Deflection of Beams
and Shafts

CHAPTER OBJECTIVES

Often limits must be placed on the amount of deflection a beam or
shaft may undergo when it is subjected to a load, and so in this chapter
we will discuss various methods for determining the deflection and
slope at specific points on beams and shafts. The analytical methods
include the integration method, the use of discomtinuity functions, and
the method of superposition. Also, a semigraphical technigue, called
the moment-area method, will be presented. At the end of the chapter,
we will use these methods to solve for the support reactions on a beam
or shaft that is statically indeterminate,

12.1 The Elastic Curve

The deflection of & beam or shaft must often be imited m order 1o
provide mtegnty and stability of a strocture or machine, and prevent the
cracking of any attached brttle materials such as conerete or glass,
Furthermore, code restrictions often require these members not vibrate
ordeflect severely in order to safely suppornt their intended loading. Muost
important, though, deflections at specific points on a beam or shaft must
be determined if one 15 1o analvze those that are staticallv indeterminate,

Before the slope or the displacement at a point on a beam {or shaft) is

determined, it is often helpful to sketch the deflected shape of the beam I

when it 18 loaded. in order to *visualize” anv computed results and thereby
partiallv check these results The deflection curve of the longitndinal axis 2=
that passes through the centroid of each eross-sectional area of a beam is x
called the elasee crapve, For most beams the elastic curve can be sketched

withou! much difficulty, When doing so, however, il 15 necessary to know e *

|
e — _________;-"'_-f

how the slope or displacement s restricied at varous tvpes of supports. s

In general, supports that resist a force, such as a pin, restrict

displacement, and those that resist a mosrteir, such as a fixed wall, restrict Fig. 12-1
rotarion of stope as well as displacement. With this in mind, two tvpical

examples of the elastic curves or loaded beams {or shafts), sketched o

an exagperaled scale, are shown in Fig 12-1, 540
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Fig. 12-2

If the elastic curve for a beam seems difficult to establish, it is
suggested that the moment diagram for the beam be drawn first. Using
the beam sign comvention established in Sec. 6.1, a posilive internal
miment tends o bend the beam concave upward, Fig. 12-2i. Likewise.
a negative moment tends to bend the beam concave downward,
Fig. 12-2h, Therefore, if the moment diagram is known, it will be easy
to construct the elastic curve. For example, consider the beam in
Fig. 12-3a with its associaled moment diagram shown m Fig. 12-30,
Due to the roller and pin supports, the displacement at B and £ must
be zecro. Within the region of negative mament, AC, Fig, 12-36, the elastic
curve must be concave downward, and within the region of positive
moment, CD, the elastic curve must be concave upward, Hence, there
must be an inflection poing at point €, where the curve changes from
concave up to concave down, since this is a point of zero moment,
Uising these facts, the beam’s elastic curve 15 sketched m Fig. 12-3c. Tt
should also be noted that the displacements A ) and Ap are especally
critical. Ar point £ the slope of the elastic curve is gern, and there the
beam’s deflection may be a maximim. Whether &g is actually greater
than & , depends on the relative magnitudes of I, and P- and the location
of the roller at B

Following these same principles, note how the elastic curve in Fig. 124
was constructed. Here the beam is cantilevered from a fived support at A
and therefore the elastic curve must have both zFero displacement and
zero slope at this point. Also, the largest displacement will oceur gither at
D, where the slope is 2zero, or at C,
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Moment-Curvature Relationship. We will now develop an
important relationship between the internal moment and the radius of
curvature p (rho) of the elastic curve at a point. The resulting equation
will be used for establishing each of the methods presented in the chapter
for finding the slope and displacement at points on the elastic curve.

The following analvsis, here and in the next section, will require the
use of three coordinates. As shown in Fig. 12-54, the x axis extends
pasitive to the right. along the initially straight lomgitedinal axis of the
beam. It is used to lecate the differential element, having an undeformed
width dx. The ¢ axis extends positive npward from the x axas, Tt meastres
the dixplacement of the elastic curve, Liastly, a *localized™ v coordinate is
wsed 1o specily the position of a fiber in the beam element. [t is measured
positive wpward from the neutral axis (or elastic curve) as shown in
Fig. 12-5h. Recall that this same sign convention for x and v was used in
the derivation of the flexure formula,

To derive the relationship between the imternal moment and g, we
will [imit the analysis to the most common case of an imitially straight
beam that is elastically defirmed by [oads applied perpendicular to the
beam’s x axis and lving in the x-v plane of symmetry for the beam’s
cross-sectional area, Due to the loading, the deformation of the beam is
caused by both the intermal shear force and bending moment. If the
beam has a length that is much greater than its depth, the preates
deformation will be caused by bending, and therefore we will direct our
attention o its effects. Deflections caused by shear will be discussed in
Chaprer 14.
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When the internal moment M deforms the element of the beam, the
angle between the cross sections becomes dd, Fig 12-5h. The arc dx
represents a portion of the elastic curve that mtersects the newtral axis
for each cross sectwon. The radiny of curvatire for this arc s defined as
the distance g, which is measured from the center of ciorvanire € o oy,
Any are on the element other than dx is subjected to a normal strain. For
example, the strain in arc dx, located at a position v from the neutral axis,
inE = (ds' — dr)/ds. However, ds = dx = pdft and ds" = (p — v) df,
andso e = [(p — ¥) d¥ — pdi}/pdf or

i

Lt (12-1)
-

If the material is homogeneous and behaves in a linear-elastic manner,

then Hooke's law applies, € = o/E, Also. since the flexure formula

applies, r = —My/I. Combinmg these two equations and substituting

mito the above equation, we have

=

» EI

whiere

f = the radius of curvature at the point on the elastic curve
(1 is referred 1o as the curvarre)

the internal moment in the beam at the point

A
L
i

the material’s modulus of elasticity

the beam's moment of inertia about the nentral axis

The product EF in this equation is referred to as the flexeral rigidiry,
and it is always a positive guantity. The sign for p therefore depends on
the direction of the moment. As shown in Fig, 12-6, when M is pasinive,
g extends ahove the beam, i.e. in the positive v direction; when M is
negative, pextends below the beam, orin the negatve @ direction.

Using the flexure firmuola, o Myff. we can also express the
curvature in terms of the stress in the beam, namely;,

| i
f* Ev

Both Egs. 12-2 and 12-3 are vahd for either small or large radi of
curvature. However, the value of pis almost alwavs caleulated as a very
large quantity. For example. consider an A-36 steel beam made tfrom a
Wid % 53 (Appendix B), where E, = 29{10°) ksi and oy = 36 ksi,
When the material at the outer fibers, ¥ = £7 in.. is about to yield, then,
from Eqg. 12-3, p = £563% . Values of p calculated at other points along
the beam’s elastic curve may be even larger, simce o cannol excecd oy at
the outer fibers.
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12.2 Slope and Displé.cement
by Integration

The equation of the elastic curve for a beam can be expressed mathematically
as v = f{x) To obtain this equation, we must first represent the curvature
(1/p} in terms of v and £ In most calenlus books it is shown that this
relasionship is

1 d*ufdx’
o1+ (dvfdxy]"

Substituring into Eq. 12-2, we have

LFF-‘I."J.E.I“: M
[1 + (dufdx)]*= CEl

(12—}

This equation represents a nonlinear second-order differential equation.
lts solution, which is called the elastica, gives the exact shape of the elastic
curve, assuming, of course, that beam deflections occur only dug to bending,
Through the use of higher mathematics, elastica solutions have been
obtuned only for simple cases of beam geometry and loading.

In order to facilitate the solution of a greater number of deflection
problems, Eg. 12-4 can be modified. Most engineering design codes
specify fimitations on detlections for tolerance or esthetic purposes, and
ps a result the elastic deflections for the majority of beams and shafis
form a shallow curve. Conseguently, the slope of the elastic curve, which is
determined from dov/dx, will be very smiall and its square will be negligible
compared with unity.® Therefore the curvature, as defined above, can be
approximated by 1/p = d*v/dx’. Using this simplification, Eqg. 12-4 can
mow be wWritten is

dv M

ae  El (12-5)

[t is also possible to write this equation in two alternative forms. I we
differentiate each side with respect to x and substitute V = dM/dx
tEq. 6-2), we get

d d'v =
E(EI n’f) = e

Differentiating again, using w = oV fdx (FEg. 6-1), vields
&£ d
B it [;') = wix) (12-7)
dac e

“See Example 131
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For most problems the flexural rigidity { E7) will be constant along the
length of the beam. Assuming this to be the case, the above resulis mav
be reardered into the [ollowmg sel of three equations;

E!iﬂ - wix) (12-8)
ErEY _ i (12-9)
Lk 5

dx
d*v

EF—I, = Mix] (12-111
dx

Solution of any of these equations requires successive mlegrations o
oblain the deflection @ of the elastic curve. For each integration it js
pecessaty o introduce a “constant of integration” and then solve for all
the constants to obtain 2 unique solution for a particular problem. For
example, if the distributed load w s expressed as a function of x and
Eq. 12-8 is used, then four constants of integration must be evaluated:
however, if the imternal moment M s determined and B, 12-10 15 used,
only two constants of miegration must be found. The chmce of which
equation to start with depends on the problem. Generally, however, it is
easier to determine the internal moment M as a function of x. integrate
twice. and evaluate only two integration constants,

Recall from Sec. 6.1 that if the loading on & beam is discontinuous, that
is. comsists of a series ol several distributed and concentrated loads, then
several functions must be written for the mtermal moment, each vahd
within the region between the disconfinuities. Also, for convenience in
wriling each moment expression, S orgin for each o coordinate can be
selected arbitrarily. For example, consider the beam shown in Fig. 12-Ta.
The internal moment in regions AR, BC, and CI} can be wiitten in terms
of the xp, x-. and x: coordinates selected., as shown in either Fig 12-7h or
Fip. 12-7c, or i facl in any manner that will vield W = fix)in as simple
a form as possible. Once these functions are integrated twice through the
wse of Eq. 12-10 and the constants of integration determined. the functions
will give the slope and deflection {elastic curve) for each region of the
beam for which they are valid

4
A [ | l 11
et R R

Fig, 12-7
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Sign Convention and Coordinates. When applving Egs. 12-8
through 12-18), it is important to use the proper signs for M, V, or w as
established by the sign convention that was used in the derivation of
these equations. For review, these terms are shown in their pasinve
directions in Fig. 12-8a. Furthermaore. recall that positive deffection. v, is
upward, and as a result. the pesitive slope angle 8 will be measured
connferclockwize from the x axis when x is posifive fo e righi. The
reason tor this is shown in Fig. 12-86. Here positive increases ox and dv
in ¥ and v create an increased # that is counterclockwise. If, however,
posive x5 directed to the fefr, then & will be posttive clockwise,
Fig. 12-8¢

Realize that by assuming dv/dx to be very small, the original horizontal
length of the beam’s axis and the are of its elastic curve will be about the
same, In other words, dy in Fig. 12-8b and 12-Ee is approximately equal to  The design afa roal system reguires a carclul

dx, since ds= V{dz) 1+ (dv]E = V1+({dvfdx) dz=dx. As a result, 0nsideration of deflection. Far examplz,
FiEEM &N iII.'I.'IJI'|'|II|.i'|'II.' LAY RIS I:'lf 1he 1|“‘|[’.

1 i : : which then causes ponding, Jeading to further
hortzontally. Also, since the slope angle # will be very small, its value ' gefection, then further ponding, and finally

radians can be determined directy from # = tan & = dvfdx. pussibbe failure of the ool

points on the elastic curve are assumed o be displaced vertivally, and not
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TABLE 12-1
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Boundary and Continuity Conditions. Whensolving Eys. 12-8,
12-9, or 12-10, the constants of integration are determined by evaluating
the functions for shear, moment, slope, or displacement at a particular
point on the beam where the value of the function is known. These values
are called bommdary conditions. Several possible boundary conditions that
are often used 1o solve beam {or shaft) deflection problems are listed n
Tahle 12-1. For example. if the beam is supported by a roller or pin (1, 2.
3. 4), then it is reqguired that the displacement be zero at these points,
Furthermore. if these supports are located at the ends af the beam (1, 2),
the internal moment in the beam must also be zero. At the fixed support
{5). the slope and displacement are both zero, whereas the free-ended
beam () has both zero moment and #ero shear. Lastly, if two sepmenis
of a beam are connected by an “mternal” pim or hinge (7)., the moment
must be 2ero at this conneciion.

If the elastic curve cannot be expressed using a single coordinate. then
confinuity condirions must be used to evaluate some of the integration
constants. For example, consider the beam in Fig. 12-Y%a. Here two
x coordinates are chosen with origins at A, Each is valid omly within the
regions ) = oy = agand # = x; = (a + b). Once the fonetions for the
slope and deflection are obtained, they must give the same values for
the slope and deflection at point 8 so the elastic curve {s physically
continuous, Expressed mathematically, this requires that 8, (a) = #.(a)
and () = e}, These conditions can be wsed to evaluate two
constants of mtegration. 1T mstead the elastic curve 15 expressed
in terms of the coordimaies | = ry = o and ) = x> = b, shown in
Fig. 12-8h, then the continwity of slope and deflection at B requires
tha) taih) and vi{a) = wi(h). In this particular case. a negative
sign is necessary to match the slopes at B since x; extends positive to
the right, whereas x. extends positive to the left. Consequently, #; is
positive counterclockwise, and #; is positive clockwise. See Figs 12-80
and 12-8¢.
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Fig. 12-9
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The following procedure provides a method for determining the
slope and deflection of a beam (or shaft) using the method of
integratiom.

Elastic Curve.

® Draw an exaggerated view of the beam’s elastic curve. Recall that
zero slope and zero displacement occur at all fixed supports, and
zero displacement ocours at all pin and roller supports.

® Establish the x and # coordinate axes. The x axis must be parallel
to the undeflected beam and can have an origin at any point along
the beam, with a positive direction either to the right or to the
left,

® If several discontinuous loads are present, cstablish x
conrdinates that are valid for each region of the beam between
the discontinuifies. Choose these coondinates so that they will
simplify subsequent algebraic work.

® In all cases, the associated positive v axis should be directed
upward,

Load or Moment Function.

® For each region m which there is an x coordinate, express the loading
woor the mternal moment M as a function of x. In particilar,
afwirys assume that M acts in the posiave direction when applying
the equation of moment equilibrinm to determine M = fix).

Slope and Elastic Curve.

®* Provided EJ is constant, apply either the load equation
Efd"l:',.n‘d.t" = w{x), which requires four integrations to pet
© = v{x}, or the moment equation EJ d*ufds’ = M(x), which
requires only two imtegrations. For each mtegration it s important
to include & constant of integration.

® The constants dare evaluated using the boundary conditions for
the supports (Table 12-1) and the comtinuiry conditions thit
apply to slope and displacement at points where wo functions
meet. Onee the constants are evaluated and substitured back into
the slope and detlection eguations, the slope and displacement at
specific pointy on the elastic ourve can then be determined.

* The numerical values obtained can be checked graphically by
comparing them with the sketch of the elastic curve. Realize that
pogiive values for slope are conmterciockwise if the r axis extends
positive o the eight, and efockwere ol the xaxis extends positive o
the lefi. In either of these cases. posiie displacenent 18 wpward,

aF7
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n EXAMPLE [12.1

The cantilevered beam shown in Fig. 12-10a is subjected to a vertical
load P at its end. Determine the eguation of the elastic curve, EJ is
eonstant

SOLUTION |

Elastic Curve. The load tends 1o deflect the beam as shown m
Fig. 12-1{a. By inspection, the internal moment can be represented
throughout the beam using a single x coordinare.

Moment Function. From the free-body diagram, with M acting in
the paxtiive direction, Fig, 12-100, we have

M=—FP
1 Slope and Elastic Curve. Applving Eqg. 12-10 and integraring twice
‘ Vields
&y
= E1ZY w —py (1)
1 dx”
A f . Y
o] | N i T 2)
A i =
—_.-'E_ Elastic cairve Pt
B | Elv = Tx b+ Gy (3)
L !

Using the boundary conditions dv/dxy =0 at x =L and v = 0 at

i = L,Egs 2 and 3 become

-

PL- :
p 0=
PL?
1) = — O
M 3

Thus, €; = PLY/2 and C; = —PL'/3. Substituting these results into
Egs. 2 and 3 with # = du/dx. we pet

ih) 5
Fig, 12-10 b=sglls—x)
v= %f—.r" + 3% — 217 Ans
Maximum slope and displacement oceur at A{x = (1), for which
PL?
p1?

r.'_q - 35!_ 15}
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The poxitive result for & 4 indicates comnterclockvise rotation and the
negative result for v mdicates that vy is dowmnmerd. This agrees with
the results sketehed m Fag. 12— 100

In order to obtain some idea as to the actual magnitede of the slope
and displacement at the end A, consider the beam in Fig. 12-10a to
have a length of 15 ft, support a load of P = 6 kip, and be made of
A-36 steel having E, = 200107 ksi, Using the methods of Sec. 11.2,if
this beam was designed withoot a factor of safety by assuming the
allowable normal stress 5 egual (o the vield stress o, = 36 ksi
then a W12 ¥ 26 would be found to be adequate (/= 204 in'), From
Egs 4 and 3 we get

R AT 3
HJ=1“kWT'ﬂ]ﬂ;Tfﬁﬁ = 00164 rad
2[29(10°) kip/in”| (204 in”}

6 kip(15 ft (12 in /ft) :
M= % 5 2 il - _1 "!"?ll'l
290 10X} kip/n~]{ 204 in")

Since #5 = (dv/dx) = 0000270 rad” < 1, this justifies the use of
Eq. 1210, rather than applving the more exact Eg. 124, for computing
the deflection of beams. Also. since this numerical application is for a
cantilevered beani, we have obtained lirper valies for 8 and v than
would have been obtaied if the beam were supported using pins.
rollers, or other fixed supports.

SOLUTION I

This problem can also be solved using Ey. 12-8, EF d'vfdx? = wix),
Here wix} = (U for 0 = x = L Fig. 12-104. so that upon integrating
onee we get the form of BEg. 12-Y.1.e.,

'y
El— =}
dx
'y
Al e
dx '
The shear constant &) can be evaluated at x = 0, smee ¥V, = —P
(megative according to the beam sign convention. Fig. 12-8a). Thus
i P. Integrating again vields the form of Eq. 12-10) i.e..
d'v
El*—=—P
il
d v
El—==fx+ =M
dx”

Here M = Bat x = 0, s0 05 = 00, and as a result one nbains Eq, 1 and
the solution proceeds as before.
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n EXAMPLE |12.2

The simply supported beam shown in Fig 12-1la supports the
triangular distributed loading Determine its maximum deflection, E7
i5 constant,

12, e

£ L i
T 1"'"
“;_FT"
o <l
= — =i |
-, e, - —
r_.l _Clt-k.a_!-llrt;un': | : ¥
’_ L | L | -
| 2 | 2 | wy ks v
d
(i) ]
Fig. 12-11
SOLUTIOM |

Elastic Curve. Due to symmetry, only one x coordinate is needed
for the solution, in this case 00 = x = L/2 The beam deflécis as
shiown in Fig. 12-11a The maximum deflection occurs at the center
stnce Lhe slope s #ero al this point,

Moment Function. A free-body diagram of the segment on the lefi
15 shown in Fig. 12-115 The equation [or the distnbuted loadimg is

2 1
W= E' T (1)
Hence,
; “'ll-f: i) Mgl
|+EMy, =0 M+ — —)— =10
il L L] R
Y Wyt 4 wl

AE 4
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Slope and Elastic Curve. Using Eq. 12-10 and integrating rwice,

we have
Ef:i“_,’ =M=-—5% %r (2)
Ef% %;‘ | % + €y
Efv = ﬁ:}'_ =+ ';:{ e+ Cx + G

The constants of integration are obtained by applyving the boundary
condition # = 0at x = 0and the symmetry condition that dv/dx = ()
al x = L/2.This leads to

} Sl i
- — ;=10
2 192 G
Hence.
do R Syl
El— = ——x" 4 —x
dx v S T ST
Wy oy wol. . ﬁ'“'l:-i-'i
1T — 4 =
4 S e 192

Determining the maximum deflection at x = L2 we have

“-'|;|L-I
FI‘IIH'E T |:|_{'Fjr

Anx

SOLUTIOMN Il
Smoee the distributed loadmg acts downward. it is negative according
b our sign convention, Using Eq. | and applyving Eq. 12-8, we have

v 2wy
Ei— ]

drt L :

'y Wy - :
e —I—_'.r + C}

Smee V= +wuplfd at x =0, then O = wyl /4. Integrating again

wields
v Wy o5 Wpl
El—=¥=—ru" 4+ —
dx’ L 4
L‘lr s = LT g |1-'|;|L -
El P M 3L el 5

Here M = (at x = 0, s0.05 = (L This vields Eq. 2. The solution now
prisceeds as hefore.
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EXAMPLE | 12.3

The simply supported beam shown in Fig. 12-12a is subjected to the
concenirated force P, Determine the maximum deflection of the
beam. ET is constant

ke SOLUTION

Elastic Curve. The beam deflects as shown in Fig. 12-125. Two
coordinates must be used, since the moment function will change at P,
Here we will take x; and x+, having the same arigin at A,

Mement Function. From the free-body diagrams shown in
Fig. 12-12¢,

o ,

A o
M- 3% Plx: — 2a) = Tl'.ﬁﬂ - X3}

Slope and Elastic Curve. Applving Eq. 12-10 for My, for
= x; < D, and integrating twice vields

T‘tr;— 24
i 3 (] d'v, P
M- S s
il A 'Jl th’|' 3 1
4 — ‘)
i s
= i El—=—x2+ 1
I v i x g & th
i P
= Wl Fy " " -
3 Eh‘.-| ] +L|I| +L:‘ (<)
ih
(ch Likewise for M, for2a < x> = 3a,
Fig. 12-12 -
i 2P
El'r_f.t:.‘ _T[J'If .t;-:l
dys 2P 5t
E.I’E—T(JHI-_- —T) + Cy (3}

2P s
Ejr'rl: = T(EHI:' Ta ?) + C'I;I: + C] {4}
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The four corstants are evaluated usmg nva boundary conditions,
mamely, &y =0, 1, =0 and x: = 3a, ©: = (L Also, wve conbnilicy
conditions must be applied at B. that 15 do/dn = disfda. at
Xy o= xa = Lo and @y = wat X = xy = 2a Substitution as specified
results in the following four equations:

p; =0atx; =1 O=0+0+0C

2P (3 . (3a)
By () at vy = (om—f —g{3afy — —— | + E5f3a) + Ty
& il

dw(2a) dwa(20) P % (2a F)
iz, = s E[Zﬂ] 4+ O = T(lm{m] i | L o
i e W i L
vy 2a) = vaf2a): —(2a) + Ci(2a8) + Co=—| =alZa) — —J + C3(2a) + €
18 3 \2 A
Solving, we pet
"l' q
C| = —EF'rr Ca =1l
] o i
Cy= _THF [_,=T‘Pﬂ'
Thus Eqs. 14 become
Lo i APy .
de, &EI""  9Er =
e I . T i”: - fi)
WS IREFT T OEL” *
dvs 2P B 3 20P
d  EIC 3EL Y T OER (%)
!1_=ﬂ13 e r;_?l."—'ﬁ:x_ 1_-H=’.-;r1 g)
R T AT R :

By inspection of the clastic curve, Fig. 12-125, the maximum
deflection vccurs at D, somewhere within region AB. Here the slope
must be rero From Eq. 5,

Loa. Hig—
EI = EI.I = {}
ry = 1.633a
Substituting imto Eg. 6,
P i
Phinx = _"'4341.-_{; Amx

The negative sign mdicates that the deflection 15 downwiard,
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n EXAMPLE |12.4

The beam i Fig. 12-13a is subjected to a load P at its end. Determine
the displacement at €. EJ is constant.

F

- |—~:7l

Ai—'—'_-_'——\_‘_""--.__

T ~ i T,,_\['LE

“‘ﬂll)u. e

i

{bi

Fig. 12-13

SOLUTION

Elastic Curve. The beam deflects into the shape shown in
Fig. 12—13a. Due to the loading. two x coordinates will be considered,
pamely, () = 1y < 2o and ) = x; = a, where 1 is directed Lo the left
from ) since the internal moment is easy to formulate.

Moment Functions. Using the free-body diagrams shown in
Fig. 12-135, we have

0

.'H| = I Iw:‘ e _P.I:'

o ]

Slope and Elastic Curve. Applying Eg. 12-14,

o '
For ) = x; = 2 E.Tr i ==
I'I'_ -
i1y B
i i S I
e B ”
F
Elv, —x,t 4 Oty + Ca (23
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dv,
Forll = x2 = a: El LI: = —F%;
- I!.'I.':_ Y
rh'g et
EI.r.f_Jr: ==y 1T i3
! e
Ejnw, ?-T:" b Caxs + Ly (4)

The forr constanits of miegration are determined using #hree
boundary conditions, namely, t; = 0atx = 0, = Oat x; = 2a and
py = [0 at 2y = o, and one continuity equation. Here the continuity
of slope at the roller requires duv,/dx; ditafelxs at xy = 24 and
¥ = @ Whv is there a neaative sign in this equatiom? (Note that
continuity of displacement at B has been indirectly considered in the
boundary conditions, smee o = =0 at 1y = 2o and 1 = )
Applving these four conditions vields

gy = Datx =10 D=0+0+
e At :
r, = Dat x; = 2m; 1= —]—1[2:1}' + Cy(2a) + Cs
F
B = (atxy = & ( ?n’ S e I
[ 2a) dinfa) P i B n ]
= - i —-.2'+.1=___|I'+EJ
dx, i i i ( e

Sualving, we obtain

™

P T
G =Tﬂ Cy=0 E1=EFH. Cy= ~P

Substituting C; and C, into Eq. 4 gives

= o J_'_'I'F':i: _Pe
BT TR Ty ATy

The displacement at O is determined by setting x: = (1. We get

P’
== Rl

My
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. FUNDAMENTAL PROBLEMS

Fi2-1. Determing the sfope and deflection of end
A of the camtilevercd beam. E = 20 GPa and
I = 850(10") mm",

M kM-m
G ﬂ
! im |

Fiz-1

FIZ-L Determine the slopeand deflection of end A of the
cantilevered beam, E = 200 GPa and / = 65.0{107) mm*

LkN

Ik kM-m |

Fi2-2

FI2-3. Determine the slope of end A ol the cantilevered
beam, E = 2000 GPa and I = A5.0010") mm*,

HikM
kN fm

Im |

Fl12-3

Fi2-4. Dewermine the masmum deflection of the simply
spported beam. The heam s made of wood having a
mosdulus of elasticity of £g = 1 510"} kst and a rectangular
cross section of b= Y. and ki = A in

Lol Ib it

FiI-5. Determine the maximum deflection of the simply
supporicd beam. E = 200 GPaand 7 = 39.9(10°") m”.

Fl12-5§

Fl2—h. Determine the slope of the simply supported beam
gl £ = 200 GPaand I = 39910 m*,

kM

1 kN -m

I Im- T Im 'I




. PROBLEMS

#12-1  An A-36steel strap having a thickness of Himm and
g witth of 20mm is bent into a circulararc of redivs g = W,
Dretermine the masimum bending stress in the strap

12-2, A pictore s taken of & man performing a pole vault,
gnd the minimum radios of curvature of the pole i
estimated by measurement to be 4.5 m. Il the pole s 40 mm
i dimeter and it mede of a glass-reinforeed plastie for
which E, = 13] GPa, determine the maximum bending
stress in the pole.

Proh. 12-2

12-3, When the diver stands st end C ol the diving board,
it deflects downward 2.5 o Determine the weight of the
diver, The board is made of matcrial having & modolos of
elasticity of £ = F5{10F} b=l

Mroh. 12-3

12.2 5005t anb DaraceMenT BY INTEGRATION

o87

¥12-4;, Determine the equations of the elastic curve using
the x; and x+ coordinates. EF is constant.

|

Proh. 12—4

#12-5. Dewermine the equations of the elastic curve for
thi: beam using the X and & coorlnaes BT 15 constant

|JI"-

Proh. 12-58

126 Determine the equations of the elastic curve for the
beam using the ¥y and x; coordinates. Specify the beam’s
maximum deflection. EF is constant

-

IJI_"‘-
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12-7, The beam is made of two fods and 5 subjected to
the eoncentrated foad P Determine the maximam
deflection of the beam if the moments of inertia of the rods
wre F g aned Fye, il the modulus of elastiaiy i E.

Proh. 12-7

#*12-B. Determine the equetions of the elastic curve for
the beam using the vy and g coordinates. £ s constant,

v |-

Mrok. 12-8

o12-8,  Determine the eguatons of the elastic curve using
the vy and v eoordinates. K7 is constan

i

I

Proh, 12-9

12-10.  Determine the maximum slope and  fsaximim
deflection of the simply sapported beam which is subjected
o the couple moment M. EF 15 constani.

Prob. 12-10

12-11. Determine the equetions of the elgstic corve for the
beam using the &y and 1 coordingtes. Specify the beam’s
i wm defection. ETis constan

h-.

Frob. 12-11

#12=12. Determine the equations of the elasiic gurve for
the beam using the x; and x; coordingtcs. Spooify the slope
it A and the masimum displasement of the shal, ET 5
constant,

¥ — ‘

Frob. 12-12




12-13, The bar s supperted by a roller constraint at 8,
which allows vertical displacement but reststs axial load and
momenl. [f the bar s suljected 1o the |oading shown,
determine the slope at A and the deflection a1 & EX is
Constan

|.-|-|.

Prob. 12-13

12-14, The simply supported shaf has 4 moment of inertia
ol 21 for region BC and a moment of inerlia [ for regions
AB and C0) Determine the maximum deflection of the
Iream due tir the logd P

Prol. 12-14

1215, Determing the equations of the elastic curve for
the shaft wsing the x; snd x; coordinates. Speafy the slope
il A and the deflection ot the center of the shaf, EF s
Consiant.

Proh. 12-15

12.2  Si02E anb DSspacerMenT BY INTEGRATION 589

#12-16, The fenee board weaves between the three smooth
fixed parsts, 16 1he posts rentain along the same line, determine
the maximuom bending stress m the board, The board has &
width of  in. and a thickness of 05 . E = 1&0{10F) ks
Assume the displacement of each end of the board relative
Lo its center i5 3 in

Prob. 12-16

o]2-17. Determing the equations of the elaste curve for
the shaft using the xy and x; coordinates Specily the slope
al A and the deflecton at C FF 15 constant,

Proh, 12-17

12-18. Determine the equetion of the elestic curve for thi
beam wsing the x coordimate, Specily the shope a1 A and thy
maximum deflection. £ s consiant.

12-1%. Delerming the deflection al the center ol the boam
und the slope art B, BT is constant

.-l!—.1—-| |H -

L |

Probs. 12-18149




590 CHaptEr 12 DefFLecTioN OF BRams AND SHAFTS

a12=-20. Determine the equations of the clastic carve 12-23. The bewm s dubjected 10 the hncarly varving
using the & and ¥ coordinates, and specify the slope at A distributed load. Determine the maximum slope of the
and the deflection at O Ef s constant. beam, El is constant,

#*12-24. The beam is subjecied 1o the hneardy varying
disiribuied load. Determine the masimuam defleciion of the
beam. El is constant.

—d
f— | ‘ l—.u;—:“ kipe i

i i {1
¥
Prob. 12-20
s12-21. Dewermine the elastic curve i lerms of the ¢ !!|H
anil 1 l.:l.l'IlelnilliL"-. anld the deflection of end © of the "
overhang beam. EJ is constant. |
| ;

Probs 12-23/24

§3—

g o]2-25, Delormine the cguation of the clastic curve
| -'_ for the simply supported beam psing the @ coordinare

= Determine the slope at A and 1he maximum defllection. £
i5 conslant,

Prob. 12-2

12-22, Determine the elastic cusve for the cantifevered
W4 = M beam using the r coordinate Specily the
maximim slepe and maximum deflection, £ = 264 NE:I k=i,

12 kM /m

3 kip M

Fy

LRl

| 6 m |

Prob. 12-22 Prob. 12-25
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12-26, Detormine the equations of the clastic curve using #12-28. Delermine the slope et end B and the maximum
the coordinates ¥ and A, and specily the slope and deflection deflection of the cantilevered triangular plate of constan
gt A, Elis constant. thickness ¢, The plate is mede of material having 8 modulus

of elusticity £,

Frob. 12-18

»12-2%. The beam is made of a material having 4 specific
weight . Determine the displacement wmd sbope at its end
A due to s weight. The modolus of clasticity for the
materal s

Prob. 12-26

12-27. Wooden posis uscd for o reizining wall have a

digmeter of 3 in, If the soul pressure slong a post vanes

uniformiy from sero at the top A to & maximem of 30/ i
it the bottom &, determing the slope and displacement at

the top of the post. £ = L6{10°%) ksi.

P*rob, 12-29
12-30, Thc beam is made of a material having & specific
weight of v. Dotermine the displacement and slope at iis
eod A due to ils weight. The modulus of elasticity for the
malerial is E

Proh. 12-27 Mrob. 12-3ib
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12-31. The tapered beam has o rectangular cross section,

bR Determing the deflection of s free end in terms of the load
P length L, modulus of elasticity E, and the moment of
inertia 0y of s ixed end

Proh. 12-31

*12-32. The beem is made from a plate that has & constant
thickness 1 and & width that vanes inearly. The plate 15 cut
into sirips to form 4 series of leaves thal are stacked o
muke a |eafl spring consisting of & [eaves Determing the
deflection ut i1s end when loaded. Neglect [nction between
thi leaves

f

Mrob. 12-32

o1 2-33,  The tapered beam has a rectangular eross section,
Dretermine the defleetion af its center in terms of the load
P length L, modulus of clasticty E, and the moment of
inertia I, of i1s center

Mrob. 12-31

12-34, The leaf spring assembly 15 desipned so that i s
suhyjected to the same maximom stress throughout s length,
If the plates of each leal have & thickness @ and cen slide
freely between cach other, show that the spring must be in
the form of 4 circalar are in ordar that the entire spring
becomes Mat when a farge cnough load P is applied. What
is the maximum normal siress in the spring? Consider
the spring to be made by cutting the n srips from the
diamond-sheped plate of thickness ¢ ind width b The modulus
ool elasticity for the matenal s E. Hing Show thal the radios
of curvature of the sping i conslint

-|-,.|:-

Froh, 1234
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2.3 [_}iscnntat-lity Functions

The method of integration, used to find the equation of the elastic curve
for a beam or shafl, is convenient if the load or intermal moment can be
eapressed as a contmuons function throughouwt the beam's entire length.
If several different loadings act on the beam, however, the methad becomes
more tedious to apply. because separate loading or moment functions must
be written for each region of the beam. Furthermore, integration of these
functions requires the evaluation of integration constants using both
boundary and continuity condinions. For example, the beam shown m
Fig. 12-14 reguires four moment [unctions to be written. They describe
the moment in regions AR BC. CD, and DE Whea applying the
moment-curvature relationship, EI d-v/dx” = M, and integrating each
maoment equation twice. we must evaluate eight constants of integration
These involve two boundary conditions that require zero displacement
at points A and E, and six continuity conditions for both slope and
dhisplacement at pomnts B, C,and 0,

In this section, we will discoss 2 method for finding the equation of the
elastic curve for a mndtiply loaded bearm using a single expression. either
formulated from the loading on the beam.w = wi{x}. or from the beam’s
internal moment, M = M{x). If the expression for w s substituted into
El d'vw/dx' = wix) and integrated four times, or if the expression for
M s substituted into EI d*vfdx® = M{x) and integrated twice, the
constants of integration will be determined only from the boundary
conditions. Smoee the continuity equations will not be involved, the analyvsis
will be greatly simplified.

Discontinuity Functions. Inorder to express the load on the beam
or the internal moment within it using a single expression, we will use two
tvpes of mathematical operators known as discontinity fuhctions

A E

4

For safety purposes these cantilevered heams
ihat support sheels of plywood must be
dezigned for bith strength and a resincted
amasunt oof defleetion.
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TABLE 12-2

CHaptEr 12 DefFLecTioN OF BRams AND SHAFTS

Loading Lesading Function Shear V =}I W X el Momen W= _|' Vilx
w=nwix)

i1 W,

!:}: W= Myly—a} V= Malx—ai M = Ml s—a)"
[ N

jEgy

i) r
41_ iv = Plr—ua) ! V= Ply—al! M= Pir—a)!
P e T
—

i} ] wa
w = i e—al® V= lylr—a) M= ; -:'r—.u"-:
PR 4

(4}  slope =
— iv = milr—a}! P—L; {x—ax) M= r_: (k=)'
——

Macaulay Functions. For purposes of beam or shaft deflection.
Macaulay functions, named after the mathematician W. H. Macaulay, can
be used to describe disiributed loadings. These functions can be written

in general form as
(
{x— ay" = {

(x—a)" forx=a (12-11)
n=10

forx =

Here x represents the coordinate position of a point along the beam, and
a 15 the location on the beam where a *discontinmty™ oocurs, namely the
point where a distributed loading begirs, Note that the Macaulay function
fx —a)" is wntten with angle brackets to distinguish it from the
ordinary function {x — a}®. written with parentheses As stated by the
equation, only when x = ais (x — 4} = {(x — a)", otherwise it is zero.
Furthermore, these functions are valid only for exponential values
n = (. Integration of Macaulay functions follows the same rules as for
ordinary functions, i.e,,

I"T— i:l‘“ fr:i.‘.[' []'I_'I'l]
i o ¢ £ e ad—la

Wale how the Macaulay functions describe both the warform lood
wy (=0} and trigngular load (n = 1), shown in Table 12-2 items 3
and 4. This type of description can. of course, be extended to distributed
Ioadings having other forms Also. it is possible to use superposition with
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the vniform and trangular Inadings to ereate the Macanlay function for a £
trapeoidal loading. Using mtegration, the Macaulay functions for shear,
V = [wi{x)dx, and moment, M = [V dx, are also shown in the table, F

Singularity Functions. These functions are only used 1o describe the
point location of concentrated forces or couple moments acting on a
beam or shaft. Specificallv. a concentrated force P can be considered as a !
special case of a distributed loading, where the intensity of the loading is
w = F/esuch thatits length is e, where e —{), Fig. 12-15. The area under
this loading diagram is equivalent to F, positive fpwaend, and 50 we will P
use the singularity function T

Pix — u)!

i
P

forx #a

forx

o

to deseribe the force P Here v =

(12-1%)

—1 so that the units for w are force per

i

Fig. 12-15

lengthe as it should be. Furthermore. the functon takes on the value of P
only at the point x = o where the load oceurs, otherwise it is #ero.

In a similar manner. a couple moment M. considered peositive
clockwise, i5 a limit as ¢ —={ of two distnbuted Inadings as shown in
Fig. 12-16. Here the following function describes its value

. 0

for x # a
j .\-‘f II o
i lx —a M,

(12-14}
for x = g

The exponent n = —2,in order to ensure that the units of w, force per
lenath, are maintaimed,

Integration of the above two singulanty functions follow the rules of
operational calculus and vields results that are differert [tom those of
Macaulay functions. Specifically.

(]

[{.r a)"dx = {x - a)" . n 1, (12-15)

Using this formula, notice how M, and P described in Table 12-2, items |
ard 2, are miegrated once, then twice, to abtain the nterdal shear and
mament in the beam.

Application of Egs. 12-11 through 12-15 provides a rather direct
mieans for expressing the [oading or the imternal moment in a beam as a
functiom of ©. When doing so, close altention must be paid to the signs of
the external loadings. As stated above, and as shown in Table 12-2,
conceniritted forces and diseribited Togds are positive npward, and couple
moments are positive clockwise. [f this sign convention is followed, then
the internal shear and moment are in accordance with the beam sign
convention established in See. A.1

1w

L]

M,

Fig. 12-16
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273 kM(x

275kNix — ) + LSEN-mix — Im)" —

As an example of how to apply discontinuity functions to describe
the [oading or internal moment consider the beam loaded as shown in
Fig. 12-17a. Here the reactive 2.75-kN force crealed by the roller,
Fig. 12-17h, 15 positive smce it acts upward, and the L5-kN-m couple
moment is also positive since it acts clockwise. Finally, the trapezoidal
loading is negative and has been separated into triangular and uniform
loadings. From Table 12-2, the loading at any point x on the beam is
therefore

1+ L5kNsmix — 3m) Tt — 3kN/mix — 3m)" — 1 kN/m*{x — 3m}’

The resctive force at Bisnot included here since xis never greater than
o m, and furthermore. this value is of no comseguence in calculating the
slope or deflection. We can determine the moment eXpression divecty
from Table 12-2. rather than integrating this expression twice. In either
Case,

1 kN/m"

r— 3m) —

I kN/m .

=

(x— 3m)?

: SR
275x + 1.5(x — 3" — 1.5{x — 3)° - = 3y

The deflection of the beam can now be determined after this equation
is integrated two successive limes and the constants of inlegration are
evalualed usmg the boundary conditions of zero displacement at A
and B

B kM /m
3 kMN/m
|5 kM -m
A — #
J:_ LY _ﬂ._
! 3 m ! im !
({11
17} AN, | KN m

= im 2 j 3 kM
L5 kM m%lwsm

¥ 1
kM (b ",

Fig. 12-17
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The fullowing procedure provides a method for using discontinuity
[unctions o determine a beam’s elastiic curve. This method s
particularly advantageosus for solving problems invalvimg beams or
shiafis subjected (o severm fodings. since the constants of imtegration
can be evaluated by using ondy the boundary conditions, while the
compatibility conditions are automatically satisfied.

Elastic Curve.

® Sketeh the beam’s elastic curve and |dentify the boundary
conditions at the suppuorts.

® Ferodisplacemen! ocours at all pin and roller supports, and ero
slope and zero displacement occur at fixed supports.

# Esrablish the x axis so that it extends to the nght and has its
origin at the beam’s left end.

Load or Moment Function.

& Calculate the support reactions at x = (0 and then use the
discontinuity functions in Table 12-2 to expriess gither the loading
i ar the mtermal moment M as a function of x. Make sure to
follow the sign convention for each loading as it applies for this
guarion

® Note that the distributed loadings must extend all the way
to the beam™s right end to be valid. If this does not ocour,
use the method of superposition. which is illustrated in
Example 12.6.

Slope and Elastic Curve.

& Substitute w into Efd'lufd.l'j wix), or M into the moment
curvature relation EJ d*v/dx” = M, and integrate to abtain the
equations for the beam's slope and deflection.

®* Evaluate the constants of integration using the boundary
conditions, and substitute these constants mio the slope and
deflection equations o obtaim the fmal results,

®* When the slope and deflection equations are evaluated at any

pomt on the beam, a positive slope s courmerclockwize, and a
positive displacennens 15 apward,
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n EXAMPLE |12.5

Determine the maximum deflection of the beam shown in Fig. 12-18a.
El is constant

L300 ksp-fa

II- ./‘,"-r"/-") llrl

2

J
—l

l 120 kip-fi
L 4 h

) i

{lx)

Fig. 12-18

SOLUTION

Elastic Curve. The becam deflcels as shown in Fig. 12-18« The
boundary condinions require zero displacement at A and B

Loading Function. The reactions have been calculated and are
shivwn on the [fee-body diagram in Fig 12-185 The loading function
for the beam can be wrillen as

w= =Bkip(x = 0) ' + 6 kip {x = 10 1)

The couple moment and force at B are not included here, since they
are located at the right end of the beam, and x cannot be greater than
30 1. Integrating oV /dx = wix), we et

v Bix = 0 + &lx - 10"
Im a similar manner, d M/dx = V vields
M= —8{x—0) + 6ix - 1)
= [—Bx + &{x — 10)") kip+f1
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Waotice how  his equation can also be established direcidy using the

results of Tahle 12-2 for moment,
Slope and Elastic Curve. Integrating twice vields
dv
El— Bx + 6(x — 10}
dx

EIE 4 + 3(x — 10} + C
4
Elv = —1:‘ ol — 100 + Cpx + &y
From Eq. L. the boundary condition » = 0at x = [0ft and v
x = 30 it gives
0= —1333 + {10 — 10} + C,(1 + €5
(= <3600 + (30 = 10)* + C;(30) + C

Solving these equations simultaneously for C) and C,. we get O
and C; = —12 (i), Thus,

Efﬂ = —4x° + 3x — 1) + 1333
dlx

4
Elv T.‘:' F (x = 10V 4+ 1333x - 12000

(1}

i at

333

(2)

(3}

From Fig. 12-182, maximum displacement may occur either at C, or at
D, where the slope do/dy = (1. To obtaim the displacement of C, set

x = 0in Eq. 3. We get
12 000 kip - fr’
El

e =

Ang

The negative sign mdicates that the displacement 15 downwarnd as shown
in Fig. 12--18a. To locate point [, use Eq. 2 with x > 10} ft and do/dx = (),

This gives
(| = —dxp” + 3ep — 10) + 1333
xg + 6z — 1633 =10
Salving for the positive rool,
xp=203ft
Hence, frinn Eq. 3.

Elvp = —:fln..ﬁ}-‘ + (2023 — 100 + 1333(20.3) — 12000

5006 kip«fi’
By ——
El

Comparing this value with 1, we see that 0, = -,
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EXAMPLE | 12.6

4 & kM /m 12kN  Determing the equation of the elastic curve for the cantilevered beam
TTT T T b5kt l shown in Fig. 12-19a. ET is constant.
- ——'C  soLUTION

5 Y | Elastic Curve. The loads cause the beam to deflect as shown in

' ' Fig. 12-1%a. The boundary conditions require rero slope and
{i displacement at 4.

Loading Function. The support reactions at A have been

25K kb K kN fm IZkN caleulated and are shown on the free-body disgram in Fig. 12-1958,

E S S R R I 15363 i l-i‘ Since the distributed loading in Fig. 12-1% does not extend to © as
LJ 1~ reduired. we can use the superposition of loadings shown in Fig. 12-19%

ﬁ"- kN 'i:ﬁkhlm Sk to represent the same effect. By our sign convention, the beam’s

£TLE ! loading is therefore

hi w=S52kN{x—0) 1 =258 kN-m{x—0) 2 =8 kN/m{x — 01}"

Fig. 12-14 + 50 kN-m{x — 5m) " + 8 kN/m(x — Sm)"
The 12-kN laad is mof tncfuded here. since x cannol be greater than Y m.
Bevause dV /dx = wix), then by integrating, neglecting the constant of
inegration since the reactions are included in the foad funcion, we have

=83 x— 0y — 258{x — 0} ' — Blx — 0) + S0{x — 5)7! + Blx — 5

Furthermuore, d M /ilr = V', 50 that integrating agam yields

=
|

—-258(x — )" + 52{x — 0)) — %[3}..;,1 — 0y + 50{x — 5}" + l—{ﬂ]{,;— — 5

(—258 + 52x — 4x" + 50{x - 5)" + 4{x - 33"} EN-m
This same result can be obtained direciy from Table 12-2

Slope and Elastic Curve. Applving Eq. 12-10 and mtegrating
Iwice, we have
‘FT' il n 1
T3 = 298+ 52 — 4+ 500 — 5" + d(x - 5
da-

idn 4 4
R . N o e T T | T | puf? =, 3 el
E.Fd_t 258x + Zox 3* e R | 3 == £

26 1 psioal :
Elv = —12027+ T" - ?1:4 +23{x — 51+ e S+ Cix+ G

Sncedofdx =0at x=0,C; =0 and v =0 at x =0, 50 C; =40
Thus.
26

I Sic =4 | }
= —— _ S — S = i-'. e :
h J’( 129x 35 1::' + 25(x — 517 4 11":: 54 im Ams




Sropiews

12-35, The shaft is made of steel and has a diameter ol
15 mm. Determine its maxmmum deflection. The bearings ai
A and B esert only sertical reactions on the shaft
Eo = Nl GPa.

2EN Wi

Prol. 12-35

"12-36, The beam is subjected 1o the loads shown,
Dietermine the cguation of the elastic curve. Ef is constant.

4 ki
2 ki b

]
LR

Proh. 12-36

o12-37, Determine the deflection at each of the pullevs
C, I3 and E. The shalt is made of sieel and has a diameter
of 3 mm, The bearings @t A and B exerl only vertical
rieactions on the shalt, E,; = 200 GPa

ES0 M BN

150

Prob. 12-37

12.3  DiscosTINUTY FUNCTIONS &01

12-38. The shall supports the two pulley foads shown
Determine the cquation of the elastic curve. The bearngs
al A amd B oexent only vertical reactions on the sheft. ET 15
constant.

A

4

3 S5t e R
i V 20 b —— 2l in.

ETH il Th
P'rob. 12-38

12-39, Derermine the maximum delfection of the simply
supported beam. E = 200 GPa and ! = 65.0{10") mm'.

3 kN
15 kM
Y l
A i
I-—!rr! 2m ! 2m
Proh. 12-39

“12=40. Detormuine the egqution of the elastic curve, the
shope at A, and the deflection at & of the simply supported
heam, ETis constant

el2d1. Determine the cyuation of the clastic curve and
the maximum detlection of the simply supporied beam. Ef
s constant.

Probs. 124041
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12-42, Determine the equation of the elastic curve, the
slope at A, and the maximum deffection of the simply

supported boam. £ 1= constenl

L L L
' 3 3 3 '

Prob, 1242

13243, Determine  the maximum  defllection of the
cantilevered beem, The beam is made of matenal having an
E = 200 GPuand T = &5.0{10°) mm"

kN
) kN /m Lok

Prah, 12-43

12—, The beam is subjectaed to the Joad shown, Determing
the eguation of the elastic curve. El is conswant,

a]2—45, The beam @5 subjected (o the load shown,
Dretermine the displacement a1 & = T m and thie slope st A,
ET i5 constant.

Sl kM

4 m im im I

Prols, 1244145

12-46. Determne the maximum deflection of the simply
supported beam, E = 200 GPaand 7 = 650010 mm*,

kN [5SkN/m

—1.5 |1|~Ll.i i ! im

Prolh. 12-46

12-47. The wooden heam @& subjected to the load
shiown, Determine the cguation of the elastic corve. If
Fu = 12 GPa; determine the deffection and the slope at
cnd B.

froh. 1247

1248, The beam is suljected wihe ead shown, Determine
the slopes at A end & and the dispiacement &t O, Ef is
T

12 & Mdim




12.3  DiscosTINUTY FUNCTIONS &03

o [2-49,  Determine the equation of the elaste curve of the ¥|2-82,  The wooden beam 15 subjected o the load shown,
simply  supported  Deam oand then fimd the maximum Determing the equation of the elastic curve, Specify the
deflection, The heam s made of woed having a modulus of defection at the end € E, = LA{107%) ksi.

clasticiry E = 15(10%) ksi.

flxl 1

1. kip 1.5 Kip

SOH 16 T

BEHE RN

fe I BRI 1[I—'| LA LAl

L 12-49
P Prob, 12-52

12-50, The besm is  subjected to the load showno
Determme the equations of the slope and elasic curve. B 12-53. Determine the displacement st Cand the slope at
i% Conislant A ol the beam

2 kM fm K kM-m 4 kip /i

Proh, 12-5i)

12-51. The beam is subjected to the lad shown. Determing 12-584, The beam iz subjected 1w the load shown, Determiie
the cquation of the elastic curve. £1 is constant. the equetion of the elastic eurve. ET is constant.

t kM im MikM  kip /T
| | | | | _.,—-T'Tﬂr1 L L L 1

| | | |
L5m im f—15m w I 1511

Froh. 12-51 Mroh. 12-54
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Fig, 12-20)

*12.4 Slope and Displa;:ement by
the Moment-Area Method

The moment-ared method provides o sermgraphical techmgue for finding
the slope and displacement at specific points on the elastic curve of a beam
or shaft. Application of the method reguires calculating areas associated
with the beam’s moment diagram; and =o if this diagram consists of smple
shapes. the method is very convenient to use. Mommally this is the case
when the beam is Ioaded with concentrated forces and couple moments,

Tir develop the moment-area method we will make the same assumpiions
we used for the method of integration: The beam is initially straight, it is
elastically deformed by the loads. such that the slope and deflection of
the elastic curve are very small, and the deformations are only caused by
bending. The moment-area method 15 based on two theorems, one used
to determine the slope and the other to determine the displacement at a
point on the elasic curve.

Theorem 1. Consider the simply supported beam with its associated
elastic curve, shown in Fig, 12-20a. A differential seement dx of the beam
is isolated in Fip 12-206. Here the beam's mternal moment M deforms
the element such that the fergenss to the elastic curve at each side of the
element mtersect at an angle Jf. This angle can be determined from

Ey. 12-1{, written as
Bt pra () -

el dx \ dx
Since the slope is small, @ = dv/dx. and theretore
M
i = —d ~1f
i ke {12-16)

If the moment diagram for the beam is constructed and divided by
the flexural rigidity, EX. Fig. 12-20lc, then this equation indicates that d¢
is equal to the arex under the * M/E! diagram™ for the beam segment dx,
Integrating from a selected pont A on the elastic curve toanather pomnt
B, we have

n
M
f iy (12-17)

‘This equation forms the basis for the first moment-area theorem.

Theorem 1:  The angle between the tangents at any two potaty on
the clastic curve equals the area under the M{ET diagram between these
B peies

The notation #g, 4 15 referred 10 as the angle of the tangent al B measured
will respect o the tangent at A From the proof it should be evident that
this angle is measured conmterclockwive. from angent A o tangent B, if
the area under the M/E! diagram is posinve. Conversely, if the area is
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negative, or lies below the v axis, the angle #y.4 15 measured elockwise
from tangent A to tangent H. Furthermore, from the dimensioms of
Eqg. 12-17, iy, will be in radiers.

Theorem 2. The second moment-area theorem is based on the
relative deviation of tangents to the elastic curve. Shown in Fig. 12-21a is
a greatly exaggerated view of the vertical deviation dr of the tangents on
each side of the differential element dx, This deviation is caused by the
curvature of the element and has been measured along a vertical line
passing through pont A on the elastic curve, Since the slope of the elasthic
curve and its deflection are assumed to be very small, it is sansfactory 1w
approximate the length of each tangent line by x and the arc ds’ by di.
Using the circular-arc formula s = fr, where ris the length x and s is dt,
we can write df = x 8. Substituting Eq. 12-16 into this equation and
integrating from A to B, the vertical deviation of the tangent at A with
respect fo the tangent &t B can then be determined; that is,

L
M
T ji .'I:E-tf.'l.' (12-18)

Since the centroid of an area is found from xfdA= [xdA, and
J{M/ET} dx represents the area under the M/E] diagram, we can also
write

s M Ill-f
o g 7 (12-1%9)

Here x5 the distance from A to the ceniraid of the area timder the MAET
diagram berween A and B, Fig. 12-216.

The second moment-area theorem can pow be stated mn reference 1o
Fig. 12-21a as follows:

Theorem 2:  The vertical distance between the tangent ata point (A) on
the elaxtic coeve and the tangent extended from another point (B) eqgrals
the moment of the area under the MJE diagram between these two points
(A and By This moment iy coleuduored abour the poine (A) where the
verrioad distmrice (Fq,5) 15 fo he determingd,

Note that 1,44 is nor equal to 1y, which is shown in Fig. 12-21c.
Specifically, the moment of the area under the M/ ES diagram between
A and B is calculated about point A to determine 1 4 . Fig, 12-21h. and it
is calculated about point B to determine 1y, 4., Fig. 12-21c.

If the moment of a positive M/ El area between A and B is found for
t o, it indicates that point A is above the tangent extended from point B,
Fig. 12-21a. Siolarly, regative M/ ET areas midicate that poml A 15 Sefow
the tangent extended from point B.This same rule applies for g,

il

i
| A L 1]
T
ihj
1 I A
L . =
y 1

i £ -t 1. <1
i

El
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Procedure for Analysis

The following procedure provides a method that may be vsed to
apply the two moment-ares theorems.

MJE| Diagram.

® Determine the support reactions and draw the beam’s M/E!
diagram, If the beam is loaded with concentrated forces. the M/E]
diagram will consist of a series of straight line segments. and the
areas and their moments required for the moment-area theorems
will be relatively easy to caleulate. IT the loading consisis of a
series of distributed loads, the M/E!D diagram will consist of
parabolic or perhaps higher-order curves, and it is suggested that
the table on the inside front cover be used to locate the area and
centroid under each curve,

Elastic Curve.

® Draw an exaggeraled view of the beam’s elastic curve. Recall that
painis of zero slope and zero displacement always oocur at a fived
support, and zero displacement oceurs at all pin and roller supports

® If it becomes ditficult to draw the general shape of the elastic
curve, use the moment (or M/ET) diagram. Realize that when the
beam is subjected o a positive moment, the beam bends concave
tip, whereas megotive moment bends the beam concave doivn.
Furthermore, an inflection point or change in curvamre occurs
whete the moment in the beam (or M/ET) is 7ero

* The unknown displacement and slope to be determined should
be indicated on the curve.

* Since the moment-area theorems apply anly between hvo tangents,
attention should be given as to which tangents should be
constructed so that the angles or vertical distance between them
will lead to the solution of the problem. In this regard, the tangenes
at the supporty should be considered, since the beam has zero
displacement and/or #ero slope at the supporis

Momert-Area Thearems.

* Apply Theorem | to determine the angle between any two
tangents on the elastic curve and Theorem 2 to determine the
vertical distance between the tangents.

® The algebraic sign of the answer can be checked from the angle
or vertical distance indicated on the elastic curve,

® A posifive By, represents a counterclockwise rotation of the tangent
at 8 with respect to the tangent at A, and a pasitive 1y, 4 indicates
that point B on the elastic curve lies above the extended tangent
from: poink A.
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EXAMPLE | 12.7

Determine the slope of the beam shown in Fig. 12-22a at point B,
Els constani.

M
=
" I I
A ‘ A 3 L
‘. 15 /
I { ! Pl -
(ui v b

| lun A

| A _—__“——-..__‘_ B ia
i th
ic Lindn £
Fig. 12-22
SOLUTION

M/El Diagram. See Fig 12-22

Elastic Curve. The force P causes the beam to deflect as shown in
Fig. 12-22¢. (The elastic curve is concave downward, since M/ET is
negative.) The tangent at B is indicated since we are required to find #.
Alsn, the tangent at the support (A) is shown. This tangent has a known
zero slope. By the construction. the angle between tan A and tan B, that
15, fy 0. 15 equivalent to Hyg, or

By =ty

Moment-Area Theorem. Applving Theorem |, #g 4 15 equal to the
area under the M/ ETdiagram between points A and B that is.

1 ( AL
by = By = 5|~ )L
2" fwa =3\~
PL’

~ 2E1 s
The negative sign indicates that the angle measured from the tangent at
A to the tangent at B is elockwise. This checks, since the beam slopes
downward at H.
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EXAMPLE | 12.8

Delermime the displacement of pomts B and C of the beam shown in
Fig. 12-23q. EY is constant.

i
M,
| | L I

| =

Fig. 12-23

P
tan

SOLUTION

M/El Diagram. Sce Fig 12-23h,

Elastic Curve. The couple moment at C canses the beam to deflect as
shiown in Fip. 1 2-23¢. The tangents at & and © are ndicated since we are
required to find Ay and A~ Also, the tangent at the supporl (A) is
shown since it s horigodtal The requoired displacements can now be
related directly o the vertical disrance between the tangents at B and A
and Cand A. Specifically,

Ap = taa
B = fry

Moment-Area Theorem. Applving Theorem 2. £y, is egual to the
moment of the shaded arca under the M/ EF diapram between A and B
caleulated about pont B (the point on the elastic curve ). since this is the
point where the vertical distance is to be determined. Hence, from
Fig. 12-23h,

"I My LY M,L*
Apg ™ tya ™ (T)[( E—;)(EJ} - _H.;EJ Ans,

Likewise, for £ 4 we must determine the moment of the area under
the enrire M/E! diagram from A to C about point C (the point on the
elastic curve ), We have

5ol M Myl
.ﬁr = = (EJ[(T;){JT]I:I = ﬁ Anx

MOTE: Since both answers are negatve, they mdicate that points & and
C lie felew the tangent at A. This checks with Fa. 12-23¢,
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EXAMPLE | 12.%

Determine the slope at point C of the shaft in Fig. 12-24a. E] is constant.

lmp

R L
El El P

7 i '

| AP
4
(i
tan
B N R .
e b tan £ (hotveontali

Fig. 12-24

SOLUTION
M/EIl Diagram. Scc Fig 12-244.

Elastic Curve. Since the loading is applied sysmmetnically to the beam,
the elastic curve is symmetrie, and the rangent ar ¥ is honzontal,
Fig. 12-24¢. Also the tangent at Cis drawn, since we must find the slope
A, By the construction. the angle 8- between the tangents at tim D
and  i5 equal to - that is.

He = tep

Moment-Area Theorem. Ulsing Theorem 1, #-p is equal o the
shided area under the M/ EF diagram between points 0 and C We have

FLEATE L PL PLATE ipL?
LT ) G ) G

What does the positive result indicate?
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n EXAMPLE [12.10

Lt kN Determune the slope al pomt C for the sieel beam m Fig. 12-25a, Take

E., = 20 GPa, 1 = 17(10°) mm*
A P — 34 SOLUTION
E i

L ‘ M/E! Diagram. Sce Fig 12-25h0.
L= m ‘m—|  Elastic Curve. The elastic curve is shown in Fig. 12-25¢ The tangent at
o C is shown since we are required to find #-. Tangents at the supporis, A
and B, are also constructed as shown. Angle #- 4 is the angle between
the tangents at A and C, The slope at A, 8,4, in Fig, 12-25¢ can be found
using |8 4| = ta.4l/L 5. This equation is valid since tg 4 is actually very
small. so that fy 4 in meters can be approximated by the length of a
circalar arc defined by a radius of L ;4 = 8m and a sweep of 4, in
radians. {Recall that 5 = #r.) From the geometry of Fig, 12-25¢, we have

FrA
18| = 184] — |Beial = =T |l (1)
Mote that Example 12.9 could also be solved using this method.
M P} Moment-Area Theorems. LUsing Theorem 1, 6y 4 15 equivalent 1o the
£ g Et area under the M/E] diagram between points A and C: that is.
Lf’/// ; ]fzn”(HkN-m)_HkH-m:
“y, CiA i - = -
A = i s El Ef
- P ¥ Applving Theorem 2. g 4 is equivalent to the moment of the area
& o 7 under the M/ES diagram between B and A about point B (the point on
£ the elastic curve). since this is the point where the vertical distance is to
be determined, We have
| VI 4 kM-m”®
i, 4 [ [2 mn +Elffl m} :I[:“S I'l‘l}(F—!n)]
- ] ¥ L ¥
= i —— Lif1 :
| 2 A1, (24kK-m
il gt 5 R £ | ey
L 3 - Er

A KN -m’
() tan A is El
Fig. 12-28 Substituting these results into Eq. 1, we get

y _ VOKN-m’ SkN.m' 32kN-m’
€ (Bm)ET EI = El

:

We have calculated this result in units of kN and m, so converting Ef
imto these units, we have

32EN-m
[200( 10°) kN/m’J[17(107%) m?]

e 000841 rad | Amg
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EXAMPLE [12.11

Determine the displacement at C for the beam shown in Fig 12-26a,
El is constant

M
o |
ity iy
™ ok
C'rh = I B[ —— 2ET
A (i ‘-i- _"‘———__\_\_\__
i
7 i | A ! £ I |#
| T I T | ] | 3 |
(EY] (k]

tan A

SOLUTION
M/El Diagram. See Fig 12265,

Elastic Curve. The tangent at C is drawn on the clastic curve since we
are required to find 4, Fig. 12-26c. (Note that C is not the location of
the maximum deflection of the beam, because the loadmg and hence the
elastic curve are not syrumetric.) Also indicated in Fig, 12-26¢ are the
tangents at the supports A and B. It is seen that A = A' = 5. Wi4p
is determined. then A' can be found from proportional triangles, that is,
ALY = typfLor A" = /2 Henee,

ik
Ap=———1lrp (1)

i

Moment-Area Theorem. Applving Theorem 2 o determine £ 5 and
fen. We have

e () 29)] - 2
o (L)L) )] - 2t

Substituting these results into Eqg. 1 gives

N .m.;_’) M.,L’)
T 4BET
JHHL.-

5 T6E] l Ans

511
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n EXAMPLE |12.12

Deternune the displacement at point © for the steel overhangmg beam
shown in Fig, 12-27a. Take E, = 29(10") ki, [ = 125 in".

A kip M
% v
A
o g &
i 120 T 12 fi 120 1ZNn
K
Shkip 10 kige " H F
]

— il

El

{hi

Fig, 12-27
SOLUTION

M/El Diagram. Scc Fig. 12-27h.

Elastic Curve. The loading causes the beam to deflect as shown in
Fig. 12-27¢, We are required to find A, By constructing tangents at €
and at the supports A and B, it isseenthat A = [t-4] — A". However, A’
can be related to t5 , by proportional triangles; that is, A*/24 = [fy41/12
or A" = 2tg | Henee

.|'!|.,|— = |r..-..|,| = 2|F;,-.-_J| |:|:|

Moment-Area Theorem. Applving Theorem 2 to determine 1o 4 and
Fgia, we have

- - 6l kip -+t
maa_ ;,-__‘=¢|1||}(%..::4n5{—%})
e 2
4 AT R g B 8040 kip - fr°
B . - El
| R T Al kip - ft 1440 kip « f’
T =|=(12t) ||=(12 =
@ € R 0 [3” '”)[z” =g )] El

Why are these terms negative? Substituting the results into Eq. 1 vields

_ BedOkip-f' t4auh;|p-rr‘) 5760 kip -+t |
y Bl ET El
Realizing that the caleulations were made in units of kip and ft, we have
5760 kip - it 1728 in' /1)
[29010°) kip/in®]{ 125 in*)

A, =275in. | Ang
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| | FUNDAMENTAL PROBLEMS

F12-T. Determine the slope and dellection of end A of the
cantilevered beam. E = 200 GPa and I = 650410 "} m".

Bk

im |

Fi2-7

Fl2-8 Determine the slope and dellection of end A of the
cantilevered beam, E = 200 GPa and ! = 126{10°%) m",

20 kN
kM

Fi2-#

Fi2-%. Determine the slope and delection of end A of the
cantilevered beam. E = 200 (iPa end f = 121{107"% m'.

Al kN

FiZI-10. Determine the slope and defection st A of the
cantilevered beam. E = 29(1F) ksi. f = 245 in".

2 kip/h

I 3 e 1M1

Fi2-1n

Fi2-11. Determine the maximum deflection of the simply
supported beam. £ = 200 GPaand / = 428{10") m".

kM

1o kM m

b kM -m

)

Fi2-12. Determine the maximum defection of the simply
supporied beam, £ = 200 GPaand 1 = 399107") m",

Al E™m Ik kMem
A

(—

[ 1 m
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] [prosiews

12-55, Determing the slope end deflection at O EV s
constant.

31 i I L5 fi

Prah, 12-55

*12=-56. Determine the slope aod deflection at (O ET is
consiani.

1 ki

PFroh. 12-56

o287, Determine the deflection of end & of the
cantilever heam. £ is congtanl,

1u|;'—
-|d|-|.

Mroh, 12-57

12-58. Dctermine the slope al A end the maximum
deflection. £l is constanl

0 kip-H

(.I—nn %_ 12 fi H_.!r._n

Prob. 12-5R

20 ki Tt

y

12-59. Determine the slope and deflection a1 C. ET 15
constant

2y kapefi i kapefi

Proh. 12-59

*[2-60. TIf the beanings a1 A and B-exert only verical
reactions on the shaft, determing the slope 81 A end the
miaximum deflection of the shafl. £ is constant,

S0 P [ Sl b
A i
£ LH) ﬁék—
I—;'I'I ! Eal | :rr—|

Proh. 1240
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#1361, Determing the masimam slope and the masimum
deflection of the beam, £ is constant.

| : |

12-62. Determine the deflection amd shpe ot 0 EF s
constant,

terms of I.oso that the deflection at end s the same as the
maximum deflection of regiom AR of the overhang boam,
1 s constant.

s 1265,  Determine the position @ of moller support & in ﬂ

Prob, 12-65

1266, Determine the slope a1 A of the simply supported
heam. £1 is constant,

Mok, 12-62

12-63. Détermine the slope at A of the overhang beam.
E = 20l GPa and f = 455(10") mm",

264, Determine the delectien at © of the overhang
beam, E = 200 GPa and T = 45.5(10%) mm.

M kN m

B

. o ™

i —_—
=

Probs, | 2=65/64

Proh, 12-66

12-67. The beam is subjected to the foad P oas shown,
Determing the magnitude of foree F that must be applicd
gl the end of the overhang C so thal the deflection at O 15
eeron BT s consian

F
r
A S
A
ey
Proh, 12-67
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“12—68. 1M the bearmngs at A and B exert only vertical
reactions on the shalt, determine the slope at A amd the
maximum deflcction.

Prob, 12-68

a6, The beam 18 suljected 1o the loading shown,
Detorming the slope at A and the desplacemaent st O Assuimg
the support at . s & pin and & & o roller, £ is constanl

A C i
a o a | r .
Prah. 12-6%

12-T0. The shaft supports the gear at its end C
Delermine the deflection at £ and the slopes a1 the
bearings A and 8. Elis constunt

12-71.  The shal supporis the gear at its end O Determing
its maximum dellection within region AR, El is consiant.
The brearngs exert only vertical reactions on the shafl

I;I. !-IE g C
_.i._ ==

|
Ye

14|

b | =

Probs 12-T0/71

#12-72,  Determne the vidloe of o so that the displagement
at O is cqual toorero, BT s constant

P r
l A ll_’ N
Il_ ! | >
L L
d I T | - I

Prob. 12-72

#1273, The shall is subjected to the loading shown If the
branngs al A and B only exert vertical reactions on the
shail, determine the slope a1 A and the displacement 4t O
£ s constami.

M, M,
T
Al [ | frl
l.._ = )
£
[ [
| da | it |

Proh, 12-73

12-74. Determine the slope at A and the maximum
deflection in the beam. ET s constant.

12 kap
24 kip-fi
» ¥
ARC B
i
I—.-. fi | 121t i !

Proh. 12-T4




124 Siooc anD DhsrlACEMENT BY THE MOMENT-AREa METROD &17

12-T8, The beam is made of o ceramic materiel, In onder
to olain ity modulas of slasticity, it is sabjected 1o the
elastic loading shown, Il the moment of inertia is f &nd the
Iheim s & measured miximum defecion &, determine £
The suppoeris at A and D exert only vertical regctions on the
betam.

A

Prol, 12-75

#]2-76. The bar is supporicd by & roller constraint at 8,
which allows vertical displacement bt resists axial losd
and moment, IT the bar is subjected (o the loading shown,
determine the slope at A &nd the deflection at © £ is
COmsLAnL

Proh. 12-T6

f12-TT. The Bar is supponed by the roller consirging @ O
which allows vertical displacement but resists axlal load
wnd moment; I the bar 18 subjected o the loading shown,
determine the slope and displacement at A, B 15 constant

I

l i
f
A

o g
|

Lo

da

Prah, 12-77

12-T8. The roud 5 constrocted Ivom two shafis for whiich
the moment of inertia of A8 is Fand of BC i 20, Determine
the maximum slope and dellecton of the rod duc 1o the
livading. The modulos of elasiisdiy is E

"rob. 12-78

12-79, Determing the slope at point [ and the defllection
at point £ of the simply supporied beam. The beem is made
of material having o modules of elasticity £ The moment of
werina of sepgments AR and CD of the beam s 7, while the
moment of inertia of segment B of the beam is 2.

Mroh. 12-T9

*12-Kf. Determine the slope a1 point A and the maximum
deflection of the simply supported beam, The begm 15 made
of materia] having a modulus of elasticty £, The moment of
inertia of segments AR and O of the beam is [, while the
muoment of inertia of segment B s 21

Mrob. 12-8ib
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«12-81. Determing the pesiton @ of roller suppost B In
terms of I.oso that deflection at end O is the same ag the
maxmum deflection of region AR ol the simply supporicd
overhang beam. ETis constant,

Proh. 12-81

12-82.  The WID = 15 cantilevered beam = made of A-36
sieel and is subjectod o the loading shown. Determing the
stope and disptacement at iis end A,

Fheap /i

fifi f i |

Mroh., 12-82

12-83. The camilevered beam i subjected to the loading
shown. Determine the stope and displacement st . Assume
the support at A is ixed. E is constant

Mrob. 12-83

S12-84.  Determine the slope at C and delection st B F!
i5 consLant,

i g L
A —_lq 5
[
I a a
Provh. 12-H4

o12-85, Determine the slope at & and the displacement
al . The membear is an A-36 steel siruciurgl 1ee for which
! =764 in'

5 kip
1"!-lr||'|-'||

Prof. 12-85

12-B6.  The A-36 steel shaft is used te support & moter that
exerts a uniform load of 5 kEN/m within the region OO of
the shafl. Determine the slope of the shall at the beanngs
A and B The bearings exert only vertical reactions on the
shaft

SkM/m

S e
i )m II—J‘Ilmm

|—1 IzrllI m- —ﬁlllﬂmm I—Il:JII HLiE =

Frob. 12-Hi
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12.5 Method of Superposition

The differential equation E1 o*v/dx’ = w(x) satisfies the two necessary
requitements for applying the principle of superposilion; ie, the load
w(x) i linearly related Lo the deflection »ix}, and the [oad 15 assumed
not to change significantly the original geometry of the beam or shaft. As
a result, the deflections for a senies of separate loadings acting on a beam
may be superimposed. For example. if v is the deflection for one load
and #, is the deflection tor another load, the total defléction for both
loads acting together s the dlgebraic sum w; + .. Usmg tabulated
restilts for various beam loadings, such as the ones listed in Appendix C,
or those found in various engineermg handbooks, it is therefore possible
to find the slope and displacement at a point on a beam subjected to
several different loadings by algebraically adding the effects of its various
cumponent parts.

The following examples illustrate how to use the method of superposition
to solve deflection problems, where the deflection is caused not anly by
beam deformations, but also by rigid-body displacements, such as those
that occur when the beam 15 supported by springs.

The resuliant delection af any poant on this beam can be determmned from the

superposition of the deflections caused by each of the separaie loadings acting
om the beam.
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EXAMPLE | 12.13

Deternune the displacement at pomt C and the slope at the support A
of the beam shown in Fig 12-28z. ET is constant.

; MM
2 kN fm | 2 kM /m

PERENEESE L LEE

] i
— = = ﬁ 7T ' =
;i T | | [f,1 fusch | |
| dm dm { | im { im |
i (i
Fip. 12-2% o
A i
3 = &
H],-,:]
| 4 m 4im !
SOLUTION

The loading com be separated into two component parts &s shown m
Figs 12-28% and 12-28:. The displacement at O and slope a1 A are
found using the table in Appendit C for each part.

For the distributed loading,

Ikt 32kN/m)(Bm)’ 4 LcN-rnFI

(Ba)s 128E] |28ET E@I ¢
(= Swi? I 5(2 |-iiT"';|,|"1'I-'|Tllf-l;':l'|‘|]'ll 533 kN «m’ |
YO T SeRET TARET iz El

Fion the 8-kM concentrated foree,
PL> _ BkN[Em)  32kN-m’

(Hak

6ET  16EI 2 EI *
_ pL'  BEN(Em)'  §5331kN-m’ |
el =@ET™ 48ET ~  El

The displacement at C and the slope at A are the algebraic sums of
these components Hence,

36 kN -m”
(+d) By = (Bt (B ————] Ans
El
. 139 kN-m
(+4) e = {ogh + (ich = ——; I Ans

El
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EXAMPLE |12.14 ﬂ

Determine the displacement at the end C of the overhanging beam SR LN
shown in Fig 1229 ET is constant R l

ﬁtHHHHH -
il 7 i
4 m I 1r.||—|

SOLUTION |
Since the table in Appendix C does nof include beams with overhangs.

(n}
the beam will be separated into a simply supported and a cantilevered "
portion. First we will calculate the slope at H. as caused by the
distributed load acting on the simply supported span;, Fig, 12-24h s -
A Jm

gy - WL SKN/mdm)® 1333 kN-m? lHHHHH% T [t
S MET 24EI b ET ! - fihishy 1
4m

-

I I =m
Simce this angle is small, (8] = 1an(dy), and the wvertical &
displacement at paint C is +
333kN-m®) _ 2667 kN-m’ L
; Jeidi “m- w10, =
5 = 3 — {ifghy
LT by [..]'II]( ET ) EJ f 5 1' kM m
A
P doile L0 | ()
Next, the 10-kN load on the overhang causes a statically equivalent | 4m f—2m—
foree of W kN and couple moment of 2(0 kM -m at the support 8 of i
the simply supporied span, Fig, 1229 The 10-kN force does nol +

catse a displacement or slope at #; however, the 20-kW-m couple
moinent dioes canse a slope. The slope at B due 1o this moment i

(), =MoL _ J0EN-m4m) _ 26,67 kN -m° ﬂ‘;i&q-...
w2 = IE] T fd) s

2m
so that the extended point € is displaced Fip. 12-24
. 267N -m’  5333kN-m’
{ve)h = (2 m]( £ ) - = I

Finally, the cantilevered portion B is displaced by the 1-kN Tarce,
Fig. 12294 We have

PL’ 1OKN{Zm)" 2667 kN-m’

Az 7 |
ol =387 AET El
Summing these results algebraically. we obtain the displacement of
poing .
267 533 267 _ 533kN-m’
(+4) U = = = Ans,

Er & Ef~  Ei
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n EXAMPLE |12.15

Determing the displacement at the end C of the cantilever beam shown
in Fig. 12-3), Ef is constant.

A kM m

Fig. 12-30)

SOLUTION
Using the table m Appendix C for the triangular loading, the slope
and displacement at point B are

wal'  4kN/m(6m)' 36 kN-m’
MET 24E] EI

wel!  AkN/mibm}' 1728 kN-m’
SET NET El

The unloaded region BC of the beam remains straight. as shown in
Fig. 12-30. Since #g is small, the displacement at C becomes

(+1) vy

vy + #pl Lge)

_I128KN-m'  36kN-m®
El &7

M448kN-m’ |
El

Ang
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EXAMPLE | 12.16

The steel bar shown in Fig. 12-31a is supported by two springs at its ends A
and B. Each spring has a stiffness of & = 15 kip/ft and is originally
unstretchied. If the bar is loaded with a force of 3 kip at point C, determine
the vertical displacement of the force Meplect the weight of the bar and
take E,; = 29(10") kai, J = 12in”.

SOLUTION 1 kip
The end reactions at A and B are calenlated and shown in Fig 12-315 g, oA | 81 |
Each spring deflects by an amount ABE !r l].H
b rr )
do= 15 Rip e 2 L k=15kipm
2 kip a5 it fu) .j.
PN e VAT
(ah =13 kip/ft i
| kip : :
T = . e = 11.f'||'"rﬁ? 1'1' A 1I|1 Unpnﬂ| osEiin
(vah 15 kip/ft e i} i i |

! ;
fl'qllJ_l i Lah 'Hh!fn'l-
If the bar is considered to be Agld. these displacements cause it to A %‘

move into the position shown in Fig. 12-315. For this case, the verncal

displacement at Cis 1 Ripid body displicement ‘f

2kip I kip
[
[ i
(veh = (tal + Hi“-‘ﬂ-h — (g +
4 1 kip
= (1ikay — [k 133 — Tl = [ | |
Hﬁ'.l'ﬁ+3[l 1333 e aaT ft] = | 111 fr l |—1r: ¥ 6 fi |
-& — _:'.lJp
I'r'{ Uy
We can find the displacement at © caused by the deformarion of the i
bar. Fig. 12-31¢, by using the table in Appendix C. We have Bty by cMptoesesh
Ll
Fig. 12-3]
_ Pab . . 1 §
f:_!.,—_:l: _ﬁE;L{L h‘ ﬂ'fl

3 kip(3 )6 foy[(9 fi)” — (6 ft)” — (3 fr)’)
A]29( 107 Y kip/in”]( 144 in®/1 f0) (12 in* ) {1 £1°/20 736 in*) (9 fit)
= 0.0149 ft |

Adding the two displacement components, we get
(44} o= 001001 ft + 001496t = 0126 ft = 1.51 in. | At
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. PROBLEMS

12-B7.  The W12 = 45 simply supported heam is made of
A-36 steel and s subjected to the loading shown. Determine
the deflection ut its centur O

12 kip
Al kap-l
B
% (‘ﬂf
B o rE
| 12 i 12t I
Mrob, 12-87

“12-B8. The W % 15 cantlevercd beam 15 made of
A stee] and is sebjected to the loading shown. Delerming
the displacement a1 B and the slope at A

fr 1':;1 4 [i|'|
——
N A
& Fi fifi
Proh, 12-8K

12-8%,  Determing the slope and deflection at end © of
the overhang beam. ET is constant.

12-90. Determine the slope at A and the deflection at
point £ ol the overhang beam, B s constent

NERRRRRREEEY

Probs 12-E95990)

12-91. Determine the slope at B oand the deflection at
point © of the simply supposted beam. £ = 200 GPe and

I = 455010%) mm®,

Prob. 12-91

#1292, Determine the slope st A and the deflection
ot pvimt O of the simply supporied beam. The moduls of

elasticity of the wond s E = 100 GPa,

1481

L I
| [— [

I—I_'|r|1 1.5 me im

Prob, 12-92

e
|

#12-93, The WE X M simply supported beam s made
of A-36 sicel and is subjected (o the loading shown.

Dretermmie the defection at 1= center O

b kip/Ti

5 kipef)

LT

Prob. 1313




12-04,  Determine the vertical defleetion and slope at the
end A of the bracket. Assume that the bracket is fixed
supporied &t its base, gnd neglect the axial deformation of
scament AN, Elis constant,

H

Hkip

Pl 12-54

12-95,  The simply supported beam is made of A-36 stecl
and 15 subjected to the Ioeding shown. Determine the
deMection at itseenter O 7 = 01457010 ) w?

2 kM
4 kMN/m
Y r T 0 k.
A E o - E E
| im Fm |

Mrob. 12-95
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#1296, Determine the delection at énd Fof heam CTAE,
The beams are made of wood having & modulus of elasticity
of £= 14 {iPa.

.:[]ﬁd mem

Roctson o - a

Prols. 12-1G

#12-97. The pipe assembly consists of three cqual-sered
pupes wath exibility stiffness ET and torsional stiffness G
Determine the vertical defection at poinl A.

Proh. 12-%7
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12-98, Determine the vertical deflection at the end A of
the bracket, Assume that the brackel is fixed supported at
its base ® and neglect axial deflection, £/ 1= constanl

Frob. 12-94

129, Determine the vertical deflection and siope sl
the end A of the bracken. Assume that the bracker iz Oxed
supported o its base, and neplect the axial deformation of
regment Af. Elis consant,

2 b i,

Proh, 12-94

#2100, The framework consists of two A-36 stec)
cantilevercd beams €0 and BA and & simply supported
beem CF. If cach beam is made of steel and has @ moment
of inertia abont its principal axis of T, = 118 in*, determine
the deflection at the center €7 of beam CB.

Prob. 12-104

CHaptEr 12 DefFLecTioN OF BRams AND SHAFTS

s 2-100,  The wide-Mange beam ac1s as a cantilever. Due
wioen error it is instulled ar an angle # with the vertical,
Determine the ratio of its detlection m the © divection 1o its
deflection fn the v direction gt A when @ load P is applied ut
this point. The moments of inertia are T, and T, For the
solution, resolve I* into components gnd use the method of
superposition. Newe: The result indicates that Jarge lateral
deflections (x direction) ean oscur in narrow  beams,
I, == I, when they are improperly installed i this
manner. To show this numernically, compute the deflections
in the xand v directions for an A-36 steel WD 2 15, with
P=15kip, § = UF andl L =12 {L

Pris. 12-101

12-102, The swmply supporied beam cariies a uniform
foad of 2 Kip/f. Code restrictions, due to a plaster ceiling
reguire the maximum deflection nol o exceed 1/360 of the
gpan length, Select the hehtest-weipht A-36 steel wide-
flange beam from Appendix B that will safisfy  this
requirement and salely support the load. The allowable
Biending siress o e = 24 kst and the allowable shear
BIMESS 08 Tajew = 14 ksi. Assume A is a pin and 8 a roller
suppert

Lol ]l

Proh. 12-102
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12.6 Statically Indeterminate Beams
and Shafts

The analvsis of statcally mdetermmate axially loaded bars and
torsionally loaded shafts has been discussed in Secs. 4.4 and 55,
respectively. In this section we will illustrate a general method for
determining the reactions on statically mdeterminate beams and shafs,
Specifically, @ member of any tvpe 15 classified as statically indeterminate
if the number of unknown reactions exceeds the avallable number of
equilibrium eguations

The additional support reactions on the beam or shaft that are nor
meeded to keep it in stable equilibrium are called redundanis. The
number of these redundants is referred to as the degree of fndeterminacy,
For example. consider the beam shown in Fig, 12-32a, If the free-body
diagram is drawn. Fg 12-32h, there will be [our unknown support
reactions, and since three equilibrium equations are available for
solution, the beam is classified as being indeterminate to the first degree.
Either A, B, or M, can be classified as the redundant, for if any one of
these reactions is removed. the beam remains stable and in equilibrium
(A, cannot be classified as the redundant, for if it were removed,
=F, = {0 would not be satisfied.) In a similar manner, the covrfimmans
beam n Fig. 12-33a is indeterminate to the second degree. since there
are five wunknown reactions and only three available equilibrium
equations, Fig. 12-33h. Here the two redundant support reactions can be
chosen among A,, B, C,.and D .

./ /[
D S
- Tt 1

Fig. 12-33

[
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indeterminate, it s first necessary to specily the redundant reactions, We
can determine these redundants from conditions of geomelry known as
cowmpatibility conditfony. Onoe determined, the redundants are then
applied to the beam, and the remaining reactions are determined from
the equations of equilibrium.

In the tollowing sections we will illustrate this procedure for solution
wsing the method of miegration, Sec. 12.7; the moment-area method,
Sec, 12.8; and the method of superposition, Sec. 12,9,

n To determine the reactions on a beam (or shaft) thar is statically

12.7 Statically Indeterminate Beams and
Shafts—Method of Integration

The method of mtegration, discussed n Sec. 122 requires [Wo
integrations of the differential equation d vfdx’ = M/EI once the
internal moment M in the beam is expressed as a function of position x.
It the beam is statically indeterminate, however, M can also be
pxpressed in terms of the wekmown redundants. After imtegrating this
equation twice, there will be two constants of mtegration alomg with the
redundants to be determinegd. Although this is the case, these unknowns
can always be found from the boundary and/or conninuity conditions for
the problem.

The following example problems illustrate specific apphications of this
method using the procedure for analysis outlined in Sec. 12.2.

An cxample of & statically indelerminate
Beam ased Lo sappont a brdpe deck.
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EXAMPLE |12.17 ﬂ

The beam 15 subjected to the distributed loading shown in e

Fig. 12-3dar. Determine the reaction at A, ET is constant.
A——— &
SOLUTION . —

Elastic Curve. The beam deflects as shown in Fig. 12344 Only | = " |
ome coordinate x is needed. For convenience we will take it ' : ;
directed i the right. since the internal moment is easy to fal
formulate,
Moment Function. The beam is indeterminate to the first degree as
indicated from the free-body diagram, Fig. 12-34bh. We can express the
internal moment M in terms of the redundant force ar A using the =
= =
segment shown m Fig. 12-34¢. Here Ay [
3 -——"‘"'__F-‘;- :
M= .|'I..|_'l.' - %H'“I_ A ﬁ-‘_ I,
£ T 2y L | My
Slope and Elastic Curve. Applyving Eq. [2-101, we have A ; b
d P 1
El—— = AZ— —Wy— R :
dx 2 f i L 1 2 L n'..(ri]
A Yooow oot
EIE—E:"III —2—411l|:.?+c‘| .-'1“ - |.] lem
===
O T . I
Elg = E""h't =3 EHHT + r + G (el
The three unknowns A, €. and €5 are determined from the boundary Fig. 12-34

conditions x =1, v=0 x=L, dofdx=1; and x=L, v=1
Applyving these conditions vields

=10 u=I(% =0—-0+10+C;
|'..|IT.|' | a | : .
A LI 13 i E..-"h..L ﬁl'lu.lr_ ' f_|
| 1 g
x=Lupo=1M n=g,r1,,L‘—mu-.,f_ + L 49G;
Sulving,
I
A, = mwﬁ.f. Ans
ik I i li|'1 _‘
C- = ﬁl{" o {.’: =1}

NOTE: Using the result for A . the reactions at B can be determined
from the equations of equilibrium,. Fig. 12-346. Show that #, = 0,
By = 2wgL /5, and My = w,L°/15
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n EXAMPLE |12.18

The beam in Fig. 12-354 is fixed supported at both ends and is subjected
tin the uniform loadmg shown, Determine the reactions al the supparts,
Neglect the effect of axial load.

SOLUTION

Elastic Curve. The beam deflects as shown in Fig. 12-354, As in the
previous problem, only one x coordimate i85 necessary for the solution
since the loading 15 continuons across the span,

Moment Functlon. From the free-body diagram. Fig 12-355, the
respeciive shear and moment reactions at A and B must be equal,
since there is symmetry of both loading and geometry. Because of this,
the equation of equilibrium, £F, = (I, requires

Vi=Vp=—1 Anx
The beam is indeterminate to the first degree, where M is redundant.
sing the beam sepment shown in Fig, 12-35¢, the imfernal moment M

sl 1Ll d 11111 g canbeexpressedin terms of M’ as follows;
A i:n— IS )
’ M = ﬂ.r - P - M

) | 3

| ! 1

Slope and Elastic Curve, Applving Eq. 12-10), we have

fa )
) Y v _ Wi W 4 3
Vit [ s T
||g-———jp——-—u‘ B L TR T A ;
{ | | | : [ |T} -Elrd— lT.'I:' i.’t.l M'x 4 'f-1
My= M| = - 5 | My =M =t
Wl " ' § i
i EJ’T'=HII—1—414—T +Cix+ G
The three unkaowns, M7, O and 5, can be determined from the thiree
boundary conditions v = 0 at x = {}, which vields C; = 0; d/dx = 0 at
x = (), whichvields C; = 0:and ¢ = Oatx = L, which vields
Wi
wil. ¥ .Ll
5 ilg M= As
* lils l;l.
_,”..1 X P Using these results notice that becavse of symmetry the remainimg

boundary condition dv/dx = Oat x = L is amtomatically satisfied.
NOTE: [t should be realized that this method of solution is generally
Fig. 12-35 suitable when only one x coordinate is needed to describe the elastic
curve. If several x coordinates are needed. equations of continuity must
be written, thus complicating the solution process.




127 S1anicalyy INDETERMINATE BEans anl SHAFIS—METHOD OF INTEGRATION &31

. PROBLEMS

12103, Determine the reactions at the supports A and 8,

then draw the moment diagram. £F is constant,

Proh. 12-103

12-104. Determme the value of « [or which the
maximum positive moment has the game magnitude as the
maximum negative moment. £T is constant.

=

Prob. 12-104

12105 Determine the reactions at the supports A, H,
gnd 7 then draw the shear and moment diagrams Ef is
eomsELnL

12-1e,  Determine the reactions st the suppons then
draw the shear and moment disgram. Ef is constanl

Prob. 12-106

12-107. Determine the moment resctions at the suppeorts
A and 8. El s constant,

:|..-1

'_.II_"|

Al
-

Proh. 12-107

*“12-108. Determine the reactions at roller support A and
fixed suppor B,

Proh. 12-103

T
] 3 !

Frob. 12-108




532

1 2-100,  Use discontinuity functicns amd determine the
reactions at the sapports, then draw the shear and moment
diaprams. £ 15 constant,

Jlap s
g qudid C
i s
- A0 = Min =
Prob. 12-109

12-110. Determme the reactions at the suppors, then
draw the shoar and moment diggrams, BT is constanl.

:ﬁﬂm{ £

=
ey

Prol. 12-110

12-111. Dwetermine the resclions gt pin support A and
moller zupporis & and O ET i3 constan

Prob. 12111

CHapter 12 DEFLECTION OF BEAMS AND SHAFTS

#12-112. Determine the moment reactions ot fised

supparis A and B, ET is constant.

LIS

Proh. 12-112

«12-113. The beam has a constant E;Fy and is supported
by the fixed well at B and the rod AC. If the rod hos a
cross=sectionsl aren As and the materi! has a modolus of
elasticity Es, determine the foree in the rod.

Prob. 12-113

12-114. The beam is supporied by a pin aL A, a roller at &,
and a post having a diameter of 50 mm at C Detgrmine the
support reactions at A, B and €. The post end the beam ere
made of the same materal heving 8 modulus of elasticity
E = 200 GiPa, and the beam hes 8 constunt moment of

inertia 7= 255(10M mm®.

15 kN ‘m

Prot. 12-114
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*12.8 Statically Indeterminate Beams
and Shafts—Moment-Area Method

If the moment-area method & used 1o determine the unkanown
redundants of a statically indeterminate beam or shaft. then the M/E/
diagram must be drawn such that the redundanis are represented as
unknowns on this diagram, Onee the WYET diagram is established, the
twio moment-area theorems can then be apphied o abtam the proper
relationships between the tangenis on the elashic curve in order 1o meet
the conditions of displacement andfor slope at the supporis of the beam.
In all cases the number of these compatibility conditions will be
equivalent to the number of redundants, and so a solution for the
redundants can be obtained.

Moment Diagrams Constructed by the Method of
Superposition. Since application of the moment-area theorems
requires calculation of both the area under the M/ET diagram and the
centroidal location of this area, it is often convenient to use separare
MYET diagrams for each of the known loads and redundants rather than
using the reswltund diggran o caleulate thess geometnic quantities. This
it especially true if the resuliant moment diagram has a complicated
shape_The method for drawing the moment diagram in parts is based on
the principle of superposition.

Most loadings on cantilevered beams or sifis will be a combination of
the four leadings shown in Fig. 12-36. Construction of the associated
moment diagrams, also shown in this ligure, has been discussed in the
examples of Chapter 6. Based on these results, we will now show how
to use the method of superposition o represent the resul@ant moment
diagram by a series of separate moment diagrams for the cantilevered
beam shown in Fip, 12-37e. To do this, we will first replace the loads
by a system of statically equivalent loads For example, the three
cantilevered beams shown i Fig. 1 2-37a are statically equivalent to the

l EMEE SEE
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M
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My
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—
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SENm 5 kM M kM-mi
i III-\,.I1'|I.Ij.f“'~v|'n'| ! Tr RS - o
‘-i . | £ =10
S8 kN-m i ! g
o 4u
I " I
AkN/m WikM-mj
Kk 4—1—1—1—1—1 2 2
. ——— } i {imi
(Ti-‘l 2 _H,-“"'F—F
HEN'm =
+
T MHikM-mi
3 kEMNm Z &
(] =) ! | r{mi
B
3 kN-m < —3ii
i +
5 kM M kM -m
S kM i l 2 k
( | _IL————___ ; i {iml
7 .
X kN-m Am
Superposition of keadings Superpaitiven of moment dingrams
il (L]

Fig. 12-37

resultant beam, since the load ar each poimt on the resultant beam is
egual to the superposition or addition of the loadings on the three
separale beams Thus, if the moment diagrams for each sepdrats beam
are drawn, Fig. 12-375h. the superposition of these diagrams will yield
the moment diagram for the resaltant beam, shown at the top. For
example. from each of the separate moment diagrams, the moment at
end A is My =—BENm— 3kNm — 20kN-m = —538kN-m, azs
verified by the top moment diagram. This example demonstrates that it
i% sumelimes easier (o consiroc a series of separate statically eguivalent
moment diagrams for the beam, rather than constructing its more
complicated resultant moment diagram. Obviously, the area and location
of the centroid for each part are easier to establish than those of the
centraid for the resultant diagram,
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Mikbem)
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2 kb -im
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+
20 kM m 5 17
| .1;} — ! F timi
e st B =g -
| 12m | ;

Superposatsod ol loadsigs

fil [11]]

Fig, 12-34

In u similar manner, we can also represent the resultani moment
diagram for a simply supporied beani by using a superposition of
moment diagrams for each loading acting on a series of simply supported
beams. For example, the beam [oading shown at the top of Fig, 12-380 is
equivalent o the sum of the beam loadings shown below it
Consequently. the sum of the moment diagrams for each of these three
loadings can be used rather than the resultant moment diagram shown at
the top of Fiz. 12-38

The examples that follow should also clarity some of these points and
illustrate how to use the moment-area theorems to obtain the redundant
reactions on statically indeterminate beams and shafiz The solutions
follow the procedure for analvsis outlined n Sec 124

Superposition of moment disgrams
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I'H EXAMPLE 112.19

The beam 15 subjected to the concentrated force shown
Fig 12-39a. Determine the reactions at the supports. EF is constant.
)

| :
& A tan A
At i L ! |
B H tan &2

Fig. 12-39
SOLUTION

M/El Diagram. The free-body diagram is shown in Fig 12-394.
Using the method of superposition. the separate M/E[ diagrams for
the redundant reaction B, and the load P are shown in Fig, 12-3%,

Elastlc Curwe. The elasiic curve for the beam is shown in
Fig 12-39d. The tangenis at the supports A and B have been
comstructed. Since Ay = (), then

twa=10

Moment-Area Theorem. Applving Theorem 2, we have
B :'M) LN —PL
AT (FLJ[E( Er *’J 3wl
2 =
+ (EL)[E(—EI }m] -0

B, =215F Ars

Equations of Equilibrium. Using this result, the reactions at A on
the free-body diagram, Fig. 12-3%96_ are

=FEF, =1 A, =1 A
+1EF, =t ~A, + 25P — P =0

A, = |5P A
LFEM, =1 —M, + 25P(L) — P{ZL) =1

M, =05PL Ans
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EXAMPLE |12.20 ﬂ

The beam i5 subjected to the couple moment at its end C as shown in H e

: ; : . M,
Fig. 1240, Determine the reaction at B, £7 is constant. ﬁl ;
I L i I

SOLUTION )
M/El Diagram. The free-body diagram is shown in Fig. 12406, By -
inspection, the beam is indeterminate to the first degree. In order to l :
obtain a direct solution, we will choose B, as the redundant Using M M,
superposition, the M/ET diagrams for B, and My, each applied to a i | ,)
simply supporied beam, are shown in Fig. 12-40c. (Note that for such a I £ ' I
beam A, A, and C, do not contnbute to an M/ET diagram.) A, i C,

1
Elastic Curve. The elastic curve for the beam is shown in Fig. 12404, i
The tangents at A, B, and € have been established. Since & Bl

A,=Ay=A-=10, then the vertical distances shown must be 15
propartional; Le., V
I 2l

| M

Fpie = E'r.'l.l'_ [:” M.T__hh_h"“--h__ ~ 3

~IE M.

From Fig. 12—, we have e =]

SR But) 2 N\ 1{-M, i
e [_?LJ[E(:E.' m} ' (FL}[E(EEJ‘ (L) Wal s eﬁ!é €
i i tnc
T _I.H'"I-‘ ; Lan A n: e
4o (EEI J”‘}} i)

L{ By 3. =M,
VA = ”-;"[E(!Ef)iy.-}} + (iilf-lj[?(?l)[lf.}}

Substituting into Eq. 1 and simplifying vields

M,
T Ans Fig, 12-41)

B,

Equations of Equilibrium. The reactions at A and € can now be
determined from the equations of equilibrium. Fig. 12—, Show thal
A, =K C, = SMyaL, and A, = M;/dL.

Wote from Fig. 12—80e that this problem can also be worked in terms of
the vertical distances,

T = Efr' A
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12-115. Determine the moment reactions at the supporis
A and 8, then draw the shear and moment diagrams. £ is
cunsian

A l; i} M,

I i |

Proh. 12-115

#f2-116. The rodd Bs fixed a1 A, and the conpection a1 B
consists of & roller constraimt which allows  vertical
dizplacement bt resists axiel load and moment, Delermine
the moment reactions al these supports BT is congtant,

AT B R

1A i

Prob. 12-116

«12-117. Dewrming the value of & for which the
maeximum positive moment hes the same magnitude as the
AR LT D Ealive moment, B s constan,

Frob. 12-117

] [prosiews

12-118. Dretermine the reactions 3t the suppons, then
draw the shear and moment disgrams. EJ s constant.

"‘E o E:E
| ! | ! |

Prob. 12-118

12-119. Deternmme the reactions of the suppors, then
draw the shear gnd moment disgrams £7 s constanl
Support i is o thrust bearing.

=i
|

| B
Prob. 12-11%

*12-12  Determine the momeni reactions at the supports
A und B, EIs constant.

Proh. 12-120
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12.9 Statically Indeterminate Beams and

Shafts—Method of Superposition

Thie method of superposition has been used previous]y to solve for the
redundant loading on axially loaded bars and torsionally loaded
shafts. In order to apply this method (o the solution of statically
indeterminate beams (or shafts), it 15 first necessary to identifyv the
redundant support reactions as explamed in Sec, 126, By removing
them from the beam we obtain the so-called prismary fewe, which s
statically determinate and stable, and is subjected only 1o the external
load. If we add to this beam a succession of similarly supported beams,
each loaded with a separare redundant, then by the principle of
superposition, we obtain the actual loaded beam. Finally, in order to
solve for the redundants, we must write the condinions of comparibiling
that exist at the supports where each of the redundants acts. Since the
redundant forces are determined dicectly in this manner, this method
of analysis is sometimes called the foree method. Once the redundants
are obtained, the other reactions on the beam can then be determined
from the three eguations of equilibrium

To clarity these concepts, consider the beam shown in Fig, 12—, If
we choose the reaction B, at the roller as the redundant, then the
primary beam is shown in Fig. 12415 and the beam with the
redundant B, acting on iis shown m Fig. 1241 The displacement at
the roller is to be zero, and since the displacement of point B on the
primary beam is vy, and B, causes point B to be displaced upward vj,
we can write the compatibility equation at B as

(+1)

0= —ty + g:"ﬁ.

The displacements vy and vy can e obtaimed wsing any one of the
methods discussed in Secs. 12.2 through 125, Here we will obtain
them directly from the table in Appendix C. We have

spL B,L
T REr & W Tpp
Substituting mio the compatibility equation, we gel
sprt | BL
4BET i IET
f, Ij—ﬁF

Maow that B}. 15 known, the reactions at the wall are determined from

Actunl beam
LET]

'I-JI."'-

Redundani B, remiovel

{hi

Oy redundann B, apslicd
i

—

the three equations of equilibrium applied to the free-body diagram of

the beam, Fig. 12-41d The resulis are

L1
P [ Ay EF
3

M e
A™ 18

[

(s |-r1

Fig. 12-41
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|
=

|‘|-|_

Actuial beam

ihy A %_ —1 A
—tt Lt

1

F'.u.'-;l_m:.dnl:l M, ||.'mc5r-.-|.1

-+

M,
i ﬂﬁ.ﬁb i)
T —— s
A

Oinly redundant M, appleed

Fig. 12-42

Ag atated in Sec. 126, chowee of the redundant & arbritrary, provided
the primary beam remains stable. For example. the moment at A for the
beam in Fig 12-424 can also be chosen as the redundant. In this case the
capacity of the beam to resist My is removed, and so the primary beam is
then pin supported at A, Fig. 12-426. To it we add the beam with the
redundant at A acting on it, Fig 12-42c. Referning to the slope at A
caused by the load P as ¢, and the slope at A caused by the redundant
My a5 &y, the compatibality equation tor the slope at A requires

{'+) (=8, +

Agpam wsing the table in Appendix C, wie have

PL: Ml
i) - —_— 2 [
Wiger: TR BT
Thus,
g PL  MaL
16El ' 3El
3
My = < PF.
.‘ ]ﬁ

This is the same result determined previousy. Here the negative sign for
M simiply means that M 4 acts in the opposite sense of direction of that
shown in Fig. 12-42¢.
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" ¥,

v # 4 ¢ D

ful &A - = I ‘."-_
Adtund beam
I
P P

v 8 % ¢ n
B e )
iy it

Redondamt B, and C, remaovead

+
B,
H + A i
{ch A k " f ]|
= ——
I'j., |'|.'
Chinly redundan B, applicd
+
C,
i E'{‘ 2]
rd.l A — —
any o

Craly sedundan C applied

Fip. 1243

Another example that illusirates this method is given in Fig. 12-43qa In
this case the beam is indeterminate to the second degree and therefore
twar compatibility equations will be necessary for the solution. We will
choose the forces at the roller supports B and C as redundants, The
primary {statically determinate ) beam deforms as shown in Fig. 12436
when the redundants are removed. Each redundant force deforms
this beam as shown in Figs. 12-43¢ and 12-43d, respectively, By
superposition, the compatibility equatioms for the displacements at B

and € are
(+4) 0= uy + vy +

(1220
{+1) 0= e+ vf + v

Here the displacement components vy and v will be expressed in
terms of the unknown B, and the components @} and ¥ will be
expressed in terms of the unknown C,. When these displacements have
been determined and substituted mio Eg. 12-20 (hese equations may
then be solved simultaneously for the two unknowns B, and C .
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Procedure for Analysis

The following procedure provides a means for applying the method
of superposition {or the force method) to determine the reactions
om statically indeterminate beams or shafls,

Elastic Curve.

& Specify the unknown redundant forces or moments that must be
remuved from the beam in order to make it statically
determinate and stable.

® Llsimg the principle of superposition, draw the statically
indeterminate beam and show it egual to a seqoence of
corresponding statically determinate beams.

& The first of these beams, the primary beam, supports the same
externil loads as the smatically mdeterminate beam, and each of
the other beams “added” to the primary beam shows the beam
leaded with a separate redundant force or moment.

& Sketeh the deflection curve for each beam and  indicate
svmbaolically the displacement (slope) at the point of each
redundant force {moment).

Compatibility Equations.

* Write a compatibility equation for the displacement (slope) at
cach point where there is a redundant force {moment).

® Determine all the displacements or slopes using an appropriate
method as explamed in Secs. 12.2 through 12.5.

& Substitute the resulis mio the compatibility equations and solve
tor the unknown redundants.

* If a numerical value for a redundant is postiive, it has the same
sense aof direction as originally assumed. Similarly, a negarive
numerical valoe indicates the redundant acts opposite o its
assumed serse of direction

Equilibrium Equations.

& Onee the redundant forces andfor moments have been
determined, the remaining unknown reactions can be found from
the equations of equilibnum applied to the loadings shown on
the beam's free-body dingram.

The tollowing examples illustrate application of this procedure. For
brevity, all displacements and slopes have been found usmg the table in
Appendix C
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o |
AN a

EXAMPLE | 12.21

Determine the reactions at the roller support B of the beam shown
in Fig. 12—ddar, then draw the shear and moment diagrams, ET is
cOnstant

SOLUTION

Principle of Superposition. Bv inspection, the beam is statically
indeterminate o the first degree. The roller support at 8 will be
chusen as the redundant 8o that B, will be determined directfy.
Figures 12440 and 12440 show application of the principle of
superposition. Here we have assumed that B, acts upward on the
beam

Compatibility Equation. Taking positive displacement as
downward, the compatibility equation at B is
(+4) 0= vy~ v (1)

These displacements can be obtamed directly from the table in
Appendix C.

_wiL* spr?

Y8 RET © IRE]
_ 2kip/fe(10 1) : S(8kip)(10 ft)' 3333 kip- ft® |
- RET 48ET = El

C PL*  Byl0fty’ 333310 B,

YR T 3E1 IE] El

Substituting inta Eq. 1 and solving vields

3333 33338,
0= - -
ET El
B, = 10 kip Apx

Equilibrium Equations. Llsing this result and applving the three
equations of equilibrium, we obiain the resulis shown on the
beam's free-body diagram in Fig. [2—44d. The shear and moment
diaprams are shown in Fig, 1244,

Ekip
& ZhapSn
IEEXEETX! HHHHJH
A b
I T Te {

(EN]

Actal heam

K kip

——aii 2 kap
o i*il“'*‘** *i'“ri"lH']

| Tds [t
Heduwmiant B, removed

i

i

i) ‘E——

| It It
Crnly recwmdnnt I, lpp]lrl:l

K ki
i.lih ¢

%U_UHH*HHHH
i *

"1 kip

kap /i

401 kip — 5ty

V rip)

I8
0y

fed M (kigefl)

vy

Fig 12-44
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n EXAMPLE [12.22

The beam in Fig. 12-45¢ is fixed supported to the wall at A and pin
comnected to a tin-diameter rod BC If E = 29(1F) ksi for both
{—|__ members, determine the force developed in the rod due to the

loading. The moment of inertia of the beam about i1ts neutral axis s
I =475,
40
H kip H kg
lli‘.III
} ! £
Fis — 5
A 2l .'—e__—: o ——
501 | i . __“—-FJ g
Actual beam and rod Redundant Ky, remaved Oy redundunt Fyp- applied
(i) ik feh
Fig, 1245
SOLUTION |

Principle of Superposition. Bv inspection, this problem s
indeterminate to the first degree. Here B will undergo an unknown
displacement oy, since the rod will stretch. The rod will be treated as
the redundant and hence the force of the rod is removed from the
beam at B. Fig. 12-45b, and then reapplied, Fig. 12-45¢,

Compatibility Equation. At point B we require
(+}) v = vp ~ Uy (1)

The displacements vy and o)y are delermmed from the table
Appendix C. oy is calculated from Eq. 4-2. Working in kilopounds and
inches, we have

= PR Fruci® ft}(12 in. /1)
T AE (/4 ){3in. F[29(10%) kip/in’]
sprt (B kip)i10 f) (12 in )’
ABET  4B[29(10°) kip/in'](473 in")
1 Fre(10 %012 in./ft)*
by = ;;f i 3{15:::1}-‘ kiﬁjiﬂ.:;iﬁ ::1*1 AL !
Thus. Eg. I becomes
(+1) DO1EB6F o = 01045 — (LU4IB1LF e

Fpr = 1.78 kip Arix

= 001686 F 5 |

= 01045 in. |
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S fi -

Acctual beao and rod Redundant Fyp removed Unly redundant Fg- applcd
{ely i) i

Fig. 1245 (conl.)

SOLUTION 1|

Principle of Superpesition. We can also solve this problem by
removing the pin support at © and keeping the rod attached o the
beam. In this case the B-kip load will cause points B and C to be
displaced downward the same amount 1, Fig. 12-45¢, since no force
exists in rod BC. When the redundant force Fpe- is applhied at point C.
it causes the end C of the rod (o be displaced upward v and the end
B of the beam to be displaced upward o, Fig. 12-45f. The difference
in these two displacements, ¢y, represents the streteh of the rod dus
to Fye.so that v = vge + v Hence, from Figs. 12-45:, 12-45¢, and
12-45f, the compatibility of displacement at point C 15

(+h) 0= ve — (vac + vh) (2)

From Solution [, we have

e =ty o= (.1045 in. {

tae = vh = 0.01686F pe |

v = 004181 F T

Therefore, Eq- 2 becomes

(=1 0= 01045 — (OO168AF g + DOMIBIE g
Fpe = 1.78 kip Anx
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n EXAMPLE |12.23

Deternune the moment at B for the beam shown m Fag. 12-46u. ET 18
constant. Neglect the effects of axial load.

SOLUTION

Principle of Superpesition. Since the axial load on the beam
i5 neglected., there will be a vertical force and moment at A and B
Here there are only two available equations of equilibrium
(ZM =0, ZF, =10) and s0 the problem is indeterminate to the second
deyree. We will assume that B, and My are redundant. so that by the
princaple of superposition, the beam is represented as a cantilever.
loaded separately by the distributed Joad and reactions B, and M.
Figs. 12—4ah, 12460, and 12464, '

3 kip/fi
b A %‘ i
| Y] | f i -
Actil henm
I
3 kip/n
b A %
| | | i
Il } hILq___H.L
iy
Redumdiomiz 8 umd B, removed
+ B,
(el A E\%ﬁ
| 121 |

Unly cedunadant By apphicd

fely A

! 12f !
Crly rediandant My, applsed

Fig, 1246
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Compatibility Equations. Referring to the displacement and slope
at B, we require

(F+) (b= 8y + 85 + &y ()

(+1] 0= vy + vy + v (2)

Wsing the table m Appendix C o calculate the slopes and
displacements, we have

wi! _ 3kip/ft (12ft)" 108 kip- 1t

i 8E] ARE] = Ef "
_ Twl® T3 kipff)(12fty 1134 k[p*ﬁ‘l
Y8 = IRE] RIE] El

o P’ B,12 i) _TRBy
LR T T T AR L

prd  B12ft) 3768,

AT IE] El
= ML Mgi12 1) _ 12My
> S EI ET
. MLT_ My(12f)  72M, |
ETEEE T R Rl

Substitunng these values into Egs 1 and 2 and canceling out the
common factor £/, we get

(7+) 0= 108 + 728, + 12My

(i) ) = 1134 + 5768, + T2My

Solving these equations simultaneously gives

B, = —3.375 kip

Mp=1125kp-hi A
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. FUNDAMENTAL PROBLEMS

F12-13. Detérmme the reactions b the fixed support A Fi2-16. Determine the reaction al the roller B ET i3
and the raller B ET is constant. comsiani.

A kM
“Il
.J.(" _
ol Ham *
| L | L
Fi12-16

Fi12-14. Determme the reactions st the fixed support A Fi3-17. Determine the reaction at the roller 8. EF is

and the roller B ET is constant. R
30 kM
Y
A L.
8 |
r 4m——=r1m—= fm |
Fi2-14 Fi2-17

3 1% ermiine the TEaet ; T
flj;nnlﬂh[hu[:';l[rl_!rm;; u‘[l:u:lh ?;::::;d; T:::I: E"Ll-]]ml;l_:“;;t Fl2-18. Determine the reaction gt the roller support B if
1 = 650010 m* ' it setiles S mm. E = 200 GPaand = 6500107 m".

MY KkM fm 1t kM fm

|

M 1 i -E I fim | fim I

Fl2-15 Fl2-18
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Slrropiems

«12-121, Determine the reactions at the bearing supports
A, 8. and € of the shalt, then draw the shear and moment
diagrams £ is constant. Each hearing exerts only vertical
reactions on the shalt.

i s |

AN Aulh M

1 m l ]rn—-|
Proh. 12-121

12122, Determine the reactions at the supports A and B
Elis constant,

l |

A H_:&I. |

Prob. 12-122

12-123,  Determine the repctions af the supports A, B, and
C, then draw the shear and moment disgrams EF is constant,

12 kip

— & [k [ 11 [ 121 |

Proh, 12-123

*12-124. The assembly consists of & steel and an aluminwm
bar, sach of which is 1 in, thick, fixed al its ends A and 8. and
pin conpected o the riged short link CT 1T & horizontal
fiorce of 80 [h is applied 1o the link &s shown, determine
the moments created el 4 and B E, = 29{10%) ksi,
Eg = W0{107) ksi,

c a_rm 5] -~ n_
a lTin—{ |}—
‘_'|I.L'-L'J—\-\; =
5 m—| |— ;_..--—'Allllllillllrrl
A H

Froh. 12-124

#12-125, Delermine the reaclions at the supports A, B,
and O, then draw the shear and moment diagrams E7 is
comstant.

10 kM 1 kM

s | il |
2 L

|-—.1 i

m | Im | 1Im |
Prob. 12-125

12-126. Determine the reactions al the supports A and B
ET is constant,

M,

=l

L I

[

Prob. 12124
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12-127. Deternnne the reactions at support ©. ET 18

conatant for hoth heams.

I

=

Prob. 12-127

#*12-128. The compound besm segments meel o the
center using a smooth contact {robler), Determine the

reactions al the lixed supports A and B when the load I is
apphicd. £l is constant,

-

, i , '3

Mrob. 12-128

a12=129. The beam has a constant EjFy and 15 supported
by the xed wall at 8 and the rod AC T the rod has & eross-
scctional ares A; and the material has a modulus of
elasticty E5, determine the foree in the rod,

I £ I

Prob. 12-129

DEFLECTION OF BEAMS AND SHAFTS

12-130.  Determmne the reactions ot A ond B, Assume the

suppart al A only exerts @ moment on the beam, FT is
conslant.

|, [N R
|

id|=

dd| =

Prok. 12-1311

12=131.  The beam is supporied by the bolied supports at it
ends When logded these supports do not provide an actual
fixed connection, bul instead sllow a shight retation a before
becoming lxed. Determne the moment gt the confectinons
and the maximum deflection ol the beam

| =
b=

Prob. 12-131

#12=132. The beam iz supporied by o pin at A, o spring
having a stiffoess & at &, and a roller at C Datermine the
force the spring exerts on the beam. EF is constant,

Prob. 12-132
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»12-133, The beam & made rom o soft linear elastic
material having a constant ET 10 ¢ is originally 4 distance 4
from the surlace of its end support, detcrmine the distance a
it whieh it rests on this support when it s suljected 1o the
uniform load wy, which is great enough to cause this to
happen

L

e
I

Prob. 12-133

12-13,.  Belore the unilorm distributed [oad is applicd on
the beam: there s 4 small gap of 1.2 mm between the beam
wnd the post al B Determine the support reastions gf A, &,
and C. The post &t B has & diameter of 40 mow, and the
moment of inertia of the beam is £ = 873(10%) mm”’. The
post @nd the beam are mede of materisl Baving 8 modulus
of elasticity of E = 20K-CPa.,

1.2 mm

T
| 1m | i) |
_+_ —fm— _":

Prob. 12-134

o

12-135. The l-in-dimmeter A-36 steel shalt s supported
by unyielding hearings at A and C, The bearing at B rests
on & simply supported steel wide-flange beam having a
moment of mertia of 7 = 500 in", I the belt lnads on the

pulley are 400 [ cach, determine the vertical reactions at
A, B and C.

Proh. 12-135

12136 Il the iemperatune of the 73-mm-diameter post
O s anereased by 60°C, determing the foree developed in
the post. The post and the beam are made of A-36 sieel, and
the moment of inertia of the beem is § = 255{10%) mm®,

Prof, 12-136
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n . CHAPTER REVIEW

The elustic curve represents the centerline
dieflection of a beam or shai, Tisshape can M
be determined wsing the moment dizgram.

Tt | et

Prsitive moments cause the elestic curve o M X
B T I & . e ' o .

be concive upwards and negative moments w Moment diagram

cause it iobe concive downwards. The nsdios
of curvature at any point i determined from

I M

s ST

n  EI

,//ff _—“—E‘E‘———__——-:ﬂ.__

Ll bec s pesinid
Elmsiie crrve

The equation of the clastic curve and its
slope can be obtained by first finding the
internal moment in the member as a i pe
functicn of x, If several loadings sct on the = X
member, then separate moment Tumetions ‘ Se—-

must he determined between cach of
the loadings. Integrating these [unctions
once using EHd*ufdx) = Mix) gives ihe P iy =4

equation for the slopwe of the elastic curve,

and inteprating again gives the equstion

for the deflection, The constants of _ J}q‘-t__\‘ :
integration are determined from  the —“1-—4 ———
houndery conditions at the supparts, or in !_ By I
cases where several moment [unctions l\_____ﬂ-,_.l e
are  davoelved, continuity of slope and T s
deflection at points where these [unctions
foin must be sabsfied

Roondary conditinns

dv  dw
Continualy conditism

Discontinuity  functions allow wone 1o
express the equaticn of the elastic cumve as
a continuous function, regardless of the
number of loadings oo the member, This
miethod  eliminaes the need 1o ase
continuity  conditions, since  the two
constants of integration can be determined
solely from the two boundary conditions
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The moment-orea method & a  Sem-
grephical technigue [or finding the slope of
tangents or Lthe vertical distance between
tangents il specilic poimis on the clastc
curvee It requires: finding ares segments
under the M/E! diagram, or the moment of
these sepments about pomnts on the elastic
curve. The method works well for W/ET
diaprams composed of simple shapes such
a8 those produced by concentriated Torceg
and couple moments.

M
El fizia = Arca
e A L) V"fi’ﬁl\ P
A i
tan & Mg tan A |
M
El tia = X {ATEA|
4 el A O \/ ﬂ '
&2 |

S I

The deflection or slope &L a point on a
member  subjected 1o combinations  of
fradings can bhe determined using the
method of seperposition. The lable in
Appendiz C s available for this purpose,

Statically indcterminate beams and shafis
have more unknown support reactions than
available equations of equilibrinm, To solve,
one fivst identifies the redundant reactions.
The method of integration or the momeni-
ariza theorems can then be used to solve for
the unknown redundants Tvis also possible
to determing  the redundants by using
the method of superposition, where one
comnsiche s the conditions of continuity at the
redundant. Here the displacement due to
the external loading s determined with the
redundant removed, and again with the
redundant applicd and the extemal loading
removed. The tables in Appendix © can
be used o determing these necessary
displacemenis.
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o] 2137, The shafi supports the two pulley loads shown,
Using discontinuity [unctions, determine the cquation of
the elastic curve. The bearings st A and # exert only verizcal
reactions on (he shalt, EV s constant

r:‘in—l—llm + 36 in, |

T b
T8 Th

Irob. 12-137

12-138.  The shalt is supported by & journal bearing st A,
which exerts only vertical reactions on the shaft, and by a
thrust bearing at M, which excris both horizontal and
vertical reactions on Lhe shatt. Draw the bending-moment
dipgram for the shaft and then, from this diagram, sketch
the deflection or elastic curve for the shaft's centerlime,
Determine the equations of the elustic curve using the
coordinites xy and 1. Elis constant

Hillh

Frob. 12-138

12-139. The WE x 24 simply supporied beam is subjected
to the loeding shown. Using the method of superposition,
determine the dellection at s center O The beam is made
of A-36 steel

b ki /1

L

Frob. 12-139

n | |REVIEW PROBLEMS

2-14k Using the moment-area method, determine the
slope and deflection al end C of the shali. The 75-mm-
dismeter shafl 1= made of materinl having £ = 20 GP4,

15kMN

Froh. 12-140

o12-141. Determine the reactions gt the supports. EF is
constant. Use the method of superposilion

dlllllllllllllh

e = H—:&-— I—EEI:—
| | | |
I f I f f ! |

]

Prob. 12-141

12-142. Determine the moment regctions at the supports
Aand B, Use the method of imntegraticn. £f 15 constanL

A af

'rob. 12-142




12-14%  If the cantilever beam his a constant thickness §,
determine the deflection at end A, The beam is made of
malerial having a modulus of clestiaty £

Prob. 12-143

“12=14d. Beam ARC s supported by beam DBE and
fixed ai O Determine the reacticms at B and & The heams
gre made of the same material having &8 modolos of
elissticity £ = 2060 GPa, and the moment of mertie of both
eamsis 7 = 250010 mm

= 4 EN m

|

' -

Sgction a—d

Prob. 12-144

Beviewy PROBLEMS &55

the deflection at © of heam AR The beams arc made of

s12-145, Using the methed of superposition, determne .
12
wood having & modulus of elasticity of £ = 150107 Lsi.

14 Th e r”

ail Bl

I]:ﬁ LILH

Seclion o - o

Prob. 12-145

12-146, The rim on the Ovwheel bas  thickness £, width b,
end specific weight g If the flywheel is rotaling at &8
constant rate ol @ dotermine the maxtimum moment
developred in the rim. Assume that the spokes do mn
deform. Hise: Duoe e symmetry of the loading. the slope of
the rim at cach spoke s zero. Consider the radius (o be
sulficently lorge so that the sepment AR can be considered
as a straight beam Nixed at hoth ends and foaded with a
uniform centrilugal force per umit length, Show that this
fores is w = fiywtr/e

Proh. 12-146




