

EXCEL	VBA
A	Step-by-Step	Simplified	Guide	to	Excel	VBA	

Programming	Techniques,	Data	Reporting,	Business	
Analysis	and	Tips	and	Tricks	for	Effective	Strategies

©	Copyright	2019	by	Peter	Bradley		All	rights	reserved.

The	contents	of	this	book	is	reproduced	below	with	the	goal	of	providing	information	that	is	as	accurate	and
reliable	 as	 possible.	 Regardless,	 purchasing	 this	 book	 can	 be	 seen	 as	 consent	 to	 the	 fact	 that	 both	 the
publisher	 and	 the	 author	 of	 this	 book	 are	 in	 no	way	 experts	 on	 the	 topics	 discussed	within	 and	 that	 any
recommendations	 or	 suggestions	 that	 are	made	 herein	 are	 for	 entertainment	 purposes	 only.	 Professionals
should	be	consulted	as	needed	prior	to	undertaking	any	of	the	actions	endorsed	herein.

This	 declaration	 is	 deemed	 fair	 and	 valid	 by	 both	 the	American	 Bar	Association	 and	 the	 Committee	 of
Publishers	Association	and	is	legally	binding	throughout	the	United	States.

Furthermore,	the	transmission,	duplication	or	reproduction	of	any	of	the	following	work	including	specific
information	will	be	considered	an	illegal	act	irrespective	of	whether	it	is	done	electronically	or	in	print.	This
extends	to	creating	a	secondary	or	tertiary	copy	of	the	work	or	a	recorded	copy	and	is	only	allowed	with
express	written	consent	from	the	Publisher.	All	additional	rights	reserved.

The	information	in	the	following	pages	is	broadly	considered	to	be	a	truthful	and	accurate	account	of	facts
and	 as	 such	 any	 inattention,	 use	 or	misuse	 of	 the	 information	 in	 question	 by	 the	 reader	will	 render	 any
resulting	actions	solely	under	 their	purview.	There	are	no	scenarios	 in	which	the	publisher	or	 the	original
author	of	this	work	can	be	in	any	fashion	deemed	liable	for	any	hardship	or	damages	that	may	befall	them
after	undertaking	information	described	herein.

Additionally,	the	information	in	the	following	pages	is	intended	only	for	informational	purposes	and	should
thus	 be	 thought	 of	 as	 universal.	 As	 befitting	 its	 nature,	 it	 is	 presented	 without	 assurance	 regarding	 its
prolonged	validity	or	interim	quality.	Trademarks	that	are	mentioned	are	done	without	written	consent	and
can	in	no	way	be	considered	an	endorsement	from	the	trademark	holder.

TABLE	OF	CONTENTS

Excel	VBA
A	Step-By-Step	Comprehensive	Guide	on	Advanced
Excel	VBA	Programming	Techniques	and	Strategies

Introduction

Chapter	One:	What	Can	You	Do	With	VBA?
Common	Uses	of	VBA

Chapter	Two:	VBA,	A	Primer
Macro	Recorder
Record	a	Macro
Macro	Storage	and	Security

Chapter	Three:	How	to	Manipulate	Data	in	Excel
How	to	Analyze	and	Manipulate	Data	in	a	Spreadsheet
Different	Ways	to	Manipulate	Data

Chapter	Four:	Fundamentals	of	VBA
Looking	at	the	VBA	Toolbox

Chapter	Five:	Working	With	Loops	and	Conditional	Statements
For	Loop
Exercises
Do…Loop	Statement
Conditional	Statements

Chapter	Six:	Data	Types	in	VBA
Using	strings	for	text
Using	numbers	for	calculations
Using	Boolean	values	to	make	decisions
Working	with	Operators
Exercises

Chapter	Seven:	Parts	of	the	Program
Defining	the	parts	of	a	program

Programming	Blocks
Using	the	Macro	Recorder
Using	Subs
Using	Functions
Comments

Chapter	Eight:	Arrays
Structured	Storage
Array	Types
VBA	Array
Example	to	Enter	Student’s	Marks
Example	with	Loops
Sorting	an	Array
Example	for	Creating	a	Two-Dimensional	Array
Exercise

Chapter	Nine:	Working	with	Excel	Workbooks	and	Worksheets
The	Workbook	Collection
The	Worksheet	Collection
Charts	Collection
Exercises

Chapter	Ten:	How	to	Redirect	the	Flow
Using	the	GoTo	statement	correctly

Chapter	Eleven:	Error	Handling
Understanding	compile	errors
Understanding	run-time	errors
Understanding	semantic	errors

Chapter	Twelve:	Solutions	and	Additional	Programs
Sheet	Protection
For	Loop
Strings
Arrays
Worksheet	and	Workbook	Methods
Additional	Programs

Conclusion

Sources

	

Excel	VBA
A	Comprehensive,	Step-By-Step	Guide	On	Excel	VBA	
Finance	For	Data	Reporting	And	Business	Analysis

Introduction

Chapter	One:	Introduction	to	VBA
What	can	you	do	with	VBA?
Common	Uses	of	VBA
Adding	new	application	features

Chapter	Two:	The	IDE
Looking	at	the	VBA	Toolbox
Starting	the	Visual	Basic	Editor
Using	Project	Explorer
Working	with	special	entries
Using	the	Properties	window
Using	the	Code	Window

Chapter	Three:	VBA,	A	Primer
Macro	Recorder
Macro	Storage	and	Security

Chapter	Four:	Data	Types
Using	strings	for	text
Understanding	strings
Using	numbers	for	calculations
Using	Boolean	values	to	make	decisions
Working	with	Operators

Chapter	Five:	Decision	Making	Statements
If...Then	Statement
If...Then...Else	statement
If...Then...ElseIf	statement

Using	the	IIf	function

Chapter	Six:	Loops
Do	While...Loop	statement
Do...Loop	While	statement
Do	Until...Loop	statement
Do...Loop	Until	statement
For...Next	statement
For	Each...Next	statement

Chapter	Seven:	Arrays
Structured	Storage
Array	Types
VBA	Array
Example	to	Enter	Student’s	Marks
Example	with	Loops
Sorting	an	Array
Example	for	Creating	a	Two-Dimensional	Array

Chapter	Eight:	How	to	Manipulate	Data	in	Excel
How	to	Analyze	and	Manipulate	Data	on	a	Spreadsheet
Different	Ways	to	Manipulate	Data

Chapter	Nine:	Working	with	Excel	Workbooks	and	Worksheets
The	Workbook	Collection
The	Worksheet	Collection
Charts	Collection

Chapter	Ten:	Automating	Processes		Using	VBA
The	Macro	Mindset
Understand	the	Context	of	your	Automation	Project
Product	Code	Lookup	Procedure
Tips	to	Deal	with	VLookups	in	VBA
Data	Analysis
Using	Pivot	Tables	in	VBA
Efficiently	Allocating	Your	Time

Chapter	Eleven:	Error	Handling

Understanding	compile	errors
Understanding	run-time	errors
Understanding	semantic	errors

Conclusion

Will	You	Help	Me?

Sources

	

Excel	VBA
A	Step-by-Step	Comprehensive	Guide	on	

Excel	VBA	Programming	Tips	and	Tricks	for	Effective	Strategies

Introduction

Chapter	One:	Facts	about	VBA
Making	macros	available	on	every	MS	Excel	Worksheet
Types	Of	Codes	Found	Across	The	Internet
Where	To	Use	The	Code	You	Find	On	The	Internet
Saving	A	Workbook

Chapter	Two:	Resources	for	VBA	Help
Allow	Excel	to	Write	the	Code	for	You
The	Location	Matters	When	You	Ask	For	Help
Choose	Online	Help	over	Offline	Help
Using	Code	for	Excel	VBA	from	the	Internet
Making	Use	of	Excel	VBA	Forums
Visiting	Excel	VBA	Expert	Blogs
Mining	YouTube	for	Some	Excel	VBA	Training	Videos
Attending	a	Live	Online	Excel	VBA	Training	Class
Dissecting	Other	Excel	Files	in	Your	Organization
Ask	the	Local	Excel	Guru

Chapter	Three:	How	to	Improve	the	Performance	of	Macros
Close	Everything	Except	for	the	VBA	Essentials
Removing	Unnecessary	Selects
Using	the	With	Statement	to	Read	Object	Properties

Using	Arrays	And	Ranges
Use	.Value2	Instead	Of	.Text	or	.Value
Avoid	Using	Copy	and	Paste
Use	The	Option	Explicit	Keyword	To	Catch	Undeclared	Variables

Chapter	Four:	Some	Problems	with	Spreadsheets		and	How	to	Overcome
Them

Multi-User	Editing
Shared	Workbooks
Linked	Workbooks
Data	Validation
Navigation	Issues
Security	Issues
Speed	Issues
Enter	the	database

Chapter	Five:	Sub	Procedures
What	Is	A	Sub	Procedure?
How	Does	The	VBA	Sub	Procedure	Look?
How	to	Name	A	VBA	Sub	Procedure
How	to	Determine	the	Scope	of	A	VBA	Sub	Procedure
How	to	Execute	/	Run	/	Call	a	VBA	Sub	Procedure
Option	One:	How	to	Execute	A	VBA	Sub	Procedure	Directly	From	the

Visual	Basic	Editor
Option	Two:	How	to	Execute	A	VBA	Sub	Procedure	Using	the	Macro

Dialog
Option	Three:	How	to	Execute	A	VBA	Sub	Procedure	Using	a	Keyboard

Shortcut
Option	Four:	How	to	Execute	A	VBA	Sub	Procedure	Using	a	Button	or

Other	Object
Option	Five:	How	to	Execute	A	VBA	Sub	Procedure	from	another	Procedure
Option	Six:	How	to	Execute	A	VBA	Sub	Procedure	Using	the	Ribbon
Option	Seven:	How	to	Execute	A	VBA	Sub	Procedure	Using	the	Quick

Access	Toolbar
Option	Eight:	How	to	Execute	A	VBA	Sub	Procedure	When	a	Particular

Event	Occurs

Option	Nine:	Executing	the	VBA	Sub	Procedure	Using	the	Immediate
Window

Conclusion

Will	You	Help	Me?

Sources

Excel	VBA

A	Step-By-Step	Comprehensive	Guide
on	Advanced	Excel	VBA	Programming	

Techniques	and	Strategies

Introduction
VBA	is	a	tool	that	helps	you	perform	tasks	in	the	easiest	way	possible.	You	can
perform	these	tasks	in	less	than	a	minute	when	you	automate	them	using	VBA.
For	 instance,	 you	 can	 create	 custom	 reports,	 add	 new	 toolbars	 or	 perform
different	types	of	data	analysis	using	VBA.	When	you	learn	to	write	VBA	codes,
you	will	become	an	expert	at	all	the	tasks	you	perform,	and	you	can	absorb	more
work	since	you	can	finish	a	job	quickly.

If	you	want	to	gather	more	information	on	VBA	programming,	you	have	come	to
the	right	place.	This	book	provides	more	information	about	VBA	and	also	talks
about	 the	different	ways	you	can	use	VBA	to	automate	processes.	 If	you	write
code,	you	should	also	know	what	data	types	you	should	use	and	how	you	can	use
them	in	functions	and	modules.	This	book	will	provide	all	 the	information	you
need	to	know	about	VBA.

Over	 the	course	of	 the	book,	you	will	gather	 information	on	 the	different	data
types	used	in	VBA,	different	types	of	collections	in	the	VBA,	some	exercises	on
conditional	and	looping	statements,	arrays	and	other	necessary	information.	You
will	 also	 learn	how	 to	 redirect	 the	 flow	of	programs	and	also	how	you	 should
handle	the	errors.

To	make	the	learning	interesting,	there	are	some	exercises	provided	at	the	end	of
some	chapters.	You	should	try	to	write	the	code	yourself	before	you	look	at	the
solutions	provided	 to	you	at	 the	end	of	 the	book.	Remember	 that	practice	will
make	you	better	at	coding.	You	will	make	errors,	and	these	errors	will	help	you
become	a	better	programmer.	This	book	is	a	continuation	of	the	beginner's	book
in	the	series	and	provides	a	little	more	information	about	VBA.

Thank	you	 for	purchasing	 the	book.	 I	hope	you	gather	all	 the	 information	you
are	looking	for.

Chapter	One
	

	

What	Can	You	Do	With	VBA?
	

People	use	Excel	and	VBA	for	a	variety	of	reasons.	Some	examples	are:

•									Analyzing	data

•									Creating	lists

•									Developing	diagrams	and	charts	using	data

•									Forecasting	and	Budgeting

•									Creating	forms	and	invoices

The	list	is	endless	since	you	can	use	Excel	for	many	reasons,	but	I	am	sure	you
get	the	idea.	In	simple	words,	you	can	use	Excel	to	perform	different	tasks,	and	I
am	sure	you	read	the	first	book	in	the	series	and	have	picked	up	this	book	with	a
set	of	expectations.	If	there	is	any	function	in	Excel	that	you	want	to	automate,
you	can	use	VBA.

For	 instance,	you	may	want	 to	 create	or	develop	a	program	 that	will	 help	you
import	some	data	or	numbers	and	 then	format	 that	data	 to	print	a	 report.	Once
you	develop	the	code,	you	can	execute	the	macro	using	a	command	or	a	button.
This	will	ensure	that	Excel	performs	the	task	in	a	few	seconds	or	minutes.

Common	Uses	of	VBA
In	 the	 first	book,	you	gathered	 information	on	 the	different	 functions	 in	VBA.
Before	you	apply	 those	functions,	you	should	understand	why	you	want	 to	use
VBA.	 You	 have	 to	 take	 some	 time	 out	 of	 your	 day	 and	 write	 the	 code	 to
automate	 processes.	 You	must	 also	 look	 for	 different	 ways	 to	 use	VBA.	 This
section	covers	some	processes	that	you	can	automate	using	VBA.

Automating	Documents
People	 hate	 having	 to	 prepare	 documents,	 and	 if	 the	 documents	 they	 prepare
always	contain	 the	 same	 information,	 they	will	 certainly	not	want	 to	put	more
work	 into	 that	 document.	 In	 this	 instance,	 you	 can	 use	 the	Excel	Ad-in	 called
Mail	Merge,	which	is	used	to	automate	letters	and	documents,	but	this	is	not	an
option	you	can	use	when	you	need	to	write	 individual	documents	or	letters.	At
such	times,	you	should	write	a	VBA	code	that	will	help	you	create	a	form,	which

will	 include	 common	 information.	 You	 can	 then	 include	 check	 boxes	 in	 your
code	to	help	you	write	the	documents.

Word	processing	is	not	the	only	task	you	can	automate	using	VBA.	You	can	also
automate	 the	 spreadsheet	 and	 there	 are	numerous	programs	you	 can	 create	 for
the	same.	For	example,	you	can	extract	information	or	data	from	the	internet	into
a	spreadsheet	by	clicking	a	button.	Therefore,	you	can	limit	the	time	you	spend
on	simply	copying	the	data	from	the	web	and	pasting	it	according	to	the	required
format	in	your	Excel	worksheet.

Customizing	Application	Interfaces
There	are	some	features	in	an	application	that	will	not	help	your	cause,	and	you
can	learn	to	turn	those	features	off.	You	cannot	turn	off	these	features	if	you	need
to	use	them	for	your	other	you	work.	Instead	of	disabling	that	feature,	you	can
use	VBA	to	create	a	new	feature,	which	has	all	the	functions	that	you	need.	For
example,	you	can	write	a	VBA	code	to	help	you	if	you	want	to	use	conditional
formatting	when	you	make	some	changes	in	your	worksheet.

It	 is	 easy	 to	 change	 the	 interface	of	 an	 application,	 so	 it	works	better	 for	you.
You	can	customize	toolbars	or	menu	systems,	and	can	also	move	some	elements
around	 in	 the	 interface	 to	make	 it	 look	 presentable.	Additionally,	 you	 can	 use
multiple	interfaces	and	use	a	VBA	code	to	shift	between	those	interfaces.

A	common	application	of	VBA	is	 to	perform	a	variety	of	calculations	in	a	few
seconds.	You	can	create	different	graphs	and	equations	using	 the	data	 that	you
store	 in	Excel.	You	must	make	some	changes	or	modifications	 to	 the	data	you
are	using	so	you	can	perform	these	calculations	on	it.	If	the	equation	is	slightly
complicated,	you	can	use	VBA	and	develop	a	code	that	will	help	to	simplify	the
process.	 You	 can	 also	 use	 certain	 iterative	 functions	 to	 perform	 different
calculations.

There	are	times	when	the	numbers	you	obtain	as	a	result	of	a	calculation	do	not
mean	too	much.	This	value	is	a	just	a	number	until	someone	decides	what	to	do
with	that	number.	Some	of	the	decisions	a	user	makes	are	repetitive,	and	a	smart
application	will	save	time	and	allow	you	to	enjoy	a	nice	game	of	Solitaire.	

Adding	new	application	features
Most	developers	and	vendors	do	not	use	the	applications	they	develop	or	build.
Therefore,	 they	 forget	 to	 update	 the	 code	 for	 their	 application.	You	 can	 tweak
those	 applications	 by	 adding	 new	 features	 or	 develop	 a	 new	 application	 using

VBA.	When	 you	 develop	 these	 applications,	 you	 can	 complete	 some	 of	 your
work	 in	 a	 few	minutes	or	 less,	 and	you	can	 impress	your	 colleagues	 and	your
boss.	This	is	an	added	use	of	VBA.

Chapter	Two
	

	

VBA,	A	Primer

Macro	Recorder
As	 mentioned	 in	 the	 previous	 book,	 the	 macro	 recorder	 is	 an	 important	 and
useful	tool	in	Excel.	This	tool	will	record	every	action	that	you	perform	in	Excel.
You	 only	 need	 to	 record	 a	 task	 once	 using	 the	 macro	 recorder,	 and	 you	 can
execute	that	same	task	a	million	times	by	clicking	a	button.	If	you	do	not	know
how	to	program	a	specific	task	in	Excel,	you	can	use	the	Macro	Recorder	to	help
you	understand	what	you	need	to	do.	You	can	then	open	the	Visual	Basic	Editor
once	you	have	recorded	the	task	to	see	how	you	can	program	it.

You	cannot	perform	many	tasks	when	you	use	the	Macro	Recorder.	For	instance,
you	cannot	use	the	macro	recorder	to	loop	through	data.	The	macro	recorder	also
uses	more	code	than	you	need,	which	will	slow	the	process	down.

Record	a	Macro
•									Go	to	the	Menu	Bar	and	move	the	Developer	Tab,	and	click	the	button

to	Record	the	Macro.	

•									Enter	the	name	of	the	macro.

•	 	 	 	 	 	 	 	 	Choose	the	workbook	where	you	want	to	use	the	macro.	This	means
that	the	macro	can	only	be	used	in	the	current	workbook.

•	 	 	 	 	 	 	 	 	If	you	store	the	macro	in	a	personal	macro	workbook,	you	can	access
the	macro	in	all	your	workbooks.	This	is	only	because	Excel	stores	the
macro	 in	 a	 hidden	 workbook,	 which	 will	 open	 automatically	 when	 it
starts.	If	you	store	the	macro	in	a	new	workbook,	you	can	use	the	macro
only	in	the	opened	workbook.

•									Click	OK.

•									Now,	right	click	on	the	active	cell	in	the	worksheet.	Ensure	that	you	do
not	select	any	other	cell.	Click	format	cells.

•									Select	the	percentage.

•									Click	OK.

•									Now,	select	the	stop	recording.

You	have	successfully	recorded	your	macro	using	the	macro	recorder.

Run	the	Recorded	Macro
You	will	now	need	to	test	the	macro	and	see	if	you	can	change	the	format	of	the
numbers	to	percentage.

•									Enter	any	numbers	between	0	and	1	in	the	spreadsheet.

•									Select	the	numbers.

•									Move	to	the	Developer	tab,	and	click	macros.

•									Now	click	run.

	

You	will	see	the	following	result.

See	The	Macro
If	you	want	to	look	at	the	macro,	you	should	open	the	Visual	Basic	Editor.

The	macro,	called	Module	1,	 is	placed	 in	a	module.	The	code	 that	 is	placed	 in
the	module	is	always	available	to	the	full	workbook.	This	means	you	can	change
the	 format	 for	 the	 numbers	 in	 all	 the	 sheets	 in	 the	workbook.	 If	 you	 assign	 a
macro	to	the	command	button,	you	should	remember	that	the	macro	would	only
be	available	for	that	specific	sheet.

Macro	Storage	and	Security
The	developers	 at	Microsoft	 changed	 the	 security	 settings	 that	 help	 to	 prevent
macros	from	running.	This	development	was	only	made	when	macros	were	used
to	 deliver	 some	 high-profile	 viruses.	We	 covered	 some	 information	 about	 the
security	of	macros	in	the	first	part	of	the	book.	Let	us	now	look	at	how	you	can
adjust	the	default	settings	in	a	macro.

You	can	either	control	the	settings	for	a	macro	in	some	workbooks	by	saving	the
workbook	 in	 trusted	 locations	 or	 by	 adjusting	 the	 security	 settings	 globally.	 If
you	store	a	workbook	with	a	macro	in	a	folder	that	you	label	a	trusted	location,
the	macros	will	automatically	be	enabled	when	you	open	the	workbook.

You	can	check	the	security	of	your	macro	in	the	Developer	tab	under	the	Macro
Security	icon.	If	you	click	this	icon,	a	dialog	box	with	the	settings	category	will
be	displayed.	You	can	access	the	folders	that	you	trust	by	scrolling	down	the	left
navigation	bar.

How	to	Add	a	Trusted	Location
As	mentioned	earlier,	you	can	save	the	workbooks	with	macros	in	a	folder	that
you	mark	as	a	trusted	location.	If	you	save	a	workbook	in	that	folder,	the	macros
will	always	be	enabled.	The	developers	suggest	 that	you	should	always	have	a
trusted	 location	 in	 your	 hard	 drive.	 Remember	 that	 you	 can	 never	 trust	 the

location	on	a	network	drive.

If	 you	 want	 to	 specify	 a	 trusted	 location,	 you	 should	 follow	 the	 steps	 given
below:

1.	 Go	to	the	Developer	Tab	and	click	on	Macro	Security.

2.	 Move	 to	 the	 left	 navigation	 pane	 in	 the	 Trust	 Center	 and	 choose	 the
Trusted	Location.	

3.	 If	 you	 want	 to	 save	 the	 file	 on	 a	 network	 drive,	 you	 should	 add	 that
location	into	the	trusted	locations.

4.	 Go	to	‘My	Networks’	 in	 the	Trusted	Location	dialog	box	and	click	the
‘Add	New	Location’	button.

5.	 You	will	see	the	list	of	Trusted	Locations	in	a	dialog	box.

6.	 Now	click	 the	Browse	button	and	go	 to	 the	parent	 folder	of	 the	 folder
that	 you	 want	 to	 make	 a	 trusted	 location.	 Now	 click	 on	 the	 Trusted
Folder.	You	will	not	find	the	name	of	the	Folder	in	the	text	box,	but	click
OK.	The	correct	name	will	come	in	the	Browse	dialog	box.

7.	 If	you	want	to	include	the	subfolders	in	the	selected	folder,	you	should
select	 the	 radio	button	against	 the	 ‘Subfolders	of	 this	 location	are	also
trusted’	option.

8.	 Now,	click	OK	to	add	the	folder	to	the	list.

How	to	Enable	Macros	outside	a	Trusted	Location
When	 you	 do	 not	 save	 an	 Excel	 workbook	 in	 a	 trusted	 location,	 Excel	 will

always	 rely	 on	 the	macro	 settings.	 In	 Excel	 2003,	 a	macro	 could	 have	 a	 low,
medium,	 high	 or	 very	 high	 security.	These	 settings	were	 later	 renamed	 by	 the
developers	in	Microsoft.	If	you	want	to	access	the	macro	settings,	you	should	go
to	 the	Developers	Tab	and	 choose	Macro	Security.	Excel	will	 then	display	 the
Macro	 Settings	 dialog	 box.	 You	 should	 select	 the	 ‘Disable	 All	 Macros	 with
Notification’	option.	Let	us	 look	at	 the	description	of	 the	options	 in	 the	dialog
box.

Disable	All	Macros	without	Notification
This	setting	will	not	allow	any	macro	to	run.	If	you	do	not	always	want	to	run
the	macro	when	you	open	the	workbook,	you	should	choose	this	setting.	Since
you	are	still	learning	how	to	use	macros	and	work	with	them,	you	should	not	use
this	setting.	This	setting	is	equivalent	to	the	Very	High	Security	that	is	found	in
Excel	2003.	If	you	choose	this	setting,	you	can	only	run	macros	if	they	are	saved
in	a	Trusted	Location.

Disable	All	Macros	with	Notification
This	 setting	 is	 like	 the	 Medium	 security	 setting	 in	 Excel	 2003.	 This	 is	 the
recommended	setting	that	you	should	use.	If	you	use	this	setting,	Excel	will	ask
you	if	you	want	to	Enable	or	Disable	a	macro	when	you	open	a	workbook.	You
may	often	choose	this	option	if	you	are	a	beginner.	In	Excel	2010,	you	will	see	a
message	 in	 the	message	area,	which	states	 that	 the	macros	have	been	disabled.
You	 can	 either	 choose	 to	 enable	 or	 disable	 the	 content	 in	 the	 workbook	 by
choosing	that	option.

Disable	All	Macros	except	Digitally	Signed	Macros
If	you	wish	to	use	this	setting,	you	should	always	use	a	digital	signing	tool	like
VeriSign	or	any	other	provider	to	sign	your	macro.	If	you	are	going	to	sell	your
macros	 to	other	parties,	you	should	use	 this	 security	option.	This	 is	a	hassle	 if
you	want	to	write	macros	only	for	your	use.

Enable	All	Macros
Experts	suggest	 that	you	do	not	use	this	option	since	dangerous	codes	can	also
run	 on	 your	 system.	 This	 setting	 is	 equivalent	 to	 the	 Low	 security	 option	 in

Excel	2003,	and	is	the	easiest	option	to	use.	This	option	will	open	your	system
up	to	attacks	from	malicious	viruses.

Disabling	All	Macros	with	Notification
Experts	suggest	that	you	set	your	macro	to	disable	all	content	after	it	gives	you	a
notification.	If	you	save	a	workbook	with	a	macro	using	this	setting,	you	will	see
a	security	warning	right	above	the	formula	bar	when	you	open	the	workbook.	If
you	 know	 that	 there	 are	macros	 in	 the	workbook,	 all	 you	 need	 to	 do	 is	 click
‘Enable	Content.’	You	can	click	on	the	X	on	the	far	right	of	the	bar	if	you	do	not
want	to	enable	any	of	the	macros	in	the	workbook.

If	you	do	forget	to	enable	the	macro	and	then	attempt	to	run	that	macro,	Excel
will	 indicate	 that	 the	macro	will	not	 run	since	you	have	disabled	all	macros	 in
the	workbook.	 If	 this	 happens,	 you	 should	 reopen	 the	workbook	 to	 enable	 the
macros	again.

Exercises

1.	 Write	a	program	to	protect	all	worksheets	in	a	workbook.

2.	 Write	a	program	to	lock	or	protect	cells	in	a	worksheet.

Chapter	Three
	

	

How	to	Manipulate	Data	in	Excel
	

A	 macro	 processes	 code	 written	 in	 the	 Visual	 Basic	 Editor	 to	 manage	 and
manipulate	huge	volumes	of	data.	The	previous	chapter	provides	information	on
how	you	can	use	a	macro	to	format	certain	fields	or	cells	in	Excel	to	meet	your
criteria.

The	following	is	an	example	of	a	VBA	script:	

Sub	ConfigureLogic()
Dim	qstEntries
Dim	dqstEntries
Dim	qstCnt,	dqstCnt
qstEntries	=	Range("QualifiedEntry").Count
qst	=	qstEntries	-
WorksheetFunction.CountIf(Range("QualifiedEntry"),	"")
ReDim	QualifiedEntryText(qst)
'MsgBox	(qst)
dqstEntries	=	Range("DisQualifiedEntry").Count
dqst	=	dqstEntries	-
WorksheetFunction.CountIf(Range("DisQualifiedEntry"),	"")
ReDim	DisqualifiedEntryText(dqst)
'MsgBox	(dqst)
For	qstCnt	=	1	To	qst
QualifiedEntryText(qstCnt)	=
ThisWorkbook.Worksheets("Qualifiers").Range("J"	&	8	+
qstCnt).value
'MsgBox	(QualifiedEntryText(qstCnt))
logging	("Configured	Qualified	Entry	entry	#"	&	qstCnt	&	"	as	{"	&
QualifiedEntryText(qstCnt)	&	"}")
Next
For	dqstCnt	=	1	To	dqst

DisqualifiedEntryText(dqstCnt)	=
ThisWorkbook.Worksheets("Qualifiers").Range("M"	&	8	+
dqstCnt).value
'MsgBox	(DisqualifiedEntryText(dqstCnt))
logging	("Configured	DisQualified	Entry	entry	#"	&	qstCnt	&	"	as
{"	&	DisqualifiedEntryText(dqstCnt)	&	"}")
Next
includeEntry	=
ThisWorkbook.Worksheets("Qualifiers").Range("IncludeSibling").value
'MsgBox	(includeEntry)
logging	("Entrys	included	in	search	-	"	&	includeEntry)

End	Sub

How	to	Analyze	and	Manipulate	Data	in	a	Spreadsheet
If	you	want	to	use	VBA	to	analyze	data,	you	should	check	the	macro	settings	in
Excel.	Ensure	that	the	settings	as	per	your	requirements.	You	should	also	make
sure	that	the	macro	settings	are	activated	in	Excel.	Now,	create	a	worksheet	and
call	it	‘Qualifiers.’	We	will	be	using	this	worksheet	to	check	the	data	and	ensure
that	the	data	qualifies	all	the	selections	that	you	require.	You	must	then	set	up	the
qualifiers	based	on	 the	 code	you	have	written.	You	cannot	 cut	 and	paste	 these
qualifiers,	but	will	need	to	enter	them	manually.

ThisWorkbook.Worksheets("Qualifiers").Range("J"	&	8	+	qstCnt).value

How	to	Construct	an	Array	and	Locate	The	Range
In	the	above	function,	the	range	will	start	from	Cell	J9.	The	function	notes	8,	but
the	 range	 is	 9	 since	we	 have	 declared	 the	 qstCnt	 to	 be	 1	 using	 the	 following
code:

For	qstCnt	=	1	To	qst

It	is	because	of	this	statement	that	the	list	will	start	at	9.

If	you	want	 to	construct	an	array	using	 the	entries	 in	 the	Qualifiers	worksheet,
you	should	add	random	words	or	numbers	between	cells	J9	and	J13,	 including
those	cells.	When	the	rows	are	complete,	you	can	find	and	manipulate	the	data	in
Excel.

Private	Sub	CountSheets()
Dim	sheetcount
Dim	WS	As	Worksheet
sheetcount	=	0
logging	("*****Starting	Scrub*********")
For	Each	WS	In	ThisWorkbook.Worksheets
sheetcount	=	sheetcount	+	1
If	WS.Name	=	"Selected"	Then
'need	to	log	the	date	and	time	into	sheet	named	"Logging"
ActionCnt	=	ActionCnt	+	1
logging	("Calling	sheet:	"	&	WS.Name)
scrubsheet	(sheetcount)
Else
ActionCnt	=	ActionCnt	+	1
logging	("Skipped	over	sheet:	"	&	WS.Name)
End	If
Next	WS
'MsgBox	("ending")
ActionCnt	=	ActionCnt	+	1
logging	("****Scrub	DONE!")
Application.ScreenUpdating	=	True

End	Sub

The	following	example	will	show	you	how	you	can	write	a	macro	for	a	working
tab	counter:

Dim	sheetcount
Dim	WS	As	Worksheet
sheetcount	=	0
logging	("*****Starting	Scrub*********")

For	Each	WS	In	ThisWorkbook.Worksheets

sheetcount	=	sheetcount	+	1

When	you	initialize	the	sheet	count	variable,	you	should	first	set	it	to	zero	before
you	restart	the	counter.	You	can	also	use	the	logging()	subroutine	to	keep	track
of	all	the	actions	in	the	qualifiers	tab	to	make	the	correct	selections.	The	For	loop
in	the	above	example	will	set	up	the	counting	variable	in	the	Active	Workbook.
Once	you	initialize	WS,	it	will	make	the	worksheet	that	you	are	currently	in	the
active	worksheet.	Since	this	module	is	unnamed,	it	will	run	in	any	workbook.	If
you	have	many	workbooks	open,	this	module	may	run	in	an	incorrect	workbook.
If	you	want	 to	avoid	any	errors,	you	should	name	the	workbook	that	you	want
the	module	to	run	in.

When	 the	 loop	runs,	 it	will	add	another	variable	 to	 the	sheet	count	and	keep	a
track	of	the	tabs.	We	will	then	move	to

If	WS.Name	=	"Selected"	Then
'need	to	log	the	date	and	time	into	sheet	named	"Logging"
ActionCnt	=	ActionCnt	+	1
logging	("Calling	sheet:	"	&	WS.Name)
scrubsheet	(sheetcount)
Else
ActionCnt	=	ActionCnt	+	1
logging	("Skipped	over	sheet:	"	&	WS.Name)
End	If

In	 this	 section	of	 the	code,	we	are	 looking	 for	 the	Selected	 tab.	 If	 the	variable
WS	 is	 the	 same	 as	 the	 Selected	 worksheet,	 you	 can	 fire	 up	 the	 Scrub	 sheet
subroutine.	 If	 the	variable	WS	 is	not	 the	same	as	 the	Selected	worksheet,	 then
the	sheet	will	be	skipped	and	the	action	will	be	counted.	The	code	above	is	an
example	of	how	you	can	write	a	macro	to	count	the	number	of	tabs	and	locate	a
specific	tab.

The	next	parts	of	this	chapter	talk	about	the	different	ways	you	can	manipulate
data	in	Excel.

Different	Ways	to	Manipulate	Data

Count	the	Number	of	Sheets	in	a	Workbook

Dim	TAB
For	Each	TAB	In	ThisWorkbook.Worksheets
'some	routine	here
Next

Filter	by	using	Advanced	Criteria

Range("A2:Z99").Sort	key1:=Range("A5"),	order1:=xlAscending,
Header:=xlNo

Find	The	Last	Column,	Cell	Or	Row	On	A	Worksheet

Dim	cellcount

cellcount	=	Cells(ThisWorkbook.Worksheets("worksheet").Rows.Count,
1).End(xlUp).Row

Getting	Values	from	another	Worksheet

dim	newvalue

newvalue	=	ThisWorkbook.Worksheets("worksheet").Range("F1").value

Apply	Auto-Fit	To	A	Column

Columns("A:A").EntireColumn.AutoFit

Adding	Named	Ranges	to	Specific	Sheets

ThisWorkbook.Worksheets("worksheet").Names.Add	Name:="Status",
RefersToR1C1:="=worksheet!C2"

Insert	Rows	Into	A	Worksheet

Dim	Row,	Column

Cells(Row,	Column).EntireRow.Select

Selection.Insert

Copy	an	Entire	Row	for	Pasting

ActiveSheet.Range("A1").EntireRow.Select

Selection.Copy

Delete	An	Entire	Row

ActiveSheet.Range("A1").EntireRow.Select

Selection.Delete

Inserting	a	Column	into	a	Worksheet

Dim	Row,	Column

Cells(Row,	Column).EntireColumn.Select

Selection.Insert

Insert	Multiple	Columns	into	a	Worksheet

Dim	insertCnt

Dim	Row,	Column

For	insertCnt	=	1	To	N

ThisWorkbook.Worksheets("worksheet").Select

Cells(Row,	Column).EntireColumn.Select

Selection.Insert

Next

Select	a	Specific	Sheet

ThisWorkbook.Worksheets("worksheet").Select

Compare	Values	In	A	Range

Dim	firstrange

Dim	Logictest

Logictest	=	"some	word	or	value"

If	(Range(firstrange).value	=	Logictest)	then

'some	routine	here

End	If

Chapter	Four
	

	

Fundamentals	of	VBA
	

VBA	is	a	visual	programming	environment.	That	is,	you	see	how	your	program
will	 look	before	you	 run	 it.	 Its	editor	 is	very	visual,	using	various	windows	 to
make	your	programming	experience	easy	and	manageable.	You	will	notice	slight
differences	 in	 the	 appearance	 of	 the	 editor	 when	 you	 use	 it	 with	 Vista	 as
compared	 to	 older	 versions	 of	 Windows.	 Regardless	 of	 which	 version	 of
Windows	you	use	or	which	Office	Product	you	use,	the	Visual	Basic	Editor	has
the	same	appearance,	same	functionality	and	same	items.	

The	IDE	is	like	a	word	processor,	database	form	or	a	spreadsheet.	The	IDE,	like
every	other	application	editor	has	special	features	which	makes	it	easy	to	work
with	data.	Apart	from	that,	the	IDE	can	also	be	used	to	write	special	instructions
which	 help	 with	 data	 manipulation	 and	 analysis.	 VBA	 will	 follow	 the
instructions	 in	 the	 program.	 The	 figure	 below	 shows	 you	 the	 IDE	Window	 in
Excel:

	

The	 IDE	 in	 VBA	 consists	 of	 a	 toolbar,	 menu	 system,	 a	 Properties	 window,	 a
Project	Explorer	window	and	a	Code	window.	Below	is	a	summary	of	what	each
Window	contains.

Project	Explorer
This	window	provides	a	list	of	the	items	or	objects	that	are	in	your	project.	These
items	 contain	 the	 document	 elements	 that	 are	 present	 in	 a	 single	 file.	 This
application	 exists	 within	 a	 file	 which	 you	 will	 see	 in	 the	 Project	 Explorer
window.	

Properties
When	 you	 select	 an	 object,	 the	 Properties	 window	 will	 give	 you	 all	 the
information	you	need	about	that	object.	For	instance,	 this	window	will	 tell	you
whether	the	object	is	empty	or	whether	there	are	some	words	in	it.

Code
Eventually,	you	will	need	 to	write	 some	code	which	will	make	 the	application
work.	This	window	will	contain	the	special	words	which	will	tell	the	editor	what
it	needs	to	do.	This	space	is	analogous	to	a	to-do	list	or	an	algorithm.

Looking	at	the	VBA	Toolbox
You	 will	 not	 have	 to	 write	 a	 program	 for	 every	 task	 that	 you	 want	 Excel	 to
perform.	The	IDE	also	allows	you	to	use	forms,	which	are	similar	to	the	forms
that	you	use	 to	perform	different	 tasks.	 In	case	of	VBA,	you	will	decide	what
should	 appear	on	 the	 forms	 and	 also	decide	how	 the	 forms	 should	 act	when	a
user	 enters	 some	 data	 into	 the	 forms.	 VBA	 allows	 you	 to	 use	 the	 toolbox	 to
create	a	form.	This	toolbox	contains	controls	used	to	create	forms.

Each	Toolbox	button	performs	a	unique	task.	For	example,	when	you	click	one
button,	 a	 text	 box	 may	 appear	 on	 the	 screen.	 If	 you	 click	 another	 button,	 a
mathematical	operation	may	take	place.

Starting	the	Visual	Basic	Editor
One	 can	 start	 the	 Visual	 Basic	 Editor	 in	 different	 ways	 depending	 on	 the
application	 you	 are	 using.	 The	 newer	 versions	 of	 the	 Office	 Product	 use	 a
different	approach	when	compared	to	the	older	versions.	

Step	1:	Go	to	Option	“View”	on	the	toolbar.

Step	2:	In	the	drop-down	list,	select	“Record	Macro.”

Step	3:	The	 interface	will	open	and	you	can	begin	 typing	 the	code	 for
the	worksheet	you	are	in.

Using	Project	Explorer
The	Project	Explorer	will	appear	 in	 the	Project	Explorer	Window,	and	you	can
use	this	to	interact	with	different	objects	that	make	up	the	project.	Every	project
is	an	individual	file	that	you	can	use	to	hold	your	program	or	at	least	some	pieces
of	 it.	 This	 project	 will	 reside	 in	 the	 Office	 document	 which	 you	 are	 using.
Therefore,	when	you	open	the	document,	you	also	open	the	project.	We	will	look
at	 how	 programs	 and	 projects	 interact	 with	 each	 other	 in	 later	 chapters.	 The
Project	Explorer	works	like	the	left	pane	in	Windows	Explorer.

The	 Project	 Explorer	 lists	 the	 different	 objects	 you	 are	 using	 in	 the	 project.
These	 objects	 depend	 on	 the	 type	 of	 application	 you	 are	 working	 with.	 For
example,	 if	 you	 are	 working	 with	 Word,	 you	 see	 documents	 and	 document
templates.	 Likewise,	 if	 you	 are	 working	 with	 Excel,	 you	 will	 come	 across
different	workbooks	and	worksheets.	Regardless	of	 the	 type	of	application	you
work	with,	the	Project	Explorer	will	be	used	in	the	same	way.

A	 project	 can	 contain	 modules,	 class	 modules	 and	 forms.	 Let	 us	 look	 at	 the
description	of	these	objects:	

•	 	 	 	 	 	 	 	 	Forms:	These	contain	some	user	interface	elements	that	allow	you	to
interact	with	a	user	and	collect	necessary	information.	

•									Modules:	These	contain	the	nonvisual	parts	of	your	code	or	application.
For	instance,	you	can	use	a	module	to	store	some	calculations.

•									Class	modules:	These	contain	objects	that	you	want	to	develop,	and	you
can	use	a	class	module	to	create	new	data	types.	

Working	with	special	entries
You	 can	 sometimes	 see	 some	 special	 entries	 in	 the	 Project	 Explorer.	 For
instance,	when	you	work	on	a	Word	document,	you	will	see	a	References	folder
which	will	contain	the	references	that	the	Word	document	makes.	This	contains	a
list	of	templates	which	the	document	uses	to	format	the	data	in	the	document.

In	many	cases,	you	cannot	modify	or	manipulate	the	objects	in	the	folders.	This
is	 the	case	when	Word	document	objects	use	a	Reference	folder.	This	folder	 is
only	 available	 to	 provide	 information.	 If	 you	 want	 to	 modify	 or	 develop	 a
referenced	 template,	 you	 should	 look	 for	 the	 object	 in	 the	 Project	 Explorer
window.		We	will	not	discuss	these	concepts	in	the	book	since	you	do	not	work
with	these	often.

Using	the	Properties	window
Most	 objects	 that	 you	 select	 in	 the	 IDE	 in	 VBA	 always	 have	 properties	 that
describe	the	objects	in	a	specific	way.	The	"Property	values	are	up"	section	talks
about	the	properties	that	you	have	not	worked	with	before.	The	following	section
will	provide	more	information	about	the	Properties	Window.

Understanding	property	types
A	property	will	always	describe	the	object.	When	you	look	at	an	object,	you	will
assume	 something	 about	 the	 product	 depending	 on	 whether	 the	 object	 is	 red,
yellow	or	green.	In	the	same	way,	every	VBA	object	has	a	specific	type.	One	of
the	most	common	types	is	text.	The	property	of	every	form	is	text,	and	this	text
appears	at	the	top	or	bottom	of	the	form	when	a	user	opens	it.	Another	common
property	type	is	a	Boolean	value.	

Getting	help	with	properties
Do	 not	 expect	 to	 memorize	 every	 property	 for	 every	 object	 that	 VBA
applications	 can	 create.	 Not	 even	 the	 gurus	 can	 do	 that.	 To	 determine	what	 a
property	will	do	 for	your	 application,	 just	highlight	 the	property	and	press	F1,
and,	in	most	cases,	VBA	displays	a	Help	window	like	the	image	below.

Using	the	Code	window
The	 Code	 Window	 is	 the	 space	 where	 you	 will	 write	 the	 code	 for	 your
application.	This	window	works	like	every	other	text	editor	that	you	have	used,
except	that	you	type	according	to	the	syntax.

The	Project	Explorer	window	and	Property	window	are	no	longer	present	in	the
image	above.	You	can	display	these	again	by	following	the	path:	View	->	Project
Explorer	and	View	->Properties	Window	commands.

Opening	an	existing	Code	window
Sometimes	you	will	not	have	 the	 time	 to	complete	 the	code	 for	an	application
and	will	need	to	work	on	it	later.	If	you	want	to	open	an	existing	code	window,
you	 should	 find	 the	 module	 you	 want	 to	 work	 on	 in	 the	 Project	 Explorer.

Double-click	 the	name	of	 the	module	 that	 you	want	 to	 enter.	You	will	 see	 the
code	in	the	IDE	window.	This	Code	window	will	also	appear	when	you	want	to
perform	a	variety	of	tasks.	

Creating	a	new	Code	window
When	you	want	to	develop	a	new	module	in	an	existing	document	or	template,
you	 should	 open	 a	 new	 code	 window	 by	 using	 the	 following	 path:	 Insert	 ->
Module	or	Insert	->	Class	Module	command.	Once	you	save	this	class	module	or
module,	it	will	always	be	in	the	Project	Explorer	with	every	other	module	that	is
in	your	project.	

It	 is	easier	 to	execute	one	 line	of	code	at	a	 time	 to	understand	where	you	may
have	made	an	error.	You	can	do	this	by	using	the	Immediate	Window.	You	will
always	 find	 this	window	at	 the	bottom	of	 the	 IDE,	and	 it	will	not	 contain	any
information	until	you	type	something	in	it.

A	developer	spends	a	lot	of	time	using	the	Immediate	Window	to	check	if	there
are	any	errors	in	the	applications	they	are	developing.	You	can	use	the	immediate
window	 to	 check	 with	 VBA	 if	 the	 function	 you	 have	 written	 produces	 the
required	 value.	 To	 try	 this	 feature,	 type	 String1	 =	 “Hello	 World”	 in	 the
Immediate	window	and	 then	 press	Enter.	Now	 type	 ‘?	String1’	 and	 then	 press
Enter.	 	Here,	you	have	asked	 the	editor	 to	create	a	variable	called	String1	and
assign	it	a	value	of	Hello	World.	You	can	use	the	‘?’	operator	to	check	the	value
assigned	to	the	variable	String1.

Chapter	Five
	

	

Working	With	Loops	and	
Conditional	Statements

	

In	the	first	part	of	the	book,	we	looked	at	the	different	types	of	loops	that	one	can
use	 in	Excel	VBA.	This	 chapter	 covers	 some	examples	 and	exercises	 that	you
can	use	to	practice.

For	Loop
Most	people	use	the	For	Loop	in	VBA.	There	are	two	forms	of	the	For	Loop	–
For	Next	and	For	Each	In	Next.	The	For	Loop	will	move	through	a	series	or	data
in	a	sequence.	You	can	use	the	Exit	statement	to	end	the	For	Loop	at	any	point.
The	loop	will	continue	to	run	until	the	condition	is	met.	When	the	final	condition
is	met,	 the	editor	will	move	 to	 the	next	statement	 in	 the	program,	which	 is	 the
natural	direction.

Let	us	look	at	the	syntax	of	the	loop:

The	For	…	Next	loop	has	the	following	syntax:

For	counter	=	start_counter	To	end_counter

'Do	something	here	(your	code)

Next	counter

In	the	syntax	above,	we	are	initializing	the	counter	variable,	which	will	maintain
the	 loop.	This	 counter	 variable	will	 be	 set	 to	 a	 value	 that	 is	 equal	 to	 the	 start
counter,	which	will	be	 the	beginning	of	 the	 loop.	This	variable	will	 increase	in
number	until	 it	meets	 the	end	condition	which	is	 the	end	counter	variable.	The
loop	will	continue	to	run	until	the	value	of	the	counter	is	equal	to	the	value	of	the
end	counter	variable.	This	 loop	will	 execute	once	until	 the	values	match,	 after
which	the	loop	will	stop.

The	explanation	above	can	be	slightly	confusing,	 therefore	let	us	look	at	a	few
examples	that	you	can	use	to	understand	the	For	Loop	better.	Before	we	look	at
the	examples,	follow	the	steps	given	below:

•									Open	a	new	workbook	and	save	it	using	the	.xlsm	extension.

•									Now,	press	Alt+F11	to	launch	the	Visual	Basic	Editor	screen.

•									Now,	insert	a	new	module.

Example	1
In	this	example,	we	will	display	a	number	using	a	message	box.

Sub	Loop1()

Dim	StartNumber	As	Integer

Dim	EndNumber	As	Integer

EndNumber	=	5

				For	StartNumber	=	1	To	EndNumber

								MsgBox	StartNumber	&	"	is	"	&	"Your	StartNumber"

				Next	StartNumber

End	Sub

In	 the	 above	 code,	 the	StartNumber	 and	EndNumber	 variables	 are	 declared	 as
integers,	and	the	StartNumber	is	the	start	of	your	loop.	The	values	that	you	enter

in	the	loop	can	be	anywhere	in	between	the	StartNumber	and	EndNumber.	The
code	will	start	from	StartNumber,	which	is	1,	and	end	at	EndNumber	which	is	5.
Once	the	code	runs,	the	following	message	will	be	displayed	on	the	screen.

Example	2
In	this	example,	we	will	fill	values	in	the	Active	worksheet.

Sub	Loop2()

'Fills	cells	A1:A56	with	values	of	X	by	looping'	---	Comment

'Increase	value	of	X	by	1	in	each	loop'	---	Comment

Dim	X	As	Integer

				For	X	=	1	To	56

								Range("A"	&	X).Value	=	X

				Next	X

End	Sub

You	will	see	the	following	output.

Example	3
In	this	example,	we	will	fill	the	cells	in	the	active	worksheet	with	a	background
color.

Sub	Loop3()
'	Fills	cells	B1:B56	with	the	56	background	colors'---	Comment
Dim	X	As	Integer
				For	X	=	1	To	56
								Range("B"	&	X).Select
								With	Selection.Interior
												.ColorIndex	=	X
												.Pattern	=	xlSolid
								End	With
				Next	X
End	Sub

You	will	see	the	following	output.

Example	4
It	is	important	to	remember	that	a	loop	does	not	necessarily	have	to	move	from	a
low	 value	 to	 a	 higher	 value.	 You	 can	 use	 the	 For	 Loop	 to	move	 from	 higher
values	 to	 lower	 values	 using	 the	 STEP	 function.	 This	 example	will	 show	 you
how	you	can	perform	the	same	function.

Sub	Loop5()

'	Fills	cells	from	D1:D50	with	values	of	X'	---	Comment

'	In	this	case	X	decreases	by	1'	---	Comment

Dim	X	As	Integer,	Row	As	Integer

Row	=	1

				For	X	=	50	To	0	Step	-1

								Range("D"	&	Row).Value	=	X

								Row	=	Row	+	1

				Next	X

End	Sub

The	output	of	the	program	is	below:

Exercises
1.	 Write	 a	 program	 to	 fill	 the	 values	 in	 the	 cells	 in	 the	 active	worksheet

with	an	increment	of	2.

2.	 Using	example	4,	write	 a	program	 to	 fill	 values	 in	cells	 in	 the	 reverse
order	using	the	STEP	function.

3.	 Write	a	program	to	fill	in	values	in	a	spreadsheet	from	a	specific	cell.

The	solutions	 to	 the	exercises	above	are	 in	 the	 last	chapter	of	 the	book.	 If	you
can	write	these	programs,	you	will	know	how	to	write	any	kind	of	program	using
the	for	loop.

Do…Loop	Statement

In	the	first	part	of	the	book,	we	looked	at	what	the	Do…Loop	statement	is	and
how	you	can	use	it	in	Excel	VBA.	In	this	section,	we	will	look	at	the	syntax	and
understand	every	part	of	 the	syntax.	There	are	some	examples	and	exercises	 in
this	section	that	will	help	you	master	the	Do…Loop	statement.

Syntax
Type	1

Do	{	While	|	Until	}	condition	

				[statements]	

				[Continue	Do]	

				[statements]	

				[Exit	Do]	

				[statements]	

Loop	

Type	2

Do	

				[statements]	

				[Continue	Do]	

				[statements]	

				[Exit	Do]	

				[statements]	

Loop	{	While	|	Until	}	condition	

Understanding	The	Parts

	
Term Definition

Do This	 term	 is	necessary	 to	 include
since	this	starts	the	Do	Loop.

While
This	 is	 required	 unless	 you	 use
UNTIL	in	the	loop.	This	keyword
will	ensure	that	the	editor	runs	the
loop	until	the	condition	is	false.

Until

This	keyword	 is	necessary	unless
you	 are	 using	 the	 WHILE
keyword.	This	will	ensure	that	the
editor	 will	 run	 the	 loop	 until	 the
condition	holds	true.

Condition

This	 is	 optional,	 but	 it	 should
always	 be	 a	 Boolean	 expression.
If	 the	 condition	 is	 nothing,	 the
editor	will	treat	it	as	false.

Statements

These	 are	 optional.	 You	 can	 add
one	 or	 more	 statements	 that	 you
want	the	editor	to	repeat	until	the
condition	holds	true.

Continue	Do

This	is	also	an	optional	statement.
If	 you	 use	 this	 statement	 in	 the
loop,	 the	 editor	will	move	 to	 the
next	iteration	of	the	loop.

Exit	Do
This	is	optional,	and	if	you	use	it,
the	editor	will	move	out	of	the	Do
Loop.

Loop This	keyword	is	necessary	since	it
terminates	the	loop.

	

You	should	use	the	Do…Loop	structure	if	you	want	to	repeat	a	set	of	statements
infinitely	until	 the	condition	holds	 true.	If	you	want	 to	repeat	 the	statements	 in
the	 loop	 for	 a	 specific	 number	 of	 times,	 you	 should	 use	 the	 For…Next
statements.	You	can	either	use	the	Until	or	While	keywords	when	you	specify	a
condition,	but	you	should	never	use	both.

You	can	test	the	condition	either	at	the	start	or	the	end	of	the	loop.	The	first	book
mentions	which	 structure	you	 should	use	depending	on	when	you	want	 to	 test
the	condition.	If	you	want	to	test	the	condition	at	the	beginning	the	loop	does	not
have	 to	 run	 even	 once.	 If	 you	 test	 the	 condition	 at	 the	 end	 of	 the	 loop,	 the
statements	 in	 the	 body	 of	 the	 loop	 will	 run	 at	 least	 once.	 This	 condition	 is	 a
Boolean	value	and	is	often	a	comparison	of	two	values.	These	values	can	be	of
any	data	type	that	the	editor	can	convert	to	Boolean.

You	can	nest	a	Do	loop	by	adding	another	loop	in	it.	You	can	also	nest	different
control	structures	within	the	Do	Loop.	These	concepts	have	been	covered	in	the
first	book	of	the	series.	

You	 should	 remember	 that	 the	 Do…Loop	 structure	 is	 more	 flexible	 than	 the
While…End	While	statement.	This	is	because	the	former	allows	you	to	decide	if
you	want	to	end	the	loop	when	the	condition	first	becomes	true	or	when	it	stops
being	true.	You	also	have	the	ability	to	test	the	condition	either	at	the	start	or	the
end	of	the	loop.

Exit	Do

You	can	use	the	Exit	Do	statement	as	an	alternative	way	to	exit	the	Do…Loop.
This	 statement	will	 transfer	 the	 control	 to	 the	 statements	 that	 follow	 the	Loop
statement.	 The	 Exit	 Do	 is	 used	 if	 you	 nest	 conditional	 statements	 within	 the
loop.	 If	you	know	 that	 there	 is	 some	condition	 that	 is	unnecessary	or	makes	 it
impossible	for	the	editor	to	evaluate	the	statements	within	the	loop.	You	can	use
this	 statement	 if	you	want	 to	check	 for	a	condition	 that	 can	 lead	 to	an	endless
loop.	This	statement	will	help	you	exit	 the	 loop	 immediately.	You	can	use	any
number	of	Exit	Do	statements	in	the	Do…Loop	structure.

When	 you	 use	 the	 Exit	Do	 statement	 in	 a	 nest	Do	 loop,	 the	 editor	will	move
from	 the	 statements	 within	 the	 innermost	 loop	 to	 the	 next	 level	 of	 nesting
statements.

Example	1

In	 the	example	below,	 the	editor	will	 run	the	statements	 in	 the	 loop	only	when
the	index	variable	is	greater	than	10.	The	Until	keyword	will	end	the	loop.

Dim	index	As	Integer	=	0

Do

				Debug.Write(index.ToString	&	"	")

				index	+=	1

Loop	Until	index	>	10

Debug.WriteLine("")

The	output	will	be,

0	1	2	3	4	5	6	7	8	9	10

Example	2
In	the	example	below,	we	will	use	a	While	clause	instead	of	the	Until	clause.	The
editor	will	test	the	condition	at	the	start	of	the	loop.

Dim	index	As	Integer	=	0

Do	While	index	<=	10

				Debug.Write(index.ToString	&	"	")

				index	+=	1

Loop

Debug.WriteLine("")

The	output	will	be,

0	1	2	3	4	5	6	7	8	9	10

Example	3
In	the	example	below,	the	condition	will	ensure	that	the	editor	stops	running	the
statements	in	the	loop	if	the	index	variable	is	larger	than	100.	This	example	uses
conditional	statements	within	the	loop,	and	the	Exit	Do	statement	in	the	program
will	cause	the	statement	to	stop	if	the	value	of	index	is	greater	than	10.

Dim	index	As	Integer	=	0

Do	While	index	<=	100

				If	index	>	10	Then

								Exit	Do

				End	If

				Debug.Write(index.ToString	&	"	")

				index	+=	1

Loop

Debug.WriteLine("")

The	output	will	be,

0	1	2	3	4	5	6	7	8	9	10

Example	4
In	the	example	below,	the	editor	will	read	every	line	in	a	text	file.	The	OpenText
method	will	open	the	text	file	and	returns	the	StreamReader	which	will	read	the
characters	in	the	text.	In	the	example	below,	the	Peek	method	in	the	Do…Loop
condition	will	 determine	whether	 there	 are	 additional	 characters	 present	 in	 the
text.

Private	Sub	ShowText(ByVal	textFilePath	As	String)

				If	System.IO.File.Exists(textFilePath)	=	False	Then

								Debug.WriteLine("File	Not	Found:	"	&	textFilePath)

				Else

								Dim	sr	As	System.IO.StreamReader	=
System.IO.File.OpenText(textFilePath)

								Do	While	sr.Peek()	>=	0

												Debug.WriteLine(sr.ReadLine())

								Loop

								sr.Close()

				End	If

End	Sub

Conditional	Statements

Example	1

Module	Nested

				Public	Sub	Main()

								'	Run	the	function	as	part	of	the	WriteLine	output.

								Console.WriteLine("Time	Check	is	"	&	CheckIfTime()	&	".")				

				End	Sub

	

				Private	Function	CheckIfTime()	As	Boolean

								'	Determine	the	current	day	of	week	and	hour	of	day.

								Dim	dayW	As	DayOfWeek	=	DateTime.Now.DayOfWeek

								Dim	hour	As	Integer	=	DateTime.Now.Hour

	

								'	Return	True	if	Wednesday	from	2	to	3:59	P.M.,

								'	or	if	Thursday	from	noon	to	12:59	P.M.

								If	dayW	=	DayOfWeek.Wednesday	Then

												If	hour	=	14	Or	hour	=	15	Then

																Return	True

												Else

																Return	False

												End	If

								ElseIf	dayW	=	DayOfWeek.Thursday	Then

												If	hour	=	12	Then

																Return	True

												Else

																Return	False

												End	If

								Else

												Return	False

								End	If

				End	Function

End	Module

'This	example	displays	output	like	the	following:

'Time	Check	is	False.

Example	2
Module	SingleLine

				Public	Sub	Main()

								'Create	a	Random	object	to	seed	our	starting	values

								Dim	randomizer	As	New	Random()

								Dim	A	As	Integer	=	randomizer.Next(10,	20)

								Dim	B	As	Integer	=	randomizer.Next(0,	20)

								Dim	C	As	Integer	=	randomizer.Next(0,	5)

								'Let's	display	the	initial	values	for	comparison

								Console.WriteLine($"A	value	before	If:	{A}")

								Console.WriteLine($"B	value	before	If:	{B}")

								Console.WriteLine($"C	value	before	If:	{C}")

								'	If	A	>	10,	execute	the	three	colon-separated	statements	in	the	order

								'	that	they	appear

								If	A	>	10	Then	A	=	A	+	1	:	B	=	B	+	A	:	C	=	C	+	B

								'If	the	condition	is	true,	the	values	will	be	different

								Console.WriteLine($"A	value	after	If:	{A}")

								Console.WriteLine($"B	value	after	If:	{B}")

								Console.WriteLine($"C	value	after	If:	{C}")

				End	Sub

End	Module

'This	example	displays	output	like	the	following:

'A	value	before	If:	11

'B	value	before	If:	6

'C	value	before	If:	3

'A	value	after	If:	12

'B	value	after	If:	18

'C	value	after	If:	21

Chapter	Six
	

	

Data	Types	in	VBA
	

Data	types	are	a	way	to	define	the	different	variables	you	use	in	the	program	to
make	it	easier	for	the	editor	to	perform	the	necessary	calculations.		The	computer
will	 always	 look	at	 the	data	as	a	 series	of	bits,	but	 there	are	different	 types	of
data	types	that	you	can	use	in	VBA.	A	computer	can	see	only	the	binary	value,
1000001b,	but	it	does	not	do	anything	with	that	value.	VBA	will	see	the	binary
value	as	a	letter	or	a	number	depending	on	the	data	type	that	you	use	to	assign
the	 value.	 The	 data	 type	 is	 important	 in	 understanding	 the	 value	 and	working
with	 it.	Using	 a	 data	 type	 also	 ensures	 that	 the	 program	 follows	 certain	 rules.
Otherwise,	 the	 data	 could	 become	 corrupted	 because	 the	 program	 could
mishandle	it.

Although	a	variable,	in	general,	is	simply	a	box	for	storing	data,	you	can	think	of
these	data	 types	as	special	boxes	for	storing	specific	kinds	of	data.	Just	as	you
would	use	a	hatbox	to	store	a	hat	and	not	a	car	engine,	you	use	these	special	box
types	 to	 store	 kinds	 of	 data.	 For	 example,	 you	 use	 a	 string	 to	 hold	 text,	 not
logical	(true/false)	values.	VBA	supports	several	standard	data	 types,	 including
Boolean,	 Byte,	 Long,	 Currency,	 Integer,	 Single,	 Decimal,	 Double,	 String,
Variant,	Date	 and	Object.	 In	 addition	 to	 using	 the	 defined	data	 types,	 you	 can
create	user-defined	data	types	so	that	you	can	mark	the	information	as	needed	for
your	program.	A	user-defined	data	type	gives	you	the	power	to	extend	the	VBA
interpretation	 of	 data.	 (The	 computer	 still	 looks	 at	 the	 data	 as	 binary
information.)	 Each	 of	 the	 data	 type	 descriptions	 that	 follows	 has	 a	 different
purpose,	and	you	can	work	with	the	data	type	in	a	variety	of	ways.

Using	strings	for	text
In	the	first	book,	we	discussed	the	data	type	string,	and	you	should	have	a	clear
idea	 of	 what	 a	 string	 is.	 If	 you	 do	 not	 remember	 it,	 go	 back	 to	 the	 first	 few
chapters	where	we	 used	 a	message	 box	 to	 give	 the	 user	 an	 output.	When	 you
create	the	message	box,	you	will	use	the	string	as	an	input.	The	string	is	the	most
useful	data	type	in	VBA.	This	chapter	only	introduces	strings.	The	next	chapter
provides	information	on	how	you	can	manipulate	strings	in	VBA.

Understanding	strings
A	programmer	uses	fancy	terms	to	describe	objects	that	an	average	person	will

recognize.	A	string	is	a	sequence	of	characters.	The	characters	cannot	always	be
printed,	but	they	can	always	include	some	control	characters	that	will	determine
what	 type	 of	 text	will	 appear	 on	 the	 screen.	A	 string	will	 also	 include	 special
characters	like	commas	and	other	types	of	punctuation,	or	some	special	features
like	an	umlaut	or	circumflex.	A	string	can	contain	each	of	these	elements,	but	the
main	part	of	a	string	is	always	text.	

Adding	strings	together	with	+	or	&
Sometimes	 you	 will	 need	 to	 combine	 two	 or	 more	 strings	 to	 make	 a	 longer
string.	The	process	of	adding	two	or	more	strings	together	is	concatenation.	For
instance,	you	may	want	to	combine	the	first	name	and	last	name	of	a	person	to
create	 their	 full	 name.	You	may	need	 to	 take	 this	 information	 from	more	 than
one	source	and	combine	it	together	to	obtain	new	information.	

Using	character	codes
Strings	can	contain	several	elements.	In	the	earlier	examples,	we	used	a	control
character	like	vbCrLF.	This	constant	is	made	up	of	two	control	characters:	a	line
feed	and	a	carriage	return.	The	latter	will	send	the	cursor	to	the	beginning	of	the
sentence	while	the	former	moves	the	cursor	to	the	next	line.	The	result	of	using
these	control	characters	together	is	like	pressing	the	Enter	key	on	your	keyboard.
You	 can	 also	 use	 special	 functions	 like	Chr,	which	will	 allow	 you	 to	 create	 a
special	character.	You	can	combine	this	function	with	the	Character	Map	utility
to	produce	any	character	that	you	need	for	your	program

Using	numbers	for	calculations
Numbers	 form	 the	 basis	 for	 a	 lot	 of	 the	 information	 computers	 store.	You	use
numbers	 to	perform	 tasks	 in	a	 spreadsheet,	 to	express	quantities	 in	a	database,
and	to	show	the	current	page	in	a	document.	Programs	also	use	numbers	to	count
things	such	as	 loops,	 to	determine	the	position	of	 items	such	as	characters	 in	a
string	and	to	check	the	truth	value	of	a	statement.	Finally,	VBA	uses	numbers	in
myriad	ways,	such	as	determining	which	character	to	display	onscreen	or	how	to
interact	with	your	code.

Understanding	the	numeric	types
The	numbers	are	always	looked	at	as	a	single	entity.	Every	number	is	simply	just
that,	a	number.	The	computer	will	view	these	numbers	in	different	ways,	and	the
reason	 for	 this	 diversity	 is	 that	 a	 processor	 works	 differently	 with	 numbers.
Processors	 will	 either	 work	 with	 integer	 values	 -	 that	 is	 numbers	 without	 a

decimal	point	 -	or	with	 floating-point	values,	which	are	numbers	with	decimal
points.	The	four	basic	number	types	include:

Integer
The	 integer	data	 type	does	not	have	any	decimal	point	 in	 it.	 Integers	 can	hold
any	 whole	 numbers	 like	 5	 but	 never	 a	 number	 with	 a	 decimal,	 like	 5.0.
Essentially	these	numbers	are	the	same,	bu	the	first	is	an	integer	and	the	second
is	not.

Real
Unlike	an	integer,	a	real	number	contains	a	decimal	point.	The	decimal	section
of	the	number	does	not	necessarily	have	to	contain	a	value,	and	the	number	5.0
is	 a	 valid	 real	 number.	VBA	 stores	 a	 read	 number	 in	 a	 different	 format	when
compared	to	the	format	of	an	integer.

Currency
A	 financial	 calculation	 always	 needs	 special	 accuracy,	 and	 a	 small	 error	 can
cause	 larger	 problems.	 This	 numeric	 type	 always	 stores	 numbers	 with	 great
precision,	but	it	uses	a	lot	of	memory	and	takes	a	lot	of	time	to	process.

Decimal
A	computer	often	stores	information	using	the	binary	or	base	2	format.	Human
beings	use	 the	base	10	or	 decimal	 system	 to	 store	 numbers	when	you	need	 to
work	with	them.	Simple	errors	are	often	made	when	you	convert	numbers	from
one	numbering	system	to	another.	These	simple	errors	will	create	 larger	errors.
The	decimal	numeric	system	will	always	store	 the	number	 in	a	base	10	format
which	 will	 eliminate	 many	 computing	 errors.	 This	 system	 requires	 more
processing	time	and	more	memory	than	any	other	numeric	type.

Using	Boolean	values	to	make	decisions
The	 Boolean	 type	 is	 the	 easiest	 to	 use	 and	 understand.	 This	 type	 is	 used	 to
indicate	yes	or	no,	true	or	false	and	on	or	off.	You	can	use	this	type	to	work	with
any	 two-state	 information.	 It	 has	 commonly	 used	 to	 represent	 data	 values	 that
are	diametrically	opposed.

Working	with	Operators
Operators	 determine	 how	 VBA	 works	 with	 two	 variables	 and	 what	 result	 it
produces.	 The	 examples	 in	 this	 chapter	 use	 operators	 to	 add	 numbers	 and

concatenate	 (add)	 strings.	 In	 both	 cases,	 your	 code	 uses	 the	 +	 operator	 to
perform	the	task.	The	result	differs.	When	you	are	using	numbers,	the	result	is	a
summation,	 such	 as	 1	 +	 2	 =	 3.	 When	 you	 are	 using	 strings,	 the	 result	 is	 a
concatenation,	such	as	Hello	+	World	=	Hello	World.

VBA	groups	operators	into	four	areas:

•	 	 	 	 	 	 	 	 	Arithmetic:	Operators	that	perform	math	operations,	such	as	addition
(+),	subtraction	(-),	division	(/)	and	multiplication	(*)	

•									Comparison:	Operators	such	as	less	than	(<),	greater	than	(>)	and	equal
(=)	that	compare	two	values	and	produce	a	Boolean	result	

•	 	 	 	 	 	 	 	 	Concatenation:	Operators	such	as	&	and	+	 that	are	used	 to	add	 two
strings	together

•	 	 	 	 	 	 	 	 	Logical:	Operators	 such	 as	Not,	And,	Or	 and	Xor	 that	 are	 used	 to
perform	Boolean	operations	on	two	variables

Exercises
1.	 Write	a	program	to	change	the	case	of	a	letter	in	a	cell.

2.	 Write	a	program	to	highlight	misspelled	words	in	a	worksheet.

3.	 Write	a	program	to	obtain	the	numeric	part	of	the	string	from	a	cell.

Chapter	Seven
	

	

Parts	of	the	Program
	

You	 should	 follow	a	 syntax	 and	 a	 structure	when	you	want	 to	write	 a	 code	 in
VBA	 to	 help	 the	 debugger	 understand	 what	 the	 point	 of	 your	 code	 is.	 This
chapter	formalizes	the	meaning	for	each	structural	element.

Defining	the	parts	of	a	program
A	 program	 is	 the	 highest	 level	 of	 physical	 structure.	 It	 contains	 everything
needed	to	perform	a	given	task.	A	program	can	cross	module,	class	module	and
form	 boundaries.	 The	 concept	 of	 a	 program	 comes	 from	 the	 earliest	 use	 of
computers.	A	program	acts	as	a	container	for	the	code	used	to	implement	a	set	of
features	required	by	the	operating	system	or	the	user.	Some	people	have	a	hard
time	understanding	what	a	program	is	because	modern	software	packages	often
define	the	term	incorrectly.	You	are	not	creating	a	new	program	when	you	create
a	new	project.	A	VBA	project	can	actually	contain	a	number	of	VBA	programs.”

Programming	Blocks
A	VBA	program	 consists	 of	 building	 blocks.	 In	 fact,	 because	 programming	 is
abstract,	people	tend	to	use	physical	examples	to	explain	how	things	work.	You
still	need	to	know	about	the	abstract	elements	of	VBA	programming,	or	else	you
cannot	 write	 a	 program.	 This	 section	 explains	 the	 basic	 constructs	 of	 VBA
programming.	Every	VBA	code	has	the	following	elements:

Project
The	project	acts	as	a	container	for	 the	modules,	class	modules	and	forms	for	a
file.	Excel	users	normally	see	just	one	project	for	the	file	that	they	have	open.

Module,	class	module	and	forms
The	 three	 elements	 will	 always	 contain	 the	 main	 programming	 elements	 like
procedures	 and	 class	 descriptions.	 A	 single	 project	 can	 have	 multiple	 class
modules,	forms	and	modules	in	it,	but	each	of	these	must	have	a	different	name.

Function	and	Sub
The	sub	and	function	elements	hold	the	statements	or	individual	lines	of	code.	A
function	will	always	return	the	value	that	the	user	requires	while	a	sub	does	not.
You	 can	 access	 the	 code	 using	 the	 Sub,	 but	 never	 through	 the	 function.

Therefore,	 you	 must	 always	 provide	 the	 VBA	 editor	 access	 to	 the	 program
through	a	Sub.

Statement
Experts	and	other	developers	often	call	an	individual	line	of	code	as	a	statement.

Using	the	Macro	Recorder
The	Macro	Recorder	will	allow	you	to	record	all	the	actions	and	keystrokes	that
you	perform	when	you	work	on	Excel.	You	can	use	this	to	record	some	tasks	like
setting	up	a	document	or	anything	as	simple	as	highlighting	text.

The	Macro	Recorder	can	help	you	perform	the	following	tasks:
•									Create	a	macro	based	on	your	actions.
•									Discover	how	Word	performs	certain	tasks.
•									Decide	how	to	break	your	program	into	tasks.
•									Help	you	create	the	basis	for	a	more	complex	program.

The	 Macro	 Recorder	 is	 not	 a	 complete	 solution	 for	 your	 VBA	 needs.	 For
example,	 you	 cannot	 use	 the	 Macro	 Recorder	 to	 create	 interactive	 programs
without	extra	coding.	The	same	holds	true	for	programs	that	must	change	based
on	user	input,	the	environment	or	the	data	you	are	manipulating.	All	these	tasks
require	 you	 to	 add	more	 code.	 It	 is	 a	 good	 starting	 point	 for	many	 structured
programming	 tasks.	 You	 can	 get	 the	 basics	 down	 quickly	 using	 the	 Macro
Recorder	and	then	make	changes	as	needed.

•									Start	the	Macro	Recorder.
•									Perform	all	the	steps	that	you	normally	perform	to	accomplish	a	task.
•									Stop	the	Macro	Recorder.
•									Save	the	macro	when	the	Office	application	prompts	you.
•									Optionally,	open	the	resulting	macro	and	make	any	required	changes.

Using	Subs
A	sub	is	the	simplest	way	to	reduce	the	size	of	the	code,	packaging	method	that
appears	in	the	Macro	dialog	box.	Consequently,	the	one	place	where	you	always
use	a	Sub	 is	 the	main	entry	point	 for	a	program	unless	 the	program	is	a	utility
that	you	use	only	 for	programming	purposes.	A	second	way	 to	use	a	Sub	 is	 to

perform	a	task	and	not	receive	a	direct	return	value.	You	can	use	a	Sub	to	display
an	informational	message.	A	Sub	can	modify	information	in	several	ways;	it	just
cannot	return	a	value.	Only	a	function	can	return	a	value.	You	can,	however,	use
arguments	as	a	way	to	modify	the	information	in	a	function	by	using	a	Sub.		A
second	method	relies	on	global	variables.	You	can	use	the	Sub	as	a	way	to	break
up	large	volumes	of	code.	You	can	avoid	creating	a	code	that	is	written	on	many
pages,	 and	 use	 Subs	 to	 break	 the	 code	 into	 smaller	 segments.	 This	 makes	 it
easier	for	you	and	for	another	viewer	to	read	the	code.

Using	Functions
You	might	not	see	a	use	for	the	Function	after	spending	some	time	working	with
the	Sub.	Not	every	problem	 is	 a	 screw	 requiring	 the	use	of	a	 screwdriver	or	 a
nail	in	search	of	a	hammer.	You	use	a	Function	for	different	problems	than	a	Sub
can	answer.	In	most	cases,	there	is	a	correct	answer	to	using	a	Function	or	a	Sub.
For	example,	you	always	use	a	Sub	when	you	want	to	access	program	code	from
within	 the	 host	 application,	 and	you	 always	 use	 a	Function	when	you	want	 to
perform	a	calculation	with	a	return	result.

A	Function	always	returns	a	value,	which	makes	it	different	from	a	Sub.	For	this
reason,	 you	 can	write	 functions	 that	 contain	 code	 that	 you	plan	 to	 repeat	 a	 lot
within	 a	 program.	 To	 process	 a	 list	 of	 names,	 you	might	 create	 a	 Function	 to
process	each	name	individually	and	then	call	that	Function	once	for	each	name.
The	 Function	 can	 provide	 the	 processed	 information	 as	 a	 return	 value.	 In
Chapter	 5,	 I	 describe	 how	 to	 create	 repeating	 code	 using	 structures	 such	 as
Do...Until.

You	can	also	use	a	Function	for	public	code	that	you	do	not	want	to	list	 in	the
Macro	dialog	box.	You	normally	do	not	see	a	Function	listed	in	the	Macro	dialog
box	—	this	dialog	box	usually	lists	only	Subs.

Comments
It	is	important	to	write	comments	in	your	code	to	help	other	users	understand	the
purpose	of	the	code.

Writing	basic	comments
Comments	can	take	several	forms.	One	always	writes	a	pseudo-comment	in	the
program	since	this	 is	 the	most	natural	one	to	use.	A	developer	will	always	add
comments	 to	 the	 program	 he	 or	 she	 is	 writing.	 They	 will	 also	 provide

information	 about	 who	 wrote	 the	 program	 or	 when	 it	 was	 written.	 These
comments	will	also	provide	information	on	the	list	of	updates	made	to	the	code.
Some	developers	begin	to	write	better	comments	at	this	point.

An	important	comment	that	you	should	add	to	your	code	is	why	you	would	want
to	write	the	original	program.	You	should	also	explain	why	you	chose	to	write	it
in	a	specific	way.	You	cannot	simply	say	that	the	program	will	perform	a	specific
task.	This	is	not	enough	since	you	can	perform	the	same	task	in	different	ways.
When	you	talk	about	why	you	chose	that	specific	way	to	write	the	code,	you	can
avoid	making	any	errors	when	you	update	 the	code.	You	will	also	know	when
you	need	to	update	the	code.

As	a	good	programmer,	you	should	 include	 the	mistakes	made	as	a	part	of	 the
comments	 if	 you	 want	 to	 help	 another	 programmer	 avoid	 making	 the	 same
mistakes.	These	comments	will	always	help	a	beginner	or	an	expert.	That	way
they	can	avoid	the	mistakes	that	one	may	usually	make.

Knowing	when	to	use	comments
You	should	always	use	comments	whenever	and	wherever	you	 think	you	need
them.	You	may	believe	that	comments	are	difficult	to	include	and	type,	but	you
can	 include	one	or	 two	 lines	of	comments	 to	explain	 the	program	 that	you	are
writing.	You	are	correct	—	writing	good	comments	can	be	time-consuming	and
can	be	difficult	because	writing	these	makes	you	think	yet	again	about	the	code.
When	you	do	not	have	enough	comments	in	your	code,	you	will	find	it	difficult
to	update	that	program.	You	may	also	have	to	start	writing	the	code	from	scratch
because	you	do	not	know	what	your	code	is	all	about.

Writing	Good	Comments
A	comment	is	always	good	if	you	can	understand	what	it	says.	Do	not	use	fancy
terms	—	write	everything	 in	plain	 terms	 that	you	can	understand.	 If	you	 think
you	want	to	explain	a	certain	line	of	code,	feel	free	to	do	it.	You	can	also	write
comments	against	every	line	of	code	since	that	will	help	an	amateur	understand
your	train	of	thought.

Chapter	Eight
	

	

Arrays
	

Arrays	 will	 allow	 you	 to	 store	 more	 than	 one	 item	 in	 a	 single	 variable	 or
container	 that	you	can	use	 in	your	program.	You	should	 think	of	an	array	as	a
large	box	with	a	finite	number	of	smaller	boxes	within	it.	Every	small	box	will
store	 some	value	depending	on	 the	data	 type	of	 the	 array.	You	can	 choose	 the
number	of	small	boxes	that	you	want	to	store	in	your	array	when	you	create	it.
You	should	use	the	array	when	you	must	store	several	related	items	of	the	same
data	type.

Structured	Storage
Arrays	are	a	list	of	items.	A	classic	example	of	an	array	is	a	to-do	list	that	you
prepare	 for	 yourself.	 The	 piece	 of	 paper	 where	 you	 write	 your	 tasks	 form	 a
single	container.	This	single	container	will	hold	several	strings,	and	each	of	these
strings	will	contain	a	task	that	you	need	to	perform.	Similarly,	you	can	create	a
paper	 in	 your	VBA	program	 in	 the	 form	of	 an	 array.	You	 can	 define	 an	 array
using	 a	 variety	 of	 techniques,	 but	 each	 of	 these	 techniques	 will	 use	 similar
approaches.	

Example
‘	Tell	VBA	to	start	all	arrays	at	0.

Option	Base	0

Public	Sub	SingleDimension()

‘	Define	an	output	string.

Dim	Output	As	String

‘	Define	a	variant	to	hold	individual	strings.

Dim	IndividualString	As	Variant

‘	Define	the	array	of	strings.

Dim	StringArray(5)	As	String

‘	Fill	each	array	element	with	information.

StringArray(0)	=	“This”

StringArray(1)	=	“Is”

StringArray(2)	=	“An”

StringArray(3)	=	“Array”

StringArray(4)	=	“Of”

StringArray(5)	=	“Strings”

‘	Use	the	For	Each...Next	statement	to	get	each	array

‘	element	and	place	it	in	a	string.

For	Each	IndividualString	In	StringArray

‘	Create	a	single	output	string	with	the	array

‘	array	elements.

Output	=	Output	+	IndividualString	+	“	“

Next

‘	Display	the	result.

MsgBox	Trim(Output),	_

vbInformation	Or	vbOKOnly,	_

“Array	Content”

End	Sub

If	you	look	at	the	above	code,	you	will	notice	that	the	code	starts	with	the	Option
Base	0	statement.	This	statement	will	 tell	VBA	if	 it	needs	 to	start	counting	the
elements	in	the	array	from	0	or	1.	The	default	setting	in	VBA	is	that	it	will	count
the	elements	in	the	array	from	0.	Most	programming	languages	will	use	0	as	the
starting	point,	and	it	is	for	this	reason	that	the	developers	at	Microsoft	made	the
default	0	for	VBA.	Older	versions	of	VBA	do	use	1	as	the	starting	point.

If	you	want	your	program	to	work	in	every	environment,	you	should	include	the
Option	Base	statement.	Since	the	array	will	begin	at	0	and	not	at	1,	you	can	only
store	 six	 items	 in	 the	 array,	 although	 you	 have	 defined	 that	 the	 array	 has	 five
elements.	The	number	you	include	in	the	declaration	is	always	at	the	top,	but	this
is	not	one	of	the	numbers	in	the	element.

Array	Types

One	can	classify	an	array	in	several	ways,	and	the	first	method	is	the	type	of	data
that	the	array	will	hold.	A	string	array	is	very	different	from	an	integer	array,	but
the	array	will	always	ensure	 that	 the	elements	are	unique.	 If	you	use	a	Variant
data	type,	you	can	mix	the	data	types	in	an	array.	You	should	always	be	careful
when	 you	 use	 this	 technique	 since	 it	 can	 lead	 to	 errors	 which	 are	 difficult	 to
debug.

Another	 method	 is	 to	 define	 the	 dimensions	 in	 an	 array.	 The	 dimension	 will
define	the	number	of	directions	in	which	the	array	will	hold	the	information.	A
simple	list,	like	the	one	in	the	earlier	"Understanding	array	usage"	section,	gives
an	example	of	a	single-dimensional	array.	A	table	which	consists	of	columns	and
rows	 is	a	 two-dimensional	array.	One	can	create	an	array	using	any	number	of
dimensions.

Example:	Adding	an	Element	to	an	Array

Dim	a	As	Range

Dim	arr	As	Variant		'Just	a	Variant	variable	(i.e.,	don't	pre-define	it	as	an
array)

For	Each	a	In	Range.Cells

				If	IsEmpty(arr)	Then

								arr	=	Array(a.value)	'Make	the	Variant	an	array	with	a	single
element

				Else

								ReDim	Preserve	arr(UBound(arr)	+	1)	'Add	next	array	element

								arr(UBound(arr))	=	a.value										'Assign	the	array	element

				End	If

Next

VBA	Array
In	this	section,	we	will	look	at	the	steps	you	need	to	follow	to	create	an	array.

Step	1	–	Create	a	New	Workbook
1.	 Open	Microsoft	Excel.

2.	 Save	the	excel	workbook	with	the	extension	.xlsm

Step	2	–	Add	a	Command	Button
Now	 that	 you	 are	 familiar	 with	 creating	 an	 interface	 in	 a	 workbook.	 The
previous	chapters	 in	 the	book	will	help	you	gather	more	 information	about	 the
subroutines	or	subs	and	functions	in	VBA.

1.	 Add	a	command	button	to	the	active	worksheet.

2.	 Set	the	property	name	to	cmdLoadBeverages.

3.	 Now,	set	the	Caption	Property	as	Load	Beverages.

The	interface	should	now	display	the	following:

Step	3	–	Save	the	File
1.	 You	should	now	click	the	save	as	button	in	the	macro-enabled	form.

	

Step	4	–	Write	the	Code
Let	us	now	write	the	code	for	the	application.

1.	 Right	click	on	the	button	and	choose	to	view	the	code.

2.	 Add	the	code	in	the	code	window.

Private	Sub	cmdLoadBeverages_Click()

				Dim	Drinks(1	To	4)	As	String

				Drinks(1)	=	"Pepsi"

				Drinks(2)	=	"Coke"

				Drinks(3)	=	"Fanta"

				Drinks(4)	=	"Juice"

				Sheet1.Cells(1,	1).Value	=	"My	Favorite	Beverages"

				Sheet1.Cells(2,	1).Value	=	Drinks(1)

				Sheet1.Cells(3,	1).Value	=	Drinks(2)

				Sheet1.Cells(4,	1).Value	=	Drinks(3)

				Sheet1.Cells(5,	1).Value	=	Drinks(4)

End	Sub

Example	to	Enter	Student’s	Marks

Without	An	Array
In	 the	 example	below,	we	will	 look	at	 how	you	can	 enter	 the	marks	 for	 every
student	without	using	an	array.

Public	Sub	StudentMarks()

				With	ThisWorkbook.Worksheets("Sheet1")

								'	Declare	variable	for	each	student

								Dim	Student1	As	Integer

								Dim	Student2	As	Integer

								Dim	Student3	As	Integer

								Dim	Student4	As	Integer

								Dim	Student5	As	Integer

								'	Read	student	marks	from	cell

								Student1	=	.Range("C2").Offset(1)

								Student2	=	.Range("C2").Offset(2)

								Student3	=	.Range("C2").Offset(3)

								Student4	=	.Range("C2").Offset(4)

								Student5	=	.Range("C2").Offset(5)

								'	Print	student	marks

								Debug.Print	"Students	Marks"

								Debug.Print	Student1

								Debug.Print	Student2

								Debug.Print	Student3

								Debug.Print	Student4

								Debug.Print	Student5

				End	With

End	Sub

The	output	will	be	the	following,

Using	an	Array
Public	Sub	StudentMarksArr()

				With	ThisWorkbook.Worksheets("Sheet1")

								'	Declare	an	array	to	hold	marks	for	5	students

								Dim	Students(1	To	5)	As	Integer

								'	Read	student	marks	from	cells	C3:C7	into	array

								Dim	i	As	Integer

								For	i	=	1	To	5

												Students(i)	=	.Range("C2").Offset(i)

								Next	i

								'	Print	student	marks	from	the	array

								Debug.Print	"Students	Marks"

								For	i	=	LBound(Students)	To	UBound(Students)

												Debug.Print	Students(i)

								Next	i

				End	With

End	Sub

Notice	the	difference	in	the	variables	used	in	the	two	programs,	and	also	notice
the	length	of	the	program.

Example	with	Loops
Public	Sub	ArrayLoops()

				'	Declare		array

				Dim	arrMarks(0	To	5)	As	Long

				'	Fill	the	array	with	random	numbers

				Dim	i	As	Long

				For	i	=	LBound(arrMarks)	To	UBound(arrMarks)

								arrMarks(i)	=	5	*	Rnd

				Next	i

				'	Print	out	the	values	in	the	array

				Debug.Print	"Location",	"Value"

				For	i	=	LBound(arrMarks)	To	UBound(arrMarks)

								Debug.Print	i,	arrMarks(i)

				Next	i

End	Sub

Sorting	an	Array
Sub	QuickSort(arr	As	Variant,	first	As	Long,	last	As	Long)
		Dim	vCentreVal	As	Variant,	vTemp	As	Variant
		Dim	lTempLow	As	Long
		Dim	lTempHi	As	Long
		lTempLow	=	first
		lTempHi	=	last
		vCentreVal	=	arr((first	+	last)	\	2)
		Do	While	lTempLow	<=	lTempHi
				Do	While	arr(lTempLow)	<	vCentreVal	And	lTempLow	<	last
						lTempLow	=	lTempLow	+	1
				Loop
				Do	While	vCentreVal	<	arr(lTempHi)	And	lTempHi	>	first
						lTempHi	=	lTempHi	-	1
				Loop
				If	lTempLow	<=	lTempHi	Then
								'	Swap	values
								vTemp	=	arr(lTempLow)
								arr(lTempLow)	=	arr(lTempHi)
								arr(lTempHi)	=	vTemp
									'	Move	to	next	positions
								lTempLow	=	lTempLow	+	1
								lTempHi	=	lTempHi	-	1
						End	If
				Loop

				If	first	<	lTempHi	Then	QuickSort	arr,	first,	lTempHi
		If	lTempLow	<	last	Then	QuickSort	arr,	lTempLow,	last
		End	Sub

Example	for	Creating	a	Two-Dimensional	Array
Public	Sub	TwoDimArray()

				'	Declare	a	two	dimensional	array

				Dim	arrMarks(0	To	3,	0	To	2)	As	String

				'	Fill	the	array	with	text	made	up	of	i	and	j	values

				Dim	i	As	Long,	j	As	Long

				For	i	=	LBound(arrMarks)	To	UBound(arrMarks)

								For	j	=	LBound(arrMarks,	2)	To	UBound(arrMarks,	2)

												arrMarks(i,	j)	=	CStr(i)	&	":"	&	CStr(j)

								Next	j

				Next	i

				'	Print	the	values	in	the	array	to	the	Immediate	Window

				Debug.Print	"i",	"j",	"Value"

				For	i	=	LBound(arrMarks)	To	UBound(arrMarks)

								For	j	=	LBound(arrMarks,	2)	To	UBound(arrMarks,	2)

											Debug.Print	i,	j,	arrMarks(i,	j)

								Next	j

				Next	i

End	Sub

Exercise
1.	 Write	a	program	to	sort	an	array	using	the	bubble	sort	method.

Chapter	Nine
	

	

Working	with	Excel	Workbooks	
and	Worksheets

The	Workbook	Collection
The	Workbooks	collection	provides	a	list	of	all	workbooks	that	you	have	open	at
a	given	 time.	You	can	select	a	single	workbook	from	this	 list	 that	you	want	 to
use	in	your	program.	The	Workbook	object	that	you	select	will	provide	general
information	about	the	file,	including	its	name	and	location.	You	can	also	use	this
object	 to	 access	 other	 major	 objects	 in	 the	 document.	 These	 objects	 include
standalone	Chart	objects	and	Worksheet	objects.

Example:
Public	Sub	WorkbookDemo()
‘	Holds	the	output	data.
Dim	Output	As	String
‘	Get	the	test	workbook.
Dim	ActiveWorkbook	As	Workbook
Set	ActiveWorkbook	=
Application.Workbooks(“ExcelObjects.xls”)
‘	Get	the	workbook	name	and	location.
Output	=	“Name:	“	+	ActiveWorkbook.Name	+	vbCrLf	+	_
“Full	Name:	“	+	ActiveWorkbook.FullName	+	vbCrLf	+	_
“Path:	“	+	ActiveWorkbook.Path	+	vbCrLf	+	vbCrLf
‘	Holds	the	current	sheet.
Dim	CurrSheet	As	Worksheet
‘	Look	for	every	sheet.
Output	=	“Worksheet	List:”	+	vbCrLf
For	Each	CurrSheet	In	ActiveWorkbook.Worksheets
Output	=	Output	+	CurrSheet.Name	+	vbCrLf
Next
‘	Holds	the	current	chart.

Dim	CurrChart	As	Chart
‘	Look	for	every	chart.
Output	=	Output	+	vbCrLf	+	“Chart	List:”	+	vbCrLf
For	Each	CurrChart	In	ActiveWorkbook.Charts
Output	=	Output	+	CurrChart.Name	+	vbCrLf
Next
‘	Display	the	output.
MsgBox	Output,	vbInformation	Or	vbOKOnly,	“Object	List”
End	Sub

The	code	starts	by	using	the	Application	Workbooks	collection	which	will	allow
you	to	retrieve	a	single	Workbook	object.	You	should	always	use	the	full	name
of	 the	 Excel	 file	 as	 the	 index	 in	 the	 collection.	 You	 should	 also	 include	 the
extension	 of	 the	 file.	 The	 resulting	 workbook	 object	 will	 contain	 information
about	 the	document.	This	object	will	also	provide	 the	summary	 information	of
the	document,	and	you	can	use	this	object	to	control	and	maintain	the	windows,
and	also	add	new	elements	like	worksheets.

Once	the	code	accesses	the	workbook,	it	will	use	the	ActiveWorkbook	object	to
access	 the	 worksheets	 in	 the	 list.	 The	 code	 will	 rely	 on	 the	 For	 Each...Next
statement	 to	 access	 these	 worksheets.	 Alternatively,	 you	 can	 use	 an	 index	 to
access	the	individual	worksheets	in	the	code.	The	Worksheet,	ActiveWorksheet,
contains	 properties	 and	methods	 for	manipulating	 any	 data	 that	 the	Worksheet
contains,	 including	 embedded	 objects,	 such	 as	 charts	 or	 even	 pictures.	 Every
worksheet	appears	in	the	ActiveWorkbook	object	list	by	its	object	name	(not	the
friendly	 name	 that	 you	 give	 it),	 so	 you	 can	 access	 them	 without	 using	 the
Worksheets	collection.

Only	independent	charts	will	appear	when	you	use	the	ActiveWorkbook	object.
The	same	technique	can	be	used	to	access	any	Chart	object	in	the	worksheet	as	a
Worksheet	 object.	 The	 difference	 is	 that	 you	 should	 use	 Charts	 Collection
instead	of	the	Worksheets	Collection.	You	should	note	that	the	Chart	names	will
appear	in	the	list	of	objects	that	are	present	in	the	ActiveWorkbook.	This	means
that	you	can	access	the	chart	directly	without	having	to	use	the	Charts	collection.

The	Worksheet	Collection

One	of	the	easiest	methods	to	access	a	worksheet	in	many	situations	is	to	use	the
Sheets	collection.	You	do	not	follow	the	Excel	object	hierarchy	when	you	want
to	identify	the	worksheet	you	want	tot	work	with.	If	you	access	the	worksheet	at
the	 top	 of	 the	 hierarchy,	 it	means	 that	 there	 are	 no	 objects	 that	 exist	 at	 lower
levels	available	either,	so	this	technique	is	a	tradeoff.

You	can	access	any	type	of	sheet,	and	not	just	a	worksheet	if	you	use	the	Sheets
collection.	A	standalone	Chart	object	that	you	use	in	any	of	the	sheets	can	also
come	 into	 this	collection.	Look	at	 the	example	 in	 the	previous	 section,	 "Using
the	Workbooks	 collection,"	 and	you	will	 notice	 that	 the	 charts	 and	worksheets
are	treated	as	different	objects.

Example:
Public	Sub	ListSheets()
‘	An	individual	entry.
Dim	ThisEntry	As	Variant
‘	Holds	the	output	data.
Dim	Output	As	String
‘	Get	the	current	number	of	worksheets.
Output	=	“Sheet	Count:	“	+	_
CStr(Application.Sheets.Count)
‘	List	each	worksheet	in	turn.
For	Each	ThisEntry	In	Application.Sheets
‘	Verify	there	is	a	sheet	to	work	with.
If	ThisEntry.Type	=	XlSheetType.xlWorksheet	Then
Output	=	Output	+	vbCrLf	+	ThisEntry.Name
End	If
Next
‘	Display	the	result.
MsgBox	Output,	_
vbInformation	or	vbOKOnly,	_
“Worksheet	List”

End	Sub

In	 the	 example	 above,	 we	will	 create	 a	 Variant,	 which	will	 hold	 the	 different
sheet	types.	If	you	use	a	Chart	or	Worksheet	object,	the	code	will	fail	since	the
Sheets	enumeration	will	return	a	valid	type,	but	not	the	type	you	need.	The	issue
with	 using	 this	 Variant	 is	 that	 the	 editor	 in	 VBA	 cannot	 provide	 automatic
completion	 or	 balloon	 help.	 You	 have	 to	 ensure	 that	 you	 type	 the	 method	 in
correctly	and	use	the	correct	property	names	without	any	help.

Once	 the	 code	 creates	 the	 necessary	 variables,	 it	 will	 provide	 the	 number	 of
sheets	in	the	workbook.	This	number	will	include	all	the	worksheets	and	charts
in	the	workbook,	and	not	just	the	sheets.

A	For	Each...Next	loop	will	retrieve	each	sheet	in	turn.	You	should	notice	how
we	use	the	If...Then	statement	to	compare	the	values	of	the	Variant	type	and	the
XlSheetType.xlWorksheet	 constant.	 When	 you	 use	 this	 technique,	 you	 can
separate	 the	 worksheet	 you	 are	 using	 from	 other	 Sheets	 collection	 types
whenever	necessary.	

Charts	Collection
The	Charts	collection	is	a	way	to	build	a	custom	chart	whenever	necessary.	An
advantage	of	 creating	charts	by	using	a	 code	 is	 that	 they	do	not	use	 too	much
space,	and	you	can	create	a	variety	of	different	charts	without	spending	too	much
time	on	the	theme.

Example:

Public	Sub	BuildChart()

‘	Create	a	new	chart.

Dim	NewChart	As	Chart

Set	NewChart	=	Charts.Add(After:=Charts(Charts.Count))

‘	Change	the	name.

NewChart.Name	=	“Added	Chart”

‘	Create	a	series	for	the	chart.

Dim	TheSeries	As	Series

NewChart.SeriesCollection.Add	_

Source:=Worksheets(“My	Data	Sheet”).Range(“A$3:B$8”)

Set	TheSeries	=	NewChart.SeriesCollection(1)

‘	Change	the	chart	type.

TheSeries.ChartType	=	xl3DPie

‘	Change	the	series	title.

TheSeries.Name	=	“Data	from	My	Data	Sheet”

‘	Perform	some	data	formatting.

With	TheSeries

.HasDataLabels	=	True

.DataLabels.ShowValue	=	True

.DataLabels.Font.Italic	=	True

.DataLabels.Font.Size	=	14

End	With

‘	Modify	the	chart’s	legend.

With	NewChart

.HasLegend	=	True

.Legend.Font.Size	=	14

End	With

‘	Modify	the	3-D	view.

With	NewChart

.Pie3DGroup.FirstSliceAngle	=	90

.Elevation	=	45

End	With

‘	Format	the	chart	title.

NewChart.ChartTitle.Font.Bold	=	True

NewChart.ChartTitle.Font.Size	=	18

NewChart.ChartTitle.Format.Line.DashStyle	_

=	msoLineSolid

NewChart.ChartTitle.Format.Line.Style	=	msoLineSingle

NewChart.ChartTitle.Format.Line.Weight	=	2

‘	Compute	the	optimal	plot	area	size.

Dim	Size	As	Integer

If	NewChart.PlotArea.Height	>	NewChart.PlotArea.Width

Then

Size	=	NewChart.PlotArea.Width

Else

Size	=	NewChart.PlotArea.Height

End	If

‘	Reduce	the	plot	area	by	10%.

Size	=	Size	-	(Size	*	0.1)

‘	Format	the	plot	area.

With	NewChart.PlotArea

.Interior.Color	=	RGB(255,	255,	255)

.Border.LineStyle	=	XlLineStyle.xlLineStyleNone

.Height	=	Size

.Width	=	Size

.Top	=	75

.Left	=	100

End	With

‘	Format	the	labels.

Dim	ChartLabels	As	DataLabel

Set	ChartLabels	=	TheSeries.DataLabels(0)

ChartLabels.Position	=	xlLabelPositionOutsideEnd

End	Sub

In	the	above	example,	the	code	will	create	a	new	chart.	This	chart	will	appear	in
the	 workbook	 as	 the	 last	 chart,	 but	 will	 not	 appear	 as	 the	 last	 item	 in	 the
workbook.	A	worksheet	which	appears	after	the	last	chart	will	also	appear	after
the	 new	 chart	 that	 is	 created.	 The	 NewChart.Name	 property	 will	 change	 the
name	that	appears	at	the	bottom	of	the	chart.	This	property	does	not	change	the
name	of	the	chart.

At	this	point,	the	chart	is	blank,	and	you	must	add	a	clear	one	series	to	the	chart
if	you	want	to	display	some	data	on	it.	A	pie	chart	will	use	only	one	series	at	a
time,	 but	 there	 are	 other	 charts	 that	 allow	you	 to	 use	multiple	 data	 series.	 For
instance,	you	can	use	a	bubble	chart	 to	 show	multiple	 series	of	data.	The	next
task	of	the	code	will	create	a	data	series	based	on	the	worksheet	named	My	Data
Sheet.	You	will	notice	 that	 the	code	cannot	 set	TheSeries	variable	equal	 to	 the
output	of	the	method	Add	in	this	example.	Therefore,	it	uses	an	additional	step	to
obtain	the	new	series	from	the	SeriesCollection	collection.

You	should	also	notice	that	the	Range	property	has	two	columns	of	information.
When	you	are	working	with	Excel	2007,	 the	 first	 column	defines	 the	XValues
property	for	the	chart.	The	XValues	property	determines	the	entries	in	the	legend
for	 a	 pie	 chart.	 On	 the	 other	 hand,	 these	 values	 appear	 at	 the	 bottom	 of	 the
display	for	a	bar	chart.	In	both	cases,	you	want	to	display	the	labels	onscreen	so
that	you	can	see	their	effect	on	the	overall	display	area.	

Exercises
1.	 Write	a	program	to	unhide	all	worksheets	in	a	workbook.

2.	 Write	a	program	to	hide	all	worksheets	 in	 the	workbook	except	for	 the
active	worksheet.

3.	 Write	a	program	to	sort	worksheets	alphabetically	using	VBA.

Chapter	Ten
	

	

How	to	Redirect	the	Flow
	

You	might	 run	 into	 situations	where	 the	existing	program	flow	does	not	work,
and	 you	 must	 disrupt	 it	 to	 move	 somewhere	 else	 in	 the	 code.	 The	 GoTo
statement	 provides	 a	 means	 of	 redirecting	 program	 flow.	 Used	 carefully,	 the
GoTo	 statement	 can	 help	 you	 overcome	 specific	 programming	 problems.
Unfortunately,	the	GoTo	statement	has	caused	more	problems	(such	as	creating
hard-to-understand	 code	 and	 hiding	 programming	 errors)	 than	 any	 other
programming	 statement	 because	 it	 has	 a	 great	 potential	 for	 misuse.	 Novice
programmers	find	it	easier	to	use	the	GoTo	statement	to	overcome	programming
errors	 rather	 than	 to	 fix	 these	 problems.	Always	 use	 the	GoTo	 statement	with
extreme	care.	Designing	your	code	 to	 flow	well	before	you	write	 it	 and	 fixing
errors	when	you	find	them	are	both	easier	than	reading	code	with	misused	GoTo
statements.

Using	the	GoTo	statement	correctly
The	GoTo	statement	allows	you	to	redirect	the	flow	of	your	program.	The	first
book	of	 the	series	also	provides	 information	on	 this	 statement.	Before	you	use
the	GoTo	statement,	you	should	always	think	of	a	different	way	to	perform	the
redirection,	 like	 using	 a	 loop.	 If	 there	 is	 not	 any	 other	 way	 to	 perform	 the
programming	task	efficiently,	using	a	GoTo	statement	is	acceptable.

You	might	 run	 into	 situations	where	 the	existing	program	flow	does	not	work,
and	 you	 must	 disrupt	 it	 to	 move	 somewhere	 else	 in	 the	 code.	 The	 GoTo
statement	 provides	 a	 means	 of	 redirecting	 program	 flow.	 Used	 carefully,	 the
GoTo	 statement	 can	 help	 you	 overcome	 specific	 programming	 problems.
Unfortunately,	 the	 GoTo	 statement	 has	 caused	 more	 problems	 than	 any	 other
programming	 statement	 because	 it	 has	 a	 great	 potential	 for	 misuse.	 Novice
programmers	find	it	easier	to	use	the	GoTo	statement	to	overcome	programming
errors	 rather	 than	 to	 fix	 these	 problems.	Always	 use	 the	GoTo	 statement	with
extreme	care.	Designing	your	code	 to	 flow	well	before	you	write	 it	 and	 fixing
errors	when	you	find	them	are	both	easier	than	reading	code	with	misused	GoTo
statements.

Loops
You	should	never	use	the	GoTo	statement	to	replace	the	end	statement	in	a	loop.

The	 statements	 in	 your	 loop	 will	 always	 give	 the	 user	 Never	 use	 a	 GoTo
statement	 as	 a	 loop	 replacement.	 The	 statements	 used	 for	 loops	 signal	 others
about	 your	 intent.	 In	 addition,	 standard	 loop	 statements	 contain	 features	 that
keep	bugs,	such	as	endless	loops,	to	a	minimum.

Exits
You	should	avoid	using	 the	GoTo	statement	when	you	want	 to	exit	a	program.
You	can,	however,	use	the	End	statement	for	the	same	task.

Program	flow	problems
If	you	detect	any	problems	 in	 the	flow	of	your	program,	you	should	check	 the
pseudo-code	and	then	design	the	documents	again.	You	have	to	ensure	that	you
always	implement	the	design	correctly.	The	design	might	require	change	as	well.
Do	not	assume	that	the	design	is	correct,	especially	if	this	is	the	first	attempt.

Chapter	Eleven
	

	

Error	Handling
	

The	easiest	errors	that	you	can	avoid	are	the	syntax	errors,	but	these	are	some	of
the	 hardest	 errors	 to	 spot.	 The	 error	 can	 be	 because	 of	 the	 misuse	 of	 a
punctuation,	misuse	of	a	language	element	or	a	spelling	mistake.	If	you	forget	to
include	the	End	If	statement	in	an	If…Then	statement,	you	have	made	a	syntax
error.

Typos	are	common	syntax	errors.	These	are	especially	hard	to	find	if	you	make
those	 errors	 in	 variable	 names.	 For	 example,	 the	 editor	 in	VBA	will	 view	 the
MySpecialVariable	and	MySpecialVaraible	as	different	variables,	but	 there	 is	a
possibility	 that	 you	will	miss	 it	when	 you	 begin	 to	write	 the	 code.	When	 you
include	the	Adding	Option	Explicit	at	the	beginning	of	the	module,	form	or	class
module	that	you	create,	you	can	remove	this	problem.	VBA	can	help	you	find	a
variety	of	typos	if	you	add	this	statement	to	the	start	of	your	code.	It	is	important
that	you	use	this	statement	in	every	part	of	your	program	when	you	write	it.

There	are	times	when	you	miss	some	of	the	subtle	aids	in	locating	the	errors	in
syntax	 if	 you	 do	 not	 understand	 or	 view	 the	 tasks	 that	 the	 IDE	 or	 Integrated
Development	 Environment	 performs.	 VBA	will	 only	 display	 the	 balloon	 help
feature	when	the	editor	in	VBA	can	recognize	the	function	name	that	you	need	to
enter.	If	you	do	not	see	a	balloon	help	button,	you	should	understand	that	VBA
does	not	know	what	function	name	you	are	referring	to.	This	means	that	you	will
need	 to	 look	at	 your	 code	 to	 identify	 the	 error.	Unfortunately,	 this	 feature	will
only	work	where	 the	 editor	 in	VBA	will	 display	 the	balloon	help	option.	This
does	not	work	when	you	use	property	names.

Understanding	compile	errors
VBA	uses	a	compiler	to	look	for	any	errors	that	will	prevent	the	program	from
functioning	properly.		You	can	create	an	If...Then	statement	and	not	include	the
End	If	statement	in	the	program.	The	compiler	will	continue	to	run	continuously
and	will	allow	you	to	find	the	mistakes	in	the	code	immediately	once	you	make
them.

VBA	will	use	a	compiler	to	find	the	syntax	error	in	your	code	and	then	display
an	error	message.	Try	the	following	when	you	write	a	new	program.	Open	a	new
project,	 create	 a	 Sub	 using	 a	 specific	 name	 and	 type	 MsgBox().	 Now,	 press

Enter.	VBA	will	display	a	message	box,	which	will	state	that	it	was	expecting	the
equal	 to	sign.	If	you	use	the	parentheses	after	 the	keyword	MsgBox,	VBA	will
expect	 that	 you	 should	 include	 a	 result	 variable,	which	will	 hold	 the	 required
result.	For	example,	MyResult	=	MsgBox(“My	Prompt”).	As	mentioned	earlier,
the	debugger	highlights	the	error	in	red.

Understanding	run-time	errors
A	run-time	error	often	occurs	when	there	is	an	issue	with	something	outside	of
your	program.	There	are	 times	when	you	 type	 in	 the	 incorrect	 information	and
other	 times	when	 the	 system	 rejects	 your	 access	 to	 the	memory	 or	 disk.	Your
VBA	code	is	completely	correct,	but	the	code	will	fail	to	function	since	there	is
an	external	error.	Most	companies,	like	Microsoft,	always	run	a	beta	program	to
avoid	any	run-time	errors.	A	beta	program	is	a	one	that	programmers	develop	to
test	their	vendor-sponsored	program	before	they	release	it	into	the	market.

Understanding	semantic	errors
This	is	a	particularly	difficult	error	to	understand	and	find	since	it	is	a	semantic
error.	This	error	occurs	when	the	VBA	code	and	logic	are	both	correct,	but	the
meaning	behind	 the	code	 is	 incorrect.	For	 instance,	you	can	use	 the	Do...Until
loop	in	place	of	the	Do...While	loop.	It	may	the	case	that	the	code	is	correct	and
the	logic	behind	the	code	is	also	correct,	but	the	result	is	not	what	you	expected
since	 the	 meaning	 of	 a	 Do...Until	 loop	 is	 different	 from	 the	 meaning	 of	 a
Do...While	loop.

When	you	write	a	code,	the	words	you	use	in	the	code	should	match	your	intent.
Since	 a	 good	 book	 always	 relies	 on	 precise	 terms,	 a	 good	 program	 also	 relies
only	on	the	precise	statements	that	you	use	in	VBA.	These	statements	will	help
VBA	understand	what	you	want	it	to	do.	One	of	the	best	ways	to	avoid	making
any	semantic	errors	in	the	application	is	to	always	plan	your	program	in	advance.
You	should	use	a	pseudo-code	 to	“pre-write”	 the	design,	and	 then	convert	 that
code	into	the	actual	VBA	code.

Chapter	Twelve
	

	

Solutions	and	Additional	Programs
	

Sheet	Protection

Example	1
'This	code	will	protect	all	sheets	in	the	workbook

Sub	ProtectAllSheets()

Dim	ws	As	Worksheet

For	Each	ws	In	Worksheets

ws.Protect

Next	ws

End	Sub

Example	2
'This	macro	code	will	lock	all	the	cells	with	formulas

Sub	LockCellsWithFormulas()

With	ActiveSheet

			.Unprotect

			.Cells.Locked	=	False

			.Cells.SpecialCells(xlCellTypeFormulas).Locked	=	True

			.Protect	AllowDeletingRows:=True

End	With

End	Sub

For	Loop

Exercise	1
Sub	Loop4()

'	Fills	every	second	cell	from	C1:C50	with	values	of	X'	---	Comment

Dim	X	As	Integer

				For	X	=	1	To	50	Step	2

								Range("C"	&	X).Value	=	X

				Next	X

End	Sub

The	output	will	be:	

Exercise	2
Sub	Loop6()

'	Fills	every	second	cell	from	E1:E100	with	values	of	X'	---	Comment

'	In	this	case	X	decreases	by	2'	---	Comment

Dim	X	As	Integer,	Row	As	Integer

Row	=	1

				For	X	=	100	To	0	Step	-2

								Range("E"	&	Row).Value	=	X

								Row	=	Row	+	2

				Next	X

End	Sub

The	output	will	be,

Exercise	3
Sub	Loop7()

'	Starts	to	fill	cells	F11:F100	with	values	of	X'	---	Comment

'	This	will	exit	from	the	loop	after	50'	---	Comment

Dim	X	As	Integer

				For	X	=	11	To	100

								Range("F"	&	X).Value	=	X

												If	X	=	50	Then

																MsgBox	("Bye	Bye")

																Exit	For

												End	If

				Next	X

End	Sub

	

The	output	will	be,

If	you	enter	50	in	the	cell	F50,	the	editor	will	display	the	following	message	box
on	your	screen.

Strings
Example	1

'This	code	will	change	the	Selection	to	Upper	Case

Sub	ChangeCase()

Dim	Rng	As	Range

For	Each	Rng	In	Selection.Cells

If	Rng.HasFormula	=	False	Then

Rng.Value	=	UCase(Rng.Value)

End	If

Next	Rng

End	Sub

Example	2
'This	code	will	highlight	the	cells	that	have	misspelled	words

Sub	HighlightMisspelledCells()

Dim	cl	As	Range

For	Each	cl	In	ActiveSheet.UsedRange

If	Not	Application.CheckSpelling(word:=cl.Text)	Then

cl.Interior.Color	=	vbRed

End	If

Next	cl

End	Sub

Example	3

'This	VBA	code	will	create	a	function	to	get	the	numeric	part	from	a	string

Function	GetNumeric(CellRef	As	String)

Dim	StringLength	As	Integer

StringLength	=	Len(CellRef)

For	i	=	1	To	StringLength

If	IsNumeric(Mid(CellRef,	i,	1))	Then	Result	=	Result	&
Mid(CellRef,	i,	1)

Next	i

GetNumeric	=	Result

End	Function

Arrays

Exercise	1
Sub	BubbleSort(list())

'			Sorts	an	array	using	bubble	sort	algorithm

				Dim	First	As	Integer,	Last	As	Long

				Dim	i	As	Long,	j	As	Long

				Dim	Temp	As	Long

								First	=	LBound(list)

				Last	=	UBound(list)

				For	i	=	First	To	Last	-	1

								For	j	=	i	+	1	To	Last

												If	list(i)	>	list(j)	Then

																Temp	=	list(j)

																list(j)	=	list(i)

																list(i)	=	Temp

												End	If

								Next	j

				Next	i

End	Sub

Worksheet	and	Workbook	Methods
Exercise	1

'This	code	will	unhide	all	sheets	in	the	workbook

Sub	UnhideAllWoksheets()

Dim	ws	As	Worksheet

For	Each	ws	In	ActiveWorkbook.Worksheets

ws.Visible	=	xlSheetVisible

Next	ws

End	Sub

Exercise	2
'This	macro	will	hide	all	the	worksheet	except	the	active	sheet

Sub	HideAllExceptActiveSheet()
Dim	ws	As	Worksheet
For	Each	ws	In	ThisWorkbook.Worksheets
If	ws.Name	<>	ActiveSheet.Name	Then	ws.Visible	=
xlSheetHidden
Next	ws

End	Sub

Exercise	3
'This	code	will	sort	the	worksheets	alphabetically

Sub	SortSheetsTabName()
Application.ScreenUpdating	=	False
Dim	ShCount	As	Integer,	i	As	Integer,	j	As	Integer
ShCount	=	Sheets.Count

For	i	=	1	To	ShCount	-	1
For	j	=	i	+	1	To	ShCount
If	Sheets(j).Name	<	Sheets(i).Name	Then
Sheets(j).Move	before:=Sheets(i)

End	If
Next	j
Next	i
Application.ScreenUpdating	=	True

End	Sub

Additional	Programs

Sum	of	Two	numbers
Private	Sub	Calculate_Click()

Dim	a	As	Integer
Dim	b	As	Integer
Dim	c	As	Integer
a	=	Val(`TextBox1.Text`)
b	=	Val(`TextBox2.Text`)
c	=	a	+	b
MsgBox	(c)

End	Sub

Concatenate	Two	Strings
Sub	ConcatenateStrings()

Dim	str1	As	String,	str2	As	String
str1	=	"Captain"
str2	=	"America"
'returns	"Captain	America":
MsgBox	str1	&	str2
MsgBox	str1	&	"	"	&	str2
'returns	"Captain	America":
MsgBox	str1	&	"	"	&	str2	&	"	in	Australia"
'returns	"Captain	America	in	Australia":

End	Sub

Prime	Number
Function	IsPrime(Num	As	Double)	As	Boolean
				Dim	i	As	Double
				If	Int(Num	/	2)	=	(Num	/	2)	Then
								Exit	Function
								Else
								For	i	=	3	To	Sqr(Num)	Step	2
												If	Int(Num	/	i)	=	(Num	/	i)	Then
																Exit	Function
												End	If
								Next	i
				End	If
				IsPrime	=	True
End	Function

IIf	function
'	Test	if	a	Supplied	Integer	is	Positive	or	Negative.

Dim	testVal	As	Integer

Dim	sign1	As	String

Dim	sign2	As	String

'	First	call	to	IIf	function.	The	test	value	is	negative:

testVal	=	-2

sign1	=	IIf(testVal	<	0,	"negative",	"positive")

'	sign1	is	now	equal	to	"negative".

'	Second	call	to	IIf	function.	The	test	value	is	positive:

testVal	=	8

sign2	=	IIf(testVal	<	0,	"negative",	"positive")

'	sign2	is	now	equal	to	"positive".

Fibonacci	Series
Private	Sub	Command1_Click()

Dim	x,	g,	n,	i,	sum	As	Integer

n	=	Val(Text1.Text)

x	=	0

y	=	1

Print	x

Print	y

For	i	=	3	To	n

sum	=	x	+	y

Print	sum

x	=	y

y	=	sum

y	=	sum

Next	i

End	Sub

For	Each…Next	Statement
Sub	Unhide_First_Sheet_Exit_For()

'Unhides	the	first	sheet	that	contain	a	specific	phrase

'in	the	sheet	name,	then	exits	the	loop.

Dim	ws	As	Worksheet

			For	Each	ws	In	ActiveWorkbook.Worksheets

							'Find	the	sheet	that	starts	with	the	word	"Report"

								If	Left(ws.Name,	6)	=	"Report"	Then

											ws.Visible	=	xlSheetVisible

											'Exit	the	loop	after	the	first	sheet	is	found

												Exit	For

						End	If

				Next	ws

End	Sub

Conclusion
Thank	you	for	purchasing	the	book.	Most	organizations	have	begun	to	use	VBA
to	 automate	 some	 of	 their	 processes	 in	 Excel.	 You	 can	 copy	 and	 paste
information	or	create	a	pivot	in	Excel	using	VBA.	If	you	want	to	improve	some
processes	and	gather	more	information	about	 the	different	 tools	you	can	use	in
Excel,	 you	 have	 come	 to	 the	 right	 place.	 This	 is	 the	 third	 series	 of	 the	 book
which	 provides	 more	 information	 on	 how	 you	 can	 use	 VBA	 to	 improve
processes.

You	 must	 remember	 that	 experts	 also	 make	 many	 errors	 when	 they	 build
applications	and	programs.	Therefore,	you	should	never	beat	yourself	up	if	you
make	any	mistakes.	You	should	take	some	time	to	understand	what	the	error	is
and	identify	a	way	to	fix	it.	You	have	to	always	practice	to	improve	your	skills	at
programming	in	VBA.

I	 hope	 you	 gather	 all	 the	 information	 you	 are	 looking	 for.	 I	 believe	 you	 can
automate	some	or	all	processes	 that	you	work	on	and	 impress	your	bosses	and
colleagues!

Thank	 you	 again	 for	 buying	 the	 book	 and	 if	 you’re	 finding	 the	 information
valuable	so	far,	please	be	sure	to	leave	5-star	feedback	on	Amazon.

https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjDrZTG0frdAhUIEnIKHWGVCVMQjRx6BAgBEAU&url=http%3A%2F%2Fwww.databison.com%2Fhow-to-write-a-macro-in-excel%2F&psig=AOvVaw0XYs9S9qRneDdPgmz6Bmld&ust=1539218405542672
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/do-loop-statement
https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjDrZTG0frdAhUIEnIKHWGVCVMQjRx6BAgBEAU&url=http%3A%2F%2Fwww.databison.com%2Fhow-to-write-a-macro-in-excel%2F&psig=AOvVaw0XYs9S9qRneDdPgmz6Bmld&ust=1539218405542672
https://www.exceltip.com/vba/for-loops-with-7-examples.html
https://www.excel-easy.com/vba/examples/macro-recorder.html
https://docs.microsoft.com/en-us/office/vba/api/excel.application.automationsecurity
http://www.informit.com/articles/article.aspx?p=1610813&seqNum=4
https://chartio.com/resources/tutorials/how-to-get-values-from-another-sheet-in-excel-using-vba/
https://ccm.net/faq/53497-how-to-manipulate-data-in-excel-using-vba
http://www.databison.com/how-to-write-a-macro-in-excel/
http://www.la-solutions.co.uk/content/V8/MVBA/MVBA-Tips.htm
http://www.homeandlearn.org/the_excel_vba_editor.html
https://www.excelcampus.com/vba/vba-immediate-window-excel/
https://www.guru99.com/vba-arrays.html
https://www.excel-easy.com/vba/array.html

Sources
https://www.google.co.in/url?

sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjDrZTG0frdAhUIEnIKHWGVCVMQjRx6BAgBEAU&url=http%3A%2F%2Fwww.databison.com%2Fhow-
to-write-a-macro-in-
excel%2F&psig=AOvVaw0XYs9S9qRneDdPgmz6Bmld&ust=153921https://docs.microsoft.com/en-
us/dotnet/visual-basic/language-reference/statements/do-loop-
statement8405542672

https://docs.microsoft.com/en-us/dotnet/visual-basic/language-
reference/statements/do-loop-statement

https://www.google.co.in/url?
sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjDrZTG0frdAhUIEnIKHWGVCVMQjRx6BAgBEAU&url=http%3A%2F%2Fwww.databison.com%2Fhow-
to-write-a-macro-in-
excel%2F&psig=AOvVaw0XYs9S9qRneDdPgmz6Bmld&ust=1539218405542672

https://www.exceltip.com/vba/for-loops-with-7-examples.html

https://www.excel-easy.com/vba/examples/macro-recorder.html

https://docs.microsoft.com/en-
us/office/vba/api/excel.application.automationsecurity

http://www.informit.com/articles/article.aspx?p=1610813&seqNum=4

https://chartio.com/resources/tutorials/how-to-get-values-from-another-sheet-in-
excel-using-vba/

https://ccm.net/faq/53497-how-to-manipulate-data-in-excel-using-vba

http://www.databison.com/how-to-write-a-macro-in-excel/

http://www.la-solutions.co.uk/content/V8/MVBA/MVBA-Tips.htm

http://www.homeandlearn.org/the_excel_vba_editor.html

https://www.excelcampus.com/vba/vba-immediate-window-excel/

https://www.guru99.com/vba-arrays.html

https://www.excel-easy.com/vba/array.html

https://excelmacromastery.com/excel-vba-array/
https://www.excel-easy.com/vba/if-then-statement.html
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/if-then-else-statement
https://bettersolutions.com/vba/arrays/sorting-bubble-sort.htm
https://trumpexcel.com/excel-macro-examples/#tab-con-20

https://excelmacromastery.com/excel-vba-array/

https://www.excel-easy.com/vba/if-then-statement.html

https://docs.microsoft.com/en-us/dotnet/visual-basic/language-
reference/statements/if-then-else-statement

https://bettersolutions.com/vba/arrays/sorting-bubble-sort.htm

https://trumpexcel.com/excel-macro-examples/#tab-con-20

Excel	VBA

A	Comprehensive,	Step-By-Step	Guide	On
Excel	VBA	Finance	For	Data	Reporting	And

Business	Analysis

Introduction
VBA	is	an	amazing	tool	that	many	organizations	have	begun	to	use	to	perform
some	tasks	in	a	few	minutes	or	a	few	seconds.	For	instance,	you	can	use	VBA	to
analyze	 some	 information	 or	 extract	 some	 information	 from	 a	 given	 data	 set.
You	 can	 also	 perform	 some	 special	 types	 of	 data	 analysis.	When	 you	write	 a
macro	in	VBA,	you	can	be	certain	that	you	have	mastered	your	work.

If	you	want	 to	 learn	how	you	can	use	VBA	for	 finance	and	data	analysis,	you
have	 come	 to	 the	 right	 place.	 Over	 the	 course	 of	 the	 book	 you	 will	 gather
information	on	what	VBA	 is,	 and	what	different	parts	of	VBA	you	need	 to	be
aware	 of.	 You	 will	 learn	 more	 about	 the	 data	 types,	 the	 modules	 and	 other
functions	you	can	use	to	automate	tasks.

Thank	you	 for	purchasing	 the	book.	 I	hope	you	gather	all	 the	 information	you
are	looking	for.

If	you	enjoyed	this	title,	please	visit	my	author	profile	in	Amazon	and	consider
leaving	a	review.

https://www.amazon.com/Peter-Bradley/e/B07L8M5F2Z/ref=sr_ntt_srch_lnk_1?qid=1550135738&sr=1-1

Chapter	One
	

	

Introduction	to	VBA
	

Visual	 Basic	 for	 Applications	 or	 VBA	 is	 a	 programming	 language,	 which	 is
compatible	 with	 most	 Microsoft	 Office	 Products,	 including	 Excel.	 In	 other
words,	 you	 can	 use	VBA	 to	 develop	 programs	 in	 Excel.	 These	 programs	will
make	Excel	operate	accurately	and	very	fast.

What	can	you	do	with	VBA?
Most	people	use	Excel	for	a	million	different	reasons.	Here	are	a	few	examples:

•									Forecasting	and	Budgeting

•									Analyzing	data

•									Developing	diagrams	and	charts	using	data

•									Creating	lists

•									Creating	forms	and	invoices

This	list	is	endless,	but	I	am	sure	you	get	the	idea.	In	other	words,	you	can	use
Excel	 to	 perform	 a	 variety	 of	 tasks,	 and	 I	 am	 sure	 you	 are	 reading	 this	 book
because	you	have	a	set	of	expectations.	If	you	want	to	automate	the	functions	of
Excel,	you	should	use	VBA.

For	example,	you	may	want	to	create	a	program	that	will	help	you	import	some
data	or	numbers	and	then	format	that	data	to	print	a	report.	Once	you	develop	the
code,	you	can	execute	the	macro	using	a	command	or	a	button.	This	will	ensure
that	Excel	performs	the	task	in	a	few	seconds	or	minutes.

Common	Uses	of	VBA
You	must	understand	why	you	want	to	use	VBA.	You	must	ensure	that	you	can
take	 some	 time	out	of	your	busy	 schedule	 to	 sit	 down	and	write	 a	VBA	code.
You	must	understand	 the	different	 tasks	you	can	use	VBA	for.	You	cannot	use
VBA	to	perform	your	chores,	but	you	can	use	 it	 to	make	some	tasks	easier	for
you.	This	section	covers	some	tasks	that	you	can	perform	with	VBA.

Automating	Documents
Most	people	do	not	 like	 to	prepare	documents,	and	 if	 these	documents	contain

the	same	information,	they	will	not	want	to	work	on	that	document.	You	can	use
the	Excel	Ad-in	called	Mail	Merge	to	automate	letters,	but	this	is	not	an	option
to	use	when	you	want	to	write	individual	letters	or	documents.	In	such	situations,
you	 can	 use	 a	 VBA	 code	 to	 create	 a	 form	 that	 will	 include	 the	 common
information.	 You	 can	 include	 check	 boxes	 that	 VBA	 will	 use	 to	 write	 the
document	for	you.

Word	processing	is	not	the	only	task	you	can	automate	using	VBA.	You	can	also
automate	 the	 spreadsheet	 and	 there	 are	numerous	programs	you	 can	 create	 for
the	same.	For	example,	you	can	extract	information	or	data	from	the	Internet	into
a	spreadsheet	by	clicking	a	button.	Therefore,	you	can	limit	the	time	you	spend
on	simply	copying	the	data	from	the	web	and	pasting	it	according	to	the	required
format	in	your	Excel	worksheet.

Customizing	Application	Interfaces
There	are	 times	when	the	features	of	an	application	will	bug	you,	and	you	can
turn	off	those	features.	But,	that	is	not	an	option	if	you	want	to	use	that	feature	in
your	work.	 Instead	of	disabling	 that	 feature,	you	can	use	VBA	to	create	a	new
feature	 that	 has	 all	 the	 functions	 that	 you	 need.	 For	 instance,	 instead	 of	 using
conditional	formatting	every	time	you	need	to	make	changes	in	a	worksheet,	you
can	write	a	VBA	code	to	do	that	for	you.

It	 is	 easy	 to	 change	 the	 interface	of	 an	 application,	 so	 it	works	better	 for	you.
You	can	customize	toolbars	or	menu	systems,	and	can	also	move	some	elements
around	 in	 the	 interface	 to	make	 it	 look	 presentable.	Additionally,	 you	 can	 use
multiple	interfaces	and	use	a	VBA	code	to	shift	between	those	interfaces.

One	 of	 the	 most	 common	 applications	 of	 VBA	 is	 to	 perform	 a	 variety	 of
calculations.	You	 can	 create	 different	 equations	 and	graphs	 using	 the	 data	 you
obtain.	There	are	times	when	you	will	need	to	make	changes	to	the	data	so	you
can	perform	some	calculations	on	it.	If	you	find	that	an	equation	is	complicated,
you	can	use	VBA	to	simplify	the	process.	You	can	also	use	iterative	functions	to
perform	a	calculation.

Sometimes	the	number	that	you	create	using	a	calculation	does	not	mean	much
—	it	is	just	a	number	until	someone	makes	a	decision.	Some	decisions	are	easy
to	make	yet	 repetitive.	Smart	applications	save	you	more	 time	 for	playing	 that
game	of	Solitaire.

Adding	new	application	features
Most	 vendors	 or	 developers	 never	 use	 the	 applications	 they	 build.	 Therefore,
they	never	update	the	code	for	their	application.	You	can	add	new	features	to	the
application	using	VBA	codes	and	work	on	developing	an	application.	When	you
develop	applications	that	complete	some	of	your	work	in	a	few	minutes,	you	will
impress	your	boss	and	colleagues.	This	is	an	added	advantage

Chapter	Two
	

	

The	IDE
	

VBA	is	a	visual	programming	environment.	That	is,	you	see	how	your	program
will	 look	before	you	 run	 it.	 Its	editor	 is	very	visual,	using	various	windows	 to
make	your	programming	experience	easy	and	manageable.	You	will	notice	slight
differences	 in	 the	 appearance	 of	 the	 editor	 when	 you	 use	 it	 with	 Vista	 as
compared	 to	 older	 versions	 of	Windows.	No	matter	which	Office	 product	 and
version	of	Windows	you	use,	the	editor	has	essentially	the	same	appearance	(and
some	small	differences),	the	same	menu	items,	and	the	same	functionality.

An	 IDE	 is	 an	 editor,	 just	 like	 your	 word	 processor,	 spreadsheet,	 or	 database
form.	Just	as	application	editors	have	special	features	that	make	them	especially
useful	 for	 working	 with	 data,	 an	 IDE	 is	 a	 programming	 editor	 with	 special
features	 that	make	 it	 useful	 for	writing	 instructions	 that	 the	 application	 should
follow.	These	instructions	are	procedural	code	—	a	set	of	steps.	The	figure	below
shows	you	the	IDE	Window	in	Excel:

(https://www.google.co.in/url?
sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjDrZTG0frdAhUIEnIKHWGVCVMQjRx6BAgBEAU&url=http%3A%2F%2Fwww.databison.com%2Fhow-

https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjDrZTG0frdAhUIEnIKHWGVCVMQjRx6BAgBEAU&url=http%3A%2F%2Fwww.databison.com%2Fhow-to-write-a-macro-in-excel%2F&psig=AOvVaw0XYs9S9qRneDdPgmz6Bmld&ust=1539218405542672

to-write-a-macro-in-excel%2F&psig=AOvVaw0XYs9S9qRneDdPgmz6Bmld&ust=1539218405542672)

The	VBA	IDE	consists	of	a	menu	system,	toolbars,	a	Project	Explorer	window,	a
Properties	 window,	 and	 a	 Code	 window.	 Below	 is	 a	 summary	 of	 what	 each
Window	contains.

Project	Explorer
This	window	contains	a	list	of	the	items	in	your	project,	which	contains	all	the
document	 elements	 in	 a	 single	 file.	 Your	 application	 exists	 within	 a	 file	 that
appears	in	the	Project	Explorer	window.

Properties
Whenever	 you	 select	 an	 object,	 the	 Properties	 window	 tells	 you	 about	 it.	 For
example,	 this	 window	 tells	 you	 whether	 the	 object	 is	 blue	 or	 whether	 it	 has
words	on	it.

Code
Eventually,	 you	 must	 write	 some	 code	 to	 make	 your	 application	 work.	 This
window	contains	the	special	words	that	tell	your	application	what	to	do.	Think	of
it	as	a	place	to	write	a	specialized	to-do	list.

Looking	at	the	VBA	Toolbox
You	will	not	have	to	write	code	for	every	task	in	VBA.	The	IDE	also	supports
forms,	just	like	the	forms	that	you	use	to	perform	other	tasks.	In	this	case,	you
decide	what	 appears	 on	 the	 form	 and	 how	 the	 form	 acts	when	 the	 user	works
with	 it.	 To	make	 it	 easier	 to	 create	 forms,	 VBA	 provides	 the	 Toolbox,	 which
contains	controls	used	to	create	forms.

Each	Toolbox	button	performs	a	unique	task.	For	example,	when	you	click	one
button,	a	text	box	may	appear	on	the	screen.	But,	if	you	click	another	button,	a
mathematical	operation	may	take	place.

Starting	the	Visual	Basic	Editor
How	you	start	 the	Visual	Basic	Editor	depends	on	 the	application	 that	you	are
using.	Newer	versions	of	Office	use	a	different	approach	than	older	versions.

Step	1:	Go	to	Option	“View”	on	the	toolbar.

Step	2:	In	the	drop-down	list,	select	“Record	Macro.”

Step	 3:	 The	 interface	 will	 open,	 and	 you	 can	 begin	 typing	 the	 code	 for	 the
worksheet	you	are	in.

Using	Project	Explorer
Project	Explorer	appears	 in	 the	Project	Explorer	window.	You	use	it	 to	 interact
with	 the	objects	 that	make	up	a	project.	A	project	 is	 an	 individual	 file	used	 to
hold	your	program,	or	at	least	pieces	of	it.	The	project	resides	within	the	Office
document	that	you	are	using,	so	when	you	open	the	Office	document,	you	also
open	the	project.	See	Chapter	3	for	a	description	of	how	projects	and	programs
interact.	 Project	 Explorer	 works	 much	 like	 how	 the	 left	 pane	 of	 Windows
Explorer	does.				

The	objects	listed	in	Project	Explorer	depend	on	the	kind	of	application	that	you
are	 working	 with.	 For	 example,	 if	 you	 are	 working	 with	 Word,	 you	 see
documents	 and	 document	 templates.	Likewise,	 if	 you	 are	working	with	Excel,
you	 see	 worksheets	 and	 workbooks.	 However,	 no	 matter	 what	 kind	 of
application	you	work	with,	the	way	that	you	use	Project	Explorer	is	the	same.

A	project	can	contain	forms,	modules,	and	class	modules.	Here	is	a	description
of	these	special	objects:

•									Forms:	Contain	user	interface	elements	and	help	you	interact	with	the
user.

•	 	 	 	 	 	 	 	 	Modules:	 Contain	 the	 nonvisual	 code	 for	 your	 application.	 For
example,	you	can	use	a	module	to	store	a	special	calculation.

•	 	 	 	 	 	 	 	 	Class	modules:	Contain	new	objects	that	you	want	to	build.	You	can
use	a	class	module	to	create	a	new	data	type.

Working	with	special	entries
Sometimes	you	see	a	special	entry	in	Project	Explorer.	For	example,	when	you
work	with	a	Word	document,	you	might	see	a	References	folder,	which	contains
any	 references	 that	 the	Word	 document	makes.	 Normally,	 it	 contains	 a	 list	 of
templates	that	the	document	relies	upon	for	formatting.

In	many	cases,	you	cannot	modify	the	objects	in	the	special	folders.	This	is	the
case	with	the	References	folder	used	by	Word	document	objects.	The	References
folder	is	there	for	information	only.	To	modify	the	referenced	template,	you	need
to	find	 its	object	 in	Project	Explorer.	We	will	not	discuss	 these	concepts	 in	 the

book	since	you	do	not	work	with	these	often.

Using	the	Properties	window
Most	of	the	objects	that	you	click	in	the	VBA	IDE	have	properties	that	describe
the	 object	 in	 some	 way.	 The	 earlier	 “Property	 values	 are	 up”	 section	 of	 this
chapter	 tells	 about	 properties	 if	 you	 have	 not	 worked	 with	 them	 before.	 The
following	sections	provide	details	about	the	Properties	window.

(http://www.affordsol.be/vba-prog-1-3-editor-properties.htm)

Understanding	property	types
A	 property	 needs	 to	 describe	 the	 object.	 When	 you	 look	 at	 an	 object,	 you
naturally	assume	something	about	the	information	provided	by	a	use	red,	yellow,
or	green.	Likewise,	VBA	object	properties	have	specific	types.	One	of	the	most
common	property	types	is	text.	The	Caption	property	of	a	form	is	text.	The	text
appears	at	the	top	of	the	form	when	the	user	opens	it.	Another	common	property
type	is	a	logic,	or	Boolean,	value.

Getting	help	with	properties
Do	 not	 expect	 to	 memorize	 every	 property	 for	 every	 object	 that	 VBA
applications	 can	 create.	 Not	 even	 the	 gurus	 can	 do	 that.	 To	 determine	what	 a

http://www.affordsol.be/vba-prog-1-3-editor-properties.htm

property	will	do	 for	your	 application,	 just	highlight	 the	property	and	press	F1,
and,	in	most	cases,	VBA	displays	a	Help	window	like	the	image	below.

(http://www.la-solutions.co.uk/content/V8/MVBA/MVBA-Tips.htm)

Using	the	Code	Window
The	Code	window	is	where	you	write	your	application	code.	 It	works	 like	any
other	editor	that	you	have	used,	except	that	you	type	according	to	the	syntax.

(http://www.homeandlearn.org/the_excel_vba_editor.html)

Notice	that	the	Project	Explorer	window	and	the	Properties	window	are	gone	—
you	can	display	 them	again	by	using	 the	View	->	Project	Explorer	and	View	-
>Properties	Window	commands.

http://www.la-solutions.co.uk/content/V8/MVBA/MVBA-Tips.htm
http://www.homeandlearn.org/the_excel_vba_editor.html

Opening	an	existing	Code	window
Sometimes	you	will	not	be	able	to	complete	an	application	and	need	to	work	on
it	later.	To	open	an	existing	Code	window,	find	the	module	that	you	want	to	open
in	 Project	 Explorer.	 Double-click	 the	 module	 entry,	 and	 the	 IDE	 displays	 the
code	within	it	with	your	code	loaded.	The	Code	window	also	appears	when	you
perform	different	tasks.

Creating	a	new	Code	window
When	you	start	a	new	module	within	an	existing	document	or	template,	open	a
new	 Code	 window	 by	 using	 either	 the	 Insert	 ->	 Module	 or	 Insert	 ->	 Class
Module	 command.	 After	 you	 save	 this	module	 or	 class	module,	 it	 appears	 in
Project	Explorer	with	the	other	modules	in	your	project.

It	 is	easier	 to	execute	one	 line	of	code	at	a	 time	 to	understand	where	you	may
have	 made	 an	 error.	 You	 can	 do	 this	 by	 using	 the	 Immediate	 Window.	 This
window	normally	appears	at	the	bottom	of	the	IDE,	and	it	will	not	contain	any
information	until	you	type	something	in	it.

Most	 developers	 spend	 their	 days	 using	 the	 Immediate	window	 to	 check	 their
applications	for	errors.	You	can	use	the	Immediate	window	to	ask	VBA	about	the
value	 of	 a	 variable,	 for	 example.	 To	 try	 this	 feature,	 type	 String1	 =	 “Hello
World”	in	the	Immediate	window	and	then	press	Enter.	Now	type	‘?	String1’	and
then	press	Enter.		You	asked	VBA	to	create	a	variable	named	String1	and	assign
it	 a	 value	 of	 Hello	 World.	 You	 can	 use	 the	 ‘?’	 operator	 to	 check	 the	 value
assigned	to	the	variable	String1.

(https://www.excelcampus.com/vba/vba-immediate-window-excel/)

https://www.excelcampus.com/vba/vba-immediate-window-excel/

Chapter	Three
	

	

VBA,	A	Primer
	
Macro	Recorder
As	 mentioned	 in	 the	 previous	 book,	 the	 macro	 recorder	 is	 an	 important	 and
useful	tool	in	Excel.	This	tool	will	record	every	action	that	you	perform	in	Excel.
You	 only	 need	 to	 record	 a	 task	 once	 using	 the	 macro	 recorder,	 and	 you	 can
execute	that	same	task	a	million	times	by	clicking	a	button.	If	you	do	not	know
how	to	program	a	specific	task	in	Excel,	you	can	use	the	Macro	Recorder	to	help
you	understand	what	you	need	to	do.	You	can	then	open	the	Visual	Basic	Editor
once	you	have	recorded	the	task	to	see	how	you	can	program	it.

You	cannot	perform	many	tasks	when	you	use	the	Macro	Recorder.	For	instance,
you	cannot	use	the	macro	recorder	to	loop	through	data.	The	macro	recorder	also
uses	more	code	than	you	need,	which	will	slow	the	process	down.

Record	a	Macro
•									Go	to	the	Menu	Bar	and	move	the	Developer	Tab,	and	click	the	button

to	Record	the	Macro.	

•									Enter	the	name	of	the	macro.

•	 	 	 	 	 	 	 	 	Choose	the	workbook	where	you	want	to	use	the	macro.	This	means
that	the	macro	can	only	be	used	in	the	current	workbook.

4.	 If	you	store	the	macro	in	a	personal	macro	workbook,	you	can	access	the
macro	 in	 all	 your	 workbooks.	 This	 is	 only	 because	 Excel	 stores	 the
macro	 in	 a	 hidden	 workbook,	 which	 will	 open	 automatically	 when	 it
starts.	If	you	store	the	macro	in	a	new	workbook,	you	can	use	the	macro
only	in	the	opened	workbook.

5.	 Click	OK.

6.	 Now,	right	click	on	the	active	cell	in	the	worksheet.	Ensure	that	you	do
not	select	any	other	cell.	Click	format	cells.

7.	 Select	the	percentage.

8.	 Click	OK.

9.	 Now,	select	the	stop	recording.

You	have	successfully	recorded	your	macro	using	the	macro	recorder.

Run	the	Recorded	Macro
You	will	now	need	to	test	the	macro	and	see	if	you	can	change	the	format	of	the
numbers	to	percentage.

10.	 Enter	any	numbers	between	0	and	1	in	the	spreadsheet.

11.	 Select	the	numbers.

12.	 Move	to	the	Developer	tab,	and	click	macros.

13.	 Now	click	run.

	

You	will	see	the	following	result.

	

See	the	Macro
If	you	want	to	look	at	the	macro,	you	should	open	the	Visual	Basic	Editor.

The	macro,	called	Module	1,	 is	placed	 in	a	module.	The	code	 that	 is	placed	 in
the	module	is	always	available	to	the	full	workbook.	This	means	you	can	change
the	 format	 for	 the	 numbers	 in	 all	 the	 sheets	 in	 the	workbook.	 If	 you	 assign	 a
macro	to	the	command	button,	you	should	remember	that	the	macro	would	only
be	available	for	that	specific	sheet.

Macro	Storage	and	Security
The	developers	 at	Microsoft	 changed	 the	 security	 settings	 that	 help	 to	 prevent
macros	from	running.	This	development	was	only	made	when	macros	were	used
to	 deliver	 some	 high-profile	 viruses.	We	 covered	 some	 information	 about	 the
security	of	macros	in	the	first	part	of	the	book.	Let	us	now	look	at	how	you	can
adjust	the	default	settings	in	a	macro.

You	can	either	control	the	settings	for	a	macro	in	some	workbooks	by	saving	the
workbook	 in	 trusted	 locations	 or	 by	 adjusting	 the	 security	 settings	 globally.	 If
you	store	a	workbook	with	a	macro	in	a	folder	that	you	label	a	trusted	location,
the	macros	will	automatically	be	enabled	when	you	open	the	workbook.

You	can	check	the	security	of	your	macro	in	the	Developer	tab	under	the	Macro
Security	icon.	If	you	click	this	icon,	a	dialog	box	with	the	settings	category	will
be	displayed.	You	can	access	the	folders	that	you	trust	by	scrolling	down	the	left
navigation	bar.

How	to	Add	a	Trusted	Location
As	mentioned	earlier,	you	can	save	the	workbooks	with	macros	in	a	folder	that
you	mark	as	a	trusted	location.	If	you	save	a	workbook	in	that	folder,	the	macros
will	always	be	enabled.	The	developers	suggest	 that	you	should	always	have	a
trusted	 location	 in	 your	 hard	 drive.	 Remember	 that	 you	 can	 never	 trust	 the

location	on	a	network	drive.

If	 you	 want	 to	 specify	 a	 trusted	 location,	 you	 should	 follow	 the	 steps	 given
below:

1.	 Go	to	the	Developer	Tab	and	click	on	Macro	Security.

2.	 Move	 to	 the	 left	 navigation	 pane	 in	 the	 Trust	 Center	 and	 choose	 the
Trusted	Location.	

3.	 If	 you	 want	 to	 save	 the	 file	 on	 a	 network	 drive,	 you	 should	 add	 that
location	into	the	trusted	locations.

4.	 Go	to	‘My	Networks’	 in	 the	Trusted	Location	dialog	box	and	click	the
‘Add	New	Location’	button.

5.	 You	will	see	the	list	of	Trusted	Locations	in	a	dialog	box.

6.	 Now	click	 the	Browse	button	and	go	 to	 the	parent	 folder	of	 the	 folder
that	 you	 want	 to	 make	 a	 trusted	 location.	 Now	 click	 on	 the	 Trusted
Folder.	You	will	not	find	the	name	of	the	Folder	in	the	text	box,	but	click
OK.	The	correct	name	will	come	in	the	Browse	dialog	box.

7.	 If	you	want	to	include	the	subfolders	in	the	selected	folder,	you	should
select	 the	 radio	button	against	 the	 ‘Subfolders	of	 this	 location	are	also
trusted’	option.

8.	 Now,	click	OK	to	add	the	folder	to	the	list.

How	to	Enable	Macros	Outside	a	Trusted	Location
When	you	do	not	save	an	excel	workbook	in	a	trusted	location,	excel	will	always
rely	on	 the	macro	settings.	 In	Excel	2003,	a	macro	could	have	a	 low,	medium,

high	 or	 very	 high	 security.	 The	 developers	 of	 Microsoft	 later	 renamed	 these
settings.	 If	 you	 want	 to	 access	 the	 macro	 settings,	 you	 should	 go	 to	 the
Developers	Tab	and	choose	Macro	Security.	Excel	will	 then	display	 the	Macro
Settings	 dialog	 box.	 You	 should	 select	 the	 ‘Disable	 All	 Macros	 with
Notification’	option.	Let	us	 look	at	 the	description	of	 the	options	 in	 the	dialog
box.

Disable	All	Macros	Without	Notification

This	setting	will	not	allow	any	macro	to	run.	If	you	do	not	always	want	to	run
the	macro	when	you	open	the	workbook,	you	should	choose	this	setting.	Since
you	are	still	learning	how	to	use	macros	and	work	with	them,	you	should	not	use
this	setting.	This	setting	is	equivalent	to	the	Very	High	Security	that	is	found	in
Excel	2003.	If	you	choose	this	setting,	you	can	only	run	macros	if	they	are	saved
in	a	Trusted	Location.

Disable	All	Macros	With	Notification

This	 setting	 is	 like	 the	 Medium	 security	 setting	 in	 Excel	 2003.	 This	 is	 the
recommended	setting	that	you	should	use.	If	you	use	this	setting,	Excel	will	ask
you	if	you	want	to	Enable	to	Disable	a	macro	when	you	open	a	workbook.	You
may	often	choose	this	option	if	you	are	a	beginner.	In	Excel	2010,	you	will	see	a
message	 in	 the	message	area,	which	states	 that	 the	macros	have	been	disabled.
You	 can	 either	 choose	 to	 enable	 or	 disable	 the	 content	 in	 the	 workbook	 by
choosing	that	option.

Disable	All	Macros	Except	Digitally	Signed	Macros

If	you	wish	to	use	this	setting,	you	should	always	use	a	digital	signing	tool	like
VeriSign	or	any	other	provider	to	sign	your	macro.	If	you	are	going	to	sell	your
macros	 to	other	parties,	you	should	use	 this	 security	option.	This	 is	a	hassle	 if
you	want	to	write	macros	only	for	your	use.

Enable	All	Macros

Experts	suggest	 that	you	do	not	use	this	option	since	dangerous	codes	can	also
run	 on	 your	 system.	 This	 setting	 is	 equivalent	 to	 the	 Low	 security	 option	 in

Excel	2003,	and	is	the	easiest	option	to	use.	This	option	will	open	your	system
up	to	attacks	from	malicious	viruses.

Disabling	All	Macros	With	Notification

Experts	suggest	that	you	set	your	macro	to	disable	all	content	after	it	gives	you	a
notification.	If	you	save	a	workbook	with	a	macro	using	this	setting,	you	will	see
a	security	warning	right	above	the	formula	bar	when	you	open	the	workbook.	If
you	 know	 that	 there	 are	macros	 in	 the	workbook,	 all	 you	 need	 to	 do	 is	 click
‘Enable	Content.’	You	can	click	on	the	X	on	the	far	right	of	the	bar	if	you	do	not
want	to	enable	any	of	the	macros	in	the	workbook.

If	you	do	forget	to	enable	the	macro	and	then	attempt	to	run	that	macro,	Excel
will	 indicate	 that	 the	macro	will	not	 run	since	you	have	disabled	all	macros	 in
the	workbook.	 If	 this	 happens,	 you	 should	 reopen	 the	workbook	 to	 enable	 the
macros	again.

	

	

Hi	there!	If	you	found	the	topic	or	information	useful,	it	would	be	a	great	help	if
you	can	leave	a	quick	review	on	Amazon.	Thanks	a	lot!

https://www.amazon.com/Peter-Bradley/e/B07L8M5F2Z?ref=sr_ntt_srch_lnk_2&qid=1551391781&sr=1-2

Chapter	Four
	

	

Data	Types
	

Data	 types	are	a	way	to	define	 the	data	 to	make	it	easier	for	 the	user	 to	assign
values	to	a	variable	within	the	program.	The	computer	will	still	compute	the	data
in	 the	 form	 of	 bits,	 and	VBA	 uses	 different	 data	 types	 in	 different	ways.	 The
computer	will	see	 that	binary	value	1000001b,	but	 it	will	not	do	anything	with
that	 value.	 The	 compiler	 in	 VBA	 will	 view	 this	 specific	 value	 as	 a	 letter	 or
number	depending	on	the	data	type	that	you	assign	to	that	value.	It	is	important
to	 understand	 what	 a	 data	 type	 is,	 and	 how	 you	 should	 use	 data	 types.	 You
should	adhere	to	some	rules	when	you	use	data	types.	The	data	can	be	corrupted
by	another	program	or	procedure.

Although	a	variable,	in	general,	is	simply	a	box	for	storing	data,	you	can	think	of
these	data	 types	as	special	boxes	for	storing	specific	kinds	of	data.	Just	as	you
would	use	a	hatbox	to	store	a	hat	and	not	a	car	engine,	you	use	these	special	box
types	 to	 store	 kinds	 of	 data.	 For	 example,	 you	 use	 a	 string	 to	 hold	 text,	 not
logical	(true/false)	values.	VBA	supports	several	standard	data	 types,	 including
Boolean,	Byte,	Long,	Currency,	Integer,	Single,	Decimal,	Double,	Date,	Object,
String	 and	 Variant.	 Apart	 from	 these	 defined	 data	 types,	 you	 can	 also	 create
some	 user-defined	 data	 types	 so	 you	 can	 mark	 the	 necessary	 information	 for
your	program.	A	user-defined	data	type	gives	you	the	power	to	extend	the	VBA
interpretation	 of	 data.	 (The	 computer	 still	 looks	 at	 the	 data	 as	 binary
information.)	 Each	 of	 the	 data	 type	 descriptions	 that	 follow	 has	 a	 different
purpose,	and	you	can	work	with	the	data	type	in	a	variety	of	ways.

Using	strings	for	text
The	first	data	type	that	I	discuss	in	this	chapter	is	one	that	you	have	already	seen
in	the	message	box	examples:	 the	string.	When	you	create	a	message	box,	you
use	 a	 string	 as	 input.	 The	 string	 is	 the	 most	 useful	 data	 type	 in	 VBA.	 This
chapter	only	 introduces	 strings.	The	next	chapter	provides	 information	on	how
you	can	manipulate	strings	in	VBA.

Understanding	strings
Programmers	 often	 use	 fancy	 terms	 for	 things	 that	 the	 average	 person	 easily
recognizes.	A	string	 is	a	sequence	of	characters.	The	characters	are	not	always
printable	but	can	include	control	characters	that	determine	how	the	text	appears

on-screen.	A	string	can	also	 include	special	characters,	 such	as	punctuation,	or
even	special	features,	such	as	a	circumflex	or	an	umlaut.	Although	a	string	can
contain	all	these	elements,	the	main	content	of	a	string	is	always	text.

Adding	strings	together	with	+	or	&
Sometimes	you	will	want	 to	concatenate	 two	or	more	strings	 to	make	a	 longer
string.	Concatenation	is	the	process	of	adding	strings	together.	For	example,	you
might	want	 to	 add	 a	 person’s	 first	 name	 to	 their	 last	 name	 to	 create	 their	 full
name.	Often,	you	need	to	take	information	from	more	than	one	place	and	join	it
together	to	create	a	new	kind	of	information.

Using	character	codes
Strings	can	contain	several	elements.	In	previous	examples,	I	show	you	strings
that	contain	control	character	constants	such	as	vbCrLf.	This	constant	contains
two	 control	 characters:	 a	 carriage	 return	 and	 a	 line	 feed.	 The	 carriage	 return
sends	the	cursor	back	to	the	beginning	of	the	line;	the	line	feed	places	the	cursor
on	the	next	line.	The	result	of	using	both	control	characters	together	is	the	same
as	pressing	Enter	on	the	keyboard.	Strings	can	also	use	a	special	function,	Chr,	to
create	special	characters.	You	can	combine	this	function	with	the	Character	Map
utility	to	produce	any	character	that	you	need	for	your	program

Using	numbers	for	calculations
Most	computers	store	information	in	the	form	of	numbers.	You	can	use	a	number
to	 express	 some	 values	 in	 a	 database,	 perform	 a	 few	 tasks	 in	 spreadsheets	 or
show	 the	 reader	 or	 user	 the	 current	 page	 in	 a	 document	 or	 webpage.	 In
procedures,	numbers	are	used	to	count	iterations	in	loops,	determine	the	position
of	values	in	arrays	or	check	a	specific	condition.	You	can	use	numbers	in	VBA	in
different	ways,	 like	 interacting	with	your	 code	or	determining	which	 character
you	want	to	view	on	screen.

Understanding	the	numeric	types
Numbers	are	always	looked	at	as	a	single	entity,	and	a	number	is	simply	just	that
–	 a	 number.	 A	 computer	 can	 view	 the	 number	 in	 different	 ways	 since	 the
processor	works	differently	with	numbers.	For	example,	you	have	a	data	type	for
an	integer	value,	which	is	a	value	that	does	not	have	a	decimal	point	and	a	data
type	for	a	decimal	point.	The	four	types	of	numeric	data	types	are:

1.	 Integer:	 As	 mentioned	 earlier,	 these	 numbers	 do	 not	 have	 a	 decimal
point.	 Integers	 can	 only	 hold	 whole	 numbers	 like	 5,	 but	 cannot	 hold

numbers	like	5.6.
2.	 Real:	A	real	number	can	contain	a	decimal	point,	and	the	number	after

the	 decimal	 point	 does	 not	 necessarily	 have	 to	 contain	 a	 value.	 This
means	 the	number	5.0	 is	 accepted	as	a	 real	number.	The	compiler	will
store	a	real	number	in	a	different	format	when	compared	to	an	integer.

3.	 Currency:	A	financial	calculation	will	require	some	accuracy	since	you
will	 be	 using	 small	 currency	 values.	 Even	 the	 smallest	 issue	 with	 the
program	can	cause	 an	error.	The	currency	numeric	 allows	you	 to	 store
numbers	with	extreme	precision,	but	the	compiler	takes	a	lot	of	time	to
process	or	store	this	data	type.

4.	 Decimal:	A	computer	stores	information	in	the	binary	or	base	2	format.
When	you	use	a	base	10	or	decimal	value	when	you	work	with	numbers,
the	compiler	will	need	 to	 convert	 the	number	 into	binary	before	 it	 can
use	it.

Using	Boolean	values	to	make	decisions
The	 Boolean	 type	 is	 the	 easiest	 to	 use	 and	 understand.	 This	 type	 is	 used	 to
indicate	yes	or	no,	true	or	false	and	on	or	off.	You	can	use	this	type	to	work	with
any	two-state	information.	It	is	commonly	used	to	represent	data	values	that	are
diametrically	opposed.

Working	with	Operators
Operators	 determine	 how	 VBA	 works	 with	 two	 variables	 and	 what	 result	 it
produces.	 The	 examples	 in	 this	 chapter	 use	 operators	 to	 add	 numbers	 and
concatenate	 (add)	 strings.	 In	 both	 cases,	 your	 code	 uses	 the	 +	 operator	 to
perform	the	task.	However,	the	result	differs.	When	you	are	using	numbers,	the
result	is	a	summation,	such	as	1	+	2	=	3.	When	you	are	using	strings,	the	result	is
a	concatenation,	such	as	Hello	+	World	=	Hello	World.

VBA	groups	operators	into	four	areas:

1.	 Arithmetic:	 Operators	 that	 perform	math	 operations,	 such	 as	 addition
(+),	subtraction	(-),	division	(/),	and	multiplication	(*)	

2.	 Comparison:	Operators	such	as	less	than	(<),	greater	than	(>),	and	equal
(=)	that	compare	two	values	and	produce	a	Boolean	result	

3.	 Concatenation:	 Operators	 such	 as	 &	 and	 +	 that	 are	 used	 to	 add	 two

strings	together
4.	 Logical:	 Operators	 such	 as	 Not,	 And,	 Or,	 and	 Xor	 that	 are	 used	 to

perform	Boolean	operations	on	two	variables

Chapter	Five
	

	

Decision	Making	Statements
	

Few	programs	use	all	the	statements	in	the	program	file	all	the	time.	You	might
want	the	program	to	perform	one	task	when	you	click	Yes	and	another	task	when
you	click	No.	The	statements	for	both	tasks	appear	in	the	code,	but	the	program
executes	only	one	set	of	statements.	To	control	program	execution,	the	developer
adds	 special	 statements	—	 such	 as	 the	 If...Then	 statement	—	 that	 shows	 the
beginning	 and	 end	 of	 each	 task	 and	 decide	which	 task	 to	 execute.	You	might
think	 that	 letting	 the	 computer	 decide	 which	 task	 to	 execute	 would	 cause	 the
developer	 to	 lose	 control	 of	 the	 program.	However,	 the	 developer	 has	 not	 lost
control	 of	 the	 program,	 because	 the	 decision-making	 process	 is	 predefined	 as
part	of	the	program	design.

If...Then	Statement
Most	programs	require	decision-making	code.	When	you	need	to	make	the	same
decision	every	time	that	you	perform	a	task	and	the	outcome	of	the	decision	is
always	the	same,	then	making	the	decision	is	something	that	you	can	tell	VBA	to
do	 for	you	by	using	 the	 If...Then	statement.	Decision-making	code	has	 several
benefits:

1.	 Consistency:	The	decision	is	made	by	using	the	same	criteria	and	in	the
same	manner	every	time.

2.	 Speed:	A	 computer	 can	make	 static	 decisions	 faster	 than	 humans	 can.
However,	 the	 decision	must	 be	 the	 same	 every	 time,	 and	 the	 decision
must	have	the	same	answer	set	every	time.

3.	 Complexity:	 Requesting	 that	 the	 computer	 make	 static	 decisions	 can
reduce	 program	 complexity.	 Fewer	 decisions	 translate	 into	 ease	 of	 use
for	most	people.

Example:

Public	Sub	IfThenTest()

‘	Create	a	variable	for	the	selected	text.

Dim	TestText	As	String

‘	Get	the	current	selection.

TestText	=	ActiveWindow.Selection.Text

‘	Test	the	selection	for	“Hello.”

If	TestText	=	“Hello”	Then

‘	Modify	the	selected	text	to	show	it’s	correct.

TestText	=	“Correct!”	+	vbCrLf	+	“Hello”

End	If

If...Then...Else	statement
The	 If...Then...Else	 statement	 makes	 one	 of	 two	 choices.	 If	 the	 expression
controlling	the	statement	is	true,	VBA	executes	the	first	set	of	statements.	On	the
other	hand,	if	the	expression	is	false,	VBA	executes	the	second	set	of	statements.

If...Then...ElseIf	statement
When	making	multiple	comparisons,	you	can	use	the	If...Then...ElseIf	statement
to	make	the	code	easier	to	read.	Using	this	format	can	also	reduce	the	number	of
decisions	that	VBA	must	make,	which	ensures	that	your	code	runs	as	quickly	as
possible.

Using	the	IIf	function
You	 might	 need	 to	 decide	 in	 a	 single	 line	 of	 code	 instead	 of	 the	 three	 lines
(minimum)	that	other	decision-making	techniques	require.	The	IIf	function	is	a
good	 choice	 when	 you	 need	 to	 make	 simple	 and	 concise	 decisions	 in	 your
program.	 It	 has	 the	 advantage	 of	 providing	 decision-making	 capability	 in	 a
single	line	of	code.

Chapter	Six
	

	

Loops
	

Many	 tasks	 that	 you	 perform	 require	 more	 than	 one	 check,	 change,	 or	 data
manipulation.	You	do	not	change	just	one	entry	in	a	worksheet;	you	change	all
the	affected	entries.	Likewise,	you	do	not	change	just	one	word	in	a	document;
you	might	 change	 all	 occurrences	 based	 on	 certain	 criteria.	 Databases	 require
multiple	changes	for	almost	any	task.

Loops	provide	a	method	for	performing	tasks	for	more	than	one	time.	You	can
use	 loops	 to	 save	 code-writing	 time.	 Simply	 write	 the	 code	 to	 perform	 the
repetitive	task	once	and	then	tell	VBA	to	perform	the	task	multiple	times.	When
using	loops,	you	decide	how	the	code	determines	when	to	stop.	You	can	tell	the
loop	 to	 execute	 a	 specific	 number	 of	 times	 or	 to	 continue	 executing	 until	 the
program	meets	a	certain	condition.

Do	While...Loop	statement
A	Do	While...Loop	statement	keeps	performing	a	task	until	a	certain	condition	is
true.	The	loop	checks	the	expression	first	and	then	executes	the	code	within	the
structure	if	the	expression	is	true.	You	use	this	loop	to	perform	processing	zero
or	more	times.	A	Do	While...Loop	works	especially	well	if	you	cannot	determine
the	number	of	times	that	the	loop	should	execute	when	you	design	your	program.

Do...Loop	While	statement
The	 Do...Loop	 While	 statement	 works	 the	 same	 as	 the	 Do	 While...Loop
statement.	The	difference	is	that	this	statement	always	executes	once	because	the
expression	used	to	verify	a	need	to	loop	appears	at	the	end	of	the	structure.	Even
if	the	expression	is	false,	this	statement	still	executes	at	least	one	time.	You	can
use	 this	 statement	when	you	want	 to	ensure	 that	a	 task	 is	always	completed	at
least	one	time.

Do	Until...Loop	statement
The	 Do	 Until...Loop	 statement	 continues	 processing	 information	 until	 the
expression	is	false.	You	can	view	the	Do	While...Loop	statement	as	a	loop	that
continues	while	 a	 task	 is	 incomplete.	The	Do	Until...Loop	 statement	 continues
until	the	task	is	finished.	The	subtle	difference	between	the	two	statements	points

out	something	interesting:	They	rely	on	your	perspective	of	the	task	to	complete.
These	two	statement	types	are	completely	interchangeable.	The	big	difference	is
how	you	define	the	expression	used	to	signal	the	end	of	the	looping	sequence.

Do...Loop	Until	statement
The	 Do...Loop	 Until	 statement	 is	 the	 counterpart	 of	 the	 Do	 Until...Loop
statement.	This	statement	examines	 the	expression	at	 the	end	of	 the	 loop,	so	 it
always	executes	at	least	once	even	if	the	expression	is	false.

For...Next	statement
The	For...Next	statement	is	very	handy	for	performing	a	task	a	specific	number
of	times.	If	you	can	determine	how	many	times	to	do	something	in	advance,	this
is	 the	 best	 looping	 option	 to	 use	 because	 there	 is	 less	 chance	 of	 creating	 an
infinite	loop.	You	can	create	absurdly	large	loops,	but	they	eventually	end.

For	Each...Next	statement
The	 For	 Each...Next	 statement	 is	 like	 the	 For...Next	 statement	 in	 operation.
However,	this	statement	does	not	rely	on	an	external	counter.	The	statement	uses
an	object	index	as	a	counter.	The	advantage	of	using	this	statement	is	that	you	do
not	 have	 to	 figure	 out	 how	 many	 times	 to	 perform	 the	 loop	 —	 the	 object
provides	 this	 information.	The	disadvantage	of	using	 this	 statement	 is	 that	you
lose	a	little	control	over	how	the	loop	executes	because	the	counter	is	no	longer
under	your	control.

	

	

	

Found	 this	 title	 interesting	or	useful?	Then	a	review	on	Amazon	will	be	highly
appreciated!

https://www.amazon.com/Peter-Bradley/e/B07L8M5F2Z?ref=sr_ntt_srch_lnk_2&qid=1551391781&sr=1-2

Chapter	Seven
	

	

Arrays
	

Arrays	provide	a	way	for	your	programs	to	store	more	than	one	item	in	a	single
container.	Think	of	the	array	as	a	large	box	with	a	bunch	of	small	boxes	inside.
Each	small	box	can	store	a	single	value.	You	decide	how	many	small	boxes	the
array	 can	 hold	when	 you	 create	 the	 array.	Use	 arrays	when	 you	 need	 to	 store
several	related	items	of	the	same	data	type.

Structured	Storage
An	array	is	a	list	of	items.	When	you	write	a	list	of	tasks	to	perform	for	the	day,
you	create	an	array.	The	piece	of	paper	 is	a	 single	container	 that	holds	several
strings,	each	of	which	is	a	task	that	you	must	perform.	Likewise,	you	can	create
a	single	piece	of	paper	in	your	VBA	program	—	an	array	—	and	use	that	array	to
hold	 multiple	 items.	 You	 can	 define	 arrays	 by	 using	 several	 techniques.
However,	all	these	techniques	use	the	same	basic	approach.

Example:

‘	Tell	VBA	to	start	all	arrays	at	0.
Option	Base	0
Public	Sub	SingleDimension()
‘	Define	an	output	string.
Dim	Output	As	String
‘	Define	a	variant	to	hold	individual	strings.
Dim	IndividualString	As	Variant
‘	Define	the	array	of	strings.
Dim	StringArray(5)	As	String
‘	Fill	each	array	element	with	information.
StringArray(0)	=	“This”
StringArray(1)	=	“Is”
StringArray(2)	=	“An”
StringArray(3)	=	“Array”
StringArray(4)	=	“Of”

StringArray(5)	=	“Strings”
‘	Use	the	For	Each...Next	statement	to	get	each	array
‘	element	and	place	it	in	a	string.
For	Each	IndividualString	In	StringArray
‘	Create	a	single	output	string	with	the	array
‘	array	elements.
Output	=	Output	+	IndividualString	+	“	“
Next
‘	Display	the	result.
MsgBox	Trim(Output),	_
vbInformation	Or	vbOKOnly,	_
“Array	Content”
End	Sub

Notice	that	the	code	begins	with	an	Option	Base	0	statement.	This	statement	tells
VBA	whether	you	want	 to	start	counting	array	elements	at	0	or	1.	The	default
setting	 is	0.	Most	programming	 languages	use	0	as	 the	starting	point,	which	 is
why	Microsoft	made	0	the	default	for	VBA.	However,	older	versions	of	Visual
Basic	(including	VBA)	use	1	as	the	starting	point.	When	you	want	to	ensure	that
your	program	works	in	every	environment,	include	the	Option	Base	statement.

Because	 the	array	begins	at	0	and	not	at	1,	you	can	store	six	 items	 in	an	array
that	 is	 defined	 as	 having	 five	 elements.	 The	 number	 that	 you	 include	 in	 the
declaration	 is	 always	 the	 top	 element	 number	 of	 the	 array	 and	 not	 the	 actual
number	of	elements.

Array	Types
One	can	classify	an	array	in	several	ways,	and	the	first	method	is	the	type	of	data
that	the	array	will	hold.	A	string	array	is	very	different	from	an	integer	array,	but
the	array	will	always	ensure	 that	 the	elements	are	unique.	 If	you	use	a	Variant
data	type,	you	can	mix	the	data	types	in	an	array.	You	should	always	be	careful
when	 you	 use	 this	 technique	 since	 it	 can	 lead	 to	 errors	 which	 are	 difficult	 to
debug.

Another	 method	 is	 to	 define	 the	 dimensions	 in	 an	 array.	 The	 dimension	 will

define	the	number	of	directions	in	which	the	array	will	hold	the	information.	A
simple	list,	like	the	one	in	the	earlier	"Understanding	array	usage"	section	gives
an	example	of	a	single-dimensional	array.	A	table	which	consists	of	columns	and
rows	 is	a	 two-dimensional	array.	One	can	create	an	array	using	any	number	of
dimensions.

Example:	Adding	an	Element	to	an	Array

Dim	a	As	Range

Dim	arr	As	Variant		'Just	a	Variant	variable	(i.e.	don't	pre-define	it	as	an	array)

For	Each	a	In	Range.Cells

				If	IsEmpty(arr)	Then

								arr	=	Array(a.value)	'Make	the	Variant	an	array	with	a	single
element

				Else

								ReDim	Preserve	arr(UBound(arr)	+	1)	'Add	next	array	element

								arr(UBound(arr))	=	a.value										'Assign	the	array	element

				End	If

Next

VBA	Array
In	this	section,	we	will	look	at	the	steps	you	need	to	follow	to	create	an	array.

Step	1	–	Create	A	New	Workbook

1.	 Open	Microsoft	Excel.

2.	 Save	the	excel	workbook	with	the	extension	.xlsm

Step	2	–	Add	A	Command	Button

Now	 that	 you	 are	 familiar	 with	 creating	 an	 interface	 in	 a	 workbook.	 The
previous	chapters	 in	 the	book	will	help	you	gather	more	 information	about	 the
subroutines	or	subs	and	functions	in	VBA.

1.	 Add	a	command	button	to	the	active	worksheet.

2.	 Set	the	property	name	to	cmdLoadBeverages.

3.	 Now,	set	the	Caption	Property	as	Load	Beverages.

The	interface	should	now	display	the	following:

Step	3	–	Save	the	File

1.	 You	should	now	click	the	save	as	button	in	the	macro-enabled	form.

Step	4	–	Write	the	Code

Let	us	now	write	the	code	for	the	application.

1.	 Right	click	on	the	button	and	choose	to	view	the	code.

2.	 Add	the	code	in	the	code	window.

Private	Sub	cmdLoadBeverages_Click()

				Dim	Drinks(1	To	4)	As	String

				Drinks(1)	=	"Pepsi"

				Drinks(2)	=	"Coke"

				Drinks(3)	=	"Fanta"

				Drinks(4)	=	"Juice"

				Sheet1.Cells(1,	1).Value	=	"My	Favorite	Beverages"

				Sheet1.Cells(2,	1).Value	=	Drinks(1)

				Sheet1.Cells(3,	1).Value	=	Drinks(2)

				Sheet1.Cells(4,	1).Value	=	Drinks(3)

				Sheet1.Cells(5,	1).Value	=	Drinks(4)

End	Sub

Example	to	Enter	Student’s	Marks
Without	An	Array

In	 the	 example	below,	we	will	 look	at	 how	you	can	 enter	 the	marks	 for	 every
student	without	using	an	array.

Public	Sub	StudentMarks()
				With	ThisWorkbook.Worksheets("Sheet1")
								'	Declare	variable	for	each	student
								Dim	Student1	As	Integer
								Dim	Student2	As	Integer
								Dim	Student3	As	Integer
								Dim	Student4	As	Integer
								Dim	Student5	As	Integer
								'	Read	student	marks	from	cell
								Student1	=	.Range("C2").Offset(1)

								Student2	=	.Range("C2").Offset(2)
								Student3	=	.Range("C2").Offset(3)
								Student4	=	.Range("C2").Offset(4)
								Student5	=	.Range("C2").Offset(5)
								'	Print	student	marks
								Debug.Print	"Students	Marks"
								Debug.Print	Student1
								Debug.Print	Student2
								Debug.Print	Student3
								Debug.Print	Student4
								Debug.Print	Student5
				End	With
End	Sub

The	output	will	be	the	following,

Using	an	Array
Public	Sub	StudentMarksArr()
				With	ThisWorkbook.Worksheets("Sheet1")
								'	Declare	an	array	to	hold	marks	for	5	students
								Dim	Students(1	To	5)	As	Integer
								'	Read	student	marks	from	cells	C3:C7	into	array
								Dim	i	As	Integer
								For	i	=	1	To	5
												Students(i)	=	.Range("C2").Offset(i)
								Next	i

								'	Print	student	marks	from	the	array
								Debug.Print	"Students	Marks"
								For	i	=	LBound(Students)	To	UBound(Students)
												Debug.Print	Students(i)
								Next	i
				End	With
End	Sub

Notice	the	difference	in	the	variables	used	in	the	two	programs,	and	also	notice
the	length	of	the	program.

Example	with	Loops
Public	Sub	ArrayLoops()

				'	Declare		array

				Dim	arrMarks(0	To	5)	As	Long

				'	Fill	the	array	with	random	numbers

				Dim	i	As	Long

				For	i	=	LBound(arrMarks)	To	UBound(arrMarks)

								arrMarks(i)	=	5	*	Rnd

				Next	i

				'	Print	out	the	values	in	the	array

				Debug.Print	"Location",	"Value"

				For	i	=	LBound(arrMarks)	To	UBound(arrMarks)

								Debug.Print	i,	arrMarks(i)

				Next	i

End	Sub

Sorting	an	Array
Sub	QuickSort(arr	As	Variant,	first	As	Long,	last	As	Long)

		Dim	vCentreVal	As	Variant,	vTemp	As	Variant

		Dim	lTempLow	As	Long

		Dim	lTempHi	As	Long

		lTempLow	=	first

		lTempHi	=	last

		vCentreVal	=	arr((first	+	last)	\	2)

		Do	While	lTempLow	<=	lTempHi

				Do	While	arr(lTempLow)	<	vCentreVal	And	lTempLow	<	last

						lTempLow	=	lTempLow	+	1

				Loop

				Do	While	vCentreVal	<	arr(lTempHi)	And	lTempHi	>	first

						lTempHi	=	lTempHi	-	1

				Loop

				If	lTempLow	<=	lTempHi	Then

								'	Swap	values

								vTemp	=	arr(lTempLow)

								arr(lTempLow)	=	arr(lTempHi)

								arr(lTempHi)	=	vTemp

									'	Move	to	next	positions

								lTempLow	=	lTempLow	+	1

								lTempHi	=	lTempHi	-	1

						End	If

				Loop

				If	first	<	lTempHi	Then	QuickSort	arr,	first,	lTempHi

		If	lTempLow	<	last	Then	QuickSort	arr,	lTempLow,	last

		End	Sub

Example	for	Creating	a	Two-Dimensional	Array
Public	Sub	TwoDimArray()

				'	Declare	a	two	dimensional	array

				Dim	arrMarks(0	To	3,	0	To	2)	As	String

				'	Fill	the	array	with	text	made	up	of	i	and	j	values

				Dim	i	As	Long,	j	As	Long

				For	i	=	LBound(arrMarks)	To	UBound(arrMarks)

								For	j	=	LBound(arrMarks,	2)	To	UBound(arrMarks,	2)

												arrMarks(i,	j)	=	CStr(i)	&	":"	&	CStr(j)

								Next	j

				Next	i

				'	Print	the	values	in	the	array	to	the	Immediate	Window

				Debug.Print	"i",	"j",	"Value"

				For	i	=	LBound(arrMarks)	To	UBound(arrMarks)

								For	j	=	LBound(arrMarks,	2)	To	UBound(arrMarks,	2)

											Debug.Print	i,	j,	arrMarks(i,	j)

								Next	j

				Next	i

End	Sub

Chapter	Eight
	

	

How	to	Manipulate	Data	in	Excel
	

A	 macro	 processes	 code	 written	 in	 the	 Visual	 Basic	 Editor	 to	 manage	 and
manipulate	huge	volumes	of	data.	The	previous	chapter	provides	information	on
how	you	can	use	a	macro	to	format	certain	fields	or	cells	in	Excel	to	meet	your
criteria.

The	following	is	an	example	of	a	VBA	script:	

Sub	ConfigureLogic()
Dim	qstEntries
Dim	dqstEntries
Dim	qstCnt,	dqstCnt
qstEntries	=	Range("QualifiedEntry").Count
qst	=	qstEntries	-	WorksheetFunction.CountIf(Range("QualifiedEntry"),
"")
ReDim	QualifiedEntryText(qst)
'MsgBox	(qst)
dqstEntries	=	Range("DisQualifiedEntry").Count
dqst	=	dqstEntries	-
WorksheetFunction.CountIf(Range("DisQualifiedEntry"),	"")
ReDim	DisqualifiedEntryText(dqst)
'MsgBox	(dqst)
For	qstCnt	=	1	To	qst
QualifiedEntryText(qstCnt)	=
ThisWorkbook.Worksheets("Qualifiers").Range("J"	&	8	+	qstCnt).value
'MsgBox	(QualifiedEntryText(qstCnt))
logging	("Configured	Qualified	Entry	entry	#"	&	qstCnt	&	"	as	{"	&
QualifiedEntryText(qstCnt)	&	"}")
Next
For	dqstCnt	=	1	To	dqst

DisqualifiedEntryText(dqstCnt)	=
ThisWorkbook.Worksheets("Qualifiers").Range("M"	&	8	+
dqstCnt).value
'MsgBox	(DisqualifiedEntryText(dqstCnt))
logging	("Configured	DisQualified	Entry	entry	#"	&	qstCnt	&	"	as	{"	&
DisqualifiedEntryText(dqstCnt)	&	"}")
Next
includeEntry	=
ThisWorkbook.Worksheets("Qualifiers").Range("IncludeSibling").value
'MsgBox	(includeEntry)
logging	("Entrys	included	in	search	-	"	&	includeEntry)
End	Sub

How	to	Analyze	and	Manipulate	Data	on	a	Spreadsheet
If	you	want	to	use	VBA	to	analyze	data,	you	should	check	the	macro	settings	in
Excel.	Ensure	that	the	settings	as	per	your	requirements.	You	should	also	make
sure	that	the	macro	settings	are	activated	in	Excel.	Now,	create	a	worksheet	and
call	it	‘Qualifiers.’	We	will	be	using	this	worksheet	to	check	the	data	and	ensure
that	the	data	qualifies	all	the	selections	that	you	require.	You	must	then	set	up	the
qualifiers	based	on	 the	 code	you	have	written.	You	cannot	 cut	 and	paste	 these
qualifiers	but	will	need	to	enter	them	manually.

ThisWorkbook.Worksheets("Qualifiers").Range("J"	&	8	+	qstCnt).value

How	to	Construct	an	Array	and	Locate	the	Range
In	the	above	function,	the	range	will	start	from	Cell	J9.	The	function	notes	8,	but
the	 range	 is	 9	 since	we	 have	 declared	 the	 qstCnt	 to	 be	 1	 using	 the	 following
code:

For	qstCnt	=	1	To	qst

It	is	because	of	this	statement	that	the	list	will	start	at	9.

If	you	want	 to	construct	an	array	using	 the	entries	 in	 the	Qualifiers	worksheet,
you	should	add	random	words	or	numbers	between	cells	J9	and	J13,	 including
those	cells.	When	the	rows	are	complete,	you	can	find	and	manipulate	the	data	in
Excel.

Private	Sub	CountSheets()

Dim	sheetcount

Dim	WS	As	Worksheet

sheetcount	=	0

logging	("*****Starting	Scrub*********")

For	Each	WS	In	ThisWorkbook.Worksheets

sheetcount	=	sheetcount	+	1

If	WS.Name	=	"Selected"	Then

'need	to	log	the	date	and	time	into	sheet	named	"Logging"

ActionCnt	=	ActionCnt	+	1

logging	("Calling	sheet:	"	&	WS.Name)

scrubsheet	(sheetcount)

Else

ActionCnt	=	ActionCnt	+	1

logging	("Skipped	over	sheet:	"	&	WS.Name)

End	If

Next	WS

'MsgBox	("ending")

ActionCnt	=	ActionCnt	+	1

logging	("****Scrub	DONE!")

Application.ScreenUpdating	=	True

End	Sub

The	following	example	will	show	you	how	you	can	write	a	macro	for	a	working
tab	counter.

Dim	sheetcount

Dim	WS	As	Worksheet

sheetcount	=	0

logging	("*****Starting	Scrub*********")

For	Each	WS	In	ThisWorkbook.Worksheets

sheetcount	=	sheetcount	+	1

When	you	initialize	the	sheet	count	variable,	you	should	first	set	it	to	zero	before
you	restart	the	counter.	You	can	also	use	the	logging()	subroutine	to	keep	track
of	all	the	actions	in	the	qualifiers	tab	to	make	the	correct	selections.	The	For	loop
in	the	above	example	will	set	up	the	counting	variable	in	the	Active	Workbook.
Once	you	initialize	WS,	it	will	make	the	worksheet	that	you	are	currently	in	the
active	worksheet.	Since	this	module	is	unnamed,	it	will	run	in	any	workbook.	If
you	have	many	workbooks	open,	this	module	may	run	in	an	incorrect	workbook.
If	you	want	 to	avoid	any	errors,	you	should	name	the	workbook	that	you	want
the	module	to	run	in.

When	 the	 loop	runs,	 it	will	add	another	variable	 to	 the	sheet	count	and	keep	a
track	of	the	tabs.	We	will	then	move	to

If	WS.Name	=	"Selected"	Then
'need	to	log	the	date	and	time	into	sheet	named	"Logging"
ActionCnt	=	ActionCnt	+	1
logging	("Calling	sheet:	"	&	WS.Name)
scrubsheet	(sheetcount)
Else
ActionCnt	=	ActionCnt	+	1
logging	("Skipped	over	sheet:	"	&	WS.Name)
End	If

In	 this	 section	of	 the	code,	we	are	 looking	 for	 the	Selected	 tab.	 If	 the	variable
WS	 is	 the	 same	 as	 the	 Selected	 worksheet,	 you	 can	 fire	 the	 Scrub	 sheet
subroutine.	 If	 the	variable	WS	 is	not	 the	same	as	 the	Selected	worksheet,	 then
the	sheet	will	be	skipped,	and	the	action	will	be	counted.	The	code	above	is	an
example	of	how	you	can	write	a	macro	to	count	the	number	of	tabs	and	locate	a
specific	tab.

The	next	parts	of	this	chapter	talk	about	the	different	ways	you	can	manipulate
data	in	Excel.

Different	Ways	to	Manipulate	Data
Count	the	Number	of	Sheets	in	a	Workbook

Dim	TAB
For	Each	TAB	In	ThisWorkbook.Worksheets
'some	routine	here
Next

Filter	by	Using	Advanced	Criteria

Range("A2:Z99").Sort	key1:=Range("A5"),	order1:=xlAscending,
Header:=xlNo
Find	The	Last	Column,	Cell	Or	Row	On	A	Worksheet
Dim	cellcount
cellcount	=	Cells(ThisWorkbook.Worksheets("worksheet").Rows.Count,
1).End(xlUp).Row

Getting	Values	from	Another	Worksheet

dim	newvalue
newvalue	=	ThisWorkbook.Worksheets("worksheet").Range("F1").value
Apply	Auto-Fit	To	A	Column
Columns("A:A").EntireColumn.AutoFit

Adding	Named	Ranges	to	Specific	Sheets

ThisWorkbook.Worksheets("worksheet").Names.Add	Name:="Status",
RefersToR1C1:="=worksheet!C2"
Insert	Rows	Into	A	Worksheet
Dim	Row,	Column
Cells(Row,	Column).EntireRow.Select
Selection.Insert

Copy	an	Entire	Row	for	Pasting

ActiveSheet.Range("A1").EntireRow.Select
Selection.Copy
Delete	An	Entire	Row
ActiveSheet.Range("A1").EntireRow.Select
Selection.Delete

Inserting	a	Column	into	a	Worksheet

Dim	Row,	Column
Cells(Row,	Column).EntireColumn.Select
Selection.Insert

Insert	Multiple	Columns	into	a	Worksheet

Dim	insertCnt
Dim	Row,	Column
For	insertCnt	=	1	To	N
ThisWorkbook.Worksheets("worksheet").Select
Cells(Row,	Column).EntireColumn.Select
Selection.Insert
Next

Select	a	Specific	Sheet

ThisWorkbook.Worksheets("worksheet").Select

Compare	Values	In	A	Range

Dim	firstrange

Dim	Logictest

Logictest	=	"some	word	or	value"

If	(Range(firstrange).value	=	Logictest)	then

'some	routine	here

End	If

Chapter	Nine
	

	

Working	with	Excel	Workbooks
and	Worksheets

	

The	Workbook	Collection
The	Workbooks	collection	provides	a	list	of	all	workbooks	that	you	have	open	at
a	given	 time.	You	can	select	a	single	workbook	from	this	 list	 that	you	want	 to
use	in	your	program.	The	Workbook	object	that	you	select	will	provide	general
information	about	the	file,	including	its	name	and	location.	You	can	also	use	this
object	 to	 access	 other	 major	 objects	 in	 the	 document.	 These	 objects	 include
standalone	Chart	objects	and	Worksheet	objects.

Example:

Public	Sub	WorkbookDemo()
‘	Holds	the	output	data.
Dim	Output	As	String
‘	Get	the	test	workbook.
Dim	ActiveWorkbook	As	Workbook
Set	ActiveWorkbook	=
Application.Workbooks(“ExcelObjects.xls”)
‘	Get	the	workbook	name	and	location.
Output	=	“Name:	“	+	ActiveWorkbook.Name	+	vbCrLf	+	_
“Full	Name:	“	+	ActiveWorkbook.FullName	+	vbCrLf	+	_
“Path:	“	+	ActiveWorkbook.Path	+	vbCrLf	+	vbCrLf
‘	Holds	the	current	sheet.
Dim	CurrSheet	As	Worksheet
‘	Look	for	every	sheet.
Output	=	“Worksheet	List:”	+	vbCrLf
For	Each	CurrSheet	In	ActiveWorkbook.Worksheets
Output	=	Output	+	CurrSheet.Name	+	vbCrLf
Next

‘	Holds	the	current	chart.
Dim	CurrChart	As	Chart
‘	Look	for	every	chart.
Output	=	Output	+	vbCrLf	+	“Chart	List:”	+	vbCrLf
For	Each	CurrChart	In	ActiveWorkbook.Charts
Output	=	Output	+	CurrChart.Name	+	vbCrLf
Next
‘	Display	the	output.
MsgBox	Output,	vbInformation	Or	vbOKOnly,	“Object	List”
End	Sub

The	code	starts	by	using	the	Application.Workbooks	collection	which	will	allow
you	to	retrieve	a	single	Workbook	object.	You	should	always	use	the	full	name
of	 the	 Excel	 file	 as	 the	 index	 in	 the	 collection.	 You	 should	 also	 include	 the
extension	 of	 the	 file.	 The	 resulting	 workbook	 object	 will	 contain	 information
about	 the	document.	This	object	will	also	provide	 the	summary	 information	of
the	document,	and	you	can	use	this	object	to	control	and	maintain	the	windows,
and	also	add	new	elements	like	worksheets.

Once	the	code	accesses	the	workbook,	it	will	use	the	ActiveWorkbook	object	to
access	 the	 worksheets	 in	 the	 list.	 The	 code	 will	 rely	 on	 the	 For	 Each...Next
statement	 to	 access	 these	 worksheets.	 Alternatively,	 you	 can	 use	 an	 index	 to
access	the	individual	worksheets	in	the	code.	The	Worksheet,	ActiveWorksheet,
contains	 properties	 and	methods	 for	manipulating	 any	 data	 that	 the	Worksheet
contains,	 including	 embedded	 objects,	 such	 as	 charts	 or	 even	 pictures.	 Every
worksheet	appears	in	the	ActiveWorkbook	object	list	by	its	object	name	(not	the
friendly	 name	 that	 you	 give	 it),	 so	 you	 can	 access	 them	 without	 using	 the
Worksheets	collection.

Only	independent	charts	will	appear	when	you	use	the	ActiveWorkbook	object.
The	same	technique	can	be	used	to	access	any	Chart	object	in	the	worksheet	as	a
Worksheet	 object.	 The	 difference	 is	 that	 you	 should	 use	 Charts	 Collection
instead	of	the	Worksheets	Collection.	You	should	note	that	the	Chart	names	will
appear	in	the	list	of	objects	that	are	present	in	the	ActiveWorkbook.	This	means
that	you	can	access	the	chart	directly	without	having	to	use	the	Charts	collection.

The	Worksheet	Collection
One	of	the	easiest	methods	to	access	a	worksheet	in	many	situations	is	to	use	the
Sheets	collection.	You	do	not	follow	the	Excel	object	hierarchy	when	you	want
to	identify	the	worksheet	you	want	tot	work	with.	If	you	access	the	worksheet	at
the	 top	 of	 the	 hierarchy,	 it	means	 that	 there	 are	 no	 objects	 that	 exist	 at	 lower
levels	available	either,	so	this	technique	is	a	tradeoff.

You	can	access	any	type	of	sheet,	and	not	just	a	worksheet	if	you	use	the	Sheets
collection.	A	standalone	Chart	object	that	you	use	in	any	of	the	sheets	can	also
come	 into	 this	collection.	Look	at	 the	example	 in	 the	previous	 section,	 "Using
the	Workbooks	 collection,"	 and	you	will	 notice	 that	 the	 charts	 and	worksheets
are	treated	as	different	objects.

Example:

Public	Sub	ListSheets()
‘	An	individual	entry.
Dim	ThisEntry	As	Variant
‘	Holds	the	output	data.
Dim	Output	As	String
‘	Get	the	current	number	of	worksheets.
Output	=	“Sheet	Count:	“	+	_
CStr(Application.Sheets.Count)
‘	List	each	worksheet	in	turn.
For	Each	ThisEntry	In	Application.Sheets
‘	Verify	there	is	a	sheet	to	work	with.
If	ThisEntry.Type	=	XlSheetType.xlWorksheet	Then
Output	=	Output	+	vbCrLf	+	ThisEntry.Name
End	If
Next
‘	Display	the	result.
MsgBox	Output,	_
vbInformation	or	vbOKOnly,	_

“Worksheet	List”
End	Sub

In	the	example	above,	we	will	create	a	Variant	which	will	hold	the	different	sheet
types.	If	you	use	a	Chart	or	Worksheet	object,	the	code	will	fail	since	the	Sheets
enumeration	will	return	a	valid	type,	but	not	the	type	you	need.	The	issue	with
using	this	Variant	is	that	the	editor	in	VBA	cannot	provide	automatic	completion
or	balloon	help.	You	have	to	ensure	that	you	type	the	method	in	correctly	and	use
the	correct	property	names	without	any	help.

Once	 the	 code	 creates	 the	 necessary	 variables,	 it	 will	 provide	 the	 number	 of
sheets	in	the	workbook.	This	number	will	include	all	the	worksheets	and	charts
in	the	workbook,	and	not	just	the	sheets.

A	For	Each...Next	loop	will	retrieve	each	sheet	in	turn.	You	should	notice	how
we	use	the	If...Then	statement	to	compare	the	values	of	the	Variant	type	and	the
XlSheetType.xlWorksheet	 constant.	 When	 you	 use	 this	 technique,	 you	 can
separate	 the	 worksheet	 you	 are	 using	 from	 other	 Sheets	 collection	 types
whenever	necessary.	

Charts	Collection
The	Charts	collection	is	a	way	to	build	a	custom	chart	whenever	necessary.	An
advantage	of	 creating	charts	by	using	a	 code	 is	 that	 they	do	not	use	 too	much
space,	and	you	can	create	a	variety	of	different	charts	without	spending	too	much
time	on	the	theme.

Example:

Public	Sub	BuildChart()

‘	Create	a	new	chart.

Dim	NewChart	As	Chart

Set	NewChart	=	Charts.Add(After:=Charts(Charts.Count))

‘	Change	the	name.

NewChart.Name	=	“Added	Chart”

‘	Create	a	series	for	the	chart.

Dim	TheSeries	As	Series

NewChart.SeriesCollection.Add	_

Source:=Worksheets(“My	Data	Sheet”).Range(“A$3:B$8”)

Set	TheSeries	=	NewChart.SeriesCollection(1)

‘	Change	the	chart	type.

TheSeries.ChartType	=	xl3DPie

‘	Change	the	series	title.

TheSeries.Name	=	“Data	from	My	Data	Sheet”

‘	Perform	some	data	formatting.

With	TheSeries

.HasDataLabels	=	True

.DataLabels.ShowValue	=	True

.DataLabels.Font.Italic	=	True

.DataLabels.Font.Size	=	14

End	With

‘	Modify	the	chart’s	legend.

With	NewChart

.HasLegend	=	True

.Legend.Font.Size	=	14

End	With

‘	Modify	the	3-D	view.

With	NewChart

.Pie3DGroup.FirstSliceAngle	=	90

.Elevation	=	45

End	With

‘	Format	the	chart	title.

NewChart.ChartTitle.Font.Bold	=	True

NewChart.ChartTitle.Font.Size	=	18

NewChart.ChartTitle.Format.Line.DashStyle	_

=	msoLineSolid

NewChart.ChartTitle.Format.Line.Style	=	msoLineSingle

NewChart.ChartTitle.Format.Line.Weight	=	2

‘	Compute	the	optimal	plot	area	size.

Dim	Size	As	Integer

If	NewChart.PlotArea.Height	>	NewChart.PlotArea.Width

Then

Size	=	NewChart.PlotArea.Width

Else

Size	=	NewChart.PlotArea.Height

End	If

‘	Reduce	the	plot	area	by	10%.

Size	=	Size	-	(Size	*	0.1)

‘	Format	the	plot	area.

With	NewChart.PlotArea

.Interior.Color	=	RGB(255,	255,	255)

.Border.LineStyle	=	XlLineStyle.xlLineStyleNone

.Height	=	Size

.Width	=	Size

.Top	=	75

.Left	=	100

End	With

‘	Format	the	labels.

Dim	ChartLabels	As	DataLabel

Set	ChartLabels	=	TheSeries.DataLabels(0)

ChartLabels.Position	=	xlLabelPositionOutsideEnd

End	Sub

In	the	above	example,	the	code	will	create	a	new	chart.	This	chart	will	appear	in
the	 workbook	 as	 the	 last	 chart	 but	 will	 not	 appear	 as	 the	 last	 item	 in	 the
workbook.	A	worksheet	which	appears	after	the	last	chart	will	also	appear	after
the	 new	 chart	 that	 is	 created.	 The	 NewChart.Name	 property	 will	 change	 the
name	that	appears	at	the	bottom	of	the	chart.	This	property	does	not	change	the
name	of	the	chart.

At	this	point,	the	chart	is	blank,	and	you	must	add	at	lear	one	series	to	the	chart	if
you	want	 to	display	 some	data	on	 it.	A	pie	 chart	will	 use	only	one	 series	 at	 a
time,	 but	 there	 are	 other	 charts	 that	 allow	you	 to	 use	multiple	 data	 series.	 For
instance,	you	can	use	a	bubble	chart	 to	 show	multiple	 series	of	data.	The	next
task	of	the	code	will	create	a	data	series	based	on	the	worksheet	named	My	Data
Sheet.	You	will	notice	 that	 the	code	cannot	 set	TheSeries	variable	equal	 to	 the
output	of	the	method	Add	in	this	example.	Therefore,	it	uses	an	additional	step	to
obtain	the	new	series	from	the	SeriesCollection	collection.

You	should	also	notice	that	the	Range	property	has	two	columns	of	information.
When	you	are	working	with	Excel	2007,	 the	 first	 column	defines	 the	XValues
property	for	the	chart.	The	XValues	property	determines	the	entries	in	the	legend
for	 a	 pie	 chart.	 On	 the	 other	 hand,	 these	 values	 appear	 at	 the	 bottom	 of	 the
display	for	a	bar	chart.	In	both	cases,	you	want	to	display	the	labels	onscreen	so
that	you	can	see	their	effect	on	the	overall	display	area.	

Chapter	Ten
	

	

Automating	Processes	
Using	VBA

	

You	can	use	a	visual	basic	application	(VBA)	to	automate	any	process	that	you
want	 to	 in	 any	MS	Office	 product.	All	 you	 need	 to	 ensure	 is	 that	 you	 have	 a
basic	 understanding	 of	 what	 VBA	 is.	 This	 chapter	 will	 provide	 some	 real
examples	of	how	you	can	use	VBA	to	automate	processes	in	Excel.	You	can	see
how	you	can	transform	an	entire	business	process	into	the	click	of	a	button.

We	will	look	at	how	you	can	create	a	composite	key	and	identify	all	the	records
in	a	file	 that	will	match	the	master	source	file	 that	you	are	using.	We	will	also
see	how	you	can	analyze	the	records	that	do	not	match	the	source	data	by	using	a
pivot	table	to	recognize	or	identify	patterns.

Before	we	delve	into	learning	how	to	write	the	code,	we	will	need	to	ensure	that
you	develop	the	right	mindset	to	ensure	that	VBA	works	for	you.	You	can	save
enough	time	when	you	use	VBA	to	automate	the	processes.	This	will	also	make
you	a	hero	 at	work,	but	 you	must	 ensure	 that	 you	do	use	 it	wisely.	There	 is	 a
fundamental	shift	that	will	happen	when	you	begin	to	work	with	VBA,	and	you
need	to	learn	how	to	make	that	shift	work	for	you	and	for	the	company.

The	Macro	Mindset
When	you	have	automated	most	or	all	the	processes	that	are	related	to	your	job,
you	 will	 have	 adopted	 a	 new	 outlook	 on	 how	 you	 can	 use	 the	 different	 MS
Office	products,	especially	Excel.	You	will	develop	this	mindset	once	you	have	a
good	 understanding	 of	 the	 object	 hierarchy	 of	 the	 applications.	 You	 will	 also
gain	this	mindset	when	you	learn	how	to	use	the	macro	recorder	effectively.

When	you	understand	how	a	macro	works,	you	will	 look	for	different	ways	 to
automate	other	processes	and	potentially	save	yourself	a	lot	of	time.	A	macro	is
like	any	other	program	–	you	will	need	to	map	some	input	parameters	to	output
parameters.	This	is	often	done	to	automate	work.	When	you	do	this,	you	can	say
that	 your	 mindset	 has	 shifted	 from	 the	 fundamental	 mindset	 to	 the	 macro
mindset.

This	mindset	will	cause	problems	if	you	do	not	know	how	you	should	use	it,	or
in	what	context	you	should	use	it	 in.	You	certainly	can	automate	every	process

that	your	firm	does,	but	what	is	the	cost	of	doing	that?

You	need	to	keep	two	points	in	mind:

1.	 How	much	time	will	I	take	to	automate	the	process?

2.	 Will	 I	 ever	 have	 an	 issue	with	 any	 overlapping	 in	 the	 functionality	 of
other	processes	or	applications?

Let	 us	 now	 look	 at	 how	 you	 should	 decide	 on	when	 you	 should	 use	VBA	 to
automate	processes.

Understand	the	Context	of	your	Automation	Project
As	with	every	project,	you	should	first	understand	the	parts	of	 the	process	 that
you	want	to	automate.	You	should	define	the	timeline	and	define	your	deadlines
and	the	life	expectancy	of	every	solution	that	you	develop.

You	should	also	try	to	understand	what	the	risks	are	of	using	VBA	are,	and	also
look	at	other	alternatives.	For	instance,	if	the	department	you	are	in	is	investing
in	 some	new	business	 intelligence	 tool	which	will	 solve	 the	 issue,	 you	 should
focus	on	testing	the	tool	before	you	write	any	VBA	code.

You	should	always	look	at	the	timeline	and	understand	how	long	it	will	take	you
to	finish	writing	the	code.	You	should	compare	that	with	the	time	it	will	take	you
to	 finish	 that	 task	manually.	Also	 try	 to	understand	how	 long	you	will	need	 to
perform	this	task	for.	If	you	know	that	your	process	will	change	in	a	few	months,
you	should	see	whether	it	is	required	for	you	to	automate	the	process.

Changes	made	 to	 the	decisions	 in	 resource	 allocation	and	 IT	procurement	will
reduce	the	life	expectancy	or	use	of	the	code	that	you	write.	This	means	that	you
must	understand	 that	 there	 is	 a	probability	 that	you	may	be	wasting	your	 time
developing	a	solution	using	VBA	which	can	be	replaced	by	any	other	tool.	The
code	 you	 write	 can	 also	 become	 obsolete	 because	 of	 some	 changes	 in	 the
business.	 For	 example,	 you	may	 have	 developed	 the	 process	 for	 a	 client	 who
your	company	no	longer	works	with.

That	being	 said,	 a	business	 intelligence	 tool	will	 cost	 a	 company	 thousands	of
dollars,	and	there	are	many	companies	that	use	Microsoft	Office	tools	by	default.
Therefore,	there	is	very	little	risk	in	starting	the	VBA	project,	identifying	that	the
project	 is	 no	 longer	 useful	 and	 then	 removing	 the	 process	 altogether.	You	 can
instead	investigate	 the	 tool	and	see	how	it	can	be	used	to	 improve	the	process.

You	can	then	spend	some	hours	training	yourself	on	the	tool,	and	then	identify
that	 the	 tool	 cannot	 be	 used	 in	 the	 company	 because	 of	 some	 issues	with	 the
compatibility.

You	can	use	VBA	to	automate	processes	in	small	companies,	small	departments
in	 large	 companies	 and	 companies	 that	 are	 downsizing.	 This	 is	 because	 they
operate	on	a	 small	budget	and	would	use	any	 tool	 that	 they	have	access	 to.	 In
other	words,	departments	and	companies	that	are	trying	to	save	a	lot	of	money
will	find	it	easier	to	use	VBA	to	automate	processes	when	compared	to	business
intelligence	tools.

You	should	keep	the	following	rules	in	mind	when	you	choose	to	use	VBA:

●	 	 	 	 	 	 	If	you	want	to	save	money,	and	that	is	a	high	priority,	you	should	use
VBA.

●							A	VBA	solution	is	highly	flexible.

●							A	VBA	solution	is	best	when	it	is	maintained,	and	there	are	only	some
users	who	use	the	process.

●							Most	VBA	solutions	are	written	in	Excel.

●	 	 	 	 	 	 	A	 small	 company	 can	 use	 VBA	 more	 when	 compared	 to	 larger
companies.

●	 	 	 	 	 	 	A	VBA	 solution	 is	 robust	 if	 you	 know	 how	 to	 word	 the	 program
correctly.

One	of	the	main	objectives	of	VBA	and	macros	is	to	save	you	some	time.	This
will	also	add	 to	 the	functionality,	but	 the	focus	here	 is	always	 time.	When	you
know	you	are	saving	yourself	some	time,	the	macro	mindset	will	work	best	for
you.

Let	us	now	look	at	some	actual	code.

Product	Code	Lookup	Procedure
If	 you	 are	 new	 to	VBA,	you	 should	 understand	 that	 a	 procedure	 is	 a	 block	of
code	 that	 can	 be	 executed	 independently.	The	 idea	 behind	 this	 procedure	 is	 to
understand	whether	the	products	in	the	ProductReport	file	do	contain	the	product
specification	 codes	 for	 new	 item	 catalogue	 categories.	 This	 means	 that	 the
product	specifications	do	not	exist	in	the	master	database.	If	this	is	the	case,	the

code	will	identify	the	items	and	also	give	you	a	count	of	the	number	of	items.	In
this	example,	we	will	be	using	a	 text	 file	called	ProductReport,	which	you	can
download	from	GitHub.	This	report	is	a	third-party	report,	and	the	base	file	is	an
Excel	workbook	which	stores	the	historical	information.	It	would	be	a	good	idea
to	 scan	 the	 “ProdCodeLookup2”	 in	 GitHub	 in	 full.	 This	 chapter	 will	 break	 it
down	into	smaller	sections.

Sub	ProdCodeLookup2()

'Reformats	the	Product	Report	(ProdReport),	creates	the	ProdCombo	for
all	items,	_

and	then	uses	VLookup	to	find	matches

Application.ScreenUpdating	=	False

	

Dim	rngX	As	Range,	rngY	As	Range,	rngZ	As	Range

Dim	ICC	As	String

Dim	ItemNum	As	Variant

Dim	Prod1	As	String,	Prod2	As	String,	Prod3	As	String,	Prod4	As	String,
Prod5	As	String

Dim	ProdCombo	As	Variant

Dim	FinalRow	As	Long,	StartTime	As	Long

Dim	SecondsElapsed	As	Double

Dim	PRwb	As	Workbook,	BLwb	As	Workbook

Dim	PRsht	As	Worksheet,	BLsht	As	Worksheet

Dim	LVal	As	Range,	VLtable	As	Range

Dim	VLOutput	As	Variant

Dim	Count	As	Integer

Dim	ProdMatchTotal	As	Variant

Set	PRwb	=	Application.Workbooks("ProductReport")

Set	BLwb	=	Application.Workbooks("Baseline")

Set	PRsht	=	PRwb.Worksheets("Export	Worksheet")

Set	BLsht	=	BLwb.Worksheets("Static	Table")

	

StartTime	=	Timer

'Abbreviate	two	important	header	names:

ICC	=	"Item	Catalog	Category"

PC	=	"ProdCombo"

	

PRsht.Activate

'Hide	all	columns	except	those	that	comprise	the	ProdCombo,	_

format	the	headers,	and	add	the	headers	for	ProdCombo	and	ProdCode:

				Columns("C:D").EntireColumn.Hidden	=	True

				Columns("G:N").EntireColumn.Hidden	=	True

				Columns("Q:AK").EntireColumn.Hidden	=	True

				Columns("AM").EntireColumn.Hidden	=	True

				Columns("AO:AU").EntireColumn.Hidden	=	True

				Columns("AW:BM").EntireColumn.Hidden	=	True

				Range("BN1").Value	=	"ProdCombo"

				Range("BO1").Value	=	"ProdCode"

				Range("1:1").Select

								Selection.Font.Bold	=	True

	

'Filter	by	Label:

				ActiveSheet.Range("1:1").AutoFilter

'Find	the	correct	header	to	filter	by:

				Set	rngX	=	ActiveSheet.Range("1:1").Find(ICC,	LookAt:=xlWhole)

								If	Not	rngX	Is	Nothing	Then

								End	If

	

'Filter	Item	Catalog	Category	by	"Labels":

				ActiveSheet.Range(rngX.Address,	Selection.End(xlDown)).AutoFilter
Field:=rngX.Column,	Criteria1:="Label"

'Create	the	ProdCombo:

				FinalRow	=	Cells(Rows.Count,	2).End(xlUp).Row

								For	Count	=	0	To	FinalRow	-	2

'List	the	first	cell	here	in	the	primary	key	column	and	ensure	that	there	are
no	blanks:

												ItemNum	=	Range("B2").Offset(Count,	0).Value

'Now	define	the	products	to	ensure	they're	aligned	with	the	first	Item
Number:

												Prod1	=	Cells(Count	+	2,	48).Value

												Prod2	=	Cells(Count	+	2,	40).Value

												Prod3	=	Cells(Count	+	2,	15).Value

												Prod4	=	Cells(Count	+	2,	16).Value

												Prod5	=	Cells(Count	+	2,	38).Value

'Now	concatenate	them	in	the	correct	order	with	spaces:

												ProdCombo	=	Prod1	&	"	"	&	Prod2	&	"	"	&	Prod3	&	"	"	&	Prod4
&	"	"	_

												&	Prod5

'Now	specify	where	you	want	the	ProdCombo	to	appear:

												Range("BN2").Offset(Count,	0)	=	ProdCombo

								Next	Count

'Delete	blanks	from	ProdCombo:

				Set	rngY	=	ActiveSheet.Range("1:1").Find(PC,	LookAt:=xlWhole)

								If	Not	rngY	Is	Nothing	Then

								End	If

				ActiveSheet.Range(rngY.Address,	Selection.End(xlDown)).AutoFilter
Field:=rngY.Column,	Criteria1:="="

				ActiveCell.Offset(1,	0).Rows("1:1").EntireRow.Select

				Range(Selection,	Selection.End(xlDown)).Delete

				ActiveSheet.ShowAllData

				ActiveSheet.Range(rngX.Address,	Selection.End(xlDown)).AutoFilter
Field:=rngX.Column,	Criteria1:="Label"

	

'Now	run	the	ProdCodeLookup2	sub	procedure

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

Set	VLtable	=	BLsht.Range("AY1:BA29741")

On	Error	Resume	Next

For	Count	=	0	To	FinalRow

			

				Set	LVal	=	SRsht.Range("BN2").Offset(Count,	0)

	

VLOutput	=	Application.VLookup(LVal,	VLtable,	3,	False)

			

If	IsError(VLOutput)	Then

								VLOutput	=	0

				Else

								PRsht.Range("BO2").Offset(Count,	0)	=	VLOutput

				End	If

Next	Count

On	Error	GoTo	0

	

Set	rngZ	=	ActiveSheet.Range("1:1").Find("ProdCode",	LookAt:=xlPart)

								If	Not	rngZ	Is	Nothing	Then

								End	If

ActiveSheet.Range(rngZ.Address,	Selection.End(xlDown)).AutoFilter
Field:=rngZ.Column,	Criteria1:="<>"

ProdMatchTotal	=	Application.Count(Range(rngZ.Offset(1),
rngZ.Offset(FinalRow)))

MsgBox	("There	are	"	&	ProdMatchTotal	&	"	baseline	product	matches")

	

Application.ScreenUpdating	=	True

SecondsElapsed	=	Round(Timer	-	StartTime,	2)

MsgBox	"This	code	ran	successfully	in	"	&	SecondsElapsed	&	"	seconds",
vbInformation

End	Sub

ProdCodeLookup2	Breakdown

The	most	 important	 part	 of	 every	 process	 is	 to	 break	 the	 problem	 down	 into
smaller	bits	and	tackle	each	of	those	individually.	One	of	the	best	ways	to	do	this
is	to	write	every	block	of	code	in	the	order	in	which	you	will	perform	your	task
as	if	you	were	doing	it	manually.	You	can	then	refine	the	process	once	you	have
a	better	understanding	of	the	process.	You	can	also	rewrite	the	code	to	improve
readability	and	performance.

Let	us	look	at	the	first	piece	of	code	that	is	manageable:

Sub	ProdCodeLookup2()

'Reformats	the	Product	Report	(ProdReport),	creates	the	ProdCombo	for
all	items,	_

and	then	uses	VLookup	to	find	matches

	

Application.ScreenUpdating	=	False

You	 should	 also	 notice	 that	 the	 name	 of	 every	 procedure	 follows	 the	 Pascal
Code.	We	also	end	the	name	with	a	number	which	is	a	good	way	to	write	code.	It
is	painful	when	you	realize	that	you	are	troubleshooting	the	incorrect	procedure.
You	should	always	look	for	a	way	to	update	your	code	and	create	some	working
copies	of	the	procedure.

The	 first	 statement	 in	 line	 5	 has	 been	 written	 to	 increase	 or	 improve	 the
performance	of	 the	macro.	ScreenUpdating	 is	 a	 property	 that	 controls	whether
the	compiler	needs	to	update	the	screen	when	the	macro	runs.	When	you	turn	off
this	property,	you	will	see	that	the	changes	are	only	made	once	the	full	code	has
run.	It	is	always	a	good	idea	to	set	this	property	to	true	at	the	end	of	the	code.

Dim	rngX	As	Range,	rngY	As	Range,	rngZ	As	Range

Dim	ICC	As	String

Dim	ItemNum	As	Variant

Dim	Prod1	As	String,	Prod2	As	String,	Prod3	As	String,	Prod4	As	String,
Prod5	As	String

Dim	ProdCombo	As	Variant

Dim	FinalRow	As	Long,	StartTime	As	Long

Dim	SecondsElapsed	As	Double

Dim	PRwb	As	Workbook,	BLwb	As	Workbook

Dim	PRsht	As	Worksheet,	BLsht	As	Worksheet

Dim	LVal	As	Range,	VLtable	As	Range

Dim	VLOutput	As	Variant

Dim	Count	As	Integer

Dim	ProdMatchTotal	As	Variant

The	names	used	in	the	block	of	code	above	are	not	creative,	and	you	do	not	want
to	get	creative	with	the	names	since	it	becomes	harder	to	debug	the	code.	If	there
is	something	wrong	with	the	code,	a	simple	name	will	help	you	identify	where
the	issue	is.

It	is	easier	to	work	with	variables	and	manage	them	by	grouping	them	based	on
their	 function	 and	 data	 type.	 For	 instance,	 you	 may	 use	 the	 keyword	 rng	 to
describe	the	range	variables.	You	can	then	use	them	to	find	the	columns	or	the
parts	of	the	table	that	you	will	need	to	work	with.

You	 should	 also	 notice	 that	 the	 lookup	 variables	 are	 all	 defined	 in	 the	 same
space.	When	you	write	a	longer	procedure,	it	will	be	easier	to	add	comments	to
these	lines,	and	also	declare	a	variable	in	a	new	line	using	the	“Dim”	keyword.

If	 you	make	 this	 a	 habit,	 it	 will	make	 it	 easier	 for	 you	 to	 update	 the	 code	 or
troubleshoot	any	errors.	For	 instance,	 the	above	code	has	been	rewritten	 in	 the
style	described	above.

Dim	rngX	As	Range	'Range	X,	ICC	header

Dim	rngY	As	Range	'Range	Y,	Product	Combo

Dim	rngZ	As	Range	'Range	Z,	Product	Code

Dim	ICC	As	String	'Item	Catalogue	Category

Dim	ItemNum	As	Variant	'Item	Number;	used	to	eliminate	blanks

Dim	Prod1	As	String	'Product	1,	the	first	attribute	in	the	composite	key

Dim	Prod2	As	String	'Product	2,	the	second	attribute	in	the	key

Dim	Prod3	As	String	'Product	3

Dim	Prod4	As	String	'Product	4

Dim	Prod5	As	String	'Product	5

Dim	ProdCombo	As	Variant	'Product	Combo

Dim	FinalRow	As	Long	'FinalRow	formula	variable

Dim	StartTime	As	Long	'Used	to	calculate	total	runtime

Dim	SecondsElapsed	As	Double	'Used	to	calculate	total	runtime

Dim	PRwb	As	Workbook	'ProductReport	workbook

Dim	BLwb	As	Workbook	'Baseline	workbook

Dim	PRsht	As	Worksheet	'ProductReport	worksheet

Dim	BLsht	As	Worksheet	'Baseline	worksheet

I	 am	 sure	 you	 get	 the	 idea	 now.	All	 you	 need	 to	 do	 is	write	 the	 name	 of	 the
variable	 using	 a	 short	 phrase	 and	 describe	 how	 you	 will	 use	 it.	 This	 is	 a
straightforward	method,	and	it	is	important	that	you	understand	it.

You	 should	 now	 assign	 the	 workbooks	 and	 worksheets	 to	 different	 object
variables.	 You	 can	 benefit	 in	 many	 ways	 through	 this	 action.	 You	 will	 also
improve	 readability	and	performance.	When	you	master	writing	code	 in	VBA,
you	can	always	avoid	doing	this.	The	goal	is	to	ensure	that	your	code	is	easy	for
you	to	understand,	thereby	making	it	easy	for	you	to	troubleshoot	any	errors.

You	 should	 now	 assign	 the	 worksheet	 and	 workbook	 variables	 to	 different
objects.	 You	 should	 first	 assign	 workbook	 variables	 since	 they	 are	 the	 parent
objects.

Set	PRwb	=	Application.Workbooks("WorkbookName1")

Set	BLwb	=	Application.Workbooks("WorkbookName2")

Set	PRsht	=	PRwb.Worksheets("Export	Worksheet")

Set	BLsht	=	BLwb.Worksheets("Static	Table")

Let’s	check	out	the	next	part	(lines	25-30):

StartTime	=	Timer

'Abbreviate	two	important	header	names:

ICC	=	"Item	Catalog	Category"

PC	=	"ProdCombo"

	

PRsht.Activate

We	will	use	the	StartTime	variable	to	hold	the	initial	value	of	the	timer	and	use
the	 variable	 to	 calculate	 the	 time	 it	 takes	 to	 run	 the	 application.	You	 can	 also
create	shorter	variables	if	you	want	to	refer	to	those	variables	multiple	times	in
the	code.	You	can	ensure	that	you	do	not	make	any	mistakes.

The	 last	 line	 in	 this	 section	will	define	 the	 scope	 for	 the	block	of	 code	below.
You	 should	 never	 expect	 that	 the	 compiler	 will	 guess	 which	 worksheet	 or
workbook	it	needs	to	refer	to.	Therefore,	you	must	ensure	that	you	specify	this.

You	 will	 need	 to	 prepare	 the	 data	 and	 format	 it	 before	 you	 can	 create	 the
“ProdCombo”	composite	key.	You	will	first	need	to	hide	all	the	columns	in	the
baseline	 workbook	 and	 remove	 any	 columns	 that	 are	 irrelevant	 for	 us.	 You
should	then	create	the	new	columns	using	the	headers	that	we	are	going	to	use.
To	ensure	that	the	labels	are	readable,	you	can	make	them	bold.

'Hide	all	columns	except	those	that	comprise	the	ProdCombo,	_

format	the	headers,	and	add	the	headers	for	ProdCombo	and	ProdCode:

Columns("C:D").EntireColumn.Hidden	=	True

Columns("G:N").EntireColumn.Hidden	=	True

Columns("Q:AK").EntireColumn.Hidden	=	True

Columns("AM").EntireColumn.Hidden	=	True

Columns("AO:AU").EntireColumn.Hidden	=	True

Columns("AW:BM").EntireColumn.Hidden	=	True

Range("BN1").Value	=	"ProdCombo"

Range("BO1").Value	=	"ProdCode"

Range("1:1").Select

Selection.Font.Bold	=	True

In	the	lines	44	through	52,	we	are	turning	the	filters	on	for	every	header,	and	are
removing	all	 the	values	except	 for	 the	 labels.	Let	us	make	 the	assumption	 that
we	are	only	looking	at	the	product	specifications.

We	are	creating	a	ProdCombo	 in	 the	 lines	50	 through	69	using	a	 loop.	We	are
also	 concatenating	 or	 combining	 the	 values	 in	 the	 columns	 using	 a	 space

delimiter.

It	is	always	a	good	idea	to	delete	a	blank	product,	and	this	is	what	the	lines	70	to
78	do.	In	this	example,	we	only	want	 to	look	at	 those	products	 that	have	some
value	 in	one	of	 the	five	fields.	We	do	not	need	 to	 look	at	any	values	 that	have
blanks	in	all	the	labels.

You	must	always	look	at	the	comments.	You	will	notice	that	the	comment	in	line
80	talks	about	running	the	ProdCodeLookup2	procedure.

If	you	are	using	VLOOKUP	for	the	first	time	in	a	macro,	you	should	write	two
different	 procedures	 –	 one	 for	 every	other	 process	 and	one	 just	 to	 execute	 the
lookup.	Experts	 recommend	 this	method	since	 it	 is	 easier	 to	develop	 the	code.
The	ProdCodeLookup2	will	perform	a	lookup	in	every	cell	that	is	in	a	specified
column	and	will	loop	all	the	records	in	the	table	until	it	reaches	the	end.

Before	we	look	at	the	next	section	where	we	perform	some	analyses,	let	us	look
at	some	ways	to	deal	with	issues	that	crop	up	with	using	VBA.

Tips	to	Deal	with	VLookups	in	VBA
Errors	and	blanks	will	often	return	an	error	statement	when	you	use	a	vlookup
function.	This	may	cause	the	entire	procedure	to	crash.	If	you	do	choose	to	use
vlookup	 in	 your	 code,	 you	 will	 need	 to	 include	 an	 error	 handling	 option	 to
ensure	that	the	code	does	not	crash.	We	cover	this	in	the	next	chapter.

There	are	many	examples	for	the	same	on	Stack	Overflow.	You	can	learn	more
about	how	 to	handle	errors	with	VLOOKUP	 through	 those	examples.	You	can
solve	 the	problem	by	wrapping	 the	 loop	up	 in	 the	 lines	83	and	96	 in	 the	code
above.	This	should	help	to	solve	the	problem	in	a	simple	manner.

You	should	then	perform	the	following	tasks	in	the	last	lines	of	the	code:

1.	 Use	 the	 column	 name	 to	 define	 the	 location	 of	 the	 ProdCode	 column
header.

2.	 Count	 the	 values	 under	 the	 ProdCode	 column	 header	 and	 assign	 the
number	to	a	variable	using	the	workbook	function	“Count.”

3.	 You	can	then	return	the	result	using	a	message	box.

4.	 Turn	the	ScreenUpdating	on.

5.	 You	can	also	return	 the	 time	it	 took	for	 the	application	 to	run.	Display

this	in	a	message	box.

This	will	conclude	the	first	VBA	script.	You	may	probably	be	wondering	where
the	data	analysis	is.	Let	us	look	at	the	next	section	to	understand	more	about	how
to	analyze	data.

	

Data	Analysis
This	information	is	certainly	useful,	but	what	should	you	do	about	the	remaining
products?	How	will	the	results	of	those	compare	to	the	remaining	categories	or
the	 labels	 that	 you	 use?	What	 types	 of	 comparison	 should	 you	 investigate	 or
analyze?	 What	 about	 those	 items	 or	 products	 that	 do	 not	 match	 your
requirement?	What	is	it	that	you	can	learn	about	those	products?	Let	us	now	add
a	 status	 flag	 to	 every	 product.	 This	 will	 make	 things	 interesting	 and	 slightly
complicated.	 This	 status	will	 represent	whether	 the	 product	 specification	 code
that	you	are	looking	at	is	active.

To	 recap	 quickly,	 the	 dimensions	 of	 the	 analysis	 can	 be	 summarized	 into
“active/inactive	 status,”	“product	category”	and	“match/no	match	 status.”	Now
that	 we	 have	 these	 details	 in	 mind,	 you	 can	 use	 a	 pivot	 table	 to	 help	 you
visualize	 the	different	user	cases.	The	data	analysis	 is	 in	 the	procedure	written
below:

Sub	ProdFlag_v3()

'Run	this	on	a	ProductReport	to	find	records	without	any	specs	and	copy
all	of	the	records	_

without	specs	onto	a	separate	worksheet	(only	copy	columns	A-G).	
Analysis	tab	added	with	pivot	tables.

Application.ScreenUpdating	=	False

Dim	PRtable	As	Range,	rngX	As	Range,	SpecHeader	As	Variant

Dim	PRTableRows	As	Long,	PRTableColumns	As	Long

Dim	PRsht	As	Worksheet,	nsPRsht	As	Worksheet

Dim	FinalRow	As	Long,	i	As	Long

Dim	IstatActive	As	Variant,	IstatInactive	As	Variant

Istat	=	"Item	Status"

	

Set	PRsht	=	Worksheets("Export	Worksheet")

	

PRTableRows	=	PRsht.Cells.Find("*",	searchorder:=xlByRows,
searchdirection:=xlPrevious).Row

PRTableColumns	=	PRsht.Cells.Find("*",	searchorder:=xlByColumns,
searchdirection:=xlPrevious).Column

	

Set	PRtable	=	PRsht.Range("A1",	Cells(PRTableRows,	PRTableColumns))

	

Sheets.Add	After:=ActiveSheet

Sheets("Sheet1").Name	=	"NoSpecs"

Set	nsPRsht	=	Worksheets("NoSpecs")

FinalRow	=	Cells(Rows.Count,	2).End(xlUp).Row

PRsht.Range("1:1").AutoFilter

				For	Each	SpecHeader	In	PRsht.Range("H1:BM1").Cells

								Range(SpecHeader.Offset(1),	SpecHeader.Offset(FinalRow))	_

								.AutoFilter	Field:=SpecHeader.Column,	Criteria1:="="

				Next	SpecHeader

	

PRtable.Resize(PRTableRows,	7).Copy	_

nsPRsht.Range("A1")

Application.CutCopyMode	=	False

PRsht.ShowAllData

nsPRsht.Range("A1").Select

	

FinalRow	=	Cells(Rows.Count,	2).End(xlUp).Row

For	i	=	2	To	FinalRow

				If	Cells(i,	1)	=	"Active"	Then

								Cells(i,	1).Resize(,	5).Font.ColorIndex	=	25

				ElseIf	Cells(i,	1)	=	"Inactive"	Then

								Cells(i,	1).Resize(,	5).Font.ColorIndex	=	3

				Else

								With	Cells(i,	1).Resize(,	5).Font

												.Name	=	"TimesNewRoman"

												.Bold	=	True

								End	With

				End	If

Next	i

	

ActiveSheet.Range("1:1").AutoFilter

Set	rngX	=	ActiveSheet.Range("1:1").Find(Istat,	LookAt:=xlPart)

								If	Not	rngX	Is	Nothing	Then

								End	If

	

IstatActive	=	Application.CountIf(Range(rngX.Offset(1),
rngX.Offset(FinalRow)),	"Active")

IstatInactive	=	Application.CountIf(Range(rngX.Offset(1),
rngX.Offset(FinalRow)),	"Inactive")

FinalRow	=	Cells(Rows.Count,	2).End(xlUp).Row

	

'Create	the	NoSpecs_CategoryAnalysis	tab	with	pivot	tables

Sheets.Add

ActiveSheet.Name	=	"NoSpecs_Analysis"

				ActiveWorkbook.PivotCaches.Create(SourceType:=xlDatabase,
SourceData:=	_

								"NoSpecs!R1C1:R23405C7",	Version:=6).CreatePivotTable
TableDestination:=	_

								"NoSpecs_Analysis!R3C1",	TableName:="PivotTable1",
DefaultVersion:=6

				With	ActiveSheet.PivotTables("PivotTable1").PivotFields("Item	Catalog
Category"	_

)

								.Orientation	=	xlRowField

								.Position	=	1

				End	With

				ActiveSheet.PivotTables("PivotTable1").AddDataField
ActiveSheet.PivotTables(_

								"PivotTable1").PivotFields("Item"),	"Item	Count",	xlCount

				With	ActiveSheet.PivotTables("PivotTable1").PivotFields("Item
Status")

								.Orientation	=	xlColumnField

								.Position	=	1

				End	With

				ActiveSheet.PivotTables("PivotTable1").PivotFields("Item	Catalog
Category").	_

								AutoSort	xlDescending,	"Item	Count"

							

								ActiveSheet.PivotTables("PivotTable1").AddDataField
ActiveSheet.PivotTables(_

								"PivotTable1").PivotFields("Item"),	"Percent",	xlCount

				With	ActiveSheet.PivotTables("PivotTable1").PivotFields("Percent")

								.Calculation	=	xlPercentOfTotal

								.NumberFormat	=	"0.00%"

				End	With

	

ActiveWorkbook.Worksheets("NoSpecs_Analysis").PivotTables("PivotTable1").
_

								PivotCache.CreatePivotTable
TableDestination:="NoSpecs_Analysis!R13C1",	_

								TableName:="PivotTable2",	DefaultVersion:=6

				With	ActiveSheet.PivotTables("PivotTable2").PivotFields("Item
Status")

								.Orientation	=	xlRowField

								.Position	=	1

				End	With

				ActiveSheet.PivotTables("PivotTable2").AddDataField
ActiveSheet.PivotTables(_

								"PivotTable2").PivotFields("Item"),	"Item	Count",	xlCount

				ActiveSheet.PivotTables("PivotTable2").AddDataField
ActiveSheet.PivotTables(_

								"PivotTable2").PivotFields("Item"),	"Percent",	xlCount

				Range("C13").Select

				With	ActiveSheet.PivotTables("PivotTable2").PivotFields("Percent")

								.Calculation	=	xlPercentOfTotal

								.NumberFormat	=	"0.00%"

				End	With

	

Sheets.Add

ActiveSheet.Name	=	"SpecAnalysis"

	

				ActiveWorkbook.PivotCaches.Create(SourceType:=xlDatabase,
SourceData:=	_

								"Export	Worksheet!R1C1:R26363C65",
Version:=6).CreatePivotTable	TableDestination:=	_

								"SpecAnalysis!R3C1",	TableName:="PivotTable3",
DefaultVersion:=6

				With	ActiveSheet.PivotTables("PivotTable3").PivotFields("Item	Catalog
Category"	_

)

								.Orientation	=	xlRowField

								.Position	=	1

				End	With

				ActiveSheet.PivotTables("PivotTable3").AddDataField
ActiveSheet.PivotTables(_

								"PivotTable3").PivotFields("Item"),	"Item	Count",	xlCount

				With	ActiveSheet.PivotTables("PivotTable3").PivotFields("Item
Status")

								.Orientation	=	xlColumnField

								.Position	=	1

				End	With

				ActiveSheet.PivotTables("PivotTable3").PivotFields("Item	Catalog

Category").	_

								AutoSort	xlDescending,	"Item	Count"

							

								ActiveSheet.PivotTables("PivotTable3").AddDataField
ActiveSheet.PivotTables(_

								"PivotTable3").PivotFields("Item"),	"Percent",	xlCount

				With	ActiveSheet.PivotTables("PivotTable3").PivotFields("Percent")

								.Calculation	=	xlPercentOfTotal

								.NumberFormat	=	"0.00%"

				End	With

	

Sheets.Add

				ActiveSheet.Name	=	"Label_Material"

ActiveWorkbook.Worksheets("SpecAnalysis").PivotTables("PivotTable3").PivotCache
_

								.CreatePivotTable	TableDestination:="Label_Material!R3C1",
TableName:="PivotTable1"	_

								,	DefaultVersion:=6

				ActiveSheet.PivotTables("PivotTable1").AddDataField
ActiveSheet.PivotTables(_

								"PivotTable1").PivotFields("Item"),	"Item	Count",	xlCount

				ActiveSheet.PivotTables("PivotTable1").AddDataField
ActiveSheet.PivotTables(_

								"PivotTable1").PivotFields("Item"),	"Percent",	xlCount

				With	ActiveSheet.PivotTables("PivotTable1").PivotFields("Item	Catalog
Category"	_

)

								.Orientation	=	xlPageField

								.Position	=	1

				End	With

				With	ActiveSheet.PivotTables("PivotTable1").PivotFields("Label
Material")

								.Orientation	=	xlRowField

								.Position	=	1

				End	With

				ActiveSheet.PivotTables("PivotTable1").PivotFields("Item	Catalog
Category").	_

								CurrentPage	=	"(All)"

				With	ActiveSheet.PivotTables("PivotTable1").PivotFields("Item	Catalog
Category")

								.PivotItems("Bar	Wrapper").Visible	=	False

								.PivotItems("IFC	&	Inner	Tray").Visible	=	False

								.PivotItems("Printed	Pouches	&	Packets").Visible	=	False

								.PivotItems("Shrink	Sleeve").Visible	=	False

				End	With

				With	ActiveSheet.PivotTables("PivotTable1").PivotFields("Percent")

								.Calculation	=	xlPercentOfTotal

								.NumberFormat	=	"0.00%"

				End	With

				ActiveSheet.PivotTables("PivotTable1").PivotFields("Label
Material").AutoSort	_

								xlDescending,	"Percent"

				With	ActiveSheet.PivotTables("PivotTable1").PivotFields("Label
Material")

								.PivotItems("(blank)").Visible	=	False

				End	With

			

Sheets.Add

				ActiveSheet.Name	=	"COATING"

ActiveWorkbook.Worksheets("SpecAnalysis").PivotTables("PivotTable3").PivotCache
_

								.CreatePivotTable	TableDestination:="COATING!R3C1",
TableName:="PivotTable1"	_

								,	DefaultVersion:=6

				ActiveSheet.PivotTables("PivotTable1").AddDataField
ActiveSheet.PivotTables(_

								"PivotTable1").PivotFields("Item"),	"Item	Count",	xlCount

				ActiveSheet.PivotTables("PivotTable1").AddDataField
ActiveSheet.PivotTables(_

								"PivotTable1").PivotFields("Item"),	"Percent",	xlCount

				With	ActiveSheet.PivotTables("PivotTable1").PivotFields("Item	Catalog
Category"	_

)

								.Orientation	=	xlPageField

								.Position	=	1

				End	With

				With	ActiveSheet.PivotTables("PivotTable1").PivotFields("COATING")

								.Orientation	=	xlRowField

								.Position	=	1

				End	With

				ActiveSheet.PivotTables("PivotTable1").PivotFields("Item	Catalog

Category").	_

								CurrentPage	=	"(All)"

				With	ActiveSheet.PivotTables("PivotTable1").PivotFields("Item	Catalog
Category")

								.PivotItems("Bar	Wrapper").Visible	=	False

								.PivotItems("IFC	&	Inner	Tray").Visible	=	False

								.PivotItems("Printed	Pouches	&	Packets").Visible	=	False

								.PivotItems("Shrink	Sleeve").Visible	=	False

				End	With

				With	ActiveSheet.PivotTables("PivotTable1").PivotFields("Percent")

								.Calculation	=	xlPercentOfTotal

								.NumberFormat	=	"0.00%"

				End	With

			
ActiveSheet.PivotTables("PivotTable1").PivotFields("COATING").AutoSort	_

								xlDescending,	"Percent"

				With	ActiveSheet.PivotTables("PivotTable1").PivotFields("COATING")

								.PivotItems("(blank)").Visible	=	False

				End	With

			

				MsgBox	("There	are	"	&	FinalRow	&	"	records	with	no	specifications"
&	vbNewLine	&	_

vbNewLine	&	"Number	of	Active	records	without	specs:	"	&	IstatActive
&	vbNewLine	_

&	"Number	of	Inactive	records	without	specs:	"	&	IstatInactive)

			

				Application.ScreenUpdating	=	True

			

End	Sub

This	 procedure	 does	 not	 use	 any	 pivot	 tables.	 You	 should	 keep	 the	 following
points	in	mind	when	you	write	your	own	procedure:

	

Using	Pivot	Tables	in	VBA
There	are	some	prerequisites	to	using	a	pivot	table	in	VBA.	You	must	ensure	that
the	 data	 source	 that	 you	 use	 has	 valid,	 high-quality	 and	 normalized	 data.	 The
same	holds	 true	 in	 the	example	above.	You	should	create	 the	 test	data	 for	 any
product,	its	specifications	and	categories.	In	this	section,	you	will	learn	how	you
should	automate	one	of	the	most	used	and	advanced	features	in	Excel.

4.	 Copy	the	lines	that	were	used	in	the	lines	63	and	64	in	the	code	above.

5.	 Now,	navigate	to	the	workbook	and	choose	the	option	“Record	Macro”
in	the	Developer	Tab.

6.	 Choose	the	cell	you	want	to	use	to	as	the	data	for	the	pivot	and	click	on
“Ctrl	+	A”	to	select	the	cells.

7.	 Now,	press	“Alt	+	N	+	V	+	Enter.”

8.	 You	should	now	create	the	pivot	table	manually.	Drag	the	columns	that
you	want	to	use,	filter,	group,	and	format	the	values	as	necessary.

9.	 Now,	press	the	“Record	Macro”	button.

10.	 You	now	need	to	click	on	“Alt	+	F11”	to	get	back	to	the	editor	window.
Find	the	code	that	Excel	recorded.

11.	 Paste	this	code	into	the	project	in	the	worksheet	that	you	have	created.
Read	the	code	and	see	how	you	can	shorten	it.

12.	 You	 can	 write	 the	 same	 code	 for	 any	 number	 of	 pivots	 in	 different
worksheets.	 You	 will	 need	 to	 be	 careful	 about	 the	 filters	 you	 will	 be
using.

Learn	to	Use	Cell	Referencing

Most	people	are	not	used	to	using	the	R1C1	style	of	cell	referencing,	but	this	is
what	 the	macro	 recorder	will	 use.	 It	 is	 important	 that	 you	 familiarize	 yourself
with	this	type	of	referencing	to	ensure	that	you	save	time	when	you	work	with
pivot	 tables.	This	way	you	will	have	very	 little	 to	do	when	you	are	editing	 the
code	that	is	generated	by	the	macro	recorder.

You	can	now	decide	which	pivot	 table	object	or	 feature	you	want	 to	use	when
you	are	learning	to	use	VBA.	You	can	always	automate	a	file	that	has	more	than
20	pivot	tables	in	a	few	minutes.	You	can	only	do	this	once	you	understand	the
keyboard	 shortcuts,	 set	 up	 the	 tables	 in	 your	 file	 properly	 and	 know	how	you
should	prepare	the	code.

Efficiently	Allocating	Your	Time
If	 you	want	 to	 automate	 the	 processes	 that	 you	 use	 to	 analyze	 information	 in
Excel	effectively,	you	must	keep	the	following	points	in	mind:

•									You	should	spend	most	of	your	time	in	preparing	and	cleaning	the	data.
You	must	ensure	that	the	quality	of	the	information	you	are	using	is	top-
notch,	 and	 you	 should	 think	 about	 any	 keys,	 flags,	 reconciliation,
validation	and	any	other	simple	calculation	that	you	may	want	to	use.

•	 	 	 	 	 	 	 	 	You	should	always	visualize	the	end	result	when	you	are	building	and
refining	the	table.

You	may	be	surprised	that	we	focused	very	little	on	writing	the	code	to	automate
a	pivot	table	or	any	function	in	Excel.	You	should	remember	to	always	prepare
the	data	set	well	and	ensure	that	there	are	no	issues	with	the	data.	This	will	make
it	 easier	 to	 automate	 the	 process.	You	 can	 save	 enough	 time	 and	 effort	 if	 you
know	how	to	use	VBA	efficiently.

Chapter	Eleven
	

	

Error	Handling
	

The	easiest	errors	that	you	can	avoid	are	the	syntax	errors,	but	these	are	some	of
the	 hardest	 errors	 to	 spot.	 The	 error	 can	 be	 because	 of	 the	 misuse	 of	 a
punctuation,	misuse	of	a	language	element	or	a	spelling	mistake.	If	you	forget	to
include	the	End	If	statement	in	an	If…Then	statement,	you	have	made	a	syntax
error.

Typos	are	common	syntax	errors.	These	are	especially	hard	to	find	if	you	make
those	 errors	 in	 variable	 names.	 For	 example,	 the	 editor	 in	VBA	will	 view	 the
MySpecialVariable	and	MySpecialVaraible	as	different	variables,	but	 there	 is	a
possibility	 that	 you	will	miss	 it	when	 you	 begin	 to	write	 the	 code.	When	 you
include	the	Adding	Option	Explicit	at	the	beginning	of	the	module,	form	or	class
module	that	you	create,	you	can	remove	this	problem.	VBA	can	help	you	find	a
variety	of	typos	if	you	add	this	statement	to	the	start	of	your	code.	It	is	important
that	you	use	this	statement	in	every	part	of	your	program	when	you	write	it.

There	are	times	when	you	miss	some	of	the	subtle	aids	in	locating	the	errors	in
syntax	 if	 you	 do	 not	 understand	 or	 view	 the	 tasks	 that	 the	 IDE	 or	 Integrated
Development	 Environment	 performs.	 VBA	will	 only	 display	 the	 balloon	 help
feature	when	the	editor	in	VBA	can	recognize	the	function	name	that	you	need	to
enter.	If	you	do	not	see	a	balloon	help	button,	you	should	understand	that	VBA
does	not	know	what	function	name	you	are	referring	to.	This	means	that	you	will
need	 to	 look	at	 your	 code	 to	 identify	 the	 error.	Unfortunately,	 this	 feature	will
only	work	where	 the	 editor	 in	VBA	will	 display	 the	balloon	help	option.	This
does	not	work	when	you	use	property	names.

Understanding	compile	errors
VBA	uses	a	compiler	to	look	for	any	errors	that	will	prevent	the	program	from
functioning	properly.		You	can	create	an	If...Then	statement	and	not	include	the
End	If	statement	in	the	program.	The	compiler	will	continue	to	run	continuously
and	will	allow	you	to	find	the	mistakes	in	the	code	immediately	once	you	make
them.

VBA	will	use	a	compiler	to	find	the	syntax	error	in	your	code	and	then	display
an	error	message.	Try	the	following	when	you	write	a	new	program.	Open	a	new
project,	 create	 a	 Sub	 using	 a	 specific	 name	 and	 type	 MsgBox().	 Now,	 press

Enter.	VBA	will	display	a	message	box,	which	will	state	that	it	was	expecting	the
equal	 to	sign.	If	you	use	the	parentheses	after	 the	keyword	MsgBox,	VBA	will
expect	 that	 you	 should	 include	 a	 result	 variable,	which	will	 hold	 the	 required
result.	For	example,	MyResult	=	MsgBox(“My	Prompt”).	As	mentioned	earlier,
the	debugger	highlights	the	error	in	red.

Understanding	run-time	errors
A	run-time	error	often	occurs	when	there	is	an	issue	with	something	outside	of
your	program.	There	are	 times	when	you	 type	 in	 the	 incorrect	 information	and
other	 times	when	 the	 system	 rejects	 your	 access	 to	 the	memory	 or	 disk.	Your
VBA	code	is	completely	correct,	but	the	code	will	fail	to	function	since	there	is
an	external	error.	Most	companies,	like	Microsoft,	always	run	a	beta	program	to
avoid	any	run-time	errors.	A	beta	program	is	a	one	that	programmers	develop	to
test	their	vendor-sponsored	program	before	they	release	it	into	the	market.

Understanding	semantic	errors
This	is	a	particularly	difficult	error	to	understand	and	find	since	it	is	a	semantic
error.	This	error	occurs	when	the	VBA	code	and	logic	are	both	correct,	but	the
meaning	behind	 the	code	 is	 incorrect.	For	 instance,	you	can	use	 the	Do...Until
loop	in	place	of	the	Do...While	loop.	It	may	be	the	case	that	the	code	is	correct
and	 the	 logic	 behind	 the	 code	 is	 also	 correct,	 but	 the	 result	 is	 not	 what	 you
expected	since	the	meaning	of	a	Do...Until	loop	is	different	from	the	meaning	of
a	Do...While	loop.

When	you	write	a	code,	the	words	you	use	in	the	code	should	match	your	intent.
Since	 a	 good	 book	 always	 relies	 on	 precise	 terms,	 a	 good	 program	 also	 relies
only	on	the	precise	statements	that	you	use	in	VBA.	These	statements	will	help
VBA	understand	what	you	want	it	to	do.	One	of	the	best	ways	to	avoid	making
any	semantic	errors	in	the	application	is	to	always	plan	your	program	in	advance.
You	should	use	a	pseudo-code	 to	“pre-write”	 the	design,	and	 then	convert	 that
code	into	the	actual	VBA	code.

Conclusion
Thank	you	for	purchasing	the	book.	Most	organizations	have	begun	to	use	VBA
to	 automate	 some	 of	 their	 processes	 in	 Excel.	 You	 can	 copy	 and	 paste
information	 or	 create	 a	 pivot	 in	Excel	 using	VBA.	 If	 you	want	 to	 learn	VBA
coding	 to	 improve	processes	at	your	workplace,	you	can	use	 this	book	as	your
guide.

I	hope	you	gather	all	the	information	you	are	looking	for.	I	hope	you	can	use	the
information	in	the	book	to	perform	data	analysis.

Will	You	Help	Me?
Hi	there,	avid	reader!	If	you	have	extra	time	on	your	hands,	I	would	really,	really
appreciate	it	if	you	could	take	a	moment	to	click	my	author	profile	in	Amazon.
In	 there,	you	will	 find	all	 the	 titles	 I	authored	and	who	knows,	you	might	 find
more	interesting	topics	to	read	and	learn!

If	it’s	not	too	much	to	ask,	you	can	also	leave	and	write	a	review	for	all	the	titles
that	you	have	read	–	whether	 it’s	a	positive	or	negative	review.	An	honest	and
constructive	review	of	my	titles	is	always	welcome	and	appreciated	since	it	will
only	 help	 me	 moving	 forward	 in	 creating	 these	 books.	 There	 will	 always	 be
room	to	add	or	improve,	or	sometimes	even	subtract	certain	topics,	that	is	why
these	 reviews	 are	 always	 important	 for	 us.	 They	 will	 also	 assist	 other	 avid
readers,	 professionals	 who	 are	 looking	 to	 sharpen	 their	 knowledge,	 or	 even
newbies	 to	any	 topic,	 in	 their	search	for	 the	book	 that	caters	 to	 their	needs	 the
most.	

If	you	don’t	want	 to	 leave	a	review	yourself,	you	can	also	vote	on	the	existing
reviews	 by	 voting	 Helpful	 (Thumbs	 Up)	 or	 Unhelpful	 (Thumbs	 Down),
especially	on	the	top	10	or	so	reviews.

If	you	want	to	go	directly	to	the	vote	or	review	process	for	my	titles,	just	visit	on
any	of	the	below	titles:

Excel	 VBA:	 A	 Step-By-Step	 Tutorial	 For	 Beginners	 To	 Learn	 Excel
VBA	Programming	From	Scratch.	Audiobook	format	is	now	available	in
Audible	US	and	Audible	UK.		

Excel	 VBA	 :	 Intermediate	 Lessons	 in	 Excel	 VBA	 Programming	 for
Professional	 Advancement	 .	 Audiobook	 format	 is	 now	 available	 in
Audible	US	and	Audible	UK

Excel	VBA:	A	Step-By-Step	Comprehensive	Guide	on	Advanced	Excel
VBA	 Programming	 Techniques	 and	 Strategies	 .	 Audiobook	 format	 is
now	available	in	Audible	US	and	Audible	UK.	

Again,	I	truly	appreciate	the	time	and	effort	that	you	will	be	putting	in	leaving	a
review	for	my	titles	or	even	just	for	voting.	This	will	only	inspire	me	to	create
more	quality	content	and	titles	in	the	future.

	

https://www.amazon.com/Peter-Bradley/e/B07L8M5F2Z/ref=sr_ntt_srch_lnk_1?qid=1545662329&sr=1-1
https://www.amazon.com/dp/1720208441
https://www.audible.com/pd/B07JHYQ51D/?source_code=AUDFPWS0223189MWT-BK-ACX0-130900&ref=acx_bty_BK_ACX0_130900_rh_us
https://www.audible.co.uk/pd/B07JJR9WDR/?source_code=AUKFrDlWS02231890H6-BK-ACX0-130900&ref=acx_bty_BK_ACX0_130900_rh_uk
https://www.amazon.com/dp/1731383924
https://www.audible.com/pd/B07MNTM9PM/?source_code=AUDFPWS0223189MWT-BK-ACX0-137985&ref=acx_bty_BK_ACX0_137985_rh_us
https://www.audible.co.uk/pd/B07MKLF3NT/?source_code=AUKFrDlWS02231890H6-BK-ACX0-137985&ref=acx_bty_BK_ACX0_137985_rh_uk
https://www.amazon.com/dp/179156108X
https://www.audible.com/pd/B07ND49SXH/?source_code=AUDFPWS0223189MWT-BK-ACX0-141648&ref=acx_bty_BK_ACX0_141648_rh_us
https://www.audible.co.uk/pd/B07ND3JWSG/?source_code=AUKFrDlWS02231890H6-BK-ACX0-141648&ref=acx_bty_BK_ACX0_141648_rh_uk

Thank	you	and	have	a	great	day!

Peter	Bradley

https://www.amazon.com/Peter-Bradley/e/B07L8M5F2Z?ref=sr_ntt_srch_lnk_9&qid=1551300723&sr=1-9
https://www.excel-pratique.com/en/vba/introduction.php
http://www.easyexcelvba.com/introduction.html
https://www.tutorialspoint.com/excel_vba_online_training/excel_vba_introduction.asp
https://www.thespreadsheetguru.com/getting-started-with-vba/
https://www.tutorialspoint.com/vba/vba_strings.htm
https://www.excel-easy.com/vba/string-manipulation.html
https://www.guru99.com/vba-data-types-variables-constant.html
https://corporatefinanceinstitute.com/resources/excel/study/vba-variables-dim/
https://powerspreadsheets.com/vba-data-types/
https://www.tutorialspoint.com/vba/vba_loops.htm
https://www.excel-easy.com/vba/loop.html
https://www.excelfunctions.net/vba-loops.html
https://powerspreadsheets.com/excel-vba-loops/
https://www.excelfunctions.net/vba-conditional-statements.html
https://analysistabs.com/excel-vba/conditional-statements/
https://www.techonthenet.com/excel/formulas/if_then.php
http://www.cpearson.com/excel/errorhandling.htm
https://excelmacromastery.com/vba-error-handling/
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/on-error-statement
https://simpleprogrammer.com/vba-data-analysis-automation/

Sources
https://www.excel-pratique.com/en/vba/introduction.php

http://www.easyexcelvba.com/introduction.html

https://www.tutorialspoint.com/excel_vba_online_training/excel_vba_introduction.asp

https://www.thespreadsheetguru.com/getting-started-with-vba/

https://www.tutorialspoint.com/vba/vba_strings.htm

https://www.excel-easy.com/vba/string-manipulation.html

https://www.guru99.com/vba-data-types-variables-constant.html

https://corporatefinanceinstitute.com/resources/excel/study/vba-variables-dim/

https://powerspreadsheets.com/vba-data-types/

https://www.tutorialspoint.com/vba/vba_loops.htm

https://www.excel-easy.com/vba/loop.html

https://www.excelfunctions.net/vba-loops.html

https://powerspreadsheets.com/excel-vba-loops/

https://www.excelfunctions.net/vba-conditional-statements.html

https://analysistabs.com/excel-vba/conditional-statements/

https://www.techonthenet.com/excel/formulas/if_then.php

http://www.cpearson.com/excel/errorhandling.htm

https://excelmacromastery.com/vba-error-handling/

https://docs.microsoft.com/en-us/dotnet/visual-basic/language-
reference/statements/on-error-statement

https://simpleprogrammer.com/vba-data-analysis-automation/

Excel	VBA

A	Step-by-Step	Comprehensive	Guide	on	
Excel	VBA	Programming	Tips	and	Tricks	

for	Effective	Strategies

Introduction
I	 want	 to	 thank	 you	 for	 choosing	 this	 book,	 Excel	 VBA	 -	 A	 Step-by-Step
Comprehensive	Guide	on	Excel	VBA	Programming	Tips	and	Tricks	for	Effective
Strategies’	and	hope	you	find	the	book	informative	to	learn	Excel	VBA.

It	is	difficult	for	a	person	to	become	an	expert	in	VBA	within	a	matter	of	days.	It
takes	patience,	time	and	practice	to	master	coding	in	VBA.	The	first	few	books
of	 the	series	provided	information	on	different	parts	of	Excel	VBA.	You	learnt
about	the	different	data	types,	functions	and	methods	you	can	use	in	Excel	VBA.
You	also	covered	 information	on	how	you	can	handle	errors	and	exceptions	 in
VBA	using	the	compiler	and	the	visual	basic	environment.

There	are	still	some	topics	that	you	will	need	to	familiarize	yourself	with	if	you
want	 to	master	 coding	 in	VBA.	 This	 book	 covers	 some	 of	 those	 topics.	As	 a
programmer,	 you	will	 use	 the	words	procedures	 and	 sub	procedures	 numerous
times.	This	is	because	you	will	only	be	working	on	building	and	writing	code	for
sub	procedures.	This	book	will	provide	information	on	what	a	sub	procedure	is,
and	how	you	can	develop	one	for	your	project.	You	will	also	gather	information
on	some	tips	and	tricks	that	you	can	use	to	improve	the	project	that	you	develop.

There	 are	 times	when	 your	 system	will	 slow	 down	 because	 of	 the	 volume	 of
data,	or	code.	In	such	situations,	you	can	use	some	of	the	tips	mentioned	in	this
book	to	improve	the	performance	of	your	project.

Thank	you	for	purchasing	the	book.	I	hope	you	gathered	all	the	information	you
were	looking	for.

Chapter	One
	

	

Facts	about	VBA
	

Unlike	 the	 usual	 programming	 languages	 with	 only	 take	 code	 to	 build	 a
program,	we	can	record	actions	in	VBA	using	the	macro	recorder.	This	has	been
covered	extensively	in	the	previous	books.	This	chapter	covers	some	important
facts	about	macros	and	VBA.

Making	macros	available	on	every	MS	Excel	Worksheet
When	you	begin	to	record	a	macro	in	VBA,	Excel	will	prompt	you	to	save	the
macro	 in	a	specific	 location.	You	can	choose	 from	the	 following	 locations:	 the
workbook	you	are	writing	 the	macro	 in	or	 the	common	workbook.	If	you	save
the	macro	in	the	current	workbook,	it	will	not	be	available	for	any	other	user	to
use	 in	 a	 different	 workbook.	 If	 you	 want	 to	 use	 a	 single	macro	 or	 procedure
across	different	workbooks,	you	should	save	it	in	personal.xlsb.

The	personal.xlsb	workbook	is	a	hidden	file,	and	cannot	be	seen	or	edited	unless
you	unhide	the	file.	You	can	view	the	file	when	you	choose	to	look	at	all	files	in
an	Excel	window.

Types	Of	Codes	Found	Across	The	Internet
You	will	come	across	three	types	of	macros	across	the	internet.	The	first	type	is
the	 sub()	macro.	This	 is	 a	macro	 that	will	 run	 and	 execute	 a	block	of	 code	or
statements.	This	is	the	most	common	macro	type	available	on	the	internet.

The	second	type	is	a	function.	This	function	is	like	the	function	that	you	use	in
excel,	but	unlike	Excel	functions,	it	is	a	user	defined	function.	This	function	will
also	use	VBA	code.

The	third	type	of	macro	is	an	event	procedure	that	will	work	only	when	a	certain
event	 occurs.	A	macro	which	 runs	 the	moment	 you	 open	 your	workbook	 is	 a
classic	example	of	this	this	type	of	macro.

You	can	choose	a	macro	depending	on	what	you	want	to	another.	For	example,
you	can	record	a	macro	and	use	a	shortcut	key	to	call	it	when	you	want	to	format
some	cells.	Alternatively,	you	can	define	a	formula	within	a	macro	and	store	it	in
your	files.

Where	To	Use	The	Code	You	Find	On	The	Internet
You	must	remember	to	place	the	coffee	write	or	source	in	the	right	place.	If	you
do	not	save	it	correctly,	it	will	not	work.	You	can	add	functions	and	subs	to	the
modules	 in	 your	 workbook.	 If	 you	 want	 to	 insert	 a	 module,	 go	 to	 Insert	 ->
Module.	Select	the	module	that	you	want	to	insert,	click	it	 to	open	it	and	paste
the	code.	You	can	include	multiple	codes	in	the	same	module.	For	some	events,
you	will	need	to	place	a	macro	in	the	same	sheet.

Saving	A	Workbook
You	should	always	remember	to	save	a	workbook	as	a	macro	enabled	workbook.
A	sheet	that	contains	a	macro	will	have	different	properties	when	compared	to	a
sheet	that	does	not	have	a	macro.	If	you	need	to	save	the	workbook	as	a	macro
enabled	workbook,	you	should	choose	to	save	the	workbook	in	the	xlsm	format.

Chapter	Two
	

	

Resources	for	VBA	Help
	

You	cannot	expect	to	become	a	VBA	expert	in	a	day.	It	is	a	journey	and	you	will
need	to	practice	a	lot	before	you	become	an	expert.	The	best	part	about	coding	in
Excel	VBA	 is	 that	 there	are	many	 resources	 that	you	can	use	 to	 improve	your
knowledge	 in	Excel.	This	chapter	covers	some	of	 the	best	places	you	can	visit
and	 some	 of	 the	 best	 resources	 you	 can	 use	 if	 you	 need	 a	 push	 in	 the	 right
direction.

Allow	Excel	to	Write	the	Code	for	You
If	 you	 have	 read	 the	 previous	 books,	 you	 know	 that	 you	 can	 use	 the	 macro
recorder	to	help	you	with	understanding	your	code.	When	you	record	any	macro
or	 the	 steps	 you	want	 to	 automate	 using	 a	 record	macro,	 Excel	will	write	 the
underlying	code	 for	you.	Once	you	record	 the	code,	you	can	 review	 it	and	see
what	the	recorder	has	done.	You	can	then	convert	the	code	that	the	recorder	has
written	into	something	that	will	suit	your	needs.

For	 instance,	 if	 you	need	 to	write	 a	macro	 to	 refresh	a	pivot	 table	or	 all	 pivot
tables	 in	 your	workbook	 and	 clear	 all	 the	 filters	 in	 the	 pivot	 table,	 it	will	 get
difficult	 to	 write	 the	 code	 from	 scratch.	 You	 can	 instead	 start	 recording	 the
macro,	 and	 refresh	every	pivot	 table	 and	 remove	all	 the	 filters	yourself.	When
you	stop	recording	the	macro,	you	can	review	it	and	make	the	necessary	changes
to	the	code.

For	 a	 new	 Excel	 user,	 it	 would	 seem	 that	 the	 Help	 system	 is	 an	 add-in	 that
always	returns	a	list	of	topics	that	do	not	have	anything	to	do	with	the	topic	you
are	 looking	 for.	The	 truth	 is	 that	when	you	 learn	 how	 to	 use	 the	Help	System
correctly,	it	is	the	easiest	and	the	fastest	way	to	obtain	more	information	about	a
topic.	There	are	two	basic	tenets	that	you	must	keep	in	mind:

The	Location	Matters	When	You	Ask	For	Help
There	are	 two	Help	Systems	in	Excel	–	one	 that	provides	help	on	 the	different
features	 in	 Excel	 and	 the	 other	 that	 provides	 information	 on	 some	 VBA
programming	 topics.	Excel	will	not	perform	a	global	search	but	will	 throw	the
criteria	against	 the	Help	system,	which	 is	 in	your	current	 location.	This	means
that	you	will	 receive	 the	help	 that	you	need	depending	on	which	area	of	Excel

you	are	working	in.	If	you	want	help	on	VBA	and	macros,	you	need	to	be	in	the
Visual	 Basic	 Environment	 (VBE)	 when	 you	 look	 for	 information.	 This	 will
ensure	that	the	keyword	search	is	performed	on	the	correct	help	system.

Choose	Online	Help	over	Offline	Help
When	 you	 look	 for	 some	 information	 on	 a	 topic,	 Excel	 will	 see	 if	 you	 are
connected	to	the	internet.	If	your	system	is	connected	to	the	internet,	Excel	will
return	 results	 using	 some	 online	 content	 on	 Microsoft’s	 website.	 Otherwise,
Excel	 will	 use	 the	 help	 files	 that	 are	 stored	 offline	 in	 Microsoft	 office.	 It	 is
always	 good	 to	 choose	 online	 help	 since	 the	 content	 is	 more	 detailed.	 It	 also
includes	updated	information	and	the	links	to	other	resources	that	you	can	use.

Using	Code	for	Excel	VBA	from	the	Internet
The	 secret	 about	 coding	 or	 programming	 is	 that	 there	 is	 no	 necessity	 to	 build
original	code.	The	macro	syntax	that	you	need	to	use	is	always	available	on	the
internet.	This	proves	that	there	is	no	need	to	create	or	develop	code	from	scratch.
You	 can	 use	 some	 existing	 code	 on	 the	 internet	 and	 then	 apply	 the	 code	 to	 a
specific	scenario.

If	you	are	stuck	with	creating	or	writing	a	macro	for	a	specific	task,	all	you	need
to	do	is	describe	the	task	you	want	to	accomplish	using	Google	Search.	All	you
need	to	do	is	add	the	words	“Excel	VBA”	before	you	describe	your	requirement.

For	 instance,	 if	 you	 want	 to	 write	 a	 macro	 to	 delete	 every	 blank	 row	 in	 a
worksheet,	 you	 should	 look	 for,	 “How	 to	 delete	 blank	 rows	 in	 a	worksheet	 in
Excel	VBA?”	You	can	bet	a	whole	years’	worth	of	salary	that	a	programmer	has
already	developed	code	for	the	same	problem.	There	is	probably	an	example	that
is	available	on	the	internet,	which	will	give	you	an	idea	of	what	you	need	to	do.
This	way	you	can	simply	build	your	own	macro.

Making	Use	of	Excel	VBA	Forums
If	you	find	yourself	 in	a	spot,	and	are	unsure	of	what	 to	do,	you	should	post	a
question	on	a	forum.	The	experts	on	these	forums	will	guide	you	based	on	your
requirement.	A	user	forum	is	an	online	community	that	revolves	around	specific
topics.	 You	 can	 ask	 numerous	 questions	 in	 these	 forums	 and	 get	 advice	 from
experts	 on	 how	 you	 should	 solve	 some	 problems.	 The	 people	 answering	 your
questions	are	volunteers	who	are	passionate	about	helping	the	Excel	community
solve	some	real-world	problems.

Many	forums	were	built	or	developed	to	helping	people	with	Excel.	If	you	want
to	find	such	a	forum,	you	should	type	“Excel	Forum”	in	Google	Search.	Let	us
look	at	some	tips	you	can	use	to	get	the	most	out	of	the	user	form.

You	 should	 always	 read	 the	 forum	 and	 follow	 all	 the	 rules	 before	 you	 begin.
These	 rules	 will	 often	 include	 some	 advice	 on	 how	 you	 should	 post	 your
questions	and	also	the	etiquette	you	should	follow.

Always	check	 if	 the	question	you	want	 to	ask	has	already	been	answered.	You
should	try	to	save	some	time	by	looking	at	the	archives.	Now,	take	a	moment	to
look	at	 the	forum	and	verify	 if	any	of	 the	questions	you	want	answers	 to	have
already	been	asked.

You	should	use	accurate	and	concise	titles	for	any	of	your	questions.	You	should
never	create	a	forum	question	using	an	abstract	title	like	“Please	Help”	or	“Need
advice.”

You	should	always	ensure	that	the	scope	of	your	question	is	narrow.	You	should
never	ask	vague	questions	like	“Can	I	build	an	accounting	tool	in	Excel?”

You	should	always	be	patient,	and	remember	 that	 the	people	who	are	 trying	 to
answer	your	question	also	have	a	day	 job.	You	should	always	give	 the	experts
time	to	answer	the	questions.

You	should	always	check	often	when	you	post	your	questions.	You	will	probably
receive	some	 information	when	 they	will	ask	you	 to	provide	some	 information
about	your	question.	Therefore,	you	should	always	return	to	your	post	to	either
respond	to	some	questions	or	review	the	answer.

You	 should	 always	 thank	 the	 person	 who	 has	 answered	 your	 question.	 If	 the
answer	helps	you,	you	should	let	the	expert	know	the	same.

Visiting	Excel	VBA	Expert	Blogs
Some	 Excel	 Gurus	 have	 shared	 their	 knowledge	 about	 VBA	 on	 their	 blogs.
These	blogs	have	a	large	number	of	tips	and	tricks	that	you	can	use	to	improve
your	VBA	 skills.	 They	 have	 some	 information	 that	 you	 can	 use	 to	 build	 your
skills.	The	best	part	of	using	these	blogs	is	that	they	are	free	to	use.

These	 blogs	 do	 not	 necessarily	 answer	 your	 specific	 questions,	 but	 they	 offer
many	articles	 that	you	can	use	 to	advance	your	knowledge	of	VBA	and	Excel.
These	 blogs	 can	 also	 provide	 some	 general	 guidance	 on	 how	 you	 can	 apply

Excel	in	different	situations.	Let	us	look	at	a	few	popular	Excel	blogs:

ExcelGuru
ExcelGuru	 is	 a	 blog	 that	was	 set	 up	 by	Ken	Puls.	He	 is	 an	Excel	 expert	who
shares	all	his	knowledge	on	his	blog.	Apart	from	the	blog,	Ken	also	offers	many
learning	resources	you	can	use	to	improve	your	knowledge	in	Excel.

Org
Org	is	a	blog	that	was	set	up	by	Purna	Chandoo	Duggirala.	He	is	an	Excel	expert
from	 India	who	 joined	 the	 scene	 in	 2007.	His	 blog	offers	 innovative	 solutions
and	some	free	templates	that	will	make	you	an	Excel	expert.	

Contextures
Debra	 Dalgleish	 is	 the	 owner	 of	 a	 popular	 Excel	 website	 and	 is	 great	 with
Microsoft	Excel.	Se	has	 included	close	 to	350	topics	on	her	website,	and	 there
will	definitely	be	something	that	you	can	read.

DailyDose
The	 DailyDose	 is	 a	 blog	 that	 is	 owned	 by	 Dick	 Kusleika.	 It	 is	 the	 longest
running	Excel	blog,	and	Dick	is	an	expert	at	Excel	VBA.	He	has	written	articles
and	blogs	for	over	ten	years.

MrExcel
Bill	Jelen	always	uses	Excel	to	solve	any	problems	he	has	at	work.	He	offers	a
large	archive	of	training	resources	and	over	thousands	of	free	videos.

Mining	YouTube	for	Some	Excel	VBA	Training	Videos
If	you	know	that	there	are	some	training	videos	that	are	available	on	the	internet,
and	 these	 sessions	 are	 better	 than	 articles,	 you	 should	 look	 for	 those	 videos.
There	are	many	channels	that	are	run	by	amazing	experts	that	are	passionate	for
sharing	knowledge.	You	will	be	pleasantly	surprised	to	see	the	quality	of	those
videos.

Attending	a	Live	Online	Excel	VBA	Training	Class
Live	training	sessions	are	a	great	way	to	absorb	good	Excel	knowledge	form	a
diverse	set	of	people.	The	instructor	is	providing	some	information	on	different
techniques,	but	the	discussions	held	after	the	class	will	leave	you	with	a	wealth
of	ideas	and	tips.	You	may	have	never	thought	of	these	ideas	ever	before.	If	you

can	 survive	 these	 classes,	 you	 should	 always	 consider	 attending	more	of	 these
sessions.	Here	are	some	websites	that	you	can	use	for	such	sessions:

1.	 Org

2.	 ExcelHero

3.	 ExcelJet

4.	 Learning	From	The	Microsoft	Office	Developer	Center	For	Help	With
VBA

You	should	use	the	Microsoft	Office	Dev	Center	to	get	some	help	on	how	to	start
programming	in	Office	products.	The	website	is	slightly	difficult	to	navigate,	but
it	is	worth	it	to	look	at	the	sample	code,	free	resources,	step-by-step	instructions,
tools	and	much	more.

Dissecting	Other	Excel	Files	in	Your	Organization
Previous	 employees	 or	 current	 employees	may	 have	 created	 files	 that	 already
answer	some	of	your	questions.	You	should	try	to	open	different	Excel	files	that
contain	the	right	macros,	and	also	look	at	how	these	macros	function.	Then	see
how	 other	 employees	 in	 the	 organization	 develop	 macros	 for	 different
applications.	You	should	try	not	to	go	through	the	macro	line-by-line	but	should
look	for	some	new	techniques	that	may	have	been	used.

You	can	also	try	to	identify	new	tricks	that	you	may	have	never	thought	of.	You
will	 probably	 also	 stumble	 upon	 some	 large	 chunks	 of	 code	 that	 you	 can
implement	or	copy	into	your	workbooks.

Ask	the	Local	Excel	Guru
Is	 there	 an	 excel	 genius	 in	 your	 department,	 company,	 community	 or
organization?	 If	 yes,	 you	 should	 become	 friends	 with	 that	 person	 now.	 That
person	will	 become	your	 own	personal	 guru.	Excel	 experts	 love	 to	 share	 their
knowledge,	so	you	should	never	be	afraid	to	approach	an	expert	if	you	have	any
questions	or	want	to	seek	advice	on	how	you	can	solve	some	problems.

Chapter	Three
	

	

How	to	Improve	
the	Performance	of	Macros

	

There	are	times	when	VBA	will	run	very	slowly,	and	this	is	certainly	frustrating.
The	 good	 news	 is	 that	 there	 are	 some	 steps	 that	 you	 can	 take	 to	 improve	 the
performance	 of	 the	macro.	 This	 chapter	will	 provide	 some	 information	 on	 the
different	 steps	 you	 should	 take	 to	 improve	 the	 speed	 and	 performance	 of	 a
macro.	 Regardless	 of	 whether	 you	 are	 an	 IT	 administrator,	 end	 user	 or	 a
developer,	you	can	use	these	tips	to	your	benefit.

Close	Everything	Except	for	the	VBA	Essentials
The	 first	 thing	 to	do	 to	 improve	 the	performance	of	VBA	 is	 to	 turn	off	 all	 the
unnecessary	 features	 like	 screen	 updating,	 animation,	 automatic	 events	 and
calculations	when	 the	macro	 runs.	All	 these	 features	will	 always	 add	 an	 extra
overhead,	 which	 will	 slow	 the	 macro	 down.	 This	 always	 happens	 when	 the
macro	needs	to	modify	or	change	many	cells	and	trigger	a	lot	of	recalculations	or
screen	updates.

The	code	below	will	show	you	how	you	can	enable	or	disable	the	following:

1.	 Animations

2.	 Screen	updates

3.	 Manual	Calculations

	

Option	Explicit

Dim	lCalcSave	As	Long

Dim	bScreenUpdate	As	Boolean

Sub	SwitchOff(bSwitchOff	As	Boolean)

		Dim	ws	As	Worksheet

		With	Application

				If	bSwitchOff	Then

					'	OFF

						lCalcSave	=	.Calculation

				bScreenUpdate	=	.ScreenUpdating

						.Calculation	=	xlCalculationManual

						.ScreenUpdating	=	False

						.EnableAnimations	=	False

						'

						'	switch	off	display	pagebreaks	for	all	worksheets

						'

						For	Each	ws	In	ActiveWorkbook.Worksheets

								ws.DisplayPageBreaks	=	False

						Next	ws

				Else

						'	ON

						If	.Calculation	<>	lCalcSave	And	lCalcSave	<>	0	Then	.Calculation
=	lCalcSave

						.ScreenUpdating	=	bScreenUpdate

						.EnableAnimations	=	True

			End	If

		End	With

End	Sub

Sub	Main()

		SwitchOff(True)	‘	turn	off	these	features

		MyFunction()	‘	do	your	processing	here

		SwitchOff(False)	‘	turn	these	features	back	on

End	Sub

Disabling	All	The	Animations	Using	System	Settings
You	can	disable	animations	through	the	Ease	of	Access	center	in	Windows.	You
can	 use	 this	 center	 to	 disable	 some	 specific	 features	 in	 Excel	 by	 going	 to	 the
Ease	of	Access	or	Advanced	Tabs	on	the	menu.	For	more	information,	please	use
the	 following	 link:	 https://support.office.com/en-us/article/turn-off-office-
animations-9ee5c4d2-d144-4fd2-b670-22cef9fa

Disabling	Office	Animations	Using	Registry	Settings
You	 can	 always	 disable	 office	 animations	 on	 different	 computers	 by	 changing
the	appropriate	registry	key	using	a	group	policy	setting.

HIVE:	HKEY_CURRENT_USER

Key	Path:	Software\Microsoft\Office\16.0\Common\Graphics

Key	Name:	DisableAnimations

Value	type:	REG_DWORD

Value	data:	0x00000001	(1)

If	you	use	the	Registry	Editor	incorrectly,	you	can	cause	some	serious	problems
across	 the	 system.	 You	 may	 need	 to	 re-install	 Windows	 to	 use	 the	 editor
correctly.	Microsoft	will	help	you	solve	 the	problems	of	a	Registry	Editor,	but
you	should	use	this	tool	if	you	are	willing	to	take	the	risk.

Removing	Unnecessary	Selects
Most	people	use	 the	 select	method	 in	 the	VBA	code,	but	 they	add	 it	 in	places
where	it	is	not	necessary	to	use	them.	This	keyword	will	trigger	some	cell	events
like	conditional	formatting	and	animations,	which	will	hinder	the	performance	of
the	 macro.	 If	 you	 remove	 all	 the	 unnecessary	 selects,	 you	 can	 improve	 the
performance	 of	 the	 macro.	 The	 following	 example	 will	 show	 you	 the	 code
before	and	after	you	make	a	change	to	remove	all	the	extra	selects.

Before
Sheets("Order	Details").Select

Columns("AC:AH").Select

Selection.ClearContents

After
Sheets("Order	Details").Columns("AC:AH").ClearContents

Using	the	With	Statement	to	Read	Object	Properties
When	 you	 work	 with	 objects,	 you	 should	 the	With	 statement	 to	 decrease	 the
number	 of	 times	 that	 the	 compiler	 reads	 the	 properties	 of	 the	 object.	 In	 the
example	below,	see	how	the	code	changes	when	you	use	the	With	statement.

Before
Range("A1").Value	=	“Hello”

Range("A1").Font.Name	=	“Calibri”

Range("A1").Font.Bold	=	True

Range("A1").HorizontalAlignment	=	xlCenter

After
With	Range("A1")

		.Value2	=	“Hello”

		.HorizontalAlignment	=	xlCenter

				With	.Font

						.Name	=	“Calibri”

						.Bold	=	True

				End	With

End	With

Using	Arrays	And	Ranges
It	 is	expensive	 to	 read	and	write	 to	cells	every	 time	 in	Excel	using	VBA.	You
incur	an	overhead	every	time	there	is	some	movement	of	data	between	Excel	and
VBA.	This	means	 that	you	should	always	reduce	 the	number	of	 times	 the	data
moves	 between	 Excel	 and	 VBA.	 It	 is	 at	 such	 a	 time	 that	 ranges	 are	 useful.
Instead	of	writing	or	 reading	 the	data	 individually	 to	 every	 cell	within	 a	 loop,
you	can	simply	read	the	entire	range	into	an	array,	and	use	that	array	in	the	loop.

The	example	below	will	show	you	how	you	can	use	a	range	to	read	and	write	the
values	at	once	without	having	to	read	each	cell	individually.

Dim	vArray	As	Variant

Dim	iRow	As	Integer

Dim	iCol	As	Integer

Dim	dValue	As	Double

vArray	=	Range("A1:C10000").Value2	‘	read	all	the	values	at	once	from
the	Excel	cells,	put	into	an	array

For	iRow	=	LBound(vArray,	1)	To	UBound(vArray,	1)

		For	iCol	=	LBound(vArray,	2)	To	UBound(vArray,	2)

				dValue	=	vArray	(iRow,	iCol)

				If	dValue	>	0	Then

						dValue=dValue*dValue	‘	Change	the	values	in	the	array,	not	the	cells

				vArray(iRow,	iCol)	=	dValue

		End	If

Next	iCol

Next	iRow

Range("A1:C10000").Value2	=	vArray	‘	writes	all	the	results	back	to	the
range	at	once

Use	.Value2	Instead	Of	.Text	or	.Value
You	can	retrieve	your	values	in	different	ways	from	a	cell.	The	property	you	use
to	retrieve	that	information	will	have	an	impact	on	the	performance	of	your	code.

	

.Text
Most	programmers	use	 the	 .Text	value	 to	 retrieve	only	 the	 information	 from	a
cell.	 The	 property	will	 return	 the	 formatted	 value	 of	 the	 cell.	 It	 takes	 a	 lot	 of
processing	 time	 to	 retrieve	a	cell	value	along	with	 its	 format,	and	 it	 is	 for	 this

reason	that	this	property	is	slow.

.Value
The	.Value	keyword	is	a	slight	improvement	over	the	previous	keyword	since	it
does	not	 return	 a	value	with	 its	 format.	Regardless	of	whether	 a	 cell	 has	been
formatted	with	a	date	or	currency,	 this	keyword	will	only	 return	 the	VBA	date
and	 VBA	 currency,	 and	 the	 values	 for	 these	 outputs	 are	 truncated	 at	 decimal
places.

.Value2
The	.Value2	keyword	only	returns	the	underlying	value	of	the	cell.	This	keyword
does	not	 take	 any	 formatting	 into	 account	 and	works	 faster	 than	 the	 .Text	 and
.Value	keywords.	This	keyword	works	faster	if	you	use	a	variant	array.

If	 you	 want	 to	 learn	 more	 about	 how	 these	 keywords	 work,	 please	 read	 the
following	 post:	 https://fastexcel.wordpress.com/2011/11/30/text-vs-value-vs-
value2-slow-text-and-how-to-avoid-it/

Avoid	Using	Copy	and	Paste
When	you	use	the	macro	recorder	to	record	any	operations,	including	copy	and
paste	that	you	perform	in	Excel,	the	code	that	the	recorder	writes	will	use	these
methods	as	default	operations.	It	is	always	a	good	idea	to	avoid	using	the	copy
and	 paste	 operations,	 and	 use	 some	 in-built	 VBA	 functions	 to	 perform	 these
operations.	 You	 can	 also	 use	 the	 in-built	 functions	 to	 copy	 formulae	 or
formatting	across	a	block	of	cells.	The	following	example	will	give	you	an	idea
about	how	you	should	use	the	in-built	VBA	operations	and	functions	as	opposed
to	manual	copy	and	paste	operations.

	

Before
Range("A1").Select

Selection.Copy

Range("A2").Select

ActiveSheet.Paste

After

‘	Approach	1:	copy	everything	(formulas,	values	and	formatting

Range("A1").Copy	Destination:=Range("A2")

‘	Approach	2:	copy	values	only

Range("A2").Value2	=	Range("A1").Value2

‘	Approach	3:	copy	formulas	only

Range("A2").Formula	=	Range("A1").Formula

If	you	think	that	the	code	is	still	functioning	slowly,	you	can	use	the	following
fix:	 https://support.microsoft.com/en-in/help/2817672/macro-takes-longer-than-
expected-to-execute-many-in

Use	The	Option	Explicit	Keyword	To	Catch	Undeclared	Variables
Option	Explicit	is	one	of	the	many	Module	directives	that	you	can	use	in	VBA.
This	 directive	 will	 instruct	 VBA	 about	 how	 it	 should	 treat	 a	 code	 within	 a
specific	 module.	 	 If	 you	 use	 Option	 Explicit,	 you	 should	 ensure	 that	 all	 the
variables	in	the	code	are	declared.	If	there	is	any	variable	that	is	not	declared,	it
will	throw	a	compile	error.	This	will	help	you	catch	any	variables	that	have	been
named	 incorrectly.	 It	 will	 also	 help	 to	 improve	 the	 performance	 of	 the	macro
where	 variables	 are	 defined	 at	 different	 times.	 	 You	 can	 set	 this	 by	 typing
“Option	Explicit”	at	 the	 top	of	every	module	you	write.	Alternatively,	you	can
check	 the	 “Require	 Variable	 Declaration”	 in	 the	 VBA	 editor	 under	 “Tools	 ->
Options.”

Chapter	Four
	

	

Some	Problems	with	Spreadsheets	
and	How	to	Overcome	Them

	

Most	people	use	Excel	to	make	a	repository.	This	is	because	it	is	easy	to	make	a
list	 of	 small	 items	 for	 yourself	 or	 your	 colleagues	 in	Excel.	You	may	 perhaps
want	to	use	some	formulae	to	create	something	sophisticated.	You	may	also	want
to	use	macros	to	automate	the	process	of	collecting	and	processing	data.	You	can
do	this	by	typing	an	equal	to	sign	in	the	cell	before	you	write	the	formula.	Excel
will	be	your	guide.	There	are	 some	problems	 that	everybody	will	 face	when	 it
comes	 to	 using	 Excel,	 and	 that	 is	 its	 simplicity.	 You	 may	 start	 with	 a	 small
project	in	Excel,	and	this	project	will	grow	until	it	becomes	a	daunting	task.	At
this	 point,	 you	 may	 also	 face	 some	 issues	 with	 stability	 and	 speed,	 or	 some
development	problem	that	you	cannot	solve.

This	 chapter	 examines	 some	 of	 the	 common	 issues	 that	 people	 come	 across
when	 they	 use	 spreadsheets,	 and	 also	 provides	 some	 solutions	 to	 tackle	 those
problems.	It	will	also	tell	you	when	you	should	switch	to	a	database	instead	of
sticking	to	Excel.

Multi-User	Editing
When	 an	 Excel	 system	 begins	 to	 grow,	 you	 will	 quickly	 run	 into	 a	 problem
where	only	one	user	can	open	 the	workbook	at	a	 time	and	make	changes	 to	 it.
Any	other	person	who	wants	to	open	the	workbook	will	be	notified	that	someone
already	has	the	book	open	and	that	they	can	view	the	workbook	as	a	read-only
version	or	wait	until	the	file	is	closed	by	the	first	user.	Excel	does	promise	to	let
you	know	when	 the	 first	 user	has	 closed	 the	 file,	 but	 this	 is	 a	hollow	promise
since	Excel	does	not	always	check	 the	status,	and	 there	are	 times	when	 it	may
never	 give	 you	 an	 update.	 Even	 if	 it	 does	 give	 you	 an	 update,	 someone	may
already	have	opened	the	file	before	you.

You	can	get	around	this	in	the	following	ways:

1.	 You	 should	 use	 Excel	 Online.	 This	 application	 is	 a	 web-based	 and
abridged	version	of	Microsoft	Excel.

2.	 Turn	on	the	feature	that	will	allow	you	to	share	the	workbook.

3.	 Split	 the	 workbook	 into	 smaller	 workbooks.	 This	 will	 allow	 different

users	 to	 access	different	workbooks	without	 causing	 any	hindrances	 in
the	work.

Shared	Workbooks
If	you	use	Excel	online,	you	can	allow	multiple	users	to	edit	the	workbook	at	the
same	time.	There	 is	so	much	functionality	 that	goes	missing,	which	makes	 it	a
contender	 only	 for	 simple	 tasks.	 The	 shared	 workbook	 features	 in	 Excel	 will
allow	 you	 to	 share	 the	workbook	 between	multiple	 users,	 but	 there	 are	many
restrictions.	For	instance,	you	cannot	delete	a	group	of	cells	or	create	a	table	in	a
shared	workbook.

It	 is	 easy	 to	 walk	 around	 some	 restrictions,	 but	 for	 others,	 it	 is	 a	 matter	 of
changing	the	structure	of	the	entire	workbook	instead	of	using	a	workbook	that
has	already	been	set	up.	These	workarounds	can,	however,	get	in	the	way.	As	a
result	of	this,	it	is	impossible	to	use	a	workbook	that	is	shared	in	the	same	way
that	you	may	use	a	single	user	workbook.

Any	changes	made	in	a	shared	workbook	will	be	synchronized	between	the	users
every	 time	 the	 workbook	 is	 saved.	 These	 changes	 can	 be	 saved	 on	 a	 time
schedule,	 meaning	 that	 a	 workbook	 can	 be	 saved	 or	 force	 saved	 every	 few
minutes.	The	overhead	of	regular	checking	and	savings	every	share	user	change
is	quite	large.	The	size	of	the	workbook	can	increase	which	will	put	a	strain	on
your	network	thereby	slowing	down	every	other	system.

A	shared	workbook	is	prone	to	corruption.	Microsoft	office	knows	that	this	is	the
problem,	but	there	is	nothing	much	you	can	do	about	the	issue.	The	alternative	to
this	situation	is	to	use	Excel	online	since	you	can	have	multiple	users	working	on
the	same	workbook.	Not	many	users	will	switch	to	excel	online	until	Microsoft
will	 remove	 all	 the	 restrictions	 on	 a	 shared	 workbook,	 and	 extend	 a	 multi-
authoring	tool	to	the	Excel	offline	application.

Linked	Workbooks
If	you	want	to	overcome	the	issue	of	multi-user	editing,	you	should	try	to	split
the	 data	 across	multiple	workbooks.	 It	 is	 likely	 that	 these	workbooks	must	 be
linked	so	that	any	value	entered	in	one	can	be	used	in	another.	The	links	between
workbooks	 also	 help	 to	 separate	 data	 using	 a	 logical	method	 instead	 of	 using
separate	worksheets	in	one	workbook.

Unfortunately,	these	links	lead	to	instability	and	frustration.	This	is	because	the

links	need	to	be	absolute	or	relative.	In	the	case	of	absolute	links,	you	will	need
to	include	the	full	path	resource	workbook	while	in	the	case	of	relative	links,	you
only	 need	 to	 include	 the	 difference	 between	 the	 destination	 and	 source	 paths.
This	may	 sound	 sensible	 until	 you	 come	 across	 the	 rules	 the	Excel	 decides	 to
employ	on	when	you	can	use	each	type	of	link,	and	when	you	can	change	them.

These	 rules	 are	 governed	 by	 numerous	 options.	 Some	 of	 these	 rules	 are
dependent	on	whether	the	workbook	was	saved	and	whether	it	was	saved	before
every	link	was	inserted.	There	are	 times	when	Excel	will	automatically	change
the	link	when	you	open	a	workbook	and	use	the	save	as	option	to	copy	the	file.
Excel	may	also	change	the	links	when	you	simply	save	the	workbook	down.	One
of	the	main	disadvantages	of	using	this	option	is	that	the	links	can	break	easily,
and	it	is	difficult	to	recover	all	the	broken	links.	This	is	also	a	time-consuming
affair	since	you	cannot	use	the	files	that	are	affected	by	the	broken	links.

The	 linked	 data	 will	 only	 be	 updated	 when	 all	 the	 underlying	 files	 are	 open
unless	you	edit	links	and	update	values.	It	is	because	of	this	that	you	may	need	to
open	3	or	4	workbooks	to	ensure	that	all	 the	information	is	flowing	through	in
the	right	order.	If	you	made	it	changed	it	the	value	in	the	first	workbook	but	open
only	 3rd	 workbook,	 you	 will	 not	 see	 any	 changes	 because	 this	 is	 a	 second
workbook	still	does	not	have	the	updated	values.

It	is	logical	to	create	a	change	a	data,	but	this	will	increase	the	likelihood	that	the
data	 is	 incorrect	 or	 and	when	 you	 open	 a	workbook	 somebody	 else	 is	 already
editing	the	underlying	work.	You	can	avoid	the	use	of	link	workbooks,	but	there
is	 a	 chance	 that	 you	 will	 end	 up	 entering	 the	 same	 data	 in	 more	 than	 one
workbook.	The	danger	with	 this	 is	 that	you	may	 type	 the	data	differently	each
time.

Data	Validation
You	must	remember	that	any	user	can	enter	data	on	any	computer	system.	People
can	 transpose	digits	 in	numbers	or	mistype	words	with	monotonous	 regularity.
You	must	ensure	 that	you	check	 the	data	when	it	 is	entered	or	you	will	have	a
problem	in	the	end.

Excel	will	always	accept	whatever	any	user	types.	Therefore,	it	is	possible	to	set
up	a	validation	using	lists,	but	it	 is	impossible	to	maintain	this	list	especially	if
that	 field	 is	 used	 in	 multiple	 places.	 For	 example,	 if	 a	 user	 should	 enter	 a
customer	reference	number	or	a	document	ID	they	can	enter	 the	wrong	record.

To	 avoid	 this,	 it	 is	 always	 good	 to	 have	 some	 checks	 across	 the	workbook.	 If
there	 is	 no	Data	 integrity,	 the	 system	will	 be	 fatally	 compromised,	which	will
affect	the	analysis.

You	may	already	be	 suffering	 from	 this	problem	without	having	 realized	what
the	root	cause	is.	Let	us	consider	a	situation	where	there	is	a	list	of	invoices	that
you	have	entered	in	Excel	Find	the	user	has	typed	the	name	of	every	customer
differently	 on	 every	 invoice.	 You	 got	 invoices	 to	 John	 limited,	 John	 Ltd	 and
John.	You	are	aware	that	these	invoices	point	to	the	same	company	or	customer,
but	Excel	is	not	aware	of	this.	This	means	that	any	analysis	that	you	made	using
this	data	will	always	give	you	multiple	results	when	they	should	only	be	one.

Navigation	Issues
It	is	difficult	to	navigate	through	large	workbooks.	The	number	of	sheet	tabs	in
the	bottom	of	 the	window	 is	difficult	 to	use	and	 is	 a	 terrible	way	 to	 find	your
way	around	 the	workbook.	 If	 there	are	many	sheets	 in	 the	workbook,	and	you
cannot	see	all	of	them	on	the	screen,	it	will	be	difficult	for	you	to	find	what	you
are	 looking	 for.	 You	 can	 always	 click	 on	 the	 arrow	 to	 the	 left	 of	 your	 active
sheet,	but	you	will	only	see	 the	first	 twenty	sheets	 in	 that	window.	You	cannot
sort	or	group	the	list	of	sheets	in	any	order.

Security	Issues
You	can	add	a	lot	of	security	features	to	an	Excel	workbook,	but	it	is	still	going
to	 have	 many	 problems.	 It	 is	 more	 important	 to	 work	 toward	 protecting	 the
structure	of	 the	workbook,	 instead	of	worrying	about	 the	data.	You	can	always
lock	some	sheets	and	cells	in	the	workbook	to	prevent	some	users	from	making
any	changes	to	the	data	or	formulae.	Regardless	of	whether	you	protect	the	sheet
or	not,	if	someone	can	see	the	data,	they	can	make	changes	to	it.	You	can	avoid
this	by	using	some	clever	macro	skills.

Speed	Issues
You	must	 remember	 that	 Excel	 is	 not	 the	 fastest	 application	 there	 is,	 and	 the
programming	language	we	use	in	Excel,	VBA	is	slow	and	slightly	sluggish	when
compared	to	the	more	professional	languages	like	C	and	C#.	This	is	because	of
the	intended	use	of	Excel	and	its	flexibility.	You	should	remember	that	Excel	is	a
spreadsheet	engine	alone,	 and	 it	 can	only	be	used	 to	manage	 large	volumes	of
data.	This	does	not	mean	that	you	must	always	use	Excel	for	this	type	of	work.

There	are	many	other	applications	that	you	can	use	to	perform	such	tasks	since
those	applications	were	designed	to	perform	these	functions.

Enter	the	database
If	you	are	facing	any	of	 the	 issues	 that	have	been	 listed	above,	you	should	not
ignore	 them.	The	answer	or	solution	 to	 these	problems	is	 to	store	 the	data	 in	a
structured	 manner.	 This	 means	 that	 we	 will	 need	 to	 start	 saving	 data	 in	 a
database.	This	will	allow	you	to	think	about	your	data	in	a	logical	manner.	You
have	the	ability	to	see	how	the	data	welding	together	and	how	you	will	need	to
interact	with	it	to	analyze	the	information.

You	must,	however,	take	heed.	If	you	move	from	spreadsheets	to	databases,	you
should	not	duplicate	the	design	of	a	spreadsheet.	Instead,	you	should	find	a	way
to	make	 the	design	better.	There	are	 some	general	database	applications,	 listed
below	with	which	 you	 can	 construct	 a	 simple	 solution.	Alternatively,	 you	 can
also	 use	 specialist	 database	 applications	 that	 allow	 you	 to	 switch	 from
spreadsheet	 to	 databases	 within	 a	 few	 minutes	 point	 these	 applications	 are	 a
better	fit	to	big	data.

For	example,	if	you	have	a	list	of	customers,	their	details	and	any	interaction	you
have	 had	 with	 these	 customers	 you	 should	 consider	 using	 a	 customer
relationship	management	system.	Customer	relationship	management	system	is	a
specialized	database.	Similarly,	you	can	save	accounts	on	packages	like	Sage	and
QuickBooks.	The	may	be	times	when	you	cannot	find	an	existing	application	to
suit	your	needs.	As	such	times	you	may	need	to	build	a	database	by	yourself	or
request	see	IT	department	or	any	consultant	to	build	the	database	for	you.

The	 relational	 database	 is	 the	most	 common	 type	 of	 database	 used	 in	 today's
world.	 This	 database	 stores	 information	 or	 data	 in	 the	 form	 of	 tables,	 which
consists	of	columns	and	rows	of	data.	Every	row	data	will	hold	a	separate	item
and	every	column	will	describe	a	different	attribute	of	that	item.	For	example,	if
the	 rows	 hold	 customer	 information,	 the	 columns	 can	 describe	 attributes	 like
customer	name	and	customer	ID.	All	you	need	to	do	is	enter	the	data	once,	and
then	you	can	use	the	same	data	to	print	on	every	invoice.

Every	 table	 in	 a	 relational	 database	 has	 a	 relationship	 between	 them.	You	 can
take	 the	 relationship	 between	 an	 invoice	 and	 the	 customer	 ID.	 Here	 you	 can
always	find	an	invoice	that	is	related	to	a	specific	customer	using	the	customer
ID.	Alternatively,	you	can	also	retrieve	customer	information	from	the	invoice	if

necessary.	All	you	need	to	do	is	enter	the	customer	data	of	one	in	the	database	to
create	 a	 record,	 and	 you	 can	 use	 that	 information	 across	 different	 invoices
without	 having	 to	 type	 the	 data	 again.	 To	 use	 or	 create	 a	 database,	 you	must
define	the	tables	and	the	relationships	between	those	tables,	and	then	define	the
type	of	layout	you	want	to	use	to	edit	or	list	the	data.

There	 are	 over	 a	 dozen	 applications	 that	 you	 can	 choose	 from.	 Some	 of	 the
applications	are	easy	to	use	and	do	the	job	for	you.	These	applications	will	allow
you	 to	 define	 the	 table,	 the	 data	 screen,	 and	 the	 reports.	 There	 are	 other
applications	that	are	more	useful	in	specific	areas	but	will	require	other	tools	to
perform	the	job.

For	example,	 some	applications	may	be	very	powerful	when	comes	defining	a
table	and	the	relationship	that	table	shares	with	the	database	and	other	tables,	and
it	may	also	have	some	excellent	analysis	and	reporting	features.	This	application
can,	however,	lack	a	tool,	which	will	allow	you	to	define	the	data	entry	screen.
An	 obvious	 example	 of	 such	 an	 application	 is	Microsoft	 SQL.	As	 is	 the	 case
with	large	database	systems,	the	SQL	server	will	only	take	care	of	the	back-end
annual	 expect	 you	 to	 use,	 and	 other	 tools	 like	 visual	 studio	 to	 develop	 or
maintain	the	front-end.

Choosing	the	Right	Database
Access

Microsoft	Access	is	one	of	the	oldest	databases	available.	This	is	easy	to	use	and
is	 extremely	 easy	 to	 abuse.	 You	 can	 design	 screens,	 reports,	 and	 tables	 from
scratch	or	use	an	existing	template.	Some	of	the	templates	in	Access	do	not	teach
you	 some	 good	 practices,	 but	 they	 will	 help	 you	 get	 started	 quickly.	 The
programming	 and	 screen	 features	 and	 options	 are	 sophisticated,	 and	 you	 can
deploy	the	application	on	the	intranet	without	having	to	rely	on	sharing	the	files
with	users.	

SharePoint

SharePoint	 is	 a	 document	 storage	 application	 and	 a	 database.	 This	 application
can	be	used	to	compile	and	link	simple	lists.	You	can	use	the	form	designer	to
customize	 your	 dashboard,	 but	 it	 is	 important	 to	 remember	 that	 it	 is	 not	 a
sophisticated	 application	 to	 use.	 SharePoint	 has	 the	 ability	 to	 suck	 the
information	 from	 Excel	 and	 put	 it	 into	 a	 custom	 list.	 This	 makes	 it	 a	 useful

application	since	everybody	in	your	network	will	have	access	to	the	list.	You	can
choose	 to	 add	 some	 security	 features,	 which	 will	 restrict	 the	 access	 for	 some
people.	 SharePoint	 can	 also	 send	 you	 an	 alert	 email	 when	 someone	 makes	 a
change	 –	 adds,	 deletes	 or	 edits	 –	 to	 a	 record.	 You	 can	 also	 synchronize	 the
information	with	Outlook	if	you	have	some	data	that	concerns	a	person,	calendar
or	task.

Zoho	Creator

There	 is	 a	 database	 application	 that	 you	 can	 use	 in	 the	 Zoho	 office	 services
available	on	the	internet.	You	can	drag	and	drop	the	required	layout	 in	an	easy
way.	 This	 will	 also	 help	 you	 decide	 how	 the	 work	 should	 flow	 and	what	 the
interaction	can	be	like.	Since	this	is	a	web	application,	the	data	you	use	and	the
applications	you	develop	can	be	found	anywhere.	Therefore,	you	should	use	the
simple	security	features	that	this	application	provides	to	keep	your	data	private.
Zoho	 charges	 you	 per	 month	 but	 will	 allow	 you	 to	 store	 only	 some	 records
depending	on	the	price	you	choose	to	pay.	If	you	want	to	use	advanced	features
like	email	integration,	you	will	need	to	pay	an	additional	amount	of	money.

	

	

Hi	there!	If	you	found	the	topic	or	information	useful,	it	would	be	a	great	help
if	you	can	leave	a	quick	review	on	Amazon.	Thanks	a	lot!

Chapter	Five
	

	

Sub	Procedures
	

If	 you	 have	 read	 Excel	 tutorials	 that	 talk	 about	 VBA	 and	macros,	 you	would
have	come	across	the	term	procedure	at	least	a	hundred	times.	If	you	are	unsure
of	what	these	are,	you	should	learn	this	now.	There	are	many	good	reasons	why
this	is	important.

If	you	want	to	become	an	expert	at	writing	macros	and	using	VBA,	you	should
understand	what	a	procedure	 is,	 the	different	 types	of	procedures	and	how	you
should	work	with	 them.	This	 is	 one	of	 the	most	 essential	 tools	 to	 learn	 if	 you
want	to	become	a	VBA	expert.	This	chapter	will	provide	all	the	information	you
need	about	procedures	and	will	dig	deeper	into	the	concepts	of	sub	procedures.
Let	us	first	begin	with	an	introduction	to	sub	procedures.

What	Is	A	Sub	Procedure?
If	you	have	written	programs	or	code	in	VBA,	you	will	know	that	a	procedure	is
a	block	of	code	or	statements	that	are	enclosed	between	a	declaration	statement
and	 an	 End	 statement.	 The	 purpose	 of	 the	 procedure	 is	 to	 perform	 a	 specific
action	or	task.	All	the	instructions	that	you	want	to	give	the	compiler	are	within	a
procedure.	 If	you	want	 to	master	 coding	 in	VBA,	you	 should	 fully	understand
this	concept.	There	are	two	types	of	procedures	in	VBA	–	Function	procedures
and	sub	procedures.	This	chapter	will	focus	only	on	Sub	procedures.

The	following	are	the	differences	between	a	VBA	sub	procedure	and	a	function
procedure:

1.	 A	VBA	sub	procedure	will	perform	some	function	or	action	with	Excel.
This	 means	 that	 when	 you	 execute	 a	 sub	 procedure,	 Excel	 will	 do
something.	 The	 changes	 or	 functions	 that	 happen	 in	 Excel	 depend	 on
what	the	code	says.

2.	 A	function	procedure	will	perform	some	calculations	and	return	a	value.
The	value	returned	can	either	be	an	array,	number	or	string.	If	you	have
worked	 regularly	 with	 functions	 in	 Excel,	 you	 already	 know	 how	 the
function	 procedure	 will	 work.	 This	 is	 because	 they	 work	 in	 the	 same
way	as	Excel	functions.	These	procedures	will	perform	some	function	on
the	data	in	Excel	and	return	a	value.

Experts	say	that	most	macros	that	people	write	are	sub	procedures.	If	you	always
use	the	macro	recorder	to	create	your	macro,	you	are	creating	a	sub	procedure.
From	the	above	comments,	it	is	clear	that	you	will	work	a	lot	with	Excel	VBA
Sub	procedures.

How	Does	The	VBA	Sub	Procedure	Look?
The	 image	below	will	show	you	how	a	VBA	sub	procedure	 looks.	You	should
notice	that	this	procedure	has	the	following	features:

1.	 It	begins	with	the	statement	“Sub.”	This	is	the	declaration	statement.

2.	 There	is	an	End	declaration	statement.

3.	 There	 is	 a	 block	 of	 code	 that	 is	 enclosed	 between	 the	 declaration
statements.

(https://powerspreadsheets.com/vba-sub-procedures/)

The	purpose	of	this	VBA	sub	procedure	is	to	delete	some	rows	in	the	worksheet
where	 there	are	blank	cells.	Before	we	move	on,	 let	us	 take	a	 look	at	 the	 first
statement	in	the	sub	procedure.	There	are	three	sections	to	look	at:

1.	 The	 sub	 keyword,	 also	 the	 declaration	 statement,	 which	 tells	 the
compiler	that	the	sub	procedure	has	started.

2.	 The	 name	 of	 the	 sub	 procedure.	We	will	 cover	 the	 rules	 that	must	 be
followed	when	working	with	sub	procedures	in	the	following	sections.

3.	 The	parentheses	in	the	sub	procedure	are	where	you	will	need	to	add	the
arguments	 that	 you	 will	 be	 using	 from	 other	 procedures.	 You	 should
separate	 these	 by	 using	 a	 comma.	 You	 can	 always	 create	 a	 VBA	 sub
procedure	 that	 does	 not	 use	 any	 arguments.	 You	 should,	 however,
include	an	empty	set	of	parentheses	when	you	name	the	sub	procedure.

https://powerspreadsheets.com/vba-sub-procedures/

The	 following	 are	 the	 four	 elements	 that	 you	 should	 include	 in	 a	 VBA	 sub
procedure:

•									Sub	statement

•									Name

•									Parentheses

•									End	Sub	keyword

You	can	include	two	optional	elements	in	a	sub	procedure:

1.	 A	list	of	arguments	that	you	will	need	to	include	in	the	parentheses.

2.	 Valid	 instructions	 that	 are	 included	 in	 the	declaration	 statements	 in	 the
code.

Apart	from	these,	you	can	include	three	optional	items	in	a	VBA	sub	procedure.
These	items	are	optional,	but	they	are	important	to	consider.	Before	we	look	at
them,	let	us	look	at	how	this	procedure	will	be	structured.

[Private/Public]	[Static]	Sub	name	([Argument	list])

[Instructions]

[Exit	Sub]

[Instructions]

End	Sub

To	learn	more	about	the	Sub	statement,	you	should	read	the	articles	found	in	the
Microsoft	Dev	Center.	Let	us	take	a	look	at	the	optional	elements	that	are	present
in	the	above	structure.	These	items	are	written	in	square	brackets	to	indicate	that
they	are	optional.

Element	#1:	[Private/Public]
The	keywords	private	and	public	are	called	access	modifiers.	If	you	type	private
before	 the	 declaration	 statement	 in	 a	 sub	 procedure,	 it	 implies	 that	 only	 the
procedures	 or	 codes	 written	 within	 the	 same	 module	 can	 access	 that	 sub
procedure.

If	 you	 choose	 to	use	 the	keyword	public,	 the	 sub	procedure	will	 not	 have	 any
access	restrictions.	Despite	this,	if	you	were	to	use	the	keywords	option	private

statement	 at	 the	 beginning	 of	 the	 sub	 procedure,	 any	 procedure	 outside	 the
relevant	 project	 cannot	 refer	 to	 or	 use	 the	 sub	 procedure.	We	will	 talk	 a	 little
more	about	the	scope	of	the	project	in	the	sections	below.

Element	#2:	[Static]
If	you	use	the	keyword	static	at	the	beginning	of	the	sub	procedure,	any	variable,
which	is	the	part	of	the	sub	procedure	will	be	preserved	even	when	the	module
ends.

Element	#3:	[Exit	Sub]
The	 exit	 sub	 statement	 is	 the	 final	 declaration	 statement,	 which	 is	 used	 to
immediately	exit	A	sub	procedure.	This	means	that	any	statements	within	the	sub
procedure	not	run	once	the	compiler	reaches	this	decoration	statement.

How	to	Name	A	VBA	Sub	Procedure
You	must	 always	 name	 a	 procedure.	 The	 rules	 that	 you	 need	 to	 follow	when
naming	A	sub	procedure	are	given	below:

1.	 You	should	always	use	a	letter	as	the	first	character.

2.	 The	 remaining	characters	 in	 the	name	can	be	numbers,	 letters	or	 some
punctuation	 characters.	 For	 example,	 the	 following	 characters	 can't	 be
used:	#,	$,	%,	&,	@,	^,	*	and	!

3.	 You	should	avoid	using	spaces	and	periods.

4.	 Since	VBA	is	not	a	case	sensitive	language,	cannot	distinguish	between
lowercase	and	uppercase	letters.

5.	 Any	 sub	 procedure	 can	 have	 a	 name,	 which	 has	 a	 maximum	 of	 255
characters.

Experts	suggest	that	we	be	a	procedure	name	should	always:

6.	 Describe	what	the	purpose	of	the	sub	procedure	is	or	what	it	is	supposed
to	do.

7.	 Have	some	meaning.

8.	 Be	a	combination	of	a	noun	and	a	verb.

There	 are	 some	 programmers	 who	 choose	 useful	 sentences	 to	 name	 the	 sub
procedures.	There	is	one	advantage	and	disadvantage	of	doing	this:

1.	 A	sentence	will	definitely	let	any	other	user	of	programmer	know	what
the	purpose	of	 the	sub	procedure	is.	This	 is	because	a	sentence	is	very
unambiguous	and	descriptive.

2.	 When	you	type	of	full	sentence	you	will	use	more	time.	This	means	that
you	will	take	longer	to	finish	your	macro.

I	believe	that	you	should	always	use	a	name	that	is	descriptive,	unambiguous	and
meaningful.	 It	 is	 at	 this	 point	 that	 you	 should	 choose	what	 your	 style	 is,	 and
always	 stick	 to	 something	 that	 is	 comfortable	 and	will	 help	 you	 achieve	 your
goals.

How	to	Determine	the	Scope	of	A	VBA	Sub	Procedure
The	 scope	 will	 define	 how	 you	 are	 when	 you	 should	 call	 upon	 a	 VBA	 sub
procedure.	When	you	create	a	BBA	procedure	you	have	the	option	to	determine
which	other	procedure	can	call	it.	You	can	do	this	by	using	the	keywords	public
and	private	which	were	introduced	in	the	above	section	as	an	optional	element	of
a	procedure.

Let	us	now	take	a	look	at	what	the	meaning	of	these	keywords	is	and	how	you
can	determine	whether	a	specific	VBA	procedure	is	public	or	private.

Public	VBA	Sub	Procedures
Every	sub	procedure	is	public	by	default.	If	a	specific	procedure	is	public	there
is	no	access	restriction.	Since	the	default	option	is	that	a	procedure	is	public,	you
do	 not	 have	 to	 include	 the	 public	 keyword	 at	 the	 beginning	 of	 the	 name.	 For
instance,	 the	 following	 procedure	 delete_blank_rows_3	 is	 a	 public	 procedure
although	we	did	not	use	the	keyword	public.

(https://powerspreadsheets.com/vba-sub-procedures/)

If	 you	 want	 to	 make	 the	 courts	 near,	 you	 should	 try	 to	 include	 the	 public
keyword	 in	 the	 procedure.	 Most	 programmers	 do	 follow	 this	 practice.	 In	 the
image	 below,	 you	 will	 see	 that	 the	 keyword	 public	 has	 been	 included	 in	 the
delete_blank_rows_3	macro.	

(https://powerspreadsheets.com/vba-sub-procedures/)

In	both	cases,	the	sub	procedure	is	public.	In	simple	words	both	the	macros,	with
and	without	the	public	keyword	are	the	same.

Private	VBA	Sub	Procedures
When	you	use	the	private	keyword	ahead	of	the	sub	procedure,	the	content	of	the
statements	within	 the	 sub	procedure	 can	only	be	 accessed	by	other	procedures
within	the	same	module.	If	there	is	any	other	procedure	or	module	that	wants	to
access	 this	 sir	 procedure	 it	 cannot,	 even	 if	 the	 module	 is	 in	 the	 same	 Excel
workbook.	For	 instance,	 if	 you	need	 the	delete_blank_rows_3	macro	 a	 private
macro	you	will	need	to	follow	the	syntax	given	in	the	image	below.

(https://powerspreadsheets.com/vba-sub-procedures/)

How	 to	 Make	 All	 VBA	 Sub	 Procedures	 in	 a	 Module	 Private	 to	 A	 VBA

https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/

Project

A	 person	 using	 the	 public	 in	 the	 private	 keywords,	 you	 can	 also	 make	 a	 sub
procedure	 accessible	 to	 other	 modules	 in	 different	 BBA	 project	 by	 using	 the
option	private	statement.	To	use	the	option	private	statement,	you	must	include
the	 keywords	 “option	 private	 module”	 before	 the	 sub	 procedure.	 If	 you	 are
certain	that	you	want	to	use	this	statement	ensure	that	the	keywords	are	ahead	of
the	declaration	statement	in	the	sub	procedure.

The	image	below	shows	how	VBA	uses	three	different	methods	to	delete	a	row
based	 on	 whether	 the	 row	 has	 an	 empty	 cell	 or	 not.	 The	 third	 macro	 or	 sub
procedure	in	the	image	below	is	 the	Delete_Blank_Rows_3	macro.	This	macro
does	not	appear	fully	in	the	image.

Found	this	title	interesting	or	useful?	Then	a	review	on	Amazon	will	be	highly
appreciated!

	

(https://powerspreadsheets.com/vba-sub-procedures/)

https://powerspreadsheets.com/vba-sub-procedures/

All	the	sub	procedure	is	in	the	above	image	can	only	be	accessed	referenced	by
module	or	the	procedures	in	the	VBA	project	that	contains	them.

When	to	Make	VBA	Sub	Procedures	Private:	An	Example
You	can	always	execute	A	sub	procedure	by	using	another	procedure	to	call	 it.
Most	programmers	use	this	method	to	run	or	execute	a	procedure.	In	some	cases,
you	 may	 also	 have	 procedures	 that	 are	 designed	 to	 be	 called	 by	 other	 sub
procedures.	If	you	have	any	procedures	in	a	specific	workbook,	it	is	always	good
to	make	 them	 private.	When	 you	 do	 this	 the	 sub	 procedure	will	 no	 longer	 be
listed	 in	 the	macro	dialog	box.	The	macro	dialog	box	 is	one	of	 the	easiest	and
fastest	ways	to	execute	A	sub	procedure.

If	you	do	not	understand	how	this	works,	do	not	worry.	I	will	explain	how	you
can	 call	 VBA	 sub	 procedure	 from	 other	 procedure	 or	 by	 using	 the	 macro
dialogue	box	in	the	section	below.

How	to	Execute	/	Run	/	Call	a	VBA	Sub	Procedure
When	you	work	with	macros	 you	will	 often	 use	 the	 terms	 run	 execute	 or	 call
interchangeably.	These	words	refer	 to	 the	action	of	executing	 the	statements	 in
the	sub	procedure.	You	can	use	these	words	interchangeably.	

You	can	execute	run	a	call	A	sub	procedure	in	many	ways.	This	section	provides
9	different	ways	in	which	you	can	execute	or	run	the	statements	in	a	procedure.
There	 is	 a	 10th	 option,	which	 you	 can	 use	 but	 this	 is	 out	 of	 the	 scope	 of	 this
book.	This	 in	 this	 option	 you	will	 need	 to	 execute	 the	macro	 or	 the	 statement
using	 a	 customized	 context	 menu.	 This	 section	 does	 not	 talk	 about	 using	 a
context	menu	customization	 to	 run	 a	block	of	 code	 since	 it	 is	 a	 separate	 topic
that	we	need	to	be	covered	extensively.

We	will	use	the	delete_blank_rows_3	macro	as	an	example	in	all	the	options	in
this	section.

Option	 One:	 How	 to	 Execute	 A	 VBA	 Sub	 Procedure	 Directly
From	the	Visual	Basic	Editor
Experts	state	that	this	is	the	best	and	the	fastest	way	to	execute	the	block	of	code
in	 a	 sub	 procedure.	 In	 this	method,	 you	will	 run	 the	 procedure	 directly	 in	 the
visual	basic	editor	using	the	module	in	which	it	is	written.

Describe	the	factor	this	is	one	of	the	fastest	methods,	most	people	do	not	use	it

often.	 In	practice,	people	often	execute	 the	macro	only	when	 they	are	 in	excel
and	not	in	the	visual	basic	editor.	There	are	some	other	options	that	are	listed	in
this	section,	which	will	allow	you	to	do	this.

This	method	will	only	work	when	a	specific	sub	procedure	that	you	want	to	run
does	not	require	any	arguments	from	other	procedures	and	macros.	The	reason	is
that	 this	option	does	not	allow	you	to	use	any	arguments	are	 inputs	from	other
procedures.

If	you	ever	want	to	run	a	sub	procedure,	which	contains	arguments,	you	can	only
do	 it	 by	 calling	 it	 from	another	 procedure.	The	procedure	used	 to	 call	 the	 sub
procedure	 will	 need	 to	 pass	 the	 arguments	 that	 the	 sub	 procedure	 required	 to
execute	the	block	of	code.

If	you	do	choose	to	use	this	method	to	call	or	run	the	code	in	the	sub	procedure,
you	should	follow	the	following	steps:

Step	One:	Open	the	Visual	Basic	Editor
You	 can	 open	 the	 visual	 basic	 editor	 using	 the	 keyboard	 shortcut	 Alt	 +	 F11.
Alternatively,	you	can	go	to	the	developer	tab	in	the	ribbon	and	choose	the	visual
basic	icon.	

(https://powerspreadsheets.com/vba-sub-procedures/)

Step	Two:	Open	The	VBA	Module	That	Contains	The	VBA	Sub
Procedure	You	Want	To	Execute.
You	 now	want	 the	 visual	 basic	 editor	 to	 give	 you	 the	 code	 that	 is	 in	 the	 sub
procedure	 that	 you	 are	 calling.	 This	 can	 be	 done	 in	 several	ways.	One	 of	 the
easiest	 methods	 is	 to	 double	 click	 on	 the	 relevant	 module	 or	 procedure.	 For
instance,	if	the	sub	procedure	that	you	want	to	call	is	within	module	1,	you	will
simply	need	to	click	module	1	in	the	project	explorer	in	the	visual	basic	editor.

https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

As	a	 result	of	 this,	 the	visual	basic	editor	will	display	 the	 relevant	code	 in	 the
programming	window	in	the	visual	basic	environment.

(https://powerspreadsheets.com/vba-sub-procedures/)

Step	Three:	Run	The	VBA	Sub	Procedure.

If	 you	want	 to	 call	A	 sub	 procedure	 directly	 using	 the	 relevant	module	 in	 the
visual	basic	editor,	you	must	use	the	following	methods:

1.	 Go	to	the	run	menu	and	click	on	the	option	“Run	Sub/UserForm.”

(https://powerspreadsheets.com/vba-sub-procedures/)

https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/

2.	 Click	on	F5,	which	is	the	keyboard	shortcut.

Option	 Two:	 How	 to	 Execute	 A	 VBA	 Sub	 Procedure	 Using	 the
Macro	Dialog
This	method,	as	 the	first	method,	will	only	work	when	 the	sub	procedure	does
not	require	any	arguments.	It	is	because	of	the	same	reason	mentioned	earlier	-
you	cannot	specify	the	arguments.

Regardless	of	what	 the	arguments	are,	 this	 is	an	option	that	most	programmers
used	to	execute	sub	procedures.	When	you	use	this	method	you	can	run	the	sub
procedure	in	two	steps.	Let	us	look	at	them.

Step	One:	Open	the	Macro	dialog.
You	should	first	instruct	Excel	to	open	the	macro	dialog	box	using	the	following
methods:

1.	 Click	on	Alt	+	F8,	which	is	the	shortcut	key.

2.	 Go	to	the	developer	tab	in	the	ribbon,	and	click	on	the	macros	option.

(https://powerspreadsheets.com/vba-sub-procedures/)

Excel	window	display	the	macro	dialog	box	which	will	look	as	follows:

https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

Step	Two:	Select	The	Macro	You	Want	To	Execute	And	Execute	It.
In	the	above	image,	you	will	notice	that	there	is	only	one	macro	open	in	every
Excel	workbook.	This	macro	is	 the	Delete_Blank_Rows_3	macro.	Since	this	 is
the	 only	method	 that	 is	 listed,	we	will	 only	 be	 running	 or	 executing	 the	 code
within	that	macro.

You	 are	 already	 aware	 that	 when	 you	 use	 this	 method	 you	 cannot	 use	 any
arguments	 in	 the	 sub	 procedure.	 Therefore	 any	 sab	 procedure	 that	 requires
arguments	will	not	appear	in	the	macro	dialog	box.

It	 is	 also	 important	 to	 remember	 that	 the	 macro	 dialog	 box	 will	 only	 show
procedures	 that	 are	 public.	 You	 can	 still	 execute	 A	 sub	 procedure,	 which	 is
private.	For	 this,	you	should	fill	 the	 relevant	sub	procedure	name	 in	 the	macro
name	field,	which	appears	in	the	image	below.	The	macro	dialogue	box	does	not
show	 any	 sub	 procedure,	 which	 contains	 and	 adding.	 In	 this	 case,	 you	 can
execute	a	macro	by	typing	in	the	relevant	macro	in	the	name	field.

The	 rule	 to	 select	 and	 run	or	 execute	macro	 is	 the	 same	 regardless	of	whether
you	have	one	or	multiple	macros	in	the	open	or	active	Excel	workbook.	You	can
always	select	the	matter	that	you	want	to	run	in	the	following	ways:

Double	click	the	name	of	the	matter	that	you	want	to	execute.	For	example,	we
want	to	run	the	Delete_Blank_Rows_3	macro.	For	this,	we	will	need	to	double
click	on	the	name	of	the	macro.	

https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

Click	on	the	name	of	the	macro	you	want	to	run,	and	hit	run	button	on	the	top
right	corner.	

(https://powerspreadsheets.com/vba-sub-procedures/)

Option	 Three:	 How	 to	 Execute	 A	 VBA	 Sub	 Procedure	 Using	 a
Keyboard	Shortcut
You	can	 also	 execute	 or	 run	 a	 sub	procedure	 using	keyboard	 shortcuts.	 If	 you
want	 to	 run	 a	 sub	 procedure	 using	 this	method	 you	 have	 to	 select	 a	 press	 the
relevant	key	combination.	It	is	important	to	remember	that	this	does	not	work	for
macros	that	require	arguments	for	the	same	reason	as	mentioned	above.

https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/

You	may	now	be	wondering	how	you	can	assign	keyboard	shortcuts	to	a	macro.
This	can	be	done	in	two	ways:

In	this	method,	you	will	need	to	assign	a	keyboard	shortcut	to	the	macro	when
you	are	 in	 the	macro	recorder.	When	you	use	 the	macro	recorder	 to	 record	 the
process,	you	will	encounter	a	record	macro	dialog	box.	In	 this	dialog	box,	you
can	determine	whether	you	want	to	call	a	macro	using	a	keyboard	shortcut	and
also	determine	which	keys	will	compose	that	shortcut.

(https://powerspreadsheets.com/vba-sub-procedures/)

This	method	is	more	interesting	when	compared	to	the	previous	method.	In	this
method	you	can	assign	or	edit	a	keyboard	shortcut	to	any	macro	in	the	following
method:

Step	One:	Open	The	Macro	Dialog.
You	 can	 use	 the	 shortcut	 Alt	 +	 F8	 to	 access	 the	 microbe	 dialogue	 box.
Alternatively,	you	can	go	to	the	developer	tab	in	the	ribbon	and	click	on	the	icon
of	the	macro.

https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

Step	Two:	Select	The	Macro	You	Want	To	Assign	A	Keyboard
Shortcut	To.
Now	 you	 should	 select	 the	 sub	 procedure	 you	 want	 to	 assign	 a	 macro	 to	 all
shortcuts	 to	 and	 click	 on	 the	 options	 button	 on	 the	 bottom	 right	 corner	 of	 the
dialog	box.	For	example,	we	have	selected	the	Delete_Blank_Rows_3	macro	in
the	image	below.

(https://powerspreadsheets.com/vba-sub-procedures/)

	

Step	Three:	Assign	A	Keyboard	Shortcut.
When	 you	 see	 the	macro	 option	 dialog	 box	 open,	 you	 can	 assign	 a	 keyboard
shortcut	and	click	the	ok	button	at	the	bottom	of	the	box.

https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

It	is	important	to	remember	that	keyboard	shortcuts	will	always	take	the	form	of
control	+	letter	or	control	+	shift	+	letter.

When	you	select	the	keyboard	shortcut,	you	have	to	be	careful	that	you	are	not
assigning	a	combination	all	shortcuts	that	already	exist	in	VBA.	If	you	choose	as
an	existing	of	built-in	shortcut,	you	will	be	disabling	the	latter.

For	instance,	the	control	+	B	shortcut	is	a	built-in	shortcut	for	bold.	If	you	assign
the	same	shortcuts	to	any	other	Microsoft	procedure,	you	cannot	use	it	to	make
text	bold.

It	 is	 always	 a	 better	 idea	 to	 use	 the	 control	 +	 shift	 +	 letter	 form	of	 a	 shortcut
since	it	reduces	the	risk	of	disabling	a	pre-existing	shortcut.	Regardless	of	what
the	situation	is,	you	have	to	be	careful	about	what	combination	you	assign	a	sub
procedure.

Option	 Four:	 How	 to	 Execute	 A	 VBA	 Sub	 Procedure	 Using	 a
Button	or	Other	Object
The	 idea	behind	using	 this	method	 is	 that	you	can	always	 attach	 a	macro	 to	 a
specific	object.	Here	I	am	not	referring	to	a	specific	object	in	the	macro,	but	I	am
referring	 to	 the	 type	of	object	 that	Excel	will	allow	you	 to	use	 in	a	worksheet.
Experts	have	classified	these	objects	into	the	following	classes:

1.	 ActiveX	controls

2.	 Form	controls

https://powerspreadsheets.com/vba-sub-procedures/

3.	 Inserted	objects,	like	as	shapes,	text	boxes,	clip	art,	SmartArt,	WordArt,
charts	and	pictures.

In	 this	 section,	we	will	 see	 how	you	 can	 attach	 a	macro	 to	 a	 button	using	 the
form	controls	option	or	to	any	other	inserted	object	in	the	workbook.

How	to	Assign	a	Macro	to	a	Form	Control	Button

You	 can	 attach	 any	 macro	 sub	 procedure	 to	 a	 form	 control	 button	 using	 the
following	four	steps:

Step	One:	Insert	a	Button
You	should	first	go	to	the	ribbon	and	navigate	to	the	developer	tab.	now	move	to
the	insert	and	choose	the	button	form	of	control.	The	image	below	will	show	you
exactly	what	needs	to	be	done	in	the	step.

(https://powerspreadsheets.com/vba-sub-procedures/)

Step	Two:	Create	the	Button
Now	that	you	have	created	the	button	form	control,	you	will	need	to	create	the
button	in	the	Excel	worksheet	point	you	can	create	the	Spartan	of	places	button
in	any	section	of	the	worksheet	where	you	want	it	to	appear.

For	example,	 if	 I	want	 the	button	 to	be	 in	Cell	B5,	 I	will	 click	on	 the	 top	 left
corner	of	that	cell.

https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

Step	Three:	Assign	a	Macro	to	the	Button
Once	you	have	selected	the	location	where	you	want	the	button	to	be,	Excel	will
display	the	assign	macro	dialog	box.	

(https://powerspreadsheets.com/vba-sub-procedures/)

Based	 on	 what	 the	 buttons	 name	 is,	 excel	 will	 suggest	 a	 macro	 that	 you	 can
assign	 to	 that	 button.	 In	 the	 example	 below,	 we	 have	 named	 the	 button
“Button1_Click.”

https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

In	 most	 cases,	 the	 suggestion	 excel	 gives	 will	 not	 match	 what	 you	 want.
Therefore,	you	have	to	select	a	method	that	you	want	to	assign	to	the	button	and
then	 click	 on	 ok	 at	 the	 bottom	 right	 corner	 of	 the	 dialog	 box.	 In	 the	 example
below,	we	will	be	using	the	Delete_Blank_Rows_3	macro	and	assign	a	button	to
that	macro.

https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

Step	Four:	Edit	Button	(Optional)
When	 you	 have	 completed	 the	 steps	 described	 above,	 Excel	 will	 create	 the
button.	Now,	you	only	need	to	execute	the	relevant	sub	procedure	by	clicking	on
that	button.

(https://powerspreadsheets.com/vba-sub-procedures/)

Once	the	button	is	in	place,	you	can	edit	it	in	some	ways.	You	the	following	are
the	four	main	aspects	of	the	button	that	you	can	change:

Size:	Every	button	that	you	create	an	Excel	has	a	default	size.	You	can	always
adjust	 the	 size	 by	 joining	 the	 handles	 of	 the	 button	 with	 your	 mouse.	 For
example,	if	you	want	to	increase	the	size	of	a	button	so	that	it	covers	at	least	four

https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/

cells,	you	can	drag	 the	bottom	right	handle	as	 required.	 If	you	cannot	 find	 the
handles,	you	can	right	click	on	the	button	or	press	 the	 left	mouse	button	at	 the
same	time	as	the	control	key	to	view	the	handles.

(https://powerspreadsheets.com/vba-sub-procedures/)

Location:	You	can	always	modify	 the	 location	of	a	button	by	dragging	 it	with
your	mouth.	You	can	only	track	the	button	using	the	left	button	of	your	mouth	is
the	handles	are	visible.	If	they	are	not	visible,	you	will	need	to	right	click	on	the
button	and	then	attempt	to	drag	it	to	a	different	location.	Alternatively,	you	can
simply	 change	 the	 position	of	 the	 button	by	dragging	 it	 using	 the	 right	mouse
button.	For	example,	 if	you	want	to	move	the	button	to	cover	a	couple	of	cells
down,	that	is	it	should	cover	the	cells	B8,	B9,	C8	and	C9,	you	should	drag	the
button	until	the	desired	point.	When	you	drive	the	button	excel	will	show	you	a
Shadow	in	the	new	location	but	will	leave	the	button	and	its	original	spot.	When
you	let	go	or	remove	your	hand	from	the	right	now	button,	accessories	display
the	 contextual	 menu.	 You	 should	 choose	 the	 option	 to	 move	 the	 button	 by
selecting	“move	here.”

https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

Text:	If	you	want	to	edit	the	text	on	the	button,	you	should	I	click	on	the	button.
Excel	will	 then	 display	 a	 contextual	menu	where	 you	 can	 choose	 to	 edit	 text.
Excel	word	and	place	 the	cursor	 inside	 the	button,	so	you	can	modify	 the	 text.
When	 you	 are	 done	 click	 outside	 of	 the	 button	 to	 confirm	 the	 changes	made.
Since	 we	 are	 using	 the	 Delete_Blank_Rows_3	macro	 as	 an	 example,	 we	 will
rename	the	button	to	delete	blank	rows	in	that	is	more	appropriate.

https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

Assigned	macro:	 If	 there	 is	 a	 necessity,	 you	 can	 always	 change	 the	VBA	 sub
procedure,	and	assign	it	to	a	different	macro	by	right-clicking	on	the	button.	In
this	 case,	 Excel	will	 take	 you	 back	 to	 the	macro	 dialogue	 box	where	 you	 can
select	which	 sub	 procedure	 you	want	 to	 assign	 to	 the	 button.	You	 are	 already
familiar	with	this	process	since	it	has	been	described	above.	In	addition	to	this,
you	can	also	edit	many	other	aspects	of	the	button	by	right-clicking	on	the	button

https://powerspreadsheets.com/vba-sub-procedures/

and	 choosing	 the	 option	 to	 format	 control.	 Excel	will	 now	 display	 the	 format
control	 dialogue	 box.	 By	 using	 the	 options	 in	 this	 box,	 you	 can	 determine	 or
make	changes	to	many	settings	of	the	macro	button.

(https://powerspreadsheets.com/vba-sub-procedures/)

Some	of	 the	settings	 that	you	can	change	during	 the	format	control	dialog	box
are:

1.	 Font,	including	typeface,	style,	size,	underline,	color	and	effects

2.	 Text	alignment	and	orientation

3.	 Internal	margins

4.	 Size

5.	 Whether	the	button	moves	and/or	sizes	with	cells

How	to	Assign	a	Macro	to	another	Object

In	addition	to	assigning	macros	to	form	control	buttons,	x	I	will	also	allow	you
to	assign	a	macro	to	other	objects.	As	explain	the	bug	these	objects	can	include
text	 boxes,	 shapes,	 SmartArt,	 WordArt,	 text	 boxes,	 pictures	 or	 charts.	 It	 is
extremely	easy	 to	attach	a	sub	procedure	 to	an	object	 in	excel.	Let	us	see	how
you	can	do	this	in	the	case	of	a	word	art	object	which	reads	delete	blank	rows.

Step	One:	Open	the	Assign	Macro	Dialog
Right	click	on	the	object,	and	select	the	assign	macro	option.	This	will	open	the
assigned	macro	dialog	box.

https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

	

Step	Two:	Select	Macro	to	Assign
Once	you	complete	 the	step	above,	Excel	will	display	the	macro	dialogue	box.
You	are	already	familiar	with	this	box.	To	assign	a	sub	procedure	to	the	object	in
the	image	above,	you	should	select	the	matter	you	want	to	assign	and	click	ok.	In
the	example	below,	we	will	be	using	the	Delete_Blank_Rows_3	macro.

https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

When	you	have	finished	the	steps	above,	you	can	always	execute	the	procedure
by	clicking	on	the	relevant	object.

	

(https://powerspreadsheets.com/vba-sub-procedures/)

Option	Five:	How	to	Execute	A	VBA	Sub	Procedure	from	another
Procedure
Experts	mention	that	most	programmers	use	an	existing	procedure	to	execute	a
sub	 procedure.	 This	 process	 is	 called	 calling	 code	 since	 you	 are	 running	 a
procedure	 to	 run	 an	 existing	 sub	procedure	point	 it	 is	 only	when	you	 call	 this

https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/

procedure	 that	 the	 cold	within	 the	 sub	 procedure	 is	 invoked.	The	 calling	 code
will	 always	 specify	 the	 correct	 irrelevant	 sub	 procedure	 and	 will	 transfer	 the
control	 to	 that	 procedure.	When	 the	 sub	procedure	has	 run	 the	 control	will	 go
back	to	the	calling	code	or	the	main	procedure.

Experts	 also	 say	 that	 there	 are	 many	 reasons	 why	 one	 should	 not	 call	 other
procedures	when	running	a	sub	procedure	including	the	following:

This	will	help	to	reduce	the	size	of	the	code	and	will	also	ensure	that	the	code	is
crisp	and	clear	for	any	other	user	to	understand.	It	is	also	easier	for	you	to	debug,
maintain	or	modify	the	code.	Generally,	 it	 is	a	good	idea	to	use	this	method	to
maintain	several	different	procedures.	You	can	use	to	create	long	procedures,	but
experts	suggest	that	you	avoid	this.	You	should	instead	follow	the	suggestions	of
expert	and	create	several	small	procedures,	and	write	the	main	procedure	to	call
all	the	small	procedures.	In	the	diagram	below,	you	will	see	how	it	is	easy	to	call
upon	several	sub	procedures	using	the	main	procedure.	The	main	procedure	is	on
the	left	side	of	the	image	while	the	sub	procedures	are	on	the	right.

(https://powerspreadsheets.com/vba-sub-procedures/)

This	will	also	help	you	avoid	redundancies	and	repetition	in	the	data.	There	are
times	when	you	will	need	to	create	a	macro,	which	will	carry	out	the	same	action
in	multiple	places.	 In	such	cases,	you	can	either	create	a	sub	procedure,	which
you	will	call	in	all	those	instances,	or	create	a	piece	of	code	every	time	you	need

https://powerspreadsheets.com/vba-sub-procedures/

to	call	upon	it.	I	am	sure	you	know	that	it	is	easier	and	faster	to	use	the	same	sub
procedure	across	different	applications	of	parts	of	the	workbook.

If	there	are	some	procedures	that	you	use	often,	you	can	store	them	in	a	module
that	you	frequently	used.	When	you	do	 this	you	can	 import	 that	sub	procedure
into	 every	 VBA	 project.	 When	 the	 module	 is	 imported	 you	 can	 call	 on	 the
macros	whenever	required.	The	alternative	to	this	is	to	copy	and	paste	the	code
into	 a	 new	VBA	 sub	 procedure	 point	 you	 will	 probably	 want	 to	 use	 the	 first
option	since	it	is	easier	and	faster	to	implement	in	your	work.

You	can	use	any	of	the	methods	mentioned	below	to	call	A	sub	procedure	from
any	other	procedure	or	module	letters	look	at	these	three	methods	in	detail.

Method	One:	Use	VBA	Sub	Procedure's	Name
When	you	use	this	method,	you	will	need	to	enter	the	following	two	things	in	the
BBA	cold	where	you	are	calling	the	sub	procedure:

6.	 The	name	of	the	procedure	that	you	will	be	calling	in	the	sub	procedure.

7.	 The	argument	that	you	will	be	using	in	the	procedure	will	it	be	separated
by	commas.

In	other	words,	the	syntax	that	you	will	need	to	apply	when	I	use	this	method	is
“Procedure_Name	Arguments”.

Latest	assume	that	you	will	create	a	VBS	the	procedure,	which	will	only	call	the
Delete_Blank_Rows_3	macro.	

The	macro	 that	we	have	written	does	not	make	sense	because	you	can	execute
the	Delete_Blank_Rows_3	macro	directly.	Since	the	structure	is	simple,	we	will
use	it	as	an	example	to	see	how	the	method	works.

We	have	not	developed	a	new	sub	procedure	call	calling	Delete_Blank_Rows_3.
This	macro	will	only	contain	the	following	statements:

Sub	Calling_Delete_Blank_Rows()

Delete_Blank_Rows_3

End	Sub

The	 image	below	will	 show	you	have	 the	BBA	code	will	 appear	 in	 the	visual
basic	editor	environment.

	

(https://powerspreadsheets.com/vba-sub-procedures/)

You	can	always	as	a	statement	to	the	sub	procedure	to	make	it	more	useful	and
realistic.

Method	Two:	Use	Call	Statement
If	 you	want	 to	 apply	 this	method,	 you	 should	 proceed	 in	 the	 same	 fashion	 as
method	1.	 In	 this	 case,	 you	will	 also	 enter	 the	name	and	 the	 arguments	of	 the
procedure,	which	you	will	be	calling	within	the	VBA	sub	procedure.

There	are	two	main	differences	between	the	methods	1	and	2:

3.	 In	 this	method,	 you	will	 need	 to	 use	 the	 call	 statement.	 This	 keyword
will	always	be	written	ahead	of	the	procedure	you	want	to	call.

4.	 In	this	method,	arguments	will	always	be	enclosed	in	the	parentheses.

In	other	words,	if	you	use	the	second	method	you	will	need	to	apply	the	syntax
“Call	Procedure_Name	(Arguments)”.

Latest	now	locate	how	this	will	look	in	practice.	We	will	create	a	simple	VB	A
sub	 procedure	 and	 the	 sole	 purpose	 of	 this	 procedure	 is	 to	 call	 the
Delete_Blank_Rows_3	 macro.	 Latest	 call	 this	 new	 macro
Delete_Blank_Rows_2.	The	syntax	for	this	matter	is	given	below:

Sub	Calling_Delete_Blank_Rows_2()

Call	Delete_Blank_Rows_3

End	Sub

https://powerspreadsheets.com/vba-sub-procedures/

The	sub	procedure	will	look	as	follows	in	the	visual	basic	editor	environment.

(https://powerspreadsheets.com/vba-sub-procedures/)

You	may	wonder	why	you	would	need	to	use	a	method	where	you	should	use	the
call	keyword	when	you	can	use	the	previous	method,	which	does	not	require	the
use	 of	 any	 keyword.	One	 of	 the	main	 reasons	 for	 using	 this	method	 is	 that	 it
provides	 clarity.	 Experts	 say	 that	 some	 programmers	 used	 the	 call	 keyword
although	it	is	optional	to	ensure	that	another	procedure	is	being	called	whenever
necessary.

Describe	the	above	reasons	expert	suggest	that	you	do	not	use	the	call	keyword
when	 running	 a	 sub	 procedure.	 According	 to	 the	 information	 found	 at	 the
Microsoft	development	center,	call	statement	is	often	used	when	a	sub	procedure
does	not	begin	with	a	specific	identifier.

Method	Three:	Use	The	Application.Run	Method
You	should	use	the	application.run	method	to	execute	the	VBA	sub	procedure.

Experts	 suggest	 that	 you	use	 this	method	 if	 you	want	 to	 call	A	 sub	procedure
which	 has	 a	 name	 assigned	 to	 another	 variable.	 When	 you	 use	 the
application.run	 method	 you	 can	 run	 the	 block	 of	 code	 in	 the	 sub	 procedure
because	you	are	passing	the	variable	as	an	argument	in	the	run	method.	

An	 example	 of	 this	 can	 be	 found	 in	 the	 book	 titled	 Excel	 2013	 power
programming	with	VBA.

How	to	Call	A	VBA	Sub	Procedure	from	a	Different	Module
If	you	want	 to	 refer	 to	A	VBA	sub	procedure	 from	other	procedures,	you	will

https://powerspreadsheets.com/vba-sub-procedures/

need	to	follow	the	process	given	below:

The	search	will	 first	be	carried	out	 in	 the	same	module.	 If	you	do	not	 find	 the
VBA	sub	procedure	in	a	module,	you	should	look	at	the	accessible	procedures	in
different	modules	in	the	same	workbook.	If	you	want	to	call	a	procedure,	which
is	private,	both	the	procedures	should	be	within	the	same	module.

There	will	be	cases	where	you	have	different	procedures	with	the	same	name	but
in	different	modules.	When	you	try	to	call	one	of	the	sub	procedures	by	stating
its	name	you	will	see	that	an	error	message	is	displayed.

This	does	not	mean	that	you	can	always	ask	Excel	to	execute	a	procedure,	which
you	 want.	 To	 be	 more	 precise,	 you	 call	 a	 procedure,	 which	 is	 in	 a	 different
module	you	have	to	clarify	the	following:

4.	 You	 should	 always	 state	 the	 name	 of	 the	 relevant	 module	 before	 you
name	the	procedure.

5.	 You	should	always	use	a	dot	to	separate	the	name	of	the	sub	procedure
from	the	module.

You	 must	 use	 the	 following	 syntax	 in	 these	 cases:	
“Module_Name.Procedure_Name”.

Now	that	you	know	how	you	should	handle	the	cases	where	you	have	to	call	A
sub	 procedure	 in	 a	 different	 module,	 you	 can	 choose	 to	 run	 the	 module	 in	 a
different	Excel	workbook.	Therefore	we	should	now	take	a	look	at	how	to	call	a
VBA	sub	procedure	that	is	present	in	a	different	workbook.

How	to	Call	A	VBA	Sub	Procedure	from	a	Different	Excel
Workbook
Experts	say	that	there	are	two	different	ways	in	which	excel	will	execute	or	run	a
sub	procedure,	which	is	stored	in	a	different	Excel	workbook.

Build	or	establish	a	reference	to	different	workbooks.

Specify	the	name	of	the	workbook	you	explicitly	want	to	refer	to	when	you	run
the	method.

Let	us	now	look	at	how	you	can	use	either	method	for	this	purpose:

Method	One:	Establish	A	Reference	To	Another	Excel	Workbook.

You	can	create	a	reference	to	an	Excel	workbook	using	the	following	steps:

Step	One:	Open	The	References	Dialog.

You	 should	 now	 go	 to	 the	 tools	 menu	 in	 the	 visual	 basic	 editor	 and	 select
references.

(https://powerspreadsheets.com/vba-sub-procedures/)

Step	Two:	Select	The	Excel	Workbook	To	Add	As	Reference.

When	you	have	completed	the	first	step,	Excel	will	display	the	reference	dialog
box.

This	dialog	box	and	provide	all	the	references	that	you	can	use.	The	workbooks
that	 are	 currently	 open	 are	 listed	 in	 that	 box.	 For	 example,	 look	 at	 the	 image
below	to	see	which	Excel	workbooks	appear	on	the	list.

In	this	case,	every	Excel	workbook	is	not	listed	using	its	regular	name.	Instead,
they	will	appear	under	the	visual	basic	editor	as	their	project	names.	Since	every
project	 name	 is	 VBAProject	 by	 default,	 the	 situation	 below	 is	 not	 very
uncommon.

If	you	want	to	identify	which	VBA	project	you	want	to	use	as	a	reference,	you
can	 use	 the	 location	 data,	 which	 appears,	 at	 the	 bottom	 of	 the	 dialog	 box.
Alternatively,	you	can	always	go	back	to	the	visual	basic	editor	and	change	the
name	of	 the	 relevant	project.	 If	 you	want	 to	 add	 in	Excel	workbook,	which	 is
currently	open,	you	should	double	click	the	name	and	select	it.	Then	click	on	the
ok	button.

https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

The	 references	 dialogue	 box	 only	 lists	 the	 Excel	 workbooks,	 which	 are	 open
currently.	You	can	also	create	a	 list	of	 the	 references	 to	workbooks,	which	are
not	currently	open.	To	do	this	you	will	first	need	to	click	on	the	browse	button	on
the	right	side	in	the	references	dialog	box.

You	see	that	the	add	reference	dialog	box	is	displayed.	This	box	looks	like	every
other	dialogue	box	that	you	have	used	before.	You	should	use	the	add	reference
dialog	box	to	move	to	the	folder	where	you	have	the	relevant	Excel	workbook,
selected	workbook	and	then	open	it.

https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

In	this	example	below,	we	will	add	one	sample	Excel	workbook	for	the	purpose
of	this	section.	

(https://powerspreadsheets.com/vba-sub-procedures/)

When	 you	 have	 completed	 the	 above	 step	 you	 will	 see	 that	 the	 relevant
workbook	is	now	I	added	to	 the	bottom	of	 the	 list	of	available	references.	You
can	then	select	the	relevant	reference	and	click	ok.	The	references	dialogue	box
will	allow	you	to	use	this	as	the	reference.

https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

You	 are	 officially	 done.	When	 you	 carry	 the	 steps	mentioned	 above,	 the	 new
reference	 that	 you	 have	 included	 will	 be	 listed	 in	 the	 project	 window	 in	 the
visual	basic	editor.	You	can	find	this	information	in	the	references	node.	You	can
now	prefer	a	call	any	procedures	in	a	reference	workbook	as	a	divided	the	same
workbook	where	you	have	written	the	sub	procedure.	This	can	be	done	by	using
a	call	keyword	or	the	sub	procedure’s	name.

https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

In	 the	book	 titled	Excel	2013	power	programming	with	VB	a,	 the	 author	 says
that	 you	 should	 use	 the	 following	 syntax	 if	 you	 want	 to	 identify	 a	 procedure
within	another	Excel	workbook:

Project_Name.Module_Name.Procedure_Name

In	simple	words,	experts	suggest	that	you	should	first	specify	the	name	of	your
project,	the	name	of	the	module	and	then	the	name	of	the	actual	sub	procedure
you	want	to	use.

You	will	notice	that	when	you	open	an	Excel	workbook,	it	will	reference	another
workbook,	which	will	be	open	automatically.	Additional	e	you	cannot	close	the
referenced	workbook	without	closing	the	originally	opened	workbook.	If	you	try
to	do	 this	 excel	will	 send	you	 a	warning	message	 that	 this	workbook	 is	 being
referenced	by	another	workbook	and	therefore	cannot	be	closed.

(https://powerspreadsheets.com/vba-sub-procedures/)

https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/

Method	Two:	Use	The	Application.Run	Method.
You	can	use	 the	application.run	method	 to	execute	any	VBA	sub	procedure.	 If
you	want	to	use	this	method,	you	do	not	have	to	create	a	reference	as	explained
in	 the	 previous	 section.	You	must,	 however,	 have	 the	 Excel	workbook,	which
contains	 a	 sub	 procedure	 open.	 To	 see	 an	 example	 of	 how	 you	 can	 use	 this
method,	 please	 refer	 to	 the	 book	 titled	 ‘Excel	 2013	 Power	 Programming	with
VBA’.

Option	 Six:	 How	 to	 Execute	 A	 VBA	 Sub	 Procedure	 Using	 the
Ribbon
If	 you	 want	 to	 include	 a	 button	 to	 the	 ribbon	 which	 points	 to	 a	 relevant	 sub
procedure,	 you	 should	 follow	 the	 steps	 below.	You	 can	 execute	 the	macro	 by
clicking	on	the	button	in	the	Ribbon.

In	this	section,	we	will	look	at	how	you	can	add	a	button	to	the	ribbon,	and	what
you	should	do	to	run	the	macro	or	the	block	of	code	within	that	sub	procedure.
We	will	continue	to	use	the	Delete_Blank_Rows_3	macro	for	our	example.	This
is	the	most	appropriate	method	that	one	can	use	for	a	macro	that	is	present	in	the
personal	workbook.

The	personal	workbook	is	where	you	will	store	the	relevant	macros	that	you	can
use	 in	 an	Excel	workbook.	 In	 simple	words,	 the	macros	 that	 are	 stored	 in	 the
personal	 workbook	 can	 be	 called	 upon	 or	 used	 regardless	 of	 which	 excel
workbook	you	are	working	on.	Let	us	look	at	five	simple	steps	that	you	will	need
to	follow	to	add	the	button	to	the	Ribbon.

Step	One:	Access	The	Excel	Options	Dialog.
Right	 click	 on	 the	 ribbon	 and	 choose	 the	 option	 “Customize	 the	 Ribbon”	 to
display	the	context	menu.

(https://powerspreadsheets.com/vba-sub-procedures/)

Step	Two:	Choose	To	Work	With	Macros.
In	 the	 Excel	 Options	 dialog	 box,	 you	 can	 choose	 the	 commands	 you	want	 to
include	to	the	ribbon	from	the	drop-down	menu	in	the	customize	ribbon	tab.

(https://powerspreadsheets.com/vba-sub-procedures/)

You	can	browse	through	different	commands	before	you	add	them	to	the	Ribbon.
All	you	need	to	do	is	click	the	command,	and	then	select	“Macros.”

(https://powerspreadsheets.com/vba-sub-procedures/)

When	 you	 have	 done	 this,	 you	 will	 see	 a	 list	 of	 all	 the	 macros	 that	 you	 can
include	in	the	Ribbon.	This	list	will	be	found	in	the	Choose	commands	list,	and

https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/

will	appear	below	the	choose	commands	drop	down	menu.	Please	see	the	image
below	for	a	better	understanding.

(https://powerspreadsheets.com/vba-sub-procedures/)

Step	Three:	Select	The	Tab	And	Group	Of	Commands	To	Which
You	Want	To	Add	The	Macro.
You	can	find	the	Customize	the	Ribbon	list	on	the	right	side	in	the	Excel	Options
dialog	box.	This	is	where	you	will	find	the	list	of	all	the	commands	that	can	be
found	 in	 the	 Ribbon.	 You	 will	 notice	 that	 these	 commands	 are	 organized	 by
groups	of	commands	and	tabs.

The	image	below	will	show	you	how	there	are	five	groups	of	commands,	namely
Add-Ins,	 Code,	 XML,	 Modify	 and	 Controls	 in	 the	 Developer	 Tab.	 You	 can
choose	 where	 to	 add	 the	 macro	 button	 to	 the	 ribbon	 in	 the	 “Customize	 the
Ribbon”	List.	You	can	 also	 expand	or	 contract	 a	 tab	 in	Excel	or	 any	group	of
commands	using	the	plus	and	minus	signs	that	appear	in	the	list	on	the	left	side.
You	can	now	include	new	command	groups	or	tabs	to	the	Excel	workbook	using
the	buttons	in	the	Customize	Ribbon	list	dialog	box.

https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

You	 can	 now	 choose	 to	 create	 a	 new	 command	 group	 or	 choose	 an	 existing
command	group	when	 you	want	 to	 add	 a	macro	 to	 the	Ribbon.	 In	 the	 section
below,	we	will	talk	about	how	you	can	add	a	new	group	of	commands	and	tab	to
the	ribbon.

https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

In	the	example	below,	we	will	add	a	new	tab	immediately	after	the	Developer	tab
in	Excel.	To	do	this,	you	should	go	to	the	“Developer”	Tab	and	click	the	“New
Tab”	button.

You	 can	 choose	 to	 rename	 the	 newly	 included	 tab	 by	 clicking	 the	 Rename
button.	 Excel	 will	 now	 display	 the	 Rename	 dialog	 box.	 You	 should	 enter	 the
name	 of	 the	 collection	 and	 click	 OK.	 You	 must	 repeat	 this	 process	 for	 the
command	group.	You	should	first	select	the	“New	Group	(Custom)”	option	and
then	rename	the	button.

https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

(https://powerspreadsheets.com/vba-sub-procedures/)

https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

Excel	will	display	a	different	 rename	box,	which	will	 allow	you	 to	choose	 the
name	or	a	symbol	that	will	represent	the	group	of	command.

(https://powerspreadsheets.com/vba-sub-procedures/)

You	can	choose	an	icon	if	you	want.	In	this	example,	we	will	choose	an	icon	and
then	enter	the	name	for	the	command	group.	Click	OK	once	you	are	sure	of	the
changes.	

https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

When	all	the	steps	are	in	order,	you	should	choose	the	group	of	commands	that
you	wish	to	include	in	the	macro.	In	the	example	below,	the	Delete	Blank	Rows
group	is	the	command	group	that	has	just	been	created.

(https://powerspreadsheets.com/vba-sub-procedures/)

Step	Four:	Add	VBA	Sub	Procedure	To	The	Ribbon.
When	 you	 want	 to	 add	 a	 macro	 button	 to	 the	 ribbon,	 you	 should	 select	 the
relevant	 macro	 from	 choose	 commands	 list	 and	 hit	 the	 Add	 button,	 which	 is
present	in	the	center	of	the	dialog	box.	The	image	below	will	show	you	how	you
can	add	the	Delete_Blank_Rows_3	macro	to	the	ribbon.

https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

Step	Five:	Finish	The	Process.
To	complete	the	process,	you	should	click	OK	which	is	found	at	the	bottom	right
corner	of	the	dialog	box.

https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

Excel	 will	 now	 close	 the	 Excel	 Options	 dialog	 box	 and	 make	 the	 necessary
changes.	You	will	notice	that	in	the	case	of	this	example,	there	is	already	a	new
tab,	 called	Macro	Collections	 that	 has	 been	 included.	You	will	 also	 see	 that	 a
group	of	commands	and	a	button	have	been	included	to	the	ribbon.

(https://powerspreadsheets.com/vba-sub-procedures/)

When	 you	 complete	 this	 process,	 you	 can	 execute	 the	 macro	 or	 the	 sub
procedure	 by	 simply	 clicking	 on	 the	 correct	 button	 in	 the	 Ribbon.	 Excel	 will
enable	 this	 icon	even	 if	 the	workbook	 that	has	 the	macro	 in	 it	 is	closed.	 If	 the
relevant	workbook	is	closed,	Excel	will	open	that	workbook	with	the	macro	in	it,
before	it	executes	the	code.

Option	Seven:	How	to	Execute	A	VBA	Sub	Procedure	Using	 the
Quick	Access	Toolbar
You	can	 find	 the	Quick	Access	Toolbar	on	 the	upper	 left	corner	 in	your	Excel
workbook.

(https://powerspreadsheets.com/vba-sub-procedures/)

Just	like	we	did	with	Ribbon,	you	can	make	some	changes	to	the	Quick	Access
Toolbar	to	include	a	button	that	is	assigned	to	the	sub	procedure.	This	means	that
you	can	execute	the	code	in	the	procedure	by	simply	clicking	that	button.

https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/

You	should	use	this	method	only	when	the	macro	you	are	including	to	the	quick
access	toolbar	is	found	in	your	personal	workbook.	It	is	the	same	as	the	method
of	using	the	ribbon	to	execute	the	sub	procedure.	You	should	also	remember	that
if	you	include	the	macro	to	 the	Quick	Access	 toolbar,	you	can	also	ensure	 that
this	button	only	appears	in	the	Excel	workbook	that	has	the	macro	written	in	it.

We	 will	 look	 at	 how	 you	 can	 use	 the	 quick	 access	 toolbar	 and	 how	 you	 can
customize	 it	 for	 this	 purpose.	 Let	 us	 first	 look	 at	 how	 you	 can	 add	 a	 macro
button	to	the	toolbar	in	five	simple	steps.

Step	One:	Access	the	Excel	Options	Dialog
In	 the	 previous	 sections,	 you	 have	 learned	 how	 you	 can	 access	 the	 Options
dialog	box,	and	 this	section	provides	some	additional	 information	 that	you	can
use.	 For	 this	 specific	 example,	 it	 is	 always	 a	 good	 idea	 to	 access	 the	 Quick
Access	Toolbar	 tab	using	 the	Excel	Options	dialog	box.	All	you	need	 to	do	 is
right-click	 on	 the	 Quick	 Access	 toolbar	 and	 select	 the	 option	 to	 “Customize
Quick	Access	Toolbar.”	When	you	complete	this	step,	you	will	see	the	Options
Dialog	box	open	in	front	of	you.

(https://powerspreadsheets.com/vba-sub-procedures/)

Step	Two:	Choose	For	Which	Excel	Workbooks	The	Customized
Quick	Access	Toolbar	Applies.
You	 will	 see	 a	 drop-down	 menu	 in	 the	 top	 right	 corner	 of	 the	 excel	 options
dialog	box.	This	drop-down	menu	 is	 for	 the	Quick	Access	 toolbar.	You	should
navigate	to	the	section	where	you	can	make	some	changes	to	which	workbooks
should	 reflect	 the	 change	 you	 make.	 Choose	 your	 preferred	 option	 from	 the
drop-down	menu	in	the	Customize	Quick	Access	dialog	box.

https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

If	you	want	this	button	to	appear	in	every	Excel	workbook,	you	should	choose
the	option	“For	all	documents	 (default).	This	 is	 the	default	 setting	 that	will	be
applied	to	every	workbook.

If	you	want	the	button	to	appear	only	in	one	workbook,	you	should	choose	the
name	of	the	workbook.	The	image	below	shows	a	section	of	the	options	that	you
can	find	in	the	drop-down	menu	in	the	Customize	Quick	Access	Toolbar	section.

https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

In	 this	 example,	 we	 only	 have	 the	 workbook	 named	 “Book	 1”	 open	 on	 the
system.	In	this	example,	we	will	use	the	default	option.	This	customization	will
apply	to	ever	workbook	that	you	open.

(https://powerspreadsheets.com/vba-sub-procedures/)

Step	Three:	Choose	To	Work	With	Macros.
In	the	Excel	Options	dialog	box,	you	should	navigate	to	the	top	left	corner	in	the
Quick	Access	 toolbar.	Here,	 you	will	 find	 the	 choose	 commands	option	 in	 the
drop-down	menu.	Select	“Macros”	from	the	drop-down	list.

Step	Four:	Add	Macro	To	Quick	Access	Toolbar.
Once	you	complete	the	step	above,	you	will	see	a	list	of	all	the	macros	in	your
Excel	workbook	 in	 the	options	dialog	box.	These	 are	 the	macros	 that	 you	 can
include	 to	 the	 Quick	 Access	 Toolbar.	 These	 macros	 will	 be	 in	 the	 choose
Commands	list	on	the	left	side	of	the	Quick	Acess	toolbar	tab	in	the	dialog	box.

https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

You	 should	 now	 choose	 the	macro	 that	 you	want	 to	 include	 from	 the	Choose
Commands	option	in	the	list	box.	Click	on	Add	button,	which	will	appear	in	the
center	 of	 the	 Options	 dialog	 box.	 The	 image	 below	 will	 show	 you	 how	 you
should	include	the	Delete_Blank_Rows_3	macro.

https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

Step	Five:	Click	The	OK	Button.
Once	 you	 run	 the	 first	 four	 steps,	 you	will	 see	 the	macro	 button	 in	 the	Quick
Access	Toolbar.	You	will	 see	 that	 this	button	 is	 found	 in	 the	Customize	Quick
Access	Toolbar	list.	This	list	is	found	on	the	right	side	of	the	options	dialog	box.
You	should	now	press	 the	OK	button	at	 the	bottom	right	corner	of	 the	options
dialog	box	to	complete	the	process.	This	will	implement	the	necessary	changes.

	

(https://powerspreadsheets.com/vba-sub-procedures/)

https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/

(https://powerspreadsheets.com/vba-sub-procedures/)

When	you	move	back	to	Excel,	you	will	see	that	the	necessary	macro	button	has
been	included	in	the	Quick	Access	Toolbar.	To	run	or	execute	the	sub	procedure,
you	can	click	on	the	button	that	you	added	to	the	Quick	Access	toolbar.

(https://powerspreadsheets.com/vba-sub-procedures/)

Option	 Eight:	 How	 to	 Execute	 A	 VBA	 Sub	 Procedure	When	 a
Particular	Event	Occurs
You	can	run	a	specific	VBA	Sub	procedure	in	Excel	even	when	an	event	occurs.
Excel	will	check	with	you	 if	 the	sub	procedure	should	 run,	and	you	can	either
choose	 to	 ignore	 the	 procedure	 or	 ignore	 the	 event.	 In	 the	 book	 titled,	 ‘Excel
2013	 Power	 Programming	 With	 VBA,’	 the	 author	 talks	 about	 several	 events

https://powerspreadsheets.com/vba-sub-procedures/
https://powerspreadsheets.com/vba-sub-procedures/

where	you	may	come	across	this	issue:

1.	 Entering	information	in	a	worksheet

2.	 Opening	a	workbook

3.	 Clicking	a	command	button

4.	 Saving	a	file

A	VBA	Sub	procedure	that	is	executed	even	when	an	event	occurs	is	called	an
event	 handler	 procedure.	 This	 type	 of	 procedure	 has	 two	 characteristics	 that
separate	it	from	the	other	Sub	procedures	in	VBA.

The	 name	 of	 this	 sub	 procedure	 will	 always	 have	 a	 different	 structure.	 Their
name	 will	 need	 to	 stick	 to	 the	 following	 syntax	 –	 “object_EventName.”	 The
names	of	such	procedures	will	have	three	elements:

1.	 Objects

2.	 Underscore

3.	 Name	of	the	event

The	module	 for	 the	 object	 in	 the	 name	 is	 the	VBA	module	 in	which	 this	 sub
procedure	is	written	or	stored.	It	is	important	to	learn	more	about	event	handler
procedures,	 and	 this	 is	 an	 extensive	 topic	 to	 cover.	 To	 learn	 more	 about	 this
topic,	you	should	refer	to	chapter	seventeen	in	the	book	titled	‘Excel	2013	Power
Programming	With	VBA.’

Option	 Nine:	 Executing	 the	 VBA	 Sub	 Procedure	 Using	 the
Immediate	Window
It	is	a	good	idea	to	execute	a	sub	procedure	in	VBA	using	the	immediate	window
in	 the	 environment.	 It	 is	 always	 a	 good	 idea	 to	 do	 this	 if	 you	 are	 building	 an
application	 in	 the	 visual	 basic	 environment.	 The	 Immediate	 Window	 can	 be
found	at	the	bottom	section	of	the	Visual	Basic	Editor.	

	

	

If	you’re	 finding	the	information	valuable	so	 far,	please	be	sure	to	 leave	5-star
feedback	on	Amazon

(https://powerspreadsheets.com/vba-sub-procedures/)

To	learn	more	about	the	Immediate	Window,	please	read	the	first	few	books	of
the	series.	You	can	also	learn	more	about	the	IDE	in	VBA	in	those	books.	If	you
want	to	run	a	sub	procedure	in	VBA	in	the	Immediate	Window,	you	should	type
the	 name	 of	 that	 procedure	 in	 the	 window	 and	 click	 Enter.	 To	 conclude,	 the
concept	of	procedures	and	sub	procedures	is	used	frequently	in	most	blogs	and
books	 that	 cover	VBA	and	macros.	 It	 is	 important	 for	you	 to	understand	what
these	terms	mean	if	you	want	to	become	an	expert	in	VBA.

https://powerspreadsheets.com/vba-sub-procedures/

Conclusion
Thank	you	for	purchasing	the	book.	If	you	want	to	master	VBA,	there	are	some
concepts	that	you	should	know	well.	You	should	also	have	some	tricks	and	tips
up	your	 sleeve	 to	help	you	overcome	any	problems	you	may	have	with	VBA.
This	book	will	help	you	master	some	of	 the	concepts,	and	also	 leave	you	with
some	tips	that	you	can	use	to	troubleshoot	and	handle	any	errors	and	exceptions.

I	 hope	 the	 information	 in	 the	 book	 will	 help	 you	 improve	 your	 VBA
programming	skills.

	

	

P.S.	If	you	don’t	mind,	please	drop	a	short	review	of	my	title	on	Amazon	and	feel
free	to	tell	me	what	you	think!	Thanks	a	lot!

Will	You	Help	Me?
Hi	there,	avid	reader!	If	you	have	extra	time	on	your	hands,	I	would	really,	really
appreciate	it	if	you	could	take	a	moment	to	click	my	author	profile	in	Amazon.
In	 there,	you	will	 find	all	 the	 titles	 I	authored	and	who	knows,	you	might	 find
more	interesting	topics	to	read	and	learn!

If	it’s	not	too	much	to	ask,	you	can	also	leave	and	write	a	review	for	all	the	titles
that	you	have	read	–	whether	 it’s	a	positive	or	negative	review.	An	honest	and
constructive	review	of	my	titles	is	always	welcome	and	appreciated	since	it	will
only	 help	 me	 moving	 forward	 in	 creating	 these	 books.	 There	 will	 always	 be
room	to	add	or	improve,	or	sometimes	even	subtract	certain	topics,	that	is	why
these	 reviews	 are	 always	 important	 for	 us.	 They	 will	 also	 assist	 other	 avid
readers,	 professionals	 who	 are	 looking	 to	 sharpen	 their	 knowledge,	 or	 even
newbies	 to	any	 topic,	 in	 their	search	for	 the	book	 that	caters	 to	 their	needs	 the
most.	

If	you	don’t	want	 to	 leave	a	review	yourself,	you	can	also	vote	on	the	existing
reviews	 by	 voting	 Helpful	 (Thumbs	 Up)	 or	 Unhelpful	 (Thumbs	 Down),
especially	on	the	top	10	or	so	reviews.

If	you	want	to	go	directly	to	the	vote	or	review	process,	please	visit	my	author
file	page	in	Amazon	for	my	below	titles:

Machine	 Learning	 For	 Beginners	 :	 A	 Comprehensive,	 Step-by-Step
Guide	 to	 Learning	 and	 Understanding	 Machine	 Learning	 Concepts,
Technology	 and	 Principles	 for	 Beginners	 .	 Audiobook	 format	 is	 also
available	at	www.audible.com

Machine	 Learning	 :	 A	 Comprehensive,	 Step-by-Step	 Guide	 to
Intermediate	Concepts	and	Techniques	in	Machine	Learning

Machine	Learning	:	A	Comprehensive,	Step-by-Step	Guide	to	Learning
and	Applying	Advanced	Concepts	and	Techniques	in	Machine	Learning

Excel	 VBA	 :	 A	 Step-By-Step	 Tutorial	 For	 Beginners	 To	 Learn	 Excel
VBA	Programming	From	Scratch	 .	Audiobook	format	 is	also	available
at	www.audible.com

Excel	 VBA	 :	 Intermediate	 Lessons	 in	 Excel	 VBA	 Programming	 for
Professional	 Advancement	 .	 Audiobook	 format	 is	 also	 available	 at

https://www.amazon.com/-/e/B07L8M5F2Z
https://www.amazon.com/dp/B07H9G9XBZ
https://www.audible.com/pd/B07JK8MDYC/?source_code=AUDFPWS0223189MWT-BK-ACX0-129376&ref=acx_bty_BK_ACX0_129376_rh_us
https://www.amazon.com/dp/B07MNMY81C
https://www.amazon.com/dp/B07M6LTGZD
https://www.amazon.com/dp/B07H1MCMPX
https://www.audible.com/pd/B07JHYQ51D/?source_code=AUDFPWS0223189MWT-BK-ACX0-130900&ref=acx_bty_BK_ACX0_130900_rh_us
https://www.amazon.com/dp/B07KJKMWH2

www.audible.com

Excel	VBA:	A	Step-By-Step	Comprehensive	Guide	on	Advanced	Excel
VBA	Programming	Techniques	and	Strategies

Again,	I	truly	appreciate	the	time	and	effort	that	you	will	be	putting	in	leaving	a
review	for	my	titles	or	even	just	for	voting.	This	will	only	inspire	me	to	create
more	quality	content	and	titles	in	the	future.

Thank	you	and	have	a	great	day!

Peter	Bradley

https://www.audible.com/pd/B07MNTM9PM/?source_code=AUDFPWS0223189MWT-BK-ACX0-137985&ref=acx_bty_BK_ACX0_137985_rh_us
https://www.amazon.com/dp/B07L9KDZDG
https://www.dummies.com/software/microsoft-office/excel/10-resources-for-excel-vba-help/
https://techcommunity.microsoft.com/t5/Excel/9-quick-tips-to-improve-your-VBA-macro-performance/td-p/173687
http://what-when-how.com/excel-vba/ten-vba-tips-and-tricks/
https://www.tutorialspoint.com/vba/vba_sub_procedure.htm
https://powerspreadsheets.com/vba-sub-procedures/
https://docs.microsoft.com/en-us/office/vba/language/concepts/getting-started/calling-sub-and-function-procedures
https://www.excelfunctions.net/vba-functions-and-subroutines.html
https://powerspreadsheets.com/vba-sub-procedures/

Sources
https://www.dummies.com/software/microsoft-office/excel/10-resources-for-

excel-vba-help/

https://techcommunity.microsoft.com/t5/Excel/9-quick-tips-to-improve-your-
VBA-macro-performance/td-p/173687

http://what-when-how.com/excel-vba/ten-vba-tips-and-tricks/

https://www.tutorialspoint.com/vba/vba_sub_procedure.htm

https://powerspreadsheets.com/vba-sub-procedures/

https://docs.microsoft.com/en-us/office/vba/language/concepts/getting-
started/calling-sub-and-function-procedures

https://www.excelfunctions.net/vba-functions-and-subroutines.html

https://powerspreadsheets.com/vba-sub-procedures/

	Excel VBAA Step-By-Step Comprehensive Guide on Advanced Excel VBA Programming Techniques and Strategies
	Excel VBAA Step-By-Step Comprehensive Guide on Advanced Excel VBA Programming Techniques and Strategies
	Introduction
	Chapter One: What Can You Do With VBA?
	Chapter One: What Can You Do With VBA?
	Common Uses of VBA
	Chapter Two: VBA, A Primer
	Chapter Two: VBA, A Primer
	Macro Recorder
	Record a Macro
	Macro Storage and Security
	Chapter Three: How to Manipulate Data in Excel
	Chapter Three: How to Manipulate Data in Excel
	How to Analyze and Manipulate Data in a Spreadsheet
	Different Ways to Manipulate Data
	Chapter Four: Fundamentals of VBA
	Chapter Four: Fundamentals of VBA
	Looking at the VBA Toolbox
	Chapter Five: Working With Loops and Conditional Statements
	Chapter Five: Working With Loops and Conditional Statements
	For Loop
	Exercises
	Do…Loop Statement
	Conditional Statements
	Chapter Six: Data Types in VBA
	Chapter Six: Data Types in VBA
	Using strings for text
	Using numbers for calculations
	Using Boolean values to make decisions
	Working with Operators
	Exercises
	Chapter Seven: Parts of the Program
	Chapter Seven: Parts of the Program
	Defining the parts of a program
	Programming Blocks
	Using the Macro Recorder
	Using Subs
	Using Functions
	Comments
	Chapter Eight: Arrays
	Chapter Eight: Arrays
	Structured Storage
	Array Types
	VBA Array
	Example to Enter Student’s Marks
	Example with Loops
	Sorting an Array
	Example for Creating a Two-Dimensional Array
	Exercise
	Chapter Nine: Working with Excel Workbooks and Worksheets
	Chapter Nine: Working with Excel Workbooks and Worksheets
	The Workbook Collection
	The Worksheet Collection
	Charts Collection
	Exercises
	Chapter Ten: How to Redirect the Flow
	Chapter Ten: How to Redirect the Flow
	Using the GoTo statement correctly
	Chapter Eleven: Error Handling
	Chapter Eleven: Error Handling
	Understanding compile errors
	Understanding run-time errors
	Understanding semantic errors
	Chapter Twelve: Solutions and Additional Programs
	Chapter Twelve: Solutions and Additional Programs
	Sheet Protection
	For Loop
	Strings
	Arrays
	Worksheet and Workbook Methods
	Additional Programs
	Conclusion
	Sources
	Excel VBAA Comprehensive, Step-By-Step Guide On Excel VBA Finance For Data Reporting And Business Analysis
	Excel VBAA Comprehensive, Step-By-Step Guide On Excel VBA Finance For Data Reporting And Business Analysis
	Introduction
	Chapter One: Introduction to VBA
	Chapter One: Introduction to VBA
	What can you do with VBA?
	Common Uses of VBA
	Adding new application features
	Chapter Two: The IDE
	Chapter Two: The IDE
	Looking at the VBA Toolbox
	Starting the Visual Basic Editor
	Using Project Explorer
	Working with special entries
	Using the Properties window
	Using the Code Window
	Chapter Three: VBA, A Primer
	Chapter Three: VBA, A Primer
	Macro Recorder
	Macro Storage and Security
	Chapter Four: Data Types
	Chapter Four: Data Types
	Using strings for text
	Understanding strings
	Using numbers for calculations
	Using Boolean values to make decisions
	Working with Operators
	Chapter Five: Decision Making Statements
	Chapter Five: Decision Making Statements
	If...Then Statement
	If...Then...Else statement
	If...Then...ElseIf statement
	Using the IIf function
	Chapter Six: Loops
	Chapter Six: Loops
	Do While...Loop statement
	Do...Loop While statement
	Do Until...Loop statement
	Do...Loop Until statement
	For...Next statement
	For Each...Next statement
	Chapter Seven: Arrays
	Chapter Seven: Arrays
	Structured Storage
	Array Types
	VBA Array
	Example to Enter Student’s Marks
	Example with Loops
	Sorting an Array
	Example for Creating a Two-Dimensional Array
	Chapter Eight: How to Manipulate Data in Excel
	Chapter Eight: How to Manipulate Data in Excel
	How to Analyze and Manipulate Data on a Spreadsheet
	Different Ways to Manipulate Data
	Chapter Nine: Working with Excel Workbooks and Worksheets
	Chapter Nine: Working with Excel Workbooks and Worksheets
	The Workbook Collection
	The Worksheet Collection
	Charts Collection
	Chapter Ten: Automating Processes Using VBA
	Chapter Ten: Automating Processes Using VBA
	The Macro Mindset
	Understand the Context of your Automation Project
	Product Code Lookup Procedure
	Tips to Deal with VLookups in VBA
	Data Analysis
	Using Pivot Tables in VBA
	Efficiently Allocating Your Time
	Chapter Eleven: Error Handling
	Chapter Eleven: Error Handling
	Understanding compile errors
	Understanding run-time errors
	Understanding semantic errors
	Conclusion
	Will You Help Me?
	Sources
	Excel VBAA Step-by-Step Comprehensive Guide on Excel VBA Programming Tips and Tricks for Effective Strategies
	Excel VBAA Step-by-Step Comprehensive Guide on Excel VBA Programming Tips and Tricks for Effective Strategies
	Introduction
	Chapter One: Facts about VBA
	Chapter One: Facts about VBA
	Making macros available on every MS Excel Worksheet
	Types Of Codes Found Across The Internet
	Where To Use The Code You Find On The Internet
	Saving A Workbook
	Chapter Two: Resources for VBA Help
	Chapter Two: Resources for VBA Help
	Allow Excel to Write the Code for You
	The Location Matters When You Ask For Help
	Choose Online Help over Offline Help
	Using Code for Excel VBA from the Internet
	Making Use of Excel VBA Forums
	Visiting Excel VBA Expert Blogs
	Mining YouTube for Some Excel VBA Training Videos
	Attending a Live Online Excel VBA Training Class
	Dissecting Other Excel Files in Your Organization
	Ask the Local Excel Guru
	Chapter Three: How to Improve the Performance of Macros
	Chapter Three: How to Improve the Performance of Macros
	Close Everything Except for the VBA Essentials
	Removing Unnecessary Selects
	Using the With Statement to Read Object Properties
	Using Arrays And Ranges
	Use .Value2 Instead Of .Text or .Value
	Avoid Using Copy and Paste
	Use The Option Explicit Keyword To Catch Undeclared Variables
	Chapter Four: Some Problems with Spreadsheets and How to Overcome Them
	Chapter Four: Some Problems with Spreadsheets and How to Overcome Them
	Multi-User Editing
	Shared Workbooks
	Linked Workbooks
	Data Validation
	Navigation Issues
	Security Issues
	Speed Issues
	Enter the database
	Chapter Five: Sub Procedures
	Chapter Five: Sub Procedures
	What Is A Sub Procedure?
	How Does The VBA Sub Procedure Look?
	How to Name A VBA Sub Procedure
	How to Determine the Scope of A VBA Sub Procedure
	How to Execute / Run / Call a VBA Sub Procedure
	Option One: How to Execute A VBA Sub Procedure Directly From the Visual Basic Editor
	Option Two: How to Execute A VBA Sub Procedure Using the Macro Dialog
	Option Three: How to Execute A VBA Sub Procedure Using a Keyboard Shortcut
	Option Four: How to Execute A VBA Sub Procedure Using a Button or Other Object
	Option Five: How to Execute A VBA Sub Procedure from another Procedure
	Option Six: How to Execute A VBA Sub Procedure Using the Ribbon
	Option Seven: How to Execute A VBA Sub Procedure Using the Quick Access Toolbar
	Option Eight: How to Execute A VBA Sub Procedure When a Particular Event Occurs
	Option Nine: Executing the VBA Sub Procedure Using the Immediate Window
	Conclusion
	Will You Help Me?
	Sources

