
A Dynamically Configurable Coprocessor for
Convolutional Neural Networks

Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula and Srihari Cadambi
NEC Laboratories America, Inc.

4 Independence Way, Princeton NJ 08540.
{chak, murugs, jakkula, cadambi}@nec-labs.com

ABSTRACT
Convolutional neural networks (CNN) applications range from
recognition and reasoning (such as handwriting recognition, facial
expression recognition and video surveillance) to intelligent text
applications such as semantic text analysis and natural language
processing applications. Two key observations drive the design of
a new architecture for CNN. First, CNN workloads exhibit a
widely varying mix of three types of parallelism: parallelism
within a convolution operation, intra-output parallelism where
multiple input sources (features) are combined to create a single
output, and inter-output parallelism where multiple, independent
outputs (features) are computed simultaneously. Workloads differ
significantly across different CNN applications, and across
different layers of a CNN. Second, the number of processing
elements in an architecture continues to scale (as per Moore’s
law) much faster than off-chip memory bandwidth (or pin-count)
of chips. Based on these two observations, we show that for a
given number of processing elements and off-chip memory
bandwidth, a new CNN hardware architecture that dynamically
configures the hardware on-the-fly to match the specific mix of
parallelism in a given workload gives the best throughput
performance. Our CNN compiler automatically translates high
abstraction network specification into a parallel microprogram (a
sequence of low-level VLIW instructions) that is mapped,
scheduled and executed by the coprocessor. Compared to a 2.3
GHz quad-core, dual socket Intel Xeon, 1.35 GHz C870 GPU, and
a 200 MHz FPGA implementation, our 120 MHz dynamically
configurable architecture is 4x to 8x faster. This is the first CNN
architecture to achieve real-time video stream processing (25 to
30 frames per second) on a wide range of object detection and
recognition tasks.

Categories and Subject Descriptors
C.1.3 [Other Architecture Styles]: Adaptable architectures, Neural
nets, pipeline processors.

General Terms
Design, Experimentation, Performance.

Keywords
Convolutional Neural Networks, Dynamic Reconfiguration,
Parallel Computer Architecture.

1. INTRODUCTION
Feed-forward multilayer neural networks [12] are computational
models that are widely used in diverse domains such as video and
image processing [22], medical diagnosis systems [14] and
financial forecasting [15]. These computation models serve one of
two roles: pattern recognition to provide a meaningful
categorization of input patterns, or functional approximation
where the models find a smooth function that approximates the
actual mapping between input and output patterns. A vast majority
of these computational models are still implemented in software
on general-purpose and embedded processors. However, these
processors do not fully exploit the parallelism inherent in these
computational models. Numerous custom hardware
implementations have also been proposed to parlay the abundant
parallelism inherent in these computational models into
significantly higher performance [21].

Traditional pattern recognition systems use two distinct steps
to recognize individual patterns. First, a feature extractor
transforms the input patterns into short strings of symbols (low-
dimensional vectors) that can be easily matched or compared.
These features are relatively invariant with respect to
transformations and distortions that do not change the inherent
nature of the patterns. The feature extractor is usually rather
specific to the task. It is also the focus of most design effort,
because it is entirely hand-crafted. Second, a classifier categorizes
the feature vectors into a few classes. The classifier is usually
general-purpose, and a standard, fully-connected multi-layer
neural network can be automatically trained to do the
classification. However, recognition accuracy is largely
determined by the ability of the designer to extract an appropriate
set of features. Feed-forward, multi-layer artificial neural
networks like the Convolutional Neural Networks (CNN)
[2][11][13][16][17][20][23] have found increasing use in several
new applications because they have the potential to process vast
amounts of labeled data to automatically learn and extract
complex features. CNNs are especially attractive because they can
recognize visual patterns directly from pixel images with very
minimal preprocessing of the image. CNNs can easily recognize
patterns with extreme variability (such as handwritten characters).
Also, their recognition ability is not impaired by distortions or
simple geometric transformations (for example, translation or
rotation) of the image.

Neural networks have multiple layers of neurons (an input
layer, an output layer and one or more hidden layers). Every
connection between an input and a neuron is assigned a value
called weight. Each neuron computes a weighted sum of all its
inputs, followed by a non-linear or sigmoid function to restrict its
output value within a reasonable range. Neurons in the hidden
layers are also called the hidden units. As an example, consider
one layer of a multi-layer neural network and the task of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISCA’10, June 19–23, 2010, Saint-Malo, France.
Copyright 2010 ACM 978-1-4503-0053-7/10/06...$10.00.

247

connecting 1024 inputs to 784 hidden units to produce a set of 784
output values. The 1024 inputs can be the 1024 pixel values in a
32 x 32 image. The 784 hidden units produce 784 output values
(also called as a feature map) which can be interpreted as pixels in
a 28 x 28 output image. A fully-connected neural network
connects every input to every hidden unit, resulting in a network
that has 1024*784 = 802,816 different weights (free parameters).
Learning these weights will require a very large number of
training instances. Furthermore, a fully-connected architecture
ignores the topology of the input image because input values can
be presented in any order without affecting the outcome of the
training. On the contrary, images have strong two-dimensional
local structure where pixels that are spatially nearby are highly
correlated. Therefore, each hidden unit in a CNN is connected to
only on a small number of inputs, say 25 inputs. These 25 inputs,
also called as the receptive field of the hidden unit, correspond to
a 5 x 5 pixel area in the input image. Only 25 weights are now
necessary to connect the inputs to a hidden unit. Since such an
elementary feature detector is likely to be useful across other 5 x 5
pixel areas in the input image, many different hidden units are
used to cover the entire image. Receptive fields of these hidden
units can overlap, and the degree of overlap can be pre-specified.
Hidden units, whose receptive fields are located at different places
on the image, can be forced to detect the same elementary feature
by reusing the same 25 weights. Hidden units that share the same
set of weights form a plane, and outputs of units in a plane
constitute the feature map. Hidden units in a plane can together
extract visual features like edges, corners etc. If we represent the
25 distinct weights as a 5 x 5 matrix (also called as the kernel
matrix), then outputs of all the 784 hidden units can be computed
as the convolution of the 32 x 32 input image with the 5 x 5 kernel
matrix [1].

After the convolution step, we have a 28 x 28 image in which
a feature of interest has been detected, and the exact location of
the feature becomes less important. The value of every hidden
unit is also subjected to a squashing function (non-linearity). A
simple way to reduce the precision with which the distinctive
features are encoded in the image is to reduce the spatial
resolution of the image by using sub-sampling. This also reduces
the sensitivity of the outputs to shifts or distortions. A typical
CNN has multiple layers of hidden units (with multiple feature
maps per layer) to perform complex object recognition tasks.

Evaluating a trained CNN involves performing a huge
number of convolutions with considerable data movement.
Convolution computation is a performance bottleneck, but
reducing overheads of data movement is also necessary to
accelerate the performance of a CNN. Consider a simple object
(face) recognition application that is used on relatively high
resolution streaming images. With a 320x240 (QVGA) image, a
CNN network that can be used to identify faces within all possible
32x32 windows in the image runs at approximately 6.5 frames per
second on a 2.5GHz Intel Xeon processor when optimized using
BLAS (Intel MKL v11). Multi-threading this to 4 and 8 cores on
quad-core and dual quad-core machines only improves the speed
by a little over 2x due to synchronization overheads, and the fact
that different threads share common inputs. Therefore, the most
optimized software implementation on state-of-the-art processors
struggles to achieve about 8 to 10 frames per second when we
analyze VGA (640x480 pixels) images. VGA (or larger) images
are more realistic in practical use-case scenarios such as security
cameras. Can the abundant parallelism in CNN workloads be
leveraged by custom architectures to improve the feed-forward

processing speeds to be close to real-time (25 to 30 frames per
second)? To answer this question, we investigate a dynamically
reconfigurable architecture in which the hardware parallelism can
be tailored to suit the parallelism offered by the specific
application workload.

1.1 Related Work
Implementation of the convolution operation in hardware has been
studied extensively. Both FPGA and LSI implementations have
been proposed. Digital media processors with a large number of
high-speed multiply-and-accumulate (MAC) units have been used
to implement the convolution operation [18]. LSI architectures
using a mixed analog-digital approach [20] as well as several
FPGA-based implementations have also been proposed
[3][4][5][6][7][19][24].

Fast implementations of a 2D convolution core are necessary
but not sufficient to accelerate the CNN workload. A host
processor can carve out the convolution operations from the CNN
workload and off-load the convolutions to the hardware
implementation. For each off-load, the host processor provides the
image and weight values, and retrieves the convolved output
image from the accelerator. Some optimizations are possible to
store kernel values or some intermediate data on the accelerator.
However, for CNNs used in practice, the data dependencies
within a layer (sub-sampling and non-linearity operations) and
across multiple network layers of the CNN, the management of
significant amount of intermediate data over a slow host to
hardware accelerator link, and the detailed orchestration of
complex control and data flows by the host processor quickly
offset performance gains obtained by using a fast hardware core
only for 2D convolutions. There are no reported LSI
implementations of CNNs but several software implementations
on GPUs exist [8][25]. However, none of the prior
implementations are able to process video feeds (640 x 480 pixel
VGA frame) in real-time (about 25 to 30 frames per second).

An FPGA implementation of CNN was reported recently [9].
This architecture uses one hardware convolver for data
processing, and a general-purpose soft-processor for control, all
implemented on a Virtex 4 FPGA from Xilinx. The self-contained
unit was developed for video processing in mobile robot
applications. In contrast, we use a very different approach. We
employ a configurable bank of hardware convolvers, a hardwired
controller (to manage complex data movement patterns), and
configurability hardware that dynamically configures HW
resources on-the-fly to match the precise type and mix of
parallelism in the CNN workload. In [9], no attempt is made to
alter the hardware computing paths to match type or extent of
parallelism in the workload.

1.2 Our Contribution
While several earlier efforts have implemented convolutions and
neural networks in hardware, to our knowledge, this is the first
effort to create a co-processor architecture that automatically
analyzes workloads and dynamically configures its hardware and
software components to match the exact mix of different types of
parallelism in the workload. Our most novel contribution is
dynamic configurability and a method to quickly match HW (on-
the-fly) to workload characteristics. For the first time, we achieve
a ‘tipping point’ (sustained real-time recognition). We enable
new, real-time on-line classification applications that were not
possible before.

248

A high abstraction-level software API, along with a run-time
software component allows domain-experts to easily specify and
execute arbitrary convolutional neural network workloads. Unlike
prior work, our co-processor architecture is forward-scalable. As
we scale the number of processing elements, and the available off-
chip memory bandwidth, CNN applications continue to
automatically improve in performance. Domain-experts do not
have to re-write the application. Instead, a software run-time
component determines the optimal configuration of processing
elements (and memory architecture) for each layer of the CNN
workload, and the coprocessor architecture is dynamically
configured to match the workload characteristics. This allows the
throughput and performance of the coprocessor architecture to be
very close to the peak throughput of the individual processing
elements. Dynamic configurability in hardware is fast (single-
cycle instruction), and it is under the control of software. Our
coprocessor (with different functional units) can easily implement
different feed-forward neural networks and classifiers such as
HMAX [17][27], DBN [29][30]and HoG methods [28].

The rest of this document is organized as follows. In Section
2, we provide a background for CNNs. In Section 3, we discuss
the parallelism in CNN workloads. In Section 4, we present a
motivating example that illustrates the benefits of a dynamically
reconfigurable architecture. In Section 5, we describe the
coprocessor architecture and Section 6 describes dynamic
configurability. We present architectural evaluation results in
Section 7, and conclude in Section 8.

2. CNN: A COMPUTE PERSPECTIVE
We briefly review the forward propagation phase of a CNN. In
this paper, we do not consider the learning phase of the CNN that
determines the kernel values that will be used in each layer.
Rather, we assume that a trained CNN is available and focus on
forward propagation. Tasks performed by end-users (to classify
images, for instance) involve forward propagation on trained
CNNs. There are often stringent real-time performance and power
constraints and hardware acceleration is necessary to achieve
these goals. Forward propagation is also a core computation in the
back-propagation based learning algorithm, and our solution can
also accelerate the learning phase.

We provide a computational perspective of the forward
propagation phase of a CNN. Figure 1 shows one layer of a
typical CNN. Several such layers are cascaded to create a feed-
forward neural network where each layer (except the last layer)
feeds only the next layer and receives inputs only from the
immediately preceding layer. Every CNN layer is a cascade of
two distinct computations or sub-layers: convolution, and sub-
sampling. Hardware implementations must also consider issues of
numerical precision and dynamic range of values computed by the
network.

2.1 Convolution Sub-layer
A convolution sub-layer accepts n images Y1...Yn as inputs and
produces m intermediate outputs O1...Om. To produce the
intermediate output image Oi, the images Y1...Yn are first
individually convolved with kernels K1i … Kni. Then, the
individual convolution results from each input image are summed,
or aggregated. A “bias” value is added to each pixel in the
aggregated output, and a suitable non-linear function (for
example, tanh) is used to limit the pixel value to be within a
reasonable range. The intermediate output image Oi is roughly the
same size as the input images. All kernels used in the convolution

sub-layer of the CNN are of the same size (rows and columns).
However, kernel sizes and the number of input and output images
can vary from one CNN layer to another. Mathematically, output
image Oi in a convolution sub-layer is as follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗+= ∑

=

n

j
jiji KYbiasO

1
tanh

Figure 1: Typical structure of one layer of a CNN.

Here, represents the convolution operation between

image Yj and kernel Kji, and tanh is the non-linear function. Since
m*n image-kernel convolutions are performed per CNN layer,
from a computational point of view, these convolutions are the
most compute intensive portion of a CNN. If the kernels are of
size 1, then the CNN degenerates into a regular neural network

jij KY ∗

[1].
For convolving an image with Ir rows and Ic columns with a

kernel with Wr rows and Wc columns, the computation workload
is (Ir - Wr) * (Ic - Wc) * Wr * Wc multiply-accumulates (MACs).
For a CNN layer, we perform n * m convolutions. For each
convolution, it is also easy to see that the computation ratio to
memory IO ratio is Wr * Wc since for every pixel fetched from
memory we perform Wr * Wc MACs. Therefore, CNNs are
compute-intensive, especially as the kernel sizes get larger.

2.2 Sub-sampling and non-linearity
In Figure 1, the convolution sub-layer output Oi is sub-sampled.
In the simplest case, sub-sampling averages four neighboring
elements in Oi to produce a single element in the output image Xi.
The output image Xi will have approximately half the number of
rows and columns as compared with Oi. In general, Oi can be sub-
sampled by using a suitable sub-sampling kernel Si. After sub-
sampling, each element in the output can be subjected to a non-
linear operation to produce one pixel of the output Xi. A sub-
sampled output image Xi is given by: , where
tanh is the non-linear function, and the operation (Oi . Si)
represents sub-sampling of image Oi according to kernel Si.
Compared to the convolution sub-layer, sub-sampling is less
compute intensive since it requires, on average, only one MAC
operation per input pixel.

).(tanh iii SOX =

3. PARALLELISM IN CNN WORKLOADS
The CNN forward propagation task can be parallelized in several
ways. In a multi-layer CNN, due to the feed-forward nature of
forward propagation, the data dependencies between successive
layers preclude parallel execution of all layers of the CNN.
Therefore, task-parallelism across layers is limited and it is also
more difficult to exploit.

Operator-level (fine-grained) parallelism: Consider one
image-kernel convolution that convolves an image with Ir rows
and Ic columns and a kernel with Wr rows and Wc columns. Each

249

output pixel requires Wr*Wc multiply-accumulations all of which
can be performed in parallel. The output pixels themselves are all
independent. Numerous 2D-convolver designs exist that exploit
the parallelism inherent in the image-kernel convolution, and we
employ a standard systolic design. Practical considerations like
available memory bandwidth, hardware computation resources,
and power considerations do limit the amount of fine-grained
parallelism we can exploit in hardware. For example, it is not
practical to simultaneously perform all the sub-convolutions in
parallel due to the excessive memory bandwidth that will be
necessary to bring in almost the entire image in one cycle.

Coarse-grain parallelism: If a CNN layer has n input
images and m outputs, then all m*n image-kernel convolutions
can, in theory, be performed in parallel. However, for typical m
and n, provisioning enough memory bandwidth to keep m*n
convolvers busy is impractical. With a smaller number of
convolvers, we can extract parallelism in two ways: inter-output
and intra-output. We can parallelize the computation of a single
output image since it is the sum of n input-kernel convolutions.
We refer to this as intra-output parallelism. Also, multiple output
images can be computed in parallel, and we refer to this as inter-
output parallelism. The key observation is that different layers in
a CNN network exhibit vastly different amount of intra-output
and inter-output parallelism. As explained in Section 4, due to this
variability, fixed hardware architectures have worse performance
than an adaptive, configurable architecture.

4. A MOTIVATING EXAMPLE
In this section, we motivate the case for a dynamically
configurable CNN coprocessor. We show that CNN workload
characteristics change dramatically not only from one application
to another, but also across different layers of a single CNN. We
designed several hardware architectures and observed the
performance of a variety of CNN workloads on each of these
architectures. Specifically, we designed a hardware architecture
expressly tailored to accelerate workload in a particular layer of
the CNN, and evaluated the performance of workloads in other
layers of the CNN (and even other applications) on this hardware
architecture. We observed that for any given hardware
architecture, the CNN layer workload for which the hardware
architecture was designed for does exhibit good performance, but
a majority of other CNN layer workloads exhibit poor
performance. Our study attributes the poor performance of most
CNN layer workloads to a mismatch of the computing

architecture and the workload characteristics of various CNN
layers.

Figure 2: CNN for face recognition (with angle/pose

detection).

Figure 2 shows a CNN network we use in video applications
to detect faces (and their angle and pose). The resolution of the
input image is VGA (640x480). The network has 4 layers. The
first two layers employ both convolutions as well as sub-sampling
(the figure leaves out non-linearity and bias for simplicity). The
third layer is only a convolutional layer while the last is a
traditional fully-connected layer where all inputs are connected to
all outputs. The convolutional kernels (2D array of weights) are of
size 5x5 in the entire network. The 9 outputs encode the face, its
angle and pose (each output is a 113x153 image).

Our architectural template for the CNN coprocessor consists
of an array of convolver primitives connected to external memory.
Each convolver primitive can convolve one image with one
kernel. The number of convolver primitives, the number of
memory ports and the port width are pre-specified for an
architecture. The hardware also has no internal storage and
requires that all convolver primitives are fed data continuously in
a streaming manner. For hidden layers, the values of the hidden
units are the intermediate outputs. If the computing architecture
has fewer than n convolvers per output then accesses to off-chip
memory are required to store intermediate data. This is because
the computing architecture has no internal storage for intermediate
data.

Given this architectural template, there are different ways of
organizing the convolver primitives within the memory port (and
port width) constraints. We show that the best performance is
achieved when the layers use different organizations. We first
note that all layers have fine-grained parallelism within a
convolution operation. However, a software implementation of a
CNN when run on a processor cannot effectively leverage that
parallelism due to thread synchronization. Our convolution
primitives exploit the parallelism inherent in a convolution using
well-known systolic architectures.

Of more interest are the inter-output and intra-output
parallelisms. The first layer, which produces 8 outputs from a
single input image, exhibits inter-output parallelism, while the
second layer exhibits intra-output parallelism. Let us assume the
hardware has 8 convolver primitives, 2 memory ports of width 8
pixels (i.e., the ability to transfer 8 pixels per port each cycle).
Consider the first layer. It has 1 input image and 8 outputs. If we
organize the 8 available convolver primitives so that we have a
single broadcast of the input image and the computation of the 8
outputs in parallel, then the computing architecture executes the
first layer with maximum performance. However the same
arrangement will work poorly for the second layer which has 8
input images and 20 output images. With a single broadcast input
and 8 convolvers, we can only process one input at a time, but
compute 8 partial outputs in parallel. With no intermediate
storage, the 8 partially computed outputs must be written out to
off-chip memory resulting in an increase in intermediate data
memory traffic. Furthermore, each input image, which participates
in producing 20 outputs, will have to be read three times from the
off-chip memory in order to generate and write out all the 20
outputs. The execution time is roughly the same as the time it
takes to read one of the images 24 times.

On the other hand, assume that the second layer had a
different arrangement of the 8 convolver primitives where the 8
convolvers simultaneously process 8 different input images, but
the results of the 8 convolutions are combined to produce a single
output. With 8 convolvers processing eight different input images,

250

we are computing each of the 20 outputs in a serial fashion.
However, each output is being computed in parallel (8 images are
being processed in parallel to produce an output). Note that there
is no intermediate data to be written off-chip since no partial
outputs are computed. This is intra-output parallelism. The
execution time for the second layer is roughly the same as the
time it takes to read an image, about 20 times. Clearly, the
execution time for the second layer is much shorter than the case
where the 8 convolvers are processing the same image but
producing 8 different (partial) outputs. As shown in the
experimental results section, the performance improvement could
be as much as 3X for CNN layers in several real-world CNN
applications.

5. CNN COPROCESSOR ARCHITECTURE
Our architectural template primarily consists of a processing core
and a memory sub-system. The processing core itself is stateless,
and we require that input, intermediate and output data are
continuously streamed between the processing core and the
memory sub-system.

5.1 System Overview
As shown in Figure 3, the processing core DC-CNN
communicates with a separate processor (“Host”) that executes
the main application. The host off-loads the entire CNN
computation to the co-processor. In particular, the host transfers
the input images and the detailed CNN network structure to the
co-processor (number of layers, kernels used in each layer, bias
values, sampling kernels, non-linearity etc.). The coprocessor has
access to 3 external memory banks (Data Memory) to store input
images, kernels and intermediate data.

We have developed a CNN compiler (it executes on the host
platform) that automatically translates high abstraction network
specification written by domain experts into a parallel
microprogram (a sequence of low-level VLIW instructions) that is
mapped, scheduled and executed by the coprocessor (hardware
controller in Figure 3). Instructions to facilitate dynamic
configurability, complex control and data flows, as well as on-the-
fly packing of intermediate data to minimize off-chip memory
transfers, are also natively supported by the coprocessor.

The co-processor performs forward propagation across all
the network layers and returns the output of the last layer back to
the host. We chose a high-level of abstraction for the host
interface since implementing only the convolution task on the co-
processor will require the host to co-ordinate complex control and
data flows, and this will severely degrade the performance. Also,
significant amounts of intermediate data are generated within and

across layers of the CNN. Moving the intermediate data across the
slow host-coprocessor interface will negate any advantage we get
from performing fast convolutions on the co-processor.

Figure 3: System Overview.

Figure 4: Basic computational element: hardware pipeline of

convolvers (C), non-linearity (NL) and sub-sampling (S1).

5.2 The Processing Core
Each layer of the CNN reads one or more images as input, and
computes one or more images as output. Our basic computational
element, shown in Figure 4, is designed to compute one output
image at a time. This computational element is architected to take
advantage of intra-output parallelism. The basic computation
primitive is the 2D convolver that can store a kernel internally.
We use a bank of 2D convolvers whose outputs are aggregated.
The computation element also has a specialized hardware pipeline
to compute non-linearity (NL) and sub-sampling (S1). If more
than n images have to be combined to realize an output, then the
aggregated output from the convolver bank may only be a partial
output (i.e. intermediate data) that must be stored in off-chip
memory. Partial outputs are not subjected to non-linearity or sub-
sampling.

If the coprocessor reads one pixel every cycle, then the time
taken for reading the input is the same as the total number of
pixels in the input images. If the memory architecture is designed
so that the co-processor can input multiple pixels in one cycle,
then the time taken for reading the input information will reduce
proportionally. Either way, every pixel in every input image has to
be examined at least once to compute an output image. Fetching
data from off-chip memory consumes significantly more power
than typical operations performed within the processor. Therefore,
minimizing memory transfers has a significant effect on power
consumption. One of our key design goals is to read each input
pixel exactly once, and compute the output image within a few
(fixed number of) cycles after the last input pixel is read. By
computing the output image in approximately the same time it
takes to read input data, the basic computational element is
optimal with respect to a given off-chip memory bandwidth,
power consumption, and throughput.

If we use multiple computational elements, each input image
can be simultaneously used to compute more than one output
image. Since the same image is used to compute different output
images, we can fetch the input image only once. Figure 5 shows

Figure 5: Processing core with two computational elements.

251

an array of two computational elements (X1 and X2) where the
inputs of the first computational element are also broadcast to the
second element. With such a configuration, we can leverage inter-
output parallelism, since we can now compute two outputs
simultaneously.

By varying the number of convolvers in a computational
element (Y), as well as the total number of computational
elements (X), we can control the extent to which the two different
parallelisms are parlayed to match the exact computational
workload of any layer of a CNN. Note that by replacing the
convolver primitive with a different functional unit, we can easily
implement different feed-forward neural networks and classifiers
such as HMAX [17][27], Deep Belief Networks [29][30] and
HoG methods [28].

5.3 The Memory Sub-system
Design of the memory subsystem has a big impact on the
performance of CNNs as well as other artificial neural networks.
Since our processing core is stateless, multiple banks that can be
simultaneously read from and written to are necessary. A banked
memory subsystem is indispensible for CNNs rather than a single
memory with the same or higher aggregate bandwidth and
storage. For the discussion in this section, we assume that the
memory subsystem consists of one or more banks, and each bank
has exactly one single-ported memory. However, basic ideas
described in this section can be easily adapted to multi-port
memories. If Y, the number of convolvers in a computational
element, is less than In, then we need multiple passes to compute
each output, thereby resulting in intermediate data values. We
assume that each memory bank has the necessary port width to
either read Y input pixels (and if necessary, X intermediate data
values for the X output images being computed simultaneously)
and write X output pixels (or X intermediate data values), every
cycle.

In this section, we show that three independent memory
banks suffice to ensure uninterrupted data flow for the stateless
CNN architecture. Consider Figure 6. Layer 1 of a CNN produces
2 outputs (X11 and X12) from 2 input images (Y11 and Y12). Also,
assume that we choose a co-processor architecture that has Y =1
and X = 1 (i.e. one 2D convolver, and one NL-SS-NL pipeline).
Since Y = 1, we process one image at a time. Every cycle, we read
a pixel from an input image. We either generate an intermediate

value or we compute a pixel of one of the output images, but not
both.

Figure 6: Use of three memory banks.

To compute the output image X11, we first read pixels of
image Y11 that is stored in Bank 1. Processing of every pixel in Y11
generates one intermediate value. Since we are reading a pixel
from Bank 1 in every cycle, we cannot also write the intermediate
value to Bank 1 in the same cycle. Furthermore, while reading
pixels of image Y12, we must also read the intermediate values.
Therefore, intermediate values and pixels of Y12 are laid out in the
same memory bank (Bank 2). Convolution of image Y12 will not
result in intermediate values since this is the last image. Since X11
cannot be written to Bank 2, we store X11 in Bank 1. After we
compute X12, where do we store X12? Like Layer 1 where the two
input images Y11 and Y12 were in different banks, Layer 2
processing dictates that X11 and X12 be stored in different memory
banks. Therefore, we store the output X12 in a new bank (Bank 3).
Clearly, three memory banks are necessary and sufficient to
support stateless processing. Output images of Layer 1 are the
input images for Layer 2, and we can argue similarly to determine
the location of Layer 2’s output images (X21 and X22).

6. DYNAMIC CONFIGURATION
In order to make the core adapt to the different types of
parallelism across CNN layers, we introduce an input switch as
shown in Figure 7. The switch allows the convolvers to be
grouped in different ways by varying Y and X. The maximum
values of Y and X are determined by the memory bandwidth and
the area budget of the chip. Assuming a 3-bank architecture, if the
memory bandwidth per bank is P bits per cycle, the input pixel
width is Ib bits, intermediate data width Tb and output pixel width
Ob, then the maximum value of Y, given by Ymax isቔmin ሺ

ூ
,

்
ሻቕ.

Similarly, the maximum value of X (Xmax) is ቔmin ሺ
ை

,
்

ሻቕ.

Note that every computational element has to sum the Y
convolutions prior to non-linearity and sub-sampling. Since Y can
change in the configurable architecture, this summation is
achieved by using a sea of adders each statically designed to add
Ymax values. Specifically, we need Xmax adders, each with Ymax
inputs. The output switch appropriately routes the Y * X
convolver outputs to appropriate inputs of these adders. The
routing is done in a block-wise fashion, i.e., groups of Y outputs
from the convolvers are routed to a single adder with Ymax-inputs.

6.1 Input Switch and Output Switch
Figure 8 shows the details of the input and output switch for a
design where Ymax = 6 and Xmax = 2. The input switch is
constructed from a simple selector (multiplexor). The selector has
three inputs (one select signal and two input values, one of which
is 0). Depending on the value of the ‘Select’ signal, the selector
either produces a 0 value as output or it forwards the input value.
Each selector is connected to exactly one convolver. We achieve
dynamic configurability as follows. For a CNN layer with 3 input
images (Y1, Y2 and Y3), and one output image X1, we generate
select signals so that the first three selectors of computational
element X1 (selectors M1, M2 and M3) are enabled to forward their
inputs (images Y1, Y2 and Y3) to their convolvers. Selectors M4, M5
and M6 are configured to forward a value of 0. So, these selectors
are effectively disabled. Please note that the 2D convolvers are
also designed to perform no computations if their corresponding
selector is disabled (this is not required for correctness of the
result, but it saves the power that would otherwise be consumed
by the convolver). Similarly, the first three selectors of

252

computational element X2 (M19, M20 and M21) are configured to
forward images Y1, Y2 and Y3 to their convolvers. Selectors M22,
M23 and M24 are disabled.

In a simple implementation of the output switch, we chain
the convolvers in a computational element to realize the pipelined
summation of the convolver outputs. For example, selectors M1,
M2 and M3 are set to forward input images Y1, Y2 and Y3 to their
convolvers. Outputs of the three convolvers are aggregated over
time as shown in Figure 8. The aggregated value is then processed
by the non-linearity and sub-sampling units.

6.2 Exploring Architectural Configurations
Scaling the number of processing elements in a chip is easier than
scaling off-chip memory bandwidth. Therefore, in practice,
finding the optimal values of Y and X for a CNN layer boils down
to finding a judicious mix of intra-output and inter-output
parallelism that saturates the available off-chip bandwidth.

We first examine constraints on Y and X, assuming a 3-bank
memory subsystem where each bank transfers P bits per cycle.
Again, assume that the input pixel width is Ib, the intermediate
data width is Tb, the output pixel width is Ob and that there are C
convolvers in the hardware. The product of Y and X must be less
than or equal to the total hardware available which means X*Y
C. Several constraints are due to the memory sub-system.
Specifically, it is straightforward to see that:

X * IB P (if X is used to write intermediate data)

X * OB P (if X is used to write final outputs)

Y * TB P (if Y is used to read intermediate data)

Y * IB P (if Y is used to read first layer inputs)

When computing a CNN layer, if we only read primary
inputs (and no temporary intermediate result), the number of
memory bits read per cycle is Y * IB . If there are temporary
results, there are (Y * IB) + (X * TB) bits read per cycle. Similarly,
the number of memory bits written per cycle is X * TB or X * OB
depending on whether we store intermediate or final outputs. Read
requests per cycle or write requests per cycle cannot exceed P bits
per cycle.

For a CNN layer with n inputs and m outputs, the number of
passes required for completion is (n/Y)*(m/X). The time for
completing one pass is simply the time required to fetch the image
from memory one pixel at a time (since we have a stateless
streaming architecture): Ir * Ic where Ir is the number of image
rows, and Ic the number of image columns. Therefore, the
execution time for completing the entire layer is (Ir * Ic) * n /Y *

m /X. This is the cost function that we want to minimize subject
to the memory sub-system constraints, and total hardware
available (number of convolvers). From a system point of view, a
run-time software component analyzes the CNN workload, and
determines the best (Y,X) for each layer. The CNN architecture is
then dynamically configured for each layer by using a special
instruction in the instruction set of the coprocessor.

Figure 8: Input and output switches.

Figure 7: Dynamically configurable CNN architecture.

The algorithm for choosing the best (Y, X) for each layer
uses integer factorization techniques to identify different
candidate integer values of Y and X so that X*Y C. For each
value of Y and X, we evaluate the memory sub-system constraints
to determine if the specific combination of Y and X is a feasible
solution. We compute the cost function for every feasible
solution, and select the feasible solution that minimizes the cost
function (execution time for processing the entire layer). Although
no efficient integer factorization algorithm is known for factoring
very large numbers (with 100 to 200 digits), there are several
reasons why this approach works well in practice. First, the largest
number of hardware convolvers (C) we considered is 40. Even if
C increases by two or three orders of magnitude (very unlikely
due to power and hardware constraints), fortunately, integer
factorization for small numbers is fast [10]. Second, by using
dynamic programming, we are able to quickly prune many
combinations of Y and X. For example, consider the case of C =
40 convolvers, and a memory port-width of 128 bits of data per
cycle. To determine the best configuration for Layer 3 of the
Video Surveillance workload, only a small number (14) of
feasible combinations, shown in Figure 9, had to be considered.

7. EXPERIMENTAL RESULTS
In this section, we first compare the performance of a fixed
coprocessor and a dynamically reconfigurable coprocessor using
several real CNN workloads. We then examine the scalability of
the new architecture with respect to scaling (increase) in number
of processing elements, as well as memory bandwidth, and show
that dynamic configurability has a consistent, first-order effect on
performance. Finally, we compare the performance of our
dynamically configurable CNN coprocessor with leading CNN
workload implementations reported recently on several other
computing platforms.

253

We estimated performance and scalability using a simulator
that provides cycle-accurate execution time estimates of the
architectural components. In the simulator, Y and X could be
parameterized per layer or they can be fixed for the entire CNN
workload. Our architectural simulator uses an emulation of a 20-
convolver, 3-memory bank (128 bits of data per cycle per port per
bank), dynamically configurable CNN architecture (including the
hardware learning engine controller) on a Virtex 5 SX240T FPGA
platform (1024 multiply-accumulate units) to more accurately
estimate execution cycles. The RTL (Verilog) for the 20-
convolver design was mapped to the FPGA by using design tools
from Synplicity. In all CNN workloads, an input or output value is
represented using 16 bits, and an intermediate data value is
represented using 48 bits. All CNN workloads are specified by
using a simple, high abstraction level software programming API.
A CNN compiler (running on the host processor) automatically
translates the entire high abstraction network specification into a
parallel micro-program (a sequence of low-level VLIW
instructions) that is mapped, scheduled and executed on the
coprocessor FPGA implementation. Instructions to facilitate
complex control and data flows, as well as on-the-fly packing of
intermediate data to minimize off-chip memory transfers, are also
natively supported by the coprocessor.

7.1 Workloads
Table 1 shows the five different CNN workloads we considered.
In the “Video Surveillance” workload that was developed
internally, the CNN is used to identify human activity within a
video frame and to recognize specific physical characteristics such
as age, gender and race. The “Face Recognition” workload is
obtained from [26]. The “Automotive Safety” workload is a
vision, range and motion sensing network, used in automotive

safety applications, to process video-feeds from vehicle-mounted
cameras. This application was developed internally for a major
Japanese automobile manufacturer. The “Mobile Robot Vision”
workload is obtained from [9]. Here, a CNN is used for learning
long-range vision (on-vehicle Robot) for autonomous, off-road
driving. The “Face Detection” workload is obtained from [25]. As
shown in Table 1, the CNNs used in these applications have a
wide range of inputs and outputs across different layers. All
examples use VGA frames (640 x 480 pixels per frame).

Figure 9: Feasible architectural configurations for Layer 3 of

the Video Surveillance workload.

7.2 Advantage of Dynamic Configurability
Table 2 compares the dynamically configurable architecture with
the best fixed-architecture, in terms of execution cycles. The fixed
architecture has the same (Y, X) for all three layers, while the
dynamically configurable architecture adapts to each layer of the
CNN. For all workloads, the hardware constraint is 20
convolvers, and the memory port-width is 128 bits of data per
cycle. The column “Best Fixed Architecture” reports the values
of Y and X that were chosen, and the total execution cycles for
each of the workloads. Note that the Y and X values are fixed for
all three layers of a CNN. The column “Dynamically
configurable” reports (a) the values of Y and X that were chosen
for each layer of a CNN workload, and (b) the total execution
cycles for all three layers of a CNN workload. The last column
reports the speedup of the dynamically configurable version as
compared with the fixed architecture case. Our results show that a
dynamically configurable architecture consistently outperforms a
fixed architecture. Depending on the CNN workload, speedup
factors range from 1.5x to 2.3x.

To understand the scalability of the new architecture with
respect to scaling (increase) in number of processing elements, as
well as increase in memory bandwidth, we considered four CNN
coprocessor architectures with 10, 20, 30 and 40 convolvers. In
addition, we considered three different memory port widths (64
bits per cycle, 128 bits per cycle and 256 bits per cycle) for each
of the four CNN architectures. For all architectures, we used 3
independent memory ports. Figure 10, Figure 11 and Figure 12
show the speedup obtained for three different CNN workloads, as
a function of the number of convolvers and memory port width
(due to space constraints, we are not able to include data for all
experiments). For example, consider the case of the “Automotive
Safety” workload. We designed the best possible fixed
architecture, assuming a hardware constraint of 10 convolvers,
and a memory port width of 64 bits of data per cycle. In order to
obtain the best fixed architecture, we examine all possible valid
combinations of Y and X, and select the best one for a fair
comparison. Then, we designed a dynamically configurable
architecture under the same hardware and memory constraints.
From the figures, we observe that the dynamically configurable
version is about 2.2x faster than the best fixed-architecture version
(for 10-convolvers, and 64-bit memory port width). Similar

Table 1 : CNN workload characteristics.
 Video Surveillance Face Recognition Automotive Safety Mobile Robot Vision Face detection

 Inputs Outputs Inputs Outputs Inputs Outputs Inputs Output Inputs Outputs

Layer 1 5 6 1 20 1 8 1 6 1 6

Layer 2 6 16 20 25 8 20 6 16 6 16

Layer 3 16 120 25 40 8 20 16 80 16 100

254

experiments were conducted to obtain data for all the four
architectures and three different memory port widths per
architecture.

We note three interesting trends from the data. First,
irrespective of the number of convolvers or the memory port
width, the dynamically configurable version is consistently faster
(speedups range from 1.2x to 3.4x) than the corresponding, best
fixed-architecture version. Second, increasing the number of
convolvers (for a given memory port width) usually results in
higher speedups. However, in some cases the best fixed
architecture also happens to be a reasonably good match for the
given workload, resulting in an occasional low speedup factor for
the dynamically configurable version. For example, consider the
128-bit memory port width case for the “Automotive Safety”
workload. With 30 convolvers, the dynamic version is only 1.5x
faster than the best fixed architecture (for a 20-convolver design,
the dynamic version is 2.3x faster than the best fixed architecture
for the same workload). Third, increasing the memory port width
(for a given number of convolvers) may or may not result in
higher speedups. It does improve both designs (fixed or
dynamically configurable) but the amount of improvement can be
very different. For some workloads like the “Face Recognition”
workload, with large amount of intermediate data across the three
layers, the advantage of dynamic configurability is more
pronounced at wider memory port widths. We see the exact
opposite effect for the “Automotive Safety” workload, where
higher speedups are usually achieved for smaller memory port
widths. The absolute performance of fixed or dynamically
configurable architecture always improves with higher memory
port widths, and so does the power consumption. In all cases, the
utilization factor of the hardware convolvers or the available
memory bandwidth is close to 100%.

7.3 Comparison with Other Implementations
We also compared the performance of our dynamically
configurable CNN coprocessor (20 convolvers, 128-bit memory
port width) with leading CNN workload implementations reported

recently on several platforms: (a) 128-core, 1.35GHz NVIDIA’s
GPU with 1.5GB RAM, and a fast PCI Express connection to the
x86 host [26] (b) an internal software implementation on an dual-
socket, quad-core, 2.33 GHz Intel Xeon (Intel Multicore with
eight 2.33 GHz cores), and (c) a 200 MHz, fixed architecture
CNN co-processor called CNP that was implemented on a Virtex
4 FPGA part from Xilinx [9].

Figure 10: Speedup for Automotive Safety. Figure 12: Speedup for Face Recognition.

Figure 11: Speedup for Video Surveillance.

Results for the Intel Xeon (8-processor) multicore (column
“Multicore” in Table 3) were obtained by using an internal
software implementation of CNN on the multicore. This
implementation uses the latest BLAS library that has been
specially optimized for dense linear algebra operations. The
performance of the multicore implementation is quite competitive
with the GPU implementations. GPU results reported in [26] used
an older, 600 MHz NVIDIA GPU. They report a processing time
of 210 ms per frame for the “Face Detection” workload. Their
frame has less pixels than our VGA frame. On a faster GPU
(1.35GHz), we achieve a processing time of 105 ms per VGA
frame. If we factor in the difference in clock speeds, the two GPU
implementations are comparable. We use our GPU
implementation to generate results for all the other workloads.

Performance of software CNN implementations on
embedded processors is poor. For example, processing times per
frame on the Intel Atom processor were 1.67 s (Automotive
Safety), 2.05s (Video Surveillance), 1.95s (Face Recognition),
1.23 s (Mobile Robot Vision), and 0.97s (Face Detection). We see
a clear 10X pullback from software implementations on the Xeon.

Results for the 200 MHz CNP (column “CNP” in Table 3)
were taken from [9]. They report a processing time of 100 ms per
frame for the “Mobile Robot Vision” workload. Since they do not
use a separate host processor, there is no need to transfer the video
feed from the host. Also, we do not have access to their hardware,
and we are unable to report results for the remaining workloads on
their platform.

Results for the proposed dynamically configurable CNN
coprocessor (column “DC-CNN” in Table 3) were obtained using

Table 2 : Comparison of fixed and dynamically configurable, 20-convolver, 128-bit memory port width.

CNN workload
Best Fixed Architecture Dynamically configurable Speedup

Y,X Performance Cycles Y,X Performance Cycles

Automotive Safety 7,2 3,340,800 L 1: 1,8 L 2: 8,2 L 3: 10,2 1,518,545 2.2x

Video Surveillance 7,2 4,972,000 L 1: 5,4 L 2: 4,5 L 3: 10,2 3,225,600 1.5x

Face Recognition 8,2 7,603,200 L 1: 1,8 L 2: 8,2 L 3: 10,2 5,068,800 1.5x

Mobile Robot Vision 10,2 3,072,000 L 1: 1,6 L 2: 10,2 L 3: 10,2 2,457,600 1.3x

Face Detection 8,2 3,456,000 L 1: 1,6 L 2: 8,2 L 3: 10,2 2,841,600 1.2x

255

a 120 MHz FPGA implementation of our dynamically
configurable co-processor, with 20 convolvers and 128-bit
memory port width. We report separately the time taken to
transfer the images (from the x86 host to the coprocessor) and
output the results (from coprocessor to the host). In our
implementation, transfer of images or output results overlaps with
the CNN computation. Therefore, the total processing time for
any CNN workload is the maximum of the execution time of the
coprocessor and the data transfer time. For example, consider the
case of the “Face Recognition” workload. It takes 11 ms to
transfer the input image data to the co-processor, and it takes 42
ms to perform the processing for all three Layers in the CNN
workload. However, processing of a Layer begins as soon as
portions of images are available on the coprocessor.

Similarly, some of the output results computed by the
coprocessor are transferred to the host while other outputs are still
being computed by the co-processor. Therefore, due to the
overlap, the total time required to process the frame was only 42
ms. Column “Speedup” in Table 3 shows the performance
advantage of the dynamically configurable architecture over the
multicore, GPU and CNP. We observe that the dynamically
configurable architecture is 4x to 8x faster. More importantly, the
additional speedup of the dynamically configurable architecture
now enables an important tipping point. By easily processing 25
to 30 frames per second, the proposed dynamically configurable
co-processor is the first CNN architecture to enable real-time
video stream processing on a wide range of object detection and
recognition tasks. Due to clock frequencies in the GHz range, the
GPU and the Intel Multicore implementations consume more than
150 Watts. The 200 MHz Virtex4 implementation consumes 15
Watts [9]. In comparison, our 120MHz dynamically configurable
co-processor prototype on a Virtex 5 FPGA consumes less than 14
watts of power (for all components on the FPGA board, including
memory banks).

8. CONCLUSIONS
We presented a dynamically reconfigurable architecture for feed-
forward neural networks used in recognition, analysis and
reasoning applications. The design of the architecture is driven by
two key observations. The first is based on the fact that CNNs
exhibit “inter-output” and “intra-output” parallelism. Inter-output
parallelism is where different outputs can be computed
independently, and in parallel. Intra-output parallelism exploits

parallelism within a single output computation. We showed that
different CNN workloads exhibit a widely varying mix of these
two types of parallelism within a single network. That is, different
layers of a network must be parallelized in different ways. We
therefore argued that the architecture itself must adapt to the way
a particular layer of a network needs to be parallelized. This
adaptive architecture is achieved by allocating an array of
convolver primitives and dynamically configuring their
organization at run-time to achieve optimal performance. The
second observation is based on the fact that CNNs have large
intermediate data which cannot be stored on-chip. Therefore, we
designed a streaming architecture with multiple memory ports
where input data, intermediate data and output data are
continuously flowing between the processor and off-chip memory.
We showed that a dynamically configurable architecture can
provide speedups ranging from 1.2x to 3.5x over a similar fixed
custom architecture with the best possible fixed configuration of
the convolver primitives.

Table 3: Comparison with other CNN implementations.

CNN
 (640 x 480 pixels

input image)

Multicore
(Xeon @
2.33 Ghz,
8 Cores,
16 GB)
BLAS

GPU
(C870 @
1.35 Ghz,

1.5 GB
RAM)
PCIe

CNP
(FPGA
@200
MHz)

DC-CNN @ 120 Mhz
20 conv., 128-bit port

width, PCI

Speedup of DC-CNN

Compute
time

Transfer
time

Over 2.3
GHz, 8-

core

Over 1.35 GHz,
128-core GPU

Over
CNP

Automotive Safety 110 ms 85 ms - 13 ms 11 ms 8.5x 6.5x -

Video Surveillance 212 ms 163 ms - 27 ms 34 ms 7.8x 6.0x -

Face Recognition 217 ms 167 ms - 42 ms 11 ms 5.2x 4.0x -

Mobile Robot Vision 147 ms 114 ms 100 ms 21 ms 11 ms 7.0x 5.4x 4.8x

Face Detection 136 ms 105 ms - 24 ms 11 ms 5.7x 4.4x -

REFERENCES
[1] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).

Gradient-based learning applied to document recognition.
Proceedings of the IEEE, (pp. 1-46).

[2] Collobert, R.; Weston, J., “A unified architecture for natural
language processing: deep neural networks with multitask
learning,” Proceedings of the 25th International Conference on
Machine Learning (ICML 2008), vol. 307, pp.160-167, Jul
2008.

[3] Benkrid, K.; Belkacemi, S., "Design and implementation of a
2D convolution core for video applications on FPGAs," Digital
and Computational Video, 2002. DCV 2002. Proceedings. Third
International Workshop on, pp. 85-92, 14-15 Nov. 2002.

[4] Cardells-Tormo, F.; Molinet, P.-L., "Area-efficient 2-D shift-
variant convolvers for FPGA-based digital image processing,"
Circuits and Systems II: Express Briefs, IEEE Transactions on,
vol.53, no.2, pp. 105-109, Feb. 2006.

[5] Hui Zhang; Mingxin Xia; Guangshu Hu, "A Multiwindow
Partial Buffering Scheme for FPGA-Based 2-D Convolvers,"
Circuits and Systems II: Express Briefs, IEEE Transactions on,
vol.54, no.2, pp.200-204, Feb. 2007.

[6] Savich, A.W.; Moussa, M.; Areibi, S., "The Impact of
Arithmetic Representation on Implementing MLP-BP on

256

FPGAs: A Study," Neural Networks, IEEE Transactions on,
vol.18, no.1, pp.240-252, Jan. 2007.

[7] Gironés, R. G.; Palero, R. C.; Boluda, J. C.; Cortés, A. S.,
“FPGA Implementation of a Pipelined On-Line
Backpropagation,” J. VLSI Signal Process. Syst., vol. 40, no. 2,
pp.189-213., Jun 2005.

[8] Catanzaro, B.; Sundaram, N.; Keutzer, K., “Fast Support Vector
Training and Classification on Graphics Processors,” Machine
Learning, 25th International Conference on, (ICML 2008), Jul.
2008.

[9] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, "CNP: An
FPGA-based Processor for Convolutional Networks", in Proc.
International Conference on Field Programmable Logic and
Applications (FPL'09), IEEE, Prague, 2009.

[10] Dixon, J. D. (1981). Asymptotically fast factorization of
integers. Math. Comput. , 36, 255-260.

[11] Hadsell, R. e. (2009). Learning long-range vision for
Autonomous off-road Driving. Journal of Field Robotics , 26
(2), 120-144.

[12] Haykin, S. (2008). Neural networks and learning machines.
Prentice Hall.

[13] Korekado, K., Morie, T., Nomura, O., Nakano, T., Matsugu, M.,
& Iwata, A. (2005). An Image Filtering Processor for
Face/Object Recognition using Merged Analog-digital
architecture. Symposium on VLSI Circuits, (pp. 220-223).

[14] Lisboa, P., Ifeachor, E., & Szczepaniak, P. (2009). Artificial
neural networks in Biomedicine. Springer

[15] McNelis, P. D. (2005). Neural Networks in Finance: Gaining
Predictive Edge in the Market. Academic Press.

[16] Mirowski, P. e. (2008). Comparing SVM and Convolutional
networks for Epileptic Seizure Prediction from Intracranial
EEG. Proceedings of Machine Learning and Signal Processing,
(pp. 244-249).

[17] Mutch, J., & Lowe, D. (2006). Multiclass object recognition
with sparse, localized features. International Conference on
Computer Vision and Pattern Recognition, (pp. 11-18).

[18] Nakajima, M., & al., e. (2006). A 40GOPS 250mw massively
parallel processor based on matrix architecture. International
Solid-state Circuits Conference, (pp. 410-411).

[19] Nichols, K., Moussa, M., & Areibi, S. (2002). Feasibility of
floating-point arithmetic in FPGA based artificial neural
networks. Proceedings of the 15th International Conference on
Computer Applications in Industry and Engineering. San Diego,
California

[20] Nomura, O., & Morie, T. (2007). Projection-Field-Type VLSI
Convolutional Neural Networks Using Merged/Mixed Analog-
Digital approach. International Conference on Neural
Information Processing (pp. 1081-1090). Springer-Verlag.

[21] Omondi, A., & Rajapakse, J. (2006). FPGA Implementations of
Neural Networks. Springer.

[22] Prasad, B., & Prasanna, S. (2008). Speech, Audio, Image and
Biomedical Signal Processing using Neural Networks. Springer.

[23] Sermanet, P. e. (2009). Multi-range architecture for collision-
free off-road Robot Navigation. Journal of Field Robotics , 26
(1), 58-87.

[24] Wolf, D. F., Romero, R. A., & Marques, E. (2001). Using
embedded processors in hardware models of artificial neural
networks. Proceedings of SBAI - Simposio Brasileiro de
Automao Inteligente, (pp. 78-83).

[25] Steve Lawrence, C. Lee Giles, Ah Chung Tsoi, Andrew D.
Back, Face Recognition: A Convolutional Neural Network
Approach. IEEE Transactions on Neural Networks 1997.

[26] Nasse, F., et al , “Face Detection using GPU-based
Convolutional Neural Network”, CAIP 2009, LNCS pp 83-90,
Springer Verlag

[27] Serre, T. et al “Object recognition with features inspired by the
visual cortex”, Proceedings of Computer Vision and Pattern
Recognition 2006.

[28] Dalal, N. et al, “Histograms of oriented gradients for human
detection”, Proceedings of Computer Vision and Pattern
Recognition, 2005

[29] Raina, R. et al, “Large-scale Deep Unsupervised Learning using
Graphics Procesors”, Proceedings of International Conference
on Machine Learning, 2009 (pp. 873-880).

[30] Lee, H. et al, “Convolutional Deep Belief Networks for Scalable
Unsupervised Learning of Hierarchical Representations”,
Proceedings of International Conference on Machine Learning,
2009 (pp. 873-880).

257

	1. INTRODUCTION
	1.1 Related Work
	1.2 Our Contribution
	While several earlier efforts have implemented convolutions and neural networks in hardware, to our knowledge, this is the first effort to create a co-processor architecture that automatically analyzes workloads and dynamically configures its hardware and software components to match the exact mix of different types of parallelism in the workload. Our most novel contribution is dynamic configurability and a method to quickly match HW (on-the-fly) to workload characteristics. For the first time, we achieve a ‘tipping point’ (sustained real-time recognition). We enable new, real-time on-line classification applications that were not possible before.

	2. CNN: A COMPUTE PERSPECTIVE
	2.1 Convolution Sub-layer
	A convolution sub-layer accepts n images Y1...Yn as inputs and produces m intermediate outputs O1...Om. To produce the intermediate output image Oi, the images Y1...Yn are first individually convolved with kernels K1i … Kni. Then, the individual convolution results from each input image are summed, or aggregated. A “bias” value is added to each pixel in the aggregated output, and a suitable non-linear function (for example, tanh) is used to limit the pixel value to be within a reasonable range. The intermediate output image Oi is roughly the same size as the input images. All kernels used in the convolution sub-layer of the CNN are of the same size (rows and columns). However, kernel sizes and the number of input and output images can vary from one CNN layer to another. Mathematically, output image Oi in a convolution sub-layer is as follows:
	2.2 Sub-sampling and non-linearity
	In Figure 1, the convolution sub-layer output Oi is sub-sampled. In the simplest case, sub-sampling averages four neighboring elements in Oi to produce a single element in the output image Xi. The output image Xi will have approximately half the number of rows and columns as compared with Oi. In general, Oi can be sub-sampled by using a suitable sub-sampling kernel Si. After sub-sampling, each element in the output can be subjected to a non-linear operation to produce one pixel of the output Xi. A sub-sampled output image Xi is given by: , where tanh is the non-linear function, and the operation (Oi . Si) represents sub-sampling of image Oi according to kernel Si. Compared to the convolution sub-layer, sub-sampling is less compute intensive since it requires, on average, only one MAC operation per input pixel.

	3. PARALLELISM IN CNN WORKLOADS
	4. A MOTIVATING EXAMPLE
	5. CNN COPROCESSOR ARCHITECTURE
	5.1 System Overview
	The Processing Core
	5.3 The Memory Sub-system

	6. DYNAMIC CONFIGURATION
	6.1 Input Switch and Output Switch
	6.2 Exploring Architectural Configurations

	7. EXPERIMENTAL RESULTS
	7.1 Workloads
	7.2 Advantage of Dynamic Configurability
	7.3 Comparison with Other Implementations

	8. CONCLUSIONS
	REFERENCES

