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Preface

The Annual Iranian Mathematics Conference (AIMC) has been held since 1970. It is
the oldest Iranian scientific gathering which takes place regularly each year at one of
Iranian universities. The 36" annual Iranian mathematics conference was held at Yazd
University and now we are pleased to organize the 46" conference. The 46" AIMC will
be held at Yazd University in Yazd (the most beautiful and historical city of Iran) from
August 25 until August 28, 2015. The Iranian Mathematical Society and Yazd University
have jointly sponsored the 46" AIMC. This conference is an international conference and
includes Keynote speakers, Invited speakers, Presentations of contributed research papers,
and Poster presentations.

It is our pleasure to publish the Proceedings of the 46" AIMC. More than 700 math-
ematicians from our country and abroad have taken part in the conference. By kind
cooperation of contributors, more than 1100 papers were received. The scientific com-
mittee put a considerable effort on referral process in order to arrange a conference of
excellent scientific quality. We have 15 plenary speakers from universities of Iran, as well
as from Australia, South Korea, Canada, China, Czech Republic, India, Serbia and Spain.
Moreover, our invited speakers are about 12.

The Scientific Committee of
46" Annual Iranian Mathematics Conference
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A medley of group actions*

Cheryl E. Praeger'
The University of Western Australia

Abstract

Most of my interaction and collaborative research with Iranian mathematicians has
been linked with symmetric structures, and has involved group actions. The lecture
will be a tribute to my Iranian colleagues.

Keywords: Group actions, symmetric structures, Iranian mathematicians
Mathematics Subject Classification [2010]: 20B25, 05C25

1 My first visit to Iran

My first mathematical colleague from Iran was Dr Akbar Hassani, who had been a graduate
student with me in Oxford. His sabbatical leave spent at the University of Western
Australia in 1986 led to my first visit to Tehran in 1994. Dr Hassani worked in Perth with
me and Dr Luz Nochefranca on 2-arc transitive graphs.

Definition 1.1. A graph T is (G, 2)-arc-transitive, for some subgroup G of automor-
phisms, if G is transitive on all vertex triples («, 3,v) such that {a, 8} and {3,~} are
both edges and « # 7.

Previous work of mine had shown that every non-bipartite (G, 2)-arc transitive graph
is a normal cover of a basic one where the group G has a special from. Hassani, Luz and
I classified all possible basic examples for an infinite family of almost simple groups G.

Theorem 1.2. [1] All (G, 2)-arc-transitive graphs such that PSL(2,q) < G < PT'L(2,q)
are known.

My lecture course in Tehran in 1994 was on the movement and separation of subsets
under group actions, and some open problems on this theme became the topic of the PhD
thesis for Mehdi Khayaty, now Professor Mehdi Alaeiyan.

Definition 1.3. Let G be a permutation group on a finite set {2 such that G has no fixed
points in Q, and let I' € Q. The movement of I" is move(I') = maxgyeq |I'Y \ T'|, and the
movement of G is the maximum value of move(I') over all subsets I'.

*Will be presented in English
fSpeaker
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In earlier work I had shown that both the number of G-orbits in 2 and the length of
each G-orbit are bounded above by linear functions of the movement of G. In particular,
if G is transitive on ) with movement m, and if G not a 2-group and p is the smallest
odd prime dividing its order |G|, then I had shown that || < Lsz]fj. The main result of
Mehdi’s thesis was a classification of all groups which attain this upper bound.

Theorem 1.4. [2] Let p be a prime, p > 5, let m be a positive integer, and let G be a
transitive permutation group on a set § of size L%J such that G has movement m, G is
not a 2-group and p is the least odd prime dividing |G|. Then either G is known explicitly,
or G is a p-group of exponent bounded in terms of p only.

The second of Akbar Hassani’s students who worked with me in the 1990s was Associate
Professor Mohammadali Iranmanesh. Mohammadali’s thesis topic was vertex-transitive
non-Cayley graphs, namely deciding whether such graphs exist of certain orders [3].

Definition 1.5. Let G be a group and S an inverse-closed subset of G such that 15 ¢ S.
The Cayley graph Cay(G,.S) is the graph with vertex set G such that {z,y} is an edge if
and only if zy~! € S. The group G acts by right multiplication as a regular subgroup of
automorphisms (that is, G is transitive and only the identity fixes a vertex).

A graph I' is a Cayley graph (for some group) if and only if Aut(I') contains a regular
subgroup. As a result of Mohammadali’s work (extending work of Brendan McKay, Alice
Miller, Greg Gamble, Akos Seress, Akbar Hassani and myself) we know precisely when
such graphs exist for a large class of orders. Mohammadali has worked on several other
research projects with me since this time [5, 6, 7, 16].

Theorem 1.6. [4] All integers n are known such that n has at most three distinct prime
divisors, and there exists a vertex-transitive graph on n wvertices which is not a Cayley
graph.

2 Professor Mehdi Behzad

In 2005 I participated in the Annual Iranian Mathematical Society Conference in Yazd.
At that conference I met four Iranian mathematicians who have since visited me in Perth.
The first is Professor Mehdi Behzad, with whom I wrote two papers [8, 9] jointly also
with Professor Behzad’s son Arash. The most interesting one, for me, was the paper [9] in
which we discussed nine different fundamental domination parameters for a graph I'. (A
vertex/edge subset A dominates a graph I' if each vertex/edge is either in A or adjacent
to an element of A.) We interpreted these parameters in terms of the total graph T(T') of
" introduced by Professor Behzad, namely, the vertices of T'(I") are the vertices and edges
of ', with two (vertices or edges) being adjacent in T'(I") if they are either adjacent or
incident in I'. We concluded that, arguably, the most fundamental of these parameters is
the vertex-vertex domination parameter.

In addition, I spent hundreds of hours editing an English version of Professor Behzad’s
play “The Legend of the King and the Mathematician” [10]. Based on the puzzle of the
Wolf, Sheep and Cabbage, the play is a wonderful initiative of Professor Behzad aimed at
inspiring young people to enjoy and engage with the mathematical strategies behind the
main story.



46'" Annual Tranian Mathematics Conference

25-28 August 2015

% /2, Yazd University
Talk A medley of group actions

3 My work with younger Iranian colleagues

Dr Seyed Hassan Alavi worked with me and Dr John Bamberg on triple factorisations of
groups of the form G = ABA (for proper subgroups A, B). A surprising equivalence is
that a triple factorisation is directly associated with a G-flag-transitive point-line incidence
structure in which each point-pair is incident with at least one line. If the latter property
holds we say that the geometry is collinearly complete. Part of Hassan’s development, of a
theory of these geometries, is his fundamental paper [11] which connects these geometries
with primitive permutation groups, with restricted movement of point-subsets, and with
flag-transitive symmetric designs. One very interesting class of examples arises for general
linear groups: note that, for given collections of points and lines there are often several
possible notions of incidence. In [12], Hassan identifies all possibilities for subspace actions,
producing new collinearly complete geometries. He also find new examples when the points
or lines are subspace bisections.

Theorem 3.1. [12] Let G = GL(n,q), and V = GF(q)", and consider the geometry with
m-dimensional subspaces as ‘points’, k-dimensional subspaces as ‘lines’, and incidence
between a ‘point’ and a ‘line’ when the intersection has dimension j. This geometry is
collinearly complete if and only if max{0,m +k —n} < j < g + max{0,m — 5.

Associate Professor Ashraf Daneshkhah worked with me and Associate Professor Alice
Devillers in Perth on subdivision graphs S(X) of a given graph 3, that is, the graph
obtained by ‘adding a vertex’ in the middle of each edge of ¥. Formally, the vertices of
S(X) are the vertices and edges of ¥, and edges of S(X) are those vertex-edge pairs («, €)
such that the vertex a lies on the edge e. The paper [13] elucidates connections between
various symmetry properties of ¥ and of its subdivision graph S(X), in particular local
s-arc-transitivity, and local s-distance transitivity.

Theorem 3.2. [13] Let ¥ be a connected graph, s a positive integer, and G < Aut(X).
Then S(X) is locally (G,s)-arc transitive if and only if ¥ is (G, [25L])-arc transitive.
Moreover, provided Y has diameter at least %, either of these conditions holds if and
only S(X) is locally (G, s)-distance transitive.

Ashraf and Alice then extended this study further and obtained a complete classifica-
tion of locally distance transitive subdivision graphs, which highlighted their connection
with projective planes, generalised quadrangles and generalised hexagons.

Dr Moharram Iradmusa and I worked on a very interesting generalisation of Cayley
graphs, called 2-sided group digraphs. Start with a group G and two subsets L, R of G.
The corresponding 2-sided group digraphs 25(G; L, R) has vertex set G and an arc from
a vertex z to a vertex y if and only if y = ¢~ lzr for some ¢ € L,r € R. Despite the
similarities to Definition 1.3, these digraphs need not be vertex-transitive, and we give in
[14, Example 2.1] a surprising example with 12 vertices, and with connected components
of sizes 4 and 8 (see Figure 11). We also determine conditions under which ﬁ(G; L,R) is
a graph (that is, the joining relation is symmetric), and conditions for it to be connected,
and to be a Cayley graph or digraph. We pose several open problems about these digraphs.
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Figure 1: Disconnected two-sided group graph with non-isomorphic components

I have worked also with Dr Azizollah Azad on non-commuting graphs for general linear

groups [15, 16], and with Dr Marzieh Akbari on codes in Hamming graphs. I thank all
my Iranian colleagues for their great collaborations and their friendship.
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On Laplacian eigenvalues of graphs

Kinkar Ch. Das*
Department of Mathematics, Sungkyunkwan University,

Suwon 440-746, Republic of Korea

Abstract

Let G = (V, E) be a simple graph. Denote by D(G) the diagonal matrix of its
vertex degrees and by A(G) its adjacency matrix. Then the Laplacian matrix of G is
L(G) = D(G) — A(G). Denote the spectrum of L(G) by S(L(G)) = (u1, p2y - - -, fin),
where we assume the eigenvalues to be arranged in nonincreasing order: pu; > ps >
coo > lp—1 > pp = 0. Let a be the algebraic connectivity of graph G. Then a = 1.
Among all eigenvalues of the Laplacian matrix of a graph, the most studied is the
second smallest, called the algebraic connectivity (a(G)) of a graph [5]. In this talk
we show some results on u1(G) and a(G) of graph G. We obtain some integer and
real Laplacian eigenvalues of graphs. Moreover, we discuss several relations between
Laplacian eigenvalues and graph parameters. Finally, we give some conjectures on the
Laplacian eigenvalues of graphs.

Keywords: Graph, Largest Laplacian eigenvalue, Algebraic connectivity, Diameter,

Minimum degree
Mathematics Subject Classification [2010]: 05C50
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Partition of Unity Parametrics: A framework for
meta-modeling in computer graphics

Faramarz F. Samavati*
University of Calgary

In the past three decades, the field of Computer Graphics (CG) has experienced a rev-
olution, benefiting from significant research and technical achievements. Creating detailed
digital content is a major task in CG related industries such as Game, Film, GIS and CAD,
and requires well-constructed, high quality geometric models. However, even with sophis-
ticated software packages, geometric modeling is still a challenging and time consuming
task. This challenge is due to the mathematical foundation of geometric models, our way
of interacting with them, and more specifically, the augmenting of these geometric models
with respect to their macro- and microscopic character. Therefore, geometric modeling -
as a main pillar of CG - still requires evaluation to rectify foundation issues.

We present Partition of Unity Parametrics (PUPs), a natural and more flexible ex-
tension of NURBS (which are widely used in industry) that maintains affine invariance.
NURBS inherit many useful properties from B-spline basis functions, and extend B-splines
by allowing a scalar weight to be associated with each control point, indicating its relative
importance to the curve. For these reasons NURBS have emerged as the predominant
choice for modeling in computer graphics. Despite their widespread use, it is difficult to
modify the characteristics of NURBS models. In practice, it is complex to toggle between
sharp and smooth features, as well as to interpolate and approximate control points. Like-
wise, it is difficult to control the local character of curves and surfaces, and not possible
to increase NURBS smoothness without increasing its support.

PUPs replace the weighted basis functions of NURBS with arbitrary weight-functions
(WFs). By choosing appropriate WFs, PUPs yield a comprehensive geometric modeling
framework, accounting for a variety of beneficial properties, such as local-support, speci-
fied smoothness, arbitrary sharp features and approximating or interpolating curves. This
serves as a basis for metamodeling systems where users model the tools used for modeling
(ie. weight functions) in tandem with the model itself. PUPs allow common geometric
requirements and operations to be phrased succinctly, including: the addition of control
points, arbitrary sharp features, increasing smoothness without increasing support, ap-
proximation and interpolation. For surfaces, PUPs permit non-tensor weight functions
and allow control points to be added anywhere (without introducing other control points).
This facilitates simple methods for sketching features and converting a planar mesh into
a parametric surface of arbitrary smoothness.

As an important class of PUPs, we introduce CINAPCT-spline, based on bump-
functions, which is C-infinity but with compact-support. The underlying weight functions

*Speaker
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are similar in form to B-spline basis functions, and are parameterized by a degree-like shape
parameter. We examine approximating and interpolating curves created using CINAPCT-
spline. Furthermore, we propose and demonstrate a method to specify the tangents and
higher order derivatives of the curve at control points for CINPACT and PUPs curves.
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An eigenvalue problem

Behrouz Emamizadeh*
Department of Mathematical Sciences
University of Nottingham
Ningbo, China

Abstract

This talk is motivated by the following nonlinear Lorentz invariant wave equation:
DQU + €D6u — V’(U) = O, (1)

where

0 [(Vul]® = [w[*)P*u] — &V - [(PVul® = Ju[*)P V]

Dpuza

and V is an appropriate function. In the last equation, u : R3tt — R, u = u(x, ),
z € R?, t € R, Vu denotes the Jacobian with respect to x, and u; is the derivative
with respect to t.

A static solution of (1) is a function Z : R? — R* that satisfies

—*AZ —ec’® Mo Z - V'(Z) =0, (2)

where A, = V - (]Vu|P~2Vu) is the well-known p-Laplace operator. The differential
operator in (2) is a linear combination of A and Ajg.

Here we are interested in a class of scalar equations similar to (2), in which the
differential operator is a convex combination of —A, and —A. More precisely, we
consider the eigenvalue problem

{ tApu—(1—t)Au=MAu inD (p42) 3)

u=20 on 9D,

where D C R” is a smooth bounded domain. We will show that the set of eigenvalues
of (3) is continuous for ¢ € (0,1]. In fact, if A; is the first eigenvalue of —A, then we
will prove the striking result that the spectrum of (3) is ((1 — ¢)A;,00), even when
t is very close to zero. This result is surprising because when ¢ approaches zero the
differential operator

Q:t = —tAp - (1 - t)A

approaches —A and the expectation would be that when ¢ is very near zero the spec-
trum o(€;) of € would be the union |JI; of some intervals I; each containing the
it"-eigenvalue of —A. Recall that the spectrum of the Laplacian is a discrete set:

U(—A):{)\j‘jEN}WheI‘e/\l<>\2§)\3§)\4§“-—>00.

*Speaker

10



% /2, Yazd University
Talk An eigenvalue problem

46'" Annual Tranian Mathematics Conference

25-28 August 2015

In other words, when the convex parameter ¢ moves from 1 to 0 in the interval [0, 1],
the spectrum o(€;) will keep containing the interval [A1,00) until ¢ takes the exact
value 0, in which case ¢(€;) suddenly snaps into the discrete set o(—A).

The eigenvalue problems of type (3) are new in the mathematics literature. Re-
cently, the following eigenvalue problem was investigated:

—Apu—Au=Au inD
% =0 on 0D,
where v denotes the unit outward normal to the boundary dD. It was proved that
the spectrum is {0} U (A, o0), where A\ denotes the first non-zero eigenvalue of —A
with respect to the Neumann boundary condition. Our approach toward solving the
eigenvalue problem (3) is different; our approach is based on the fibering method that
was introduced in the early 1990’s by the late S. Pohozaev. The fibering method is far
more powerful than the Nehari-manifold method as it is applicable to a much broader
range of boundary value problems than we discuss here. To help with a geometric
intuition of the material, we introduce the §-plane, which we denote by §,. This plane
has two axes, the —Aj-axis and the —A-axis. The d-plane is naturally equivalent to
R? in the sense that there exists a canonical map 7 : R? — §, as follows:

n(a,b) = —aA, — bA.

In particular, we have

Q:t = 77(t7 1- t)v
which is a conver combination of —A, and —A.!
The unit square S is the square with vertices at points O = 7(0,0), A = n(1,0),
B =n(1,1), and C = n(0,1). The main diagonal of S, joining 7(0,1) to n(1,0), is

what we are interested in.
The following is a summary of what is known about the spectrum of some of the
operators in the J§-plane:

(1) e(n(0,1)) ={A; | j € N} in which Ay < Ay < A3 < Ay <--- — o0, with respect
to both Dirichlet and Neumann boundary conditions. In the latter case, A\ =0
and Ay < As.

(ii) o(n(1,1)) = {0} U (AY, 00), with respect to the Neumann boundary conditions.

(iii) o(n(1,0)) = [0, 00), provided that p € (n2+”2, oo) \ {2}.

Note that every operator in the first quadrant of the J-plane n(Ry x Ry) is
a translate of one in S. The same goes with those in the third quadrant, since

n(—a,—b) = —n(a,b). Hence it makes sense to focus on S in this talk. On the
other hand, the operators in the second and the fourth quadrants need to be treated
separately.

The main result of this presentation is the following:

Theorem 0.1. Let p € (1,00) \ {2} and t € (0,1). Then the following hold:
(i) If A €[0,(1 —t)A1], then X ¢ o(&,).
(i) If A € (1 —t)A1,00), then X € o(€).

Here )\ denotes the first eigenvalue of —/A with respect to the Dirichlet boundary
conditions on 0D.

'hence the use of the calligraphic ‘C” with a ‘¢’ subscript in €;.
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We prove the theorem using variational methods. For this purpose we will consider
an energy functional associated with (3), and prove that the critical points of this
functional will give rise to non-trivial solutions of (3). The challenge is the parameter
p. More precisely, for p > 2, the energy functional is coercive, hence the direct
method applies. However, for the case p < 2, the lack of coercivity will render the
direct method ineffective. Hence, we will apply the fibering method of Pohozaev.

We will derive a priori bounds and regularity results on the eigenfunctions. We
will show that the behavior of the eigenfunctions are totally different between the case
of p € (1,2) and that of p > 2. More precisely, it turns out that when A approaches
the threshold (1 — ¢)A1, then

supp |[ul =0, (p>2)

supp |ul = oo, (1 <p<2).
Key Words: Lorentz invariant wave equation, continuous eigenvalues, Laplacian, p-
Laplacian, fibering method, coercivity, existence, bounds, regularity.

MSC 2010: 81Q05, 35J60, 35P30
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Set-theoretic methods of homological algebra and their
applications to module theory

Jan Trlifaj*
Charles University, Prague

Abstract

We present some of the recent tools of set-theoretic homological algebra together
with their applications, notably to the approximation theory of modules, and to (in-
finite dimensional) tilting.

Keywords: approximations of modules, set-theoretic homological algebra, infinite
dimensional tilting theory
Mathematics Subject Classification [2010]: 16DXX, 18G25, 13D07, 03E75

1 Introduction

A major topic of module theory concerns existence and uniqueness of direct sum decom-
positions. Positive results provided by the Krull-Remark-Schmidt-Azumaya theorems,
the Faith-Walker Theorem, and Kaplansky theorems, form the cornerstones of the clas-
sic theory. However, there are a number of important classes of (not necessarily finitely
generated) modules to which the theory does not apply, because their modules do not
decompose into (possibly infinite) direct sums of indecomposable, or small, submodules.

While such direct sum decompositions are rare, there do exist more general structural
decompositions that are almost ubiquitous. The point is to replace direct sums by transfi-
nite extensions. For example, taking direct sums of copies of the group Z,, one obtains all
Zy,-modules whose sole isomorphism invariant is the vector space dimension. In contrast,
transfinite extensions of copies of Z, yield the much richer class of all abelian p-groups
whose isomorphism invariants are known basically only in the totally-projective case (the
Ulm-Kaplansky invariants).

Starting with the solution of the Flat Cover Conjecture [5], numerous classes C of mod-
ules have been shown to be deconstructible, that is, expressible as transfinite extensions
of small modules from C. Basic tools for deconstruction come from set-theoretic homolog-
ical algebra and originate in abelian group theory [6], but have since been expanded and
generalized to module categories, and even beyond that setting.

Each deconstructible class is precovering, so it provides for approximations of modules.
By choosing appropriately the class C, one can tailor these approximations to the needs
of various particular structural problems, cf. [12].

*Speaker
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Approximations can also be employed in developing relative homological algebra in
module categories. In the case when minimal approximations exist, ones obtains new
invariants of modules, generalizing classic invariants such as the Betti numbers, or the
(dual) Bass invariants, cf. [8]. Further applications in this direction involve model category
structures associated to deconstructible classes in the setting of Grothendieck categories,
such as the category of all unbounded chain complexes of modules, or the category of all
quasi-coherent sheaves on a scheme. They yield new ways of computing cohomology of
quasi-coherent sheaves via the approach of Quillen and Hovey, cf. [9], [11], [15].

But deconstructibility has its limits. This has first been observed by Eklof and Shelah
[7] who proved that it is consistent with ZFC that the class of all Whitehad groups is not
precovering. The latter fact, however, is not provable in ZFC, because it is also consistent
that all Whitehead groups are free. More recent results show that non-deconstructibility
is a phenomenon occuring in ZFC, and it is much more widespread than expected earlier.
There is also a surprising connection to another important part of module theory: the
tilting theory, [2], [14].

Our goal here is to explain these developments in more detail, and present some of the
techniques of set-theoretic homological algebra and approximation theory of modules that
have been developed over the past two decades. We will also consider several applications,
notably to (infinite dimensional) tilting theory [1] and to representation theory [13].

2 Filtrations and approximations

2.1 Filtrations and the Hill Lemma

For an (associative, but not necessarily commutative) ring R with 1, we denote by Mod-R
the category of all (unitary right R-) modules. Moreover, given an infinite cardinal x and a
class of modules C, we will use the notation C<" to denote the subclass of C consisting of all
modules possessing a projective resolution consisting of less than k-generated projective
modules. In particular, mod-R := (Mod-R)<% will denote the category of all strongly
finitely presented modules, i.e, the modules possessing a projective resolution consisting
of finitely generated projective modules.

Note that if R is right noetherian, then mod-R is just the category of all finitely
generated modules, while if R is right coherent, then mod-R is the category of all finitely
presented modules.

Definition 2.1. Let C be a class of modules. A module M is said to be C-filtered (or a
transfinite extension of the modules in C), provided there exists an increasing chain M =
(Mg | o < o) of submodules of M with the following properties: Mo = 0, My = g, M3
for each limit ordinal o < o, My4+1/M, = C, for some C, € C for each @ < o, and
M, =M.

The chain M is called a C-filtration of the module M of length o. If o is finite, then
M is said to be finitely C-filtered. The class of all C-filtered modules will be denoted by
Filt(C). We will say that C is closed under transfinite extensions provided that C =Filt(C).

For example, if C is the class of all simple modules, then Filt(C) is the class of all
semiartinian modules, and finitely C-filtered modules coincide with the modules of finite
length.
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As mentioned in the Introduction, given a class of modules C and M € C, it is rarely
possible to decompose M into a direct sum of small, or indecomposable, modules from C.
Deconstructibility is much more feasible:

Definition 2.2. Let C be a class of modules and x an infinite cardinal. Then C is k-
deconstructible provided that C :Filt(C<”). The class C is called deconstructible, if C is
k-deconstructible for some infinite cardinal .

For example, the class of all projective modules Py is Nj-deconstructible, because each
projective module is a direct sum of countably generated projective modules by a classic
theorem of Kaplansky. Let n > 0 and s be an uncountable cardinal. If each right ideal of
R is < k-generated, then the class P, of all modules of projective dimension at most n is
k-deconstructible. Similarly, if R has cardinality < x, then the class F,, of all modules of
flat dimension at most n is k-deconstructible, [12].

A module equipped with a C-filtration often possess many other C-filtrations, and their
lengths may vary in general. There is however a way to organize some of these C-filtrations
in a family that makes it possible to develop a sort of infinite dimensional Jordan-Holder
theory in this generality:

Lemma 2.3. (Hill Lemma) Let R be a ring, M a module, k a regular infinite cardinal,
and C a class of < k—presented modules. Let M = (M, | o < o) be a C-filtration of M.
Then there exists a family H consisting of submodules of M such that (i) M C H, (ii)
H forms a complete distributive sublattice of the complete modular lattice of all submodules
of M, (iti) P/N is C-filtered for all N C P inH, and (iv) if N € H and S is a subset of M
of cardinality < k, then there is P € H such that NUS C P and P/N is < k—presented.

Proof. (sketch) For each @ < o take an arbitrary < k-generated submodule A, of My41
such that M1 = M, + A,. (So M, = Zﬁ<a Ag in particular.)

A subset S C o is called closed in case each o € S satisfies M, N A, C Zﬂ<a,ﬁes Mg.
Define H = {}_ cg Aa | S closed }. O

Hill Lemma makes it possible to replace a given C-filtration of M by a different one
fitting better the particular problem in case. We refer to [12, Chap.7] for various appli-
cations of the Hill Lemma. Here, we present only one (due to Enochs and Stovicek) that
makes it possible to replace any C-filtration of M by a new filtration of (shorter) length
< k on the account of making the consecutive factors of the new filtration thicker. (In the
particular case when C = the class of all simple modules, an instance of the new filtration
is provided by the socle sequence of a semiartinian module.)

Corollary 2.4. In the setting of Lemma 2.3, let Sum(C) denote the class of all direct
sums of copies of the modules from C. Then M possesses a Sum(C)—filtration of length
< K.

2.2 Approximations and complete cotorsion pairs

Definition 2.5. (i) A class of modules A is precovering if for each module M there is
f € Hompg(A, M) with A € A such that each f' € Hompg(A’, M) with A’ € A has a
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factorization through f:

AL n

A
gl /
| f
A/
The map f is called an A-precover of M (or a right A-approximation of M).

(ii) An A-precover is special in case it is surjective, and its kernel K satisfies Exth(A, K) =
0 for each A € A.

(iii) Let .A be precovering. Assume that in the setting of (i), if f/ = f then each factoriza-
tion g is an automorphism. Then f is an A-cover of M. A is called a covering class
in case each module has an A-cover. We note that each covering class containing Py
and closed under extensions is necessarily special precovering.

For example, the class Py is easily seen to be precovering, while Fj is covering by [5].
By a classic result of Bass, Py is covering, iff Py = Fy, i.e., iff R is a right perfect ring.

Dually, we define (special) preenveloping and enveloping classes of modules. For ex-
ample, 7y, the class of all injective modules, is an enveloping class.

Precovering classes are ubiquitous because of the following

Theorem 2.6. Let S be a set of modules and C = Filt(S). Then C is precovering.
Moreover, if C is closed under direct limits, then C is covering.

Example 2.7. The classes P, (n < w) for any ring R, as well as GP, the class of all
Gorenstein projective modules for R Iwanaga—Gorenstein, are special precovering. The
classes F,, (n < w) over any ring, and GF of all Gorenstein flat modules for R Iwanaga—
Gorenstein, are covering. The classes Z,, (n < w) for any ring R (resp. GZ for R Iwanaga—
Gorenstein) are special preenveloping (resp. enveloping).

Precovering classes C, and preenveloping classes £, can be employed in developing
relative homological algebra similarly as the classes of all projective and injective modules
are used in the classic (absolute) case, cf. [8].

Besides the formal duality between the definitions of precovering and preenveloping
classes, there is also an explicit duality discovered by Salce, mediated by complete cotorsion
pairs:

Definition 2.8. Let R be a ring. A pair of classes of modules € = (A, B) is a (hereditary)
cotorsion pair provided that

1. A="1B:={A € Mod-R | Extlz(A,B) =0 for all i > 1 and B € B}, and

2. B= At :={B € Mod-R | Exti,(A, B) =0 for all i > 1 and A € A}.
If moreover 3. For each module M, there exists an exact sequences0 - B - A — M — 0

with A € A and B € B, then € is called complete.

Condition 3. implies that A is a special precovering class. In fact, 3. is equivalent to
its dual: 3'. For each module M there is an exact sequence 0 — M — B — A — 0 with
A € A and B € B, which in turn implies that B is a special preenveloping class.

Complete cotorsion pairs, and hence special precovering and special preenveloping
classes, are abundant:
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Theorem 2.9. For each set of modules S, there is a complete cotorsion pair of the form
(+(81),St) in Mod-R.

3 Applications

3.1 Infinite dimensional tilting

For a module T', denote by Add(T) (resp. add(T’)) the class of all direct summands of
arbitrary (resp. finite) direct sums of copies of T'.

Definition 3.1. A module T is tilting provided that
(T1) T has finite projective dimension.
(T2) Ext’(T,T") =0 for all 1 <i and all cardinals .

(T3) There exist r < w and an exact sequence 0 — R — Ty — --- — T, — 0 where
T; € Add(T) for each i < r.

The class T := T is the tilting class, and the cotorsion pair €7 := (75, T7) the tilting
cotorsion pair, induced by T'. If T' has projective dimension < n, then the tilting module
T is called n-tilting, and similarly for 77 and €. If T and T” are tilting modules, then T'
is equivalent to T" in case T and T" induce the same tilting class.

Strongly finitely presented tilting modules are called classical. A tilting module T is
good provided that all the modules T; in condition (T3) can be taken in add(7"). We note
that each classical tilting module is good, and each tilting module is equivalent to a good
one.

Tilting theory originated in the realm finitely generated modules/representations of
finite dimensional algebras, but many of its aspects extend to the general setting of possibly
infinitely generated modules over arbitrary rings. Such extension is especially desired for
commutative rings, because each finitely generated tilting module over a commutative ring
is projective, that is, 0-tilting.

A classic result of Miyashita says that each classical n-tilting module induces (via
the functors Ext%(T,—) and Tory(—,T) for i = 0,...,n) an n + I-tuple of category
equivalences between certain subcategories of Mod-R and Mod-S where S = End(Tg).
For n = 0, this is just the well known Morita equivalence between Mod-R and Mod-S.
Miyashita’s result has recently been extended to good n-tilting modules in [4].

Rather than studying equivalences induced by large tilting modules, we will consider
here approximation properties of the corresponding tilting classes. The first result concerns
1-tilting and torsion classes of modules:

Proposition 3.2. Let R be a ring and T be a torsion class of modules. Then T is 1-tilting,
iff T is special preenveloping.

A much more complex argument is needed to prove the following characterization of
general tilting classes and tilting cotorsion pairs:

Theorem 3.3. Let R be a ring and € = (A, B) be a cotorsion pair. Then € is tilting, iff
A C P, for some n < w, and B is closed under arbitrary direct sums.
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Even though tilting modules are allowed to be infinitely generated, there is always a
grain of finiteness preserved. Indeed, the following result, proved by set-theoretic methods
in a series of papers in 2005-7, says that each n-tilting class T is of finite type, that is, there
exists a set S consisting of strongly finitely presented modules of projective dimension < n
such that 7 = S*. In particular, 7 is axiomatizable, by a (possibly infinite) set of formulas
of the language of the first order theory of modules:

Theorem 3.4. Let R be a ring, T be an n-tilting module, and T = T the induced
n-tilting class. Then T is of finite type.

Theorem 3.4 makes it possible to classify tilting modules and classes over Dedekind
domains, because finitely presented modules are classified in this case. Further tools are
needed to handle the general commutative noetherian case. The main recent result from
[1] offers the following classification. (A sequence P = (P, ..., P,_1) consisting of subsets
of the spectrum Spec(R) is called characteristic provided that Py C P, C --- C P,,_1, and
for each i < n, P; is a lower subset of the poset (Spec(R),C) such that P, contains all
associated primes of the ith cosyzygy in the minimal injective coresolution of R.

Theorem 3.5. Let R be a commutative noetherian ring and n < w. Then n-tilting
classes are parametrized by characteristic sequences: the tilting class T corresponding to
a characteristic sequence P = (P, ..., P,_1) is defined by the formula

T ={M € Mod-R | Torf(M,R/p) = 0 for all i < n and p € Spec(R) \ P;}.

3.2 Flat Mittag-Leffler modules and local freeness

Having defined tilting modules, we can now proceed to locally T-free modules:

Definition 3.6. Let R be a ring. A system S consisting of countably presented submod-
ules of a module M is a dense system provided that S is closed under unions of well-ordered
countable ascending chains, and each countable subset of M is contained in some N € S.

Let F be a set of countably presented modules. Denote by C the class of all modules
possessing a countable F-filtration. A module M is locally F-free provided that M contains
a dense system of submodules from C. (Notice that if M is countably presented, then M
is locally F-free, iff M € C.)

If 7 = A<M for a cotorsion pair € = (A, B), then C = A<®!, and a module is locally
A<Ni_free, iff it admits a dense system of countably presented submodules from A. In
particular, if 7" is a tilting module with the induced tilting cotorsion pair €1 = (A4, B),
then the locally A<Ni-free modules are called locally T-free modules.

For example, if T' = R, then the locally T-free modules coincide with flat Mittag-Leffler
modules, [10]. So in this particular case, the following theorem says that the class of all
flat Mittag-Leffler modules is precovering, iff R is a right perfect ring:

Theorem 3.7. [2] Let R be a ring and T be a tilting module. Then the class of all locally
T-free modules is precovering, iff T is locally split (i.e., each pure embedding in Add(T)
splits).
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The proof of Theorem 3.7 uses the notion of a tree module M from [14], that is, of
a module constructed by a particular decoration of the tree T, of all finite sequences of
ordinals less that a given infinite cardinal k. While the initial combinatorial object is T},
the initial algebraic object used for its decoration is a Bass module, i.e., a fixed countable
direct limit B of the modules from A<®1. The key property of the tree module M is the
fact that M contains a direct sum D of & (= the number of nodes of T};) elements of A<X1,
while M/D contains k“ (= the number of branches of T;) copies of the Bass module B.

3.3 Almost split morphisms

We finish with a rather surprising application of the tree module construction to solving
a long-standing open problem from representation theory going back to Auslander.

Definition 3.8. Given a non-projective module N, an epimorphism of modules f: M —
N is said to be right almost split provided that f is not split, and if g : P — N is not
a split epimorphism, then ¢ factorizes through f. Dually, we define a left almost split
monomorphism f': N' — M’ for N’ non-injective.

A short exact sequence of modules 0 — N’ i; M i) N — 0 is almost split provided
that it does not split, f is a right almost split epimorphism, and f’ is a left almost split
monomorphism.

Auslander proved that if N is an (indecomposable) finitely presented non-projective
module with local endomorphism ring, then there always exists a right almost split epi-
morphism f: M — N. This result is the basis of the celebrated Auslander-Reiten theory
of almost split maps and sequences [3], with a number of far reaching consequences in the
representation theory of algebras.

Already in 1977, Auslander asked, whether there are other cases where a right almost
split epimorphism ending in a non-projective module N exists. Only recently, Saroch
was able to give a negative answer. The key ingredient in his proof employs generalized
tree modules. (The term generalized refers to the fact that unlike the trees T, above,
the generalized trees may have branches of length bigger than w in order to capture also
uncountable well-ordered direct limits of modules rather than just the Bass modules.)

Theorem 3.9. [13] Let R be a ring and N be a non-projective module. Then there
exists a Tight almost split epimorphism f : M — N, iff N is finitely presented and its
endomorphism ring is local.

Theorem 3.9 has a corollary concerning the structure of almost split sequences in
Mod-R:

Corollary 3.10. [13] Let R be a ring and 0 — N’ — M — N — 0 an almost split
sequence in Mod-R. Then N is finitely presented with local endomorphism ring, and N’
18 pure-injective.
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Extended Abstract

The theory of complex networks has a wide range of applications in a variety of disci-
plines such as communications and power system engineering, the internet and worldwide
web (www), food webs, human social networks, molecular biology, population biology and
biological networks. The focus of this talk is on biological applications of the theory of
graphs and networks. Network analysis leads to a better understanding of the critical role
of these networks in many key questions.

we present some of the popular biological networks which have been investigated by
several authors.

Protein-Protein Interaction network (PPI-Network) is a graph G = (V, E) where V is
a set of proteins and two proteins are joined by an edge if they interact physically. The
interaction between viral proteins and human proteins can be represented as a bipartite
graph G. The vertex set of G is V1 U Va, where V] is the set of viral proteins and V5 is the
set of all human proteins. A viral protein v € Vj is joined to a human protein w € V5 if
v interacts with w. This bipartite graph is called viral-human protein interaction network
and this network has been investigated by Mukhopadhyay and Maulik [2].

Human protein and disease association network is a bipartite graph G whose vertex is
V1 U Va, where Vj is the set of human proteins and V5 is the set of diseases and v; € Vj
is joined by an edge to vy € Vb, if the human protein v; is associated with the disease wvs.
This network has been investigated by Mukhopadhyay and Maulik [2].

Metabolome based reaction network is a directed graph D = (V, A) where V is a set
of metabolites and a vertex v is joined to a vertex w by an arc (v, w) if there is a reaction
or interaction which transforms the metabolite v to the metabolite w. This network has
been investigated by Veeky Baths et al. [4].

Gene regulation is a general term for cellular control of the synthesis of protein at the
transcription step. Often one gene is regulated by another gene via the corresponding
protein. Thus gene regulation leads to the concept of gene regulatory network, which has
been investigated by Yue and Chunmei [5]. Gene regulatory network is a directed graph
D = (V,A) where V is the set of genes and two genes g1,g2 € V are joined by an arc
if there is a regulatory relationship between g; and go, or more precisely g; regulates gs.

*Speaker
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The regulatory relationship between two genes may be either positive direct regulatory
influence or inverse causality or no correlation. Hence gene regulatory network can also
be represented as a directed weighted graph, where the weight of an arc is an estimate
of the probability of relationship between the genes in the network. This network has
been investigated by Raza and Jaiswal [3]. Positive regulatory relationship represents
activation and negative regulatory relationship represents inhibition. This leads to the
representation of a gene regulatory network as a signed directed graph where an arc
(g1, 92) is assigned a positive sign if the corresponding regulatory relationship is activation
and is assigned a negative sign if the corresponding relationship is inhibition. A study of
gene regulatory network leads to a better understanding of the regularity mechanism of
the genes and prediction of the behavior of some unknown genes.this network has been
studied in Christensen et al. [1].

There are several centrality measures such as Stress, Betweenness, Edge betweenness,
Diameter, Average distance, Closeness, Eigenvector Centrality and Eccentricity which are
used for analyzing biological networks.
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Abstract

We discuss covering properties in topological spaces defined by stars. Special
attention is paid to two star covering properties related to the Gerlits-Nagy property
GN. Some examples in this connection are given.
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1 Introduction

If A is a subset of a topological space X, and P is a family of subsets of X, then St(A,P) :=
U{PeP:ANP #0D}; when A = {z}, v € X, one writes St(z, P) instead of St({z},P).
In the literature one can find a big number of topological properties which are defined or
characterized in terms of stars. In particular, it is the case with many covering properties
of topological spaces. We consider here an application of this method in the theory of star
selection principles introduced in [4]. For more details on star selection principles and for
undefined notions see the survey paper [5].

Selection Principles Theory has roots in the papers by Menger [7], Hurewicz [3], Roth-
berger [9], but in the last two-three decades a big number of mathematicians work sys-
tematically in this field of mathematics.

Following [4] and [5] we have the following definitions.

Let O be the collection of all open covers of a space X, B a subfamily of O, and K a
family of subsets of X. Then:

1. The symbol S%;,,(O, B) denotes the selection hypothesis: For each sequence (U, : n € N)
of elements of O there is a sequence (V,, : n € N) such that for each n € N, V), is a finite
subset of Uy, and {St(UV,,,U,,) : n € N} € B;

2. S7(0, B) denotes the selection hypothesis: For each sequence (U, : n € N) of elements
of O there is a sequence (U,, : n € N) such that for each n € N, U,, € U,, and {St(U,,U,) :
n € N} € B;

3. SSk(O,B) denotes the following selection hypothesis: For each sequence (U, : n €
N) of elements of O there exists a sequence (K, : n € N) of elements of I such that
{St(K,,Uy,) : n € N} € B.

When K is the collection of all finite (resp. one-point, compact) subspaces of X we write

SS%. (O, B) (resp., SST(O, B), SSk (O, B)) instead of SS}-(O, B).

23



46'" Annual Tranian Mathematics Conference

25-28 August 2015

% /2, Yazd University
Talk Covering properties defined by stars

Let T" denotes the collection of «-covers of a space X. (An open cover U of X is a
~v-cover if for each x € X the set {U € U : x ¢ U} is finite.) Let X be a space. The
following terminology and notation (for X) we borrow from the above mentioned papers.

SR: the star-Rothberger property = S;(O, O);
SSR: the strongly star-Rothberger property = SS7 (O, O);
SH: the star-Hurewicz property = S}, (0, T);
SSH: the strongly star-Hurewicz property = SS};,(O,T).

In [2], Gerlits and Nagy introduced several covering properties of a topological spaces.
One of these properties, denoted (*) and nowadays called the Gerlits-Nagy property (or GN-
property for short), has been characterized in [8] in a form more convenient for use: a space
X is Gerlits-Nagy if and only if it is Hurewicz and Rothberger. Other characterizations
of GN properrty were obtained in [6]. One of these characterizations is: a space X is GN
if and only if it satisfies the selection property S1(O, O9). Here, O%P denotes the family
of groupable open covers of X: an open cover U of X is groupable if it can be represented
in the form U = J,,cyUn, so that U,’s are finite, pairwise disjoint, and each = belongs to
all but finitely many UlA,, .

Following the first of these two results we introduce the following definition.
Definition 1.1. A space X is said to be:
1. star-Gerlits-Nagy, denoted X € Csgn, if X is SH and SR;

2. strongly star-Gerlits-Nagy, denoted X € Cssgn, if X is SSH and SSR.

2 Main results
We need also the following known uncountable small cardinal
add(M) = min{|F|: F C M & UF ¢ M},

where M is the ideal of meager subsets of R.

Recall a known topological construction. A family of infinite subsets of N is almost
disjoint if the intersection of any two distinct elements is finite. For an almost disjoint
family A of infinite subsets of N, set ¥(A) = NU.A. Topologize ¥(.A) so that the points of
N are isolated and a basic neighbourhood of a point A € A are of the form {A}U(A\ F),
where F' is a finite set in N.

Theorem 2.1. If |A| < add(M), then ¥(A) € Cssgn-

Proof. Matveev proved: (a) W(.A) is SSH if and only if |A| < b; (b) if | A| < cov(M), then
U(A) is SSR (see [5]). Combining these results with the Miller-Truss theorem (see [1])
saying that add(M) = min{b, cov(M) we have the proof of the theorem. O

We do not know if the converse of this theorem true.

Theorem 2.2. There is a Tychonoff space which is in Csgn but is not in Cssan (in fact,
it is not neither SSR nor SSH).
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Proof. Let aD(c) = D(c) U {oo} be the one-point compactification of the discrete space
D(c) of cardinality ¢. Set Y = aD(c) x [0,¢t), Z = D(c) x {¢*}. Endow X =Y U Z with
the relative topology of the product aD(c) x [0, ¢*].

Claim 1. X is SH

Let U be an open cover of X. Since aD(c) x [0, c¢") is countably compact (the product
of a compact and a countably compact space), there is a finite set F' C X such that
St(F;U) D aD(c) x [0,¢t). For each a € D(c) one can choose U, € U such that (o, ct) €
U. Take zo = (a,fa) € Usy \ {(a,cT)}. Let 8 = sup{Ba : @ € D(c)}. Then 8 < ¢,
because ¢t is regular. The set K = Clpayx[o,8{Ta : a € D(c)} is compact, and thus
there exists a finite set £ C X such that St(E,U) D K. The set A = F U E is finite and
St(A,U) = X.

Claim 2. X is SR.

It is known that every ordinal space [0, «) is SSR, hence SR. Therefore, Z is SR.

Let (U, : n € N) be a sequence of open covers of X. For every a < ¢ take [,
having property {a} x [Ba,¢T] C V for some V € U;. Let = sup{f, : a < ¢}, and let
(0o, ¢t) € Uy € Uy. The set St(Uy, U, ) contains all but finitely many elements x, = (a, ¢1),
o < ¢, 88y Loy, ,Ta,,- For each i = 2,---m pick an element U; € U; such that z,, € U,
and any U; € U; for j > m. Then the sequence (U, : n € N) witnesses for (U, : n € N)
that Y C St(U,,U,). This implies that X =Y U Z is SR.

It follows from Claims 1 and 2 that X € Cgan.

Claim 3. X is not in Cgsgn.

It is enough to prove that X is not SSR. For each n let U, =U = {aD(c) x [0,¢T)} U
{{a} x [0,¢T] : @ € D(c)}. Then we have a sequence of open covers U,, n € N, of X.
Suppose that we have chosen an element z,, € X for each n € N. Set A = {z,, : n € N}.
We prove that St(A,U) # X. Let 7 be the projection of X onto aD(c). As m(A) is
countable, there is a point u € X \ 7(A). Then, as it is easily checked, (u,c™) ¢ St(A,U),
hence X is not SSR.

This completes the proof of the theorem. O

Remark 2.3. The product of a compact SSGN spaces X and a compact space Y need
not be SSGN. Take X to be a compact Rothberger space. It is well known that a compact
space is Rothberger if and only if it is scattered (i.e. each nonempty subspace has an
isolated point). Further, in the class of (para)compact spaces the Rothberger property
coincides with the SSR property [4], so that X is SSR. On the other hand, since X is
compact, it is Hurewicz, hence strongly star-Hurewicz. Therefore, X is an SSGN space.

Let Y be a a non-scattered compact space. Then X x Y is not SSGN space. Suppose
to the contrary, that X x Y € SSGN. By the results mentioned above X x Y must be
scattered, being compact and Rothberger. By the fact that a compact space which is a
continuous image of a compact scattered space is also (compact) scattered, it would follow
that Y is scattered. A contradiction.

Theorem 2.4. There is a space X € Cssgn and a Lindeldf space Y such that X X Y is
not in Csgn.

Proof. Let X = [0;w;) with the usual order topology and Y the one-point Lindel6fication
of X (i.e. Y = [0;w;] with the following topology: each point o with o < wy is isolated,
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and a set U containing w; is open if and only if Y \ U is countable). Then X is countably
compact, Y is Lindelof, and X x Y is not in this class, even not in the class Csgn.

The space X is SSR because every ordinal space is SSR. On the other hand, X is SSH
being (Hausdorff) countably compact and so strongly starcompact. Therefore, X € Cssgn.
According to [5], the product X x Y is not SH, hence X x Y is not in the class Csgn. [

The following result regarding SSH spaces (see [5])
Theorem 2.5. A space X is SSH if and only if X € SS§,, (O, O9P)

suggests the following

Problem. Is it true that S; (O,I') = S; (O, 0%)? Is it true that X € Cssgn if and only
if SS(O, O9) if and only if SSH(O,T)?
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Abstract

An elliptic curve E over the rationals gives, in a natural way, a family of elliptic
curves over finite fields simply considering the reduction Ep of the curve modulo prime
numbers. And many interesting question arises regarding this family. For example, one
could ask for the number of primes up to X so that Ep has a prime number of points,
and try to solve an open problem stated long back by Koblitz. Recall that this question
has a direct interest in building elliptic curves interesting for cryptographic purposes.
Another problems related with this family are the famous Sato-Tate conjecture, or
the Lang-Trotter conjectures on the trace of the Frobenius element and the Frobenius
ring. In the talk, after a review of the ingredients, i will talk about some contributions
that i could do, on these problems.
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Nonlinear Separation for Constrained Optimization
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University of Isfahan Sheikhbahaee University and University of Isfahan

Abstract

We give a brief survey of image space analysis and its applications to constrained
optimization problems. By introducing some class of nonlinear separation functions
in the image space associated with an infinite analysis, we investigate con constrained
optimization problems. Furthermore, the equivalence between the existence of non-
linear separation function and a saddle point condition for a generalized Lagrangian
function associated with the given problem is obtained. Some open problems for the
vector variational inequalities with constraints are mentioned.

Keywords: Nonlinear separation for Image space analysis, Scalarization of vector
optimization, Generalized Lagrangian function, Exact penalty
Mathematics Subject Classification [2010]: 90C26, 90C29, 26B25, 49.J40

1 Introduction

The image space analysis(ISA) approach has been proved to be a fruitful method in many
topics of optimization theory (e.g., optimality condition, existence of solution, duality,
vector variational inequalities and vector equilibrium problems); see [1-13] and [18-20].
Moreover, it has been shown that several theoretical aspects of a constrained extremum
problem as duality , penalty methods , regularity and Lagrangian- type optimality can be
developed by Image space Analysis .

Furthermore, (ISA) has received considerable attention in the optimization community and
has become a powerful tool and a unifying scheme for studying constrained optimization
problems . In the (ISA) method, the optimality condition for constrained optimization
problems is expressed under the form of the impossibility of a parametric system. The
impossibility of such a system is reduced to the disjunction of two suitable subsets of the
image space (IS) associated with the given problem; such a disjunction can be proved by
showing that they lie in two disjoint level sets of a nonlinear separation function (see[11]).
Here, we focus our attentions on some nonlinear separation functions for the constrained
extremum problem. We extend a nonlinear regular weak separation function that has
been discussed in [12], to use in set-valued optimization in normed linear spaces. Then,
we define two new nonlinear (regular) weak separation functions based on the oriented
distance function A and derive some optimality conditions, in particular, some saddle
point sufficient optimality conditions for the constrained extremum problem.

Let X be a topological vector space and let Y and Z be two normed linear spaces with

*Speaker
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normed dual spaces Y* and Z*, respectively. Let C C Y and D C Z be pointed, closed
and convex cones with nonempty interiors. The space of continuous linear operators from
Z to'Y is denoted by L(Z,Y) and

L (Z,Y):={TeL(ZY): T(D)CC}
The positive dual cone of C' is defined by
Cti={peY*:p(y) >0, VyeC},
and the set of all positive linear functionals in C'T is
Cti={peY*:p(y) >0, vy C\{0}}.

Note that, if C is a convex cone in Y, then int Ct C C1¢ and the equality holds if
int CT # 0 . A partial order <¢ in Y is defined by

n<cy2 & yw—ynecdl, Vy,ypecY.

For simplicity, throughout this talk, we denote ¢ :=int C and Cp :=C\ {0}.
In the sequel, we suppose that F' : U = Y is a multifunction defined on a nonempty
convex subset U of X with values in Y.

Definition 1.1. Let F': U = Y and G : U = Z be two multifunctions with nonempty
values. We consider the following vector optimization problem:

ming F(z)  s.t. zre€R:={zeU:Gx)N(-D)#0}, (1)
where R is called the feasible region of Problem (1).
Definition 1.2. A point Z € R is called a minimum point of Problem (1) iff
Jye F(z) st. (F(R)N(y—Co) =0.

In this case we say that (Z,y) is a minimizer for Problem (1) and a point z € R is called
a weak minimum point of Problem (1) iff

e Fz) st (FR)N(G—C)=0.
In this case we say that (Z,y) is a weak minimizer for Problem (1).

The following result presents a necessary and sufficient condition for a vector to be a min-
imum point or a weak minimum point of Problem (1).

Lemma 1.3. [17] Let & € R and (z,y) € gr F. Then
(i) (Z,7) is a minimizer of Problem (1) iff

(5 — Co, —D) N (F(x),G(x)) =0 Ve U.
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(i1) (Z,9) is a weak minimizer of problem (1) iff

o

(y—C,—=D)n(F(x),G(x)) =0 VzelU.

Here, we develop the image space analysis for vector optimization with multifunction
constraints and multifunction objective. Let & € R and p := (z,y) € gr F. We introduce
the multifunction A; : U = Y x Z , defined by

Aﬁ(x) = {(g_ya_z) : yGF(l‘) ) ZGG(QS‘), T e U},
and we associate the following sets to p € gr F

H:COXD y IC;E:Ap(U)

The set ICp is called the image space associated with Problem (1). By Lemma 1.3, p = (Z, y)
is a minimizer of Problem (1) iff

and p = (z,y) is a weak minimizer of Problem (1) iff

Kﬁﬂ%@c - @,

where, H;. = (O] x D.

Definition 1.4. Let I' be a set of parameters and H = Cyx D.The class of all the functions
w:Y x Z x xY*xI' — R such that

H Clevsg wl(esey ), VyerT, (3)

and
ﬂwél—‘lev>0 LU(.,.,.,’Y) - H’ (4)

is called the class of weak separation functions and is denoted by W(F), in which levsg w(.,.,0,7) :=
{(u,v) €Y x Z : w(u,v,60,7) > 0} denotes the level set of w(.,.,0,7).

Definition 1.5. The class of all the functions w : Y x Z x xY* x I' — R, such that
ﬂwel—‘lev>0 UJ(.,.,.,’}/) :Ha (5)

is called the class of regular weak separation functions and is denoted by W, (T").

Suppose that I' is the given set of parameters and the class of functions wy : Y X Z x Y* x
I' — R is given by:
UJ1(U, v, 07 7) = <97 U> + WU(Ua 7)

where wy fulfils the following conditions

Vyel, VaeRy, Fya €l st awy(v,v) = wo(v,7a) Yv € Z. (6)
ﬂ’yerleVZD wo(.,'y) =D. (7)
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In sequel, we consider the following assumptions

Helf wo(v,7) =—oc0 Vv ¢ D. (8)
g
inf wo(v,7) =0 Vv e D. 9)
~er

Definition 1.6. Suppose that A C Y and da(y) = inf{|la — y|| : @« € A} is the distance
function from A. The function A4 :Y — RU {%o0} defined by

Aay) =da(y) — dy\a(y),

is called the oriented distance function.

Now by the oriented distance function A, we consider the nonlinear class of functions
wo:Y X Z xI — R given by:

wa(u,v,7) == —Ac(u) + wo(v,7).

The class of separation w; and wy are unified the following known linear or nonlinear
separation functions; see [1, 15, 16]:

(i
(ii

w3(u,v,0,7) :== (0,u) + (7,v),
4(u,0,0,7) = (0,u) — Ag, ((7,0)),
u,v,0,7) = (0,u) — vdp(v),

) wal
) wa(
) ws(
(iv) we(u,v,0) := (8,u) — dp(v), where, dp is indicator function of D.
) wi(
) ws(
) wo(

S

(iii) ws
wr \u, v,y ) = _AC(U) + <77’U>7

8 'LL,’U) = _AC( )_ 6D(U>7

(vii) wo(u,v,0,7v) = (0,u) — Ac(Tw), where, T € L (Z,Y)

(v

(vi

€

2 Main results
Here, we obtain first some results for minimizing of Problem (1).

Proposition 2.1. (a)- LetZ € R, p = (Z,9) € gr F . Let wi(u,v,0,7) := (0, u) +wo(v,7),
be a class of regular nonlinear separation functions satisfying both conditions (8) and (9).

If,
inf  sup wi(u,v,0,7) <0,
YEDT (uw)ek,

then, p is a minimizer of Problem (1).
(b)- If Kp and H admit the following regular nonlinear separation functions

wa(u,v,7) := —=Ac(u) + wo(v,7),
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then p is a minimizer of Problem (1).
(c)- Let wa(u,v,v) = —Ac(u) + wo(v,7), be a class of nonlinear separation functions
satisfying both conditions (8) and (9). If for each z € G(x) N (—D),

inf sup w?(g —Y,—%, /7) < 0)
YEDT {yeF(z):2cR}

then, p is a minimizer of Problem (1).

The next results shows that the existence of a nonlinear separation between K5 and H
is equivalent to the existence of a saddle point for the generalized Lagrangian.

Theorem 2.2. Let p = (z,9) € gr F, and wi(u,v,0,7) := (0, u) + wo(v,7) be the class of
nonlinear functions satisfying conditions (8) and (9).

(i ) If (z,7) is a saddle point for the generalized Lagrangian function L1 : UxCTxT — R
defined by

£1(5L‘,9,7): inf <97y>_ sup WO(_Zaly)a
yeF(z) z€G(x)

where F' is compact valued, i.e.
L£1(7,0,7) < £1(Z,0,7) < Li(x,0,7), YxeU, VyeT,
for a fized § € C* then, T € R and Kz and H, admit a nonlinear separation;

(ii) Suppose that F(z) C {g} + C, and there exists (0,5) € C* x I' which admits a
nonlinear separation for Kz and H, then (Z,7) is a saddle point for the generalized
Lagrangian function ,i.e.

L£1(2,0,v) < £1(Z,0,7) < Li(x,0,5), YxeU, VyerT,

Theorem 2.3. Let p = (Z,y) € gr F, and wa(u,v,7) = —Ac(u) +wo(v, ) be the class of
functions satisfying two conditions (8) and (9).

(i) Ifz e R, F(z) C {y}+ C and Kz and H, admit a (regular) nonlinear separation
then, (Z,7%) is a saddle point for the generalized Lagrangian function Lo : U xT — R
defined by

Lo(x,y) = inf Ae(y—y)— sup wo(—2,7),
yEF (z) 2€G(x)

where F' is compact valued, 1i.e.

52(@7) < £2(i','7) < £2(.’E,7}/), Vo € U7 vfy erl.

(ii) Suppose that F(z) C {y} + ¢, and (Z,7) is a saddle point for the generalized La-
grangian function Lo then, T € R and Kz and H, admit a regular nonlinear separa-
tion

In the following result, we suppose X and Z are reflexive and derive an exterior penalty
method for the Problem (1).
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Theorem 2.4. Let 7 € R, p = (%,) € gr F,F(Z) C {y} + C, 0 € C™ and the function
LY U xRy — R defined by

L£Yx,7) == inf (0,y)+~ inf dp(—z).
(z,7) yé?(x)< ) v, dof p(—2)

Then the following statements are equivalent:
(i) cl cone ENHy = 0.
(i1 ) there exists 7 € Ry \ {0} such that

sup (0,5 —y) <7 inf dp(—z) VxeU.
yeF(z) z€G(x)

(iii ) there exists ¥ € I' :== Ry \ {0} such that
W(U, v, év :Y) < 07 V(u, U) S ,Cﬁ7

where
w(uv v,0, 7) = <97 u> + WQ(U, )‘) = <07 U> - ’YdD(v)

(v ) LY(x,7y) is an exact penalty function of Problem (1) at Z.
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Abstract

Given an algebraic hyperstructure (AHS) H. Let P be an algebaic property. In
our talk we want to answer to Is there a smallest strongly regular relation p on H,
such that the quotient H/p, the derived algebraic structure (AS) from H, satisfies
in the property P? In this regards we try to answer to this question in general. In
this regards first we review briefly some attempts to this diirection and we answer the
questions for two specila manners for derived Engle groups and (pseduo) regular rings.

AMS:20N20, 16Y99.

Keywords: fundamental relation, multiplicative hyperring, Engel, pseudo regular.

1 Introduction

The theory of hyperstructures has been introduced by Marty in 1934 during the 8™
Congress of the Scandinavian Mathematicians [21]. Marty introduced hypergroups as
a generalization of groups. He published some notes on hypergroups, using them in differ-
ent contexts as algebraic functions, rational fractions, non commutative groups and then
many researchers have been worked on this new field of modern algebra and developed
it. It was later observed that the theory of hyperstructures has many applications in
both pure and applied sciences; for example, semi-hypergroups are the simplest algebraic
hyperstructures that possess the properties of closure and associativity. The theory of
hyperstructures has been widely reviewed [21, 10, 11, 14, 33].

In [11] Corsini and Leoreanu-Fotea have collected numerous applications of algebraic hy-
perstructures, especially those from the last fifteen years to the following subjects: geome-
try, hypergraphs, binary relations, lattices, fuzzy sets and rough sets, automata, cryptog-
raphy, codes, median algebras, relation algebras, artificial intelligence, and probabilities.
A special equivalence relations which is called fundamental relations play important roles
in the the theory of algebraic hyperstructures. The fundamental relations are one of the
most important and interesting concepts in algebraic hyperstructures that ordinary alge-
braic structures are derived from algebraic hyperstructures by them. The fundamental
relation $* on hypergroups was defined by Koskas [19], mainly studied by Corsini [21],
Freni [18], Vougiouklis [34]( for more details about hyperrings and fundamental relations

*Speaker
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on hyperrings see [3, 12, 14, 32, 34]). Also, recently in [6] nilpotent groups derived from
a polygroup studied; and R. Ameri and E. Mohamadzadeh in [1] introduced and studied
Engel groups derived from hypergroups was .

In this note we start by the following important quoestion in the theory of algebraic hy-
perstructures: Consider an algebraic hyperstructure H and an algebraic property P. Is
there an strongly regular relation p on H such that the quotient algebraic structure H/p
satisfies in the property P?

In this talk we try to answer to this question in general. Also, we examine this question
for two important case for derived Engel groups and pseudo regular rings .

Recall that a hyperoperation ”.” on nonempty set H is a mapping of H X H into the
family of all nonempty subsets of H. Let ”.” be a hyperoperation on H. Then, (H,.) is
called a hypergroupoid. we can extend the hyperoperation on H to subsets of H as follows.
For A,B C H and h € H, then AB = U,e 4 pepab,

Ah = A{h},hB = {h}B. A semihypergroup is a hypergroupoid (H,.), which is associative,
that is (a.b).c = a.(b.c) for all a,b,c € H. A hypergroup is a semihypergroup (H,.), that
satisfies the reproduction axioms, that is a.H = H = H.a for all a € H.

A non-empty set R with two hyperoperations + and . is said to be a hyperring if (R, +)
is a canonical hypergroup, (R,.) is a semihypergroup with 7.0 = 0.r = 0 for all » € R (0 as
a bilaterally absorbing element) and the hyperoperation . is distributive with respect to
+, i.e., for every a,b,c € R;a(b+ ¢) = ab+ ac and (a + b)c = ac + be.

A multiplicative hyperring is an additive commutative group (R, +) endowed with a hy-
peroperation . which satisfies the following conditions:

(1.) Va,b,c € R : a(bc) = (ab)c;

(2.) Va,b,c € R: (a+b)c C ac+ be,a(b+ c) C ab + ac;

(3.) Va,b e R: (—a)b=a(—b) = —(ab).

If in (2) we have equalities instead of inclusions, then we say that the multiplicative hy-
perring is strongly distributive.

2  Derived Engel Groups

Definition 2.1. let H be a hypergroup . We define for a fix element s € H,

1) LO,S(H) =H

1) Lyt1s(H) ={h;h € [x,s];2 € Ly s(H)}.

for all £ > 0 suppose that n € N, and w,, = Um>1 Wmn Where w1, is the diagonal relation
and for every integer m > 1, wy,, is the relation defined as follows:

TWmny <= 21,0, 2m) € H™;30 € Sy, + 0(i) = 4 if z; is not in L, o(H) such that
v € [[iZy 2, y € ITiZ Z50)-

Obviously, for every n > 1, the relation wy, is reflexive and symmetric. Now let w;; be
the transitive closure of wy,.

Theorem 2.2. For every n € N, the relation wy, is a strongly reqular relation.

* * *

Corollary 2.3. If H is a commutative hypergroup, then * = wy, = v =~v*.
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Definition 2.4. For any group G we define the subgroups Z;(G,) for a fix element y, i €
{0,1,,...} as follows. Define Zy ,(G) = {e},Z1,4(G) =< {z € G;[z,y] = e} >,....Zx(Gy) =<
{z € Gilzpyl = e} >.

Also we define Lo(Gs) = G, and for a fix s € G, Lip11(Gs) = {[z, s];z € Lx(Gs)}.

Theorem 2.5. If H is a hypergroup and ¢ is a strongly reqular relation on H, then for a
firs € H,

Lk:-i—l,s(g)) = {[Evﬂ;t € Lk,s((H)}'

Theorem 2.6. wﬂ* s an n-Engel group.

In this section we introduce the smallest strongly relation w* on a finite hypergroup
H such that wﬂ is an Engel group.

Definition 2.7. Let H be a finite hypergroup. Then we define the relation w* on H as
follows:

w* = ﬂnZl wr.

Theorem 2.8. The relation w* is a strongly regular relation on a finite hypergroup H
such that w—f{ 1s an FEngel group.

Theorem 2.9. The relation w* is the smallest strongly reqular relation on a finite hyper-

group H such that L is an Engel group.

w*

3 Part II: Pseudo Regular Rings

Let R be a ring. An element a € R is regular if there exists z € R, such that a = axa.
R is a regular ring if every elements of R is regular. The set of all regular elements in R
is denoted by V(R). In this section we introduced the notation of pseudo regular rings.
In 1950, Brown and McCoy [9], defined the set of elements of a ring such that generated
ideal of that elements is regular and they denoted this set by M(R). They proved that
M(R) is an ideal and clearly M(R) C V(R).

Definition 3.1. Let (R, +, ) be a ring. We define
(1) To(R) = R

(2) Tp+1(R) = {z — xrz|z € T (R),r € R},

for k£ > 0.

Definition 3.2. Let R be a ring. An ideal series of R is a finite chain of ideals of R such
that
{0} =Ry<Ry<-- <R, =R

such that 1 <i < k, R;_1 < R;. Then k is said to be the length of series and denoted by
(R).
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Definition 3.3. Let R be a ring. An ideal series

{0} =Ry<Ry<-- <R, =R

is called regular series, if for all 1 <i <k, R]j—il QM(%), where M(R) = {z € R| <

x> is a regular ideal}.

Proposition 3.4. ([9]) Let R be a ring. Then M(%) = {0}.
{0}

Definition 3.6. Let R be a ring. A lower ideal series is an ideal series

Remark 3.5. Let R be a ring. We denote Mq(R)

R=R'>R'vR*> -,
where R! =< T;(R) >, for all 1 <i < k.

Definition 3.7. A ring R is said to be pseudo regular if it has a regular series. The
smallest length of a regular series of R is called regularity class of R.

Example 3.8. Let R be a nontrivial pseudo regular ring. Then M(R) # {0}, because on
the otherwise R will be trivial.

Example 3.9. Let R = Z,[i] = {a + ibla,b € Z,}, i = v/—1 be the Gaussian integer
modulo p, for some odd prime p. Then by Corollary 3.11 of [23], M(R) # {0}, and hence
R is pseudo regular with length > 1, where Z,[i]. If R = Z,x[i] for some odd prime p and
k # 1, then M(R) = {0} and in this case R is not pseudo regular.

Example 3.10. Let R = Zox[i] for all k. Then M(R) = {0}. Therefore, R is not a
pseudo regular ring.

Theorem 3.11. Let R be a ring and n > 1. Then the following statements are equivalent:

(i) R" = {0};

(1) R is pseudo regular.
Corollary 3.12. Let R be a ring and n > 1. If M(R) = R, then R is pseudo regular.

Proposition 3.13. ([9]) If r is an element of R such that a — ara is reqular, then a is
reqular.

Theorem 3.14. Let R be a ring. If M(R) = V(R) and R is pseudo regular, then M(R) =
R.

Theorem 3.15. Let R be a non trivial pseudo regular ring with an unitary and I an non
zero ideal of R. Then M(I) # {0}.

Theorem 3.16. Let I be an ideal of a pseudo reqular ring R. Then I and % are pseudo
reqular.

Theorem 3.17. If Ry, Ry, -+ , R, are pseudo regular rings, then R =[[;_, R; is pseudo
regular.
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Corollary 3.18. Let R be a ring and I and J be two ideals of R. If % and ? are pseudo
regular, then Iﬂi«f 18 also pseudo reqular.

Proposition 3.19. ([10]) If (H,-) is a semihypergroup(resp. hypergroup) and p is a
strongly regular relation on H, then the quotient H/p is a semigroup(resp. group) under
the operation:

p(x) ®ply) = p(z), Vzex-y.

We denote p(x) by T and instead of T ® §y we write Ty.

For all n > 1, we define the relation 3,, on a semihypergroup H, as follows:

aBpb < Iz, ,xn) € H" : {a,b} C Hmi, and [ = U Bn

i=1 n>1

where 51 = {(x,z); 2z € H}, is the diagonal relation on H. This relation was introduced by
Koskas [19] and studied by many researchers in the theory of algebraic hyperstructures(for
more see [1, 3, 10, 11, 12, 13, 15, 33, 34] ). Consider S* as the transitive closure of 5. It is
proved that the relation 5* is a strongly regular relation, and it is called the fundamental
relation of H [10].

Let (R,+,.) be a hyperring. Define the relation v as follows:

n n
xyy < w1, ,xy) € H",ITES, 2 € H:):i,y € Hw.r(i),

i=1 i=1
and v = J,>; 7n. We denote the transitive closure of v by v*. The relation +* is
the smallest equivalence relation on a multiplicative hyperring (R, +,.) such that the
quotient R/~*, the set of all equivalence classes, is a ring. The relation +* is called
fundamental relation on R, and R/~* is called the fundamental ring. Suppose that v*(a)
is the equivalence class containing a € R. Then both the sum & and the product ® in
R/~* are defined as follows:

v (a) & v*(b) = v*(c¢) for all ¢ € y*(a) + v*(b) and v*(a) ©® v*(b) = v*(d) for all

d € v*(a).vy*(b). Then R/v* is a ring, which is called fundamental ring of R (for more
details see also [33]).

Definition 3.20. Let R be a multiplicative hyperring. We say that a € R is reqular if
there exists x € R such that a € axa, and R is a regular multiplicative hyperring, if all
the elements of R are regular. The set of all regular elements in R is denoted by V (R).

Definition 3.21. Let (R, +,-) be a multiplicative hyperring. Define
(1) Lo(R) = R; (2) Lg+1(R) = {hlh € (z — zrz)((ar —rz),x € Lg(R),r € R};
for £ > 0. Suppose that n € N and 7, = |U,,~1 %mnn, where 11, is the diagonal relation
and for every integer m > 1, the relation 7, is defined as follows:
TNmny < 321, ,2m) € R™, 30 € Sy, 1 0(i) =i if 2 ¢ Lp(R) such that
v e [[[L) 2z and y € [T12) 200
Obviously, for every n > 1, the relation 7, is reflexive and symmetric. Now suppose that
n; is the transitive closure of 7,

Corollary 3.22. For every n € N, we have g* C n), C v*.
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Theorem 3.23. For every n € N, the relation 0}, is a strongly reqular relation.

Theorem 3.24. Let R be a multiplicative hyperring. Let p be a strongly regular relation
on R. Then Lyi1(R/p) = {hlh = T — 27z = ZF — 7T,z € L(R),r € R}, where T is the
class of r with respect to p.

Theorem 3.25. R/n} is a pseudo regular ring of the class at most n+1 .

Corollary 3.26. The relation n* is a strongly regular relation on a multiplicative hyperring
R, such that R/n* is a pseudo regular ring.

Theorem 3.27. The relation n* is the smallest strongly reqular relation on a multiplicative
hyperring such that R/n* is a pseudo regular ring.
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A survey of simplicial cohomology for semigroup algebras

A. Pourabbas
Amirkabir University of Technology
Tehran, Iran

Abstract

In this survey, we investigate the higher simplicial cohomology groups of the con-
volution algebra ¢!(S) for various semigroups S. The classes of semigroups considered
are semilattices, Clifford semigroups, regular Rees semigroups and the additive semi-
groups of integers greater than a for some integer a. Our results are of two types: in
some cases, we show that some cohomology groups are 0, while in some other cases,
we show that some cohomology groups are Banach spaces.

1 Introduction

In this talk, we investigate the higher simplicial cohomology groups of the convolution
algebra ¢!(S) for various semigroups S. Our results are of two types: in some cases, we
show that some cohomology groups are 0, while in some other cases, we show that some
cohomology groups are Banach spaces.

First we explain the general idea for showing that a cohomology group is a Banach
space. Let 6 : C"(A,X) — C"T1(A, X) be the boundary map. Then H"(A,X) is a
Banach space if and only if the range of § is closed, which is the case if and only if § is
open onto its range, that is there exists a constant K such that if ) = 6(¢) is such that
||| < 1 then there exists ¢1 € C™(A, X) such that ||¢1]] < K and ¢ = §(¢1).

Let A be a Banach algebra and let A’ be a Banach A-bimodule in the usual way. An
n-cochain is a bounded n-linear map T from A to A’, which we denote by T' € C"(A, A").
The map 6" : C"(A, A') — C"1(A, A) is defined by

(0"T)(ay,...,ant1)(a0) = T(az,as,...,an+1)(apar)
—T(ajag,as,...,ant1)(ag)
+ T(a1,az2as3,a4, ..., an41)(a0) + ...
+ (=D)"T(a1,...,an—1,anan+1)(ao)
+ (=1D)""T(ay, ..., an)(ans100) -
The n-cochain T is an n-cocycle if 6T = 0 and it is an n-coboundary if T = §"~1S for
some S € C" (A, A’). The linear space of all n-cocycles is denoted by Z"(A, A’), and the
linear space of all n-coboundaries is denoted by B™(.A, A"). We also recall that B™(A, A’) is

included in Z"(A, A’) and that the n'" simplicial cohomology group H"(A, A’) is defined

by the quotient
n N ZMAA)
H'(A,A) = BAA)
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Definition 1.1. Let S be a semigroup and
) ={f: 85— C:lflly = D_1£()] < oo}

ses

We define the convolution of two elements f = > ¢ f(s)ds and g = >, g(t)d; in £1(5)

by
> F(9)8s x> _g®)d=> > fs)g(t)or,
seS tesS resS st=r
where J; is the point mass function at s. Then (£1(S),*, || - ||;) becomes a Banach algebra

that is called the semigroup algebra of S.

2 Semilattice Algebra

Let S be a semigroup and let E(S) = {p € S : p?> = p}. We say that S is a semilattice if
S is commutative and E(S) = S, that is, e? = e for every e € S.

Theorem 2.1. [Gourdeau, Pourabbas and White] Let A = ¢1(S), where S is a semilattice,
and let X be a commutative A—module. Then H3(A, X) is a Banach space.

The idea of the proof, if one knows that the algebraic cohomology vanishes, this often
implies that the coboundaries are dense in the space of cocycles. If only we can show
that the coboundary map is open onto its range, then we will be able to show that the
coboundary map has closed range. A method of showing that the map is open is to try
the following strategy. Take a proof that H"(A, A’) is trivial, so that all cocycles are
coboundaries. This will show that a coboundary map is surjective, so certainly open onto
its range. Now try to rewrite this proof to show that if ¢ is an approximate n-cocycle,
that is ||d¢| < 1, then it is approximately equal to a coboundary, i.e. there exists a ¢
so that ||¢ — 0v]| < K (for some K). Then we will have a small ¢/ = ¢ — 44, which has
0¢) = d6¢.

Now let us see how this works in the particular case of Theorem 2.1. We take the
standard proof that derivations vanish on symmetrically acting idempotents.

D(e) = D(e*) = eD(e) + D(e)e = 2eD(e)

Hence eD(e) = 2eD(e) and so eD(e) = 0 and so D(e) = 0.

Then if we are given a small 2-coboundary, §v, say ||0¢] < 1, we can think of this
as saying that v is an approximate derivation. Then we have 9(e) = ¥(e?) ~ 2ey(e),
hence ey(e) =~ 2ep(e), and so erp(e) ~ (e) and 1(e) ~ 0. This shows that ¢ is small on
symmetrically acting idempotents.

Theorem 2.2 (Gourdeau, Pourabbas and White). Let S be a semilattice. Then
H3(L1(8),£(S)) = 0.

Proof. Let A = ¢*(S), where S is a semilattice, and let T € C3(A, A"). We define

t3(T) (u, v) =2u0T (u, u, wv) + wT (v, v, wv) — wT (uv,v,v)
+ uT' (v, uwv, uwv) + uT (u,v,v) — uT (uv, uv,v)
+ 2T (u, uv, uwv) — T(u, v, uv) — T (u, u, v).
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We claim that 6! +#262 = id, where t* : C%(A, A') — C1(A, A') is defined by t(¢)(e) =
(2e — 1)¢(e, e). To prove our claim for ¢ € C?(A, A’) we have
t2(6%) () (u, v) =2uvd?(u, u, uv) + wd2P(v, v, W) — WS (uv, v, v)
+ ud?p(v, uv, uv) + udp(u, v,v) — ud>d(uv, uv,v)
+ 26%p(u, uv, uv) — 62p(u, v, uv) — 6%p(u, u, v).

Using the definition of boundary map 6% we obtain the value of all terms on the right-hand
side of the above as follows

t2(0%¢) (u, v) = d(u, v) — [u(2v = 1)¢(v,v) = (2uv — 1)p(uv, uv) +v(2u — 1)¢(u, u)]
= (id — §'t")(¢) (u, v),
which proves our claim, and the proof is complete. O

Theorem 2.3 (Choi). Let S be a semilattice. Then
(i) H™(£1(S),£°°(S)) = 0, for all n. > 1.
(ii) H™(£X(S), X) = 0, for all symmetric £!(S)-bimodule X and all n > 1.

If S is a semilattice, Duncan and Namioka showed that ¢!(S) is amenable if and only
if S is finite. Dales and Duncan observed that

HI(CH(S), X) = H(£1(5), X) =0,

for all symmetric ¢1(S)-bimodule X and this has been extended to the third cohomology
by [Gourdeau, Pourabbas and White].

3 Approximately additive functions and the semigroup N,

Definition 3.1. A real-valued function f defined on a subset X of a semigroup S is called
1-additive if
[f(@) + f(y) = flz+y)| <1when z,y,z+y€X,

and additive if
|f(z) + f(y) = f(x+y)| =0 when z,y,2+y€ X.

The following proposition will enable us to deduce that the boundary map
§: CH (£ (NQ), £°(N,)) — C*(£'(N,), £°(Ny))
is open onto its range, and hence that H?(¢1(N,), /*°(N,)) is a Banach space.

Proposition 3.2 (Gourdeau, Pourabbas and White). Let f be a real-valued 1-additive
function on [s,t] = {n € N : s <n <t}. Then there exists a universal constant K and an
additive function g on [s,?] such that ||f — gl < K where || f|locc = max,¢[s4 |f(2)].

Theorem 3.3 (Gourdeau, Pourabbas and White). H?(¢*(N,), £>°(N,)) is a Banach space.
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Proof. Let ¢ € C*(#*(N,),¢*(N,)) be such that ||§¢|| < 1. Using the one-to-one corre-
spondence between C™(¢'(N,),/*(N,)) and bounded functions from the n-fold product
N, x -+ x N, into £*°(N,), we write

0p(z,y)(2)| <1  Vz,y,z € Ng,
which is
[o(y)(z +2) — oz +y)(2) + d(z)(y + 2)| < 1.
For each N > 3a, let fy : [a, N —a] — R be given by
In(z) = o(z)(N — ).

Then fy is 1-additive as, for z,y,x + y € [a, N — a], we have

|fn(@) + fn(y) — In(z+y)| = [09(x,y)(N — (z+y))|
< 1

Therefore it follows from the previous Proposition that, for each N > 3a, there exists
gn : [a, N —a] 