,
it is possible to find two numbers a and b such that a, b, a+b, and ab all lie in one partition
class.

Conjecture. Whenever the natural numbers are partitioned into finitely many classes,
it is possible to find two numbers a and b such that a + b and ab all lie in one partition
class.

1.1 SP (a, r)

For a, r ∈ N, let SP (a, r) be the first n ∈ N, if such exists, such that whenever {1, 2, . . . , n}
is r-colored, there exist x and y with a ≤ x < y such that {x+ y, xy} is monochromatic.
If no such n exists, the number is defined to be infinite. It is an old result of R. Graham
that SP (a, 2) is finite for all a. The exact value of SP (a, 2) is known for a ≤ 105 [7].
In all computed cases, SP (a, 2) is divisible by a2. This seems less likely to be a random
occurrence.

Conjecture. For all a ∈ N, SP (a, 2) is divisible by a2.

Even the following seemingly simple case is open.

Conjecture. For all a ∈ N, SP (a, 2) is divisible by a.

2 Hindman’s theorem and reverse mathematics

An important question in mathematical logic is that which set existence axioms are needed
to prove the known theorems of ordinary mathematics. This is the theme of a research
program in foundations of mathematics called reverse mathematics. This question is
studied in the language of second order arithmetic, the weakest language rich enough to
express and develop the bulk of mathematics. Note that the formalization of mathematics
within second order arithmetic goes back to Dedekind and was developed by Hilbert and
Bernays [5]. In many cases, if a mathematical theorem is proved from appropriately
weak set existence axioms, then the axioms will be logically equivalent to the theorem.
Furthermore, only a few specific subsystems of second order arithmetic, called the big five,
arise repeatedly in this context: RCA0, WKL0, ACA0, ATR0, and Π1

1-CA0. For details we
refere the reader to [8]. Let HT denotes the statement of Hindman’s theorem. Within
RCA0 one can prove that

1. HT implies ACA0

2. HT can be proved in ACA0
+.

An interesting open question is the strength of Hindman’s theorem.

Question. Is HT equivalent to ACA0
+ , or to ACA0, or does it lie strictly between

them?
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Abstract

In this note, by using the notion of dual map and cojugate quantum channel, we
show that the higher rank numerical ranges and (p, k) numerical range can be used
to describe private quantum codes and private quantum subsystems, respectively. We
also show how this description provide a bridge between quantum error correction and
cryptography.
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1 Introduction

First introduced in [1], private quantum channels are at the heart of quantum cryptogra-
phy. They were introduced as the quantum analogue of the classical one-time pad.

In this paper we will restrict our attention to finite-dimensional Hilbert spaces Cn. The
set of n×m complex matrices is denoted by Mn×m. X† will be a notation to denotes the
complex conjugate transpose of X ∈Mn ≡Mn×n. We will use Dirac (bra-ket) notation: a
unit column vector in Cn will be denoted |ψ〉, its dual (row) vector |ψ〉† will be denoted 〈ψ|,
and the rank-one projection associated to |ψ〉 is its outer product |ψ〉 〈ψ|. A mixed state
is a convex combination of rank one projections. We call mixed states and outer products
of pure states density operators, which are precisely the trace-one positive operators.

Given a linear map Φ : Mn → Mm, its dual map Φ† : Mm → Mn is defined via
the Hilbert–Schmidt inner product: it is the unique map Φ† satisfying Tr(ρΦ†(A)) =
Tr(Φ(ρ)A) for all A ∈ Mm and all density matrices ρ ∈ Mn. Quantum channels are
described by completely positive trace preserving linear (CPTP) maps. The dual of a
CPTP map is a unital (i.e. Φ†(In) = Im) completely positive linear (UCP) map. The
Kraus operators of a channel Φ are the operators {Ei}ri=1 ⊂Mm×n given by operator sum

representation Φ(ρ) =
∑r

i=1EiρE
†
i for all ρ ∈Mn. This representation of Φ is not unique,

however, in general, results do not depend on the choice of Kraus operators.

∗Will be presented in English
†Speaker
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2 Private subspace codes and higher rank numerical ranges

A mathematical definition of private quantum channel can be given as follows.

Definition 2.1. Let S ⊆ Cn be a subspace, Φ : Mn →Mm be a quantum channel and let
ρ0 ∈Mm be a density matrix. Then S is private subspace code for Φ with output ρ0 if

Φ(|ψ〉 〈ψ|) = ρ0, ∀ |ψ〉 ∈ S.

Often both the channel Φ itself, as well as the triple [S,Φ, ρ0] from the above definition
are called a private quantum channel.

Motivated by the theory of quantum error correction, researchers study the (joint)
higher rank numerical range defined as follows, see for example [4].

Definition 2.2. Given X1, . . . , Xm ∈ Mn. The (joint) rank-k numerical range Λk(X) of
the m-tuple X = (X1, . . . , Xm) is defined as the collection of vectors (a1, . . . , am) such
that PXjP = ajP , j = 1, . . . ,m, for some rank-k orthogonal projection P ∈Mn.

In the following result, a characterization of private quantum codes in terms of the
dual map of a channel is derived.

Theorem 2.3 ([2]). Let Φ : Mn → Mm be a quantum channel. Then a subspace S of
Cn is a private subspace code for Φ with output state ρ0 ∈ Mm, if and only if for any
X ∈Mm, there exists a λX ∈ C such that

PSΦ†(X)PS = λXPS ,

where PS is the orthogonal projection onto S. Moreover, in this case λX = Tr(ρ0X).

Remark 2.4. Let Φ : Mn → Mm be a quantum channel. By using Theorem 2.3, there
exists a private subspace code of dimension k for Φ if and only if the joint rank-k numerical
range of Φ†(X) for all X ∈Mm is nonempty.

Let Φ : Mn → Mm be a quantum channel with operator sum representation Φ(ρ) =∑r
j=1 VjρV

†
j , where Vj ∈ Mm×n and 1 ≤ r ≤ mn is the smallest. Define F : Mn →

Mmr with F (ρ) = [ ViρV †j ](i,j). Then the conjugate channel of Φ is a quantum channel

Φ# : Mn → Mr defined by Φ#(ρ) = [ Tr(ViρV †j ) ](i,j). Fix an orthonormal basis {|ei〉}mi=1

for Cm. Then Φ# has operator sum representation Φ#(ρ) =
∑k

j=1RjρR
†
j , where R†j =

[ V †1 |ej〉 V
†
2 |ej〉 ··· V

†
r |ej〉 ].

Theorem 2.5. Let Φ : Mn →Mm be a quantum channel with operator sum representation
Φ(ρ) =

∑r
j=1 VjρV

†
j , where Vj ∈ Mm×n. Then a subspace S of Cn is a private subspace

code for Φ# if and only if there exist Λ = [λij ] ∈Mr such that

PSV
†
j ViPS = λijPS ,

where PS is the orthogonal projection onto S. Moreover, ρ0 = [λij ](i,j).

By using Knill-Laflamme theorem in quantum error correction theory [4] we have the
following corollary.
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Corollary 2.6. Given a conjugate pair of quantum channels Φ and Φ#, a code is an error
correction code for one if and only if it is a private subspace code for the other.

Example 2.7. Consider the quantum channel Φ : M4 → M4 with Kraus operators V1 =
1√
2
I4 and V2 = 1√

2

[
1 0
0 −1

]
⊗ I2. Let S be a subspace of C4 spanned by {|00〉 , |01〉}. Since

PSV
†
j ViPS = λijPS , where Λ = [λij ](i,j) = 1

2 [ 1 1
1 1 ], by using Theorem 2.5, S is a private

subspace code for the conjugate channel Φ#, where Φ#(ρ) =
∑4

j=1R
†
jρRj and

R1 =
1√
2

( 1 0 0 0
1 0 0 0 ), R2 =

1√
2

( 0 1 0 0
0 1 0 0 ), R1 =

1√
2

(
0 0 1 0
0 0 −1 0

)
, R1 =

1√
2

(
0 0 0 1
0 0 0 −1

)
.

Every state |ψ〉 ∈ S is of the form |ψ〉 = [ a b 0 0 ]T , where a, b ∈ C and |a|2 + |b|2 = 1.
By direct calculation, we find Φ#(|ψ〉 〈ψ|) = 1

2( 1 1
1 1 ). Thus the code S is indeed private for

the channel Φ# and ρ0 = Λ.

3 Private subsystems and (p, k) numerical range

Let A and B be subspaces of Cn1 and Cn2 , respectively, such that dimA = p ≤ n1,
dimB = k ≤ n2 and Cn = (A⊗ B)⊕ (A⊗ B)⊥. We call A and B subsystems of Cn. The
subspaces of Cn can be viewed as subsystems B for which p = n1 = 1. A subscript on a
state will indicate to which subsystem the state belongs, e.g. |ψA〉 means the state belongs
to A.

Definition 3.1. Let Φ : Mn → Mm be a quantum channel and let B be a subsystem of
Cn. Then B is called a private subsystem for Φ if for any |ψA〉 ∈ A there exists ρ|ψA 〉 ∈Mm

such that
Φ(|ψA〉 〈ψA | ⊗ |ψB〉 〈ψB |) = ρ|ψA 〉, for all |ψB〉 ∈ B.

Motivated by the theory of correctable quantum subsystems, an extension of rank-k
numerical range, known as (p, k) numerical range of X ∈Mn is defined as follows; see [3].

Λ(p,k)(X) =
{
Y ∈Mp : W †XW = Y ⊗ Ik for some W ∈Mn×pk with W †W = Ipk

}
.

Simillarly, we can define the joint (p, k) numerical range of an m-tuple of matrices in Mn.
Note that Λ(1,k)(X) = Λk(X).

In the following result, we derive a characterization of private quantum subsystems in
terms of the dual map.

Theorem 3.2. Let Φ : Mn → Mm be a quantum channel. Then a subsystem B of Cn
is a private subsystem for Φ, if and only if for any X ∈ Mm, there exist WA ∈ Mn1×p,
WB ∈Mn2×k and YX,WA ∈Mp such that W †AWA = Ip, W

†
BWB = Ik and

(WA ⊗WB)†Φ†(X)(WA ⊗WB) = YX,WA ⊗ Ik.

Moreover, if WA = [ |φ1〉 ··· |φp〉 ], then YX,WA = diag
(
Tr(Xρ|φ1〉), . . . ,Tr(Xρ|φp〉)

)
.

Remark 3.3. Let Φ : Mn → Mm be a quantum channel. By using Theorem 3.2, there
exists a private subsystem of dimension k for Φ if and only if the joint (p, k) numerical
range of Φ†(X) for all X ∈Mm is nonempty.
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Theorem 3.4. Let Φ : Mn → Mm be a quantum channel. Then a subsystem B of Cn
is a private subsystem for Φ#, if and only if there exist WA ∈ Mn1×p, WB ∈ Mn2×k and

Yij,WA ∈Mp such that W †AWA = Ip, W
†
BWB = Ik and

(WA ⊗WB)†V †j Vi(WA ⊗WB) = Yij,WA ⊗ Ik.

Moreover, if WA = [ |φ1〉 ··· |φp〉 ], then ρ|φt〉 = [ (Yij,WA)
tt ](i,j) for all t = 1, . . . , p and

Yij,WA = diag
(
(ρ|φ1〉)ij , . . . , (ρ|φp〉)ij

)
.

By using theory of operator quantum error correction [3] we have the following corol-
lary. Another approach to the following corollary is given in [2].

Corollary 3.5. Given a conjugate pair of quantum channels Φ and Φ#, a subsystem is
an operator error correction subsystem for one if it is a private subsystem for the other.

Example 3.6. Consider quantum channel Φ : M4 →M4 with Kraus operators

V1 =
[√

α 0

0
√
1−α

]
⊗ I2 and V2 =

[
0
√
α√

1−α 0

]
⊗ I2,

for some 0 ≤ α ≤ 1. Decompose C4 = A ⊗ B with respect to the standard basis so that
A = B = C2. Note that V †i Vj = Yij ⊗ I2, for some Yij ∈ M2. So by using the Theorem
3.4, the subsystem B is private for the conjugate channel Φ#, where Φ# : M4 → M2 has
Kraus operators

R1 =
[√

α 0
0
√
α

]
⊗ [ 1 0 ], R2 =

[√
α 0
0
√
α

]
⊗ [ 0 1 ],

R3 =
[

0
√
1−α√

1−α 0

]
⊗ [ 1 0 ], R4 =

[
0
√
1−α√

1−α 0

]
⊗ [ 0 1 ].

Let |ψA〉 ∈ A and |ψB〉 ∈ B. By direct calculation, we find Φ#(|ψA〉 〈ψA | ⊗ |ψB〉 〈ψB |) =
α |ψA〉 〈ψA |+ (1−α)σx |ψA〉 〈ψA |σx, where is not related to |ψB〉. Thus the subsystem B is
indeed private for the channel Φ#.
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Range of charged particle in matter:

the Mellin transform

Amir Pishkoo∗
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Abstract

There are some integrals which cannot be evaluated in terms of elementary func-
tions or even the standard special functions for general values of parameters. In these
cases it may be used a general method that builds on Mellin transform method. In
a physical quantity case, particles generally lose energy when travelling in a medium.
They will eventually have lost all their kinetic energy and come to rest. The distance
travelled by the particles is referred to as the “range”. In this paper, we calculate
the physical quantity “range” R, by integrating of the energy loss per unit path, dE

dx ,
while it first turns into Mellin convolution of two functions and, finally it is expressed
in terms of Meijer G-function.

Keywords: Mellin convolution, Inverse Mellin transform, Meijer G-function, Energy
loss, Range

Mathematics Subject Classification [2010]: 44A35, 33C60, 44A10

1 Introduction

Using of energetic ion beams to synthesize and modify materials has evolved over the
past several decades. Ion beam modification of materials applies energetic ions over a
broad range of energies controllably to change electrical, optical, structural, mechanical
and chemical properties of materials for a wide range of research and applications [1]. The
energy loss per unit path, −dE

dx , depends on the velocity of particle. The calculation of
this value by the quantum mechanics methods gives the following expression for a heavy
particle wth charge ze, moving at velocity v � c

−dE
dx

=
e4

4πε20m
.
z2

v2
.NZ ln

2mv2

I
, (1)

where the first term in the right hand side includes the universal constants; the second
term, the characteristics of the particle; and the third, the parameters of the medium.
NZ is the concentration of electrons in the substance, equal to the product of the number
of atoms per unit volume per nuclear charge, and I is the mean excitation energy of the
atoms of the medium. The paths of the motion of slowing down heavy charged particles
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are linear. In the overwhelming majority of collisions, the energy is transferred to very
light electrons and because of this no significant deflection from the direction of the initial
motion of the particle is observed [2].

Since particles lose energy when travelling in a medium, they will eventually have
lost all their kinetic energy and come to rest. The distance travelled by the particles is
referred to as the range. The energy loss increases towards the end of the range. Close
to the end it reaches a maximum and then abruptly drops to zero. However, all the
particles with a given kinetic energy do not have exactly the same range. This is due
to the statistical nature of the energy loss process. There are fluctuations on the range
called range straggling. The range is computed on the basis of the relationship between
the energy lost and the distance traversed [2].

R =

∫ R

0
dx =

4πε20m

e4
.
M

z2

∫ v0

0

v3dv

NZ ln 2mv2

I

(2)

As the Meijer G-function is nowadays available both in symbolic computer algebra
packages and as high-performance computing codes, this opens up the possibility to com-
pute the range of particles because of energy loss.

There are some integrals which cannot be evaluated in terms of elementary functions
or even the standard special functions for general values of parameters. We use a general
method that builds on Mellin transform method [3,4].

Definition 1.1. The Mellin transform, of a function f(x) defined on the interval [0,∞) is
given by

mf =

∫ ∞

0
f(x)xs−1dx, (3)

and its inverse integral is

f(x) =
1

2πi

∫ c+i∞

c−i∞
x−smfds (4)

The driving force behind the Mellin transform method is the Mellin convolution theo-
rem. The Mellin convolution of two functions f1(z) and f2(z) is defined as

(f1 ? f2)(z) =

∫ ∞

0
f1(t)f2(

z

t
)
dt

t
(5)

The Mellin convolution theorem states that the Mellin transform of a Mellin convolution
is equal to the products of the Mellin transforms of the original functions,

mf1?f2(u) = mf1(u)mf2(u) (6)

Now it can be shown that any definite integral

f(z) =

∫ ∞

0
g(t, z)dt (7)

can be written as the Mellin convolution of two functions f1 and f2 are of the hypergeo-
metric type, which is true for many elementary functions and majority of special functions,
the integral turns out to be a Mellin-Barnes integral. Depending on the involved coeffi-
cients, this integral can be evaluated as a Fox H function, or in simpler cases, a Meijer
G-function.
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2 Main results

Now we compute the “range” through using Mellin convolution and inverse Mellin trans-
form. Changing variable ln 2mv2

I = t gives

R =

∫ R

0
dx =

4πε20m

e4
.
M

z2

∫ v0

0

v3dv

NZ ln 2mv2

I

=
4πε20m

e4
.
M

z2
.

I2

8m2NZ

∫ ∞

t0

e−2tt−1dt (8)

The form of equation (8) allows us to apply the Mellin transform method (equation (5)),
with z = 1 and

f1(t) = H(t− t0); f2(t) = e−
2
t

Here H(x) is Heaviside step function.
The Mellin transform of these functions are readily computed

mf1 = − t
2
0

s
(9)

mf2 = 2−sΓ(s) (10)

As a result, the definite integral (5) can be transformed to an inverse Mellin transform as
follows

f(z) = −t20G0,1
1,0(

2
−|2z) (11)

where z = 1, t0 = ln
2mv20
I . Finally we compute the range

R =
4πε20m

e4
.
M

z2
.

I2

8m2NZ
(ln

2mv20
I

)2G0,1
1,0(

2
−|2) (12)
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Schmidt rank-k numerical range and numerical radius
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Abstract

Numerical range of a Hermitian matrix X is defined as the set of all possible
expectation values of this observable among a normalized quantum state. In this
paper, we study a modification of this definition in which the expectation value is
taken among a certain subset of the set of all quantum states, known as k-entangled
pure states. We also analyze basic properties of the related numerical radius and its
applications in quantum information theory.

Keywords: numerical range, tensor product, quantum information, entanglement

Mathematics Subject Classification [2010]: 15A60, 15A69, 47A12, 81P68

1 Introduction

In the Schrödinger picture of quantum mechanics, quantum information is contained in
quantum states, which come in two varieties: pure and mixed. Mathematically, pure
quantum states are described by unit column vectors |v〉 ∈ Cn.

Within quantum information theory, the theory of entanglement is one of the most
important and active areas of research. A pure state |v〉 ∈ Cm ⊗ Cn is called separable, if
it can be written as an elementary tensor: |v〉 = |a〉 ⊗ |b〉, for some pure states |a〉 ∈ Cm
and |b〉 ∈ Cn. Otherwise, |v〉 is said to be entangled. The notion of Schmidt rank extends
the notion separability. The Schmidt rank of a pure state |v〉 ∈ Cm⊗Cn, written SR(|v〉),
is defined as the least k such that we can write |v〉 as a linear combination of k separable
pure states. Although this definition perhaps seems difficult to use at first glance, the
Schmidt decomposition theorem [2, Theorem 2.7] provides a simple method of computing
Schmidt rank.

Theorem 1.1 (Schmidt decomposition). For any pure state |v〉 ∈ Cm ⊗ Cn there exists
1 ≤ k ≤ min{m,n}, non-negative real scalars {αi}ki=1 with

∑k
i=1 α

2
i = 1, and orthonormal

sets of pure states {|ai〉}ki=1 ⊂ Cm and {|bi〉}ki=1 ⊂ Cn such that

|v〉 =
k∑

i=1

αi |ai〉 ⊗ |bi〉 .
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The least possible k in Theorem 1.1 is equal to the Schmidt rank of |v〉. Also, the
constants {αi}ki=1 are known as the Schmidt coefficients of |v〉.

The Schmidt rank can be interpreted as the amount of entanglement contained within
a pure state. A pure state is separable if and only if its Schmidt rank equals 1, and
1 ≤ SR(|v〉) ≤ min{m,n}, for all |v〉 ∈ Cm ⊗ Cn. The set of k-entangled pure states is
defined as the collection of all pure states with Schmidt rank at most k.

In this paper, the set of n × n complex matrices is denoted by Mn. X† denotes the
complex conjugate transpose of X ∈ Mn. We will use Dirac (bra-ket) notation: the dual
(row) vector |v〉† will be denoted 〈v|, and the rank-one projection associated to |v〉 is its
outer product |v〉 〈v|.

The classical numerical range of X ∈ Mn, denoted by W (X), is defined as W (X) =
{〈v|X|v〉 : |v〉 ∈ Cn, 〈v|v〉 = 1}. Also, the related concept of numerical radius, is defined
as w(X) = max {|λ| : λ ∈W (X)}. Note that a Hermitian matrix X ∈ Mn ⊗ Mm is
positive semidefinite, if and only if W (X) ⊆ [0,+∞). The notion of k-block positivity of
a Hermitian matrix X ∈Mn ⊗Mm is a useful tool in studying of entanglement [3] and is
the starting point of our investigations in this paper. A Hermitian matrix X ∈Mn ⊗Mm

is said k-block positive if 〈v|X|v〉 ≥ 0 for all pure states |v〉 ∈ Cm ⊗ Cn with SR(|v〉) ≤ k.
Observe that if k = min{m,n}, then this definition reduces to simply the usual notion of
positive semideffiniteness.

The main goal of this paper is to study restricted numerical range and radius of a
Hermitian matrix X ∈Mn⊗Mm with respect to the set of k-entangled pure states, where
1 ≤ k ≤ min{m,n}. In fact, we define Schmidt rank-k numerical range and radius of X
as follows.

Definition 1.2. Let X ∈Mm⊗Mn and let 1 ≤ k ≤ min{m,n}. Then the Schmidt rank-k
numerical range of X, denoted by WS(k)(X), is defined as

WS(k)(X) = {〈v|X|v〉 : |v〉 ∈ Cm ⊗ Cn, SR(|v〉) ≤ k} .

Also, the Schmidt rank-k numerical radius of X is defined as

wS(k)(X) = sup
{
|λ| : λ ∈WS(k)(X)

}
.

2 Schmidt rank-k numerical range

It is not difficult to establish the basic properties of the Schmidt rank-k numerical range.
We list them below.

Proposition 2.1. Let X,Y ∈Mm ⊗Mn and let 1 ≤ k ≤ min{m,n}. Then

(1) If m = 1 or n = 1 or k = min{m,n}, then WS(k)(X) = W (X);

(2) ∅ 6= Λ⊗(X) = WS(1)(X) ⊆ WS(2)(X) ⊆ · · · ⊆ WS(min{m,n})(X) = W (X), where
Λ⊗(X), is the product numerical range of X, that is defined in [1].

(3) (Subadditivity) WS(k)(X + Y ) ⊆WS(k)(X) +WS(k)(Y ).

(4) (Translation) WS(k)(X + λImn) = WS(k)(X) + {λ}, for all λ ∈ C.
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(5) (Scalar multiplication) WS(k)(λX) = λWS(k)(X), for all λ ∈ C.

(6) WS(k)(X) = {λ}, for some λ ∈ C, if and only if X = λIm ⊗ In.

(7) The Schmidt rank-k numerical range of X forms a connected and compact set in the
complex plane, but does not need to be convex.

(8) (Product unitary invariance) If U ∈ Mm and V ∈ Mn are unitary matrices, then
WS(k) ((U ⊗ V )∗X(U ⊗ V )) = WS(k)(X).

(9) (Projection) Let Re(X) = 1
2(X +X†) and Im(x) = 1

2ı(X −X†), then

WS(k)(Re(X)) = Re(WS(k)(X)), and WS(k)(Im(X)) = Im(WS(k)(X)).

(10) The Schmidt rank-k numerical range of A includes the barycenter of the spectrum;
i.e. 1

mntr(X) ∈WS(k)(X).

(11) WS(k)(A⊗ In + Im ⊗B) = W (A) +W (B), for all A ∈Mm and B ∈Mn.

Proposition 2.2. Let A ∈Mm, B ∈Mn and let 1 ≤ k ≤ min{m,n}. Then

WS(k)(A⊗B) =
⋃

U1∈Xm,k
U2∈Xn,k

W (U †1AU1 ◦ U †2BU2),

where Un,k :=
{
U ∈Mn×k : U †U = Ik

}
and A ◦ B denotes the Hadamard Product of A

and B.

Proposition 2.3. Let A ∈Mm, B ∈Mn and let 1 ≤ k ≤ min{m,n}. Then

1. If one of A and B is normal then conv
(
WS(k)(A⊗B)

)
= W (A⊗B).

2. If eıθA is positive semidefinite for some θ ∈ [0, 2π), then WS(k)(A⊗B) = W (A⊗B).

Proposition 2.4. Let X ∈Mm ⊗Mn and let 1 ≤ k ≤ min{m,n}. Then

WS(k)(X) =
⋃

U∈Usep
k

W (U †XU),

where U sep
k :=

{
U =

[
|v1〉 · · · |vk〉

]
: |vi〉 ∈ Cm ⊗ Cn, SR(|vi〉) = 1, U †U = Ik

}
.

Proposition 2.5. For any Hermitian X ∈Mm⊗Mn, its Schmidt rank-k numerical range
WS(k)(X) is convex and forms an interval of the real line.

Consider a Hermitian X ∈ Mm ⊗Mn with ordered spectrum λ1 ≤ λ2 ≤ · · · ≤ λnm.
By using Proposition 2.5, WS(k)(A) = [λmin

S(k)(X), λmax
S(k)(X)]. The bounds λmin

S(k)(X) and

λmax
S(k)(X) determine the minimal and maximal expectation values of an observable X

among all k-entangled pure states.

Lemma 2.6 ([4]). The maximum dimension of a subspace V ⊆ Cm ⊗ Cn such that
SR(|v〉) > k for all |v〉 ∈ V is given by (m− k)(n− k).
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Theorem 2.7. For any Hermitian X ∈Mm⊗Mn with ordered spectrum λ1 ≤ λ2 ≤ · · · ≤
λnm, we have

λmax
S(k)(X) ≥ λnm−(m−k)(n−k), λmin

S(k)(X) ≤ λ(m−k)(n−k)+1.

Proposition 2.8. Suppose |v〉 ∈ Cm⊗Cn has Schmidt coefficients α1 ≥ α2 ≥ · · · ≥ 0 and

let 1 ≤ k ≤ min{m,n}. Then WS(k)(|v〉 〈v|) =
[
0,
∑k

i=1 α
2
i

]
.

3 Schmidt rank-k numerical radius

Indeed, Schmidt rank-k numerical radius of X ∈ Mm ⊗ Mn is a very powerful tool in
quantum information and specially detecting k-block positivity of X.

Proposition 3.1. Let X,Y ∈Mm ⊗Mn and let 1 ≤ k ≤ min{m,n}. Then

(1) Schmidt rank-k numerical radius is a vector norm on Mm ⊗Mn.

(2) If m = 1 or n = 1 or k = min{m,n}, then wS(k)(X) = w(X).

(3) r⊗(X) = wS(1)(X) ≤ wS(2)(X) ≤ · · · ≤ wS(min{m,n})(X) = w(X), where r⊗(X), is
the product numerical radius of X, that is defined in [1]..

(4) (Product unitary invariance) If U ∈ Mm and V ∈ Mn are unitary matrices, then
wS(k) ((U ⊗ V )∗X(U ⊗ V )) = wS(k)(X).

Corollary 3.2. For any Hermitian X ∈Mm ⊗Mn, we have

wS(k)(X) = max
{
|λmax
S(k)(X)|, |λmin

S(k)(X)|
}
≥ λnm−(m−k)(n−k).

Theorem 3.3. Let X ∈Mm ⊗Mn be positive semidefinite. Then

wS(k)(X) = sup {| 〈w|X|v〉 | : SR(|v〉) ≤ k, SR(|w〉) ≤ k} .
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Abstract

In this investigation, a numerical technique based on shifted Legendre polynomials
for solving population projection models is proposed. The approach reduces the solu-
tion of the main problem to the solution of a system of nonlinear algebraic equations.
The comparison of the results with the analytical and numerical solution show the
efficiency and accuracy of presented method.

Keywords: Population projection models, Logistic growth model, Pseudospectral
method, Shifted Legendre polynomials

Mathematics Subject Classification [2010]: 34B15, 76A10, 34B16

1 Introduction

Population dynamics has traditionally been the dominant branch of mathematical biology,
whose history spans more than 200 years [1, 5]. A projection may be defined as the
numerical outcome of a particular set of assumptions regarding the future population [1].
Most mathematical models that describe the dynamics of a population over time u(t) are
based on first order differential equation of the form:

u′(t) = Au(t) − u(t)F (u(t)) + B, u(0) = β, t ≥ 0. (1)

In population models the solution u(t) of (1) corresponds to the population density at time
t, the linear term Au(t) corresponds to intrinsic growth, loss, or transition processes in the
population independent of population density. The nonlinear logistic term −u(t)F (u(t))
in (1) corresponds to loss processes due to crowding at a rate proportional to a functional
of the population density. Lastly, the constant term B corresponds to an external source
of population growth, independent of the population density.
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2 The shifted Legendre pseudospectral approach

2.1 The shifted Legendre polynomials

Assuming that the Legendre polynomial of degree n is denoted by Pn(x). Then Pn(x) can
be generated by the recurrence formulae [2]:

Pn+1(x) =
2n + 1

n + 1
xPn(x) − n

n + 1
Pn−1(x), , n = 1, 2, . . . , (2)

P0(x) = 1, P1(x) = x. (3)

The shifted Legendre polynomial of order n on interval [0, L], which we denote it by P ∗
n(t),

is constructed by Legendre polynomials Pn(x) by replacing the independent variable, x,
by x = 2

L t − 1:

P ∗
n(t) = Pn

(
2

L
t − 1

)
, , n = 0, 1, 2, . . . . (4)

2.2 The Pseudospectral Method

In this section, we apply the shifted Legendre pseudospectral method to solve the popu-
lation projection model (1) on interval [0, L]. By choosing the P ∗

n(t) as basis, we expand
the function u(t) in terms of these polynomials as:

u(t) ≃ uN (t) =

N∑

n=0

unP ∗
n(t), (5)

Substituting uN (t) in (1), we have the residual function, as follows:

RES(t) = u′
N (t) − AuN (t) + uN (t)F (uN (t)) − B, (6)

Since the residual function is identically equal to zero for the exact solution, the challenge is
to choose the series coefficients un so that the residual function is minimized. The different
spectral methods differ mainly in their minimization strategies. As it was explained in the
previous section, the pseudospectral technique associates a grid of points with each basis
set [3]. Here, we have chosen the shifted Legendre-Gauss-Radau nodes as nodal points.
These points are represented by ti. The nodes are the roots of the function P ∗

N (t)+P ∗
N−1(t),

which contain the zero point. Now, by equalizing the residual to zero at these nodes, we
form the system of nonlinear equations

RES(ti) = 0, i = 0, 1, . . . , N − 1, (7)

uN (0) = β. (8)

Solution of this system gives the unknown coefficients uns. We used the fsolve function
of the Maple software to solve this system.

3 Applications

In this section, two types of the known population growth models are investigated.
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3.1 Ordinary logistic growth model

Consider the Verhulst-Pearl [4] logistic population growth model

u′(t) = [a − bu(t)]u(t), u(0) = β, t ≥ 0, a, b > 0. (9)

The model (9) describes a population growth rate with a linear term au(t), where the
parameter a may be considered to be the ”per capita” birth rate per aphid, also called the
”intrinsic rate of natural increase”. The growth of the population in (9) is constrained by
the nonlinear term, bu2(t). This may be interpreted as having per capita death rate bu(t),
where the parameter b describes the strength of the ”density dependent” mortality. The
exact solution of this problem is u(t) = k

1+[(k−β)/β] exp(−at) where k = a/b. This problem is

solved by proposed method for β = 0.5, a = b = 1 and N = 10 on interval [0, 8]. In Figures
1 and 2, the analytical and approximate solution and the error function |u(t) − uN (t)| are
plotted, respectively.

Figure 1: Analytical and estimated function. Figure 2: Absolute error function |u(t) − uN (t)| .

3.2 Growth model based on cumulative size dynamics

Consider the Prajneshu [5] logistic population growth model

u′(t) = λu(t) − δu(t)

∫ t

0
u(τ)dτ, u(0) = β, t ≥ 0, λ, δ > 0. (10)

Model (10) is depending on the principle: ”Aphid population growth is constrained by
the ’cumulative size’ of the past population” [6]. In this equation, the rate of change of
the aphid population may be considered to be the net difference of a ’birth’ and a ’death’
rate. Note that, as in (10), the population birth rate is assumed to have form λu(t), where
the intrinsic birth rate is denoted as λ. However, population size control is assumed now
to come through a unique density-dependent death function. The per capita death rate
is assumed to be proportional to the cumulative density,

∫ t
0 u(τ)dτ , as opposed to the

current size, u(t), in (10). The new death rate parameter is denoted δ.
This problem is solved by proposed method for β = 0.0082, λ = 2.453, δ = 0.02307

and N = 80 on interval [0, 10]. Figure 3, shows the proposed solution, of (10) and the
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non-linear regression model (NRM) which suggested by Prajneshu [5] and may be written
as:

uNRM (t) = a exp(−bt)(1 + d exp(−bt))−2, (11)

where the regression model parameters a, b and d are functions of the mechanistic pa-
rameters λ, δ, and β, the initial value [6] and can be obtained by solving the system
δ = 2b2d/a, λ = b

(
d2 − 1

)
, β = a/ (1 + d)2. We have reported, in Figure 4 the absolute

error function |uNRM (t) − uN (t)|.

Figure 3: Analytical and estimated function. Figure 4: Absolute error function |uNRM (t) − uN (t)| .
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Uniqueness of Solutions to Fuzzy Differential Equations

Driven by Liu’s Process with Weak Lipschitz Coefficients
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Abstract

Fuzzy differential equations (FDEs) is a type of differential equations driven by
Liu process. These equations are frequently used in financial. This paper is devoted
to build the existence and uniqueness theorem of solution to fuzzy differential equa-
tions which a fuzzy process in the sense of Liu. Under the Lipshitz condition, the
linear growth condition is weak. Furthermore, the estimate for the error between
approximate solution and accurate solution is given.

Keywords: Fuzzy differential equation, liu process, credibility space condition

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

In this paper, the following is considered fuzzy differential equation

dx(t) = f(t, x(t)) + g(t, x(t))dCt (1)

where Ct is Liu process, f, g are functions, and x(t) is the solution to the Eq. (1.1)
which is a parameter of a fuzzy process. Existence and uniqueness of solution to the
Eq. (1.1) by employing Lipshitz and linear growth conditions were studied by (A New
Existence and Uniqueness Theorem for Fuzzy Differential Equations, [3]; Existence and
Uniqueness Theorems for Fuzzy Differential Equations, [25]) and non-Lipschitz condition
was explained by (Uniqueness of solutions to fuzzy differential equations driven by Liu’s
process with non-Lipschitz coefficients, [9]). However a little attention has been paid to
weaker conditions, because we these weaker conditions, it opens a door to finding solutions
for wider range of equations.
Furthermore, instead of Linear growth condition, a weaker condition was introduced, in
order to solve of function such as −|x|2x.
In this paper, a weak condition will be expressed, using this condition, some problems that
are not solvable in linear growth condition can be solved. A new existence and uniqueness
theorem will be prove in Section 2 and theorem will be prove for estimate of solution of
equation (1.1).
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2 Main results

Throughout this paper, we consider the fuzzy differential equations

dx(t) = f(x(t), t)dt+ g(x(t), t)dCt (2)

where Ct is a standard Liu process and f, g are some given functions. x(t) is the solution
to the Eq. (3.3) which is a fuzzy process in the sense of liu.
By the definition of fuzzy differential, this equation is equivalent to the following fuzzy
integral equation:

x(t) = x0 +

∫ t

t0

f(x(s), s)ds+

∫ t

t0

g(x(s), s)dCs. (3)

Furthermore, let us state the following conditions.

(D) The Lipshitz condition: For all x(t), y(t) ∈ Rd and t ∈ [t0, T ], there exists a
positive constant L such that

|f(x(t), t)− f(y(t), t)|2 ∨ |g(x(t), t)− g(y(t), t)|2 ≤ L|x(t)− y(t)|2.

(H) Weak condition: For t ∈ [t0, T ], there is

f(0, t), g(0, t) ∈ L2[t0, T ]

Remark 3.1. Assume coefficient f(x(t), t) and g(x(t), t) of E.q (2.3) satisfied the condi-
tions (D) and (H). Let I = |f(0, t)|2L2[0,T ], J = |g(0, t)|2L2[0,T ]. If x(t) is the solution of

equation (2.3), then
E( sup

t0≤t≤T
|x(t)|2) ≤ K e6 L(T−t0+1)(T−t0). (4)

Particularly x(t) ∈M2([t0, T ],Rd), where K = (3|x0|2 + 6((T − t0)I + J)).

Theorem 3.4. Let coefficients f(x(t), t) and g(x(t), t) of Eq. (2.3) satisfy the condi-
tions (D) and (H). Then there is a unique solution x(t) to equation (2.3) and x(t) ∈
M2([t0, T ],Rn).
Proof : The uniqueness follows from the conditions (D) and (H). Let x(t) and x(t) are
solutions of equation (2.3),
put a(w, s) = f(x(s), s) − f(x(s), s) and b(w, s) = g(x(s), s) − g(x(s), s) where w ∈ θ.
Then

x(t)− x(t) =
∫ t
t0

ads+
∫ t
t0

bdC(s).

Using Holder inequality and Lipschitz condition, we obtain

|x(t)− x(t)|2 ≤ 2|
∫ t
t0

ads|2 + 2|
∫ t
t0

bdCs|2 ≤ 2(t− t0)
∫ t
t0

L|xs − x(s)|2ds+ 2|
∫ t
t0

bdCs|2.

Thus, we get

supt0≤s≤t |x(s)− x(s)|2 ≤ 2L(T − t0)
∫ t
t0
|x(s)− x(s)|2ds+ 2 supt0≤s≤t |

∫ t
t0

bdC(s)|2.
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Taking the expectation and noting Doob inequality, we may deduce that

E(supt0≤s≤t |x(s)− x(s)|2) ≤ 2L(T + 4)
∫ t
t0

E(supt0≤r≤s |x(r)− x(r)|2)ds.

According to Gronwall inequality, we have

E( sup
t0≤t≤T

|x(t)− x(t)|2) = 0. (5)

Hence x(t) = x(t) for all t0 ≤ t ≤ T a.s. The uniqueness has been proved.
The proof of the existence of the solution. Let x0(t) = x(0), t ∈ [t0, T ], and for n = 1, 2, . . .,
define Picard iterations sequence

xn(t) = x(0) +
∫ t
t0
f(xn−1(s), s)ds+

∫ t
t0
g(xn−1(s), s)dCs.

Clearly x0(0) ∈M2([0, T ],Rn). It is easy to see the induction of xn(0) ∈M2([0, T ],Rn).
Using inequality (a+ b)2 ≤ 2(a2 + b2) and Holder inequality, we have

(xn(t))2 = 3|x(0)|2 + 3(t− t0)
∫ t

t0

f2(xn−1(s), s)ds+ 3(

∫ t

t0

g(xn−1(s), s)dCs)
2. (6)

Taking the expectation

≤ A + 6L[T − t0 + 1]

∫ t

t0

E|xn−1(s)|2ds, (7)

where

A = 3E|x(0)|2 + 6[(T − t0)I + J].

By virtue of Eq. (2.8), for any k ≤ 1, we have

B = A + 6 L (T − t0)(T − t0 + 1)E|x(0)|2.

By using Gronwall inequality, for t0 ≤ t ≤ T, n ≥ 1 we obtain

max
1≤n≤k

E|xn(t)|2 ≤ Be6 L (T+1)(T−t0), (8)

noting that

≤ 2(T − t0)
∫ t
t0
f2(x(0), s)ds+ 2 |

∫ t
t0
g(x(0), s)ds |2.

Taking the expectation

≤ 4L(T − t0)2E(|x(0)|2) + 4(T − t0)I + 4L(T − t0)2E|x(0)|2 + 4J ≤ Q, (9)

where

Q = 4L(T − t0 + 1)(T − t0)E(|x(0)|2) + 4(T − t0)I + 4J.
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Now we prove that for any n ≥ 0, we have

E|xn+1(t)− xn(t)|2 ≤ Q[R(T − t0)]n
n!

, t0 ≤ t ≤ T, (10)

where R = 2L(T − t0 + 1). From Eq. (2.10), we see that under n = 0, Eq. (2.11) holds.
Noting that

|xn+1(t)− xn(t)|2

≤ 2L(T − t0)
∫ t

t0

|xn(s)− xn−1(s)|2ds+ 2 |
∫ t

t0

[g(xn(s), s)− g(xn−1(s), s)]ds |2 . (11)

Taking the expectation and using D condition, we have

∑∞
n=0

4Q[4R(T−t0)]n
n! <∞,

by Borel-Cantell lemma, for almost all for ω ∈ θ. There exists a positive integer
n0 = n0(ω), such that n ≥ n0, we have

supt0≤t≤T |xn+1(t)− xn(t)| ≤ 1
2n .

From the partial sums

x0(t) +
∑n−1

i=0 [xi+1(t)− xi(t)] = xn(t)

are uniformly in t ∈ [0, T ]. Clearly, x(t) is continuous and Pt is adapted. On the other
hand, from Eq. (2.11), {xn(t)}n≤1 is a Cauchy in L2 for every t. Hence x(t) ∈ L2[0, T ] in
Eq. (2.9). Let n→∞ in Eq. (2.8) gives sequence, we have

E|x(t)|2 ≤ Be6L(T+1)(T−t0), t0 ≤ t ≤ T.

Therefore, x(t) ∈M2([t0, T ],Rd). We deduce that x(t) satisfies equation (2.3).
Note that (n→∞), we Hence in Eq. (2.7), letting n→∞, t0 ≤ t ≤ T .
We have

x(t) = x(0) +
∫ t
t0
f(x(s), s)ds+

∫ t
t0
g(x(s), s)dCs.
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Weighted Hermite-Hadamard’s inequality without symmetry

condition for fractional integral
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Abstract

Weighted Hermite-Hadamard’s inequality without symmetry condition for frac-
tional integral is discussed. The main results of this paper improve and generalize
some previous results obtained by many researchers.

Keywords: Fractional integral, Hermite–Hadamard’s inequality.
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1 Preliminaries and some results

One of the most well-known inequalities for the class of convex functions is the Hermite-
Hadamard inequality given in [4]

f (a + b)

2
⩽ 1

b − a

∫ b

a
f (x) dx ⩽ f (a) + f (b)

2
, (1)

which plays an important role in nonlinear analysis. Weighted generalization of 1 based
on the symmetry condition was proved by Fejér [2].

Theorem 1.1. [2] If f : [a, b] → R is a convex function, then the following inequality
holds

f (a + b)

2

∫ b

a
ω (x) dx ⩽

∫ b

a
ω (x) f (x) dx ⩽ f (a) + f (b)

2

∫ b

a
ω (x) dx

where ω : [a, b] → (0, ∞) is a non-negative function which is integrable and symmetric
about a+b

2 .

However, the lack of symmetry condition in many problems in statistics, probability
and engineering is reasonable. Therefore, finding a weighted generalization of Hermite-
Hadamard’s inequality without the symmetry condition is interesting for researchers [1].

Theorem 1.2. [1] Let f : [a, b] ⊂ (0, ∞) −→ R be a differentiable function and ω :
[a, b] −→ (0, ∞) be an integrable function.

(i) If the function f ′
ω is increasing, then the following inequality is hold,

∫ b
a ω (x) f (x) dx

∫ b
a ω (x) dx

⩽ f (a) + f (b)

2
(2)
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(ii) If the function f ′
ω is decreasing, then the following inequality is hold,

∫ b
a ω (x) f (x) dx

∫ b
a ω (x) dx

⩾ f (a) + f (b)

2
(3)

Now we can obtain a general weighted Hermite-Hadamard’s inequality without the
symmetry condition by using the fractional integral.

Definition 1.3. [3] The Riemann-Liouville fractional integral of a function y ∈ L1 ([a, b], R)

of order α > 0 is defined as Iα
a+x(t) = 1

Γ(α)

∫ t
a

x(s)
(t−s)1−α ds t > a.

Theorem 1.4. Let α ⩾ 1. Let f : [a, b] ⊂ (0, ∞) −→ R be a differentiable function,
ω : [a, b] −→ (0, ∞) be an integrable function.

(i) If
(

b−a
b−x

)α−1
f ′(x)
ω(x) for any x ∈ [a, b) is increasing, then

I2α−1
a+ fω(b)

Iα
a+ω(b)

⩽ 1

2
(b − a)α−1 [f (a) + f (b)] . (4)

(ii) If
(

b−a
b−x

)α−1
f ′(x)
ω(x) is decreasing, then

I2α−1
a+ fω(b)

Iα
a+ω(b)

⩾ 1

2
(b − a)α−1 [f (a) + f (b)] . (5)

Proof. We will prove (i) and the other case is similar. Let

H(x) =

∫ x

a

1

(Γ(α))2
(b−t)2α−2f (t) ω (t) dt− 1

2 (Γ(α))2
(b−a)α−1 [f (a) + f (x)]

∫ x

a
(b−t)α−1ω (t) dt.

Then H ′(x) =

1

2 (Γ(α))2

(
[f (x) − f (a)] (b − a)α−1ω (x) (b − x)α−1 − f ′ (x) (b − a)α−1

∫ x

a
(b − t)α−1ω (t) dt

)
.

By our assumption and the extended mean value theorem, we have

(b − a)α−1 (f (x) − f (a))∫ x
a (b − t)α−1 ω (t) dt

=
(b − a)α−1f ′ (ξ)
(b − ξ)α−1ω (ξ)

⩽ (b − a)α−1f ′ (x)

(b − x)α−1ω (x)
, (a < ξ < x).

Thus, H ′(x) = 1
2(Γ(α))2

(
(b − a)α−1 [f (x) − f (a)] ω (x) (b − x)α−1−

f ′ (x) (b − a)α−1
∫ x
a (b − t)α−1ω (t) dt

)
⩽ 0 . So, for b ⩾ a,

we have H(b) ⩽ H(a) = 0, and the proof is completed.

Remark 1.5. If α = 1, in Theorem 1.4, we get Theorem 1.2 obtained by Jaksic et al. [1].

In the next theorem, we provide a more general case of the Theorem 1.2.
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Theorem 1.6. Let f : [a, b] ⊂ (0, ∞) −→ R be a differentiable function, ω : [a, b] −→
(0, ∞) be an integrable function and kα (x, y) : [a, b] × (0, ∞) → (0, ∞) be a positive
differentiable kernel which may depend on a parameter α > 0.

(i) If kα((b,a))f ′(x)
kα(b,x)ω(x) is increasing, then

∫ b
a (kα ((b, t)))2 f (t) ω (t) dt

∫ b
a kα ((b, t)) ω (t) dt

⩽ 1

2
kα ((b, a)) [f (a) + f (b)] (6)

(ii) If kα((b,a))f ′(x)
kα(b,x)ω(x) is decreasing, then

∫ b
a (kα ((b, t)))2 f (t) ω (t) dt

∫ b
a kα ((b, t)) ω (t) dt

⩾ 1

2
kα ((b, a)) [f (a) + f (b)] (7)

Remark 1.7. Clearly, for kα(b, x) = 1
Γ(α)(b − x)α−1, the Riemann Liouville fractional

integral Iα
a+f(b) = 1

Γ(α)

∫ b
a (b − t)α−1f(t)dt is obtained, thus generalizing Theorem 1.4.

Finaly, we prove mean value theorems of Lagrange and Cauchy type. The following lemma
will be needed.

Lemma 1.8. Let f : [a, b] −→ R be twice differentiable function and let ω : [a, b] −→ R+

be a differentiable integrable function. Denote

Gf (x) =
f ′′(x) − f ′(x)ω′(x)

ω2(x)
. (8)

Let kα(y, x) : R+ × [a, b] → R+ be a positive differentiable kernel which may depend on a
parameter α > 0 and φ1, φ1 : [a, b] −→ R be the functions defined by

φ1(x) = M

∫ x

a

kα(b, t)

kα(b, a)
tω(t)dt −

∫ x

a

kα(b, t)

kα(b, a)
f ′(t)dt − f(a), (9)

φ2(x) = f(a) +

∫ x

a

kα(b, t)

kα(b, a)
f ′(t)dt − m

∫ x

a

kα(b, t)

kα(b, a)
tω(t)dt, (10)

where M = max{Λf (x) : x ∈ [a, b]} and m = min{Gf (x) : x ∈ [a, b]}. Then
kα((b,a))φ′

1(x)
kα((b,x))ω(x)

and
kα(b,a)φ′

2(x)
kα(b,x)ω(x) are increasing functions.

Proof. It is sufficient to show that the
(

kα((b,a))φ′
1(x)

kα(b,x)ω(x)

)′
and

(
kα((b,a))φ′

2(x)
kα(b,x)ω(x)

)′
are positive.

Theorem 1.9. Let f : [a, b] −→ R+ be a twice differentiable function, ω : [a, b] −→ R+ be
a differentiable integrable function, and kα(y, x) : R+ × [a, b] → R+ be a positive differen-
tiable kernel which may depend on a parameter α > 0 such that kα(b, x) ⩽ kα(b, a), x ≥ a
and let Gf ∈ C[a, b]) be as defined in Lemma 1.8. Then there exists η ∈ [a, b] such that
∫ b
a

kα(b,x)
kα(b,a)f

′(x)dx + 2f(a)

2
−

∫ b
a (kα(b, x))2[

∫ x
a

kα(b,t)
kα(b,a)f

′(t)dt + f(a)]ω(x)dx

kα(b, a)
∫ b
a kα(b, x)ω(x)dx

= λGf (η) (11)

where

λ =

∫ b
a

kα(b,x)
kα(b,a)xω(x)dx

2
−

∫ b
a [(kα(b, x))2ω(x)

∫ x
a kα(b, t)tω(t)dt]dx

(kα(b, a))2
∫ b
a kα(b, x)ω(x)dx

.

Talk

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Weighted Hermite-Hadamard’s inequality without symmetry condition for . . . pp.: 3–4

1351



Proof. Since Gf is continuous on a compact set, it attains its maximum and minimum
value on it. Let us consider. Let us consider M = max{Gf (x)} and m = min{Gf (x)}.

Since
kα((b,a))φ′

1(x)
kα((b,x))ω(x) and

kα((b,a))φ′
2(x)

kα((b,x))ω(x) , are increasing functions, Theorem 1.5 yields

∫ b
a

kα(b,x)
kα(b,a)f

′(x)dx + 2f(a)

2
kα(b, a) +

∫ b
a (kα(b, x))2φ1(x)ω(x)dx

∫ b
a kα(b, x)ω(x)dx

⩽ 1

2
kα(b, a)Mλ1, (12)

∫ b
a

kα(b,x)
kα(b,a)f

′(x)dx + 2f(a)

2
kα(b, a) −

∫ b
a (kα(b, x))2φ2(x)ω(x)dx

∫ b
a kα(b, x)ω(x)dx

⩾ 1

2
kα(b, a)mλ1 (13)

Substituting φ1(x) and φ2(x) in (12) and (13) respectively we have

∫ b
a

kα(b,x)
kα(b,a)f

′(x)dx + 2f(a)

2
−

∫ b
a (kα(b, x))2[

∫ x
a

kα(b,t)
kα(b,a)f

′(t)dt + f(a)]ω(x)dx

kα(b, a)
∫ b
a kα(b, x)ω(x)dx

⩽ M

[
λ1

2
−

∫ b
a [(kα(b, x))2ω(x)

∫ x
a kα(b, t)tω(t)dt]dx

(kα(b, a))2
∫ b
a kα(b, x)ω(x)dx

]
= Mλ,

∫ b
a

kα(b,x)
kα(b,a)f

′(x)dx + 2f(a)

2
−

∫ b
a (kα(b, x))2[

∫ x
a

kα(b,t)
kα(b,a)f

′(t)dt + f(a)]ω(x)dx

kα(b, a)
∫ b
a kα(b, x)ω(x)dx

⩾ m

[
λ1

2
−

∫ b
a (kα(b, x))2ω(x)

∫ x
a kα(b, t)tω(t)dtdx

(kα(b, a))2
∫ b
a kα(b, x)ω(x)dx

]
= mλ.

Therefore

mλ ⩽
∫ b
a

kα(b,x)
kα(b,a)f

′(x)dx + 2f(a)

2
−

∫ b
a (kα(b, x))2[

∫ x
a

kα(b,t)
kα(b,a)f

′(t)dt + f(a)]ω(x)dx

kα(b, a)
∫ b
a kα(b, x)ω(x)dx

⩽ Mλ.

Since Gf is continuous on [a, b], there exist η ∈ [a, b] such that (11) is holds.
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