## In the Name of GOD



Problem 8-2 Each member of the truss shown is made of aluminum and has the cross-sectional area shown. Using $E=72 \mathrm{GPa}$, determine the strain energy of the truss for the loading shown. Answer: 59.8 J

## SOLUTION

$$
\begin{aligned}
& L_{B C}=\left(3.2^{2}+2.4^{2}\right)^{1 / 2}=4 \mathrm{~m} \\
& L_{C D}=\left(1^{2}+2.4^{2}\right)^{1 / 2}=2.6 \mathrm{~m} \\
& E=72 \mathrm{GPa}=72 \times 10^{9} \mathrm{~Pa}
\end{aligned}
$$

Equilibrium of truss.

$$
\begin{aligned}
& +\sum M_{B}=0:(30)(2.4)-(80)(3.2)+D_{y}(2.2)=0 \\
& D_{y}=83.636 \mathrm{kN} \uparrow \\
& +\uparrow \sum F_{y}=0: \quad D_{y}-B_{y}-80=0 \\
& 83.636-B_{y}-80=0 \quad B_{y}=3.636 \mathrm{kN} \downarrow
\end{aligned}
$$



## Member forces.

$$
\begin{aligned}
& F_{B C}=B_{y} \frac{4 \mathrm{~m}}{2.4 \mathrm{~m}}=(3.636 \mathrm{kN})\left(\frac{4}{2.4}\right)=6.061 \mathrm{kN} \\
& F_{C D}=-D_{y} \frac{2.6 \mathrm{~m}}{2.4 \mathrm{~m}}=-(83.636 \mathrm{kN})\left(\frac{2.6}{2.4}\right)=-90.606 \mathrm{kN}
\end{aligned}
$$

Strain energy. $\quad U=U_{B C}+U_{C D}=\sum \frac{F_{i} L_{i}}{2 A E}$

$$
\begin{aligned}
U & =\frac{F_{B C}^{2} L_{B C}}{2 E A_{B C}}+\frac{F_{C D}^{2} L_{C D}}{2 E A_{C D}}=\frac{\left(6.061 \times 10^{3}\right)^{2}(4)}{(2)\left(72 \times 10^{9}\right)\left(2 \times 10^{-3}\right)}+\frac{\left(90.606 \times 10^{3}\right)^{2}(2.6)}{(2)\left(72 \times 10^{9}\right)\left(2.5 \times 10^{-3}\right)} \\
& =0.510 \mathrm{~J}+59.290 \mathrm{~J} \quad U=59.8 \mathrm{~J}
\end{aligned}
$$

Problem 8-3 Taking into account only the effect of normal stresses, determine the strain energy of the prismatic beam $A B$ for the loading shown.
Answer: $\frac{M_{0}^{2}\left(a^{3}+b^{3}\right)}{6 E I L^{2}}$


## SOLUTION

$+) \Sigma M_{B}=0: \quad-R_{A} L-M_{0}=0 \quad R_{A}=\frac{M_{0}}{L} \downarrow$
$+\left\lceil\Sigma M_{A}=0: \quad R_{B} L-M_{0}=0 \quad R_{B}=\frac{M_{0}}{L} \uparrow \quad+\sum \Sigma M_{J}=0: \quad \frac{M_{0} x}{L}+M=0\right.$
A to $D: \quad M=-\frac{M_{0} x}{L}$
$U_{A D}=\int_{0}^{a} \frac{M^{2} d x}{2 E I}=\frac{M_{0}^{2}}{2 E I L^{2}} \int_{0}^{a} x^{2} d x=\frac{M_{0}^{2} a^{3}}{6 E I L^{2}}$

$\underline{D \text { to } B:} \quad+) \Sigma M_{K}=0: \quad-M+\frac{M_{0} v}{L}=0 \quad M=\frac{M_{0} v}{L}$

$$
U_{D B}=\int_{0}^{b} \frac{M^{2} d v}{2 E I}=\frac{M_{0}^{2}}{2 E I L^{2}} \int_{0}^{b} v^{2} d v=\frac{M_{0}^{2} b^{3}}{6 E I L^{2}}
$$

Total: $\quad U=U_{A D}+U_{D B} \quad U=\frac{M_{0}^{2}\left(a^{3}+b^{3}\right)}{6 E I L^{2}}$
Problem 8-4 For the beam and loading shown, determine the deflection at point $B$. Use $E=200 \mathrm{GPa}$. Answer: $7.25 \mathrm{~mm} \downarrow$


## SOLUTION

$U=\int_{0}^{a} \frac{M^{2}}{2 E I} d x+\int_{a}^{L} \frac{M^{2}}{2 E I} d x \quad \delta_{B}=\frac{\partial U}{\partial P}=\int_{0}^{a} \frac{M}{E I} \frac{\partial M}{\partial P} d x+\int_{a}^{L} \frac{M}{E I} \frac{\partial M}{\partial P} d x$
Portion $A B: \quad(0 \leq x \leq a) \quad M=-\frac{1}{2} w x^{2} \quad \frac{\partial M}{\partial P}=0$
$\int_{0}^{a} \frac{M}{E I} \frac{\partial M}{\partial P} d x=0$
Portion $B C: \quad(a<x \leq L)$

$$
\begin{aligned}
& M=-\frac{1}{2} w x^{2}-P(x-a) \\
& \frac{\partial M}{\partial P}=-(x-a) \\
& \int_{a}^{L} \frac{M}{E I} \frac{\partial M}{\partial P} d x=\frac{w}{2 E I} \int_{a}^{L} x^{2}(x-a) d x+\frac{P}{E I} \int_{a}^{L}(x-a)^{2} d x
\end{aligned}
$$



$$
=\frac{w}{2 E I} \int_{a}^{L}\left(x^{3}-a x^{2}\right) d x+\frac{P}{E I} \int_{0}^{b} v^{2} d v=\frac{w}{2 E I}\left(\frac{L^{4}}{4}-\frac{a L^{3}}{3}-\frac{a^{4}}{4}+\frac{a^{4}}{3}\right)+\frac{P b^{3}}{3 E I}
$$

$$
\delta_{B}=0+\frac{w}{2 E I}\left(\frac{L^{4}}{4}-\frac{a L^{3}}{3}+\frac{a^{4}}{12}\right)+\frac{P b^{3}}{3 E I}
$$

Data: $\quad a=0.6 \mathrm{~m}, \quad b=0.9 \mathrm{~m}, \quad L=a+b=1.5 \mathrm{~m}, \quad w=5 \times 10^{3} \mathrm{~N} / \mathrm{m}$
$P=4 \times 10^{3} \mathrm{~N} \quad I=\frac{1}{12}(40)(80)^{3}=1.70667 \times 10^{6} \mathrm{~mm}^{4}=1.70667 \times 10^{-6} \mathrm{~m}^{4}$
$E I=\left(200 \times 10^{9}\right)\left(1.70667 \times 10^{-6}\right)=341,333 \mathrm{~N} \cdot \mathrm{~m}^{2}$
$\delta_{B}=0+\frac{5 \times 10^{3}}{(2)(341,333)}\left[\frac{(1.5)^{4}}{4}-\frac{(0.6)(1.5)^{3}}{3}+\frac{(0.6)^{3}}{12}\right]+\frac{\left(4 \times 10^{3}\right)(0.9)^{3}}{(3)(341,333)}$
$=7.25 \times 10^{-3} \mathrm{~m} \quad \delta_{B}=7.25 \mathrm{~mm} \downarrow$

Problem 8-5 Two rods $A B$ and $B C$ of the same flexural rigidity $E I$ are welded together at $B$. For the loading shown, determine (a) the deflection of point $C$, (b) the slope of member $B C$ at point $C$. Answer: (a) $\frac{2 P L^{3}}{3 E I} \rightarrow$, (b) $\frac{P L^{2}}{6 E I}$


SOLUTION


Add horizontal force $Q$ and couple $M_{C}$ at $C$.

$$
\begin{aligned}
+) \Sigma M_{A} & =0: \quad R_{C} l+M_{C}-(P+Q) l=0 \\
R_{C} & =P+Q+\frac{M_{C}}{l} \\
+\longrightarrow \Sigma F_{x} & =0: \quad P+Q+R_{A x}=0 \quad R_{A x}=P+Q \leftarrow \\
M=R_{A x} y & =(P+Q) y, \quad \frac{\partial M}{\partial Q}=y, \quad \frac{\partial M}{\partial M_{C}}=0
\end{aligned}
$$

Set $Q=0$ and $M_{C}=0$.

$$
U_{A B}=\int_{0}^{l} \frac{M^{2}}{2 E I} d y
$$

$$
\frac{\partial U_{A B}}{\partial Q}=\frac{1}{E I} \int_{0}^{l} M \frac{\partial M}{\partial Q} d y=\frac{1}{E I} \int_{0}^{l}(P y)(y) d y=\frac{1}{3} \frac{P l^{3}}{E I} \quad \frac{\partial U_{A B}}{\partial M_{C}}=\frac{1}{E I} \int_{0}^{l} M \frac{\partial M}{\partial M_{A}} d x=0
$$

Member $B C: \quad M=M_{C}+R_{C} x=M_{C}+\left(P+Q+\frac{M_{C}}{l}\right) x$
$\frac{\partial M}{\partial Q}=x, \quad \frac{\partial M}{\partial M_{C}}=1-\frac{x}{l} \quad U_{B C}=\int_{0}^{l} \frac{M^{2}}{2 E I} d x$

$$
\begin{aligned}
& \text { Set } Q=0 \text { and } M_{C}=0 . \\
& \frac{\partial U_{B C}}{\partial Q}=\frac{1}{E I} \int_{0}^{l} M \frac{\partial M}{\partial Q} d x=\frac{1}{E I} \int_{0}^{l}(P x) x d x=\frac{1}{3} \frac{P l^{3}}{E I} \\
& \frac{\partial U}{\partial M_{A}}=\frac{1}{E I} \int_{0}^{l} M \frac{\partial M}{\partial M_{A}} d x=\frac{1}{E I} \int_{0}^{l}(P x)\left(1-\frac{x}{l}\right) d x=\frac{P}{E I} \int_{0}^{l}\left(x-\frac{x^{2}}{l}\right) d x \\
& =\frac{P}{E I}\left(\frac{1}{2} l^{2}-\frac{1}{3} l^{2}\right)=\frac{1}{6} \frac{P l^{2}}{E I} \\
& \text { (a) } \quad \underline{\text { Deflection at } C .} \quad \delta_{C}=\frac{\partial U_{A B}}{\partial Q}+\frac{\partial U_{B C}}{\partial Q} \quad \delta_{C}=\frac{2 P l^{3}}{3 E I} \rightarrow 4 \\
& \text { (b) } \underline{\text { Slope at } C .} \quad \theta_{C}=\frac{\partial U_{A B}}{\partial M_{A}}+\frac{\partial U_{B C}}{\partial M_{C}} \quad \theta_{C}=\frac{P l^{2}}{6 E I}
\end{aligned}
$$

Problem 8-6 A uniform rod of flexural rigidity $E I$ is bent and
loaded as shown. Determine (a) the horizontal deflection of
point $D$, (b) the slope at point $D$. (c) the vertical deflection of
point $D$, (d) the slope of $B C$ at point $C$. Answer:
(a) $\frac{5 P L^{3}}{3 E I} \rightarrow$, (b) $\frac{2 P L^{2}}{E I}$, (c) $\frac{P L^{3}}{E I} \uparrow$, (d) $\frac{3 P L^{2}}{E I}$

## SOLUTION

Add couple $M_{D}$ at point $D$.
Reactions at $A: R_{A y}=0, \quad R_{A x}=P \leftarrow, \quad M_{A}=M_{0} C$
Member $A B$ :


$$
\begin{aligned}
& M=M_{A}+R_{A} y=M_{D}+P y \quad \frac{\partial M}{\partial P}=y, \quad \frac{\partial M}{\partial M_{D}}=1 \\
& U_{A B}=\int_{0}^{l} \frac{M^{2}}{2 E I} d y \quad \text { Set } M_{D}=0 . \\
& \frac{\partial U_{A B}}{\partial P}=\frac{1}{E I} \int_{0}^{l} M \frac{\partial M}{\partial P} d y=\frac{1}{E I} \int_{0}^{l}(P y) y d y=\frac{P l^{3}}{3 E I} \\
& \frac{\partial U_{A B}}{\partial M_{0}}=\frac{1}{E I} \int_{0}^{l} M \frac{\partial M}{\partial M_{0}} d y=\frac{1}{E I} \int_{0}^{l}(P y)(1) d y=\frac{P l^{2}}{2 E I}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Member } B C: \quad M=M_{A}+R_{A} l=M_{D}+P l \quad \frac{\partial M}{\partial P}=l, \quad \frac{\partial M}{\partial M_{D}}=1 \\
& U_{B C}=\int_{0}^{l} \frac{M^{2}}{2 E I} d x \quad \text { Set } M_{D}=0 . \\
& \frac{\partial U_{B C}}{\partial P}=\frac{1}{E I} \int_{0}^{l} M \frac{\partial M}{\partial P} d x=\frac{1}{E I} \int_{0}^{l}(P l)(l) d x=\frac{P l^{3}}{E I} \\
& \frac{\partial U_{B C}}{\partial M_{D}}=\frac{1}{E I} \int_{0}^{l} M \frac{\partial M}{\partial M_{D}} d x=\frac{1}{E I} \int_{0}^{l}(P l)(1) d x=\frac{P l^{2}}{E I}
\end{aligned}
$$

Member $C D: \quad M=M_{D}+P y \quad \frac{\partial M}{\partial P}=y \quad \frac{\partial M}{\partial M_{D}}=1$

$$
\begin{aligned}
& U_{C D}=\int_{0}^{l} \frac{M^{2}}{2 E I} d y \quad \text { Set } M_{D}=0 . \\
& \frac{\partial U_{C D}}{\partial P}=\frac{1}{E I} \int_{0}^{l} M \frac{\partial M}{\partial P} d y=\frac{1}{E I} \int_{0}^{l}(P y)(y) d y=\frac{P l^{3}}{3 E I} \\
& \frac{\partial U_{C D}}{\partial M_{D}}=\frac{1}{E I} \int_{0}^{l} M \frac{\partial M}{\partial M_{D}} d y=\frac{1}{E I} \int_{0}^{l}(P y)(1) d y=\frac{P l^{2}}{2 E I}
\end{aligned}
$$

## (a) Horizontal deflection of point $D$.

$$
\delta_{P}=\frac{\partial U_{A B}}{\partial P}+\frac{\partial U_{B C}}{\partial P}+\frac{\partial U_{C D}}{\partial P}=\left(\frac{1}{3}+1+\frac{1}{3}\right) \frac{P l^{3}}{E I} \quad \delta_{P}=\frac{5 P l^{3}}{3 E I} \rightarrow
$$

(b) Slope at point $D$.

$$
\left.\theta_{D}=\frac{\partial U_{A B}}{\partial M_{D}}+\frac{\partial U_{B C}}{\partial M_{D}}+\frac{\partial U_{C D}}{\partial M_{D}}=\left(\frac{1}{2}+1+\frac{1}{2}\right) \frac{P l^{2}}{E I} \quad \theta_{D}=\frac{2 P l^{2}}{E I}\right)
$$

Problem 8-7 For the beam and loading shown and using Castigliano's theorem, determine (a) the horizontal deflection of point $B,(\mathrm{~b})$ the vertical deflection of point $B$.

Answer: (a) $\frac{P R^{3}}{2 E I} \rightarrow$, (b) $\frac{\pi P R^{3}}{4 E I} \downarrow$.

## SOLUTION

Add horizontal force $Q$ at point $B$.
Use polar coordinate $\varphi$.

Bending moment.

$$
U=\int_{0}^{\pi / 2} \frac{M^{2}}{2 E I} R d \varphi
$$

$+\Sigma M_{J}=0: \quad M-P a-Q b=0$

$$
\begin{aligned}
M & =P a+Q b \\
& =P R \sin \varphi+Q R(1-\cos \varphi) \\
\frac{\partial M}{\partial P} & =R \sin \varphi \quad \frac{\partial M}{\partial Q}=R(1-\cos \varphi) \quad \text { Set } Q=0
\end{aligned}
$$



(a)

$$
\begin{aligned}
& =\frac{P R^{3}}{E I} \int_{0}^{\pi / 2}(\sin \varphi-\sin \varphi \cos \varphi) d \varphi=\left.\frac{P R^{3}}{E I}\left(-\cos \varphi-\frac{1}{2} \sin ^{2} \varphi\right)\right|_{0} ^{\pi / 2} \\
& =\frac{P R^{3}}{E I}\left(-\cos \frac{\pi}{2}+\cos 0-\frac{1}{2} \sin ^{2} \frac{\pi}{2}+\frac{1}{2} \sin ^{2} 0\right)=\frac{P R^{3}}{E I}\left(0+1-\frac{1}{2}+0\right) \quad \delta_{Q}=\frac{P R^{3}}{2 E I} \rightarrow \boldsymbol{4}
\end{aligned}
$$

(b) $\quad \delta_{P}=\frac{\partial U}{\partial P}=\frac{1}{E I} \int_{0}^{\pi / 2} M \frac{\partial M}{\partial P} R d \varphi=\frac{1}{E I} \int_{0}^{\pi / 2} P R \sin \varphi R \sin \varphi R d \varphi$

$$
=\frac{P R^{3}}{E I} \int_{0}^{\pi / 2} \sin ^{2} \varphi d \varphi=\frac{P R^{3}}{E I} \int_{0}^{\pi / 2} \frac{1}{2}(1-\cos 2 \varphi) d \varphi
$$

$$
=\left.\frac{P R^{3}}{E I}\left(\frac{1}{2} \varphi-\frac{1}{2} \sin 2 \varphi\right)\right|_{0} ^{\pi / 2}=\frac{P R^{3}}{E I}\left(\frac{1}{2} \cdot \frac{\pi}{2}-\frac{1}{2} \cdot 0-\frac{1}{2} \sin \pi+\frac{1}{2} \cdot \sin 0\right)
$$

$$
=\frac{P R^{3}}{E I}\left(\frac{\pi}{4}-0-0+0\right) \quad \delta_{P}=\frac{\pi P R^{3}}{4 E I} \downarrow
$$

Problem 8-8 Three members of the same material and same crosssectional area are used to support the loading P. Determine the force in member BC.

Answer: $F_{B C}=\frac{P}{\left(1+2 \cos ^{3} \theta\right)}$


## SOLUTION

Detach member $B C$ at support $C$. Add reaction $R_{C}$ as a load.
$U=\Sigma \frac{F^{2} L}{2 E A} \quad y_{C}=\frac{\partial U}{\partial R_{C}}=\Sigma \frac{F L}{E A} \frac{\partial F}{\partial R_{C}}=0$


Joint $C: \quad F_{B C}=R_{C}$
$\underline{\text { Joint } B: ~} \quad \rightarrow \Sigma F_{x}=0: \quad F_{B E} \sin \varphi-F_{B D} \sin \varphi=0 \quad F_{B E}=F_{B D}$

$$
+\uparrow \Sigma F_{y}=0: \quad F_{B D} \cos \varphi+F_{B E} \cos \varphi+R_{B}-P \quad F_{B D}=F_{B E}=\frac{P-R_{B}}{2 \cos \varphi}
$$

| Member | $F$ | $\partial F / \partial R_{B}$ | $L$ | $(F L / E A)\left(\partial F / \partial R_{B}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| $B D$ | $\left(P-R_{B}\right) / 2 \cos \varphi$ | $-1 / 2 \cos \varphi$ | $l / \cos \varphi$ | $\left(R_{B}-P\right) / / 4 E A \cos ^{3} \varphi$ |
| $B E$ | $\left(P-R_{B}\right) / 2 \cos \varphi$ | $-1 / 2 \cos \varphi$ | $/ / \cos \varphi$ | $\left(R_{B}-P\right) / / 4 E A \cos ^{3} \varphi$ |
| $B C$ | $R_{B}$ | 1 | $l$ | $R_{B} l / E A$ |

$y_{B}=-P l / 2 E A \cos ^{3} \varphi+R_{B} l / 2 E A \cos ^{3} \varphi+R_{B} l / E A=0$
$R_{B}=\frac{P}{1+2 \cos ^{3} \varphi} \quad F_{B C}=R_{B} \quad F_{B C}=\frac{P}{1+2 \cos ^{3} \varphi}$

Problem 8-9 Three members of the same material and same cross-sectional area are used to support the loading P. Determine the force in member BC.

Answer: $F_{B C}=0.652 P$


## SOLUTION

Cut member $B C$ at end $B$ and replace member force $F_{B C}$ by load $F_{B}$ acting on member $B C$ at $B$.
$\delta_{B}=\frac{\partial U}{\partial F_{B}}=\frac{\partial}{\partial F_{B}} \Sigma \frac{F^{2} L}{E A}=\frac{1}{E A} \Sigma F \frac{\partial F}{\partial F_{B}} L=0$
$\underline{\text { Joint } C}: \quad+\uparrow \Sigma F_{y}=0: \quad \frac{\sqrt{3}}{2} F_{C D}+F_{B C}-P=0 \quad F_{C D}=\frac{2}{\sqrt{3}} P-\frac{2}{\sqrt{3}} F_{B}$
$\xrightarrow{+} \Sigma F_{x}=0: \quad F_{A C}-\frac{1}{2} F_{C D}=0 \quad F_{A C}=\frac{1}{\sqrt{3}} P-\frac{1}{\sqrt{3}} F_{B}$


| Member | $F$ | $\partial F / \partial F_{B}$ | $L$ | $F\left(\partial F / \partial F_{B}\right) L$ |
| :---: | :---: | :---: | :---: | :---: |
| $A C$ | $F_{B}$ | 1 | $l$ | $F_{B} l$ |
| $B C$ | $\frac{1}{\sqrt{3}} P-\frac{1}{\sqrt{3}} F_{B}$ | $-\frac{1}{\sqrt{3}}$ | $l$ | $-\frac{1}{3} P l+\frac{1}{3} F_{B} l$ |
| $C D$ | $\frac{2}{\sqrt{3}} P-\frac{2}{\sqrt{3}} F_{B}$ | $-\frac{2}{\sqrt{3}}$ | $\frac{2}{\sqrt{3}} l$ | $-\frac{8}{\sqrt{3}} P l+\frac{8}{\sqrt{3}} F_{B} l$ |
| $\Sigma$ |  |  |  |  |
| $\delta_{B}=-\left(\frac{1}{3}+\frac{8}{\sqrt{3}}\right) \frac{P l}{E A}+\left(\frac{4}{3}+\frac{8}{\sqrt{3}}\right) \frac{F_{B} l}{E A}=0$ | $F_{B}=\frac{\frac{1}{3}+\frac{8}{\sqrt{3}}}{\frac{4}{3}+\frac{8}{\sqrt{3}}} P=\frac{8+\sqrt{3}}{8+4 \sqrt{3}} P=0.652 P$ |  |  |  |
| $F_{B C}=F_{B}$ |  |  |  |  |
| $F_{B C}=0.652 P$ |  |  |  |  |

Problem 8-10 A block of weight $W$ is dropped from a height $h$ onto the horizontal beam $A B$ and hits point $D$. Denoting by $y_{m}$ the exact value of the maximum deflection at $D$ and by $y_{m}^{\prime}$ the value obtained by neglecting the effect of this deflection on the change in potential energy of the block, show that the absolute value of the relative error is
 $\left(y_{m}^{\prime}-y_{m}\right) / y_{m}$, never exceeding $y_{m}^{\prime} / 2 h$.

## SOLUTION

$U=\frac{1}{2} P_{m} y_{m}=\frac{1}{2} k y_{m}^{2}$
where $k$ is the spring constant for a load at point $D$.


Work of falling weight: exact: Work $=W\left(h+y_{m}\right)$ approximate: Work $\approx W h$
Equating work and energy, $\frac{1}{2} k y_{m}^{2}=W\left(h+y_{m}\right)$
(1) exact

$$
\frac{1}{2} k y_{m}^{\prime 2}=W h
$$

(2) approximate
where $y_{m}^{\prime}$ is the approximate value for $y_{m}$.
Subtracting, $\quad \frac{1}{2} k\left(y_{m}^{2}-y_{m}^{\prime 2}\right)=W y_{m} \quad y_{m}^{2}-y_{m}^{\prime 2}=\left(y_{m}-y_{m}^{\prime}\right)\left(y_{m}+y_{m}^{\prime}\right)=\frac{2 W}{k} y_{m}$

Relative error: $\quad \frac{y_{m}-y_{m}^{\prime}}{y_{m}}=\frac{2 W}{k\left(y_{m}+\tilde{y}_{m}\right)} \quad$ But $\quad \frac{2 W}{k}=\frac{y_{m}^{\prime 2}}{h} \quad$ from Eq. (2).
Relative error $\quad=\frac{y_{m}-y_{m}^{\prime}}{y_{m}}=\frac{y_{m}^{\prime 2}}{h\left(y_{m}+y_{m}^{\prime}\right)}<\frac{y_{m}^{\prime}}{2 h}$
Problem 9-1 A 2-m-long pin-ended column of square cross section is to be made of wood. Assuming $E=13 \mathrm{GPa}, \sigma_{\text {all }}=12 \mathrm{MPa}$, and using a factor of safety of 2.5 in computing Euler's critical load for buckling, determine the size of the cross section if the column is to safely support (a) a $100-\mathrm{kN}$ load, (b) a $200-\mathrm{kN}$ load.
(a) For the $100-\mathrm{kN}$ Load. Using the given factor of safety, we make

$$
P_{\mathrm{cr}}=2.5(100 \mathrm{kN})=250 \mathrm{kN} \quad L=2 \mathrm{~m} \quad E=13 \mathrm{GPa}
$$

in Euler's formula and solve for $I$. We have

$$
I=\frac{P_{\mathrm{cr}} L^{2}}{\pi^{2} E}=\frac{\left(250 \times 10^{3} \mathrm{~N}\right)(2 \mathrm{~m})^{2}}{\pi^{2}\left(13 \times 10^{9} \mathrm{~Pa}\right)}=7.794 \times 10^{-6} \mathrm{~m}^{4}
$$

Recalling that, for a square of side $a$, we have $I=a^{4} / 12$, we write

$$
\frac{a^{4}}{12}=7.794 \times 10^{-6} \mathrm{~m}^{4} \quad a=98.3 \mathrm{~mm} \approx 100 \mathrm{~mm}
$$

We check the value of the normal stress in the column:

$$
\sigma=\frac{P}{A}=\frac{100 \mathrm{kN}}{(0.100 \mathrm{~m})^{2}}=10 \mathrm{MPa}
$$

Since $\sigma$ is smaller than the allowable stress, a $100 \times 100-\mathrm{mm}$ cross section is acceptable.
(b) For the $200-\mathrm{kN}$ Load. Solving again for $I$, but making now $P_{\text {cr }}=2.5(200)=500 \mathrm{kN}$, we have

$$
\begin{gathered}
I=15.588 \times 10^{-6} \mathrm{~m}^{4} \\
\frac{a^{4}}{12}=15.588 \times 10^{-6} \quad a=116.95 \mathrm{~mm}
\end{gathered}
$$

The value of the normal stress is

$$
\sigma=\frac{P}{A}=\frac{200 \mathrm{kN}}{(0.11695 \mathrm{~m})^{2}}=14.62 \mathrm{MPa}
$$

Since this value is larger than the allowable stress, the dimension obtained is not acceptable, and we must select the cross section on the basis of its resistance to compression. We write

$$
\begin{aligned}
& A=\frac{P}{\sigma_{\text {all }}}=\frac{200 \mathrm{kN}}{12 \mathrm{MPa}}=16.67 \times 10^{-3} \mathrm{~m}^{2} \\
& a^{2}=16.67 \times 10^{-3} \mathrm{~m}^{2} \quad a=129.1 \mathrm{~mm}
\end{aligned}
$$

A $130 \times 130-\mathrm{mm}$ cross section is acceptable.

Problem 9-2 Two rigid bars $A C$ and $B C$ are connected as shown to a spring of constant $k$. Knowing that the spring can act in either tension or compression, determine the critical load $P_{\text {cr }}$ for the system.

Answer: $P_{\text {cr }}=\frac{2 K L}{9}$


$$
\begin{aligned}
& L=3.5 \mathrm{~m} \quad L_{e}=2 L=7.0 \mathrm{~m} \\
& P_{c r}=\frac{\pi^{2} E I}{L_{e}^{2}}=\frac{\pi^{2}\left(200 \times 10^{9}\right)\left(18.3 \times 10^{-6}\right)}{(7.0)^{2}}=737.2 \times 10^{3} \mathrm{~N}=737.2 \mathrm{kN} \\
& y_{\text {max }}=e\left[\sec \left(\frac{\pi}{2} \sqrt{\frac{p}{P_{e r r}}}\right)-1\right] \quad \sec \left(\frac{\pi}{2} \sqrt{\frac{p}{P_{\text {er }}}}\right)=\frac{y_{\text {max }}+e}{e} \quad \cos \left(\frac{\pi}{2} \sqrt{\frac{P}{P_{c n}}}\right)=\frac{e}{y_{\text {max }}+e} \\
& \frac{P}{P_{c r}}=\left[\frac{2}{\pi} \arccos \frac{e}{y_{\text {max }}+e}\right]^{2}=\left[\frac{2}{\pi} \arccos \frac{12}{15+12}\right]^{2}=0.49957 \\
& \text { (a) } \\
& P=0.49957 P_{c r}=368.28 \mathrm{kN} \\
& M_{\text {max }}=P\left(e+y_{\text {max }}\right)=\left(368.28 \times 10^{3}\right)(12+15)\left(10^{-3}\right)=9944 \mathrm{~N} \cdot \mathrm{~m} \\
& \text { (b) } \quad \sigma_{\text {max }}=\frac{P}{A}+\frac{M C}{I}=\frac{P}{A}+\frac{M}{S}=\frac{368.28 \times 10^{3}}{7590 \times 10^{-6}}+\frac{9944}{180 \times 10^{-6}}=103.8 \times 10^{6} \mathrm{~Pa} \\
& =103.8 \mathrm{MPa}
\end{aligned}
$$

