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ABSTRACT 
Convolutional neural networks (CNN) applications range from 
recognition and reasoning (such as handwriting recognition, facial 
expression recognition and video surveillance) to intelligent text 
applications such as semantic text analysis and natural language 
processing applications. Two key observations drive the design of 
a new architecture for CNN.  First, CNN workloads exhibit a 
widely varying mix of three types of parallelism: parallelism 
within a convolution operation, intra-output parallelism where 
multiple input sources (features) are combined to create a single 
output, and inter-output parallelism where multiple, independent 
outputs (features) are computed simultaneously. Workloads differ 
significantly across different CNN applications, and across 
different layers of a CNN. Second, the number of processing 
elements in an architecture continues to scale (as per Moore’s 
law) much faster than off-chip memory bandwidth (or pin-count) 
of chips.  Based on these two observations, we show that for a 
given number of processing elements and off-chip memory 
bandwidth, a new CNN hardware architecture that dynamically 
configures the hardware on-the-fly to match the specific mix of 
parallelism in a given workload gives the best throughput 
performance. Our CNN compiler automatically translates high 
abstraction network specification into a parallel microprogram (a 
sequence of low-level VLIW instructions) that is mapped, 
scheduled and executed by the coprocessor. Compared to a 2.3 
GHz quad-core, dual socket Intel Xeon, 1.35 GHz C870 GPU, and 
a 200 MHz FPGA implementation, our 120 MHz dynamically 
configurable architecture is 4x to 8x faster. This is the first CNN 
architecture to achieve real-time video stream processing (25 to 
30 frames per second) on a wide range of object detection and 
recognition tasks. 

Categories and Subject Descriptors 
C.1.3 [Other Architecture Styles]: Adaptable architectures, Neural 
nets, pipeline processors.  

General Terms 
Design, Experimentation, Performance. 

Keywords 
Convolutional Neural Networks, Dynamic Reconfiguration, 
Parallel Computer Architecture. 

1. INTRODUCTION 
Feed-forward multilayer neural networks [12] are computational 
models that are widely used in diverse domains such as video and 
image processing [22], medical diagnosis systems [14] and 
financial forecasting [15]. These computation models serve one of 
two roles: pattern recognition to provide a meaningful 
categorization of input patterns, or functional approximation 
where the models find a smooth function that approximates the 
actual mapping between input and output patterns. A vast majority 
of these computational models are still implemented in software 
on general-purpose and embedded processors. However, these 
processors do not fully exploit the parallelism inherent in these 
computational models. Numerous custom hardware 
implementations have also been proposed to parlay the abundant 
parallelism inherent in these computational models into 
significantly higher performance [21]. 

Traditional pattern recognition systems use two distinct steps 
to recognize individual patterns. First, a feature extractor 
transforms the input patterns into short strings of symbols (low-
dimensional vectors) that can be easily matched or compared. 
These features are relatively invariant with respect to 
transformations and distortions that do not change the inherent 
nature of the patterns. The feature extractor is usually rather 
specific to the task. It is also the focus of most design effort, 
because it is entirely hand-crafted. Second, a classifier categorizes 
the feature vectors into a few classes. The classifier is usually 
general-purpose, and a standard, fully-connected multi-layer 
neural network can be automatically trained to do the 
classification. However, recognition accuracy is largely 
determined by the ability of the designer to extract an appropriate 
set of features. Feed-forward, multi-layer artificial neural 
networks like the Convolutional Neural Networks (CNN) 
[2][11][13][16][17][20][23] have found increasing use in several 
new applications because they have the potential to process vast 
amounts of labeled data to automatically learn and extract 
complex features. CNNs are especially attractive because they can 
recognize visual patterns directly from pixel images with very 
minimal preprocessing of the image. CNNs can easily recognize 
patterns with extreme variability (such as handwritten characters). 
Also, their recognition ability is not impaired by distortions or 
simple geometric transformations (for example, translation or 
rotation) of the image.  

Neural networks have multiple layers of neurons (an input 
layer, an output layer and one or more hidden layers). Every 
connection between an input and a neuron is assigned a value 
called weight. Each neuron computes a weighted sum of all its 
inputs, followed by a non-linear or sigmoid function to restrict its 
output value within a reasonable range. Neurons in the hidden 
layers are also called the hidden units. As an example, consider 
one layer of a multi-layer neural network and the task of 
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connecting 1024 inputs to 784 hidden units to produce a set of 784 
output values. The 1024 inputs can be the 1024 pixel values in a 
32 x 32 image. The 784 hidden units produce 784 output values 
(also called as a feature map) which can be interpreted as pixels in 
a 28 x 28 output image. A fully-connected neural network 
connects every input to every hidden unit, resulting in a network 
that has 1024*784 = 802,816 different weights (free parameters). 
Learning these weights will require a very large number of 
training instances. Furthermore, a fully-connected architecture 
ignores the topology of the input image because input values can 
be presented in any order without affecting the outcome of the 
training. On the contrary, images have strong two-dimensional 
local structure where pixels that are spatially nearby are highly 
correlated. Therefore, each hidden unit in a CNN is connected to 
only on a small number of inputs, say 25 inputs. These 25 inputs, 
also called as the receptive field of the hidden unit, correspond to 
a 5 x 5 pixel area in the input image. Only 25 weights are now 
necessary to connect the inputs to a hidden unit. Since such an 
elementary feature detector is likely to be useful across other 5 x 5 
pixel areas in the input image, many different hidden units are 
used to cover the entire image. Receptive fields of these hidden 
units can overlap, and the degree of overlap can be pre-specified. 
Hidden units, whose receptive fields are located at different places 
on the image, can be forced to detect the same elementary feature 
by reusing the same 25 weights. Hidden units that share the same 
set of weights form a plane, and outputs of units in a plane 
constitute the feature map. Hidden units in a plane can together 
extract visual features like edges, corners etc. If we represent the 
25 distinct weights as a 5 x 5 matrix (also called as the kernel 
matrix), then outputs of all the 784 hidden units can be computed 
as the convolution of the 32 x 32 input image with the 5 x 5 kernel 
matrix [1].  

After the convolution step, we have a 28 x 28 image in which 
a feature of interest has been detected, and the exact location of 
the feature becomes less important. The value of every hidden 
unit is also subjected to a squashing function (non-linearity). A 
simple way to reduce the precision with which the distinctive 
features are encoded in the image is to reduce the spatial 
resolution of the image by using sub-sampling.  This also reduces 
the sensitivity of the outputs to shifts or distortions. A typical 
CNN has multiple layers of hidden units (with multiple feature 
maps per layer) to perform complex object recognition tasks. 

Evaluating a trained CNN involves performing a huge 
number of convolutions with considerable data movement. 
Convolution computation is a performance bottleneck, but 
reducing overheads of data movement is also necessary to 
accelerate the performance of a CNN.  Consider a simple object 
(face) recognition application that is used on relatively high 
resolution streaming images. With a 320x240 (QVGA) image, a 
CNN network that can be used to identify faces within all possible 
32x32 windows in the image runs at approximately 6.5 frames per 
second on a 2.5GHz Intel Xeon processor when optimized using 
BLAS (Intel MKL v11). Multi-threading this to 4 and 8 cores on 
quad-core and dual quad-core machines only improves the speed 
by a little over 2x due to synchronization overheads, and the fact 
that different threads share common inputs. Therefore, the most 
optimized software implementation on state-of-the-art processors 
struggles to achieve about 8 to 10 frames per second when we 
analyze VGA (640x480 pixels) images. VGA (or larger) images 
are more realistic in practical use-case scenarios such as security 
cameras. Can the abundant parallelism in CNN workloads be 
leveraged by custom architectures to improve the feed-forward 

processing speeds to be close to real-time (25 to 30 frames per 
second)? To answer this question, we investigate a dynamically 
reconfigurable architecture in which the hardware parallelism can 
be tailored to suit the parallelism offered by the specific 
application workload. 

1.1 Related Work 
Implementation of the convolution operation in hardware has been 
studied extensively. Both FPGA and LSI implementations have 
been proposed. Digital media processors with a large number of 
high-speed multiply-and-accumulate (MAC) units have been used 
to implement the convolution operation [18].  LSI architectures 
using a mixed analog-digital approach [20] as well as several 
FPGA-based implementations have also been proposed 
[3][4][5][6][7][19][24]. 

Fast implementations of a 2D convolution core are necessary 
but not sufficient to accelerate the CNN workload. A host 
processor can carve out the convolution operations from the CNN 
workload and off-load the convolutions to the hardware 
implementation. For each off-load, the host processor provides the 
image and weight values, and retrieves the convolved output 
image from the accelerator. Some optimizations are possible to 
store kernel values or some intermediate data on the accelerator.  
However, for CNNs used in practice, the data dependencies 
within a layer (sub-sampling and non-linearity operations) and 
across multiple network layers of the CNN, the management of 
significant amount of intermediate data over a slow host to 
hardware accelerator link, and the detailed orchestration of 
complex control and data flows by the host processor quickly 
offset performance gains obtained by using a fast hardware core 
only for 2D convolutions. There are no reported LSI 
implementations of CNNs but several software implementations 
on GPUs exist [8][25]. However, none of the prior 
implementations are able to process video feeds (640 x 480 pixel 
VGA frame) in real-time  (about 25 to 30 frames per second).  

An FPGA implementation of CNN was reported recently [9].  
This architecture uses one hardware convolver for data 
processing, and a general-purpose soft-processor for control, all 
implemented on a Virtex 4 FPGA from Xilinx. The self-contained 
unit was developed for video processing in mobile robot 
applications. In contrast, we use a very different approach. We 
employ a configurable bank of hardware convolvers, a hardwired 
controller (to manage complex data movement patterns), and 
configurability hardware that dynamically configures HW 
resources on-the-fly to match the precise type and mix of 
parallelism in the CNN workload. In [9], no attempt is made to 
alter the hardware computing paths to match type or extent of 
parallelism in the workload.  

1.2 Our Contribution 
While several earlier efforts have implemented convolutions and 
neural networks in hardware, to our knowledge, this is the first 
effort to create a co-processor architecture that automatically 
analyzes workloads and dynamically configures its hardware and 
software components to match the exact mix of different types of 
parallelism in the workload. Our most novel contribution is 
dynamic configurability and a method to quickly match HW (on-
the-fly) to workload characteristics. For the first time, we achieve 
a ‘tipping point’ (sustained real-time recognition). We enable 
new, real-time on-line classification applications that were not 
possible before.  
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A high abstraction-level software API, along with a run-time 
software component allows domain-experts to easily specify and 
execute arbitrary convolutional neural network workloads.  Unlike 
prior work, our co-processor architecture is forward-scalable. As 
we scale the number of processing elements, and the available off-
chip memory bandwidth, CNN applications continue to 
automatically improve in performance.  Domain-experts do not 
have to re-write the application. Instead, a software run-time 
component determines the optimal configuration of processing 
elements (and memory architecture) for each layer of the CNN 
workload, and the coprocessor architecture is dynamically 
configured to match the workload characteristics. This allows the 
throughput and performance of the coprocessor architecture to be 
very close to the peak throughput of the individual processing 
elements. Dynamic configurability in hardware is fast (single-
cycle instruction), and it is under the control of software. Our 
coprocessor (with different functional units) can easily implement 
different feed-forward neural networks and classifiers such as 
HMAX [17][27], DBN [29][30]and HoG methods [28].  

The rest of this document is organized as follows. In Section 
2, we provide a background for CNNs. In Section 3, we discuss 
the parallelism in CNN workloads. In Section 4, we present a 
motivating example that illustrates the benefits of a dynamically 
reconfigurable architecture. In Section 5, we describe the 
coprocessor architecture and Section 6 describes dynamic 
configurability. We present architectural evaluation results in 
Section 7, and conclude in Section 8. 

2. CNN: A COMPUTE PERSPECTIVE 
We briefly review the forward propagation phase of a CNN. In 
this paper, we do not consider the learning phase of the CNN that 
determines the kernel values that will be used in each layer.  
Rather, we assume that a trained CNN is available and focus on 
forward propagation. Tasks performed by end-users (to classify 
images, for instance) involve forward propagation on trained 
CNNs. There are often stringent real-time performance and power 
constraints and hardware acceleration is necessary to achieve 
these goals. Forward propagation is also a core computation in the 
back-propagation based learning algorithm, and our solution can 
also accelerate the learning phase.  

We provide a computational perspective of the forward 
propagation phase of a CNN. Figure 1 shows one layer of a 
typical CNN. Several such layers are cascaded to create a feed-
forward neural network where each layer (except the last layer) 
feeds only the next layer and receives inputs only from the 
immediately preceding layer. Every CNN layer is a cascade of 
two distinct computations or sub-layers: convolution, and sub-
sampling. Hardware implementations must also consider issues of 
numerical precision and dynamic range of values computed by the 
network. 

2.1 Convolution Sub-layer 
A convolution sub-layer accepts n images Y1...Yn as inputs and 
produces m intermediate outputs O1...Om. To produce the 
intermediate output image Oi, the images Y1...Yn are first 
individually convolved with kernels K1i … Kni. Then, the 
individual convolution results from each input image are summed, 
or aggregated. A “bias” value is added to each pixel in the 
aggregated output, and a suitable non-linear function (for 
example, tanh) is used to limit the pixel value to be within a 
reasonable range. The intermediate output image Oi is roughly the 
same size as the input images. All kernels used in the convolution 

sub-layer of the CNN are of the same size (rows and columns). 
However, kernel sizes and the number of input and output images 
can vary from one CNN layer to another.  Mathematically, output 
image Oi in a convolution sub-layer is as follows:  
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Figure 1: Typical structure of one layer of a CNN. 

Here, represents the convolution operation between 

image Yj and kernel Kji, and tanh is the non-linear function.  Since 
m*n  image-kernel convolutions are performed per CNN layer, 
from a computational point of view, these convolutions are the 
most compute intensive portion of a CNN.  If the kernels are of 
size 1, then the CNN degenerates into a regular neural network 

jij KY ∗

[1]. 
For convolving an image with Ir rows and Ic columns with a 

kernel with Wr rows and Wc columns, the computation workload 
is (Ir - Wr) * (Ic - Wc) * Wr * Wc multiply-accumulates (MACs). 
For a CNN layer, we perform n * m convolutions. For each 
convolution, it is also easy to see that the computation ratio to 
memory IO ratio is Wr * Wc since for every pixel fetched from 
memory we perform Wr * Wc MACs. Therefore, CNNs are 
compute-intensive, especially as the kernel sizes get larger. 

2.2 Sub-sampling and non-linearity 
In Figure 1, the convolution sub-layer output Oi is sub-sampled. 
In the simplest case, sub-sampling averages four neighboring 
elements in Oi to produce a single element in the output image Xi. 
The output image Xi will have approximately half the number of 
rows and columns as compared with Oi. In general, Oi can be sub-
sampled by using a suitable sub-sampling kernel Si. After sub-
sampling, each element in the output can be subjected to a non-
linear operation to produce one pixel of the output Xi. A sub-
sampled output image Xi is given by: , where 
tanh is the non-linear function, and the operation (Oi . Si) 
represents sub-sampling of image Oi according to kernel Si. 
Compared to the convolution sub-layer, sub-sampling is less 
compute intensive since it requires, on average, only one MAC 
operation per input pixel. 

).(tanh iii SOX =

3. PARALLELISM IN CNN WORKLOADS 
The CNN forward propagation task can be parallelized in several 
ways. In a multi-layer CNN, due to the feed-forward nature of 
forward propagation, the data dependencies between successive 
layers preclude parallel execution of all layers of the CNN. 
Therefore, task-parallelism across layers is limited and it is also 
more difficult to exploit.  

Operator-level (fine-grained) parallelism: Consider one 
image-kernel convolution that convolves an image with Ir rows 
and Ic columns and a kernel with Wr rows and Wc columns. Each 
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output pixel requires Wr*Wc multiply-accumulations all of which 
can be performed in parallel. The output pixels themselves are all 
independent. Numerous 2D-convolver designs exist that exploit 
the parallelism inherent in the image-kernel convolution, and we 
employ a standard systolic design. Practical considerations like 
available memory bandwidth, hardware computation resources, 
and power considerations do limit the amount of fine-grained 
parallelism we can exploit in hardware. For example, it is not 
practical to simultaneously perform all the sub-convolutions in 
parallel due to the excessive memory bandwidth that will be 
necessary to bring in almost the entire image in one cycle.  

Coarse-grain parallelism: If a CNN layer has n input 
images and m outputs, then all m*n image-kernel convolutions 
can, in theory, be performed in parallel. However, for typical m 
and n, provisioning enough memory bandwidth to keep m*n 
convolvers busy is impractical. With a smaller number of 
convolvers, we can extract parallelism in two ways: inter-output 
and intra-output. We can parallelize the computation of a single 
output image since it is the sum of n input-kernel convolutions. 
We refer to this as intra-output parallelism.  Also, multiple output 
images can be computed in parallel, and we refer to this as inter-
output parallelism. The key observation is that different layers in 
a CNN network exhibit vastly different amount of intra-output 
and inter-output parallelism. As explained in Section 4, due to this 
variability, fixed hardware architectures have worse performance 
than an adaptive, configurable architecture. 

4. A MOTIVATING EXAMPLE 
In this section, we motivate the case for a dynamically 
configurable CNN coprocessor. We show that CNN workload 
characteristics change dramatically not only from one application 
to another, but also across different layers of a single CNN. We 
designed several hardware architectures and observed the 
performance of a variety of CNN workloads on each of these 
architectures.  Specifically, we designed a hardware architecture 
expressly tailored to accelerate workload in a particular layer of 
the CNN, and evaluated the performance of workloads in other 
layers of the CNN (and even other applications) on this hardware 
architecture. We observed that for any given hardware 
architecture, the CNN layer workload for which the hardware 
architecture was designed for does exhibit good performance, but 
a majority of other CNN layer workloads exhibit poor 
performance. Our study attributes the poor performance of most 
CNN layer workloads to a mismatch of the computing 

architecture and the workload characteristics of various CNN 
layers.  

 
Figure 2: CNN for face recognition (with angle/pose 

detection). 

Figure 2 shows a CNN network we use in video applications 
to detect faces (and their angle and pose). The resolution of the 
input image is VGA (640x480). The network has 4 layers. The 
first two layers employ both convolutions as well as sub-sampling 
(the figure leaves out non-linearity and bias for simplicity). The 
third layer is only a convolutional layer while the last is a 
traditional fully-connected layer where all inputs are connected to 
all outputs. The convolutional kernels (2D array of weights) are of 
size 5x5 in the entire network. The 9 outputs encode the face, its 
angle and pose (each output is a 113x153 image). 

Our architectural template for the CNN coprocessor consists 
of an array of convolver primitives connected to external memory. 
Each convolver primitive can convolve one image with one 
kernel. The number of convolver primitives, the number of 
memory ports and the port width are pre-specified for an 
architecture. The hardware also has no internal storage and 
requires that all convolver primitives are fed data continuously in 
a streaming manner. For hidden layers, the values of the hidden 
units are the intermediate outputs. If the computing architecture 
has fewer than n convolvers per output then accesses to off-chip 
memory are required to store intermediate data. This is because 
the computing architecture has no internal storage for intermediate 
data. 

Given this architectural template, there are different ways of 
organizing the convolver primitives within the memory port (and 
port width) constraints. We show that the best performance is 
achieved when the layers use different organizations. We first 
note that all layers have fine-grained parallelism within a 
convolution operation. However, a software implementation of a 
CNN when run on a processor cannot effectively leverage that 
parallelism due to thread synchronization. Our convolution 
primitives exploit the parallelism inherent in a convolution using 
well-known systolic architectures.  

Of more interest are the inter-output and intra-output 
parallelisms. The first layer, which produces 8 outputs from a 
single input image, exhibits inter-output parallelism, while the 
second layer exhibits intra-output parallelism.  Let us assume the 
hardware has 8 convolver primitives, 2 memory ports of width 8 
pixels (i.e., the ability to transfer 8 pixels per port each cycle). 
Consider the first layer. It has 1 input image and 8 outputs. If we 
organize the 8 available convolver primitives so that we have a 
single broadcast of the input image and the computation of the 8 
outputs in parallel, then the computing architecture executes the 
first layer with maximum performance. However the same 
arrangement will work poorly for the second layer which has 8 
input images and 20 output images. With a single broadcast input 
and 8 convolvers, we can only process one input at a time, but 
compute 8 partial outputs in parallel. With no intermediate 
storage, the 8 partially computed outputs must be written out to 
off-chip memory resulting in an increase in intermediate data 
memory traffic. Furthermore, each input image, which participates 
in producing 20 outputs, will have to be read three times from the 
off-chip memory in order to generate and write out all the 20 
outputs. The execution time is roughly the same as the time it 
takes to read one of the images 24 times. 

On the other hand, assume that the second layer had a 
different arrangement of the 8 convolver primitives where the 8 
convolvers simultaneously process 8 different input images, but 
the results of the 8 convolutions are combined to produce a single 
output. With 8 convolvers processing eight different input images, 
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we are computing each of the 20 outputs in a serial fashion. 
However, each output is being computed in parallel (8 images are 
being processed in parallel to produce an output). Note that there 
is no intermediate data to be written off-chip since no partial 
outputs are computed. This is intra-output parallelism. The 
execution time for the second layer is roughly the same as the 
time it takes to read an image, about 20 times. Clearly, the 
execution time for the second layer is much shorter than the case 
where the 8 convolvers are processing the same image but 
producing 8 different (partial) outputs. As shown in the 
experimental results section, the performance improvement could 
be as much as 3X for CNN layers in several real-world CNN 
applications. 

5. CNN COPROCESSOR ARCHITECTURE  
Our architectural template primarily consists of a processing core 
and a memory sub-system. The processing core itself is stateless, 
and we require that input, intermediate and output data are 
continuously streamed between the processing core and the 
memory sub-system. 

5.1 System Overview 
As shown in Figure 3, the processing core DC-CNN 
communicates with a separate processor (“Host”) that executes 
the main application. The host off-loads the entire CNN 
computation to the co-processor. In particular, the host transfers 
the input images and the detailed CNN network structure to the 
co-processor (number of layers, kernels used in each layer, bias 
values, sampling kernels, non-linearity etc.).  The coprocessor has 
access to 3 external memory banks (Data Memory) to store input 
images, kernels and intermediate data.   

We have developed a CNN compiler (it executes on the host 
platform) that automatically translates high abstraction network 
specification written by domain experts into a parallel 
microprogram (a sequence of low-level VLIW instructions) that is 
mapped, scheduled and executed by the coprocessor (hardware 
controller in Figure 3). Instructions to facilitate dynamic 
configurability, complex control and data flows, as well as on-the-
fly packing of intermediate data to minimize off-chip memory 
transfers, are also natively supported by the coprocessor. 

The co-processor performs forward propagation across all 
the network layers and returns the output of the last layer back to 
the host. We chose a high-level of abstraction for the host 
interface since implementing only the convolution task on the co-
processor will require the host to co-ordinate complex control and 
data flows, and this will severely degrade the performance. Also, 
significant amounts of intermediate data are generated within and 

across layers of the CNN. Moving the intermediate data across the 
slow host-coprocessor interface will negate any advantage we get 
from performing fast convolutions on the co-processor.  

 
Figure 3: System Overview. 

 
Figure 4: Basic computational element: hardware pipeline of 

convolvers (C), non-linearity (NL) and sub-sampling (S1). 

5.2 The Processing Core 
Each layer of the CNN reads one or more images as input, and 
computes one or more images as output. Our basic computational 
element, shown in Figure 4, is designed to compute one output 
image at a time. This computational element is architected to take 
advantage of intra-output parallelism. The basic computation 
primitive is the 2D convolver that can store a kernel internally. 
We use a bank of 2D convolvers whose outputs are aggregated. 
The computation element also has a specialized hardware pipeline 
to compute non-linearity (NL) and sub-sampling (S1). If more 
than n images have to be combined to realize an output, then the 
aggregated output from the convolver bank may only be a partial 
output (i.e. intermediate data) that must be stored in off-chip 
memory. Partial outputs are not subjected to non-linearity or sub-
sampling. 

If the coprocessor reads one pixel every cycle, then the time 
taken for reading the input is the same as the total number of 
pixels in the input images. If the memory architecture is designed 
so that the co-processor can input multiple pixels in one cycle, 
then the time taken for reading the input information will reduce 
proportionally. Either way, every pixel in every input image has to 
be examined at least once to compute an output image.  Fetching 
data from off-chip memory consumes significantly more power 
than typical operations performed within the processor. Therefore, 
minimizing memory transfers has a significant effect on power 
consumption. One of our key design goals is to read each input 
pixel exactly once, and compute the output image within a few 
(fixed number of) cycles after the last input pixel is read. By 
computing the output image  in approximately the same time it 
takes to read input data,  the basic computational element is 
optimal with respect to a given off-chip memory bandwidth, 
power consumption, and throughput.  

If we use multiple computational elements, each input image 
can be simultaneously used to compute more than one output 
image. Since the same image is used to compute different output 
images, we can fetch the input image only once. Figure 5 shows 

 
Figure 5: Processing core with two computational elements.
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an array of two computational elements (X1 and X2) where the 
inputs of the first computational element are also broadcast to the 
second element. With such a configuration, we can leverage inter-
output parallelism, since we can now compute two outputs 
simultaneously.  

By varying the number of convolvers in a computational 
element (Y), as well as the total number of computational 
elements (X), we can control the extent to which the two different 
parallelisms are parlayed to match the exact computational 
workload of any layer of a CNN. Note that by replacing the 
convolver primitive with a different functional unit, we can easily 
implement different feed-forward neural networks and classifiers 
such as HMAX [17][27], Deep Belief Networks [29][30] and 
HoG methods [28].  

5.3 The Memory Sub-system 
Design of the memory subsystem has a big impact on the 
performance of CNNs as well as other artificial neural networks. 
Since our processing core is stateless, multiple banks that can be 
simultaneously read from and written to are necessary.  A banked 
memory subsystem is indispensible for CNNs rather than a single 
memory with the same or higher aggregate bandwidth and 
storage. For the discussion in this section, we assume that the 
memory subsystem consists of one or more banks, and each bank 
has exactly one single-ported memory.  However, basic ideas 
described in this section can be easily adapted to multi-port 
memories. If Y, the number of convolvers in a computational 
element, is less than In, then we need multiple passes to compute 
each output, thereby resulting in intermediate data values. We 
assume that each memory bank has the necessary port width to 
either read Y input pixels (and if necessary, X intermediate data 
values for the  X output images being computed simultaneously)  
and write X output pixels (or X intermediate data values), every 
cycle.  

In this section, we show that three independent memory 
banks suffice to ensure uninterrupted data flow for the stateless 
CNN architecture. Consider Figure 6. Layer 1 of a CNN produces 
2 outputs (X11 and X12) from 2 input images (Y11 and Y12). Also, 
assume that we choose a co-processor architecture that has Y =1 
and X = 1 (i.e. one 2D convolver, and one NL-SS-NL pipeline). 
Since Y = 1, we process one image at a time. Every cycle, we read 
a pixel from an input image. We either generate an intermediate 

value or we compute a pixel of one of the output images, but not 
both.  

 
Figure 6: Use of three memory banks. 

To compute the output image X11, we first read pixels of 
image Y11 that is stored in Bank 1. Processing of every pixel in Y11 
generates one intermediate value.  Since we are reading a pixel 
from Bank 1 in every cycle, we cannot also write the intermediate 
value to Bank 1 in the same cycle. Furthermore, while reading 
pixels of image Y12, we must also read the intermediate values. 
Therefore, intermediate values and pixels of Y12 are laid out in the 
same memory bank (Bank 2). Convolution of image Y12 will not 
result in intermediate values since this is the last image. Since X11 
cannot be written to Bank 2, we store X11 in Bank 1. After we 
compute X12, where do we store X12? Like Layer 1 where the two 
input images Y11 and Y12 were in different banks, Layer 2 
processing dictates that X11 and X12 be stored in different memory 
banks. Therefore, we store the output X12 in a new bank (Bank 3). 
Clearly, three memory banks are necessary and sufficient to 
support stateless processing. Output images of Layer 1 are the 
input images for Layer 2, and we can argue similarly to determine 
the location of Layer 2’s output images (X21 and X22). 

6. DYNAMIC CONFIGURATION 
In order to make the core adapt to the different types of 
parallelism across CNN layers, we introduce an input switch as 
shown in Figure 7. The switch allows the convolvers to be 
grouped in different ways by varying Y and X. The maximum 
values of Y and X are determined by the memory bandwidth and 
the area budget of the chip. Assuming a 3-bank architecture, if the 
memory bandwidth per bank is P bits per cycle, the input pixel 
width is Ib bits, intermediate data width Tb and output pixel width 
Ob, then the maximum value of Y, given by Ymax isቔmin ሺ 

ூ
, 

்
ሻቕ. 

Similarly, the maximum value of X (Xmax ) is ቔmin ሺ 
ை

, 
்

ሻቕ. 

Note that every computational element has to sum the Y 
convolutions prior to non-linearity and sub-sampling. Since Y can 
change in the configurable architecture, this summation is 
achieved by using a sea of adders each statically designed to add 
Ymax values. Specifically, we need Xmax adders, each with Ymax 
inputs. The output switch appropriately routes the Y * X 
convolver outputs to appropriate inputs of these adders. The 
routing is done in a block-wise fashion, i.e., groups of Y outputs 
from the convolvers are routed to a single adder with Ymax-inputs. 

6.1 Input Switch and Output Switch 
Figure 8 shows the details of the input and output switch for a 
design where Ymax = 6 and Xmax = 2. The input switch is 
constructed from a simple selector (multiplexor). The selector has 
three inputs (one select signal and two input values, one of which 
is 0). Depending on the value of the ‘Select’ signal, the selector 
either produces a 0 value as output or it forwards the input value. 
Each selector is connected to exactly one convolver. We achieve 
dynamic configurability as follows. For a CNN layer with 3 input 
images (Y1, Y2 and Y3), and one output image X1, we generate 
select signals so that the first three selectors of computational 
element X1   (selectors M1, M2 and M3) are enabled to forward their 
inputs (images Y1, Y2 and Y3) to their convolvers. Selectors M4, M5 
and M6  are configured to forward a value of 0. So, these selectors 
are effectively disabled.  Please note that the 2D convolvers are 
also designed to perform no computations if their corresponding 
selector is disabled (this is not required for correctness of the 
result, but it saves the power that would otherwise be consumed 
by the convolver). Similarly, the first three selectors of 
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computational element X2 (M19, M20 and M21) are configured to 
forward images Y1, Y2 and Y3  to their convolvers.  Selectors M22, 
M23 and M24 are disabled. 

In a simple implementation of the output switch, we chain 
the convolvers in a computational element to realize the pipelined 
summation of the convolver outputs. For example, selectors M1, 
M2 and M3 are set to forward input images Y1, Y2 and Y3 to their 
convolvers. Outputs of the three convolvers are aggregated over 
time as shown in Figure 8. The aggregated value is then processed 
by the non-linearity and sub-sampling units. 

6.2 Exploring Architectural Configurations 
Scaling the number of processing elements in a chip is easier than 
scaling off-chip memory bandwidth. Therefore, in practice, 
finding the optimal values of Y and X for a CNN layer boils down 
to finding a judicious mix of intra-output and inter-output 
parallelism that saturates the available off-chip bandwidth. 

We first examine constraints on Y and X, assuming a 3-bank 
memory subsystem where each bank transfers P bits per cycle. 
Again, assume that the input pixel width is Ib, the intermediate 
data width is Tb, the output pixel width is Ob and that there are C 
convolvers in the hardware.  The product of Y and X must be less 
than or equal to the total hardware available which means X*Y
C.  Several constraints are due to the memory sub-system. 
Specifically, it is straightforward to see that:  

X * IB  P (if X is used to write intermediate data) 

X * OB  P (if X is used to write final outputs) 

Y * TB  P (if Y is used to read intermediate data) 

Y * IB  P (if Y is used to read first layer inputs) 

When computing a CNN layer, if we only read primary 
inputs (and no temporary intermediate result), the number of 
memory bits read per cycle is Y * IB . If there are temporary 
results, there are (Y * IB) + (X * TB) bits read per cycle. Similarly, 
the number of memory bits written per cycle is X * TB or X * OB 
depending on whether we store intermediate or final outputs. Read 
requests per cycle or write requests per cycle cannot exceed P bits 
per cycle.  

For a CNN layer with n inputs and m outputs, the number of 
passes required for completion is (n/Y)*(m/X). The time for 
completing one pass is simply the time required to fetch the image 
from memory one pixel at a time (since we have a stateless 
streaming architecture): Ir * Ic where Ir is the number of image 
rows, and Ic the number of image columns. Therefore, the 
execution time for completing the entire layer is (Ir * Ic) * n /Y * 

m /X.  This is the cost function that we want to minimize subject 
to the memory sub-system constraints, and total hardware 
available (number of convolvers). From a system point of view, a 
run-time software component analyzes the CNN workload, and 
determines the best (Y,X) for each layer. The CNN architecture is 
then dynamically configured for each layer by using a special 
instruction in the instruction set of the coprocessor.  

 
Figure 8: Input and output switches. 

Figure 7: Dynamically configurable CNN architecture. 

The algorithm for choosing the best (Y, X) for each layer 
uses integer factorization techniques to identify different 
candidate integer values of Y and X so that X*Y C.   For each 
value of Y and X, we evaluate the memory sub-system constraints 
to determine if the specific combination of Y and X is a feasible 
solution. We compute the cost function for every feasible 
solution, and select the feasible solution that minimizes the cost 
function (execution time for processing the entire layer). Although 
no efficient integer factorization algorithm is known for factoring 
very large numbers (with 100 to 200 digits), there are several 
reasons why this approach works well in practice. First, the largest 
number of hardware convolvers (C) we considered is 40.  Even if 
C increases by two or three orders of magnitude (very unlikely 
due to power and hardware constraints), fortunately, integer 
factorization for small numbers is fast [10].  Second, by using 
dynamic programming, we are able to quickly prune many 
combinations of Y and X. For example, consider the case of C = 
40 convolvers, and a memory port-width of 128 bits of data per 
cycle. To determine the best configuration for Layer 3 of the 
Video Surveillance workload, only a small number (14) of 
feasible combinations, shown in Figure 9, had to be considered.  

7. EXPERIMENTAL RESULTS 
In this section, we first compare the performance of a fixed 
coprocessor and a dynamically reconfigurable coprocessor using 
several real CNN workloads. We then examine the scalability of 
the new architecture with respect to scaling (increase) in number 
of processing elements, as well as memory bandwidth, and show 
that dynamic configurability has a consistent, first-order effect on 
performance.  Finally, we compare the performance of our 
dynamically configurable CNN coprocessor with leading CNN 
workload implementations reported recently on several other 
computing platforms. 
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We estimated performance and scalability using a simulator 
that provides cycle-accurate execution time estimates of the 
architectural components. In the simulator, Y and X could be 
parameterized per layer or they can be fixed for the entire CNN 
workload. Our architectural simulator uses an emulation of a 20-
convolver, 3-memory bank (128 bits of data per cycle per port per 
bank), dynamically configurable CNN architecture (including the 
hardware learning engine controller) on a Virtex 5 SX240T FPGA 
platform (1024 multiply-accumulate units) to more accurately 
estimate execution cycles. The RTL (Verilog) for the 20-
convolver design was mapped to the FPGA by using design tools 
from Synplicity. In all CNN workloads, an input or output value is 
represented using 16 bits, and an intermediate data value is 
represented using 48 bits. All CNN workloads are specified by 
using a simple, high abstraction level software programming API. 
A CNN compiler (running on the host processor) automatically 
translates the entire high abstraction network specification into a 
parallel micro-program (a sequence of low-level VLIW 
instructions) that is mapped, scheduled and executed on the 
coprocessor FPGA implementation. Instructions to facilitate 
complex control and data flows, as well as on-the-fly packing of 
intermediate data to minimize off-chip memory transfers, are also 
natively supported by the coprocessor. 

7.1 Workloads 
Table 1 shows the five different CNN workloads we considered. 
In the “Video Surveillance” workload that was developed 
internally, the CNN is used to identify human activity within a 
video frame and to recognize specific physical characteristics such 
as age, gender and race. The “Face Recognition” workload is 
obtained from [26]. The “Automotive Safety” workload is a 
vision, range and motion sensing network, used in automotive 

safety applications, to process video-feeds from vehicle-mounted 
cameras. This application was developed internally for a major 
Japanese automobile manufacturer.  The “Mobile Robot Vision” 
workload is obtained from [9]. Here, a CNN is used for learning 
long-range vision (on-vehicle Robot) for autonomous, off-road 
driving. The “Face Detection” workload is obtained from [25]. As 
shown in Table 1, the CNNs used in these applications have a 
wide range of inputs and outputs across different layers. All 
examples use VGA frames (640 x 480 pixels per frame). 

 
Figure 9: Feasible architectural configurations for Layer 3 of 

the Video Surveillance workload. 

7.2 Advantage of Dynamic Configurability 
Table 2 compares the dynamically configurable architecture with 
the best fixed-architecture, in terms of execution cycles. The fixed 
architecture has the same (Y, X) for all three layers, while the 
dynamically configurable architecture adapts to each layer of the 
CNN.  For all workloads, the hardware constraint is 20 
convolvers, and the memory port-width is 128 bits of data per 
cycle.  The column “Best Fixed Architecture” reports the values 
of Y and X that were chosen, and the total execution cycles for 
each of the workloads. Note that the Y and X values are fixed for 
all three layers of a CNN. The column “Dynamically 
configurable” reports (a) the values of Y and X that were chosen 
for each layer of a CNN workload, and (b) the total execution 
cycles for all three layers of a CNN workload. The last column 
reports the speedup of the dynamically configurable version as 
compared with the fixed architecture case. Our results show that a 
dynamically configurable architecture consistently outperforms a 
fixed architecture. Depending on the CNN workload, speedup 
factors range from 1.5x to 2.3x. 

To understand the scalability of the new architecture with 
respect to scaling (increase) in number of processing elements, as 
well as increase in memory bandwidth, we considered four CNN 
coprocessor architectures with 10, 20, 30 and 40 convolvers. In 
addition, we considered three different memory port widths (64 
bits per cycle, 128 bits per cycle and 256 bits per cycle) for each 
of the four CNN architectures. For all architectures, we used 3 
independent memory ports. Figure 10, Figure 11 and Figure 12 
show the speedup obtained for three different CNN workloads, as 
a function of the number of convolvers and memory port width 
(due to space constraints, we are not able to include data for all 
experiments). For example, consider the case of the “Automotive 
Safety” workload. We designed the best possible fixed 
architecture, assuming a hardware constraint of 10 convolvers, 
and a memory port width of 64 bits of data per cycle. In order to 
obtain the best fixed architecture, we examine all possible valid 
combinations of Y and X, and select the best one for a fair 
comparison. Then, we designed a dynamically configurable 
architecture under the same hardware and memory constraints. 
From the figures, we observe that the dynamically configurable 
version is about 2.2x faster than the best fixed-architecture version 
(for 10-convolvers, and 64-bit memory port width).  Similar 

Table 1 : CNN workload characteristics. 
 Video Surveillance Face Recognition Automotive Safety Mobile Robot Vision Face detection 

 Inputs Outputs Inputs Outputs Inputs Outputs Inputs Output Inputs Outputs 

Layer 1 5 6 1 20 1 8 1 6 1 6 

Layer 2 6 16 20 25 8 20 6 16 6 16 

Layer 3 16 120 25 40 8 20 16 80 16 100 
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experiments were conducted to obtain data for all the four 
architectures and three different memory port widths per 
architecture. 

We note three interesting trends from the data. First, 
irrespective of the number of convolvers or the memory port 
width, the dynamically configurable version is consistently faster 
(speedups range from 1.2x to 3.4x) than the corresponding, best 
fixed-architecture version. Second, increasing the number of 
convolvers (for a given memory port width) usually results in 
higher speedups. However, in some cases the best fixed 
architecture also happens to be a reasonably good match for the 
given workload, resulting in an occasional low speedup factor for 
the dynamically configurable version. For example, consider the 
128-bit memory port width case for the “Automotive Safety” 
workload. With 30 convolvers, the dynamic version is only 1.5x 
faster than the best fixed architecture (for a 20-convolver design, 
the dynamic version is 2.3x faster than the best fixed architecture 
for the same workload). Third, increasing the memory port width 
(for a given number of convolvers) may or may not result in 
higher speedups. It does improve both designs (fixed or 
dynamically configurable) but the amount of improvement can be 
very different.  For some workloads like the “Face Recognition” 
workload, with large amount of intermediate data across the three 
layers, the advantage of dynamic configurability is more 
pronounced at wider memory port widths. We see the exact 
opposite effect for the “Automotive Safety” workload, where 
higher speedups are usually achieved for smaller memory port 
widths. The absolute performance of fixed or dynamically 
configurable architecture always improves with higher memory 
port widths, and so does the power consumption.  In all cases, the 
utilization factor of the hardware convolvers or the available 
memory bandwidth is close to 100%.  

7.3 Comparison with Other Implementations 
We also compared the performance of our dynamically 
configurable  CNN coprocessor (20 convolvers, 128-bit memory 
port width) with leading CNN workload implementations reported 

recently on several platforms: (a) 128-core, 1.35GHz NVIDIA’s 
GPU with 1.5GB RAM, and a fast PCI Express connection to the 
x86 host [26] (b) an internal software implementation on an dual-
socket, quad-core, 2.33 GHz Intel Xeon (Intel Multicore with 
eight 2.33 GHz cores), and (c) a 200 MHz, fixed architecture 
CNN co-processor called CNP  that was implemented on a Virtex 
4 FPGA  part from Xilinx [9]. 

 
Figure 10: Speedup for Automotive Safety. Figure 12: Speedup for Face Recognition.

 
Figure 11: Speedup for Video Surveillance.

Results for the Intel Xeon (8-processor) multicore  (column 
“Multicore” in Table 3) were obtained by using an internal 
software implementation of CNN on the multicore. This 
implementation uses the latest BLAS library that has been 
specially optimized for dense linear algebra operations. The 
performance of the multicore implementation is quite competitive 
with the GPU implementations. GPU results reported in [26] used 
an older, 600 MHz NVIDIA GPU. They report a processing time 
of 210 ms per frame for the “Face Detection” workload. Their 
frame has less pixels than our VGA frame. On a faster GPU 
(1.35GHz), we achieve a processing time of 105 ms per VGA 
frame. If we factor in the difference in clock speeds, the two GPU 
implementations are comparable. We use our GPU 
implementation to generate results for all the other workloads. 

Performance of software CNN implementations on 
embedded processors is poor. For example, processing times per 
frame on the Intel Atom processor were 1.67 s (Automotive 
Safety), 2.05s (Video Surveillance), 1.95s (Face Recognition), 
1.23 s (Mobile Robot Vision), and 0.97s (Face Detection). We see 
a clear 10X pullback from software implementations on the Xeon.  

Results for the 200 MHz CNP (column “CNP” in Table 3) 
were taken from [9].  They report a processing time of 100 ms per 
frame for the “Mobile Robot Vision” workload. Since they do not 
use a separate host processor, there is no need to transfer the video 
feed from the host. Also, we do not have access to their hardware, 
and we are unable to report results for the remaining workloads on 
their platform.  

Results for the proposed dynamically configurable CNN 
coprocessor (column “DC-CNN” in Table 3) were obtained using 

Table 2 : Comparison of fixed and dynamically configurable, 20-convolver, 128-bit memory port width. 
 

CNN workload 
Best Fixed Architecture Dynamically configurable Speedup 

Y,X Performance Cycles Y,X Performance Cycles 

Automotive Safety 7,2 3,340,800 L 1: 1,8 L 2: 8,2 L 3: 10,2 1,518,545 2.2x 

Video Surveillance 7,2 4,972,000 L 1: 5,4 L 2: 4,5 L 3: 10,2 3,225,600 1.5x 

Face Recognition 8,2 7,603,200 L 1: 1,8 L 2: 8,2 L 3: 10,2 5,068,800 1.5x 

Mobile Robot Vision 10,2 3,072,000 L 1: 1,6 L 2: 10,2 L 3: 10,2 2,457,600 1.3x 

Face Detection 8,2 3,456,000 L 1: 1,6 L 2: 8,2 L 3: 10,2 2,841,600 1.2x 
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a 120 MHz FPGA implementation of our dynamically 
configurable co-processor, with 20 convolvers and 128-bit 
memory port width. We report separately the time taken to 
transfer the images (from the x86 host to the coprocessor) and 
output the results (from coprocessor to the host). In our 
implementation, transfer of images or output results overlaps with 
the CNN computation. Therefore, the total processing time for 
any CNN workload is the maximum of the execution time of the 
coprocessor and the data transfer time. For example, consider the 
case of the “Face Recognition” workload. It takes 11 ms to 
transfer the input image data to the co-processor, and it takes 42 
ms to perform the processing for all three Layers in the CNN 
workload. However, processing of a Layer begins as soon as 
portions of images are available on the coprocessor.  

Similarly, some of the output results computed by the 
coprocessor are transferred to the host while other outputs are still 
being computed by the co-processor. Therefore, due to the 
overlap, the total time required to process the frame was only 42 
ms. Column “Speedup” in Table 3 shows the performance 
advantage of the dynamically configurable architecture over the 
multicore, GPU and CNP. We observe that the dynamically 
configurable architecture is 4x to 8x faster. More importantly, the 
additional speedup of the dynamically configurable architecture 
now enables an important tipping point. By easily processing 25 
to 30 frames per second, the proposed dynamically configurable 
co-processor is the first CNN architecture to enable real-time 
video stream processing on a wide range of object detection and 
recognition tasks. Due to clock frequencies in the GHz range, the 
GPU and the Intel Multicore implementations consume more than 
150 Watts. The 200 MHz Virtex4 implementation consumes 15 
Watts [9].  In comparison, our 120MHz dynamically configurable 
co-processor prototype on a Virtex 5 FPGA consumes less than 14 
watts of power (for all components on the FPGA board, including 
memory banks). 

8. CONCLUSIONS 
We presented a dynamically reconfigurable architecture for feed-
forward neural networks used in recognition, analysis and 
reasoning applications. The design of the architecture is driven by 
two key observations. The first is based on the fact that CNNs 
exhibit “inter-output” and “intra-output” parallelism. Inter-output 
parallelism is where different outputs can be computed 
independently, and in parallel. Intra-output parallelism exploits 

parallelism within a single output computation. We showed that 
different CNN workloads exhibit a widely varying mix of these 
two types of parallelism within a single network. That is, different 
layers of a network must be parallelized in different ways. We 
therefore argued that the architecture itself must adapt to the way 
a particular layer of a network needs to be parallelized.  This 
adaptive architecture is achieved by allocating an array of 
convolver primitives and dynamically configuring their 
organization at run-time to achieve optimal performance. The 
second observation is based on the fact that CNNs have large 
intermediate data which cannot be stored on-chip. Therefore, we 
designed a streaming architecture with multiple memory ports 
where input data, intermediate data and output data are 
continuously flowing between the processor and off-chip memory. 
We showed that a dynamically configurable architecture can 
provide speedups ranging from 1.2x to 3.5x over a similar fixed 
custom architecture with the best possible fixed configuration of 
the convolver primitives. 

Table 3: Comparison with other CNN implementations. 

CNN 
 (640 x 480 pixels 

input image) 

Multicore 
(Xeon @ 
2.33 Ghz, 
8 Cores, 
16 GB) 
BLAS 

GPU 
(C870 @ 
1.35 Ghz, 

1.5 GB 
RAM) 
PCIe 

CNP 
(FPGA 
@200 
MHz) 

DC-CNN @ 120 Mhz 
20 conv., 128-bit port 

width, PCI 

 
Speedup of DC-CNN 

Compute 
time 

Transfer 
time 

Over  2.3 
GHz, 8-

core 

Over 1.35 GHz, 
128-core GPU 

Over 
CNP 

Automotive Safety 110 ms 85 ms - 13 ms 11 ms 8.5x 6.5x - 

Video Surveillance 212 ms 163 ms - 27 ms 34 ms 7.8x 6.0x - 

Face Recognition  217 ms 167 ms - 42 ms 11 ms 5.2x 4.0x - 

Mobile Robot Vision 147 ms 114 ms 100 ms 21 ms 11 ms 7.0x 5.4x 4.8x 

Face Detection 136 ms 105 ms - 24 ms 11 ms 5.7x 4.4x - 
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