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Reinforced concrete design encompases both the art and science of engineering. This book
presents the theory of reinforced concrete design as a direct application of the laws of stat-
ics and mechanics of materials. It emphasizes that a successful design not only satisfies
design rules, but is capable of being built in a timely fashion for a reasonable cost and should
provide a long service life.

Philosophy of Reinforced Concrete:
Mechanics and Design

A multitiered approach makes Reinforced Concrete: Mechanics and Design an outstanding
textbook for a variety of university courses on reinforced concrete design. Topics are normally
introduced at a fundamental level, and then move to higher levels where prior educational
experience and the development of engineering judgment will be required. The analysis of the
flexural strength of beam sections is presented in Chapter 4. Because this is the first significant
design-related topic, it is presented at a level appropriate for new students. Closely related ma-
terial on the analysis of column sections for combined axial load and bending is presented in
Chapter 11 at a somewhat higher level, but still at a level suitable for a first course on reinforced
concrete design. Advanced subjects are also presented in the same chapters at levels suitable
for advanced undergraduate or graduate students. These topics include, for example, the com-
plete moment versus curvature behavior of a beam section with various tension reinforcement
percentages and the use strain-compatibility to analyze either over-reinforced beam sections,
or column sections with multiple layers of reinforcement. More advanced topics are covered in
the later chapters, making this textbook valuable for both undergraduate and graduate courses,
as well as serving as a key reference in design offices. Other features include the following:

1. Extensive figures are used to illustrate aspects of reinforced concrete member
behavior and the design process.

2. Emphasis is placed on logical order and completeness for the many design
examples presented in the book.

xiii
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Video
Solution

3. Guidance is given in the text and in examples to help students develop the en-
gineering judgment required to become a successful designer of reinforced concrete
structures.

4. Chapters 2 and 3 present general information on various topics related to struc-
tural design and construction, and concrete material properties. Frequent references are
made back to these topics throughout the text.

Overview—What Is New in the Sixth Edition?

Professor Wight was the primary author of this edition and has made several changes in the
coverage of various topics. All chapters have been updated to be in compliance with the
2011 edition of the ACI Building Code. New problems were developed for several chap-
ters, and all of the examples throughout the text were either reworked or checked for accu-
racy. Other changes and some continuing features include the following:

1. The design of isolated column footings for the combined action of axial force
and bending moment has been added to Chapter 15. The design of footing reinforcement
and the procedure for checking shear stresses resulting from the transfer of axial force and
moment from the column to the footing are presented. The shear stress check is essentially
the same as is presented in Chapter 13 for two-way slab to column connections.

2. The design of coupled shear walls and coupling beams in seismic regions has
been added to Chapter 19. This topic includes a discussion on coupling beams with mod-
erate span-to-depth ratios, a subject that is not covered well in the ACI Building Code.

3. New calculation procedures, based on the recommendations of ACI Committee
209, are given in Chapter 3 for the calculation of creep and shrinkage strains. These proce-
dures are more succinct than the fib procedures that were referred to in the earlier editions
of this textbook.

4. Changes of load factors and load combinations in the 2011 edition of the ACI
Code are presented in Chapter 2. Procedures for including loads due to lateral earth pres-
sure, fluid pressure, and self-straining effects have been modified, and to be consistent
with ASCE/SEI 7-10, wind load factors have been changed because wind loads are now
based on strength-level wind forces.

5. A new section on sustainability of concrete construction has been added to
Chapter 2. Topics such as green construction, reduced CO, emissions, life-cycle economic
impact, thermal properties, and aesthetics of concrete buildings are discussed.

6. Flexural design procedures for the full spectrum of beam and slab sections are
developed in Chapter 5. This includes a design procedure to select reinforcement when sec-
tion dimensions are known and design procedures to develop efficient section dimensions
and reasonable reinforcement ratios for both singly reinforced and doubly reinforced beams.

7. Extensive information is given for the structural analysis of both one-way
(Chapter 5) and two-way (Chapter 13) continuous floor systems. Typical modeling
assumptions for both systems and the interplay between analysis and design are discussed.

8. Appendix A contains axial load vs. moment interaction diagrams for a broad va-
riety of column sections. These diagrams include the strength-reduction factor and are very
useful for either a classroom or a design office.

9. Video solutions are provided to accompany problems and to offer step-by-step
walkthroughs of representative problems throughout the book. Icons in the margin identify
the Video Solutions that are representative of various types of problems. Video Solutions
along with a Pearson eText version of this book are provided on the companion Web site at
http://www.pearsonhighered.com/wight.
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Use of Textbook in Undergraduate and Graduate Courses

The following paragraphs give a suggested set of topics and chapters to be covered in the
first and second reinforced concrete design courses, normally given at the undergraduate
and graduate levels, respectively. It is assumed that these are semester courses.

First Design Course:

Chapters 1 through 3 should be assigned, but the detailed information on loading in
Chapter 2 can be covered in a second course. The information on concrete material proper-
ties in Chapter 3 could be covered with more depth in a separate undergraduate course.
Chapters 4 and 5 are extremely important for all students and should form the foundation
of the first undergraduate course. The information in Chapter 4 on moment vs. curvature be-
havior of beam sections is important for all designers, but this topic could be significantly
expanded in a graduate course. Chapter 5 presents a variety of design procedures for devel-
oping efficient flexural designs of either singly-reinforced or doubly-reinforced sections.
The discussion of structural analysis for continuous floor systems in Section 5-2 could be
skipped if either time is limited or students are not yet prepared to handle this topic. The first
undergraduate course should cover Chapter 6 information on member behavior in shear and
the shear design requirements given in the ACI Code. Discussions of other methods for
determining the shear strength of concrete members can be saved for a second design
course. Design for torsion, as covered in Chapter 7, could be covered in a first design course,
but more often is left for a second design course. The reinforcement anchorage provisions of
Chapter 8 are important material for the first undergraduate design course. Students should
develop a basic understanding of development length requirements for straight and hooked
bars, as well as the procedure to determine bar cutoff points and the details required at those
cutoff points. The serviceability requirements in Chapter 9 for control of deflections and
cracking are also important topics for the first undergraduate course. In particular, the abil-
ity to do an elastic section analysis and find moments of inertia for cracked and uncracked
sections is an important skill for designers of concrete structures. Chapter 10 serves to tie
together all of the requirements for continuous floor systems introduced in Chapters 5
through 9. The examples include details for flexural and shear design, as well as full-span
detailing of longitudinal and transverse reinforcement. This chapter could either be skipped
for the first undergraduate course or be used as a source for a more extensive class design
project. Chapter 11 concentrates on the analysis and design of columns sections and should
be included in the first undergraduate course. The portion of Chapter 11 that covers column
sections subjected to biaxial bending may either be included in a first undergraduate course
or be saved for a graduate course. Chapter 12 considers slenderness effects in columns, and
the more detailed analysis required for this topic is commonly presented in a graduate
course. If time permits, the basic information in Chapter 15 on the design of typical con-
crete footings may be included in a first undergraduate course. This material may also be
covered in a foundation design course taught at either the undergraduate or graduate level.

Second Design Course:

Clearly, the instructor in a graduate design course has many options for topics, depend-
ing on his/her interests and the preparation of the students. Chapter 13 is a lengthy chap-
ter and is clearly intended to be a significant part of a graduate course. The chapter gives
extensive coverage of flexural analysis and design of two-way floor systems that builds
on the analysis and design of one-way floor systems covered in Chapter 5. The direct
design method and the classic equivalent frame method are discussed, along with more
modern analysis and modeling techniques. Problems related to punching shear and the
combined transfer of shear and moment at slab-to-column connections are covered in
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detail. The design of slab shear reinforcement, including the use of shear studs, is also
presented. Finally, procedures for calculating deflections in two-way floor systems are
given. Design for torsion, as given in Chapter 7, should be covered in conjunction with
the design and analysis of two-way floor systems in Chapter 13. The design procedure
for compatibility torsion at the edges of a floor system has a direct impact on the design
of adjacent floor members. The presentation of the yield-line method in Chapter 14
gives students an alternative analysis and design method for two-way slab systems. This
topic could also tie in with plastic analysis methods taught in graduate level analysis
courses. The analysis and design of slender columns, as presented in Chapter 12, should
also be part of a graduate design course. The students should be prepared to apply the
frame analysis and member modeling techniques required to either directly determine
secondary moments or calculate the required moment-magnification factors. Also, if the
topic of biaxial bending in Chapter 11 was not covered in the first design course, it could
be included at this point. Chapter 18 covers bending and shear design of structural walls
that resist lateral loads due to either wind or seismic effects. A capacity-design approach
is introduced for the shear design of walls that resist earthquake-induced lateral forces.
Chapter 17 covers the concept of disturbed regions (D-regions) and the use of the strut-
and-tie models to analyze the flow of forces through D-regions and to select appropriate
reinforcement details. The chapter contains detailed examples to help students learn the
concepts and code requirements for strut-and-tie models. If time permits, instructors
could cover the design of combined footings in Chapter 15, shear-friction design con-
cepts in Chapter 16, and design to resist earthquake-induced forces in Chapter 20.

Instructor Materials

An Instructor’s Solutions Manual and PowerPoints to accompany this text are available
for download to instructors only at http://www.pearsonhighered.com/wight.
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1-1  REINFORCED CONCRETE STRUCTURES

Concrete and reinforced concrete are used as building construction materials in every
country. In many, including the United States and Canada, reinforced concrete is a domi-
nant structural material in engineered construction. The universal nature of reinforced
concrete construction stems from the wide availability of reinforcing bars and of the con-
stituents of concrete (gravel or crushed rock, sand, water, and cement), from the relatively
simple skills required in concrete construction, and from the economy of reinforced con-
crete compared with other forms of construction. Plain concrete and reinforced concrete
are used in buildings of all sorts (Fig. 1-1), underground structures, water tanks, wind tur-
bine foundations (Fig. 1-2) and towers, offshore oil exploration and production structures,
dams, bridges (Fig. 1-3), and even ships.

1-2 MECHANICS OF REINFORCED CONCRETE

Concrete is strong in compression, but weak in tension. As a result, cracks develop whenever
loads, restrained shrinkage, or temperature changes give rise to tensile stresses in excess
of the tensile strength of the concrete. In the plain concrete beam shown in Fig. 1-4b, the
moments about point O due to applied loads are resisted by an internal tension—compression
couple involving tension in the concrete. An unreinforced beam fails very suddenly and
completely when the first crack forms. In a reinforced concrete beam (Fig. 1-4¢), reinforcing
bars are embedded in the concrete in such a way that the tension forces needed for moment
equilibrium after the concrete cracks can be developed in the bars.

Alternatively, the reinforcement could be placed in a longitudinal duct near the bot-
tom of the beam, as shown in Fig. 1-5, and stretched or prestressed, reacting on the con-
crete in the beam. This would put the reinforcement into tension and the concrete into
compression. This compression would delay cracking of the beam. Such a member is said
to be a prestressed concrete beam. The reinforcement in such a beam is referred to as pres-
tressing tendons and must be fabricated from high-strength steel.

The construction of a reinforced concrete member involves building a form or mould
in the shape of the member being built. The form must be strong enough to support the
weight and hydrostatic pressure of the wet concrete, plus any forces applied to it by workers,
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Fig. 1-1

Trump Tower of Chicago.

(Photograph courtesy of
Larry Novak, Portland
Cement Association.)
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Completed in 2009, the 92-story Trump International Hotel and Tower is an icon of the Chicago
skyline. With a height of 1170 ft (1389 ft to the top of the spire), the Trump Tower is the tallest build-
ing built in North America since the completion of Sears Tower in 1974. The all reinforced concrete
residential/hotel tower was designed by Skidmore, Owings & Merrill LLP (SOM). The tower’s
2.6 million f¥ of floor space is clad in stainless steel and glass, providing panoramic views of the
City and Lake Michigan. The project utilized high-performance concrete mixes specified by SOM
and designed by Prairie Materials Sales. The project includes self-consolidating concrete with
strengths as high as 16,000 psi. The Trump Tower is not only an extremely tall structure; it is also
very slender with an aspect ratio exceeding 8 to 1 (height divided by structural base dimension).
Slender buildings can be susceptible to dynamic motions under wind loads. To provide the required
stiffness, damping and mass to assist in minimizing the dynamic movements, high-performance
reinforced concrete was selected as the primary structural material for the tower. Lateral wind
loads are resisted by a core and outrigger system. Additional torsional stiffness and structural
robustness is provided by perimeter belt walls at the roof and three mechanical levels. The typi-
cal residential floor system consists of 9-in.-thick flat plates with spans up to 30 ft.

concrete casting equipment, wind, and so on. The reinforcement is placed in the form and
held in place during the concreting operation. After the concrete has reached sufficient
strength, the forms can be removed.

1-3  REINFORCED CONCRETE MEMBERS

Reinforced concrete structures consist of a series of “members” that interact to support the
loads placed on the structure. The second floor of the building in Fig. 1-6 is built of con-
crete joist—slab construction. Here, a series of parallel ribs or joists support the load from
the top slab. The reactions supporting the joists apply loads to the beams, which in turn are
supported by columns. In such a floor, the top slab has two functions: (1) it transfers load
laterally to the joists, and (2) it serves as the top flange of the joists, which act as T-shaped
beams that transmit the load to the beams running at right angles to the joists. The first floor
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Fig. 1-2
Wind turbine foundation.
(Photograph courtesy of

Invenergy.)
This wind turbine foundation was installed at Invenergy’s Raleigh Wind Energy Center in Ontario,
Canada to support a 1.5 MW turbine with an 80 meter hub height. It consists of 313 cubic yards of
4350 psi concrete, 38,000 lbs of reinforcing steel and is designed to withstand an overturning mo-
ment of 29,000 kip-ft. Each of the 140 anchor bolts shown in the photo is post-tensioned to 72 kips.
Fig. 1-3

St. Anthony Falls Bridge.
(Photograph courtesy of
FIGG Bridge Engineers, Inc.)

©Fi00 2008

The new I-35W Bridge (St. Anthony Falls Bridge) in Minneapolis, Minnesota features a 504 ft
main span over the Mississippi River. The concrete piers and superstructure were shaped to echo
the arched bridges and natural features in the vicinity. The bridge was designed by FIGG Bridge
Engineers, Inc. and constructed by Flatiron-Manson Joint Venture in less than 14 months after
the tragic collapse of the former bridge at this site. Segmentally constructed post-tensioned box
girders with a specified concrete strength of 6500 psi were used for the bridge superstructure.
The tapered piers were cast-in-place and used a specified concrete strength of 4000 psi. Also, a
new self-cleaning pollution-eating concrete was used to construct two 30-ft gateway sculptures
located at each end of the bridge. A total of approximately 50,000 cubic yards of concrete and
7000 tons of reinforcing bars and post-tensioning steel were used in the project.
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Fig. 1-4

Plain and reinforced concrete

beams.

Fig. 1-5
Prestressed concrete beam.
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of the building in Fig. 1-6 has a slab-and-beam design in which the slab spans between
beams, which in turn apply loads to the columns. The column loads are applied to spread
footings, which distribute the load over an area of soil sufficient to prevent overloading of
the soil. Some soil conditions require the use of pile foundations or other deep foundations.
At the perimeter of the building, the floor loads are supported either directly on the walls,
as shown in Fig. 1-6, or on exterior columns, as shown in Fig. 1-7. The walls or columns,
in turn, are supported by a basement wall and wall footings.

The first and second floor slabs in Fig. 1-6 are assumed to carry the loads in a north—
south direction (see direction arrow) to the joists or beams, which carry the loads in an
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east—west direction to other beams, girders, columns, or walls. This is referred to as one-way
slab action and is analogous to a wooden floor in a house, in which the floor decking trans-
mits loads to perpendicular floor joists, which carry the loads to supporting beams, and so on.

The ability to form and construct concrete slabs makes possible the slab or plate
type of structure shown in Fig. 1-7. Here, the loads applied to the roof and the floor are
transmitted in two directions to the columns by plate action. Such slabs are referred to as
two-way slabs.
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The first floor in Fig. 1-7 is a flat slab with thickened areas called drop panels at the
columns. In addition, the tops of the columns are enlarged in the form of capitals or
brackets. The thickening provides extra depth for moment and shear resistance adjacent to
the columns. It also tends to reduce the slab deflections.

The roof of the building shown in Fig. 1-7 is of uniform thickness throughout with-
out drop panels or column capitals. Such a floor is a special type of flat slab referred to as
a flat plate. Flat-plate floors are widely used in apartments because the underside of the
slab is flat and hence can be used as the ceiling of the room below. Of equal importance,
the forming for a flat plate is generally cheaper than that for flat slabs with drop panels or
for one-way slab-and-beam floors.

FACTORS AFFECTING CHOICE OF REINFORCED CONCRETE
FOR A STRUCTURE

The choice of whether a structure should be built of reinforced concrete, steel, masonry,
or timber depends on the availability of materials and on a number of value decisions.

1. Economy. Frequently, the foremost consideration is the overall cost of the
structure. This is, of course, a function of the costs of the materials and of the labor and
time necessary to erect the structure. Concrete floor systems tend to be thinner than struc-
tural steel systems because the girders and beams or joists all fit within the same depth, as
shown in the second floor in Fig. 1-6, or the floors are flat plates or flat slabs, as shown in
Fig. 1-7. This produces an overall reduction in the height of a building compared to a steel
building, which leads to (a) lower wind loads because there is less area exposed to wind and
(b) savings in cladding and mechanical and electrical risers.

Frequently, however, the overall cost is affected as much or more by the overall
construction time, because the contractor and the owner must allocate money to carry
out the construction and will not receive a return on their investment until the building
is ready for occupancy. As a result, financial savings due to rapid construction may
more than offset increased material and forming costs. The materials for reinforced
concrete structures are widely available and can be produced as they are needed in the
construction, whereas structural steel must be ordered and partially paid for in advance
to schedule the job in a steel-fabricating yard.

Any measures the designer can take to standardize the design and forming will
generally pay off in reduced overall costs. For example, column sizes may be kept the
same for several floors to save money in form costs, while changing the concrete strength
or the percentage of reinforcement allows for changes in column loads.

2. Suitability of material for architectural and structural function. A rein-
forced concrete system frequently allows the designer to combine the architectural and
structural functions. Concrete has the advantage that it is placed in a plastic condition and
is given the desired shape and texture by means of the forms and the finishing techniques.
This allows such elements as flat plates or other types of slabs to serve as load-bearing
elements while providing the finished floor and ceiling surfaces. Similarly, reinforced con-
crete walls can provide architecturally attractive surfaces in addition to having the ability to
resist gravity, wind, or seismic loads. Finally, the choice of size or shape is governed by the
designer and not by the availability of standard manufactured members.

3. Fire resistance. The structure in a building must withstand the effects of a fire
and remain standing while the building is being evacuated and the fire extinguished. A con-
crete building inherently has a 1- to 3-hour fire rating without special fireproofing or other
details. Structural steel or timber buildings must be fireproofed to attain similar fire ratings.
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4. Rigidity. The occupants of a building may be disturbed if their building oscil-
lates in the wind or if the floors vibrate as people walk by. Due to the greater stiffness and
mass of a concrete structure, vibrations are seldom a problem.

5. Low maintenance. Concrete members inherently require less maintenance
than do structural steel or timber members. This is particularly true if dense, air-entrained
concrete has been used for surfaces exposed to the atmosphere and if care has been taken
in the design to provide adequate drainage from the structure.

6. Availability of materials. Sand, gravel or crushed rock, water, cement, and
concrete mixing facilities are very widely available, and reinforcing steel can be trans-
ported to most construction sites more easily than can structural steel. As a result, rein-
forced concrete is frequently the preferred construction material in remote areas.

On the other hand, there are a number of factors that may cause one to select a mate-
rial other than reinforced concrete. These include:

1. Low tensile strength. As stated earlier, the tensile strength of concrete is much
lower than its compressive strength (about %); hence, concrete is subject to cracking when
subjected to tensile stresses. In structural uses, the cracking is restrained by using rein-
forcement, as shown in Fig. 1-4c, to carry tensile forces and limit crack widths to within ac-
ceptable values. Unless care is taken in design and construction, however, these cracks may
be unsightly or may allow penetration of water and other potentially harmful contaminants.

2. Forms and shoring. The construction of a cast-in-place structure involves
three steps not encountered in the construction of steel or timber structures. These are
(a) the construction of the forms, (b) the removal of these forms, and (c) the propping or
shoring of the new concrete to support its weight until its strength is adequate. Each of
these steps involves labor and/or materials that are not necessary with other forms of
construction.

3. Relatively low strength per unit of weight or volume. The compressive
strength of concrete is roughly 10 percent that of steel, while its unit density is roughly 30
percent that of steel. As a result, a concrete structure requires a larger volume and a greater
weight of material than does a comparable steel structure. As a result, steel is often selected
for long-span structures.

4. Time-dependent volume changes. Both concrete and steel undergo approxi-
mately the same amount of thermal expansion and contraction. Because there is less mass
of steel to be heated or cooled, and because steel is a better conductor than concrete, a steel
structure is generally affected by temperature changes to a greater extent than is a concrete
structure. On the other hand, concrete undergoes drying shrinkage, which, if restrained,
may cause deflections or cracking. Furthermore, deflections in a concrete floor will tend to
increase with time, possibly doubling, due to creep of the concrete under sustained com-
pression stress.

HISTORICAL DEVELOPMENT OF CONCRETE AND REINFORCED
CONCRETE AS STRUCTURAL MATERIALS

Cement and Concrete

Lime mortar was first used in structures in the Minoan civilization in Crete about 2000 B.C.
and is still used in some areas. This type of mortar had the disadvantage of gradually
dissolving when immersed in water and hence could not be used for exposed or under-
water joints. About the third century B.C., the Romans discovered a fine sandy volcanic
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ash that, when mixed with lime mortar, gave a much stronger mortar, which could be
used under water.

One of the most remarkable concrete structures built by the Romans was the dome of
the Pantheon in Rome, completed in A.D. 126. This dome has a span of 144 ft, a span
not exceeded until the nineteenth century. The lowest part of the dome was concrete
with aggregate consisting of broken bricks. As the builders approached the top of the
dome they used lighter and lighter aggregates, using pumice at the top to reduce the dead-
load moments. Although the outside of the dome was, and still is, covered with decora-
tions, the marks of the forms are still visible on the inside [1-2], [1-3].

While designing the Eddystone Lighthouse off the south coast of England just before
A.D. 1800, the English engineer John Smeaton discovered that a mixture of burned lime-
stone and clay could be used to make a cement that would set under water and be water
resistant. Owing to the exposed nature of this lighthouse, however, Smeaton reverted to the
tried-and-true Roman cement and mortised stonework.

In the ensuing years a number of people used Smeaton’s material, but the difficulty
of finding limestone and clay in the same quarry greatly restricted its use. In 1824, Joseph
Aspdin mixed ground limestone and clay from different quarries and heated them in a kiln
to make cement. Aspdin named his product Portland cement because concrete made from
it resembled Portland stone, a high-grade limestone from the Isle of Portland in the south
of England. This cement was used by Brunel in 1828 for the mortar in the masonry liner of
a tunnel under the Thames River and in 1835 for mass concrete piers for a bridge. Occa-
sionally in the production of cement, the mixture would be overheated, forming a hard
clinker which was considered to be spoiled and was discarded. In 1845, I. C. Johnson
found that the best cement resulted from grinding this clinker. This is the material now
known as Portland cement. Portland cement was produced in Pennsylvania in 1871 by
D. O. Saylor and about the same time in Indiana by T. Millen of South Bend, but it was not
until the early 1880s that significant amounts were produced in the United States.

Reinforced Concrete

W. B. Wilkinson of Newcastle-upon-Tyne obtained a patent in 1854 for a reinforced con-
crete floor system that used hollow plaster domes as forms. The ribs between the forms
were filled with concrete and were reinforced with discarded steel mine-hoist ropes in the
center of the ribs. In France, Lambot built a rowboat of concrete reinforced with wire in
1848 and patented it in 1855. His patent included drawings of a reinforced concrete beam
and a column reinforced with four round iron bars. In 1861, another Frenchman, Coignet,
published a book illustrating uses of reinforced concrete.

The American lawyer and engineer Thaddeus Hyatt experimented with reinforced
concrete beams in the 1850s. His beams had longitudinal bars in the tension zone and
vertical stirrups for shear. Unfortunately, Hyatt’s work was not known until he privately
published a book describing his tests and building system in 1877.

Perhaps the greatest incentive to the early development of the scientific knowledge of
reinforced concrete came from the work of Joseph Monier, owner of a French nursery gar-
den. Monier began experimenting in about 1850 with concrete tubs reinforced with iron for
planting trees. He patented his idea in 1867. This patent was rapidly followed by patents for
reinforced pipes and tanks (1868), flat plates (1869), bridges (1873), and stairs (1875). In
1880 and 1881, Monier received German patents for many of the same applications. These
were licensed to the construction firm Wayss and Freitag, which commissioned Professors
Morsch and Bach of the University of Stuttgart to test the strength of reinforced concrete
and commissioned Mr. Koenen, chief building inspector for Prussia, to develop a method
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for computing the strength of reinforced concrete. Koenen’s book, published in 1886, pre-
sented an analysis that assumed the neutral axis was at the midheight of the member.

The first reinforced concrete building in the United States was a house built on Long
Island in 1875 by W. E. Ward, a mechanical engineer. E. L. Ransome of California experi-
mented with reinforced concrete in the 1870s and patented a twisted steel reinforcing bar
in 1884. In the same year, Ransome independently developed his own set of design proce-
dures. In 1888, he constructed a building having cast-iron columns and a reinforced con-
crete floor system consisting of beams and a slab made from flat metal arches covered with
concrete. In 1890, Ransome built the Leland Stanford, Jr. Museum in San Francisco. This
two-story building used discarded cable-car rope as beam reinforcement. In 1903 in Penn-
sylvania, he built the first building in the United States completely framed with reinforced
concrete.

In the period from 1875 to 1900, the science of reinforced concrete developed
through a series of patents. An English textbook published in 1904 listed 43 patented sys-
tems, 15 in France, 14 in Germany or Austria—Hungary, 8 in the United States, 3 in the
United Kingdom, and 3 elsewhere. Most of these differed in the shape of the bars and the
manner in which the bars were bent.

From 1890 to 1920, practicing engineers gradually gained a knowledge of the mechan-
ics of reinforced concrete, as books, technical articles, and codes presented the theories. In an
1894 paper to the French Society of Civil Engineers, Coignet (son of the earlier Coignet) and
de Tedeskko extended Koenen’s theories to develop the working-stress design method for
flexure, which was used universally from 1900 to 1950. During the past seven decades,
extensive research has been carried out on various aspects of reinforced concrete behavior,
resulting in the current design procedures.

Prestressed concrete was pioneered by E. Freyssinet, who in 1928 concluded that it
was necessary to use high-strength steel wire for prestressing because the creep of concrete
dissipated most of the prestress force if normal reinforcing bars were used to develop the
prestressing force. Freyssinet developed anchorages for the tendons and designed and built
a number of pioneering bridges and structures.

Design Specifications for Reinforced Concrete

The first set of building regulations for reinforced concrete were drafted under the leader-
ship of Professor Morsch of the University of Stuttgart and were issued in Prussia in 1904.
Design regulations were issued in Britain, France, Austria, and Switzerland between 1907
and 1909.

The American Railway Engineering Association appointed a Committee on Masonry in
1890. In 1903 this committee presented specifications for portland cement concrete. Between
1908 and 1910, a series of committee reports led to the Standard Building Regulations for the
Use of Reinforced Concrete, published in 1910 [1-4] by the National Association of Cement
Users, which subsequently became the American Concrete Institute.

A Joint Committee on Concrete and Reinforced Concrete was established in 1904
by the American Society of Civil Engineers, the American Society for Testing and Ma-
terials, the American Railway Engineering Association, and the Association of Ameri-
can Portland Cement Manufacturers. This group was later joined by the American
Concrete Institute. Between 1904 and 1910, the Joint Committee carried out research.
A preliminary report issued in 1913 [1-5] lists the more important papers and books on
reinforced concrete published between 1898 and 1911. The final report of this commit-
tee was published in 1916 [1-6]. The history of reinforced concrete building codes in
the United States was reviewed in 1954 by Kerekes and Reid [1-7].
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1-6  BUILDING CODES AND THE ACI CODE

REFERENCES

The design and construction of buildings is regulated by municipal bylaws called building
codes. These exist to protect the public’s health and safety. Each city and town is free to
write or adopt its own building code, and in that city or town, only that particular code has
legal status. Because of the complexity of writing building codes, cities in the United
States generally base their building codes on model codes. Prior to the year 2000, there were
three model codes: the Uniform Building Code [1-8], the Standard Building Code [1-9], and
the Basic Building Code [1-10]. These codes covered such topics as use and occupancy
requirements, fire requirements, heating and ventilating requirements, and structural
design. In 2000, these three codes were replaced by the International Building Code
(IBC) [1-11], which is normally updated every three years.

The definitive design specification for reinforced concrete buildings in North America
is the Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary
(ACI 318R-11) [1-12]. The code and the commentary are bound together in one volume.

This code, generally referred to as the ACI Code, has been incorporated by reference
in the International Building Code and serves as the basis for comparable codes in Canada,
New Zealand, Australia, most of Latin America, and some countries in the middle east.
The ACI Code has legal status only if adopted in a local building code.

In recent years, the ACI Code has undergone a major revision every three years.
Current plans are to publish major revisions on a six-year cycle with interim revisions
half-way through the cycle. This book refers extensively to the 2011 ACI Code. It is rec-
ommended that the reader have a copy available.

The term structural concrete is used to refer to the entire range of concrete struc-
tures: from plain concrete without any reinforcement; through ordinary reinforced con-
crete, reinforced with normal reinforcing bars; through partially prestressed concrete,
generally containing both reinforcing bars and prestressing tendons; to fully prestressed
concrete, with enough prestress to prevent cracking in everyday service. In 1995, the title
of the ACI Code was changed from Building Code Requirements for Reinforced Concrete
to Building Code Requirements for Structural Concrete to emphasize that the code deals
with the entire spectrum of structural concrete.

The rules for the design of concrete highway bridges are specified in the AASHTO
LRFD Bridge Design Specifications, American Association of State Highway and Trans-
portation Officials, Washington, D.C. [1-13].

Each nation or group of nations in Europe has its own building code for reinforced
concrete. The CEB-FIP Model Code for Concrete Structures [1-14], published in 1978 and
revised in 1990 by the Comité Euro-International du Béton, Lausanne, was intended to serve
as the basis for future attempts to unify European codes. The European Community more
recently has published Eurocode No. 2, Design of Concrete Structures [1-15]. Eventually, it
is intended that this code will govern concrete design throughout the European Community.

Another document that will be used extensively in Chapters 2 and 19 is the ASCE
standard ASCE/SEI 7-10, entitled Minimum Design Loads for Buildings and Other Struc-
tures [1-16], published in 2010.

1-1 Reinforcing Bar Detailing Manual, Fourth Edition, Concrete Reinforcing Steel Institute, Chicago, IL,
290 pp.

1-2 Robert Mark, “Light, Wind and Structure: The Mystery of the Master Builders,” MIT Press, Boston,
1990, pp. 52-67.
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OBJECTIVES OF DESIGN

2-2

A structural engineer is a member of a team that works together to design a building, bridge,
or other structure. In the case of a building, an architect generally provides the overall lay-
out, and mechanical, electrical, and structural engineers design individual systems within
the building.

The structure should satisfy four major criteria:

1. Appropriateness. The arrangement of spaces, spans, ceiling heights, access,
and traffic flow must complement the intended use. The structure should fit its environment
and be aesthetically pleasing.

2. Economy. The overall cost of the structure should not exceed the client’s
budget. Frequently, teamwork in design will lead to overall economies.

3. Structural adequacy. Structural adequacy involves two major aspects.
(a) A structure must be strong enough to support all anticipated loadings safely.

(b) A structure must not deflect, tilt, vibrate, or crack in a manner that impairs
its usefulness.

4. Maintainability. A structure should be designed so as to require a minimum
amount of simple maintenance procedures.

THE DESIGN PROCESS

12

The design process is a sequential and iterative decision-making process. The three major
phases are the following:

1. Definition of the client’s needs and priorities. All buildings or other structures
are built to fulfill a need. It is important that the owner or user be involved in determining the
attributes of the proposed building. These include functional requirements, aesthetic require-
ments, and budgetary requirements. The latter include initial cost, premium for rapid con-
struction to allow early occupancy, maintenance, and other life-cycle costs.

2. Development of project concept. Based on the client’s needs and priorities, a
number of possible layouts are developed. Preliminary cost estimates are made, and the
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final choice of the system to be used is based on how well the overall design satisfies the
client’s needs within the budget available. Generally, systems that are conceptually simple
and have standardized geometries and details that allow construction to proceed as a series
of identical cycles are the most cost effective.

During this stage, the overall structural concept is selected. From approximate analy-
ses of the moments, shears, and axial forces, preliminary member sizes are selected for
each potential scheme. Once this is done, it is possible to estimate costs and select the most
desirable structural system.

The overall thrust in this stage of the structural design is to satisfy the design criteria
dealing with appropriateness, economy, and, to some extent, maintainability.

3. Design of individual systems. Once the overall layout and general structural
concept have been selected, the structural system can be designed. Structural design involves
three main steps. Based on the preliminary design selected in phase 2, a structural analysis
is carried out to determine the moments, shears, torques, and axial forces in the structure.
The individual members are then proportioned to resist these load effects. The proportion-
ing, sometimes referred to as member design, must also consider overall aesthetics, the
constructability of the design, coordination with mechanical and electrical systems, and the
sustainability of the final structure. The final stage in the design process is to prepare
construction drawings and specifications.

2-3  LIMIT STATES AND THE DESIGN OF REINFORCED CONCRETE

Limit States

When a structure or structural element becomes unfit for its intended use, it is said to have
reached a limit state. The limit states for reinforced concrete structures can be divided into
three basic groups:

1. Ultimate limit states. These involve a structural collapse of part or all of the
structure. Such a limit state should have a very low probability of occurrence, because it may
lead to loss of life and major financial losses. The major ultimate limit states are as follows:

(a) Loss of equilibrium of a part or all of the structure as a rigid body. Such a
failure would generally involve tipping or sliding of the entire structure and would
occur if the reactions necessary for equilibrium could not be developed.

(b) Rupture of critical parts of the structure, leading to partial or complete col-
lapse. The majority of this book deals with this limit state. Chapters 4 and 5 consider
flexural failures; Chapter 6, shear failures; and so on.

(c) Progressive collapse. In some structures, an overload on one member may
cause that member to fail. The load acting on it is transferred to adjacent members
which, in turn, may be overloaded and fail, causing them to shed their load to adja-
cent members, causing them to fail one after another, until a major part of the struc-
ture has collapsed. This is called a progressive collapse [2-1], [2-2]. Progressive
collapse is prevented, or at least is limited, by one or more of the following:

(i) Controlling accidental events by taking measures such as protection
against vehicle collisions or explosions.

(i) Providing local resistance by designing key members to resist acciden-
tal events.

(iii) Providing minimum horizontal and vertical ties to transfer forces.
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(iv) Providing alternative lines of support to anchor the tie forces.
(v) Limiting the spread of damage by subdividing the building with planes
of weakness, sometimes referred to as structural fuses.

A structure is said to have general structural integrity if it is resistant to progres-
sive collapse. For example, a terrorist bomb or a vehicle collision may accidentally
remove a column that supports an interior support of a two-span continuous beam. If
properly detailed, the structural system may change from two spans to one long span.
This would entail large deflections and a change in the load path from beam action to
catenary or tension membrane action. ACI Code Section 7.13 requires continuous
ties of tensile reinforcement around the perimeter of the building at each floor to
reduce the risk of progressive collapse. The ties provide reactions to anchor the cate-
nary forces and limit the spread of damage. Because such failures are most apt to
occur during construction, the designer should be aware of the applicable construc-
tion loads and procedures.

(d) Formation of a plastic mechanism. A mechanism is formed when the rein-
forcement yields to form plastic hinges at enough sections to make the structure unstable.

(e) Instability due to deformations of the structure. This type of failure involves
buckling and is discussed more fully in Chapter 12.

(f) Fatigue. Fracture of members due to repeated stress cycles of service loads
may cause collapse. Fatigue is discussed in Sections 3-14 and 9-8.

2. Serviceability limit states. These involve disruption of the functional use of
the structure, but not collapse per se. Because there is less danger of loss of life, a higher
probability of occurrence can generally be tolerated than in the case of an ultimate limit
state. Design for serviceability is discussed in Chapter 9. The major serviceability limit
states include the following:

(a) Excessive deflections for normal service. Excessive deflections may cause
machinery to malfunction, may be visually unacceptable, and may lead to damage
to nonstructural elements or to changes in the distribution of forces. In the case of
very flexible roofs, deflections due to the weight of water on the roof may lead to
increased depth of water, increased deflections, and so on, until the strength of the
roof is exceeded. This is a ponding failure and in essence is a collapse brought
about by failure to satisfy a serviceability limit state.

(b) Excessive crack widths. Although reinforced concrete must crack before
the reinforcement can function effectively, it is possible to detail the reinforcement
to minimize the crack widths. Excessive crack widths may be unsightly and may allow
leakage through the cracks, corrosion of the reinforcement, and gradual deterioration
of the concrete.

(¢) Undesirable vibrations. Vertical vibrations of floors or bridges and lateral
and torsional vibrations of tall buildings may disturb the users. Vibration effects have
rarely been a problem in reinforced concrete buildings.

3. Special limit states. This class of limit states involves damage or failure due to
abnormal conditions or abnormal loadings and includes:

(a) damage or collapse in extreme earthquakes,
(b) structural effects of fire, explosions, or vehicular collisions,
(¢) structural effects of corrosion or deterioration, and

(d) long-term physical or chemical instability (normally not a problem with
concrete structures).



Fig. 2-1
Beam with loads and a load
effect.
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Limit-States Design

Limit-states design is a process that involves

1. the identification of all potential modes of failure (i.e., identification of the sig-
nificant limit states),

2. the determination of acceptable levels of safety against occurrence of each limit
state, and

3. structural design for the significant limit states.

For normal structures, step 2 is carried out by the building-code authorities, who
specify the load combinations and the load factors to be used. For unusual structures, the
engineer may need to check whether the normal levels of safety are adequate.

For buildings, a limit-states design starts by selecting the concrete strength, cement con-
tent, cement type, supplementary cementitious materials, water—cementitious materials ratio,
air content, and cover to the reinforcement to satisfy the durability requirements of ACI
Chapter 4. Next, the minimum member sizes and minimum covers are chosen to satisfy the
fire-protection requirements of the local building code. Design is then carried out, starting by
proportioning for the ultimate limit states followed by a check of whether the structure will ex-
ceed any of the serviceability limit states. This sequence is followed because the major func-
tion of structural members in buildings is to resist loads without endangering the occupants.
For a water tank, however, the limit state of excessive crack width is of equal importance to
any of the ultimate limit states if the structure is to remain watertight [2-3]. In such a structure,
the design for the limit state of crack width might be considered before the ultimate limit states
are checked. In the design of support beams for an elevated monorail, the smoothness of the
ride is extremely important, and the limit state of deflection may govern the design.

Basic Design Relationship

Figure 2-1a shows a beam that supports its own dead weight, w, plus some applied loads,
Py, P, and P;. These cause bending moments, distributed as shown in Fig. 2-1b. The bend-
ing moments are obtained directly from the loads by using the laws of statics, and for a
known span and combination of loads w, P;, P,, and P53, the moment diagram is indepen-
dent of the composition or shape of the beam. The bending moment is referred to as a load
effect. Other load effects include shear force, axial force, torque, deflection, and vibration.

Py P2 P3

L l

A B L T A R O R I

(a) Beam.

(b) Load effect—bending moment.
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Fig. 2-2
Internal resisting moment.

Figure 2-2a shows flexural stresses acting on a beam cross section. The compressive
and tensile stress blocks in Fig. 2-2a can be replaced by forces C and T that are separated
by a distance jd, as shown in Fig. 2-2b. The resulting couple is called an internal resisting
moment. The internal resisting moment when the cross section fails is referred to as the
moment strength or moment resistance. The word “strength” also can be used to describe
shear strength or axial load strength.

The beam shown in Fig. 2-2 will support the loads safely if, at every section, the
resistance (strength) of the member exceeds the effects of the loads:

resistances = load effects 2-1)

To allow for the possibility that the resistances will be less than computed or the load
effects larger than computed, strength-reduction factors, ¢, less than 1, and load factors,
a, greater than 1, are introduced:

d)Rn = (X1S1 + a252 + .- (2-2a)

Here, R, stands for nominal resistance (strength) and S stands for load effects based on the
specified loads. Written in terms of moments, (2-2a) becomes

(rbMMn = O[DMD + aLML + - (2—2b)

where M,, is the nominal moment strength. The word “nominal” implies that this strength
is a computed value based on the specified concrete and steel strengths and the dimensions
shown on the drawings. M p and M, are the bending moments (load effects) due to the
specified dead load and specified live load, respectively; ¢, is a strength-reduction factor
for moment; and ap and «;, are load factors for dead and live load, respectively.

Similar equations can be written for shear, V, and axial force, P:

¢an = aDVD + aLVL + .- (2-2C)
(prn CYDPD + aLPL + .- (2-2d)

v

|

(a) Stresses acting on a cross section.

Y S

T

(b) Internal couple.
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Equation (2-1) is the basic limit-states design equation. Equations (2-2a) to (2-2d) are spe-
cial forms of this basic equation. Throughout the ACI Code, the symbol U is used to refer to the
combination (apD + a; L + ---). This combination is referred to as the factored loads. The
symbols M,,, V,,, T,,, and so on, refer to factored-load effects calculated from the factored loads.

2-4  STRUCTURAL SAFETY

Fig. 2-3

Comparison of measured and
computed failure moments,
based on all data for reinforced
concrete beams with

fe > 2000 psi [2-5].

There are three main reasons why safety factors, such as load and resistance factors, are
necessary in structural design:

1. Variability in strength. The actual strengths (resistances) of beams, columns,
or other structural members will almost always differ from the values calculated by the
designer. The main reasons for this are as follows [2-4]:

(a) variability of the strengths of concrete and reinforcement,

(b) differences between the as-built dimensions and those shown on the struc-
tural drawings, and

(c) effects of simplifying assumptions made in deriving the equations for mem-
ber strength.

A histogram of the ratio of beam moment capacities observed in tests, M, to the nom-
inal strengths computed by the designer, M,,, is plotted in Fig. 2-3. Although the mean strength
is roughly 1.05 times the nominal strength in this sample, there is a definite chance that some
beam cross sections will have a lower capacity than computed. The variability shown here is due
largely to the simplifying assumptions made in computing the nominal moment strength, M,,.

X = 1.05
50
< ox = 0.105
40 -
112 Tests

No. of tests

0.8 1.0 12 1.4
X = Miest/Mp
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2. Variability in loadings. All loadings are variable, especially live loads and envi-
ronmental loads due to snow, wind, or earthquakes. Figure 2-4a compares the sustained com-
ponent of live loads measured in a series of 151-ft? areas in offices. Although the average
sustained live load was 13 psf in this sample, 1 percent of the measured loads exceeded 44 psf.
For this type of occupancy and area, building codes specify live loads of 50 psf. For larger
areas, the mean sustained live load remains close to 13 psf, but the variability decreases, as
shown in Fig. 2-4b. A transient live load representing unusual loadings due to parties, tempo-
rary storage, and so on, must be added to get the total live load. As a result, the maximum live
load on a given office will generally exceed the 13 to 44 psf discussed here.

In addition to actual variations in the loads themselves, the assumptions and approx-
imations made in carrying out structural analyses lead to differences between the actual
forces and moments and those computed by the designer [2-4]. Due to the variabilities of
strengths and load effects, there is a definite chance that a weaker-than-average structure
will be subjected to a higher-than-average load, and in this extreme case, failure may
occur. The load factors and resistance (strength) factors in Egs. (2-2a) through (2-2d) are se-
lected to reduce the probability of failure to a very small level.

The consequences of failure are a third factor that must be considered in establishing
the level of safety required in a particular structure.

3. Consequences of failure. A number of subjective factors must be consid-
ered in determining an acceptable level of safety for a particular class of structure.
These include:

(a) The potential loss of life—it may be desirable to have a higher factor of
safety for an auditorium than for a storage building.

(b) The cost to society in lost time, lost revenue, or indirect loss of life or prop-
erty due to a failure—for example, the failure of a bridge may result in intangible
costs due to traffic conjestion that could approach the replacement cost.

(¢) The type of failure, warning of failure, and existence of alternative load
paths. If the failure of a member is preceded by excessive deflections, as in the case
of a flexural failure of a reinforced concrete beam, the persons endangered by the im-
pending collapse will be warned and will have a chance to leave the building prior to
failure. This may not be possible if a member fails suddenly without warning, as may
be the case for a compression failure in a tied column. Thus, the required level of
safety may not need to be as high for a beam as for a column. In some structures, the
yielding or failure of one member causes a redistribution of load to adjacent
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0.060 £0.060 (—
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tained component of live loads
in offices. (From [2-6].) (a) Area = 151 ft2. (b) Area = 2069 ft2.



Section 2-5 Probabilistic Calculation of Safety Factors ¢ 19

members. In other structures, the failure of one member causes complete collapse. If
no redistribution is possible, a higher level of safety is required.

(d) The direct cost of clearing the debris and replacing the structure and its contents.

2-5  PROBABILISTIC CALCULATION OF SAFETY FACTORS

Fig. 2-5

Safe and unsafe combinations
of loads and resistances.
(From [2-7].)

The distribution of a population of resistances, R, of a group of similar structures is plotted
on the horizontal axis in Fig. 2-5. This is compared to the distribution of the maximum
load effects, S, expected to occur on those structures during their lifetimes, plotted on the
vertical axis in the same figure. For consistency, both the resistances and the load effects
can be expressed in terms of a quantity such as bending moment. The 45° line in this fig-
ure corresponds to a load effect equal to the resistance. Combinations of S and R falling
above this line correspond to S > R and, hence, failure. Thus, load effect S; acting on a
structure having strength R; would cause failure, whereas load effect S, acting on a struc-
ture having resistance R, represents a safe combination.

For a given distribution of load effects, the probability of failure can be reduced by
increasing the resistances. This would correspond to shifting the distribution of resistances
to the right in Fig. 2-5. The probability of failure also could be reduced by reducing the dis-
persion of the resistances.

Theterm Y = R — S is called the safety margin. By definition, failure will occur if Y
is negative, represented by the shaded area in Fig. 2-6. The probability of failure, Py, is the
chance that a particular combination of R and S will give a negative value of Y. This proba-
bility is equal to the ratio of the shaded area to the total area under the curve in Fig. 2-6. This
can be expressed as

Py = probability that [Y < 0] @3

The function Y has mean value Y and standard deviation oy. From Fig. 2-6, it can
be seen that Y = 0 + Boy, where B = Y/oy. If the distribution is shifted to the right by
increasing the resistance, thereby making Y larger, B will increase, and the shaded area,
Py, will decrease. Thus, Py is a function of 8. The factor 8 is called the safety index.

If Y follows a standard statistical distribution, and if ¥ and oy are known, the proba-
bility of failure can be calculated or obtained from statistical tables as a function of the type
of distribution and the value of 3. Consequently, if Y follows a normal distribution and 3 is
3.5, thenY = 3.50y, and, from tables for a normal distribution, Py is 1/9090, or 1.1 X 1074,

Load effect, S
%)
N

Resistance, R



20 <+ Chapter2 The Design Process

Fig. 2-6

Safety margin, probability of
failure, and safety index.
(From [2-7].)

=<

Frequency

_/ 0 Y=R-S
P[(R — 8) < 0] = shaded area = P¢ Safety margin

This suggests that roughly 1 in every 10,000 structural members designed on the basis that
B = 3.5 will fail due to excessive load or understrength sometime during its lifetime.

The appropriate values of Py (and hence of () are chosen by bearing in mind the
consequences of failure. Based on current design practice, 3 is taken between 3 and 3.5 for
ductile failures with average consequences of failure and between 3.5 and 4 for sudden
failures or failures having serious consequences [2-7], [2-8].

Because the strengths and loads vary independently, it is desirable to have one factor,
or a series of factors, to account for the variability in resistances and a second series of
factors to account for the variability in load effects. These are referred to, respectively, as
strength-reduction factors (also called resistance factors), ¢, and load factors, . The
resulting design equations are Eqgs. (2-2a) through (2-2d).

The derivation of probabilistic equations for calculating values of ¢ and « is sum-
marized and applied in [2-7], [2-8], and [2-9].

The resistance and load factors in the 1971 through 1995 ACI Codes were based on a sta-
tistical model which assumed that if there were a 1/1000 chance of an “overload” and a 1/100
chance of “understrength,” the chance that an “overload” and an “‘understrength” would occur
simultaneously is 1/1000 X 1/100 or 1 X 107>, Thus, the ¢ factors for ductile beams origi-
nally were derived so that a strength of ¢ R,, would exceed the load effects 99 out of 100 times.
The ¢ factors for columns were then divided by 1.1, because the failure of a column has more
serious consequences. The ¢ factors for tied columns that fail in a brittle manner were divided
by 1.1 a second time to reflect the consequences of the mode of failure. The original derivation
is summarized in the appendix of [2-7]. Although this model is simplified by ignoring the over-
lap in the distributions of R and S in Figs. 2-5 and 2-6, it gives an intuitive estimate of the relative
magnitudes of the understrengths and overloads. The 2011 ACI Code [2-10] uses load factors
that were modified from those used in the 1995 ACI Code to be consistent with load factors
specified in ASCE/SEI 7-10 [2-2] for all types of structures. However, the strength reduction
factors were also modified such that the level of safety and the consideration of the conse-
quences of failure have been maintained for consistency with earlier editions of the ACI Code.

2-6  DESIGN PROCEDURES SPECIFIED IN THE ACI BUILDING CODE

Strength Design

In the 2011 ACI Code, design is based on required strengths computed from combina-
tions of factored loads and design strengths computed as ¢R,, where ¢ is a resistance
factor, also known as a strength-reduction factor, and R, is the nominal resistance. This
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process is called strength design. In the AISC Specifications for steel design, the same
design process is known as LRFD (Load and Resistance Factor Design). Strength design
and LRFD are methods of limit-states design, except that primary attention is placed on
the ultimate limit states, with the serviceability limit states being checked after the origi-
nal design is completed.

ACI Code Sections 9.1.1 and 9.1.2 present the basic limit-states design philosophy
of that code.

9.1.1—Structures and structural members shall be designed to have design strengths at all
sections at least equal to the required strengths calculated for the factored loads and forces in
such combinations as are stipulated in this code.

The term design strength refers to ¢R,,, and the term required strength refers to the load
effects calculated from factored loads, apD + ayL + ---

9.1.2—Members also shall meet all other requirements of this Code to insure adequate per-
formance at service load levels.

This clause refers primarily to control of deflections and excessive crack widths.

Working-Stress Design

Prior to 2002, Appendix A of the ACI Code allowed design of concrete structures either
by strength design or by working-stress design. In 2002, this appendix was deleted. The
commentary to ACI Code Section 1.1 still allows the use of working-stress design, pro-
vided that the local jurisdiction adopts an exception to the ACI Code allowing the use of
working-stress design. Chapter 9 on serviceability presents some concepts from
working-stress design. Here, design is based on working loads, also referred to as
service loads or unfactored loads. In flexure, the maximum elastically computed stresses
cannot exceed allowable stresses or working stresses of 0.4 to 0.5 times the concrete and
steel strengths.

Plastic Design

Plastic design, also referred to as limit design (not to be confused with limit-states design)
or capacity design, is a design process that considers the redistribution of moments as suc-
cessive cross sections yield, thereby forming plastic hinges that lead to a plastic mecha-
nism. These concepts are of considerable importance in seismic design, where the amount
of ductility expected from a specific structural system leads to a decrease in the forces that
must be resisted by the structure.

Plasticity Theorems

Several aspects of the design of statically indeterminate concrete structures are justified,
in part, by using the theory of plasticity. These include the ultimate strength design of
continuous frames and two-way slabs for elastically computed loads and moments, and
the use of strut-and-tie models for concrete design. Before the theorems of plasticity are
presented, several definitions are required:

e A distribution of internal forces (moments, axial forces, and shears) or corre-
sponding stresses is said to be statically admissible if it is in equilibrium with the
applied loads and reactions.
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* A distribution of cross-sectional strengths that equals or exceeds the statically
admissible forces, moments, or stresses at every cross section in the structure is said
to be a safe distribution of strengths.

* A structure is said to be a collapse mechanism if there is one more hinge, or
plastic hinge, than required for stable equilibrium.

e A distribution of applied loads, forces, and moments that results in a sufficient
number and distribution of plastic hinges to produce a collapse mechanism is said to
be kinematically admissible.

The theory of plasticity is expressed in terms of the following three theorems:

1. Lower-bound theorem. If a structure is subjected to a statically admissible dis-
tribution of internal forces and if the member cross sections are chosen to provide a safe
distribution of strength for the given structure and loading, the structure either will not col-
lapse or will be just at the point of collapsing. The resulting distribution of internal forces
and moments corresponds to a failure load that is a lower bound to the load at failure. This
is called a lower bound because the computed failure load is less than or equal to the actual
collapse load.

2. Upper-bound theorem. A structure will collapse if there is a kinematically
admissible set of plastic hinges that results in a plastic collapse mechanism. For any kine-
matically admissible plastic collapse mechanism, a collapse load can be calculated by
equating external and internal work. The load calculated by this method will be greater
than or equal to the actual collapse load. Thus, the calculated load is an upper bound to
the failure load.

3. Uniqueness theorem. If the lower-bound theorem involves the same forces,
hinges, and displacements as the upper-bound solution, the resulting failure load is the true
or unique collapse load.

For the upper- and lower-bound solutions to occur, the structure must have enough
ductility to allow the moments and other internal forces from the original loads to redis-
tribute to those corresponding to the bounds of plasticity solutions.

Reinforced concrete design is usually based on elastic analyses. Cross sections are
proportioned to have factored nominal strengths, ¢M,,, ¢P,, and ¢V, greater than or equal
to the M, P,, and V, from an elastic analysis. Because the elastic moments and forces are
a statically admissible distribution of forces, and because the resisting-moment diagram is
chosen by the designer to be a safe distribution, the strength of the resulting structure is a
lower bound.

Similarly, the strut-and-tie models presented in Chapter 17 (ACI Appendix A) give
lower-bound estimates of the capacity of concrete structures if

(a) the strut-and-tie model of the structure represents a statically admissible dis-
tribution of forces,

(b) the strengths of the struts, ties, and nodal zones are chosen to be safe, rela-
tive to the computed forces in the strut-and-tie model, and

(¢) the members and joint regions have enough ductility to allow the internal
forces, moments, and stresses to make the transition from the strut-and-tie forces and
moments to the final force and moment distribution.

Thus, if adequate ductility is provided the strut-and-tie model will give a so-called safe
estimate, which is a lower-bound estimate of the strength of the strut-and-tie model. Plas-
ticity solutions are used to develop the yield-line method of analysis for slabs, presented
in Chapter 14.
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2-7  LOAD FACTORS AND LOAD
COMBINATIONS IN THE 2011 ACI CODE

The 2011 ACI Code presents load factors and load combinations in Code Sections 9.2.1
through 9.2.5, which are from ASCE/SEI 7-10, Minimum Design Loads for Buildings and
Other Structures [2-2], with slight modifications. The load factors from Code Section 9.2
are to be used with the strength-reduction factors in Code Sections 9.3.1 through 9.3.5.
These load factors and strength reduction factors were derived in [2-8] for use in the
design of steel, timber, masonry, and concrete structures and are used in the AISC
LRFD Specification for steel structures [2-11]. For concrete structures, resistance fac-
tors that are compatible with the ASCE/SEI 7-10 load factors were derived by ACI
Committee 318 and Nowak and Szerszen [2-12].

Terminology and Notation

The ACI Code uses the subscript u to designate the required strength, which is a load effect
computed from combinations of factored loads. The sum of the combination of factored
loads is U as, for example, in

U=12D + 1.6L (2-4)

where the symbol U and subscript u are used to refer to the sum of the factored loads in
terms of loads, or in terms of the effects of the factored loads, M, V,, and P,.

The member strengths computed using the specified material strengths, f; and f,,
and the nominal dimensions, as shown on the drawings, are referred to as the nominal mo-
ment strength, M,,, or nominal shear strength, V,, and so on. The reduced nominal strength
or design strength is the nominal strength multiplied by a strength-reduction factor, ¢.
The design equation is thus:

d’Mn Mu (2'2b)
qan = Vu (2'20)

v

and so on.

Load Factors and Load Combinations from ACI Code
Sections 9.2.1 through 9.2.5

Load Combinations

Structural failures usually occur under combinations of several loads. In recent years these
combinations have been presented in what is referred to as the companion action format.
This is an attempt to model the expected load combinations.

The load combinations in ACI Code Section 9.2.1 are examples of companion action
load combinations chosen to represent realistic load combinations that might occur. In princi-
ple, each of these combinations includes one or more permanent loads (D or F') with load fac-
tors of 1.2, plus the dominant or principal variable load (L, S, or others) with a load factor of
1.6, plus one or more companion-action variable loads. The companion-action loads are
computed by multiplying the specified loads (L, S, W, or others) by companion-action load
factors between 0.2 and 1.0. The companion-action load factors were chosen to provide
results for the companion-action load effects that would be likely during an instance in which
the principal variable load is maximized.
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In the design of structural members in buildings that are not subjected to signifi-
cant wind or earthquake forces the factored loads are computed from either Eq. (2-5) or
Eq. (2-6):

U=14D (2-5)
(ACI Eq. 9-1)

where D is the specified dead load. Where a fluid load, F, is present, it shall be included with
the same load factor as used for D in this and the following equations.
For combinations including dead load; live load, L; and roof loads:

U=12D + 1.6L + 0.5(L,or Sor R) (2-6)
(ACI Eq. 9-2)
where
L = live load that is a function of use and occupancy
L, = roof live load
S = roof snow load
R = roof rain load

The terms in Egs. (2-5) through (2-11) may be expressed as direct loads (such as distrib-
uted loads from dead and live weight) or load effects (such as moments and shears
caused by the given loads). The design of a roof structure, or the columns and footings
supporting a roof and one or more floors, would take the roof live load equal to the
largest of the three loads (L, or S or R), with the other two roof loads in the brackets
taken as zero. For the common case of a member supporting dead and live load only, ACI
Eq. (9-2) is written as:

U=12D + 16L (2-4)

If the roof load exceeds the floor live loads, or if a column supports a total roof load that
exceeds the total floor live load supported by the column:

U=12D + 1.6(L,orSorR) + (1.0L or 0.5W) 2-7
(ACI Eq. 9-3)

The roof loads are principal variable loads in ACI Eq. (9-3), and they are companion
variable loads in ACI Eq. (9-4) and (9-2).

U= 12D + 1.0W + 1.0L + 0.5(L, or S or R) (2-8)
(ACI Eq. 9-4)

Wind load, W, is the principal variable load in ACI Eq. (9-4) and is a companion variable
load in ACI Eq. (9-3). Wind loads specified in ASCE/SEI 7-10 represent strength-level
winds, as opposed to the service-level wind forces specified in earlier editions of the
minimum load standards from ASCE/SEI Committee 7. If the governing building code
for the local jurisdiction specifies service-level wind forces, 1.6W is to be used in place
of 1.0W in ACI Eqgs. (9-4) and (9-6), and 0.8W is to be used in place of 0.5W in ACI
Eq. (9-3).

Earthquake Loads

If earthquake loads are significant:
U=12D + 1.0E + 1.0L + 0.2§ (2-9)
(ACI Eq. 9-5)

where the load factor of 1.0 for the earthquake loads corresponds to a strength-level
earthquake that has a much longer return period, and hence is larger than a service-load
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earthquake. If the loading code used in a jurisdiction is based on the service-load earth-
quake, the load factor on E is 1.4 instead of 1.0.

Dead Loads that Stabilize Overturning and Sliding

If the effects of dead loads stabilize the structure against wind or earthquake loads,

U =09D + 1.OW (2-10)
(ACI Eq. 9-6)

or
U =09D + 1.OE @2-11)
(ACI Eq. 9-7)

Load Factor for Small Live Loads

ACI Code Section 9.2.1(a) allows that the load factor of 1.0 for L in ACI Egs. (9-3), (9-4), and
(9-5) may be reduced to 0.5 except for

(a) garages,
(b) areas occupied as places of public assembly, and
(c) all areas where the live load is greater than 100 psf.

Lateral Earth Pressure

Lateral earth pressure is represented by the letter H. Where lateral earth pressure adds
to the effect of the principal variable load, H should be included in ACI Egs. (9-2),
(9-6), and (9-7) with a load factor of 1.6. When lateral earth pressure is permanent and
reduces the affect of the principal variable load, H should be included with a load fac-
tor of 0.9. For all other conditions, H is not to be used in the ACI load combination
equations.

Self-Straining Effects

ACI Code Section 9.2.3 uses the letter 7'to represent actions caused by differential settlement
and restrained volume change movements due to either shrinkage or thermal expansion and
contraction. Where applicable, these loads are to be considered in combination with other
loads. In prior editions of the ACI Code, T was combined with dead load, D, in ACI Eq.
(9-2), and thus, the load factor was 1.2. The 2011 edition of the ACI Code states that to es-
tablish the appropriate load factor for 7 the designer is to consider the uncertainty associated
with the magnitude of the load, the likelihood that T will occur simultaneously with the max-
imum value of other applied loads, and the potential adverse effects if the value of 7T has been
underestimated. In any case, the load factor for 7 is not to be taken less than 1.0. In typical
practice, expansion joints and construction pour strips have been used to limit the effects of
volume change movements. A recent study of precast structural systems [2-13] gives recom-
mended procedures to account for member and connection stiffnesses and other factors that
may influence the magnitude of forces induced by volume change movements.

In the analysis of a building frame, it is frequently best to analyze the structure
elastically for each load to be considered and to combine the resulting moments, shears,
and so on for each member according to Egs. (2-4) to (2-11). (Exceptions to this are
analyses of cases in which linear superposition does not apply, such as second-order
analyses of frames. These must be carried out at the factored-load level.) The procedure
used is illustrated in Example 2-1.
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EXAMPLE 2-1

Fig. 2-7

Moment diagrams—

Example 2-1.

Computation of Factored-Load Effects

Figure 2-7 shows a beam and column from a concrete building frame. The loads per
foot on the beam are dead load, D = 1.58 kips/ft, and live load, L = 0.75 kip/ft. Addition-
ally, wind load is represented by the concentrated loads at the joints. The moments in a beam
and in the columns over and under the beam due to 1.0D, 1.0L, and 1.0W are shown in
Figs. 2-7b to 2-7d.

Compute the required strengths, using Eqgs. (2-4) through (2-11). For the moment at
section A, four load cases must be considered

(a) U=14D (2-5)
(ACI Eq. 9-1)
® Because there are no fluid or thermal forces to consider, U = 1.4 X —39
= —54.6 k-ft.
2 kips
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(b) Moments due to 1.0D k-ft.
(d) Moments due to 1.0W k-ft.
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(b) U =12D + 1.6L + 0.5(L, or Sor R) (2-6)
(ACI Eq. 9-2)

® Assuming that there is no differential settlement of the interior columns rela-
tive to the exterior columns and assuming there is no restrained shrinkage, the self-
equilibrating actions, 7, will be taken to be zero.

® Because the beam being considered is not a roof beam, L,, S, and R are all
equal to zero. (Note that the axial loads in the columns support axial forces from the
roof load and the slab live load.)

ACI Eq. 9-2 becomes

U=12D + 1.6L (2-4)
=12X =39+ 1.6 X =19 = =772kt

(¢) Equation (2-7) does not govern because this is not a roof beam.

(d) For Eqg. (2-8), assume service-level wind forces have been specified, so the load
factor of 1.6 is used for W.

U=12D + 1.6W + 0.5L + 1.0(L,or Sor R) (2-8)
where ACI Code Section 9.2.1(a) allows 1.0L to be reduced to 0.5, so,

U=12D + 1.6W + 0.5L
1.2 X =39+ 1.6 X84 + 0.5 X —19
—56.3 + 1344

—191 or +78.1 k-ft

The positive and negative values of the wind-load moment are due to the possibility
of winds alternately blowing on the two sides of the building.

(e) The dead-load moments can counteract a portion of the wind- and live-load
moments. This makes it necessary to consider Eq. (2-10):

U=09D + 1.6W (2-10)
=09 X =39 +£ 1.6 X 84 = —35.1 + 134
+98.9 or —169 k-ft

Thus the required strengths, M, at section A-A are +98.9 k-ft and —191 k-ft. |

This type of computation is repeated for a sufficient number of sections to make it
possible to draw shearing-force and bending-moment envelopes for the beam.

Strength-Reduction Factors, ¢, ACI Code Section 9.3

The ACI Code allows the use of either of two sets of load combinations in design, and
it also gives two sets of strength-reduction factors. One set of load factors is given in
ACI Code Section 9.2.1, with the corresponding strength-reduction factors, ¢, given in
ACI Code Section 9.3.2. Alternatively, the load factors in Code Section C.9.2.1 and the
corresponding strength-reduction factors in ACI Code Section C.9.3.1 may be used.
This book only will use the load factors and strength-reduction factors given in Chapter 9
of the ACI Code.
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Flexure or Combined Flexure and Axial Load

Tension-controlled sections ¢ = 0.90
Compression-controlled sections:

(a) Members with spiral reinforcement ¢ = 0.75
(b) Other compression-controlled sections ¢ = 0.65

There is a transition region between tension-controlled and compression-controlled sec-
tions. The concept of tension-controlled and compression-controlled sections, and the
resulting strength-reduction factors, will be presented for beams in flexure, axially loaded
columns, and columns loaded in combined axial load and bending in Chapters 4, 5, and 11.
The derivation of the ¢ factors will be introduced at that time.

Other actions

Shear and torsion ¢ =0.75
Bearing on concrete ¢ = 0.65
Strut-and-tie model ¢ = 0.75

LOADINGS AND ACTIONS

Direct and Indirect Actions

An action is anything that gives rise to stresses in a structure. The term load or direct action
refers to concentrated or distributed forces resulting from the weight of the structure and
its contents, or pressures due to wind, water, or earth. An indirect action or imposed defor-
mation is a movement or deformation that does not result from applied loads, but that causes
stresses in a structure. Examples are uneven support settlements of continuous beams and
shrinkage of concrete if it is not free to shorten.

Because the stresses due to imposed deformations do not resist an applied load, they
are generally self-equilibrating. Consider, for example, a prism of concrete with a rein-
forcing bar along its axis. As the concrete shrinks, its shortening is resisted by the rein-
forcement. As a result, a compressive force develops in the steel and an equal and opposite
tensile force develops in the concrete, as shown in Fig. 2-8. If the concrete cracks from
this tension, the tensile force in the concrete at the crack is zero, and for equilibrium, the
steel force must also disappear at the cracked section. Section 1.3.3 of ASCE/SEI 7-10
refers to imposed deformations as self-straining forces.

Classifications of Loads

Loads may be described by their variability with respect to time and location. A
permanent load remains roughly constant once the structure is completed. Examples are
the self-weight of the structure and soil pressure against foundations. Variable loads, such
as occupancy loads and wind loads, change from time to time. Variable loads may be
sustained loads of long duration, such as the weight of filing cabinets in an office, or
loads of short duration, such as the weight of people in the same office. Creep deforma-
tions of concrete structures result from permanent loads and the sustained portion of the
variable loads. A third category is accidental loads, which include vehicular collisions
and explosions.
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Self-equilibrating stresses due

to shrinkage.
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A
A
(a) Prism after shrinkage.
Tensile stress
[l in concrete
-
— \ Compressive stress
—> in reinforcement

(b) Stresses on section A-A.

Variable loads may be fixed or free in location. Thus, the live loading in an office
building is free, because it can occur at any point in the loaded area. A train load on a
bridge is not fixed longitudinally, but is fixed laterally by the rails.

Loads frequently are classified as static loads if they do not cause any appreciable
acceleration or vibration of the structure or structural elements and as dynamic loads if
they do. Small accelerations are often taken into account by increasing the specified static
loads to account for the increases in stress due to such accelerations and vibrations. Larger
accelerations, such as those which might occur in highway bridges, crane rails, or elevator
supports are accounted for by multiplying the effect of the live load by an impact factor.
Alternatively, dynamic analyses may be used.

Three levels of live load or wind load may be of importance. The load used in calcula-
tions involving the ultimate limit states should represent the maximum load on the structure in
its lifetime. Wherever possible, therefore, the specified live, snow, and wind loadings should
represent the mean value of the corresponding maximum lifetime load. A companion-action
load is the portion of a variable load that is present on a structure when some other variable
load is at its maximum. In checking the serviceability limit states, it may be desirable to
use a frequent live load, which is some fraction of the mean maximum lifetime load
(generally, 50 to 60 percent); for estimating sustained load deflections, it may be desir-
able to consider a sustained or quasi-permanent live load, which is generally between
20 and 30 percent of the specified live load. This differentiation is not made in the ACI
Code, which assumes that the entire specified load will be the load present in service.
As aresult, service-load deflections and creep deflections of slender columns tend to be
overestimated.

Loading Specifications

Most cities in the United States base their building codes on the International Building
Code [2-14]. The loadings specified in this code are based on the loads recommended in
Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10 [2-2].

In the following sections, the types of loadings presented in ASCE/SEI 7-10
will be briefly reviewed. This review is intended to describe the characteristics of the
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various loads. For specific values, the reader should consult the building code in effect
in his or her own locality.

Dead Loads

The dead load on a structural element is the weight of the member itself, plus the weights
of all materials permanently incorporated into the structure and supported by the member
in question. This includes the weights of permanent partitions or walls, the weights of
plumbing stacks, electrical feeders, permanent mechanical equipment, and so on. Tables of
dead loads are given in ASCE/SEI 7-10.

In the design of a reinforced concrete member, it is necessary initially to estimate the
weight of the member. Methods of making this estimate are given in Chapter 5. Once the mem-
ber size has been computed, its weight is calculated by multiplying the volume by the den-
sity of concrete, taken as 145 Ib/ft* for plain concrete and 150 Ib/ft> for reinforced concrete
5 1b/ft is added to account for reinforcement). For lightweight concrete members, the densi-
ty of the concrete must be determined from trial batches or as specified by the producer. In
heavily reinforced members, the density of the reinforced concrete may exceed 150 Ib/fe3.

In working with SI units (metric units), the weight of a member is calculated by
multiplying the volume by the mass density of concrete and the gravitational constant, 9.81
N/kg. In this calculation, it is customary to take the mass density of normal-density concrete
containing an average amount of reinforcement (roughly, 2 percent by volume) as 2450 kg/m3,
made up of 2300 kg/m3 for the concrete and 150 kg/m3 for the reinforcement. The weight of a
cubic meter of reinforced concrete is thus (1 m? X 2450 kg/m® X 9.81 N/kg)/1000 =
24.0 kN, and its weight density is 24 kN/m?.

The dead load referred to in ACI Egs. (9-1) to (9-7) is the load computed from the
dimensions shown on drawings and the assumed densities. It is therefore close to the mean
value of this load. Actual dead loads will vary from the calculated values, because the
actual dimensions and densities may differ from those used in the calculations. Sometimes
the materials for the roof, partitions, or walls are chosen on the basis of a separate bid doc-
ument, and their actual weights may be unknown at the time of the design. Tabulated den-
sities of materials frequently tend to underestimate the actual dead loads of the material in
place in a structure.

Some types of dead load tend to be highly uncertain. These include pavement on
bridges, which may be paved several times over a period of time, or where a greater thick-
ness of pavement may be applied to correct sag or alignment problems. Similarly, earth fill
over an underground structure may be up to several inches thicker than assumed and may
or may not be saturated with water. In the construction of thin curved-shell roofs or other
lightweight roofs, the concrete thickness may exceed the design values and the roofing
may be heavier than assumed.

If dead-load moments, forces, or stresses tend to counteract those due to live loads or
wind loads, the designer should carefully examine whether the counteracting dead load
will always exist. Thus, dead loads due to soil or machinery may be applied late in the con-
struction process and may not be applied evenly to all parts of the structure at the same
time, leading to a potentially critical set of moments, forces, or stresses under partial loads.

It is generally not necessary to checkerboard the self-weight of the structure by
using dead-load factors of ap = 0.9 and 1.2 in successive spans, because the structural
dead loads in successive spans of a beam tend to be highly correlated. On the other hand,
it may be necessary to checkerboard the superimposed dead load by using load factors of
ap = 0 or 1.2 in cases where counteracting dead load is absent at some stages of con-
struction or use.
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Live Loads Due to Use and Occupancy

Most building codes contain a table of design or specified live loads. To simplify the calcula-
tions, these are expressed as uniform loads on the floor area. In general, a building live load con-
sists of a sustained portion due to day-to-day use (see Fig. 2-4) and a variable portion generated
by unusual events. The sustained portion changes a number of times during the life of the
building—when tenants change, when the offices are rearranged, and so on. Occasionally, high
concentrations of live loading occur during periods when adjacent spaces are remodeled,
when office parties are held, or when material is stored temporarily. The loading given in build-
ing codes is intended to represent the maximum sum of these loads that will occur on a small
area during the life of the building. Typical specified live loads are given in Table 2-1.

In buildings where nonpermanent partitions might be erected or rearranged during
the life of the building, allowance should be made for the weight of these partitions.
ASCE/SEI 7-10 specifies that provision for partition weight should be made, regardless
of whether partitions are shown on the plans, unless the specified live load exceeds 80 psf.
It is customary to represent the partition weight with a uniform load of 20 psf or a uniform
load computed from the actual or anticipated weights of the partitions placed in any prob-
able position. ASCE/SEI 7-10 considers this to be live load, because it may or may not be
present in a given case.

As the loaded area increases, the average maximum lifetime load decreases because,
although it is quite possible to have a heavy load on a small area, it is unlikely that this
would occur in a large area. This is taken into account by multiplying the specified live
loads by a live-load reduction factor.

In ASCE/SEI 7-10, this factor is based on the influence area, A;, for the member
being designed. The concept of influence lines and influence areas is discussed in
Chapter 5. To figure out the influence area of a given member, one imagines that the
member in question is raised by a unit amount, say, 1 in. as shown in Fig. 2-9. The portion

TABLE 2-1 Typical Live Loads Specified in ASCE/SEI 7-10

Uniform, psf Concentration, Ib
Apartment buildings
Private rooms and corridors serving them 40
Public rooms and corridors serving them 100
Office buildings
Lobbies and first-floor corridors 100 2000
Offices 50 2000
Corridors above first floor 80 2000
File and computer rooms shall be designed
for heavier loads based on anticipated
occupancy
Schools
Classrooms 40 1000
Corridors above first floor 80 1000
First-floor corridors 100 1000
Stairs and exitways 100
Storage warehouses
Light 125
Heavy 250
Stores
Retail
Ground floor 100 1000
Upper floors 75 1000

Wholesale, all floors 125 1000
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Fig. 2-9
Influence areas.

(a) Interior floor beam.

(b) Edge column.

of the loaded area that is raised when this is done is called the influence area, A, because
loads acting anywhere in this area will have a significant impact on the load effects in the
member in question. This concept is illustrated in Fig. 2-9 for an interior floor beam and
an edge column.

In contrast, the tributary area, Ar, extends out from the beam or column to the lines of
zero shear in the floor around the member under consideration. For the beam in Fig. 2-9a, the
limits on Ay are given by the dashed lines halfway to the next beam on each side. The tribu-
tary areas are shown in a darker shading in Figs. 2-9a and 2-9b. An examination of Fig. 2-9a
shows that Ay is half of A; for an interior beam. For the column in Fig. 2-9b, A7 is one-fourth
of A;. Because two-way slab design is based on the total moments in one slab panel, the
influence area for such a slab is defined by ASCE/SEI 7-10 as the panel area.

Previous versions of the ASCE/SEI 7 document allowed the use of reduced live loads,
L, in the design of members, based on the influence area A;. However, the influence-area
concept is not widely known compared with that of the tributary area, A7. In ASCE/SEI
7-10, the influence area is given as A; = KAy, where Ar is the tributary area of the
member being designed and K is the ratio A;/A7. The reduced live load, L, is given by

15

VKAt

L=1,025+ (2-12)
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where L, is the unreduced live load. Values of K are given as follows:
Interior columns and exterior columns

without cantilever slabs K =4
Exterior columns with cantilever slabs Kip =3
Corner columns with cantilever slabs Kip =2

Interior beams and edge beams without
cantilever slabs Kip =2

All other members, including one-way
and two-way slabs K ;=1

The live-load reduction applies only to live loads due to use and occupancy (not for
snow, etc.). No reduction is made for areas used as places of public assembly, for garages,
or for roofs. In ASCE/SEI 7-10, the reduced live load cannot be less than 50 percent of the
unreduced live load for columns supporting one floor or for flexural members, and no less
than 40 percent for other members.

For live loads exceeding 100 psf, no reduction is allowed by ASCE/SEI 7-10, except that
the design live load on columns supporting more than one floor can be reduced by 20 percent.

The reduced uniform live loads are then applied to those spans or parts of spans that
will give the maximum shears, moments, and so on, at each critical section. This approach
is illustrated in Chapter 5.

The ASCE/SEI 7-10 standard requires that office and garage floors and sidewalks
be designed to safely support either the reduced uniform design loads or a concentrated load
of from 1000 to 8000 1b (depending on occupancy), spread over an area of from 4.5 in. by
4.5 in. to 30 in. by 30 in. The concentrated loads are intended to represent heavy items such
as office safes, pianos, car wheels, and so on.

In checking the concentrated load capacity, it generally is necessary to assume an effec-
tive width of floor to carry the load to the supports. For one-way floors, this is usually the
width of the concentrated load reaction plus one slab effective depth on each side of the
load. For two-way slabs, Chapter 13 shows that a concentrated load applied at various
points in the slab gives maximum moments (at midspan and near the support columns) that
are similar in magnitude to those computed for a complete panel loaded with a uniform
load. In many cases, this makes it unnecessary to check the concentrated load effects on
maximum moment for two-way slabs.

The live loads are assumed to be large enough to account for the impact effects of
normal use and traffic. Special impact factors are given in the loading specifications for
supports of elevator machinery, large reciprocating or rotating machines, and cranes.

Classification of Buildings for Wind, Snow,
and Farthquake Loads

The ASCE/SEI 7-10 requirements for design for wind, snow, and earthquake become pro-
gressively more restrictive as the level of risk to human life in the event of a collapse
increases. These are referred to as risk categories:

I. Buildings and other structures that represent a low hazard to human life in the
event of failure, such as agricultural facilities.

II. Buildings and other structures that do not fall into categories I, III, or IV.

ITI. Buildings or other structures that represent a substantial hazard to human life
in the event of failure, such as assembly occupancies, schools, and detention facili-
ties. Also, buildings and other structures not included in risk category IV that contain
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a sufficient quantity of highly toxic or explosive substances that pose a significant
threat to the general public if released.

IV. Buildings and other structures designated as essential facilities, such as hospitals,
fire and police stations, communication centers, and power-generating stations and facil-
ities. Also, buildings and other structures that contain a sufficient quantity of highly toxic
or explosive substances that pose a significant threat to the general public if released.

Snow Loads, $

Snow accumulation on roofs is influenced by climatic factors, roof geometry, and the expo-
sure of the roof to the wind. Unbalanced snow loads due to drifting or sliding of snow or
uneven removal of snow by workers are very common. Large accumulations of snow
often will occur adjacent to parapets or other points where roof heights change.
ASCE/SEI 7-10 gives detailed rules for calculating snow loads to account for the effects
of snow drifts. It is necessary to design for either a uniform or an unbalanced snow load,
whichever gives the worst effect.

Roof Live Loads, L,, and Rain Loads, R

In addition to snow loads, roofs should be designed for certain minimum live loads (L,) to
account for workers or construction materials on the roof during erection or when repairs
are made. Consideration must also be given to loads due to rainwater, R. Because roof
drains are rarely inspected to remove leaves or other debris, ASCE/SEI 7-10 requires that
roofs be able to support the load of all rainwater that could accumulate on a particular por-
tion of a roof if the primary roof drains were blocked. Frequently, controlled-flow roof
drains are used. These slow the flow of rainwater off a roof. This reduces plumbing and
storm sewage costs but adds to the costs of the roof structure.

If the design snow load is small and the roof span is longer than about 25 ft, rainwa-
ter will tend to form ponds in the areas of maximum deflection. The weight of the water in
these regions will cause an increase in the deflections, allowing more water to collect, and
so on. If the roof is not sufficiently stiff, a ponding failure will occur when the weight of
ponded water reaches the capacity of the roof members [2-14].

Construction Loads

During the construction of concrete buildings, the weight of the fresh concrete is support-
ed by formwork, which frequently rests on floors lower down in the structure. In addition,
construction materials are often piled on floors or roofs during construction. ACI Code
Section 6.2.2.2 states the following:

No construction loads exceeding the combination of superimposed dead load plus specified
live load shall be supported on any unshored portion of the structure under construction,
unless analysis indicates adequate strength to support such additional loads.

Wind Loads

The pressure exerted by the wind is related to the square of its velocity. Due to the rough-
ness of the earth’s surface, the wind velocity at any particular instant consists of an average
velocity plus superimposed turbulence, referred to as gusts. As a result, a structure
subjected to wind loads assumes an average deflected position due to the average velocity
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pressure and vibrates from this position in response to the gust pressure. In addition, there
will generally be deflections transverse to the wind (due to vortex shedding) as the wind
passes the building. The vibrations due to the wind gusts are a function of (1) the rela-
tionship between the natural energy of the wind gusts and the energy necessary to displace
the building, (2) the relationship between the gust frequencies and the natural frequency of
the building, and (3) the damping of the building [2-16].

Three procedures are specified in ASCE/SEI 7-10 for the calculation of wind pres-
sures on buildings: the envelope procedure, limited in application to buildings with a
mean roof height of 60 ft or less; the directional procedure, limited to regular buildings
that do not have response characteristics making it subject to a cross-wind loading, vortex
shedding, or channeling of the wind due to upwind obstructions; and the wind tunnel proce-
dure, used for complex buildings. We shall consider the directional procedure. Variations of
this method apply to design of the main wind-force-resisting systems of buildings and to the
design of components and cladding.

In the directional procedure, the wind pressure on the main wind-force-resisting
system is

p = qGC, — q;(GCp;) (2-13)

where either ¢ = ¢, the velocity pressure evaluated at height z above the ground on the
windward wall, or ¢ = g, the pressure (suction) on the roof, leeward walls, and sidewalls,
evaluated at the mean roof height, 4, and g; is the internal pressure or suction on the interior
of the walls and roof of the building, also evaluated at the mean roof height.

The total wind pressure p, is the sum of the external pressure on the windward
wall and the suction on the leeward wall, which is given by the first term on the right-
hand side of Eq. (2-13) plus the second term, p;, which accounts for the internal pres-
sure. The internal pressure, p;, is the same on all internal surfaces at any given time.
Thus, the internal pressure or suction on the inside of the windward wall is equal but
opposite in direction to the internal pressure or suction on the inside of the leeward
wall. As a result, the interior wind forces on opposite walls cancel out in most cases,
leaving only the external pressure to be resisted by the main wind-force-resisting sys-
tem. The terms in Eq. (2-13) are defined as:

1. Design pressure, p. The design pressure is an equivalent static pressure or suc-
tion in psf assumed to act perpendicular to the surface in question. On some surfaces, it
varies over the height; on others, it is assumed to be constant.

2. Wind Velocity pressure, g. The wind velocity pressure at height z on the wind-
ward wall, g, is the pressure (psf) exerted by the wind on a flat plate suspended in the wind
stream. It is calculated as

g, = 0.00256K K K ;V'* (2-14)
where

V = nominal design 3-sec gust wind speed in miles per hour at a height of 33 ft
(10 m) above the ground in Exposure C, open terrain (3% probability of
exceedance in 50 years; Category III and IV buildings)

K, = velocity pressure exposure coefficient, which increases with height above the
surface and reflects the roughness of the surface terrain

K ., = the topographic factor that accounts for increases in wind speed as it passes
over hills

K, = directionality factor equal to 0.85 for rectangular buildings and 0.90 to 0.95
for circular tanks and the like
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Fig. 2-10

Profiles of velocity pressure
exposure coefficient, K, for
differing terrain.

The constant 0.00256 reflects the mass density of the air and accounts for the mixture of
units in Eq. (2-14).

Several maps and tables for the variables in Eq. (2-14) are given in ASCE/SEI 7-10.
Special attention must be given to mountainous terrain, gorges, and promontories subject
to unusual wind conditions and regions subject to tornadoes.

At any location, the mean wind velocity is affected by the roughness of the terrain
upwind from the structure in question. At a height of 700 to 1500 ft, the wind reaches a
steady velocity, as shown by the vertical lines in the plots of K, in Fig. 2-10. Below this
height, the velocity decreases and the turbulence, or gustiness, increases as one approaches
the surface. These effects are greater in urban areas than in rural areas, due to the greater
surface roughness in built-up areas. The factor K, in Eq. (2-14) relates the wind pressure at
any elevation z feet to that at 33 ft (10 m) above the surface for Exposure C. ASCE/SEI 7-10
gives tables and equations for K as a function of the type of exposure (urban, country, etc.)
and the height above the surface.

For side walls, leeward wall, and roof surfaces, g, is a constant suction (negative
pressure) evaluated by using & equal to the average height of the roof.

3. Gust-effect factor, G. The gust-effect factor, G, in Eq. (2-13) relates the
dynamic properties of the wind and the structure. For flexible buildings, it is calculated.
For most buildings that tend to be stiff, it is taken to be equal to 0.85.

4. External pressure coefficient, C,. When wind blows past a structure, it exerts a
positive pressure on the windward wall and a negative pressure (suction) on the leeward
wall, side walls, and roof as shown in Fig. 2-11. The overall pressures to be used in the
design of a structural frame are computed via Eq. (2-13), where C,, is the sum or difference in
the pressure coefficients for the windward and leeward walls. Thus, C, = +0.80 (pressure)
on the left-hand (windward) wall in Fig. 2-11 and C,, = —0.50 (suction) on the right-hand
(leeward) wall add together to produce the load on the frame because they have the same
direction. Values of the pressure coefficients are given in the ASCE/SEI 7-10. Typical values
are shown in Fig. 2-11 for a building having the shape and proportions shown. For a rectan-
gular building with the wind on the narrow side, C,, for the leeward wall varies between
—0.5 and —0.2.

Earthquake Loads

Earthquake loads and design for earthquakes are discussed in Chapter 19.
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Self-Equilibrating Loadings

Most loads result from things like the weight of the structure or externally applied loads,
such as live load or wind load. These loads cause internal forces and moments that are
in equilibrium with the external loads. Many structures are subjected to imposed or
restrained deformations, which are independent of the applied loads. Examples include
differential settlements, nonlinear thermal stresses in bridge decks, restrained shrink-
age, and prestressing of indeterminate structures. These deformations cause a set of
internal forces or moments that are in equilibrium with themselves, as shown in
Fig. 2-8. ASCE/SEI 7-10 refers to these as self-straining forces. Because these loading
cases do not involve applied loads, the magnitude of the internal forces and moments
results from

(a) the magnitude of the imposed deformation, and

(b) the resistance of the structure to the deformation (a function of the stiffness
of the structure at the time that the deformation occurs).

Consider a two-span beam in which the central support settles relative to the line
joining the end supports. The structure resists the differential settlement, setting up internal
forces and moments. If the beam is uncracked when it is forced through the differential set-
tlement, the internal forces are larger than they would be if the beam were cracked. If the
beam undergoes creep, the magnitude of the internal forces and moments decreases, as
shown experimentally by Ghali, Dilger, and Neville [2-17].

Similarly, prestress forces in a two-span continuous beam may tend to lift the center
reaction off its support, changing the reactions. This, in turn, causes internal forces and so-called
secondary moments that are in equilibrium with the change in the reactions. The magnitude of
these forces and moments is larger in an uncracked beam than in a cracked beam. They may
be partially dissipated by creep.

Other Loads

ASCE/SEI 7-10 also gives soil loads on basement walls, loads due to floods, and loads due
to ice accretion.
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DESIGN FOR ECONOMY

A major aim of structural design is economy. The overall cost of a building project is
strongly affected by both the cost of the structure and the financing charges, which are a
function of the rate of construction.

In a cast-in-place building, the costs of the floor and roof systems make up roughly
90 percent of the total structural costs. The cost of a floor system is divided between the
costs of building and stripping the forms; providing, bending, and placing the reinforcement;
and providing, placing, and finishing the concrete. In general, material costs increase as the
column spacing increases and the cost of the forms is the largest single item, accounting for
40 to 60 percent of the total costs.

Formwork costs can be reduced by reusing the forms from area to area and floor to
floor. Beam, slab, and column sizes should be chosen to allow the maximum reuse of the
forms. It is generally uneconomical to try to save concrete and steel by meticulously calculat-
ing the size of every beam and column to fit the loads exactly, because, although this could
save cents in materials, it will cost dollars in forming costs.

Furthermore, changing section sizes often leads to increased design complexity,
which in turn leads to a greater chance of design error and a greater chance of construction
error. A simple design that achieves all the critical requirements saves design and con-
struction time and generally gives an economical structure.

Wherever possible, haunched beams should be avoided. If practical, beams should
be the same width as or a little wider than the columns into which they frame, to simplify
the formwork for column-beam joints. Deep spandrel beams along the edge of a building
make it difficult to move forms from floor to floor and should be avoided if possible. In
one-way floor construction, it is advisable to use the same beam depth throughout rather
than switching from deep beams for long spans to shallow beams for short spans. The sav-
ing in concrete due to such a change is negligible and generally is more than offset by the
extra labor of materials required, plus the need to rent or construct different sizes of beam
forms.

If possible, a few standard column sizes should be chosen, with each column size
maintained for three or four stories or the entire building. The amount of reinforcement
and the concrete strength used can vary as the load varies. Columns should be aligned on a
regular grid, if possible, and constant story heights should be maintained.

Economies are also possible in reinforcement placing. Complex or congested rein-
forcement will lead to higher per-pound charges for placement of the bars. It frequently
is best, therefore, to design columns for 1.5 to 2 percent reinforcement and beams for no
more than one-half to two-thirds of the maximum allowable reinforcement ratios. Grade-
60 reinforcement almost universally is used for column reinforcement and flexural rein-
forcement in beams. In slabs where reinforcement quantities are controlled by minimum
reinforcement ratios, there may be a slight advantage in using Grade-40 reinforcement
(only available in smaller bar sizes). The same may be true for stirrups in beams if the
stirrup spacings tend to be governed by the maximum spacings. However, before speci-
fying Grade-40 steel, the designer should check whether it is available locally in the
sizes needed.

Because the flexural strength of a floor is relatively insensitive to concrete
strength, there is no major advantage in using high-strength concrete in floor systems.
An exception to this would be a flat-plate system, where the shear capacity may govern
the thickness. On the other hand, column strengths are related directly to concrete
strength, and the most economical columns tend to result from the use of high-strength
concrete.
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2-10 SUSTAINABILITY

Sustainability and green buildings are currently hot topics in the construction industry, but
durability and longevity have always been major reasons for selecting reinforced concrete
as the construction material for buildings and other civil-infrastructure systems. The aes-
thetic qualities and the versatility of reinforced concrete have made it a popular choice for
many architects and structural engineers. Both initial and life-cycle economic considera-
tions, as well as the thermal properties of concrete, also play major roles in the selection of
reinforced concrete for buildings and other construction projects.

Sustainable/green construction is not easily defined, but an excellent discussion of
sustainability issues in concrete construction is given in reference [2-18]. In general, green
buildings will be viewed somewhat differently by the owner, designer and general public,
but as noted in reference [2-18], sustainable design is generally accepted as a compromise
between economic considerations, social values, and environmental impacts. Reinforced
concrete construction fits into this general framework as follows.

Economic impact is one of the three primary components of sustainable construc-
tion. Economic considerations include both the initial and life-cycle costs of either a build-
ing or component of the civil-infrastructure system. Whether cast-in-place or precast,
reinforced concrete is normally produced using local materials and labor, and thus, helps to
stimulate the local economy while reducing transportation costs and energy consumption.
Efficient structural designs can reduce the total quantity of concrete and reinforcing steel
required for different building components and innovative mix designs can include recy-
cled industrial by-products to reduce the consumption of new materials and the amount of
cement required per cubic yard of concrete. Concrete’s thermal mass and reflective prop-
erties can also reduce life-cycle energy consumption, and thus the operating costs for a
building.

Aesthetics and occupant comfort are major factors in evaluating the sustainability of
a building. A well-designed and aesthetically pleasing building will have a low environ-
mental impact and can be a source of pride for the local community. Concrete’s ability to
be molded into nearly any form can make it particularly suitable for innovative and aes-
thetically pleasing architecture. A sustainable building should also provide a comfortable
living and working environment for its occupants. Through its thermal mass properties,
concrete can play a role in modulating interior temperatures, it can reduce natural lighting
requirements because of it reflectance and ability to adapt to various methods of utilizing
natural lighting, and it can reduce the use of potentially hazardous interior finishes because
it can be used as a finished interior or exterior surface. Durability of a structure is an inte-
gral part of reducing the long-term costs and use of natural resources in a sustainable build-
ing. Many buildings change usage and owners over their service life and the longer a
building can perform its required functions without undergoing major renovations, the
more it benefits the overall society. Concrete has a long history of providing durable and
robust structures, and while a fifty-year service life is typically discussed for most new
construction, modern concrete structures are likely to have a service life that exceeds one
hundred years.

Reducing the carbon footprint is a major concern for all new construction and is
often discussed in terms of CO, emissions both during construction and over the life span
of a building. Many items that reduce the energy consumption, and thus CO, emissions,
over the service life of a concrete structure have been noted in the previous paragraphs.
One of the commonly noted concerns regarding concrete construction is the emission of
green-house gases during the manufacture of cement. The three primary sources of CO,
emissions in cement production and distribution are: (1) the energy consumed to heat the
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kilns during cement production, (2) the release of CO, from the limestone during the
physical/chemical process that converts limestone, shale, clay, and other raw materials into
calcium silicates, and (3) the transportation of cement from the point of manufacture to con-
crete production facilities. The cement industry is actively working to reduce CO, emissions
in all three areas through the use of alternate fuels to fire the kilns, plant modifications to
improvement energy efficiency, carbon capture and storage systems, and more fuel-efficient
cement handling and distribution systems. As noted previously, the carbon footprint per
cubic yard of concrete can also be reduced through the use of supplemental cementitious
materials, such as fly ash, slag cement, and silica fume, to replace a portion of the cement
in a typical mix design.

Sustainability considerations are not typically incorporated into national building
codes like the widely used International Building Code [2-14]. The American Concrete
Institute’s Building Code Requirements for Structural Concrete [2-10] is the recognized
standard for the design of concrete structures and is adopted by reference into the Interna-
tional Building Code. The ACI has recently established a sustainability committee (ACI
Committee 130) that is tasked to work with other ACI technical committees, including the
building code committee, to include sustainability issues in the design requirements for
concrete structures. Many ACI documents and standards refer to materials standards devel-
oped by the American Society for Testing and Materials (ASTM) and ASTM has also
developed a sustainability committee to work with its technical committees to include sus-
tainability considerations in the development and revision of ASTM standards.

2-11 CUSTOMARY DIMENSIONS AND CONSTRUCTION TOLERANCES

2-12 INSPECTION

The selection of dimensions for reinforced concrete members is based on the size required
for strength and for other aspects arising from construction considerations. Beam widths
and depths and column sizes are generally varied in whole inch increments, and slab thick-
nesses in %—in. increments.

The actual as-built dimensions will differ slightly from those shown on the draw-
ings, due to construction inaccuracies. ACI Standard 347 [2-19] on formwork gives the
accepted tolerances on cross-sectional dimensions of concrete columns and beams as

i% in. and on the thickness of slabs and walls as in + % in. For footings, they recommend tol-

erances of +2 in. and —% in. on plan dimensions and —5 percent of the specified thickness.
The lengths of reinforcing bars are generally given in 2-in. increments. The tolerances
for reinforcement placing concern the variation in the effective depth, d, of beams, the min-
imum reinforcement cover, and the longitudinal location of bends and ends of bars. These
are specified in ACI Code Sections 7.5.2.1 and 7.5.2.2. ACI Committee 117 has published a
comprehensive list of tolerances for concrete construction and materials [2-20].

The quality of construction depends in part on the workmanship during construction.
Inspection is necessary to confirm that the construction is in accordance with the project
drawings and specifications. ACI Code Section 1.3.1 requires that concrete construction be
inspected throughout the various work stages by, or under the supervision of, a licensed
design professional, or by a qualified inspector. More stringent requirements are given in
ACI Code Section 1.3.5 for inspection of moment-resisting frames in seismic regions.
The ACI and other organizations certify the qualifications of construction inspectors.
Inspection reports should be distributed to the owner, the designer, the contractor, and the
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building official. The inspecting engineer or architect preserves these reports for at least
two years after the completion of the project.

2-13 ACCURACY OF CALCULATIONS

Structural loads, with the exception of dead loads or fluid loads in a tank, are rarely known
to more than two significant figures. Thus, although calculator and software output may
include several significant figures, it is seldom necessary to use more than three significant
figures in design calculations for reinforced concrete structural members. In this book,
three significant figures are used.

Most mistakes in structural design arise from three sources: errors in looking up or
writing down numbers, errors due to unit conversions, and failure to understand fully the
statics or behavior of the structure being analyzed and designed. The last type of mistake
is especially serious, because failure to consider a particular type of loading or the use of
the wrong statical model may lead to serious maintenance problems or collapse. For this
reason, designers are urged to use the limit-states design process to consider all possible
modes of failure and to use free-body diagrams to study the equilibrium of parts or all of
the structure.

2-14 HANDBOOKS AND DESIGN AIDS
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Because a great many repetitive computations are necessary to proportion reinforced
concrete members, handbooks containing tables or graphs of the more common quanti-
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Materials

3-1 CONCRETE
Concrete is a composite material composed of aggregate, generally sand and gravel, chem-
ically bound together by hydrated portland cement. The aggregate generally is graded in
size from sand to gravel, with the maximum gravel size in structural concrete commonly
being % in., although %—in. or l%-in. aggregate may be used.

3-2  BEHAVIOR OF CONCRETE FAILING IN COMPRESSION

Mechanism of Failure in Concrete Loaded in Compression

Concrete is a mixture of cement paste and aggregate, each of which has an essentially lin-
ear and brittle stress—strain relationship in compression. Brittle materials tend to develop
tensile fractures perpendicular to the direction of the largest tensile strain. Thus, when con-
crete is subjected to uniaxial compressive loading, cracks tend to develop parallel to the
maximum compressive stress. In a cylinder test, the friction between the heads of the test-
ing machine and the ends of the cylinder prevents lateral expansion of the ends of the
cylinder and in doing so restrains the vertical cracking in those regions. This strengthens
conical regions at each end of the cylinder. The vertical cracks that occur at midheight of
the cylinder do not enter these conical regions and the failure surface appears to consist of
two cones.

Although concrete is made up of essentially elastic, brittle materials, its stress—strain
curve is nonlinear and appears to be somewhat ductile. This can be explained by the grad-
ual development of microcracking within the concrete and the resulting redistribution of
stress from element to element in the concrete [3-1]. Microcracks are internal cracks % to
% in. in length. Microcracks that occur along the interface between paste and aggregate are
called bond cracks; those that cross the mortar between pieces of aggregate are known as
mortar cracks.

There are four major stages in the development of microcracking and failure in concrete
subjected to uniaxial compressive loading:

43
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1. Shrinkage of the paste occurs during hydration, and this volume change of the
concrete is restrained by the aggregate. The resulting tensile stresses lead to no-load bond
cracks, before the concrete is loaded. These cracks have little effect on the concrete at low
loads, and the stress—strain curve remains linear up to 30 percent of the compressive
strength of the concrete, as shown by the solid line in Fig. 3-1.

2. When concrete is subjected to stresses greater than 30 to 40 percent of its
compressive strength, the stresses on the inclined surfaces of the aggregate particles will
exceed the tensile and shear strengths of the paste—aggregate interfaces, and new cracks,
known as bond cracks, will develop. These cracks are stable; they propagate only if the
load is increased. Once such a crack has formed, however, any additional load that
would have been transferred across the cracked interface is redistributed to the remain-
ing unbroken interfaces and to the mortar. This redistribution of load causes a gradual
bending of the stress—strain curve for stresses above 40 percent of the short-time
strength. The loss of bond leads to a wedging action, causing transverse tensions above
and below the aggregates.

3. As the load is increased beyond 50 or 60 percent of ultimate, localized mortar
cracks develop between bond cracks. These cracks develop parallel to the compressive
loading and are due to the transverse tensile strains. During this stage, there is stable crack
propagation; cracking increases with increasing load but does not increase under constant
load. The onset of this stage of loading is called the discontinuity limit [3-2].

4. At 75 to 80 percent of the ultimate load, the number of mortar cracks begins to
increase, and a continuous pattern of microcracks begins to form. As a result, there are
fewer undamaged portions to carry the load, and the stress versus longitudinal-strain curve
becomes even more markedly nonlinear. The onset of this stage of cracking is called the
critical stress [3-3].

If the lateral strains, €3, are plotted against the longitudinal compressive stress, the
dashed curve in Fig. 3-1 results. The lateral strains are tensile and initially increase, as is
expected from the poisson’s effect. As microcracking becomes more extensive, these cracks
contribute to the apparent lateral strains. As the load exceeds 75 to 80 percent of the ultimate
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compressive strength, the cracks and lateral strains increase rapidly, and the volumetric
strain (relative increase in volume), €,, begins to increase, as shown by the broken line in
Fig. 3-1.

The critical stress is significant for several reasons. The ensuing increase in volume
causes an outward pressure on ties, spirals, or other confining reinforcement, and these in
turn act to restrain the lateral expansion of the concrete, thus delaying its disintegration.

Equally important is the fact that the structure of the concrete tends to become
unstable at loads greater than the critical load. Under stresses greater than about 75 percent
of the short-time strength, the strains increase more and more rapidly until failure occurs.
Figure 3-2a shows the strain—time response of concrete loaded rapidly to various fractions
of its short-time strength, with this load being sustained for a long period of time or until
failure occurred. As shown in Fig. 3-2b, concrete subjected to a sustained axial load
greater than the critical load will eventually fail under that load. The critical stress is be-
tween 0.75 and 0.80f/.

Under cyclic compressive loads, axially loaded concrete has a shake-down limit
approximately equal to the point of onset of significant mortar cracking at the critical
stress. Cyclic axial stresses higher than the critical stress will eventually cause failure.

As mortar cracking extends through the concrete, less and less of the structure
remains. Eventually, the load-carrying capacity of the uncracked portions of the concrete
reaches a maximum value referred to as the compressive strength (Fig. 3-1). Further strain-
ing is accompanied by a drop in the stress that the concrete can resist, as shown by the
dotted portion of the line for €; in Fig. 3-1.

When concrete is subjected to compression with a strain gradient, as would occur in
the compression zone of a beam, the effect of the unstable crack propagation stage shown
in Fig. 3-1 is reduced because, as mortar cracking softens the highly strained concrete,
the load is transferred to the stiffer, more stable concrete at points of lower strain nearer
the neutral axis. In addition, continued straining and the associated mortar cracking of the
highly stressed regions is prevented by the stable state of strain in the concrete closer to the
neutral axis. As a result, the stable-crack-propagation stage extends almost up to the ultimate
strength of the concrete.

Tests [3-5] suggest that there is no significant difference between the stress—strain
curves of concrete loaded with or without a strain gradient up to the point of maximum
stress. The presence of a strain gradient does appear to increase the maximum strains that
can be attained in the member, however.

The dashed line in Fig. 3-2c represents the gain in short-time compressive strength
with time. The dipping solid lines are the failure limit line from Fig. 3-2b plotted against a
log time scale. These lines indicate that there is a permanent reduction in strength due to
sustained high loads. For concrete loaded at a young age, the minimum strength is reached
after a few hours. If the concrete does not fail at this time, it can sustain the load indefi-
nitely. For concrete loaded at an advanced age, the decrease in strength due to sustained
high loads may not be recovered.

The CEB-FIP Model Code 1990 [3-6] gives equations for both the dashed curve and
the solid curves in Fig. 3-2c. The dashed curve (short-time compressive strength with time)
can also be represented by Eq. (3-5), presented later in this chapter.

Under uniaxial tensile loadings, small localized cracks are initiated at tensile—strain
concentrations and these relieve these strain concentrations. This initial stage of loading
results in an essentially linear stress—strain curve during the stage of stable crack initiation.
Following a very brief interval of stable crack propagation, unstable crack propagation and
fracture occur. The direction of cracking is perpendicular to the principal tensile stress and
strain.
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COMPRESSIVE STRENGTH OF CONCRETE

Generally, the term concrete strength is taken to refer to the uniaxial compressive strength
as measured by a compression test of a standard test cylinder, because this test is used to
monitor the concrete strength for quality control or acceptance purposes. For convenience,
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other strength parameters, such as tensile or bond strength, are expressed relative to the
compressive strength.

Standard Compressive-Strength Tests

The standard acceptance test for measuring the strength of concrete involves short-time
compression tests on cylinders 6 in. in diameter by 12 in. high, made, cured, and tested in
accordance with ASTM Standards C31 and C39. ACI Code Section 5.6.2.4 now also permits
the use of 4-by-8-in. cylinders tested in accordance with the same ASTM standards.

The test cylinders for an acceptance test must be allowed to harden in their molds for
24 hours at the job site at 60 to 80°F, protected from loss of moisture and excessive heat,
and then must be cured at 73°F in a moist room or immersed in water saturated with lime.
The standard acceptance test is carried out when the concrete is 28 days old.

Field-cured test cylinders are frequently used to determine when the forms may be
removed or when the structure may be used. These should be stored as near the location of
that concrete in the structure as is practical and should be cured in a manner as close as
possible to that used for the concrete in the structure.

The standard strength “test” is the average of the strengths of two 6-by-12-in. cylinders
or three 4-by-8-in. cylinders from the same concrete batch tested at 28 days (or an earlier
age, if specified). These are tested at a loading rate of about 35 psi per second, producing
failure of the cylinder at l% to 3 minutes. For high-strength concrete, acceptance tests are
sometimes carried out at 56 or 90 days, because some high-strength concretes take longer
than normal concretes to reach their design strength.

Traditionally, the compressive strength has been tested by using 6-by-12-in. cylin-
ders. For high-strength concretes, the axial stiffness of some testing machines is close to the
axial stiffness of the cylinders being tested. In such cases, the strain energy released by
the machine at the onset of crushing of the test cylinder leads to a brittle failure of the
cylinder. This can cause a decrease in the measured f;. This is alleviated by testing 4-by-
8-in. cylinders, which have an axial stiffness less than a fifth of that of 6-by-12-in. cylin-
ders. Attcin et al. [3-7] report tests on 8-in.-, 6-in.-, and 4-in.-diameter cylinders of concretes
with nominal strengths of 5000, 13,000, and 17,500 psi; some of each strength were cured in
air, or sealed, or cured in lime-water baths.

The water-cured specimens and the sealed specimens had approximately the same
strengths at ages of 7, 28, and 91 days of curing. Aitcin et al. [3-7] concluded the strengths
of the 4-in.- and 6-in.-diameter cylinders were similar. This suggests that the strengths of
4-by-8-in. cylinders will be similar to the strengths of 6-by-12-in. cylinders, and that 4-in.
cylinders can be used as control tests.

Other studies quoted in the 1993 report on high-strength concrete by ACI Committee
363 [3-8] gave different conversion factors. The report concluded that 4-by-8-in. control cylin-
ders give a higher strength and a larger coefficient of variation than 6-by-12-in. cylinders.

Statistical Variations in Concrete Strength

Concrete is a mixture of water, cement, aggregate, and air. Variations in the properties or
proportions of these constituents, as well as variations in the transporting, placing, and com-
paction of the concrete, lead to variations in the strength of the finished concrete. In addi-
tion, discrepancies in the tests will lead to apparent differences in strength. The shaded area
in Fig. 3-3 shows the distribution of the strengths in a sample of 176 concrete-strength tests.

The mean or average strength is 3940 psi, but one test has a strength as low as
2020 psi and one is as high as 6090 psi.

If more than about 30 tests are available, the strengths will generally approximate a
normal distribution. The normal distribution curve, shown by the curved line in Fig. 3-3, is
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Fig. 3-3
Distribution of concrete
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symmetrical about the mean value, x, of the data. The dispersion of the data can be measured
by the sample standard deviation, s, which is the root-mean-square deviation of the
strengths from their mean value:

§ = \/(Xl —f)2+ (xz—})2+ (x3—§)2+ cee (xn_})z b

n—1

The standard deviation divided by the mean value is called the coefficient of variation, V:

N
V:j

(3-2)
X

This makes it possible to express the degree of dispersion on a fractional or percentage

basis rather than an absolute basis. The concrete test data in Fig. 3-3 have a standard devi-

ation of 615 psi and a coefficient of variation of 615/3940 = 0.156, or 15.6 percent.

If the data correspond to a normal distribution, their distribution can be predicted
from the properties of such a curve. Thus, 68.3 percent of the data will lie within 1 standard
deviation above or below the mean. Alternatively, 15.6 percent of the data will have values
less than (X — s). Similarly, for a normal distribution, 10 percent of the data, or 1 test in
10, will have values less than X(1 — aV'), where a = 1.282. Values of a corresponding to
other probabilities can be found in statistics texts.

Figure 3-4 shows the mean concrete strength, f ., required for various values of the
coefficient of variation if no more than 1 test in 10 is to have a strength less than 3000 psi.
As shown in this figure, as the coefficient of variation is reduced, the value of the mean
strength, f ., required to satisfy this requirement can also be reduced.

Based on the experience of the U.S. Bureau of Reclamation on large projects, ACI
Committee 214 [3-9] has defined various standards of control for moderate-strength con-
cretes. A coefficient of variation of 15 percent represents average control. (See Fig. 3-4.)
About one-tenth of the projects studied had coefficients of variation less than 10 percent,
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Normal frequency curves for
coefficients of variation of
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which was termed excellent control, and another tenth had values greater than about 20 percent,
which was termed poor control. For low-strength concrete, the coefficient of variation
corresponding to average control has a value of V = 0.15f... Above a mean strength of
about 4000 psi, the standard deviation tends to be independent of the mean strength,
and for average control s is about 600 psi [3-9]. The test data plotted in Fig. 3-3 corre-
spond to average control, as defined by the Committee 214 definition of average control.

In 2001, Nowak and Szerszen [3-10] and [3-11] collected concrete control data from
sources around the United States. The data are summarized in Table 3-1. The degree of
concrete control was considerably better than that assumed by ACI Committee 214. In par-
ticular, the mean of the coefficients of variation reported by Nowak and Szerszen is much
lower than the V = 15 percent that ACI 214 assumed to be representative of good control.
In Table 3-1, the coefficients of variation range from 0.07 to 0.115, with one exception
(lightweight concrete). This range of concrete variability appears to be representative of
concrete produced in modern ready-mix plants, which represents the vast majority of con-
crete in North America. Nowak and Szerszen recommend a single value of V = 0.10. It
would appear that this is a “property” of modern ready-mix concretes.

Nowak and Szerszen suggest that A, the ratio of mean test strength to specified strength,
can be taken as 1.35 for 3000 psi concrete, decreasing linearly to 1.14 at f. = 5000 psi and

TABLE 3-1 Statistical Parameters for f, for Concrete
Type of Number Specified Mean Mean/ Coefficient
Concrete of Tests Strengths Strengths Specified of Variation
Ordinary ready 317 3000 to 6000 psi 4060 to 6700 psi 3000 psi—1.38 3000 psi—0.111
mix concrete 6000 psi—1.14 6000 psi—0.080
Ordinary plant- 1174 5000 to 6500 psi 6910 to 7420 psi 5000 psi—1.38 0.10
precast concrete 6500 psi—1.14
Lightweight 769 3000 to 5000 psi 4310 to 5500 psi 3000 psi—1.44 3000 psi—0.185
concrete 5000 psi—1.10 5000 psi—0.070
High-strength 2052 7000 to 12,000 psi 8340 to 12,400 psi 7000 psi—1.19 7000 psi—0.115
concrete—28 days 12,000 psi—1.04 12,000 psi—0.105
High-strength 914 7000 to 12,000 psi 10,430 to 14,000 psi 7000 psi—1.49 7000 psi—0.080

concrete—56 days

12,000 psi—1.17

12,000 psi—0.105

Source: From data presented in [3-10] and [3-11].
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constant of 1.14 for higher strengths. However, the mean strength ratio cannot be considered a
property of modern concrete, because it is easy for a mix designer to increase or decrease this
while proportioning the concrete mix.

The data in Table 3-1 suggest the following coefficients of variation for various degrees
of concrete control:

Poor control V > 0.140
Average control V = 0.105
Excellent control V < 0.070

Building-Code Definition of Compressive Strength

The specified compressive strength, f, is measured by compression tests on 6-by-12-in. or
4-by-8-in. cylinders tested after 28 days of moist curing. This is the strength specified on
the construction drawings and used in the calculations. As shown in Fig. 3-4, the specified
strength is less than the average strength. The required mean strength of the concrete, f,,
must be at least (ACI Code Section 5.3.2.1):
Specified compressive strength, f7., less than or equal to 5000 psi:

Use the larger value of

fr = fi 4+ 1.34s (3-3a)
(ACI Eq. 5-1)
and
for = fi + 2.33s — 500 (3-3b)
(ACI Egq. 5-2)

Specified compressive strength, f.., greater than 5000 psi:

Use the larger value of

fr. = fi 4+ 1.34s (3-4a)
(ACI Eq. 5-1)
and
fr. = 090f. + 2.33s (3-4b)
(ACI Eq. 5-3)

where s is the standard deviation determined in accordance with ACI Code Section 5.3.1.
Special rules are given if the standard deviation is not known.

Equations (3-3a) and (3-4a) give the lowest average strengths required to ensure a prob-
ability of not more than 1 in 100 that the average of any three consecutive strength tests will be
below the specified strength. Alternatively, it ensures a probability of not more than 1 in 11
that any one test will fall below f7.. Equation (3-3b) gives the lowest mean strength to ensure a
probability of not more than 1 in 100 that any individual strength test will be more than 500 psi
below the specified strength. Lines indicating the corresponding required average strengths,
ferrare plotted in Fig. 3-4. In these definitions, a test is the average of two 6-by-12-in. cylinder
tests or three 4-by-8-in. cylinder tests.

For any one test, Egs. (3-3a and b) and (3-4a and b) give a probability of 0.99
that a single test will fall more than 500 psi below the specified strength, equivalent
to a 0.01 chance of understrength. This does not ensure that the number of low tests
will be acceptable, however. Given a structure requiring 4000 cubic yards of con-
crete with 80 concrete tests during the construction period, the probability of a single
test falling more than 500 psi below the specified strength is 1 — 0.99%°, or about
55 percent [3-12].
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This may be an excessive number of understrength test results in projects where
owners refuse to pay for concretes that have lower strengths than specified. Thus, a higher
target for the mean concrete strength than that currently required by Egs. (3-3) and (3-4)
will frequently be specified to reduce the probability of low strength tests.

Factors Affecting Concrete Compressive Strength

Among the large number of factors affecting the compressive strength of concrete, the
following are probably the most important for concretes used in structures.

1. Water/cement ratio. The strength of concrete is governed in large part by the
ratio of the weight of the water to the weight of the cement for a given volume of concrete. A
lower water/cement ratio reduces the porosity of the hardened concrete and thus increases the
number of interlocking solids. The introduction of tiny, well-distributed air bubbles in the ce-
ment paste, referred to as air entrainment, tends to increase the freeze—thaw durability of the
concrete. When the water in the concrete freezes, pressure is generated in the capillaries and
pores in the hardened cement paste. The presence of tiny, well-distributed air bubbles pro-
vides a way to dissipate the pressures due to freezing. However, the air voids introduced by
air entrainment reduce the strength of the concrete. A water/cement ratio of 0.40 corresponds
to 28-day strengths in the neighborhood of 4700 psi for air-entrained concrete and 5700 psi
for non-air-entrained concrete. For a water/cement ratio of 0.55, the corresponding strengths
are 3500 and 4000 psi, respectively. Voids due to improper consolidation tend to reduce the
strength below that corresponding to the water/cement ratio.

2. Type of cement. Traditionally, five basic types of portland cement have been
produced:

Normal, Type I: used in ordinary construction, where special properties are not required.
Modified, Type II: lower heat of hydration than Type I; used where moderate expo-
sure to sulfate attack exists or where moderate heat of hydration is desirable.

High early strength, Type III: used when high early strength is desired; has consider-
ably higher heat of hydration than Type I.

Low heat, Type IV: developed for use in mass concrete dams and other structures
where heat of hydration is dissipated slowly. In recent years, very little Type IV
cement has been produced. It has been replaced with a combination of Types I and II
cement with fly ash.

Sulfate resisting, Type V: used in footings, basement walls, sewers, and so on that are
exposed to soils containing sulfates.

In recent years, blended portland cements produced to satisfy ASTM C1157 Standard
Performance Specification for Hydraulic Cement have partially replaced the traditional five
basic cements. This in effect allows the designer to select different blends of cement.

Figure 3-5 illustrates the rate of strength gain with different cements. Concrete made
with Type III (high early strength) cement gains strength more rapidly than does concrete
made with Type I (normal) cement, reaching about the same strength at 7 days as a corre-
sponding mix containing Type I cement would reach at 28 days. All five types tend to
approach the same strength after a long period of time, however.

3. Supplementary cementitious materials. Sometimes, a portion of the cement
is replaced by materials such as fly ash, ground granulated blast-furnace slag, or silica
fume to achieve economy, reduction of heat of hydration, and, depending on the mate-
rials, improved workability. Fly ash and silica fume are referred to as pozzolans, which
are defined as siliceous, or siliceous and aluminous materials that in themselves possess
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Fig. 3-5

Effect of type of cement on
strength gain of concrete
(moist cured, water/cement
ratio = 0.49). (From [3-13]
copyright ASTM; reprinted
with permission.)
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little or no cementitious properties but that will, in the presence of moisture, react with
calcium hydroxide to form compounds with such properties. When supplementary cemen-
titious materials are used in mix design, the water/cement ratio, w/c, is restated in terms
of the water/cementitious materials ratio, w/cm, where cm represents the total weight
of the cement and the supplementary cementitious materials, as defined in ACI Code
Sections 4.1.1 and 3.2.1. The design of concrete mixes containing supplementary cemen-
titious materials is discussed in [3-14].

Fly ash, precipitated from the chimney gases from coal-fired power plants, frequently
leads to improved workability of the fresh concrete. It often slows the rate of strength gain
of concrete, but generally not the final strength, and depending on composition of the fly
ash, might reduce or improve the durability of the hardened concrete [3-15]. Fly ashes
from different sources vary widely in composition and have different effects on concrete
properties. They also affect the color of the concrete.

Ground granulated blast-furnace slag tends to reduce the early-age strength and heat
of hydration of concrete. Strengths at older ages will generally exceed those for normal
concretes with similar w/cm ratios. Slag tends to reduce the permeability of concrete and
its resistance to attack by certain chemicals [3-16].

Silica fume consists of very fine spherical particles of silica produced as a by-product
in the manufacture of ferrosilicon alloys. The extreme fineness and high silica content
of the silica fume make it a highly effective pozzolanic material. It is used to produce
low-permeability concrete with enhanced durability and/or high strength [3-14].

4. Aggregate. The strength of concrete is affected by the strength of the aggregate,
its surface texture, its grading, and, to a lesser extent, by the maximum size of the aggregate.
Strong aggregates, such as felsite, traprock, or quartzite, are needed to make very-high-
strength concretes. Weak aggregates include sandstone, marble, and some metamorphic
rocks, while limestone and granite aggregates have intermediate strength. Normal-strength
concrete made with high-strength aggregates fails due to mortar cracking, with very little
aggregate failure. The stress—strain curves of such concretes tend to have an appreciable
declining branch after reaching the maximum stress. On the other hand, if aggregate failure
precedes mortar cracking, failure tends to occur abruptly with a very steep declining branch.
This occurs in very-high-strength concretes (see Fig. 3-18) and in some lightweight concretes.

Concrete strength is affected by the bond between the aggregate and the cement
paste. The bond tends to be better with crushed, angular pieces of aggregate.

A well-graded aggregate produces a concrete that is less porous. Such a concrete
tends to be stronger. The strength of concrete tends to decrease as the maximum aggregate
size increases. This appears to result from higher stresses at the paste—aggregate interface.
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Effect of moist-curing condi-
tions at 70°F and moisture
content of concrete at time of
test on compressive strength
of concrete. (From [3-19].)
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Some aggregates react with alkali in cement, causing a long-term expansion of the
concrete that destroys the structure of the concrete. Unwashed marine aggregates also lead
to a breakdown of the structure of the concrete with time.

5. Mixing water. There are no standards governing the quality of water for use in
mixing concrete. In most cases, water that is suitable for drinking and that has no pro-
nounced taste or odor may be used [3-17]. It is generally thought that the pH of the water
should be between 6.0 and 8.0. Salt water or brackish water must not be used as mixing
water, because chlorides and other salts in such water will attack the structure of the con-
crete and may lead to corrosion of prestressing tendons. Strands and wires used as tendons
are particularly susceptible to corrosion due to their small diameter and higher stresses
compared to reinforcing bars [3-18].

6. Moisture conditions during curing. The development of the compressive
strength of concrete is strongly affected by the moisture conditions during curing. Pro-
longed moist curing leads to the highest concrete strength, as shown in Fig. 3-6.

7. Temperature conditions during curing. The effect of curing temperature on
strength gain is shown in Fig. 3-7 for specimens placed and moist-cured for 28 days under
the constant temperatures shown in the figure and then moist-cured at 73°F. The 7- and
28-day strengths are reduced by cold curing temperatures, although the long-term strength
tends to be enhanced. On the other hand, high temperatures during the first month increase
the 1- and 3-day strengths but tend to reduce the 1-year strength.

The temperature during the setting period is especially important. Concrete placed
and allowed to set at temperatures greater than 80°F will never reach the 28-day strength of
concrete placed at lower temperatures. Concrete that freezes soon after it has been placed
will have a severe strength loss.

Occasionally, control cylinders are left in closed boxes at the job site for the first
24 hours. If the temperature inside these boxes is higher than the ambient temperature,
the strength of the control cylinders may be affected.

8. Age of concrete. Concrete gains strength with age, as shown in Figs. 3-5 to 3-7.
Prior to 1975, the 7-day strength of concrete made with Type I cement was generally 65 to 70
percent of the 28-day strength. Changes in cement production since then have resulted in a
more rapid early strength gain and less long-term strength gain. ACI Committee 209 [3-21]
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Fig. 3-7

Effect of temperature during
the first 28 days on the
strength of concrete
(water/cement ratio = 0.41,
air content = 4.5 percent,
Type I cement, specimens
cast and moist-cured at tem-
perature indicated for first 28
days (all moist-cured at 73°F
thereafter). (From [3-20].)
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has proposed the following equation to represent the rate of strength gain for concrete
made from Type I cement and moist-cured at 70°F:

! ! t
fe) = fc(zs)(%>

Here, f{ ;) is the compressive strength at age ¢. For Type III cement, the coefficients 4 and
0.85 become 2.3 and 0.92, respectively.

Concrete cured under temperatures other than 70°F may set faster or slower than
indicated by these equations, as shown in Fig. 3-7.

9. Maturity of concrete. Young concrete gains strength as long as the concrete
remains about a threshold temperature of —10 to —12°C or +11 to +14°F. Maturity is the
summation of the product of the difference between the curing temperature and the thresh-
old temperature, and the time the concrete has cured at that temperature, [3-22] and [3-23].

(3-5)

n
Maturity = M = > (T; + 10)(1;) (3-6)
i=1

In this equation, 7';is the temperature in Celsius during the ith interval and ¢; is the num-
ber of days spent curing at that temperature. Figure 3-8 shows the form of the relationship
between maturity and compressive strength of concrete. Although no unique relationship
exists, Fig. 3-8 may be used for guidance in determining when forms can be removed. Matu-
rity should not be used as the sole determinant of adequate strength. It will not detect errors in
the concrete batching, such as inadequate cement or excess water, or excessive delays in plac-
ing the concrete after batching.

10. Rate of loading. The standard cylinder test is carried out at a loading rate of
roughly 35 psi per second, and the maximum load is reached in 1% to 2 minutes, correspond-
ing to a strain rate of about 10 microstrain/sec. Under very slow rates of loading, the axial com-
pressive strength is reduced to about 75 percent of the standard test strength, as shown in Fig.
3-2. A portion of this reduction is offset by continued maturing of the concrete during the
loading period [3-4]. At high rates of loading, the strength increases, reaching 115 percent of
the standard test strength when tested at a rate of 30,000 psi/sec (strain rate of 20,000 micros-
train/sec). This corresponds to loading a cylinder to failure in roughly 0.10 to 0.15 seconds and
would approximate the rate of loading experienced in a severe earthquake.
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Normalized compressive
strength versus maturity.
(From [3-23].)
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Core Tests

The strength of concrete in a structure (in-place strength) is frequently measured on cores
drilled from the structure. These are capped and tested in the same manner as cylinders.
ASTM C42 Standard Method for Obtaining and Testing Drilled Cores and Sawed Beams
of Concrete specifies how such tests should be carried out. Core-test strengths show a great
amount of scatter because core strengths are affected by a wide range of variables.

Core tests have two main uses. The most frequent use of core tests is to assess
whether concrete in a new structure is acceptable. ACI Code Section 5.6.5.2 permits the
use of core tests in such cases and requires three cores for each strength test more than
500 psi below the specified value of f;. Cores obtained by using a water-cooled bit have a
moisture gradient from the wet outside surface to the dry interior concrete. This causes
stress gradients that reduce the test strength of the core. ACI Code Section 5.6.5.3
requires that cores be prepared for shipping to the testing lab by wrapping them in water-
tight bags or containers immediately after drilling [3-24]. Cores should not be tested
earlier than 48 hours after drilling, nor later than 7 days after drilling. Waiting 48 hours
enables the moisture gradients in the cores to dissipate. This reduces the stress gradient in
the core. ACI Code Section 5.6.4.4 states that concrete evaluated with the use of cores has
adequate strength if the average strength of the cores is at least 85 percent of f.. Because
the 85 percent value tends to be smaller than the actual ratio of core strength to cylinder
strength, the widespread practice of taking the in-place strength equal to (core strength)/
0.85 overestimates the in-place strength.

Neville [3-24] discusses core testing of in-place concrete and points out the advan-
tages and drawbacks to using cores to estimate the concrete strength in a structure. Bartlett



56

Chapter 3 Materials

and MacGregor [3-25] and [3-26] suggest the following procedure for estimating the
equivalent specified strength of concrete in a structure by using core tests:

1. Plan the scope of the investigation. The regions that are cored must be consistent
with the information sought. That is, either the member in question should be cored, or, if this
is impractical, the regions that are cored should contain the same type of concrete, of about
the same age, and cured in the same way as the suspect region. The number of cores taken
depends, on one hand, on the cost and the hazard from taking cores out of critical parts of the
structure, and on the other hand, on the desired accuracy of the strength estimate. If possible,
at least six cores should be taken from a given grade of concrete in question. It is not possible
to detect outliers (spurious values) in smaller samples, and the penalty for small sample sizes
(given by k| in Eq. (3-8)) is significant. The diameter of the core should not be less than three
times the nominal maximum size of the coarse aggregate, and the length of the core should
be between one and two times the diameter. If possible, the core diameter should not be less
than 4 in., because the variability of the core strengths increases significantly for smaller
diameters.

2. Obtain and test the cores. Use standard methods to obtain and test the cores
as given in ASTM C42. Carefully record the location in the structure of each core, the
conditions of the cores before testing, and the mode of failure. This information may be
useful in explaining individual low core strengths. A load—stroke plot from the core test
may be useful in this regard. It is particularly important that the moisture condition of the
core correspond to one of the two standard conditions prescribed in ASTM C42 and be
recorded.

3. Convert the core strengths, f.,re, t0 equivalent in-place strengths, f;. As
an approximation for use in design, this is done by using

Jeis = fcore(F€/d X Fyija X Fr)(ch X Fd) (3-7)

where the factors in the first set of parentheses correct the core strength to that of a standard
4-in.-diameter core, with length/diameter ratio equal to 2, not containing reinforcement:

Fyq = correction for length/diameter ratio as given in ASTM C 42

= 0.87, 0.93, 0.96, 0.98, and 1.00 for €/d = 1.0, 1.25, 1.50, 1.75, and 2.0,
respectively
Fyi, = correction for diameter of core

1.06 for 2-in. cores, 1.00 for 4-in. cores, and 0.98 for 6-in. cores
F, = correction for the presence of reinforcing bars
= 1.00 for no bars, 1.08 for one bar, and 1.13 for two

It is generally prudent to cut off parts of a core that contain reinforcing bars, provided the
specimen that remains for testing has a length/diameter ratio equal to at least 1.0.

The factors in the second set of parentheses account for differences between the
condition of the core and that of the concrete in the structure:

accounts for the effect of the moisture condition of the core at the time of the
core test

FIIlC

1.09 if the core was soaked before testing, and 0.96 if the core was air-dried
at the time of the test

F; = accounts for damage to the surface of the core due to drilling
= 1.06 if the core is damaged
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4. Check for outliers in the set of equivalent in-place strengths. Reference [3-26]
gives a technique for doing this. If an outlier is detected via a statistical test, one should try
to determine a physical reason for the anomalous strength.

5. Compute the equivalent specified strength from the in-place strengths.
The equivalent specified strength, fi.q, is the strength that should be used in design
equations when checking the capacity of the member in question. To calculate it, one
first computes the mean, f, and sample standard deviation, s, of the set of equiva-
lent in-place strengths, f, which remains after any outliers have been removed.
Bartlett and MacGregor [3-26] present the following equation for f¢, which uses the
core test data to obtain a lower-bound estimate of the 10 percent fractile of the in-place
strength:

— (kls ~,)2 —
feeq = kz[fcis - 1.282 Jn + s’ Vad® + Vaa® + V2 + Vo + V) | (3-8)

Here,

k; = afactor dependent on the number of core tests, after removal of outliers, equal
to 2.40 for 2 tests, 1.47 for 3 tests, 1.20 for 5 tests, 1.10 for 8 tests, 1.05 for 16
tests, and 1.03 for 25 tests

k, = afactor dependent on the number of batches of concrete in the member or
structure being evaluated, equal to 0.90 and 0.85, respectively, for a cast-
in-place member or structure that contains one batch or many batches, and
equal to 0.90 for a precast member or structure

n = number of cores after removal of outliers

Vya = coefficient of variation due to length/diameter correction, equal to 0.025 for
€/d = 1,0.006 for €/d = 1.5, and zero for €/d = 2

Viia = coefficient of variation due to diameter correction, equal to 0.12 for
2-in.-diameter cores, zero for 4-in. cores, and 0.02 for 6-in. cores
V. = coefficient of variation due to presence of reinforcing bars in the core, equal

to zero if none of the cores contained bars, and to 0.03 if more than a third of
them did

Vine = coefficient of variation due to correction for moisture condition of core at
time of testing, equal to 0.025

V,; = coefficient of variation due to damage to core during drilling, equal to 0.025

The individual coefficients of variation in the second term of Eq. (3-8) are taken
equal to zero if the corresponding correction factor, F, is taken equal to 1.0 in Eq. (3-7).

EXAMPLE 3-1 Computation of an Equivalent Specified Strength
from Core Tests

As a part of an evaluation of an existing structure, it is necessary to compute the
strength of a 6-in.-thick slab. To do so, it is necessary to have an equivalent specified com-
pressive strength, f(.q, to use in place of f in the design equations. Several batches of
concrete were placed in the slab.

1. Plan the scope of the investigation. From a site visit, it is learned that five
cores can be taken. These are 4-in.-diameter cores drilled vertically through the slab, giv-
ing cores that are 6 in. long. They are taken from randomly selected locations around the
entire floor in question.
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2. Obtain and test the cores. The cores were tested in an air-dried condition.
None of them contained reinforcing bars. The individual core strengths were 5950,
5850, 5740, 5420, and 4830 psi.

3. Convert the core strengths to equivalent in-place strengths. From Eq. (3-7),
Jeis = Sfeore(Fera X Faia X Fy)(Fine X Fy)
The €/d of the cores was 6 in./4 in. = 1.50. For this ratio, Fy;; = 0.96, and we have
Seis = Seore(0.96 X 1.0 X 1.0)(0.96 X 1.06)
= foore X 0.977

The individual strengths, f;s, are 5812, 5715, 5607, 5295, and 4720 psi.

4. Check for low outliers. Although there is quite a difference between the low-
est and second-lowest values, we shall assume that all five tests are valid.

5. Compute the equivalent specified strength.

_ kiseis)? -
féeq = k2|:fcis — 1.282 \/(lnms) + fcisz(vfld2 + Vdia2 + Vr2 + Vn102 + Vd2)
(3-8)

The mean and sample standard deviation of the £ values are f, = 5430 psi and
Scis = 442 psi, respectively. Other terms in Eq. (3-8) are k; = 1.20 for five tests,
k, = 0.85 for several batches, and n = five tests. Because no correction was made in
step 3 for the effects of core diameter or reinforcement in the core (Fy;, and F, = 1.0),
V4ia and V, are equal to zero. The terms under the square-root sign in Eq. (3-8) are

kiSeis)? 1.20 X 442)?
( 1 CIS) _ ( . ) _ 56,265
n

Feis?(Voa® + Va2 + V,2 + V2 + V%) = 5430%(0.006% + 0.0° + 0.0°

+ 0.025% + 0.025%)

= 37,918
feeq = 0.85(5430 — 1.282V 56,265 + 37,918)
= 4281 psi

The concrete strength in the slab should be taken as 4280 psi when calculating the
capacity of the slab. (]

Strength of Concrete in a Structure

The strength of concrete in a structure tends to be somewhat lower than the strength of
control cylinders made from the same concrete. This difference is due to the effects of
different placing, compaction, and curing procedures; the effects of vertical migration
of water during the placing of the concrete in deep members; the effects of difference
in size and shape; and the effects of different stress regimes in the structure and the
specimens.
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The concrete near the top of deep members tends to be weaker than the concrete
lower down, probably due to the increased water/cement ratio at the top due to upward
water migration after the concrete is placed and by the greater compaction of the concrete
near the bottom due to the weight of the concrete higher in the form [3-27].

3-4  STRENGTH UNDER TENSILE AND MULTIAXIAL LOADS

Tensile Strength of Concrete

The tensile strength of concrete falls between 8 and 15 percent of the compressive strength.
The actual value is strongly affected by the type of test carried out to determine the tensile
strength, the type of aggregate, the compressive strength of the concrete, and the presence
of a compressive stress transverse to the tensile stress [3-28], [3-29], and [3-30].

Standard Tension Tests

Two types of tests are widely used. The first of these is the modulus of rupture or flexural test
(ASTM C78), in which a plain concrete beam, generally 6 in. X 6in. X 30 in. long, is
loaded in flexure at the third points of a 24-in. span until it fails due to cracking on the tension
face. The flexural tensile strength or modulus of rupture, f,, from a modulus-of-rupture test is
calculated from the following equation, assuming a linear distribution of stress and strain:

M

fr—ﬁ

(3-9)

In this equation,

M = moment
b = width of specimen
h = overall depth of specimen

The second common tensile test is the split cylinder test (ASTM C496), in which a
standard 6-by-12-in. compression test cylinder is placed on its side and loaded in compres-
sion along a diameter, as shown in Fig. 3-9a.

In a split-cylinder test, an element on the vertical diameter of the specimen is
stressed in biaxial tension and compression, as shown in Fig. 3-9c. The stresses acting
across the vertical diameter range from high transverse compressions at the top and bottom
to a nearly uniform tension across the rest of the diameter, as shown in Fig. 3-9d. The split-
ting tensile strength, f.;, from a split-cylinder test is computed as:

2P

Jor = —d (3-10)

where

P = maximum applied load in the test

€ = length of specimen

d = diameter of specimen

Various types of tension tests give different strengths. In general, the strength decreases

as the volume of concrete that is highly stressed in tension is increased. A third-point-loaded
modulus-of-rupture test on a 6-in.-square beam gives a modulus-of-rupture strength f, that
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Fig. 3-9
Split-cylinder test.

(@) Test procedure (b) Simplified force system.

Tension «———— Compression

L

.

(d) Distribution of a4 on vertical diameter.

P
(c) Stresses on element.

averages 1.5 times f,;, while a 6-in.-square prism tested in pure tension gives a direct tensile
strength that averages about 86 percent of f; [3-30].

Relationship between Compressive and Tensile
Strengths of Concrete

Although the tensile strength of concrete increases with an increase in the compressive
strength, the ratio of the tensile strength to the compressive strength decreases as the com-
pressive strength increases. Thus, the tensile strength is approximately proportional to the
square root of the compressive strength. The mean split cylinder strength, f,,, from a large
number of tests of concrete from various localities has been found to be [3-10]

Fo = 64\VFL (3-11)
where JTm fe» and \/Z’ are all in psi. Values from Eq. (3-11) are compared with split-cylinder
test data in Fig. 3-10. It is important to note the wide scatter in the test data. The ratio of

measured to computed splitting strength is essentially normally distributed.
Similarly, the mean modulus of rupture, f,, can be expressed as [3-10]

7. =83V (3-12a)
Again, there is scatter in the modulus of rupture. Raphael [3-28] discusses the reasons for
this, as do McNeely and Lash [3-29]. The distribution of the ratio of measured to computed
modulus-of-rupture strength approaches a log-normal distribution.
ACI Code Section 9.5.2.3 defines the modulus of rupture for use in calculating
deflections as

£ = 15A\VFL (3-12b)

where A = 1.0 for normalweight concrete. Lightweight concrete is discussed in section 3-8.
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Relationship between splitt-
ing tensile strengths and
compression strengths.
(From [3-10].)
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A lower value is used for the average splitting tensile strength (ACI Commentary
Section R8.6.1.):
£ = 6AVF. (3-12¢)

Factors Affecting the Tensile Strength of Concrete

The tensile strength of concrete is affected by the same factors that affect the compressive
strength. In addition, the tensile strength of concrete made from crushed rock may be up to
20 percent greater than that from rounded gravels. The tensile strength of concrete made from
lightweight aggregate tends to be less than that for normal sand-and-gravel concrete, although
this varies widely, depending on the properties of the particular aggregate under consideration.

The tensile strength of concrete develops more quickly than the compressive strength.
As a result, such things as shear strength and bond strength, which are strongly affected by
the tensile strength of concrete, tend to develop more quickly than the compressive
strength. At the same time, however, the tensile strength increases more slowly than would
be suggested by the square root of the compressive strength at the age in question. Thus,
concrete having a 28-day compressive strength of 3000 psi would have a splitting tensile
strength of about 6.7\/f7 = 367 psi. At 7 days this concrete would have compressive
strength of about 2100 psi (0.70 times 3000 psi) and a tensile strength of about 260 psi
(0.70 times 367 psi). This is less than the tensile strength of 6.7V 2100 = 307 psi that one
would compute from the 7-day compressive strength. This is of importance in choosing
form-removal times for flat slab floors, which tend to be governed by the shear strength of
the column—slab connections [3-31].
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Fig. 3-11
Biaxial stresses.

Strength under Biaxial and Triaxial Loadings

Biaxial Loading of Uncracked, Unreinforced Concrete Concrete is said to be loaded
biaxially when it is loaded in two mutually perpendicular directions with essentially no
stress or restraint of deformation in the third direction, as shown in Fig. 3-11a. A common
example is shown in Fig. 3-11b.

The strength and mode of failure of concrete subjected to biaxial states of stress
varies as a function of the combination of stresses as shown in Fig. 3-12. The pear-shaped
line in Fig. 3-12a represents the combinations of the biaxial stresses, o; and o,, which
cause cracking or compression failure of the concrete. This line passes through the uniaxial
compressive strength, f.., at A and A’ and the uniaxial tensile strength, f;, at B and B’.

Under biaxial tension (01 and o, both tensile stresses) the strength is close to that
in uniaxial tension, as shown by the region B—D—B’ (zone 1) in Fig. 3-12a. Here, failure
occurs by tensile fracture perpendicular to the maximum principal tensile stress, as shown
in Fig. 3-12b, which corresponds to point B’ in Fig. 3-12a.

When one principal stress is tensile and the other is compressive, as shown in
Fig. 3-11a, the concrete cracks at lower stresses than it would if stressed uniaxially in ten-
sion or compression [3-32]. This is shown by regions A—-B and A’ — B’ in Fig. 3-12a. In this
region, zone 2 in Fig. 3-12a, failure occurs due to tensile fractures on planes perpendicular
to the principal tensile stresses. The lower strengths in this region suggest that failure is
governed by a limiting tensile strain rather than a limiting tensile stress.

Under uniaxial compression (points A and A" and zone 3 in Fig. 3-12a), failure is initi-
ated by the formation of tensile cracks on planes parallel to the direction of the compressive
stresses. These planes are planes of maximum principal tensile strain.

Under biaxial compression (region A—C—A’ and zone 4 in Fig. 3-12a), the failure
pattern changes to a series of parallel fracture surfaces on planes parallel to the unloaded
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(a) Biaxial state of stress.
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T

(b) Biaxial state of stress in the web of a beam.
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Strength and modes of failure
of unreinforced concrete sub-
jected to biaxial stresses.
(From [3-32].)
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sides of the member, as shown in Fig. 3-12d. Such planes are acted on by the maximum
tensile strains. Biaxial and triaxial compression loads delay the formation of bond cracks
and mortar cracks. As a result, the period of stable crack propagation is longer and the
concrete is more ductile. As shown in Fig. 3-12, the strength of concrete under biaxial
compression is greater than the uniaxial compressive strength. Under equal biaxial com-
pressive stresses, the strength is about 107 percent of f7., as shown by point C.

In the webs of beams, the principal tensile and principal compressive stresses lead to
a biaxial tension—compression state of stress, as shown in Fig. 3-11b. Under such a load-
ing, the tensile and compressive strengths are less than they would be under uniaxial stress,
as shown by the quadrant AB or A’ B’ in Fig. 3-12a. A similar biaxial stress state exists in
a split-cylinder test, as shown in Fig. 3-9c. This explains in part why the splitting tensile
strength is less than the flexural tensile strength.

In zones 1 and 2 in Fig. 3-12, failure occurred when the concrete cracked, and in
zones 3 and 4, failure occurred when the concrete crushed. In a reinforced concrete member
with sufficient reinforcement parallel to the tensile stresses, cracking does not represent fail-
ure of the member because the reinforcement resists the tensile forces after cracking. The
biaxial load strength of cracked reinforced concrete is discussed in the next subsection.

Compressive Strength of Cracked Reinforced Concrete

If cracking occurs in reinforced concrete under a biaxial tension—compression loading and
there is reinforcement across the cracks, the strength and stiffness of the concrete under com-
pression parallel to the cracks is reduced. Figure 3-13a shows a concrete element that has been
cracked by horizontal tensile stresses. The natural irregularity of the shape of the cracks leads
to variations in the width of a piece between two cracks, as shown. The compressive stress
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(a) Compression member with cracks. (b) Free-body diagram of the shaded area in (a).

Stresses in a biaxially loaded, cracked-concrete panel with cracks parallel to the direction of the
principal compression stress.

acting on the top of the shaded portion is equilibrated by compressive stresses and probably
some bearing stresses on the bottom and shearing stresses along the edges, as shown in
Fig. 3-13b. When the crack widths are small, the shearing stresses transfer sufficient load
across the cracks that the compressive stress on the bottom of the shaded portion is not sig-
nificantly larger than that on the top, and the strength is unaffected by the cracks. As the crack
widths increase, the ability to transfer shear across them decreases. For equilibrium, the com-
pressive stress on the bottom of the shaded portion must then increase. Failure occurs when the
highest stress in the element approaches the uniaxial compressive strength of the concrete.

Tests of concrete panels loaded in in-plane shear, carried out by Vecchio and Collins
[3-33], have shown a relationship between the transverse tensile strain, €, and the com-
pressive strength parallel to the cracks, fomax:

f 2max 1

= (3-13)
. 08 + 170¢

where the subscripts 1 and 2 refer to the major (tensile) and minor (compressive) principal
stresses and strains. The average transverse strain, €1, is the average transverse strain measured
on a gauge length that includes one or more cracks. Equation 3-13 is plotted in Fig. 3-14a. An
increase in the strain € leads to a decrease in compressive strength. The same authors [3-34]
recommended a stress—strain relationship, f,—€,, for transversely cracked concrete:

2
fa= meax{z(Eﬂ - (62> } (3-14)
g, g,
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Effect of transverse tensile strains
on the compressive strength of
cracked concrete.

where f5n.x 1S given by Eq. (3-13), and ¢, is the strain at the highest point in the compres-
sive stress—strain curve, which the authors took as 0.002. The term in brackets describes a
parabolic stress—strain curve with apex at €, and a peak stress that decreases as €; increases.

If the parabolic stress—strain curve given by Eq. (3-14) is used, the strain for any
given stress can be computed from

, fz)
c=el1- 22 3-15
€ e( 7 (3-15)

If the descending branch of the curve is also assumed to be a parabola, Eq. (3-15) can
be used to compute strains on the postpeak portion of the stress—strain curve if the minus
sign before the radical is changed to a plus.

The stress—strain relationships given by Eqgs. (3-13) and (3-14) represent stresses and
strains averaged over a large area of a shear panel or beam web. The strains computed in
this way include the widths of cracks in the computation of tensile strains, €, as shown in
the inset to Fig. 3-14a. These equations are said to represent smeared properties. Through
smearing, the peaks and hollows in the strains have been attenuated by using the averaged
stresses and strains. In this way, Eqgs. (3-13) and (3-14) are an attempt to replace the stress
analysis of a cracked beam web having finite cracks with the analysis of a continuum. This
substitution was a breakthrough in the analysis of concrete structures.

Triaxial Loadings

Under triaxial compressive stresses, the mode of failure involves either tensile fracture
parallel to the maximum compressive stress (and thus orthogonal to the maximum tensile
strain, if such exists) or a shear mode of failure. The strength and ductility of concrete under
triaxial compression exceed those under uniaxial compression, as shown in Fig. 3-15. This
figure presents the stress—longitudinal strain curves for cylinders each subjected to a con-
stant lateral fluid pressure o, = o3, while the longitudinal stress, oy, was increased to
failure. These tests suggested that the longitudinal stress at failure was

o1 = ! + 410y (3-16)
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Fig. 3-15

Axial stress—strain curves
from triaxial compression
tests on concrete cylinders;
unconfined compressive
strength f7. = 3600 psi.
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Fig. 3-16
Mohr rupture envelope for
concrete tests from Fig. 3-15.
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Tests of lightweight and high-strength concretes in [3-8] and [3-35] suggest that their
compressive strengths are less influenced by the confining pressure, with the result that the
coefficient 4.1 in Eq. (3-16) drops to about 2.0.

The strength of concrete under combined stresses can also be expressed via a Mohr
rupture envelope. The Mohr’s circles plotted in Fig. 3-16 correspond to three of the cases
plotted in Fig. 3-15. The Mohr’s circles are tangent to the Mohr rupture envelope shown
with the outer line.

In concrete columns or in beam—column joints, concrete in compression is sometimes
enclosed by closely spaced hoops or spirals. When the width of the concrete element increases
due to Poisson’s ratio and microcracking, these hoops or spirals are stressed in tension, caus-
ing an offsetting compressive stress in the enclosed concrete. The resulting triaxial state of
stress in the concrete enclosed or confined by the hoops or spirals increases the ductility
and strength of the confined concrete. This effect is discussed in Chapters 11 and 19.
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3-5  STRESS-STRAIN CURVES FOR CONCRETE

Fig. 3-17
Tangent and secant moduli of
elasticity.

The behavior and strength of reinforced concrete members is controlled by the size and shape
of the members and by the stress—strain properties of the concrete and the reinforcement. The
stress—strain behavior discussed in this section will be used in subsequent chapters to develop
relationships for the strength and behavior of reinforced concrete beams and columns.

Tangent and Secant Moduli of Elasticity

Three ways of defining the modulus of elasticity are illustrated in Fig. 3-17. The slope of a
line that is tangent to a point on the stress—strain curve, such as A, is called the tangent mod-
ulus of elasticity, E, at the stress corresponding to point A. The slope of the stress—strain
curve at the origin is the initial tangent modulus of elasticity. The secant modulus of elasticity
at a given stress is the slope of a line from the origin and through the point on the curve
representing that stress (for example, point B in Fig. 3-17). Frequently, the secant modulus is
defined by using the point corresponding to 0.4f"., representing service-load stresses. The
slopes of these lines have units of psi/strain, where strain is unitless, with the result that the
units of the modulus of elasticity are psi.

Stress—-Strain Curve for Normal-Weight Concrete
in Compression

Typical stress—strain curves for concretes of various strengths are shown in Fig. 3-18. These
curves correspond to tests lasting about 15 minutes on specimens resembling the compres-
sion zone of a beam.

The stress—strain curves in Fig. 3-18 all rise to a maximum stress, reached at a strain
between 0.0015 and 0.003, followed by a descending branch. The shape of this curve
results from the gradual formation of microcracks within the structure of the concrete, as
discussed in Section 3-2.
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Fig. 3-18

Typical concrete stress—strain
curves in compression.
[Plotted using Eqgs. (3-20)

to (3-26).]
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The length of the descending branch of the curve is strongly affected by the test con-
ditions. Frequently, an axially loaded concrete test cylinder will fail explosively at the
point of maximum stress. This will occur in axially flexible testing machines if the strain
energy released by the testing machine as the load drops exceeds the energy that the spec-
imen can absorb. If a member is loaded in compression due to bending (or bending plus
axial load), the descending branch may exist because, as the stress drops in the most highly
strained fibers, other less highly strained fibers can resist the load, thus delaying the failure
of the highly strained fibers.

The stress—strain curves in Fig. 3-18 show five properties used in establishing math-
ematical models for the stress—strain curve of concrete in compression [3-36]:

1. The initial slope of the curves (initial tangent modulus of elasticity) increases
with an increase in compressive strength.

The modulus of elasticity of the concrete, E., is affected by the modulus of elasticity
of the cement paste and by that of the aggregate. An increase in the water/cement ratio
increases the porosity of the paste, reducing its modulus of elasticity and strength. This
is accounted for in design by expressing E. as a function of f/.

Of equal importance is the modulus of elasticity of the aggregate. Normal-weight
aggregates have modulus-of-elasticity values ranging from 1.5 to 5 times that of the cement
paste. Because of this, the fraction of the total mix that is aggregate also affects E..
Lightweight aggregates have modulus-of-elasticity values comparable to that of the paste;
hence, the aggregate fraction has little effect on E. for lightweight concrete.
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The modulus of elasticity of concrete is frequently taken as given in ACI Code
Section 8.5.1, namely,

E. = 33(w) V. psi (3-17)

where w is the weight of the concrete in 1b/f3. This equation was derived from short-time
tests on concretes with densities ranging from 90 to 155 1b/ft® and corresponds to the
secant modulus of elasticity at approximately 0.50f7. [3-37]. The initial tangent modulus is
about 10 percent greater. Because this equation ignores the type of aggregate, the scatter of
data is very wide. Equation (3-17) systematically overestimates E . in regions where low-
modulus aggregates are prevalent. If deflections or vibration characteristics are critical in a
design, E. should be measured for the concrete to be used.

For normal-weight concrete with a density of 145 lb/ft3, ACI Code Section 8.5.1
gives the modulus of elasticity as

E. = 57,000\ f psi (3-18)
ACI Committee 363 [3-8] proposed the following equation for high-strength concretes:
E, = 40,000V/f! + 1.0 X 10°psi (3-19)

2. The rising portion of the stress—strain curve resembles a parabola with its vertex
at the maximum stress.

For computational purposes the rising portion of the curves is frequently approximated
by a parabola [3-36], [3-38], and [3-39]. This curve tends to become straighter as the con-
crete strength increases [3-40].

3. The strain, €(, at maximum stress increases as the concrete strength increases.

4. As explained in Section 3-2, the slope of the descending branch of the
stress—strain curve results from the destruction of the structure of the concrete, caused
by the spread of microcracking and overall cracking. For concrete strengths up to about
6000 psi, the slope of the descending branch of the stress—strain curve tends to be flat-
ter than that of the ascending branch. The slope of the descending branch increases
with an increase in the concrete strength, as shown in Fig. 3-18. For concretes with f7.
greater than about 10,000 psi, the descending branch is a nearly vertical, discontinuous
“curve.” This is because the structure of the concrete is destroyed by major longitudinal
cracking.

5. The maximum strain reached, €., decreases with an increase in concrete
strength.

The descending portion of the stress—strain curve after the maximum stress has been
reached is highly variable and is strongly dependent on the testing procedure. Similarly,
the maximum or limiting strain, €., is very strongly dependent on the type of specimen,
type of loading, and rate of testing. The limiting strain tends to be higher if there is a pos-
sibility of load redistribution at high loads. In flexural tests, values from 0.0025 to 0.006
have been measured.

Equations for Compressive Stress—Strain Diagrams

A common representation of the stress—strain curve for concretes with strengths up to
about 6000 psi is the modified Hognestad stress—strain curve shown in Fig. 3-19a. This
consists of a second-degree parabola with apex at a strain of 1.8f/E,., where f{ = 0.9f%,
followed by a downward-sloping line terminating at a stress of 0.85f/ and a limiting strain
of 0.0038 [3-38]. Equation (3-14) describes a second-order parabola with its apex at the
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Analytical approximations to the compressive stress—strain curve for concrete.

strain €,. The reduced strength, /7 = 0.9f7, accounts for the differences between cylinder
strength and member strength. These differences result from different curing and placing,
which give rise to different water-gain effects due to vertical migration of bleed water, and
differences between the strengths of rapidly loaded cylinders and the strength of the same
concrete loaded more slowly, as shown in Fig. 3-2.

Two other expressions for the stress—strain curve will be presented. The stress—strain
curve shown in Fig. 3-19b is convenient for use in analytical studies involving concrete
strengths up to about 6000 psi because the entire stress—strain curve is given by one continu-
ous function. The highest point in the curve, f7, is taken to equal 0.9/ to give stress-block
properties similar to that of the rectangular stress block of Section 4-3 when €,,; = 0.003 for
S up to 5000 psi. The strain &,, corresponding to maximum stress, is taken as 1.71f;/E..
For any given strain €, x = €/g,. The stress corresponding to that strain is

2flx
Je=—7—7"

= 3-20
1+ x? ( )

For a compression zone of constant width, the average stress under the stress block from
€ = 0toeis B1fV, where
In(1 + x?)
B =——"= (3-21)
X
The center of gravity of the area of the stress—strain curve between € = 0 and € is at ke
from the point where € exists, where
2(x — tan 'x)
ky=1—-—"—F—— (3-22)
x°By
where x is in radians when computing tan”'x. The stress—strain curve is satisfactory for
concretes with stress—strain curves that display a gradually descending stress—strain
curve at strains greater than €y. Hence, it is applicable for f. up to about 5000 psi for
normal-weight concrete and about 4000 psi for lightweight concrete.
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Expressions for the compressive stress—strain curve for concrete are reviewed by
Popovics [3-40]. Thorenfeldt, Tomaszewicz, and Jensen [3-42] generalized two of these
expressions to derive a stress—strain curve that applies to concrete strengths from 15 to
125 MPa. The relationship between a stress, f, and the corresponding strain, €., is

& _ n(ec/S())
fo n-—1+ (66/80)""

(3-23)

where

f+ = peak stress obtained from a cylinder test
g, = strain when f, reaches f.. (see Eq. (3-27))
n = a curve-fitting factor equal to E./(E, — E.) (see Eq. (3-24))
E. = initial tangent modulus (when €, = 0)
E. = file,
a factor to control the slopes of the ascending and descending branches of the

stress—strain curve, taken equal to 1.0 for €./g, less than 1.0 and taken
greater than 1.0 for €/g, greater than 1.0. [See Egs. (3-25) and (3-26).]

»
Il

The four constants g, E, n, and k can be derived directly from a stress—strain curve
for the concrete if one is available. If not, they can be computed from Eqgs. (3-25) to (3-27),
given by Collins and Mitchell [3-43]. Equations (3-17) and (3-18) can be used to compute
E, although they were derived for the secant modulus from the origin and through points
representing 0.4 to 0.5 f.. For normal-density concrete,

/
n=08+ (2§60> (3-24)
where f/ is in psi. For €,/g, less than or equal to 1.0,
k=1.0 (3-25)
and for €./, > 1.0,
k=0.67 + ( fe ) = 1.0 (psi) (3-26)
9000
If n, f, and E are known, the strain at peak stress can be computed from
& = ﬁ(n ﬁ 1) (3-27)

A family of stress—strain curves calculated from Eq. (3-23) is shown in Fig. 3-18.
Equation (3-23) produces a smooth continuous descending branch. Actually, the descend-
ing branch for high-strength concretes tends to drop in a series of jagged steps as the struc-
ture of the concrete is destroyed. Equation 3-23 approximates this with a smooth curve, as
shown in Fig. 3-18.

Traditionally, equivalent stress blocks used in design are based directly on stress—strain
curves that have the peak stress equal to f7, which is 0.85f7. to 0.9f7, to allow for differences
between the in-place strength and the cylinder strength. For prediction of experimentally
obtained behavior, the ordinates of the stress—strain curve should be computed for a strength
f+ and then multiplied by 0.90. For design based on stress—strain relationships, the
stress—strain curve should be derived for a strength of f. and the ordinates multiplied by 0.90.

As shown in Fig. 3-15, a lateral confining pressure causes an increase in the com-
pressive strength of concrete and a large increase in the strains at failure. The additional
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Fig. 3-20

Compressive stress—strain
curves for cyclic loads.
(From [3-45].)

Fig. 3-21

Stress—strain curve and
stress—crack opening curves
for concrete loaded in tension.

strength and ductility of confined concrete are utilized in hinging regions of structures in
seismic regions. Stress—strain curves for confined concrete are described in [3-44].

When a compression specimen is loaded, unloaded, and reloaded, it has the
stress—strain response shown in Fig. 3-20. The envelope to this curve is very close to the
stress—strain curve for a monotonic test. This, and the large residual strains that remain
after unloading, suggest that the inelastic response is due to damage to the internal struc-
ture of the concrete, as is suggested by the microcracking theory presented earlier.

Stress-Strain Curve for Normal-Weight Concrete
in Tension

The stress—strain response of concrete loaded in axial tension can be divided into two
phases. Prior to the maximum stress, the stress—strain relationship is slightly curved. The
diagram is linear to roughly 50 percent of the tensile strength. The strain at peak stress is
about 0.0001 in pure tension and 0.00014 to 0.0002 in flexure. The rising part of the
stress—strain curve may be approximated either as a straight line with slope E. and a max-
imum stress equal to the tensile strength f; or as a parabola with a maximum strain
€; = 1.8f//E.and a maximum stress f;. The latter curve is illustrated in Fig. 3-21a with f7}
and E_based on Egs. (3-11) and (3-18).
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After the tensile strength is reached, microcracking occurs in a fracture process zone
adjacent to the point of highest tensile stress, and the tensile capacity of this concrete drops
very rapidly with increasing elongation. In this stage of behavior, elongations are concen-
trated in the fracture process zone while the rest of the concrete is unloading elastically.
The unloading response is best described by a stress-versus-crack-opening diagram, ideal-
ized in Fig. 3-21b as two straight lines. The crack widths shown in this figure are of the
right magnitude, but the actual values depend on the situation. The tensile capacity drops
to zero when the crack is completely formed. This occurs at a very small crack width. A
more detailed discussion is given in [3-46].

Poisson’s Ratio

At stresses below the critical stress (see Fig. 3-1), Poisson’s ratio for concrete varies from
about 0.11 to 0.21 and usually falls in the range from 0.15 to 0.20. On the basis of tests of
biaxially loaded concrete, Kupfer et al. [3-32] report values of 0.20 for Poisson’s ratio for
concrete loaded in compression in one or two directions: 0.18 for concrete loaded in ten-
sion in one or two directions and 0.18 to 0.20 for concrete loaded in tension and compres-
sion. Poisson’s ratio remains approximately constant under sustained loads.

3-6 TIME-DEPENDENT VOLUME CHANGES

Concrete undergoes three main types of volume change, which may cause stresses, crack-
ing, or deflections that affect the in-service behavior of reinforced concrete structures.
These are shrinkage, creep, and thermal expansion or contraction.

Shrinkage

Shrinkage is the decrease in the volume of concrete during hardening and drying under con-
stant temperature. The amount of shrinkage increases with time, as shown in Fig. 3-22a.

The primary type of shrinkage is called drying shrinkage or simply shrinkage and is
due to the loss of a layer of adsorbed water (electrically bound water molecules) from the
surface of the gel particles. This layer is roughly one water molecule thick, or about 1 percent
of the size of the gel particles. The loss of free unadsorbed water has little effect on the
magnitude of the shrinkage.

Shrinkage strains are dependent on the relative humidity and are largest for relative
humidities of 40 percent or less. They are partially recoverable upon rewetting the con-
crete, and structures exposed to seasonal changes in humidity may expand and contract
slightly due to changes in shrinkage strains.

The magnitude of shrinkage strains also depends on the composition of the concrete
mix and the type of cement used. The hardened cement paste shrinks, whereas the aggre-
gate acts to restrain shrinkage. Thus, the larger the fraction of the total volume of the con-
crete that is made up of hydrated cement paste, the greater the shrinkage. This may be
particularly important with the more common use of self-consolidating concrete, which
has significantly higher paste content than normally consolidated concrete of the same
strength. An increase in the water/cementitious materials ratio or the total cement content
reduces the volume of aggregates, thus reducing the restraint of shrinkage by the aggregate.
Also, more finely ground cements have a larger surface area per unit volume, and thus, there
is more adsorbed water to be lost during shrinkage. There is less shrinkage in concrete
made with quartz or granite aggregates than with sandstone aggregates because quartz and
granite have a higher modulus of elasticity.
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Fig. 3-22
Time-dependent strains.
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Drying shrinkage occurs as the moisture diffuses out of the concrete. As a result, the
exterior shrinks more rapidly than the interior. This leads to tensile stresses in the outer
skin of the concrete and compressive stresses in the interior. For large members, the ratio
of volume to surface area increases, resulting in less shrinkage because there is more moist
concrete to restrain the shrinkage. Shrinkage also develops more slowly in large members.

Autogenous shrinkage occurs without the loss of moisture due to hydration reactions
inside the cement matrix. In earlier studies this was considered to be a very small portion
of the total shrinkage, but with a greater use of high-performance concretes (water/cement
ratio below 0.40), autogenous shrinkage may constitute a more significant percentage of
the total shrinkage [3-47].

A final form of shrinkage called carbonation shrinkage occurs in carbon-dioxide
rich atmospheres, such as those found in parking garages. At 50 percent relative humidity,
the amount of carbonation shrinkage can equal the drying shrinkage, effectively doubling
the total amount of shrinkage. At higher and lower humidities, the carbonation shrinkage
decreases.

The ultimate drying shrinkage strain, €, for a 6-by-12-in. cylinder maintained for
a very long time at a relative humidity of 40 percent ranges from 0.000400 to 0.001100



Fig. 3-23
Effect of relative humidity on
shrinkage.
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(400 to 1100 X 107° strain), with an average of about 0.000800 [3-17]. Thus, in a 25-ft
bay in a building, the average shrinkage strain would cause a shortening of about % in. in
unreinforced concrete. In a structure, however, the shrinkage strains will tend to be less for
the same concrete, for the following reasons:

1. The ratio of volume to surface area will generally be larger than for the cylinder;
as a result, drying shrinkage should be reduced.

2. A structure is built in stages, and some of the shrinkage is dissipated before
adjacent stages are completed.

3. The reinforcement restrains the development of the shrinkage.

The CEB-FIP Model Code Committee [3-6] and ACI Committee 209 [3-21] have
published procedures for estimating shrinkage strains. Recently, the fib Model Code Com-
mittee published its first draft of fib Model Code 2010 [3-48], which contains some modi-
fications of the procedures in reference [3-6] for evaluation shrinkage and creep strains.
Because the fib Model Code procedure is more complicated that is required for typical
structural design, the procedure developed by ACI Committee 209 [3-21] with some mod-
ifications from Mindess et al. [3-49] will be presented here.

The general expression for the development of shrinkage strain in concrete that is
moist-cured for 7 days and then dried in 40 percent relative humidity is:
= 55 (e (328)
where (gy,), is the shrinkage strain after ¢ days of drying and (gg,), is the ultimate value
for drying shrinkage. For concrete that is steam-cured for 1 to 3 days, the constant 35 in
Eq. (3-28) is increased to 55. The value for (gg,), may vary between 415 X 10~° and
1070 X 10~ °. In the absence of detailed shrinkage data for the local aggregates and condi-
tions, (gg,), can be taken as:

(Ssh)t

(egn)y = 780 X 1076 (3-29)

Modification for Relative Humidity. Concrete shrinkage strains are reduced in loca-
tions with a high ambient relative humidity (RH), as indicated in Fig. 3-23 from reference
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Fig. 3-24

Effect of effective thickness,
h,, on the rate of develop-
ment of shrinkage.
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[3-6], in which By is a coefficient that accounts for relative humidity. To account for RH
values greater that 40 percent, (&), can be multiplied by the correction factor, 7,,, given as:

for 40% < RH < 80%: y,, = 1.40 — 0.01 X RH (3-30a)
for RH > 80%: v = 3.00 - 0.03 X RH (3-30b)

Modification for Volume/Surface Ratio. Concrete members with a large surface area
per unit volume will tend to lose more moisture to the atmosphere, and thus, will exhibit
higher shrinkage strains. ACI Committee 209 [3-21] describes two methods to account for
the shape and size of a concrete member using either the average member thickness or the
member volume/surface ratio. The effect that the average member thickness, #,, has on the
development of shrinkage over time, 3, is shown in Fig. 3-24 from reference [3-6], where
t, indicates the length of time for moist-curing. Members with a large average thickness
have a larger volume/surface ratio. The value of (gg,), given in Eq. (3-29) assumes an
average member thickness of 6 in., and a volume/surface ratio of 1.5 in. Using the volume/
surface approach from ACI Committee 209, the correction factor, 7,,, is given as:

Yoy = 127012V (3-31)

where V/S is the volume/surface ratio in inches.

EXAMPLE 3-2 CALCULATION OF SHRINKAGE STRAINS

A lightly reinforced 6-in.-thick floor in an underground parking garage is supported
along its outside edges by a 16-in.-thick basement wall. Cracks have developed in the slab
perpendicular to the basement wall at roughly 6 ft on centers. The slab is 24 months old
and the wall is 26 months old. The concrete is 3500 psi, made from Type I cement, and was
moist-cured for 5 days in each case. The average relative humidity is 50 percent. Compute
the width of these cracks, assuming that they result from the basement wall restraining slab
shrinkage parallel to the wall.

1. Compute expected shrinkage strain in slab.

We will first calculate the ultimate shrinkage strain for the slab using Eq. (3-29) and
appropriate modification factors. The average relative humidity is 50 percent, so the mod-
ification factor can be calculated using Eq. (3-30a).
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yu = 140 — 0.01 X RH = 1.40 — 0.50 = 0.90

Assume the slab spans 24 ft in one direction and 12 ft in the other direction. Thus,
the volume of concrete is 6 in. X 24 ft X 12 ft. Assume that due to continuity with adjacent
slabs, the edges of the slab are not exposed to the atmosphere. Thus, the exposed surface
area on the top and bottom of the slab is 2 X 24 ft X 12 ft. With these two values, the volume/
surface ratio is, V/S = 6 in./2 = 3 in. Using this value in Eq. (3-31), the modification factor
for volume/surface ratio is,

Yy = 127012V = 127036 = 0936 = 0.94

Rounding this to two significant figures is appropriate because the constants in Eq. (3-31)
are only given to two significant figures.

We can now use Eq. (3-29) and the two modification factors to determine the ulti-
mate shrinkage strain and then use Eq. (3-28) to determine the shrinkage strain after 24
months. Putting the modification factors into Eq. (3-29) results in,

(&sidu = Yri X Yus X T80 X 1076
= 0.90 X 0.94 X 780 X 10° = 660 X 10~° strain

Assume the slab had 7 days of moist-curing before being exposed to the atmosphere.
Thus, the number of drying days after 24 months (2 years) is,

t =2 X365 —7="730 -7 = 723 days

Using this number in Eq. (3-28) results in,
t (Eur), = 723
35 + 1M T 35 + 723

629 X 107°% = 630 X 10 ®strain

(eg), = X 660 X 107°

2. Compute expected shrinkage strains in the wall.

We will calculate the total expected shrinkage strain in the wall for 26 months
exposure and then subtract from that the expected shrinkage strain during the first
2 months before the slab was cast. The difference will give us the shrinkage strains
experienced in the wall from the time the slab was cast up to the 24 months after the
slab was cast.

The coefficient, vy,,, is the same as that calculated for the slab (0.90). Assume the
portion of the wall under consideration is 10 ft high and has a length of 24 ft. Thus, the vol-
ume of concrete in the wall is 16 in. X 10 ft X 24 ft. Assume the bottom and edges of the
wall are continuous, and thus, not exposed to the atmosphere. The exposed surface area for
the first 2 months consists of the front and back of the wall (2 X 10 ft X 24 ft) plus the top
of the wall (24 ft X 1.5 ft). After the slab is cast the top of the wall is not exposed, and thus,
is not part of the exposed surface area. For the first 2 months after the wall is cast the V/S
ratio is,

V. 16in. X 240 240 fi?

= = 1. =
S 2 X 240 ft> + 36 ft? 516 ft?

Using Eq. (3-31), the modification factor for the volume/surface ratio during the first 2
months is:

Yo = 127012V = 1270895 = 085
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During the following 24 months, V/S = 8 in. and the modification factor is,

Vos = 1.2—0.12V/S — 1.2—0.893 = (.84

The difference between these two coefficients is trivial and can be ignored in the calculation
of the ultimate shrinkage strain in the wall. Using Eq. (3-29) and the calculated modification
factors, the ultimate shrinkage strain expected in the wall is,

(Ssh)u = Y X Yos X 780 X 10_6

=0.90 X 0.84 X 780 X 107° = 590 X 107° strain

Again assuming 7 days of moist-curing, the shrinkage strain expected in the wall after
26 months can be calculated using the number of drying days equal to,

t =2 X365+ 2 X 30— 7= 783 days

Substituting this and (gy,), into Eq. (3-28) gives,

t 783
35+ 1O T 35 4 783
564 X 1078 = 560 X 10~ strain

To calculate the shrinkage strain in the wall during the first 2 months, use t =60 —7 =53
days in Eq. (3-28),

(gsn)t = X 590 X 107°

53
35 + 53

=355 X 107% = 360 X 107°

(&), = X 590 X 107°

Thus, the net shrinkage strain expected in the wall after the slab is cast is,
Net wall strain = (560 — 360) X 10~® = 200 X 10 ° strain

3. Relative shrinkage strain and expected crack width.

Using the shrinkage strain values calculated in the prior steps for the slab and the wall
after the slab was cast, the net differential shrinkage strain between the slab and the wall is,

Net differential strain = (630 — 200) X 107% = 430 X 10 strain

With this value, if the observed cracks in the slab are occurring at a spacing of 6 ft, the
expected crack widths would be,

Crack width = 6 ft X 12 in/ft X 430 X 107°
= 0.031 in.

This is an approximate value for the crack width because it assumes a uniform spac-
ing between the cracks in the slab and does not account for the effect of reinforcement re-
straining shrinkage strains in the concrete. If reinforcement is present the shrinkage strains
would be from 75 to 90 percent of the calculated values. |

Creep of Unrestrained Concrete

When concrete is loaded in compression, an instantaneous elastic strain develops, as shown
in Fig. 3-22b. If this load remains on the member, creep strains develop with time. These
occur because the adsorbed water layers tend to become thinner between gel particles
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transmitting compressive stress. This change in thickness occurs rapidly at first, slowing
down with time. With time, bonds form between the gel particles in their new position. If
the load is eventually removed, a portion of the strain is recovered elastically and another
portion by creep, but a residual strain remains (see Fig. 3-22b), due to the bonding of the
gel particles in the deformed position.

Creep strains, €., which continue to increase over a period of two to five years,
are on the order of one to three times the instantaneous elastic strains. Increased concrete
compression strains due to creep will lead to an increase in deflections with time, may
lead to a redistribution of stresses within cross sections, and cause a decrease in prestress-
ing forces.

The ratio of creep strain after a very long time to elastic strain, €./€;, is called
the creep coefficient, ¢. The magnitude of the creep coefficient is affected by the ratio of
the sustained stress to the strength of the concrete, the age of the concrete when loaded, the
humidity of the environment, the dimensions of the element, and the composition of the
concrete. Creep is greatest in concretes with a high cement—paste content. Concretes con-
taining a large aggregate fraction creep less, because only the paste creeps and because
creep is restrained by the aggregate. The rate of development of the creep strains is also
affected by the temperature, reaching a plateau at about 160°F. At the high temperatures
encountered in fires, very large creep strains occur. The type of cement (i.e., normal or
high-early-strength cement) and the water/cement ratio are important only in that they
affect the strength at the time when the concrete is loaded.

For creep, as for shrinkage, several calculation procedures exist [3-6], [3-21], [3-48],
and [3-49]. For stresses less than 0.40f7, creep is assumed to be linearly related to stress.
Beyond this stress, creep strains increase more rapidly and may lead to failure of the mem-
ber at stresses greater than 0.75f, as shown in Fig. 3-2a. Similarly, creep increases signif-
icantly at mean temperatures in excess of 90°F.

The total strain, €.(t), at time # in a concrete member uniaxially loaded with a constant
stress a (1) at time #( is

€c(t) = €.(to) + €cc(t) + €.(t) + €cr(t) (3-32)
where
€.(tp) = initial strain at loading = o.(t)/E(tg)
€..(t) = creep strain at time ¢ where ¢ is greater than f,
€.s(t) = shrinkage strain at time ¢
€.r(t) = thermal strain at time ¢

E.(t9) = modulus of elasticity at the age of loading

The stress-dependent strain at time 7 is
€cs(t) = €ci(to) + €cc(t) (3-33)

For a stress o applied at time 7 and remaining constant until time ¢, the creep strain
€. between time 7 and ¢ is

Ecc(t’ tO) = Ct (3'34)

where E.(28) is the modulus of elasticity at the age of 28 days, given by Eq. (3-17) or
(3-18). Because creep strains involve the entire member, the value for the elastic modulus
should be based on the average concrete strength for the full member. It is recommended
that the value of mean concrete strength for a member, f,,,, be taken as 1.2 f7.
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Fig. 3-25

Effect of effective thickness,
h,, and of age at loading, #,
on creep coefficient.

From reference [3-21], the creep coefficient as a function of time since load applica-
tion, C,, is given as:

t0'6

TR 3

where ¢ is the number of days after application of the load and C, is the ultimate creep co-
efficient, which is defined below in Eq. (3-36). The constant, 10, may vary for different
concretes and curing conditions, but this value is commonly used for steam-cured concrete
and normal concrete that is moist-cured for 7 days.

As with the coefficient for ultimate shrinkage strain, the coefficient C, consists of a
constant multiplied by correction factors.

C, = 235 X Ay X Ay X Ay (3-36)

The constant in this equation can range from 1.30 to 4.15, but the value of 2.35 is com-
monly recommended. The coefficients A,;, and A, account for the ambient relative humid-
ity and the volume/surface ratio, respectively. As with shrinkage strains, a higher value of
relative humidity and a larger volume/surface ratio (can also be expressed as a larger
effective thickness), will tend to reduce the magnitude of creep strains. For an ambient rel-
ative humidity (RH) greater than 40 percent, the modifier for relative humidity is:

Ay, = 1.27 — 0.0067 X RH (3-37)

The modifier to account for the volume/surface ratio is:
Ay = 0.67[1 + 1.137034ViS } (3-38)

where V/S is the volume/surface area ratio in inches for the member in question.

The coefficient A,, in Eq. (3-36) is used to account for the age of the concrete when
load is applied to the member. Early loading of a concrete member will result in higher
shrinkage strains, as shown in Fig. 3-25 from reference [3-6], in which 7, is the time of initial
loading in days, A, is the member effective thickness, and ¢ (%, 1,) is the symbol used for the
creep coefficient in reference [3-6]. Values for A,, from ACI Committee 209 [3-21] are

for moist-cured concretes: A, = 1.25x 7,118 (3-39a)
for steam-cured concretes: A, = 1.13 X 1,7 00% (3-39b)

where ¢, is the time in days at initial loading of the member.
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The expressions given here for creep strains are intended for general use and
do not consider significant variations in curing conditions and the types and amounts
of aggregates used in the mix design. If creep deflections are anticipated to be a seri-
ous problem for a particular structure, consideration should be given to carrying out
creep tests on the concrete to be used. Further, a more sophisticated approach is rec-
ommended for applications where an accurate calculation of deflection versus time
after initial loading is required, such as in segmentally constructed post-tension con-
crete bridges.

Example 3-3 Calculation of Unrestrained Creep Strains

A plain concrete pedestal 24 in. X 24 in. X 10 ft high is subjected to an average
stress of 1000 psi. Compute the total shortening in 5 years if the load is applied 2 weeks
after the concrete is cast. The properties of the concrete and the exposure are the same as in
Example 3-2.

1. Compute the ultimate shrinkage strain coefficient, C,,.

From Eq. (3-36), the ultimate creep coefficient is,
C, =235 X Ay X Ay X Ay

For a relative humidity of 50 percent, Eq. (3-37) is used to calculate the modification
factor, A,

Ay = 1.27 — 0.0067 X RH

1.27 — 0.0067 X 50 = 1.27 — 0.33 = 0.94

The load on the pedestal was applied at ¢, = 14 days, and it is assumed that the pedestal was
moist-cured. Thus, from Eq. (3-39a),

1.25 x ¢, 0118
1.25 X 1479118 = 125 x 0.732 = 0.92

Aio

The volume of concrete in the pedestal is 2 ft X 2 ft X 10 ft. Assuming that only the sides
of the pedestal are exposed to the atmosphere, the exposed surface area is 4 X 2 ft X 10 ft.
Thus, the volume/surface ratio is,

V_2fX 20X 10f 26
S 4x2fix10ft 4 m

From Eq. (3-38), the modification factor for volume/surface ratio is,

Ays = 0.67[1 + 1.1370545]
= 0.67[1 + 113732 = 0,67 [1 + 0.673] = 1.12

Putting these coefficients into Eq. (3-36) results in,

C,=1235X094 X092 X 1.12 = 2.28
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2. Compute creep coefficient for time since loading.
The time since the load was applied is stated as 5 years minus 2 weeks. Thus, # is,
t =5 X365 —2X7=1811days

Using this value in Eq. (3-35) to calculate the creep coefficient as a function of time

results in,
06
SRTERI
—LIOI(SXZZS_&X228_205
10 + 181196 ' 10 + 90.1 ' '

3. Compute the total stress-dependent strain.

The total stress-dependent strain is a sum of the initial strain plus the creep strain that
develops between the time of initial loading, 7,, and the time of interest, ¢. The creep strain
will be calculated using Eq. (3-34). The concrete stress at initial loading, o.(¢,), is given as
1000 psi. The concrete modulus, E.(28), will be calculated using Eq. (3-18). The concrete
strength to use in Eq. (3-18) is taken as the average concrete strength in the entire member,

fums Which is assumed to be 1.2 f7.. So,

fom = 1.2 X £ = 1.2 X 3500 = 4200 psi

With this value, the elastic modulus for the concrete is,

E.(28) = 57,000\ f.,, = 57,000 X \V/4200 = 3.69 x 10° psi

Thus, from Eq. (3-34) the creep strain between times ¢, and 7 is,

o (t,)
E.(28)
1000 psi

= %205 = 0556 X 107 strai
3,690,000 psi strain

gqlt, t,) = X C;

The initial strain at the application of load is to be calculated using the concrete mod-
ulus at the time of loading, E.(t,). This is to be calculated using the concrete strength at the
time of loading, which can be calculated using Eq. (3-5), where 7, (14 days) will be used in
place of the symbol 7 used in Eq. (3-5).

to
fety) = f£(28)<m)

14
= 3500() = 3080 psi
4+ 085X 14

Again assuming that f,,, is equal to 1.2 £,
fom(t,) = 1.2f4(t,) = 1.2 X 3080 = 3700 psi
From Egq. (3-18),

E(t,) = 57,000V f.,(t,)

57,000V/3700 = 3.47 X 10° psi
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From this, calculate the initial concrete strain as,

o.t,) 1000 psi

B = 0.288 X 1077 strai
Ec(to) 3,470,000 pSl strain

edlt,) =

Thus, the total stress-dependent strain in the concrete is,

g(total) = g.(1,) + &.(1,1,)
= (0.288 + 0.556) X 107> = 0.844 X 107 strain

4. Compute the expected shortening of the pedestal related to stress-dependent
strains.

The pedestal is 10 ft long, so the total expected shortening due to stress-dependent
strain is,

A€ = € X gitotal) = 120in. X 0.844 X 107> = 0.101in = 0.10 in.

Thus, the pedestal would be expected to shorten approximately 0.10 in. over 5 years due to
the applied load. |

Restrained Creep

In an axially loaded reinforced concrete column, the creep shortening of the concrete causes
compressive strains in the longitudinal reinforcement, increasing the load in the steel and
reducing the load, and hence the stress, in the concrete. As a result, a portion of the elastic
strain in the concrete is recovered and, in addition, the creep strains are smaller than they
would be in a plain concrete column with the same initial concrete stress. A similar redis-
tribution occurs in the compression zone of a beam with compression steel.

This effect can be modeled using an age-adjusted effective modulus, E,,(t, tg), and
an age-adjusted transformed section in the calculations [3-50], [3-51], and [3-52], where

Ec(tO)
1+ x(t, to)[Ec(to)/E.(28)]C,

Ecaa(t’ tO) = (3'40)

in which x(#, ty) is an aging coefficient that can be approximated by Eq. (3-41) [3-53]
1%
x(1,10) = T4 0 (3-41)
The axial strain at time ¢ in a column loaded at age ¢, with a constant load P is
P
Atraa X Ecaa(ts tO)

€.(t,19) = (3-42)
where Ay, is the age-adjusted transformed area of the column cross section. The concept
of the transformed sections is presented in Section 9-2. For more information on the use of
the age-adjusted effected modulus, see [3-50] through [3-52].

EXAMPLE 3-4 Computation of the Strains and Stresses in an Axially
Loaded Reinforced Concrete Column

A concrete pedestal 24 in. X 24 in. X 10 ft high has eight No. 8 longitudinal bars
and is loaded with a load of 630 kips at an age of 2 weeks. Compute the elastic stresses in
the concrete and steel at the time of loading and the stresses and strains at an age of 5 years.
The properties of the concrete and the exposure are the same as in Examples 3-2 and 3-3.
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In Example 3-3 the following quantities were computed:

fom(14) = 3700 psi Fom(28) = 4200 psi
E.(14) = 3,470,000 psi  E.(28) = 3,690,000 psi
C, = 2.05

1. Compute the transformed area at the instant of loading, A,,. (Transformed
sections are discussed in Section 9-2.)

E, 29,000,000
E.(14) 3,470,000

Elastic modular ratio = n =

= 8.4

The steel area will be “transformed” into an equivalent concrete area, giving the trans-
formed area

Ay = A, + (n — DA, = 576in2 + (8.4 — 1) X 6.32in?
= 623 in.?
The stress in the concrete is 630,000 1b/623 in2 = 1010 psi. The stress in the steel is n
times the stress in the concrete = 8.4 X 1010 psi = 8480 psi.

2. Compute the age-adjusted effective modulus, E,,(t t)), and the age-
adjusted modular ratio, n,,.

Eu(t,10) = Eclto) (3-40)
ST 4 (8 1) [Ec(10)/ Ecn(28)1(1. 1)
where
0.5 0.5
to 14
t,ty) = = 3-41
Xt t0) = 7 005 1+ 1403 G-4D
= 0.789
3,470,000
Eeaalt 10) = 3,470,000
1 +0.7890 X ——— X 2.05
3,690,000
= 1,380,000 psi
. . E 29,000,000
Age-adjusted modular ratio, n,, = Eonlts 10) = 1,380,000
=21.0

3. Compute the age-adjusted transformed area, A, the stresses in the con-
crete and in the steel, and the shortening. Again, the steel will be transformed to concrete.

Agaa = Ac + (ngg — 1)Ay = 5762 + (21.0 — 1) X 6.32in.?
= 702 in.2
P 630,000 1b

Stress in concrete = f,. = = )
Atran 702 in.

= 897 psi
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Stress in steel = n,, X f. = 21.0 X 897 psi

18,800 psi
fe 897

Strain = =
E.. 1,380,000

0.000650 strain
Shortening € X € = 0.000650 X 120 in.
= 0.078 in.

The creep has reduced the stress in the concrete from 1010 psi at the time of loading
to 897 psi at 5 years. During the same period, the steel stress has increased from 8480 psi
to 18,800 psi. A column with less reinforcement would experience a larger increase in the
reinforcement stress. To prevent yielding of the steel under sustained loads, ACI Code Sec-
tion 10.9.1 sets a lower limit of 1 percent on the reinforcement ratio in columns. The
reinforcement ratio (A,/A,) for this pedestal is 1.1 percent.

The plain concrete pedestal in Example 3-3, which had a constant concrete stress of
1000 psi throughout the 5-year period, shortened 0.10 in. The pedestal in this example,
which had an initial concrete stress of 1010 psi but was reinforced, was shortened approx-
imately 80 percent as much. |

Thermal Expansion

The coefficient of thermal expansion or contraction, «, is affected by such factors as com-
position of the concrete, moisture content of the concrete, and age of the concrete. Ranges
from normal-weight concretes are 5 to 7 X 107% strain/°F for those made with siliceous
aggregates and 3.5 to 5 X 1075/°F for concretes made from limestone or calcareous
aggregates. Approximate values for lightweight concrete are 3.6 to 6.2 X 107%°F. An
all-around value of 5.5 X 107 %°F may be used. The coefficient of thermal expansion for
reinforcing steel is 6 X 10%°F. In calculations of thermal effects, it is necessary to allow
for the time lag between air temperatures and concrete temperatures.

As the temperature rises, so does the coefficient of expansion and at the temperatures
experienced in building fires, it may be several times the value at normal operating tem-
peratures [3-54]. The thermal expansion of a floor slab in a fire may be large enough to
exert large shear-forces on the supporting columns.

3-7  HIGH-STRENGTH CONCRETE

Concretes with 28-day strengths in excess of 6000 psi are referred to as high-strength
concretes. Strengths of up to 18,000 psi have been used in buildings. Reference [3-8]
presents the state of the art of the production and use of high-strength concrete.
Admixtures such as superplasticizers improve the dispersion of cement in the mix
and produce workable concretes with much lower water/cement ratios than were previously
possible. The resulting concrete has a lower void ratio and is stronger than normal con-
cretes. Most high-strength concretes have water-to-cementitious-materials ratios (w/cm
ratios) of 0.40 or less. Many have w/cm ratios in the range from 0.25 to 0.35. Workable
concrete with these low w/cm ratios is made possible through the use of large amounts of
superplasticizers. Only the amount of water needed to hydrate the cement in the mix is pro-
vided. This results in concrete with a dense amorphous structure without voids. Coarse
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aggregates should consist of strong fine-grained gravel with a rough surface. Smooth river
gravels give a lower paste—aggregate bond strength and a weaker concrete.

Enhanced concrete production control must be enforced at the job site, because all
shortcomings in selection of aggregates, amounts of water used in mixes, placing, curing,
and the like, lead to weaker concrete. Attention should be given to limiting and controlling
the temperature rise due to hydration.

High-Performance Concrete

The term high-performance concrete is used to refer to concrete with special properties,
such as ease of placement and consolidation, high early-age strength to allow early strip-
ping of forms, durability, and high strength. High-strength concrete is only one type of
high-performance concrete.

Mechanical Properties

Many of the mechanical properties of high-strength concretes are reviewed in [3-8], [3-55],
and [3-56]. It is important to remember that high-strength concrete is not a unique material
with a unique set of properties. For example, the modulus of elasticity is strongly affected
by the modulus of elasticity of the coarse aggregate.

As shown in Fig. 3-18, the stress—strain curves for higher-strength concretes tend to have
a more linear loading branch and a steep descending branch. High-strength concrete exhibits
less internal microcracking for a given strain than does normal concrete. In normal strength
concrete, unstable microcracking starts to develop at a compressive stress of about 0.75f7., re-
ferred to as the critical stress (See Section 3-2.) In high-strength concrete, the critical stress is
about 0.85f.. Failure occurs by fracture of the aggregate on relatively smooth planes parallel
to the direction of the applied stress. The lateral strains tend to be considerably smaller than in
lower-strength concrete. One implication of this is that spiral and confining reinforcement may
be less effective in increasing the strength and ductility of high-strength concrete column
cores.

Equations (3-17) and (3-18) overestimate the modulus of elasticity of concretes with
strengths in excess of about 6000 psi. Reference [3-8] proposes that

E, = 40,000V f. + 1.0 X 10° (psi) (3-19)

As noted earlier, E . varies as a function of the modulus of the coarse aggregate.
The modulus of rupture of high-strength concretes ranges from (7.5 to 12)V f.. A
lower bound to the split-cylinder tensile test data is given by 6\/]Té.

28-Day and 56-Day Compression Strengths

High-strength concrete frequently contains admixtures that delay the final strength gain.
As a result, the concrete is still gaining strength at 56 days, rather than reaching a maxi-
mum at about 28 days. In 2001, Nowak and Szerszen [3-10] and [3-11] collected cylinder-
test data on high-strength concretes, including tests of companion cylinders at 28 and
56 days. The data is summarized in Table 3-2.

The overall average of measured versus specified cylinder strength was 1.11 at
28 days, increasing to 1.20 at 56 days—an increase of 8.7 percent between 28 days and
56 days.

In the development of resistance factors for the design of reinforced concrete mem-
bers such as columns, the strength gain after 28 days was generally ignored, giving a
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TABLE 3-2 Differences between 28-day and 56-day
Concrete Strengths

Specified f, Age No. of Tests fo test/ Te,specified Coefficient of Variation

7000 psi 28 days 210 1.19 0.115
56 days 58 1.49 0.080

8000 psi 28 days 753 1.09 0.090
56 days 428 1.09 0.095

10,000 psi 28 days 635 1.13 0.115
56 days 238 1.18 0.105

12,000 psi 28 days 381 1.04 0.105
56 days 190 1.17 0.105

strength reserve of about 5 to 9 percent. If the member strength was based on reaching the
desired the 56-day concrete strength, some or all of this strength reserve would be lost.

Shrinkage and Creep

Shrinkage of concrete is approximately proportional to the percentage of water by volume
in the concrete. High-strength concrete has a higher paste content, but the paste has a lower
water/cement ratio. As a result, the shrinkage of high-strength concrete is about the same
as that of normal concrete.

Test data suggest that the creep coefficient, C;, for high-strength concrete is consid-
erably less than that for normal concrete [3-8].

3-8 LIGHTWEIGHT CONCRETE

Structural lightweight concrete is concrete having a density between 90 and 120 b/t
and containing naturally occurring lightweight aggregates such as pumice; artificial aggre-
gates made from shales, slates, or clays that have been expanded by heating; or sintered
blast-furnace slag or cinders. Such concrete is used when a saving in dead load is impor-
tant. Lightweight concrete costs about 20 percent more than normal concrete. The terms
“all-lightweight concrete” and “sand-lightweight concrete” refer to mixes having either
lightweight fine aggregates or natural sand, respectively.

The modulus of elasticity of lightweight concrete is less than that of normal concrete
and can be computed from Eq. (3-17).

The stress—strain curve of lightweight concrete is affected by the lower modulus of
elasticity and relative strength of the aggregates and the cement paste. If the aggregate is the
weaker of the two, failure tends to occur suddenly in the aggregate, and the descending
branch of the stress—strain curve is very short or nonexistent, as shown by the upper solid line
in Fig. 3-26. The fracture surface of those lightweight concretes tends to be smoother than for
normal concrete. On the other hand, if the aggregate does not fail, the stress—strain curve will
have a well-defined descending branch, as shown by the curved lower solid line in this figure.
As aresult of the lower modulus of elasticity of lightweight concrete, the strain at which the
maximum compressive stress is reached is higher than for normal-weight concrete.

The tensile strength of all-lightweight concrete is 70 to 100 percent of that of normal-
weight concrete. Sand-lightweight concrete has tensile strengths in the range from 80 to
100 percent of those of normal-weight concrete.



88 -

Fig. 3-26

Compressive stress—strain
curves for normal-weight and
lightweight concretes,

fe = 3000 and 5000 psi.
(From [3-57].)
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The shrinkage and creep of lightweight concrete are similar to or slightly greater
than those for normal concrete. The creep coefficients computed from Eq. (3-35) can be
used for lightweight concrete.

FIBER REINFORCED CONCRETE

Fiber reinforced concrete refers to concrete reinforced with short, randomly oriented
fibers. Based on their material, fibers can be divided into four major groups: steel fibers,
glass fibers, synthetic fibers, and natural fibers [3-58]. The amount of fibers added to the
concrete depends on the type of fiber and target performance, but practical considerations
limit the fiber dosage in structural elements to approximately 1.5 percent by volume. Tradi-
tional applications of fiber reinforced concrete include slabs on ground, tunnel liners, and
architectural elements, where fibers have been primarily used as replacement of minimum
reinforcement for cracking control and, to a lesser degree, replacement of minimum shear
and/or flexural reinforcement. Applications of fiber reinforced concrete in building struc-
tures, on the other hand, have been rather limited. This has been primarily due to limited
experimental research on the behavior of structural elements and consequently, the lack of
design provisions in building codes. It was not until the 2008 edition when fiber reinforced
concrete was recognized as a structural material in the ACI Code.

Fibers are primarily used for their ability to provide post-cracking tension resistance to
the concrete and thus, in addition to evaluating the compressive behavior of fiber reinforced
concrete, its tensile behavior should also be assessed. The addition of fibers to concrete in
low-to-moderate dosages (=1.5 percent by volume) does not greatly affect compression
strength and elastic modulus. Improvements in post-peak behavior, however, have been
observed, characterized by an increased compression strain capacity and toughness [3-59].

In tension, the ability of fibers to enhance concrete post-cracking behavior primarily
depends on fiber strength, fiber stiffness, and bond with the surrounding concrete matrix.
As opposed to reinforcing bars, which are designed to be anchored in the concrete such
that their yield strength can be developed, fibers are designed to pullout of the concrete
matrix prior to achieving their strength. Thus, the behavior of fiber reinforced concrete is
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Examples of deflection-
hardening and deflection-
softening behavior.
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highly dependent on the ability of the fibers to maintain good bond with the concrete as
they are pulled out.

Ideally, the tensile behavior of fiber reinforced concrete should be evaluated from di-
rect tension tests. However, difficulties in conducting such a test have led to the use of a four-
point flexural test as the most common test method for evaluating the post-cracking behavior
of fiber reinforced concrete. In the US, specifications for this test can be found in ASTM
C1609. The size of the flexural test specimens depends on the fiber length and concrete
aggregate size but typically, beams with a 6-in. square cross section and an 18-in. span are
used. The test is run until a midspan deflection equal to 1/150 of the span length is reached.

Based on its performance under flexure, fiber reinforced concretes can be classified
as either deflection softening or deflection hardening [3-60], as shown in Fig. 3-27.
Deflection softening implies a drop in the load at first cracking under a flexural test, while
deflection hardening fiber reinforced concretes exhibit a flexural strength greater than their
first cracking strength. When subjected to direct tension most fiber reinforced concretes
will exhibit a drop in stress at first cracking. However, some fiber reinforced concrete with
higher fiber contents exhibits a pseudo strain-hardening response with multiple cracking
under direct tension. This particular type of fiber reinforced concrete has been referred to
as either strain-hardening or high-performance fiber reinforced concrete [3-61]. For struc-
tural applications, it is desirable that fiber reinforced concrete exhibits at least a deflection
hardening behavior.

Research on the use of fiber reinforcement in structural elements has been primarily
limited to steel fibers, as opposed to synthetic or natural fibers. Thus, we shall concentrate
on the properties and structural applications of steel fibers. The vast majority of steel fibers
used for structural purposes are 1 in. to 2 in. in length and 0.015 in. to 0.04 in. in diameter,
with length-to-diameter ratios typically ranging between 50 and 80. The strength of the
steel wire used to manufacture fibers has a tensile strength in the order of 170 ksi, although
steel wire with strength greater than 350 ksi is sometimes used. In order to improve bond
with the concrete matrix as they are pulled out, steel fibers are typically deformed, most
commonly through hooks at their ends (Fig. 3-28).
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Fig. 3-28

Typical hooked steel fibers
used in fiber-reinforced
concrete.

Research on structural applications of fiber reinforced concrete has primarily
focused on their use as shear reinforcement in beams [3-62] and flat plates, and as
shear/confinement reinforcement in elements subjected to high shear reversals, such as
beam—column connections, structural walls, and coupling beams of earthquake-resistant
structures [3-63].

In 2008 the ACI Code allowed for the first time the use of deformed steel fibers as min-
imum shear reinforcement in beams (see Section 6-3). In order to account for differences in
performance between various fibers, as well as fiber contents, performance criteria are used
for acceptance of fiber reinforced concrete, based on flexural tests as per ASTM 1609. Based
on this material test, fiber reinforced concrete is considered acceptable for shear resistance if
the residual strength obtained at deflections of 1/300 and 1/150 of the span length of the beam
are greater than or equal to 90 percent and 75 percent of the first peak (cracking) strength, re-
spectively. First peak or cracking strength is determined experimentally, but shall not be taken
less than f,., as defined in ACI Code Eq. (9-10). In addition, regardless of the performance
obtained, fiber dosage shall not be less than 100 1b per cubic yard.

3-10 DURABILITY OF CONCRETE

The durability of concrete structures is discussed in [3-64]. The three most common dura-
bility problems in concrete structures are the following:

1. Corrosion of steel in the concrete. Corrosion involves oxidation of the rein-
forcement. For corrosion to occur, there must be a source of oxygen and moisture, both of
which diffuse through the concrete. Typically, the pH value of new concrete is on the order
of 13. The alkaline nature of concrete tends to prevent corrosion from occurring. If there is
a source of chloride ions, these also diffuse through the concrete, decreasing the pH of the
concrete where the chloride ions have penetrated. When the pH of the concrete adjacent to
the bars drops below about 10 or 11, corrosion can start. The thicker and less permeable the
cover concrete is, the longer it takes for moisture, oxygen, and chloride ions to reach the
bars. Shrinkage or flexural cracks penetrating the cover allow these agents to reach the bars
more rapidly. The rust products that are formed when reinforcement corrodes have several
times the volume of the metal that has corroded. This increase in volume causes cracking
and spalling of the concrete adjacent to the bars. Factors affecting corrosion are discussed
in [3-65].

ACI Code Section 4.3 attempts to control corrosion of steel in concrete by requiring
a minimum strength and a maximum water/cementitious materials ratio to reduce the
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permeability of the concrete and by requiring at least a minimum cover to the reinforcing
bars. The amount of chlorides in the mix also is restricted. Epoxy-coated bars sometimes
are used to delay or prevent corrosion.

Corrosion is most serious under conditions of intermittent wetting and drying.
Adequate drainage should be provided to allow water to drain off structures. Corrosion is
seldom a problem for permanently submerged portions of structures.

2. Breakdown of the structure of the concrete due to freezing and thawing.
When concrete freezes, pressures develop in the water in the pores, leading to a break-
down of the structure of the concrete. Entrained air provides closely spaced microscop-
ic voids, which relieve these pressures [3-66]. ACI Code Section 4.4 requires
minimum air contents to reduce the effects of freezing and thawing exposures. The
spacing of the air voids is also important, and some specifications specify spacing fac-
tors. ACI Code Section 4.3 sets maximum water/cementitious materials ratios of 0.45
and minimum concrete strengths of 4500 psi for concretes, depending on the severity of
the exposure. These can give strengths higher than would otherwise be used in structur-
al design. A water/cement ratio of 0.40 will generally correspond to a strength of 4500 to
5000 psi for air-entrained concrete. This additional strength can be utilized in comput-
ing the strength of the structure.

Again, drainage should be provided so that water does not collect on the surface of
the concrete. Concrete should not be allowed to freeze at a very young age and should be
allowed to dry out before severe freezing.

3. Breakdown of the structure of the concrete due to chemical attack. Sulfates
cause disintegration of concrete unless special cements are used. ACI Code Section 4.3
specifies cement type, maximum water/cementitious materials ratios, and minimum com-
pressive strengths for various sulfate exposures. Geotechnical reports will generally give
sulfate levels. ACI Code Table 4.3.1 gives special requirements for concrete in contact
with sulfates in soils or in water. In many areas in the western United States, soils contain
sulfates.

Some aggregates containing silica react with the alkalies in the cement, causing a dis-
ruptive expansion of the concrete, leading to severe random cracking. This alkali silica reac-
tion is counteracted by changing the source of the aggregate or by using low-alkali cements
[3-67]. It is most serious if the concrete is warm in service and if there is a source of moisture.
Reference [3-68] lists a number of other chemicals that attack concretes.

ACI Code Chapter 4 presents requirements for concrete that is exposed to freezing,
thawing, deicing chemicals, sulfates, and chlorides. Examples are pavements, bridge
decks, parking garages, water tanks, and foundations in sulfate-rich soils.

3-11 BEHAVIOR OF CONCRETE EXPOSED TO HIGH
AND LOW TEMPERATURES

High Temperatures and Fire

When a concrete member is exposed to high temperatures such as occur in a building fire,
for example, it will behave satisfactorily for a considerable period of time. During a fire,
high thermal gradients occur, however, and as a result, the surface layers expand and even-
tually crack or spall off the cooler, interior part of the concrete. The spalling is aggravated
if water from fire hoses suddenly cools the surface.

The modulus of elasticity and the strength of concrete decrease at high temperatures,
whereas the coefficient of thermal expansion increases [3-54]. The type of aggregate affects
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Fig. 3-29

Compressive strength of con-
cretes at high temperatures.
(From [3-54].)

Temperature (°C)

0 200 400 600 800
100 0 | l |
— \\.
— —— Sand-lightweight
~(\
80 - Carbonate/ N

N -
aggregate \
60 [~
Siliceous

Compresssive strength (% of original)

aggregate
40 |~
20 [~
_ Buff
! Pink or red < Gray f\
0 | 1 | | | ! ] ]
32 400 800 1200 1600

Temperature (°F)

the strength reduction, as is shown in Fig. 3-29. Most structural concretes can be classified
into one of three aggregate types: carbonate, siliceous, or lightweight. Concretes made with
carbonate aggregates, such as limestone and dolomite, are relatively unaffected by temper-
ature until they reach about 1200 to 1300°F, at which time they undergo a chemical change
and rapidly lose strength. The quartz in siliceous aggregates, such as quartzite, granite,
sandstones, and schists, undergoes a phase change at about 800 to 1000°F, which causes an
abrupt change in volume and spalling of the surface. Lightweight aggregates gradually
lose their strength at temperatures above 1200°F.

The reduction in strength and the extent of spalling due to heat are most pronounced
in wet concrete and, as a result, fire is most critical with young concrete. The tensile
strength tends to be affected more by temperature than does the compressive strength.

Concretes made with limestone and siliceous aggregates tend to change color when
heated, as indicated in Fig. 3-29, and the color of the concrete after a fire can be used as a
rough guide to the temperature reached by the concrete. As a general rule, concrete whose
color has changed beyond pink is suspect. Concrete that has passed the pink stage and
gone into the gray stage is probably badly damaged. Such concrete should be chipped
away and replaced with a layer of new concrete or shotcrete.

Very Cold Temperatures

In low temperatures, the strength of hardened concrete tends to increase, the increase being
greatest for moist concrete, as long as the water does not freeze [3-69]. Very cold tempera-
tures are encountered in liquid-natural-gas storage facilities.

Subfreezing temperatures can significantly increase the compressive and tensile
strengths and the modulus of elasticity of moist concrete. Dry concrete properties are not
affected as much by low temperature. Reference [3-69] reports compression tests of moist
concrete with a strength of 5000 psi at 75°F that reached a strength of 17,000 psi at
—150°F. The same concrete tested oven-dry or at an interior relative humidity of 50 percent
showed a 20 percent increase in compressive strength relative to the strength at 75°F. The
split-cylinder tensile strength of the same concrete increased from 600 psi at +75°F to
1350 psi at —75°F.
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Shotcrete is concrete or mortar that is pneumatically projected onto a surface at high velocity.
A mixture of sand, water, and cement is sprayed through a nozzle. Shotcrete is used as new
structural concrete or as repair material. It has properties similar to those of cast-in-place
concrete, except that the properties depend on the skill of the nozzleperson who applies the
material. Further information on shotcrete is available in [3-70].

3-13 HIGH-ALUMINA CEMENT

High-alumina cement is occasionally used in structures. Concretes made from this type of
cement have an unstable crystalline structure that could lose its strength over time, especially
if exposed to moderate to high humidities and temperatures [3-71]. In general, high-alumina
cements should be avoided in structural applications.

3-14 REINFORCEMENT

Because concrete is weak in tension, it is reinforced with steel bars or wires that resist the
tensile stresses. The most common types of reinforcement for nonprestressed members are
hot-rolled deformed bars and wire fabric. In this book, only the former will be used in
examples, although the design principles apply with very few exceptions to members rein-
forced with welded wire mesh or cold-worked deformed bars.

The ACI Code requires that reinforcement be steel bars or steel wires. Significant
modifications to the design process are required if materials such as fiber-reinforced-plastic
(FRP) rods are used for reinforcement because such materials are brittle and do not have the
ductility assumed in the derivation of design procedures for concrete reinforced with steel
bars. In addition, special attention must be given to the anchorage of FRP reinforcement.

Hot-Rolled Deformed Bars
Grades, Types, and Sizes

Steel reinforcing bars are basically round in cross section, with lugs or deformations rolled
into the surface to aid in anchoring the bars in the concrete (Fig. 3-30). They are produced
according to the following ASTM specifications, which specify certain dimensions and
certain chemical and mechanical properties.

1. ASTM A 615: Standard Specification for Deformed and Plain Carbon-Steel
Bars for Concrete Reinforcement. This specification covers the most commonly used rein-
forcing bars. They are available in sizes 3 to 18 in Grade 60 (yield strength of 60 ksi) plus
sizes 3 to 6 in Grade 40 and sizes 6 to 18 in Grade 75. The specified mechanical properties
are summarized in Table 3-3. The diameters, areas, and weights are listed in Table A-1 in
Appendix A. The phosphorus content is limited to =0.06 percent.

2. ASTM A 706: Standard Specification for Low-Alloy Steel Deformed and Plain
Bars for Concrete Reinforcement. This specification covers bars intended for special appli-
cations where weldability, bendability, or ductility is important. As indicated in Table 3-3,
the A 706 specification requires a larger elongation at failure and a more stringent bend test
than A 615. ACI Code Section 21.2.5.1 requires the use of A 615 bars meeting special re-
quirements or A 706 bars in seismic applications. There is both a lower and an upper limit
on the yield strength. A 706 limits the amounts of carbon, manganese, phosphorus, sulfur,



94

Chapter 3 Materials

L

I
AN

\

-
—
AN

&\

/ Main ribs \
Letter or symbol
for producing mill

Bar size #11

Type steel*x
Billet-steel (A 615)
| Rail-steel (A 996)
R Rail-steel (A 996)

A Axle-steel (A 996)
W Low-Alloy steel (A 706)

Fig. 3-30
Standard reinforcing-bar markings. (Courtesy of Concrete Reinforcing Steel Institute.)

Grade line (one line only)
*Bars marked with an S and W meet both A 615 and A 706 *Bars marked with an S and W meet both A 615 and A 706

(a) Grade 60 (b) Grade 420

/ Main ribs —
Letter or symbol
for producing mill

g
u

Bar size #36

Type steel*\
1 S Billet-steel (A 615M)
| Rail-steel (A 996M)

R Rail-steel (A 996M)

A Axle-steel (A 996M)

W Low-Alloy steel (A 706M)

B
=
)

2 &

g

Grade mark—
Grade line (one line only)

Grade mark—

i
N

TABLE 3-3 Summary of Mechanical Properties of Reinforcing
Bars from ASTM A 615 and ASTM A 706

Billet-Steel Low-Alloy Steel,
A 615 A 706
Grade 40 Grade 60 Grade 75 Grade 60
Minimum tensile strength, psi 70,000 90,000 100,000 80,000*
Minimum yield strength, psi 40,000 60,000 75,000 60,000
Maximum yield strength, psi — — — 78,000
Minimum elongation in 8-in.
gauge length, percent

No. 3 11 9 — 14

No. 4 and 5 12 9 — 14

No. 6 12 9 7 14

No. 7 and 8 — 8 7 12

No.9, 10, and 11 — 7 6 12

No. 14 and 18 — 7 6 10
Pin diameter for bend test,b

where d = nominal bar diameter

No. 3,4, and 5 3.5d 3.5d — 3d

No. 6 5d 5d 5d 4d

No. 7 and 8 — 5d 5d 4d

No.9, 10, and 11 — 7d 7d 6d

No. 14 and 18 — 9d 9d 8d

2But not more than 1.25 times the actual yield.
YBend tests are 180°, except that 90° bends are permitted for No. 14 and 18 A 615 bars.

and silicon and limits the carbon equivalent to =0.55 percent. These bars are available in
sizes 3 through 18 in Grade 60.

3. ASTM A 996: Standard Specification for Rail-Steel and Axle-Steel Deformed
Bars for Concrete Reinforcement. This specification covers bars rolled from discarded rail-
road rails or from discarded train car axles. It is less ductile and less bendable than A 615
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steel. Only Type R rail-steel bars with R rolled into the bar are permitted by the ACI Code.
These bars are not widely available.

Reinforcing bars are available in four grades, with yield strengths at 40, 50, 60, and
75 ksi, referred to as Grades 40, 50, 60, and 75, respectively. Grade 60 is the steel most
commonly used in buildings and bridges. Other grades may not be available in some areas.
Grade 75 is used in large columns. Grade 40 is the most ductile, followed by Grades 60, 75,
and 50, in that order.

Grade-60 deformed reinforcing bars are available in the 11 sizes listed in Table A-1.
The sizes are referred to by their nominal diameter expressed in eighths of an inch. Thus, a
No. 4 bar has a diameter of % in. (or % in.). The nominal cross-sectional area can be comput-
ed directly from the nominal diameter, except for that of the No. 10 and larger bars, which
have diameters slightly larger than % in., % in., and so on. Size and grade marks are rolled
into the bars for identification purposes, as shown in Fig. 3-30. Grade-40 bars are available
only in sizes 3 through 6. Grade-75 steel is available only in sizes 6 to 18.

ASTM A 615 and A 706 also specify metric (SI) bar sizes. They are available in 11
sizes. Each is the same as an existing inch—pound bar size but is referred to by its nominal
diameter in whole millimeters. The sizes are #10, #13, #16, #19, #22, #25, #29, #32, #36,
#43, and #57, corresponding to the nominal diameters 10 mm, 13 mm, 16 mm, and so on.
The nominal diameters of metric reinforcement are the traditional U.S. Customary unit
diameters—% in. (9.5 mm), % in. (12.7 mm), % in. (15.9 mm), and so on—rounded to the
nearest whole millimeter. The bar size designation will often include an “M” to denote a
metric size bar. The diameters, areas, and weights of SI bar sizes are listed in Table A-1M
in Appendix A.

ASTM A 615 defines three grades of metric reinforcing bars: Grades 300, 420, and
520, having specified yield strengths of 300, 420, and 520 MPa, respectively.

For the review of the strength of existing buildings the yield strength of the bars must be
known. Prior to the late 1960s, reinforcing bars were available in structural, intermediate, and
hard grades with specified yield strengths of 33 ksi, 40 ksi, and 50 ksi (228 MPa, 276 MPa,
and 345 MPa), respectively. Reinforcing bars were available in inch—pound sizes 3 to 11, 14,
and 18. For sizes 3 to 8, the size number was the nominal diameter of the bar in eighths of an
inch, and the cross-sectional areas were computed directly from this diameter. For sizes 9 to
18, the diameters were selected to give the same areas as previously used square bars, and the
size numbers were approximately equal to the diameter in eighths of an inch. In the 1970s, the
33-ksi and 50-ksi bars were dropped, and a new 60-ksi yield strength was introduced.

Mechanical Properties

Idealized stress—strain relationships are given in Fig. 3-31 for Grade-40, -60, and -75 rein-
forcing bars, and for welded-wire fabric. The initial tangent modulus of elasticity, E, for
all reinforcing bars can be taken as 29 X 10° psi. Grade-40 bars display a pronounced yield
plateau, as shown in Fig. 3-31. Although this plateau is generally present for Grade-60
bars, it is typically much shorter. High-strength bars generally do not have a well-defined
yield point.

Figure 3-32 is a histogram of mill-test yield strengths of Grade-60 reinforcement
having a nominal yield strength of 60 ksi. As shown in this figure, there is a considerable
variation in yield strength, with about 10 percent of the tests having a yield strength equal
to or greater than 80 ksi—133 percent of the nominal yield strength. The coefficient of
variation of the yield strengths plotted in Fig. 3-32 is 9.3 percent.

ASTM specifications base the yield strength on mill tests that are carried out at a
high rate of loading. For the slow loading rates associated with dead loads or for many live
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Fig. 3-31
Stress—strain curves for
reinforcement.

Fig. 3-32

Distribution of mill-test yield
strengths for Grade-60 steel.
(From [3-72].)
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loads, the static yield strength is applicable. This is roughly 4 ksi less than the mill-test
yield strength [3-72].

Fatigue Strength

Some reinforced concrete elements, such as bridge decks, are subjected to a large number
of loading cycles. In such cases, the reinforcement may fail in fatigue. Fatigue failures of
the reinforcement will occur only if one or both of the extreme stresses in the stress cycle
is tensile. The relationship between the range of stress, S,, and the number of cycles is
shown in Fig. 3-33. For practical purposes, there is a fatigue threshold or endurance limit
below which fatigue failures will normally not occur. For straight ASTM A 615 bars, this
is about 24 ksi and is essentially the same for Grade-40 and Grade-60 bars. If there are



Fig. 3-33

Test data on fatigue of
deformed bars from a single
U.S. manufacturer.

(From [3-73].)
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fewer than 20,000 cycles, fatigue will not be a problem with deformed-bar reinforcement.
The fatigue strength of deformed bars decreases:

(a) as the stress range (the maximum tensile stress in a cycle minus the algebraic
minimum stress) increases,

(b) as the level of the lower (less tensile) stress in the cycle is reduced, and

(c) as the ratio of the radius of the fillet at the base of the deformation lugs to
the height of the lugs is decreased. The fatigue strength is essentially independent of
the yield strength.

(d) In the vicinity of welds or bends, fatigue failures may occur if the stress
range exceeds 10 ksi. Further guidance is given in [3-74].

For design, the following rules can be applied: If the deformed reinforcement in a
particular member is subjected to 1 million or more cycles involving tensile stresses, or a
combination of tension and compression stresses, fatigue failures may occur if the differ-

ence between the maximum and minimum stresses under the repeated loading exceeds
20 ksi.

Strength at High Temperatures Deformed-steel reinforcement subjected to high tem-
peratures in fires tends to lose some of its strength, as shown in Fig. 3-34 [3-54]. When the
temperature of the reinforcement exceeds about 850°F, both the yield and ultimate
strengths drop significantly. One of the functions of concrete cover on reinforcement is to
prevent the reinforcement from getting hot enough to lose strength.

Welded-Wire Reinforcement

Welded-wire reinforcement is a prefabricated reinforcement consisting of smooth or
deformed wires welded together in square or rectangular grids. Sheets of wires are welded
in electric-resistance welding machines in a production line. This type of reinforcement is
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Fig. 3-34

Strength of reinforcing steels
at high temperatures.

(From [3-54].)

Temperature (°F)

32 400 800 1200
100 T= T T |
Hot-rolled
deformed bars
80 (yield) -
)
= Cold-drawn
= 60 - wire or strand N
° (ultimate)
>
£
2 40 —
& High-strength
alloy bars
(ultimate)
20 -
0 1 1 | | I | 1
0 200 400 600

Temperature (°C)

used in pavements, walls or slabs where relatively regular reinforcement patterns are pos-
sible. The ability to place a large amount of reinforcement with a minimum of work makes
welded-wire fabric economical.

The wire for welded-wire fabric is produced in accordance with the following speci-
fications: ASTM AS82 Standard Specification for Steel Wire, Plain, for Concrete Rein-
forcement, and ASTM A496 Standard Specification for Steel Wire, Deformed, for
Concrete Reinforcement. The deformations are typically two or more lines of indentations
of about 4 to 5 percent of the bar diameter, rolled into the wire surface. As a result, the de-
formations on wires are less pronounced than on deformed bars. Wire sizes range from
about 0.125 in. diameter to 0.625 in. diameter and are referred to as W or D, for plain or
deformed wires, respectively, followed by a number that corresponds to the cross-section-
al area of the wire in approximately 0.03-in.? increments. Thus a W2 wire is a smooth wire
with a cross-sectional area of 0.06 in.> ACI Code Section 3.5.3.5 does not allow wires
smaller than size D4. Diameters and areas of typical wire sizes are given in Table A-2a.

Welded-wire fabric satisfies the following specifications: ASTM A185 Standard
Specification for Steel Welded Wire Reinforcement, Plain, for Concrete, and ASTM A497
Standard Specification for Steel Welded Wire Reinforcement, Deformed, for Concrete.
Deformed welded-wire fabric may contain some smooth wires in either direction. Welded-
wire fabric is available in standard or custom patterns, referred to by a style designation (such
as 6 X 6—W4 X W4). The numbers in the style designation refer to: spacing of longitu-
dinal wires X spacing of transverse wires—size of longitudinal wires X size of transverse
wires. Thus a 6 X 6-W4 X W4 fabric has W4 wires at 6 in. on centers each way. Areas
and weights of common welded-wire fabric patterns are given in Table A-2b.

Welded smooth-wire fabric depends on the crosswires to provide a mechanical
anchorage with the concrete, while welded deformed-wire fabric utilizes both the wire
deformations and the crosswires for bond and anchorage. In smooth wires, two crosswires
are needed to mechanically anchor the bar for its yield strength.

The minimum yield and tensile strength of smooth wire for wire fabric is 65 ksi and
75 ksi. For deformed wires, the minimum yield and tensile strengths are 70 ksi and 80 ksi.
According to ASTM A497, these yield strengths are measured at a strain of 0.5 percent.
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ACI Code Sections 3.5.3.6 and 3.5.3.7 define the yield strength of both smooth and
deformed wires as 60 ksi, except that if the yield strength at a strain of 0.35 percent has
been measured, that value can be used.

The elongation at failure decreases as the wire size decreases, because the cold-working
process used in drawing the small-diameter wires strain-hardens the steel. Reference [3-75]
quotes tests indicating that the mean elongation at failure ranges from about 1.25 percent for
W1.4 wires (0.133 in. diameter) to about 6 percent for W31 wires (0.628 in. diameter). These
are smaller than the elongations at failure of reinforcing bars, given in Table 3-3, which range
from 6 to 14 percent. There is no ACI Code limitation on minimum elongation at failure in
tension tests. If it is assumed that 3 percent elongation is adequate for moment redistribution in
structures reinforced with A 615 bars, wires of sizes W8.5 or D8.5 (0.328 in. diameter) or larg-
er should have adequate ductility. References [3-76] and [3-77] describe tests in which weld-
ed-wire fabric showed adequate ductility for use as stirrups or joint ties in members tested
under cyclic loads.

3-15 FIBER-REINFORCED POLYMER (FRP) REINFORCEMENT

Since 1990, extensive research has been carried out on structures reinforced with fiber-
reinforced polymer reinforcement (FRP) in the form of bars or preformed two-dimensional
grids. These bars consist of aligned fibers encased in a hardened resin and are made by a
number of processes, including pultrusion, braiding, and weaving. FRP reinforcement
has been used in structures subject to corrosion and in applications that require non-
magnetic bars, such as floors supporting some medical devices (such as MRI machines).
Common types are GFRP (made with glass fibers), AFRP (made with Aramid fibers),
and CFRP (made with carbon fibers).

Properties of FRP Reinforcement

All types of FRP reinforcement have elastic-brittle stress—strain curves, with ultimate ten-
sile strengths between 60,000 and 300,000 psi [3-78]. The strengths and the moduli of
elasticity vary, depending on the type of fibers and on the ratio of the volume of fibers to the
volume of the FRP bars. Typical values of the modulus of elasticity in tension, expressed as
a percentage of the modulus for steel reinforcement, range from 20 to 25 percent for GFRP,
from 20 to 60 percent for AFRP, and from 60 to 80 percent for CFRP. In a similar manner,
compressive strengths on the order of 55 percent, 78 percent, and 20 percent of the tensile
strength have been reported [3-78] for GFRP, CFRP, and AFRP, respectively. In some bars,
there is a size effect due to shear lag between the surface and the center of the bars, which
leads to a lower apparent tensile strength because the interior fibers are not fully stressed at
the onset of rupture of the bars.

FRP is susceptible to creep rupture under high, sustained tensile loads. Extrapolated
strengths after 500,000 hours of sustained loads vary. They are on the order of 47 to 66 percent
of the initial ultimate strength for AFRP and 79 to 91 percent for CFRP, depending on the
test method.

The bond strength of FRP bars and concrete is affected by the smooth surface of the
resin bars. Some bars are manufactured with windings of FRP cords or are coated with sand
to improve bond. There is no standardized deformation pattern, however. FRP bars tend to be
susceptible to surface damage during construction. FRP bars cannot be bent once the poly-
mer has set. If bent bars are required, they must be bent during manufacture. The polymer
resins used to make FRP bars undergo a phase change between 150 and 250°F, causing a re-
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duction in strength. By the time the temperature of the bar reaches 480°F, the tensile strength
has dropped to about 20 percent of the strength at room temperature.

The elastic—brittle stress—strain behavior of FRP bars affects the beam-design philoso-
phy. In the ACI beam-design philosophy, the value of the strength-reduction factor, ¢, ranges
from 0.65 for members in which the strain in the extreme tensile layer of steel is zero or com-
pression to 0.90 for beams in which the bar strain at ultimate exceeds 0.005 strain in tension.
For beams designed with FRP reinforcement, proposed values for ¢ vary between 0.5 and 0.7.

3-16 PRESTRESSING STEEL

Fig. 3-35
Typical prestressing steel.

Prestressing steel is available as individual wires, seven-wire strands and high strength steel
bars. A typical seven-wire strand and a ribbed high strength bar are shown in Fig. 3-35.
Prestressing wire is produced through a cold-working process, either drawing or rolling.
Seven-wire strands are produced by helically winding six peripheral wires around a central
wire, which has a slightly larger diameter than the other wires. After they are formed, both in-
dividual wires and seven-wire strands are put through a stress-relieving process where they
are heated to a specified temperature, usually less than 500°C, to improve their ductility.
Wedge anchors are commonly used to anchor wires and seven-wire strands (Fig. 3-35) at the
ends of members or at other intermediate locations. When manufactured to specified lengths
wires may have button heads formed at their ends for use in button-head anchorages.

High-strength steel bars are composed of various alloys and may be either smooth or
ribbed. For a ribbed-bar the ribs are formed to act as threads (Fig. 3-35), and thus, they can
be anchored at any point along their length. Smooth bars are typically end-threaded for an-
chorage with a nut and plate assembly, similar to that shown in Fig. 1-5.

The range of available sizes and grades of prestressing steel, and the governing
ASTM standards are given in Table 3-4.

As indicated in Table 3-4, the tensile strength of prestressing steel is significantly
larger that that for normal reinforcing bars. This higher strength, and the corresponding
high initial prestress are necessary because a significant amount of the initial prestress will
be lost (referred to as prestress losses) due to elastic shortening of the prestressed member,
deformation of the anchorage assembly, relaxation of the prestressing steel, shrinkage and
creep of the concrete member, and other load effects.

In addition to the minimum tensile strengths listed in Table 3-4, other important me-
chanical properties include minimum tensile strain at failure (usually 0.040), the yield
point and the elastic modulus. All prestressing steels have a rounded yield point, similar to
that shown for Grade 75 steel in Fig. 3-31, as opposed to the sharp yield point that is typi-
cal for Grade 40 or Grade 60 reinforcing steel (Fig. 3-31). Thus, the effective yield strength
of prestressing steel is defined as the measured stress when a specified tensile strain is
reached. For prestressing wire and seven-wire strands the specified strain value is 0.010,
and for prestressing bars that strain is value is 0.007.

(a) Seven-wire strand. (b) High strength (ribbed) steel bar.
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TABLE 3-4 Available Types of Prestressing Steel

Nominal Minimum Tensile
Diameter Strength, f,,
Prestressing Steel Type or Grade (in.) (ksi)
Stress-relieved Wedge-anchor (WA) 0.192 235
wires (ASTM A421) or to to
Button-anchor (BA) 0.276 250
Stress-relieved Grade 250 0.25
seven-wire strands to 250
(ASTM A416) 0.60
Grade 270 0.375
to 270
0.60
High-strength Grade 145 0.75
steel bars to 145
(ASTM A722) 1.375
Grade 160 0.75
to 160
1.375

The elastic modulus of prestressing wires is the same as that for normal reinforcing
steel, 29,000 ksi. Because of the helical winding of seven-wire strands, their effective elas-
tic modulus is normally taken as 27,000 ksi. The various alloys used to produce prestress-
ing bars result is a slightly lower elastic modulus of 28,000 ksi.

PROBLEMS

3-1

3-2

3-3

3-4

What is the significance of the “critical stress”

(a) with respect to the structure of the concrete?
(b) with respect to spiral reinforcement?

(c) with respect to strength under sustained loads?

A group of 45 tests on a given type of concrete had a
mean strength of 4780 psi and a standard deviation of
525 psi. Does this concrete satisfy the requirements
of ACI Code Section 5.3.2 for 4000-psi concrete?

The concrete containing Type I cement in a struc-
ture is cured for 3 days at 70°F, followed by 6 days
at 40°F. Use the maturity concept to estimate its
strength as a fraction of the 28-day strength under
standard curing.

Use Fig. 3-12a to estimate the compressive strength
o, for biaxially loaded concrete subjected to

(@ oy = 0.
(b) oy = 0.75 times the tensile strength, in tension.

(¢) o1 = 0.5 times the compressive strength, in
compression.

3-5

3-6
3-7
3-8

The concrete in the core of a spiral column is sub-
jected to a uniform confining stress o3 of 750 psi.
What will the compressive strength o be? The un-
confined uniaxial compressive strength is 4500 psi.

What factors affect the shrinkage of concrete?
What factors affect the creep of concrete?

A structure is made from concrete containing Type
I cement. The average ambient relative humidity is
70 percent. The concrete was moist-cured for 7 days.
fe = 4000 psi.

(a) Compute the unrestrained shrinkage strain of a
rectangular beam with cross-sectional dimensions
8 in. X 20 in. at 2 years after the concrete was
placed.

(b) Compute the stress-dependent strain in the
concrete in a 20 in. X 20 in. X 12 ft plain con-
crete column at age 3 years. A compression
load of 400 kips was applied to the column at

age 30 days.



102 < Chapter3 Materials

REFERENCES

3-1

3-2

3-3

34

3-5

3-6

3-7

3-8

3-9

3-10

314

3-15

3-16

3-17

3-19

3-20

3-21

3-22

3-23

3-24

3-25

3-26

Thomas T. C. Hsu, F. O. Slate, G. M. Sturman, and George Winter, “Micro-cracking of Plain Concrete
and the Shape of the Stress—Strain Curve,” ACI Journal, Proceedings, Vol. 60, No. 2, February 1963,
pp- 209-224.

K. Newman and J. B. Newman, “Failure Theories and Design Criteria for Plain Concrete,” Part 2 in
M. Te’eni (ed.), Solid Mechanics and Engineering Design, Wiley-Interscience, New York, 1972,

pp. 83/1-83/33.

F. E. Richart, A. Brandtzaeg, and R. L. Brown, A Study of the Failure of Concrete under Combined
Compressive Stresses, Bulletin 185, University of Illinois Engineering Experiment Station, Urbana,
IL, November 1928, 104 pp.

Hubert Riisch, “Research toward a General Flexural Theory for Structural Concrete,” ACI Journal,
Proceedings, Vol. 57, No. 1, July 1960, pp. 1-28.

Llewellyn E. Clark, Kurt H. Gerstle, and Leonard G. Tulin, “Effect of Strain Gradient on Stress—Strain
Curve of Mortar and Concrete,” ACI Journal, Proceedings, Vol. 64, No. 9, September 1967, pp. 580-586.
Comité Euro-International du Béton, CEB-FIP Model Code 1990, Thomas Telford Services, Ltd.,
London, 1993, 437 pp.

Aitcin, P-C., Miao, B., Cook, W.D., and Mitchell, D., “Effects of Size and Curing on Cylinder
Compressive Strength of Normal and High-Strength Concretes,” ACI Materials Journal, Vol. 91,
No. 4, July—August 1994, pp. 349-354.

ACI Committee 363, “Report on High-Strength Concrete (ACI 363R-92, Reapproved 1997),” ACI
Manual of Concrete Practice, American Concrete Institute, Farmington Hills, MI, 55 pp.

ACI Committee 214, “Evaluation of Strength Test Results of Concrete (ACI 214R-02),” ACI Manual
of Concrete Practice, American Concrete Institute, Farmington Hills, MI, 20 pp.

Andrzej Nowak and Maria Szerszen, “Calibration of Design Code for Buildings (ACI 318): Part 1—
Statistical Models for Resistance,” pp. 377-382; and “Part 2—Reliability Analysis and Resistance
Factors,” pp. 383-389, ACI Structural Journal, Vol. 100, No. 3, May—June 2003.

Andrzej S. Nowak and Maria Szerszen, “Reliability-Based Calibration for Structural Concrete, Phase 1,”
Report UMCEE 01-04, University of Michigan, 2001, 73 pp.

Michael L. Leming, “Probabilities of Low Strength Events in Concrete,” ACI Structural Journal, Vol.
96, No. 3, May—June 1999, pp. 369-376.

H. F. Gonnerman and W. Lerch, Changes in Characteristics of Portland Cement as Exhibited by Laboratory
Tests over the Period 1904 to 1950, ASTM Special Publication 127, American Society for Testing and
Materials, Philadelphia, PA, 1951.

ACI Committee 211, Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass
Concrete (ACI 211.1-91, Reapproved 2002), American Concrete Institute, Farmington Hills, MI, 2002.
ACI Committee 232, Use of Fly Ash in Concrete (ACI 232.2R-03), American Concrete Institute,
Farmington Hills, MI, 2003.

ACI Committee 232, Use of Raw and Processed Natural Pozzolans in Concrete (ACI 232.1R-00),
American Concrete Institute, Farmington Hills, MI, 2000.

Adam M. Neville, “Water, Cinderella Ingredient of Concrete,” Concrete International, Vol. 22, No. 9,
pp. 66-71.

Adam M. Neville, “Seawater in the Mixture,” Concrete International, Vol. 23, No. 1, January 2001,
pp- 48-51.

Walter H. Price, “Factors Influencing Concrete Strength,” ACI Journal, Proceedings, Vol. 47, No. 6,
December 1951, pp. 417-432.

Paul Klieger, “Effect of Mixing and Curing Temperature on Concrete Strength,” ACI Journal,
Proceedings, Vol. 54, No. 12, June 1958, pp. 1063-1081.

ACI Committee 209, “Prediction of Creep, Shrinkage and Temperature Effects in Concrete
Structures (ACI 209R-92, Reapproved 1997),” ACI Manual of Concrete Practice, American
Concrete Institute, Farmington Hills, MI, 47 pp.

V. M. Malhotra, “Maturity Concept and the Estimation of Concrete Strength: A Review,” Indian Concrete
Journal, Vol. 48, No. 4, April 1974, pp. 122-126 and 138; No. 5, May 1974, pp. 155-159 and 170.

H. S. Lew and T. W. Reichard, “Prediction of Strength of Concrete from Maturity,” Accelerated Strength
Testing, ACI Publication SP-56, American Concrete Institute, Detroit, 1978, pp. 229-248.

Adam M. Neville, “Core Tests: Easy to Perform, not Easy to Interpret”, Concrete International, Vol. 23,
No. 11, November, 2001.

EM. Bartlett, and J.G. MacGregor, “Effect of Moisture Content on Concrete core Strengths,” ACI Materials
Journal, Vol. 91, No. 3, May—June 1994, pp. 227-236.

F. Michael Bartlett and James G. MacGregor, “Equivalent Specified Concrete Strength from Core Test
Data,” Concrete International, Vol. 17, No. 3, March 1995, pp. 52-58.



3-27

3-28

3-29

3-30

3-32

3-33

3-34

3-35

3-36

3-39

3-40

3-41

3-42

3-43

3-44

3-45

3-46

3-47

3-48

3-49

3-50

References * 103

F. Michael Bartlett and James G. MacGregor, “Statistical Analysis of the Compressive Strength of Concrete
in Structures,” ACI Materials Journal, Vol. 93, No. 2, March—April 1996, pp. 158-168.

Jerome M. Raphael, “Tensile Strength of Concrete,” ACI Journal, Proceedings, Vol. 81, No. 2,
March—April 1984, pp. 158-165.

D. J. McNeely and Stanley D. Lash, “Tensile Strength of Concrete,” Journal of the American Concrete
Institute, Proceedings, Vol. 60, No. 6, June 1963, pp. 751-761.

Proposed Complements to the CEB-FIP International Recommendations—1970, Bulletin d’Information
74, Comité Européen du Béton, Paris, March 1972 revision, 77 pp.

H. S. Lew and T. W. Reichard, “Mechanical Properties of Concrete at Early Ages,” ACI Journal,
Proceedings, Vol. 75, No. 10, October 1978, pp. 533-542.

H. Kupfer, Hubert K. Hilsdorf, and Hubert Riisch, “Behavior of Concrete under Biaxial Stress,” ACI
Journal, Proceedings, Vol. 66, No. 8, August 1969, pp. 656-666.

Frank J. Vecchio and Michael P. Collins, The Response of Reinforced Concrete to In-Plane Shear and
Normal Stresses, Publication 82-03, Department of Civil Engineering, University of Toronto, Toronto,
March 1982, 332 pp.

Frank J. Vecchio and Michael P. Collins, “The Modified Compression Field Theory for Reinforced Concrete
Elements Subjected To Shear,” ACI Journal, Proceedings, Vol. 83, No. 2, March—-April 1986, pp. 219-231.
J. A. Hansen, “Strength of Structural Lightweight Concrete under Combined Stress,” Journal of the
Research and Development Laboratories, Portland Cement Association, Vol. 5, No. 1, January 1963,
pp. 39-46.

Paul H. Kaar, Norman W. Hanson, and H. T. Capell, “Stress—Strain Characteristics of High-Strength
Concrete,” Douglas McHenry International Symposium on Concrete and Concrete Structures, ACI
Publication SP-55, American Concrete Institute, Detroit, 1978, pp. 161-186.

Adrian Pauw, “Static Modulus of Elasticity as Affected by Density,” ACI Journal, Proceedings, Vol. 57,
No. 6, December 1960, pp. 679-683.

Eivind Hognestad, Norman W. Hanson, and Douglas McHenry, “Concrete Stress Distribution in
Ultimate Strength Design,” ACI Journal, Proceedings, Vol. 52, No. 4, December 1955, pp. 475-479.
Eivind Hognestad, A Study of Combined Bending and Axial Load in Reinforced Concrete Members, Bulletin
399, University of Illinois Engineering Experiment Station, Urbana, I1l., November 1951, 128 pp.
Popovics, S., “A Review of Stress—Strain Relationships for Concrete, ACI Journal, Proceedings, Vol. 67,
No. 3, March 1970, pp. 243-248.

Claudio E. Todeschini, Albert C. Bianchini, and Clyde E. Kesler, “Behavior of Concrete Columns
Reinforced with High Strength Steels,” ACI Journal, Proceedings, Vol. 61, No. 6, June 1964,

pp- 701-716.

Thorenfeldt, E., Tomaszewicz, A. and Jensen, J. J., “Mechanical Properties of High Strength Concrete
and Application to Design,” Proceedings of the Symposium: Utilization of High-Strength Concrete,’
Stavanger, Norway, June 1987, Tapir, Trondheim, pp. 149-159.

Collins, M.P. and Mitchell, D., Prestressed Concrete Structures, Prentice Hall, Englewood Cliffs, 1991,
766 pp.

S. H. Ahmad and Surendra P. Shah, “Stress—Strain Curves of Concrete Confined by Spiral
Reinforcement,” ACI Journal, Proceedings, Vol. 79, No. 6. November—December 1982, pp. 484-490.
B. P. Sinha, Kurt H. Gerstle, and Leonard G. Tulin, “Stress—Strain Relations for Concrete under Cyclic
Loading,” ACI Journal, Proceedings, Vol. 61, No. 2, February 1964, pp. 195-212.

Surendra P. Shah and V. S. Gopalaratnam, “Softening Responses of Plain Concrete in Direct Tension,”
ACI Journal, Proceedings, Vol. 82, No. 3, May—June 1985, pp. 310-323.

ACI Committee 209, “Report of Factors Affecting Shrinkage and Creep of Hardened Concrete,”
ACI Manual of Concrete Practice, American Concrete Institute, Farmington Hills, MI, 12 pp.

fib Special Activity Group 5—New Model Code, “Model Code 2010,” Bulletins 55 and 56,
International Federation for Structural Concrete (fib), Lausanne, Switzerland, 2010.

Sidney Mindess, J. Francis Young, and David Darwin, Concrete, 2nd Edition, Pearson Educational—
Prentice Hall, New Jersey, 2003, 644 pp.

Zedenek P. Bazant, “Prediction of Concrete Creep Effects Using Age-Adjusted Effective Modulus
Method,” ACI Journal, Proceedings, Vol. 69, No. 4, April 1972, pp. 212-217.

Walter H. Dilger, “Creep Analysis of Prestressed Concrete Structures Using Creep-Transformed Section
Properties,” PCI Journal, Vol. 27, No. 1, January—February 1982, pp. 99-118.

Amin Ghali and Rene Favre, Concrete Structures: Stresses and Deformations, Chapman & Hall,

New York, 1986, 348 pp.

Structural Effects of Time-Dependent Behaviour of Concrete, Bulletin d’Information, 215, Comité
Euro-International du Béton, Laussane, March 1993, pp. 265-291.

Joint ACI/TMS Committee 216, “Code Requirements for Determining Fire Resistance of Concrete
and Masonry Construction Assemblies, ACI 216.1-07/TMS-0216-07,” ACI Manual of Concrete
Practice, American Concrete Institute, Farmington Hills, MI, 28 pp.



104

Chapter 3 Materials

3-55

3-56

3-57

3-58

3-59

3-60

3-61
3-62

3-63

3-64
3-65

3-66
3-67

3-68

3-69
3-70
3-71
3-72

3-73

3-74

3-75
3-76

3-77

3-78

Said Iravani, “Mechanical Properties of High-Performance Concrete,” ACI Materials Journal, Vol. 93,
No. 5, September—October 1996, pp. 416-426.

Said Iravani and James G. MacGregor, “Sustained Load Strength and Short-Term Strain Behavior of
High-Strength Concrete,” ACI Materials Journal, Vol. 95, No. 5, September—October 1998,

pp. 636-647.

Boris Bresler, “Lightweight Aggregate Reinforced Concrete Columns,” Lightweight Concrete. ACI
Publication SP-29, American Concrete Institute, Detroit, 1971, pp. 81-130.

ACI Committee 544, “State-of-the-Art Report on Fiber Reinforced Concrete (ACI 544.1R-96,
reapproved 2002),” ACI Manual of Concrete Practice, American Concrete Institute, Farmington
Hills, MI, 66 pp.

D.E. Otter and A.E. Naaman, “Fiber Reinforced Concrete Under Cyclic and Dynamic Compressive
Loadings,” Report UMCE 88-9, Department of Civil Engineering, University of Michigan, Ann Arbor,
MI, 178 pp.

A.E. Naaman and H.W. Reinhardt, “Characterization of High Performance Fiber Reinforced Cement
Composites—HPFRCC,” High Performance Fiber Reinforced Cement Composites 2 (HPFRCC 2),
Proceedings of the Second International RILEM Workshop, Ann Arbor, USA, June 1995, Ed.

A.E. Naaman and H.W. Reinhardt, E & FN Spon, London, UK, pp. 1-24.

A.E. Naaman, “High-Performance Fiber-Reinforced Cement Composites,” Concrete Structures for the
Future, IABSE Symposium, Zurich, pp. 371-376.

G.J. Parra-Montesinos, “Shear Strength of Beams with Deformed Steel Fibers,” Concrete International,
Vol. 28, No. 11, pp. 57-66.

G.J. Parra-Montesinos, “High-Performance Fiber Reinforced Cement Composites: A New
Alternative for Seismic Design of Structures,” ACI Structural Journal, Vol. 102, No. 5,
September—October 2005, pp. 668-675.

ACI Committee 201, “Guide to Durable Concrete, (ACI 201.2R-08),” ACI Manual of Concrete Practice,
American Concrete Institute, Farmington Hills, MI.

ACI Committee 222, “Protection of Metals in Concrete Against Corrosion (ACI 222R-01),” ACI
Manual of Concrete Practice, American Concrete Institute, Farmington Hills, MI.

Adam M. Neville, Properties of Concrete, 3rd Edition, Pitman, 1981, 779 pp.

PCI Committee on Durability, “Alkali-Aggregate Reactivity—A Summary,” PCI Journal, Vol. 39, No. 6,
November—December, 1994, pp. 26-35.

ACI Committee 515, “A Guide to the Use of Waterproofing, Dampproofing, Protective, and Decorative
Barrier Systems for Concrete (ACI 515.R-85),” ACI Manual of Concrete Practice, American Concrete
Institute, Farmington Hills, MI.

Monfore, G.E. and Lentz, A.E., Physical Properties of Concrete at Very Low Temperatures,” Journal of
the PCA Research and Development Laboratories, Vol. 4, No. 2, May 1962, pp. 33-39.

ACI Committee 506, “Guide to Shotcrete (ACI 506R-05),” ACI Manual of Concrete Practice, American
Concrete Institute, Farmington Hills, MI, 40 pp.

Neville, Adam M., “A ‘New’ Look at High-Alumina Cement,” Concrete International, August 1998,
pp. 51-55.

Sher Al Mirza and James G. MacGregor, “Variability of Mechanical Properties of Reinforcing Bars,”
Proceedings ASCE, Journal of the Structural Division, Vol. 105, No. ST5, May 1979, pp. 921-937.

T. Helgason and John M. Hanson, “Investigation of Design Factors Affecting Fatigue Strength of
Reinforcing Bars—Statistical Analysis,” Abeles Symposium on Fatigue of Concrete, ACI Publication
SP-41, American Concrete Institute, Detroit, 1974, pp. 107-137.

ACI Committee 215, “Considerations for Design of Concrete Structures Subjected to Fatigue Loading,
(ACI 215R-74, revised 1992/Reapproved 1997),” ACI Manual of Concrete Practice, American Concrete
Institute, Farmington Hills, MI.

Mirza, S.A. and MacGregor, J.G., “Strength and Ductility of Concrete Slabs Reinforced with Welded
Wire Fabric,” ACI Journal, Proceedings, Vol. 78, No. 5, September—October 1981, pp. 374-380.
Griezic, A., Cook, W.D., and Mitchell, D., “Tests to Determine Performance of Deformed Welded Wire
Fabric Stirrups,” ACI Structural Journal, Vol. 91, No. 2, March—April 1994, pp. 213-219.

Guimaraes, G.N. and Kreger, M.E., “Evaluation of Joint-Shear Provisions for Interior Beam-Column
Connections Using High-Strength Materials,” ACI Structural Journal, Vol. 89, No. 1, January—February
1992, pp. 89-98.

ACI Committee 440, “Guide for the Design and Construction of Structural Concrete Reinforced with
FRP Bars, (440.1R-06),” ACI Manual of Concrete Practice, American Concrete Institute, Farmington
Hills, MI, 43 pp.



(increased d)

' ~ Y 3
[ (increased A o reased f; or b) {
I r (ba (A% = 0.5A)

Moment (kip-in.)

ure: Behavior

0.0005 0.001 0.0015 0.002 0.0025
Curvature (1/in.)

4-1 INTRODUCTION

In this chapter, the stress—strain relationships for concrete and reinforcement from Chapter 3
are used to develop an understanding of the flexural behavior of rectangular beam sections.
The effect of changes in material and section properties on the flexural behavior (moment
versus curvature relationship) of beam sections will be presented. A good understanding of
how changes in these primary design variables affect section behavior will be important for
making good design decisions concerning material and section properties, as will be covered
in the next chapter.

After gaining a good understanding of the entire range of flexural behavior, a general
procedure will be developed to evaluate the nominal flexural strength, M,,, for a variety
of beam sections. Simplifications for modeling material properties, which correspond
to the ACI Code definitions for nominal strength, will be presented. Emphasis will be
placed on developing a fundamental approach that can be applied to any beam or slab
section.

In Chapter 11, the section analysis procedures developed in this chapter will be
extended to sections subjected to combined bending and axial load to permit the analysis
and design of column sections.

Most reinforced concrete structures can be subdivided into beams and slabs, which
are subjected primarily to flexure (bending), and columns, which are subjected to axial
compression and bending. Typical examples of flexural members are the slab and beams
shown in Fig. 4-1. The load, P, applied at Point A is carried by the strip of slab shown shaded.
The end reactions due to the load P and the weight of the slab strip load the beams at B
and C. The beams, in turn, carry the slab reactions and their own weight to the columns at
D, E, F, and G. The beam reactions normally cause axial load and bending in the columns.
The slab in Fig. 4-1 is assumed to transfer loads in one direction and hence is called a one-
way slab. The design of such slabs will be discussed in the next chapter. If there were no
beams in the floor system shown in Fig. 4-1, the slab would carry the load in two direc-
tions. Such a slab is referred to as a two-way slab. The design of two-way slabs will be
discussed in Chapter 13.
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Fig. 4-1
One-way flexure.

Analysis versus Design

Two different types of problems arise in the study of reinforced concrete:

1. Analysis. Given a cross section, concrete strength, reinforcement size and loca-
tion, and yield strength, compute the resistance or strength. In analysis there should be one
unique answer.

2. Design. Given a factored design moment, normally designated as M,,, select a
suitable cross section, including dimensions, concrete strength, reinforcement, and so on.
In design there are many possible solutions.

Although both types of problem are based on the same principles, the procedure is
different in each case. Analysis is easier, because all of the decisions concerning reinforce-
ment, beam size, and so on have been made, and it is only necessary to apply the strength-
calculation principles to determine the capacity. Design, on the other hand, involves the
choice of section dimensions, material strengths, and reinforcement placement to produce
a cross section that can resist the moments due to factored loads. Because the analysis
problem is easier, this chapter deals with section analysis to develop the fundamental
concepts before considering design in the next chapter.

Required Strength and Design Strength

The basic safety equation for flexure is:
Reduced nominal strength = factored load effects (4-1a)
or for flexure,
M, = M, (4-1b)

where M, is the moment due to the factored loads, which commonly is referred to as the
factored design moment. This is a load effect computed by structural analysis from the
governing combination of factored loads given in ACI Code Section 9.2. The term M,,
refers to the nominal moment strength of a cross section, computed from the nominal di-
mensions and specified material strengths. The factor ¢ in Eq. (4-1b) is a strength-
reduction factor (ACI Code Section 9.3) to account for possible variations in dimensions
and material strengths and possible inaccuracies in the strength equations. Since the mid
1990s, the ACI Code has referred to the load factors and load combinations developed
by ASCE/SEI Committee 7, which is responsible for the ASCE/SEI Standard for
Minimum Design Loads for Buildings and Other Structures [4-1]. The load factors and
load combinations given in ACI Code Section 9.2 are essentially the same as those
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developed by ASCE/SEI Committee 7. The strength-reduction factors given in ACI Code
Section 9.3 are based on statistical studies of material properties [4-2] and were selected
to give approximately the same level of safety as obtained with the load and strength-re-
duction factors used in earlier editions of the code. Those former load and strength-re-
duction factors are still presented as an alternative design procedure in Appendix C of
the latest edition of the ACI Code, ACI 318-11 [4-3]. However, they will not be dis-
cussed in this book.

For flexure without axial load, ACI Code Section 9.3.2.1 gives ¢ = 0.90 for what
are called tension-controlled sections. Most practical beams will be tension-controlled
sections, and ¢ will be equal to 0.90. The concept of tension-controlled sections will be
discussed later in this chapter. The product, ¢pM,,, commonly is referred to as the reduced
nominal moment strength.

Positive and Negative Moments

A moment that causes compression on the top surface of a beam and tension on the bottom
surface will be called a positive moment. The compression zones for positive and negative
moments are shown shaded in Fig. 4-2. In this textbook, bending-moment diagrams will be
plotted on the compression side of the member.

Symbols and Notation

Although symbols are defined as they are first used and are summarized in Appendix B,
several symbols should essentially be memorized because they are commonly used in dis-
cussions of reinforced concrete members. These include the terms M, and M,, (defined
earlier) and the cross-sectional dimensions illustrated in Fig. 4-2. The following is a list of
common symbols used in this book:

e A is the area of reinforcement near the tension face of the beam, tension rein-
2

forcement, in.”.
e A} is the area of reinforcement on the compression side of the beam, compres-
sion reinforcement, in.2.
* bis a general symbol for the width of the compression zone in a beam, in. This
is illustrated in Fig. 4-2 for positive and negative moment regions. For flanged
sections this symbol will normally be replaced with b, or b,,.

Compression zone

b= b,
| )~ Pe | A,
+ r AS N I
d T I
by d d; by,
d|=d;
As
Reinforcement~|([® @ @
9 @
<~ Compression zone
Ag } b= b,

(a) Positive moment (compression on top). (b) Negative moment (compression on bottom).

Fig. 4-2

Cross-sectional dimensions.
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e b, is the effective width of a compression zone for a flanged section with com-
pression in the flange, in.

* b, is the width of the web of the beam (and may or may not be the same as
b), in.

* dis the distance from the extreme fiber in compression to the centroid of the
longitudinal reinforcement on the tension side of the member, in. In the posi-
tive-moment region (Fig. 4-2a), the tension steel is near the bottom of the
beam, while in the negative-moment region (Fig. 4-2b) it is near the top.

e d’ is the distance from the extreme compression fiber to the centroid of the
longitudinal compression steel, in.

e d, is the distance from the extreme compression fiber to the farthest layer of
tension steel, in. For a single layer of tension reinforcement, d; = d, as shown
in Fig. 4-2b.

e f. is the specified compressive strength of the concrete, psi.

e f.is the stress in the concrete, psi.

e f,1is the stress in the tension reinforcement, psi.

* fyis the specified yield strength of the reinforcement, psi.

* his the overall height of a beam cross section.

» jd is the lever arm, the distance between the resultant compressive force and
the resultant tensile force, in.

e jis a dimensionless ratio used to define the lever arm, jd. It varies depending
on the moment acting on the beam section.

* g, is the assumed maximum useable compression strain in the concrete.
* g, is the strain in the tension reinforcement.

* g is the strain in the extreme layer of tension reinforcement.

* pis the longitudinal tension reinforcement ratio, p = Ay/bd.

FLEXURE THEORY

Statics of Beam Action

A beam is a structural member that supports applied loads and its own weight primarily by in-
ternal moments and shears. Figure 4-3a shows a simple beam that supports its own dead
weight, w per unit length, plus a concentrated load, P. If the axial applied load, N, is equal to
zero, as shown, the member is referred to as a beam. If N is a compressive force, the member is
called a beam—column. This chapter will be restricted to the very common case where N = 0.

The loads w and P cause bending moments, distributed as shown in Fig. 4-3b. The
bending moment is a load effect calculated from the loads by using the laws of statics. For
a simply supported beam of a given span and for a given set of loads w and P, the moments
are independent of the composition and size of the beam.

At any section within the beam, the internal resisting moment, M, shown in Fig. 4-3c
is necessary to equilibrate the bending moment. An internal resisting shear, V, also is
required, as shown.

The internal resisting moment, M, results from an internal compressive force, C, and
an internal tensile force, 7, separated by a lever arm, jd, as shown in Fig. 4-3d. Because
there are no external axial loads, summation of the horizontal forces gives

C-T=0 o C=T 4-2)



Fig. 4-3
Internal forces in a beam.
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(d) Free-body diagrams showing internal moment as a
compression-tension force couple.

If moments are summed about an axis through the point of application of the compressive
force, C, the moment equilibrium of the free body gives

M =T X jd (4-3a)
Similarly, if moments are summed about the point of application of the tensile force, 7,
M =C X jd (4-3b)

Because C = T, these two equations are identical. Equations (4-2) and (4-3) come
directly from statics and are equally applicable to beams made of steel, wood, or rein-
forced concrete.

The conventional elastic beam theory results in the equation o = My/I, which, for
an uncracked, homogeneous rectangular beam without reinforcement, gives the distribu-
tion of stresses shown in Fig. 4-4. The stress diagram shown in Fig. 4-4c and d may be
visualized as having a “volume”; hence, one frequently refers to the compressive stress
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Fig. 4-4
Elastic beam stresses and
stress blocks.
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block. The resultant compressive force C, which is equal to the volume of the compressive
stress block in Fig. 4-4d, is given by

2 2

In a similar manner, one could compute the force T from the tensile stress block. The
forces C and T act through the centroids of the volumes of the respective stress blocks. In
the elastic case, these forces act at 4/3 above or below the neutral axis, so that jd = 2h/3.
From Eqgs. (4-3b) and (4-4) and Fig. 4-4, we can write

bh (2h
M = a-c(max)4<3> (4-5a)
bh3112
M = Uc(maX)T/Z (4-5b)
or, because
bh?
] = —
12
and
Ymax = h/2
it follows that
_ Uc(max)l
M=—"- (4-5¢)
Ymax

Thus, for the elastic case, identical answers are obtained from the traditional beam stress
equation, Eq. (4-5¢), and when the stress block concept is used in Eq. (4-5a).

The elastic beam theory in Eq. (4-5¢) is not used in the design of reinforced con-
crete beams, because the compressive stress—strain relationship for concrete becomes
nonlinear at higher strain values, as shown in Fig. 3-18. What is even more important is
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that concrete cracks at low tensile stresses, making it necessary to provide steel reinforce-
ment to carry the tensile force, 7. These two factors are easily handled by the stress-block
concept, combined with Egs. (4-4) and (4-5).

Flexure Theory for Reinforced Concrete

The theory of flexure for reinforced concrete is based on three basic assumptions, which
are sufficient to allow one to calculate the moment resistance of a beam. These are pre-
sented first and used to illustrate flexural behavior, i.e., the moment—curvature relationship
for a beam cross section under increasing moment. After gaining an understanding of the
general development of a moment—curvature relationship for a typical beam section, a
series of moment—curvature relationships will be developed to illustrate how changes in
section properties and material strengths affect flexural behavior.

Basic Assumptions in Flexure Theory
Three basic assumptions are made:

1. Sections perpendicular to the axis of bending that are plane before bending remain
plane after bending.

2. The strain in the reinforcement is equal to the strain in the concrete at the same level.

3. The stresses in the concrete and reinforcement can be computed from the strains
by using stress—strain curves for concrete and steel.

The first of these is the traditional “plane sections remain plane” assumption made in
the development of flexural theory for beams constructed with any material. The second
assumption is necessary, because the concrete and the reinforcement must act together to
carry load. This assumption implies a perfect bond between the concrete and the steel. The
third assumption will be demonstrated in the following development of moment—curvature
relationships for beam sections.

Flexural Behavior

General moment—curvature relationships will be used to describe and discuss the flexural
behavior of a variety of beam sections. The initial discussion will be for singly reinforced
sections, i.e., sections that have reinforcement only in their tension zone, as shown in Fig. 4-5.
After singly reinforced sections have been discussed, a short discussion will be given on

h d h d h d
A
A s A
[ ] .s [ ] —_— : : — [ ] [ ] .s [ ] [ ] —_—
b by, \ by \
\ \

Fig. 4-5
Typical singly reinforced sections in positive bending (tension in bottom).
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Fig. 4-6
Typical doubly reinforced
sections in positive bending.

Fig. 4-7
Assumed stress—strain rela-
tionship for reinforcing steel.
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how adding steel in the compression zone to create a doubly reinforced section, as shown
in Fig. 4-6, will affect flexural behavior. All of the sections considered here will be under-
reinforced. Although this may sound like a bad design, this is exactly the type of cross
section we will want to design to obtain the preferred type of flexural behavior. The mean-
ing of an under-reinforced beam section is that, when the section is loaded in bending
beyond its elastic range, the tension zone steel will yield before the concrete in the
compression zone reaches its maximum useable strain, &, .

To analytically create a moment—curvature relationship for any beam section, assump-
tions must be made for material stress—strain relationships. A simple elastic-perfectly plastic
model will be assumed for the reinforcing steel in tension or compression, as shown in
Fig. 4-7. The steel elastic modulus, E;, is assumed to be 29,000 ksi.

The stress—strain relationship assumed for concrete in compression is shown in
Fig. 4-8. This model consists of a parabola from zero stress to the compressive strength
of the concrete, f... The strain that corresponds to the peak compressive stress, g,, is
often assumed to be 0.002 for normal strength concrete. The equation for this parabola,
which was originally introduced by Hognestad [4-4], is

fe=rfe|2l ) -\ = (4-6)
€o €o

(compression)

(tension)
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Fig. 4-8
Assumed stress—strain (tension) T
relationship for concrete.

Beyond the strain, g, the stress is assumed to decrease linearly as the strain increases.

An equation for this portion of the relationship can be expressed as

| PR
¢ e 1000\ e,

4-7)

where Z is a constant to control the slope of the line. For this discussion, Z will be set equal
to a commonly used value of 150. Lower values for Z (i.e., a shallower unloading slope)
can be used if longitudinal and transverse reinforcement are added to confine the concrete

in the compression zone.

In tension the concrete is assumed to have a linear stress—strain relationship (Fig. 4-8)

up to the concrete modulus of rupture, f,, defined in Chapter 3.

Consider a singly reinforced rectangular section subjected to positive bending, as
shown in Fig. 4-9a. In this figure, A, represents the total area of tension reinforcement,
and d represents the effective flexural depth of the section, i.e., the distance from the
extreme compression fiber to the centroid of the tension reinforcement. A complete
moment—curvature relationship, as shown in Fig. 4-10, can be generated for this section
by continuously increasing the section curvature (slope of the strain diagram) and using
the assumed material stress—strain relationships to determine the resulting section stresses

and forces, as will be discussed in the following paragraphs.

& (max)
12in.
2 —] fc
x E
Neutral E
24 in. 21.5in. axis
2.5in.2 o
e o o X (Zzzz777
- fs f
-
(a) Basic section. (b) Strain distribution. (c) Stress distribution.

Fig. 4-9
Steps in analysis of moment and curvature for a singly reinforced section.

(d) Internal forces.
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Fig. 4-10
Moment—curvature
relationship for the section
in Fig. 4.9(a) using

f% = 4000 psi and

fy = 60 ksi.
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The calculation of specific points on the moment—curvature curve follows the process
represented in Fig. 4-9b through 4-9d. Each point is usually determined by selecting a
specific value for the maximum compression strain at the extreme compression fiber of the
section, &.(max). From the assumption that plane sections before bending remain plane,
the strain distribution through the depth of the section is linear. From the strain diagram
and the assumed material stress—strain relationships, the distribution of stresses is deter-
mined. Finally, by integration, the volume under the stress distributions (i.e., the section
forces) and their points of action can be determined.

After the section forces are determined, the following steps are required to complete
the calculation. First, the distance from the extreme compression fiber to the section neu-
tral axis (shown as x in Fig. 4-9b) must be adjusted up or down until section equilibrium
is established, as given by Eq. (4-2). When Eq. (4-2) is satisfied, the curvature, @, for this
point is calculated as the slope of the strain diagram,

© = £.(max) “8)
X

The corresponding moment is determined by summing the moments of the internal
forces about a convenient point—often selected to be the centroid of the tension rein-
forcement for singly reinforced beam sections. This process can be repeated for several
values of maximum compression strain. A few maximum compression strain values are
indicated at selected points in Fig. 4-10. Exceptions to this general procedure will be

discussed for the cracking and yield points.

Cracking Point

Flexural tension cracking will occur in the section when the stress in the extreme tension
fiber equals the modulus of rupture, f,.. Up to this point, the moment—curvature relation-
ship is linear and is referred to as the uncracked-elastic range of behavior (from O to C in
Fig. 4-10). The moment and curvature at cracking can be calculated directly from elastic
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flexural theory, as expressed in Eq. (4-5c¢). In most cases, the contribution of the reinforce-
ment can be ignored in this range of behavior, and the cracking moment can be calculated
using only the concrete section, normally referred to as the gross section. If the moment of
inertia for the gross section is defined as Ig, and the distance from the section centroid to
the extreme tension fiber is defined as y,, then the stress at the extreme tension fiber in a
modified version of Eq. (4-5c¢) is

F=== (4-5d)

The cracking moment is defined as the moment that causes the stress in the extreme
tension fiber to reach the modulus of rupture, i.e.,

i
M. = (4-9)
Vi

This expression is the same as used in ACI Code Section 9.5. When calculating M.,
it is recommended to take the modulus of rupture, f,, equal to 7.5 \/ﬁ The reinforcement
could be included in this calculation by using a transformed section method to define the
section properties, but for typical sections, this would result in a relatively small change in
the value for M,.,.

The section curvature at cracking, ®.,, can be calculated for this point using the
elastic bending theory,

q)cr = (4' 10)

where the elastic concrete modulus, E.., can be taken as 57,000\/]”7‘, in psi units.

When a beam section cracks in tension, the crack usually propagates to a point near
the centroid of the section and there is a sudden transfer of tension force from the con-
crete to the reinforcing steel in the tension zone. Unless a minimum amount of reinforce-
ment is present in the tension zone, the beam would fail suddenly. To prevent such a
brittle failure, the minimum moment strength for a reinforced concrete beam section
should be equal to or greater than the cracking moment strength for the plain concrete
section. Such a specific recommendation is not given in the ACI Code for reinforced con-
crete beam sections. However, based on a calculation that sets the moment capacity of a
reinforced section equal to approximately twice that of a plain section, ACI Code Section 10.5
specifies the following minimum area of longitudinal reinforcement for beam sections in
positive bending as

3V

s,min
fy

bod 4-11)

where the quantity 3\/?2 is not to be taken less than 200 psi. The notation for web width,
b, 1s used here to make the equation applicable for both rectangular and flanged sections.
Additional discussion of this minimum area requirement is given in Section 4-8 for flanged
sections with the flange in tension.

From the metric version of ACI Code Section 10.5, using MPa units for f{. and f) the
expression for Ay, is:

!
~ 0.25\/ﬁbwd _ 14byd

Agmin = 5, 5, (4-11M)
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After cracking but before yielding of the tension reinforcement, the relationship be-
tween moment and curvature is again approximately linear, but with a different slope than
before cracking. This is referred to as the cracked-elastic range of behavior (from C to Y in
Fig. 4-10). This linear relationship is important for the calculation of deflections, as will be
discussed in Chapter 9.

Yield Point

The yield point represents the end of the elastic range of behavior. As the moment applied
to the section continues to increase after the cracking point, the tension stress in the rein-
forcement and the compression stress in the concrete compression zone will steadily
increase. Eventually, either the steel or the concrete will reach its respective capacity and
start to yield (steel) or crush (concrete). Because the section under consideration here is
assumed to be under-reinforced, the steel will yield before the concrete reaches its maxi-
mum useable strain.

To calculate moment and curvature values for the yield point, the strain at the level of
the tension steel is set equal to the yield strain (g, = f,/E;). As discussed previously for
the general procedure, the neutral axis needs to be adjusted up or down until section equi-
librium is established. At this stage of flexural behavior the contribution of the concrete in
tension is not significant for section equilibrium and moment calculations, so the vector,
T., shown in Fig. 4-9d can be ignored. After section equilibrium is established, the section
yield moment, M,,, is then calculated as the sum of the moments of the internal forces about
a convenient point. Referring to Fig. 4-9b, the yield curvature is calculated as the slope of
the strain diagram, which can be calculated by setting the strain at the level of the tension
reinforcement equal to the yield strain,

D, = (4-12)

Points beyond the Yield Point

Additional points on the moment—curvature relationship can be determined by steadily
increasing the maximum strain in the extreme compression fiber, following the general
procedure described previously. Usually, points are generated until some predefined
maximum useable compression strain is reached or until the section moment capacity
drops significantly below the maximum calculated value. Points representing maximum
compression strains of 0.003, 0.004, 0.005, and 0.006 are noted in Fig. 4-10. For each
successive point beyond the compression strain of 0.003, the section moment capacity
is decreasing at an increasing rate. If a more realistic model was used for the
stress—strain properties of the reinforcing steel, i.e. a model that includes strain harden-
ing (Fig. 3-29), the moment capacity would increase beyond the yield point and would
hold steady or at least show a less significant decrease in moment capacity for maximum
compressive strain values greater than 0.003.

Most concrete design codes specify a maximum useable compression strain at which
the nominal moment strength of the section is to be calculated. For the ACI Code, this max-
imum useable strain value is specified as 0.003. For the Canadian Concrete Code
[4-5], a maximum useable compressive strain value of 0.0035 is specified. It should be
clear from Fig. 4-10 that the calculation of a nominal moment capacity for this section
would not be affected significantly by selection of either one of these values. Also, the
beam section shown here has considerable deformation capacity beyond the limit corre-
sponding to either of the maximum compression strains discussed here.
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Any discussion of flexural behavior of a reinforced concrete beam section usually
involves a discussion of ductility, i.e., the ability of a section to deform beyond its yield point
without a significant strength loss. Ductility can be expressed in terms of displacement, rota-
tion, or curvature ratios. For this discussion, section ductility will be expressed in terms of the
ratio of the curvature at maximum useable compression strain to the curvature at yield. The
maximum useable strain can be expressed as a specific value, as done by most codes, or it
could be defined as the strain at which the moment capacity of the section has dropped below
some specified percentage of the maximum moment capacity of the section. By either mea-
sure, the moment—curvature relationship given in Fig. 4-10 represents good ductile behavior.

Effect of Major Section Variables on Strength and Ductility

In this subsection, a series of systematic changes are made to section parameters for the
beam given in Fig. 4-9a to demonstrate the effect of such parametric changes on the
moment—curvature response of the beam section. Values of material strengths and sec-
tion parameters are given for seven different beams in Table 4-1. The first column
(Basic Section) represents the original values that correspond to the M —® curve given
in Fig. 4-10. Each successive beam section (represented by a column in Table 4-1) rep-
resents a modification of either the material properties or section dimensions from
those for the basic section. Note that for each new beam section (column in table) only
one of the parameters has been changed from those used for the basic section.

M - ® plots that correspond to the first three sections given in Table 4-1 are shown
in Fig. 4-11. The only change for these sections is an increase in the area of tension rein-
forcement, A. It is clear that increasing the tension steel area causes a proportional increase
in the strength of the section. However, the higher tension steel areas also causes a less
ductile behavior for the section. Because of this loss of ductility as the tension steel area is
increased, the ACI Code places an upper limit on the permissible area of tension reinforce-
ment, as will be discussed in detail in Section 4-6.

Figure 4-12 shows M —® plots for the basic section and for the sections defined in
the last four columns of Table 4-1. It is interesting from a design perspective to observe
how changes in the different section variables affect the flexural strength, stiffness, and
ductility of the beam sections. An increase in the steel yield strength has essentially the
same effect as increasing the tension steel area—that is the section moment strength increases
and the section ductility decreases. Increases in either the steel yield strength or the tension
steel area have very little effect on the stiffness of the section before yield (as represented
by the elastic slope of the M —® relationship).

Increasing the effective flexural depth of the section, d, increases the section moment
strength without decreasing the section ductility. Increasing the effective flexural depth

TABLE 4-1 Material and Section Properties for Various Beam Sections

Primary Basic Moderate* High* High* Large* High* Large*
Variables Section As As f, d f; b
Ay (sq.in.) 2.5 4.5 6.5 2.5 2.5 2.5 2.5
Sy (ksi) 60 60 60 80 60 60 60

d (in.) 21.5 21.5 21.5 21.5 32.5 21.5 21.5
S (psi) 4000 4000 4000 4000 4000 6000 4000

b (in.) 12 12 12 12 12 12 18

*Relative to values in the basic section.
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Fig. 4-11

Effect of increasing tension

steel area, A;.

Fig. 4-12

Effect of increasing f,, d, f/,

b, and Aj.

Moment (kip-in.)

also increases the elastic stiffness of the section, because the section moment of inertia is
significantly affected by the depth of the section. These results clearly indicate the impor-
tance of the effective flexural depth of a member, so proper placement of reinforcement
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affect on the moment arm between the tension and compression forces shown in Fig. 4-9d,
but they do not affect the value of the tension (and thus the compression) force. Thus,
these variables have a significantly smaller effect on moment strength of the section than
the tension steel area, steel yield strength, and effective flexural depth. Because final fail-
ure in bending for these sections is governed by reaching the maximum useable compres-
sion strain in the extreme concrete compression fiber, increases in either the concrete
strength or section width do cause a significant increase in curvature at failure, as calcu-
lated in Eq. (4-8), by decreasing the neutral axis depth required to balance the tension
force from the reinforcing steel.

The last variable discussed here is the addition of compression zone reinforce-
ment, A}, equal to one-half of the area of tension reinforcement, A,. This variable is not
listed in Table 4-1, because all of the other cross-section values are set equal to those
listed for the basic section. As shown in Fig. 4-12, the addition of compression rein-
forcement has very little effect on the moment strength of the beam section. However,
because the compression reinforcement carries part of the compression force that
would be carried by the concrete in a singly reinforced beam, the required depth of the
neutral axis is decreased and the section reaches a much higher curvature (higher duc-
tility) before the concrete reaches its maximum useable strain. Thus, one of the primary
reasons for using compression reinforcement will be to increase the ductility of a given
beam section.

4-3  SIMPLIFICATIONS IN FLEXURE THEORY FOR DESIGN

The three assumptions already made are sufficient to allow calculation of the strength and
behavior of reinforced concrete elements. For design purposes, however, the following
additional assumptions are introduced to simplify the problem with little loss of accuracy.

1. The tensile strength of concrete is neglected in flexural-strength calculations
(ACI Code Section 10.2.5).

The strength of concrete in tension is roughly one-tenth of the compressive strength,
and the tensile force in the concrete below the zero strain axis, shown as T, in Fig. 4-9d,
is small compared with the tensile force in the steel. Hence, the contribution of the tensile
stresses in the concrete to the flexural capacity of the beam is small and can be neglected.
It should be noted that this assumption is made primarily to simplify flexural calculations.
In some instances, particularly shear, bond, deflection, and service-load calculations for
prestressed concrete, the tensile resistance of concrete is not neglected.

2. The section is assumed to have reached its nominal flexural strength when the
strain in the extreme concrete compression fiber reaches the maximum useable compres-
sion strain, g,

Strictly speaking, this is an artificial limit developed by code committees to define at
what point on the general moment—curvature relationship the nominal strength of the section
is to be calculated. As shown in Fig. 4-10, the moment—curvature relationship for a typical
beam section is relatively flat after passing the yield point, so the selection of a specific value
for &., will not significantly affect the calculated value for the nominal flexural strength of
the section. Thus, design calculations are simplified when a limiting strain is assumed.

The maximum compressive strains, €., from tests of beams and eccentrically
loaded columns of normal-strength, normal-density concrete are plotted in Fig. 4-13a [4-6],
[4-7]. Similar data from tests of normal-density and lightweight concrete are compared in
Fig. 4-13b. ACI Code Section 10.2.3 specifies a limiting compressive strain, ., equal to
0.003, which approximates the smallest measured values plotted in Fig. 4-13a and b. In



120 <+ Chapter 4 Flexure: Behavior and Nominal Strength of Beam Sections

Fig. 4-13
Limiting compressive strain.
(From [4-6] and [4-7].)
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Canada, the CSA Standard [4-5] uses g., = 0.0035 for beams and eccentrically loaded
columns. Higher limiting strains have been measured in members with a significant
moment gradient and in members in which the concrete is confined by spirals or closely
spaced hoops [4-8], [4-9]. Throughout this book, however, a constant maximum useable
compressive strain equal to 0.003 will be used.

3. The compressive stress—strain relationship for concrete may be based on mea-
sured stress—strain curves or may be assumed to be rectangular, trapezoidal, parabolic, or
any other shape that results in prediction of flexural strength in substantial agreement with
the results of comprehensive tests (ACI Code Section 10.2.6).

Thus, rather than using a closely representative stress—strain curve (such as that
given in Fig. 4-8), other diagrams that are easier to use in computations are acceptable,
provided they adequately predict test results. As is illustrated in Fig. 4-14, the shape of the



Fig. 4-14
Mathematical description of
compression stress block.

Fig. 4-15
Values of k; and &, for
various stress distributions.
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fo = kaf,

kQC

C = ki ksfbe

.y Neutral axis

stress block in a beam at the ultimate moment can be expressed mathematically in terms of
three constants:

ks = ratio of the maximum stress, f, in the compression zone of a beam to the
cylinder strength, f.

k; = ratio of the average compressive stress to the maximum stress (this is equal to
the ratio of the shaded area in Fig. 4-15 to the area of the rectangle, ¢ X kszf%)

k, = ratio of the distance between the extreme compression fiber and the resultant of

the compressive force to the depth of the neutral axis, ¢, as shown in Figs. 4-14
and 4-15.

For a rectangular compression zone of width b and depth to the neutral axis c, the resultant
compressive force is

C = kiksflbe (4-13a)

Values of k; and k, are given in Fig. 4-15 for various assumed compressive stress—strain
diagrams or stress blocks. The use of the constant k3 essentially has disappeared from the
flexural theory of the ACI Code. As shown in Fig. 4-12, a large change in the concrete
compressive strength did not cause a significant change in the beam section moment
capacity. Thus, the use of either f7. or fI! = ksfL, with k3 typically taken equal to 0.85, is
not significant for the flexural analysis of beams. The use of fI is more significant for col-
umn sections subjected to high axial load and bending. Early papers by Hognestad [4-10]
and Pfrang, Siess, and Sozen [4-11] recommended the use of f = k3f. when analyzing

__ Shaded area
1 = Area of rectangle
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Fig. 4-16
Equivalent rectangular stress
block.

the combined axial and bending strength for column sections. However, the ACI Code does
not refer to the use of f7 except for column sections subjected to pure axial load (no bend-
ing), as will be discussed in Chapter 11.

Whitney Stress Block

As a further simplification, ACI Code Section 10.2.7 permits the use of an equivalent rec-
tangular concrete stress distribution shown in Fig. 4-16 for nominal flexural strength cal-
culations. This rectangular stress block, originally proposed by Whitney [4-12], is defined
by the following:

1. A uniform compressive stress of 0.85 f. shall be assumed distributed over an
equivalent compression zone bounded by the edges of the cross section and a straight line
located parallel to the neutral axis at a distance a = 31 ¢ from the concrete fiber with the
maximum compressive strain. Thus, k, = (3;/2, as shown in Fig. 4-16.

2. The distance ¢ from the fiber of maximum compressive strain to the neutral axis
is measured perpendicular to that axis.

3. The factor B shall be taken as follows [4-7]:

(a) For concrete strengths, f., up to and including 4000 psi,
B1 = 0.85 (4-14a)
(b) For4000psi < f. = 8000 psi,

— 085 — 0057c 4000 psi (4-14b)
Bi=0. ' 1000 psi )

(¢) For f. greater than 8000 psi,
B, = 0.65 (4-14c)

For a rectangular compression zone of constant width b and depth to the neutral axis
¢, the resultant compressive force is

C = 0.85 f.bBic = 0.85 B1f+ bc (4-13b)
Comparing Eqs. 4-13a and 4-13b, and setting k3 = 1.0, results in k1 = 0.858;.

0.85f;
B4
bk ke = 5 ¢
o| &=/ - C=0.85f,8,cb
- —— - —— — —— Axis of zero strain (neutral axis)}— - — — —— — ——
d
» f —» T

(a) Stresses (b) Forces



Fig. 4-17
Values of 3 from tests of
concrete prisms. (From [4-7].)
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In metric units (MPa), the factor 3 shall be taken as follows:

(a) For concrete strengths, f., up to and including 28 MPa,
B1 = 0.85 (4-14Ma)
(b) For28MPa < fl. = 56 MPa,

! — 28 MP
By =085 — 0.05% (4-14Mb)

(c) For f greater than 58 MPa,
B = 0.65 (4-14Mc)

The dashed line in Fig. 4-17 is a lower-bound line corresponding to a rectangular
stress block with a height of 0.85 f7. and by using B as given by Eq. (4-14). This equiva-
lent rectangular stress block has been shown [4-6], [4-7] to give very good agreement with
test data for calculation of the nominal flexural strength of beams. For columns, the agree-
ment is good up to a concrete strength of about 6000 psi. For columns loaded with small
eccentricities and having strengths greater than 6000 psi, the moment capacity tends to be
overestimated by the ACI Code stress block. This is because Eq. (4-14) for 8, was chosen
as a lower bound on the test data, as indicated by the dashed line in Fig. 4-17. The internal
moment arm of the compression force in the concrete about the centroidal axis of a rectan-
gular column is (A/2 — B c/2), where ¢ is the depth to the neutral axis (axis of zero
strain). If 8 is too small, the moment arm will be too large, and the moment capacity will
be overestimated.

To correct this potential error, which can lead to unconservative designs of columns
constructed with high-strength concrete, an ACI Task Group [4-13] has recommended the

0.85;

Concrete strength (ksi)
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use of a coefficient, «, to replace the constant 0.85 as the definition for the height of the
stress block shown in Fig. 4-16a. This new coefficient is defined as follows:

(a) For concrete strengths, f, up to and including 8000 psi,
ap = 0.85 (4-15a)
(b) For 8000 psi < f. = between 8000 and 18,000 psi,

a; = 0.97 — 0.015 1560 (4-15b)
(¢) For f. greater than 18,000 psi,
a; = 0.70 (4-15¢)

Until the ACI Code adopts a modification of the stress block shown in Fig. 4-16a, the
authors recommend the use of this coefficient, a;, when analyzing the flexural strength of
columns constructed with concrete strengths exceeding 8000 psi.

4-4  ANALYSIS OF NOMINAL MOMENT STRENGTH FOR SINGLY
REINFORCED BEAM SECTIONS

Stress and Strain Compatibility and Section Equilibrium

Two requirements are satisfied throughout the flexural analysis and design of reinforced
concrete beams and columns:

1. Stress and strain compatibility. The stress at any point in a member must cor-
respond to the strain at that point. Except for short, deep beams, the distribution of strains
over the depth of the member is assumed to be linear.

2. Equilibrium. Internal forces must balance the external load effects, as illustrated
in Fig. 4-3 and Eq. (4-2).

Analysis of Nominal Moment Strength, M,

Consider the singly reinforced beam section shown in Fig. 4-18a subjected to positive bend-
ing (tension at the bottom). As was done in the previous section, it will be assumed that this
is an under-reinforced section, i.e., the tension steel will yield before the extreme concrete
compression fiber reaches the maximum useable compression strain. In Section 4-5, a defi-
nition will be given for a “balanced” steel area, which results in a beam section where the
tension steel will just be reaching the yield strain when the extreme concrete compression
fiber is reaching the maximum useable compression strain. Because the ACI Code requires
that beam sections be under-reinforced, this initial discussion will concentrate on the nom-
inal moment strength evaluation for under-reinforced sections.

As was done in the general analysis, a linear strain distribution is assumed for the
section in Fig. 4-18b. For the evaluation of the nominal moment capacity of the section, the
strain in the extreme compression fiber is set equal to the maximum useable strain, &,.
The depth to the neutral axis, ¢, is unknown at this stage of the analysis. The strain at the
level of the tension reinforcement is also unknown, but it is assumed to be greater than the
yield strain. This assumption must be confirmed later in the calculation.
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Steps in analysis of M, for singly reinforced rectangular sections.

The assumed stress distribution is given in Fig. 4-18c. Above the neutral axis, the
stress-block model from Fig. 4-16 is used to replace the actual concrete stress distribution.
The coefficient B is multiplied by the depth to the neutral axis, c, to get the depth of the
stress block, a. The concrete is assumed to carry no tension, so there is no concrete stress dis-
tribution below the neutral axis. At the level of the steel, the stress, f;, is assumed to be equal
to the steel yield stress, f). This corresponds to the assumptions that the steel strain exceeds
the yield strain and that the steel stress remains constant after yielding occurs (Fig. 4-7).

The final step is to go from the stress distributions to the equivalent section forces
shown in Fig. 4-18d. The concrete compression force, C,, is equal to the volume under the
stress block. For the rectangular section used here,

C. = 0.85 f.bBic = 0.85 fL. ba (4-13b)

The compression force in the concrete cannot be evaluated at this stage, because the
depth to the neutral axis is still unknown. The tension force shown in Fig. 4-18d is equal to
the tension steel area, Ay, multiplied by the yield stress, f,. Based on the assumption that
the steel has yielded, this force is known.

A key step in section analysis is to enforce section equilibrium. For this section,
which is assumed to be subject to only bending (no axial force), the sum of the compres-
sion forces must be equal to the sum of the tension forces. So,

C. =T 4-2)
or

0.85 f1bB1c = 0.85 flba = Af,

The only unknown in this equilibrium equation is the depth of the stress block. So,
solving for the unknown value of q,

Asly

4-16
0.85 flb (4-16)

a:Blcz

and

c=— 4-17)
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With the depth to the neutral axis known, the assumption of yielding of the tension
steel can be checked. From similar triangles in the linear strain distribution in Fig. 4-18b,
the following expression can be derived:

8S — SCM
d—c c
d—c
& = Ecu (4-18)
c
To confirm the assumption that the section is under-reinforced and the steel is yield-
ing, show
A

g = gy = 4-19)

E;, 29,000 ksi

Once this assumption is confirmed, the nominal-section moment capacity can be cal-
culated by referring back to the section forces in Fig. 4-18d. The compression force is act-
ing at the middepth of the stress block, and the tension force is acting at a distance d from
the extreme compression fiber. Thus, the nominal moment strength can be expressed as
either the tension force or the compression force multiplied by the moment arm, d — a/2:

a a
M, = T(d - 2> = Cc<d - 2) (4-20)

For singly reinforced sections, it is more common to express the nominal moment
strength using the definition of the tension force as

M, = Asfy<d ~ ;) (4-21)

This simple expression can be used for all singly reinforced sections with a rectan-
gular (constant width) compression zone after it has been confirmed that the tension steel
is yielding. The same fundamental process as used here to determine M,, for singly rein-
forced rectangular sections will be applied to other types of beam sections in the following
parts of this chapter. However, the reader is urged to concentrate on the process rather than
the resulting equations. If the process is understood, it can be applied to any beam section
that may be encountered.

EXAMPLE 4-1 Calculation of M,, for a Singly Reinforced Rectangular Section

For the beam shown in Fig. 4-19a, calculate M, and confirm that the area of ten-
sion steel exceeds the required minimum steel area given by Eq. (4-11). The beam sec-
tion is made of concrete with a compressive strength, f. = 4000 psi, and has four No. 8
bars with a yield strength of f, = 60 ksi.

For this beam with a single layer of tension reinforcement, it is reasonable to assume
that the effective flexural depth, d, is approximately equal to the total beam depth minus
2.5 in. This accounts for a typical concrete clear cover of 1.5 in., the diameter of the stirrup
(typically a No. 3 or No. 4 bar) and half the diameter of the beam longitudinal reinforce-
ment. Depending on the sizes of the stirrup and longitudinal bar, the dimension to the center
of the steel layer will vary slightly, but the use of 2.5 in. will be accurate enough for most
design work unless adjustments in reinforcement location are required to avoid rebar inter-
ference at connections with other members. Small bars are often used in the compression
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Fig. 4-19

Beam sections for
(a) Example 4-1 and
(b) Example 4-1M.

. 127

b = 250 mm
N/ |
% a= 151 mm
20in. g g
0 o
(o] o
4 No. 8 bars l 0 o
- < he}
= 2.5in. oy 13 No. 25 bars
12in. T

(a) (b)

zone to hold the stirrups in position, but these bars normally are ignored unless they were
specifically designed to serve as compression-zone reinforcement.

1. Following the procedure summarized in Fig. 4-18, assume that the steel
strain exceeds the yield strain, and thus, the stress f; in the tension reinforcement
equals the yield strength, f,. Compute the steel tension force:

A, = 4 No. 8 bars = 4 X 0.79 in.2 = 3.16 in.?
T = Af, = 3.16in.2 X 60 ksi = 190 kips

The assumption that &, > &, will be checked in step 3. This assumption generally
should be true, because the ACI Code requires that the steel area be small enough in beam
sections such that the steel will yield before the concrete reaches the maximum useable

compression strain.

2. Compute the area of the compression stress block so that C, = T. This is
done for the equivalent rectangular stress block shown in Fig. 4-16a. The stress block con-
sists of a uniform stress of 0.85 f7. distributed over a depth a = B;c which is measured
from the extreme compression fiber. For fI. = 4000 psi, Eq. (4-14a) gives B; = 0.85.
Using Eq. (4-16), which was developed from section equilibrium,

Asly 190 kips

= Bic = = = 4.66 in.
4= P = 085 b T 085 X 4ksi X 120, n

3. Check that the tension steel is yielding. The yield strain is

Iy 60 ksi
= —=——=0.00207
& T E, T 29,000 ksi
From above, ¢ = a/; = 5.48 in. Now, use strain compatibility, as expressed in Eq. (4-18),
to find

d— 17.5 — 5.48
- ( : c>8w _ (548)0'003 = 0.00658

Clearly, &, exceeds &, so the assumption used above to establish section equilibrium is
confirmed. Remember that you must make this check before proceeding to calculate the
section nominal moment strength.

4. Compute M,. Using Eq. (4-21), which was derived for sections with constant
width compression zones,
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a : ) 4.66 in.
M, = Asf,| d — 5 = 190 kips| 17.5 in. —

2880 k-in. = 240 k-ft

M,

5. Confirm that tension steel area exceeds Ag in. For Eq. (4-11), there is a
requirement to use the larger of 3\/]‘7 or 200 psi in the numerator. In this case,
3V 4000 psi = 190 psi, so use 200 psi. Thus,

200 psi 200 psi % 12in. X 175 070 in.2
n = . = n. D1, = L. .
samin = w0 T 60,000 psi

Ay exceeds Ag in, 50 this section satisfies the ACI Code requirement for minimum tension
reinforcement. |

EXAMPLE 4-1M Analysis of Singly Reinforced Beams: Tension Steel
Yielding—SI Units

Compute the nominal moment strength, M, of a beam (Fig. 4-19b) with f.. = 20
MPa (B = 0.85), f, = 420 MPa, b = 250 mm, d = 500 mm, and three No. 25 bars

(Table A-1M) giving A, = 3 X 510 = 1530 mm?. Note that the difference between the
total section depth, &, and the effect depth, d, is 65 mm, which is a typical value for beam
sections designed with metric dimensions.

1. Compute a (assuming the tension steel is yielding).
B Asfy
0.85 fib

a

1530 mm? X 420 MPa
"~ 0.85 X 20 MPa X 250 mm

= 151 mm

Therefore, c = a/B; = 151/0.85 = 178 mm.

2. Check whether the tension steel is yielding. The yield strain for the reinforcing
steel is

Sy 420MPa — 0.0021
&7 E, T 200,000MPa

From Eq. (4-18),

B (500 mm — 178 mm
& 178 mm

) X 0.003 = 0.00543

Thus, the steel is yielding as assumed in step 1.

3. Compute the nominal moment strength, M,. From Eq. (4-21), M, is (where
1 MPa = 1 N/mm?)

a ) 2 151
M, = Af,| d — =) = 1530 mm~ X 420 N/mm~| 500 — —— | mm
WY 2 2

=273 X 10° N-mm = 273 kN-m
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4. Confirm that the tension steel area exceeds A yin. For the given concrete

strength of 20 MPa, the quantity 0.25\/E = 1.12 MPa, which is less than 1.4 MPa.
Therefore, the second part of Eq. (4-11M) governs for Ag i, as

_ 14byd 1.4 MPa X 250 mm X 500 mm

Asmin = = 417 mm®
s.min 5 420 MPa mm

Ay exceeds A i, S0 this section satisfies the ACI Code requirement for minimum tension
reinforcement. |

EXAMPLE 4-2 Calculation of the Nominal Moment Strength for an Irregular
Cross Section

Compression block

area = a2/2
ccy = 0.003

The beam shown in Fig. 4-20 is made of concrete with a compressive strength,
fe = 3000 psi and has three No. 8 bars with a yield strength, f,, = 60 ksi. This example is
presented to demonstrate the general use of strain compatibility and section equilibrium
equations for any type of beam section.

1. Initially, assume that the stress f; in the tension reinforcement equals the
yield strength f, and compute the tension force T = A f,:

A, = 3No. 8 bars = 3 X 0.79 in.2 = 2.37 in.?
T = Ayf, = 2.37in.2 X 60 ksi = 142 kips
The assumption that the tension steel is yielding will be checked in step 3.

2. Compute the area of the compression stress block so that C, = T. As in the
prior problem, this is done using the equivalent rectangular stress block shown in Fig. 4-16a.
The stress block consists of a uniform stress of 0.85 f7. distributed over a depth a = Bjc,
which is measured from the extreme compression fiber. For /7. = 3000 psi, Eq. (4-14a) gives
B1 = 0.85. The magnitude of the compression force is obtained from equilibrium as

C, =T = 142kips = 142,000 Ibs

0.85f,

5 2a/3
) a = B4¢ /
/Y ) 1 C, = 0.85f,a%/2 c

- et
I= -
= 'Y \ Neutral axis
N % | (axis of zero strain)

id d-c
3 No. 8 bars
- [ ‘ [ ] A ———— T
€s
12 in. 12in. I

(a) Cross section. (b) Elevation. (c) Strain distribution.
Fig. 4-20

Analysis of arbitrary cross section—Example 4-2.
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By the geometry of this particular triangular beam, shown in Fig. 4-20, if the depth
of the compression block is a, the width at the bottom of the compression block is also a,
and the area is a*/2. This is, of course, true only for a beam of this particular triangular
shape.

Therefore, C. = (0.85 f1)(a*2) and

142,000 1b X 2 .
a=,|———————=1061in.
0.85 X 3000 psi
3. Check whether f; = f,. This is done by using strain compatibility. The strain
distribution at ultimate is shown in Fig. 4-20c. As before,

_a _ 106in.
B 0.85
Using strain compatibility, as expressed in Eq. (4-18), calculate

. (21.5 — 124
BT\ 124

c = 124 in.

>0.003 = 0.00220

Although this is close to the yield strain, it does exceed the yield strain as calculated in
step 3 of Example 4-1 for Grade-60 reinforcement. Thus, the assumption made in step 1 is
satisfied.

4. Compute M,
M,=C.d=Tjd

where jd is a general expression for the lever arm, i.e., the distance from the resultant ten-
sile force (at the centroid of the reinforcement) to the resultant compressive force C,.
Because the area on which the compression stress block acts is triangular in this example,
C. acts at 2a/3 from top of the beam. Therefore,

2a
id =d — —
J 3
2a
M, = Asfy d — ?
. 2 . 2 X 10.6\ .
= 2.371in.“ X 60ksi| 21.5 — 3 in.

= 2060 Ib-in. = 171 k-ft

Note: If we wanted to calculate A p,;, for this section, we should base the calculation on
the average width of the portion of the section that would be cracking in tension. It is not
easy to determine this value, because the distance that the flexural crack penetrates into
the section is difficult to evaluate. However, it would be conservative to use the width
of the section at the extreme tension fiber, 24 in., in Eq. (4-11). As in the Example 4-1,
200 psi will govern for the numerator in this equation. So,

200 psi _ 200 psi
smin g T 60,000 psi

X 24in. X 21.5in. = 1.72 in.2

Therefore, even with a conservative assumption for the effective width of the cracked
tension zone, this section has a tension steel area that exceeds the required minimum
area of tension reinforcement. |



Section 4-5 Definition of Balanced Conditions ¢ 131

4-5  DEFINITION OF BALANCED CONDITIONS

——

The prior sections dealt with under-reinforced beam sections. To confirm that a partic-
ular section was under-reinforced, the section was put into equilibrium, and the steel
strain evaluated using Eq. (4-18) was shown to be greater than the yield strain. This dis-
cussion will concentrate on the condition when the steel strain corresponding to section
equilibrium is equal to the yield strain, &,, and the strain in the extreme concrete fiber is
equal to the maximum useable compression strain, g.,. The area of tension steel required
to cause this strain condition in a beam section will be defined as the balanced area of
tension reinforcement. The balanced area is an important parameter for design of beam
and slab sections and will be referred to in later chapters of this book. The analysis pro-
cedure to find the balanced area of tension reinforcement is similar to the analysis for M,,.

The key starting point for the analysis of the balanced area of tension reinforcement
is the balanced strain diagram, as shown in Fig. 4-21b. This strain diagram corresponds to
a balanced failure, i.e., the tension reinforcement is just reaching its yield strain, €, at the
same time the extreme concrete compression fiber is reaching the maximum useable com-
pression strain, €.,. Understanding and using the balanced strain diagram is important for
the analysis of both beam sections subjected to only bending and column sections subjected
to bending plus axial load (Chapter 11).

The balanced strain diagram is being applied to the singly reinforced beam section
shown in Fig. 4-21a. There are some important differences between this analysis and the
analysis for M, discussed in the previous sections. First, the major unknown now is the
balanced area of steel, A (bal). Second, everything is known in the strain diagram, includ-
ing the depth to the neutral axis, c(bal). This is calculated with the use of similar triangles
from the strain diagram:

h d
Ag(bal)
zzzzzzi| ——
(a) Beam section.
Fig. 4-21

c(bal) d
Ecu Ecu + &y
scu
c(bal) = | —— |d (4-22)
€y T 8
0.85f/,
— —
B1c (bal)/2
= a2 ] C.(bal)
c(bal) 1
_ _ .. Neutral e U _
axis
(777777 T (bal)
&€ _ f F
- -
€5 = gy
(b) Balanced strain distribution. (c) Stress distribution. (d) Internal forces.

Steps in analysis of A(bal), singly reinforced rectangular section.
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The next steps through the stress distribution (Fig. 4-21c) and the force diagram
(Fig. 4-21d) are similar to what was done for the analysis of M,, in the previous sections.
The only difference is that the forces have been labeled as C«(bal) and T(bal) to distinguish
them from the forces in the procedure for the analysis of M,,.
Enforcing section equilibrium,

T(bal) = C.(bal)
Ay(bal)f, = 0.85 f1 b c(bal)

Solving for the only unknown A (bal),

Ag(bal) = %[0.85 febBic(bal)] (4-23)

y

This general expression applies only to singly reinforced rectangular sections and will

not be used frequently. However, the reinforcement ratio at balanced conditions, pj, is a

parameter that often is used in design. Recalling that the reinforcement ratio is the tension

steel area divided by the effective area of concrete, bd, and using the definition of c(bal)
from Eq. (4-22), we get

py = ab) _085BifL b ><< eu ) J

bd f bd " \so + 8

prO-SSBlfc/ > (42

Iy \Scu + ey

Although this form is acceptable, the more common form is obtained by substituting
in g, equal to 0.003 and then multiplying both the numerator and denominator by
E, = 29,000,000 psi to obtain

(4-25)

0.85 B.f.( 87,000
Py =

£, \ 87,000 + £,

where f) and f " are used in psi units. Equations (4-24) and (4-25) represent classic defini-
tions for the balanced reinforcement ratio. Some references to this reinforcement ratio will
be made in later chapters of this book.

4-6  CODE DEFINITIONS OF TENSION-CONTROLLED AND
COMPRESSION-CONTROLLED SECTIONS

Recall, the general design strength equation for flexure is
OM, = M, (4-1b)

where ¢ is the strength reduction factor. For beams, the factor ¢ is defined in ACI Code
Section 9.3.2 and is based on the expected behavior of the beam section, as represented by
the moment—curvature curves in Figs. 4-11 and 4-12. Because of the monolithic nature of
reinforced concrete construction, most beams are part of a continuous floor system, as
shown in Fig. 1-6. If a beam section with good ductile behavior was overloaded accidentally,
it would soften and experience some plastic rotations that would permit loads to be redis-
tributed to other portions of the continuous floor system. This type of behavior essentially
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Fig. 4-22
Definitions for d, and ¢, .

creates an increased level of safety in the structural system, so a higher ¢-value is permitted
for beams designed to exhibit ductile behavior. For beams that exhibit less ductile behavior,
as indicated for the sections with larger tension steel areas in Fig. 4-11, the ability to redis-
tribute loads away from an overloaded section is reduced. Thus, to maintain an acceptable
level of safety in design, a lower ¢-value is required for such sections.

Until 2002, the ACI Code defined only a single ¢-value for the design of reinforced
concrete beam sections, but the behavior was controlled by limiting the permitted area of
tension reinforcement. The design procedure was to keep the reinforcement ratio, p, less
than or equal to 0.75 times the balanced reinforcement ratio defined in Eq. (4-25). This
procedure, which is still permitted by Appendix C of the ACI Code, is easy to apply to
singly reinforced rectangular sections, but becomes more complicated for flanged sections
and sections that use compression reinforcement. When the same criteria is applied to
beam sections that contain both normal reinforcement and prestressing tendons, the defin-
ition for the permitted area of tension reinforcement becomes quite complex.

Another method for controlling the ductility of a section is to control the value of
tension strain reached at the level of the tension reinforcement when the extreme concrete
compression fiber reaches the maximum useable compression strain, i.e., at nominal strength
conditions (Fig. 4-18b). Requiring higher tension strains at the level of tension steel is a
universal method for controlling the ductility of all sections, as initially discussed by Robert
Mast [4-14]. Starting with the 2002 edition, this is the procedure used in Chapters 9 and 10
of the ACI Code to control section ductility, and thus, specify the corresponding values for
the strength-reduction factor, ¢.

Definitions of Effective Depth and Distance to Extreme
Layer of Tension Reinforcement

The effective depth, d, is measured from the extreme compressive fiber to the centroid of the
longitudinal reinforcement. This is the distance used in calculations of the nominal moment
strength, as demonstrated in prior examples. To have consistency in controlling tension strains
for a variety of beam and column sections, the ACI Code defines a distance, d,, which is mea-
sured from the extreme compression fiber to the extreme layer of tension reinforcement, as
shown in Fig. 4-22a. The strain at this level of reinforcement, &,, is defined as the net strain at
the extreme layer of tension reinforcement at nominal-strength conditions, excluding strains
due to effective prestress, creep, shrinkage, and temperature. For beam sections with more
than one layer of reinforcement, &, will be slightly larger than the strain at the centroid of the
tension reinforcement, &, as shown in Fig. 4-22b. The ACI Code uses the strain &, to define
the behavior of the section at nominal conditions, and thus, to define the value of ¢.

equ = 0.003

e o ° &g

&t

(a) Beam section. (b) Strain distribution.
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Fig. 4-23

Strain distributions at
tension-controlled and
compression-controlled
limits.

Definitions of Tension-Controlled and Compression-Controlled
Sections

A tension-controlled section has a tension-reinforcement area such that when the beam
reaches its nominal flexural strength, the net tensile strain in the extreme layer of tensile steel,
g, is greater than or equal to 0.005. For Grade-60 reinforcement with a yield strength
Sy = 60 ksi, the tensile yield strain is €, = 60/29,000 = 0.00207. The tension-controlled
limit strain of 0.005 was chosen to be approximately 2.5 times the yield strain of the rein-
forcement, giving a moment—curvature diagram similar to that shown in Fig. 4-11 for the
section with an area of tension reinforcement equal to 4.50 in.? The strain diagram corre-
sponding to the tension-controlled limit (TCL) is demonstrated in Fig. 4-23b, with the depth
from the extreme compression fiber to the neutral axis defined as ¢(TCL). From the strain
diagram it can be shown that

3
¢(TCL) = 2d; = 0.375d, (4-26)

Clearly, if a calculated value of c is less that 3/8 d,, the strain, g;, will exceed 0.005. Thus,
when analyzing the nominal flexural strength of a beam section, demonstrating that the
depth to the neutral axis obtained from section equilibrium is less than 3/8 d,, as given in
Eq. (4-26), will be one method to verify that the section is tension-controlled.

A compression-controlled section has a tension-reinforcement area such that when
the beam reaches its nominal flexural strength, the net tensile strain in the extreme layer of
tensile steel, &, is less than or equal to the yield strain. For beams with Grade-60
reinforcement (e, = 0.00207) and beams with prestressed reinforcement, ACI Code
Section 10.3.3 permits the use of 0.002 in place of the yield strain. A beam section with
this amount of tension reinforcement would exhibit a moment—curvature relationship sim-
ilar to that shown in Fig. 4-11 for the section with the largest steel area. The strain diagram
corresponding to the compression-controlled limit (CCL) is demonstrated in Fig. 4-23c,
with the depth from the extreme compression fiber to the neutral axis defined as ¢(CCL).
From the strain diagram it can be shown that

3
¢(CCL) = Sd; = 0.60d, (4-27)

Clearly, if a calculated value of c is greater that 3/5 d,, the strain g, will be less than 0.002.
A transition-zone section has a tension-reinforcement area such that when the beam
reaches its nominal flexural strength, the net tensile strain in the extreme layer of tensile

€6y = 0.003 oy = 0.003

c(CCL)

&= 0.005 e = 0.002

(a) Beam section.  (b) Strain distribution at  (c) Strain distribution at
tension-controlled limit.  compression-controlled limit.
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Fig. 4-24

Variation of ¢-factor with &,
and c/d, for spiral and stirrup-
tie transverse reinforcement.

steel, g, is between 0.002 and 0.005. A beam section with this amount of tension rein-
forcement would exhibit a moment—curvature relationship in between those shown in
Fig. 4-11 for sections with tension steel areas of 4.50 and 6.50 in.”

Because tension-controlled sections demonstrate good ductile behavior if overloaded,
they are analyzed and designed using a strength-reduction factor, ¢, of 0.9. Because of their
brittle behavior if overloaded, compression-controlled sections are analyzed and designed
with ¢ equal to 0.65. (Note: This is the value for beams with standard stirrup-tie reinforce-
ment similar to that shown in Fig. 4-19. As will be discussed in Chapter 11, for column
sections with spiral reinforcement, the value of ¢ is 0.75 if the section is compression-
controlled).

The variation of the strength-reduction factor, ¢, as a function of either the strain, &,
or the ratio, ¢/d,, at nominal strength conditions is shown in Fig. 4-24. For beam or column
sections that are either compression-controlled (¢, = 0.002) or tension-controlled (g, =
0.005), the value of ¢ is constant. When analyzing a transition-zone section with stirrup-tie
(or hoop) transverse reinforcement, the value of ¢ varies linearly between 0.65 and 0.90 as
a function of either g, or ¢/d,, as given in Eqs. (4-28a) and (4-28b), respectively.

250

¢ =065 + (g — 0.002) X (4-28a)

¢—O65+025<1—5> (4-28b)
' “\eld, 3

For a transition-zone section with spiral transverse reinforcement (column section),
the variation of the value of ¢ as a function of either &, or ¢/d, is given in Eqgs. (4-29a) and
(4-29b), respectively.

¢ =075 + (g, — 0.002) X 50 (4-292)
15

=075+ 0.15( — — = 4-29b

¢ (c/d, 3) (4-295)

In the prior examples, the values of ¢ now can be calculated. In all three examples, there
was only one layer of tension steel, so g; is equal to &;. For the rectangular beams in
Examples 4-1 and 4-1M, the value of &, exceeded 0.005, so the ¢-value would be 0.9. For

¢
0.90
Eq. (4-29a and b
q. ( )\
Spiral
0.75 P
Eq. (4-28a and b)
Stirrup-tie
0.65
Compression- Transition zone Tension-
controlled controlled
&t
0.002 0.005
I I c/d;
0.600 0.375
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Fig. 4-25
Typical beam section with A
as a variable.

the triangular beam section in Example 4-2, the value of &; was 0.00220. Using that as the
value for &, in Eq. (4-28a) results in a ¢-value of 0.67 (the authors recommend using only
two significant figures for ¢).

Upper Limit on Beam Reinforcement

Prior to the 2002 edition of the ACI Code, the maximum-tension steel area in beams was
limited to 0.75 times the steel area corresponding to balanced conditions (Fig. 4-21). In
the latest edition of the ACI Code (ACI 318-11), Section 10.3.5 requires that for
reinforced concrete (nonprestressed) beam sections (stated as members with axial com-
pressive load less than 0.10 f. Ag) the value of &, at nominal flexural strength conditions
shall be greater than or equal to 0.004. This strain value was selected to approximately
correspond to the former ACI Code requirement of limiting the tension steel area to 0.75
times the balanced-tension steel area. A beam section with a tension steel area resulting
in &, = 0.004 at nominal conditions would have a higher M,, value than a beam section
with a lower-tension steel area that resulted in &, = 0.005 (the tension-controlled limit)
at nominal strength conditions. However, because there are different ¢-values for these
two beam sections, the resulting values of ¢M,, for the two sections will be approxi-
mately equal.

The rectangular beam section in Fig. 4-25 will be used to demonstrate the change
in the reduced nominal moment strength, ¢M,,, as the amount of tension-reinforcing
steel is increased. Table 4-2 gives the results from a series of moment strength calcula-
tions for constantly increasing values for the reinforcement ratio, p. The corresponding
steel areas are given in the second column of Table 4-2, and the depth to the neutral
axis, ¢, obtained from Eqs. (4-16) and (4-17) are given in the third column. The beam
section represented by the last row in Table 4-2 is over-reinforced and a strain-compatibility
procedure is required to establish equilibrium and find the corresponding depth to the
neutral axis, c¢. The details of this analysis procedure will be discussed at the end of this
subsection.

Values for g,, which are equal to g for a single layer of reinforcement, are obtained
from Eq. (4-18) and then used to determine the corresponding values of the strength reduc-
tion factor, ¢. If &, is greater than or equal to 0.005 (signifying a tension-controlled
section), ¢ is set equal to 0.9. For g, values between 0.005 and 0.002, Eq. (4-28a) is used
to calculate the corresponding ¢-value to three significant figures for this comparsion.
For the largest p-value in Table 4-2 (last row), the calculated value of &, is equal to the
compression-controlled limit of 0.002, so ¢ was set equal to 0.65. Finally, Eq. (4-20) was

14 in.
19.5in.
22in.
As
) I
fi, = 4000 psi

f, = 60 ksi
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TABLE 4-2 Relationship between Reinforcement Ratio and Nominal Moment Strength

p A (in.?) c (in.) & ¢ M, (k-ft) dM,, (k-ft)
0.005 1.37 2.03 0.0258 0.900 128 115
0.010 2.73 4.05 0.0115 0.900 243 218
0.015 4.10 6.08 0.00662 0.900 347 312
0.0181 4.93 7.31 0.0050 0.900 404 364
0.0207 5.64 8.36 0.0040 0.817 449 367
0.025 6.83 10.1 0.00278 0.715 519 371
0.0285 7.78 11.5 0.00207 0.656 568 372
0.030 8.19 11.7 0.00200 0.650 575 374

Fig. 4-26
Relationship between p and
values for M,, and ¢pM,,.

used to calculate the nominal moment strength, M,,, which was multiplied by ¢ to get
the values of ¢pM,, given in the last column of the Table 4-2.

Some interesting results can be observed in the plots of p versus M, and versus ¢ M,
in Fig. 4-26. There is an almost linear increase in M,, and ¢M,, for increasing values of p
up to the point where the tension strain, &,, reaches the tension-controlled limit of 0.005.
Beyond this point, M,, continues to increase almost linearly for increasing values of p, but
the value of ¢pM,, tends to stay almost constant due the decrease in the value of ¢ obtained
from Eq. (4-28a). This is a very important result that dimishes the significance of the limit
set on g, in ACI Code Section 10.3.5 (g, = 0.004). The author believes that the important
limit for the amount of tension steel to use in the design of beam sections will be to keep

700 T T T T T T T T T

=— Nominal moment
—a— Reduced nominal moment

| - |

400 /{ T
- /)‘/T s§= 0.004 & = 0.002-

300
- // ¢, = 0.005 .
200 / /
4

100

600

Moment strength, k-ft

0
0 0.005 0.010 0.015 0.020 0.025 0.030 0.035
Reinforcement ratio, p
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g; at or above the tension-controlled limit of 0.005, because Fig. 4-26 clearly shows that
beyond this point it is not economical to add more tension steel to the section. Thus, for the
flexural design procedures discussed in Chapter 5, the authors will always check that the
final section design is classified as a tension-controlled section (g, = 0.005), and thus,
the ¢-value always will be 0.90.

One final point of interest in Fig. 4-26 occurs in the plot of p versus M, for a steel
area larger that the balanced steel area given in Eq. (4-25). This section (last row of values in
Table 4-2) is referred to as being over-reinforced, but the value for M,, does not increase for
this larger area of tension steel because the concrete compression zone will start to fail before
the steel reaches its yield stress. Thus, the values for the compression force, C,, and therefore
the tension force, T, tend to stay relatively constant. Exact values for the steel stress and strain
can be determined using the fundamental procedure of satisfying section equilibrium
(Eq. (4-2)) and strain compatibility (Eq. (4-18)). Then the section nominal moment strength,
M,,, can be calculated by the more general expression in Eq. (4-20). For over-reinforced sec-
tions, the nominal moment strength will tend to decrease as more tension steel is added to the
section, because the moment arm (d — a/2) will decrease as A is increased. An analysis of
an over-reinforced beam section is presented as Beam 3 in the following example.

EXAMPLE 4-3 Analysis of Singly Reinforced Rectangular Beams

Fig. 4-27
Section used for Beams 1 and
2 of Example 4-3.

Compute the nominal moment strengths, M,,, and the strength reduction factor, ¢,
for three singly reinforced rectangular beams, each with a width » = 12 in. and a total
height 2 = 20 in. As shown in Fig. 4-27 for the first beam section to be analyzed, a beam
normally will have small longitudinal bars in the compression zone to hold the stirrups
(shear reinforcement) in place. These bars typically are ignored in the calculation of the
section nominal moment strength. Assuming that the beam has 11/2 in. of clear cover and
uses No. 3 stirrups, we will assume the distance from the tension edge to the centroid of the
lowest layer of tension reinforcement is 2.5 in.

Beam 1: f/ = 4000 psi and f;, = 60 ksi. The tension steel area, A, = 4 (1.00 in%) =
4.00 in.2

1. Compute a, ¢, and g (same as &, for single layer of reinforcement). As
before, assume that the tension steel is yielding, so f; = f;. Using Eq. (4-16), which was
developed from section equilibrium for a rectangular compression zone,

A
©0.85flb
4.001in.2 X 60 ksi

= - — = 5.881in.
0.85 X 4ksi X 12 in.

a = Bic

N

) d=17.5in.
20 in.

4 No. 9 bars

12in.
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For fi = 4000 psi, B is equal to 0.85. Thus, ¢ = a/B; = 6.92in., and using strain
compatibility as expressed in Eq. (4-18), find

d— 175 — 6.92
e, = ( - C>scu = (692>0.003 = 0.00459

This exceeds the yield strain for Grade-60 steel (g, = 0.00207, previously calculated), so
the assumption that the tension steel is yielding is confirmed.

2. Compute the nominal moment strength, M,,. As in Example 4-1, use Eq. (4-21),
which applies to sections with rectangular compression zones for

5.88 in.
M, = Asfy(d - ‘2’> = 40in2 X 60 ksi(17.5 T )

M, = 3490 k-in. = 291 k-ft

3. Confirm that tension steel area exceeds Ay mi,. Although this is seldom a
problem with most beam sections, it is good practice to make this check. The expression
for A min 18 given in Eq. (4-11) and includes a numerator that is to be taken equal to 3\/?@,
but not less than 200 psi. As was shown in Example 4-1, the value of 200 psi governs for
beams constructed with 4000 psi concrete. Thus,

200 psi 200

min = bypd = 50.000 X 12in. X 17.5in. = 0.70 in.2

Clearly, A, for this section satisfies the ACI Code requirement for minimum tension
reinforcement.

4. Compute the strength reduction factor, ¢», and the resulting value of ¢pM,,.
As stated previously, for a single layer of tension reinforcement, &; is equal to &, which
was calculated in step 1. Because &, is between 0.002 and 0.005, this is a transition-zone
section. Thus, Eq. (4-28a) is used to calculate ¢:

250
¢ = 0.65 + (0.00459 — 0.002)7 = 0.87

Then,
&M, = 0.87 X 291 k-ft = 253 k-ft

Beam 2: Same as Beam 1, except that f, = 6000 psi. As shown in Fig. 4-12, chang-

ing the concrete compressive strength will not produce a large change in the nominal

moment strength, but it does increase the ductility of the section. Thus, increasing the

concrete compressive strength might change the beam section in Fig. 4-27 from a

transition-zone section to a tension-controlled section.

1. Compute a, ¢, and &. Again, assume that the tension steel is yielding, so
fs = fy. For this compressive strength, Eq. (4-14b) is used to determine that 8, = 0.75.
Then, using Eq. (4-16),

A
@=PBie =85
4.00 in.2 X 60 ksi

- = 3.92in.
085 X 6ksi X 12in. _ > 2m
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Thus, ¢ = a/B1 = 5.23 in., and using strain compatibility as expressed in Eq. (4-18), find

d- 17.5 — 5.23
€, = ( - C>8w = (523>0.003 = 0.00704

This exceeds the yield strain for Grade-60 steel (&, = 0.00207), confirming the assump-
tion that the tension steel is yielding.

2. Compute the nominal moment strength, M,. As in Example 4-1, use
Eq. (4-21), which applies to sections with rectangular compression zones:

M, = Asfy<d - ;) = 4.0in.2 X 60 ksi(17.5 in. —

M, = 3730 k-in. = 3 11 k-ft (7 percent increase from Beam 1)

3.92in. )

3. Confirm that tension steel area exceeds A s For this beam section with
6000 psi concrete, the value of 3\/]”7 exceeds 200 psi, and will govern in Eq. (4-11). Thus,

3VFL 3V/6000 , , .
Agmin = ﬂ‘mngaﬁ&rx1mmx11an:osnn2

Again, A, for this section easily satisfies the ACI Code requirement for minimum tension
reinforcement.

4. Compute the strength reduction factor, ¢, and the resulting value of ¢pM,,.
As before, g, is equal to g, which was calculated in step 1. This beam section is clearly a
tension-controlled section, so ¢ = 0.9. Then,

oM, = 0.9 X 311 k-ft = 280 k-ft (11 percent increase from beam 1)

Beam 3: Same as Beam 1, except increase tension steel to six No. 9 bars in two
layers (Fig. 4-28). For this section, &, will be larger than &, and will be calculated
using the distance to the extreme layer of tension reinforcement, d,. Assuming the
same cover and size of stirrup, d, = 17.5 in., as used for d in Beams 1 and 2. The
value of d for this section involves a centroid calculation for the six No. 9 bars. ACI
Code Section 7.6.2 requires a clear spacing between layers of reinforcement greater
than or equal to 1 in. Thus, we can assume that the second layer of steel (two bars) is
one bar diameter plus 1 in. above the lowest layer,—or a total of 2.5 in. +
1.128 in. + 1 in. = 4.63 in. from the extreme tension fiber. A simple calculation is
used to find the distance from the bottom of the beam to the centroid of the tension
reinforcement, g, and then find the value of d = h — g.

~ 4.0in? X 2.5in. + 2.0in.? X 4.63 in.

6.0 in.?
d=h—g=20in. — 321 in. ~ 16.8 in.

= 3.211in.

1. Compute a, ¢, and &, Again, assume that the tension steel is yielding, so
fs = fy. Then, using Eq. (4-16):
Y
0.85fl.b
6.00 in.% X 60 ksi

- = 8.82in.
085 X 4ksi X 121, 08210

a = Bic
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Fig. 4-28
Section used for Beam 3 of
Example 4-3.

N/

s d=16.8in.
n.
6 No. 9 bars d;=17.5in.

S i

12in.

As for Beam 1, B = 0.85. Thus, ¢ = a/B; = 10.4 in. and using strain compatibility, as
expressed in Eq. (4-18), find

d- 16.8 — 10.4
e, = ( C)scu - (> 0.003 = 0.00186

c 10.4

This is less than the yield strain for Grade-60 steel (&, = 0.00207), so the assumption that
the tension steel is yielding is not confirmed. Because the tension steel is not yielding, this
is referred to as an over-reinforced section, and the previously developed procedure for cal-
culating the nominal moment strength does not apply. A procedure that enforces strain
compatibility and section equilibrium will be demonstrated in the following.

2. Compute the nominal moment strength, ,,, by enforcing strain compatibility
and section equilibrium. Referring to Fig. 4-18, we must now assume that the steel stress,
f,1s an unknown but is equal to the steel steel strain, &;, multiplied by the steel modulus, E.
Strain compatibility as expressed in Eq. (4-18) still applies, so the steel stress and thus the
tension force can be expressed as a function of the unknown neutral axis depth, c.

d—c
T = ASf:Y = ASESSS = ASES( c >SCM
Similarly, the concrete compression force can be expressed as a function of the neutral axis
depth, c.

C, = 0.85 flbBc

Enforcing equilibrium by setting 7 = C,., we can solve a second degree equation for the
unknown value of ¢. The solution normally results in one positive and one negative value
for ¢; the positive value will be selected. Using all of the given section and material prop-
erties and recalling that E; = 29,000 ksi and &., = 0.003, the resulting value for c is
10.1 in. Using this value, the authors obtained

T = 346 kips = C. = 350 kips

An average value of T = C. = 348 kips will be used to calculate M,,. Then, usinga = B¢ =
0.85 X 10.1 in. = 8.59 in., calculate M,, using the more general expression in Eq. (4-20).

M, = T(d - ‘2’) — 348 kips<16.8 in. —
M, = 4350 k-in. = 363 k-ft

8.59 in.)
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3. Confirm that tension steel area exceeds A; ;. For this beam section, the con-
crete compressive strength is 4000 psi, as was the case for Beam 1. However, the effective
flexural depth d has been reduced to 16.8 in. Using this new value of d, the value for A; in
is 0.67 in., which is well below the provided tension steel area A,.

4. Compute the strength reduction factor, ¢, and the resulting value of ¢pM,,.
For this section, the value of &, will be slightly larger than &; and should be used to deter-
mine the value of ¢. The strain compatibility of Eq. (4-18) can be modified to calculate &,
by using d, in place of d. Then,

d, — ¢ 17.5 — 10.1
o =\ = Jea = (T g 0003 = 0.00220

This is an interesting result, because we have previously considered this to be an over-re-
inforced section based on the strain, &, calculated at the centroid of the tension reinforce-
ment. However, because of the difference between d and d;, we now have found the value
of g, to be between 0.002 and 0.005. Thus, this is a transition-zone section, and we must
use Eq. (4-28a) to calculate ¢.

250
¢ = 0.65 + (0.00220 — O.OOZ)T = 0.67

Then,
dM,, = 0.67 X 363 = 243 k-ft

It should be noted that even though this section has 50 percent more steel than that of
Beam 1, the reduced nominal moment strength is smaller for this beam section than for
Beam 1. This demonstrates a very important result for heavily reinforced sections—
the only way to increase the reduced nominal moment strength is to add steel to both the
tension and compression zones of the member. The next part of this chapter deals with the
analysis of doubly reinforced beam sections, i.e., beams with longitudinal steel in both
the tension and compression zones. |

4-7  BEAMS WITH COMPRESSION REINFORCEMENT

Occasionally, beam sections are designed to have both tension reinforcement and com-
pression reinforcement. These are referred to as doubly reinforced sections. Two cases where
compression reinforcement is used frequently are the negative bending region of continu-
ous beams and midspan regions of long-span or heavily loaded beams where deflections
need to be controlled. The effect of compression reinforcement on the behavior of beams
and the reasons it is used are discussed in this section, followed by a method to analyze such
beam sections.

Effect of Compression Reinforcement on Strength
and Behavior

The resultant internal forces at nominal-strength conditions in beams with and without
compression reinforcement are compared in Fig. 4-29. As was done in the analysis of
singly reinforced beam sections, we initially will assume that the tension steel is yielding,
s0 fs = fy. The beam in Fig. 4-29b has a compression steel of area Aj located at d’ from
the extreme compression fiber. The area of the tension reinforcement, Ay, is the same in
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both beams. In both beams, the total compressive force is equal to the tension force, where
T = A,fy. In the beam without compression reinforcement (Fig. 4-29a), this compressive
force, C., is resisted entirely by concrete. In the other case (Fig. 4-29b), C is the sum of
C, provided by the concrete and C; provided by the compression steel. Because some of
the compression is resisted by compression reinforcement, C, will be less than C,.;, with
the result that the depth of the compression stress block, a,, in Fig. 4-29b is less than a; in
Fig. 4-29a. The change in the required depth of the stress block causes a related change in
the depth to the neutral axis, ¢, as shown in Fig. 4-29c.

Summing moments about the centroid of the resultant compressive force gives the

following results:

For the beam without compression steel,

Iwn = Asfy(jl d)

For the beam with compression steel,

M, = Asfy(jZ d)
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Fig. 4-30

Effect of compression rein-
forcement on deflections
under sustained loading.
(From [4-15].)

The only difference between these two expressions is that j, is a little larger than
J1, because a, is smaller than a;. Thus, for a given amount of tension reinforcement, the
addition of compression steel has little effect on the nominal moment strength, provided
the tension steel yields in the beam without compression reinforcement. This was illus-
trated in Fig. 4-12. For normal ratios of tension reinforcement (p = A/bd =< 0.015),
the increase in moment strength when adding compression reinforcement generally is less
than 5 percent.

Reasons for Providing Compression Reinforcement

There are four primary reasons for using compression reinforcement in beams:

1. Reduced sustained-load deflections. First and most important, the addition of
compression reinforcement reduces the long-term deflections of a beam subjected to
sustained loads. Figure 4-30 presents deflection—-time diagrams for beams with and
without compression reinforcement. The beams were loaded gradually over a period of
several hours to the service-load level. This load was then maintained for two years. At
the time of loading (time = 0 in Fig. 4-30), the three beams deflected between 1.6 and
1.9 in. (approximately the same amount). As time passed, the deflections of all three
beams increased. The additional deflection with time is 195 percent of the initial
deflection for the beam without compression steel (p’ = Ay/bd = 0) but only 99 per-
cent of the initial deflection for the beam with compression steel equal to the tension
steel (p’ = p). The ACI Code accounts for this in the deflection-calculation procedures
outlined in Chapter 9.

Creep of the concrete in the compression zone transfers load from the concrete to the
compression steel, reducing the stress in the concrete (as occurred in Example 3-4).
Because of the lower compression stress in the concrete, it creeps less, leading to a reduc-
tion in sustained-load deflections.

2. Increased ductility. The addition of compression reinforcement causes a reduc-
tion in the depth of the compression stress block, a. As a decreases, the strain in the tension
reinforcement at failure increases, as shown in Fig. 4-29c, resulting in more ductile behav-
ior, as was shown in Fig. 4-12 for A; = 0.5 A,. Figure 4-31 compares moment—curvature
diagrams for three beams with p < p,, as defined in Eq. (4-25), and varying amounts of
compression reinforcement, p’. The moment at first yielding of the tension reinforcement
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Fig. 4-31

Effect of compression rein-
forcement on strength and
ductility of under-reinforced
beams. (From [4-16].)

Fig. 4-32
Moment—curvature diagram
for beams, with and without
compression reinforcement.
(From [4-16].)
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is seen to change very little when compression steel is added to these beams. The increase
in moment after yielding in these plots is largely due to strain hardening of the reinforce-
ment. Because this occurs at very high curvatures and deflections, it is ignored in design.
On the other hand, the ductility increases significantly when compression reinforcement is
used, as shown in Fig. 4-31. This is particularly important in seismic regions or if moment
redistribution is desired.

3. Change of mode of failure from compression to tension. When p > p,, a
beam fails in a brittle manner through crushing of the compression zone before the steel
yields. A moment—curvature diagram for such a beam is shown in Fig. 4-32 (p’ = 0).
When enough compression steel is added to such a beam, the compression zone is
strengthened sufficiently to allow the tension steel to yield before the concrete crushes.
The beam then displays a ductile mode of failure. For earthquake-resistant design, all beam
sections are required to have p’ = 0.5p.

4. Fabrication ease. When assembling the reinforcing cage for a beam, it is cus-
tomary to provide small bars in the corners of the stirrups to hold the stirrups in place in the
form and also to help anchor the stirrups. If developed properly, these bars in effect are
compression reinforcement, although they generally are disregarded in design, because
they have only a small affect on the moment strength.

0.4 |- =5
03 |-
Mn B
fLbh? 02
f, = 4000 psi
fy = 60,000 psi
0.1 p = Aslbd = 0.03
py, = 0.0285
0 1 ] | l
1 2 3 4 5

Curvature X h (%)
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——

As

(a) Doubly reinforced

Fig. 4-33

Analysis of Nominal Moment Strength, M,

The flexural analysis procedure used for doubly reinforced sections, as illustrated in
Fig. 4-33, essentially will be the same as that used for singly reinforced sections. The
analysis is done for a rectangular section, but other section shapes will be included in
the following sections. The area of compression reinforcement is referred to as Aj, the
depth to the centroid of the compression reinforcement from the extreme compression
fiber of the section is d’, the strain in the compression reinforcement is &}, and the
stress in the compression reinforcement is f7.

A linear strain distribution is assumed, as shown in Fig. 4-33b, and for the evaluation
of the nominal moment capacity, the compression strain in the extreme concrete compres-
sion fiber is set equal to the maximum useable concrete compressive strain, &.,. As was
done for singly reinforced sections, the section is assumed to be under-reinforced, so the
strain in the tension reinforcement is assumed to be larger than the yield strain. The exact
magnitude of that strain is not known, and thus, the depth to the neutral axis, c, also is un-
known. An additional unknown for a doubly reinforced section is the strain in the com-
pression reinforcement, &;. Unlike the tension-reinforcement strain, it is not reasonable to
assume that this strain exceeds the yield strain when analyzing the nominal moment
strength of a beam section. The following relationship can be established from similar tri-
angles in the strain diagram:

& _ Fa
c—d c
or
— d’
gl = (C - >scu (4-30)

The assumed distribution of stresses is shown in Fig. 4-33c. As before, the real
concrete compression stress distribution is replaced by Whitney’s stress block. The
stress in the compression reinforcement, f%, is not known and cannot be determined
until the depth to the neutral axis has been determined. As was done in the analysis of a
singly reinforced section, the stress in the tension reinforcement is set equal to the yield
stress, f}

4a a2 §.| td GCs
> E—
Co
d
— T
F
section. (b) Strain distribution. (c) Stress distribution. (d) Internal forces.

Steps in analysis of M, in doubly reinforced rectangular sections.
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The internal section forces (stress resultants) are shown symbolically in Fig. 4-33d.
The concrete compression force, C,, is assumed to be the same as that calculated for a
singly reinforced section.

C. = (0.85)f.bBic = (0.85)f% ba (4-13b)

This expression contains a slight error, because part of the compression zone is
occupied by the compression reinforcement. Some designers elect to ignore this error, but
in this presentation, the error will be corrected in the calculation of the force in the com-
pression steel by subtracting the height of the compression stress block from the stress in
the compression reinforcement, f. By correcting this error at the level of the compression
reinforcement, the locations of the section forces are established easily. So, the force in the
compression reinforcement is expressed as

C, = Al(f} — 085 f1) (4-31)
The stress in the compression reinforcement is not known, but can be expressed as
fs=Egs = | (4-32)

The tension force is simply the area of tension reinforcement multiplied by the yield
stress. Thus, establishing section equilibrium results in the following:

T =C.+C,

or
Asfy = (0.85)f bBic + Ai(fs — 0.85 f7) (4-33)

In this expression, there are two unknowns: the neutral axis depth, ¢, and the stress in
the compression reinforcement, f%. The compression steel stress can be assumed to be
linearly related to the compression steel strain, &}, as expressed in the first part of Eq. (4-32).
Also, the compression steel strain is linearly related to the neutral axis depth given in
Eq. (4-30). Thus, the section equilibrium expressed in Eq. (4-33) could be converted to a
quadratic equation in terms of one unknown, c.

However, the solution of such a quadratic equation has two potential problems. First,
after a value has been found for the neutral axis depth, ¢, a check will be required to con-
firm the assumption that the compression steel is not yielding in Eq. (4-32). If the com-
pression steel is yielding, Eq. (4-33) would need to be solved a second time (linear
solution) starting with the assumption that f5 = f,,. The second, and more important
potential problem, is that the engineer does not develop any “feel” for the correct answer.
What is a reasonable value for ¢? What should be done if c is less that the depth to the com-
pression reinforcement, d’?

To develop some “feel” for the correct solution, the author prefers an iterative
solution for the neutral axis depth, c. With some experience this process converges
quickly and allows for modifications during the solution. The recommended steps are
listed below and described in a flowchart in Fig. 4-34.

1. Assume the tension steel is yielding, g; = &,,.

Select a value for the neutral axis depth, ¢ (start with a value between d/4
and d/3).

3. Calculate the compression steel strain, €, Eq. (4-30).
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1.Assume gg = ¢

Decrease ¢ | 2. Select value for ¢ | Increase ¢
I:g I | s

y

4.f = Eel=f,
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5.C,= Al (f, — 0.85 )

!

6.C,=0.85f/ bB; C

!

7.T= A,

No, T< C, + C, No, T> C, + Cs

8.Is T=C,+ C,

10. M, = C, [d— g) + C, (d—d)

Fig. 4-34
Flowchart for analysis of doubly reinforced beam sections.

Calculate the compression steel stress, f5, Eq. (4-32).
Calculate the compression steel force, Cy, Eq. (4-31).
Calculate the concrete compression force, C.., Eq. (4-13b).
Calculate the tension steel force, T = Ayf,.

Check section equilibrium, Eq. (4-33). If T = C. + C, (difference less than
5 percent of 7), then go to step 9.

S I

(@) IfT > C. + Cy,increase c and return to step 3.
(b) IfT < C. + C,,decrease c and return to step 3.

9. Confirm that tension steel is yielding in Eq. (4-18 to find &y).
10. Calculate nominal moment strength, M,,, as given next.
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As stated previously, this process quickly converges and gives the engineer control
of the section analysis process. To answer the one question raised previously, if during this
process it is found that c is less that d’, the author recommends removing C; from the cal-
culation because the compression steel is not working in compression. Thus, the section
should be analyzed as if it is singly reinforced, following the procedure given in Section 4-4.
This will often happen when a beam section includes a compression flange, as will be dis-
cussed in the next section of the text.

Once the process has converged and section equilibrium is established (step 8), and
it has been confirmed that the tension steel is yielding (step 9), the section nominal
moment strength can be calculated by multiplying the section forces times their moment
arms about a convenient point in the section. For the analysis presented here, that point is
taken at the level of the tension reinforcement. Thus, T is eliminated from the calculation
and the resulting expression for M,, is

M, = Cc<d - ;) + Cy(d — d') (4-34)

where a = ¢, with 8, defined previoulsly in Eq. (4-14).

Analysis of Strength-Reduction Factor, ¢

The next step in the flexural analysis of a doubly reinforced beam section is to determine
a value for the strength-reduction factor, ¢, so the value of ¢M,, can be compared with the
factored design moment, M,,, that must be resisted by the section. The general procedure
is the same for all beam sections. The value of the tension strain in the extreme layer of
tension reinforcement, &;, can be determined from a strain compatibility expression simi-
lar to Eq. (4-18) with the distance to the extreme layer of tension reinforcement, d,, used

in place of d.
d;, — ¢
& = c Ecu (4'35)

If the value of &, is greater than or equal to 0.005, the section is tension-controlled,
and ¢ = 0.90. If g, is less than or equal to 0.002, the section is compression controlled,
and ¢ = 0.65. If ¢ is between these two limits, the section is in the transition zone, and
Eq. (4-28a) can be used to determine the value for ¢. For tension-controlled sections, this
process can be shortened if the value of g, calculated in step 9 of the section analysis
process described previously, is found to be greater than or equal to 0.005. Because the
value of d, is always greater than or equal to d, then g, will always equal or exceed &, and
thus would be greater than 0.005.

Minimum Tension Reinforcement and Ties for
Compression Reinforcement

Minimum tension reinforcement, which is seldom an issue for doubly reinforced beam sec-
tions, is the same as that for singly reinforced rectangular sections, as given in Eq. (4-11).

As a beam section reaches in maximum moment capacity, the compression steel in
the beam may buckle outward, causing the surface layer of concrete to spall off. For this
reason, ACI Code Section 7.11 requires compression reinforcement to be enclosed within
stirrups or ties over the length that the bars are needed in compression. The spacing and
size of the ties is similar to that required for columns ties, as will be discussed in Chapter 11.
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Frequently, longitudinal reinforcement, which has been detailed to satisfy bar cutoff rules in
Chapter 8, is stressed in compression near points of maximum moment. These bars normally
are not enclosed in ties if the compression in them is not included in the calculation of the
section nominal moment strength. Ties are required throughout the portion of the beam
where the compression steel is used in compression when determining the nominal moment
strength of a beam section. If the compression steel will be subjected to stress reversals, or
if this steel is used to resist torsion, closed stirrups must be used to confine these bars. Details
for closed stirrups will be discussed in Chapters 6 and 7 on design to resist shear and torsion.

EXAMPLE 4-4 Analysis of Doubly Reinforced Rectangular Beam Section

Fig. 4-35
Beam section used for
Example 4-4.

Compute the nominal moment strength, M,,, and the strength-reduction factor, ¢, for
the doubly reinforced rectangular beam shown in Fig. 4-35. This beam section is very simi-
lar to the section for Beam 3 of Example 4-3. For the beam section in Fig. 4-35, three No. 9
bars have been used as compression reinforcement, and a closed No. 3 stirrup-tie is used to
help hold the top bars in place during casting. This example will demonstrate how beam
section behavior can be changed by adding compression reinforcement. Assuming that
the beam has a 11/2-in. clear cover, we will assume the distance from the compression edge
to the centroid of the compression reinforcement, d’, is 2.5 in. The values for d and d,
are the same as used for Beam 3 of Example 4-3. Assume the material properties are
fe = 4000 psi and f), = 60 ksi. Recall that for the given concrete compressive strength
B1 = 0.85, and that the steel modulus £, = 29,000 ksi.

1. Use the iterative procedure discussed in the prior paragraphs to establish
section equilibrium and find the depth to the neutral axis, c.

1. Assume the tension steel is yielding, so f; = f,. (Before adding the com-
pression reinforcement, this was an over-reinforced beam section. We will
assume that it is now an under-reinforced section).

2. Select an initial value for c. d/4 = 4.20in. and d/3 = 5.60 in. Tryc¢ = 5Sin.
3. Find the strain in the compression reinforcement.

—d’ 5—-25
gy = (C )8cu = (5>0.003 = 0.0015
c

4. Find stress in compression reinforcement, f; = E&; = 29,000 ksi X
0.0015= 43.5 ksi (< 60 ksi, 0.k.).

5. Find force in compression reinforcement, C; = Aj(f; — 0.85 f,) =
3 X 1.00in.2 X (43.5 — 3.4) ksi = 120 kips.

d =25in.
r
T .
3 No. 9
) d=16.8in.
20 in. ]
b 6No. 9 d dy=17.5in.
r— Y
12in.
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6. Find concrete compression force, C, = 0.85 f.bBc = 0.85 X
4ksiX 121in. X 0.85 X 5in. = 173 kips.

7. Find force in tension reinforcement, T = A, f, = 6 X 1.00 in.2 X 60 ksi =
360 kips.

8. Check section equilibrium, C; + C,.= 293 kips < T = 360 kips, thus must
increase c.

The step size for the next iteration is not easy to specify. Some judgement must be
developed and the only way to develop that judgement is to use this method for a variety
of sections.

Tryc = 5.5in. For this trial, the compression steel is still not yielding.
C, = 132 kips and C. = 194 kips, so the sum of C and C,. is 326 kips, which is 34 kips
(approximately 10 percent) less than 7.

Try ¢ = 6.0 in. Again, the compression steel is not yielding. C; = 142 kips and
C. = 208 kips, so the sum of C and C.. is 350 kips, which is only 10 kips (approximately
3 percent) less than 7. This is close enough. (Note: This series of simple calculations can
be handled easily with a spreadsheet or Mathcad procedure.)

9. Confirm that the tension steel is yielding using Eq. (4-18):

d— 16.8 — 6
e, = ( - C>8w = <6>o.oo3 = 0.00540 > &, = 0.00207

2. Calculate the nominal moment strength, M,, (step 10).
The depth of the compression stress block, a = 81 ¢ = 0.85 X 6 in. = 5.10 in. Using this in
Eq. (4-34),

A@=c<d—;)+qw—dq

5.10 in.

= 208 k(16.81n. - ) + 142k (16.8 in. — 2.51n.)

= 2960 k-in. + 2030 k-in. = 4990 k-in. = 416 k-ft

In case the reader is concerned about more accuracy in satisfying section equilibrium
in step 8, the following information is presented. Using a spreadsheet, the author
found a closer section equilibrium with ¢ = 6.2 in. With this, it can be shown easily
that the tension steel is yielding (as assumed) and that the final value for M, is
428 ft-kips. This small increase (approximately 3 percent) will be relatively unimpor-
tant in most design situations, as will be discussed in the next chapter on design of
beam sections.

3. Confirm that tension steel area exceeds A np. This requirement from the ACI
Code does not change when compression reinforcement is used. Thus, the required mini-
mum area for this beam section is the same as that for Beam 3 of Example 4-2. Thus,
Agmin = 0.67 in., which is well below the provided tension steel area, A;.

4. Compute the strength reduction factor, ¢», and the resulting value of ¢pM,,.
For this section, the value of d, exceeds d, and thus &, > g, > 0.005 (step 9). So, ¢ = 0.9
and pM,, = 374 k-ft (usingc = 6.0 in.). |
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4-8  ANALYSIS OF FLANGED SECTIONS

Fig. 4-36
T-beams in a one-way beam
and slab floor.

Fig. 4-37
Positive and negative moment
regions in a T-beam.

In the floor system shown in Fig. 4-36, the slab is assumed to carry the loads in one
direction to beams that carry them in the perpendicular direction. During construction,
the concrete in the columns is placed and allowed to harden before the concrete in the
floor is placed (ACI Code Section 6.4.6). In the next construction operation, concrete is
placed in the beams and slab in a monolithic pour (ACI Code Section 6.4.7). As a result,
the slab serves as the top flange of the beams, as indicated by the shading in Fig. 4-36.
Such a beam is referred to as a T-beam. The interior beam, AB, has a flange on both
sides. The spandrel beam, CD, with a flange on one side only, is often referred to as an
inverted L-beam.

An exaggerated deflected view of the interior beam is shown in Fig. 4-37. This
beam develops positive moments at midspan (section A-A) and negative moments over

T beams

Web or stem I Cracks
A

(a) Deflected beam.

| b |

| ]

IZ Z ‘///1' [ . or ° 1 ® e ] l/ /i/ )

Compression zone —___ \Tension reinforcement ~
-

(b) Section A-A (c) Section B-B (d) Section A-A
(rectangular (negative moment). (T-shaped
compression zone). compression zone).



Fig. 4-38
Slab, beam, and girder floor.

Fig. 4-39
Actual flow of forces on a
T-beam flange.
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the supports (section B—B). At midspan, the compression zone is in the flange, as shown
in Figs. 4-37b and 4-37d. Generally, it is rectangular, as shown in 4-37b, although, in very
rare cases for typical reinforced concrete construction, the neutral axis may shift down into
the web, giving a T-shaped compression zone, as shown in Fig. 4-37d. At the support, the
compression zone is at the bottom of the beam and is rectangular, as shown in Fig. 4-37c.

Frequently, a beam-and-slab floor involves slabs supported by beams which, in turn,
are supported by other beams referred to as girders (Fig. 4-38). Again, all of the concrete
above the top of the column is placed at one time, and the slab acts as a flange for both the
beams and girders.

Effective Flange Width and Reinforcement
in the Transverse Direction

The forces acting on the flange of a simply supported T-beam are illustrated in Fig. 4-39.
At the support, there are no longitudinal compressive stresses in the flange, but at midspan,
the full width is stressed in compression. The transition requires horizontal shear stresses
on the web—flange interface as shown in Fig. 4-39. As a result there is a “shear-lag” effect,
and the portions of the flange closest to the web are more highly stressed than those por-
tions farther away, as shown in Figs. 4-39 and 4-40.

Spandrel or
edge beam ™\
Construction/ ]
joint \Girder
~ED
Transverse
compression
Shear flow

Transverse
tension

Support

Flexural
compression

Midspan
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Fig. 4-40
Effective width of T-beams.

Fig. 4-41
Typical beam sections in con-
crete floor systems.

(b) Flexural compressive stress distribution assumed in design.

Figure 4-40a shows the distribution of the flexural compressive stresses in a slab that
forms the flanges of a series of parallel beams at a section of maximum positive moment.
The compressive stress is a maximum over each web, dropping between the webs. When
analyzing and designing the section for positive moments, an effective compression flange
width is used (Fig. 4-40b). When this width, b,, is stressed uniformly to 0.85 f7., it will
give approximately the same compression force that actually is developed in the full width
of the compression zone.

Some typical notation used for positive bending analysis of beam sections with com-
pression flanges is given in Fig. 4-41. ACI Code Section 8.12 gives definitions for effective
compression flange width, b, , for both isolated flanged sections and sections that are part of
a continuous floor system. For isolated sections, the ACI Code requires that the thickness of
the flange shall be at least equal to half of the thickness of the web, and that the effective
width of the flange cannot be taken larger than four times the thickness of the web. If the
actual width of the flange is less than this value, then the actual width is to be used for cal-
culating the compression force.

The ACI Code definitions for the effective compression flange width for T- and
inverted L-shapes in continuous floor systems are illustrated in Fig. 4-42. For inverted

be

S — |
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nl d \ } Flange !
\\\ J — Q Web
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b, + (clear transverse span)/2 | b, + 2 X (clear transverse span)/2 = total trans. span |
be=4 b,+6h ! be={ by+2(8h) i
b, + €12 /4
| | |
\ | rhr \ \
I |
N

7.7

! !
! !
! !
| NN NN | -
i i
| |

b, (clear tranv. span)/2 (clear tranv. span)/2 by (clear tranv. span)/2
=t . 1 !
Midspan Midspan
Transverse span Transverse span
€ = length of beam span (longitudinal span)
Fig. 4-42

ACI Code definitions for effective width of compression flange, b,.

L-shapes, the following three limits are given for the effective width of the overhanging
portion of the compression flange:

(a) one-twelfth of the span length of the beam,
(b) six times the thickness of the flange (slab), and
(¢) one-half the clear transverse distance to the next beam web.

For T-shapes, the fotal effective compression flange width, b,, is limited to one-quarter
of the span length of the beam, and the effective overhanging portions of the compression
flange on each side of the web are limited to

(a) eight times the thickness of the flange (slab), and
(b) one-half the clear distance to the next beam web.

In the following sections for the analysis of section nominal moment strength, M,,, it will
be assumed that b, has already been determined. A sample evaluation of the effective width of
the effective compression flange width for a T-section will be given at the start of Example 4-5.

Loads applied to the flange will cause negative moments in the flange where it joins
the web. If the floor slab is continuous and spans perpendicular to the beam, as in Fig. 4-36,
the slab flexural reinforcement will be designed to resist these moments. If, however, the slab
is not continuous (as in an isolated T-beam) or if the slab flexural reinforcement is parallel to
the beam web (as is the case of the “girders” in Fig. 4-38) additional reinforcement is
required at the top of the slab, perpendicular to the beam web. ACI Code Section 8.12.5 states
that this reinforcement is to be designed by assuming that the flange acts as a cantilever
loaded with the factored dead and live loads. For an isolated T-beam, the full overhanging
flange width is considered. For a girder in a monolithic floor system (Fig. 4-38), the over-
hanging part of the effective flange width is used in this calculation.

Analysis of Nominal Moment Strength for Flanged
Sections in Positive Bending

As was done for rectangular sections, Whitney’s stress block will be used to model the dis-
tribution of concrete compression stresses. This model was derived for a unit width, so it
theoretically applies only for constant width compression zones. Therefore, it would seem
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to be inappropriate to use this model if the depth to the neutral axis, c, exceeds the depth of
the compression flange, /. The largest error in using this model may occur when the neu-
tral axis depth exceeds the thickness of the flange, but the depth of Whitney’s stress block,
a = Bjc, is less than the thickness of the flange. However, even in those cases, Whitney’s
stress-block model has sufficient accuracy for use in analysis and design of flanged rein-
forced concrete beam sections.

The procedure for analyzing the nominal moment strength, M,,, for sections with
flanges in the compression zone can be broken into two general cases. For Case 1, the effec-
tive depth of Whitney’s compressive stress block model, a, is less than or equal to the
thickness of the compression flange, /;. For normal reinforced concrete flanged sections,
this is the case that usually governs for the analysis of M,,. For Case 2, the depth of Whit-
ney’s stress block model, a, is greater than the thickness of the flange. Although this case
seldom governs for the analysis of M,,, it will be discussed to give the reader a full under-
standing of beam section analysis procedures.

For a Case 1 analysis, the depth of the Whitney stress-block model is less than or
equal to the thickness of the compression flange, as shown in Fig. 4-43. Because this case
usually will govern for reinforced concrete sections, it is recommended to start the analy-
sis for nominal moment strength with this case and only switch to Case 2 if it is shown that
the depth of Whitney’s stress block exceeds the depth of the flange. The analysis of M,,
is essentially the same as that covered in Section 4-4 for singly reinforced rectangular sec-
tions, except now the width of the compression zone is equal to the effective compression
flange width b, . The recommended steps for Case 1 are:

1. Assumea = Bic = hy

Assume g, = ¢

y
3. From section equilibrium, use Eq. (4-16) to calculate a with b, used in place
of b:
Agfy
a = - ;7
0.85 f¢ b,

4. Showa = h r (if yes continue; if not, go to Case 2)
5. Confirm g; = &, (should be true, by inspection)

085f; ¢
- - | -
\ \ a/2
] | S
i $ Ihf a=pich [ T Ce
h d
As
e o o £ T
X f F
by, ‘ fs = fy ‘
(assumed)
(a) Beam section. (b) Stress distribution. (c) Internal forces.
Fig. 4-43

Case 1 analysis (81 = hy) for M, in T-section.
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6. Calculate M,, using Eq. (4-21):

M, = Asfy(d - ;‘) 4-21)

The Case 2 analysis procedure must be used if in step 4 of the Case 1 procedure the
depth of Whitney’s stress block exceeds the thickness of the flange. The assumption that
the tension steel is yielding is retained. For Case 2 analysis, the section is artificially
divided into two parts (i.e., the overhanging flanges and the full depth of the web, as
shown in Fig. 4-44). The total area of tension reinforcement also is divided into two parts,
but it is not important in this analysis to find a specific value for A,y and Ag,. In Part 1
(Fig. 4-44b), the compression force in the overhanging portion of the flange is given as

Cep = 085 fL (b — by)hy (4-36)

Every term in Eq. (4-36) is known. In part 2 (Fig. 4-44c), the compression force in
the web is given as

Co = 0.85 . bya (4-37)

In this equation, the depth of Whitney’s stress block, a, is unknown. As before, we
can find this by enforcing section equilibrium:

T = Afy=Cep + Cepp
And from this, solve for the depth of Whitney’s stress block:

T — C

=— 4-38
7085 by, (4-38)

As was done in the analysis of other beam sections at this stage, we will solve for the
neutral axis depth, ¢ = a/f;, and confirm that the tension steel strain, g, calculated using
Eq. (4-18), is larger than the yield strain. Then, the nominal moment strength can be found
by summing the moments from the two beam parts shown in Fig. 4-44. In this case with
two compression forces, it is convenient to sum the moments caused by those two forces
acting about the level of the tension reinforcement as

h
M, = ccf<d - ;) T ch<d - ;) (4-39)

For both the Case 1 and Case 2 analysis procedures described, it was assumed that no
compression reinforcement was used in the section. Although such reinforcement usually will
have very little effect on the nominal moment capacity of a beam section with a compression
flange, its contribution could be included following a procedure similar to those described in
Section 4-7. If it is determined that this is a Case 1 analysis (step 4), then definitely ignore the
compression reinforcement and calculate M,, using Equation (4-21). However, if it is deter-
mined to be a Case 2 analysis, the compression reinforcement can be included in part 2 of the
Case 2 analysis procedure described, following the steps for compression reinforcement
described in Section 4-7. The resulting expression for the nominal moment strength will be

h
M, = ccf<d - 2f> + ch(d - ;) +Cy(d — d) (4-40)

where the term Cj is defined in Eq. (4-31).
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e >

fIhf

0.85f,

a=f¢

(assumed)

(a) Total T-section and stress distribution.

hf/2 _l

a/2 i

T2

(c) Part 2: Web of section and corresponding internal forces.

Fig. 4-44
Case 2 analysis (8¢ > hy) for M, in T-section.
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Determination of Strength-Reduction Factor, ¢

Most flanged sections will be tension-controlled sections with the strength-reduction fac-
tor, ¢, equal to 0.90. This quickly can be shown by comparing the calculated value of the
depth to the neutral axis, c, to the value of the neutral axis depth for the tension-controlled
limit, 3/8 of d;, as given by Eq. (4-26). If there is any doubt, Eq. (4-35) can be used to cal-
culate the strain at the level of the extreme layer of tension reinforcement, &;, and show
that it is greater than or equal to 0.005. If the calculated value of &, is less than 0.005 but
more than 0.002, than this is a transition zone section and Eq. (4-28a) should be used to
calculate the strength-reduction factor, ¢. For a section with a compression flange, it
would be very difficult to put in enough tension reinforcement to make the section over-re-
inforced (&; < 0.002), and thus have ¢ = 0.65.

Evaluation of A; i, in Flanged Sections

The general expression for Ag i, was given in Eq. (4-11). However, it is not unusual for
some confusion to develop when applying this equation to flanged sections. The primary
question is, which section width, b,, or b,, should be used in Eq. (4-11)? The reader should
recall that the specification of a minimum area of tension reinforcement is used to prevent
a sudden flexural failure at the onset of flexural tension cracking. For a typical T-section
subjected to positive bending, flexural tension cracking will initiate at the bottom of the
section, and thus, the use of b,, is appropriate.

The answer for bending moments that put the flange portion of the section in tension
is not quite as clear. It is reasonable that some consideration should be given to the poten-
tially larger tension force that will be released when cracking occurs in the flange portion
of the section. Based on several years of satisfactory performance using Eq. (4-11) for the
design of continuous reinforced concrete floor systems, the ACI Code does not recommend
any modification of Eq. (4-11) when used in bending zones that put the flanged portion of
the beam sections in tension. However, for statically determinate beams where the flange
portion of the section is in tension, ACI Code Section 10.5.2 recommends that b, in Eq. (4-11)
be replaced by the smaller of 2b,, or b,, but need not exceed the actual flange width. Mem-
bers that fit into this category could be a T-section used in a cantilever span or an inverted
T-section (Fig. 4-5), sometimes referred to as a ledger beam, used to span between simple
supports.

EXAMPLE 4-5 Analysis of T-Sections in Positive and Negative Bending

1. Determine b, for a beam T-section that is part of a continuous floor system.
Consider the portion of the continuous floor system shown in Fig. 4-45 and the central
floor beam spanning in the horizontal direction. The beam sections corresponding to sec-
tion lines A—A and B—B in Fig. 4-45 are given in Figs. 4-46 and 4-47, respectively. The lim-
its given in ACI Code Section 8.12 for determining the effective width of the compression
flange for a beam section in a continuous floor system are

¢ 241t (12 in/ft) .
b= =——7 =7
be = by + 2(8hf) = 12in. + 16(5 in.) = 92 in.

10 ft — by, ,
be = by + 2| =] = 10ft = 120n.
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Fig. 4-45
Continuous floor system for
Example 4-5.

Fig. 4-46
Section A-A from continuous
floor system in Fig. 4-45.

Fig. 4-47
Section B-B from continuous
floor system in Fig. 4-45.

X X 10 ft
= a A <—| B<—| Vi =
:::::::;: :;::::::::::::::::::;::::::::::::::::E:i :;::::::: -
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3 3 1o
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| 24 ft /\/ |
| |
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[ ; l
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1 r n | .
+ ° ° %I{) in.
I 2 No. 8 bars T 1
24 in.
6 No. 7 bars
[ ] : [
e e o| } =35in e
12in.
‘ be=T72in. |
! 25in.
L P Lisnf
. . . . . . in.
I 3 No. 8 bars T 1
3 No. 5 bars 3 No. 5 bars
24 in.
3 No. 7 bars
°c° } =25in Y

12in.

It should be noted that for a floor system with a uniform spacing between beams, the
third limit defined above should always result in a value equal to the center-to-center spac-
ing between the beams. The first limit governs for this section, so in the following parts
of this example it will be assumed that b, = 72 in.
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For parts (1) and (2) use the following material properties:
fe = 4000 psi (B; = 0.85) and f, = 60 ksi

2. For the T-section in Fig. 4-46, calculate ¢pM,, and A ;. For the given section,
A= 6(0.601in.%2) = 3.60in.% and A, = 2(0.79 in.?) = 1.58 in.

For a typical floor system, midspan sections are subjected to positive bending, and
sections near the end of the span are subjected to negative bending. The beam section in
Fig. 4-46 represents the midspan section of the floor beam shown in Fig. 4-45 and thus is
subjected to positive bending. The tension reinforcement for this section is provided in two
layers. The minimum spacing required between layers of reinforcement is 1 in. (ACI Code
Section 7.6.2). Thus, the spacing between the centers of the layers is approximately 2 in.
Assuming the section will include a No. 3 or No. 4 stirrup, it is reasonable to assume that
the distance from the extreme tension edge of the section to the centroid of the lowest layer
of steel is approximately 2.5 in. So, the distance from the tension edge to the centroid of
the total tension reinforcement is approximately 3.5 in. Thus, the effective flexural depth,
d, and the distance from the top of the section (compression edge) to the extreme layer of
tension reinforcement, d,, can be calculated to be

d = 24in. — 3.5in. = 20.5in.
d;, =24in. — 2.5in. = 21.5in.
Calculation of ¢M,, Assume this is a Case 1 analysis (a = hy) and assume that the

tension steel is yielding (&g = &,). For section equilibrium, use Eq. (4-16) with b, substi-
tuted for b, giving

Asfy (3.60 in.?) (60 ksi)
~0.85flb, 0.85(4ksi)(72in.)

= 0.88 in.

a

This is less than &y, as expected. This value also is less than d’, so we can ignore the
compression reinforcement for the analysis of M,,. This is a very common result for a
T-section in positive bending. For such beams with large compression zones, compression
steel is not required for additional moment strength. The compression steel in this beam
section may be present for reinforcement continuity requirements (Chapter 8), to reduce
deflections (Chapter 9), or to simply support shear reinforcement.

The depth to the neutral axis, ¢, which is equal to a/3, will be approximately equal to
1 in. Comparing this to the values for d and d,, it should be clear without doing calculations
that the tension steel strain, &, easily exceeds the yield strain (0.00207) and the strain at the
level of the extreme layer of tension reinforcement, &,, easily exceeds the limit for tension-
controlled sections (0.005). Thus, ¢ = 0.9, and we can use Eq. (4-21) to calculate M,, as

0.88 in.
M, = Asfy<d - ;) = (3.60 in.2)(60 ksi)(20.5 in. — 21“ )
M, = 4330 k-in. = 361 k-ft
dM, = 0.9 X 361 = 325 k-t

Check of A iy Tension is at the bottom of this section, so it is clear that we should
use by, in Eq. (4-11). Also, 3\/E is equal to 190 psi, so use 200 psi in the numerator:

200 psi 200 psi . . )
smin = T wd = 60,Topsi(l2m')(20'5 in.) = 0.82in.2 < A, (0.k.)
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3. For the T-section shown in Fig. 4-47, calculate ¢M,, and A; ;. Because this
section is subjected to negative bending, flexural tension cracking will develop in the top
flange and the compressive zone is at the bottom of the section. Note that ACI Code Section
10.6.6 requires that a portion of the tension reinforcement be distributed into the flange,
which coincidentally allows all the negative-moment tension reinforcement to be placed in
one layer. Thus, assume that the No. 5 bars in the flange are part of the tension reinforce-
ment. So, for the given section,

A, =3 X 0.79in% + 6 X 031 in.> = 4.23 in.?

Al =3 X 0.60in.> = 1.80 in.”
Using assumptions similar to those used in prior examples, d' is approximately equal to 2.5 in.
and d = d, is approximately equal to the total beam depth, /, minus 2.5 in., i.e., 21.5 in.

Calculation of ¢M, Because this is a doubly reinforced section, we initially will
assume the tension steel is yielding and use the trial-and-error procedure described in
Section 4-7 to find the neutral axis depth, c.

Tryc = d/4 = 5.5in.

—a 5.5in. — 2.5 in.
el = (C )sw = (mm)(o.oo_%) = 0.00164

¢ 5.5in.
fi = Es&, = 29,000 ksi X 0.00164 = 47.5 ksi (= f,)

C, = Al(f: — 085 f.) = 1.801in.2 (47.5ksi — 3.4 ksi) = 79.3 kips
C. = 085 f. b,Bic = 0.85 X 4ksi X 12in. X 0.85 X 5.5in. = 191 kips
T = A f, = 423in.? X 60 ksi = 254 kips

Because T < C, + C,, we should decrease c for the second trial.
Tryc = 5.1in.

ey = 0.00153
fs =444 ksi (= fy)
C, = 73.7 kips
C. = 177 kips

T = 254 kips = C; + C. = 251 kips

With section equilibrium established, we must confirm the assumption that the tension
steel is yielding. Because d = d, for this section, we can confirm that this is a tension-
controlled section in the same step. Using Eq. (4-18):

d—c (21.5 in. — 5.11in.

oy = : )0.003 = 0.00965
5.11n.

8x(: 8t) = c

Clearly, the steel is yielding (g, > &, = 0.00207) and this is a tension-controlled section (&, >
0.005). So, using @ = Bjc = 0.85 X 5.1 in. = 4.34 in., use Eq. (4-34) to calculate M,, as
M, = Cc<d - ;’) +Cy(d — d') = 177k X 193 in. + 73.7k X 19.0 in.

M, = 3420 k-in. + 1400 k-in. = 4820 k-in. = 401 k-ft
dM, = 0.9 X 401 = 361 k-ft
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Calculation of A ,;;, As discussed in Section 4-8, the value of A, for beam sec-
tions with a flange in the tension zone is a function of the use of that beam. The beam section
for this example is used in the negative bending zone of a continuous, statically indeterminate
floor system. Thus, the minimum tension reinforcement should be calculated using b,,,, as
was done in part (2) of this example. Using an effective depth, d, of 21.5 in., and noting that
3\/E is less than 200 psi, the following value is calculated using Eq. (4-11):

200 psi 200 psi

smin = 5= bu = m(mn.)(m.s in.) = 0.86in.> < A (0.k.)

If the beam section considered here was used as a statically determinate cantilever
beam subjected to gravity loading (all negative bending), then the term b,, should be
replaced with the smaller of 2b,, or b,. For this section, 2b,, is the smaller value, so for
such a case, the value of A i, would be

200 psi
Aymin = —P2(2b,)d = 1.72in2 < A, (ok.) n

y

EXAMPLE 4-6 Analysis of a T-Beam with the Neutral Axis in the Web

Compute the positive moment strength ¢M,, and A; i, for the beam shown in
Fig. 4-48. Assume that the concrete and steel strengths are 3000 psi and 60 ksi, respec-
tively. Also assume the beam contains No. 3 stirrups as shear reinforcement, which are not
shown in Fig. 4-48.

1. Compute b,. Assume this beam is an isolated T-beam in which the flange is used
to increase the area of the compression zone. For such a beam, ACI Code Section 8.12.4
states that the flange thickness shall not be less than one-half the width of the web and that
the effective flange width shall not exceed four times the width of the web. By observation,
the given flange dimensions satisfy these limits. Thus, b, = 18 in.

2. Compute d. As in the prior example with two layers of tension reinforcement,
assume d ~ h — 3.5in. = 24.5 in., as shown in Fig. 4-48a.

3. Compute a. Assume this is a Case 1 analysis (a = hf), and thus, the compres-
sion zone will be rectangular. Accordingly,
Asly 4.74 in.? X 60 ksi
a = =
0.85 flb, 0.85 X 3ksi X 18in.

= 6.20 in.

Because a is greater than the thickness of the flange (2 = 5 in.), our assumption that the
compression zone is rectangular is wrong, and our calculated value of a is incorrect. It
therefore is necessary to use the Case 2 analysis procedure discussed in Section 4-8 and
artificially break the section into two beams shown as beam F and beam W in Fig. 4-48c
and d, respectively.

4. Analysis of M, for the flanged section with @ > hy. The compression force in
beam F is given by Eq. (4-36) as

Cer = 0.85 f. (be — by)hy = 0.85 X 3ksi(18 in. — 10in.) X 5in. = 102 kips
The compression force in beam W is given by Eq. (4-37) as

C,, = 0.85 f.b,a
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Fig. 4-48
Beam sections for
Example 4-6.

18 in.
|
b
5in. @< 6.28 in.
Compression block /
deeper than flange
245 in.
28 in.
J— ® ® @ | ;NG 8bars 0o
0o e A =474in2 eeoe
10 in.
(a) Beam cross section. (b) Compression zone—Step 3.
% [ 1
C— / —d \
I ' a =715in.
(d — hy2) (d — al?)
= 2zin. I | = 20.93 in.
/IC Jl T
Ass —_ Asw
(c) Beam F. (d) Beam W,

Of course, the depth of Whitney’s stress block, a, is the major unknown for this sec-
tion analysis procedure. It is found by setting the tension force, T = Ay f, = 4.74 in.2 x
60 ksi = 284 kips, equal to the sum of the compression forces, as was done to derive
Eq. (4-38):

T - C. 284k — 102k .
a = ; = - — = 7.151n.
0.85 f.b,, 0.85 X 3ksi X 10in.

With this value of a, C.,, = 182 kips. Before calculating M,,, we must confirm that
the tension steel is yielding. Using ¢ = a/B; = 7.15/0.85 = 8.42 in., Eq. (4-18) can be
used to calculate the tension steel strain as

Eg =

d—c 24.5in. — 8.42in.
8CM =

- >0.003 = 0.00573
8.42 in.

c

This clearly exceeds the yield strain (0.00207), so the assumption that the tension
steel is yielding is confirmed. It should be noted that the distance to the extreme layer of
tension steel, d;, will exceed d for this section, so the strain at the extreme layer of
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tension steel, g;, will exceed &;. Thus, g, exceeds 0.005, making this a tension-controlled
section with ¢ equal to 0.9. Using Eq. (4-39) to calculate M,,,

h
f a
M, = Ccf<d - 2) + ch(d - 2)

. 5in. . 7.15 in.
M, =102 k(24.5 in. —2) + 182 k(24.5 in. — ) >

M, = 2240 k-in. + 3820 k-in. = 6060 k-in = 505 k-ft
and, pM, = 0.9 X 505 = 455 k-ft

5. Check whether A; = A ;. Assuming this beam is continuous over several

spans, we can use b = b,, for this calculation. For a concrete strength of 3000 psi, note
that 3\/]7’5 is less than 200 psi, so use 200 psi in Eq. (4-11), giving
200 psi 200 psi

sanin = ¢ bud = 60,T0psi(10m')(24'5 in.) = 0.82in.2 < A, (0.k.) .

4-9  UNSYMMETRICAL BEAM SECTIONS

Figure 4-49 shows one half of a simply supported beam with an unsymmetrical cross
section. The loads lie in a plane referred to as the plane of loading, and it is assumed
that this passes through the shear center of the unsymmetrical section. This beam is free

Plane of
loading

" Support

Midspan

Internal
resisting moment

(@

| T Line A-A is parallel
Fig. 4-49 to plane of bending
Location of C and T forces
in an unsymmetrical beam
section. (b)
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Fig. 4-50
Unsymmetrical beam.

to deflect vertically and laterally between its supports. The applied loads cause mo-
ments that must be resisted by an internal resisting moment about a horizontal axis,
shown by the moment in Fig. 4-49a. This internal resisting moment results from com-
pressive and tensile forces C and T, as shown in Fig. 4-49b. Because the applied loads
do not cause a moment about an axis parallel to the plane of loading (such as section
A-A), the internal force resultants C and T cannot do so either. As a result, C and 7 both
must lie in the plane of loading or in a plane parallel to it. The distances z in Fig. 4-49b
must be equal.

Figure 4-50 shows a cross section of an inverted L-shaped beam loaded with gravity
loads. Because this beam is loaded with vertical loads, leading to moments about a hori-
zontal axis, the line joining the centroids of the compressive and tensile forces must be ver-
tical as shown (both are a distance f from the right-hand side of the beam). As a result, the
shape of the compression zone must be triangular and the neutral axis must be inclined, as
shown in Fig. 4-50.

Because C = T, and assuming that f; = f},

%(Sf X g X 085 f.) = Asfy (4-41)

Because the moment is about a horizontal axis, the lever arm must be vertical. Thus, for the
case shown in Fig. 4-50,

jd =d — % (4-42)
and
_ 8
M, = Ayl d — 3 (4-43)
Gravity load
f
< 3f Centroid of compressive force
[ v "
3 / :
~
Neutral /\ N
d axis 1 ¢ = ailby ecu = 0.003
(axis of
bending)
f
— | @ %

Centroid of 7 d;

tensile force &s
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These equations apply only to the triangular compression zone shown in Fig. 4-50. Differ-
ent equations or a trial-and-error solution generally will be necessary for other shapes.

The rectangular stress block was derived for rectangular beams with the neutral axis
parallel to the compression face of the beam. This assumes the resultant compression force
C can be reached without crushing of the extreme fibers. Riisch [4-17] and Mattock, et al.
[4-6] have studied this and conclude the rectangular stress block is applicable to a wide
variety of shapes of compression zones.

The checks of whether f; = f, or whether the section is tension-controlled, respec-
tively, are done by checking steel strains using the inclined strain diagram in Fig. 4-50. For
one layer of tension steel, we can assume that &, = g, and use Eq. (4-18) to calculate ¢,
using d; in place of d.

The discussion to this point has dealt with isolated beams which are free to deflect
both vertically and laterally. Such a beam would deflect perpendicular to the axis of bend-
ing, that is, both vertically and laterally. If the beam in Fig. 4-50 were the edge beam for a
continuous slab that extended to the left, the slab would prevent lateral deflections. As a
result, the neutral axis would be forced to be very close to horizontal and the beam could
be analyzed in the normal fashion.

EXAMPLE 4-7 Analysis of an Unsymmetrical Beam

The beam shown in Fig. 4-51 has an unsymmetrical cross section and an unsymmet-
rical arrangement of reinforcement. This beam is subjected to vertical loads only. Compute
¢M,, and A i, for this cross section if fi. = 3000 psi (8 = 0.85) and f, = 60,000 psi.

1. Assume that f; = f, and compute the size of the compression zone. The cen-
troid of the three bars is computed to be at 6.27 in. from the right side of the web. The
centroid of the compression zone also must be located this distance from the side of the
web. Thus, the width of the compression zone is 3 X 6.27 = 18.8 in.

Because C =T,

1
S (188 X g X 085 f1) = A, (4-41)
or

2.58in.2 X 60ksi X 2
18.8in. X 0.85 X 3 ksi
6.46 in.

g:

The compression zone is shown shaded in Fig. 4-51. If the compression zone were
deeper than shown and cut across the reentrant corner, a more complex trial-and-error
solution would be required.

2. Checkiff, = fy and whether the section is tension-controlled. From Fig. 4-51a,
it can be found that @« = 19°,q; = 6.11 in,, and d; = 22.4 in. Find ¢ = @;/B; = 7.19 in.,
then use Eq. (4-18) with d; replacing d to find

d; — 22.41in. — 7.19 in.
gy = [ T ey, = T B 50,003 = 0.00635
c 7.19 in.

Clearly, the tension steel is yielding (e, > &), and this is a tension-controlled section
(&; = &5 > 0.005),s0 ¢ = 0.9.
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Fig. 4-51
Beam section for
Example 4-7.

(. 24 in.

18.8in.
, \‘a

‘ inIL g =16.46 in.
¥

21.5in. 24'in.

2 No. 8 bars

1 No. 9 bar Qoo L

As = 2.58in?

46.27in.
T 120n.
(a) Geometry and stress block.
a; = 6.11in.

[

di=224in.

/

Centroid of steel /
(b) Values of a; and d; measured perpendicular to the neutral axis.

3. Compute ¢pM,, ¢ to Eq. (4-43):

wle-)

6.46 in.
zxm?xamm@Lﬁn— 3m>]

= 2700 k-in. = 225 k-ft

¢M, = ¢

éM, = 0.9

Note that the moment calculation is based on the lever arm measured vertically (parallel to
the plane of loading).

4. Checkif A; = Ay yin- Again, for 3000 psi concrete, 3\/]7'0 is less than 200 psi.
So, the value of A; i, from Eq. (4-11) is

200 psi 200 psi ) ) .
s,min — T wd = 60,T0psi(12 1n.)(21.5 in.) = 0.86 in? < A, (0k.) | |



PROBLEMS

4-1 Figure P4-1 shows a simply supported beam and
the cross section at midspan. The beam supports a
uniform service (unfactored) dead load consisting
of its own weight plus 1.4 kips/ft and a uniform ser-
vice (unfactored) live load of 1.5 kips/ft. The con-
crete strength is 3500 psi, and the yield strength of
the reinforcement is 60,000 psi. The concrete is
normal-weight concrete. Use load and strength-
reduction factors from ACI Code Sections 9.2 and
9.3. For the midspan section shown in Fig. P4-1b,
compute ¢M,, and show that it exceeds M,,.

wp = 1.4 kips/ft plus weight of beam
w; = 1.5 kips/ft

SR T N T T N N N

p— — — —— —— . —

(a)

t
21.510n. 24 in.
(b) 3 No. 9 bars |eee J'
12 in.

Fig. P4-1

4-2 A cantilever beam shown in Fig. P4-2 supports a

uniform service (unfactored) dead load of 1 kip/ft
plus its own dead load and a concentrated service

video (unfactored) live load of 12 kips, as shown. The
concrete is normal-weight concrete with f,
= 4000 psi and the steel is Grade 60. Use load
and strength-reduction factors from ACI Code
Sections 9.2 and 9.3. For the end section shown in
Fig. P4-2b, compute ¢M, and show that it ex-
ceeds M,,.

4-3 (a) Compare ¢M,, for singly reinforced rectangu-
lar beams having the following properties. Use
strength reduction factors from ACI Code
Sections 9.2 and 9.3.

Problems ¢ 169

Beam b d fe f,
No. (in.) (in.) Bars (psi) (psi)
1 12 22 3 No.7 4000 60,000
2 12 22 2 No.9plus 1 No. 8 4000 60,000
3 12 22 3 No.7 4000 80,000
4 12 22 3 No.7 6000 60,000
5 12 33 3 No.7 4000 60,000

(b) Taking beam 1 as the reference point, discuss
the effects of changing Ay, fy, f¢, and d on
¢éM,,. (Note that each beam has the same
properties as beam 1 except for the italicized
quantity.)

(c) What is the most effective way of increasing
dM,,? What is the least effective way?

Live load,
. P; = 12 kips
wp = 1 Kkip/ft + weight of beam Y

T I T

9 ft |

[MTE RS C RN R (NN

D
2

6No.8bars [e e e e e e

(b)

..I

155 in. 181n.

| ¢

30 in.

Fig. P4-2

4-4 A 12-ft-long cantilever supports its own dead load

plus an additional uniform service (unfactored)
dead load of 0.5 kip/ft. The beam is made from
normal-weight 4000-psi concrete and has b = 16
in.,, d = 15.5 in., and & = 18 in. It is reinforced
with four No. 7 Grade-60 bars. Compute the max-
imum service (unfactored) concentrated live load
that can be applied at 1 ft from the free end of the
cantilever. Use load and strength-reduction factors
from ACI Code Sections 9.2 and 9.3. Also check

As,min .
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4-5 and 4-6 Compute ¢$M, and check A, for the |

48in.
beams shown in Figs. P4-5 and P4-6, respec- 6 in. | : }
tively. Use fI. = 4500 psi for Problem 4-5 and | 6 No. 6 bars
4000 psi for Problem 4-6. Use f, = 60,000 psi L 9 _o00e o | _f_
for both problems. 16'"] 19.5in.
I 481n. | 6in. l l
| ! | 12in.
[ [
f 19in. 501
l Fig. P4-7
6 No. 8 bars |3..8 1
12in. 4-8 For the beam shown in Fig. P4-8, f7. = 3500 psi
and f, = 60,000 psi.
Fig. P4-5 (a) Compute the effective flange width at midspan.

(b) Compute ¢M,, for the positive- and negative-
moment regions and check A, for both
sections. At the supports, the bottom bars are

4-7 Compute the negative-moment capacity, ¢M,,, and
check A nin for the beam shown in Fig. P4-7. Use

fe = 4000 psi and f, = 60,000 psi. in one layer; at midspan, the No. 8 bars are in
the bottom layer, the No. 7 bars in a second
layer.
20in.
5in. 4-9 Compute ¢pM, and check A, for the beam
| shown in Fig. P4-9. Use f. = 4000 psi and

L ‘ D £, = 60,000 psi.
18.1 in. 2 \SI:)(:EZOn(

2in. a) The reinforcement is six No. 8 bars.

6No.8bars | o oo (b) The reinforcement is nine No. 8 bars.
1Qin. 4-10 Compute ¢M, and check A, for the beam

shown in Fig. P4-10. Use f. = 5000 psi and

Fig. P4-6 Sy = 60,000 psi.

| 9 ft-6 in. 11 ft
I |
v 7 A
L] Y.
‘-_-‘ H 18 in.

2in. 12in.

Support (negative bending)
/ Midspan (positive bending)
n 7 No. 7 bars f
S T JIIIIIT] 1]

I \ 3 No. 8 plus 2 No. 7 bars at midspan
e

22 ft

T

]

-

Fig. P4-8 | [ No. 8 bars at ends



30in.
5in, =~ | =i e 5in.
t
. 5in.
32.5in. 35 in.
5in.
X
A, 1
Fig. P4-9

Fig. P4-11

4-11 (a) Compute ¢M, for the three beams shown in
Fig. P4-11. In each case, f,. = 5000 psi,
fy =60 ksi, b =12 in., d = 32.5 in., and
h = 36in.

(b) From the results of part (a), comment on
whether adding compression reinforcement is a

Fig. P4-12
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42in.

T 1T F

23.51n. 20in.
| 4
= 6in.

8 No. 7 bars f

Fig. P4-10

2 No. 9 bars

6 No. 9 bars

12in.
2.5in 3.5in.
L ] [ ] ® [ ]
l [} 0\
4 No. 9 bars
32.5in.
® o @ o o o
o o o e o O

cost-effective way of increasing the strength,
éM,,, of a beam.

4-12 Compute ¢M,, for the beam shown in Fig. P4-12.
Use f = 4500 psi and f, = 60,000 psi. Does the

compression steel yield in this beam at nominal
Video

Solution Strength?
) 10in.

—d 5in. 5in.fe—
_T__ [ J [ J 5in.
2.5in. 2 No. 7 bars

20in.
2.51n.
—L L X N N N X
1 6 No. 8 bars
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ural Design
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5-1 INTRODUCTION

Using the information provided in Chapter 4, the reader should have the ability to find the
nominal moment strength, M,, for any beam section and the corresponding strength-
reduction factor, ¢, for that section. So, if the factored design moment, M, is known for
any beam section, he/she should be able to determine if ¢pM,, equals or exceeds M,. The
primary topic to be discussed in this chapter is to start with a known value of M,,, design a
beam cross section capable of resisting that moment (i.e., ¢ M,, = M, ), and also have that
section satisfy all of the ACI Code requirements for flexural reinforcement and section
detailing. It probably is clear to the reader that the final value for M, cannot be determined
until the size of the beam section, and thus the self-weight of the beam, is known. This sets
up the normal interaction cycle between analysis and design, where there will be an initial
analysis based on assumed section sizes, followed by member design based on that analysis,
then reanalysis based on updated section sizes, and some final design modifications based
on the updated analysis.

Because of this interplay between analysis and design, the next section of this chap-
ter (Section 5-2) will deal with the analysis of continuous one-way floor systems. This
will give the reader a good understanding of how such floor systems carry and distribute
loads from the slabs to the floor beams, girders, and columns and how the floor system
can be analyzed following procedures permitted by the ACI Code. Once we have fully
discussed how factored design moments can be determined at various sections in a con-
tinuous floor system, including slab sections, section design procedures will be developed
(Sections 5-3 and beyond).

If the reader prefers to move directly to section design procedures, Section 5-2
can be skipped at this time.

5-2  ANALYSIS OF CONTINUOUS ONE-WAY FLOOR SYSTEMS

Reinforced concrete floor systems are commonly referred to as one-way or two-way sys-
tems based on the ratio of the span lengths for the floor slab in the two principal hori-
zontal directions. Referring to the two floor plans shown in of Figs. 5-1a and 5-1c, it is
clear that the slab panels between the supporting beams have relatively short span lengths

173
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Fig. 5-1
Typical one-way floor
systems.

in one horizontal direction compared to their span lengths in the perpendicular direction.
Recalling from frame analysis that flexural stiffness is inversely related to span length, it
is clear that the slab panels shown in Fig. 5-1 would be much stiffer in their shorter span
direction than in the longer span direction. Thus, for any load applied to floor panels
similar to those in Figs. 5-1a and 5-1c, a higher percentage of the load would be carried in
the short span direction as compared to the long span direction. In a concrete floor system
where the ratio of the longer to the shorter span length is greater than or equal to 2, it is
common practice to provide flexural reinforcement to resist the entire load in the short
direction and only provide minimum steel for temperature and shrinkage effects in the

Floor beams

Slab spans in this direction

Girder

(a) Floor plan with one intermediate
floor beam.

Column

Slab spans in this direction

Floor beams

(c) Floor plan with two intermediate
floor beams.



Fig. 5-2
Load paths in a one-way
floor system.
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long direction. Such slabs are referred to as one-way slabs because they are designed to
carry applied loads in only one direction. A floor system consisting of one-way slabs and
supporting beams, as shown in Fig. 5-1, is referred to as a one-way floor system.

If the floor systems in Fig. 5-1 were modified such that the only beams were those
that spanned between the columns, the remaining slab panel would have a long span to short
span ratio of less than 2. For such a case, flexural reinforcement would be provided in the
two principal horizontal directions of the slab panel to enable it to carry applied loads in two
directions. Such slabs are referred to as two-way slabs. The analysis and design of two-way
floor systems will be discussed in Chapter 13.

Load Paths in a One-Way Floor System

Consider the idealized one-way floor system shown in Fig. 5-2. The floor system is not
realistic, because it does not have openings for stairwells, elevators, or other mechanical
systems. However, this floor system will be useful as a teaching tool to discuss load paths
and the analysis of bending moments and shear forces in the various structural members.

To study load paths in a one-way floor system, assume a concentrated load is applied
at the point p in the central slab panel of the floor system shown in Fig. 5-2. This concen-
trated load could represent part of a uniformly distributed live load or dead load acting on a
specified portion (e.g., 1 ft by 1 ft) of the floor area. The one-way slab panel is assumed to
initially carry the concentrated load in the north—south direction to the points m and n on the
two adjacent floor beams supporting the one-way slab. The floor beams then carry the loads
in the east—west direction to the points /4, i, j, and k on the girders that support the floor
beams. Girder is the name given to a primary support member (beam) that spans from col-
umn to column and supports the floor beams. A schematic sketch of a slab, floor beam and
girder system is given in Fig. 5-3. Girders normally have a total member depth that is
greater than or equal to the depth of the floor beams that it supports. The final step on the
load path for the floor system in Fig. 5-2 is the transfer of loads from the girders to the

8 ft
Floor beams —4< 8 ft
8 ft
w X
N hT LL, T/
°p 24 ft
k J
| }
V4 Y
Girders ] 24 ft
28 ft 24 ft 28 ft
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Fig. 5-3
Slab, beam, and girder floor
system.

Fig. 5-4
Tributary areas for floor
beams.

Spandrel or
edge beam ™\

Construction/ ] \
joint Girder
~ED

columns at W, X, Y, and Z. It should be noted that some of the floor beams in a typical floor
system will connect directly to columns, and thus, they transfer their loads directly to
those columns, as is the case for the floor beam between the columns at W and X.

Tributary Areas, Pattern Loadings, and Live Load
Reductions

Floor systems in almost all buildings are designed for uniformly distributed dead and live
loads, normally given or calculated in unit of pounds per square foot (psf). The symbol g will
be used to represent these loads with subscripts L for live load and D for dead load. Total
dead load normally is composed of dead loads superimposed on the floor system as well as
the self-weight of the floor members. Typical live load values used in design of various types
of structures were given in Table 2-1. The analysis procedure for concentrated loads will be
presented later in this section.

Floor beams typically are designed to resist area loads acting within the tributary
area for that beam, as shown by the shaded regions in Fig. 5-4. As discussed in Chapter 2,
the tributary area extends out from the member in question to the lines of zero shear on ei-
ther side of the member. The zero shear lines normally are assumed to occur halfway to
the next similar structural member (floor beam in this case). Thus, the width of the tribu-
tary area for a typical floor beam is equal to the sum of one-half the distances to the adja-
cent floor beams. For a floor system with uniformly spaced floor beams, the width of the
tributary area is equal to the center-to-center spacing between the floor beams. Unless a
more elaborate analysis is made to find the line of zero shear in an exterior slab panel, the
width of the tributary area for an edge beam is assumed to be one-half the distance to the
adjacent floor beam, as shown in Fig. 5-4. After the tributary width has been established,

YR i iy e

W s i) e

24 ft
T [T | ..,
w7 .

| 28 ft | 24 ft | 28 ft |




Fig. 5-5

Width of analysis strip and
tributary area for one-way
slab strip.
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the area load, g, is multiplied by the tributary width to obtain a line load, w (Ibs/ft or
kips/ft), that is applied to the floor beam. This will be demonstrated in Example 5-1.

For one-way slabs, the width of the tributary area is set equal to the width of the
analysis strip, which is commonly taken as 1 foot. Thus, the cross-hatched area in Fig. 5-5
represents both the tributary area and the width of the analysis strip for the continuous one-
way slab portion of this floor system. The effective line load, w, is found by multiplying the
area load, g, times the width of the analysis strip (usually 1 ft).

Pattern Loadings for Live Load

The largest moments in a continuous beam or a frame occur when some spans are loaded
with live load and others are not. Diagrams, referred to as influence lines, often are used to
determine which spans should and should not be loaded. An influence line is a graph of the
variation in the moment, shear, or other effect at one particular point in a beam due to a unit
load that moves across the beam.

Figure 5-6a is an influence line for the moment at point C in the two-span beam
shown in Fig. 5-6b. The horizontal axis refers to the position of a unit (1 kip) load on the
beam, and the vertical ordinates are the moment at C due to a 1-kip load acting at the point
in question. The derivation of the ordinates at B, C, and E is illustrated in Figs. 5-6¢ to 5-6e.
When a unit load acts at B, it causes a moment of 1.93 k-ft at C (Fig. 5-6¢). Thus, the ordi-
nate at B in Fig. 5-6a is 1.93 k-ft. Figure 5-6d and e show that the moments at C due to loads
at C and E are 4.06 and —0.90 k-ft, respectively. These are the ordinates at C and E
in Fig. 5-6a and are referred to as influence ordinates. If a concentrated load of P kips
acted at point E, the moment at C would be P times the influence ordinate at E, or
M = —0.90P k-ft. If a uniform load of w acted on the span A—D, the moment at C would
be w times the area of the influence diagram from A to D.

Figure 5-6a shows that a load placed anywhere between A and D will cause positive
moment at point C, whereas a load placed anywhere between D and F will cause a nega-
tive moment at C. Thus, to get the maximum positive moment at C, we must load span
A-D only.

Two principal methods are used to calculate influence lines. In the first, a 1-kip
load is placed successively at evenly spaced points across the span, and the moment (or
shear) is calculated at the point for which the influence line is being drawn, as was done

— ~—1ft.

12 ft

12 ft

[ 24 ft

24 ft

28 ft 24 ft 28 ft
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Fig. 5-6
Concept of influence lines.
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in Figs. 5-6¢ to 5-6e. The second procedure, known as the Mueller-Breslau principle [5-1], is
based on the principle of virtual work, which states that the total work done during a virtu-
al displacement of a structure is zero if the structure is in equilibrium. The use of the
Mueller-Breslau principle to compute an influence line for moment at C is illustrated in
Fig. 5-6f. The beam is broken at point C and displaced, so that a positive M, does work by
acting through an angle change 6.. Note that there was no shearing displacement at C, so
V.. does not do work. The load, P, acting at B was displaced upward by an amount Az and

hence did negative work. The total work done during this imaginary displacement was

MCQC_PABZO

M. = P(AB> (5-1)

SO




Fig. 5-7
Qualitative influence lines
for moments and loading
patterns.
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where Ap/f. is the influence ordinate at B. Thus, the deflected shape of the structure
for such a displacement has the same shape and is proportional to the influence line for
moment at C. (See Figs. 5-6a and 5-6f.)

The Mueller-Breslau principle is presented here as a qualitative guide to the shape of
influence lines to determine where to load a structure to cause maximum moments or shears
at various points. The ability to determine the critical loading patterns rapidly by using
sketches of influence lines expedites the structural analysis considerably, even for structures
that will be analyzed via computer software packages.

Influence lines can be used to establish loading patterns to maximize the moments or
shears due to live load. Figure 5-7 illustrates influence lines drawn in accordance with the
Mueller-Breslau principle. Figure 5-7a shows the qualitative influence line for moment at B.
The loading pattern that will give the largest positive moment at B consists of loads on all
spans having positive influence ordinates. Such a loading is shown in Fig. 5-7b and is
referred to as an alternate span loading or a checkerboard loading. This is the common
loading pattern for determining maximum midspan positive moments due to live load.

The influence line for moment at the support C is found by breaking the structure at
C and allowing a positive moment, M,., to act through an angle change .. The resulting
deflected shape, as shown in Fig. 5-7c, is the qualitative influence line for M,. The max-
imum negative moment at C will result from loading all spans having negative influence
ordinates, as shown in Fig. 5-7d. This is referred to as an adjacent span loading with
alternate span loading occurring on more distant spans. Adjacent span loading is the
common loading pattern for determining maximum negative moments at supports due to
live load.

Qualitative influence lines for shear can be drawn by breaking the structure at the
point in question and allowing the shear at that point to act through a unit shearing dis-
placement, A, as shown in Fig. 5-8. During this displacement, the parts of the beam on the
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(a) Qualitative influence line for moment at B.

(b) Loading for maximum positive moment at B.
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(c) Qualitative influence line for moment at C.
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(d} Loading for maximum negative moment at C.
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Fig. 5-8
Qualitative influence lines
for Shear.
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(@) Qualitative influence line for shear at A.
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(b) Loading for maximum positive shear at A.
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(¢) Qualitative influence line for shear at B.
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(d) Loading for maximum positive shear at B.

two sides of the break must remain parallel so that the moment at the section does not
do work. The loadings required to cause maximum positive shear at sections A and B in
Fig. 5-8 are shown in Figs. 5-8b and 5-8d.

Using this sort of reasoning, ACI Code Section 8.11.2 defines loading patterns to
determine maximum design moments for continuous beams and one-way slabs:

1. Factored dead load on all spans with factored live load on two adjacent spans and
no live load on any other spans.
2. Factored dead load on all spans with factored live load on alternate spans.

The first case will give the maximum negative moment and maximum shear at the
supports between the two loaded spans. Alternate span loading could be used for spans
further from the support section, as shown in Fig. 5-7d. For simplicity, the ACI Code
does not require this additional loading, because the influence ordinates are relatively
small for those spans, and thus the effect of loading those spans is small compared to
the effect of loading the adjacent spans.

The second load case gives the maximum positive moments at the midspan of the
loaded spans, the maximum negative moment and maximum shear at the exterior sup-
port, and the minimum positive moment, which could be negative, at the midspan of the
unloaded spans. Using factored dead load and live load on all spans will represent the
maximum vertical loading to be transferred to the columns supporting the floor system.
The use of pattern loading will be demonstrated in Example 5-2.



Fig. 5-9

Tributary areas for analysis
and design of different beam
sections.
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Live Load Reductions

Most standard building codes permit a reduction in the live loads used for member design
based on a multiple of the tributary area for that member. In Chapter 2, this was referred to
as the influence area, Ay, and was defined as

A[ = KLL X AT (5'2)

where Ar is the tributary area for the member in question and K ; is the multiplier based
on the type of member under consideration. For edge beams and interior beams, the
ASCE/SEI Standard [5-2] states that K; ; shall be taken as 2.0. For one-way slabs, there is
no need to define either K;; or an influence area because no live load reduction is permit-
ted for those members. The appropriate tributary area for floor beams is based partially on
the previously discussed live load patterns and thus can be different for different locations
of the same continuous beam. Figure 5-9 shows some different tributary areas to be used for
the analysis and design of different beam sections (shown on different floor beams for clar-
ity). For midspan sections (positive bending), as represented by M1 and M2 in Fig. 5-9, the
tributary area is equal to the tributary width discussed previously multiplied by the length
of the span in question. Clearly, the tributary areas for M1 and M2 will be different because
of the different span lengths. For sections near a support (negative bending), as represented
by M3 in Fig. 5-9, the tributary area is equal to the tributary width multiplied by the total
length of the two adjacent spans. This is related to the adjacent span loading pattern used
to maximize the negative moment at this section. Essentially, loads in the two adjacent
spans will significantly influence the moment at this section.

After the influence area has been determined, the reduced live load, defined here
as L,, can be determined from the following expression, which is a slight modification
of Eq. (2-12):

15
025 + ——

VA,

where L is the unreduced live load and the influence area, Ay, is to be given in square feet.
No reduction is permitted if the influence area does not exceed 400 ft>. Also, the maxi-
mum permissible reduction of live load is 50 percent for any floor beam or girder in a
floor system.

L =1L (5-3)

, 12 ft
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N
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Fig. 5-10

Definitions of clear span and
average clear span for use
with ACI moment and shear
coefficients.

As noted earlier, the influence area will change for different locations in a continu-
ous beam, so a different reduced live load can be used when analyzing and designing
those different sections. Of course, the designer has the option of using only one value,
the most conservative (largest), for the reduced live load when analyzing the moments at
various sections along the continuous beam. Examples 5-1 and 5-2 will demonstrate the
use of Eq. 5-3.

ACI Moment and Shear Coefficients

Based on the prior discussions of pattern loading and live load reductions, it should be clear
that finding the maximum moments and shears at various sections of continuous beams and
one-way slabs will require a full structural analysis for at least three and maybe several load
cases. Because large parts of the ACI Code were developed and written before the broad
accessibility to structural analysis software, a set of approximate moment and shear coeffi-
cients were developed for the analysis and design of non-prestressed continuous beams and
one-way slabs subjected to distributed loading and having relatively uniform span lengths.
Because continuous beams and slabs are permitted to be designed for the moments and
shears at the faces of their supports, the ACI moment and shear coefficients are based on the
clear span, ¢,,, as opposed to the center-to-center span length, €, which are illustrated in
Fig. 5-10. The average span length, €,(avg), shown in Fig. 5-10 will be used for the nega-
tive moments at interior supports, because those moments are influenced by the lengths of
the two adjacent spans. Moment coefficients are given at midspan and at the faces of sup-
ports, while shear coefficients are given only at the faces of the supports.

The moment and shear coefficients all are based on the total distributed factored load,
w,,, which normally is equal to the sum of the factored dead and live loads. For common
floor systems, the following load combination will typically govern:

w, = 1.2wp + 1.6w,, (5-4)

If the load case, w,, = 1.4 wp, happens to govern, then the ACI moment coefficients should
not be used, because they assume a pattern live loading that is not appropriate if only dead
load is considered. For this condition, a full structural analysis would be required for this
single loading case.

The requirements for using the ACI moment and shear coefficients are given in ACI
Code Section 8.3.3 as:

1. There are two or more continuous spans.

2. The spans are approximately equal, with the longer of the two adjacent spans not
more that 1.2 times the length of the shorter one.

3. The loads are uniformly distributed.

=

The unfactored live load does not exceed three times the unfactored dead load.
5. The members are prismatic.

| 11

| € [ Cno |

| I 0 |

| | !
€,,(avg) = (€n1 + fnz)/z
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If any of these conditions are violated, then a full structural analysis of the continuous
member is required, as will be discussed later in this section. Also, it is implicitly assumed
that the continuous floor members in question are not resisting any significant moments or
shears due to lateral loads.

The maximum positive and negative moments and shears are computed from the fol-
lowing expressions:

M, = C,,(w,£%) (5-5)
thgn
v, = Cv<2) (5-6)

Where C,, and C,, are moment and shear coefficients given in Fig. 5-11. For all pos-
itive midspan moments, all shears and the negative moment at exterior supports, €,,, is for
the span under consideration. For the negative moment at interior supports, €, shall be
taken as €, (avg), as defined in Fig. 5-10. The terminology used in the ACI Code to iden-
tify various critical design sections is illustrated in Fig. 5-11a. Midspan shear coefficients
are not given here, but will be discussed in Chapter 6. At most locations, the shear

End span Interior spans

Discontinuous end
\ Exterior face of

Interior face of PR ;
exterior support first interior support

Other faces of
interior supports

(a) Terminology.

Cpy= —1/9 if only two spans, —1/10 if three or
more spans

cmNO 111 —110 EEf - 1711 1/16 11

Cy 1.0 1.15 1.0 1.0 1.0

\

(b) Moment and shear coefficients—Discontinuous end unrestrained.

Cm Eil—1/24 1114 —1/9 or —1/10E2] —1/11 1116 -1 B - 111
Cy 1.0 1.15 1.0 1.0 1.0

(c) Moment and shear coefficients—Discontinuous end integral with support
where support is a spandrel girder.

1/16 =111
1.0

-1/16 114 —1/9 or -1/ —-111

1.0

Cm
Cv

(d) Moment and shear coefficients—Discontinuous end integral with support
where support is a column.
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coefficient is 1.0, except at the exterior face of the first interior support where it is
increased to 1.15. This increase is to account for the fact that the zero shear point is prob-
ably closer to the exterior support, and thus, more load for the exterior span is likely to be
carried at the first interior support. It should be noted that no corresponding reduction is
made for the load resisted by the exterior support.

The moment coefficients are always the same for an interior span, but they vary in
the exterior span depending on the type of rotational resistance provided at the exterior
support. The exterior support in Fig. 5-11b can be assumed to be masonry wall that is not
built integrally with the beam or slab and thus offers no resistance to rotations at the end
of the member (C,, = 0). For such a case, higher positive moments would be expected
at midspan of this exterior span than if the exterior support offered some resistance to
rotation, as indicated in Figs. 5-11c and 5-11d. In Fig. 5-11c, the exterior support is as-
sumed to be a spandrel beam, which is a word that is often used for a beam or girder at the
exterior of at floor system. Thus, this case would represent the exterior spans of the con-
tinuous floor beam, E-F—-G—H, in Fig. 5-4 or the one-way slab in Fig. 5-5. These end
moments will put torsion into the spandrel support beams, so this particular moment
coefficient, C,, = —1/24, will be discussed again in Chapter 7 on design for torsion.
Finally, in Fig. 5-11d, the exterior support is assumed to be a column. This case would
represent the exterior spans of the continuous floor beam, A-B—C-D, in Fig. 5-4.
Because a column is assumed to be stiffer acting in bending than a spandrel beam acting
in torsion and thus offers more resistance to end rotation of the continuous beam, the
exterior moment coefficient is larger for this case.

For slabs with span lengths not exceeding 10 ft and for beams framing into stiff
columns (ratio of column flexural stiffness to beam flexural stiffness exceeds eight at
both ends of the beam), the moment coefficient at the face of the supports can be
taken as —1/12. Although not stated in ACI Code Section 8.3.3, the corresponding
midspan moment coefficient for this condition should be the same as for an interior
span (i.e., 1/16).

To demonstrate that the ACI moment coefficients do account for pattern loadings,
consider the coefficients for an interior span. For a span not affected by loading in adjacent
spans, the total height of the design moment diagram (i.e., the absolute sum of the midpan
positive moment plus the average of the two end negative moments) should be equal to 1/8
or 0.125. For all the interior spans in Fig. 5-11, this sum is 1/16 plus 1/11, or 0.153, which
represents an increase of approximately 25 percent due to potential pattern loading. The
use of the ACI moment coefficients will be demonstrated in the following example.

Typical Factored Load Combinations for a Continuous
Floor System

For gravity loading on a typical continuous floor system, the required combination of
factored loads should be determined from the first two equations in ACI Code
Section 9.2.1. Assuming that loads due to fluid pressure, F’; soil weight or pressure, H;
and thermal, creep, and shrinkage effects, T can be ignored, the factored-load combi-
nations to be considered are

U= 14D (5-7a)
U=12D + 1.6L (5-7b)

The use of the ACI moment coefficients in conjunction with the factored-load combinations
given in Eq. (5-7b) will be demonstrated in the following example.
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Use of AClI Moment Coefficients for Continuous Floor Beams

Consider the continuous floor beam A-B—C-D in Fig. 5-4. Use the ACI moment
coefficients to find the design moments at the critical sections for one exterior span and
the interior span. Then, repeat these calculations for the floor beam E-F-G—H in Fig. 5-4.
Assume the floor slab has a total thickness of 6 in. and assume the floor beams have a total
depth of 24 in. and a web width of 12 in. Assume the columns are 18 in. by 18 in. Finally,
assume the floor is to be designed for a live load of 60 psf and a superimposed dead load
(SDL) of 20 psf.

1. Confirm that the ACI moment coefficients can be used. There are two or more
spans, the loads are uniformly distributed, and the members are prismatic. The ratio of the
longer span to the shorter span is 28/24 = 1.17, which is less than 1.2. The floor slab is 6 in.
thick and thus weighs 75 psf. Therefore, the unfactored live load does not exceed three times
the dead load.

2. Determine live load reductions.

(a) Exterior span A-B: For the exterior negative moment and the midspan posi-
tive moment, the tributary area is equal to the tributary width times the span length.
Thus,

Ap = 12 ft X 28 ft = 336 ft>
Ay =K, X Ap = 2 X 336 = 672 ft

L =L

15 15
0.25 + ] = 60 psf{O.ZS + ]

V4, V672
= 60[0.25 + 0.579] = 49.7 psf > 0.5 X 60 psf (0.k.)

(b) Interior span B—C: For the midspan positive moment, the following applies:

Ap = 12t X 24 ft = 288 ft’
Ay =K;; X Ap = 2 X 288 = 576 ft>

15
025 + —— | = 60 psf [0.25 + 0.625]

VA,

52.5 psf > 0.5 X 60 psf (0.k.)

L =L

(¢) Negative moments at B: For the interior support, the combined lengths of the
two adjacent spans are used to find the tributary area. Thus,

Ap = 12ft X (28 ft + 24 ft) = 624 ft?
A=K X Ap = 2 X 624 = 1250 ft?

L =L

15
025 + ] = 60 psf[0.25 + 0.424]

Va,

= 40.5 psf > 0.5 X 60 psf (0.k.)
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3. Total factored loads.

(a) Exterior negative moment and midspan positive moment of span A-B: The
distributed live load acting on the beam is

wy = qp (reduced) X tributary width
= 49.7 pst X 12 ft = 596 Ib/ft = 0.596 k/ft

The distributed dead loads from the slab and superimposed dead load are

6 1in.
12 in./ft
w(slab + SDL) = (75 psf + 20 psf) X 12 ft = 1140 Ib/ft = 1.14 k/ft

X 150 Ib/ft> = 75 psf

q(slab) =

The dead load of the beam also needs to be included, but we need to avoid double
counting the weight of the slab where it passes over the top of the beam web. The
weight of the beam web is calculated from the shaded region shown in Fig. 5-12.

(24in. — 6in.) X 12in. 3
X 150 Ib/ft” = 225 Ib/ft = 0.225 k/ft

w(beam web) =

144 in X/
The total dead load is
wp = w(slab + SDL) + w(beam) = 1.14 + 0.225 = 1.37 k/ft
Now, the total factored load is
w, = 1.2wp + 1.6w;, = 1.2 X 1.37 + 1.6 X 0.596 = 2.60 k/ft

or,w, = l4wp = 1.4 X 1.37 = 1.92 k/ft (does not govern)

(b) Midspan positive moment for span B—C: The distributed live load acting on the
beam is

wy = g (reduced) X tributary width
= 52.5 psf X 12 ft = 630 Ib/ft = 0.63 k/ft

So, the total factored load is

w, = 1.2wp + 16w, = 1.2 X 137 + 1.6 X 0.63 = 2.65 k/ft

6 in.

24 in.

Fig. 5-12
Web area to be included in
dead weight calculation.

12in.
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() Negative moment at support B: The distributed live load is

w; = qp (reduced) X tributary width
= 40.5 psf X 12 ft = 486 Ib/ft = 0.486 k/ft

So, the total factored load is

w, = 1.2wp + 1.6w; = 1.2 X 1.37 + 1.6 X 0.486 = 2.42 k/ft

Calculate design moments.

(a) Negative moment at face of support A: From Fig. 5-11d, the coefficient is
negative 1/16.

8 in.
12 in./ft
M, = —1/16 X 2.60 k/ft X (26.5 ft)> = —114 k-ft

¢,(A-B) = 28 ft — = 26.5 ft

(b) Positive moment at midspan of beam A—B: From Fig. 5-11d, the coefficient is
positive 1/14.

M, = 1/14 X 2.60 k/ft X (26.5 ft)> = 130 k-ft

(c) Positive moment at midspan of beam B—C: From Fig. 5-11d, the appropriate
moment coefficient is positive 1/16, and from step 3, the total distributed load is
2.65 k/ft.

18 in.
12 in./ft

M, = 1/16 X 2.65 k/ft X (22.5 ft)> = 83.8 k-ft

6,(B-C) = 24 ft — = 2251t

(d) Negative moment at face of support B: Because the beam section design will
not change from one side of the column to the other, the final design at both faces of
support B will need to be for the larger of the two negative moments from the interior
and exterior spans. The calculation of both moments will use the average clear span,
so the larger of the two moment coefficients will govern. From Fig. 5-11d, it can be
seen that the coefficient from the exterior span (negative 1/10 for more than two
spans) will govern. Using a total distributed load of 2.42 k/ft,

6,(avg) = 0.5(26.5 + 22.5) = 245 ft
M, = —1/10 X 242 k/ft X (24.5 ft)* = —145 k-ft

Calculate design moments for beam E-F-G-H. A quick review of Figs. 5-11c

and 5-11d indicates that the only change in moment coefficient occurs at the exterior end of
the exterior span (coefficient changes to negative 1/24). However, depending on the size of
the girders used in this floor system, the clear spans also will change. Assuming the widths
of the girders are 12 in., the clear spans and the average clear span are

L (E-F) = 27ft, {,(F-G) = 23 ft, and for the exterior and interior spans
{,(avg) = 25 ft
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Fig. 5-13

Permissible analysis model
for continuous beams
subjected to only gravity
loading.

Then, the resulting factored design moments are

M,(E) = —1/24 X 2.60 k/ft X (27 ft)> = —79.0 k-ft

M, (midspan E-F) = 1/14 X 2.60 k/ft X (27 ft)> = 135 k-ft

M, (midspan F—G) = 1/16 X 2.65 k/ft X (23 ft)> = 87.6 k-ft

M,(F) = —1/10 X 2.42 k/ft X (25 ft)*> = —151 k-ft [ ]

Structural Analysis of Continuous Beams and One-Way Slabs

In many one-way floor systems, the span length and loading limitations given in ACI Code
Section 8.3.3 are not satisfied. Common situations include a continuous girder subjected to
concentrated loads from floor beams and continuous beams with adjacent span lengths that
vary by more that 20 percent. For all such cases, a structural analysis of the continuous beam
or one-way slab is required to find the design moments and shears at critical sections (com-
monly midspan and faces of supports). Of course, a structural analysis can be performed for
any continuous member, even if it satisfies the limitations given in ACI Code Section 8.3.3.

In general, a two-dimensional analysis is permitted for determining design moments in
a typical continuous beam and column frame system. Further, when finding design moments
and shears in a floor system subjected to only gravity loads, ACI Code Section 13.7.2.5 states
that it is permitted to isolate the analysis to the particular floor level in question. Thus, for floor
beams or girders that frame directly into columns, the analysis model can consist of the beams
or girders plus the columns immediately above and below the floor level, with the far ends of
those columns fixed against rotations. For gravity loading on the continuous floor beam
A-B-C-D in Fig. 5-4, an acceptable analysis model is shown in Fig. 5-13, where €, and €,
represent the column lengths above and below the floor system being analyzed. A vertical
roller support should be added at either joint A or joint D to prevent horizontal displacements
at the floor level.

The structural model in Fig. 5-13 can be used for the analysis of any combination of
distributed or concentrated loads on the continuous beam. For beams built integrally with
supports, ACI Code Section 8.9.3 permits the calculation of design moments (and shears) at
the face of the support. Most frame analysis software packages allow for the specification of
arigid zone at each end of a frame member, as shown in Fig. 5-14. Because nodes are typi-
cally located at the center of the supporting member, the length of the rigid end zones, x; and
Xx;, are taken as one-half the total width of the supporting member. For the frame shown in
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Fig. 5-14
Rigid end zones in frame
elements.

Fig. 5-15
Final design shear and

moment at face of support.
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Fig. 5-13, the length of the rigid end zones for each beam would be equal to one-half the
width of the column at each end of the beam. The major advantage of specifying a rigid end
zone is that output from analysis software will give moments and shears at the end of the
rigid zones (i.e., at the faces of the support) as opposed to the node points. If either the avail-
able software does not permit the designation of a rigid end zone or if a hand-calculation pro-
cedure was used, a simple calculation similar to that shown in Fig. 5-15 will be required to
find the moment and shear at the face of the support at each end of the beam. The use of rigid
end zones is not required for the column elements in Fig. 5-13 unless the output from the
analysis also is being used to determine design moments in the columns. In general, a full
frame analysis will be used to determine the column design moments, and the rigid end zones
at the top and bottom of the column should represent the distances from the selected node
points to the sections where the column intersects with either the bottom or the top of the
beams on adjacent floor levels, respectively.

For the initial analysis—design cycle, preliminary member sizes can be selected based
on prior experience with similar floor systems. Total beam depths, &, are typically in the
range of €/18 to €/12, where ¢ is the center-to-center span length of the beam. In typical
U.S. practice, beam depths are rounded to a whole inch unit and often to an even number of
inches. Beam width, b, or web width, b,,, commonly are taken to be approximately one-half
of the total beam depth and are rounded to a whole inch unit. Architectural limitations on
permissible dimensions and required clearances also may affect the selection of preliminary
beam sizes.

After the initial member sizes are selected, most designers will use the gross moment of
inertia, I, for determining the flexural stiffness of the column sections and the cracked
moment of inertia, I.,, for the determining the flexural stiffness of the beam sections. The
gross moment of inertia for a column or beam is based on the dimensions of the concrete sec-
tion, ignoring the contribution from reinforcement. For beams, the concrete section will
include some part of the floor slab, as indicated in Fig. 5-16. The slab width (flange width) that
should be used to determine the gross moment of inertia, /g , for a floor beam normally is taken
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Fig. 5-16

Effective beam section for
flexural stiffness analysis of a
floor beam carrying gravity
loading.

| Djjange(stiffness) |

as some fraction of the tributary width for that beam. Typical values range from one-half to
three-quarters of the tributary width. After the flange width is selected, a calculation should be
made to find the centroid of the T-section (or inverted L-section for a spandrel beam), and then
calculate I, about the centroid of the section. To account for flexural cracking, the gross mo-
ment of inertia typically is reduced to obtain a value for the cracked moment of inertia, /... A
common practice for beam sections is to assume that /., is approximately equal to 0.5 /,.
Based on experience with a variety of concrete floor systems, the authors recommend that a
good approximation for the cracked moment of inertia of a T-section can be obtained by cal-
culating the gross moment of inertia for the extended web of the section, as shown by the
heavily shaded region in Fig. 5-16. Using this procedure,

1 3
I..(T-beam) = Ebwh (5-8)

This procedure eliminates the need to define the effective flange width and the resulting
gross moment of inertia for a flanged beam section.

ACIT Code Section 8.3.1 states that “continuous construction shall be designed (ana-
lyzed) for the maximum effects of factored loads,” so the pattern live loading cases discussed
earlier will need to be used. The minimum number of factored live load patterns to be used in
combination with factored dead loads is specified in ACI Code Section 8.11.2. A combina-
tion of factored dead load and factored live load on all spans also should be included to
determine maximum shear forces at beam ends and the maximum loads transferred to the
columns. Example 5-2 will demonstrate the analysis for maximum moments in the continu-
ous floor beam shown in Fig. 5-13 using appropriate combinations of factored dead load and
patterns of factored live load.

For the continuous floor beam E-F-G-H in Fig. 5-4, a different analysis model must
be used. No guidance is given in the ACI Code for the analysis of continuous beams and
one-way slabs supported by other beams. In general, these beam supports will not provide
much restraint to rotations (i.e., their torsional stiffnesses are relatively small), and thus,
the author recommends the use of an analysis model similar to that shown in Fig. 5-17. As
stated for the previous model, the model in Fig. 5-17 is only to be used for gravity load
analysis and should be subjected to combinations of factored dead load and appropriate
patterns of factored live loads. As before, rigid end zones can be used at the ends of the
beam elements to directly get output of the moments and shears at the faces of the sup-
ports. For this case, the length of the rigid end zone at both ends of the beam element
should equal one-half of the width of the supporting beam.



Fig. 5-17

Recommended analysis
model for continuous beam
or one-way slab supported by
beams.
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The model in Fig. 5-17 will give reasonable results for design moments and
shears at all the critical sections, except for the midspan positive moments in the exteri-
or spans and the zero moments at the exterior supports. Clearly, the spandrel beam sup-
ports at the edge of the floor system will have some torsional stiffness, and thus, there
should be some negative moment at the exterior supports. Rather than attempt to define
a reasonable torsional stiffness for these spandrel beams, which may or may not be
cracked due to a combination of bending, shear, and torsion, the author simply recom-
mends that the ACI moment coefficient given in Fig. 5-11c for a floor beam supported
by a spandrel beam (—wufﬁ/24) be used for design moments at supports E and H in
Fig. 5-17. The addition of this end moment to the analysis results obtained for the
model in Fig. 5-17 will result in an over-design for the total moment capacity of the
exterior span unless a corresponding adjustment is made to the midspan positive
moment. This over-design, however, could prove to be beneficial when designing the
spandrel beam for torsion, as will be discussed in Chapter 7. The torsional design
process for the spandrel beam often will require a redistribution of moments away from
the spandrel beam and into the floor system—a step that would not be required if the
analysis model in Fig. 5-17 had been used to find the design moments in the exterior
spans of the continuous floor beam. A demonstration of the use of the analysis model in
Fig. 5-17 will be given in Example 5-2.

EXAMPLE 5-2 Use of Structural Analysis to Find Design Moments in

Continuous Floor Beams

As was done in Example 5-1, we will first consider the continuous floor beam
A-B-C-D in Fig. 5-4. To determine the factored design moments at critical locations along
this continuous beam, we will use the analysis model in Fig. 5-13. We will use all of the
same member dimensions, dead loads, and reduced live loads calculated in Example 5-1.
For our analysis, we will use the appropriate pattern live loads to maximize the moments at
the critical locations. After we have finished the analysis of floor beam A—B—C-D, we will
make similar calculations for floor beam E—F-G-H in Fig. 5-4. To determine the factored
moments at critical locations along this continuous floor beam, we will use the analysis
model in Fig. 5-17.

1. Analysis model for floor beam A—-B-C-D. The beam span lengths are given in
Fig. 5-13, and we will assume that the column lengths above and below this floor system are
11 ft. The gross section properties for the columns are

A 324 in.?

18 X 18

8

I, = (18)*12 = 8750 in.*

g
As discussed previously, we will assume that the approximate cracked moment of inertia
for the beam can be taken as the gross moment of inertia for the extended beam web with
previously assumed dimensions of 12 in. by 24 in. Because axial stiffness of the beam will
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have almost no effect on the analysis results for maximum moments and shears, the same
approximation can be used for the beam area. Thus,

A(beam) = A(web) = 12 X 24 = 288 in.
I.(beam) = I,(web) = (12)(24)%12 = 13,800 in.*

For all of the beams, we will assume that there is a rigid end zone at each end of the beams (Fig.
5-14) equal to one-half of the column dimension, i.e., 9 inches. Assuming a concrete compres-
sive strength of 4000 psi, the elastic modulus for the beam and column sections will be taken as

E, = 57,000\/4000 psi = 3.60 X 10° psi = 3600 ksi

This should be all of the information required for input into an appropriate structural analy-
sis software program.

2. Analysis for maximum moment at A and midspan of member A-B. The
appropriate live load pattern to maximize the moments at A and at the midspan of the mem-
ber A-B is given in Fig. 5-18a. As determined in Example 5-1, the distributed dead load for
all spans is 1.37 k/ft, and the reduced live load for this loading pattern (as determined for
span A-B) is 0.596 k/ft. Using the load factors of 1.2 for dead load and 1.6 for live load, the
analysis results for the model and loading shown in Fig. 5-18a are M, = —102 k-ft and
M (midspan) = 105 k-ft. These results are compared to those obtained using the ACI
Moment Coefficients in Table 5-1. All of those results will be discussed in step 5 of this
example.

3. Analysis for maximum moment at midspan of member B—C. The appropriate
live load pattern to maximize the moment at the midspan of the member B—C is given in
Fig. 5-18b. The distributed dead load is unchanged, and the reduced live load for this load-
ing pattern (as determined in Example 5-1 for span B—C) is 0.63 k/ft. Using the load factors
of 1.2 for dead load and 1.6 for live load, the analysis result for the model and loading
shown in Fig. 5-18b is M(midspan) = 56.9 k-ft. Again, this result is compared to that
obtained using the ACI Moment Coefficients in Table 5-1.

4. Analysis for maximum moment at faces of support B. The appropriate live
load pattern to maximize the moment at the faces of support B is given in Fig. 5-18c. The
distributed dead load is unchanged, and the reduced live load for this loading pattern (as
determined in Example 5-1 for spans A—B and B-C) is 0.486 k/ft. Using the load factors of
1.2 for dead load and 1.6 for live load, the analysis result for the model and loading shown
in Fig. 5-18c is Mp(exterior face) = —154 ft-kips and Mp(interior face) = —123 k-ft.

TABLE 5-1 Comparison of Factored Design Moments for Continuous Floor
Beam with Column Supports

Moment Face of Midspan of Faces of Midspan of
(k-ft) Support A Member A-B  Support B Member B-C
Results using —114 130 —145 83.8
ACI Moment
Coefficients
Results from —-102 105 —154 56.9
Structural

Analysis




Fig. 5-18

Live load patterns to maxi-
mize positive and negative

moments.
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(c) Live load pattern to maximize negative moment at B.

The top steel used to resist these negative moments will be continuous through the column
and thus will be designed to resist the larger of the two moments. So, only the larger mo-
ment is compared to that obtained using the ACI Moment Coefficients in Table 5-1.

5. Comparison of results for floor beam A-B—-C-D. A comparison between
the factored design moments obtained from structural analysis in this example and from
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application of the ACI moment coefficients in Example 5-1 is given in Table 5-1 for the
continuous floor beam (A—-B—C-D) with column supports. It is the author’s experience
that the midspan positive moments obtained from the ACI moment coefficients are
normally significantly larger that those obtained from structural analysis. The negative
moments at the face of the supports are usually quite similar for interior supports but can
vary at the exterior support depending on the flexural stiffness of the exterior column. For
this case, the result from the structural analysis was quite close to that obtained using the
ACI moment coefficients. The ACI Code permits the use of either set of factored design
moments.

6. Comparison of results for floor beam E-F-G-H. The analysis model for this
continuous floor beam, which is supported by girders, is given in Fig. 5-17. For all of the
beams, we will assume that there is a rigid end zone at each end of the beams (Fig. 5-14)
equal to one-half of the width of the supporting girder (12 in.) and assumed to be 6 in. for this
analysis. The pattern live loads and the reduced values for the live load will be essentially the
same as those used in parts 2, 3, and 4 of this example. A comparison between the factored
design moments obtained from structural analysis using the model in Fig. 5-17 and those
from application of the ACI moment coefficients in Example 5-1 is given in Table 5-2 for the
continuous floor beam (E—F—-G-H) with girder (beam) supports. As noted in the previous step
for the midspan positive moments of an interior span, the results obtained from the ACI mo-
ment coefficients are normally significantly larger that those obtained from structural analy-
sis. The results at the interior support (faces of support F) commonly are higher from the
structural analysis method but are relatively close to those obtained from the ACI moment
coefficients.

The results for the exterior span will be affected significantly by the assumed pin
connection at the exterior support for this continuous floor beam (Fig. 5-17). The calcu-
lated moment at the face of the exterior support is zero, but as noted previously, the author
recommends that the moment obtained using the ACI moment coefficient, C,,, equal to
—1/24 should be used in Eq. (5-5). This result is shown in parenthesis in Table 5-2.
Because of the zero-moment resistance at the end of the exterior span, the midspan posi-
tive moment will be larger for the structural analysis compared to the result from the ACI
moment coefficients. As stated previously, this analysis procedure does result in an
overdesign for flexural strength in the exterior span, but it also can save time when check-
ing the torsional strength of the spandrel beam. If during the torsional design it is found
that the spandrel beam will crack under factored torsion, the ACI code would require a
redistribution of moments into the exterior span of the floor beam. However, if the analy-
sis procedure discussed here was used to determine the factored design moments in the
exterior span of the floor beam, no redistribution of moments is required. |

TABLE 5-2 Comparison of Factored Design Moments for Continuous Floor
Beam with Beam Supports

Moment Face of Midspan of Faces of Midspan of
(k-ft) Support E Member E-F  Support F Member F-G
Results using -79 135 —151 87.6
ACI Moment
Coefficients
Results from (—=79) 179 —172 424
Structural

Analysis
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5-3  DESIGN OF SINGLY REINFORCED BEAM SECTIONS WITH
RECTANGULAR COMPRESSION ZONES

Fig. 5-19
Simply supported beam.

Fig. 5-20
Cantilever beam.

General Factors Affecting the Design of Rectangular Beams

Location of Reinforcement

Concrete cracks due to tension and (as a result) reinforcement is required where flexure, axial
loads, or shrinkage effects cause tensile stresses. A uniformly loaded, simply supported beam
deflects as shown in Fig. 5-19a and has the moment diagram shown in Fig. 5-19b. Because
this beam is in positive moment throughout, tensile flexural stresses and cracks are developed
along the bottom of the beam. Longitudinal reinforcement is required to resist these tensile
stresses and is placed close to the bottom side of the beam, as shown in Fig. 5-19c. Because
the moments are greatest at midspan, more reinforcement is required at the midspan than at
the ends, and it may not be necessary to extend all the bars into the supports. In Fig. 5-19c,
some of the bars are cut off within the span.

A cantilever beam develops negative moment throughout and deflects as shown in
Fig. 5-20 with the concave surface downward, so that flexural tensions and cracks develop

| I 2
— _L_L §4}_ I (a) Deflected shape.
Cracks
+)

(

(b) Moment diagram.

(c) Reinforcement location.

w (a) peflected Shapel
Cracks

(b) Moment diagram.

L\\ (c) Reinforcement location.
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Fig. 5-21
Continuous beam.

on the top surface. In this case, the reinforcement is placed near the top surface, as shown in
Fig. 5-20c. Because the moments are largest at the fixed end, more reinforcement is
required there than at any other point. In some cases, some of the bars may be terminated
before the free end of the beam. Note that the bars must be anchored into the support.
Commonly, reinforced concrete beams are continuous over several supports, and
under gravity loads, they develop the moment diagram and deflected shape shown in
Fig. 5-21. Again, reinforcement is needed on the tensile face of the beam, which is at the
top of the beam in the negative-moment regions near the supports and at the bottom in
the positive-moment regions near the midspans. Two possible arrangements of this rein-
forcement are shown in Figs. 5-21c and 5-21d. Prior to 1965, it was common practice to
bend the bottom reinforcement up to the top of the beam when it was no longer required at

Cracks

Reinforcement

(a) Deflected shape.

(+)

Points of (+)

inflection\\

{b) Moment diagram under typical loading.
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the bottom. In this way, a bent-up or truss bar could serve as negative and positive rein-
forcement in the same beam. Such a system is illustrated in Fig. 5-21d. Today, the
straight bar arrangement shown in Fig. 5-21c is used almost exclusively. In some cases,
a portion of the positive-moment or negative-moment reinforcement is terminated or cut
off when no longer needed. However, it should be noted that a portion of the steel is
extended past the points of inflection, as shown. This is done primarily to account for
shifts in the points of inflection due to shear cracking and to allow for changes in load-
ings and loading patterns. The calculation of bar-cutoff points is discussed in Chapter 8.

In addition to longitudinal reinforcement, transverse bars (referred to as stirrups) are
provided to resist shear forces and to hold the various layers of bars in place during con-
struction. These are shown in the cross sections in Fig. 5-21. The design of shear reinforce-
ment is discussed in Chapter 6.

In conclusion, it is important that designers be able to visualize the deflected shape of
a structure. The reinforcing bars for flexure are placed on the tensile face of the member,
which corresponds to the convex side of the deflected shape.

Construction of Reinforced Concrete Beams and Slabs

The simplest concrete flexural member is the one-way slab shown in Fig. 5-1. The form
for such a slab consists of a flat surface generally built of plywood supported on wooden
or steel joists. Whenever possible, the forms are constructed in such a way that they can
be reused on several floors. The forms must be strong enough to support the weight of the
wet concrete plus construction loads, such as workers and construction equipment used in
the casting and finishing process. In addition, the forms must be aligned correctly and
cambered (arched upward), if necessary, so that the finished floor is flat after the forms
are removed.

The reinforcement is supported in the forms on wire or plastic supports referred
to as bolsters or chairs, which hold the bars at the correct distance above the forms until
the concrete has hardened. If the finished slab is expected to be exposed to moisture,
wire bolsters may rust, staining the surface. In such a case, small, precast concrete
blocks or plastic bar chairs may be used instead. Wire bolsters can be seen in the pho-
tograph in Fig. 5-22.

Beam forms most often are built of plywood supported by scaffolding or by wooden
supports. The size of beam forms generally is chosen to allow maximum reuse of the forms,
because the cost of building the forms is a significant part of the total cost of a concrete floor
system, as was discussed in Section 2-9.

Reinforcement for two beams and some slabs is shown in Fig. 5-22. Here, closed stir-
rups have been used and the top beam bars are supported by the top of the closed stirrups.
The negative-moment bars in the slabs still must be placed. Frequently, the positive-moment
steel, stirrups, and stirrup-support bars for a beam are preassembled into a cage that is
dropped into the form.

Preliminary Beam and Slab Dimensions for Control of

Deflections

The deflections of a beam can be calculated from equations of the form

Amax =C— (5-9a)
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Fig. 5-22
Intersection of a column and
two beams.

Rearranging this and making assumptions concerning strain distribution and neutral-axis
depth eventually gives an equation of the form

é—Cﬁ (5-9b)
¢ h

Thus, for any acceptable ratio of deflection to span lengths, A/€, it should be possi-
ble to specify span-to-depth ratios, €/h, which if exceeded may result in unacceptable
deflections. In the previous section on analysis, the author suggested that typical beam
depths range between €/12 and €¢/18. The selected beam depth, /, will need to be checked
against the minimum member thicknesses (depth, /#) given in the second row of ACI
Table 9.5(a) for members not supporting partitions or other construction that are likely
to be damaged by deflection. The reader should note that the minimum member depths
given in row 2 of ACI Table 9.5 (a) for continuous construction are less than the range of
member depths suggested by the authors.

In contrast, the minimum thicknesses given for solid slabs in row 1 of ACI Table 9.5(a)
are used frequently in selecting the overall depth of slabs. In general, thicknesses calculated in
row 1 of the table should be rounded up to the next one-quarter inch for slabs less than 6 in.
thick and to the next one-half inch for thicker slabs. The calculation of deflections will be dis-
cussed in Chapter 9.

Concrete Cover and Bar Spacing

It is necessary to have cover (concrete between the surface of the slab or beam and the
reinforcing bars) for four primary reasons:

1. To bond the reinforcement to the concrete so that the two elements act together.
The efficiency of the bond increases as the cover increases. A cover of at least one bar
diameter is required for this purpose in beams and columns. (See Chapter 8.)
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2. To protect the reinforcement against corrosion. Depending on the environment
and the type of member, varying amounts of cover ranging from % to 3 in. are required
(ACI Code Section 7.7). In highly corrosive environments, such as slabs or bridges
exposed to deicing salts or ocean spray, the cover should be increased. ACI Commen-
tary Section R7.7 allows alternative methods of satisfying the increased cover require-
ments for elements exposed to the weather. An example of an alternative method might be
a waterproof membrane on the exposed surface.

3. To protect the reinforcement from strength loss due to overheating in the case of
fire. The cover for fire protection is specified in the local building code. Generally speaking,
%-in. cover to the reinforcement in a structural slab will provide a 1-hour fire rating,

while a 1 %—in. cover to the stirrups or ties of beams corresponds to a 2-hour fire rating.

4. Additional cover sometimes is provided on the top of slabs, particularly in
garages and factories, so that abrasion and wear due to traffic will not reduce the cover
below that required for structural and other purposes.

In this book, the amounts of clear cover will be based on ACI Code Section 7.7.1
unless specified otherwise. The arrangement of bars within a beam must allow sufficient
concrete on all sides of each bar to transfer forces into or out of the bars; sufficient space
so that the fresh concrete can be placed or consolidated around all the bars; and sufficient
space to allow an internal vibrator to reach through to the bottom of the beam. Pencil-type
concrete immersion vibrators used in consolidation of the fresh concrete are 1% to 2% in. in
diameter. Enough space should be provided between the beam bars to allow a vibrator to
reach the bottom of the form in at least one place in the beam width.

The photo in Fig. 5-22 shows the reinforcement at an intersection of two beams
and a column. The longitudinal steel in the beams is at the top of the beams because this
is a negative-moment region. Although this region looks congested, there are adequate
openings to place and vibrate the concrete. Reference [5-3] discusses the congestion of
reinforcement in regions such as this and recommends design measures to reduce the
congestion.

ACI Code Sections 3.3.2, 7.6.1, and 7.6.2 specify the spacings and arrangements
shown in Fig. 5-23. When bars are placed in two or more layers, the bars in the top layer
must be directly over those in the other layers to allow the concrete and vibrators to pass
through the layers. Potential conflicts between the reinforcement in a beam and the bars in
the columns or other beams should be considered. Figure 5-24, based on an actual case
history [5-4], shows what can happen if potential conflicts at a joint are ignored. The left-
hand side shows how the design was envisioned, and the right-hand side shows the way the
joint was built. Placement tolerances and the need to resolve the interference problems
have reduced the effective depth of the negative-moment reinforcement from 9% in. to
7% in.— an 18 percent reduction in depth and thus a corresponding reduction in moment
strength. To identify and rectify bar conflicts, it sometimes is necessary to draw the joint to
scale, showing the actual width of the bars. Conflicts between bars in the columns and
other beams must be considered.

Calculation of Effective Depth and Minimum Web Width
for a Given Bar Arrangement

The effective depth, d, of a beam is defined as the distance from the extreme compression
fiber to the centroid of the longitudinal tensile reinforcement.
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EXAMPLE 5-3 Calculation of d and of Minimum b

Compute d and the minimum value of b for a beam having bars arranged as shown
in Fig. 5-25. The maximum size of coarse aggregate is specified as % in. The overall depth,
h, of the beam is 24 in.

This beam has two different bar sizes. The larger bars are in the bottom layer to max-
imize the effective depth and hence the moment lever arm. Also, notice that the bars are
symmetrically arranged about the centerline of the beam. The bars in the upper layer are



Fig. 5-24
Bar placing problems at the
intersections of two beams.

(From [5-4].)

Fig. 5-25
Beam section for
Example 5-3.
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ds—= |=—3/8in.

2 No. 8 bars
@/ / 112 x 8/8
2ds - 05in.
(2ds - 0.50’;3} — = 0.5dp 3 No. 9 bars 1in.
( : )_ 1/2 x 9/8
\ >= 0.56 in.
\ 3/8

~~ — += 038 in.
1.51in.
1.5 in. 98in.| « |ogin| « |9m8in. 150n.
38in.” No49in. 0.19 in. /" 38 in.

*Not less than 1 in. nor dp = 9/8 in.
directly above those in the lower layer. Placing the top bars on the outside of the section
allows those bars to be supported by tying them directly to the stirrups.

1. Compute clear cover. From ACI Code Section 7.7.1, the clear cover to the stirrups
is 1.5 in. (Fig. 5-25). From ACI Code Sections 7.6.2 and 3.3.2, the minimum distance between
layers of bars is the larger of 1 in. or 4/3 times the aggregate size, which in this case gives

$X3=1in
2. Compute the centroid of the bars.
Distance from Bottom, y (in.) Ayin.
15+3+(3xg) =244 1731

244+ (Ax ) +1+ (3x8) =450 211
Total Ay = 14.42

Layer Area, A(in.?)

Bottom 3 X 1.00 = 3.00
Top 2 X 0.79 = 1.58
Total A = 4.58
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The centroid is located at Ay/A = y = 14.42/4.58 = 3.15 in. from the bottom of the
beam. The effective depth d = 24 — 3.15 in. = 20.85 in.—say, d = 20.8 in. It is conser-
vative to round the value of d down, not up.

3. Compute the minimum web width. This is computed by summing the widths
along the most congested layer. The minimum inside radius of a stirrup bend is two times
the stirrup diameter, d, which for a No. 3 stirrup is %in. (ACI Code Section 7.2.2). For
No. 11 or smaller bars, there will be a small space between the bar and the tie, as shown in
Fig. 5-25 and given as

Space = 2d, — 0.5d,,
=2X3-05x3=019in

The minimum horizontal distance between bars is the largest of 1 in., 4/3 times the aggre-
gate size, or the bar diameter (see Fig. 5-25). In this case, the largest bars are No. 9 bars with
a nominal diameter of % in. Summing the widths along a section at A and ignoring space for
the vibrator gives

buin = 1.5 + 3 +0.19 + 5(3) + 0.19 + 3 + 1.5
=9.76in.

Thus, the minimum width is 10 in., and design should be based ond = 20.8in. W

Estimating the Effective Depth of a Beam

It is generally satisfactory to estimate the effective depth of a beam using the following
approximations:

For beams with one layer of reinforcement,
d=h—25in. (5-10a)

For beams with two layers of reinforcement,
d=h—35in. (5-10b)

The value 3.5 in. given by Eq. (5-10b) corresponds to the 3.15 in. computed in Example 5-3.
The error introduced by using Eq. (5-10b) to compute d is in the order

Thus, (5-10b) underestimates d by 1.7 percent. This is acceptable.

For reinforced concrete slabs, the minimum clear cover is % in. rather than 1% in., and
the positive moment steel is all in one layer, with the negative moment steel in another layer.
This steel generally will be No. 3, 4, or 5 bars. Stirrups are seldom, if ever, used in one-way
slabs in buildings. For this case, Egs. (5-10a) and (5-10b) can be rewritten as follows:

For one-way slab spans up to 12 ft,
d=>=h-—1lin. (5-10c)
For one-way slab spans over 12 ft,

d=~h— 1lin. (5-10d)
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In SI units and rounding to a 5 mm value, Eq. (5-10) works out to be the following:

For beams with one layer of tension reinforcement,

d = h — 65mm (5-10aM)
For beams with two layers of tension reinforcement,

d ~ h — 90 mm (5-10bM)
For one-way slabs with spans up to 3.5 m,

d >~ h — 25mm (5-10cM)
For one-way slabs with spans over 3.5 m,

d = h — 30 mm (5-10dM)

It is important not to overestimate d, because normal construction practices may lead
to smaller values of d than are shown on the drawings. Studies of construction accuracy
show that, on the average, the effective depth of the negative-moment reinforcement in slabs
is 0.75 in. less than specified [5-5]. In thin slabs, this error in the steel placement will cause
a significant reduction in the nominal moment strength.

Generally speaking, beam width b should not be less than 10 in., although with two
bars, beam widths as low as 7 in. can be used in extreme cases. The use of a layer of closely
spaced bars may lead to a splitting failure along the plane of the bars, as will be explained in
Chapter 8. Because such a failure may lead to a loss of bar anchorage or to corrosion, care
should be taken to have at least the required minimum bar spacings. Where there are several
layers of bars, a continuous vertical opening large enough for the concrete vibrator to pass
through should be provided. Minimum web widths for multiple bars per layer are given in
Table A-5 (see Appendix A).

Minimum Reinforcement

As was discussed in Chapter 4, to prevent a sudden failure with little or no warning when
the beam cracks in flexure, ACI Code Section 10.5 requires a minimum amount of flexural
reinforcement equal to that in Eq. (4-11) and repeated here:

3V 200b,,d
As,min = f fC bwd7 and = — (5—11)
y y

where f. and Jfy are in psi. In SI units, this becomes
0.25\V1. 1.4b,d
smin = 5 bpd,and = ————
5 By

where f(. and f, are in MPa.
An evaluation of A ,;, in flanged sections was discussed in Section 4-8.

(5-11M)

General Strength Design Requirements for Beams

In the design of beam cross sections, the general strength requirement is

oM, = M, (5-12)



204

Chapter 5 Flexural Design of Beam Sections

Here, M, represents the factored moments at the section due to factored loads. Referring to
ACI Code Section 9.2.1 and the assumptions made for Eq. (5-7) that the effects of fluid
pressure, soil pressure, and thermal effects can be ignored, the factored-load combinations
commonly considerered in beam design are

M, = 14Mp (5-13)
M, =12Mp + 1.6M, (5-14)

where Mp and M; are the moments due to the unfactored dead and live loads, respectively.

We normally will design beam sections to be tension-controlled, and thus, the
strength reduction factor, ¢, initially is assumed to be equal to 0.9. This will need to be
confirmed at the end of the design process. The easiest expression for the analysis of the
nominal moment strength of a singly reinforced beam section with a rectangular
compression zone is

M, = Asfy<d - g) (5-15)

where (d — a/2) is referred to as the moment arm and sometimes is denoted as jd. Typical
values for this moment arm will be discussed in the following section.

Design of Tension Reinforcement when Section
Dimensions Are Known

In this case, b and & (and thus, d) are known, and it only is necessary to compute A;. This is
actually a very common case for continuous members where the same section size will be
used in both positive and negative bending regions and may be used for several of the typical
beam spans in a floor system. These dimensions may be established by architectural limits
on member dimensions or may be established by designing the section of the beam that is
resisting the largest bending moment. The design of that section will then establish the beam
dimensions to be used throughout at least one span—probably for several spans. The initial
design of a beam section for which dimensions are not known will be covered in the follow-
ing subsection.

For the most common steel percentages in beams, the value of the moment arm, jd, gener-
ally is between 0.87d and 0.91d. For slab sections and beam sections with wide compression
zones (T-beam in positive bending), the value of jd will be close to 0.95d. Thus, for design prob-
lems in this book where section dimensions are known, j will initially be assumed to be equal to
0.9 for beams with narrow compression zones (width of compression zone equal to width of
member at mid-depth) and 0.95 for slabs and beam sections that have wide compression zones.

Combining the strength requirement in Eq. (5-12) with the section nominal moment
strength expression in Eq. (5-15) leads to an important equation for determining the required
steel area in a singly reinforced section.

M M,
A, = “ = u (5-16)

“ap(a-g) R

2

Using the suggested values for j given above, this equation will give a good approximation
of the required area of tension reinforcement. One quick iteration can be used to refine the
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value for A; by enforcing section equilibrium to determine the depth of the compression
stress block, a (as was done in Chapter 4 for a compression zone with a constant width, b):

At

= 5-17
T 085 L b (-17)

and then putting that value of a into Eq. (5-16) to calculate an improved value for A,. The
iterative process represented by Eqs. (5-16) and (5-17) will be used extensively throughout
this book and is illustrated now in the following examples.

EXAMPLE 5-4 Design of Reinforcement when Section Dimensions are Known

We will design tension reinforcement for one positive bending section and one nega-
tive bending section of the continuous floor beam A—B—C-D shown in Fig. 5-4 and analyzed
in Examples 5-1 and 5-2. The section dimensions for this flanged-beam section are shown
in Fig. 5-26a. Assume a concrete compressive strength of 4000 psi and a steel yield strength
of 60 ksi.

1. Design the midspan section of beam A-B. The factored design moment at this sec-
tion was found to be 130 k-ft using the ACI moment coefficients and 105 k-ft using structural
analysis software. We will use the larger value for this example. Because this is a T-section in pos-
itive bending, we initially will assume a moment arm, jd, equal to 0.95d (wide compression
zone). Assume we will use a single layer of reinforcement, so d can be taken as & — 2.5 in.
or 21.5 in. Assuming that this will be a tension-controlled section (¢ = 0.9), we will use
Eq. (5-16) to get the first estimate for the required area of tension steel:

M, _ M, 130 k-ft X 12 in./ft
a> ~ dfy(jd) 0.9 X 60ksi X 0.95 X 21.5in.
2

= 1.41in.2

Ay =
d)fy(d -

Because this is a small value, we should check Ay i, from Eq. (5-11). For the given concrete
strength, 3\/]7’0 = 190 psi, so use 200 psi in Eq. (5-11):

_200b,,d 200 psi X 12in. X 21.5 in.

i = = 0.86 in.2
smin £ 60,000 psi n

Thus, the minimum area will not govern, and we will do one iteration to improve the value of
A, using Egs. (5-17) and (5-16). To determine the depth of the compression stress block, a,
we must determine the effective width of the compression zone to use in Eq. (5-17). Referring
to Section 4-8 of this book and ACI Code Section 8.12.2, the limits for the effective width of
the compression flange are

_ beam span length 28 ft
¢ 4 4
by = by + 2(8hy) = 12in. + 2 X 8 X 6in. = 108 in.

=T7ft = 84in.

b, = spacing between beams = 12 ft = 144 in.

The last limit is the result of adding the web width to one-half of the clear spans to adjacent
beam webs on each side of the beam under consideration. The first limit governs, so we will
use a compression zone width of 84 in. in Eq. (5-17):

ALy 141in? X 60 ksi
“T 085 b 085 X 4ksi X 84 in.

= 0.296 in.
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Fig. 5-26
Beam sections—Example 5-4.
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24 in.
12in.
(a) Initial beam.
{ B A f I6 in.
24 in.
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2 No. 8 barsf f L 2.5in.
12in.
(b) Section design at midspan of beam A-B.
3 No. 6 bars
=12in. =12in.
=25in. 7 |‘—’| |‘—'|
L ]
A K % 6 in.
1
1 No. 4 bars \ 1 No. 4 bars
24 in.

Y

«— 9| —

12in. L 2.5in.

(c) Section design at face of column B.

At first one might think there is an error in this calculation, but it is not unusual to calcu-
late very small values for the stress-block depth for a T-section in positive bending. Using
this value of a in Eq. (5-16) gives

A = M, B 130 k-ft X 12 in./ft
s = of (d B a) 0.9 X 60ksi X (21.5in. — 0.148 in.)
7 2

For this required area, select 2 No. 8 bars, which results in an area, A, equal to 1.58 in.2
(Table A-4) and requires a web width of 7.5 in. (Table A-5). It is possible to select some com-
bination of bar sizes to get closer to the required tension steel area, but the use of multiple bar

= 1.35in.2
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sizes in a single layer of reinforcement is not preferred, because it could lead to errors during
construction. So, we will stay with 2 No. 8 bars.

2. Detailing Check. Now that we have selected the size of the longitudinal rein-
forcing bar, we could refine the assumed value of d. However, as stated previously, using
d = h — 2.5 in. will be accurate enough for most beam designs. Only when using large
longitudinal bars (> No. 10) or large stirrups (> No. 4) would an adjustment be required
to prevent a significant overestimate the value for d.

To limit the widths of flexural cracks in beams and slabs, ACI Code Section 10.6.4
defines an upper limit on the center-to-center spacing between bars in the layer of rein-
forcement closest to the tension face of a member. In some cases, this requirement could
force a designer to select a larger number of smaller bars in the extreme layer of tension re-
inforcement. The spacing limit is:

40,000
s =15 — 2.5¢, (5-18)

I
(ACI Eq. 10-4)

but,

(40,000)
s =12
s

In Eq. (5-18), ¢, is the least distance from the surface of the reinforcement bar to the ten-
sion face. For the tension zone in a typical beam, as shown in Fig. 5-25b, this would in-
clude the clear cover to the stirrups (1.5 in.) plus the diameter of the stirrup bar (usually 3/8
or 4/8 in.). Thus, for a typical beam the value of ¢, can be taken as 2.0 in.

The term f; in Eq. (5-18) represents the stress in the flexural reinforcement closest to
the tension face due to acting loads (not factored loads). Procedures for calculating f; will
be discussed in Chapter 9, but ACI Code Section 10.6.4 permits the value of f; to be taken
as two-thirds of the yield stress, fy (in psi units). Thus, for Grade-60 steel, f; can be set
equal to 40,000 psi.

Using ¢, = 2in. and f; = 40,000 psi, the limit on the center-to-center spacing
between the 2 No. 8 bars in the extreme layer of tension reinforcement (Fig. 5-26b) is:

40,000
40,000

. 40,000 i
s = 12(in.) 20000/ 12 in.

Assuming the distance from the sides of the beam to the center of each No. 8 bar is
2.5 in. (Fig. 5-25), the center-to-center spacing between the No. 8 bars is:

5 = lS(in.)( ) ~2.5(2in.) = 10in.

and,

s = 12in. — 2(2.5in.) = 7in. < 10in.

Thus, the spacing between the bars satisfies the Code requirement. If the spacing
was too large we would need to use three (smaller) bars to reduce the center-to-center spac-
ing between the bars to a satisfactory value.

3. Required strength check. We already have calculated the required minimum steel
area, and it is less than the selected area of steel. Because we have used ¢ = 0.9, we must
confirm that this is a tension-controlled section. For a T-section where we have already calcu-
lated a very small value for the depth of the compression stress block, one simply might say
that this is clearly a tension-controlled section, because the depth to the neutral axis, ¢, will be
significantly less that the tension-controlled limit of 3/8 of d, as discussed in Section 4-6. For
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completeness in this first design example, we will calculate ¢ and compare it to 3/8 of d, or
0.375 X 21.5 in. = 8.06 in. For the selected area of steel, use Eq. (5-17) to find

_ 1.58in.% X 60 ksi
@7 0.85 X 4ksi X 84in.

= 0.332in.

For a concrete compressive strength of 4000 psi, the factor 8 is equal to 0.85. Thus, the
depth to the neutral axis is

¢ =alB; = 0.332in./0.85 = 0.39 in.

This value for c is clearly less than 3/8 of d, so this is a tension-controlled section. Also
note that the final of jd (d — a/2) is 21.3 in., which is approximately 4 percent larger
than the assumed value of 0.95 d.

The final check is to confirm the strength of the section using Eq. (5-15), including
the strength reduction factor, ¢:

dM,

0.332 in.
bA, (d - ”2’) =09 X 1.58in.2 X 60 ksi(21.5 in. — 2m>

1820 k-in. = 152 k-ft = M, = 130 k-ft

The strength is adequate without being too excessive. So, use 2 No. 8 bars, as shown in
Fig. 5-26b.

4. Design for factored moment at face of support B. The design here represents
the design at both faces of support B. To be consistent with the design of the midspan sec-
tion, we will use the factored design moment obtained from the ACI Moment Coefficients,
i.e., a negative moment of 145 k-ft. Because this is a negative moment, compression will
occur in the bottom of the section, and thus, we have a relatively narrow compression zone.
Recall that for this case the author recommends the use of a moment arm, jd, equal to 0.94.
Assuming that this will be a tension-controlled section (¢ = 0.9), Eq. (5-16) is used to get
the first estimate for the tension steel area.

M, M, 145 k-ft X 12 in./ft

A. = = =
s of (d B a) ¢fy(]d) 09 X 60ksi X 0.9 X 21.51n.
Y 2

= 1.67 in.?

As before, we will do one iteration using Egs. (5-17) and (5-16) to improve the value of Ay.
For this case, the width of the compression zone, b, is equal to the web width, b,, = 12 in.

Agfy 1.67 in.% X 60 ksi ,
a= — = 5 — = 2.461n.
085 f.b 0.85 X 4ksi X 12in.
Using this value of a in Eq. (5-16) gives

M, 145 k-ft X 12 in./ft .9
Ay = = : ; — = 1.59in.

a 0.9 X 60 ksi(21.5in. — 1.23in.)

ofld =3

The selection of reinforcing bars for this negative bending section is complicated by ACI
Code Section 10.6.6, which reads in part, “Where flanges of T-beam construction are in ten-
sion, part of the flexural tension reinforcement shall be distributed over an effective flange
width ...”. The definition of the word “part” and the intention of the Code are not clarified
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by reading the Commentary to the Code. The author’s interpretation of this Code require-
ment is that the majority of the tension reinforcement should be placed above the web of the
beam section, and the remainder of the required tension steel should be placed in a region of
the flange (slab) close to the web of the beam. The author recommends that these bars be
placed a region that extends no more than twice the flange thickness away from the web of
the beam. For the tension steel area required in this case, use 3 No. 6 bars above the web
and place 2 No. 4 bars in the flanges, one on each side of the web (Fig. 5-26¢). Thus,

A, =3 X 044in? + 2 X 020in.> = 1.72 in.?

The minimum web width for 3 No. 6 bars is 9.0 in. (Table A-5). Because of the thinner
cover permitted in a slab, the No. 4 bars in the flange generally will be higher in the T-beam
section than the bars placed above the web. However, for strength calculations, we can
achieve sufficient accuracy by assuming that all of the tension reinforcement is approxi-
mately 2.5 in. from the top of the section. Because the actual d is a little larger, this approach
is conservative.

5. Required strength check. Because this T-section is part of a continuous floor
beam, the value for Aj ;,;, is the same as that calculated for the midspan section (0.86 in.2).
Thus, the provided A; exceeds the required minimum tension steel area.

To check if this is a tension-controlled section, we can compare the depth to the neu-
tral axis, c, to 3/8 of d, which is the limit on the neutral axis depth for tension-controlled
sections. Eq. (5-17) will be used to determine the depth of the compression stress block for
the selected tension steel area.

ALy 172in% X 60 ksi
0.85f.b  0.85 X 4ksi X 12in.

a = 2.53 in.

Then, using B; = 0.85, the depth to the neutral axis is
¢ = alB; = 2.53in./0.85 = 2.98 in.

This is less than 3/8 d = 3/8 X 21.5 in. = 8.06 in. Thus, this is a tension-controlled section,
and ¢ = 0.9.

Finally, we should use Eq. (5-15), including the use of the strength-reduction factor,
¢, to check the strength of the final section design.

oM, = ¢Axfy(d - ;) = 0.9 X 1.72in2 X 60 ksi(21.5in. — 1.27 in.)
= 1880 k-in. = 157 k-ft > M, = 145 k-ft

The strength is adequate without being too excessive. So, use 3 No. 6 bars and 2 No. 4
bars, placed as shown in Fig. 5-26c¢. |

Design of Beams when Section Dimensions Are Not Known

The second type of section design problem involves finding b, d, and A;. Three decisions
not encountered in Example 5-4 must be made here, that is, a preliminary estimate of the
self weight of the beam, selection of a target steel percentage, and final selection of the sec-
tion dimensions b and A (and d).

Although no dependable rule exists for guessing the weight of beams prior to selec-
tion of the dimensions, the weight of a rectangular beam will be roughly 10 to 15 percent of
the unfactored loads it must carry. Alternatively, one can estimate /4 as being between 1/18
and 1/12 of the span, as discussed previously. Past practice at this stage was to estimate b as
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b 0.003 0.85 f,
BN E= < C.-085fba
n.a. n.a
As fy T=Af,
AIITI I —_—
Set g, = 0.0075 Strain Stress Forces
(a) Beam section. (b) Strain diagram. (c) Stress distribution.  (d) Internal section forces.

Fig. 5-27 Assumptions for design of singly reinforced beam section.

approximately 0.5h. However, to save form-work costs, it is becoming more common to se-
lect the beam width equal to the column width if that dimension is known at this stage of the
design. Even if the column width has not yet been determined, it is probably better to
assume a wider beam width—say b at approximately 0.8 ~—when estimating the weight of
the beam. The dead load estimated at this stage will be corrected when the section dimen-
sions are finally chosen, if necessary.

The next step in the process is to select a reasonable starting value for the reinforcement
ratio, p = A,/bd. Since 2002, for sections subjected to only bending or bending plus axial
load, the ACI Code has used a direct relationship between the strength-reduction factor, ¢, and
the strain at the extreme layer of tension reinforcement, &,. To be consistent with the ACI
Code, the author will use a procedure to select an initial value for p that will result in a tension-
controlled section (i.e., a section with adequate ductility to justify the use of ¢ = 0.9).

Assume the singly reinforced beam section shown in Fig. 5-27a is subjected to posi-
tive bending. At this stage, the section dimensions and area of tension reinforcement are
not known. To start the design process, we will select a target strain diagram, as shown in
Fig. 5-27b. Because there is a single layer of tension steel, the strain at the centroid of the
tension reinforcement, g, is equal to &,. To justify the use of ¢ = 0.9, &, must equal or
exceed 0.005 for the final section design. To get a final design that is similar to past prac-
tice, as will be demonstrated next, the author recommends setting &, = 0.0075 at this ini-
tial stage of section design.

The stress and force diagrams shown in Fig. 5-27¢ and d are similar to those discussed
in Chapter 4. From the strain distribution in Fig. 5-27b, the following value is obtained for
the distance to the neutral axis.

( 0.003

———— |d = 0.2
0.003 + 0.0075) 0-286d

Using this value of ¢, the expression for the concrete compression force, C, is
C. = 0.85 f.bBic = 0.85(0.286)f. B1(bd)
= 0.24 B.f+ (bd)

Enforcing section equilibrium, 7 = C,, we can solve for an initial value of the reinforce-
ment ratio, p:

T =C.
Asfy = 0.24B,f (bd)

p(initial) = % = 0.24;3 e i;f ‘ (5-19)
y y

Equation (5-19) gives an initial target reinforcement ratio that will be used for the design of
singly reinforced rectangular sections.
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As an extra discussion, the author would like to present a comparison between the ini-
tial p value given in Eq. (5-19) and prior procedures for making an initial selection of p,
which were based on the balanced reinforcement ratio. An expression for the balanced
reinforcement ratio was given in Eq. (4-24).

_ 0.85 Blfé < Ecu )
Sy

Recall that the maximum useable compression strain, &, is equal to 0.003. In the follow-
ing, we will assume that the steel yield strain, &y, for Grade-60 steel can be taken as
approximately 0.002. Thus, the strain ratio Eq. (4-24) can be taken approximately equal to
3/5. Prior design practice was to select an initial p value equal to 45 or 50 percent of the bal-
anced reinforcement ratio given in Eq. (4-24). Using 50 percent of the balanced reinforce-
ment ratio as a target value for p results in the following:

0.85 ¢ 3 g
p(target) = 0.5 X p, = 0.5 X 085 Bufe X 5= 0.255% (5-20)

JYy y

P (4-24)

Eu T 8

The target p value from Eq. (5-20) is very similar to that given in Eq. (5-19). Thus, we
would expect a section designed with an initial p value from Eq. (5-19) will be similar to
those obtained from prior practice.

Having selected an initial p value, we must now develop a procedure that results in
section dimensions and a reinforcement area that satisfy the basic strength requirement,
éM, = M,. As part of this process, use the following definition for the reinforcement
index, w:

5y

w=p— (5-21)
fe
The nominal flexural strength of a singly reinforced rectangular section was given in
Eq. (5-15) as
a

M, = AAYJfV(d - 2) (5-15)

Also, the expression for the depth of the compression stress block, a, was given in Eq. (5-17),
which can be modified to be

Asfy Xd_AS N d S d wd
d bd

“T 085 f1b -

e
7085 Py 7085 085

Putting that expression for a into Eq. (5-15) and making some notation substitutions results in

_ _wd ) _ B (bd)f
M, = Asfy<d -7 0'85> = A, d(1 — 0.59) X )
A, )
=X f—y X fi(1 = 0.590)(bd?) = wfi(l — 0.59)(bd?)

The symbol, R, commonly referred to as the flexural-resistance factor, is used to represent
the first part of this expression, i.e.,

R = ofi(1 — 0.590) (5-22)

Because this factor can be used either as a convenient starting point for the flexural design
of beam sections or to select required reinforcement for an existing beam section, R-factor
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design aides for various concrete strengths are given in Table A-3 (U.S. Customary
units) and Table A-3M (SI Metric units). The use of these tables will be demonstrated in
Examples 5-5 and 5-5M.

After calculating the R-factor, the strength requirement in Eq. (5-12) becomes

éM, = M,
dR(bd>) = M,

2 M,

(bd”) = R (5-23a)
Equation (5-23a) represents an expression for obtaining a quasi-section modulus for the beam
section. As was discussed earlier, the section width eventually may be set equal to the col-
umn width to save on formwork costs. So, if the desired beam width is known, Eq. (5-23a)
can be used to solve directly for the required effective flexural depth, d. Also, if for archi-
tectural reasons the total beam depth, £, has been limited to a specific value and we assume
d = h — 2.5in., Eq. (5-23a) can be used to solve directly for the required beam width, b. If
there are no restrictions on the beam dimensions, the beam width, b, can be set equal to
some percentage, «, of the effective flexural depth, d. The authors suggest that « can be set
equal to a value between 0.5 and 0.8. With b now expressed as a ratio of d, Eq. (5-23a) can
be solved for a value of d:

M,
3y — u
(ad)_¢>R

Mu 173
d = (aq,’)R) (5-24)

This value of d is normally rounded to a half-inch value, because the difference between h
and d commonly is taken as 2.5 in. for one layer of steel and 3.5 in. for two layers of tension
steel. Thus, rounding d to a half-inch value effectively rounds £ to a whole-inch value. To
avoid possible deflection calculations, the height of the beam /4, should be taken as greater
than or equal to the minimum values given for beams in ACI Code Table 9.5(a). Deflection
calculations will be discussed in Chapter 9.

After a value for d has been selected, the required value of the section width b can be
found using Eq. (5-23a) and then rounding up to a whole inch value. If the section dimen-
sions were selected without significant changes from the calculated values, the required
value for A can be estimated by multiplying the value of p selected in Eq. (5-19) times the
product, b X d (using the calculated value for b, not the rounded value). If significant
changes were made to the section dimensions, the value for the moment arm, jd, can be
assumed (as was done previously) and Eq. (5-16) can be used to determine an initial value
for A;. After an initial value for A has been determined by either procedure, one iteration
using Eqgs. (5-17) and (5-16) can then be used to reach a final value for A that provides
adequate strength for the selected section dimensions b and d. A demonstration of this
design process will be given in the following example.

EXAMPLE 5-5 Design of a Beam Section for which b and d Are Not Known

In this example, we will go through the steps for a complete beam section design for
the continuous floor beam A-B—C-D in Fig. 5-4. When determining the section size, the
design process should start at the location of the largest factored design moment. From the
analyses in Examples 5-1 and 5-2, the largest design moment occurs at the face of column B.
As was done in those examples, we will assume a slab thickness of 6 in., a superimposed
dead load of 20 psf, and a live load of 60 psf.
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We will make a new estimate for the weight of the beam web and then use the ACI mo-
ment coefficients to determine the factored design moment at the face of column B. We will
assume a normal weight concrete with f. = 4000 psi and reinforcing steel with f,, = 60 ksi.

1. Estimate weight of the beam web. Assume the total depth of the beam will be
between 1/18 and 1/12 of the span length from A to B, which is the longest span length for beam
A—B-C-D. Thus,

h =~ €/12 to £/18
28 ft X 12 in./ft ) 28 ft X 12 in./ft
h~ —————=28in.to———————

. = 18.7 in.
12 18

Select 1 = 24 in., as was done in Example 5-1. We now could select the beam width, b, as
some percentage of A, or we could set the beam width equal to the column width.
In Example 5-1, the column dimensions were given as 18 in. X 18 in. Thus, set b equal to
18 in., which is 75 percent of / (a reasonable percentage for estimating the beam weight).
For a slab thickness of 6 in., the weight of the beam web is

(24in. — 6in.) X 18 in.
144 in. 2/t
w(beam web) = 338 Ib/ft = 0.338 k/ft

X 150 Ib/fe

w(beam web) =

2. Compute total factored load and factored design moment, M, . Additional
dead load includes the weight of the slab (75 psf) and the superimposed dead load (SDL) of
20 psf. For the 12-ft. tributary width, this results in

w(slab and SDL) = (75 psf + 20 psf) X 12 ft = 1140 Ib/ft = 1.14 k/ft

Combining this with the weight of the beam web, the total dead load is 1.48 k/ft. From
Example 5-1, the reduced live load on this beam for calculation of the maximum negative
moment at B is 0.486 k/ft. Using those values, the total factored load is

w, = 1.2wp + 1.6wy, or 1.4wp
= 1.2(1.48 k/ft) + 1.6(0.486 k/ft), or 1.4(1.48 k/ft)
= 2.55 k/ft, or 2.07 k/ft

:g :g
o

The larger value will be used with the appropriate ACI moment coefficient (—1/10) and the
average clear span length for spans A-B and B—C (24.5 ft. from Example 5-1). Thus,

M, = (—1/10) X 2.55k/ft X (24.5 ft)?> = —153 k-ft

3. Selection of p value and corresponding R-factor. Equation (5-19) will be used
to select an initial value for p. For f.. = 4000 psi, 8; = 0.85. Thus,

_ Bift _ 0.85 X 4ksi

= = 0.0142
4f, 4 X 60 ksi
Rounding this off to 0.014 and using Eq. (5-21),
Iy 60 ksi
=p—, = 0014 = 0.210
@ TPy 4 ksi

Then, from Eq. (5-22),

R = ofi(1 — 0.590) = 021 X 4ksi(1 — 0.59 X 0.21) = 0.736 ksi
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It is important for a designer to have some judgment about reasonable values for the
R-factor. Many experienced designers will select the R-factor directly (between 0.70 and
0.90 ksi) without going through the intermediate step of selecting a reasonable starting
value for p. As noted previously, R-factors for the flexural design of a singly reinforced
beam section are given in Table A-3.

4. Selection of section dimensions, b and h. Using the calculated value for R from
Eq. (5-22) results in

M, 153 k-ft X 12 in./ft

bd> = —2% = = 2770 in.3
SR 09 X 0.736 ksi n

We now need to select a value for the ratio between b and d, which we have defined as «.
Using a = 0.7, which is within the range suggested by the author, leads to

M 0.333 2770 il’l.3 0.333 '
d=z|—— =|—F = 15.8 in.
adR 0.7

Rounding this up to the next half-inch value results in d = 16.5in. and h =
d + 2.5in. = 19 in. (Note: some designers prefer the use of an even number of inches for
h, which could be taken as 20 in. in this case). Before proceeding, the author recommends
that the selected value for total beam depth, %, should be checked against the value given in
ACI Code Table 9.5(a) for minimum thicknesses to avoid deflection calculations in most
cases. From that table, the minimum thickness (%) for an exterior span of a continuous floor
beam is €/18.5, or

€ 281t X 12in/ft

= = 18.2in.
18.5 18.5

h(min) =

Because the moment of inertia for a beam section is approximately proportional to A, it
would be a good idea to select a beam depth that is at least a full inch greater than this min-
imum value. Thus, select k = 20 in., and then d ~ & — 2.5 in. = 17.5 in. This value for
d then is used with the previously calculated value for bd? to determine b as

2770 in.? .
= ——>=091in

(17.5in.)?
Clearly, this value is much smaller than the value of 18 in. that was assumed for estimating
the beam self-weight. If we did not want to match the column dimension or if this was a
floor beam that did not frame into a column (i.e., a beam supported by girders), then we
would select b equal to either 10 in. or a little larger value depending on the beam width
required at midspan to place the positive bending reinforcement in a single layer.

Because we have assumed that we want to have the width of this floor beam equal to
the column width that it connects to, select b = 18 in. Recall from the discussion of flex-
ural behavior in Chapter 4 that a wider beam will not be much stronger than a narrow beam,
but it will be more ductile. Thus, this should be a very ductile section that is easily within the
tension-controlled region of behavior.

5. Determination of A; and selection of reinforcing bars. With the selected
dimensions of b and &, we can recalculate the beam weight and the resulting factored design
moment. Because the dimensions are smaller and the factored moment will be lower, we
could safely ignore this step. However, for completeness,
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Final beam section design at
face of column—Example 5-5.

Section 5-3 Design of Singly Reinforced Rectangular Compression Zones * 215

(20in. — 61in.) X 18in.

VYRS X 150 Ib/fe® = 263 Ib/ft = 0.263 k/ft
n.

w(beam web) =

With this value, the revised values for wp, w,, and M, are

wp = 1.40 K/ft
w, = 2.46 k/ft
M, = —148 k-ft

Because the selected beam width is significantly larger that the calculated value (9.1 in.), use
Eq. (5-16) to estimate the required area of tension reinforcement. Assming a moment arm, jd,
approximately equal to 0.9 d (narrow compression zone), Eq. (5-16) gives

M, M, 148 k-ft X 12 in./ft

a) = 6f,(jd) 0.9 X 60ksi X 09 X 17.51n.
2

Ay = = 2.09 in.2

¢fy<d -

Then, proceeding through one iteration using Eq. (5-17) to get a value for the depth of the
compression stress block, we have

Agfy 2.09 in.2 X 60 ksi

= = = 2.05in.
CT 085 b 085 X 4ksi X 18in. n
Then using Eq. (5-16) to get a revised steel area, we have
M, 148 k-ft X 12 in./ft
Ay = = = 2.00 in.?
s 4\ 09 X 60ksi(17.5in. — 1.02in.) n
ofi\d =5

As was done in Example 5-4 to be in compliance with ACI Code Section 10.6.6, select three
No. 7 bars for over the web of the section and select two No. 4 bars to be placed in the
flanges, one on each side of the web, as shown in the final section design given in Fig. 5-28.
The resulting steel area is

A, =3 X 0.60in%2 + 2 X 0.20in.> = 2.20 in.?

=25in.
~1.7in. =12in. |7 =12in.
f ° ° 6in.
No. 4 bar 3 No. 7 bars No. 4 bar
20 in.
18in.




216

Chapter 5 Flexural Design of Beam Sections

Assuming the beam will have normal cover (1.5 in.) and that a No. 3 or No. 4 bar will be
used as shear reinforcement, the center-to-center spacing between the No. 7 bars in the top
tension layer is:

18 in. — 2(2.51in.)
s = = 6.5in. < 101in.
2 spaces

This value satisfies the spacing limits in ACI Code Section 10.6.4, which were defined and
discussed in Example 5-4, and clearly represents a clear spacing between the bars that ex-
ceeds the minimum required values from ACI Code Section 7.6.1.

6. Determination of required A using Table A-3. After the section dimensions have
been selected, Table A-3 can be used to directly solve for the required area of tension rein-
forcement in a singly reinforced beam section without going through the iteration process in
step 5. Also, when using Table A-3, we can determine if the reinforcement ratio exceeds the
minimum value required by the ACI Code and if this is a tension-controlled section. This nor-
mally would allow us to eliminate the checks completed in the first part of step 7.

If b and d are known, Eq. (5-23a) can be solved for the required R-value as

u

R =
dbd?

(5-23b)

Using b = 18 in. and d = 17.5 in. from step 4, the required R-value is

_ 148kt X 12in/ft
© 09 X 18in. X (17.5in.)?

= 0.358 ksi = 358 psi

Using Table A-3 for 4000 psi concrete, we can read that the required p-value is 0.007. Note,
instead of interpolating in Table A-3, a designer normally will select the smallest p-value
that corresponds to an R-value greater than or equal to the required R-value. The smallest
R-values given at the top of the columns in Table A-3 correspond to the minimum-
reinforcement ratio required by the ACI Code, so that Code requirement is satisfied by using
this table. Also, if you are reading values in the table that are not printed with boldface type,
then your beam section will be a tension-controlled section, and ¢ will be equal to 0.9. The
boldfaced numbers represent sections in the transition zone where the ¢-value will be between
0.65 and 0.9. As noted previously, the author recommends that beam sections be designed as
tension-controlled sections. So, if your required R-value is located in the boldface part of the
table, the author recommends that you increase the size of your beam section. Otherwise, an
iteration (possibly nonconverging) will be required to find &;, the corresponding ¢-value, the
R-value from Eq. (5-23b), and the required p-value from Table A-3.

Now, using the p-value and the known section dimensions, the required steel area is

Ay = pbd = 0.007 X 18in. X 17.5in. = 2.21 in.?

The area of steel selected in step 5 essentially satisfies this requirement.

7. Required checks. This T-section is part of a continuous floor system, so Eq. (5-11)
applies directly. As noted in the prior example, 200 psi exceeds 3 \/]TQ for 4000 psi concrete, so

_200b,,d 200 psi X 18 in. X 17.5in

in = = 1.05in.?
s,min fy 60,000 psi m

The selected A, exceeds this value, so it is 0.k.
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To confirm that the tension steel is yielding and that this is a tension-controlled sec-
tion, we can start by using Eq. (5-17) to calculate the stress block depth, a, for the selected
steel area as

Agfy 2.20in.2 X 60 ksi
a = =
085 f.b 085 X 4ksi X 18in.

= 2.16in.

Using B, = 0.85 for 4000 psi concrete,

_a _ 2.16 in.
Bi 0.85

c = 2.54 in.

Then, using Eq. (4-18) to calculate the steel strain (e, equal to &, for single steel layer) for the
assumed linear strain distribution, we have

_d—c _17.5in. — 2.54in.
c Beu 2.54 in.

e(=&) X 0.003 = 0.0177

This value is both greater than the yield strain for Grade-60 steel (s, = 0.00207) and the
strain limit for tension-controlled sections (0.005), so the assumptions that the steel is yield-
ing and that ¢ = 0.9 are valid.

Finally, using Eq. (5-15) to calculate the nominal flexural strength and including the
strength reduction factor ¢, we have

oM, = d)Asfy(d - g) = 0.9 X 220in.2 X 60ksi(17.5in. — 1.08 in.)
= 1950 kein, = 163 k-ft > M, = 146 k-ft

The strength is adequate without being too excessive. So, select three No. 7 and two No. 4
bars, placed as shown in Fig. 5-28. |

EXAMPLE 5-5M Design of Beam Section when b and d Are Not Known—SI units

Assume that beam dimensions were estimated (b = 300 mm and 4 = 650 mm) and an
analysis of a continuous floor beam, similar to that completed for Example 5-5, has been
completed. Also assume that the factored design moment, M,, was found to be a negative
220 kN-m. Design the final section dimensions b, &, and d and find the required area of ten-
sion reinforcement, A, assuming f, = 25 MPa (B8, = 0.85) and f, = 420 MPa.

1. Compute b, d, and h. For the given material strengths, use Egs. (5-19), (5-21),
and (5-22) to calculate p, w, and R.

Bife
3
pfy/ fi=0212
wfi(1 — 0.59w) = 4.63 MPa

p(initial) = = 0.0126

Because this R-factor is for tension-controlled beam section, use ¢ = 0.9 in Eq. (5-23a) to
calculate a value for (bd?):
M,  220kN-m 220 X 10°N-mm

bd* = —— =
dR 0.9 X 4.65 N/mm?> 4.19 N/mm?

=52.6 X 10° mm?
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Fig. 5-29

Final beam section design at
face of column—

Example 5-5M.

Select b ~ 0.6 d, and then solve for d:

2. X16 3\ 0.333
dz(—56 Omm) = 444 mm

0.6

With this, 7 = d + 65 mm = 509 mm. We will set £ = 500 mm, and then d ~ 435 mm.
Using that value, we can go back to the required value of (bd?) to solve for b:

_ 526 X 10° mm>

= 278 mm
(435 mm)?

Round this value and set » = 300 mm. This section is a little smaller than the assumed sec-
tion size for calculating dead load, so there is no need to recalculate M,,.

2. Determination of required A; and selection of reinforcing bars. We are
designing a T-section in negative bending (narrow compression zone), so select a moment
arm, jd, approximately equal to 0.9 d. Use Eq. (5-16) to estimate the required value of A;.

_ M, _ 220kN-m _ 220 X 10° N-mm
of(d —al2)  ¢fy(jd) 0.9 X 420 N/mm?® X 0.9 X 435 mm

A, = 1490 mm?

Use one iteration to refine this value by first inserting it in Eq. (5-17) to find the depth of the
equivalent stress block, so that

Agfy 1490 mm? X 420 MPa
0= -
0.85f.b 0.85 X 25MPa X 300 mm

= 98.2 mm

Then, use that value of @ in Eq. (5-16) to get an improved value for A;:

M, 220 X 10° N-mm

= = = 1510 mm?
¢fy(d = al2) 0.9 x 420 N/mm? (435 mm — 49.1 mm)

As

As before, we need to be aware that ACI Code Section 10.6.6 requires that some of the ten-
sion-zone reinforcement for a flanged section be distributed into the flange. For this section,
select 3 No. 22 bars for over the web and place 2 No. 16 bars in the flanges, as shown in
Fig. 5-29. These bars give a total tension steel area, A, = 3 X 387 + 2 X 199 = 1560 mm?.

3. Use of Table A-3M to select required A,. As was done in Example 5-5, we can use
Table A-3M to find the required area of tension reinforcement after the section dimensions

=65 mm.
~ 40 mm. w =280 mm J7 =280 mm
f T ? 140 mm
; No. 16 bar

No. 16 bar

™~ 3 No. 22 bars 500 mm

300 mm
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have been selected. Also, when using Table A-3M, we will know that the selected reinforce-
ment ratio exceeds the minimum ratio required by the ACI Code, and that this is a tension-con-
trolled section. This would eliminate the need for the checks at the beginning of step 4, which
are given for completeness in this example.

Assuming ¢ = 0.9 (tension-controlled section) and using » = 300 mm and d = 435 mm,
we can use Eq. (5-23b) to determine the required R-value.

_ M, (5-23b)
¢ bd?
_ 220 X 10° N-mm
0.9 X 300 mm X (435 mm)?

= 431 N/mm? = 4.31 MPa

Using Table A-3M for f. = 25 MPa, we can read that the required p-value is 0.012. This
clearly is greater than the minimum required reinforcement ratio, and it does correspond to
a tension-controlled section (non-boldfaced number), as assumed. Thus, using this p-value
and the known section dimensions, the required tension steel area is

Ay = pbd = 0.012 X 300 mm X 435 mm = 1570 mm?

The selected reinforcement in step 2 essentially satisfies this requirement, and we could pro-
ceed directly to the strength check at the end of step 4.

4. Required checks. This T-section is part of a continuous floor system,
so Eq. (5-11M) applies directly. For the given concrete strength, 0.25 VfL is less than
1.4 MPa. So, use 1.4 MPa in Eq. (5-11M) to give

_ 1.4byd  1.4MPa X 300 mm X 435 mm

= = 435 mm’
smin =g 420 MPa i

The selected A, exceeds this value, so it is o.k.

To confirm that the tension steel is yielding and that this is a tension-controlled sec-
tion, we can start by using Eq. (5-18) to calculate the stress block depth, a, for the selected
steel area as

~ Ady 1560 mm? X 420 MPa
T 085f.b 085X 25MPa X 300 mm

= 103 mm

Using B; = 0.85 for 25 MPa concrete,

_a _ 103 mm
Bi 0.85

c = 121 mm

Then, using Eq. (4-18) to calculate the steel strain at the one level of tension steel,

_d—c _ 435mm — 121 mm

c Beu = 121 mm

e (= &) X 0.003 = 0.0078
This value is both greater that the yield strain for Grade-420 steel (g, = 0.0021) and the
strain limit for tension-controlled sections (0.005), so the assumptions that the steel is yielding
and that ¢ = 0.9 are valid.

Finally, using Eq. (5-15) to calculate the nominal moment strength and including the
strength reduction factor ¢,

oM, = ¢>A‘ny<d — g) = 0.9 X 1560 mm? X 420 N/mm?> (435 mm — 52 mm)

$M, = 226 X 10° N-mm = 226 kN-m >M, = 220 kN-m
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The strength of the section is adequate without being too excessive. So, select three No. 22
bars and two No. 16 bars, placed as shown in Fig. 5-29. |

5-4  DESIGN OF DOUBLY REINFORCED BEAM SECTIONS

As discussed in Chapter 4, the addition of compression reinforcement to an existing beam sec-
tion (Fig. 4-12) does not significantly increase the nominal moment strength of the section.
However, the addition of compression reinforcement does increase the ductility of a beam
section (Fig. 4-31). Thus, the use of compression reinforcement will permit the use of more ten-
sion reinforcement to increase the strength of a given beam section while keeping the section in
the tension-controlled region of behavior. That is, when evaluating the nominal moment
strength, M, for the section, it can be shown that the strain in the extreme layer of tension
reinforcement, g;, will exceed the tension-control limit of 0.005, and thus, the strength-reduc-
tion factor, ¢, can be set equal to 0.9.

Two common cases may result in the need to use compression reinforcement to
achieve the required nominal moment strength while keeping the section in the tension-
controlled region of behavior. If a designer wants to reduce the size, and thus the weight
of a beam, he/she could design for a larger percentage of tension reinforcement and use
compression reinforcement to keep the section in the tension-controlled region of behav-
ior. Also, when faced with severe architectural restrictions on the dimensions of a beam, a
designer may be forced to use a doubly reinforced section. For both of these cases, the
final beam section design likely would be classified as being in the transition region
(0.005 > &; > 0.002) or the compression-controlled region (g; = 0.002) of behavior
without the addition of compression reinforcement. This fact leads to the following design
procedure for doubly reinforced beam sections, which is a modification of the procedure
for singly reinforced sections.

The important first step in the design procedure for doubly reinforced beam sections is
the selection of a target value for the tension reinforcement ratio, p. A procedure similar to that
shown in Fig. 5-27 will be followed, but to obtain a larger initial p value (and thus a smaller
beam section), the strain in the tension steel layer, €,, shown in Fig. 5-27b, will be set to a lower
value. The author believes that a reasonable doubly reinforced beam section with respect to
ductility and deflection control will result if &, is initially set equal to 0.004 (Note: at the end of
this design procedure compression steel will be added to make this into a tension-controlled
section). Different initial values could be selected to result in somewhat larger (set g, to a larger
initial value) or somewhat smaller (set €, to a smaller initial value) beam sections. However,
large variations from the target g, value suggested here can result in a beam section that is either
too large (i.e., could be a singly reinforced section) or too small (cannot fit all of the tension and
compression reinforcements into the section practically). Whichever initial value is selected,
the final value of &, will need to be checked after the design of the doubly reinforced beam sec-
tion is completed.

Changing the value of g, to 0.004 in Fig. 5-27b results in the following value for the

distance to the neutral axis:
0.003 3
.- ()d 3,
0.003 + 0.004 7

For this value of ¢, the expression for the concrete compression force in Fig. 5-27d becomes

C. = 0.85 f.bBic = 0.85(3/7)B1fu(bd) = 0.36Bf.(bd)
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As before, enforcing section equilibrium (7 = C,), a solution for a target tension rein-
forcement ratio can be obtained as

T =C,
Asfy = 0.36 B1f(bd)
A, 036 Bifs
v (5-25)

After this target tension-reinforcement ratio has been established, the procedure used
for the design of singly reinforced beam sections can be followed. The reinforcement index,
w, is defined in Eq. (5-21), and the resulting R value is given by Eq. (5-22). The R value then
can be used in Eq. (5-23a) to establish the required value of the quantity, bd>. Then either by
selecting a specific value for the section width, b (e.g., equal to the column width), or setting
b equal to some percentage, «, times the effective depth, d, values can be determined for b,
d, and the total section depth, h. After these section dimensions have been established, the
procedure used earlier in this chapter to determine the required area of tension reinforce-
ment, A, when section dimension are known will be followed.

Using this procedure described will result in a beam section with a relatively large
amount of tension reinforcement. Compression reinforcement now must be added to give the
section more ductility and thus have it classified as tension-controlled (&, = 0.005). The only
guidance on how much compression reinforcement should be added to obtain reasonable
section ductility can be found in the earthquake-resistant design requirements for intermedi-
ate and special moment frames in ACI Code Chapter 21. ACI Code Section 21.5.2.2 requires
that the area of compression reinforcement at a column face should be greater than or equal
to one-half of the area of tension reinforcement. The author recommends using this require-
ment (A} = 0.5 A;) to select the area of compression reinforcement in any doubly rein-
forced beam section. After this step has been completed and all of the bars for the tension and
compression reinforcement have been selected and placed in the beam section, that section
must be checked to show that ¢M,, = M, and &; = 0.005, so ¢ can be set equal to 0.9.
This process for the design of doubly reinforced beam sections, including the required
checks, will be demonstrated in the following example.

EXAMPLE 5-6 Design of a Doubly Reinforced Beam Section

For this example, we will design a doubly reinforced section for the maximum negative
moment in the continuous girder C1-C2—-C3—-C4 in Fig. 5-30a, which is extracted from the
floor system in Fig. 5-4. For this girder, the maximum negative design moment will occur at
the exterior face of the first interior column (C2 or C3). The slab thickness and dimensions of
the floor beams are given. Use f. = 4000 psi and f, = 60 ksi. As in prior examples dealing
with this floor system, assume a superimposed dead load of 20 psf and a design live load of
60 psf. If the reader prefers to skip the initial steps that demonstrate the analysis of the
maximum design moment, he/she can jump to step 7 to proceed with the design of a doubly
reinforced beam section in negative bending.

1. Analysis model. As discussed earlier in this chapter, loads on a typical floor sys-
tem are assumed to flow from the slab to the floor beams and then to the girders and
columns. Thus, the girders will be carrying concentrated loads from the floor beams and
cannot be analyzed using the ACI moment coefficients. ACI Code Section 13.7.2.5 permits
the analysis of an isolated floor plus the columns above and below the floor in question. The
columns are assumed to be fixed at their far ends, so the structural analysis model to be used
in this example is shown in Fig. 5-31. It is assumed that the story heights above and below
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ember dimensions.
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C4
Fig. 5-30
Part of floor system
used for design for (c) Tributary area for analysis of maximum moment at
Example 5-6. column C2.

the floor level to be analyzed are 11 ft. The continuous girder C/-C2—-C3-C4 is loaded at
midspan by concentrated loads from the floor beams and by a distributed load due to i
weight. The values for those loads are given in the following sections

2. Reduced live load. The appropriate influence

ts own

Afmmlghg

moment in the girder at the face of column C2 shown F ig. 5-30b. Rec 11 that the influe:
area is a multiple (K;; = 2) of the tributary area, Ar, wh1 h is shown in Fig. 5-30c. Th
from Eq. (5-2),

246t 28t )
A=K Ar =2 (24 ft + 24 ft) X T + T = 2500 ft (5-2)
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Analysis model used for
Example 5-6.
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W/ N W/ W/
W, all spans
P P P
DL DL P 11 ft
T T T T
Cc1 c2 Cc3 c4
11 ft
77X 77X 77X 7N T
24 ft 24 ft 24 ft

With this area, the reduced live load is calculated using Eq. (5-3):

L =L

15 15
0.25 + ] = 60 psf[O.ZS + ]

VA, /2500

= 60 psf [0.25 + 0.30] = 33 psf (> 0.5 X 60 psf, 0.k.) (5-3)

3. Concentrated loads from floor beams. Distributed loads acting on the floor
beams will be transferred as concentrated load to the girders. The distributed dead load
from the 12-ft wide tributary width for the floor beams consists of superimposed dead load
(SDL), the weight of the floor slab, and the weight of the web of the floor beam.

w(SDL) = 20 psf X 12 ft = 240 Ib/ft = 0.24 k/ft

6in. 015k
Jab) = X X 12 ft = 0.90 k/ft
w(slab) = % Tk X gl

(20in. — 6in.) X 12in. .15k
X
144 in /¢ ft3

w(web) = = 0.175 k/ft

Thus, the total distributed dead load is
wp = w(SDL) + w(slab) + w(web) = 1.32 k/ft
Similarly, the distributed live load is
wy = L, X 12 ft = 33 psf X 12 ft = 396 Ib/ft = 0.40 k/ft

To maximize the negative moment at the face of column C2, we should assume that the live
load is acting only in the shaded portion of the floor system shown in Fig. 5-30b, and only
dead load is assumed to act in the unshaded portion of the floor system. In the portions of
the floor where the live load is acting, the total distributed load in the floor beams is

w, = 1.2wp + 1.6w,; or 1.4wp
1.2(1.32 k/ft) + 1.6(0.40 k/ft); or 1.4(1.32 k/ft)

2.22 k/ft; or 1.85 k/ft
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The larger value governs and will be used to determine the concentrated loads acting at
midspan for spans C1-C2 and C2-C3. Because the lengths for the floor beams do not vary
by more that 20 percent, the shear (reaction) coefficients from ACI Code Section 8.3.3
(given in Fig. 5-11) can be used to determine the end reactions from the floor beams, which
will be summed to obtain the concentrated loads acting on the girders. To determine the clear
span, €,,, of the floor beams, we will assume that the girders have a width of 1 ft (12 in.). This
conservative value is used to estimate the clear span, so the calculated loads from the floor
beams will not be underestimated.
For the exterior floor beams, the reaction at the first interior support is

¢ 28 ft — 1 ft
R(ext) = w, X ?” X 1.15 = 2.22 k/ft X (2) X 1.15 = 345k

For the interior floor beams, the reaction is
. ¢, 24 ft — 1ft
R(int) = w, X > = 222 k/ft X — =255k

Then, the factored concentrated load P, to be applied at midspan of girders C1-C2 and
C2-C3is

Ppi; = R(ext) + R(int) = 60.0 k

The subscript D + L was used here and in Fig. 5-31 because both the factored dead
and live load are acting on these two spans. In the last girder span C3—C4, it is assumed that
only the factored dead load is acting. To be consist over the total length of this continuous
girder, the same load factors that governed in spans C1-C2 and C2-C3 should be used in
span C3—C4. Thus, the factored distributed dead load from the floor beam is

w, = 1.2wp = 1.2 X 132 k/ft = 1.58 k/ft

Using this distributed dead load, the factored concentrated load P, to be applied at the
midspan of girder C3—-C4 is

28 ft — 11t 24 ft — 1 ft
Pp=w,) = X LI5 + =————| = 158 1ft X 27.0ft = 42.7k

4. Distributed load on the girder. Assuming that all of the other loads have been
accounted for, only the weight of the web of the girder must be included as a distributed load
acting on the girder. The girder should have a total depth greater than or equal to the depth
of the floor beams, so assume 4 = 22 in. For estimating the weight of the web, we will as-
sume that the width of the girder is equal to the width of the column, so b,, = 18 in. Thus,
the estimated weight of the girder web is

(22in. — 6in.) X 18in. .15k
X
144 in.>/f¢ ft>

Using a dead load factor of 1.2 to be consistant with load factors used for other loads on the
floor system;

w(web) = = 0.30 k/ft

w, = 1.2 X w(web) = 1.2 X 0.30 k/ft = 0.36 k/ft

5. Member stiffness for analysis model. As discussed in Section 5-3, in a typical
structural analysis of a reinforced concrete frame, we will assume the beams are cracked in
flexure and the columns are not cracked. Thus, for the 18 in. by 18 in. column we will use

1
I(col) = I = (18 in.)* = 8750 in.*
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For reinforced concrete beam sections, it is common to assume that the cracked moment of
inertia is approximately one-half of the gross moment of inertia. However, to determine the
gross moment of inertia for a typical beam (or girder) section that includes a portion of the
floor slab, we need to assume how much of the slab is effective in contributing to the flexural
stiffness of the slab-beam section. To avoid this issue, the author previously recommended
that the cracked stiffness of the slab—beam section can be approximated as being equal to the
gross moment of inertial for the full-depth web of the beam, that is,

I..(slab—beam) = I,(web) = llfzbwh3 (5-28)

For the girder C1-C2—C3—C4 in this example,
I,,(slab—beam) = é X 18in. X (22in.)* = 16,000 in.*

6. Results of structural analysis. Using the member stiffnesses and applying the
loads discussed here to the analysis model in Fig. 5-31 resulted in a maximum negative
moment of —229 k-ft at the exterior face of column C2. This moment will be used to
design the girder section at column C2.

7. Section design. We will use Eq. (5-25) to calculate a target value for the rein-
forcement ratio, p:
LYY
Sy
~0.36 X 0.85 X 4ksi
60 ksi

(5-25)

= 0.0204

This will be rounded to 0.02, and then use Egs. (5-21) and (5-22) to calculate » and R.

f),
®=p— (5-21)
— 002208 _ 59
4 ksi
and
R =wf (1 — 0.59) (5-22)

= 0.30 X 4ksi(1 — 0.59 X 0.30) = 0.988 ksi

Assuming ¢ = 0.9, use Eq. (5-23a) and M, = 229 k-ft to calculate the required value for bd>.

b = Mu
OR
_ 229Kt X 12in/ft

= 1 3
09 X 0988 ksi _ S000in.

As stated earlier, we want the total depth of the girder to equal or exceed that of the floor
beams supported by the girder. Thus, assume 42 = 20in. and d = h — 2.5in. = 17.5in. Use
this value of d to calculate the required width of the section, b (same as b,,).

3090in° 3090 in.?
=

= = 10.1 in.
d? (17.5in.)2

b

As before, we could select a value of b equal to the column width (18 in.), but to better
demonstrate the need for compression reinforcement, select » = 12 in. These dimensions
for the girder (5 = 20 in. and b = 12 in.) are smaller than assumed in step 4, but the resulting
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Fig. 5-32

Final girder section design at
face of column C2 for
Example 5-6.

reduction in the weight of the girder would not cause much of a reduction in the factored de-
sign moment. Thus, a recalculation of M, is not required.

With section dimensions selected, we can use the iterative design procedure for known
section dimensions to determine the required area of tension reinforcement, A,. Because this
is a negative bending region and the compression zone will be at the bottom of the girder
section (b = 12 in.), we will assume the moment arm, jd, in Eq. (5-16) will be set equal to
0.9 d, as assumed for narrow compression zones.

- MM ~ Mu
~¢h(d —a2) — $f(jd)
_ 229 k-ft X 12 in./ft

0.9 X 60 ksi X 0.9 X 17.5 in.

Ay

= 3.23in?

We will make one iteration using Eqgs. (5-17) and (5-16) to improve the required value for A;.

Aty
oo b (5-17)
0.85 11 b
3.231in.2 X 60 ksi )
=085 X 4ksi X 121, F7in
and M,
(5-16)

A= ———
$ 7 ¢f(d — al2)
229 k-ft X 12 in./ft

= = 3.36in.2
0.9 X 60 ksi(17.5 in. — 2.38 in.) n

Try three No. 8 bars over the web of the girder section and four No. 5 bars in the flanges
adjacent to the web as shown in Fig. 5-32. The resulting area of tension reinforcement is

A, =3 X 0.79in.2 + 4 X 0.31in.2 = 3.61 in.2

To complete the design of the section, select a compression steel area, Aj, greater than or
equal to one-half of the tension steel area. Try three No. 7 bars (A, = 3 X 0.60in.? =
1.80 in.?) to be placed in the bottom of the girder web, as shown in Fig. 5-32.

8. Check section strength, ¢-value and A i,. As discussed in Chapter 4, the
author recommends the use of a trial-and-error procedure to establish section equilib-
rium and calculate the section nominal moment capacity, M,, for a doubly reinforced
section. Following that procedure, section equilibrium is satisfied for ¢ = 4.45 in. For

—=25in.
=12in. =12in. | —170n.
L] ° 7. P ° ° e w— .
\ / 6in.
2 No. 5 bars \K 2 No. 5 bars
T~3No. 8 20in.
3 No.7
12in. =25in.
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the single layer of tension reinforcement, use Eq. (4-18) to determine the steel strain,

g (= &).
(=e) = (1) e

B (17.5 in. — 4.45in.
4.45 in

) 0.003 = 0.00880

This confirms that the tension steel is yielding (e, > &, = 0.00207) and that this section is
tension-controlled (g, = 0.005). Thus, the use of ¢ = 0.9 is confirmed.

As part of the iteration process, all of the section forces are calculated and put into
equilibrium. Those values were not shown here, but we will use the depth to the neutral axis,
¢, to calculate the other section forces and the nominal moment strength. Equation (4-29) is
used to calculate the strain in the compression steel,

¢=(C_d)au (4-29)
C
_ (M> 0.003 = 0.00131
4.45 in.

Then,

fi = Es} = 29,000 ksi X 0.00131 = 38.1 ksi = f, 4-31)
With this,

C, = AL (f5 — 0.85 f1) (4-30)

= 1.801in.2 (38.1 ksi — 0.85 X 4 ksi) = 62.5 kips
The concrete compression force is
C. = 085 f.bBc (4-13b)

Recall that a = Bic = 0.85 X 4.45in. = 3.78 in., which will be used to calculate M,. Calcu-
lating C.:

.= 0.85 X 4ksi X 12in. X 3.78 in. = 154 kips
Finally, the tension force is

T = Af, = 3.61in.% X 60 ksi = 217 kips

Because this is essentially equal to the sum of the compression forces (C. + C; = 217 k),
section equilibrium is verified. Finally, use Eq. (4-33) to calculate the section nominal mo-
ment strength.

M, = Cu(d — al2) + C;(d — d')

154k(17.5in. — 3.78in./2) + 62.5k(17.5in. — 2.5 in.)

2400 k-in. + 938 k-in. = 3340 k-in. = 278 k-ft
Using ¢ = 0.9 to check the moment strength of the section,
dM, = 0.9 X 278 k-ft = 251 k-ft > M, = 229 k-ft

Thus, the section has adequate strength without being significantly stronger than required.
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For completeness, we will confirm that the provided area of tension steel exceeds Ay,
in Eq. (5-11). For concrete with f,. = 4000 psi, the minimum value of 200 psi exceeds 3 \/]72 SO
200 psi 200 psi

smin = 5 byd = 50,000 poi X 12in. X 17.5in. = 0.70in.2 < A, (ok.)

Thus, use 3 No. 8 and 4 No. 5 bars as tension reinforcement and 3 No. 7 bars as
compression reinforcement, as shown in Fig. 5-32. |

5-5  DESIGN OF CONTINUOUS ONE-WAY SLABS

One-way slab-and-beam systems having plans similar to those shown in Fig. 5-1 are used
commonly, especially for spans of greater than 20 ft and for heavy live loads. Generally, the
ratio of the long side to the short side of the slab panels exceeds 2.0.

For design purposes, a one-way slab is assumed to act as a series of parallel, inde-
pendent 1-ft wide strips of slab, continuous over the supporting beams. The slab strips span
the short direction of the panel, as shown in Fig. 5-5. Near the girders, which are parallel to
the one-way slab strips, the floor load is supported by two-way slab action, which is dis-
cussed more fully in Chapter 13. This is ignored during the design of the one-way slab
strips but is accounted for in ACI Code Section 8.12.5, which requires reinforcement
extending into the top of the slabs on each side of the girders across the ends of the panel.
If this reinforcement is omitted, wide cracks parallel to the webs of the girders may
develop in the top of the slab.

Thickness of One-Way Slabs

Except for very heavily loaded slabs, such as slabs supporting several feet of earth, the slab
thickness is chosen so that deflections will not be a problem. Occasionally, the thickness
will be governed by shear or flexure, so these are checked in each design. Table 9.5(a) of the
ACI Code gives minimum thicknesses of slabs not supporting or attached to partitions or
other construction liable to be damaged by large deflections. No guidance is given for other
cases. Table A-9 gives recommended minimum thicknesses for one-way slabs that do and
do not support such partitions.

Sometimes, slab thicknesses are governed by the danger of heat transmission during a
fire. For this criterion the fire rating of a floor is the number of hours necessary for the tem-
perature of the unexposed surface to rise by a given amount, generally 250°F. For a 250°F
temperature rise, a 3-1/2 inch thick slab will give a 1-hour fire rating, a 5-in. slab will give a
2-hour fire rating, and a 6-1/4 inch slab will give a 3-hour fire rating [5-6]. Generally, slab
thicknesses are selected in %—in. increments up to 6 in. and in %—in. increments for thicker
slabs. Slab reinforcement is supported at the correct height above the forms on bent wire or
plastic supports called chairs. The height of available chairs may control the slab thickness.

Cover

Concrete cover to the reinforcement provides corrosion resistance, fire resistance, and a
wearing surface and is necessary to develop a bond between steel and concrete. ACI Code
Section 7.7.1 gives the following minimum covers for corrosion protection in slabs:

1. For concrete not exposed to weather or in contact with the ground; No. 11 bars
and smaller, 3/4 in.
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2. For concrete exposed to weather or in contact with the ground; No. 5 bars and
smaller, 1 1/2 in.; No. 6 bars and larger, 2 in.

3. For concrete cast against or permanently exposed to ground, 3 in.

The words “exposed to weather” imply direct exposure to moisture changes. The undersides
of exterior slabs are not considered exposed to weather unless subject to alternate wetting
and drying, including that due to condensation, leakage from the exposed top surface, or
runoff. ACI Commentary Section R7.7.6 recommends a minimum cover of 2 in. for slabs
exposed to chlorides, such as deicing salts (as in parking garages).

The structural endurance of a slab exposed to fire depends (among other things) on the
cover to the reinforcement. Building codes give differing fire ratings for various covers. Refer-
ence [5-6] states that, for normal ratios of service-load moment to ultimate moment, %—in. cover
will give a 1 %—hour fire rating, 1-in. cover about 1 % hours, and 1 %—in. cover about 3 hours.

Reinforcement

Reinforcement details for one-way slabs are shown in Fig. 5-33. The straight-bar arrangement
in Fig. 5-31a is almost always used in buildings. Prior to the 1960s, slab reinforcement was
arranged by using the bent-bar and straight-bar arrangement shown in Fig. 5-33b. The cut-off
points shown in Fig. A-5 can be used if the slab satisfies the requirements for use of the moment
coefficients in ACI Code Section 8.3.3. Cut-off points in slabs not satisfying this clause are
obtained via the procedure given in Chapter 8. One-way slabs normally are designed by assum-
ing a 1-ft-wide strip. The area of reinforcement then is computed as A/ft of width. The area of
steel is the product of the area of a bar times the number of bars per foot, or

12 in.
Afdft = A — (5-27)
bar spacing in inches, s
where A, is the area of one bar. In SI units, Eq. (5-27) becomes
1000 mm
Af/m = Ab< — ) (5-27M)
bar spacing in mm, s
Top bars at Top bars over
_ exterior beams interior beams Temperature bars
A A a2 A 2 ' Y ] '. 2 A A A ‘- e ! i & ] (
Bottom bars Temperature bars
| Exterior span B Interior span J Interior span’\
[ i A
Exterior beam Interior beam

(a) Straight top and bottom bars.

Bent bar Bent bars
=SS @ - -
Bottom bars/_r | l Temperature bars

Exterior span Interior span ! | Interior span \

=~ \

r

o

(b) Alternate straight and bent bar(obsolete).

Fig. 5-33 Sections through one-way slabs showing reinforcement.
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In most cases, the required steel area has been determined, so these expressions can be used
to solve for the maximum spacing to achieve the required steel area:

. Ab X 12 in.
s(inches) = —————— (5-28)
required A/ ft

and in metric units:

_ A, X 1000 mm

5-28M
required Ag/m ( )

s(mm

The maximum spacing of bars used as primary flexural reinforcement in one-way slabs
is three times the slab thickness or 18 in., whichever is smaller (ACI Code Section 7.6.5). The
maximum bar spacing also is governed by crack-control provisions (ACI Code Section 10.6.4),
as will be shown in Example 5-7 and then discussed more completely in Chapter 9.

Because a slab is thinner than the beams supporting it, the concrete in the slab shrinks
more rapidly than the concrete in the beams. This may lead to shrinkage cracks in the slab.
Shrinkage cracks perpendicular to the span of the one-way design strips will be crossed by
flexural reinforcement, which will limit the width of these cracks. To limit the width of
potential shrinkage cracks parallel to the one-way design strips, shrinkage and temperature
reinforcement is placed perpendicular to the primary flexural reinforcement. The amount of
reinforcement required is specified in ACI Code Section 7.12.2.1, which requires the fol-
lowing ratios of reinforcement area to gross concrete area:

1. Slabs with Grade-40 or -50 deformed bars: 0.0020

2. Slabs with Grade-60 deformed bars or welded-wire fabric (smooth or deformed):
0.0018

3. Slabs with reinforce-
ment with a yield strength, f,, in excess of 60,000 psi at a yield strain of 0.0035:
(0.0018 X 60,000 psi)/f,, but not less than
0.0014

Shrinkage and temperature reinforcement is spaced not farther apart than the smaller of five
times the slab thickness and 18 in. Splices of such reinforcement must be designed to devel-
op the full yield strength of the bars in tension.

It should be noted that shrinkage cracks could be wide even when this amount of
shrinkage reinforcement is provided [5-7]. In buildings, this may occur when shear walls,
large columns, or other stiff elements restrain the shrinkage and temperature movements.
ACI Code Section 7.12.1.2 states that if shrinkage and temperature movements are
restrained significantly, the requirements of ACI Code Sections 8.2.4 and 9.2.3 shall be
considered. These sections ask the designer to make a realistic assessment of the shrinkage
deformations and to estimate the stresses resulting from these movements. If the shrinkage
movements are restrained completely, the shrinkage and temperature reinforcement may
yield at the cracks, resulting in a few wide cracks. Approximately three times the minimum
shrinkage and temperature reinforcement specified in ACI Code Section 7.12.2.1 may be
required to limit the shrinkage cracks to reasonable widths. Alternatively, unconcreted con-
trol strips may be left during construction to be filled in with concrete after the initial
shrinkage has occurred. Methods of limiting shrinkage and temperature cracking in con-
crete structures are reviewed in [5-8].

ACI Code Section 10.5.4 specifies that the minimum flexural reinforcement in
the one-way design strips shall be at least equal to the amount required in ACI Code
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Section 7.12.2.1 for shrinkage and temperature, except that, as stated previously, the max-
imum spacing of flexural reinforcement is three times the slab thickness, or as limited by
ACI Code Section 10.6.4.

Generally, No. 4 and larger bars are used for flexural reinforcement in slabs, because
smaller bars or wires tend to be bent out of position by workers walking on the reinforce-
ment during construction. This is more critical for top reinforcement than for bottom
reinforcement, because the effective depth, d, of the top steel is reduced if it is pushed
down, whereas that of the bottom steel is increased.

EXAMPLE 5-7 Design of a One-Way Slab
Design the eight-span floor slab spanning east-west in Fig. 5-34. A typical 1-ft-wide

design strip is shown shaded. A partial section through this strip is shown in Fig. 5-35.
The underside of a typical floor is shown in Fig. 5-36. The interior beams are assumed to
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Fig. 5-34 Typical floor plan for Example 5-7.
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L 15ft — 0 in. 15ft — 0in. 15ft — O in.

U v U i = Y
o b . .

16 in. 14 in. 14 in.

Fig. 5-35 Section A-A for Example 5-7.

Fig. 5-36

Underside of beams
B3-B4-B3 in Fig. 5-34.
Photograph taken looking
north near east wall.

be 14-in. wide and the exterior (spandrel) beams are 16-in. wide. The concrete strength
is 4000 psi, and the reinforcement strength is 60 ksi. Assume a superimposed dead load of
20 psf to account for floor covering, the ceiling, and mechanical equipment. In consultation
with the architect and owner, it has been decided that all floors will be designed for a live
load of 80 psf, including partitions. This has been done to allow flexibility in office lay-
outs. Note: No live-load reduction is allowed for one-way slabs.

1. Estimate the thickness of the floor. The initial selection of the floor thick-
ness will be based on ACI Table 9.5(a), which gives the minimum thicknesses (unless
deflections are computed) for members not supporting partitions likely to be damaged
by large deflections. In consultation with the architect and owner, it has been decided
that the partitions will be movable metal partitions that can accommodate floor
deflections.
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End bay:
) ¢ 172in. )
(min)h = iR TR 7.17 in.
Interior bays:
(mi )h—i—@—643'
min >3 >3 43 in.

Therefore, try a 7-in. slab and assume that we will check deflections in the exterior span
(Chapter 9). Using %—in. clear cover and No. 4 bars,

d = h — clear cover — dp/2 = 7in. — 0.75in. — 0.5in./2 = 6in.

Before the thickness is finalized, it will be necessary to check whether it is ade-
quate for moment and shear. Shear strength is discussed in Chapter 6, but a short check on
the slab thickness will be made in step 5 of this example.

2. Compute the unfactored loads. Given the thickness selected in step 1, it is now
possible to compute the unfactored uniform loads. The dead load is as follows:

Slab:
w(slab) = —M 5 150 /e
slal = —
12 inft.

87.5 Ib/ft? of floor surface

Superimposed dead loads: w(SDL) = 20 psf
Total dead load: wp = 108 psf
Live load: w;, = 80 psf

3. Select load and strength-reduction factors. Check the two-factored load com-
binations as used in the prior examples for a continuous floor system.

Load combination 9-1: w, = 1.4 X wp = 1.4 X 108 psf = 151 psf

Load combination 9-2: w, = 1.2 X wp + 1.6 X w,,

1.2 X 108 psf + 1.6 X 80 psf = 258 psf

The second load combination governs and will be used in the following. Assume the slab is
tension-controlled, and thus, ¢ = 0.9.

4. Check whether the slab thickness is adequate for the maximum moment. Be-
cause w; < 3wp and the other requirements of ACI Code Section 8.3.3 are met, use the
ACI moment coefficients (Fig. 5-11) to calculate the design moments. If the slab thickness
is adequate for the largest design moment, it will be acceptable at all other locations. The
maximum moment, M,, will occur at the first or second interior support.

From ACI Code Section 8.3.3, the moment at the exterior face of the first interior
support is

w, b

10

M, = —

where ¢, for computation of the negative moment at interior supports is the average of the
clear spans of the adjacent spans. From Fig. 5-34,
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157 in. + 166 in. 1ft
¢, (avg) = ( 2 ) X D 13.5ft
258 psf X 1 ft X (13.5 ft)?

! 10

= 4700 Ib-ft/ft of width = 4.70 k-ft/ft

For the second interior support,

w, b

M, =
" 11

where
¢,(avg) = 166 in. = 13.8 ft

258 psf X 1 ft X (13.8 ft)?
M, = 0 = 4470 Ib-fu/ft = 4.47 k-f/ft

Therefore, maximum negative design moment is M, = 4.70 k-ft/ft.

One-way slabs normally have a very low reinforcement ratio, p. Thus, assume the
flexural reinforcement moment arm, jd, is equal to 0.95 d, and use Eq. (5-16) to obtain an
initial value for the required steel area, A, per one-foot width of slab.

M, M, 4.70 k-ft/ft X 12 in./ft

A. = = =
s a) $fy(jd) 0.9 X 60ksi X 0.95 X 6in.

= = (.183 in.%/ft
¢fy(d 5

As was done for the design of beam sections, we can go through one iteration with Egs. (5-16)
and (5-17) to improve this value. Using b = 1 ft = 12 in. in Eq. (5-17),

_ Ady 0183 in? X 60 ksi
“T 085 b 085X 4ksi X 121in.

= 0.269 in.

Because of this very small value for q, it is clear that ¢ = a/f3; is significantly less than 3/8
of d, and thus, this is a tension-controlled section for which ¢ = 0.9. Then, from Eq. (5-16),

M, 4.70 k-ft/ft X 12 in./ft

— = —— .
| a) 0.9 X 60 ksi(6in. — 0.135 in.)

d)fy(d - E

= (.178 in.%/ft

For this required steel area, the steel reinforcement ratio is

_AJft0178in% 0.00247
P~ "%d ~ 12in. X 6in.
This is a very low reinforcement ratio, as is common in most slabs—so clearly, the selected
slab thickness is adequate for the design bending moments. Before selecting reinforcement,
we will quickly check to be sure that this slab thickness is also adequate for shear strength.

5. Check whether thickness is adequate for shear. The topic of shear strength in
beams and slabs will be covered in Chapter 6. For simplicity here, we will show a check of the
shear strength at the exterior face of the first interior support. Using the ACI coefficients from
Code Section 8.3.3 (Fig. 5-11) the shear at this section is increased by 15 percent to account
for an unsymmetrical moment diagram in the exterior span:
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1.15w,0,  1.15 X 258 Ib/ft X 15710/ it

" 2 2
1940 1b per 1-ft width of slab

In Chapter 6, we will introduce an equation (Eq. 6-8b) that is commonly used to determine
the shear that can be resisted by the concrete in a beam or one-way slab:

V. = 2AVfLbyd (6-8b)

where A is taken as 1.0 for normal weight concrete. For this equation, the concrete strength
must be given in psi units and the units obtained from the first term of the equation,
ZA\/]TQ, also is to be in psi units. Using a 1-ft-wide strip of slab (b = b,, = 12 in.),

V. =2 X 1V4000 X 12 in. X 6in. = 9110 1b per 1-ft width of slab

ACI Code Section 9.3.2.3 gives ¢ = 0.75 for shear and torsion. Thus, ¢V, = 0.75 X 9110 Ib/ft
= 6830 Ib/ft > V,,.

Therefore, use & = 7 in. When slab thickness is selected on the basis of deflection control,

moment and shear strength seldom require an increase in slab thickness.

6. Design of reinforcement. The calculations shown in Table 5-3 are based on a
1-ft strip of slab. First, several constants used in that table must be calculated.

Line 1—The clear spans, ¢,,, were computed as shown in Fig. 5-34.
e Endbay, ¢, = 15ft X 12in/ft — 16in. — 14in/2 = 157 in. = 13.1 ft.
 Interior bay, €, = 15 ft. X 12 in/ft — 2(14in./2) = 166 in. = 13.8 ft.

¢ For the calculation of design moments at interior supports, €, is taken as the
average of the two adjacent spans, so ¢, (avg) at the first interior support is
161.51in. = 13.5 ft.

Lines 2, 3, and 4—For line 2, the value of w, comes from step 3. The moment coef-
ficients in line 3 come from Fig. 5-11. At the first interior support the coefficient of —1/10
is selected because it will govern over the alternate coefficient of —1/11 in Fig. 5-11. The
moments in line 4 are computed as M,, = w, £ % X moment coefficient from line 3.

Line 5—The maximum factored moment calculated in line 4 occurs at the first interior
support, as previously determined in step 4. The required reinforcement at this section also
was calculated in step 4 as 0.178 in.%/ft. Because the moment arm, (d — al2), will be simi-
lar at all design sections, we can use the solution at this section to develop a scaling factor
that can be applied at all other sections.

TABLE 5-3 Calculations for One-Way Slab for Example 5-7

Line No./ External Exterior First Interior Interior Section Interior
Item Support Midspan Support Midspan Support

1. ¢, (ft) 13.1 13.1 13.5 13.8 13.8

2. w,,2, (k-ft/ft) 44.3 44.3 47.0 49.1 49.1

3. M coefficient —-1/24 1/14 -1/10 1/14 -1/11

4. M, (k-ft/ft) 1.84 3.16 4.70 3.51 4.47

5. Ay(req’d), (in.%/ft) 0.070 0.120 0.178 0.133 0.169

6. Ay(min), (in.%/ft) 0.151 0.151 0.151 0.151 0.151

7. Select bars No. 4 at 12 in. No. 4 at 12 in. No.4at12in. No.4 at 12 in. No. 4 at 12 in.

8. Final A, (in.%/ft) 0.20 0.20 0.20 0.20 0.20
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Fig. 5-37
Slab reinforcement for
Example 5-7.

A (in/ft) 0178 inMft 0.0379 in./ft
M, (k-fuft)  4.70 k-fu/ft ' k-ft/ft

This value was used to calculate all of the other required steel areas in line 5 of Table 5-3.

Line 6—Minimum reinforcement often governs for one-way slabs. Compute
the minimum flexural reinforcement using ACI Code Section 10.5.4, which refers to
ACI Code Section 7.12.2.1 for the amount of minimum reinforcement for temperature
and shrinkage effects:

Agmin = 0.0018 X b X h = 0.0018 X 12in. X 7in. = 0.151 in.2/ft

For one-way slab sections where there is a required area of flexural reinforcement, as indi-
cated in line 5 for all slab sections, ACI Code Section 7.6.5 limits the spacing between that
reinforcement to the smaller of 3/ and 18 in. For this case, the 18 in. value governs.

7. Check reinforcement spacing for crack control. To control the width of cracks
on the tension face of the slab, ACI Code Section 10.6.4 limits the maximum spacing of the
flexural reinforcement closest to the tension face of the slab to

40,000 40,000
s =15 T — 2.5¢,, but not greater than, 12 T
N

s

where f; is the stress in the tension steel in psi, which can be taken as 2/3 fy = 40,000 psi for
Grade-60 steel, and c,. is the clear cover from the tension face of the slab to the surface of the
reinforcement nearest to it, taken as 0.75 in. for this one-way slab example. Thus,

(40,000 . . .
s = 15(1n.)() — 25X 0.751in. = 13.1 in., but = 12(1n.)<

in.
40,000

40,000> B
40,000/

This result overrides the 18-in. maximum spacing from the previous step. Thus, maximum
bar spacing is 12 in., which was used in line 7 of Table 5-3.

8. Select the top and bottom flexural steel. The choice to use No. 4 bars at a
spacing of 12 in. in line 7 of Table 5-3 satisfies the strength, minimum area, and spacing
requirements at all design locations. If a wider variety of required steel areas had been
calculated, the choice of the reinforcement in line 7 could have been made by using
Eq. (5-27). The resulting steel arrangement is shown in Fig. 5-37. The cut-off points,
which will be discussed in Chapters 8 and 10, have been determined by using Fig. A-5¢
because the slab geometry permitted the use of the ACI moment coefficients.

9. Determine the shrinkage and temperature reinforcement for transverse
direction. ACI Code Section 7.12.2.1 requires shrinkage and temperature reinforcement
perpendicular to the span of the one-way slab:

No. 4 at12in. No. 4 at 12 in. No. 4 at 12 in.
3 ft — 4in, 4ft—4in. 4 ft — 4in. 4ft—4in. Temperature steel
No 4 at15in.
\
LI LNo 4at12in. LI ¥N0.4at12in. U

—->| |<— 6 in. (typical)
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A(S&T) = 0.0018 X b X h = 0.0018 X 12in. X 7in. = 0.151 in.ft

Maximum spacing < 5 X h, and =18 in. (18 in. governs)

Therefore, provide No. 4 bars at 15 in. o.c., as shrinkage and temperature reinforce-
ment. Using Eq. (5-27), this results in a steel area equal to 0.160 in.*/ft. These bars can be
placed either in the top or bottom of the slab. If they are placed at the top, they should be
placed below the top flexural reinforcement to provide the larger effective depth for that
flexural reinforcement, and similarly, they should be placed on top of the bottom layer of
flexural reinforcement, as shown in Fig. 5-37. Chairs will be used to support the flexural
steel during placement of concrete.

10. Design the transverse top steel at girders. Due to localized two-way action ad-
jacent to the girders (G1, G2, G3, etc., in Fig. 5-34), ACI Code Section 8.12.5.1 requires that
top transverse reinforcement be designed for the slab to carry the factored floor load acting
on the effective width of the overhanging flange (slab), which is assumed to act as a can-
tilevered beam. The definitions for the width of the overhanging slab are given in ACI Code
Sections 8.12.2 and 8.12.3 for interior and exterior girders, respectively.

For this floor system, the overhang length for the interior girders (G3) is more crit-
ical and can be determined to have an effective cantilevered length of 3.25 ft. Calling this
length €, and using the factored load for the floor calculated in step 3, the factored de-
sign moment for this cantilever is

¢, (3.25 ft)?
M, = w,| = | = 0258 ksf———— X 1ft = 1.36 k-fu/ft

Because the steel to be provided will be flexural reinforcement (not temperature and
shrinkage reinforcement), the maximum spacing for these bars will be 12 in., as deter-
mined in step 7. Thus, it is reasonable to use No. 4 at 12 in., as was used for the flexural
reinforcement in the direction of the one-way slab strips. To determine the nominal moment
capacity for this reinforcement, we will need to use a smaller effective flexural depth, d,
because these bars will be placed below the primary flexural reinforcement, as shown in
Fig. 5-37. The effective depth for this transverse steel essentially will be one bar diameter
smaller than the 6 in. value determined for the primary flexural reinforcement in step 1
(i.e.,d = 6 — 0.51in.= 5.5 in.). Equation (5-17) can be used to determine the depth of the
compression stress block:

_ Ady 02000 X 60 ksi
CT 0851 b 085X 4ksi X 12in.

= 0.294 in.

Because this is very low, it is clear that c¢/d is less that 3/8, so this is a tension-controlled sec-
tion with ¢ = 0.9. Then, the reduced nominal moment capacity is

M, = GAf, (d — a/2) = 0.9 X 0.20in.2 X 60 ksi(5.5 in. — 0.147 in.)
= 57.8 k-in/ft = 4.82 k-fu/ft

Because this exceeds M,,, the use of No. 4 bars at 12 in. as top reinforcement in the trans-
verse direction over all of the girders will satisfy ACI Code Section 8.12.5 |

This completes the design of the one-way slab in Fig. 5-34. The slab thickness was
selected in step 1 to limit deflections. A 6.5-in. thickness would be acceptable for the six
interior spans, but a larger thickness was required in the end spans. If the entire floor slab
was decreased to a 6-in. thickness, instead of the 7-in. thickness used in the example, about
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36 cubic yards of concrete could be saved per floor, with a resultant saving of 145 kips of
dead load per floor. In a 20-story building, that amount represents a considerable saving.
With this in mind, the floor could be redesigned with a 6-in. thickness, and the computed
deflections can be shown to be acceptable. The calculations are not be given here because
deflections will be discussed in Chapter 9.

EXAMPLE 5-7M Design of a One-Way Slab Section in Sl units

Because the prior example contains many details regarding minimum slab thickness
for deflection control and shear strength, this example will only concentrate on the flexural
design of a one slab section and the requirement for shrinkage and temperature reinforce-
ment in the transverse direction. Assume we have a slab thickness of 160 mm and a factored
design moment, M,, = 35 kN-m. Note: In SI units one-way slabs are typically designed
using a 1-meter strip. Assume the material strengths are, fi. = 25 MPa (8; = 0.85) and
fy = 420 MPa.

1. Effective flexural depth, d. ACI Metric Code Section 7.7.1 requires a minimum
clear cover of 20 mm for slabs using Grade-420 reinforcement of sizes No. 36 and smaller.
Assuming that we will use a bar size close to a No. 16 bar, the effective depth is

d = h — clear cover — dp/2 = 160 mm — 20 mm — 16 mm/2 = 132 mm

2. Select flexural reinforcement. With the slab depth selected, we can treat this
as a section design where the member dimensions are known and solve directly for the
required area of tension reinforcement, A;. Because slabs are usually lightly reinforced,
we can assume that this will be a tension-controlled section (¢ = 0.9) and that the flex-
ural moment arm, jd, in Eq. (5-16) is 0.95 d. Thus,

M, 35 kN-m 35 X 10° N-mm )
= = — = = 738 mm
¢fy(d —al2)  ¢f,(jd) 0.9 X 420 N/mm X 0.95 X 132 mm

As

As has been done in previous examples, we will go through one iteration using Eqgs. (5-16)
and (5-17) to improve this value. Using » = 1 m = 1000 mm in Eq. (5-17),

Afy 738 mm? X 420 MPa

= = = 146
T 085/ 085 x 25 MPa X 1000 mm mm

The depth to the neutral axis, ¢ = a/B; = 14.6/0.85 = 17.2 mm, is well below 3/8 of
d; (d = d,), so this is a tension-controlled section and we can use ¢ = 0.9. Using the
calculated value of a, Eq. (5-16) gives

M, 35 X 10® N-mm/m

= = = 743 mm’
fy(d — al2) 0.9 X 420 N/mm?(132mm — 7.3 mm
y

As

Before selecting bars, we must check if the requirement for minimum reinforcement
to control cracking due to temperature and shrinkage effects governs for this section.
For slabs using reinforcement with Jg = 420 MPa, ACI Metric Code section 7.12.2.1
requires

Agmin = 0.0018 X b X i = 0.0018 X 1000 mm X 160 mm = 288 mm%m



Fig. 5-38
Final slab section design for
Example 5-7M.
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No. 16 at 250 mm, flexural ~ NO- 13 at 450 mm shrinkage

reinforcement and temperature reinforcement
250 mm /
d /
[ ] [ ] [ ] [ ] ®
8 2 160 mm

Clearly, this does not govern. So, using the required area of reinforcement calculated
above and assuming that we will use a No. 16 bar, Eq. (5-28M) can be used to solve for
the maximum permissible spacing between bars to satisfy the nominal moment strength
requirement.

A, X 1000 mm 199 mm? X 1000 mm
= - = = 268 mm
(required) Ay/m 743 mm?

Before selecting the final bar spacing, we must also check the maximum spacing limit to
control flexural crack widths given in ACI Metric Code Section 10.6.4. The value for maxi-
mum bar spacing in that section is

280 280
s =380 — | — 2.5¢, = 300( ——
Is Is

where f; can be taken as 2/3 of f, (2/3 X 420 MPa = 280 MPa) and c. is the cover to the
bar in question. For a slab design, this is the same as the clear cover (20 mm). So,

280 MPa

ZSOBAPa)
280 MPa

— 25 X2 = = —_—
) 5 0mm = 330 mm = 300 mm (280 MPa

s = 380mm(

The upper limit of 300 mm governs here, but the flexural strength requirement governs
overall (s = 268 mm). Thus, use s = 250 mm as shown for a cross section of the slab in
Fig. 5-38. This also satisfies the upper limit on spacing for flexural reinforcement given in
ACI Metric Code Section 7.6.5, which states that the maximum spacing shall be less than
the smaller of 34 and 450 mm.

3. Temperature and shrinkage reinforcement. For one-way slabs, reinforcement
must be placed perpendicular to the primary flexural reinforcement to control cracking due
to temperature and shrinkage effects. The required area calculated in step 2 can be used in
Eq. (5-27M) to determine the maximum permissible spacing. Assuming that we will use a
No. 13 bar for this reinforcement,

Ap X 1000mm 129 mm? X 1000 mm
= - = = 450 mm
(required ) Ay/m 288 mm?

ACI Metric Code Section 7.12.2.2 states that the spacing of temperature and shrinkage
reinforcement shall not exceed the smaller of 54 and 450 mm. Thus, use No. 13 bars at
450 mm, as shown in Fig. 5-38, to satisfy these requirements. |
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PROBLEMS

5-1

5-2

5-3

Video

Give three reasons for the minimum cover require-
ments in the ACI Code. Under what circumstances
are larger covers used?

Give three reasons for using compression rein-
forcement in beams.

Design a rectangular beam section (i.e., select b,
d, h, and the required tension reinforcement) at
midspan for a 22-ft-span simply supported rectan-

solution SUlar beam that supports its own dead load, a su-

5-4

5-5

perimposed service dead load of 1.25 kip/ft, and a
uniform service load of 2 kip/ft. Use the procedure
in Section 5-3 for the design of beam sections when
the dimensions are unknown. Use f7. = 4500 psi
and f, = 60 ksi.

The rectangular beam shown in Fig. P5-4 carries its
own dead load (you must guess values for b and &)
plus an additional uniform, service dead load of 0.5
kip/ft and a uniform, service live load of 1.5 kip/ft.
The dead load acts on the entire beam, of course, but
the live load can act on parts of the span. Three
possible loading cases are shown in Fig. P5-4. Use
load and strength reduction factors from ACI Code
Sections 9.2 and 9.3.

(a) Draw factored bending-moment diagrams for
the three loading cases shown and superimpose
them to draw a bending-moment envelope.

(b) Design a rectangular beam section for the maxi-
mum positive bending moment between the sup-
ports, selecting b, d, h, and the reinforcing bars.
Use the procedure in Section 5-3 for the design
of beam sections when the dimensions are un-
known. Use f. = 5000 psi and f, = 60 ksi.

(c) Using the beam section from part (b), design
flexural reinforcement for the maximum nega-
tive moment over the roller support.

Design three rectangular beam sections (i.e., select b
and d and the tension steel area A;) to resist a fac-
tored design moment, M, = 260 k-ft. For all three
cases, select a section with b = 0.5d and use
fe = 4000 psi and f;, = 60 ksi.

(a) Start your design by assuming that &, = 0.0075
(as was done in Section 5-3).

(b) Start your design by assuming that &, = 0.005.

(c) Start your design by assuming that ¢, = 0.0035.
You will probably need to add compression rein-
forcement to make this a tension-controlled section.

5-6

5-7

5-8

5-9
5-10

5-12

(d) Compare and discuss your three section
designs.

You are to design a rectangular beam section to
resist a negative bending moment of 275 k-ft.
Architectural requirements will limit your beam
dimensions to a width of 12 in. and a total depth of
18 in. Using those maximum permissible dimen-
sions, select reinforcement to provide the required
moment strength following the ACI Code provi-
sions for the strength reduction factor, ¢. Use
fe = 5000 psiand f, = 60 ksi.

All of the following problems refer to the floor
plan in Fig. P5-7.

For column line 2, use the ACI moment coeffi-
cients given in ACI Code Section 8.3.3 to
determine the maximum positive and negative fac-
tored moments at the support faces for columns A2
and B2, and at the midspans of an exterior span
and the interior span.

Repeat Problem 5-7, but use structural analysis soft-
ware to determine the maximum positive and nega-
tive moments described. The assumed beam, slab,
and column dimensions are given in the figure.
Assume 12-ft story heights above and below this floor
level. You must use appropriate live load patterns to
maximize the various factored moments. Use a table
to compare the answers from Problems 5-7 and 5-8.

Repeat Problems 5-7 and 5-8 for column line 1.

Repeat Problems 5-7 and 5-8 for the beam
m-n—o—p in Fig. P5-7. Be sure to comment on the
factored design moment at the face of the spandrel
beam support at point m.

Repeat Problems 5-7 and 5-8 for the one-way slab
strip shown in Fig. P5-7. For this problem, find the
factored design moments at all of the points, a
through 7, indicated in Fig. P5-7.

Use structural analysis software to find the maximum
factored moments for the girder on column line C.
Find the maximum factored positive moments at o
and y, and the maximum factored negative moments
at columns C1, C2, and C3.

For all of the following problems, use
f¢ = 4000 psi and f, = 60 ksi. Continue to use
Fig. P5-7.



Fig. P5-4

Fig. P5-7
Floor plan for various prob-
lems in Chapter 5.

@

(b}

Service live load = 1.5 kips/ft

Problems

Additional service
. dead load = 0.50 kip/ft
24 ft 9 ft
- Live load
e Dead load
- Live load
Dead load
vy vy Vv
® ® © ©
30 ft 25 ft 30 ft
12 ft
m n o] Pl v
12 ft
11 ft
w X y z| y
11 ft
11 ft
11 ft
\ . . __
12in. X 24 in. 16 in. > 16 in. 12 ft
(all beams) (all columns)

Slab _thécil;ness 12 ft

1t »‘ }4— SDL = 20 psf

LL = 50 psf
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5-13 Assume the maximum factored positive moment
near midspan of the floor beam between columns
A2 and B2 is 60 k-ft. Using the beam dimensions
given in Fig. P5-7, determine the required area of
tension reinforcement to satisfy all of the ACI
Code requirements for strength and minimum re-
inforcement area. Select bars and provide a
sketch of your final section design.

Video
Solution

5-14 Assume the maximum factored negative moment at
the face of column B2 for the floor beam along col-
umn line 2 is —120 k-ft. Using the beam and slab
dimensions given in Fig. P5-7, determine the re-
quired area of tension reinforcement to satisfy all
the ACI Code requirements for strength and mini-
mum reinforcement area. Select bars and provide a
sketch of your final section design.

5-15 Assume the maximum factored negative moment at
support n of the floor beam m-n—o—p is —150 k-ft.
Using the design procedure for singly reinforced

e beam sections given in Section 5-3 (design of beams
when section dimensions are not known), determine
the beam dimensions and select the required area of
tension reinforcement to satisfy all the ACI Code
requirements for strength and minimum reinforce-
ment area. Select bars and provide a sketch of your

final section design.
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5-16 Assume the maximum factored negative moment at
the face of column C2 for the girder along column line
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required areas of tension and compression reinforce-
ment to satisfy all the ACI Code requirements for
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(a) Using the given slab thickness of 6 in., deter-
mine the required reinforcement size and spac-
ing at both of these locations to satisfy ACI
Code flexural strength requirements. Be sure to
check the ACI Code requirements for mini-
mum flexural reinforcement in slabs.

(b) At both locations, determine the required bar
size and spacing to be provided in the transverse
direction to satisfy ACI Code Section 7.12.2
requirements for minimum shrinkage and tem-
perature reinforcement.

(c) For both locations, provide a sketch of the final
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in Beams/

6-1 INTRODUCTION

A beam resists loads primarily by means of internal moments, M, and shears, V, as shown
in Fig. 6-1. In the design of a reinforced concrete member, flexure is usually considered
first, leading to the size of the section and the arrangement of reinforcement to provide the
necessary moment resistance. Limits are placed on the amounts of flexural reinforcement
which can be used to ensure that if failure was ever to occur, it would develop gradually,
giving warning to the occupants. The beam is then proportioned for shear. Because a shear
failure is frequently sudden and brittle, as suggested by the damage sustained by the building
in Fig. 6-2 [6-1], the design for shear must ensure that the shear strength equals or exceeds
the flexural strength at all points in the beam.

The manner in which shear failures can occur varies widely with the dimensions,
geometry, loading, and properties of the members. For this reason, there is no unique way
to design for shear. In this chapter, we deal with the internal shear force, V, in relatively
slender beams and the effect of the shear on the behavior and strength of beams. Examples
of the design of such beams for shear are given in this chapter. Footings and two-way slabs
supported on isolated columns develop shearing stresses on sections around the circumfer-
ence of the columns, leading to failures in which the column and a conical piece of the slab
punch through the slab (Chapter 13). Short, deep members such as brackets, corbels, and
deep beams transfer shear to the support by in-plane compressive stresses rather than shear
stresses. Such members are considered in Chapter 17.

Chapter 21 of the ACI Code gives special rules for shear reinforcement in members
resisting seismic loads. These are reviewed in Chapter 19.

This chapter uses four different models of the shear strength of beams. Each high-
lights a different aspect of the behavior and strength of beams failing in shear:

1. The stresses in uncracked beams are presented to explain the onset of shear
cracking.

2. This is followed by plastic truss models of beams with shear cracks. The truss
model is used to explain the effect of shear cracks on the forces in the longitudinal tension
reinforcement and in the compression flanges of the beam.

3. The ACI Code design procedure for shear in beams is presented and is illustrated
by examples.
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(a) Beam.

R R
N |
i A 1

(b) Internal forces on section A-A.

v

NN

v
dx
Fig. 6-1

Internal forces in a beam. (c) Internal forces on portion between sections A-A and B-B.

Fig. 6-2

Shear failure: U.S. Air Force
warehouse. Note the small size
and large spacing of the vertical
web reinforcement that has
fractured. (Photograph cour-
tesy of C. P. Siess.)
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4. Several comprehensive models of cracked beams loaded in shear are reviewed,
on the basis of recent revisions to shear design theory. These models are mentioned
because, in the author’s opinion, they come close to being the final explanation of the shear
strength of reinforced concrete members [6-2].

Items 1 and 2 in this list are included to provide background for the ACI Code design
methods. Item 4 shows the effects of other variables that affect the shear strength of
slender beams.

6-2  BASIC THEORY

Stresses in an Uncracked Flastic Beam

From the free-body diagram in Fig. 6-1c, it can be seen that dM/dx = V. Thus shear
forces and shear stresses will exist in those parts of a beam where the moment changes
from section to section. By the traditional theory for homogeneous, elastic, uncracked
beams, we can calculate the shear stresses, v, on elements 1 and 2 cut out of a beam
(Fig. 6-3a), using the equation
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v == (6-1)
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(a) Flexural and shear stresses acting on elements in the shear span. (b) Distribution of
shear stresses.
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(c) Principal stresses on elements in shear span.

Fig. 6-3

Normal, shear, and principal stresses in a homogeneous uncracked beam.
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Fig. 6-4

Principal compressive stress
trajectories and inclined
cracks. (Photograph courtesy
of J. G. MacGregor.)

where

V = shear force on the cross section
I = moment of inertia of the cross section

Q = first moment about the centroidal axis of the part of the cross-sectional area
lying farther from the centroidal axis than the point where the shear stresses are
being calculated

b = width of the member at the section where the stresses are being calculated

Equal shearing stresses exist on both the horizontal and vertical planes through an
element, as shown in Fig. 6-3a. The shear stresses on the top and bottom of the elements
cause a clockwise couple, and those on the vertical sides of the element cause an counter-
clockwise couple. These two couples are equal and opposite in magnitude and hence can-
cel each other out. The horizontal shear stresses are important in the design of construction
joints, web-to-flange joints, and regions adjacent to holes in beams. For an uncracked rec-
tangular beam, Eq. (6-1) gives the distribution of shear stresses shown in Fig. 6-3b.

The elements in Fig. 6-3a are subjected to combined normal stresses due to flexure, f,
and shearing stresses, v. The largest and smallest normal stresses acting on such an element
are referred to as principal stresses. The principal stresses and the planes they act on are found
by using a Mohr’s circle for stress, as explained in any mechanics-of-materials textbook. The
orientations of the principal stresses on the elements in Fig. 6-3a are shown in Fig. 6-3c.

The surfaces on which principal tension stresses act in the uncracked beam are plotted
by the curved lines in Fig. 6-4a. These surfaces or stress trajectories are steep near the bottom
of the beam and flatter near the top. This corresponds with the orientation of the elements
shown in Fig. 6-3c. Because concrete cracks when the principal tensile stresses exceed the
tensile strength of the concrete, the initial cracking pattern should resemble the family of
lines shown in Fig. 6-4a.

The cracking pattern in a test beam with longitudinal flexural reinforcement, but no
shear reinforcement, is shown in Fig. 6-4b. Two types of cracks can be seen. The vertical
cracks occurred first, due to flexural stresses. These start at the bottom of the beam where
the flexural stresses are the largest. The inclined cracks near the ends of the beam are due to
combined shear and flexure. These are commonly referred to as inclined cracks, shear
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(a) Principal compressive stress trajectories in an uncracked beam.
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(b) Photograph of half of a cracked reinforced concrete beam.
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cracks, or diagonal tension cracks. Such a crack must exist before a beam can fail in shear.
Some of the inclined cracks have extended along the reinforcement toward the support,
weakening the anchorage of the reinforcement.

Although there is a similarity between the planes of maximum principal tensile
stress and the cracking pattern, this relationship is by no means perfect. In reinforced
concrete beams, flexural cracks generally occur before the principal tensile stresses at
midheight become critical. Once a flexural crack has occurred, the tensile stress perpen-
dicular to the crack drops to zero. To maintain equilibrium, a major redistribution of
stresses is necessary. As a result, the onset of inclined cracking in a beam cannot be pre-
dicted from the principal stresses unless shear cracking precedes flexural cracking. This
very rarely happens in reinforced concrete, but it does occur in some prestressed con-
crete beams.

Average Shear Stress between Cracks

The initial stage of cracking starts with vertical cracks which, with increasing load, exten