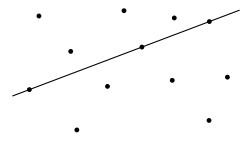
Arrangements and Duality

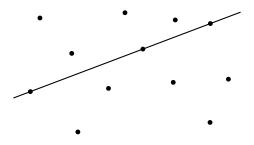
Computational Geometry

Lecture 11: Arrangements and Duality

Question: In a set of n points, are there 3 points on a line?

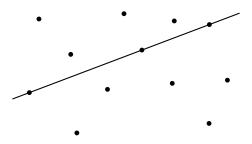


Question: In a set of n points, are there 3 points on a line?



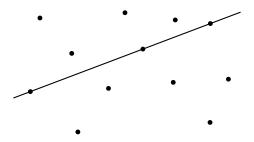
Naive algorithm: tests all triples in $O(n^3)$ time

Question: In a set of n points, are there 3 points on a line?



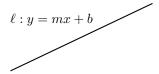
Naive algorithm: tests all triples in $O(n^3)$ time **Faster algorithm:** uses duality and arrangements

Question: In a set of n points, are there 3 points on a line?



Naive algorithm: tests all triples in $O(n^3)$ time **Faster algorithm:** uses duality and arrangements

Note: other motivation in chapter 8 of the book

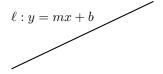


$$\bullet \ p = (p_x, p_y)$$

Note.

primal plane

dual plane



$$p^*: y = p_x x - p_y$$

$$\bullet \ p = (p_x, p_y)$$

$$\bullet \ \ell^* = (m, -b)$$

point
$$p = (p_x, p_y) \mapsto \text{line } p^* : y = p_x x - p_y$$

line $\ell : y = mx + b \mapsto \text{point } \ell^* = (mx, -b)$

Note.

primal plane

dual plane

$$\ell: y = mx + b$$

$$p^*: y = p_x x - p_y$$

$$\bullet \ p = (p_x, p_y)$$

$$\bullet \ \ell^* = (m, -b)$$

point
$$p = (p_x, p_y) \mapsto \text{line } p^* : y = p_x x - p_y$$

line $\ell : y = mx + b \mapsto \text{point } \ell^* = (mx, -b)$

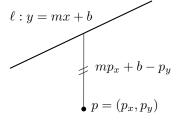
Note: self inverse
$$(p^*)^* = p$$
, $(\ell^*)^* = \ell$

primal plane $\ell: y = mx + b$ $p^*: y = p_x x - p_y$ $\bullet p = (p_x, p_y)$ $\bullet \ell^* = (m, -b)$

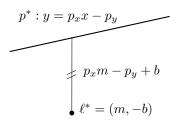
point $p = (p_x, p_y) \mapsto \text{line } p^* : y = p_x x - p_y$ line $\ell : y = mx + b \mapsto \text{point } \ell^* = (mx, -b)$

Note: does not handle vertical lines

primal plane

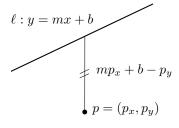


dual plane

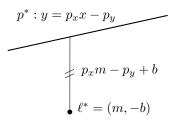


duality preserves vertical distances

primal plane



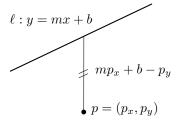
dual plane



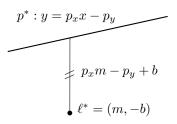
duality preserves vertical distances

 \Rightarrow incidence preserving: $p \in \ell$ if and only if $\ell^* \in p^*$

primal plane



dual plane

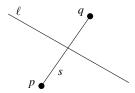


duality preserves vertical distances

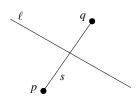
- \Rightarrow incidence preserving: $p \in \ell$ if and only if $\ell^* \in p^*$
- \Rightarrow order preserving: p lies above ℓ if and only if ℓ^* lies above p^*

can be applied to other objects, e.g. segments

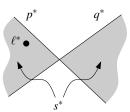
primal plane



can be applied to other objects, e.g. segments

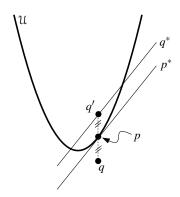


primal plane

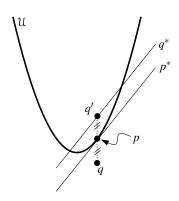


dual of a segment is a double wedge

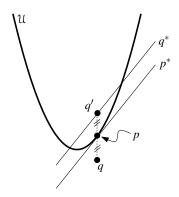
- parabola $\mathcal{U}: y = x^2/2$
- point $p = (p_x, p_y)$ on \mathcal{U}
- derivative of \(\mathcal{U} \) at \(p \) is \(p_x \),
 i.e., \(p^* \) has same slope as tangent line
- tangent line intersects y-axis at $(0, -p_x^2/2)$
- $\bullet \Rightarrow p^*$ is tangent line at p



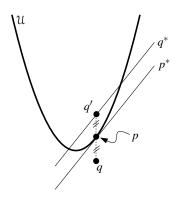
- parabola $\mathcal{U}: y = x^2/2$
- point $p = (p_x, p_y)$ on \mathcal{U}
- derivative of $\mathcal U$ at p is p_x , i.e., p^* has same slope as tangent line
- tangent line intersects y-axis at $(0, -p_x^2/2)$
- $\bullet \Rightarrow p^*$ is tangent line at p



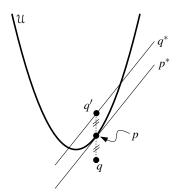
- parabola $\mathcal{U}: y = x^2/2$
- point $p = (p_x, p_y)$ on \mathcal{U}
- derivative of \mathcal{U} at p is p_x , i.e., p^* has same slope as tangent line
- tangent line intersects y-axis at $(0, -p_x^2/2)$
- $\bullet \Rightarrow p^*$ is tangent line at p



- parabola $\mathcal{U}: y = x^2/2$
- point $p = (p_x, p_y)$ on \mathcal{U}
- derivative of \mathcal{U} at p is p_x , i.e., p^* has same slope as tangent line
- tangent line intersects y-axis at $(0, -p_x^2/2)$
- $\Rightarrow p^*$ is tangent line at p



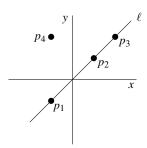
- parabola $\mathcal{U}: y = x^2/2$
- point $p = (p_x, p_y)$ on \mathcal{U}
- derivative of \mathcal{U} at p is p_x , i.e., p^* has same slope as tangent line
- tangent line intersects y-axis at $(0, -p_x^2/2)$
- $\bullet \Rightarrow p^*$ is tangent line at p

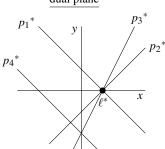


Why use Duality?

It gives a new perspective!

E.g. 3 points on a line dualize to 3 lines intersecting in a point primal plane dual plane

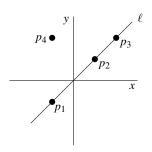




Why use Duality?

It gives a new perspective!

E.g. 3 points on a line dualize to 3 lines intersecting in a point primal plane dual plane

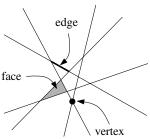


 p_1^* p_3^* p_2^* p_4^* p_4^* p_4^*

next we use arrangements

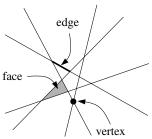
Arrangement A(L): subdivision induced by a set of lines L.

- consists of faces, edges and vertices (some unbounded)
- also arrangements of other geometric objects, e.g., segments, circles, higher-dimensional objects

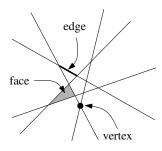


Arrangement A(L): subdivision induced by a set of lines L.

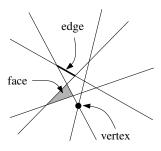
- consists of faces, edges and vertices (some unbounded)
- also arrangements of other geometric objects,
 e.g., segments, circles,
 higher-dimensional objects



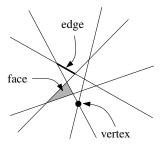
- $\leq n(n-1)/2$ vertices
- $\leq n^2$ edges
- $\leq n^2/2 + n/2 + 1$ faces: add lines incrementally $1 + \sum_{i=1}^{n} i = n(n+1)/2 + 1$
- equality holds in simple arrangements



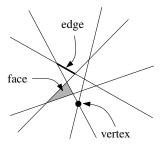
- $\leq n(n-1)/2$ vertices
- $\leq n^2$ edges
- $\leq n^2/2 + n/2 + 1$ faces: add lines incrementally $1 + \sum_{i=1}^{n} i = n(n+1)/2 + 1$
- equality holds in simple arrangements



- $\leq n(n-1)/2$ vertices
- $\leq n^2$ edges
- $\leq n^2/2 + n/2 + 1$ faces: add lines incrementally $1 + \sum_{i=1}^{n} i = n(n+1)/2 + 1$
- equality holds in simple arrangements



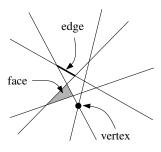
- $\leq n(n-1)/2$ vertices
- $\leq n^2$ edges
- $\leq n^2/2 + n/2 + 1$ faces: add lines incrementally $1 + \sum_{i=1}^{n} i = n(n+1)/2 + 1$
- equality holds in simple arrangements



Combinatorial Complexity:

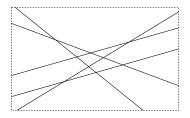
- $\leq n(n-1)/2$ vertices
- $\leq n^2$ edges
- $\leq n^2/2 + n/2 + 1$ faces: add lines incrementally $1 + \sum_{i=1}^{n} i = n(n+1)/2 + 1$
- equality holds in simple arrangements

overall $O(n^2)$ complexity



Constructing Arrangements

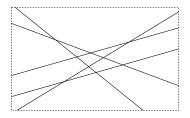
Goal: Compute A(L) in bounding box in DCEL representation



- plane sweep for line segment intersection: $O((n+k)\log n) = O(n^2\log n)$
- faster: incremental construction

Constructing Arrangements

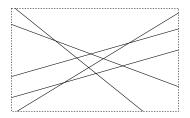
Goal: Compute A(L) in bounding box in DCEL representation



- plane sweep for line segment intersection:
- $O((n+k)\log n) = O(n^2\log n)$
- faster: incremental construction

Constructing Arrangements

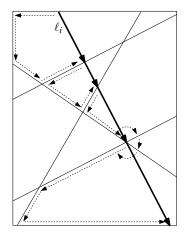
Goal: Compute A(L) in bounding box in DCEL representation



• plane sweep for line segment intersection:

$$O((n+k)\log n) = O(n^2\log n)$$

• faster: incremental construction



Algorithm ConstructArrange-Ment(*L*)

Input. Set L of n lines.

Output. DCEL for A(L) in B(L).

- 1. Compute bounding box $\mathfrak{B}(L)$.
- 2. Construct DCEL for subdivision induced by $\mathfrak{B}(L)$.
- 3. for $i \leftarrow 1$ to n
 - 4. **do** insert ℓ_i .

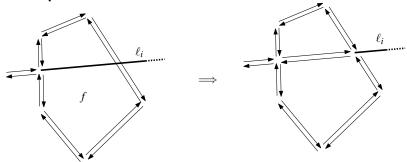
Algorithm ConstructArrangement(L)

Input. A set L of n lines in the plane.

Output. DCEL for subdivision induced by $\mathfrak{B}(L)$ and the part of $\mathcal{A}(L)$ inside $\mathfrak{B}(L)$, where $\mathfrak{B}(L)$ is a suitable bounding box.

- 1. Compute a bounding box $\mathfrak{B}(L)$ that contains all vertices of $\mathcal{A}(L)$ in its interior.
- 2. Construct DCEL for the subdivision induced by $\mathfrak{B}(L)$.
- 3. for $i \leftarrow 1$ to n
- 4. **do** Find the edge e on $\mathcal{B}(L)$ that contains the leftmost intersection point of ℓ_i and \mathcal{A}_i .
- 5. $f \leftarrow$ the bounded face incident to e
- 6. **while** f is not the unbounded face, that is, the face outside $\mathfrak{B}(L)$
- 7. **do** Split f, and set f to be the next intersected face.

Face split:



Runtime analysis:

Algorithm ConstructArrange-MENT(L)

Input. Set L of n lines.

Output. DCEL for A(L) in B(L).

- 1. Compute bounding box $\mathfrak{B}(L)$.
- 2. Construct DCEL for subdivision induced by $\mathfrak{B}(L)$.
- 3. **for** $i \leftarrow 1$ **to** n
- 4. **do** insert ℓ_i .

Runtime analysis:

1. $O(n^2)$

Algorithm ConstructArrange-Ment(*L*)

Input. Set L of n lines.

Output. DCEL for A(L) in B(L).

- 1. Compute bounding box $\mathfrak{B}(L)$.
- 2. Construct DCEL for subdivision induced by $\mathfrak{B}(L)$.
- 3. **for** $i \leftarrow 1$ **to** n
- 4. **do** insert ℓ_i .

Runtime analysis:

- 1. $O(n^2)$
- 2. constant

Algorithm ConstructArrange-Ment(*L*)

Input. Set L of n lines.

- 1. Compute bounding box $\mathfrak{B}(L)$.
- 2. Construct DCEL for subdivision induced by $\mathfrak{B}(L)$.
- 3. **for** $i \leftarrow 1$ **to** n
- 4. **do** insert ℓ_i .

Runtime analysis:

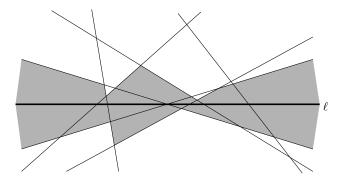
- 1. $O(n^2)$
- 2. constant
- 3. ?

Algorithm ConstructArrange-Ment(*L*)

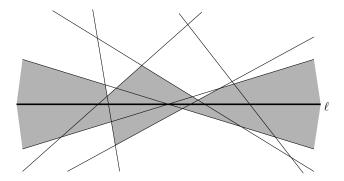
Input. Set L of n lines.

- 1. Compute bounding box $\mathfrak{B}(L)$.
- 2. Construct DCEL for subdivision induced by $\mathfrak{B}(L)$.
- 3. **for** $i \leftarrow 1$ **to** n
 - 4. **do** insert ℓ_i .

The zone of a line ℓ in an arrangement $\mathcal{A}(L)$ is the set of faces of $\mathcal{A}(L)$ whose closure intersects ℓ .



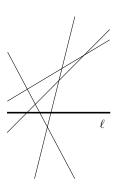
The zone of a line ℓ in an arrangement $\mathcal{A}(L)$ is the set of faces of $\mathcal{A}(L)$ whose closure intersects ℓ .



Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m).

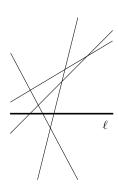
Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m).

- We can assume \(\ell \) horizontal and no other line horizontal.
- We count number of left-bounding edges.
- We show by induction on *m* that this at most 5*m*:



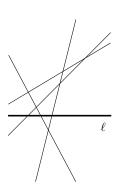
Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m).

- We can assume \(\ell \) horizontal and no other line horizontal.
- We count number of left-bounding edges.
- We show by induction on m that this at most 5m:
 - m = 1: trivially true
 m > 1: only at most 3 new edges if ℓ₁ is unique,



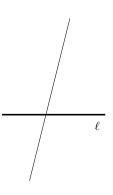
Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m).

- We can assume ℓ horizontal and no other line horizontal.
- We count number of left-bounding edges.
- We show by induction on m that this at most 5m:
 - m = 1: trivially true
 - m > 1: only at most 3 new edges if ℓ₁ is unique.



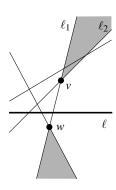
Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m).

- We can assume \(\ell \) horizontal and no other line horizontal.
- We count number of left-bounding edges.
- We show by induction on m that this at most 5m:
 - m=1: trivially true
 - m > 1: only at most 3 new edges if ℓ_1 is unique,



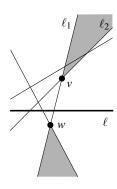
Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m).

- We can assume ℓ horizontal and no other line horizontal.
- We count number of left-bounding edges.
- We show by induction on m that this at most 5m:
 - m = 1: trivially true
 - m > 1: only at most 3 new edges if ℓ_1 is unique,



Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m).

- We can assume ℓ horizontal and no other line horizontal.
- We count number of left-bounding edges.
- We show by induction on m that this at most 5m:
 - m=1: trivially true
 - m>1: only at most 3 new edges if ℓ_1 is unique, at most 5 if ℓ_1 is not unique. 5(m-1)+5=5m



Run time analysis:

Algorithm ConstructArrange-Ment(*L*)

Input. Set L of n lines.

- 1. Compute bounding box $\mathfrak{B}(L)$.
- 2. Construct DCEL for subdivision induced by $\mathfrak{B}(L)$.
- 3. **for** $i \leftarrow 1$ **to** n
- 4. **do** insert ℓ_i .

.

Run time analysis:

1. $O(n^2)$

Algorithm ConstructArrange-Ment(*L*)

Input. Set L of n lines.

- 1. Compute bounding box $\mathfrak{B}(L)$.
- 2. Construct DCEL for subdivision induced by $\mathfrak{B}(L)$.
- 3. **for** $i \leftarrow 1$ **to** n
- 4. **do** insert ℓ_i .

Run time analysis:

- 1. $O(n^2)$
- 2. constant

Algorithm ConstructArrange-MENT(L)

Input. Set L of n lines.

- 1. Compute bounding box $\mathfrak{B}(L)$.
- 2. Construct DCEL for subdivision induced by $\mathfrak{B}(L)$.
- 3. for $i \leftarrow 1$ to n
- 4. **do** insert ℓ_i .

Run time analysis:

- 1. $O(n^2)$
- 2. constant
- 3. $\sum_{i=1}^{n} O(i) = O(n^2)$

Algorithm ConstructArrange-MENT(*L*)

Input. Set L of n lines.

- 1. Compute bounding box $\mathfrak{B}(L)$.
- 2. Construct DCEL for subdivision induced by $\mathfrak{B}(L)$.
- 3. **for** $i \leftarrow 1$ **to** n
 - 4. **do** insert ℓ_i .

Run time analysis:

- 1. $O(n^2)$
- 2. constant
- 3. $\sum_{i=1}^{n} O(i) = O(n^2)$

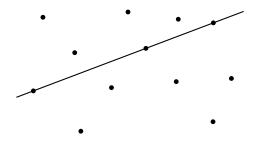
in total $O(n^2)$

Algorithm ConstructArrange-Ment(*L*)

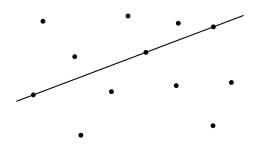
Input. Set L of n lines.

- 1. Compute bounding box $\mathfrak{B}(L)$.
- 2. Construct DCEL for subdivision induced by $\mathfrak{B}(L)$.
- 3. **for** $i \leftarrow 1$ **to** n
- 4. **do** insert ℓ_i .

3 Points on a Line



3 Points on a Line

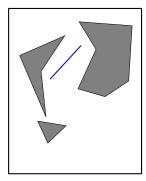


Algorithm:

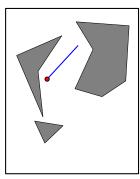
- run incremental construction algorithm for dual problem
- stop when 3 lines pass through a point

Run time: $O(n^2)$

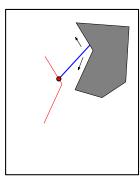
- pick a reference point: lower end-point of rod
- shrink rod to a point, expand obstacles accordingly: locus of semi-free placements
- reachable configurations:
 cell of initial configuration in arrangement of line segments



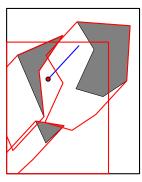
- pick a reference point: lower end-point of rod
- shrink rod to a point, expand obstacles accordingly: locus of semi-free placements
- reachable configurations: cell of initial configuration in arrangement of line segments



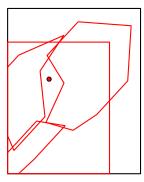
- pick a reference point: lower end-point of rod
- shrink rod to a point, expand obstacles accordingly: locus of semi-free placements
- reachable configurations: cell of initial configuration in arrangement of line segments



- pick a reference point: lower end-point of rod
- shrink rod to a point, expand obstacles accordingly: locus of semi-free placements
- reachable configurations: cell of initial configuration in arrangement of line segments

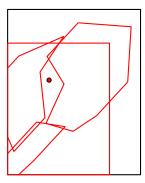


- pick a reference point: lower end-point of rod
- shrink rod to a point, expand obstacles accordingly: locus of semi-free placements
- reachable configurations: cell of initial configuration in arrangement of line segments



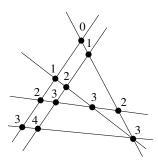
Where can the rod move by translation (no rotations) while avoiding obstacles?

- pick a reference point: lower end-point of rod
- shrink rod to a point, expand obstacles accordingly: locus of semi-free placements
- reachable configurations: cell of initial configuration in arrangement of line segments



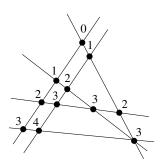
What about a moving disc among discs?

The level of a point in an arrangement of lines is the number of lines strictly above it.



The level of a point in an arrangement of lines is the number of lines strictly above it.

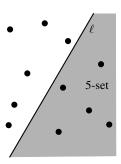
Open problem: What is the complexity of k-levels?



The level of a point in an arrangement of lines is the number of lines strictly above it.

Open problem: What is the complexity of k-levels?

Dual problem: What is the complexity k-sets in a point set?



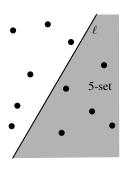
The level of a point in an arrangement of lines is the number of lines strictly above it.

Open problem: What is the complexity of k-levels?

Dual problem: What is the complexity k-sets in a point set?

Known bounds:

- Erdös et al. '73: $\Omega(n \log k)$ and $O(nk^{1/2})$
- Dey '97: $O(nk^{1/3})$



The level of a point in an arrangement of lines is the number of lines strictly above it.

Open problem: What is the complexity of k-levels?

Dual problem: What is the complexity k-sets in a point set?

Known bounds:

- Erdös et al. '73: $\Omega(n \log k)$ and $O(nk^{1/2})$
- Dey '97: $O(nk^{1/3})$

