In the Name of GOD

Problem 8-1 In the truss shown, all members are made of the same										
mate	rial and hav	ated. Determine the	P							
strair	strain energy of the truss when the load P is applied. Answer: $1.5 \frac{P^2 l}{EA}$									
SOL	UTION	P +	$\Sigma F_y = 0$	$0 \qquad F_{CD} = -\frac{2}{\sqrt{3}}P$						
	۲ ۵ ۲	7 +	$-\Sigma F_x = 0$	$-\frac{1}{2}F_{CD} =$	$F_{BC} = \frac{1}{\sqrt{2}}P$					
	Join	; † <u>C</u>	U = 2	√3 						
	Member	F	L	A	F^2L/A		1			
	BC	$\frac{1}{\sqrt{3}}P$	I	А	$\frac{1}{3}P^2l/A$	$U = 1 \left({}_{2} P^{2} l \right)$	$U = 1.5 \frac{P^2 l}{r^2}$			
	CD	$-\frac{2}{\sqrt{3}}P$	21	A	$\frac{8}{3}P^2 l/A$	$U = \frac{1}{2E} \left(\frac{3}{A} \right)$	$C = 1.5 \frac{EA}{EA}$			
	Σ				$3P^2l/A$					
Problem 8-2 Each member of the truss shown is made										
Prob	lem 8-2 Ea	ach member o	of the tru	iss showr	n is made		80 kN			
Prob of al	l em 8-2 Ea uminum ar	ach member o nd has the cr	of the tru oss-secti	iss showr ional area	n is made a shown.	2700	80 kN			
Prob of al Usin	o lem 8-2 Ea uminum ar g <i>E</i> = 72 G	ach member o ad has the cr iPa, determir	of the tru oss-sectione the structure	iss showr ional area	n is made a shown. gy of the	(2500 mm ²	80 kN			
Prob of al Usin truss	lem 8-2 Eauminum ang $E = 72$ G for the load	ach member o ad has the cr Pa, determir ding shown.	of the tru oss-secti ne the str Answe	ional area rain ener er: 59.8.	n is made a shown. gy of the J	2500 mm ²	80 kN 2.4 m			
Prob of al Usin truss	Hem 8-2 Eauminum and $E = 72$ G for the load	ach member o nd has the cr iPa, determir ding shown.	of the tru oss-secti ne the str Answe	iss showr ional area rain ener er: 59.8.	n is made a shown. gy of the J	2500 mm ²	80 kN 2.4 m D			
Prob of al Usin truss SOI L _{BC}	Solution Solution with the second state of	ach member of ad has the cr 3Pa, determinding shown. $2.4^2)^{1/2} = 4$	of the tru oss-secti ne the str Answe 4 m	iss showr ional area rain ener er: 59.8.	n is made a shown. gy of the J	2500 mm ²	80 kN 2.4 m			
Prob of al Usin truss SOI L _{BC} L _{CD}	Solution S-2 Earline S-2 Ea	ach member of ad has the cr 3Pa, determine ding shown. $2.4^2)^{1/2} = 4$ $4^2)^{1/2} = 2.6$	of the tru oss-secti ne the str Answe 4 m m	ional area rain ener er: 59.8	n is made a shown. gy of the J	2500 mm ² 2000 mm ² B 2.2 m	80 kN 2.4 m 2.4 m			
Prob of al Usin truss SOI L_{BC} L_{CD} E =	Solution Solution Solution Solution Solutio	ach member of ad has the cr aPa, determine ding shown. $2.4^2)^{1/2} = 4^2$ $4^2)^{1/2} = 2.6^2$ 72×10^9 Pa	of the tru oss-section the the str Answe 4 m m	ional area rain ener er: 59.8.	n is made a shown. gy of the J	2500 mm ² 2000 mm ² B 2.2 m	80 kN 2.4 m 2.4 m 2.4 m 30 kN 2.4 m 30 kN			
Prob of al Usin truss SO L_{BC} L_{CD} E = <u>Equi</u>	Solution S-2 Earling uminum and g $E = 72$ G for the load LUTION = $(3.2^2 + 2.4^2)^2$ 72 GPa = <u>librium of</u>	ach member of ad has the cr iPa, determinding shown. $2.4^2)^{1/2} = 4^4^2$ $4^2)^{1/2} = 2.6^2$ 72×10^9 Pa truss.	of the tru oss-section the the str Answe 4 m m	iss showr ional area rain ener er: 59.8	n is made a shown. gy of the J	2500 mm ² 2000 mm ² B 2.2 m	80 kN 2.4 m 2.4 m 90 km 1 m 80 km 30 kN 30 kN 30 kN 30 kN			
Prob of al Usin truss SOI L_{BC} L_{CD} E = Equi +)	lem 8-2 Ea uminum ar g $E = 72$ G for the load LUTION = $(3.2^2 + 2.4^2)^2$ 72 GPa = <u>librium of</u> $\sum M_B = 0$	ach member of ad has the cr ding shown. $2.4^2)^{1/2} = 4$ $4^2)^{1/2} = 2.6$ $72 \times 10^9 \text{ Pa}$ $\frac{\text{truss}}{10}$ $: (30)(2.4) - 10^{-10}$	of the tru oss-section the the str Answe 4 m m (80)(3.2	uss shown ional area rain energy er: 59.8 $\frac{1}{2}$	n is made a shown. gy of the J 2.2) = 0	2500 mm ² 2000 mm ² B 2.2 m A - 2.5 m ³ A - 2.5 m ³	BO KN 2.4 m 2.4 m 30 kN 2.4 m 30 kN 30 kN 30 kN 30 kN			
Prob of al Usin truss SO L_{BC} L_{CD} E = <u>Equi</u> +)	elem 8-2 Ea uminum an g $E = 72$ G for the load LUTION = $(3.2^2 + 2.4)^2$ 72 GPa = librium of $\sum M_B = 0$ y = 83.636	ach member of and has the cr aPa, determined and shown. $2.4^2)^{1/2} = 4$ $4^2)^{1/2} = 2.6$ $72 \times 10^9 \text{ Pa}$ $\frac{1}{100} \text{ truss}.$ $: (30)(2.4) = -100$	of the tru oss-section the the structure Answe 4 m m	iss shown ional area rain energer: 59.8 $\frac{1}{2}$	n is made a shown. gy of the J 2.2) = 0	2500 mm^2 2000 mm^2 $B_{2.2 \text{ m}}$ $A = 2.5 \text{ m}^3$ $A = 2 \times 10^{-3} \text{ m}^2$	80 kN 2.4 m 2.4 m 90 1 m 80 kN 2.4 m 30 kN 2.4 m 30 kN 2.4 m			
Prob of al Usin truss SOI L_{BC} L_{CD} E = Equi +) D_{y}	elem 8-2 Ea uminum an g $E = 72$ G for the load LUTION = $(3.2^2 +$ = $(1^2 + 2.4)^2$ 72 GPa = <u>librium of</u> $\sum M_B = 0$ $\sum F_y = 0$	ach member of and has the cr iPa, determined ding shown. $2.4^2)^{1/2} = 2.6$ $72 \times 10^9 \text{ Pa}$ $\frac{\text{truss.}}{2}$ $(30)(2.4) = 0$	of the true coss-section the the structure Answer 4 m m (80)(3.2) - 80 = 0	iss shown ional area rain energy er: 59.8 (2) + D_y (0	n is made a shown. gy of the J	2500 mm^2 2000 mm^2 B_{a} 2.2 m $A = 2.5 \text{ m}^3$ $A = 2.5 \text{ m}^3$ B_{a} $A = 2.5 \text{ m}^3$	80 kN 2.4 m 2.4 m 2.4 m 30 kN 2.4 m 30 kN 30 kN 2.4 m 1 m			

Member forces.

$$F_{BC} = B_y \frac{4 \text{ m}}{2.4 \text{ m}} = (3.636 \text{ kN}) \left(\frac{4}{2.4}\right) = 6.061 \text{ kN}$$
$$F_{CD} = -D_y \frac{2.6 \text{ m}}{2.4 \text{ m}} = -(83.636 \text{ kN}) \left(\frac{2.6}{2.4}\right) = -90.606 \text{ kN}$$

<u>Strain energy</u>. $U = U_{BC} + U_{CD} = \sum \frac{F_i L_i}{2AE}$

$$U = \frac{F_{BC}^2 L_{BC}}{2EA_{BC}} + \frac{F_{CD}^2 L_{CD}}{2EA_{CD}} = \frac{(6.061 \times 10^3)^2 (4)}{(2)(72 \times 10^9)(2 \times 10^{-3})} + \frac{(90.606 \times 10^3)^2 (2.6)}{(2)(72 \times 10^9)(2.5 \times 10^{-3})}$$
$$= 0.510 \text{ J} + 59.290 \text{ J} \qquad U = 59.8 \text{ J} \blacktriangleleft$$

Problem 8-3 Taking into account only the effect of normal stresses, determine the strain energy of the prismatic beam *AB* for the loading shown.

Answer: $\frac{M_0^2(a^3+b^3)}{6EIL^2}$

SOLUTION
+)
$$\Sigma M_B = 0$$
: $-R_A L - M_0 = 0$ $R_A = \frac{M_0}{L}$
+) $\Sigma M_A = 0$: $R_B L - M_0 = 0$ $R_B = \frac{M_0}{L}$ +) $\Sigma M_J = 0$: $\frac{M_0 x}{L} + M = 0$
 $\frac{A \text{ to } D}{L}$ $M = -\frac{M_0 x}{L}$
 $U_{AD} = \int_0^a \frac{M^2 dx}{2EI} = \frac{M_0^2}{2EIL^2} \int_0^a x^2 dx = \frac{M_0^2 a^3}{6EIL^2}$ $M = \frac{M_0 v}{L}$

$$\begin{array}{lll} \underline{\text{Data}}: & a = 0.6 \text{ m}, & b = 0.9 \text{ m}, & L = a + b = 1.5 \text{ m}, & w = 5 \times 10^3 \text{ N/m} \\ P = 4 \times 10^3 \text{ N} & I = \frac{1}{12} (40)(80)^3 = 1.70667 \times 10^6 \text{ mm}^4 = 1.70667 \times 10^{-6} \text{ m}^4 \\ EI = (200 \times 10^9)(1.70667 \times 10^{-6}) = 341,333 \text{ N} \cdot \text{m}^2 \\ \delta_B = 0 + \frac{5 \times 10^3}{(2)(341,333)} \left[\frac{(1.5)^4}{4} - \frac{(0.6)(1.5)^3}{3} + \frac{(0.6)^3}{12} \right] + \frac{(4 \times 10^3)(0.9)^3}{(3)(341,333)} \\ = 7.25 \times 10^{-3} \text{ m} \qquad \delta_B = 7.25 \text{ mm} \downarrow \blacktriangleleft \end{array}$$

Problem 8-5 Two rods *AB* and *BC* of the same flexural rigidity *EI* are welded together at *B*. For the loading shown, determine (a) the deflection of point *C*, (b) the slope of member *BC* at point *C*. **Answer:** (a) $\frac{2PL^3}{3EI} \rightarrow$, (b) $\frac{PL^2}{6EI}$

SOLUTION
Add horizontal force
$$Q$$
 and couple M_c at C .
 $+) \Sigma M_A = 0$: $R_c l + M_c - (P+Q)l = 0$
 $R_c = P + Q + \frac{M_c}{l}$
 $+ \rightarrow \Sigma F_x = 0$: $P + Q + R_{Ax} = 0$ $R_{Ax} = P + Q \leftarrow$
 $M = R_{Ax}y = (P+Q)y$, $\frac{\partial M}{\partial Q} = y$, $\frac{\partial M}{\partial M_c} = 0$
Set $Q = 0$ and $M_c = 0$.
 $U_{AB} = \int_0^l \frac{M^2}{2EI} dy$
Set $Q = 1$ and $M_c = 0$.
 $\frac{\partial U_{AB}}{\partial Q} = \frac{1}{EI} \int_0^l M \frac{\partial M}{\partial Q} dy = \frac{1}{EI} \int_0^l (Py)(y) dy = \frac{1}{3} \frac{Pl^3}{EI}$ $\frac{\partial U_{AB}}{\partial M_c} = \frac{1}{EI} \int_0^l M \frac{\partial M}{\partial M_A} dx = 0$
Member BC : $M = M_c + R_c x = M_c + \left(P + Q + \frac{M_c}{l}\right)x$
 $\frac{\partial M}{\partial Q} = x$, $\frac{\partial M}{\partial M_c} = 1 - \frac{x}{l}$ $U_{BC} = \int_0^l \frac{M^2}{2EI} dx$

Set
$$Q = 0$$
 and $M_C = 0$.

$$\frac{\partial U_{BC}}{\partial Q} = \frac{1}{EI} \int_0^l M \frac{\partial M}{\partial Q} dx = \frac{1}{EI} \int_0^l (Px) x \, dx = \frac{1}{3} \frac{Pl^3}{EI}$$

$$\frac{\partial U}{\partial M_A} = \frac{1}{EI} \int_0^l M \frac{\partial M}{\partial M_A} dx = \frac{1}{EI} \int_0^l (Px) \left(1 - \frac{x}{l}\right) dx = \frac{P}{EI} \int_0^l \left(x - \frac{x^2}{l}\right) dx$$

$$= \frac{P}{EI} \left(\frac{1}{2}l^2 - \frac{1}{3}l^2\right) = \frac{1}{6} \frac{Pl^2}{EI}$$
(a) Deflection at C. $\delta_C = \frac{\partial U_{AB}}{\partial Q} + \frac{\partial U_{BC}}{\partial Q}$ $\delta_C = \frac{2Pl^3}{3EI} \rightarrow \blacksquare$
(b) Slope at C. $\partial_C = \frac{\partial U_{AB}}{\partial M_A} + \frac{\partial U_{BC}}{\partial M_C}$ $\theta_C = \frac{Pl^2}{6EI} \checkmark$

$$M = M_A + R_A y = M_D + Py \qquad \frac{\partial M}{\partial P} = y, \qquad \frac{\partial M}{\partial M_D} = 1$$
$$U_{AB} = \int_0^1 \frac{M^2}{2EI} dy \qquad \text{Set } M_D = 0.$$
$$\frac{\partial U_{AB}}{\partial M_D} = \frac{1}{2EI} \int_0^1 M \frac{\partial M}{\partial M_D} dv = \frac{1}{2EI} \int_0^1 (Pv) v \, dv = \frac{Pl^3}{2EI}$$

$$\frac{\partial P}{\partial M_0} = \frac{1}{EI} \int_0^l M \frac{\partial M}{\partial M_0} dy = \frac{1}{EI} \int_0^l (Py)(1) dy = \frac{Pl^2}{2EI}$$

$$\begin{split} \underline{\operatorname{Member }BC} : & M = M_{A} + R_{A}l = M_{D} + Pl \qquad \frac{\partial M}{\partial P} = l, \qquad \frac{\partial M}{\partial M_{D}} = 1 \\ & U_{BC} = \int_{0}^{l} \frac{M^{2}}{2EI} dx \qquad \operatorname{Set} M_{D} = 0. \\ & \frac{\partial U_{BC}}{\partial P} = \frac{1}{EI} \int_{0}^{l} M \frac{\partial M}{\partial P} dx = \frac{1}{EI} \int_{0}^{l} (Pl)(l) dx = \frac{Pl^{3}}{EI} \\ & \frac{\partial U_{BC}}{\partial M_{D}} = \frac{1}{EI} \int_{0}^{l} M \frac{\partial M}{\partial M_{D}} dx = \frac{1}{EI} \int_{0}^{l} (Pl)(1) dx = \frac{Pl^{2}}{EI} \\ & \underline{\operatorname{Member }CD} : \qquad M = M_{D} + Py \qquad \frac{\partial M}{\partial P} = y \qquad \frac{\partial M}{\partial M_{D}} = 1 \\ & U_{CD} = \int_{0}^{l} \frac{M^{2}}{2EI} dy \qquad \operatorname{Set} M_{D} = 0. \\ & \frac{\partial U_{CD}}{\partial P} = \frac{1}{EI} \int_{0}^{l} M \frac{\partial M}{\partial M_{D}} dy = \frac{1}{EI} \int_{0}^{l} (Py)(y) dy = \frac{Pl^{3}}{3EI} \\ & \frac{\partial U_{CD}}{\partial M_{D}} = \frac{1}{EI} \int_{0}^{l} M \frac{\partial M}{\partial M_{D}} dy = \frac{1}{EI} \int_{0}^{l} (Py)(1) dy = \frac{Pl^{2}}{2EI} \\ & (a) \qquad \operatorname{Horizontal deflection of point }D. \\ & \delta_{P} = \frac{\partial U_{AB}}{\partial P} + \frac{\partial U_{BC}}{\partial P} + \frac{\partial U_{CD}}{\partial P} = \left(\frac{1}{2} + 1 + \frac{1}{3}\right) \frac{Pl^{3}}{EI} \qquad \delta_{P} = \frac{SPl^{3}}{3EI} \rightarrow \blacktriangleleft \\ & \theta_{D} = \frac{\partial U_{AB}}{\partial M_{D}} + \frac{\partial U_{BC}}{\partial M_{D}} + \frac{\partial U_{CD}}{\partial M_{D}} = \left(\frac{1}{2} + 1 + \frac{1}{2}\right) \frac{Pl^{2}}{EI} \qquad \theta_{D} = \frac{2Pl^{2}}{EI} \end{pmatrix} \checkmark$$

Problem 8-7 For the beam and loading shown and using Castigliano's theorem, determine (a) the horizontal deflection of point B, (b) the vertical deflection of point B.

Answer: (a)
$$\frac{PR^3}{2EI} \rightarrow$$
, (b) $\frac{\pi PR^3}{4EI} \downarrow$.

Problem 8-8 Three members of the same material and same crosssectional area are used to support the loading P. Determine the force in member BC.

Answer:
$$F_{BC} = \frac{P}{\left(1 + 2\cos^3\theta\right)}$$

 C°

B

SOLUTION
Detach member *BC* at support *C*. Add reaction
$$R_c$$
 as a load.
 $U = \Sigma \frac{F^2 L}{2EA}$ $y_c = \frac{\partial U}{\partial R_c} = \Sigma \frac{FL}{EA} \frac{\partial F}{\partial R_c} = 0$
 $\frac{\text{Joint } C:}{P_{BC}} = R_c$
 $\frac{\text{Joint } B:}{P_{BC}} + \sum \Sigma F_x = 0:$ $F_{BE} \sin \varphi - F_{BD} \sin \varphi = 0$ $F_{BE} = F_{BD}$
 $+ \int \Sigma F_y = 0:$ $F_{BD} \cos \varphi + F_{BE} \cos \varphi + R_B - P$ $F_{BD} = F_{BE} = \frac{P - R_B}{2 \cos \varphi}$
 $\frac{\text{Member}}{BD} \frac{F}{(P - R_B)/2 \cos \varphi} - \frac{1/2 \cos \varphi}{1/2 \cos \varphi} \frac{1/\cos \varphi}{1/\cos \varphi} \frac{(R_B - P)/4EA \cos^3 \varphi}{(R_B - P)/4EA \cos^3 \varphi}$
 $\frac{BE}{BC} \frac{(P - R_B)/2 \cos \varphi}{R_B} \frac{1}{1} \frac{1}{2} \frac{P}{1 + 2 \cos^3 \varphi}$

Problem 8-9 Three members of the same material and same cross-sectional area are used to support the loading P. Determine the force in member BC. **Answer:** $F_{BC} = 0.652P$

SOLUTION

Member	F	$\partial F / \partial F_B$	L	$F(\partial F/\partial F_B)L$					
AC	F_B	1	1	$F_B l$					
BC	$\frac{1}{\sqrt{3}}P - \frac{1}{\sqrt{3}}F_B \qquad -\frac{1}{\sqrt{3}}$		1	$-\frac{1}{3}Pl + \frac{1}{3}F_Bl$					
CD	$\frac{2}{\sqrt{3}}P - \frac{2}{\sqrt{3}}F_B$	$-\frac{2}{\sqrt{3}}$	$\frac{2}{\sqrt{3}}l$	$-\frac{8}{\sqrt{3}}Pl + \frac{8}{\sqrt{3}}F_Bl$					
Σ				$-\left(\frac{1}{3} + \frac{8}{\sqrt{3}}\right)Pl + \left(\frac{4}{3} + \frac{8}{\sqrt{3}}\right)F_Bl$					
$\delta_{B} = -\left(\frac{1}{3} + \frac{8}{\sqrt{3}}\right)\frac{Pl}{EA} + \left(\frac{4}{3} + \frac{8}{\sqrt{3}}\right)\frac{F_{B}l}{EA} = 0 \qquad F_{B} = \frac{\frac{1}{3} + \frac{8}{\sqrt{3}}}{\frac{4}{3} + \frac{8}{\sqrt{3}}}P = \frac{8 + \sqrt{3}}{8 + 4\sqrt{3}}P = 0.652P$									
$F_{BC} = F_B \qquad F_{BC} = 0.652P \blacktriangleleft$									

Problem 8-10 A block of weight W is dropped from a height h onto the horizontal beam AB and hits point D. Denoting by y_m the exact value of the maximum deflection at D and by y'_m the value obtained by neglecting the effect of this deflection on the change in potential energy of the block, show that the absolute value of the relative error is $(y'_m - y_m)/y_m$, never exceeding $y'_m/2h$.

SOLUTION

Pm $U = \frac{1}{2}P_m y_m = \frac{1}{2}ky_m^2$ where k is the spring constant for a load at point D. Work of falling weight: exact: Work = $W(h + y_m)$ approximate: Work $\approx Wh$ Equating work and energy, $\frac{1}{2}ky_m^2 = W(h+y_m)$ (1) exact $\frac{1}{2}ky_m'^2 = Wh$ (2) approximate where y'_m is the approximate value for y_m . Subtracting, $\frac{1}{2}k(y_m^2 - y_m'^2) = Wy_m$ $y_m^2 - y_m'^2 = (y_m - y_m')(y_m + y_m') = \frac{2W}{k}y_m$

Relative error:
$$\frac{y_m - y'_m}{y_m} = \frac{2W}{k(y_m + \tilde{y}_m)} \quad \text{But} \quad \frac{2W}{k} = \frac{{y'_m}^2}{h} \quad \text{from Eq. (2).}$$

Relative error
$$= \frac{y_m - y'_m}{y_m} = \frac{{y'_m}^2}{h(y_m + y'_m)} < \frac{y'_m}{2h}$$

Problem 9-1 A 2-m-long pin-ended column of square cross section is to be made of wood. Assuming E = 13 GPa, $\sigma_{all} = 12$ MPa, and using a factor of safety of 2.5 in computing Euler's critical load for buckling, determine the size of the cross section if the column is to safely support (a) a 100-kN load, (b) a 200-kN load.

(a) For the 100-kN Load. Using the given factor of safety, we make

$$P_{\rm cr} = 2.5(100 \text{ kN}) = 250 \text{ kN}$$
 $L = 2 \text{ m}$ $E = 13 \text{ GPa}$

in Euler's formula and solve for I. We have

$$I = \frac{P_{\rm cr}L^2}{\pi^2 E} = \frac{(250 \times 10^3 \text{ N})(2 \text{ m})^2}{\pi^2 (13 \times 10^9 \text{ Pa})} = 7.794 \times 10^{-6} \text{ m}^4$$

Recalling that, for a square of side a, we have $I = a^4/12$, we write

$$\frac{a^4}{12} = 7.794 \times 10^{-6} \,\mathrm{m}^4 \qquad a = 98.3 \,\mathrm{mm} \approx 100 \,\mathrm{mm}$$

We check the value of the normal stress in the column:

$$\sigma = \frac{P}{A} = \frac{100 \text{ kN}}{(0.100 \text{ m})^2} = 10 \text{ MPa}$$

Since σ is smaller than the allowable stress, a 100 \times 100-mm cross section is acceptable.

(b) For the 200-kN Load. Solving again for *I*, but making now $P_{\rm cr} = 2.5(200) = 500$ kN, we have

$$I = 15.588 \times 10^{-6} \text{ m}^4$$
$$\frac{a^4}{12} = 15.588 \times 10^{-6} \qquad a = 116.95 \text{ mm}$$

The value of the normal stress is

$$\sigma = \frac{P}{A} = \frac{200 \text{ kN}}{(0.11695 \text{ m})^2} = 14.62 \text{ MPa}$$

Since this value is larger than the allowable stress, the dimension obtained is not acceptable, and we must select the cross section on the basis of its resistance to compression. We write

$$A = \frac{P}{\sigma_{\text{all}}} = \frac{200 \text{ kN}}{12 \text{ MPa}} = 16.67 \times 10^{-3} \text{ m}^2$$
$$a^2 = 16.67 \times 10^{-3} \text{ m}^2 \qquad a = 129.1 \text{ mm}$$

A 130 \times 130-mm cross section is acceptable.

Problem 9-2 Two rigid bars AC and BC are connected as shown to a spring of constant k. Knowing that the spring can act in either tension or compression, determine the critical load P_{cr} for the system.

Answer:
$$P_{\rm cr} = \frac{2KL}{9}$$

В

L

$$L = 3.5 \text{ m} \qquad l_e = 2L = 7.0 \text{ m}$$

$$P_{cr} = \frac{\pi^2 EI}{Le^2} = \frac{\pi^3 (200 \times 10^9) (19.3 \times 10^{-6})}{(7.0)^2} = 737.2 \times 10^3 \text{ N} = 737.2 \text{ kN}$$

$$y_{max} = e \left[\sec\left(\frac{\pi}{2}\sqrt{\frac{P}{E_r}}\right) - 1 \right] \qquad \sec\left(\frac{\pi}{2}\sqrt{\frac{P}{E_r}}\right) = \frac{y_{max} + e}{e} \qquad \cos\left(\frac{\pi}{2}\sqrt{\frac{P}{E_r}}\right) = \frac{e}{y_{max} + e}$$

$$\frac{P}{P_{cr}} = \left[\frac{2}{\pi} \arccos \frac{e}{y_{max} + e}\right]^2 = \left[\frac{2}{\pi} \arccos \frac{12}{15 + 12}\right]^2 = 0.49957$$
(a)
$$P = 0.49957 P_{cr} = 368.28 \text{ kN}$$

$$M_{max} = P(e + y_{max}) = (368.28 \times 10^3)(12 + 15)(10^{-3}) = 9944 \text{ N-m}$$
(b)
$$G_{max} = \frac{P}{A} + \frac{Mc}{I} = \frac{P}{A} + \frac{M}{S} = \frac{368.28 \times 10^3}{7590 \times 10^{-6}} + \frac{9944}{180 \times 10^{-6}} = 103.8 \times 10^6 \text{ Pa}$$

$$= 108.8 \text{ MPa}.$$