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PREFACE TO THE SECOND

EDITION: VOLUME I

In the twenty-three years that have passed since the first edition of our book appeared
statistics has changed enormously under the impact of several forces:

(1) The generation of what were once unusual types of data such as images, trees (phy
logenetic and other), and other types of combinatorial objects.

(2) The generation of enormous amounts of data-terrabytes (the equivalent of 1012

characters) for an astronomical survey over three years.

(3) The possibility of implementing computations of a magnitude that would have once
been unthinkable.

The underlying sources of these changes have been the exponential change in com
puting speed (Moore's "law") and the development of devices (computer controlled) using
novel instruments and scientific techniques (e.g., NMR tomography, gene sequencing).
These techniques often have a strong intrinsic computational component. Tomographic
data are the result of mathematically based processing. Sequencing is done by applying
computational algorithms to raw gel electrophoresis data.

As a consequence the emphasis of statistical theory has shifted away from the small
sample optimality results that were a major theme of our book in a number of directions:

(I) Methods for inference based on larger numbers of observations and minimal
assumptions-asymptotic methods in non- and semiparametric models, models with
"infinite" number of parameters.

(2) The construction of models for time series, temporal spatial series, and other com
plex data structures using sophisticated probability mOdeling but again relying for
analytical results on asymptotic approximation. Multipararneter models are the rule.

(3) The use of methods of inference involving simulation as a key element such as the
bootstrap and Markov Chain Monte Carlo.

...
XIII
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(4) The development of techniques not describable in "closed mathematical form" but
rather through elaborate algorithms for which problems of existence of solutions are
important and far from obvious.

(5) The study of the interplay between numerical and statistical considerations. Despite
advances in computing speed, some methods run quickly in real time. Others do not
and some though theoretically attractive cannot be implemented in a human lifetime.

(6) The study of the interplay between the number of observations and the number of
parameters of a model and the beginnings of appropriate asymptotic theories.

There have, of course, been other important consequences such as the extensive devel
opment of graphical and other exploratory methods for which theoretical development and
connection with mathematics have been minimal. These will not be dealt with in our work.

As a consequence our second edition, reflecting what we now teach our graduate stu
dents, is much changed from the first. Our one long book has grown to two volumes, each
to be only a little shorter than the first edition.

Volume I, which we present in 2000, covers material we now view as important for
all beginning graduate students in statistics and science and engineering graduate students
whose research will involve statistics intrinsically rather than as an aid in drawing conclu-

•SlOns.
In this edition we pursue our philosophy of describing the basic concepts of mathemat

ical statistics relating theory to practice. However, our focus and order of presentation have
changed.

Volume I covers the material of Chapters 1--6 and Chapter 10 of the first edition with
pieces of Chapters 7-10 and includes Appendix A on basic probability theory. However,
Chapter I now has become part of a larger Appendix B, which includes more advanced
topics from probability theory such as the multivariate Gaussian distribution, weak con
vergence in Euclidean spaces, and probability inequalities as well as more advanced topics
in matrix theory and analysis. The latter include the principal axis and spectral theorems
for Euclidean space and the elementary theory of convex functions on Rd as well as an
elementary introduction to Hilbert space theory. As in the first edition, we do not require
measure theory but assume from the start that our models are what we call "regular." That
is, we assume either a discrete probability whose support does not depend on the parameter
set, or the absolutely continuous case with a density. Hilbert space theory is not needed, but
for those who know this topic Appendix B points out interesting connections to prediction
and linear regression analysis.

Appendix B is as self-contained as possible with proofs of most statements, problems,
and references to the literature for proofs of the deepest results such as the spectral theorem.
The reason for these additions are the changes in subject matter necessitated by the current
areas of importance in the field.

Specifically, instead of beginning with parametrized models we include from the start
non- and semiparametric models, then go to parameters and parametric models stressing
the role of identifiability. From the beginning we stress function-valued parameters, such as
the density, and function-valued statistics, such as the empirical distribution function. We

!

i

I
1



also, from the start, include examples that are important in applications, such as regression
experiments. There is more material on Bayesian models and analysis. Save for these
changes of emphasis the other major new elements of Chapter 1, which parallels Chapter 2
of the first edition, are an extended discussion of prediction and an expanded introduction
to k-parameter exponential families. These objects that are the building blocks of most
modem models require concepts involving moments of random vectors and convexity that
are given in Appendix B.

Chapter 2 of this edition parallels Chapter 3 of the first artd deals with estimation. Ma
jor differences here are a greatly expanded treatment of maximum likelihood estimates
(MLEs), including a complete study of MLEs in canonical k-parameter exponential fam
ilies. Other novel features of this chapter include a detailed analysis including proofs of
convergence of a standard but slow algorithm for computing MLEs in multiparameter ex
ponential families and ail introduction to the EM algorithm, one of the main ingredients of
most modern algorithms for inference. Chapters 3 and 4 parallel the treatment of Chap
ters 4 and 5 of the first edition on the theory of testing and confidence regions, including
some optimality theory for estimation as well and elementary robustness considerations.
The main difference in our new treatment is the downplaying of unbiasedness both in es
timation and testing and the presentation of the decision theory of Chapter 10 of the first
edition at this stage.

Chapter 5 of the new edition is devoted to asymptotic approximations. It includes
the initial theory presented in the first edition but goes much further with proofs of consis
tency and asymptotic normality and optimality of maximum likelihood procedures in infer
ence. Also new is a section relating Bayesian and frequentist inference via the Bernstein
von Mises theorem.

Finaliy, Chapter 6 is devoted to inference in multivariate (multiparameter) models. In
cluded are asymptotic normality of maximum likelihood estimates, inference in the general
linear model, Wilks theorem on the asymptotic distribution of the likelihood ratio test, the
Wald and Rao statistics and associated confidence regions, and some parallels to the opti
mality theory and comparisons of Bayes and frequentist procedures given in the univariate
case in Chapter 5. Generalized linear models are introduced as examples. Robustness from
an asymptotic theory point of view appears also. This chapter uses multivariate calculus
in an intrinsic way and can be viewed as an essential prerequisite for the more advanced
topics of Volume II.

As in the first edition problems playa critical role by elucidating and often substantially
expanding the text. Almost all the previous ones have been kept with an approximately
equal number of new ones added-to correspond to our new topics and point of view. The
conventions established on footnotes and notation in the first edition remain, if somewhat
augmented.

Chapters 1-4 develop the basic principles and examples of statistics. Nevertheless, we
star sections that could be omitted by instructors with a classical bent and others that could
be omitted by instructors with more computational emphasis. Although we believe the
material of Chapters 5 and 6 has now become fundamental, there is clearly much that could
be omitted at a first reading that we also star. There are clear dependencies between starred

Preface to the Second Edition: Volume I xv
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sections that follow.

5.4.2 -> 5.4.3

Preface to the Second Edition: Volume I

6.2 -> 6.3 -> 6.4 -> 6.5
h 6.6

Volume II is expected to be forthcoming in 2003. Topics to be covered include per
mutation and rank tests and their basis in completeness and equivariance. Examples of
application such as the Cox model in survival analysis, other transformation models, and
the classical nonparametric k sample and independence problems will be included. Semi
parametric estimation and testing will be considered more generally, greatly extending the
material in Chapter 8 of the first edition. The topic presently in Chapter 8, density estima
tion, will be studied in the context of nonparametric function estimation. We also expect
to discuss classification and model selection using the elementary theory of empirical pro
cesses. The basic asymptotic tools that will be developed or presented, in part in the text
and, in part in appendices, are weak convergence for random processes, elementary empir
ical process theory, and the functional delta method.

A final major topic in Volume II will be Monte Carlo methods such as the bootstrap
and Markov Chain Monte Carlo.

With the tools and concepts developed in this second volume students will be ready for
advanced research in modern statistics.

For the first volume of the second edition we would like to add thanks to new col
leagues, particularly Jianging Fan, Michael Jordan, Jianhua Huang, Ying Qing Chen, and
Carl Spruill and the many students who were guinea pigs in the basic theory course at
Berkeley. We also thank Faye Yeager for typing, Michael Ostland and Simon Cawley for
producing the graphs, Yoram Gat for proofreading that found not only typos but serious
errors, and Prentice Hall for generous production support.

Last and most important we would like to thank our wives, Nancy Kramer Bickel and
Joan H. Fujimura, and our families for support, encouragement, and active participation in
an enterprise that at times seemed endless, appeared gratifyingly ended in 1976 but has,,
with the field, taken on a new life.

Peter 1. Bickel
bickel@stat.berkeley.edu

Kjell Doksum
doksum@stat.berkeley.edu
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PREFACE TO THE FIRST EDITION

This book presents our view of what an introduction to mathematical statistics for students
with a good mathematics background should be. By a good mathematics background we
mean linear algebra and matrix theory and advanced calculus (but no measure theory). Be
cause the book is an introduction to statistics, we need probability theory and expect readers
to have had a course at the level of, for instance, Hoel, Port, and Stone's Introduction to
Probability Theory. Our appendix does give all the probability that is needed. However,
the treatment is abridged with few proofs and no examples or problems.

We feel such an introduction should at least do the following:
(1) Describe the basic concepts of mathematical statistics indicating the relation of

theory to practice.
(2) Give careful proofs of the major "elementary" results such as the Neyman-Pearson

lemma, the Lehmann-5cheffe theorem, the information inequality, and the Gauss-Markoff
theorem.

(3) Give heuristic discussions of more advanced results such as the large sample theory
of maximum likelihood estimates, and the structure of both Bayes and admissible solutions
in decision theory. The extent to which holes in the discussion can be patched and where
patches can be found should be clearly indicated.

(4) Show how the ideas and results apply in a variety of important subfields such as
Gaussian linear models, multinomial models, and nonparametric models.

Although there are several good books available for this purpose, we feel that none
has quite the mix of coverage and depth desirable at this level. The work of Rao, Linear
Statistical Inference and Its Applications, 2nd ed., covers most of the material we do and
much more but at a more abstract level employing measure theory. At the other end of the
scale of difficulty for books at this level is the work of Hogg and Craig, Introduction to
Mathematical Statistics, 3rd ed. These authors also discuss most of the topics we deal with
but in many instances do not include detailed discussion of topics we consider essential
such as existence and computation of procedures and large sample behavior.

Our book contains more material than can be covered in tWR quarters. In the two
quarter courses for graduate students in mathematics, statistics, the physical sciences, and
engineering that we have taught we cover the core Chapters 2 to 7, which go from modeling
through estimation and testing to linear models. In addition we feel Chapter lOon decision
theory is essential and cover at least the first two sections. Finally, we select topics from

..
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Chapter 8 on discrete data and Chapter 9 on nonparametric models.
Chapter I covers probability theory rather than statistics. Much of this material unfor

tunately does not appear in basic probability texts but we need to draw on it for the rest of
the book. It may be integrated with the material of Chapters 2-7 as the course proceeds
rather than being given at the start; or it may be included at the end of an introductory
probability course that precedes the statistics course.

A special feature of the book is its many problems. They range from trivial numerical
exercises and elementary problems intended to familiarize the students with the concepts to
material more difficult than that worked out in the text. They are included both as a check
on the student's mastery of the material and as pointers to the wealth of ideas and results
that for obvious reasons of space could not be put into the body of the text.

Conventions: (i) In order to minimize the number of footnotes we have added a section
of comments at the end of each chapter preceding the problem section. These comments are
ordered by the section to which they pertain. Within each section of the text the presence
of comments at the end of the chapter is signaled by one or more numbers, I for the first, 2
for the second, and so on. The comments contain digressions, reservations, and additional
references. They need to be read only as the reader's curiosity is piqued.

(i) Various notational conventions and abbreviations are used in the text. A list of the
most frequently occurring ones indicating where they are introduced is given at the end of
the text.

(iii) Basic notation for probabilistic objects such as random variables and vectors, den
sities, distribution functions, and moments is established in the appendix.

We would like to acknowledge our indebtedness to colleagues, students, and friends
who helped us during the various stageS (notes, preliminary edition, final draft) through
which this book passed. E. L. Lehmann's wise advice has played a decisive role at many
points. R. Pyke's careful reading of a next-to-final version caught a number of infelicities
of style and content. Many careless mistakes and typographical errors in an earlier version
were caught by D. Minassian who sent us an exhaustive and helpful listing. W. Carmichael,
in proofreading the final version, caught more mistakes than both authors together. A
serious error in Problem 2.2.5 was discovered by F. Scholz. Among many others who
helped in the same way we would like to mention C. Chen, S. J. Chou, G. Drew, C. Gray,
U. Gupta, P. X. Quang, and A. Samulon. Without Winston Chow's lovely plots Section 9.6
would probably not have been written and without Julia Rubalcava's impeccable typing
and tolerance this text would never have seen the light of day.

We would also like to thank the colleagues and friends who inspired and helped us to
enter the field of statistics. The foundation of oUr statistical knowledge was obtained in the
lucid, enthusiastic, and stimulating lectures of Joe Hodges and Chuck Bell, respectively.
Later we were both very much influenced by Erich Lehmann whose ideas are strongly
reflected in this book.

Peter J. Bickel
Kjell Doksum

Berkeley
/976
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Chapter 1

STATISTICAL MODELS, GOALS,

AND PERFORMANCE CRITERIA

1.1 DATA, MODELS, PARAMETERS AND STATISTICS

1.1.1 Data and Models

Most studies and experiments, scientific or industrial, large scale or small, produce data
whose analysis is the ultimate object of the endeavor.

Data can consist of:

(1) Vectors of scalars, measurements, and/or characters, for example, a single time
series of measurements.

(2) Matrices of scalars and/or characters, for example, digitized pictures or more rou
tinely measurements of covariates and response on a set of n individuals-see Example
1.1.4 and Sections 2.2.1 and 6.1.

(3) Arrays of scalars and/or characters as in contingency tables-see Chapter 6 or
more generally multifactor multiresponse data on a number of individuals.

(4) All of the above and more, in particular, functions as in signal processing, trees as
in evolutionary phylogenies, and so on.

The goals of science and society, which statisticians share, are to draw useful infor
mation from data using everything that we know. The particular angle of mathematical
statistics is to view data as the outcome of a random experiment that we model mathemati
cally.

A detailed discussion of the appropriateness of the models we shall discuss in particular
situations is beyond the scope of this book, but we will introduce general model diagnostic
tools in Volume 2, Chapter 1. Moreover, we shall parenthetically discuss features of the
sources of data that can make apparently suitable models grossly misleading. A generic
source of trouble often called gross errors is discussed in greater detail in the section on
robustness (Section 3.5.3). In any case all our models are generic and, as usual, "The Devil
is in the details!" All the principles we discuss and calculations we perform should only
be suggestive guides in successful applications of statistical analysis in science and policy.
Subject matter specialists usually have to be principal guides in model formulation. A

1



I
2 Statistical Models, Goals, and Performance Criteria Chapter 1

I

I,
1

I'

,.,
i,
"

priori, in the words of George Box (1979), "Models of course, are never true but fortunately
it is only necessary that they be useful."

In this book we will study how, starting with tentative models:

(I) We can conceptualize the data structure and our goals more precisely. We begin
this in the simple examples that follow and continue in Sections 1.2-1.5 and throughout
the book.

(2) We can derive methods of extracting useful information from data and, in particular,
give methods that assess the generalizability of experimental results. For instance, if we
observe an effect in our data, to what extent can we expect the same effect more generally?
Estimation, testing, confidence regions, and more general procedures will be discussed in
Chapters 2-4.

(3) We can assess the effectiveness of the methods we propose. We begin this discussion
with decision theory in Section 1.3 and continue with optimality principles in Chapters 3
and 4.

(4) We can decide if the models we propose are approximations to the mechanism
generating the data adequate for our purposes. Goodness of fit tests, robustness, and diag
nostics are discussed in Volume 2, Chapter 1.

(5) We can be guided to alternative or more general descriptions that might fit better.
Hierarchies of models are discussed throughout.

Here are some examples:

(a) We are faced with a population of N elements, for instance, a shipment of manufac
tured items. An unknown number NO of these elements are defective. It is too expensive
to examine all of the items. So to get information about 0, a sample of n is drawn without
replacement and inspected. The data gathered are the number of defectives found in the
sample.

(b) We want to study how a physical or economic feature, for example, height or in
come, is distributed in a large population. An exhaustive census is impossible so the study
is based on measurements and a sample of n individuals drawn at random from the popu
lation. The population is so large that, for modeling purposes, we approximate the actual
process of sampling without replacement by sampling with replacement.

(c) An experimenter makes n independent determinations of the value of a physical
constant J.L. His or her measurements are subject to random fluctuations (error) and the data
can be thought of as J.L plus some random errors.

(d) We want to compare the efficacy of two ways of doing something under similar
conditions such as brewing coffee, reducing pollution, treating a disease, producing energy,
learning a maze, and so on. This can be thought of as a problem of comparing the efficacy
of two methods applied to the members of a certain population. We run m +n independent
experiments as follows: m + n members of the population are picked at random and m
of these are assigned to the first method and the remaining n are assigned to the second
method. In this manner, we obtain one or more quantitative or qualitative measures of
efficacy from each experiment. For instance, we can assign two drugs, A to m, and B to
n, randomly selected patients and then measure temperature and blood pressure, have the
patients rated qualitatively for improvement by physicians, and so on. Random variability
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if max(n - N(l - 0),0) < k < min(NO, n).

here would come primarily from differing responses among patients to the same drug but
also from error in the measurements and variation In the purity of the drugs.

We shall use these examples to arrive at our formulation of statistical models and to
indicate some of the difficulties of constructing such models, First consider situation (a),
which we refer to as:

3

(1.1.1)

(1.1.2)Xi = J.L + Ei, 1 < i < n
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Example 1.1.1. Sampling Inspection. The mathematical model suggested by the descrip
tion is well defined. A random experiment has been performed. The sample space consists
of the numbers 0, 1, ... ,n corresponding to the number of defective items found. On this
space we can define a random variable X given by X(k) = k, k = 0,1, ., . ,n. If NO is
the number of defective items in the populatiol1 sampled, then by (A.I 3.6)

/ NO \ N - NO \
k n - k

P[X = k] = -'----'-/~~-~'-/ N \

Thus, X has an hypergeometric, 'H(NO, N, n) distribution.
The main difference that our model exhibits from the usual probability model is that

NO is unknown and, in principle, can take on any value between °and N. So, although
the sample space is well defined, we cannot specify the probability structure completely
but rather only give a family {'H( NO, N, n)} of probability distributions for X, anyone of
which could have generated the data actually observed. 0

Example 1.1.2. Sample from a Population. One-Sample Models. Situation (b) can be
thought of as a generalization of (a) in that a quantitative measure is taken rather than
simply recording "defective" or not. It can also be thought of as a limiting case in which
N = 00, so that sampling with replacement replaces sampling without. Formally, if the
measurements are scalar, we observe XI, ... ,Xn , which are modeled as realizations of
XI"",Xn independent, identically distributed (i.i.d.) random variables with common
unknown distribution function F. We often refer to such X I, ... , X n as a random sample
from F, and also write that XI, . .. , X n are i.i.d. as X with X '" F, where ""," stands
for "is distributed as." The model is fully described by the set :F of distributions that we
specify. The same model also arises naturally in situation (c). Here we can write the n
determinations of J.L as

where E = (EI, ... , Enf is the vector of random errors. What should we assume about
the distribution of E, which together with J.L completely specifies the joint distribution of
X I, ... , X n ? Of course, that depends on how the experiment is carried out. Given the
description in (c), we postulate

(1) The value of the error committed on one determination does not affect the value of
the error at other times. That is, EI, ... , En are independent.
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(2) The distribution of the error at one determination is the same as that at another.
Thus, E], ... , En are identically distributed.

(3) The distribution of E is independent of p,.
Equivalently X], ... ,Xn are a random sample and, if we let G be the distribution

function of E] and F that of X], then

F(x) = G(x - p,) (1.1.3)

" ,
,I
,,

and the model is alternatively specified by F, the set of F's we postulate, or by {(p" G) :
p, E R, G E 9} where 9 is the set of all allowable error distributions that we postulate.
Commonly considered 9's are all distributions with center of symmetry 0, or alternatively
all distributions with expectation O. The classical def~ult model is:

(4) The common distribution of the errors is N(O, 0-
2 ), where 0-

2 is unknown. That is,
the Xi are a sample from a N (p" 0-

2 ) population or equivalently F = {<p (. --;,.f.l) : p, E

R, 0- > O} where <P is the standard normal distribution. 0

This default model is also frequently postulated for measurements taken on units ob
tained by random sampling from populations, for instance, heights of individuals or log
incomes. It is important to remember that these are assumptions at best only approximately
valid. All actual measurements are discrete rather than continuous. There are absolute
bounds on most quantities-IOO ft high men are impossible. Heights are always nonnega
tive. The Gaussian distribution, whatever be p, and 0-, wi~l have none of this...

Now consider situation (d).

Example 1.1.3. Two-Sample Models. Let x], . .. , x m ; Y], . .. ,Yn, respectively, be the
responses of m subjects having a given disease given drug A and n other similarly diseased
subjects given drug B. By convention, if drug A is a standard or placebo, we refer to the
x's as control observations. A placebo is a substance such as water tjJ.at is expected to have
no effect on the disease and is used to correct for the well-documented placebo effect, that
is, patients improve even if they only think they are being treated. We let the y's denote the
responses of subjects given a new drug or treatment that is being evaluated by comparing
its effect with that of the placebo. We call the Y's treatment observations.

Natural initial assumptions here are:

(1) The x's and y's are realizations of Xl, ... ,Xm a sample from F, and Y], ... , Yn a
sample from G, so that the model is specified by the set of possible (F, G) pairs.

To specify this set more closely the critical constant treatment effect assumption is often
made.

(2) Suppose that if treatment A had been administered to a subject response x would
have been obtained. Then if treatment B had been administered to the same subject instead
of treatment A, response y = x + ~ would be obtained where ~ does not depend on x.
This implies that if F is the distribution of a control, then GO = F(· - ~). We call this
the shift model with parameter ~.

Often the final simplification is made.
(3) The control responses are nOffilally distributed. Then if F is the N (p" 0-

2 ) distribu
tion and G is the N (p, + ~,0-2 ) distribution, we have specified the Gaussian two sample
model with equal variances. 0

i
I,
I
<

i
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How do we settle on a set of assumptions? Evidently by a mixture of experience and
physical considerations. The advantage of piling on assumptions such as (I )-(4) of Exam
ple 1.1.2 is that, if they are true, we know how to combine our measurements to estimate J1
in a highly efficient way and also assess the accuracy of our estimation procedure (Exam
ple 4.4.1). The danger is that, if they are false, our analyses, though correct for the model
written down, may be quite irrelevant to the experiment that was actually performed. As
our examples suggest, there is tremendous variation in the degree of knowledge and control
we have concerning experiments.

In some applications we often have a tested theoretical model and the danger is small.
The number of defectives in the first example clearly has a hypergeometric distribution; the
number of a particles emitted by a radioactive substance in a small length of time is well
known to be approximately Poisson distributed.

In others, we can be reasonably secure about some aspects, but not others. For instance,
in Example 1.1.2, we can ensure independence and identical distribution of the observa
tions by using different, equally trained observers with no knowledge of each other's find
ings. However, we have little control over what kind of distribution of errors we get and
will need to investigate the properties of methods derived from specific error distribution
assumptions when these assumptions are violated. This will be done in Sections 3.5.3 and
6.6.

Experiments in medicine and the social sciences often pose particular difficulties. For
instance, in comparative experiments such as those of Example 1.1.3 the group of patients
to whom drugs A and B are to be administered may be haphazard rather than a random
sample from the population of sufferers from a disease. In this situation (and generally)
it is important to randomize. That is, we use a random number table or other random
mechanism so that the m patients administered drug A are a sample without replacement
from the set of m + n available patients. Without this device we could not know whether
observed differences in drug performance might not (possibly) be due to unconscious bias
on the part of the experimenter. All the severely ill patients might, for instance, have been
assigned to B. The study of the model based on the minimal assumption of randomization
is complicated and further conceptual issues arise. Fortunately, the methods needed for
its analysis are much the same as those appropriate for the situation of Example 1.1.3
when F, G are assumed arbitrary. Statistical methods for models of this kind are given in
Volume 2.

Using our first three examples for illustrative purposes, we now define the elements of
a statistical model. A review of necessary concepts and notation from probability theory
are given in the appendices.

We are given a random experiment with sample space n. On this sample space we have
defined a random vector X = (X1, ... , Xn)' When w is the outconie of the experiment,
~(w) is referred to as the observations or data. It is often convenient to identify the random
vector X with its realization, the data X(w). Since it is only X that we observe, we need
only consider its probability distribution. This distribution is assumed to be a member of a
family P of probability distributions on Rn. P is referred to as the model. For instance, in
Example 1.1.1, we observe X and the family P is that of all hypergeometric distributions
with sample size n and population size N. In Example 1.1.2, if (1)-(4) hold, P is the

Section 1.1 Data, Models, Parameters, and Statistics 5
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family of all distributions according to which X I, .. , ,Xn are independent and identically
distributed with a common N (11,0- 2 ) distribution.

1.1.2 Parametrizations and Parameters

To describe P we use a parametrization, that is, a map, () --> Po from a space of labels,
the parameter space e, to P; or equivalently write P = {Po: () E e}. Thus, in Example
1.1.1 we take () to be the fraction of defectives in the shipment, e = {O, }." ... , I} and
Po the 'H(N(),N,n) distribution. In Example 1.1.2 with assumptions (1)-(4) we have
implicitly taken e = R x R+ and, if () = (J.L, 0-2), Po the distribution on Rn with density
I1~ I ~ 'P (X,;/!:) where'P is the standard normal density. If, still in this example, we know
we are measuring a positive quantity in this model, we have e = R+ x R+. If, on the other
hand, we only wish to make assumptions (1)--(3) with E having expectation 0, we can take
e = {(J.L, G) : J.L E R, G with density 9 such that Jxg(x)dx = O} and p(/i,G) has density

I1~ I g(Xi - J.L).
When we can take e to be a nice subset of Euclidean space and the maps () --> Po

are smooth, in senses to be made precise later, models P are called parametric. Models
such as that of Example 1.1.2 with assumptions (1)--{3) are called semiparametric. Fi
nally, models such as that of Example 1.1.3 with only (I) holding and F, G taken to be
arbitrary are called nonparametric. It's important to note that even nonparametric models
make substantial assumptions-in Example 1.1.3 that Xl, ... , X m are independent of each
other and YI , ... , Yn ; moreover, Xl, . .. ,Xm are identically distributed as are YI , ... , Yn .

The only truly nonparametric but useless model for X E Rn is to assume that its (joint)
distribution can be anything.

Note that there are many ways of choosing a parametrization in these and all other
problems. We may take any one-to-one function of () as a new parameter. For instance, in
Example 1.1.1 we can use the number of defectives in the population, N(), as a parameter
and in Example 1.1.2, under assumptions (1)--{4), we may parametrize the model by the
first and second moments of the normal distribution of the observations (i.e., by (J.L, J.L2 +
0- 2».

What parametrization we choose is usually suggested by the phenomenon we are mod
eling; () is the fraction of defectives, J.L is the unknown constant being measured. However,
as we shall see later, the first parametrization we arrive at is not necessarily the one leading
to the simplest analysis. Of even greater concern is the possibility that the parametriza
tion is not one-to-one, that is, such that we can have ()l f= ()2 and yet Po, = Po2 • Such
parametrizations are called unidentifiable. For instance, in (1.1.2) suppose that we permit
G to be arbitrary. Then the map sending () = (J.L, G) into the distribution of (Xl,,' . ,Xn )

remains the same but e = {(J.L,G) : J.L E R, Ghas(arbitrary)densityg}. Now the
parametrization is unidentifiable because, for eXilmple, J.L = °and N(O, 1) errors lead
to the same distribution of the observations a~ J.L = 1 and N (-1, 1) errors. The critical
problem with such parametrizations is that even with "infinite amounts of data," that is,
knowledge of the true Po, parts of () remain unknowable. Thus, we will need to ensure that
our parametrizations are identifiable, that is, ()l f= ()2 => POI f= Po 2 •

,
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where J.L denotes the mean income and, thus, E(Ei) = O. The (J.L, G) parametrization of
Example 1.1.2 is now well defined and identifiable by (1.1.3) and 9 = {G : JxdG(x) =
O}.

Similarly, in Example 1.1.3, instead of postulating a constant treatment effect ~, we
can start by making the difference of the means, 0 = J.Ly - J.Lx, the focus of the study. Then
ois identifiable whenever J.Lx and J.Ly exist.

Dual to the notion of a parametrization, a map from some e to P, is that of a parameter,
formally a map, v, from P to another space No A parameter is a feature v(P) of the dis
tribution of X 0 For instance, in Example 1.1.1, the fraction of defectives () can be thought
of as the mean of X/no In Example 1.1.3 with assumptions (1)-(2) we are interested in~,

which can be thought of as the difference in the means of the two populations of responses.
In addition to the parameters of interest, there are also usually nuisance parameters, which
correspond to other unknown features of the distribution of X. For instance, in Example
1.1.2, if the errors are normally distributed with unknown variance 0-

2
, then 0-

2 is a nuisance
parameter. We usually try to combine parameters of interest and nuisance parameters into
a single grand parameter (), which indexes the family P, that is, make () --> Po into a
parametrization of P. Implicit in this description is the assumption that () is a parameter
in the sense we have just defined. But given a parametrization () --> Po, () is a parameter
if and only if the parametrization is identifiable. Formally, we can define () : P --> e as
the inverse of the map () --> Po, from e to its range P iff the latter map is I-I, that is, if
PO, = Po, implies ()l = ()2.

More generally, a function q : e --> N can be identified with a parameter v(P) iff
PO, = Po, implies q(()l) = q(()2) and then v(Po) q(()).

Here are two points to note:
(1) A parameter can have many representations, For instance, in Example 1.1.2 with

assumptions (1)-(4) the parameter of interest J.L - J.L(P) can be characterized as the mean
of P, or the median of P, or the midpoint of the interquantile range of P, or more generally
as the center of symmetry of P, as long as P is the set of all Gaussian distributions.

(2) A vector parametrization that is unidentifiable may still have components that are
parameters (identifiable). For instance, consider Example 1.1.2 again in which we as
sume the error E to be Gaussian but with arbitrary mean~. Then P is parametrized
by () = (J.L,~, 0-

2
), where 0-

2 is the variance of E. As we have seen this parametriza
tion is unidentifiable and neither J.L nor ~ are parameters in the sense we've defined. But
0-

2 = Var(X1) evidently is and so is J.L +~.
Sometimes the choice of P starts by the consideration of a particular parameter. For

instance, our interest in studying a population of incomes may precisely be in the mean
income. When we sample, say with replacement, and observe Xl, ... ,Xn independent
with common distribution, it is natural to write

7Section 1.1 Data, Models, Parameters, and Statistics



1.1.3 Statistics as Functions on the Sample Space

Models and parametrizations are creations of the statistician, but the true values of param
eters are secrets of nature. Our aim is to use the data inductively, to narrow down in useful
ways our ideas of what the "true" P is. The link for us are things we can compute, statistics.
Formally, a statistic T is a map from the sample space X to some space of values T, usually
a Euclidean space. Informally, T(x) is what we can compute if we observe X = x. Thus,
in Example 1.1.1, the fraction defective in the sample, T(x) = x/no In Example 1.1.2
a common estimate of J.L is the statistic T(X1 , • .• ,Xn ) = X = ~ L~ 1 Xi, a common
estimate of 0-2 is the statistic

8 Statistical Models, Goals, and Performance Criteria Chapter 1
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X and 8 2 are called the sample mean and sample variance. How we use statistics in esti
mation and other decision procedures is the subject of the next section.

For future reference we note that a statistic just as a parameter need not be real or
Euclidean valued. For instance, a statistic we shall study extensively in Chapter 2 is the

~

function valued statistic F, called the empirical distribution function, which evaluated at
x E Ris

where (Xl, . .. ,Xn ) are a sample from a probability P on R and l(A) is the indicator
of the event A. This statistic takes values in the set of all distribution functions on R. It
estimates the function valued parameter F defined by its evaluation at x E R,

F(P)(x) = P[X1 < x].

Deciding which statistics are important is closely connected to deciding which param
eters are important and, hence, can be related to model formulation as we saw earlier. For
instance, consider situation (d) listed at the beginning of this section. If we suppose there is
a single numerical measure of performance of the drugs and the difference in performance
of the drugs for any given patient is a constant irrespective of the patient, then our attention
naturally focuses on estimating this constant. If, however, this difference depends on the
patient in a complex manner (the effect of each drug is complex), we have to formulate a
relevant measure of the difference in performance of the drugs and decide how to estimate
this measure.

Often the outcome of the experiment is used to decide on the model and the appropri
ate measure of difference. Next this model, which now depends on the data, is used to
decide what estimate of the measure of difference should be employed (cf., for example,
Mandel, 1964). Data-based model selection can make it difficult to ascertain or even assign
a meaning to the accuracy of estimates or the probability of reaching correct conclusions.
Nevertheless, we can draw guidelines from our numbers and cautiously proceed. These
issues will be discussed further in Volume 2. In this volume we assume that the model has



1.1.4 Examples, Regression Models

We end this section with two further important examples indicating the wide scope of the
notions we have introduced.

In most studies we are interested in studying relations between responses and several
other variables not just treatment or control as in Example 1.1.3. This is the stage for the
following.

Example 1.1.4. Regression Models. We observe (Zl, Y1 ), •.• , (zn, Yn) where
Y1 , ••• , Yn are independent. The distribution of the response Y; for the ith SUbject or case
in the study is postulated to depend on certain characteristics Zi of the ith SUbject. Thus,
Zi is a d dimensional vector that gives characteristics such as sex, age, height, weight, and
so on of the ith subject in a study. For instance, in Example 1.1.3 we could take z to be
the treatment label and write our observations as (A, Xl), (A, X m ), (B, YI ), ... , (B, Yn ).

This is obviously overkill but suppose that, in the study, drugs A and B are given at several

been selected prior to the current experiment. This selection is based on experience with
previous similar experiments (ct. Lehmann, 1990).

There are also situations in which selection of what data will be observed depends on
the experimenter and on his or her methods of reaching a conclusion. For instance, in
situation (d) again, patients may be considered one at a time, sequentially, and the decision
of which drug to administer for a given patient may be made using the knowledge of what
happened to the previous patients. The experimenter may, for example, assign the drugs
alternatively to every other patient in the beginning and then, after a while, assign the drug
that seems to be working better to a higher proportion of patients. Moreover, the statistical
procedure can be designed so that the experimenter stops experimenting as SOon as he or
she has significant evidence to the effect that one drug is better than the other. Thus, the
number of patients in the study (the sample size) is random. Problems such as these lie in
the fields of sequential analysis and experimental design. They are not covered under our
general model and will not be treated in this book. We refer the reader to Wetherill and
Glazebrook (1986) and Kendall and Stuart (1966) for more information.

Notation. Regular models. When dependence on B has to be observed, we shall denote
the distribution corresponding to any particular parameter value B by Pg. Expectations
calculated under the assumption that X ~ Pg will be written Eg. Distribution functions
will be denoted by F(·, B), density and frequency functions by p(', B). However, these and
other subscripts and arguments will be omitted where no confusion can arise.

It will be convenient to assume(1) from now on that in any parametric model we con
sider either:

(I) All of the Pg are continuous with densities p(x, B);
(2) All of the Pg are discrete with frequency functions p(x, B), and there exists a set

{x1, X2, ... } that is independent of B such that L~ 1 p(Xi, B) = 1 for all B.

Such models will be called regular parametric models. In the discrete case we will use
both the terms frequency function and density for p(x, B). See A. 10.

9Section 1.1 Data, Models, Parameters, and Statistics
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dose levels. Then, d = 2 and zT can denote the pair (Treatment Label, Treatment Dose
Level) for patient i.

In general, Zi is a nonrandom vector of values called a covariate vector or a vector of
explanatory variables whereas Y, is random and referred to as the response variable or
dependent variable in the sense that its distribution depends on Zi. If we let f (Yi I Zi)

denote the density of Yi for a subject with covariate vector Zi, then the model is

n

(a) P(YI, ... , Yn) = IT f(Yi I Zi).

i=1

If we let J.L (z) denote the expected value of a response with given covariate vector z, then
we can write,

(b) Y,=J.L(Zi)+Ei, i=l, ... ,n

where Ei = Y, - E(Y,), i = 1, ... , n. Here J.L(z) is an unknown function from Rd to R that
we are interested in. For instance, in Example 1.1.3 with the Gaussian two-sample model
J.L(A) = J.L, J.L(B) = J.L +~. We usually need to postulate more. A common (but often
violated assumption) is

(I) The Ei are identically distributed with distribution F. That is, the effect of Z on Y
is through J.L(z) only. In the two sample models this is implied by the constant treatment
effect assumption. See Problem 1.1.8.

On the basis of subject matter knowledge and/or convenience it is usually postulated
that

(2) J.L(z) = g((3, z) where 9 is known except for a vector (3 = ({31, ... , (3d)T of un
knowns. The most common choice of 9 is the linear form,

(3) g((3,z) = L~=1 {3jZj = zT(3 so that (b) becomes

i

(b' ) Y, = zf(3 + Ei, 1 < i < n.

This is the linear model. Often the following final assumption is made:
(4) The distribution F of (I) is N(O, (J2) with (J2 unknown. Then we have the classical

Gaussian linear model, which we can write in vector matrix form,

(c)

where Znxd = (z[, ... ,z~f and J is the n x n identity.
Clearly, Example 1.1.3(3) is a special case of this model. So is Example 1.1.2 with

assumptions (1)-(4). In fact by varying our assumptions this class of models includes any
situation in which we have independent but not necessarily identically distributed obser
vations. By varying the assumptions we obtain parametric models as with (I), (3) and (4)
above, semiparametric as with (I) and (2) with F arbitrary, and nonparametric if we drop
(I) and simply treat the Zi as a label of the completely unknown distributions of Y,. Iden
tifiability of these parametrizations and the status of their components as parameters are
discussed in the problems. 0
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i=2
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P(Xl,"" Xn) = f(xi -IL) II f(Xj - (3Xj-1 - (1 - (3)p,).
j=2

Xi = IL(l - (3) + (3Xi- l + Ei, i = 2, ... , n, Xl = P, + El.

p(el)p(e21 el)p(ea I el,e2)" .p(en I el,··· ,en-d

p(edp(e2 Iedp(ea Ie2)" .p(en I en-d

f(el)f(e2 - (3el)'" f(e n ~ (3en-l).

and assume

Xi=p,+ei, i=l, ... ,n

Finally, we give an example in which the responses are dependent.

Example 1.1.5. Measuremellt Model with Autoregressive Errors. Let
Xl," ., X n be the n determinations of a physical constant p,. Consider the model where

where Ei are independent identically distributed with density f. Here the errors el, ... , en
are dependent as are the X's. In fact we can write

ei = (3ei-1 + Ei, i = 1, ... , n, eo = 0

An example would be, say, the elapsed times X I, ... , X n spent above a fixed high level
for a series of n consecutive wave records at a point on the seashore. Let p, = E(Xi ) be
the average time for an infinite series of records. It is plausible that ei depends on ei-l
because long waves tend to be followed by long waves. A second example is consecutive
measurements Xi of a constant p, made by the same observer who seeks to compensate for
apparent errors. Of course, model (a) assumes much more but it may be a reasonable first
approximation in these situations.

To find the density p(x I, ... , xn), we start by finding the density of el, ... , en' Using
conditional probability theory and ei = (3ei-l + Ei, we have

Because ei = Xi - IL, the model for Xl, ... , X n is

The default assumption, at best an approximation for the wave example, is that f is the
N(O, (J'2) density. Then we have what is called the AR(1) Gaussian model

We include this example to illustrate that we need not be limited by independence.
However, save for a brief discussion in Volume 2, the conceptual issues of stationarity,
ergodicity, and the associated probability theory models and inference for dependent data
are beyond the scope of this book. 0
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(1.2.1)

Summary. In this section we introduced the first basic notions and formalism of mathe
matical statistics, vector observations X with unknown probability distributions P ranging
over models P. The notions of parametrization and identifiability are introduced. The gen
eral definition of parameters and statistics is given and the connection between parameters
and parametrizations elucidated. This is done in the context of a number of classical exam
ples, the most important of which is the workhorse of statistics, the regression model. We
view statistical models as useful tools for learning from the outcomes of experiments and
studies. They are useful in understanding how the outcomes can be used to draw inferences
that go beyond the particular experiment. Models are approximations to the mechanisms
generating the observations. How useful a particular model is is a complex mix of how
good the approximation is and how much insight it gives into drawing inferences.

1.2 BAYESIAN MODELS

Throughout our discussion so far we have assumed that there is no information available
about the true value of the parameter beyond that provided by the data. There are situa
tions in which most statisticians would agree that more can be said. For instance, in the
inspection Example 1.1.1, it is possible that, in the past, we have had many shipments of
size N that have subsequently been distributed. If the customers have provided accurate
records of the number of defective items that they have found, we can construct a frequency
distribution {'ll'O, " • ,'ll'N } for the proportion () of defectives in past shipments. That is, 'll'i

is the frequency of shipments with i defective items, i = 0, ... , N. Now it is reasonable to
suppose that the value of () in the present shipment is the realization of a random variable
e with distribution given by

•z
p[e = N] = 'll'il i = 0, ... , N.

Our model is then specified by the joint distribution of the observed number X of defectives
in the sample and the random variable e. We know that, given e = i IN, X has the
hypergeometric distribution 'H.(i, N, n). Thus,

k

/ .
Z

•z
P[X = k, e = N]

• •z z
p[e = -]P[X = k Ie = -]

N N
/ N .-z

n-k

, n I

(1.2.2)

•
i
i

I
J

I

This is an example of a Bayesian model.
There is a substantial number of statisticians who feel that it is always reasonable, and

indeed necessary, to think of the true value of the parameter () as being the realization of a
random variable ewith a known distribution. This distribution does not always correspond
to an experiment that is physically realizable but rather is thought of as ameasure of the
beliefs of the experimenter concerning the true value of () before he or she takes any data.

•

j
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for i = 0, 1, ... , 100. Before sampling any items the chance that a given shipment contains

13

(1.2.3)

(1.2.4)•z
100

f(B, x) = 7f(B)p(x, B).

Section 1.2 Bayesian Models

Because we now think of p(x, B) as a conditional density or frequency function given e =
B, we will denote it by p(x IB) for the remainder of this section.

Equation (1.2.2) is an example of (1.2.3). In the "mixed" cases such as e continuous
X discrete, the joint distribution is neither continuous nor discrete.

The most important feature of a Bayesian model is the conditional distribution of e
given X = x, which is called the posterior distribution of e. Before the experiment is
performed, the information or belief about the true value of the parameter is described by
the prior distribution. After the value x has been obtained for X, the information about B
is described by the posterior distribution.

For a concrete illustration, let us tum again to Example 1.1.1. For instance, suppose
that N = 100 and that from past experience we believe that each item has probability .1 of
being defective independently of the other members of the shipment. This would lead to
the prior distribution

Thus, the resulting statistical inference becomes subjective. The theory of this school is
expounded by L. J. Savage (1954), Raiffa and Schlaiffer (1961), Lindley (1965), De Groot
(1969), and Berger (1985). An interesting discussion of a variety of points of view on
these questions may be found in Savage et al. (1962). There is an even greater range of
viewpoints in the statistical community from people who consider all statistical statements
as purely subjective to ones who restrict the use of such models to situations such as that
of the inspection example in which the distribution of e has an objective interpretation in
terms of frequencies. (1) Our own point of view is that subjective elements including the
views of subject matter experts are an essential element in all model building. However,
insofar as possible we prefer to take the frequentist point of view in validating statistical
statements and avoid making final claims in terms of subjective posterior probabilities (see
later). However, by giving Ba distribution purely as a theoretical tool to which no subjective
significance is attached, we can obtain important and useful results and insights. We shall
return to the Bayesian framework repeatedly in our discussion.

In this section we shall define and discuss the basic elements of Bayesian models. Sup
pose that we have a regular parametric model {Po : BEe}. To get a Bayesian model
we introduce a random vector e, whose range is contained in e, with density or frequency
function 7f. The function 7f represents our belief or information about the parameter B be
fore the experiment and is called the prior density or frequency function. We now think of
Po as the conditional distribution of X given e = B. The joint distribution of (e, X) is
that of the outcome of a random experiment in which we first select e = Baccording to 7f

and then, given iJ = B, select X according to Po. If both X and e are continuous or both
are discrete, then by (B. 1.3), (e, X) is appropriately continuous or discrete with density or
frequency function,
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20 or more bad items is by the normal approximation with continuity correction, (A. 15.10),

" I
!
,

P[1008 > 20] =
P 1008 - 10 > 10

) 100(0.1) (0.9) - -)f=.1O===07"(0=.1~)(0==.9===)

..... 9.5 0 011 - '¥ 3 =.0.

(1.2.5)

Now suppose that a sample of 19 has been drawn in which 10 defective items are found.
This leads to

(ii) If we denote the corresponding (posterior) frequency function or density by
71'(0 Ix), then

,

1,
1
!

j

,

~

,

i
,
•

,,
•

!

1

1,

(1.2.6)

(1.2.7)

(1.2.9)

(1.2.8)

if 8 is continuous.

if 8 is discrete,

JOOoo 7r(t)p(x I t)dt

7r(O)p(x I0)
Lt 7r(t)p(x I t)

7r(O)p(x I0)

P[1008 > 20 I X = 10] ::::: 0.30.

71'(0 Ix)

P[1008 > 20 I X = 10] P[1008 - X > 10 I X = 10]

P (1008 - X) - 8.1 > 1.9

)81(0.9)(0.1) - )81(0.9)(0.1)
::::: 1 - <I>(0.52)

0.30.

To calculate the posterior probability given in (1.2.6) we argue loosely as follows: If be
fore the drawing each item was defective with probability .1 and good with probability .9
independently of the other items, this will continue to be the case for the items left in the lot
after the 19 sample items have been drawn. Therefore, 1008 - X, the number of defectives
left after the drawing, is independent of X and has a B(81, 0.1) distribution. Thus,

In the cases where 8 and X are both continuous or both discrete this is precisely Bayes'
rule applied to the joint distribution of (8, X) given by (1.2.3). Here is an example.

Example 1.2.1. Bernoulli Trials. Suppose that X 1, ... , X n are indicators of n Bernoulli
trials with probability of success 0 where 0 < 0 < 1. If we assume that 8 has a priori
distribution with density 71', we obtain by (1.2.8) as posterior density of 8,

7r(O)Ok(1 _ o)n-k
71' (0 I x 1, . . . , X n ) = ----;-1---'--'"-----'----"----

fo 7r(t)tk(1 - t)n-kdt

In general, to calculate the posterior, some variant of Bayes' rule (B. 1.4) can be used.
Specifically,

(i) The posterior distribution is discrete or continuous according as the prior distri
bution is discrete or continuous.

i....
l\';', ' I

I~,~
" -



Summary. We present an elementary discussion of Bayesian models, introduce the notions
of prior and posterior distributions and give Bayes rule. We also by example introduce the
notion of a conjugate family of distributions.

15

(1.2.10)•

c

()k+r-I (1 _ ())n-k+s-I()r-l(l_ ()y-l()k(l_ ())n-k
Jr (() I k) = ----'-----'------'------'--~

c

Section 1.2 Bayesian Models

for 0 < () < 1, Xi = 0 or 1, i = 1, ... , n, k = L~ I Xi·

Note that the posterior density depends on the data only through the total number of
successes, L~ I Xi' We also obtain the same posterior density if (J has prior density Jr and
we only observe L~ I Xi, which has a B(n, ()) distribution given (J = () (Problem 1.2.9).
We can thus write Jr(() I k) for Jr(() I Xl,"" X n ), where k = L~ I Xi·

To choose a prior Jr, we need a class of distributions that concentrate on the interval
(0,1). One such class is the two-parameter beta family. This class of distributions has the
remarkable property that the resulting posterior distributions are again beta distributions.
Specifically, upon substituting the (3(r, s) density (B.2.!1) in (1.2.9) we obtain

The proportionality constant c, which depends on k, r, and s only, must (see (B.2.11» be
B(k + r, n - k + s) where Be,·) is the beta function, and the posterior distribution of (J

given LXi = k is (3(k +r,n - k + s).
As Figure B.2.2 indicates, the beta family provides a wide variety of shapes that can

approximate many reasonable prior distributions though by no means all. For instance,
non-U-shaped bimodal distributions are not permitted.

Suppose, for instance, we are interested in the proportion () of "geniuses" (IQ > 160)
in a particular city. To get information we take a sample of n individuals from the city. If
n is small compared to the size of the city, (A.15.l3) leads us to assume that the number
X of geniuses observed has approximately a B(n,()) distribution. Now we may either
have some information about the proportion of geniuses in similar cities of the country
or we may merely have prejudices that we are willing to express in the form of a prior
distribution on (J. We may want to assume that (J has a density with maximum value at
o such as that drawn with a dotted line in Figure B.2.2. Or else we may think that Jr( ())

concentrates its mass near a small number, say 0.05. Then we can choose rand s in the
(3(r, s) distribution, so that the mean is r/(r + s) = 0.05 and its variance is very small.
The result might be a density such as the one marked with a solid line in Figure B.2.2.

Ifwe were interested in some proportion about which we have no information or belief,
we might take (J to be uniformly distributed on (0, 1), which corresponds to using the beta
distribution with r = s = 1. 0

A feature of Bayesian models exhibited by this example is that there are natural para
metric families of priors such that the posterior distributions also belong to this family.
Such families are called conjugate. Evidently the beta family is conjugate to the bino
mial. Another bigger conjugate family is that of finite mixtures of beta distributions~see

'i Problem 1.2.16. We return to conjugate families in Section 1.6.
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1.3 THE DECISION THEORETIC FRAMEWORK

Given a statistical model, the information we want to draw from data can be put in various
forms depending on the purposes of our analysis. We may wish to produce "best guesses"
of the values of important parameters, for instance, the fraction defective B in Example
1.1.1 or the physical constant J.L in Example 1.1.2. These are estimation problems. In other
situations certain P are "special" and we may primarily wish to know whether the data
support "specialness" or not. For instance, in Example 1.1.3, P's that correspond to no
treatment effect (i.e., placebo and treatment are equally effective) are special because the
FDA (Food and Drug Administration) does not wish to permit the marketing of drugs that
do no good. If J.Lo is the critical matter density in the universe so that J.L < J.Lo means the
universe is expanding forever and J.L > J.Lo correspond to an eternal alternation of Big Bangs
and expansions, then depending on one's philosophy one could take either P's correspond
ing to J.L < J.Lo or those corresponding to J.L > J.Lo as special. Making determinations of
"specialness" corresponds to testing significance. As the second example suggests, there
are many problems of this type in which it's unclear which of two disjoint sets of P's; Po
or Po is special and the general testing problem is really one of discriminating between
Po and Po. For instance, in Example 1.1.1 contractual agreement between shipper and re
ceiver may penalize the return of "good" shipments, say, with B< Bo, whereas the receiver
does not wish to keep "bad," B > Bo, shipments. Thus, the receiver wants to discriminate
and may be able to attach monetary costs to making a mistake of either type: "keeping
the bad shipment" or "returning a good shipment." In testing problems we, at a first cut,
state which is supported by the data: "specialness" or, as it's usually called, "hypothesis"
or "nonspecialness" (or alternative).

We may have other goals as illustrated by the next two examples.

Example 1.3.1. Ranking. A consumer organization preparing (say) a report on air condi
tioners tests samples of several brands. On the basis of the sample outcomes the organiza
tion wants to give a ranking from best to worst of the brands (ties not permitted). Thus, if
there are k different brands, there are k! possible rankings or actions, one of which will be
announced as more consistent with the data than others. 0

Example 1.3.2. Prediction. A very important class of situations arises when, as in Example
1.1.4, we have a vector z, such as, say, (age, sex, drug dose)T that can be used for prediction
of a variable of interest Y, say a 50-year-old male patient's response to the level of a
drug. Intuitively, and as we shall see formally later, a reasonable prediction rule for an
unseen Y (response of a new patient) is the function J.L(z), the expected value of Y given
z. Unfortunately J.L(z) is unknown. However, if we have observations (Zi' Y;), 1 < i < n,
we can try to estimate the function J.LO. For instance, if we believe J.L(z) = g({3, z) we
can estimate (3 from our observations Y; of g({3, Zi) and then plug our estimate of (3 into g.
Note that we really want to estimate the function J.L('); our results will guide the selection
of doses of drug for future patients. 0

In all of the situations we have discussed it is clear that the analysis does not stop by
specifying an estimate or a test or a ranking or a prediction function. There are many pos
sible choices of estimates. In Example 1.1.1 do we use the observed fraction of defectives
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A = {(I, 2, 3), (1, 3, 2), (2, 1, 3), (2,3,1), (3,1,2), (3,2, I)}.

1.3.1 Components of the Decision Theory Framework

As in Section 1.1, we begin with a statistical model with an observation vector X whose
distribution P ranges over a set P. We usually take P to be parametrized, P = {Po : () E
e}.

17Section 1.3 The Decision Theoretic Framework

X/n as our estimate or ignore the data and use historical information on past shipments,
or combine them in some way? In Example 1.1.2 to estimate J1 do we use the mean of
the measurements, X = ~ "£7 , Xi, or the median, defined as any value such that half
the Xi are at least as large and half no bigger? The same type of question arises in all
examples. The answer will depend on the model and, most significantlY, on what criteria
of performance we use. Intuitively, in estimation we care how far off we are, in testing
whether we are right or wrong, in ranking what mistakes we've made, and so on. In any
case, whatever our choice of procedure we need either a priori (before we have looked at
the data) and/or a posteriori estimates of how well we're doing. In designing a study to
compare treatments A and B we need to determine sample sizes that will be large enough
to enable us to detect differences that matter. That is, we need a priori estimates of how
well even the best procedure can do. For instance, in Example 1.1.3 even with the simplest
Gaussian model it is intuitively clear and will be made precise later that, even if~ is large,
a large 0-2 will force a large m, n to give us a good chance of correctly deciding that the
treatment effect is there. On the other hand, once a study is carried out we would probably
want not only to estimate b. but also know how reliable our estimate is. Thus, we would
want a posteriori estimates of performance.

These examples motivate the decision theoretic framework: We need to
(1) clarify the objectives of a study,
(2) point to what the different possible actions are,
(3) provide assessments of risk, accuracy, and reliability of statistical procedures,
(4) provide guidance in the choice of procedures for analyzing outcomes of experi

ments.

Action space. A new component is an action space A of actions or decisions or claims
that we can contemplate making. Here are action spaces for our examples.

Estimation. If we are estimating a real parameter such as the fraction () of defectives, in
Example 1.1.1, or J1 in Example 1.1.2, it is natural to take A = R though smaller spaces
may serve equally well, for instance, A = {O, iv, ... ,I} in Example 1.1.1.

Testing. Here only two actions are contemplated: accepting or rejecting the "specialness"
of P (or in more usual language the hypothesis H : P E Po in which we identify Po with
the set of "special" P's). By convention, A = {O, I} with 1 corresponding to rejection of
H. Thus, in Example 1.1.3, taking action 1 would mean deciding that ~ f= 0.

Ranking. Here quite naturally A = {Permutations (i" ... , ik) of {I, ... , k}}. Thus, if we
have three air conditioners, there are 3! = 6 possible rankings,
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"I'
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I'
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Prediction. Here A is much larger. If Y is real, and z E Z, A = {a : a is a function from
Z to R} with a(z) representing the prediction we would make if the new unobserved Y
had covariate value z. Evidently Y could itself range over an arbitrary space Y and then R
would be replaced by Y in the definition of a(·). For instance, if Y = °or 1 corresponds
to, say, "does not respond" and "responds," respectively, and z = (Treatment, Sex)T, then
a(B, M) would be our prediction of response or no response for a male given treatment B.

Loss function. Far more important than the choice of action space is the choice of loss
function defined as a function I : P x A --> R+. The interpretation of I(P, a), or 1(0, a)
if P is parametrized, is the nonnegative loss incurred by the statistician if he or she takes
action a and the true "state of Nature," that is, the probability distribution producing the
data, is P. As we shall see, although loss functions, as the name suggests, sometimes can
genuinely be quantified in economic terms, they usually are chosen to qualitatively reflect
what we are trying to do and to be mathematically convenient.

Estimation. In estimating a real valued parameter v(P) or q(O) if P is parametrized the
most commonly used loss function is,

Quadratic Loss: I(P, a) = (v(P) - a)2 (or 1(0, a) = (q(O) - a)2).

Other choices that are, as we shall see (Section 5.1), less computationally convenient but
perhaps more realistically penalize large errors less are Absolute Value Loss: I(P; a) =

Iv(P) - ai, and truncated quadraticloss: I(P, a) = min{(v(P) - a)2, ~}. Closely related
to the latter is what we shall call confidence interval loss, I(P, a) = 0, Iv(P) - al < d,
l(P, a) = 1 otherwise. This loss expresses the notion that all errors within the limits ±d are
tolerable and outside these limits equally intolerable. Although estimation loss functions
are typically symmetric in v and a, asymmetric loss functions can also be of importance.
For instance, l(P, a) = l(v < a), which penalizes only overestimation and by the same
amount arises naturally with lower confidence bounds as discussed in Example 1.3.3.

If v = (VI, ... , Vd) = (ql(8), ... , qd(8)) and a = (al,"" ad) are vectors, examples
of loss functions are

l(O, a)

1(0, a)

1(0, a)

1
d 2.:(aj - Vj)2 = squared Euclidean distance!d

~ 2.: laj - Vj I = absolute distance!d

max{laj - vjl,j = 1, ... ,d} = supremum distance.

I.

1',

I,

We can also consider function valued parameters. For instance, in the prediction exam
ple 1.3.2, t.tO is the parameter of interest. If we use a(·) as a predictor and the new z has
marginal distribution Q then it is natural to consider,

l(P, a) = J(t.t(z) - a(z))2dQ(z),

the expected squared error if a is used. If, say, Q is the empirical distribution of the Zj in



o(x, y) = o if Ix :::: yl <c
(J

(1.3.2)
1 if Ix :::: yl >c

(J

Decision procedures. We next give a representation of the process whereby the statistician
uses the data to arrive at a decision. The data is a point X = x in the outcome or sample
space X. We define a decision rule or procedure 0 to be any function from the sample
space taking its values in A. Using 0 means that if X = x is observed, the statistician takes
action o(x).

Estimation. For the problem of estimating the constant t-t in the measurement model, we
implicitly discussed two estimates or decision rules: 01 (x) = sample mean x and 02(X) =
55 = sample median.

Testing. In Example 1.1.3 with X and Y distributed as N(t-t + ~, (J2) and N(t-t, (J2),

respectively, if we are asking whether the treatment effect pi!Tameter ~ is 0 or not, then a
reasonable rule is to decide ~ = 0 if our estimate x - y is close to zero, and to decide
~ f= 0 if our estimate is not close to zero. Here we mean close to zero relative to the
variability in the experiment, that is, relative to the standard deviation (J. In Section 4.9.3
we will show how to obtain an estimate Ii of (J from the data. The decision rule can now
be written

the training set (Z1' Y), ... , (zn, Y n), this leads to the commonly considered

1 n

l(P, a) = - 2)t-t(Zj) - a(zj))2,
n.

)=1

which is just n- 1 times the squared Euclidean distance between the prediction vector
(a(zl),"" a(zn))T and the vector parameter (t-t(ZI),"" t-t(zn))T.

Testing. We ask whether the parameter B is in the subset 8 0 or subset 8 1 of e, where
{80 , 8d, is a partition of 8 (or equival~ntly if P E Po or P E PI)' If we take action
a when the parameter is in 8 a , we have made the correct decision and the loss is zero.
Otherwise, the decision is wrong and the loss is taken to equal one. This 0 - 1 loss function
can be written as

o- 1 loss: l(B, a) = 0 if B E 8 a (The decision is correct)

1(B, a) = 1 otherwise (The decision is wrong).

Of course, other economic loss functions may be appropriate. For instance, in Example
1.1.1 suppose returning a shipment with B < Bo defectives results in a penalty of s dol
lars whereas every defective item sold results in an r dollar replacement cost. Then the
appropriate loss function is

19

(1.3.1)

s if B < Bo

oif B > Bo

rNB.

l(B,1)

l(B,1)

l(B,O)

Section 1.3 The Decision Theoretic Framework
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where c is a positive constant called the critical value. How do we choose c? We need the
next concept of the decision theoretic framework, the risk or risk function:

The risk function. If b is the procedure used, I is the loss function, () is the true value of
the parameter, and X = x is the outcome of the experiment, then the loss is l(P, o(x)).
We do not know the value of the loss because P is unknown. Moreover, we typically want
procedures to have good properties not at just one particular x, but for a range of plausible
x's. Thus, we tum to the average or mean loss over the sample space. That is, we regard
l(P, o(x)) as a random variable and introduce the riskfunction

R(P, b) = Ep[l(P, O(X)]

as the measure ofthe performance of the decision rule 0(x). Thus, for each 0, R maps P or
e to R+. R(·, b) is our a priori measure of the performance of O. We illustrate computation
of R and its a priori use in some examples.

Estimation. Suppose v v(P) is the real parameter we wish to estimate and v v(X)
is our estimator (our decision rule). If we use quadratic loss, our risk function is called the
mean squared error (MSE) of v and is given by

MSE(V) = R(P, v) = Ep(V(X) - V(p))2 (1.3.3)

I
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ii,
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,

q
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where for simplicity dependence on P is suppressed in MSE.
The MSE depends on the variance of v and on what is called the bias of v where

Bias(V) = E(v) - v

can be thought of as the "long-run average error" of v. A useful result is

Proposition 1.3.1.

MSE(V) = (Bias v? + Var(v).

Proof. Write the error as

(v - v) = [v - E(v)] + [E(v) - t-t].

If we expand the square of the right-hand side keeping the brackets intact and take the
expected value, the cross term will be zero because E[V - E(V)] = 0. The other two terms
are (Bias v) 2 and Var(V). (If one side is infinite, so is the other and the result is trivially
~.) 0

We next illustrate the computation and the a priori and a posteriori use of the risk
function.

Example 1.3.3. Estimation of t-t (Continued). Suppose Xl, ... , X n are i.i.d. measurements
of t-t with N(O, 1J2) errors. Ifwe use the mean X as our estimate of t-t and assume quadratic
loss, then

Bias(X)

Var(X)

E(X) - t-t = °
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Ii = (0.2)j.LO + (0.8)X.

The choice of the weights 0.2 and 0.8 can only be made on the basis of additional knowl
edge about demography or the economy. We shall derive them in Section 1.6 through a

R(j.L, (J"2, X) = EIX - j.L1 = EIEI

where Ei = Xi - j.L. If, as we assumed, the Ei are N(O, (J"2) then by (A.13.23), (,jii/ (J" )E '"
N(O, 1) and

21

(1.3.5)

(1.3.4)

•

2

2

MSE(X) = R(j.L,(J"2, X) = ~,
n

R(j.L, (J"2, X) = ::n 1: Itlcp(t)dt = ::n

and, by Proposition 1.3.1

Section 1.3 The Decision Theoretic Framework

which doesn't depend on j.L.
Suppose that the precision of the measuring instrument (J"2 is known and equal to (J"5 or

where realistically it is known to be < (J"5. Then (1.3.4) can be used for an a priori estimate
of the risk of X. If we want to be guaranteed MSE(X) < E2 we can do it by taking at
least no = (J"O/E measurements.

If we have no idea of the value of (J"2, planning is not possible but having taken n
measurements we can then estimate (J"2, for instance by (j2 = ~ I:7 I (Xi - X) 2, or
n(j2 / (n - 1), an estimate we can justify later. The a posteriori estimate of risk (j2 / n is, of
course, itself subject to random error.

Suppose that instead of quadratic loss we used the more natural(l) absolute value loss.
Then

This harder calculation already suggests why quadratic loss is really favored. If we only
assume, as we discussed in Example 1.1.2, that the Ei are i.i.d. with mean °and variance
(J"2(p), then for quadratic loss, R(P, X) = (J"2(P)/n still, but for absolute value loss only
approximate, analytic, or numerical and/or Monte Carlo computation, is possible. In fact,
computational difficulties arise even with quadratic loss as soon as we think of estimates

- ~

other than X. For instance, if X median(XI , ... , X n ) (and we, in general, write afor
a median of {aI, ... , an}), E(X - j.L)2 = E(E2) can only be evaluated numerically (see
Problem 1.3.6), or approximated asymptotically. D

We next give an example in which quadratic loss and the breakup of MSE given in
Proposition 1.3.1 is useful for evaluating the performance of competing estimators.

Example 1.3.4. Let j.Lo denote the mean of a certain measurement included in the U.S.
census, say, age or income. Next suppose we are interested in the mean j.L of the same
measurement for a certain area of the United States. If we have no data for area A, a
natural guess for j.L would be j.Lo, whereas if we have a random sample of measurements
Xl, X 2, ... , X n from area A, we may want to combine j.Lo and X = n- 1 L~ 1 Xi into an
estimator, for instance,



formal Bayesian analysis using a normal prior to illustrate a way of bringing in additional
knowledge, Here we compare the performances of j), and X as estimators of p, using MSE.
We easily find
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Bias (j),)

Yar(j),)

R(p" j),)
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0.2p,0 + 0.8p, - p, = 0.2(p,0 - p,)

(0.8)2Yar(X) = (.64)0-2In

MSE(j),) = .04(p,0 - p,)2 + (.64)0-2In.

If p, is close to P,o, the risk R(p" j),) of j), is smaller than the risk R(p" X) = 0-2 In of X with
the minimum relative risk inf{MSE(j),)IMSE(X); p, E R} being 0.64 when p, = P,o.
Figure 1.3.1 gives the graphs of MSE(j),) and MSE(X) as functions of p,. Because we
do not know the value of p" using MSE, neither estimator can be proclaimed as being better
than the other. However, if we use as our criteria the maximum (over p,) of the MSE (called
the minimax criteria), then X is optimal (Example 3.3.4).

M SE(j),)

MSE(X)

p,o

Figure 1.3.1. The mean squared errdrs of X and j),. The two MSE curves cross at
p, = p,o ± 30-1 .;n.

o

Testing. The test rule (1.3.2) for deciding between ~ = 0 and ~ 1= 0 can only take on the
two values 0 and 1; thus, the risk is

R(~, 0) = l(~, O)P[o(X, Y) = 0] + l(~, 1)P[0(X, Y) = 1],

which in the case of 0 - 1 loss is

,

I
j

R(~, 0) P[o(X, Y) = 1] if~ = 0

P[o(X, Y) = 0] if ~ 1= O.

In the general case X and 8 denote the outcome and parameter space, respectively, and we
are to decide whether () E 8 0 or () E 8 10 where 8 = 8 0 U 8 1 , 8 0 n 8 1 = 0. A test
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function is a decision rule o(X) that equals 1 on a set C C X called the critical region
and equals 0 on the complement of C; that is, O(X) = l[X E Cj, where 1 denotes the
indicator function. If O(X) = 1 and we decide 8 E 8 1 when in fact 8 E 8 0 , we call the
error committed a Type I error, whereas if o(X) = 0 and we decide 8 E 8 0 when in fact
8 E 8 1 , we call the error a Type II error. Thus, the risk of o(X) is

R(8,0) E(o(X)) = P(o(X) = 1) if8 E 8 0

R(8,0)

Probability of Type I error

P(o(X) = 0) if 8 E 8 1

(1.3.6)

for all possible distributions P of X. Such a v is called a (1 - Q) upper confidence bound
on v. Here Q is small, usually .05 or .01 or less. This corresponds to an a priori bound
on the risk of Q on v(X) viewed as a decision procedure with action space R and loss
function,

Confidence Bounds and Intervals

Decision theory enables us to think clearly about an important hybrid of testing and
estimation, confidence bounds and intervals (and more generally regions). Suppose our
primary interest in an estimation type of problem is to give an upper bound for the param
eter v. For instance, an accounting firm examining accounts receivable for a firm on the
basis of a random sample of accounts would be primarily interested in an upper bound on
the total amount owed. If (say) X represents the amount owed in the sample and v is the
unknown total amount owed, it is natural to seek v(X) such that

Probability of Type II error.

Finding good test functions corresponds to finding critical regions with small probabilities
of error. In the Neyman-Pearson framework of statistical hypothesis testing, the focus is
on first providing a small bound, say .05, on the probability of Type I error, and then trying
to minimize the probability of a Type II error. For instance, in the treatments A and B
example, we want to start by limiting the probability of falsely proclaiming one treatment
superior to the other (deciding ~ 1= 0 when ~ = 0), and then next look for a procedure
with low probability of proclaiming no difference if in fact one treatment is superior to the
other (deciding ~ = 0 when ~ 1= 0).

This is not the only approach to testing. For instance, the loss function (1.3.1) and
tests Ok of the form, "Reject the shipment if and only if X > k," in Example 1.1.1 lead to
(Problem 1.3.18).

(1.3.7)

(1.3.8)

0, a > v(P)

1, a < v(P)

P[v(X) > v] > 1 - Q

SPII[X > k] + rN8PII [X < k], 8 < 80

rN8PII[X < k], 8 > 80 ,

I(P,a)

R(8,0)



an asymmetric estimation type loss function. The 0 - 1 nature makes it resemble a testing
loss function and, as we shall see in Chapter 4, the connection is close. It is clear, though,
that this fonnulation is inadequate because by taking v 00 we can achieve risk = O.
What is missing is the fact that, though upper bounding is the primary goal, in fact it is
important to get close to the truth-knowing that at most 00 dollars are owed is of no use.
The decision theoretic framework accommodates by adding a component reflecting this.
For instance

'1,

,
. ,

,
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,- ,,
,,,. ,

l(P,a) a - v(P)

c

,a > v(P)

, a < v(P),
i

~l
.' I

,
""

for some constant c > O. Typically, rather than this Lagrangian form, it is customary to first
fix Q in (1.3.8) and then see what one can do to control (say) R( P, v) = E(v(X) -v(P) )+,
where x+ = xl(x > 0).

The same issue arises when we are interested in a confidence interval [v(X), v(X)] for
v defined by the requirement that

P[v(X) < v(P) < v(X)] > 1 - Q

for all PEP. We shall go into this further in Chapter 4.
We next tum to the final topic of this section, general criteria for selecting "optimal"

procedures.

1.3.2 Comparison of Decision Procedures

In this section we introduce a variety of concepts used in the comparison of decision proce
dures. We shall illustrate some of the relationships between these ideas using the following
simple example in which e has two members, A has three points, and the risk of all possi
ble decision procedures can be computed and plotted. We conclude by indicating to what
extent the relationships suggested by this picture carry over to the general decision theoretic
model.

Example 1.3.5. Suppose we have two possible states of nature, which we represent by 01

and O2 . For instance, a component in a piece of equipment either works or does not work; a
certain location either contains oil or does not; a patient either has a certain disease or does
not, and so on. Suppose that three possible actions, aJ, a2, and a3, are available. In the
context of the foregoing examples, we could leave the component in, replace it, or repair it;
we could drill for oil, sell the location, or sell partial rights; we could operate, administer
drugs, or wait and see. Suppose the following loss function is decided on

TABLE 1.3.1. The loss function l(8, a)

(Drill) (Sell) (Partial rights)

(Oil) OJ
(No oil) 82

o
12

10
1

5
6



It remains to pick out the rules that are "good" or "best." Criteria for doing this will be
introduced in the next subsection. 0

(Oil) BJ 0.3 0.7
(No oil) B2 0.6 0.4

2S

0(0.3) + 10(0.7) = 7

12(0.6) + 1(0.4) = 7.6.

E[l(B,o(X))] = l(B, a1)P[0(X) = ad
+l(B,a2)P[0(X) = a2] + l(B,a3)P[0(X) = a3]'

•z
I 2 3 4 5 6 7 8 9

aJ a1 a1 a2 a2 a2 a3 a3 a3
a1 a2 a3 aJ a2 a3 a1 a2 a3

I 2 3 4 5 6 7 8 9
0 7 3.5 3 IO 6.5 1.5 8.5 5
12 7.6 9.6 5.4 I 3 8.4 4.0 6

R(BJ , 02)

R(B2,02)

R(B, 0)

Section 1.3 The Decision Theoretic Framework

For instance,

•
Z

R(81 ,0;)
R(82 ,0;)

Thus, if there is oil and we drill, the loss is zero, whereas if there is no oil and we drill,
the loss is 12, and so on. Next, an experiment is conducted to obtain information about
B resulting in the random variable X with possible values coded as 0, 1, and frequency
function p(x, B) given by the following table

TABLE 1.3.2. The frequency function p(x, B, ); i = 1,2

Rock formation
x

o I

Thus, X may represent a certain geological formation, and when there is oil, it is known
that formation 0 occurs with frequency 0.3 and formation 1 with frequency 0.7, whereas if
there is no oil, formations 0 and 1 occur with frequencies 0.6 and 0.4. We list all possible
decision rules in the following table.

TABLE 1.3.3. Possible decision rules 0; (x)

x=O
x=1

Here, 01 represents "Take action a1 regardless of the value of X," 02 corresponds to
"Take action aI, if X = 0; take action a2, if X = 1," and so on.

The risk of 0 at B is

If e is finite and has k members, we can represent the whole risk function of a procedure 0
by a point in k-dimensional Euclidean space, (R((h, 0), ... ,R(Bk , 0)) and if k = 2 we can
plot the set of all such points obtained by varying O. The risk points (R(BJ,0;), R((ho;))
are given in Table 1.3.4 and graphed in Figure 1.3.2 for i = 1, ... ,9.

TABLE 1.3.4. Risk points (R(B1,01), R(B2,01))



26 Statistical Models, Goals, and Performance Criteria Chapter 1

I

,
,,,
,

J

I
, ',

10 • 3

.7
.2

.4
.9

5
.8

• 6

.5
0

0 5 10 R(B1,0;)

Figure 1.3.2. The risk points (R(B1 , Oi), R(B2 , Oi)), i = 1, ... , 9.

1.3.3 Bayes and Minimax Criteria

The difficulties of comparing decision procedures have already been discussed in the spe
cial contexts of estimation and testing. We say that a procedure 0 improves a procedure 0'
if, and only if,

R(B,o) < R(B,o')

for all B with strict inequality for some B. It is easy to see that there is typically no rule
othat improves all others. For instance, in estimating B E R when X ~ N (B, 0-6), if we

~ ~

ignore the data and use the estimate B = 0, we obtain MSE(O) = B2
. The absurd rule

"0* (X) = 0" cannot be improved on at the value B = 0 because Eo (0 2 (X)) = 0 if and only
if 0(X) = O. Usually, if 0 and 0' are two rules, neither improves the other. Consider, for
instance, 04 and 06 in our example. Here R(B1 , 04) < R(BI, 06) but R(B2 , 04) > R(B2 , 06)'

The problem of selecting good decision procedures has been attacked in a variety of
ways.

(1) Narrow classes of procedures have been proposed using criteria such as con
siderations of symmetry, unbiasedness (for estimates and tests), or level of sig
nificance (for tests). Researchers have then sought procedures that improve all
others within the class. We shall pursue this approach further in Chapter 3. Ex
tensions of unbiasedness ideas may be found in Lehmann (1997, Section 1.5).
Symmetry (or invariance) restrictions are discussed in Ferguson (1967).

(2) A second major approach has been to compare risk functions by global crite-

,

I
1
I



r(O) = 'E(}R(8,0)7r(8),

if () is discrete with frequency function 71'(8), and

r(o) = J R(8,0)7r(8)d8,

The second preceding identity is a consequence of the double expectation theorem (B.I.20)
in Appendix B.

To illustrate, suppose that in the oil drilling example an expert thinks the chance of
finding oil is .2. Then we treat the parameter as a random variable () with possible values
81, 82 and frequency function

27

(1.3.9)

(1.3.10)

1 2 3 4 5 6 7 8 9
9.6 7.48 8.38 4.92 2.8 3.7 7.02 4.9 5.8
12 7.6 9.6 5.4 10 6.5 8.4 8.5 6

r(o) = E[R((}, 0)] = E[l(8, o(X))].

Section 1.3 The Decision Theoretic Framework

ria rather than on a pointwise basis. We shall discuss the Bayes and minimax
criteria.

Bayes: The Bayesian point of view leads to a natural global criterion. Recall that in
the Bayesian model 8 is the realization of a random variable or vector () and that p(} is the
conditional distribution of X given () = 8. In this framework R(8, 0) is just E[l ((), 0(X)) I
() = 8], the expected loss, if we use 0 and () = 8. If we adopt the Bayesian point of view,
we need not stop at this point, but can proceed to calculate what we expect to lose on the
average as () varies. This quantity which we shall call the Bayes risk of 0 and denote r(o)
is then, given by

The Bayes risk of 0 is, therefore,

r(o) = O.2R(8I, 0) + O.8R(82 , 0).

Table 1.3.5 gives r(OI),"" r(og) specified by (1.3.9).

TABLE 1.3.5. Bayes and maximum risks of the procedures of Table 1.3.3.

r(o*) = minr(o)
Ii

then it is called a Bayes rule. From Table 1.3.5 we see that rule 05 is the unique Bayes rule
for our prior.

The method of computing Bayes procedures by listing all available 0 and their Bayes
risk is impracticable in general. We postpone the consideration of posterior analysis, the
only reasonable computational method, to Section 3.2.

Note that the Bayes approach leads us to compare procedures on the basis of,

•
t

r(oil
max{R(81, oil, R(82 , Oi)}

In the Bayesian framework 0 is preferable to 0' if, and only if, it has smaller Bayes risk.
If there is a rule 0*, which attains the minimum Bayes risk, that is, such that
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,

i,

if () is continuous with density 7r(B). Such comparisons make sense even if we do not
interpret 7r as a prior density or frequency, but only as a weight function for averaging
the values of the function R(B, 6). For instance, in Example 1.3.5 we might feel that both
values of the risk were equally important. It is then natural to compare procedures using the
simple average ~ [R(B 1 , 0) + R(B2 , 0)]. But this is just Bayes comparison where 7r places
equal probability on B1 and B2 .

Minimax: Instead of averaging the risk as the Bayesian does we can look at the worst
possible risk. This is, we prefer 0 to 0', if and only if,

suPR(B. 6) < sup R(B, 0').
8 8

A procedure 0*, which has

supR(B,o*) = infsupR(B,O),
8 J 8

is called minimax (minimizes the maximum risk).
The criterion comes from the general theory of two-person zero sum games of von

Neumann. (2) We briefly indicate "the game of decision theory." Nature (Player I) picks a
point BEe independently of the statistician (Player II), who picks a decision procedure
o from V, the set of all decision procedures. Player II then pays Player I, R(B,o). The
maximum risk of 0* is the upper pure value of the game.

this criterion of optimality is very conservative. It aims to give maximum protection
against the worst that can happen, Nature's choosing a B, which makes the risk as large as
possible. The principle would be compelling, if the statistician believed that the parameter
value is being chosen by a malevolent opponent who knows what decision procedure will
be used. Of course, Nature's intentions and degree of foreknowledge are not that clear and
most statisticia'1s find the minimax principle too conservative to employ as a general rule.
Nevertheless, in many cases the principle can lead to very reasonable procedures.

To illustrate computation of the minimax rule we tum to Table 1.3.4. From the listing
of max(R(B lo 0), R(B2 , 0)) we see that 04 is minimax with a maximum risk of 5.4.

Students of game theory will realize at this point that the statistician may be able to
lower the maximum risk without requiring any further information by using a random
mechanism to determine which rule to employ. For instance, suppose that, in Example
1.3.5, we toss a fair coin and use 04 if the coin lands heads and 06 otherwise. Our expected
risk would be,

4.75 if B= (}l

4.20 if B= (}2.

The maximum risk 4.75 is strictly less than that of 04'

Randomized decision rules: In general, if V is the class of all decision procedures
(nonrandomized), a randomized decision procedure can be thought of as a random experi
ment whose outcomes are members of V. For simplicity we shall discuss only randomized

i

I,,

i,
•



procedures that select among a finite set <h, ... , Oq of nonrandomized procedures. If the
randomized procedure 0 selects 0; with probability A;, i = 1, ... , q, ~;=1 A, = 1, we then
define

That is, S is the convex hull of the risk points (R(81 ,0;), R(B2 ,0;)), i = 1, ... ,9 (Figure
1.3.3).

If 7r(( 1 ) = , = 1 - 7r(B2 ), 0 < , < 1, then all rules having Bayes risk c correspond to
points in S that lie on the line

A randomized Bayes procedure 0* minimizes T(0) among all randomized procedures. A
randomized minimax procedure minimizes maxo R(B, 0) among all randomized proce
dures.

We now want to study the relations between randomized and nonrandomized Bayes and
minimax procedures in the context of Example 1.3.5. We will then indicate how much of
what we learn carries over to the general case. As in Example 1.3.5, we represent the risk
of any procedure 0 by the vector (R(B1 , 0), R(B2 , 0)) and considerthe risk set

S = {(R(B1 , 0), R(B2 , 0)) : 0 E V*}
,
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(1.3.12)

(1.3.11)

(1.3.13)

(1.3.14)
AR(81 , 0;) + (1 - A)R(81l oj),

AR(82 , 0;) + (1 - A)R(82 , OJ),

,T1 + (1 -,)T2 = C.

i=l

i=l

q

R(B,o) = L A;R(B, 0;).

q

T(O) = LA;E[R(O,o;)].

9 9 9

h,T2): T1 = LA;R(B1 ,0;), T2 = LA;R(B2 ,0;), A; > 0, LA; = 1
;=1 ;=1 ;=1

s=

Similarly we can define, given a prior 7r on e, the Bayes risk of 0

Section 1.3 The Decision Theoretic Framework

where V* is the set of all procedures, including randomized ones.
By (1.3.10),

As c varies, (1.3.13) defines a family of parallel lines with slope -,/(1 - ,). Finding the
Bayes rule corresponds to finding the smallest c for which the line (1.3.13) intersects S.
This is that line with slope -,/(1 -,) that is tangent to S at the lower boundary of S. All
points of S that are on the tangent are Bayes. Two cases arise:

(1) The tangent has a unique point of contact with a risk point corresponding to a
nonrandomized rule. For instance, when, = 0.2, this point is (10,1), which is
the risk point of the Bayes rule 05 (see Figure 1.3.3).

(2) The tangent is the line connecting two "nonrandomized" risk points 0;, OJ' A
point (T1, T2) on this line can be written

',':i:-{
-,"

.'.. 
•
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10

5

o
o

Q(c*)

5

2

5

10

Figure 1.3.3. The convex hull S of the risk points (R(B1 , Oil, R(B2 , oil), i = 1, ... ,9.
The point where the square Q(c') defined by (1.3.16) touches S is the risk point of the

minimax rule.

Each one of these rules, as A ranges from 0 to 1, is Bayes against 7r. We can
choose two nonrandomized Bayes rules from this class, namely Oi (take A = 1)
and OJ (take A = 0).

where 0 < A < 1, and, thus, by (1.3.11) corresponds to the values

Oi with probability A

OJ with probability (1 - A), 0 < A < 1.
(1.3.15)

i
i

I
I
1
i

Because changing the prior 7r corresponds to changing the slope -,/(1 - ,) of the
line given by (1.3.13), the set B of all risk points corresponding to procedures Bayes with
respect to some prior is just the lower left boundary of S (i.e., all points on the lowet
boundary of S that have as tangents the y axis or lines with nonpositive slopes).

To locate the risk point of the mihimax rule consider the family of squares,

(1.3.16)

whose diagonal is the line Tl = T2. Let c' be the sniallest c for which Q(c) n S 1= 0 (i.e.,
the first square that touches S). Then Q(c') n S is either a point or a horizontal or vertical
line segment. See Figure 1.3.3. It is the set of risk points of minimax rules because any
point with smaller maximum risk would belong to Q(c) n S with c < c* contradicting the
choice of c*. In our example, the first point of contact between the squares and S is the

•



From Table 1.3.4, this equation becomes

S= {(R(B1,0),oo.,R(Bk,0)): 0 E V*}

31Section 1.3 The Decision Theoretic Framework

(b) The set B of risk points of Bayes procedures consists of risk points on the lower
boundary of S whose tangent hyperplanes have normals pointing into the posi
tive quadrant.

(c) If e is finite(4) and minimax procedures exist, they are Bayes procedures.

(a) For any prior there is always a nonrandomized Bayes procedure, if there is a ran
domized one. (3) Randomized Bayes procedures are mixtures of nonrandomized
ones in the sense of (1.3.14).

intersection between Tl = T2 and the line connecting the two points corresponding to 04
and 06' Thus, the minimax rule is given by (1.3.14) with i = 4, j = 6 and..\ the solution of

3..\ + 6.5(1 - .\) = 5.4..\ + 3(1 - '\),

(d) All admissible procedures are Bayes procedures.

(e) If a Bayes prior has 7l'(Bi ) > afor all i, then any Bayes procedure corresponding
to 7l' is admissible.

which yields .\ ~ 0.59.
There is another important concept that we want to discuss in the context of the risk

set. A decision rule 0 is said to be inadmissible if there exists another rule 0' such that
0' improves O. Naturally, all rules that are not inadmissible are called admissible. Using
Table 1.3.4 we can see, for instance, that 02 is inadmissible because 04 improves it (i.e.,
R(B1 , 04) = 3 < 7 = R(B1 , 02) and R(B2, 04) = 5.4 < 7.6 = R(B2,02)).

To gain some insight into the class of all admissible procedures (randomized and non
randomized) we again use the risk set. A rule 0 with risk point (Tl' T2) is admissible, if and
only if, there is no (x, y) in S such that x < Tl and y < T2, or equivalently, if and only
if, {(x,y) : x < Tl, Y < T2} has only (Tl,T2) in common with S. From the figure it is
clear that such points must be on the lower left boundary. In fact, the set of all lower left
boundary points of S corresponds to the class of admissible rules and, thus, agrees with the
set of risk points of Bayes procedures.

If e is finite, e = {B 1 , ... , Bd, we can define the risk set in general as

Ife is not finite there are typically admissible procedures that are not Bayes. However,
under some conditions, all admissible procedures are either Bayes procedures or limits of

where V* is the set of all randomized decision procedures. The following features exhibited
by the risk set by Example 1.3.5 can be shown to hold generally (see Ferguson, 1967, for
instance).

~ :~. :!J;'.>-
-.. --"

, ''-'''''--::;'f~- ,.



Bayes procedures (in various senses). These remarkable results, at least in their original
form, are due essentially to Waldo They are useful because the property of being Bayes is
easier to analyze than admissibility.

Other theorems are available characterizing larger but more manageable classes of pro
cedures, which include the admissible rules, at least when procedures with the same risk
function are identified. An important example is the class of procedures that depend only on
knowledge of a sufficient statistic (see Ferguson, 1967; Section 3.4). We stress that looking
at randomized procedures is essential for these conclusions, although it usually turns out
that all admissible procedures of interest are indeed nonrandomized. For more information
on these topics, we refer to Blackwell and Girshick (1954) and Ferguson (1967).

Summary. We introduce the decision theoretic foundation of statistics including the no
tions of action space, decision rule, loss junction, and risk through various examples in
cluding estimation, testing, confidence bounds, ranking, and prediction. The basic bias
variance decomposition of mean square error is presented. The basic global comparison
criteria Bayes and minimax are presented as well as a discussion of optimality by restriction
and notions of admissibility.
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The prediction Example 1.3.2 presented important situations in which a vector z of co
variates can be used to predict an unseen response Y. Here are some further examples of
the kind of situation that prompts our study in this section. A college admissions officer
has available the College Board scores at entrance and first-year grade point averages of
freshman classes for a period of several years. Using this information, he wants to predict
the first-year grade point averages of entering freshmen on the basis of their College Board
scores. A stockholder wants to predict the value of his holdings at some time in the fu
ture on the basis of his past experience with the market and his portfolio. A meteorologist
wants to estimate the amount of rainfall in the coming spring. A government expert wants
to predict the amount of heating oil needed next winter. Similar problems abound in every
field. The frame we shall fit them into is the following.

We assume that we know the joint probability distribution of a random vector (or vari
able) Z and a random variable Y. We want to find a function 9 defined on the range of
Z such that g(Z) (the predictor) is "close" to Y. In terms of our preceding discussion, Z
is the information that we have and Y the quantity to be predicted. For example, in the
college admissions situation, Z would be the College Board score of an entering freshman
and Y his or her first-year grade point average. The joint distribution of Z and Y can be
calculated (or rather well estimated) from the records of previous years that the admissions
officer has at his disposal. Next we must specify what close means. One reasonable mea
sure of "distance" is (g(Z) - Y?, which is the squared prediction error when g(Z) is used
to predict Y. Since Y is not known, we tum to the mean squared prediction error (MSPE)

I

I

~2(Y,g(Z)) = E(g(Z) _ y]2

or its square root JE(g(Z) - yp. The MSPE is the measure traditionally used in the



Y - c = (Y - J.L) + (J.L - c)

Proof. Ey2 < 00 if and only if E(Y - C)2 < 00 for all c; see Problem 1.4.25. Ey2 < 00

implies that J.L exists, and by expanding

If we now take expectations of both sides and employ the double expectation theorem
(B. 1.20), we can conclude that

Theorem 1.4.1. If Z is any random vector and Y any random variable, then either E(Y 
g(Z)? = 00 for every function 9 or

33

(1.4.3)

(1.4.1)

(1.4.4)

( 1.4.2)

E(Y - C)2 = Var Y + (c - J.L)2.

E(Y - J.L(Z)? < E(Y - g(Z))2

J.L(z) = E(Y I Z = z).

E[(Y - g(Z)? I Z = z] = E[(Y - g(Z))2 I Z = z].

E[(Y - g(z)? I Z = z] = E[(Y - J.L(z)? I Z = z] + [g(z) - j.L(z)f

Section 1.4 Prediction

mathematical theory of prediction whose deeper results (see, for example, Grenander and
Rosenblatt, 1957) presuppose it. The method that we employ to prove our elementary
theorems does generalize to other measures of distance than l:l.(Y, g(Z)) such as the mean
absolute error E(lg( Z) - YI) (Problems 1.4.7-11). Just how widely applicable the notions
of this section are will become apparent in Remark 1.4.5 and Section 3.2 where the problem
of MSPE prediction is identified with the optimal decision problem of Bayesian statistics
with squared error loss.

The class Q of possible predictors 9 may be the nonparametric class QN p of all 9 :
Rd -> R or it may be to some subset of this class. See Remark 1.4.6. In this section we

consider QN P and the class QL of linear predictors of the form a + ~1=1 bj Zj.
We begin the search for the best predictor in the sense of minimizing MSPE by consid

ering the case in which there is no covariate information, or equivalently, in which Z is a
constant; see Example 1.3.4. In this situation all predictors are constant and the best one is
that number Co that minimizes E(Y - c)2 as a function of c.

Lemma 1.4.1. E(Y - C)2 is either 00 for all c or is minimized uniquely by c = J.L = E(Y).
In fact, when Ey 2 < 00,

Because g(z) is a constant, Lemma 1.4.1 assures us that

Let

(1.4.1) follows because E(Y - J.L) = 0 makes the cross product term vanish. We see that
E(Y - C)2 has a unique minimum at c = J.L and the lemma follows. 0

Now we can solve the problem of finding the best MSPE predictor of Y, given a vector
Z; that is, we can find the 9 that minimizes E(Y - g(Z))2. By the substitution theorem for
conditional expectations (B.1.16), we have
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for every 9 with strict inequality holding unless g(Z) = /l(Z). That is, /1(Z) is the unique
best MSPE predictor. Infact, when E(y2) < 00,

E(Y - g(Z))2 = E(Y - /1(Z))2 + E(g(Z) - /1(Z))2. ( 104.5)

An important special case of (1.4.5) is obtained by taking g(z) = E(Y) for all z,

Write Var(Y I z) for the variance of the condition distribution of Y given Z = z, that is,
Var(Y Iz) = E([Y - E(Y IzW I z), and recall (B.l.20), then (1.4.5) becomes,

Var Y = E(Var(Y I Z)) + Var(E(Y I Z)), (1.4.6)

E{h(Z)E}
I
I

which is generally valid because if one side is infinite, so is the other.
Property (1.4.6) is linked to a notion that we now define: Two random variables U and

V with EIUVI < 00 are said to be uncorrelated if

E[V - E(V)][U - E(U)] = O.

Equivalently U and V are uncorrelated if either EV[U-E(U)] = 0 or EU[V-E(V)] = O.
Let E = Y - /1(Z) denote the random prediction error, then we can write

Proposition 1.4.1. Suppose that Var Y < 00, then
(a) E is uncorrelated with every function ofZ
(b) /1(Z) and E are uncorrelated
(c) Var(Y) = Var /1(Z) + Var Eo

Proof. To show (a), let h(Z) be any function of Z, then by the iterated expectation theorem,

E{ E[h(Z)E IZ]}

E{h(Z)E[Y - /1(Z) I Z]} = 0

because E[Y - /1(Z) I Z] = /1(Z) - /1(Z) = O. Properties (b) and (c) follow from (a). 0

Note that Proposition 1.4.1(c) is equivalent to (1.4.6) and that (1.4.5) follows from (a)
because (a) implies that the cross product term in the expansionof E{[Y - /1(z)] + [/1(z) 
g(Z)]}2 vanishes.

As a consequence of (1.4.6), we can derive the following theorem, which will prove of
importance in estimation theory.

Theorem 1.4.2. If E(IYI) < DC but Z and Yare otherwise arbitrary, then

I
!

,

1

Var(E(Y I Z)) < Var Y.

IfVar Y < 00 strict inequality holds unless

Y = E(Y I Z)

or equivalently unless Y is a function of z.

(1.4,7)

(1.4.8)



The MSPE of the best predictor can be calculated in two ways. The first is direct.

py(y) I 0.15 I 0.10 I 0.30 I 0.45 ~ 1

E (Y I Z = ~) = 2.10, E (Y IZ = 1) = 1.20.

o

3S

E(Var(Y I Z)) = E(Y - E(Y I Z))2 = o.

p(z,y)
z\y 0 1 2 3 pz(z)

1 0.10 0.05 0.05 0.05 0.25
- 0.025 0.025 0.10 0.10 0.25
1 0.25 0.25 0.15 0.30 0.50

Section 1.4 Prediction

By (A.11.9) this can hold if, and only if, (1.4.8) is true.

Example 1.4.1. An assembly line operates either at full, half, or quarter capacity. Within
any given month the capacity status does not change. EaCh day there can be 0, 1, 2, or
3 shutdowns due to mechanical failure. The following table gives the frequency function
p(z, y) = P(Z = z, Y = y) of the number of shutdowns Y and the capacity state Z of the
line for a randomly chosen day. The row sums of the entries p z (z) (given at the end of each
row) represent the frequency with which the assembly line is in the appropriate capacity

,
state, whereas the column sums py (y) yield the frequency of 0, 1, 2, or 3 failures among
all days. We want to predict the number of failures for a given day knowing the state of the
assembly line for the month. We find

Proof. The assertion (1.4.7) follows immediately from (1.4.6). Equality in (1.4.7) can hold
if, and only if,

3

E(Y I Z = 1) = L iP[Y = i I Z = 1] = 2.45,
;=1

3

E(Y - E(Y I Z)? = L L(y - E(Y I Z = z))2p (z, y) = 0.885.
x y=O

These fractional figures are not too meaningful as predictors of the natural number values
of Y. But this predictor is also the right one, if we are trying to guess, as we reasonably
might, the average number of failures per day in a given month. In this case if Y; represents
the number of failures on day i and Z the state of the assembly line, the best predictor is

E (30- 1 L;O 1 Y; Iz) = E(Y IZ), also.
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The second way is to use (1.4.6) writing,

as before.

E(Y - E(Y I Z))2 Var Y - Var(E(Y I Z))

E(y2) - E[(E(Y I Z))2]

Ly2py(y) - L[E(Y I Z = zWpz(z)
y z

0.885

o

Example 1.4.2. The Bivariate Normal Distribution. Regression toward the mean. If (Z, Y)
has a N(p,z, P,y, IJ"~, IJ"~, p) distribution, Theorem BA.2 tells us that the conditional dis
tribution of Y given Z = z is N (Ily + p( lJ"y j IJ"Z) (z - p,z ), IJ"~' (I - p2)). Therefore, the
best predictor of Y using Z is the linear function

P,o(Z) = ttY + p(lJ"yjlJ"z)(Z - p,z).

Because

I
I.

"
"II

E((Y - E(Y I Z = z)? I Z = z) = IJ"~(I _ p2)

is independent of z, the MSPE of our predictor is given by,

E(Y - E(Y I Z))2 = 1J"~(1 _ p2).

(1.4.9)

(1.4.10)

(104.11)

,

I
I'

I
I
Ii

I,

The qualitative behavior of this predictor and of its MSPE gives some insight into the
structure of the bivariate normal distribution. If p > 0, the predictor is a monotone in
creasing function of Z indicating that large (small) values of Y tend to be associated with
large (small) values of Z. Similarly, p < 0 indicates that large values of Z tend to go with
small values of Y and we have negative dependence. If p = 0, the best predictor is just
the constant p,y as we would expect in the case of independence. One minus the ratio of
the MSPE of the best predictor of Y given Z to Var Y, which is the MSPE of the best
constant predictor, can reasonably be thought of as a measure of dependence. The larger
this quantity the more dependent Z and Yare. In the bivariate normal case, this quantity
is just ~. Thus, for this family of distributions the sign of the correlation coefficient gives
the type of dependence between Z and Y, whereas its magnitude measures the degree of
such dependence.

Because of (1.4.6) we can also write

2 Var p,o(Z)
p = VarY .

The line y = p,y + p(IJ"Y j IJ"Z )(z - p,z), which corresponds to the best predictor of
Y given Z in the bivariate normal model, is usually called the regression (line) of Y on
Z. The term regression was coined by Francis Galton and is based on the following ob
servation. Suppose Y and Z are bivariate normal random variables with the same mean



~Zy = (COV(Zl, Y), ... ,COV(Zd, y))T = ~~z

E[Y - p,o(ZW = E{E[Y - P,o(ZW I Z} = E((J"YYlz) = (J"yy - ~yz~zi~zy.

and (J"yy = Var(Y). Theorem B.6.5 states that the conditional distribution of Y given Z =

z is N(P,y+(Z-J.Lz)T.6, (J"yYlz) where.6 = ~zi~zy and (J"yYlz = (J"yy-~yz~zi~zy.
Thus, the best predictor E(Y I Z) of Y is the linear function
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(1.4.12)

,
~zz ~Zy

~YZ (J"yy
~=

p,o(Z) = p,y + (Z - J.Lzf.6

Section 1.4 Prediction

~zz is the d x d variance-covariance matrix Var(Z),

with MSPE

p" variance (J"2, and positive correlation p. In GaIton's case, these were the heights of a
randomly selected father (Z) and his son (Y) from a large human population. Then the
predicted height of the son, or the average height of sbns whose fathers are the height Z,
(1 - p)p, + pZ, is closer to the population mean of heights p, than is the height of the father.
Thus, tall fathers tend to have shorter sons; there is "regression toward the mean." This is
compensated for by "progression" toward the mean among the sons of shorter fathers and
there is no paradox. The variability of the predicted value about p, should, consequently,
be less than that of the actual heights and indeed Var( (1 - p)p, + pZ) = p2(J"2. Note that
in practice, in particular in Galton's studies, the distribution of (Z, Y) is unavailable and
the regression line is estimated on the basis of a sample (Z1, Y1 ), ... , (Zn, Yn ) from the
population. We shall see how to do this in Chapter 2. 0

Example 1.4.3. The Multivariate Normal Distribution. Let Z = (Zl,"" Zd)T be a
d x 1 covariate vector with mean J.Lz = (P,l, ... , P,d)T and suppose that (ZT, y)T has
a (d + 1) multivariate normal, Nd+l(J.L, ~), distribution (Section B.6) in which J.L
(p,~, p,y)T, P,y = E(Y),

Mee = p2 = 1 _ E[Y - J1O(Z)j2 = Var P,o(Z)
zy VarY VarY

where the last identity follows from (1.4.6). By (1.4.11), the MCC equals the square of the
1 1

usual correlation coefficient p = (J"Zy / (J"fT (J"~Z when d = I.

The quadratic form ~yz~zi~zy is positive except when the joint normal distribution
is degenerate, so the MSPE of P,o(Z) is smaller than the MSPE of the constant predictor
p,y. One minus the ratio of these MSPEs is a measure of how strongly the covariates
are associated with Y. This quantity is called the multiple correlation coefficient (MCC),
coefficient ofdetermination or population R-squared. We write
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For example, let Y and Z = (ZI, Z2)T be the heights in inches of a 10-year-old girl
and her parents (Zl = mother's height, Z2 = father's height). Suppose(l) that (ZT, y)T is
trivariate normal with Var(Y) = 6.39

~zz =
7.74 2.92
2.92 6.67

, ~Zy = (4.07, 2.98)T.

,
,
,

Then the strength of association between a girl's height and those of her mother and father,
respectively; and parents, are

P~"Y = .335, P~2'Y = .209, P~Y = .393.

In words, knowing the mother's height reduces the mean squared prediction error over the
constant predictor by 33.5%. The percentage reductions knowing the father's and both
parent's heights are 20.9% and 39.3%, respectively. In practice, when the distribution of
(ZT, y)T is unknown, the linear predictor J.Lo(Z) and its MSPE will be estimated using a
sample (Zr, yI)T, ... , (Z;:, yn)T. See Sections 2.1 and 2.2. 0

The best linear predictor. The problem of finding the best MSPE predictor is solved by
Theorem 1.4.1. Two difficulties of the solution are that we need fairly precise knowledge of
the joint distribution of Z and Y in order to calculate E(Y I Z) and that the best predictor
may be a complicated function of Z. If we are willing to sacrifice absolute excellence, we
can avoid both objections by looking for a predictor that is best within a class of simple
predictors. The natural class to begin with is that of linear combinations of components of
Z. We first do the one-dimensional case.

Let us call any random variable of the form a + bZ a linear predictor and any such
variable with a = 0 a zero intercept linear predictor. What is the best (zero intercept)
linear predictor of Y in the sense of minimizing MSPE? The answer is given by:

Theorem 1.4.3. Suppose that E(Z2) and E(y2) are finite and Z and Yare not constant.
Then the unique best zero intercept linear predictor is obtained by taking

E(ZY)
b = bo = E(Z2) ,

whereas the unique best linear predictor is J.LdZ) = al + bIZ where

Proof. We expand {Y - bZ}2 = {Y - [Z(b - bo) + ZboW to get

E(Y - bZ? = E(y2) + E(Z2)(b - bo? - E(Z2)b~.

Therefore, E(Y - bZ? is uniquely minimized by b = bo, and

,
1
j

(1.4.13)

I



Best Multivariate Linear Predictor. Our linear predictor is of the form

f3 = (E([Z - E(Z)][Z - E(Z)]T))-l E([Z - E(Z)][Y - E(Y)]) = I:ziI:zy.
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(1.4.14)J.LdZ) = J.Ly + (Z - J.LZ)T f3.

a = E(Y) - bE(Z).

E(Y - a - bZ)2 = Var(Y - bZ) + (E(Y) - bE(Z) - a)2.

Section 1.4 Prediction

To prove the second assertion of the theorem note that by (1.4.1),

Therefore, whatever be b, E(Y - a - bZ)2 is uniquely minimized by taking

d

J.L1(Z) = a + L bjZj = a + ZTb
j=l

E[Y - J.LdZW = 1 05
E[Y - J.L( Z)]2 ..

Theorem 1.4.4. If Ey2 and (E([Z - E(ZW[Z - E(Z)]))-l exist, then the unique best
MSPE predictor is

Substituting this value of a in E(Y - a - bZ)2 we see that the b we seek minimizes
E[(Y - E(Y)) - b(Z - E(Z)W. We can now apply the result on zero intercept linear
predictors to the variables Z - E( Z) and Y - E(Y) to conclude that b1 is the unique
minimizing value. 0

Remark 1.4.1. From (l.4.13) we obtain the proof of the Cauchy-Schwarz inequality
(A.ILl?) in the appendix. This is because E(Y - bOZ)2 > °is equivalent to the Cauchy
Schwarz inequality with equality holding if, and only if, E(Y - bOZ)2 = 0, which
corresponds to Y = boZo We could similarly obtain (A.ILl6) directly by calculating
E(Y - al - b1 Z)2. 0

Note that if E(Y I Z) is of the form a + bZ, then a = al and b = bb because,
by (1.4.5), if the best predictor is linear, it must coincide with the best linear predictor.
This is in accordance with our evaluation of E(Y I Z) in Example 1.4.2. In that example
nothing is lost by using linear prediction. On the other hand, in Example 1.4.1 the best
linear predictor and best predictor differ (see Figure 1.4.1). A loss of about 5% is incurred
by using the best linear predictor. That is,

Proof. Note that R(a, b) = Ep[Y - J.L1(ZlF depends on the joint distribution P of
X = (ZT, Y)T only through the expectation J.L and covariance I: of X. Let Po denote

,,' ,

"§;:"t
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•

"q
I

y

,
,

, I
2 •

Figure 1.4.1. The three dots give the best predictor. The line represents the best linear
predictor y = 1.05 + 1.45z.

for unknown Q E R and.6 E Rd. We want to express Q and .6 in terms of moments of
(Z, Y). Set Zo = 1. By Proposition 1.4.1(a), f = Y - J.L(Z) and each of Zo, ... , Zd are
uncorrelated; thus,

(1.4.15)

z
1.000.750.50

•

0.25

E( Zj [Y - (Q + ZT.6)]) = 0, j = 0, ... ,d.

o

1

o

the multivariate normal, N(J.L, ~), distribution and let Ro(a, b) = Epo[Y - J.L1(Z)]2. By
Example 1.4.3, Ro(a, b) is minimized by (1.4.14). Because P and Po have the same J.L and
~,R(a, b) = Ro(a, b), and R(a, b) is minimized by (1.4.14). 0

Remark 1.4.2. We could also have established Theorem 1.4.4 by extending the proof of
Theorem 1.4.3 to d > 1. However, our new proof shows how second-moment results
sometimes can be established by "connecting" them to the normal distribution. A third
approach using calculus is given in Problem 1.4.19. 0

Remark 1.4.3. In the general, not necessarily normal, case the multiple correlation coeffi
cient (MCC) or coefficient ofdetermination is defined as the correlation between Y and the
best linear predictor of Y; that is,

p~y = Corr2(Y,J.LdZ)).

Thus, the MCC gives the strength of the linear relationship between Z and Y. See Problem
1.4.17 for an overall measure of the strength of this relationship. 0

Remark 1.4.4. Suppose the model for J.L(Z) is linear; that is,

J.L(Z) = E(Y IZ) = Q + ZT.6

p

I



1.5 SUFFICIENCY

go = arg inf{~(Y, g(Z)) : 9 E 9},

Remark 1.4.6. When the class 9 of possible predictors 9 with Elg(Z) I < 00 form a Hilbert
space as defined in Section B.laand there is a go E 9 such that
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o

(1.4.16)

(1.4.17)

p,(Z) = 7l'(Y IgNP), Jl-L(Z) = 7l'(Y IgL) = 7l'(p,(Z) IgL)

~2(Y,p,L(Z)) = ~2(p,L(Z),p,(Z)) + ~2(y,p,(Z))

Y - p,(Z) is orthogonal to p,(Z) and to p,L(Z).

Section 1.5 Sufficiency

Note that (1.4.16) is the Pythagorean identity.

Solving (1.4.15) for a and {3 gives (1.4.14) (Problem 1.4.23). Because the multivariate
normal model is a linear model, this gives a new derivation of (1.4.12).

Remark 1.4.5. Consider the Bayesian model of Section 1.2 and the Bayes risk (1.3.8)
defined by r(o) = E[I(O,o(X))]. If we identify 0 with Y and X with Z, we see that
r(0) = MSPE for squared error loss l(B, 0) = (B - 0)2. Thus, the optimal MSPE predictor
E(O I X) is the Bayes procedure for squared error loss. We return to this in Section
3.2. 0

then go(Z) is called the projection of Y on the space 9 of functions of Z and we write
go(Z) = 7l'(Y I g). Moreover, g(Z) and h(Z) are said to be orthogonal if at least one has
expected value zero and E[g(Z)h(Z)] = O. With these concepts the results of this section
are linked to the general Hilbert space results of Section B.I0. Using the distance ~ and
projection 7l' notation, we can conclude that

Summary. We consider situations in which the goal is to predict the (perhaps in the future)
value of a random variable Y. The notion of mean squared prediction error (MSPE) is in
troduced, and it is shown that if we want to predict Y on the basis of information contained
in a random vector Z, the optimal MSPE predictor is the conditional expected value of Y
given Z. The optimal MSPE predictor in the multivariate normal distribution is presented.
It is shown to coincide with the optimal MSPE predictor when the model is left general but
the class of possible predictors is restricted to be linear.

Once we have postulated a statistical model, we would clearly like to separate out any
aspects of the data that are irrelevant in the context of the model and that may obscure our
understanding of the situation.

We begin by formalizing what we mean by "a reduction of the data" X EX. Re
call that a statistic is any function of the observations generically denoted by T(X) or T.
The range of T is any space of objects T, usually R or Rk , but as we have seen in Sec
tion 1.1.3, can also be a set of functions. If T assigns the same value to different sample
points, then by recording or taking into account only the value of T(X) we have a reduc
tion of the data. Thus, T(X) = X loses information about the Xi as soon as n > 1.

" ."\-
'.-,>
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Even T( Xl, .... X" ) (X(I) . .... X (11»)' loses infonnation about the labels of the Xi.
The idea of sufficiency is to reduce the data with statistics whose use involves no loss of
infonnation, in the context of a model P = {Pe : 8 E 8}.

For instance, suppose that in Example 1.1.1 we had sampled the manufactured items in
order, recording at each stage whether the examined item was defective or not. We could
then represent the data by a vector X = (Xl,'" ,X,,) where Xi = 1 if the ith item
sampled is defective and Xi = aotherwise. The total number of defective items observed,
T = L:7 I Xi, is a statistic that maps many different values of (Xl, ... ,X,,) into the
same number. However, it is intuitively clear that if we are interested in the proportion 8 of
defective items nothing is lost in this situation by recording and using only T.

One way of making the notion "a statistic whose use involves no loss of infonnation"
precise is the following. A statistic T(X) is called sufficient for PEP or the parameter
8 if the conditional distribution of X given T(X) = t does not involve 8. Thus, once
the value of a sufficient statistic T is known, the sample X = (Xl, ... ,Xn ) does not
contain any further infonnation about 8 or equivalently P, given that P is valid. We give a
decision theory interpretation that follows. The most trivial example of a sufficient statistic
is T(X) = X because by any interpretation the conditional distribution of X given T(X) =

X is point mass at X.

Example 1.5.1. A machine produces n items in succession. Each item produced is good
with probability 8 and defective with probability 1- 8, where 8 is unknown. Suppose there
is no dependence between the quality of the items produced and let Xi = 1 if the ith item
is good and °otherwise. Then X = (X I, ... ,Xn ) is the record of n Bernoulli trials with
probability 8. By (A.9.5),

(1.5.1)

"I
!
! '
I!,

where Xi is °or 1 and t = L:7 I Xi. By Example B.1.1, the conditional distribution of X
given T = L:7 I Xi = t does not involve 8. Thus, T is a sufficient statistic for 8. 0

Example 1.5.2. Suppose that arrival of customers at a service counter follows a Poisson
process with arrival rate (parameter) 8. Let X I be the time of arrival of the first customer,
X 2 the time between the arrival of the first and second customers. By (A. 16.4), Xl and X 2

are independent and identically distributed exponential random variables with parameter
8. We prove that T = X I + X 2 is sufficient for 8. Begin by noting that according to
Theorem B.2.3, whatever be 8, X I!(X I +X 2 ) and X I +X 2 are independent and the first of
these statistics has a unifonn distribution on (0,1). Therefore, the conditional distribution
of XI!(X I + X 2 ) given Xl + X 2 = tis U(O, 1) whatever be t. Using our discussion
in Section 8.1.1 we see that given Xl + X 2 = t, the conditional distribution of Xl =
[XI!(X I + X 2 )](XI + X 2 ) and that of Xlt/(X I + X 2 ) are the same and we can conclude
that given Xl + X 2 = t, Xl has a U(O, t) distribution. It follows that, when Xl + X 2 = t,
whatever be 8, (Xl, X 2 ) is conditionally distributed as (X, Y) where X is unifonn on
(0, t) and Y = t - X. Thus, Xl + X 2 is sufficient. 0

In both of the foregoing examples considerable reduction has been achieved. Instead
of keeping track of several numbers, we need only record one. Although the sufficient
statistics we have obtained are "natural," it is important to notice that there are many others



Theorem 1.5.1. In a regular model, a statistic T(X) with range T is sufficientfor 8 if, and
only if, there exists afunction g(t, 8) defined for tin T and 8 in e and afunction h defined
on X such that
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(1.5.2)

(1.5.4)

(1.5.5)

(1.5.3)

PII[X = xj,T = til/PII[T = til

p(xj,8)

PII[T = til

g(ti,8)h(xj)
if T(xj) = t i

PII [T = til

o if T(xj) i= t i .

o if T( Xj) i= t i

h(xj)

p(x,8) = g(T(x), 8)h(x)

PII[T = til = L p(x, 8) = g(ti, 8) L h(x).
{x:T(x)=t,} {x:T(x)=t,}

Section 1.5 Sufficiency

By (8.1.1) and (1.5.2), for 8 E Si,

PII[X = xjlT = til

that will do the same job. Being told that the numbers of successes in five trials is three is the
same as knowing that the difference between the numbers of successes and the number of
failures is one. More generally, if TI and T2 are any two statistics such that TI (x) = T1 (y)
if and only if T2(x) = T2(Y), then TI and T2 provide the same information and achieve
the same reduction of the data. Such statistics are called equivalent.

In general, checking sufficiency directly is difficult because we need to compute the
conditional distribution. Fortunately, a simple necessary and sufficient criterion for a statis
tic to be sufficient is available. This result was proved in various forms by Fisher, Neyman,
and Halmos and Savage. It is often referred to as the factorization theorem for sufficient
statistics.

••

Applying (1.5.3) we arrive at,

PII[X = xjlT = til

for all x E X, 8 E e.
We shall give the proof in the discrete case. The complete result is established for

instance by Lehmann (1997, Section 2.6).

Proof. Let (Xl, X2, ... ) be the set of possible realizations of X and let t i = T(Xi)' Then
T is discrete and L:~ I PII[T = til = 1 for every 8. To prove the sufficiency of (1.5.2),
we need only show that PII [X = Xj IT = til is independent of 8 for every i and j. By
our definition of conditional probability in the discrete case, it is enough to show that
PII [X = Xj IT = til is independent of 8 on each of the sets Si = {8 : PII [T = til > O},
i = 1,2, .... Now, if (1.5.2) holds,
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Therefore, T is sufficient. Conversely, if T is sufficient, let

g(ti,O) = FII[T = til. h(x) = F[X = xIT(X) = til

Then

p(x,O) = FII[X = x, T = T(x)] = g(T(x), O)h(x)

by (B.I.3).

(1.5.6)

(1.5.7)

o

Example 1.5.2 (continued). IfXl, .. , ,Xn are the interarrival times for n customers, then
the joint density of (Xl,' .. ,Xn ) is given by (see (A.16.4»,

n

P(Xl,' " ,Xn,0) = on exp[-O LXi]

i=l

(1.5.8)

if all the Xi are > 0, and p(Xl, ... ,Xn , 0) = 0 otherwise. We may apply Theorem 1.5.1 to
conclude that T(X l , .. . ,Xn ) = L:7 1 Xi is sufficient. Take g(t, 0) = One-lit ift > 0,
o > 0, and h(Xl, ... ,Xn ) = 1 if all the Xi are > 0, and both functions = 0 otherwise.
A whole class of distributions, which admits simple sufficient statistics and to which this
example belongs, are introduced in the next section. 0

Example 1.5.3. Estimating the Size ofa Population. Consider a population with 0 mem
bers labeled consecutively from I to O. The population is sampled with replacement and
n members of the population are observed and their labels Xl, ... ,Xn are recorded.
Common sense indicates that to get information about 0, we need only keeep track of
X(n) = max(Xl , ... X n ). In fact, we can show that X(n) is sufficient. The probability
distribution of X is given by

(1.5.9)

if every Xi is an integer between 1 and 0 and p(Xl, ... ,Xn , 0) = 0 otherwise. Expression
(1.5.9) can be rewritten as

(1.5.10)

where x(n) = max(Xl, ,xn ). By Theorem 1.5.1, X(n) is a sufficient statistic for O. 0

Example 1.5.4. Let Xl, ,Xn be independent and identically distributed random vari-
ables each having a normal distribution with mean J.l and variance 0- 2 , both of which are
unknown. Let 0 = (J.l, 0-

2 ). Then the density of (Xl,'" ,Xn ) is given by

,,
•

I
I,
•

(1.5.11)

•
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(1.5.12)

n

-EY'? + 2(3IEYi + 2(32EziYi
20-2

exp

n

R(O, <5) = R(O, <5*) for all O.

-E((31 + (32 Zi)2
20-2

Section 1.5 Sufficiency

- -
By the factorization theorem, X is sufficient. Let <5(X) = XI. Using only X, we construct
a rule <5* (X) with the same risk = mean squared error as <5(X) as follows: Conditionally,

where we assume diat the given constants {Zi} are not all identical. Then 9 = ((31, (32,0-2)T
is identifiable (Problem 1.1.9) and

Sufficiency can be given a clear operational interpretation in the decision theoretic set
ting. Specifically, if T(X) is sufficient, we can, for any decision procedure <5(x), find a
randomized decision rule <5* (T(X)) depending only on T(X) that does as well as <5 (X) in
the sense of having the same risk function; that is,

where X = (lin) L:7 I Xi. The first and second components of this vector are called the
sample mean and the sample variance, respectively. 0

Example 1.5.5. Suppose, as in Example 1.1.4 with d = 2, that Y1 , ... , Yn are independent,
Yi ~ N(J.li, 0-2), with J.li following the linear regresssion model

S(X1 , ... ,Xn ) = [(lin) LXi, [l/(n -1)] L(Xi - X)2],
i=1 i=1

Evidently P(Xl' ... ,Xn , 0) is itself a function of (L:7 I Xi, L:~ I xn and 0 only and
upon applying Theorem 1.5.1 we can conclude that

T(X1 , ... ,Xn ) = (LXi,Lxf)
i=l i=l

is sufficient for O. An equivalent sufficient statistic in this situation that is frequently used
•
IS

By randomized we mean that <5* (T(X)) can be generated from the value t ofT(X) and a
random mechanism not depending on O.

Here is an example.

Example 1.5.6. Suppose X}, ... ,Xn are independent identically N(O, 1) distributed.
Then

Sufficiency and decision theory

Thus, T = (EYi, EY?, EziYi) is sufficient for 9.
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,

I
I

given X = t, choose T* = <5* (X) from the nonnal N(t, n~l) distribution. Using Section
B.I and (1.4.6), we find

- -
E(T*) = E[E(T*IX)] = E(X) = fL = E(X1 )

- - n-l 1
Var(T*) = E[Var(T*IX)] + Var[E(T*IX)] = + - = 1 = Var(X1).

n n

Thus, <5*(X) and <5(X) have the same mean squared error. 0

The proof of (1.5.12) follows along the lines of the preceding example: Given T(X) =
t, the distribution of <5(X) does not depend on B. Now draw <5* randomly from this condi
tional distribution. This <5* (T(X)) will have the same risk as <5* (X) because, by the double
expectation theorem,

R(B,<5*) = E{E[£(B,<5*(T))IT]} = E{E[£(B,<5(X))IT]} = R(B,<5).

o

Sufficiency and Bayes models

There is a natural notion of sufficiency of a statistic T in the Bayesian context where in
addition to the model P = {Po : BEe} we postulate a prior distribution II for e.

In Example 1.2.1 (Bernoulli trials) we saw that the posterior distribution given X = x is
the same as the posterior distribution given T(X) = L:7 1 Xi = k, where k = L:7 1 Xi.
In this situation we call T Bayes sufficient.

Definition. T(X) is Bayes sufficient for II if the posterior distribution of Bgiven X = x is
the same as the posterior (conditional) distribution of Bgiven T(X) = T(x) for all x.

Equivalently, Band X are independent given T(X).

Theorem 1.5.2. (Kolmogorov). IfT(X) is sufficient for B, it is Bayes sufficient for every
II.

This result and a partial converse is the subject of Problem 1.5.14.

Minimal sufficiency

For any model there are many sufficient statistics: Thus, if Xl, ... , X n is a N (fL, ( 2 )

sample n > 2, then T(X) = (L:~ 1 Xi, L:~ 1 Xl) and S(X) = (X1> ••• ,Xn ) are both
sufficient. But T(X) provides a greater reduction of the data. We define the statistic T(X)
to be minimally sufficient if it is sufficient and provides a greater reduction of the data
than any other sufficient statistic S(X), in that, we can find a transfonnation r such that
T(X) = r(S(X)).

Example 1.5.1 (continued). In this Bernoulli trials case, T = L:~ 1 Xi was shown to be
sufficient. Let S(X) be any other sufficient statistic. Then by the factorization theorem we
can write p(x, B) as

p(x, B) = g(S(x), B)h(x)

i
i,

I

,
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OT (1 - Or-T = g(S(x), O)h(x) for all O.

Section 1.5 Sufficiency

For any two fixed 01 and O2 , the ratio of both sides of the foregoing gives

Combining this with (1.5.1), we find

T = r(S(x)) = {log[2n g(S(x),2/3)/g(S(x), 1/3)]}/2log2.

T = (TI ,T2 ) = (LXi, LX?)'
i=l i=l

The likelihood function

t 2 = -2 log Lx(O, 1) - n log 27r

In particular, if we set 01 = 2/3 and O2 = 1/3, take the log of both sides of this equation
and solve for T, we find

Now, as a function of 0, LxO determines (tl, t 2 ) because, for example,

Thus, T is minimally sufficient.

Lx(O) = p(x, 0), 0 E 8.

The preceding example shows how we can use p(x, 0) for different values of 0 and
the factorization theorem to establish that a sufficient statistic is minimally sufficient. We
define the likelihood function L for a given observed data vector x as

Thus, Lx is a map from the sample space X to the class T of functions {O ----> p(x, 0) :
x E X}. It is a statistic whose values are functions; if X = x, the statistic L takes on
the value Lx. In the discrete case, for a given 0, Lx(O) gives the probability of observing
the point x. In the continuous case it is approximately proportional to the probability of
observing a point in a small rectangle around x. However, when we think of Lx(O) as a
function of 0, it gives, for a given observed x, the "likelihood" or "plausibility" of various
O. The formula (1.5.8) for the posterior distribution can then be remembered as Posterior
ex (Prior) x (Likelihood) where the sign ex denotes proportionality as functions of O.

Example 1.5.4 (continued). In this N(J.l, 0-
2 ) example, the likelihood function (1.5.11) is

determined by the two-dimensional sufficient statistic
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, ,
I j
, '

with a similar expression for t1 in terms of Lx (0. 1) and Lx (1, 1) (Problem 1.5.17). Thus,
L is a statistic that is equivalent to (1 1 .12) and. hence, itself sufficient. By arguing as in
Example 1.5.1 (continued) we can show that T and, hence, L is minimal sufficient. 0

In fact, a statistic closely related to L solves the minimal sufficiency problem in general.
Suppose there exists f)o such that

{x: p(x, f)) > O} C {x: p(x,f)o) > O}

for all f). Let Ax = Lx~9o)' Thus, Ax is the function valued statistic that at f) takes on the

value It:», the likelihood ratio of f) to f)o. Then Ax is minimal sufficient. See Problem
p x, a

1.5.12 for a proof of this theorem of Dynkin, Lehmann, and Scheffe.

The "irrelevant" part of the data

We can always rewrite the original X as (T(X), S(X)) where S(X) is a statistic
needed to uniquely determine x once we know the sufficient statistic T(x). For instance,

- --
ifT(X) = X we can take S(X) = (Xl - X, ... ,Xn - X), the residuals; or ifT(X) =

(XJi) , ... ,X(n»), the order statistics, S(X) = (R I , ... ,Rn), the ranks, where Ri =

Lj=ll(Xj < Xi)' S(X) becomes irrelevant (ancillary) for inference if T(X) is known

but only if P is valid. Thus, in Example 1.5.5, if 0-2 = 1 is postulated, X is sufficient,
but if in fact 0- 2 i= 1 all information about 0-2 is contained in the residuals. If, as in the
Example 1.5.4,0-2 is assumed unknown, (X, L7 I (Xi - X)2) is sufficient, but if in fact
the common distribution of the observations is not Gaussian all the information needed to
estimate this distribution is contained in the corresponding S(X)-see Problem 1.5.13. If
P specifies that Xl,'" ,Xn are a random sample, (X(1)" .. ,X(n») is sufficient. But the
ranks are needed if we want to look for possible dependencies in the observations as in
Example 1.1.5.

Summary. Consider an experiment with observation vector X = (Xl,'" ,Xn ). Suppose
that X has distribution in the class P = {Po : f) E e}. We say that a statistic T (X)
is sufficient for PEP, or for the parameter f), if the conditional distribution of X given
T(X) = t does not involve f). Let p(X, f)) denote the frequency function or density of
X. Thefactorization theorem states that T(X) is sufficient for f) if and only if there exist
functions g(t, f)) and h(X) such that

p(X, f)) = g(T(X), f))h(X).

We show the following result: If T(X) is sufficient for f), then for any decision procedure
J(X), we can find a randomized decision rule J*(T(X)) depending only on the value of
t = T(X) and not on f) such that J and J* have identical risk functions. We define a
statistic T(X) to be Bayes sufficient for a prior 7r if the posterior distribution of f) given
X = x is the same as the posterior distribution of f) given T(X) = T(x) for all X. If
T(X) is sufficient for f), it is Bayes sufficient for f). A sufficient statistic T(X) is minimally
sufficient for f) if for any other sufficient statistic S(X) we can find a transformation r
such that T(X) = r(S(X)). The likelihood function is defined for a given data vector of

,
i
I,

- ---_._-- -------------_....'
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then, by the factorization theorem, the likelihood ratio

1.6 EXPONENTIAL FAMILIES

(1.6.1 )p(x,8) = h(x) exp{1](8)T(x) - B(8)}

The family of distributions of a model {PIJ : 8 E e}, is said to be a one-parameter expo
nentialfami/y, if there exist real-valued functions 1](8), B(8) on e, real-valued functions T
and h on Rq, such that the density (frequency) functions p(x, 8) of the PIJ may be written

1.6.1 The One-Parameter Case

observations X to be the function of 8 defined by L x (8) = p(X, 8),8 E El. If T(X) is
sufficient for 8, and if there is a value 80 E e such that

The binomial and normal models considered in the last section exhibit the interesting fea
ture that there is a natural sufficient statistic whose dimension as a random vector is inde
pendent of the sample size. The class of families of distributions that we introduce in this
section was first discovered in statistics independently by Koopman, Pitman, and Darmois
through investigations of this property(1). Subsequently, many other common features of
these families were discovered and they have become important in much of the modern
theory of statistics.

Probability models with these common features include normal, binomial, Poisson,
gamma, beta, and multinomial regression models used to relate a response variable Y to a
set of predictor variables. More generally, these families form the basis for an important
class of models called generalized linear models. We return to these models in Chapter 2.
They will reappear in several connections in this book.

{x: p(x, 8) > a} c {x : p(x, ( 0 ) > a}, 8 E El,

Ax (8) = Lx (8)
Lx (80 )

depends on X through T(X) only. Ax (8) is a minimally sufficient statistic.

where x E X c Rq. Note that the functions 1], B, and T are not unique.
In a one-parameter exponential family the random variable T(X) is sufficient for 8.

This is clear because we need only identify exp{1](8)T(x) - B(8)} with g(T(x),8) and
h(x) with itself in the factorization theorem. We shall refer to T as a natural sufficient
statistic of the family.

Here are some examples.

Example 1.6.1. The Poisson Distribution. Let PIJ be the Poisson distribution with unknown
mean 9. Then, for x E {O, 1,2, ... },

8x e- 1J 1
p(x,8) = , =, exp{x log8 - 8}, 8> a. (1.6.2)

x. x.
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o

o

•

(1.6.3)

(1.6.4)

(1.6.6)

. (1.6.5)

1 2--z
2

n
x

m

o
exp[x log( ) + n log(l - 0)].

1-0

n
x

n
x

m

--- -----

IIh(x;) exp 1](O)'L,T(x;)-mB(O)
;=1 ;=1

m

IIh(x;) exp[1](O)T(x;) - B(O)]
;=1

1
q = 1,7)(0) = logO,B(O) = O,T(x) = x,h(x) = -I'

X.

p(x, 0)

p(x, 0)

f(x,O)

Therefore, the Pe fonn a one-parameter exponential family with

f(z,y,O) = f(z)fe(y I z) = cp(Z)O-lcp((y - Z)O-l)

1
(27f0)-lexp -2[Z2 + (y - Z)20-2]

(
I 1 2 1 2( 227f)- exp -2z exp -20- y-z) -logO.

This is a one-parameter exponential family distribution with

o
q = 1,7)(0) = log( O),B(O) = -nlog(l- O),T(x) = x,h(x) =

1-

1
q = 2,7)(0) = - 20-2, B(O) = logO, T(x) = (y - Z)2, h(x) = (27f)-1 exp

Example 1.6.2. The Binomial Family. Suppose X has a B(n, 0) distribution, a < 0 < 1.
Then, for x E {a, 1, . . . , n}

Therefore, the family of distributions of X is a one-parameter exponential family with

Here is an example where q = 2.

Example 1.6.3. Suppose X = (Z, y)T where Y = Z + OW, 0 > 0, Z and W are
independent N(O, 1). Then

The families of distributions obtained by sampling from one-parameter exponential
families are themselves one-parameter exponential families. Specifically, suppose
XI, ... , X m are independent and identically distributed with common distribution Pe,
where the Pe fonn a one-parameter exponential family as in (1.6.1). If {pJm)}, 0 E e, is
the family of distributions of X = (Xl, ... ,Xm ) considered as a random vector in Rmq
and p(x, 0) are the corresponding density (frequency) functions, we have

,, ,
• i
, I, ,

~ 'j,
•, I'
~ I;

I i
I,

i", I '..
, ,· ,

I,
I

• i
i,



TABLE 1.6.1

for suitable h *.
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(1.6.7)rnrn

LT(Xi), E(rn)(B) = mE(B), h(m)(x) = II h(Xi)'
i=l i=l

distributions 7)(B) T(x)
N (J.l, (J":l) (J":l fixed J.l/(J":l X

J.l fixed -1/2(J"~ (x - J.l?
r(p, A) p fixed -A x

A fixed (p- 1) logx
(3(r,8) r fixed (8 - 1) 10g(1 - x)

8 fixed (r - 1) logx

Section 1.6 Exponential Families

h* (t) exp{1](B)t - E(B)}

Note that the natural sufficient statistic T(rn) is one-dimensional whatever be m. For
example, if X = (Xl, ... ,Xrn ) is a vector of independent and identically distributed

P(B) random variables and pJrn) is the family of distributions of x, then the pJrn) fonn a
one-parameter exponential family with natural sufficient statistic T(rn) (X) = L:7' 1 Xi.

Some other important examples are summarized in the following table. We leave the
proof of these assertions to the reader.

where x = (Xl, ... ,xrn ). Therefore, the pJm) fonn a one-parameter exponential family.
If we use the superscript m to denote the corresponding T, 7), E, and h, then q(rn) = mq,

and

Family of

The statistic T(rn) (X1, .. , ,Xrn ) corresponding to the one-parameter exponential fam
ily of distributions of a sample from any of the foregoing is just L:7' 1 T(Xi)'

In our first Example 1.6.1 the sufficient statistic T{rn)(x1 , •.. ,Xrn ) = L:7' 1 Xi is
distributed as P (mB). This family of Poisson distributions is one-parameter exponential
whatever be m. In the discrete case we can establish the following general result.

Theorem 1.6.1. Let {Po} be a one-parameter exponential family of discrete distributions
with corresponding functions T, 1], E, and h, then UJe family of distributions of the statis
tic T(X) is a one-parameter exponential family of discrete distributions whose frequency
functions may be written
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Proof By definition,

FII[T(x) = t]

Statistical Models, Goals, and Performance Criteria Chapter 1

L p(x,O)
{x:T(x)=t}

L h(x) expfr7(O)T(x) - B(O)]
{x:T(x)=t}

exp[1](O)t - B(O)]{ L h(x)}.
{x:T(x)=t}

(1.6.8)

If we let h*(t) = L:{X:T(x)=t} h(x), the result follows. 0

A similar theorem holds in the continuous case if the distributions of T(X) are them
selves continuous.

Canonical exponential families. We obtain an important and useful
reparametrization of the exponential family (1.6.1) by letting the model be indexed by
1] rather than O. The exponential family then has the form

q(x,1]) = h(x) exp[1]T(x) - A(1])], x E X c Rq (1.6.9)

I,

!
I
I,
! ~

where A(1]) = log f··· f h(x)exp[1]T(x)]dx in the continuous case and the integral is
replaced by a sum in the discrete case. If 0 E e, then A(1]) must be finite, if q is definable.
Let E be the collection of all 1] such that A(1]) is finite. Then as we show in Section 1.6.2,
E is either an interval or all of R and the class of models (1.6.9) with 1] E E contains the
class of models with 0 E e. The model given by (1.6.9) with 1] ranging over E is called the
canonical one-parameter exponential family generated by T and h. E is called the natural
parameter space and T is called the natural sufficient statistic.

Example 1.6.1. (continued). The Poisson family in canonical form is

q(x,1]) = (l/x!) exp{1]x - exp[1]]}, x E {O, 1, 2, ... },

where 1] = log 0,

i
I,
,,

00 00

o

exp{A(1])} = L(e1JX Ix!) = L(e1J y /x! = exp(elJ ),

x=o x=o

and E = R.
Here is a useful result.

Theorem 1.6.2. If X is distributed according to (1.6.9) and 1] is an interior point of E, the
moment-generating function ofT(X) exists and is given by

M(s) = exp[A(s + 1]) - A(1])]

for s in some neighborhood ofO.



1.6.2 The Multiparameter Case

This is known as the Rayleigh distribution. It is used to model the density of "time until
failure" for certain types of equipment. Now

Here 1] = -1/2(}2, (}2 = -1/21], B((}) = nlog(}2 andA(1]) = -nlog(-21]). Therefore,
the natural sufficient statistic 2:7 1 Xl has mean -n/1] = 2n(}2 and variance n/1]2
4n(}4. Direct computation of these moments is more complicated. 0

53

(1.6.10)
k

p(x,O) = h(x)exp[L 1]j(O)Tj (x) - B(O)], x E X c Rq.
j=l

E(T(X)) = A'(1]), Var(T(X)) = A" (1]).
Moreover,

M(s) = E(exp(sT(X))) = J ... J h(x)exp[(s + 1])T(x) - A(1])]dx

= {exp[A(s + 1]) - A(1])]} J ... J h(x)exp[(s + 1])T(x) - A(s + 1])]dx

= exp[A(s + 1]) - A(1])]

Section 1.6 Exponential Families

Proof We give the proof in the continuous case. We compute

because the last factor, being the integral of a density, is one. The rest of the theorem
follows from the moment-enerating property of M(s) (see Section A.12). 0

Here is a typical application of this result.

Example 1.6.4 Suppose Xl, ... ,Xn is a sample from a population with density

p(x, (}) = (X/(}2) exp( _x2/2(}2), x> 0, () > O.

n n

p(x,(}) = (II(xi!(}2))exp(- LX;/2(}2)
i=l i=l

n 1 n

= (II Xi) exp[ ;2 LX; - n log (}2].
i=l i= 1

Our discussion of the "natural form" suggests that one-parameter exponential families are
naturally indexed by a one-dimensional real parameter 1] and admit a one-dimensional suf
ficient statistic T(x). More generally, Koopman, Pitman, and Darmois were led in their
investigations to the following family of distributions, which is naturally indexed by a k
dimensional parameter and admit a k-dimensional sufficient statistic.

A family of distriblltions {PO : 0 E e}, e c Rk , is said to be a k-parameter expo
nentialfami/y, if there exist real-valued functions 1]1, ... ,1]k and B of 0, and real-valued
functions T 1 , .•• ,Tk, h on Rq such that the density (frequency) functions of the Po may
be written as,



!'
54 Statistical Models, Goals. and Performance Criteria Chapter 1

By Theorem 1.3,1, the vector T(X) = (T1(X), ... ,Tk(X)f is sufficient. It will be
referred to as a natural sufficient statistic of the family.

Again, suppose X = (XI, .. ' ,Xm) where the Xi are independent and identically
distributed and their common distribution ranges over a k-parameter exponential family
given by (1.6.10). Then the distributions of X form a k-parameter exponential family with
natural sufficient statistic

m m

B(O)

T(m)(x) = (LTI (Xi),'" , LTk(Xi)).
i=1 i=1

Example 1.6.5. The Normal Family. Suppose that Pe = N(fL, 0'2), e = {(fL, 0'2) : -00 <
fL < 00, 0'2 > O}. The density of Pe may be written as

fL x2 1 fL2
p(x,O) = exp[2x - '2 - - (-2 + log(27l'0'2))), (1.6.11)

0' 20' 2 0'

which corresponds to a two-parameter exponential family with q = 1, (}I = fL, (}2 = 0'2,
and

fL 1
2' T1(x)=x, 172(0)=-2 2' T2(x)=x2,
0' 0'

1 fL2
-(-2 + log(27l'0'2)), h(x) = 1.
2 0'

If we observe a sample X = (Xl,'" ,Xm ) from a N(fL, 0'2) population, then the
preceding discussion leads us to the natural sufficient statistic

m m

(LXi'LXl),
i=l i=l

which we obtained in the previous section (Example 1.5.4). o

,,,
I'
I,

Again it will be convenient to consider the "biggest" families, letting the model be
indexed by "1 = (171, ' .. ,17k)T rather than O. Thus, the canonical k-parameter exponential
family generated by T and h is

q(x, "1) = h(x)exp{TT(x)"1- A("1)},x E Xc Rq

where T(x) = (TI(x), ... ,Tk(X))T and, in the continuous case,

A("1) = log f: .. ·1: h(x) exp{TT (x)"1}dx.

In the discrete case, A("1) is defined in the same way except integrals over Rq are replaced
by sums. In either case, we define the natural parameter space as

E = {"1 E Rk : -00 < A("1) < oo}.

"i
i
1



Now we can write the likelihood as
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j = 1, ... , k - 1.
""k o. 'L..Jj=1 e ,

e'U
Aj = -----,------,-----

1 + ~
k-I t)
. 1 e ,

J=

Section 1.6 Exponential Families

k-I

q(x,7]) = exp{T~_I)(x)7] - nlog(l + L e'U)}
j=1

k k

qo(x, a) = exp{L O'.jTj(x) - n log L exp(O'.j)}'
j=l j=1

k

Aj = eO, / L eOj , j = 1, ... , k, a E R k
.

j=1

where

Example 1.6.5. (N(J.l,a 2) continued). In this example, k = 2, TT(X) = (x,x2) =

(T1(x),T2(x)),771 = J.l/a2, 772 = -1/2a2, A(7]) = ~[(-77i12772) + log(71-j - 772)],
h(x) = 1 andE = R x R- = {(771,772): 771 E R,772 < O}.

Example 1.6.6. Linear Regression. Suppose as in Examples 1.1.4 and 1.5.5 that Y1, ... , Yn

are independent, Yi ~ N(J.li, ( 2), with J.li = (31 + (32Zi, i = 1, ... , n. From Exam
ple 1.5.5, the density of Y = (Y1, ... , yn)T can be put in canonical fonn with k = 3,
T(Y) = (EYi, El',?, EZiYi)T, 771 = (3da2, 772 = (32/a 2, 773 = -1/2a2,

A(7]) = ~n [77i + m277~ + Z771772 + 2Iog(71-j -773)],
773

and E = {(771,772,773): 771 E R,772 E R,773 < O}, where m2 = n-1Ez;'

Example 1.6.7. Multinomial Trials. We observe the outcomes of n independent trials
where each trial can end up in one of k possible categories. We write the outcome vector
as X = (Xl, ... , Xn)T where the Xi are i.i.d. as X and the sample space of each Xi
is the k categories {I, 2, ... , k}. Let Tj(x) = ~7 1 l[Xi = j], and Aj = P(Xi = j).

Thenp(x,>.) = rr7=lA?(X), >. E A, where A is the simplex {>' E R k
: 0 < Aj <

1, j = 1, ... , k, ~7=1 Aj = I}. It will often be more convenient to work with unrestricted
parameters. In this example, we can achieve this by the repararnetrization

This is a k-parameter canonical exponential family generated by T 1 , .. . , Tk and h(x)
rr7 1 1[Xi E {I, ... , k }] with canonical parameter a and E = Rk. However a is not
identifiable because qo(x, a + c1) = qo(x, a) for 1 = (1, ... , l)T and all c. This can be
remedied by considering
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Note that q(x, 1J) is a k - 1 parameter canonical exponential family generated by T(k_l)

and h(x) = TI7 11[xi E {I, ... ,k}] with canonical parameter 1J and E = Rk
- 1 . More

over, the parameters 7]j = log( P1J [X = jUP7] [X = k]), 1 < j < k - 1, are identifiable.
Note that the model for X is unchanged. 0

1.6.3 Building Exponential Families

Submodels

A submodel of a k-parameter canonical exponential family {q(x, 1J); 1J E E C R k } is
an exponential family defined by

where 0 E e c Rl
, l < k, and 1J is a map from e to a subset of Rk

• Thus, if X is discrete
taking on k values as in Example 1.6.7 and X = (X I, . " ,Xn ) T where the Xi are i.i.d.
as X, then all models for X are exponential families because they are submodeIs of the
multinomial trials model.

I
I

\

I
I

p(X,O) = q(x, 1J(O)) (1.6.12)

I:
I
F

,,
,

Affine transformations

IfP is the canonical family generated by T kx I and hand M is the affine transformation
from Rk to R l defined by

M(T) = MexkT + beXl,

it is easy to see that the family generated by M(T(X)) and h is the subfamily of P corre
sponding to

and

1J(O) = MTO.

Similarly, if e c Re and 1J(0) = BkxeO C Rk, then the resulting submodel of P above is
a submodel of the exponential family generated by BTT(X) and h. See Problem 1.6.17
for details. Here is an example of affine transformations of 0 and T.

Example 1.6.8. Logistic Regression. Let Yi be independent binomial, B(ni, Ai), 1 < i <
n. If the Ai are unrestricted, 0 < Ai < 1, 1 < i < n, this, from EXanlple 1.6.2, is
an n-paranleter canonical exponential family with Yi _ integers from 0 to ni generated

ni A
byT(YI , ... ,Yn ) = Y,h(y) = TI7 I Yi 1(0 < Yi < ni)' Here7]i = log I-~i'

A(1J) = 2:7 1 ni 10g(1 + e1Ji ). However, let XI < ... < X n be specified levels and

I

(1.6.13)

. . ..,;7



n

A(01,{t2) = L n; 10g(1 + exp(OI + 02 Xi)).
;=]

o
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(1.6.14)
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P[X < x] = [1 + exp{-(O] + 02X)}]-I,

10g(P[X < xJI(l - P[X < xl)) = 01 + 02X

01 E R, O2 > O. Then (and only then),

and (1.6.13) holds.

This model is sometimes applied in experiments to determine the toxicity of a sub
stance. The Yi represent the number of animals dying out of ni when exposed to level Xi of
the substance.It is assumed that each animal has a random toxicity threshold X such that
death results if and only if a substance level on or above X is applied. Assume also:

(a) No interaction between animals (independence) in relation to drug effects
(b) The distribution of X in the animal population is logistic; that is,

This is a linear transfonnation 1J(9) = Bnx29 corresponding to Bnx2 = (1, x), where 1
is (1, ... ,1)T, X = (XI, ... ,xn)T. Set M = B T, then this is the two-parameter canonical
exponential family generated by MY = 0:=:' I Yi, 2:=~ 1 x;Yi)T and h with

Curved exponential families

Exponential families (1.6.12) with the range of 1J(9) restricted to a subset of dimension
l with l < k - 1, are called curved exponential families provided they do not fonn a
canonical exponential family in the 9 parametrization.

Example 1.6.9. Gaussian with Fixed Signal-to-Noise Ratio. In the nonnal case with
XI, ... ,Xn i.i.d. N(J.l,a2 ), suppose the ratio 1J.lI/a, which is called the coefficient of
variation or signal-to-noise ratio, is a known constant >'0 > O. Then, with °= J.l, we can
write

where T1 = 2:=7 1 Xi, T2 = 2:=~ I X;, 1]1(0) = >'6°-1 and 1]2(0) = _~>'60-2. This is a
curved exponential family with l = 1. 0

In Example 1.6.8, the 9 parametrization has dimension 2, which is less than k = n
when n > 3. However, p(x, 9) in the 9 parametrization is a canonical exponential family,
so it is not a curved family.

Example 1.6.10. Location-Scale Regression. Suppose that Y1 , .•• , Yn are independent,
Yi "J N(J.li, an. If each Jli ranges over R and each a'f ranges over (0,00), this is by
Example 1.6.5 a 2n-parameter canonical exponential family model with 1]i = J.lda;, and
1]n+i = -1/2a'f, i = 1, ... , n, generated by

T(Y) = (YI , ... , Yn , y I
2

, ... , Y;f



58 Statistical Models, Goals, and Performance Criteria Chapter 1

,

I
I
,

,
,

Ii
'II,
I,

and h(Y) = 1. Next suppose that ({ii, an depend on the value Zi of some covariate, say,

{ii = (h + (hZi, af = (hUh + 82zi )2. 21 < ... < Zn

for unknown parameters 81 E R, 82 E R, 83 > 0 (e.g., Bickel, 1978; Carroll and
Ruppert, 1988, Sections 2.1-2.5; and Snedecor and Cochran, 1989, Section 15.10). For
8 = (81 ,82,82), the map "1(0) is

Because L:7 1 1]i (0) Y; + L:7 I 1]n+i (0)Y? cannot be written in the form
L:; 11]j(0)T/(Y) for some 1]j(O), T/(Y), then p(y, 0) = q(y, "1(0)) as defined in
(6.1.12) is not an exponential family model, but a curved exponential family model with
1=3. 0

Models in which the variance Var(Y;) depends on i are called heteroscedastic whereas
models in which Var(Y;) does not depend on i are called homoscedastic. Thus, Examples
1.6.10 and 1.6.6 are heteroscedastic and homoscedastic models, respectively.

We return to curved exponential family models in Section 2.3.

Supermodels

We have already noted that the exponential family structure is preserved under i.i.d.
sampling. Even more is true. Let Y j , 1 < j < n, be independent, lj E Yj c Rq, with an
exponential family density

Then Y - (YI , ... ,yn)T is modeled by the exponential family generated by T(Y)
L:; I Tj(lj) and IT; 1 hj(Yj), with parameter "1(0), and B(O) = L:; I Bj(O).

In Example 1.6.8 note that (1.6.13) exhibits lj as being distributed according to a two
parameter family generated by Tj(lj) = (Yj,XjYj) and we can apply the supermodel
approach to reach the same conclusion as before.

1.6.4 Properties of Exponential Families

Theorem 1.6.1 generalizes directly to k-parameterfamilies as does its continuous analogue.
We extend the statement of Theorem 1.6.2.

Recall from Section 8.5 that for any random vector T k xl, we define

as the moment-generating function, and

i
I
I

I
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(1.6.15)

Var(T) = IICov(Ta , n)llkxk.

which is (b). If 7]1,7]2 E E the right-hand side of (1.6.15) is finite. Because

(a) E is convex

Section 1.6 Exponential Families

J exp(7]T T(x))h(x)dx > 0

M(s) = exp{A(7]o + s) - A(7]o)}

(b) A: E ---> R is convex

(c) If E has nonempty interior in R k and 7]0 E E, then T(X) has under 7]0 a moment
generating function M given by

validfor all s such that 7]0 +sEE. Since 7]0 is an interior point this set ofs includes
a ball about O.

for al17] we conclude from (1.6.15) that a7]l + (1 - a)7]2 E E and (a) follows. Finally (c)
is proved in exactly the same way as Theorem 1.6.2. 0

The formulae of Corollary 1.6.1 give a classical result in Example 1.6.6.

Theorem 1.6.3. Let P be a canonical k-parameter exponential family generated by (T, h)
with corresponding natural parameter space E andfunction A( 7]). Then

••

Var7]oT(X) = A(7]o)

. oA oA T" 0 2 A
where A(7]o) = (0'11 (7]0),··· 'O'1k (7]0)) , A(7]o) = Il o'1. o'1b (7]0)11·

The corollary follows immediately from Theorem B.5.1 and Theorem 1.6.3(c).

Proof of Theorem 1.6.3. We prove (b) first. Suppose 7]0,7]1 E E and 0 < a < 1. By the
HOlder inequality (B.9.4), for any u(x),v(x),h(x) > 0, r,s > owith ~ + ~ = 1,

Substitute ~ = a, ~ = 1 - a, u(x) = exp(a7]fT(x)), v(x) = exp((1 - a)7]IT(x)) and
take logs of both sides to obtain, (with 00 pennitted on either side),
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Example 1.6.7. (continued). Here, using the 0: parametrization,

k

A(o:) = nlog(Lea])
j=l

and
k

E>.JTj(X)) = P.x[X = j] - Aj = ea]/ Lea,
[=1

I

I,
i
"
::

II
I
Ii

I'
"'I
:1
I:
I'

Ii,
,

o

The rank of an exponential family

Evidently every k-parameter exponential family is also k'-dimensional with k' > k.
However, there is a minimal dimension.

An exponential family is of rank k iff the generating statistic T is k-dimensional
and 1, T1(X), ... ,Tk(X) are linearly independent with positive probability. Formally,

P11 [L:;=l ajTj(X) = ak+d < 1 unless all aj are O.
Note that PO(A) = 0 or PO(A) < 1 for some 0 iff the corresponding statement holds

for all 0 because 0 < p(X'Z' )) < 00 for all x, 0 1, O2 such that h(x) > O.
p(X, 2

Going back to Example 1.6.7 we can see that the multinomial family is of rank at most
k - 1. It is intuitively clear that k - 1 is in fact its rank and this is seen in Theorem
1.6.4 that follows. Similarly, in Example 1.6.8, if n = 1, and 1]1 (0) = 01 + 02XI we are
writing the one-parameter binomial family corresponding to Y1 as a two-parameter family
with generating statistic (Y1 , Xl Yd. But the rank of the family is 1 and 01 and O2 are not
identifiable. However, if we consider Y with n' '> 2 and XI < Xn the family as we have
seen remains of rank < 2 and is in fact of rank 2. Our discussion suggests a link between
rank and identifiability of the 11 parameterization. We establish the connection and other
fundamental relationships in Theorem 1.6.4.

Theorem 1.6.4. Suppose P = {q(x,11); 11 E E} is a canonical exponential family gener
ated by (Tk xl, h) with natural parameter space E such that E is open. Then the following
are equivalent.

(i) Pis of rank k.

(ii) 11 is a parameter (identifiable).

(iii) Var11(T) is positive definite.

--'---



Proof of the general case sketched

exp{7)lT(X) - A(7)d}h(x) = exp{7)2T(X) - A(7)2)}h(x).
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(v) A is strictly convex on E.

•

(iv) "1 ---> A("1) is I-Ion E.

Section 1.6 Exponential Families

Taking logs we obtain (7)1 - 7)2)T(X) = A(7)2) - A(7)l) with probability 1 =~(i). We,
thus, have (i) (ii) - (iii). Now (iii) => A"(7)) > aby Theorem 1.6.2 and, hence, A' (7))
is strictly monotone increasing and I-I. Conversely, A" (1]0) = a for some 7)0 implies
that T = c, with probability I, for all 7), by our remarks in the discussion of rank, which
implies that A" (7)) = 0 for all 7) and, hence, A' is constant. Thus, (iii) = (iv) and the same
discussion shows that (iii) - (v).

I. ~ (i) -~ (iii)

~ (i) = P"1 [aTT = c] = 1 for some a i= 0, all "1
~ (iii) = a T Var"1(T)a = Var"1(aT T) = 0 for some a i= 0, all "1 (~ i)

II. ~ (ii) _~ (i)

~ (ii) = P"11 = P"1o some "11 i= "10' Let

•

Note that, by Theorem 1.6.3, because E is open, A is defined on all ofE.

Proof. We give a detailed proof for k = 1. The proof for k > 1 is then sketched with
details left to a problem. Let ~ (.) denote "(.) is false." Then

~(i) <=} P,da1T = a2] = lfor a1 i= O. This is equivalent to Vart)(T) = a <=}~ (iii)

~(ii) <=} There exist 7)1 i= T)2 such that P'll = Pm'

Equivalently

Q is the exponential family (one-parameter) generated by ("11 - "1o)TT. Apply the case
k = 1 to Q to get ~ (ii) ~ (i).

III. (iv) = (v) _ (iii)

Properties (iv) and (v) are equivalent to the statements holding for every Q defined as
previously for arbitrary "10' "11' D

Corollary 1.6.2. Suppose that the conditions of Theorem 1.6.4 hold and P is of rank k.
Then

•

(a) P may be uniquely parametrized by J1-("1) - E"1T(X) where J1- ranges over A (E),
(b) logq(x, "1) is a strictly concave function of"1 on E.

Proof. This is just a restatement of (iv) and (v) of the theorem. D
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The relation in (a) is sometimes evident and the /-l parametrization is close to the initial
parametrization of classical P. Thus, the B(n, 9) family is parametrized by E(X), where
X is the Bernoulli trial, the N(IL, (J"5) family by E(X). For {N(IL, (J"2)}, E(X, X 2) =

(JL, (J"2 + JL2), which is obviously a 1-1 function of (JL, (J"2). However, the relation in (a)
may be far from obvious (see Problem 1.6.21). The corollary will prove very important in
estimation theory. See Section 2.3. We close the present discussion of exponential families
with the following example.

Example 1.6.11. The p Variate Gaussian Family. An important exponential family is based
on the multivariate Gaussian distributions of Section B.6. Recall that Y pX1 has a p variate
Gaussian distribution, Np(/-l, L:), with mean /-lpx 1 and positive definite variance covariance
matrix 2:pxp' iff its density is

f(Y, /-l, L:) = Idet(L:)1- 1
/
2
Jr-

p
/
2 exp{ - ~ (Y - /-lfL:- 1(y - /-l)}.

Rewriting the exponent we obtain

10gf(Y,/-l,L:) _~yTL:-1y+ (L:- 1/-lfY
2

1 TIP
2 (log Idet(L:) I + /-l L:- /-l) - 2 log Jr.

The first two terms on the right in (1.6.17) can be rewritten

p p p

-( ~ (J"ijYiYj + ~ ~ (J"iiy?) +~(~ (J"ij JLj)Yi
1<i<j<p i=l i=l j=l

(1.6.16)

(1.6.17)

where L:- 1 II(J"ij II, revealing that this is a k = p(p + 3)/2 parameter exponential
family with statistics (Yi, ... ,Yp, {YiYjh<i<j<p), h(Y) - 1, 9 = (/-l, L:), B(9) =
~ (log Idet(L:) 1+ /-lTL:- 1/-l). By our supermodel discussion, if Y 1, ... , Y n are iid Np(/-l, L:),
then X (Y1 , ... , Y n)T follows the k = p(p + 3)/2 parameter exponential family with
T = (L:iVi, L:iY i Y'[), where we identify the second element of T, which is a p x p sym
metric matrix, with its distinct p(p + 1) /2 entries. It may be shown (Problem 1.6.29) that
T (and h _ 1) generate this family and that the rank of the family is indeed p(p + 3)/2,
generalizing Example 1.6.5, and that [; is open, so that Theorem 1.6.4 applies. 0

1.6.5 Conjugate Families of Prior Distributions

In Section 1.2 we considered beta prior distributions for the probability of success in n
Bernoulli trials. This is a special case of conjugate families of priors, families to which the
posterior after sampling also belongs.

Suppose Xl, ... ,Xn is a sample from the k-parameter exponential family (1.6.10),
and, as we always do in the Bayesian context, wrIte p(x I0) for p(x, 0). Then

n It n

p(xI9) = [II h(Xi)] exp{~ T/j(9) ~Tj(Xi) - nB(9)}.
i=l j=l i=l

(1.6.18)

I

.-._'--- ---------"
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(1.6.22)

(1.6.19)

(1.6.20)

Tn n

t l + LTI (Xi), ... ,h + LTk(Xi), tk+l + n
i=l i=l

w(t)

Section 1.6 Exponential Families

{(t l , ... ,tk+l) :O<w(t l , ... ,tk+d <oo}

with integrals replaced by sums in the discrete case. We assume that 0 is nonempty (see
Problem 1.6.36), then

Proposition 1.6.1. The (k + 1)-parameter exponential family given by

k

7l't(O) = exp{L 1)j(O)tj - tk+1B(O) -logw(t)}
j=l

where

k n

7l'(Olx) (X p(xIO)7l't(O) (X exp(L 1)j(O)(LTj (Xi) + t j ) - (tk+l + n)B(O)}
j=l i=l

where t = (t l , ... ,tk+l) E 0, is a conjugate prior to p(xIO) given by (1.6.18).

Proof. If p(xIO) is given by (1.6.18) and 7l' by (1.6.20), then

and (X indicates that the two sides are proportional functions of O. Because two probability
densities that are proportional must be equal, 7l'(Olx) is the member of the exponential
family (1.6.20) given by the last expression in (1.6.21) and our assertion follows. D

Remark 1.6.1. Note that (1.6.21) is an updating formula in the sense that as data Xl, ... , X n

become available, the parameter t of the prior distribution is updated to s = (t + a), where

a= (2::7 ITI (Xi),oo.,2::7 ITk(xi),n)T. D

It is easy to check that the beta distributions are obtained as conjugate to the binomial
in this way.

Example 1.6.12. Suppose XI, ... ,Xn is a N( e, tJ'5) sample, where tJ'5 is known and e
is unknown. To choose a prior distribution for 0, we consider the conjugate family of the
model defined by (1.6.20). For n = 1

where 0 E e, which is k-dimensional. A conjugate exponential family is obtained from
(1.6.18) by letting nand t j = 2::7 1 Tj(Xi), j = 1, ... ,k, be "parameters" and treating 0
as the variable of interest. That is, let t = (t l , ... , tk+l f and

(X 7l's(O),



64 Statistical Models, Goals, and Performance Criteria Chapter 1

This is a one-parameter exponential family with

The conjugate two-parameter exponential family given by (1.6.20) has density

(1.6.23)

Upon completing the square, we obtain

Thus, 7ftUJ) is defined only for t 2 > 0 and all t l and is the N(tl/h,a5/h) density. Our
conjugate family, therefore, consists of all N(TJo, T5) distributions where TJo varies freely
and T5 is positive.

If we start with a N(TJo, T5) prior density, we must have in the (t 1 , t2) parametrization

(1.6.24)

(1.6.25)

I
I

By (1.6.21), if we observe L:Xi = s, the posterior has a density (1.6.23) with

Using (1.6.24), we find that 7f(elx) is a normal density with mean

( ) _ tl(s) _ (a5 )-I[ TJoa5]
/-l s, n - () - 2 + n s + 2

t 2 n TO TO

and variance

(1.6.26)

(1.6.27)

Note that we can rewrite (1.6.26) intuitively as

(1.6.28)

where WI = nT5(n)/a5, W2 = T5(n)/T5 so that W2 = 1 - WI. 0

These formulae can be generalized to the case Xi i.i.d. Np ((}, L:o), 1 < i < n, L:o
known, () ~ Np ( 110' T51) where 110 varies over RP, T5 is scalar with TO > 0 and 1 is the
p x p identity matrix (Problem 1.6.37). Moreover, it can be shown (Problem 1.6.30) that
the Np(.x, r) family with .x E RP and r symmetric positive definite is a conjugate family



where

q(x,1]) = h(x) exp{TT(x)1] - A(1])}

E = {1] E R k : -00 < A(1]) < oo}

6S

(1.6.29)
k

p(x,9) = h(x) exp[2:>j (9)Ti (x) - B(9)], x E X c Rq.
j=1

Section 1.6 Exponential Families

to Np (9, L;o), but a richer one than we've defined in (1.6.20) except for p = 1 because
Np (>", r) is a p(p + 3)/2 rather than a p + 1 parameter family. In fact, the conditions
of Proposition 1.6.1 are often too restrictive. In the one-dimensional Gaussian case the
members of the Gaussian conjugate family are unimodal and symmetric and have the same
shape. It is easy to see that one can construct conjugate priors for which one gets reasonable
formulae for the parameters indexing the model and yet have as great a richness of the shape
variable as one wishes by considering finite mixtures of members of the family defined in
(1.6.20). See Problems 1.6.31 and 1.6.32.

A(1]) = log f:'" f: h(x)exp{TT(x)1]}dx

in the continuous case, with integrals replaced by sums in the discrete case. The set

is called the natural parameter space. The set E is convex, the map A : E ---> R is convex.
If E has a nonempty interior in R k and 1]0 E E, then T(X) has for X ~ P1]o the moment
generating function

Discussion

Note that the uniform U( {l, 2, ... , e}) model of Example 1.5.3 is not covered by this
theory. The natural sufficient statistic max(X1 , ... ,Xn ), which is one-dimensional what
ever be the sample size, is not of the form 2:~ 1 T(Xi)' In fact, the family of distributions
in this example and the family U(O, e) are not exponential. Despite the existence of classes
of examples such as these, starting with Koopman, Pitman, and Darmois, a theory has been
built up that indicates that under suitable regularity conditions families of distributions,
which admit k-dimensional sufficient statistics for all sample sizes, must be k-parameter
exponential families. Some interesting results and a survey of the literature may be found
in Brown (1986). Problem 1.6.10 is a special result of this type.

Summary. {P9 : 9 E e}, e c R k, is a k-parameter exponentialjamity of distribu
tions if there are real-valued functions 171, ... ,11k and B on e, and real-valued functions
T1, ... ,Tk, h on Rq such that the density (frequency) function of Po can be written as

T(X) = (T1(X), ... ,Tk(X)) is called the natural sufficient statistic of the family. The
canonical k-parameter exponentialjamity generated by T and his

1j;(s) = exp{A(1]o + s) - A(1]o)}
•

for all s such that 1]0 + s is in E. Moreover E1]o[T(X)] = A(1]o) and Var1]o[T(X)] =

.A(1]0) where A and .A denote the gradient and Hessian of A.
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An exponential family is said to be of rank k if T is k-dimensional and 1, T 1 , ... , Tk

are linearly independent with positive Po probability for some 0 E e. If P is a canonical
exponential family with [; open, then the following are equivalent:

(i) P is of rank k,

(ii) Tf is identifiable,

(iii) VarTf (T) is positive definite,

•

(iv) the map Tf --> A(Tf) is I - Ion [;,

(v) A is strictly convex on [;.

A family F of prior distributions for a parameter vector 0 is called a conjugate family
of priors to p(x I 0) if the posterior distribution of 0 given x is a member of F. The
(k + I)-parameter exponential family

k

7ft (0) = exp{L T/j(O)tj - B(0)tk+1 -Iogw}
j=1

i

I
\

where

II

and
t = (t1, ... ,tk+I) E 11 = {(t 1, ... ,tk+I) E R k+1 : 0 < w < oo},

is conjugate to the exponential family p(xIO) defined in (1.6.29).

1.7 PROBLEMS AND COMPLEMENTS

Problems for Section 1.1

1. Give a formal statement of the following models identifying the probability laws of
the data and the parameter space. State whether the model in question is parametric or
nonparametric.

(a) A geologist measures the diameters of a large number n of pebbles in an old stream
bed. Theoretical considerations lead him to believe that the logarithm of pebble diameter is
normally distributed with mean J.L and variance 0'2. He wishes to use his observations to ob
tain some information about J.L and 0'2 but has in advance no knowledge of the magnitudes
of the two parameters.

(b) A measuring instrument is being used to obtain n independent determinations of
a physical constant J.L. Suppose that the measuring instrument is known to be biased to
the positive side by 0.1 units. Assume that the errors are otherwise identically distributed
normal random variables with known variance.



(c) X and Y are independentN(/-l1,0-2) and N(/-l2, 0-2), (j = (/-l1,/-l2) and we observe
Y-X.

and Po is the distribution of X = (Xl,' .. , X p ).

(b) Same as (a) with a = (aI, ... , a p ) restricted to
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p

{(aI, ... , ap ) : L ai = O}.
i=l

(c) In part (b) suppose that the amount of bias is positive but unknown. Can you per
ceive any difficulties in making statements about /-l for this model?

(d) The number of eggs laid by an insect follows a Poisson distribution with unknown
mean A. Once laid, each egg has an unknown chance p of hatching and the hatching of one
egg is independent of the hatching of the others. An entomologist studies a set of n such
insects observing both the number of eggs laid and the number of eggs hatching for each
nest.

2. Are the following parametrizations identifiable? (Prove or disprove.)

(a) The parametrization of Problem 1.1.1(c).

(b) The parametrization of Problem 1.1.1(d).

(c) The parametrization of Problem 1.1.I(d) if the entomologist observes only the num
ber of eggs hatching but not the number of eggs laid in each case.

3. Which of the following parametrizations are identifiable? (Prove or disprove.)

(a) Xl, ... , X p are independent with Xi ~ N(ai + v, 0-2).

Fu+v(t) < Fu(t) for every t.

(If Fx and Fy are distribution functions such that Fx (t) < Fy(t) for every t, then X is
said to be stochastically larger than Y.)

(b) As in Problem 1.1.1 describe formally the following model. Two groups of nl and
n2 individuals, respectively, are sampled at random from a very large population. Each

(d) Xij, i = 1, ... ,p; j = 1, , bare independettt with Xij ~ N(/-lij,0-2) where
/-lij = v + ai + Aj, (j = (al, ,ap ,Al, ... ,Ab,V,0-2) and Po is the distribution of
Xu, ... , X pb '

(e) Same as (d) with (al, ... ,ap ) and (AI, ... , Ab) restricted to the sets where

~f 1ai = 0 and ~~=l Aj = O.

4. (a) Let U be any random variable and V be any other nonnegative random variable.
Show that

-, - <-- '- ;~:-

.' :p;,
,
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member of the second (treatment) group is administered the same dose of a certain drug
believed to lower blood pressure and the blood pressure is measured after I hour. Each
member of the first (control) group is administered an equal dose of a placebo and then
has the blood pressure measured after I hour. It is known that the drug either has no effect
or lowers blood pressure, but the distribution of blood pressure in the population sampled
before and after administration of the drug is quite unknown.

S. The number n of graduate students entering a certain department is recorded. In each
of k subsequent years the number of students graduating and of students dropping out is
recorded. Let N i be the number dropping out and M i the number graduating during year i,
i = 1, ... ,k. The following model is proposed.

Po[NI = nI, M I = mIl' .. , Nk = nk, Mk = mk]

n! nl nk ml mk r
, I' "ILl ···ILk VI "'Vk P

nl···· nk·ml .... mk·r.

where

ILl + + ILk + VI + + Vk + P = 1, °< ILi < 1, °< Vi < 1, 1 < i < k

nl + + nk + ml + + mk + r = n

(a) What are the assumptions underlying this model?

(b) e is very difficult to estimate here if k is large. The simplification ILi = 7l'(1 
IL)i-I IL , Vi = (1 - 7l')(1 - v)i-I V for i = 1, ... , k is proposed where ° < 7l' < 1,
°< IL < 1, °< V < 1 are unknown. What assumptions underlie the simplification?

6. Which of the following models are regular? (Prove or disprove.)

(a) Po is the distribution of X when X is uniform on (0, e), e = (0,00).

(b) Po is the distribution of X when X is uniform on {O, 1, 2, ... ,e}, 8 = {I, 2, ... }.

(c) Suppose X ~ N(IL,a2). Let Y = 1 if X < 1 and Y = X if X> 1. e= (IL,a2)

and Po is the distribution of Y.

(d) Suppose the possible control responses in an experiment are 0.1,0.2, ... ,0.9 and
they occur with frequencies p(0.1),p(0.2), ... ,p(0.9). Suppose the effect of a treatment
is to increase the control response by a fixed amount e. Let Po be the distribution of a
treatment response.

7. Show that Y - c has the same distribution as -Y + c, if and only if, the density or
frequency function p of Y satisfies p(c + t) = p(c - t) f9r all t. Both Y and p are said to
be symmetric about c.

Hint: If Y - c has the same distribution as - Y + c, then P(Y < t + c) = P(-Y <
t - c) = P(Y > c - t) = 1 - P(Y < c - t).

8. Consider the two sample models of Examples 1.1.3(2) and 1.1.4(1)..'

=

,

1



pry = j, Y = T IY > j].

11. The Scale Model. Positive random variables X and Y satisfy a scale model with
parameter 6 > 0 if P(Y < t) = P(6X < t) for all t > 0, or equivalently, G(t) = F(t/6),
6> 0, t > O.

and (p, r) vary freely over :F = {(p, r) : p(j) > 0, r(j) > 0, 0 < j < N, 2:f 0p(j) = 1,

2:f 0r(j) = I} and N is known. Suppose X I, ... ,X n are observed i.i.d. according to
the distribution of X.

Show that {p(j) : j = 0, ... , N}, {r(j) : j = 0, ... , N} are identifiable.
Hint: Consider "hazard rates" for Y = min(T, C),
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p(j), j = O,oo.,N,

r(j), i = 0, 00 • , N

P[T = j]

P[C = j]
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(a) Show that ifY ~ X + 6(X), 6(x) = 2/-l + 6. - 2x and X ~ N(/-l,0-2), then
GO = F(- - 6.). That is, the two cases 6(x) 6. and 6(x) = 2/-l + 6. - 2x yield the
same distribution for the data (Xl, ... ,Xn ), (YI , ... , Yn ). Therefore, GO = F(- - 6.)
does not imply the constant treatment effect assumption.

(b) In part (a), suppose X has a distribution F that is not necessarily normal. For what
type ofFis it possible to have G(·) = F(--6.)forboth6(x) 6. and 6(x) = 2/-l+6.-2x?

(c) Suppose that Y ~ X + 6(X) where X ~ N(/-l, 0-2) and 6(x) is continuous. Show
that if we assume that 6(x) + x is strictly increasing, then GO = F(- - 6.) implies that
6(x) 6..

9. Collinearity: Suppose Y; = 2:~=1 Zij{3j + ti, ti ~ N(O, 0-2) independent, 1 < i < n.
Letzj (zlj,oo.,Znjf.

(a) Show that ({3I,' .. ,{3p) are identifiable iff Zl, ... ,Zp, are not collinear (linearly
independent).

(b) Deduce that ({3I, ... , {3p) are not identifiable if n < p, that is, if the number of
parameters is larger than the number of observations.

10. Let X = (min(T, C), I(T < C)) where T, C are independent,

(a) Show that in this case, log X and log Y satisfy a shift model with parameter log 6.

(b) Show that if X and Y satisfy a shift model With parameter 6., then eX and eY

satisfy a scale model with parameter ell..

(c) Suppose a scale model holds for X, Y. Let c > 0 be a constant. Does X' = Xc,
Y' = y c satisfy a scale model? Does log X', log Y' satisfy a shift model?

12. The Lehmann Tho-Sample Model. In Example 1.1.3 let Xl, ... ,Xm and YI , ... , Yn

denote the survival times of two groups of patients receiving treatments A and B. Sx (t) =
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P(X > t) = 1 - F(t) and Sy(t) = P(Y > t) = 1 - G(t), t > 0, are called the survival
functions, Survival beyond time t is modeled to occur if the events T I > t, ... , Tk > t
all occur, where T I , •• . ,Tk are unobservable and i.i,d. as T with survival function So. For
treatments A and B, k = a and b, respectively.

(a) Show that Sy(t) = S;r(t),

(b) By extending (bla) from the rationals to 6 E (0,00), we have the Lehmann model

Sy(t) = Si(t), t > 0. (1.7.1)

• Equivalently, Sy(t) = Sf(t) with t.. = a6, t > 0. Show that if So is continuous, then
X' = -log So (X) and Y' = -log So (Y) follow an exponential scale model (see Problem
1.1.11) with scale parameter 6.

Hint: By Problem B.2.12, So(T) has a U(O, 1) distribution; thus, -log So(T) has an
exponential distribution. Also note that P(X > t) = S8(t).

(c) Suppose that T and Y have densities fo(t) andg(t). Then ho(t) = fo(t)ISo(t) and
hy(t) = g(t)ISy(t) are called the hazard rates of To and Y. Moreover, hy(t) = t..ho(t)
is called the Cox proportional hazard model. Show that hy(t) = t..ho(t) if and only if
Sy(t) = Sf (t).

13. A proportional hazard model. Let f (t I Zi) denote the density of the survival time Yi of
a patient with covariate vector Zi ap.d define the regression survival and hazard functions
of Yi as

Sy(t I Zi) = JOC f(y I zi)dy, h(t IZi) = f(t I zi)ISy(t IZi)'

Let T denote a survival time with density fo(t) and hazard rate ho(t) = fo(t)IP(T > t).
The Cox proportional hazard model is defined as

h(t I z) = ho(t) exp{g(,6, z)} (1.7.2)

,

"•

,

:'
!j
"I'I,,
!i

where ho(t) is called the baseline hazard function and 9 is known except for a vector ,6 =

((31, ... ,(3p)T of unknowns. The most common choice of 9 is the linear form g(,6, z) =
zT,6. Set t.. = exp{g(,6, z)}.

(a) Show that (1.7.2) is equivalentto Sy (t I z) = Sfj (t).

(b) Assume (1.7.2) and that Fo(t) = P(T < t) is known and strictly increasing. Find
an increasing function Q(t) such that the regression survival function of Y' = Q(Y) does
not depend on ho(t).

Hint: See Problem 1.1.12.

(c) Under the assumptions of (b) above, show that there is an increasing function Q*(t)
such that if Yi* = Q*(Yi), then

for some appropriate Ei. Specify the distribution of Ei.

-' -----'-- -------



Problems for Section 1.2

e\x 0 1
el 0.8 0.2
e2 0.4 0.6
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x<c0,

1- (x/c)-B, x> cF(x,e)
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Hint: See Problems 1.1.11 and 1.1.12.

14. In Example 1.1.2 with assumptions (1)-(4), the parameter of interest can be character
ized as the median v = F- l (0.5) or mean /-l = r xo

oo
xdF(x) = fo

l F-l(u)du. Generally,
/-l and v are regarded as centers of the distribution F. When F is not symmetric, /-l may
be very much pulled in the direction of the longer tail of the density, and for this reason,
the median is preferred in this case. Examples are the distribution of income and the distri
bution of wealth. Here is an example in which the mean is extreme and the median is not.
Suppose the monthly salaries of state workers in a certain state are modeled by the Pareto
distribution with distribution function

where e > 0 and c = 2,000 is the minimum monthly salary for state workers. Find the
median v and the mean /-l for the values of ewhere the mean exists. Show how to choose e
to make /-l - v arbitrarily large.

15. Let Xl, ... , Xm be i.i.d. F, Yl , ... , Yn be i.i.d. G, where the model {(F, Gn is
described by

1. Merging Opinions. Consider a parameter space consisting of two points el and e2 , and
suppose that for given e, an experiment leads to a random variable X whose frequency
function p(x I e) is given by

where 1j; is an unknown strictly increasing differentiable map from R to R, 1j;' > 0,
1j;(±oo) = ±oo, and Zl and Z~ are independent random variables.

(a) Suppose Zl, Z~ have a N(O, 1) distribution. Show that both 1j; and t.. are identifi
able.

(b) Suppose Zl and Z~ have aN(0,a2 ) distribution with a 2 unknown. Are 1j; and t..
still identifiable? If not, what parameters are?

Hint: (a) P[XI < t] = iI>(1j;(t)).

Let 7r be the prior frequency function of edefined by 7r(( 1 ) = ~, 7r(( 2 ) = ~.

(a) Find the posterior frequency function 7r(e Ix).

(b) Suppose Xl, , X n are independent with frequency function p(x I e). Find the
posterior 7r(e IXl, , x n ). Observe that it depends only on ~~ 1 Xi.
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(c) Same as (b) except use the prior 7r1 ((h) = ,25, 7r1(e2) = .75.

(d) Give the values of P((J = el I 2:7 I Xi = .5n) for the two priors 7r and 7r1 when
n = 2 and 100.

~

(e) Give the most probable values e= arg maxe 7r(e I 2:~ I Xi = k) for the two priors
~

7r and 7rI' Compare these e's for n = 2 and 100.

-(0 Give the set on which the two e's disagree. Show that the probability of this set tends
to zero as n ---> 00. Assume X'" p(x) = 2:~ I 7r(ei )p(x I ei ). For this convergence, does
it matter which prior, 7r or 7rI, is used in the formula for p(x)?

2. Consider an experiment in which, for given (J = e, the outcome X has density p(x
e) = (2x/e2 ), 0 < x < e. Let 7r denote a prior density for (J.

(a) Find the posterior density of (J when 7r(e) = 1,0 < e< 1.

(b) Find the posterior density of (J when 7r(e) = 3e2 , 0 < e < 1.

(c) Find E((J Ix) for the two priors in (a) and (b).

(d) Suppose Xl, ... , X n are independent with the same distribution as X. Find the
posterior density of (J given Xl = Xl, ... ,Xn = X n when 7r(e) = 1,0 < e< 1.

3. Let X be the number of failures before the first success in a sequence of Bernoulli trials
with probability of success e. Then Pe[X = k] = (1- e)ke, k = 0, 1,2, .... This is called
the geometric distribution (Q(e)). Suppose that for given (J = e, X has the geometric
distribution

(a) Find the posterior distribution of (J given X = 2 when the prior distribution of (J is
Of {I I 3}un! orm On 4' 2' 4 .

(b) Relative to (a), what is the most probable value of (J given X = 2? Given X = k?

(c) Find the posterior distribution of (J given X = k when the prior distribution is beta,
{3(r,s).

4. Let X I, ... , X n be distributed as

1
p(XI, ... ,Xn I e) = en

where Xl, ... , X n are natural numbers between 1 and eand 8 = {I, 2, 3, ... }.

(a) Suppose (J has prior frequency,

° c(a) ,
7r(J)=. ,)=1,2, ... ,

)a

where a> 1 and c(a) = [2:;'" I j-a]-I. Show that

. c(n + a, m) °

7r(J!Xl, ... ,Xn )= 'n+a ,)=m,m+l, ... ,
)

,
I

•



where <I> is the standard nonnal distribution function and
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where ~i E A and N E {I, 2, ... } is a conjugate family of prior distributions for p(x I 0)
and that the posterior distribution of 0 given X = x is

N'

7f(O Ix) = ITp(~: I0)
i=l

_ n _ r -2 j:L(1 - j:L)
/-1= X+ ,(1= .

n+r+s n+r+s n+r+s

N

7f(0) = IT p(~i I0)
i=l

where m = max(xl, ... ,Xn), c(b,t) = [2:;' tj-b]-l, b > 1.

(b) Suppose that max(XI, ... , Xn) = Xl = m for all n. Show that 7f(m I Xl, ... , Xn) --t

1 as n --t 00 whatever be a. Interpret this result.

S. In Example 1.2.1 suppose n is large and (lin) 2:~ 1 Xi = X is not close to 0 or 1 and
the prior distribution is beta, {3(r, s). Justify the following approximation to the posterior
distribution

Hint: Let {3(a, b) denote the posterior distribution. If a and b are integers, then {3(a, b)
is the distribution of (aVlbW) [1 + (aVlbW)]-I, where Vl , .. ·, Va, WI, ... , W b are in
dependent standard exponential. Next use the central limit theorem and Slutsky's theorem.

6. Show that a conjugate family of distributions for the Poisson family is the gamma family.

7. Show rigorously using (1.2.8) that if in Example 1.1.1, D = NO has a B(N, 7fo) distri
bution, then the posterior distribution of D given X = k is that of k + Z where Z has a
B(N - n, 7fo) distribution.

8. Let (Xl, ... , X n +k ) be a sample from a population with density f (x I0), () E 8. Let (J

have prior density 7f. Show that the conditional distribution of ((J, Xn+I, . .. , Xn+k) given
. Xl = Xl, .. . , X n = X n is that of (Y, ZI, ... , Zk) where the marginal distribution of Y

equals the posterior distribution of (J given Xl = Xl, ... ,Xn = Xn, and the conditional
distribution of the Zi'S given Y = t is that of sample from the population with density
f(x It).

9. Show in Example 1.2.1 that the conditional distribution of (J given 2:~ 1 Xi = k agrees
with the posterior distribution of (J given XI = Xl,···, X n = Xn, where 2:~ I Xi = k.

10. Suppose Xl, ... ,Xn is a sample with Xi ~ p(x I 0). a regular model and integrable
as a function of O. Assume that A = {x : p(X I0) > O} does not involve O.

(a) Show that the family of priors
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where Nt = N + nand (~~, ... , ~:v,) = (~1' ... , ~N , Xl • ...• X n).

(b) Use the result (a) to give 71'((1) and 71'(0 I x) when

p(x I 0) Oexp{ -Ox}, x> 0, 0> 0

ootherwise.

,

I•

11. Let p(x I 0) = exp{ -(x - O)}, 0 < 0 < x and let 71'(0) = 2 exp{-20}, 0 > O. Find
the posterior density 71'(0 I x).

12. Suppose p(x I 0) is the density of i.i.d. Xl, .. " X n , where Xi ~ N (/1-0, ~), /1-0 is
known, and 0 = u-2 is (called) the precision of the distribution of Xi.

(a) Show that p(x I 0) (X 0 ~ n exp (- ~ to) where t = L~ 1 (Xi - /1-0)2 and (X denotes
"proportional to" as a function of O.

(b) Let 71'(0) (X 0 ~ (>'-2) exp {- ~ vO}, v > 0, A > 0; 0 > O. Find the posterior distri

bution 71'(01 x) and show that if A is an integer, given x, O(t + v) has a Xi+n distribution.
Note that, unconditionally, vO has a xi distribution.

(c) Find the posterior distribution of a.

13. Show that if Xl, ... ,Xn are i.i.d. N(/1-,a2 ) and we formally put 71'(/1-, a) = ;, then

the posterior density _71'(/1- I x, 8 2) of /1- given (x, 8 2) is such that y'n(I"~X) ~ tn-I. Here
8 2 = nIl L(Xi - X)2.

Hint: Given /1- and u, X and 8 2 are independent with X ~ N(/1-, u 2In) and (n 
1)82la2 ~ X;'-l' This leads to p(x, 82 1/1-, ( 2). Next use Bayes rule.

14. In a Bayesian model where Xl, ... , X n , X n + l are i.i.d. f(x I 0), (J ~ 71', the predictive
distribution is the marginal distribution of X n +l . The posterior predictive distribution is
the conditional distribution of X n +l given Xl, ... , X n .

(a) If f and 71' are the N(O, (5) and N(Oo, 76) densities, compute the predictive and
posterior predictive distribution.

(b) Discuss the behavior of the two predictive distributions as n -+ 00.

15. The Dirichlet distribution is a conjugate prior for the multinomial. The Dirichlet
distribution, V(a), a = (al,"" arf, aj > 0, 1 <j < T, has density

r ('\'r a.) r r
L..)=l ) IT ""-1 "

fa(u) = nr r(.) u/' 0 < Uj < 1, L.J Uj = 1.
)=1 a) j=l j=l

Let N = (Nl , ... , N r ) be multinomial

r

M(n,(J), (J = (Olo ... ,Orf, 0 < OJ < 1, LOj = 1.
j=l

]

1

I
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and let 61 , ... ,69 be the decision rules of Table 1.3.3. Compute and plot the risk points
when

(a) p = q = .1,

(b) p = 1 - q = .1.

(c) Find the minimax rule among 61, ... ,69 for the preceding case (a).

(d) Suppose that 0 has prior 7r(111 ) = 0.5, 7r(112 ) = 0.5. Find the Bayes rule for case
(a).

2. Suppose that in Example 1.3.5, a new buyer makes a bid and the loss function is changed
to

8\a a1 a2 a3
81 0 7 4
82 12 1 6

Let X be a random variable with frequency function p(x, 11) given by

Show that if the prior 7r(O) for 0 is V(a), then the posterior Jr(O I N = n) is V(a + n),
where n = (n1, ... , n r ) .

(a) Compute and plot the risk points in this case for each rule 61, ... , 69 of Table 1.3.3.

(b) Find the minimax rule among {61' ... ,69}'

(c) Find the minimax. rule among the randomized rules.

(d) Suppose 0 has prior 7r(81 ) = " 7r(82 ) = 1 - T Find the Bayes rule when (i)
,= 0.5 and (ii) , =0.1.

3. The problem of selecting the better of two treatments or of deciding whether the effect of
one treatment is beneficial or not often reduces to the problem of deciding whether 8 < 0,
8 = 0 or 8 > 0 for some parameter 8. See Example 1.1.3. Let the actions corresponding to
deciding whether 8 < 0,8 = 0 or 8 > 0 be penoted by -1,0,1, respectively and suppose
the loss function is given by (from Lehmann, 1957)

.. ;(. Problems for Section 1.3

1. Suppose the possible states of nature are 111,112, the possible actions are a1, a2, a3, and
the loss function 1(11, a) is given by
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(}\a -1 0 1

<0 0 c b+c
=0 b 0 b
>0 b+c c 0

,
I

,
,

~ \

where b and c are positive. Suppose X is aN((), 1) sample and consider the decision rule
-

6r ,s(X) = -1 if X < r
-o ifr < X < s- -

-

1 if X > s.

(a) Show that the risk function is given by

c<I>( y'n(r - (})) + b<I>( y'n(s - (})), () < 0

b<I>(y'ns) +b<I>(y'nr), () = 0

c<I>(y'n(s - (})) + b<I>(y'n(r - (})), () > 0

where <I> = 1 - <I>, and <I> is the N(O, 1) distribution function.

(b) Plot the risk function when b = c = 1, n = 1 and

1
(i) r = -s = -1, (ii) r = - 2s = -1.

For what values of () does the procedure with r = -s = -1 have smaller risk than the
procedure with r = - ~ s = -1?

4. Stratified sampling. We want to estimate the mean /L = E(X) of a population that
has been divided (stratified) into s mutually exclusive parts (strata) (e.g., geographic loca
tions or age groups). Within the jth stratum we have a sample of i.i.d. random variables
X lj , ... ,Xnjj ; j = 1, ... , s, and a stratum sample mean Xj; j = 1, ... , s. We assume
that the s samples from different strata are independent. Suppose that the jth stratum has
100pj% of the population and that the jth stratum population mean and variances are /Lj

and o}. Let N = ~;=l nj and consider the two estimators

8 nJ 8

'iiI = N- I
L LXij , 'ii2 = LpjXj
j=li=l j=l

where we assume that Pj, 1 < j < s, are known.

(a) Compute the biases, variances, and MSEs of 'iiI and'ii2' How should nj, a < j < s,
be chosen to make 'iiI unbiased?

(b) Neyman allocation. Assume that 0 < 0; < 00, 1 < j < s, are known (estimates
will be used in a later chapter). Show that the strata sample sizes that minimize M SE('ii2)
are given by

PkOk
nk=N~s ,k=1, ... ,s.

j=1 PjOj
(1.7.3)



() - 2~, () - ~, (), () + ~, () + 2~; ~ > 0.

~

(a) Find the MSE of X when

- ~

Each value has probability .2. Let X and X denote the sample mean and median. Suppose
that n is odd.
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(iii) F is normal, N(O, 1), n = 1,5,25,75.

Hint: See Problem B.2.13. Use a numerical integration package.

(i) F is discrete with P(X = a) = P(X = c) = P, P(X = b) = I - 2p, °< P < I,
a < b < c.

Hint: UseProblemI.3.5. The answer is MSE(X) = [(a-b?+(c-b?]P(S > k)
where k = .5(n + 1) and S ~ B(n,p).

(ii) F is uniform, U(O, 1).

Hint: See Problem B.2.9.

Hint: You may use a Lagrange multiplier.

(c) Show that M SE(/1d with nk = PkN minus M SE(/12) with nk given by (1. 7.3) is
N-I 2:;=IPj(aj - a?, where a = 2:;=lPjaj.

- ~

S. Let Xb and Xb denote the sample mean and the sample median of the sample Xl -
b ... , X n - b. If the parameters of interest are the population mean and median of Xi - b,, - ~

respectively, show that MSE(Xb ) and MSE(Xb ) are the same for all values of b (the
MSEs of the sample mean and sample median are invariant with respect to shift).

~

6. Suppose that Xl, ... ,Xn are i.i.d. as X ~ F, that X is the median of the sample, and
that n is odd. We want to estimate "the" median v of F, where v is defined as a value
satisfying P(X < v) > ~ i1nd P(X > v) > ~.

~ -
(b) Compute the relative risk RR = M SE(X)/MSE(X) in question (i) when b = 0,

a = -~, b = ~,P = .20, .40, and n = 1,5,15.

(c) Same as (b) except when n = 15, plot RR for P = .1, .2, .3,.4, .45.
~ -

(d) Find EIX - bl for the situation in (i). Also find EIX - bl when n = 1, and 2 and
~

compare it to EIX - bl.
~ -

(e) Compute the relative risks MSE(X)/MSE(X) in questions (ii) and (iii).

7. Let X I, ... , X n be a sample from a population with values

~ ~-

(a) Find MSE(X) and the relative risk RR = MSE(X)/MSE(X).

(b) Evaluate RR when n = 1,3,5.
Hint: By Problem 1.3.5, set () = ° without loss of generality. Next note that the

~

distribution of X involves Bernoulli and multinomial trials.
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8. Let Xl, ... , X n be a sample from a population with variance 0-2 , 0 < 0-2 < 00.

(a) Show that 8
2 = (n - 1)-12:7 1(Xi - X? is an unbiased estimator of 0-2.

Hint: Write (Xi - X)2 = ([Xi - Il] - [X -1l])2, then expand (Xi - X)2 keeping the
square brackets intact.

(b) Suppose Xi ~ N(Il, 0-2 ).

(i) Show that MSE(8 2 ) = 2(n - 1)-10-4 .

(ii) Let 0'6 = c 2:7 1(Xi - X? Show that the value of c that minimizes M SE (O'~) is
c= (n+ 1)-1.

Hintfor question (b): Recall (Theorem B.3.3) that 0-- 2 2:7 1 (Xi - X? has a X~-l

distribution. You may use the fact that E(Xi - 1l)4 = 30-2 .

9. Let 0 denote the proportion of people working in a company who have a certain charac
teristic (e.g., being left-handed). It is known that in the state where the company is located,
lO% have the characteristic. A person in charge of ordering equipment needs to estimate 0
and uses

~

0= (.2)(.10) + (.8)p

where p = X/n is the proportion with the characteristic in a sample of size n from the
~

company. Find MSE(O) and MSE(P). If the true 0 is 00 , for what 00 is

~

MSE(O)/MSE(P) < 17

Give the answer for n = 25 and n = 100.

10. In Problem 1.3.3(a) with b = c = 1 and n = 1, suppose (J is discrete with frequency
function 7r(0) = 7r (- ~) = 7r (~) = j. Compute the Bayes risk of e5T ,s when

(a) r = -8 = -1

(b) r = - ~ 8 = -1.

Which one of the rules is the better one from the Bayes point of view?

11. A decision rule e5 is said to be unbiased if

EII(I(O, e5(X))) < Ell (1(0', e5(X)))

for all 0, 0' E e.
(a) Show that if 0 is real and 1(0, a) = (0 - a?, then this definition coincides with the

definition of an unbiased estimate of O.

(b) Show that if we use the 0 - 1 loss function in testing, then a test function is unbiased
in this sense if, and only if, the power function, defined by f3( 0, e5) = Ell (e5 (X)), satisfies

f3(O', e5) > sup{f3(O, e5) : 0 E eo},

for all 0' E 8 1 ,

,

j
!,,
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Po[<5(X) = 1] = 1 - Po[<5(X) = 0] = Eo('P(X)).
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b+c
r = -5 =-z
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12. In Problem 1.3.3, show that if c < b, Z > 0, and

Suppose that U ~ U (0,1) and is independent of X. Consider the following randomized
test <5: Observe U. If U = u, use the test <5u . Show that <5 agrees with 'P in the sense that,

then <5, s is unbiased,

13. A (behavioral) randomized test of a hypothesis H is defined as any statistic 'P(X) such
that 0 < 'P(X) < 1. The interpretation of'P is the following. If X = x and 'P(x) = 0
we decide 8 0 , if 'P(x) = 1, we decide 8 1 ; but if 0 < 'P(x) < 1, we perform a Bernoulli
trial with probability 'P(x) of success and decide 8 1 if we obtain a success and decide 8 0

otherwise.
Define the nonrandomized test <5u , 0 < u < 1, by

1 if 'P(X) > u

o if 'P(X) < u.

14. Convexity ofthe risk set. Suppose that the set of decision procedures is finite. Show that
if <51 and <52 are two randomized procedures, then, given 0 < a < 1, there is a randomized
procedure <53 such that R(O, <53 ) = aR(O, <5d + (1 - a)R(O, <52 ) for all O.

15. Suppose that Poo(B) = 0 for some event B implies that Po(B) = 0 for all 0 E 8.
Further suppose that 1(00 , ao) = O. Show that the procedure <5(X) ao is admissible.

16. In Example 1.3.4, find the set of /L where MSE(ji) < MSE(X). Your answer should
depend on n, 0-

2 and <5 = I/L - /Lo I.
17. In Example 1.3.4, consider the estimator

Jiw = W/Lo + (1 - w)X.

If n, 0-
2 and <5 = I/L - /Lo I are known,

(a) find the value of Wo that minimizes M S E(Jiw),

(b) find the minimum relative risk of Jiwo to X.

18. For Example 1.1.1, consider the loss function (1.3.1) and let 15k be the decision rule
"reject the shipment iff X > k."

(a) Show that the risk is given by (1.3.7).

(b) If N = 10,5 = r = 1,00 = .1, and k = 3, plot R(O, 15k ) as a function of O.

(c) Same as (b) except k = 2. Compare <52 and <53 .

19. Consider a decision problem with the possible states of nature 01 and O2 , and possible
actions al and a2. Suppose the loss function £(0, a) is
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Let X be a random variable with probability function p(x I e)

e\x 0 1
el 0.2 0.8
e2 0.4 0.6

(a) Compute and plot the risk points of the nonrandomized decision rules. Give the
minimax rule among the nonrandomized decision rules.

(b) Give and plot the risk set S. Give the minimax rule among the randomized decision
rules.

(c) Suppose ehas the prior distribution defined by 7l'(e1 ) = 0.1, 7l'(e2 ) = 0.9. What is
the Bayes decision rule?

Problems for Section 1.4

1. An urn contains four red and four black balls. Four balls are drawn at random without
replacement. Let Z be the number of red balls obtained in the first two draws and Y the
total number of red balls drawn.

(a) Find the best predictor of Y given Z, the best linear predictor, and the best zero
intercept linear predictor.

(b) Compute the MSPEs of the predictors in (a).

2. In Example 1.4.1 calculate explicitly the best zero intercept linear predictor, its MSPE,
and the ratio of its MSPE to that of the best and best linear predictors.

3. In Problem B.1.7 find the best predictors of Y given X and of X given Y and calculate
their MSPEs.

4. Let U1 , U2 be independent standard normal random variables and set Z = Ur + U:j,
Y = U1 • Is Z of any value in predicting Y?

5. Give an example in which the best linear predictor of Y given Z is a constant (has no
predictive value) whereas the best predictor Y given Z predicts Y perfectly.

6. Give an example in which Z can be used to predict Y perfectly, but Y is of no value in
predicting Z in the sense that Var(Z I Y) = Var(Z).

7. Let Y be any random variable and let R(c) = E(IY-cl) be the mean absolute prediction
error. Show that either R(c) = 00 for all c or R(c) is minimized by taking c to be any
number such that pry > c] > ~, pry < c] > ~. A number satisfying these restrictions is
called a median of (the distribution of) Y. The midpoint of the interval of such c is called
the conventionally defined median or simply just the median.

i
I
I
I



ElY - col = ElY - cl + (c- co){P[Y > co] - pry < Co]) + 2E[(c - Y)l[c < Y < co]].

8. Let Y have a N(J.L, 0-2
) distribution.

(a) Show that E(IY - cl) = o-Q[lc - J.LI/o-] where Q(t) = 2['P(t) + t<I>(t)] - t.

(b) Show directly that J.L minimizes E(IY - cl) as a function of c.

9. If Y and Z are any two random variables, exhibit a best predictor of Y given Z for mean
absolute prediction error.

10. Suppose that Z has a density p, which is symmetric about c, p(c + z) = p(c - z) for
all z. Show that c is a median of Z.

11. Show that if (Z, Y) has a bivariate normal distribution the best predictor of Y given Z
in the sense of MSPE coincides with the best predictor for mean absolute error.

12. Many observed biological variables such as height and weight can be thought of as the
sum of unobservable genetic and environmental variables. Suppose that Z, Yare measure
ments on such a variable for a randomly selected father and son. Let Z', Z", Y', Y" be
the corresponding genetic and environmental components Z = Z' + Z", Y = Y' + Y",
where (Z',Y') have a N(J.!,J.L,0-2, 0-2, p) distribution and Z",Y" are N(v,r2) variables
independent of each other and of (Z' ,Y').

(a) Show that the relation between Z and Y is weaker than that between Z' and Y';
that is, ICor(Z, Y)I < Ipl.

(b) Show that the error of prediction (for the best predictor) incurred in using Z to
predict Y is greater than that incurred in using Z' to predict Y'.

13. Suppose that Z has a density p, which is symmetric about c and which is unimodal;
that is, p(z) is nonincreasing for z > c.

(a) Show that P[I Z - tl < 5] is maximized as a function of t for each 5 > 0 by t = c.

(b) Suppose (Z, Y) has a bivariate normal distribution. Suppose that if we observe
Z = z and predict J.L(z) for Your loss is 1 unit if 1J.L(z) - YI > 5, and 0 otherwise. Show
that the predictor that minimizes our expected loss is again the best MSPE predictor.

14. Let Z 1 and Z2 be independent and have exponential distributions with density Ae- AZ ,

z > O. Define Z = Z2 and Y = ZI + ZIZ2. Find

(a) The best MSPE predictor E (Y I Z = z) of Y given Z = z

(b) E(E(Y I Z))

(c) Var(E(Y IZ))

(d) Var(Y I Z = z)

(e) E(Var(Y I Z))

Section 1.7 Problems and Complements

Hint: If c < Co,
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(f) The best linear MSPE predictor of Y based on Z = z.
Hint: Recall that E(Zd = E(Z2) = 1/.\ and Var(Zd = Var(Z2) = 1/.\2.

15. Let J-L(z) = E(Y I Z = z). Show that

Var(J-L(Z))/Var(Y) = Corr2(y, J-L(Z)) = max Corr2(y, g(Z))
9

where g(Z) stands for any predictor.

16. Show that P~Y = Corr2(Y,J-LL(Z)) = maxgEC Corr2 (Y,g(Z)) where.c is the set of
linear predictors.

17. One minus the ratio of the smallest possible MSPE to the MSPE of the constant pre
dictor is called Pearson's correlation ratio 1]~y; that is,

1]~y = 1- E[Y - J-L(ZW /Var(Y) = Var(J-L(Z))/Var(Y).

(See Pearson, 1905, and Doksum and Samarov, 1995, on estimation of 1]~y.)

(a) Show that 1]~y > P~Y' where p~y is the population multiple correlation coefficient
of Remark 1.4.3.

Hint: See Problem 1.4.15.

(b) Show that if Z is one-dimensional and h is a 1-1 increasing transformation of Z,
th 22Th' 2" . d hhen 1]h(Z)Y = 1]ZY' at IS, 1] IS Invanant un er suc .

(c) Let EL = Y - J-LL(Z) be the linear prediction error. Show that, in the linear model
of Remark 1.4.4, EL is uncorreIated with J-LL(Z) and 1]~y = P~Y'

18. Predicting the past from the present. Consider a subject who walks into a clinic today,
at time t, and is diagnosed with a certain disease. At the same time t a diagnostic indicator
Zo of the severity of the disease (e.g., a blood cell or viral load measurement) is obtained.
Let S be the unknown date in the past when the subject was infected. We are interested in
the time Yo = t - S from infection until detection. Assume that the conditional density of
Zo (the present) given Yo = Yo (the past) is

where J-L and a2 are the mean and variance of the severity indicator Zo in the population of
people without the disease. Here f3yo gives the mean increase of Zo for infected subjects
over the time period Yo; f3 > 0, Yo > O. It will be convenient to rescale the problem by
introducing Z = (Zo - J-L)/a and Y = f3Yo/a.

(a) Show that the conditional density f(z I y) of Z given Y = y is N(y, 1).

(b) Suppose that Y has the exponential density

1r(Y) = .\exp{-.\y}, .\ > 0, Y > O.

j

I
I



Show that the conditional distribution of Y (the past) given Z = z (the present) has density

Cov[r(Y), s(Y)] = E{Cov[r(Y), s(Y) I Z]} + Cov{E[r(Y) I Z]' E[s(Y) I Z]}.

E(Y I Z = z) = c-1<p('\ - z) - (,\ - z).

83Section 1.7 Problems and Complements

(a) Show that if Cov[r(Y), s(Y)] < 00, then

(b) Show that (a) is equivalent to (1.4.6) when r = s.

(c) Show that if Z is real, Cov[r(Y), Z] = Cov{E[r(Y) I Z]' Z}.

(d) Suppose Y1 = al + blZI + Wand Y2 = a2 + b2 Z2 + W, where Y1 and Y2 are
responses of subjects 1 and 2 with common influence W and separate influences Zl and
Z2, where Zl, Z2 and W are independent with finite variances. Find Corr(Yi, Y2 ) using
(a).

where c = <I>(z - ,\). This density is called the truncated (at zero) normal, N(z -'\,1),
density.

Hint: Use Bayes rule.

(c) Find the conditional density 7ro(Yo I zo) of Yo given Zo = zoo

(d) Find the best predictor of Yo given Zo = zo using mean absolute prediction error

EIYo - g(Zo)l·
Hint: See Problems 1.4.7 and 1.4.9.

(e) Show that the best MSPE predictor of Y given Z = z is

7r(y!z)=(27r)-jc- 1 exp -~[y-(z-'\W ,y>O

(In practice, all the unknowns, including the "prior" 7r, need to be estimated from cohort
studies; see Bennan, 1990, and Nonnand and Doksum, 20(0).

19. Establish 1.4.14 by setting the derivatives of R(a, b) equal to zero, solving for (a, b),
and checking convexity.

20. Let Y be the number of heads showing when X fair coins are tossed, where X is the
number of spots showing when a fair die is rolled. Find

(a) The mean and variance of Y.

(b) The MSPE of the optimal predictor of Y based on X.

(c) The optimal predictor ofY given X = x, x = 1, ... ,6.

21. Let Y be a vector and let r(Y) and s(Y) be real valued. Write Cov[r(Y), s(Y) I z]
for the covariance between r(Y) and s(Y) in the conditional distribution of (r(Y), s(Y))
given Z = z.
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(e) In the preceding model (d), if b1 = b2 and Zl, Z2 and W have the same variance a 2 ,

we say that there is a 50% overlap between Y l and Y2. In this case what is Corr(Yl , Y2)?

(f) In model (d), suppose that Zl and Z2 are N(J.L,a 2
) and W ~ N(J.Lo, a~). Find the

optimal predictor of Y2 given (Y1 , Zl, Z2).

22. In Example 1.4.3, show that the MSPE of the optimal predictor is a~ (1 - p~y ).

23. Verify that solving (1.4.15) yields (1.4.14).

24. (a) Let w(y, z) be a positive real-valued function. Then [y - g(z)j2 /w(y, z) =
6w (y, g(z)) is called weighted squared prediction error. Show that the mean weighted
squared prediction error is minimized by J.Lo(Z) = Eo(Y I Z), where

Po(y, z) = cp(y, z)/w(y, z)

and c is the constant that makes Po a density. Assume that

E6w (Y, g(Z)) < 00

for some 9 and that Po is a density.

(b) Supp~se that given Z = z, Y rv B(n, z), n > 2, and suppose that Z has the beta,
{3(r, s), density. Find J.Lo(Z) when (i) w(y, z) = 1, and (ii) w(y, z) = z(l- z), 0 < z < 1.

25. Show that Ey2 < 00 if and only if E(Y - c)2 < 00 for all c.
Hint: Whatever be Y and c,

Problems for Section 1.5

1. Let Xl, ... ,Xn be a sample from a Poisson, P(B), population where B> O.

(a) Show directly that L~ 1 Xi is sufficient for B.

(b) Establish the same result using the factorization theorem.

2. Let n items be drawn in order without replacement from a shipment of N items of
which NB are bad. Let Xi = 1 if the ith item drawn is bad, and = 0 otherwise. Show that
L~ 1 Xi is sufficient for Bdirectly and by the factorization theorem.

3. Suppose Xl, ... ,Xn is a sample from a population with one of the following densities.

(a) p(x, B) = BxO- 1 , 0 < x < 1, B > O. This is the beta, {3(B, 1), density.

(b) p(x, B) = Baxa- 1 exp( -Bxa),x > 0, B > 0, a> O.

This is known as the Weibull density.

(c) p(x, B) = Bao/X(8+1), x > a, B > 0, a> O.

I
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Here () = (/-L, a) with -00 < /-L < 00, a > O.

(a) Show that min(XI , ... , X n ) is sufficient for /-L when a is fixed.

(b) Find a one-dimensional sufficient statistic for a when /-L is fixed.

(c) Exhibit a two-dimensional sufficient statistic for ().

8. Let X I, ... ,Xn be a sample from some continuous distribution F with density f, which
is unknown. Treating f as a parameter, show that the order statistics X(l),'" ,X(n) (ct.
Problem B.2.8) are sufficient for f.

(b) Exhibit an example in which (TI (X), T2 (X)) is sufficient for (), T I (X) is sufficient
for ()l whenever ()2 is fixed and known, but T2 (X) is not sufficient for ()2, when ()l is fixed
and known.

6. Let X take on the specified values VI, ... , Vk with probabilities ()l, ... ,()k, respectively.
Suppose that XI, ... ,Xn are independently and identically distributed as X. Suppose that
(J = (()l, ... ,()k) is unknown and may range over the set e = {(()I, ... ,()k) : ()i > 0, 1 <
i< k, 2::~ I ()i = I}. Let N j be the number of Xi which equal Vj'

(a) What is the distribution of (NI , ... ,Nk )?

(b) Show that N = (NIl"" N k - l ) is sufficient for ().

7. Let Xl, ... ,Xn be a sample from a population with density p(x, ()) given by

This is known as the Pareto density.

In each case, find a real-valued sufficient statistic for (), a fixed.

4. (a) Show that T I and T2 are equivalent statistics if, and only if, we can write T2 = H (TI )

for some 1-1 transformation H of the range of T I into the range of T2 . Which of the
following statistics are equivalent? (Prove or disprove.)

(b) I17 I Xi and 2::7 I log Xi, Xi > 0

(c) 2::7 I Xi and 2::7 I log Xi, Xi> 0

(d) (2::7 I Xi, 2::7 I xt) and (2::7 I Xi, 2::7 I (Xi - X)2)

(e) (2::7 I Xi, 2::7 I xl) and (2::7 I Xi, 2::7 I (Xi - X)3).

5. Let () = (()I, ()2) be a bivariate parameter. Suppose that T I (X) is sufficient for ()I
whenever ()2 is fixed and known, whereas T2 (X) is sufficient for ()2 whenever ()l is fixed
and known. Assume that ()t> ()2 vary independently, ()I E 81, ()2 E 8 2 and that the set
S = {x : p(x, ()) > O} does not depend on ().

(a) Show that ifTI and T2 do not depend on ()2 and ()I respectively, then (TI (X), T2 (X))
is sufficient for ().
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if X > /-L
X-/-L

a

1
-exp
a

ootherwise.

p(X,())
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9. Let X I, ... ,Xn be a sample from a population with density

fo(x) a(B)h(x) if Bl < x < B2

ootherwise

where h(x) > 0, B = (B l , ( 2 ) with -00 < Bl < B2 < 00, and a(B) = [J:'2 h(x)dx] ~l
is assumed to exist. Find a two-dimensional sufficient statistic for this problem and apply
your result to the U[B I , B2 ] family of distributions.

10. Suppose Xl" .. , X n are i.i.d. with density f(x, B) = ~e-lx~OI, Show that (X(!), ... ,
X(n»), the order statistics, are minimal sufficient.

Hint: :oLx(B) = -I:~ Isgn(Xi -B),B (j. {Xl,'",Xn}, which determines X(l)'
... ,X(n)'

11. Let Xl, X 2 ,.,., X n be a sample from the uniform, U(O, B), distribution. Show that
X(n) = max{Xi; 1 < i < n} is minimal sufficient for B.

12. Dynkin, Lehmann, Schejfe's Theorem. Let P = {Fa: B E 8} where Fa is discrete
concentrated on X = {XI,X2,.,,}. Letp(x,B) Fo[X = x] - Lx(B) > 0 on X. Show

that f::(~'1) is minimial sufficient.
Hint: Apply the factorization theorem.

13. Suppose that X = (Xl,., ., X n ) is a sample from a population with continuous distri
bution function F(x). If F(x) is N(/-L, ( 2 ), T(X) = (X, 0'2), where 0'2 = n-1 I:(Xi 
X)2, is sufficient, and S(X) = (X(l)"'" X(n»)' where Xii) = (X(i) - X)/a, is "irrel

evant" (ancillary) for (/-L, ( 2
). However, S(X) is exactly what is needed to estimate the

"shape" of F(x) when F(x) is unknown. The shape of F is represented by the equivalence
class F = {F((- - a)/b) : b> 0, a E R}. Thus a distribution G has the same shape as F
iff G E F. For instance, one "estimator" of this shape is the scaled empirical distribution
function

,,

I
!
,

I,

-F.(x) j In, x(i) < x < X(j+l)' j = 1, ... ,n - 1

0, x < x(l)

1, x>x(n)'
•,

I

I,

'I
i,

-Show that for fixed x, F.( (x - xl/a) converges in probability to F(x). Here we are using
F to represent F because every member of F can be obtained from F.

14. Kolmogorov's Theorem. We are given a regular model with 8 finite.

(a) Suppose that a statistic T(X) has the property that for any prior distribution on
0, the posterior distribution of 0 depends on x only through T(x). Show that T(X) is
sufficient.

(b) Conversely show that if T(X) is sufficient, then, for any prior distribution, the
posterior distribution depends on x only through T(x).

i
;,



(iii) J.L = TI and J.L, (7, 7 are arbitrary.

(ii) (7 = 7 and J.L, TI, (7 are arbitrary.

17. In Example 1.5.4, express t l as a function of Lx(O, 1) and L x(l, 1).
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(1 - 8)k8n , k = 0,1,2, ... (The

1 dk

Ck = k! dw k (1 - w)-n
w=O

oc 1
LCkWk = (l-w)n' °< w < 1, then
k=O

Section 1.7 Problems and Complements

4. Which of the following families of distributions are exponential families? (Prove or
disprove.)

(n,8) defined by Po [I:~ I Xi = k] =

(a) The U(O, 8) family

(i) J.L, Ti, (7, 7 are arbitrary: -00 < J.L, TI < 00, 0 < (7, T.

3. Let X be the number of failures before the first success in a sequence of Bernoulli trials
with probability of success 8. Then Po [X = k] = (1- 8)k8, k = 0, 1,2, ... This is called
the geometric distribution (9(8)).

(a) Show that the family of geometric distributions is a one-parameter exponential fam
ily with T(x) = x.

Hint: Apply the factorization theorem.

15. Let XI, ... , X n be a sample from f(x - 8), 8 E R. Show that the order statistics are
minimal sufficient when f is the density Cauchy f(t) = 1/7f(1 + t2

).

16. Let XI, ... , X m ; Yj, ... , Yn be independently distributed according to N(J.L, (72) and
N(TI, 7 2 ), respectively. Find minimal sufficient statistics for the following three cases:

(b) Deduce from Theorem 1.6.1 that if Xl, ... ' X n is a sample from 9(8), then the
distributions of I:~ I Xi form a one-parameter exponential family.

(c) Show that I:~ I Xi in part (b) has a negative binomial distribution with parameters
n+k-l

k
negative binomial distribution is that of the number of failures before the nth success in a
sequence of Bernoulli trials with probability of success 8.)

Hint: By Theorem 1.6.1, Po[I:~ I Xi = k] = ck(1 - 8)ken
, 0< 8 < 1. If

Problems to Section 1.6

1. Prove the assertions of Table 1.6.1.

2. Suppose XI, ... ,Xn is as in Problem 1.5.3. In each of the cases (a), (b) and (c), show
that the distribution of X forms a one-parameter exponential family. Identify TI, E, T, and
h.



,, ,
,
,

88 Statistical Models, Goals, and Performance Criteria Chapter 1

,i

(b)p(x,8) = {exp[-21og8 + log(2x)]} 1 [x E (0,8)]

(c) p(x, 8) = ~, X E {0.1 + 8, ... ,0.9 + 8}

(d) The N(8, ( 2 ) family, 8> 0

(e)p(x,8) = 2(x +8)/(1 + 28), 0 < x < 1,8> 0

(f) p(x,8) is the conditional frequency function of a binomial, B(n,8), variable X,
given that X > O.

5. Show that the following families of distributions are two-parameter exponential families
and identify the functions 1], E, T, and h.

(a) The beta family.

(b) The gamma family.

6. Let X have the Dirichlet distribution, V(a), of Problem 1.2.15.
Show the distribution of X form an r-parameter exponential family and identify 1], E, T,

and h.

7. Let X = ((Xl, Yd, ... ,(Xn , Yn )) be a sample from a bivariate normal population.
Show that the distributions of X form a five-parameter exponential family and identify
1], B, T, and h.

8. Show that the family of distributions ofExample 1.5.3 is not a one parameter exponential
family.

Hint: If it were, there would be a set A such that p(x, 8) > °on A for all 8.

9. Prove the analogue of Theorem 1.6.1 for discrete k-parameter exponential families.

10. Suppose that f(x, 8) is a positive density on the real line, which is continuous in x
for each 8 and such that if (XI ,X2 ) is a sample of size 2 from f(·,8), then Xl + X 2

is sufficient for 8. Show that f(·, 8) corresponds to a one-arameter exponential family of
distributions with T(x) = x.

Hint: There exist functions g(t,8), h(XI,X2) such that logf(XI,8) + log f(X2, 8) =

g(XI + X2, 8) + h(XI, X2). Fix 80 and let r(x, 8) = log f(x, 8) - log f(x, ( 0 ), q(x, 8) =
g(x,8) - g(x,80 ). Then, q(XI + x2,8) = r(xI,8) + r(x2,8), and hence, [r(xI,8) 
r(0,8)] + [r(x2, 8) - r(O, 8)] = r(xi + X2, 8) - r(O, 8).

11. Use Theorems 1.6.2 and 1.6.3 to obtain moment-generating functions for the sufficient
statistics when sampling from the following distributions.

(a) normal, (J = ({-t, (}2)

(b) gamma, f(p, >.),8 = >., p fixed

(c) binomial

(d) Poisson

(e) negative binomial (see Problem 1.6.3)

(f) gamma, f(p, >'), (J = (p, >.).

- - ~~--- --------

,
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I



(i) The joint distribution of Yl , ... , Yr is an exponential family with density

The distribution of Yr / 8' is again X2 with 2r degrees offreedom.

(ii) The distribution of [I:~ 1Y; + (n - r)Yr]/8 is X2 with 2r degrees offreedom.

89

, 0 < Yl < ... < Yr'
L:~=l Yi + (n - r)Yr

28

1 n!
(28V (n - r)! exp
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12. Show directly using the definition of the rank of an exponential family that the multi

nomial distribution, M(n;(h, ... ,fh), 0 < 8j < 1,1 < j < k, I:~=l 8j = 1, is of rank
k -1.

1 (Yr)(28'V exp - 28/ , 0 < Yl < ... < Yr'

(iii) Let Yb Y2 , ... denote the time required until the first, second,... event occurs in a
Poisson process with parameter 1/28' (see A. 16). Then Zl = Yt/8', Z2 = (12 
Yl)/8', Z3 = (Y3 - Y2 )/8', ... are independently distributed as X2 with 2 degrees
of freedom, and the joint density of Yl , ... , Yr is an exponential family with density

13. Show that in Theorem 1.6.3, the condition that [ has nonempty interior is equivalent
to the condition that [ is not contained in any (k ~ I)-dimensional hyperplane.

(iv) The same model arises in the application to life testing if the number n of tubes is
held constant by replacing each burned-out tube with a new one, and if Yl denotes
the time at which the first tube bums out, Y2 the time at which the second tube burns
out, and so on, measured from some fixed time.

15. Let P = {Po : 8 E 8} where Po is discrete and concentrated on X = {Xl, X2, ... },

and let p(x, 8) = Po [X = xl. Show that if P is a (discrete) canonical exponential family
generated brc (T, h) and [0 i= 0, then T is minimal sufficient.

Hint: ~~gLX(l1) = Tj(X) - E l1T j (X). Use Problem 1.5.12.

16. Life testing. Let Xl, ., . ,Xn be independently distributed with exponential density
(28)-le- x / 20 for x > 0, and let the ordered X's be denoted by Yl < Y2 < '" < Yn .

It is assumed that Yl becomes available first, then Y2, and so on, and that observation is
continued until Yr has been observed. This might arise, for example, in life testing where
each X measures the length of life of, say, an electron tube, and n tubes are being tested
simultaneously. Another application is to the disintegration of radioactive material, where n
is the number of atoms, and observation is continued until r a-particles have been emitted.
Show that

•

14. Construct an exponential family of rank k for which [ is not open and A is not defined
on all of [. Show that if k = 1 and [0 i= 0and ii, Aare defined on all of [, then Theorem
1.6.3 continues to hold.
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[(ii): The random variables Zi = (n - i + 1)(Y; - Yi~d/8 (i = 1, ... ,1') are inde
pendently distributed as X2 with 2 degrees of freedom, and [I:~=l Y; + (n - 1')Yr J/8 =

I:~=l Zi']

17. Suppose that (Tkx1,h) generate a canonical exponential family P with parameter
"1k x 1 and [; = Rk

. Let

(a) Show that Q is the exponential family generated by ilLT and h exp{cTT}, where
ilL is the projection matrix of Tonto L = {TJ : TJ = BO + c}.

(b) Show that if P has full rank k and B is of rank l, then Q has full rank l.
Hint: If B is of rank l, you may assume

18. Suppose Y1, ... , Yn are independent with Y; ~ N((31 + (32Zi, ( 2), where Zl, ... ,Zn
are covariate values not all equal. (See Example 1.6.6.) Show that the family has rank 3.
Give the mean vector and the variance matrix of T.

19. Logistic Regression. We observe (Zl' Y1 ), ... , (zn, Yn) where the Y1, ... , Yn are inde
pendent, Y; ~ B(ni, Ai)' The success probability Ai depends on the characteristics Zi of
the ith subject, for example, on the covariate vector Zi = (age, height, blood pressure)T.
The function l(u) = log[u/(l - u)] is called the logit function. In the logistic linear re
gression model it is assumed that l(Ai) = zT(3 where (3 = ((31,"" (3d)T and Zi is d x 1.
Show that Y = (Y1 , .. . , yn)T follow an exponential model with rank d iff ZI,' .. ,Zd are
not collinear (linearly independent) (cf. Examples 1.1.4, 1.6.8 and Problem 1.1.9).

20. (a) In part II of the proof of Theorem 1.6.4, fill in the details of the arguments that Q is
generated by (TJl - TJo)TT and that ~(ii) -~(i).

(b) Fill in the details of part III of the proof of Theorem 1.6.4.

21. Find M(TJ) = ETJT(X) for the gamma, f(a, A), distribution, where 8 = (a, A).

22. Let Xl, ... , X n be a sample from the k-parameter exponential family distribution
(1.6.10). Let T = (I:~ 1T1 (Xi ), ... , I:~ 1 Tk(X;)) and let

S = {(1]I(O), ... ,1]k(O)) : 8 E 8}.

Show that if S contains a subset of k + 1 vectors Vo, ... , Vk+l so that Vi - VO, 1 < i < k,
are not collinear (linearly independent), then T is minimally sufficient for 8.

23. Using (1.6.20), find a conjugate family of distributions for the gamma and beta fami
lies.

(a) With one parameter fixed.

(b) With both parameters free.

,

,,

i
1

1
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maximizes h(J) subject to the constraints

Tj = LYij , 1 <j < Pi Tjl = LYijYiI' 1 <j < l < P
i=l i=l

f(x) > 0, l f(x)dx = 1, l f(X)Tj(X) = aj, 1 <j < k,
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where Y i = (Yi 1, ... , Yip). Show that E is open and that this family is of rank p(p + 3) /2.
Hint: Without loss of generality, take n = 1. We want to show that h = 1 and the

m = p(p + 3)/2 statistics Tj(Y) = Yj, 1 <j < p, and Tjl(Y) = YjYl, 1 <j < l < p,

k

f(x,1]) = exp 1]0 + I>jTj(X) - A(1]) ,x E S
j=1

24. Using (1.6.20), find a conjugate family of distributions for the normal family using as
parameter 8 = (81 ,82 ) where 81 = Eo(X), 82 = l/(VaroX) (cf. Problem 1.2.12).

25. Consider the linear Gaussian regression model of Examples 1.5.5 and 1.6.6 except with
(72 known. Find a conjugate family of prior distributions for (131, (32)T.

26. Using (1.6.20), find a conjugate family of distributions for the multinomial distribution.
See Problem 1.2.15.

27. Let P denote the canonical exponential family genrated by T and h. For any 1]0 E E,
set ho(x) = q(x,1]o) where q is given by (1.6.9). Show that P is also the canonical
exponential family generated by T and ho.

28. Exponentialfamities are maximum entropy distributions. The entropy h(f) of a random
variable X with density f is defined by

h(f) = E(-log f(X)) = - J: [log f(x)lJ(x)dx.

This quantity arises naturally in information in theory; see Section 2.2.2 and Cover and
Thomas (1991). Let S = {x : f(x) > O}.

(a) Show that the canonical k-parameter exponential family density

where 1]0, ... ,1]k are chosen so that f satisfies the constraints.
Hint: You may use Lagrange multipliers. Maximize the integrand.

(b) Find the maximum entropy densities when T)(X) = x j and (i) S = (0,00), k = 1,
al > 0; (ii) S = R, k = 2, al E R, a2 > 0; (iii) S = R, k = 3, al E R, a2 > 0, a3 E R.

29. As in Example 1.6.11, suppose that Y 1, ... , Y n are i.i.d. Np(/-L, 'f:,) where /-L varies
freely in RP and 'f:, ranges freely over the class of all p x p symmetric positive definite
matrices. Show that the distribution of Y = (Y1 , ... , Yn ) is the p(p + 3)/2 canonical
exponential family generated by h = 1 and the p(p + 3)/2 statistics
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generate Np(/-l, ~). As ~ ranges over all p x p symmetric positive definite matrices, so
does ~-1. Next establish that for symmetric matrices fYi,

J exp{-uT Mu}du < 00 iff M is positive definite

by using the spectral decomposition (see B.l0.1.2)

p

M = L AjejeJ for el, ... , ep orthogonal, Aj E R.
j=l

To show that the family has full rank m, use induction on p to show that if Zl, ... , Zp are
i.i.d. N(O, 1) and if Bpxp = (bjl ) is symmetric, then

p

P LajZj+LbjIZjZI=C =P(aTZ+ZTBZ=c)=O
j = 1 j,l

unless a = 0, B = 0, c = O. Next recall (Appendix B.6) that since Y ~ Np(/-l, ~), then
Y = SZ for some nonsingular p x p matrix S.

30. Show that if Xl,'" ,Xn are i.i.d. Np((J, ~o) given (J where ~o is known, then the
N p(>', r) family is conjugate to Np((J, ~o), where>' varies freely in RP and r ranges over
all p x p symmetric positive definite matrices.

31. Conjugate Nonnal Mixture Distributions. A Hierarchical Bayesian Nonnal Model. Let
{({-tj, Tj) : 1 < j < k} be a given collection of pairs with {-tj E R, Tj > O. Let (IL, 0')
bearandompairwithAj = P((IL,O') = ({-tj,Tj)),O < Aj < 1, L:~=lAj = 1. Let(J
be a random variable whose conditional distribution given (IL, 0') = ({-tj, Tj) is normal,
N({-tj, Ti). Consider the model X = (J + E, where (J and E are independent and E ~

N(O, 0"5), 0"5 known. Note that (J has the prior density

I,

k

7l"(B) = L Aj!PTj (B - {-tj)
j=1

(1.7.4)

I '
Ii;,

:~

where !PT denotes the N(O, T2 ) density. Also note that (X I B) has the N(B, 0"5) distribu
tion.

(a) Find the posterior

k

7l"(B I x) = LP((IL,O') = ({-tj,Tj) I x)'rr(B I ({-tj,Tj),X)
j=l

and write it in the form

k

LAj(X)!PTj(x)(B - {-tj(X))
j=1



(i) POD = PIl = p, so that, PlO = POI = 1 - p.
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(1.7.5)

Cov'1 ('IjJ(X) , X)

~ E{(X - X')['IjJ(X) - 'IjJ(X')]}

is the matrix of transition probabilities. Suppose further that

k

7f(e) = L Aj7r(e,Tj,8j).
j=1

k

7r(e Ix) = LP(R = Tj,S = 8j Ix)7r(e I (Tj,Sj),x)
j=l

POD POI

PlO pn
where

Find the posterior

(ii) P[XI = 0] = P[XI = 1] = ~.

Section 1.7 Problems and Complements

and show that it can be written in the form LAj(x)7r(e,Tj(x),8j(x)) for appropriate
Aj(x), Tj(X) and 8j(X). This shows that (1.7.5) defines a class of conjugate priors for
the B(n, e) distribution.

33. Let p(x, 1]) be a one parameter canonical exponential family generated by T(x) = X

and h(x), x E X C R, and let 'IjJ(x) be a nonconstant, nondecreasing function. Show that
E'1'IjJ (X) is strictly increasing in 1].

Hint:

where X and X' are independent identically distributed as X (see A.ll.12).

34. Let (Xl, ... ,Xn ) be a stationary Markov chain with two states 0 and 1. That is,

for appropriate Aj(x), Tj(X) and /-LJ(x), This shows that (1.7.4) defines a conjugate prior
for the N(e, 0"5), distribution.

(b) Let Xi = (J + Ei, 1 < i < n, where (J is as previously and EI, ... ,En are i.i.d.
N(O, 0"6)' Find the posterior 7f(e IXI, ... , x n ), and show that it belongs to class (1.7.4).

Hint: Consider the sufficient statistic for p(x Ie).

32. A Hierarchical Binomial-Beta Model. Let {(Tj, 8j) : 1 < j < k} be a given collection
of pairs with Tj > 0, 8j > 0, let (R, S) be a random pair with P(R = Tj, S = 8j) = Aj,
o < Aj < 1, L~=l Aj = 1, and let (J be a random variable whose conditional density
7r(e,T, 8) given R = T, S = 8 is beta, (3(T,8). Consider the model in which (X I e) has
the binomial, B(n, e), distribution. Note that (J has the prior density
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(a) Show that if 0 < p < 1 is unknown this is a full rank, one-parameter exponential
family with T = N oo + N ll where N ij the number of transitions from i to j. For
example, OlOn has N Ol = 2, N ll = 1, N oo = 0, N IO = 1.

(b) Show that E(T) = (n - l)p (by the method of indicators or otherwise).

35. A Conjugate Priorfor the Two-Sample Problem. Suppose that X I, ... , X n and YI , ... ,
Yn are independent N (/11, (72) and N ('<2, (72) samples, respectively. Consider the prior 7f
for which for some r > 0, k > 0, r(7~2 has a X~ distribution and given (72, /11 and /12
are independent with N(6, (72/ kt) and N(6, (72/k2) distributions, respectively, where
~j E R, kj > 0, j = 1, 2. Show that 7f is a conjugate prior.

36. The inverse Gaussian density, IG(/1, A), is

f(X,/1,A) = [A/27fl l
/
2x-3/ 2exp{-A(x -/1)2/ 2/12 X}, X> 0, /1 > 0, A> O.

(a) Show that this is an exponential family generated by T (X) = - ~ (X, X -I )T and
h(x) = (27f)-1/2x~3/2.

(b) Show that the canonical parameters 1]1,1]2 are given by 1]1 = /1-2 A, 1]2 = A, and
thatA(1]I,1]2) = - [pog(1]2) + V1]11]2],£ = [0,00) x (0,00).

(c) Find the moment-generating function of T and show that E(X) = /1, Var(X) =
/1~3A, E(X- 1 ) = /1-1 + A-I, Var(X~I) = (A/1)-l + 2A-2.

(d) Suppose /1 = /10 is known. Show that the gamma family, f(a,,B), is a conjugate
•poor.

(e) Suppose that A = AO is known. Show that the conjugate prior formula (1.6.20)
produces a function that is not integrable with respect to /1. That is, n defined in (1.6.19)
•
IS empty.

(f) Suppose that /1 and A are both unknown. Show that (1.6.20) produces a function
that is not integrable; that is, n defined in (1.6.19) is empty.

37. Let XI, ... , X n be i.i.d. as X ~ Np ((J,2',o) where 2',0 is known. Show that the
conjugate prior generated by (1.6.20) is the Np (1]o, TJI) family, where 1]0 varies freely in
RP, TJ > 0 and I is the p x p identity matrix.

38. Let Xi = (Zi, y;)T be i.i.d. as X = (Z, y)T, 1 < i < n, where X has the density
of Example 1.6.3. Write the density of Xl, ... , X n as a canonical exponential family and
identify T, h, A, and £. Find the expected value and variance of the sufficient statistic.

39. Suppose that YI , ... , Yn are independent, Y; ~ N(/1i, (72), n > 4.

(a) Write the distribution of Y1 , ... , Yn in canonical exponential family form. Identify
T, h, 1], A, and£.

(b) Next suppose that /1i depends on the value Zi of some covariate and consider the
submodel defined by the map 1] : (81, 82, 83)T -t (/-LT, (72)T where 1] is determined by

/1i = exp{81+ 82 z i }, ZI < Z2 < ... < Zn; (72 = 83

,
j,

j



Note for Section 1.1

Notes for Section 1.3

95Section 1.8 Notes

Notes for Section 1.6

(1) For the measure theoretically minded we can assume more generally that the Po are
all dominated by a cr finite measure J-L and that p(x, 0) denotes d:;;, the Radon Nikodym
derivative.

1.8 NOTES

where not all the z's are equal. Show that p(y, 0) as given by (1.6.12) is a curved expo
nential family model with l = 2.

40. Suppose Y1 , ... , Yn are independent exponentially, E('\il, distributed survival times,
n> 3.

(a) Write the distribution of Y1 , ... , Yn in canonical exponential family form. Identify
T, h, 1], A, and E.

(b) Recall that J-Li = E(Y;) = '\i 1
. Suppose JLi depends on the value Zi of a covariate.

Because J-Li > 0, J-Li is sometimes modeled as

where 01 E R, O2 E R, 03 > O. This model is sometimes used when ILi is restricted to be
positive. Show that p(y, 0) as given by (1.6.12) is a curved exponential family model with
1=3.

Note for Section 1.4

(1) Source: Hodges, Jr., J. L., D. Kretch, and R. S. Crutchfield. Statlab: An Empirical
Introduction to Statistics. New York: McGraw-Hili, 1975.

(1) More natural in the sense of measuring the Euclidean distance between the estimate 0-and the "truth" O. Squared error gives much more weight to those 0 that are far away from
othan those close to O.

(2) We define the lower boundary of a convex set simply to be the set of all boundary points
r such that the set lies completely on or above any tangent to the set at r.

(1) Exponential families arose much earlier in the work of Boltzmann in statistical mechan
ics as laws for the distribution of the states of systems of particles-see Feynrnan (1963),
for instance. The connection is through the concept of entropy, which also plays a key role
in information theory-see Cover and Thomas (1991).

(2) The restriction that's x E Rq and that these families be discrete or continuous is artifi
cial. In general if J-L is a cr finite measure on the sample space X, p(x, 0) as given by (1.6.1)
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can be taken to be the density of X with respect to /-L-see Lehmann (1997), for instance.
This permits consideration of data such as images, positions, and spheres (e.g., the Earth),
and so on.

Note for Section 1.7

(1) u T Mu > 0 for all p x 1 vectors u i= O.
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2.1 BASIC HEURISTICS OF ESTIMATION

99

(2.1.2)

(2. I.l)

•

Chapter 2

2.1.1 Minimum Contrast Estimates; Estimating Equations

Our basic framework is as before, X E X, X ~ PEP, usually parametrized as P =

{PO: 0 E 8}. In this parametric case, how do we select reasonable estimates for 0 itself?
~

That is, how do we find a function O(X) of the vector observation X that in some sense
"is close" to the unknown O? The fundamental heuristic is typically the following. We
consider a function that we shall call a contrast function

p:Xx8--+R

METHODS OF ESTIMATION

where V' denotes the gradient,

D(00,0) EOop(X, 0).

As a function of 0, D(00,0) measures the (population) discrepancy between 0 and the true
value 00 of the parameter. In order for p to be a contrast function we require that D(00,0)
is uniquely minimized for 0 = 00. That is, if POo were true and we knew D(Oo, 0) as a
function of 0, we could obtain 00 as the minimizer. Of course, we don't know the truth
so this is inoperable, but in a very weak sense (unbiasedness), p(X, 0) is an estimate of

~

D(Oo,O). So it is natural to consider O(X) minimizing p(X, 0). This is the most general
form of the minimum contrast estimate we shall consider in the next section.

Now suppose e is Euclidean C R d , the true 00 is an interior point of 8, and 0 --+

D(Oo,O) is smooth. Then we expect

-Arguing heuristically again we are led to estimates e that solve

V'OD(Oo, 0) = 0

~

V'Op(X, 0) = O.

The equations (2.1.2) define a special form of estimating equations.
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More generally, suppose we are given a function '1J : X XRd
-+ Rd, '1J (1/Jl, ... ,1/Jdf

and define

V(Oo, 0) = EOn '1J(X, 0). (2.1.3)

-Suppose V(00 ,0) = 0 has 00 as its unique solution for all 00 E 8. Then we say 0 solving

-'1J(X, 0) = 0 (2.1.4)

is an estimating equation estimate. Evidently, there is a substantial overlap between the
two classes of estimates. Here is an example to be pursued later.

Example 2.1.1. Least Squares. Consider the parametric version of the regression model of
Example 1.1.4 with j.L(z) = g((3, z), (3 E Rd, where the function 9 is known. Here the data
are X = {(Zi, Yi) : 1 < i < n} where Y1 , ... , Yn are independent. A natural (1) function
p(X, (3) to consider is the squared Euclidean distance between the vector Y of observed
Yi and the vector expectation of Y, /-L(z) = (g((3, Z d, ... ,g((3, zn) f. That is, we take

n

,, p(X, (3) = IY - /-L1 2 = L[Yi - g((3, zi)f.
i=l

(2.1.5)

Strictly speaking P is not fully defined here and this is a point we shall explore later.
But, for convenience, suppose we postulate that the Ei of Example 1.1.4 are i.i.d. N(O, aiD.
Then (3 parametrizes the model and we can compute (see Problem 2.1.16),

In the important linear case,

lim{lg((3, z)1 : 1(31 ---> oo} = 00

,,,
i•

I
1
•,

,
•
i
•

1

I
I

I

I,

(2.1.6)

(2.1.7)

D((3o, (3) E(3op(X, (3)
n

- nO"Z + L[g((3o,zJ - g((3,Zi)]2,
i=l

d

g((3,zJ = LZij,Bj andz i = (Zil, ... ,Zid)T
j=l

which is indeed minimized at (3 = (30 and uniquely so if and only if the parametrization is-identifiable. An estimate (3 that minimizes p(X, (3) exists if g((3, z) is continuous and

-(Problem 2.1.10). The estimate (3 is called the least squares estimate.-If, further, g((3, z) is differentiable in (3, then (3 satisfies the equation (2.1.2) or equiv-
alently the system of estimating eq!Iations,

"

i
, " j..
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(2.1.8)

(2.1.9)

1 <j < d.

n

L ZijZik
i=l

n
~ _1", j
Ilj - - LXi'n.

1.=1

n d

LZijYi = L
i=l k=l

the normal equations. These equations are commonly written in matrix form

the system becomes

Section 2.1 Basic Heuristics of Estimation

~

lij = Ilj(O), 1 <j < d

o ---> (Ill (0), ... ,lld(O))

Define the jth sample moment lij by,

Here is another basic estimating equation example.

Example 2.1.2. Method ofMoments (MOM). Suppose Xl, ... ,Xn are i.i.d. as X ~ PO'
oE Rd and 0 is identifiable. Suppose that III (0), ... , Ild(0) are the first d moments of the
population we are sampling from. Thus, we assume the existence of

where Zv - Ilzijllnxd is the design matrix. Least squares, thus, provides a first example
of both minimum contrast and estimating equation methods.

We return to the remark that this estimating method is well defined even if the Ei are not
i.i.d. N(O, 0"5). In fact, once defined we have a method of computing a statistic j3 from the
data X = {(Zi, Yi), 1 < i < n}, which can be judged on its merits whatever the true P
governing X is. This very important example is pursued further in Section 2.2 and Chapter
6. 0

if it exists. The motivation of this simplest estimating equation example is the law of large
numbers: For X ~ Po, lij converges in probability to Ilj(B).

More generally, if we want to estimate a Rk-valued function q(O) of 0, we obtain a
MOM estimate of q(O) by expressing q(O) as a function of any of the first d moments
Ill,·.· ,Ild of X, say q(O) = h(IlI, ... ,Ild), d > k, and then using h(lil,.· . ,lid) as the
estimate of q(0).

To apply the method of moments to the problem of estimating 0, we need to be able to
express 0 as a continuous function 9 of the first d moments. Thus, suppose

is 1 - 1 from Rd to Rd. The method of moments prescribes that we estimate 0 by the
solution of



For instance, consider a study in which the survival time X is modeled to have a gamma
distribution, r(a, A), with density

[A O lr(a)]x O
-

1 exp{-Ax}, x> 0; a> 0, A> O.

In this case 0 = (a, A), ILl = E(X) = alA, and 1L2 = E(X2) = a(1 + a)1A2. Solving
for 0 gives

a = (lLda)2, Ci = (XlaV;
A = ILda2, :\ = X 1(j2

where a 2 = 1L2 -lLi and (j2 = n- l ~Xl- X 2. In this example, the method of moment es
timator is not unique. We can, for instance, express () as a function of ILl and 1L3 = E(X3

)

and obtain a method of moment estimator based on iiI and ii3 (Problem 2.1.11). 0
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Algorithmic issues

We note that, in general, neither minimum contrast estimates nor estimating equation
solutions can be obtained in closed form. There are many algorithms for optimization
and root finding that can be employed. An algorithm for estimating equations frequently

used when computation of M(X,·) _ D'l!(X,·) - ~1i (X,·) is quick and M
J dxd

is nonsingular with high probability is the Newton-Raphson algorithm. It is defined by
initializing with 0o, then setting

- - - -1 -OJ+! = OJ ~ [M(X,Oj)] 'l!(X,Oj). (2.1.10)

This algorithm and others will be discussed more extensively in Section 2.4 and in Chap
ter 6, in particular Problem 6.6.10.

2.1.2 The Plug-In and Extension Principles

We can view the method ofmoments as an example of what we call the plug-in (or substitu
tion) and extension principles, two other basic heuristics particularly applicable in the i.i.d.
case. We introduce these principles in the context of multinomial trials and then abstract
them and relate them to the method of moments.

Example 2.1.3. Frequency Plug-in(2) and Extension. Suppose we observe multinomial
trials in which the values VI, .•. , Vk of the population being sampled are known, but their
respective probabilities PI, ... ,Pk are completely unknown. If we let Xl, ... , X n be i.i.d.
as X and

Ni =number of indices j such that X j = Vi,

then the natural estimate of Pi = P[X = Vi] suggested by the law of large numbers is
N i In, the proportion of sample values equal to Vi. As an illustration consider a population
of men whose occupations fall in one of five different job categories, 1, 2, 3, 4, or 5. Here
k = 5, Vi = i, i = 1, ... ,5, Pi is the proportion of men in the population in the ith job
category and Ndn is the sample proportion in this category. Here is some job category
data (Mosteller, 1968).

,

]
i,,

I
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(2.1.11)

(2.1.12)

,

, . . . ,
n n

Job Category

PI = (}2, P2 = 2(}(1- ()), Pa = (1- (})2, 0 < () < 1.

• 1 2 3 4 51

N 23 84 289 217 95 n = L~ I N i = 708,
~

0.03 0.12 0.41 0.31 0.13 L~ dii = 1Pi

Section 2.1 Basic Heuristics of Estimation

If N i is the number of individuals of type i in the sample of size n, then (Nl, N 2 , N a)
has a multinomial distribution with parameters (n,PI,P2,Pa) given by (2.1.12). Suppose

for Danish men whose fathers were in category 3, together with the estimates Pi = Ni/n.
Next consider the more general problem of estimating a continuous function q(Pl, ... ,

Pk) of the population proportions. The frequency plug-in principle simply proposes to re
place the unknown population frequencies PI, ... ,Pk by the observable sample frequencies
Ndn, ... ,Nk/n. That is, use

the difference in the proportions of blue-collar and white-collar workers. If we use the
frequency substitution principle, the estimate is

to estimate q(pl, ... ,Pk). For instance, suppose that in the previous job category table,
categories 4 and 5 correspond to blue-collar jobs, whereas categories 2 and 3 correspond to
white-collar jobs. We would be interested in estimating

which in our case is 0.44 - 0.53 = -0.09.
Equivalently, let P denote p = (PI,'" ,Pk) with Pi = P[X = Vi], 1 < i < k, and

think of this model as P = {all probability distributions P on {VI, ... ,vd}. Then q(p)
can be identified with a parameter v : P ---> R, that is, v(P) = (P4 + Ps) - (P2 + Pa),
and the frequency plug-in principle simply says to replace P = (PI, ... ,Pk) in v(P) by
~

P = (~l, ... , ~. ), the multinomial empirical distribution of X I, ... , X n . 0

Now suppose that the proportions PI, ... ,Pk do not vary freely but are continuous
functions of some d-dimensional parameter fJ = ((}l' ... , ()d) and that we want to estimate
a component of fJ or more generally a function q(fJ). Many of the models arising in the
analysis of discrete data discussed in Chapter 6 are of this type.

Example 2.1.4. Hardy-Weinberg Equilibrium. Consider a sample from a population in
genetic equilibrium with respect to a single gene with two alleles. If we assume the three
different genotypes are identifiable, we are led to suppose that there are three types of
individuals whose frequencies are given by the so-called Hardy-Weinberg proportions
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we want to estimate B, the frequency of one of the alleles. Because B = yPl, we can use

the principle we have introduced and estimate by JNr/n. Note, however, that we can also

write B= 1 - ,fiJi and, thus, 1 - JN3/n is also a plausible estimate of B. 0

In general, suppose that we want to estimate a continuous Rl-valued function q of O.
If Pi, ... ,Pk are continuous functions of 0, we can usually express q(0) as a continuous
function of PI, ... ,Pk, that is,

(2.1.13)

with h defined and continuous on

P=
k

(Pl,···,Pk) :Pi > 0, 'L>i = 1
i=l

•

,,
,,

j

(2.1.14)

(2.1.15)

(2.1.16)

•

1 n

P[X E A] = - L 1(Xi E A)
n,,=1

F-l(a) = inf{x: F(x) > a}, Fu
1(a) = sup{x: F(x) < a},

Given h we can apply the extension principle to estimate q(0) as,

- -
Plug-in principle. If we have an estimate P of PEP such that PEP and v : P --> T-
is a parameter, then v(P) is the plug-in estimate of v. In particular, in the Li.d. case if P
is the space of all distributions of X and Xl, ... ,Xn are i.i.d. as X rv P, the empirical

~

distribution P of X given by

be a submode1 of P. Now q(O) can be identified if 0 is identifiable by a parameter v :
Po --> R given by v(PO) = q(O). Then (2.1.13) defines an extension of v from Po to P
via v: P -t R where v(P) - h(p) and v(P) = v(P) for P EPa.

The plug-in and extension principles can be abstractly stated as follows:

As we saw in the Hardy-Weinberg case, the representation (2.1.13) and estimate (2.1.14)
are not unique. We shall consider in Chapters 3 (Example 3.4.4) and 5 how to choose
among such estimates.

We can think of the extension principle alternatively as follows. Let

~

is, by the law of large numbers, a natural estimate of P and v(P) is a plug-in estimate of
v(P) in this nonparametric context. For instance, if X is real and F(x) = P(X < x) is
the distribution function (dJ.), consider vo:(P) = ; [F- l (a) + Fu l(a)], where a E (0,1)
and

, ,
, '
, '

"
", .. ,

"

I
,I,

•
I,



Section 2.1 Basic Heuristics of Estimation 105

then vn (P) is the nth population quantile x n . Here Xl = V 1 (P) is called the population
2 2

median. A natural estimate is the nth sample quantile

(2.1.17)

~

where F is the empirical dJ. Here Xl is called the sample median.
2

For a second example, if X is real and P is the class of distributions with Elxlj < 00,

then the plug-in estimate of the jth moment v(P) = f.Lj = E(Xj) in this nonparametric
~ ~ .

context is the jth sample moment v(P) = JxjdF(x) = n- 1 L~ 1 Xl·
~

Extension principle. Suppose Po is a submodel of P and P is an element of P but not
necessarily Po and suppose v : Po ---> T is a parameter. If v : P ---> T is an extension of v

~

in the sense that v(P) = v(P) on Po, then v(P) is an extension (and plug-in) estimate of
v(P).

With this general statement we can see precisely how method of moment estimates can
be obtained as extension and frequency plug-in estimates for multinomial trials because

k

f.Lj(8) = L Vfpi(8) = h(p(8)) = v(Pe)
i=l

where
k

h(p) = L VIpi = v(P),
i=l

n k N
~ - 1 L j - L j i _ N (P~)f.Lj - - Xl - V - - h - = v

n ' n n
1=1 i=l

~

and P is the empirical distribution. This reasoning extends to the general Li.d. case (Prob-
lem 2.1.12) and to more general method of moment estimates (Problem 2.1.13). As stated,
these principles are general. However, they are mainly applied in the i.i.d. case-but see
Problem 2.1.14.

Remark 2.1.1. The plug-in and extension principles are used when Pe, v, and v are contin
uous. For instance, in the multinomial examples 2.1.3 and 2.1.4, Pe as given by the Hardy
Weinberg p(B), is a continuous map from e = [0,1] to P, v(P8) = q(8) = h(p(8)) is a
continuous map from e to Rand v(P) = h(p) is a continuous map from P to R.

Remark 2.1.2. The plug-in and extension principles must be calibrated with the target
parameter. For instance, let Po be the class of distributions of X = B+ E where B E R
and the distribution of E ranges over the class of symmetric distributions with mean zero.
Let v(P) be the mean of X and let P be the class of distributions of X = B+ E where
B E R and the distribution of E ranges over the class of distributions with mean zero. In this
case both V1(P) = Ep(X) and V2(P) = "median of P" satisfy v(P) = v(P), P E Po,

~ -
but only V1(P) = X is a sensible estimate of v(P), P ¢:. Po, because when P is not

~

symmetric, the sample median V2(P) does not converge in probability to Ep(X).
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Here are three further simple examples illustrating reasonable and unreasonable MOM
estimates.

Example 2.1.5. Suppose that Xl, ... ,Xn is a N(/-L, a 2 ) sample as in Example 1.1.2 with
assumptions (1)-(4) holding. The method of moments estimates of /-L and a 2 are X and
-2 0a.

Example 2.1.6. Suppose Xl, ... ,Xn are the indicators of a set of Bernoulli trials with
probability of success B. Because /-Ll (B) = B the method of moments leads to the natural
estimate of B, X, the frequency of successes. To estimate the population variance B(1 - B)

- -
we are led by the first moment to the estimate, X(1 - X). Because we are dealing with
(unrestricted) Bernoulli trials, these are the frequency plug-in (substitution) estimates (see
Problem 2.1.1). 0

Example 2.1.7. Estimating the Size ofa Population (continued). In Example 1.5.3 where
XI,"~' X n are i.i.d. U{l, 2, ... , B}, we find /-L = Ee(Xi ) = ~ (B + 1). Thus, B = 2/-L - 1
and 2X - 1 is a method of moments estimate of B. This is clearly a foolish estimate if
X(n) = max Xi > 2X - 1 because in this model B is always at least as large as X(n)' 0

As we have seen, there are often several method of moments estimates for the same
q(O). For example, if we are sampling from a Poisson population with parameter B, then B
is both the population mean and the population variance. The method of moments can lead
to either the sample mean or the sample variance. Moreover, because Po = P(X = 0) =
exp{-B}, a frequency plug-in estimate of B is -log Po, where Po is n- l [#Xi = 0]. We
will make a selection among such procedures in Chapter 3.

Remark 2.1.3. What are the good points of the method of moments and frequency plug-in?
(a) They generally lead to procedures that are easy to compute and are, therefore, valu

able as preliminary estimates in algorithms that search for more efficient estimates. See
Section 2.4.

(b) If the sample size is large, these estimates are likely to be close to the value estimated
(consistency). This minimal property is discussed in Section 5.2.

It does tum out that there are "best" frequency plug-in estimates, those obtained by
the method of maximum likelihood, a special type of minimum contrast and estimating
equation method. Unfortunately, as we shall see in Section 2.4, they are often difficult to
compute. Algorithms for their computation will be introduced in Section 2.4.

Discussion. When we consider optimality principles, we may arrive at different types of
estimates than those discussed in this section. For instance, as we shall see in Chapter 3,
estimation of B real with quadratic loss and Bayes priors lead to procedures that are data
weighted averages of B values rather than minimizers of functions p(B, X). Plug-in is not
the optimal way to go for the Bayes, minimax, or uniformly minimum variance unbiased
(UMVU) principles we discuss briefly in Chapter 3. However, a saving grace becomes
apparent in Chapters 5 and 6. If the model fits, for large amounts of data, optimality prin
ciple solutions agree to first order with the best minimum contrast and estimating equation
solutions, the plug-in principle is justified, and there are best extensions.

,
i

I
!
•

i



2.2.1 Least Squares and Weighted Least Squares

D(eo, e) = Ee p(X, e), BEe c R d
n

p(X, (3) = 2)Y; - g({3, zi)f

107Section 2.2 Minimum Contrast Estimates and Estimating Equations

is uniquely minimized at the true value e = eo of the parameter. A minimum contrast esti
mator is a minimizer of p(X, e), and the contrast estimating equations are VeP(X, e) =

o.
For data {(Zi, Y;) : 1 < i < n} with Y; independent and E(Y;) = g({3, Zi), 1 < i < n,

where 9 is a known function and {3 E Rd is a vector of unknown regression coefficients, a
least squares estimate of (3 is a minimizer of

Least squares(l) was advanced early in the nineteenth century by Gauss and Legendre for
estimation in problems of astronomical measurement. It is of great importance in many
areas of statistics such as the analysis of variance and regression theory. In this section
we shall introduce the approach and give a few examples leaving detailed development to
Chapter 6.

2.2 MINIMUM CONTRAST ESTIMATES AND
ESTIMATING EQUATIONS

For this contrast, when g({3, z) = zT (3, the associated estimating equations are called the
normal equations and are given by Z'bY = Z'bZD{3, where ZD = IlzijllnXd is called the
design matrix.

Suppose X ~ P. The plug-in estimate (PIE) for a vector parameter v = v(P) is
~ ~ ~

obtained by setting v = v(P) where P is an estimate of P. When P is the empirical
~ ~

probability distribution PE defined by PE(A) = n- l 2:7 I l[Xi E Al, then v is called
the empirical PIE. If P = Pe, e E e, is parametric and a vector q(e) is to be estimated,

~

we find a parameter v such that v(Po) = q(B) and call v(P) a plug-in estimator of q(e).
Method of moment estimates are empirical PIEs based on v(P) = (/-LI,"" /-Ld) T where
/-Lj = E(Xj), 1 < j < d. In the multinomial case the frequency plug-in estimators
are empirical PIEs based on v(P) = (PI, ... ,Pk), where Pj is the probability of the jth
category, 1 < j < k.

Let Po and P be two statistical models for X with Po c P. An extension v of v from
~

Po to P is a parameter satisfying v(P) = v(P), P E Po. If P is an estimate of P with
~ ~

PEP, v(P) is called the extension plug-in estimate of v( P). The general principles are
shown to be related to each other.

Summary. We consider principles that suggest how we can use the outcome X of an
experiment to estimate unknown parameters.

For the model {Pe : BEe} a contrast p is a function from X x H to R such that the
discrepancy
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In Example 2.1.1 we considered the nonlinear (and linear) Gaussian model Po given
by

Yi = g((3, Zi) + Ei, 1 < i < n (2.2.1)

where Ei are LLd. N(O, aiD and (3 ranges over Rd or an open subset. The contrast

n

(2.2.2)

(2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)

Epp(X, (3)
n n

L Varp(Ei) + L[g((3o, Zi) - g((3, ZiW,
i=l i=l

E(Ei) = 0, 1 < i < n,

Var(Ei) = a2 > 0, 1 < i < n,

COV(Ei,Ej) =0, l<i<j<n

t1(Zi) = E(Yi) = g((3, Zi), E(Ei) = O.

Are least squares estimates still reasonable? For P in the semiparametric model P, which
satisfies (but is not fully specified by) (2.2.2), we can compute still

-led to the least squares estimates (LSEs) (3 of (3. Suppose that we enlarge Po to P where
we retain the independence of the Yi but only require

p(X, (3) = l:)Yi - g((3, ZiW
i=1

which is again minimized as a function of (3 by (3 = (30 and uniquely so if the map
{3 ~ (g({3, Z d, ... ,9 ({3, zn) )T is 1 - 1.

The estimates continue to be reasonable under the Gauss-Markov assumptions,

because (2.2.3) continues to be valid.
Note that the joint distribution H of (EI, ... , En) is any distribution satisfying the

Gauss-Markov assumptions. That is, the model is semiparametric with {3, a 2 and H un
known. The least squares method of estimation applies only to the parameters {31, ... , {3d
and is often applied in situations in which specification of the model beyond (2.2.4)--(2.2.6)
is difficult.

Sometimes Z can be viewed as the realization of a population variable Z, that is,
(Zi, Yi), 1 .s i < n, is modeled as a sample from a joint distribution. This is frequently

,
the case for studies in the social and biological sciences. For instance, Z could be edu-
cationallevel and Y income, or Z could be height and Y log weight. Then we can write
the conditional model of Y given Zj = Zj, 1 < j < n, as in (a) of Example 1.1.4 with
Ej simply defined as Yj - E(Yj I Zj = Zj). If we consider this model, (Zi, Yi) i.i.d. as
(Z, Y) rv PEP = {All joint distributions of (Z, Y) such that E(Y I Z = z) = g({3, z),
{3 E Rd }, and {3 ~ (g({3, zd, ... ,g({3, Zn))T is 1 - 1, then {3 has an interpretation as a
parameter on P, that is, {3 = (3(P) is the minimizer of E(Y - g({3, Z))2. This follows
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p,(z) = L(3jZj.
j=O

d a
p,(z) = p,(zo) + L a: (zo)(z - zo),

j=l J
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(2.2.7)

(2.2.8)

(2.2.9)

d

p,(z) = (30 + L (3jZj
j=l

d

f30 = (-«(31, ... ,(3d), I)p, = M - L(3jP,j·
j=l
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Y = ZD(3 + E

where ZD = Ilzij II is the design matrix. We continue our discussion for this important
special case for which explicit formulae and theory have been derived. For nonlinear cases
we can use numerical methods to solve the estimating equations (2.1.7). See also Problem
2.2.41, Sections 6.4.3 and 6.5, and Seber and Wild (1989). The linear model is often the
default model for a number of reasons:

(1) If the range of the z's is relatively small and p,(z) is smooth, we can approximate
p,(z) by

-from Theorem 1.4.1. In this case we recognize the LSE (3 as simply being the usual plug-in- -estimate (3(P), where P is the empirical distribution assigning mass n- l to each of the n
pairs (Zi, Yi).

As we noted in Example 2.1.1 the most commonly used 9 in these models is g«(3, z) =
zT (3, which, in conjunction with (2.2.1), (2.2.4), (2.2.5) and (2.2.6), is called the linear
(multiple) regression model. For the data {(Zi, Yi); i = 1, ... ,n} we write this model in
matrix form as

where

for Zo an interior point of the domain. We can then treat p,(zo) - L,~=l 3;;(zo)zo as an

unknown (30 and identify ~(zo) with (3j to give an approximate (d + I)-dimensional,
linear model with Zo _ 1 and Zj as before and

This type of approximation is the basis for nonlinear regression analysis based on local
polynomials, see Ruppert and Wand (1994), Fan and Gijbels (1996), and Volume II.

(2) If as we discussed earlier, we are in a situation in which it is plausible to assume that
(Zi, Yi) are a sample from a (d+ 1)-dimensional distribution and the covariates that are the

•
coordinates of Z are continuous, a further modeling step is often taken and it is assumed
that (Zl, ... , Zd, Yf has a nondegenerate multivariate Gaussian distribution Nd+1(11, ~).
In that case, as we have seen in Section 1.4, E(Y I Z = z) can be written as
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Furthermore,
E = Y -IL(Z)

is independent of Z and has a N(O, a 2 ) distribution where

a
2 = ayy - ~YZ~Z~~Zy.

Therefore, given Zi = Zi, 1 < i < n, we have a Gaussian linear regression model for Yi,
1 < i < n.

Estimation of {3 in the linear regression model. We have already argued in Example 2.1.1
~

that, if the parametrization {3 ---> ZD{3 is identifiable, the least squares estimate, (3, exists
and is unique and satisfies the normal equations (2.1.8). The parametrization is identifiable
if and only if ZD is of rank d or equivalently if ZEZD is offull rank d; see Problem 2.2.25.
In that case, necessarily, the solution of the normal equations can be given "explicitly" by

(2.2.10)

The points (Zi' Yi) and an estimate of the line /31 + /32Z are plotted in Figure 2.2.1.
We want to estimate /31 and /32. The normal equations are

Here are some examples.

Example 2.2.1. In the measurement model in which Yi is the determination of a constant
/31, d = 1, g(z, (31) = /31, a~, g(z, (31) = 1 and the normal equation is 2:7 1(Yi - (31) = 0,

~

whose solution is /31 = (lin) 2:7 1Yi = y. 0

Example 2.2.2. We want to find out how increasing the amount z of a certain chemical or
fertilizer in the soil increases the amount Y of that chemical in the plants grown in that soil.
For certain chemicals and plants, the relationship between z and Y can be approximated
well by a linear equation Y = /31 + /32Z provided z is restricted to a reasonably small
interval. If we run several experiments with the same z using plants and soils that are as
nearly identical as possible, we will find that the values of Y will not be the same. For this
reason, we assume that for a given z, Y is random with a distribution P(y I z).

Following are the results of an experiment to which a regression model can be applied
(Snedecor and Cochran, 1967, p. 139). Nine samples of soil were treated with different
amounts z of phosphorus. Y is the amount of phosphorus found in com plants grown for
38 days in the different samples of soil.

When the z;'s are not all equal, we get the solutions

I

(2.2.12)

(2.2.11)

2:7=1 (Zi - Z)(Yi - y)
2:7 l(Zi - Z)2

n

13 - 2:7=1 (Zi - Z)Yi
2 - "n (Z. _ Z)2

L..... t =l t

n

Zi 1 4 5 9 11 13 23 23 28

Yi 64 71 54 81 76 93 77 95 109

L (Yi - /31 - /32 Zi) = 0, L Zi(Yi - /31 - /32 Z;) = 0.
i=l i=l

,
•
I,","Ii!
!j

1\

I!,
I'
(

!
I,

I :
I -i
I i;I ,
I

, !

:! I
,Ii: :
; I •



and

Then we are still dealing with a linear regression model because we can define wpx 1
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Figure 2.2.1. Scatter plot {(Zi, y;); i = 1, ... , n} and sample regression line for the
phosphorus data. E6 is the residual for (Z6' Y6).

p

f-L(z) = L Bjgj(z).
j=1

/31 = Y - /32Z (2.2.13)

where Z = (lin) 2:7 1 Zi, and Y = (lin) 2:7 1 Yi·
~ ~

The line Y = /31 + /32Z is known as the sample regression line or line of best fit
of Ylo ... ,Yn on ZI, ... ,Zn. Geometrically, if we measure the distance between a point
(Zi,Yi) and a line Y = a + bz vertically by di = !Yi - (a + bz;)l, then the regression line
minimizes the sum of the squared distances to the n points (ZI' Yl), ... , (Zn' Yn)' The ver-

~ ~

tical distances Ei = [Yi - (/31 + /32Zi)] are called the residuals of the fit, i = 1, . " ,n. The
~ ~

line Y = /31 + /32Z is an estimate of the best linear MSPE predictor al + bIZ of Theorem
1.4.3. This connection to prediction explains the use of vertical distances in regression.

~

The regression line for the phosphorus data is given in Figure 2.2.1. Here /31 = 61.58 and
~

/32 = 1.42. 0

Remark 2.2.1. The linear regression model is considerably more general than appears at
first sight. For instance, suppose we select p real-valued functions of z, gl, ... ,gp, p > d
and postulate that f-L(z) is a linear combination of gl (z), ... ,gp(z); that is
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j

I,
•

(91 (z), .... 9p (z» T as our covariate and consider the linear model

p

Y; = L BjWij + Ei, 1 < i < n
j=I

where

Wij - 9j(Zi).

For instance, if d = 1 and we take 9j (z) = zj, 0 < j < 2, we arrive at quadratic regression,
Y i = Bo + Bizi + B2 z; + Ei-see Problem 2.2.24 for more on polynomial regression.

Whether any linear model is appropriate in particular situations is a delicate matter par
tially explorable through further analysis of the data and knowledge of the subject matter.
We return to this in Volume II.

Weighted least squares. In Example 2.2.2 and many similar situations it may not be
reasonable to assume that the variances of the errors Ei are the same for all levels Zi of the
covariate variable. However, we may be able to characterize the dependence of Var(Ei) on
Zi at least up to a multiplicative constant. That is, we can write

(2.2.14)

where 0'2 is unknown as before, but the Wi are known weights. Such models are called
heteroscedastic (as opposed to the equal variance models that are homoscedastic). The
method of least squares may not be appropriate because (2.2.5) fails. Note that the variables

Y: = Y i = 9((3, z;) Ei 1 < i < n
,- r;m: r;m: + r;m:' - - ,

yWi yWi yWi

are sufficient for the Y; and that Var( Ed,jWi) = w;a2/wi = 0'2. Thus, if we set 9((3, z;) =

9((3, Zi)/,jWi, Ei = Ed,jWi, then

i
•

•
I

1
!

and the Y i satisfy the assumption (2.2.5). The weighted least squares estimate of (3 is now
~

the value (3, which for given Yi = yd,jWi minimizes

as a function of (3.

Example 2.2.3. Weighted Linear Regression. Consider the case in which d = 2, Zi1 = 1,
~ ~

Zi2 = Zi, and 9((3, Zi) = (31 + !32zi, i = 1, ... ,n. We need to find the values (31 and (32 of
(31 and (32 that minimize

I

" ••

Y; = 9((3, z;) + Ei' 1 < i < n

n n

L[)/; - 9((3, Zi)]2 = L ~. [Yi - 9((3, Zi)]2
. 1 . 1 't= t=

n

L Vi[Yi - ((31 + !32Zi)]2
i=l

(2.2.15)

(2.2.16)

(2.2.17)

1

....... TI
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(2.2.20)

(2.2.19)

(2.2.18)
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where W = diag(wI, ... , wn ) and ZD = IIZijllnxd is the design matrix. When ZD has
rank d and Wi > 0, 1 < i < n, we can write

n n
~ ~ 1", ~1~
(31 = E(Y*) - (32 E (Z*) = - L.- UiYi - 132- 6 UiZi·

n n
i=l i=l

and

n

Ui=Vi/Lvi' i=l, ... ,n.
i=l

where

P[(Z*, Y*) = (Zi,Yi)] = Ui, i = 1, ... ,n

E[Y* - /-l1(Z*W = L U;[Yi - ({31 + (32z;)f
i=l

where Vi = l/wi. This problem may be solved by setting up analogues to the normal
equations (2.1.8). We can also use the results on prediction in Section 1.4 as follows.
Let (Z' ,Y') denote a pair of discrete random variables with possible values (z I, Y1), ... ,
(Zn, Yn) and probability distribution given by

~

Next consider finding the/3 that minimizes (2.2.16) for g(/3, Zi) = z[/3 and for general
d. By following the steps of Example 2.2.1 leading to (2.1.7), we find (Problem 2.2.27)

~

that /3 satisfy the weighted least squares normal equations

If /-ll (Z*) = {31 + {32 Z* denotes a linear predictor of Y* based on Z*, then its MSPE is
given by

This computation suggests, as we make precise in Problem 2.2.26, that weighted least
squares estimates are also plug-in estimates. 0

Remark 2.2.2. More generally, we may allow for correlation between the errors {Ei}.
That is, suppose Var(E) = a 2W for some invertible matrix W nXn. Then it can be shown
(Problem 2.2.28) that the model Y = ZD/3+E can be transformed to one satisfying (2.2.1)

~

and (2.2.4)--(2.2.6). Moreover, when 9(/3, z) = zT /3, the /3 minimizing the least squares
contrast in this transformed model is given by (2.2.19) and (2.2.20).

It follows that the problem of minimizing (2.2.17) is equivalent to finding the best linear
MSPE predictor of Y*. Thus, using Theorem 1.4.3,

13 - Cov(Z*, Y*) _ L~-l UiZiYi - (L~-l UiYi)(L~-l UiZi)

2 - Var(Z*) - L~ 1 Ui Z; - (L~ 1 Ui Zi)2



2.2.2 Maximum Likelihood

Remark 2.2.3. Here are some applications of weighted least squares: When the ith re
sponse Y; is an average of ni equally variable observations, then Var(Yi ) = a2lni, and
Wi = ni 1. If Y; is the sum of ni equally variable observations, then Wi = ni. If the vari
ance of Y; is proportional to some covariate, say ZI, then Var(Y;) = Zila2 and Wi = Zi1.

In time series and repeated measures, a covariance structure is often specified for E (see
Problems 2.2.29 and 2.2.42).
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~ ~

Lx(B(x)) = p(x,B(x)) = max{p(x,B) : BEe} = max{Lx(B) : BEe}.

j
,

;
,

1
1
I
1
!

1

1 0
x\B 0

By our previous remarks, if e is finite and 'if is uniform, or, more generally, the prior
~

density 'if on e is constant, such a B(x) is a mode of the posterior distribution. If such
~ ~ ~

a B exists, we estimate any function q(B) by q(B(x)). The estimate q(B(x)) is called the
~

maximum likelihood estimate (MLE) of q(B). This definition of q(B) is consistent. That
is, suppose q is 1-1 from e to 0; set w = q(B) and write the density of X as Po (x, w) =

~

p(x, q~1 (w)). Ifwmaximizes Po (x, w) then w= q(B) (Problem 2.2.16(a)). If q is not 1-1,
~

the MLE of w = q(B) is still q(B) (Problem 2.2.16(b)).
Here is a simple numerical example.
Suppose B= 0 or ~ and p(x, B) is given by the following table.

The method of maximum likelihood was first proposed by the German mathematician C. F.
Gauss in 1821. However, the approach is usually credited to the English statistician R. A.
Fisher (1922) who rediscovered the idea and first investigated the properties of the method.
In the form we shall give, this approach makes sense only in regular parametric models.
Suppose that p(x, B) is the frequency or density function of X if B is true and that e is a
subset of d-dimensional space.

Recall Lx (B), the likelihood function of B, defined in Section 1.5, which is just p(x, B)
considered as a function of Bfor fixed x. Thus, if X is discrete, then for each B, Lx (B) gives
the probability of observing x. If e is finite and 'if is the uniform prior distribution on e,
then the posterior probability that () = Bgiven X = x satisfies 'if (B Ix) ex Lx(B), where
the proportionality is up to a function of x. Thus, we can think of Lx (B) as a measure of
how "likely" B is to have produced the observed x. A similar interpretation applies to the
continuous case (see A.7.l0).

~

The method of maximum likelihood consists of finding that value B(x) of the parameter
~

that is "most likely" to have produced the data. That is, if X = x, we seek B(x) that
satisfies

I, :, ,.,

n
; :1

'. j "
... 'I,.. ',I,



lx(B) = log Lx(B) = logp(x, B).

o
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is the MLE of B.

1 B-x
Lx(B) = -'P

a a

is a normal density with mean x and variance a 2 . The maximum is, therefore, achieved
uniquely for

Maximum likelihood estimates need neither exist nor be unique (Problems 2.2.14 and
2.2.13). In the rest of this section we identify them as of minimum contrast and estimating
equation type, relate them to the plug-in and extension principles and some notions in
information theory, and compute them in some important special cases in which they exist,
are unique, and expressible in closed form. In the rest of this chapter we study more
detailed conditions for existence and uniqueness and algorithms for calculation of MLEs
when closed forms are not available.

When Bis real, MLEs can often be obtained by inspection as we see in a pair of impor
tant examples.

Example 2.2.4. The Normal Distribution with Known Variance. Suppose X ~ N(B, a 2 ),

where a 2 is known, and let 'P denote the standard normal density. Then the likelihood
function

~

B(x) = x.

Suppose more generally that Xl, ... , X n is a sample from a N(B, a 2 ) population. It
is a consequence of Problem 2.2.15 that the MLE of B based on Xl, ... , X n is the same
as that based on the sufficient statistic X, which has aN(B, a 2 / n) distribution. In view of
our result for n = 1 we can conclude that

Example 2.2.5. Estimating the Size of a Population (continued). Suppose
Xl, ... , X n are Li.d. U{I, 2, ... , B} with B an integer > 1. We have seen in Example
2.1.7 that the method of moments leads to the unreasonable estimate 2X - 1 for the size B
of the population. What is the maximum likelihood estimate of B? From (1.5.10) we see
that Lx(B) is 0 for B = 1, ... , max(xI, ... , xn) - 1, then jumps to [max(xI, ... , xn)t n

and equals the monotone decreasing function B-n from then on. Figure 2.2.2 illustrates
the situation. Clearly, max(XI, ... , X n ) is the MLE of B. This estimate is also somewhat
unreasonable because we know that B > X(n). 0

Maximum likelihood as a minimum contrast and estimating equation method. Define

~

By definition the MLE B(X) if it exists minimizes - log p because -Lx (B) is a strictly
decreasing function of p. Log p turns out to be the best monotone function of p to consider
for many reasons. A prototypical one is that if the Xi are independent with densities or
frequency function x B for i = 1 ... n then with X = X
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-which again enables us to analyze the behavior of B using known properties of sums of
independent random variables. Evidently, there may be solutions of (2.2.27) that are not
maxima or only local maxima, and as we have seen in Example 2.2.5, situations with
B well defined but (2.2.27) doesn't make sense. Nevertheless, the dual point of view of
(2.2.22) and (2.2.27) is very important and we shall explore it extensively in the natural
and favorable setting of multiparameter exponential families in the next section.

Here are two simple examples with B real.

Example 2.2.6. Consider a population with three kinds of individuals labeled 1, 2, and 3
and occurring in the Hardy-Weinberg proportions

p(l, B) = B2, p(2, B) = 2B(1 - B), p(3, B) = (1 _ B)2

where 0 < B < 1 (see Example 2.1.4). If we observe a sample of three individuals and
obtain Xl = 1, X2 = 2, X3 = 1, then

Lx(B) = p(l, B)p(2, B)p(l, B) = 2B5 (1 - B).

• • The likelihood equation is

{) 5 1
{)B1x(B) = B -1-B =0,

~

which has the unique solution B = ~. Because
i

<0
;

1
i

for all B E (0,1), ~ maximizes Lx(B). In general, let nl, n2, and n3 denote the number
of {Xl, ... ,Xn } equal to 1, 2 and 3, respectively. Then the same calculation shows that if
2nl + n2 and n2 + 2n3 are both positive, the maximum likelihood estimate exists and is
given by

(2.2.28)

(2.2.29)
e->.n(>..n)X

p(x, >..) = , ' X = 0, 1, ...
x.

B( ) = 2nl + n2
x 2n'

If 2nl + n2 is zero, the likelihood is (1 - B)2n, which is maximized by B = 0, so the MLE
does not exist because e = (0, 1). Similarly, the MLE does not exist if n2 + 2n3 = O. 0

Example 2.2.7. Let X denote the number of customers arriving at a service counter during
n hours. If we make the usual simplifying assumption that the arrivals form a Poisson
process, then X has a Poisson distribution with parameter n>", where >.. represents the
expected number of arrivals in an hour or, equivalently, the rate of arrival. In practice, >.. is
an unknown positive constant and we wish to estimate>" using X. Here X takes on values
{O, 1,2, ... } with probabilities,



We first consider the case with all the nj positive. Then p(x, 0) = 0 if any of the 6j are
~

zero; thus, the MLE must have all Bj > 0, and must satisfy the likelihood equa60ns

119

(2.2.31 )

(2.2.32)
k-1

Bk = 1- LBj.
j=l

~ n·
Bj = --.1., j = 1, ... , k.

n

~ ~

-1, and the equation becomes (Bk/Bj )

k k

lx(9) = LnjlogBj, 9 E e = {9: Bj > O'Lej = I}.
j=l j=l
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The likelihood equation is

k k
8 8 '" '" nl 8B1 .

8B lx(9) = 8B. L...- n1log B1 = L...- 7i; 8B. = 0, J = 1, ... ,k - 1.
J J 1=1 1=1 J

for all B. This is the condition we applied in Example 2.2.6. A similar condition applies
for vector parameters.

Example 2.2.8. Multinomial Trials. As in Example 1.6.7, consider an experiment with n
i.i.d. trials in which each trial can produce a result in one of k categories. Let Xi = j if
the ith trial produces a result in the jth category, let Bj = P(Xi = j) be the probability
of the jth category, and let N j = I:~ 1 I[Xi = j] be the number of observations in the
jth category. We assume that n > k - 1. Then, for an experiment in which we observe

nj = I:~ 1 I[Xi = j], p(x, 9) = TI~=l B7j
, and

To apply the likelihood equation successfully we need to know when a solution is an
MLE. A sufficient condition, familiar from calculus, is that I be concave in B. If I is twice
differentiable, this is well known to be equivalent to

-which has the unique solution A = x/no If x is positive, this estimate is the MLE of A
(see (2.2.30)). If x = 0 the MLE does not exist. However, the maximum is approached as

A10. 0

By (2.2.32), 8Bk/8Bj
(2.2.32) to find

~

To obtain the MLE 9 we consider I as a function of B1,. " ,Bk-1 with
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-To show that this 0 maximizes Ix(O), we check the concavity of Lx(O): let 1 < T < k - 1,
1 < j < k - 1, then

n r nk
(P + (p < 0, T = j

r k

nk .
-2<0,Ti=J.

()k

(2.2.33)

I

-It follows that in this nj > 0, ()j > 0 case, Ix(O) is strictly concave and 0 is the unique- -maximizer of Lx(O). Next suppose that nj = 0 for some j. Then 0 with ()j = nj/n,

j = 1, ... , k, is still the unique MLE of O. See Problem 2.2.30. The 0 < ()j < 1,
1 < j < k, version of this example will be considered in the exponential family case in
Section 2.3.

Example 2.2.9. Suppose that Xl, ., ., X n are i.i.d. N(J.l, er2 ) with J.l and er2 both unknown.
Using the concavity argument, we find that for n > 2 the unique MLEs of J.l and er2 are
Ii = X and 0'2 = n- l I:~ 1 (Xi - X? (Problem 2.2.11(a».

Maximum likelihood and least squares

We conclude with the link between least squares and maximum likelihood. Suppose
the model Po of Example 2.1.1 holds and X = (Y1, ... , Yn )T. Then

Evidently maximizing Lx ({3) is equivalent to minimizing I:~ 1[Y; - g({3, Zi)]2. Thus,
least squares estimates are maximum likelihood for the particular model Po. As we have
seen and shall see more in Section 6.6, these estimates viewed as an algorithm applied
to the set of data X make sense much more generally. It is easy to see that weighted
least squares estimates are themselves maximum likelihood estimates of (3 for the model-Y; independent N(g({3, Zi), wier5), 1 < i < n. More generally, we can consider {3 min-
imizing I:i)Y; - g({3,Zi)][Yj - g({3,Zj)]Wij where W = Ilwijllnxn is a symmetric
positive definite matrix, as maximum likelihood estimates for {3 when Y is distributed as
Nn ((g({3, ZI), ... ,g({3, zn)f, er5W-1), see Problem 2.2.28.

Summary. In Section 2.2.1 we consider least squares estimators (LSEs) obtained by min
imizing a contrast of the form I:~ 1 [Yi - gi ({3)]2, where E(Yi) = gi ({3), gi, i = 1, ... , n,
are known functions and (3 is a parameter to be estimated from the independent observa
tions Y1 , ••• ,Yn , where Var(Yi) does not depend on i. This approach is applied to ex
periments in which for the ith case in a study the mean of the response Yi depends on

""
11,,

I!' ,

I'I'
iI
i i
~ I,

',',jli
I '~ i,

Lx ((3) lI
n 1 Y; - g({3, Zi)

log -<.p
i=l ero ero

n
n 2 1 '"' 2-"2 log(271'ero) - 2er2 L.)Y; - g({3,Zi)] .

o i=l

(2.2.34)

1

j

I

7



88 = {(a, b) : a = ±00,0 < b < oo} U {(a, b) : a E R, b E {O, oo}}.

2.3 MAXIMUM LIKELIHOOD IN MULTIPARAMETER
EXPONENTIAL FAMILIES

Proof. See Problem 2.3.5.
Existence and unicity of the MLE in exponential families depend on the strict concavity

of the log likelihood and the condition of Lemma 2.3.1 only. Fonnally,

121

(2.3.1)

-l(e) = max{l(e) : e E e}.

lim{l(e) : e -+ 88} = -00.
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a set of available covariate values zi!, ... ,Zid. In particular we consider the case with

gi({3) = ~~=I Zij(3j and give the LSE of (3 in the case in which IlzijllnXd is of rank
d. Extensions to weighted least squares, which are appropriate when Var(Y;) depends on
i or the Y's are correlated, are given. In Section 2.2.2 we consider maximum likelihood-estimators (MLEs) e that are defined as maximizers of the likelihood Lx (B) = p(x, e).
These estimates are shown to be equivalent to minimum contrast estimates based on a con
trast function related to Shannon entropy and Kullback-Leibler information divergence.
In the case of independent response variables Y; that are modeled to have a N(gi({3), 0-2 )

distribution, it is shown that the MLEs coincide with the LSEs.

Questions of existence and uniqueness of maximum likelihood estimates in canonical ex
ponential families can be answered completely and elegantly. This is largely a consequence
of the strict concavity of the log likelihood in the natural parameter 7], though the results
of Theorems 1.6.3 and 1.6.4 and Corollaries 1.6.1 and 1.6.2 and other exponential family
properties also playa role. Concavity also plays a crucial role in the analysis of algorithms
in the next section. Properties that derive solely from concavity are given in Propositon
2.3.1.

We start with a useful general framework and lemma. Suppose 8 c RP is an open set.
- -

Let 88 = 8 - 8 be the boundary of e, where e denotes the closure of 8 in [-oo,ooJP.
That is, 88 is the set of points outside of 8 that can be obtained as limits of points in 8,
including all points with ±oo as a coordinate. For instance, if X ""' N(B!, ( 2 ), 8 = RxR+
and

-Then there exists e E 8 such that

In general, for a sequence {em} of points from 8 open, we define em -> 8e as m -+ 00
to mean that for any subsequence {Bmk } either emk -+ t with t ¢: 8, or emk diverges
with lemk I -> 00, as k -+ 00, where II denotes the Euclidean nonn. For instance, in the
N(B 1 , ( 2 ) case, (a, m- 1

), (m, b), (-m, b), (a, m), (m, m- 1
) all tend to 88 as m -+ 00.

Lemma 2.3.1. Suppose we are given a function 1 : 8 -+ R where e c RP is open and 1 is
continuous. Suppose also that
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Proposition 2.3.1. Suppose X ~ {PO : 0 E 8}, 8 open c RP, with corresponding
densities p(x, 0). (f.further Ix(O) = 10gp(x,O) is strictly concave and Ix(O) -+ -00 as-o -+ 88, then the MLE O(x) exists Gild is unique.

(2.3.2)

(2.3.3)

-Proof. From (B.9) we know that 0 -+ lx(O) is continuous on 8. By Lemma 2.3.1, O(x)

eXists.UO I and O2 are distinct maximizers, thenlx U(OI + ( 2)) > ~(lx(OIl+lx(02)) =
-

Ix(OI)' a contradiction.
Applications of this theorem are given in Problems 2.3.8 and 2.3.12. 0

We can now prove the following.

Theorem 2.3.1. Suppose P is the canonical exponential family generated by (T, h) and
that

(i) The natural parameter space, E, is open.
(ii) The family is of rank k.
Let x be the observed data vector and set to = T(x).
(a) lfto E R k satisjies(l)

.

then the MLE ii exists, is unique, and is a solution to the equation

(b) Conversely, ijto doesn't satisfy (2.3.2), then the MLE doesn't exist and (2.3.3) has
no solution.

We, thus, have a necessary and sufficient condition for existence and uniqueness of the
MLE given the data.

Define the convex support of a probability P to be the smallest convex set C such that
P(C) = 1.

We show that if {11m} has no subsequence converging to a point in E, then lx(11m) -+ -00,

which implies existence of ii by Lemma 2.3.1. Write 11m = Am U m, U m = II;: II' Am =

Corollary 2.3.1. Suppose the conditions ofTheorem 2.3.1 hold. lfCT is the convex support
ofthe distribution ofT(X), then ii exists and is unique ijfto E C4 where C4 is the interior

ofCT'

Proofof Theorem 2.3.1. We give the proof for the continuous case.

Existence and Uniqueness ofthe MLE ii. Without loss of generality we can suppose h(x) =

P(X,11o) for some reference 110 E E (see Problem 1.6.27). Furthennore, we may also
assume that to = T(x) = 0 because P is the same as the exponential family generated by
T(x) - to. Then, if lx(11) = logp(x, 11) with T(x) = 0,

'< '

,
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Case 2: Amk -+ A, umk -+ u. Then AU ¢: [ by assumption. So

because for some b > 0, Po[uTT(X) > b] > O. So we have
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Il1Jmlf. So, Ifumlf = 1. Then, if {17m} has no subsequence converging in [it must have a
subsequence {lJmk} that obeys either case 1 or 2 as follows.

Case 1: Amk -+ 00, U mk -+ u. Write Eo for ElJo and Po for PlJo' Then

J lJ T T(x) . A u T T(X)limk e =k h(x)dx hmkEoe =k mk

> limeA=ko Po [U¢;'k T(X) > b]
> limeA=koPo[uTT(X) > b] = 00

Theorem 2.3.2. Suppose the conditions o/Theorem 2.3.1 hold and T kX1 has a continuous
case density on R k . Then the MLE ii exists with probability 1 and necessarily satisfies
(2.3.3).

In either case limmk Ix(lJmk) = -00. Because any subsequence of {17m} has no subse
quence converging in [ we conclude Ix (17m) -+ -00 and ii exists. It is unique and satisfies
(2.3.3) by Theorem 1.6.4.

Nonexistence: If (2.3.2) fails, there exists c i= 0 such that Po[cTT < 0] = 1 =?

ElJ(cTT(X)) < 0, for all 17. If ii exists then E1] T = 0 =? E1](cTT) = 0 =? P1][cTT =

0] = 1, contradicting the assumption that the family is of rank k. 0

Pro%/Corollary 2.3.1. By (B.9.1) a point to belongs to the interior C of a convex
set C iff there exist points in CO on either side of it, that is, iff, for every d i= 0, both
{t : dTt > dTto} n CO and {t : dTt < dTto} n CO are nonempty open sets. The
equivalence of (2.3.2) and Corollary 2.3.1 follow. 0

Example 2.3.1. The Gaussian Model. Suppose Xl, ... , X n are i.i.d. N (/-l, 0-
2

), J-L E R,
0-

2 > O. As we observed in Example 1.6.5, this is the exponential family generated by
T(X) - (I:~ 1 Xi, I:~ 1 Xl) and 1. Evidently, CT = R )( R+. For n > 2, T(X) has
a density and, thus, CT = C!j, and the MLE always exists. Por n = 1, C!j, = 0 because
T(X1 ) is always a point on the parabola T2 = T'f and the MLE does not exist. This is
equivalent to the fact that if n = 1 the formal solution to tlle likelihood equations gives
0'2 = 0, which is impossible. 0

In fact, existence of MLEs when T has a continuous ca.se density is a general phe
nomenon.
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Proof The boundary of a convex set necessarily has volume 0 (Problem 2.3.9), thus, if T
has a continuous case density PT(t), then

and the result follows from Corollary 2.3.1. o

•

"I;
,

•

Remark 2.3.1. From Theorem 1.6.3 we know that E1JT(X) = A(1J). Thus, using (2.3.3),
the MLE 1j in exponential families has an interpretation as a generalized method of mo
ments estimate (see Problem 2.1.13 and the next example). When method of moments
and frequency substitution estimates are not unique, the maximum likelihood principle in
many cases selects the "best" estimate among them. For instance, in the Hardy-Weinberg

~ ~ ~

examples 2.1.4 and 2.2.6, ()l = ,fiilln, ()2 = 1 - Jn31n and ()3 = (2nl + n2)/2n are
~

frequency substitution estimates (Problem 2.1.1), but only ()3 is a MLE. In Example 3.4.4
~

we will see that ()3 is, in a certain sense, the best estimate of ().

A nontrivial application of Theorem 2.3.2 follows.

Example 2.3.2. The Two-Parameter Gamma Family. Suppose Xl, ... ,Xn are i.i.d. with
density 9p,;>"(X) = r~;)e-;>"XxP-l, x > 0, P > 0, A > O. This is a rank 2 canonical

exponential family generated by T = (2:: log Xi, 2:: Xi), h(x) = x- l , with

by Problem 2.3.2(a). The likelihood equations are equivalent to (Problem 2.3.2(b))

f' ~
r(jJ) -log A = log X

~

P --X~ -
A

(2.3.4)

(2.3.5)

I

:1
, ~', i. ,

where log X = ~ 2::~ 1 log Xi. It is easy to see that if n > 2, T has a density. We conclude
from Theorem 2.3.2 that (2.3.4) and (2.3.5) have a unique solution with probability 1. How
to find such nonexplicit solutions is discussed in Section 2.4. 0

If T is discrete MLEs need not exist. Here is an example.

Example 2.3.3. Multinomial Trials. We follow the notation of Example 1.6.7. The statistic
of rank k - 1 which generates the family is T(k-l) = (Tlo ... , Tk_d T

, where Tj(X) =
2::~ 1 I(Xi = j), 1 < j < k. We assume n > k - 1 and verify using Theorem 2.3.1 that
in this case MLEs of"'j = log(Aj I Ak), 1 < j < k - 1, where 0 < Aj = P[X = j] < 1,

~

exist iff all Tj > O. They are determined by Aj = Tj In, 1 < j < k. To see this note that
Tj > 0, 1 < j < k iff 0 < Tj < n, 1 < j < k. Thus, if we write c T to = 2:: {CjtjO : Cj >
O} + 2:: {cjtjO : Cj < O} we can increase c T to by replacing a tjO by tjo + 1 in the first sum
or a tjO by tjO - 1 in the second. Because the resulting value of t is possible if 0 < tjO < n,

1 < j < k, and one of the two sums is nonempty because c f= 0, we see that (2.3.2) holds.

j

•

j
I



Let CO denote the interior of the range of (Cl (B), ... , Ck (B)) T and let x be the observed
data. If the equations
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(2.3.6)

(2.3.7)
•

cT (9)(to - A(c(9)) = o.

p(x,9) = exp{cT (9)T(x) - A(c(9))}h(x).

Section 2.3 Maximum Likelihood in Multiparameter Exponential Families

k

p(x, B) = h(x) exp 2:>j (B)Tj (x) - B(B) , x EX, BEe.
j=l

~

have a solution B(x) E Co, then it is the unique MLE ofB.

When P is not an exponential family both existence and unicity of MLEs become more
problematic. The following result can be useful. Let Q = {P9 : 9 E e}, e open C Rm,
m < k - 1, be a curved exponential family

On the other hand, if any TJ = 0 or n, 0 < j < k - 1 we can obtain a contradiction to
(2.3.2) by taking Ci = -1(i = j), 1 < i < k - 1. The remaining case Tk = 0 gives a
contradiction if c = (1,1, ... , 1)T. Alternatively we can appeal to Corollary 2.3.1 directly
(Problem 2.3.10). 0

Remark 2.3.1. In Example 2.2.8 we saw that in the multinomial case with the clqsed

parameter set {Aj : Aj > 0, ~~=l Aj = I}, n > k-l, theMLEs of Aj,j = 1, ... , k,exist
and are unique. However, when we put the multinomial in canonical exponential family
fonn, our parameter set is open. Similarly, note that in the Hardy-Weinberg Example 2.2.6,
if 2nl + n2 = 0, the MLE does not exist if e = (0,1), whereas if B = [0,1] it does exist
~nd is unique. 0

The argument of Example 2.3.3 can be applied to detennine existence in cases for
which (2.3.3) does not have a closed-fonn solution as in Example 1.6.8-see Problem
2.3.1 and Habennan (1974).

In some applications, for example, the bivariate nonnal case (Problem 2.3.13), the
following corollary to Theorem 2.3.1 is useful.

Corollary 2.3.2. Consider the exponential family

~

Note that c(9) E c(8) and is in general not ij. Unfortunately strict concavity of Ix is
not inherited by curved exponential families, and unicity can be lost-take c not one-to-one
for instance.

Suppose C : e --+ [; C Rk has a differential c(9) - ~~j (9) on e. Here [; is the
1. mxk

natural parameter space of the exponential family P generated by (T, h). Then

Theorem 2.3.3. If P above satisfies the condition of Theorem 2.3.1, c(8) is closed in [;
~

and T(x) = to satisfies (2.3.2) so that the MLE ij in P exists, then so does the MLE 9 in
Q and it satisfies the likelihood equation

•
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The proof is sketched in Problem 2.3.11.

Example 2.3.4. Gaussian with Fixed Signal to Noise. As in Example 1.6.9, suppose
Xl, ... , X n are i.i.d. N(/t, 0-2) with M/o- = AO > 0 known. This is a curved exponential

f '1 . h () ~ () >-6 0 d' ~ 1amI y WIt C1 M = ,,' C2 M = - 21'2 , M > , correspon lllg to 1]1 = ".2, 1]2 = - 2".2 .

Evidently c(8) = {(711, 1]2) : 1]2 = - ~ 1]; A02, 1]1 > 0,1]2 < O}, which is closed in
[; = {(1]1o 1]2) : 1]1 E R,1]2 < O}. As a consequence of Theorems 2.3.2 and 2.3.3, we can
conclude that an MLE /i always exists and satisfies (2.3.7) if n > 2. We find

'(B) = A2 (_ -2 -3)TcoM ,M ,

and from Example 1.6.5

I
!

Thus, with t1 = I: Xi and t2 = I: x;, Equation (2.3.7) becomes

A5( -M-2, M- 3)(t1 - nM, t2 - n(M2 + A5M2)f = 0,

which with /i2 = n~l I:x; simplifies to

M2 + A5xM - A5/i2 = 0

where Zl, '" ,Zn are given constants. Now p(y, 9) is a curved exponential family of the
form (2.3.6) with

0, the
o

•

Tmmmm

T(Y) = LYll"'" LYn1 , L Yl1, .. .,LY;I
1=1 1=1 1=1 1=1

/i± = ~ [A5 x ± AOVA5 x2 + 4/i2]'

Note that /i+/i- = -A5/i2 < 0, which implies /i+ > 0, /i- < O. Because M >
solution we seek is /i+.

Next suppose, as in Example 1.6.10, that

Mi = B1 + B2zi , 0-; = B3(B1 + B2zi )2, Zl < '" < Zn

Example 2.3.5. Location-Scale Regression. Suppose that Yil' ... ,Yim, j = 1, ... , n,
are n independent random samples, where Yil ~ N(Mj, 0-]). Using Examples 1.6.5 and
1.6.10, we see that the distribution of {Yil : j = 1, ... , n, l = 1, ... ,m} is a 2n-parameter
canonical exponential family with 1]i = M;/o-;, 1]n+i = -1/20-;, i = 1, ... ,n, generated
by h(Y) = 1 and

1
1
"
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,
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, ,

i II
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2.4 ALGORITHMIC ISSUES

2.4.1 The Method of Bisection

127Section 2.4 Algorith mic Issues

- -Then c(8) is closed in [; and we can conclude that for m > 2, an MLE () of () exists and ()
satisfies (2.3.7). 0

Summary. In this section we derive necessary and sufficient conditions for existence of
MLEs in canonical exponential families of full rank with [; open (Theorem 2.3.1 and Corol
lary 2.3.1). These results lead to a necessary condition for existence of the MLE in curved
exponential families but without a guarantee of unicity or sufficiency. Finally, the basic
property making Theorem 2.3.1 work, strict concavity, is isolated and shown to apply to a
broader class of models.

If m > 2, then the full 2n-parameter model satisfies the conditions of Theorem 2.3.1. Let
[; be the canonical parameter set for this full model and let

The bisection method is the essential ingredient in the coordinate ascent algorithm that
yields MLEs in k-parameter exponential families. Given f continuous on (a, b), f i
strictly, f(a+) < 0 < f(b-), then, by the intermediate value theorem, there exists unique
x·E(a, b) such that f(x·) = O. Here, in pseudocode, is the bisection algorithm to find x·.
Given tolerance E > 0 for IXfinal - x·l:

Find Xo < XI, f(xo) < 0 < f(xd by taking Ixol, IXlllarge enough. Initialize x~ld =

XI, xold = Xo.

As we have seen, even in the context of canonical multiparameter exponential families,
such as the two-parameter gamma, MLEs may not be given explicitly by formulae but only
implicitly as the solutions of systems of nonlinear equations. In fact, even in the classical-regression model with design matrix Zv of full rank d, the formula (2.1.10) for {3 is easy
to write down symbolically but not easy to evaluate if d is at all large because inversion of
Z"bZv requires on the order of nd2 operations to evaluate each of d( d + 1)/2 terms with
n operations to get Z"bZv and then, if implemented as usual, order d3 operations to invert.
The packages that produce least squares estimates do not in fact use formula (2.1.10).

It is not our goal in this book to enter seriously into questions that are the subject of
textbooks in numerical analysis. However, in this section, we will discuss three algorithms
of a type used in different statistical contexts both for their own sakes and to illustrate what
kinds of things can be established about the black boxes to which we all, at various times,
entrust ourselves.

We begin with the bisection and coordinate ascent methods, which give a complete
though slow solution to finding MLEs in the canonical exponential families covered by
Theorem 2.3.1.
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(I) If IX~ld - xoldl < 2E, xfinal = ~ (x~ld + xold) and return xfinal'

(2) Else, Xnew = ~ (x~ld + xold )'

(3) If f(xnew) = 0, xfinal = xnew·

(4) If f(xnew) < 0, xold = Xnew·

(5) If f(xnew) > 0, x~ld = Xnew·

Go to (1).

End

Lemma 2.4.1. The bisection algorithm stops at a solution xfinal such that
,
i

IXfinal - x'i < Eo ,

Proof If X m is the mth iterate of Xnew
i,,

(1)

Moreover, by the intennediate value theorem,

.,.,, (2)

Therefore,

Xm < x' < Xm+l for all m .

--------------------

Proof By Theorem 1.6.4, f'(.,,) = Var1JT(X) > 0 for all." so that f is strictly increasing

and continuous and necessarily because if exists, f(a+) < 0 < f(b-). 0

Example 2.4.1. The Shape Parameter Gamma Family. Let Xl, ... , X n be i.i.d. f(0, 1),

1,
i
1

o

(2.4.1)p(X,O) = r-1(O)x(J-le- x
, X> 0,0> O.

and X m --+ x' as m --+ 00. Moreover, for m = log2(lxl - XOI/E), IXm+l - x'i < E.

If desired one could evidently also arrange it so that, in addition, If(Xfinal)I < E.
From this lemma we can deduce the following.

Theorem 2.4.1. Let p(x, .,,) be a one-parameter canonical exponentialfamily generated by
(T, h), satisfying the conditions of Theorem 2.3.1 and T = to E C~, the interior (a, b) of
the convex support ofPT· Then, the MLE if, which exists and is unique by Theorem 2.3.1,
may be found (to tolerance E) by the method ofbisection applied to

(3)
,,,,,
I
Ii;

I,·

II
I',I!

"

"
,
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,
n

T(X)f'(B)
f(B)

~o (~ .-{})
17 = TJl"'" TJk •

Section 2.4 Algorith mic Issues

Because T(X) = 2::7 I log X; has a density for all n the MLE always exists. It solves the
equation

~1 {) A(.-{) .-{})
for TJI : {) TJI' TJ2' ••• ,TJk = tl

TJl

f ~1 {) A(~1 .-{} .-{})
or TJ2 : {) TJl' TJ2, TJ3"'" TJk = t2

TJ2

•

which by Theorem 2.4.1 can be evaluated by bisection. This example points to another
hidden difficulty. The function f(B) = It xO-le-xdx needed for the bisection method
can itself only be evaluated by numerical integration or some other numerical method.
However, it is in fact available to high precision in standard packages such as NAG or
MATLAB. In fact, bisection itself is a defined function in some packages. 0

•

2.4.2 Coordinate Ascent

~OI _ (~1 .-{} .-{}) ~02 - (~1 ~1 .-{} .-{}) d17 = TJl' TJ2, ••. ,TJk ,17 = TJl' TJ2' TJ3' ••. , TJk ,an so on,

t ~1 {) A(~1 ~1 )or '11k '. 1/ = '11 - t
'1 fJ"Ik 1"/~"""lk - k·

The problem we consider is to solve numerically, for a canonical k-parameter exponential
family,

•

E17(T(X)) = A(17) = to

when the MLE ij = ij(to) exists. Here is the algorithm, which is slow, but as we shall see,
always converges to Tj.

The case k = 1: See Theorem 2.4.1.

The general case: Initialize

Solve

~Ok _ ~(1) _ (~1 ~1)
17 = 17 - TJl,···' TJk .

Repeat, getting ij(r), r > 1, eventually.

Notes:
(I) In practice, we would again set a tolerence to be, say E, for each of the ifl, 1 < l <

k, in cycle j and stop possibly in midcycle as soon as

and finally

Set
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,

1
I

I,

. '1 i, "
> iI; ,
) , I ,

I

(2) Notice that g:, Uti, ... ,Tii-2' 1]1, Tii+ll , ... ) is the expectation of T1(X) in the one
parameter exponential family model with all parameters save 1]1 assumed known. Thus, the
algorithm may be viewed as successive fitting of one-parameter families. We pursue this
discussion next.

Theorem 2.4.2./fTj(r) are as above, (i), (ii) ofTheorem 2.3.1 hold and to E Cff,

Tj(r) ---> Tj as T ---> 00.

Proof. We give a series of steps. Let l(TJ) = tifTJ - A(TJ) + log h(x), the log likelihood.

(I) l(Tjij ) i in j for i fixed and in i. If 1 < j < k, Tji j and Tji(j+l) differ in only one

coordinate for which Tji(j+l) maximizes l. Therefore, limi,j l(Tjij ) = >. (say) exists and is
> -00.

(2) The sequence (Tji!, . .. ,Tjik) has a convergent subsequence in [; x ... x [;

( ~inl ~ink) (I k)TJ ,oo·,TJ ---> TJ ,OO·,TJ .

But TJj E [;, 1 < j < k. Else limi l(Tj']) = -00 for some j.
(3) l(TJj) = >. for all j because the sequence of likelihoods is monotone.

(4) :~j (TJj) = 0 because :~j (Tjin
j
) = 0, Vn.

(5) Because TJ l , TJ2 differ only in the second coordinate, (3) and (4) =? TJl TJ2.
Continuing, TJ 1 = ... = TJk. Here we use the strict concavity of l.

(6) By (4) and (5), A(TJl) = to. Hence, TJl is the unique MLE.

To complete the proof notice that if Tj(rk
) is any subsequence of Tj(r) that converges to

Tj' (say) then, by (1), l(Tj') = >.. Because l(Tjl) = >. and the MLE is unique, Tj' = Tjl = Tj.
By a standard argument it follows that, Tj(r) ---> Tj. 0

Example 2.4.2. The Two-Parameter Gamma Family (continued). We use the notation of
Example 2.3.2. For n > 2 we know the MLE exists. We can initialize with the method

.-... - -2

of moments estimate from Example 2.1.2, >.(0) = ;." P(0) = ;2' We now use bisection
, .-....-... (1) 1 .-...

to getp{l) solving ~ Wi)) = logX + log >.(0) and then >.(1) = Px ' Tj = (P{l), _>.(1»).
Continuing in this way we can get arbitrarily close to Tj. This two-dimensional problem is
essentially no harder than the one-dimensional problem of Example 2.4.1 because the equa-

~ ~

tion leading to >'new given bold' (2.3.5), is computationally explicit and simple. Whenever
we can obtain such steps in algorithms, they result in substantial savings of time. 0

It is natural to ask what happens if, in fact, the MLE Tj doesn't exist; that is, to ¢: Cff.
Fortunately in these cases the algorithm, as it should, refuses to converge (in TJ space!)-see
Problem 2.4.2.

We note some important generalizations. Consider a point we noted in Example 2.4.2:
For some coordinates l, iff can be explicit. Suppose that this is true for each l. Then each
step of the iteration both within cycles and from cycle to cycle is quick. Suppose that we
can write TJT = (TJL ... ,TJ;) where TJj has dimension dj and 2::;=1 dj = k and the
problem of obtaining Tjl(to,TJj; j i= l) can be solved in closed form. The case we have

1

d



Figure 2.4.1. The coordinate ascent algorithm. The graph shows log likelihood contours,
that is, values of (0 1 , ( 2 )T where the log likelihood is constant. At each stage with one
coordinate fixed, find that member of the family of contours to which the vertical (or hori
zontal) line is tangent. Change other coordinates accordingly.

just discussed has d1 = ... = dr = 1, T = k. Then it is easy to see that Theorem 2.4.2 has
a generalization with cycles of length T, each of whose members can be evaluated easily.
A special case of this is the famous Deming-Stephan proportional fitting of contingency
tables algorithm-see Bishop, Feinberg, and Holland (1975), for instance, and Problems
2.4.9-2.4.10.

Next consider the setting of Proposition 2.3.1 in which Ix(O), the log likelihood for-o E e open C RP, is strictly concave. If O(x) exists and Ix is differentiable, the method
extends straightforwardly. Solve g~: (ot, ... ,0J-l , OJ, 07+1' ... , O~) = 0 by the method of

bisection in OJ to get OJ for j = 1, ... ,p, iterate and proceed. Figure 2.4.1 illustrates the
process. See also Problem 2.4.7.

The coordinate ascent algorithm can be slow if the contours in Figure 2.4.1 are not
close to spherical. It can be speeded up at the cost of further computation by Newton's
method, which we now sketch.

131
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2.4.3 The Newton-Raphson Algorithm

An algorithm that, in general, can be shown to be faster than coordinate ascent, when
it converges, is the Newton-Raphson method. This method requires computation of the
inverse of the Hessian, which may counterbalance its advantage in speed of convergence
when it does converge. Here is the method: If 110ld is the current value of the algorithm,
then

(2.4.2)

,

•

The rationale here is simple. If 110ld is close to the root 11 of A(11)
•

expanding A(11) around 11old' we obtain

to - A(11old) = A(11) - A(11old) ':::: A(11old)(11 - 11old)'

to, then by

n

n

I
i

J

I,
!

j
i•

I,

I

7

o

i(B) -2 L f(Xi , B) < O.
i=l

F(x,B) = [1 +exp{-(x-B)}]-l.

i(B) n - 2L exp{-(Xi - B)}F(Xi , B)
i=l

f( B) = exp{-(x - B)}
x, [1 + exp{-(x - B)}J2'

Example 2.4.3. Let Xl, ... , X n be a sample from the logistic distribution with dJ.

11new is the solution for 11 to the approximation equation given by the right- and left-hand
sides. If 110ld is close enough to 11, this method is known to converge to 11 at a faster rate
than coordinate ascent-see Dahlquist, Bjork, and Anderson (1974). A hybrid of the two
methods that always converges and shares the increased speed of the Newton-Raphson
method is given in Problem 2.4.7.

Newton's method also extends to the framework of Proposition 2.3.1. In this case, if
l(B) denotes the log likelihood, the argument that led to (2.4.2) gives

Bnew = Bold - i-I (BOld)i(Bold))' (2.4.3)

We find

The density is

The Newton-Raphson algorithm has the property that for large n, iinew after only one
step behaves approximately like the MLE. We return to this property in Problem 6.6.10.

When likelihoods are noncave, methods such as bisection, coordinate ascent, and
Newton-Raphson's are still employed, though there is a distinct possibility of nonconver
gence or convergence to a local rather than global maximum. A one-dimensional problem

~

The Newton-Raphson method can be implemented by taking Bold
X.

•

,

h,

,. .
, ·i. ,
I
!
I
!
:\ :



Here is another important example.
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(2.4.4)

(2.4.5)

Xi, 1 < i < m

(t:i1 + t:i2, t:i3), m + 1 < i < n.

m

:~:)2t:illog8 + t:i210g28(1 - 8) + 2t:i310g(1 - 8)]
i=l

n

+ L [(t:il + t:i2) 10g(1 - (I - 8)2) + 2Ei310g(1 - 8)]
i=m+1

Section 2.4 Algorithmic Issues

2.4.4 The EM (Expectation/Maximization) Algorithm

in which such difficulties arise is given in Problem 2.4.13. Many examples and impor
tant issues and methods are discussed, for instance, in Chapter 6 of Dahlquist, Bjork, and
Anderson (1974).

Evidently, S = S(X) where S(X) is given by (2.4.4). This could happen if, for some
individuals, the homozygotes of one type (t:i1 = 1) could not be distinguished from the
heterozygotes (t:i2 = I). The log likelihood of S now is

There are many models that have the following structure. There are ideal observations,
X ~ P(J with density p(x, e), 8 E e c Rd. Their log likelihood lp,x(8) is "easy" to max
imize. Say there is a closed-form MLE or at least lp,x(8) is concave in 8. Unfortunately,
we observe 8 8(X) ~ Q(J with density q(s, 8) where lq,s(8) = logq(s, 8) is difficult to
maximize; the function is not concave, difficult to compute, and so on. A fruitful way of
thinking of such problems is in terms of 8 as representing part of X, the rest of X is "miss
ing" and its "reconstruction" is part of the process of estimating 8 by maximum likelihood.
The algorithm was fonnalized with many examples in Dempster, Laird, and Rubin (1977),
though an earlier general form goes back to Baum, Petrie, Soules, and Weiss (1970). We
give a few examples of situations of the foregoing type in which it is used, and its main
properties. For detailed discussion we refer to Little and Rubin (1987) and MacLachlan
and Krishnan (1997). A prototypical example follows.

Example 2.4.4. Lumped Hardy-Weinberg Data. As in Example 2.2.6, let Xi, i = 1, ... , n,
be a sample from a population in Hardy-Weinberg equilibrium for a two-allele locus, Xi =

(t:iJ' t:i2, t:i3), where P(J[X = (1,0,0)] = 82, P(J[X = (0,1,0)] = 28(1 - 8), P(J[X =
(0,0,1)] = (1- 8)2, 0 < e< 1. What is observed, however, is not X but S where

a function that is of curved exponential family form. It does tum out that in this simplest
case an explicit maximum likelihood solution is still possible, but the computation is clearly
not as simple as in the original Hardy-Weinberg canonical exponential family example. If
we suppose (say) that observations 81, ... ,8m are not Xi but (t:i1' t:i2 + t:i3), then explicit
solution is in general not possible. Yet the EM algorithm, with an appropriate starting point,
leads us to an MLE if it exists in both cases. 0
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I,

Example 2.4.5. Mixture of Gaussians. Suppose SI, ... ,Sn is a sample from a popu
lation P whose density is modeled as a mixture of two Gaussian densities, p(s, B) =

(1 - A)yJ"., (s - J.ld + AyJ"'2 (s - J.l2) where e = (A, (J.li, (J";), i = 1,2) and 0 < A < 1,
(J"I, (J"2 > 0, J.lI, J.l2 E Rand yJ". (s) = ,; yJ (;). It is not obvious that this falls under our
scheme but let

Xi = (~i, Si), 1 < i < 11 (2.4.6)

where ~i are independent identically distributed with Pe[~i = 1] = A = 1-Pe [~i = 0].
Suppose that given .6. = (~l' ... ,~n), the Si are independent with

,
,

I
; ~,
,

,

I,
I'

That is, ~i tells us whether to sample from N(J.lI, (J"i) or N(J.l2, (J"~). It is easy to see
(Problem 2.4.11), that under e, S has the marginal distribution given previously. Thus, we
can think of S as S(X) where X is given by (2.4.6).

This five-parameter model is very rich permitting up to two modes and scales. The log
likelihood similarly can have a number of local maxima and can tend to CXJ as e tends to
the boundary of the parameter space (Problem 2.4.12). Although MLEs do not exist in
these models, a local maximum close to the true eo turns out to be a good "proxy" for the
nonexistent MLE. The EM algorithm can lead to such a local maximum. 0

The EM Algorithm. Here is the algorithm. Let

·
I
I
•

I•

•

i
:
,

,
,

j

i

,

r

(2.4.7)

(2.4.9)

(2.4.8)

I S(X) = s

p(X, B) IS(X) = s
p(X,Bo)

I
p(X, B)

og
p(X,Bo)

{)
{)B logp(X, B) IS(X) = s

q(s,B) = E(J
q(s,Bo) 0

J(() I Bo) - E(Jo

where we suppress dependence on s.
Initialize with Bold = Bo.
The first (E) step of the algorithm is to compute J(B IBold) for as many values of Bas

needed. If this is difficult, the EM algorithm is probably not suitable.
The second (M) step is to maximize J(B I Bold) as a function of B. Again, if this step

is difficult, EM is not particularly appropriate.
Then we set Bnew = arg max J(B IBold), reset Bold = Bnew and repeat the process.
As we shall see in important situations, including the examples, we have given, the M

step is easy and the E step doable.
The rationale behind the algorithm lies in the following formulas, which we give for B

real and which can be justified easily in the case that X is finite (Problem 2.4.12)

and

for all Bo (under suitable regularity conditions). Note that (2.4.9) follows from (2.4.8) by
taking logs in (2.4.8), differentiating and exchanging E(Jo and differentiation with respect

i:
,

,

I
,I'

j ,
; ,
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'I", i, ,
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i
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The most important and revealing special case of this lemma follows.

Theorem 2.4.3. Suppose {PIJ : BEe} is a canonical exponential family generated by
(T, h) satisfying the conditions ofTheorem 2.3.1. Let S(X) be any statistic, then

o
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(2.4.10)

(2.4.11)

(2.4.13)

(2.4.12)

(2.4.14)

(2.4.16)

(2.4.15)

(2.4.17)

r(X I s, 8new ) IS(X)log = s .
r(X I s, Bold)

log r(X I s,B) IS(X) = s .
r(X I s, Bo)

{)
= {)B log q(s, Bo)

1J0

{)
{)B logp(X, B) I S(X) = s

{)J(B IBo)
{)B

{)J(B I Bo) _ E
{)B - 60

q(s,B)
J(B IBo) = log ( B) + ElJoq s, 0

p(x,B) = q(s,B)r(x I s,B)

Now, J(Bnew I Bold) > J(Bold I Bold) = 0 by definition of Bnew. On the other hand,

-E
lJold

log r(X I s,Bnew ) I S(X) = s > 0
r(X I s, Bold)

{) -
{)B logq(s, B) = o.

to Bat Bo. Because, formally,

Section 2.4 Algorith mic Issues

and, hence,

-
it follows that a fixed point Bof the algorithm satisfies the likelihood equation,

The main reason the algorithm behaves well follows.

Lemma 2.4.l.lfBnew , Bold are as defined earlier and S(X) = s,

q(s, Bnew ) > q(s, Bold)'

where r(· I ., B) is the conditional frequency function of X given S(X) = s. Then

IfBo = Bold, B = Bnew,

q(s, Bnew )
log ( B ) = J(Bnew IBold) - EIJ Id

q s, old a

by Shannon's inequality, Lemma 2.2.1.

Equality holds in (2.4.13) iff the conditional distribution ofX given S(X) = s is the same
for Bnew as for Bold and Bnew maximizes J(B I Bold)'

Proof. We give the proof in the discrete case. However, the result holds whenever the
quantities in J (B I Bo) can be defined in a reasonable fashion. In the discrete case we
appeal to the product rule. For x E X, S(x) = s
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(a) The EM algorithm consists of the alternation
•

A(Onew) = E/lold(T(X) I S(X) = s)

00ld = Onew·

Ifa solution of (2.4.18) exists it is necessarily unique.
~

(b) If the sequence of iterates {Om} so obtained is bounded and the equation

(2.4.18)

(2.4.19)

•

A(O) = E/I(T(X) I S(X) = s) (2.4.20)

,
I

I
!

1

~

has a unique solution, then it converges to a limit 0*, which is necessarily a local maximum

ofq(s,O).

Proof. In this case,

J(O I(0 ) = E/lo{(O - Oo)TT(X) - (A(O) - A(Oo)) I S(X) = s}
(0 - oofE/lo(T(X) I S(X) = y) - (A(O) - A(Oo))

(2.4.21)

(2.4.24)

•

i
I
,,
•

,
•
J

1

1

•
!
!,
1

•

1
I

I

(2.4.25)

(2.4.23)

(2.4.22)

0, 1 <j < 2
02 02

-02+20(1-0) 1-(1-0)2

1 - P/I[t:i2 = 1 I t:il + t:i2 = 1].

, h(x) = 2N2n (X) , A(1]) = 2nlog(l + e'1)o
1-0

p(x, 0) = exp{1](2N1n(x) + N 2n (x)) - A('1)}h(x)

1] = log

P/I [t:ij = 1 I t:il + t:i2 = 0] 

P/I [t:i! = 1 I t:il + t:i2 = 1]

Thus, we see, after some simplification, that,

and N jn = I:~ 1 t:ij(Xi), 1 < j < 3. Now,

A'(1]) = 2nO

E/I(2N1n + N 2n I S) = 2N1m + N2m

where

n

+E/I L (2t:i1 + t:i2) I t:il + t:i2, m + 1 < i < n .
i=m+l

Part (a) follows.
Part (b) is more difficult. A proof due to Wu (1983) is sketched in Problem 2.4.16. 0

Example 2.4.4 (continued). X is distributed according to the exponential family

Under the assumption that the process that causes lumping is independent of the values

of the t:ij,

I,
I,
,
,,

,

I'
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(2.4.27)

n

M n = L (Eii + Ei2)'

i=m+i

~

Pnew

~

J.Ll,new
~2

0"2,new

Section 2.4 Algorithmic Issues

where

n n n
T1 = Z, T2 = Y, T3 =n-1Lzl, T4 =n-1L~2, T5 =n-1LZiYi.

i=1 i=1 i=i

in (0, 1), which is indeed the MLE when S is observed. 0

Example 2.4.6. Let (ZI, Yd, ... , (Zn, Yn) be i.i.d. as (Z, Y), where (Z, Y) ~ N(J.li, J.l2,
O"r, O"~, p). Suppose that some of the Zi and some of the Yi are missing as follows: For
1 < i < nl we observe both Zi and Yi, for nl + 1 < i < n2, we oberve only Zi, and for
n2 + 1 < i < n, we observe only Yi. In this case a set of sufficient statistics is

~ ~ ~

We take Bo!¥ = BMOM' where BMOM is the method of moment estimates
(Jil,Ji2,er?,er2,r) (Problem 2.1.8) of B based on the observed data, and find (Problem
2.4.1) that the M-step produces

......... ......... ..................

T1(Bold ), Ji2,new = T2(Bold )' err,new = T3(Bold ) - T'f

- T4(Bold ) - Ti,
......... -- .................. -- ......... 1

[T5(Bold ) - TIT2J!{[T3(Bold) - Tl][T4(Bold) - T2]}2

Thus, the EM iteration is

B
- 2Nlm + N2m 2 Mn

new = + _. (2.4.26)
n 2 - Bold n

It may be shown directly (Problem 2.4.12) that if 2N1m + N2m > 0 and M n > 0, then
~

Bm converges to the unique root of

S = {(Zi, Yi) : 1 <i < nil U {Zi : nl + 1 <i < n2} U {Yi : n2 + 1 <i ::; n}.

To compute EIJ(T IS = s), where B = (J.ll,J.l2,O"r,0"~,B), we note that for the cases with
Zi and/or Yi observed, the conditional expected values equal their observed values. For
other cases we use the properties of the bivariate normal distribution (Appendix B.4 and
Section 1.4), to conclude

EIJ(Yi I Zi) J.L2 + P0"2(Zi - J.ll)/O"I
EIJ(~2 I Zi) [J.L2 + PO"2(Zi - J.ll)/O"I]2 + (1 - p2)0"~

EIJ(ZiYi I Zi) [J.L2 + P0"2(Zi - J.ll)/O"I]Zi

with the corresponding Z on Y regression equations when conditioning on Yi (Problem
2.4.1). This completes the E-step. For the M-step, compute (Problem 2.4.1)

.4(B) = EIJT = (J.ll,J.L2,0"? + J.L?,O"~ + J.l~'0"10"2P+ J.Lll-£2).
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2.5 PROBLEMS AND COMPLEMENTS

,

j

,
:
J,

where Tj (B) denotes Tj with missing values replaced by the values computed in the E-
~ ~ ~

step and Tj = Tj(Bold)' j = 1,2. Now the process is repeated with BMOM replaced by
~

Bnew . 0

Because the E-step, in the context of Example 2.4.6, involves imputing missing values,
the EM algorithm is often called multiple imputation.

Remark 2.4.1. Note that if S(X) = X, then J(B I Bo) is log[p(X, B)/p(X, Bo)], which
as a function of B is maximized where the contrast -logp(X, B) is minimized. Also note
that, in general, - Eoo [J (B IBo)] is the Kullback-Leibler divergence (2.2.23).

Summary. The basic bisection algorithm for finding roots of monotone functions is devel
oped and shown to yield a rapid way of computing the MLE in all one-parameter canonical
exponential families with [; open (when it exists). We then, in Section 2.4.2, use this
algorithm as a building block for the general coordinate ascent algorithm, which yields
with certainty the MLEs in k-parameter canonical exponential families with [; open when
it exists. Important variants of and alternatives to this algorithm, including the Newton
Raphson method, are discussed and introduced in Section 2.4.3 and the problems. Finally
in Section 2.4.4 we derive and discuss the important EM algorithm and its basic properties.

Problems for Section 2.1

1. Consider a population made up of three different types of individuals occurring in the
Hardy-Weinberg proportions B2 , 2B(1 - B) and (1 - B?, respectively, where 0< B < 1.

(a) Show that T3 = N 1 In + N 2/2n is a frequency substitution estimate of B.

(b) Using the estimate of (a), what is a frequency substitution estimate of the odds ratio
B/(l - B)?

(c) Suppose X takes the values -1,0,1 with respective probabilities PI,P2,P3 given
by the Hardy-Weinberg proportions. By considering the first moment of X, show that T3

is a method of moment estimate of B.

2. Consider n systems with failure times XI, ... ,Xn assumed to be independent and
identically distributed with exponential, E( >"), distributions.

(a) Find the method of moments estimate of >.. based on the first moment.

(b) Find the method of moments estimate of >.. based on the second moment.

(c) Combine your answers to (a) and (b) to get a method of moment estimate of >.. based
on the first two moments.

(d) Find the method of moments estimate of the probability P(X 1 > 1) that one system
will last at least a month.

3. Suppose that Li.d. X], ... , X n have a beta, (3(0:],0:2) distribution. Find the method of
moments estimates of a = (0:1, 0:2) based on the first two moments.
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_() No. of Xi = X
P X = .
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Hint: See Problem B.2.S.

Section 2.5 Problems and Complements

5. Let Xl, ... , X n be a sample from a population with distribution function F and fre-- -quency function or density p. The empirical distribution function F is defined by F(x) =
[No. of Xi < xJln. If q(B) can be written in the form q(B) = s(F) for some function s of-F we define the empirical substitution principle estimate of q(B) to be s(F).

(a) Show that in the finite discrete case, empirical substitution estimates coincides with
frequency substitution estimates. -Hint: Express F in terms of p and F in terms of

(c) Argue that in this case all frequency substitution estimates of q(B) must agree with
q(X).

4. Let Xl,' .. ,X1l be the indicators of n Bernoulli trials with probability of success B.

(a) Show that X is a method of moments estimate of B.

(b) Exhibit method of moments estimates for VareX = B(l - B)ln first using only the
first moment and then using only the second moment of the population. Show that these
estimates coincide.

-(b) Show that in the continuous case X ~ F means that X = Xi with probability lin.

(c) Show that the empirical substitution estimate of the jth moment J.1j is the jth sample
-moment J.1j'

Hint: Write mj = Joooo xjdF(x) or mj = Ep(Xj) where X ~ F.

- -(d) For t l < .,. < tk, find the joint frequency function of F(tl)"" ,F(tk).
Hint: Consider (N1 , ... , Nk+l) where N l = nF(t l ), N2 = n(F(t2) - F(tl))'"''-Nk+l = n(l - F(tk))'

6. Let X(l) < .. , < X(n) be the order statistics of a sample Xl, ... , X n. (See Problem
B.2.8.) There is a one-to-one correspondence between the empirical distribution function- -F and the order statistics in the sense that, given the order statistics we may construct F-and given F, we know the order statistics. Give the details of this correspondence.

7. The jth cumulant Cj of the empirical distribution function is called the jth sample
cumulant and is a method of moments estimate of the cumulant Cj' Give the first three
sample cumulants. See A.12.

8. Let (Zl, Yl ), (Z2, Y2), . .. , (Zn, Yn) be a set of independent and identically distributed
random vectors with common distribution function F. The natural estimate of F(s, t) is-the bivariate empirical distribution function F(s, t), which we define by

-( ) Number of vectors (Zi, Yi) such that Zi < s and Ii < t
F s, t = .

n



140 Methods of Estimation Chapter 2

1
j

,,
, '

I',
,

,

i:
, ,

'" ';'

l' i'

",'••
,
,

'. .~

I '
I! I

I
I,'
I:'

, i'

- -(a) Show that Fe,·) is the distribution function of a probability P on R2 assigning
mass lin to each point (Zi, Yi).

(b) Define the sample product moment of order (i, j), the sample covariance, the sam--pie correlation, and so on, as the corresponding characteristics of the distribution F. Show
that the sample product moment of order (i, j) is given by

The sample covariance is given by

where Z, Y are the sample means of the Zl,"" Zn and Yj , • • , ,Yn, respectively. The
sample correlation coefficient is given by

All of these quantities are natural estimates of the corresponding population characteristics
and are also called method of moments estimates. (See Problem 2.1.17.) Note that it
follows from (A.l1.19) that -1 < r < 1.

9. Suppose X = (Xl,'" ,Xn ) where the Xi areindependentN(O,O'2 ).

(a) Find an estimate of 0'2 based on the second moment.

(b) Construct an estimate of a using the estimate of part (a) and the equation a = ,,[;;2.
"(c) Use the empirical substitution principle to construct an estimate of a using the

relation E(IXj j) = o'",fiiC-.

10. In Example 2.1.1, suppose that g({3, z) is continuous in (3 and that Ig({3, z)1 tends to
00 as 1{31 tends to 00. Show that the least squares estimate exists.

Hint: Set c = p(X, 0). There exists a compact set K such that for (3 in the complement
of K, p(X, (3) > c. Since p(X, (3) is continuous on K, the result follows.

11. In Example 2.1.2 with X rv f(a, >..), find the method of moments estimate based on

IiI and li3.
Hint: See Problem B.2.4.

12. Let X], ... , X n be i.i.d. as X rv PO' 0 E e c R d
, with 0 identifiable. Suppose X

has possible values VI, ..• , Vk and that q(0) can be written as

q(O) = h(/-lI(O), ... ,/-lr(O))

•
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Suppose that X has possible values VI, ... , Vk and that
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Section 2.5 Problems and Complements

for some Rk-valued function h. Show that the method of moments estimate q = h(IJ,I, . .. ,
IJ,r) can be written as a frequency plug-in estimate.

13. General method of moment estimates(I). Suppose XI, ... ,Xn are i.i.d. as X rv p(},
with (} E 8 C R d and (} identifiable. Let 91, ... , 9r be given linearly independent functions
and write

n

/.1j((}) = E(J(9j(X)), IJ,j = n- I L9j(Xi ), j = 1, ... , r.
i=l

(i) Beta, ,8(1, e)

(ii) Beta, ,8(e, 1)

(iii) Raleigh, p(x, (J) = (X/(J2) exp(-x2/2(J2), x> 0, e> 0

(iv) Gamma, r (p, e), p fixed

(v) Inverse Gaussian, IG(/.1, >..), (} = (/.1, >..). See Problem 1.6.36.

(b) Suppose {p(} : (} E 8} is the k-parameter exponential family given by (1.6.10).
Let 9j(X) = Tj(X), 1 < j < k. In the following cases, find the method of moments
estimates

for some Rk-valued function h.

(a) Show that the method of moments estimate q= h(lJ,l, ... , IJ,r) is a frequency plug
in estimate.

to give a method of moments estimate of a2 •

(c) If /.1 and a 2 are fixed, can you give a method of moments estimate of ,8?

Hint: Use Corollary 1.6.1.

14. When the data are not i.i.d., it may still be possible to express parameters as functions
of moments and then use estimates based on replacing population moments with "sample"
moments. Consider the Gaussian AR(1) model of Example 1.1.5.

(a) Use E(Xi ) to give a method of moments estimate of /.1.

(b) Suppose /.1 = /.10 and,8 = bare fixed. Use E(Un, where
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15. Hardy-Weinberg with six gellotvpes. In a large natural population of plants (Mimulus
guttatus) there are three possible alleles S, I, and F at one locus resulting in six genotypes
labeled SS, II, FF, SI, SF, and IF. Let e1 , e2 , and e3 denote the probabilities of S, I,
and F, respectively, where L:~=1 ej = 1. The Hardy-Weinberg model specifies that the
six genotypes have probabilities

Genotype I 2 3 4 5 6
Genotype SS II FF SI SF IF
I'robability e1 e~ ei 2e1e2 2e1e3 2e2e3

Let Nj be the number of plants of genotype j in a sample of n independent plants, 1 < j <
6 and let Pj = Nj / n. Show that

j,
1

......... 1 ......... 1 .........
PI + 2P4 + 2Ps
......... 1......... 1 ........
P2 + 2P4 + 2P6
......... 1........ 1 .........
P3 + 2Ps + 2P6

" I, ,
:' ',

are frequency plug-in estimates of e1 , e2 , and e3 .

16. Establish (2.1.6).
Hint: [Y; - g({3, Zi)] = [Y; - g({3o, Zi)] + [g({3o, Zi) - g({3, Zi)]'

17. Multivariate method ofmoments. For a vector X = (X1l ... , X q ), of observations, let
the moments be

. k
mjkrs = E(X;'Xs ), j > 0, k > 0; r, S = 1, ... , q.

k > 0; r,s = 1, ... ,q.
n

~ . -.!." j X k . >mJkrs - L X ir is' J _ 0,
n

i=1

For independent identically distributed Xi = (XiI, ... , X iq ), i = 1, ... , n, we define the
empirical or sample moment to be

Problems for Section 2.2

If (J = (e1 , ... , em) can be expressed as a function of the moments, the method of moments-
estimate (J of (J is obtained by replacing mjkrs by mjkrs' Let X = (Z, Y) and (J =
(aI, b1), where (Z, Y) and (aI, b1) are as in Theorem 1.4.3. Show that method of moments
estimators of the parameters b1 and al in the best linear predictor are

1. An object of unit mass is placed in a force field of unknown constant intensity e. Read
ings YI, ... , Yn are taken at times t 1 , ... , tn on the position of the object. The reading Y;

J
I ~!

II ,,

,

,

i Ij(

II!II
Ii'. ,
,II
I,

",,''1.:',
'I',,
I

'i

~,,-.-----------------------------

! !

'i'

" I

"; j':, ,
i -,



(Z - z) _(y - y)
- = p - .
(1 T

4. Show that the two sample regression lines coincide (when the axes are interchanged) if
and only if the points (Zi, Yi), i = 1, ... , n, in fact, all lie on a line.

Hint: Write the lines in the form

differs from the true position (812)t; by a random error Ei. We suppose the Ei to have mean
oand be uncorrelated with constant variance. Find the LSE of 8.

2. Show that the formulae of Example 2.2.2 may be derived from Theorem 1.4.3, if we con-
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of the pointseachto

•

lin

L~-l (Yi - 81 - 82zi?
1 + 8~

• •asslgmng mass
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sider the distribution

(Zl' YI), ... , (zn, Yn).

3. Suppose that observations YI , ... , Yn have been taken at times ZI, ... ,Zn and that the
linear regression model holds. A new observation Yn+1 is to be taken at time Zn+1. What
is the least squares estimate based on YI , ... , Yn of the best (MSPE) predictor of Yn+ l ?

5. The regression line minimizes the sum of the squared vertical distances from the points
(ZI' Y1), ... , (zn, Yn). Find the line that minimizes the sum of the squared perpendicular
distance to the same points.

Hint: The quantity to be minimized is

9. Suppose Y; = 81 + Ei, i = 1, ... , n1 and Y; = 82 + Ei, i = n1 + 1, ... , n1 + n2, where
Ell· .. ,En,+n2 are independent N(O, (12) variables. Find the least squares estimates of 81

and 82 •

10. Let X I, ... , X n denote a sample from a population with one of the following densities
or frequency functions. Find the MLE of 8.

(a) f(x, 8) = 8e~ox, x > 0; 8 > O. (exponential density)

(b) f(x, 8) = 8cOX-(0+1), X > c; c constant> 0; 8 > o. (Pareto density)

6. (a) Let YI , ... , Yn be independent random variables with equal variances such that
E(Y;) = aZj where the Zj are known constants. Find the least squares estimate of a.

(b) Relate your answer to the formula for the best zero intercept linear predictor of
Section 1.4.

7. Show that the least squares estimate is always defined and satisfies the equations (2.1.5)
provided that 9 is differentiable with respect to (3i, 1 < i < d, the range {g(ZI, ,B), ... ,
g(zn, 13),13 E Rd} is closed, and,B ranges over Rd.

8. Find the least squares estimates for the model Y; = 81 + 82 zi + Ei with Ei as given by
(2.2.4)-(2.2.6) under the restrictions 81 > 0,82 < O.
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I

I,
I',!i
I
i'
I

I!;
•

c I,
t ':
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,,

(c) f(1;, 8) = c8c.r-(c+l), .r > 8; c constant> 0; 8 > O. (Pareto density)

(d) f(x, 8) = vex VO -], 0 <x < 1,8> O. (beta, f3( ve, 1), density)

(e) f(x, 8) = (x/82
) exp{-x2 /282 }, x > 0; 8> O. (Rayleigh density)

(1) f(x, 8) = 8cxc
-] exp{-8xC

}, x > 0; c constant> 0; 8 > O. (Weibull density)

11. Suppose that X], ... , X n , n > 2, is a sample from aN(/-1,0- 2 ) distribution.

(a) Show that if /-1 and 0-
2 are unknown, /-1 E R, 0- 2 > 0, then the unique MLEs are

ii = X and 8 2 = n- l 2::7 ](Xi - xj2.

(b) Suppose /-1 and 0-
2 are both known to be nonnegative but otherwise unspecified.

Find maximum likelihood estimates of /-1 and 0-2 .

12. Let X], ... , X n , n > 2, be independently and identically distributed with density

1
f(x,8) = - exp{ -(x - /-1)/0-} , x > /-1,

0-

where 8 = (/-1,0- 2
), -00 < /-1 < 00,0- 2 > O.

(a) Find maximum likelihood estimates of /-1 and 0-2 .

(b) Find the maximum likelihood estimate of Pe[X] > t] for t > /-1.
Hint: You may use Problem 2.2.16(b).

13. Let Xl, ... , X n be a sample from a U[8 - ~, 8 + ~l distribution. Show that any T such
that X(n) - ~ < T < X(1) + ~ is a maximum likelihood estimate of 8. (We write U[a, b]
to make p(a) = p(b) = (b - a)-l rather than 0.)

14. If n = 1 in Example 2.1.5 show that no maximum likelihood estimate of 8 = (/-1,0- 2 )

exists.

- -15. Suppose that T(X) is sufficient for 8 and that 8(X) is an MLE of 8. Show that 8-depends on X through T(X) only provided that 8 is unique.
Hint: Use the factorization theorem (Theorem 1.5.1).

-16. (a) Let X rv Pe, 8 E 8 and let 8 denote the MLE of 8. Suppose that h is a one-to-
one function from 8 onto h(8). Define'f/ = h(8) and let f(x, 'f/) denote the density or
frequency function of X in terms of'f/ (i.e., reparametrize the model using 'f/). Show that-the MLE of 'f/ is h(8) (i.e., MLEs are unaffected by reparametrization, they are equivariant
under one-to-one transformations).

(b) Let P = {PO: 0 E 8}, 8 c RP, P > 1, be a family of models for X E X C Rd.-Let q be a map from 8 onto n, n c R k
, 1 < k < p. Show that if 0 is a MLE of 0, then-q(O) is an MLE of w = q(O).

Hint: Let8(w) = {O E 8: q(O) = w}, then {8(w): wEn} is a partition of 8,and-obelongs to only one member of this partition, say 8(w). Because q is onto n, for each
wEn there is 0 E 8 such that w = q(0). Thus, the MLE of w is by definition

WMLE = arg sup sup{Lx(O) : 0 E 8(w)}.
WEfl

j,
I
i
1
I
i
I

-



T

145

1+ -r.p(x - J.L)
10

x-J.L
a

9
f(x, 8) = lOa r.p
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where r.p is the standard normal density and 8 = (J.L,a 2
) E e = {(J.L,a2

) : -00 <
J.L < 00,0 < 0'2 < oo}. Show that maximum likelihood estimates do not exist, but

(We denote by "r + 1" survival for at least (r + 1) periods.) Let M = number of indices i
such that Ii = r +1. Show that the maximum likelihood estimate of 8 based on Y l , ... , Yn

Pa[X = k] = 8k
-

l (1 - 8), k = 1,2, ...

where 0 < 8 < 1. Suppose that we only record the time of failure, if failure occurs on or
before time r and otherwise just note that the item has lived at least (r + 1) periods. Thus,
we observe Y l , ... , Yn which are independent, identically distributed, and have common
frequency function,

-
Now show that WMLE = W = q(O).

17. Censored Geometric Waiting Times. If time is measured in discrete periods, a model
that is often used for the time X to failure of an item is

f(r + 1,8) = 1 - Pa[X < r] = 1 - L 8k
-

l (1 - 8) = 8T
•

k=l

f(k,8) =8k
-

l (1-8), k = 1, ... ,r

(a) Find maximum likelihood estimates of the 8i under the assumption that these quan
tities vary freely.

(b) Solve the problem of part (a) for n = 2 when it is known that 81 < 82 . A general
solution of this and related problems may be found in the book by Barlow, Bartholomew,
Bremner, and Brunk (1972).

20. In the "life testing" problem 1.6.16(i), find the MLE of 8.

21. (Kiefer-Wolfowitz) Suppose (Xl, ... ,Xn ) is a sample from a population with density

•
IS

18. Derive maximum likelihood estimates in the following models.

(a) The observations are indicators of Bernoulli trials with probability of success 8. We
want to estimate 8 and VaraXl = 8(1 - 8).

(b) The observations are Xl = the number of failures before the first success, X 2 

the number of failures between the first and second successes, and so on, in a sequence of
binomial trials with probability of success 8. We want to estimate 8.

19. Let Xl, ... , X n be independently distributed with Xi having a N(8i , 1) distribution,
1 < i < n.- -
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that Slip". p(x, /1, a 2) = sUP",,,. p(X, p, a 2) if, and only if, /1 equals one of the numbers
Xl,···, x n . Assume that Xi f= Xj for i f= j and that n > 2.

22. Suppose X has a hypergeometric, 'H(b, N, n), distribution. Show that the maximum
likelihood estimate of b for Nand n fixed is given by

~

b(X) =

if ~ (N + 1) is not an integer, and

X
-(N + 1)
n

,
!
I
I,

~ X X
b(X) = -(N + 1) or -(N + 1) - 1

n n

otherwise, where [t] is the largest integer that is < t.
Hint: Consider the ratio L(b + 1, x)/L(b, x) as a function of b.

23. Let Xl, ... , X m and Yl , ... ,Yn be two independent samples from N(pl, a 2 ) and-N(p2,a 2) populations, respectively. Show that the MLE of e = (Pl,P2,a2) is e =

(X, Y,O'2 ) where

m n

0'2 = 2)Xi - X? + L(1j - Y? /(m + n).
i=l j=l

j:
<I:
",,
, i

!,,,

24. Polynomial Regression. Suppose Y; = P(Zi) + Ei, where Ei satisfy (2.2.4)-(2.2.6). Set

zj = z{1
••• z~P where j E J and J is a subset of {(j1 , ... ,jp) : 0 < j k < J, 1 < k < p},

and assume that

p(Z) = L{O:j~ : j E J}.

In an experiment to study tool life (in minutes) of steel-cutting tools as a function of cut
ting speed (in feet per minute) and feed rate (in thousands of an inch per revolution), the
following data were obtained (from S. Weisberg, 1985).

TABLE 2.6.1. Tool life data

Feed Speed Life Feed Speed Life

-1 -1 54.5 - 2 0 20.1
-1 -1 66.0 J2 0 2.9
1 -1 11.8 0 0 3.8

".,' 1 -1 14.0 0 0 2.2,',.

:j 1 5.2 0 0 3.2'::~ :: -1 •

r
,

, ';1 j; ·:r . -1 1 3.0 0 0 4.0" II;! , ,;.'

'I
,

1 1 0.8 0 0 2.8 I", •
'1 1 1 0.5 0 0 3.2

,

1
,

I' -J2 0 01:: . 0 86.5 4.0
jIi, 0 J2 0.4 0 0 3.5,

Ii ,

II
..:11...':..' n



25. Consider the model (2.2.1), (2.2.4)-(2.2.6) with g({3, z) = zT{3. Show that the follow
ing are equivalent.

(a) Let (Z*,Y*) have density v(z,y)f(z,y)/c where c = f fv(z,y)f(z,y)dzdy.
Show that (32(P) = Cov(Z*, Y*)/Var Z* and (31(P) = E(Y*) - (32(P)E(Z*).

147

Y = log tool life, Zj = (feed rate - 13)/6, Z2 = (cutting speed - 900)/300.

Section 2.5 Problems and Complements

Two models are contemplated

(a) Y = (30 + (3jZj + (32Z2 + E

The researchers analyzed these data using

(a) The parameterization {3 --+ Z D {3 is identifiable.

(b) ZD is ofrank d.

(c) Z"bZD is ofrank d.

26. Let (Z, Y) have joint probability P with joint density f(z, y), let v(z, y) > 0 be a
weight funciton such that E(v(Z, Y)Z2) and E(v(Z, y)y2) are finite. The best linear
weighted mean squared prediction error predictor (3j (P) + (32 (P) Z of Y is defined as the
minimizer of

-(b) Let P be the empirical probability defined in Problem 2.1.8 and let v(z, y) =-- -- .........--
I/Var(Y I Z = z). Show that (31(P) and (32(P) coincide with (3j and (32 of Example
2.2.3. That is, weighted least squares estimates are plug-in estimates.

27. Derive the weighted least squares normal equations (2.2.19).

28. Let Z D = Ilzij Ilnxd be a design matrix and let W nxn be a known symmetric invertible
matrix. Consider the model ¥ = Z D{3 + € where € has covariance matrix a 2W, a 2

1 - 1
unknown. Let W-2 be a square root matrix of W- 1 (see (B.6.6)). Set ¥ = W-2¥,
- 1 1
ZD = W-2 ZD and € = W-2€.

(b) Y = ao + ajZj + a2z2 + Cl:3Zi + a4z~ + aSZjZ2 + E.

Use a least squares computer package to compute estimates of the coefficients «(3's
and a's) in the two models. Use these estimated coefficients to compute the values of
the contrast function (2.1.5) for (a) and (b). Both of these models are approximations to
the true mechanism generating the data. Being larger, the second model provides a better
approximation. However, this has to be balanced against greater variability in the estimated
coefficients. This will be discussed in Volume II.

- -
(a) Show that ¥ = Z D{3+€ satisfy the linear regression model (2.2.1), (2.2.4)-(2.2.6)-

with g({3, z) = Z D{3.
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(b) Show that if Z D has rank d, then the {3 that minimizes

- - T- - T 1(Y ~ ZD(3) (Y - ZD(3) = (Y - ZD(3) W~ (Y - ZD(3)

~'------------------------------------------_.

p(x, 0) =

,
I
I
I

r

is given by (2.2.20).

29. Let ei = (Ei + Ei+l) /2, i = 1, ... , n, where EI, ... ,En+1 are i.i.d. with mean zero and
variance 0'2. The ei are called moving average errors.

Consider the model Yi = J.1 + ei, i = 1, ... , n.

(a) Show that E(Yi+l I Y1, .. ·, Yi) = ~ (J.1 + Yi). That is, in this model the optimal
MSPE predictor of the future Yi+l given the past Y1, ... , Yi is ~ (J.1 + Yi).

(b) Show that Y is a multivariate method of moments estimate of J.1. (See Problem
2.1.17.)

(c) Find a matrix A such that €nxI = A nx (n+I)I':(n+l)xl'

(d) Find the covariance matrix W of €.

(e) Find the weighted least squares estimate of J.1.

(t) The following data give the elapsed times Y1 , .•• , Yn spent above a fixed high level
for a series of n = 66 consecutive wave records at a point on the seashore. Use a weighted
least squares computer routine to compute the weighted least squares estimate j1, of J.1. Is j1,
different from Y?

TABLE 2.5.1. Elapsed times spent above a certain high level for a series
of 66 wave records taken at San Francisco Bay. The data (courtesy
S. J. Chou) should be read row by row.

2.968 2.097 1.611 3.038 7.921 5.476 9.858 1.397 0.155 1.301
9.054 1.958 4.058 3.918 2.019 3.689 3.081 4.229 4.669 2.274
1.971 10.379 3.391 2.093 6.053 4.196 2.788 4.511 7.300 5.856
0.860 2.093 0.703 1.182 4.114 2.075 2.834 3.968 6.480 2.360
5.249 5.100 4.131 0.020 1.071 4.455 3.676 2.666 5.457 1.046
1.908 3.064 5.392 8.393 0.916 9.665 5.564 3.599 2.723 2.870
1.582 5.453 4.091 3.716 6.156 2.039

30. In the multinomial Example 2.2.8, suppose some of the nj are zero. Show that the
~ ~

MLE of OJ is 0 with OJ = nj/n, j = 1, ... ,k.
Hint.' Suppose without loss of generality that nl = n2 = ... = n q = 0, nq+l >

0, ... ,nk > O. Then
k

II Onj
J '

j=q+l

which vanishes if OJ = 0 for any j = q + 1, ... , k.

31. Suppose Y1, ... , Yn are independent with Y; uniformly distributed on [J.1i - a, J.1i +al,
a > 0, where J.1i = 2:J=1 Zij(3j for given covariate values {Zij}. Show that the MLE of

i,

I
i



J Ix - 281d(F *F)(x)

p(x,8) = L IXi + Xj - 281·
i<j
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- -((3], ... ,(3p, a)T is obtained by finding (3], ... ,(3p that minimizes the maximum absolute
value contrast function maxi IYi - Pi I and then setting Ii = maxi IYi - Pi I, where Pi =-
,\,P z· .(3.
~j=l 'J J.

32. Suppose Y], ... , Yn are independent with Y; having the Laplace density

1
2a exp{-IYi - pilla}, a> °

where Pi = 2:j=1 Zij(3j for given covariate values {Zij}.

Hint: See Problem 2.2.32(b).

(b) Define 8H L to be the minimizer of

- -
(a) Show that th~ MLE of ((3], ... , (3p, a) is obtained by finding (3], ... ,(3p that min-

imizes the least absolute deviation contrast function 2:~ I IYi - PiI and then setting Ii =- - -
n- l 2:~ I IYi - pil, where Pi = 2:j=1 Zij(3j. These (3], ... ,(3r and p], ... ,Pn are called
least absolute deviation estimates (LADEs).

(b) If n is odd, the sample median y is defined as Y(k) where k = ~(n + 1) and
Y(l), . .. ,Y(n) denotes YI, ... ,Yn ordered from smallest to largest. If n is even, the sample

median yis defined as ~ [Y(r) +Y(r+l)] wherer = ~n. (See (2.1.17).) Suppose Pi = pfor
each i. Show that the sample median y is the minimizer of 2:~ ] IYi - pl.-Hint: Use Problem 1.4.7 with Y having the empirical distribution F.

33. The Hodges-Lehmann (location) estimate XHL is defined to be the median of the
~ n(n + 1) pairwise averages ~ (Xi + X j), i < j. An asymptotically equivalent procedure

XHL is to take the median of the distribution placing mass ~ at each point Xi~Xj, i < j
and mass ~ at each Xi.

(a) Show that the Hodges-Lehmann estimate is the minimizer of the contrast function

where F *F denotes convolution. Show that xH L is a plug-in estimate of 8H L.

34. Let Xi be i.i.d. as (Z, Yf where Y = Z + J>;W, >.. > 0, Z and W are independent
N(O, 1). Find the MLE of>.. and give its mean and variance.

Hint: See Example 1.6.3.

35. Let g(x) = 1/7[(1 + x2
), X E R, be the Cauchy density, let Xl and X 2 be i.i.d. with

density g(x - 8), 8 E R. Let Xl and X2 be the observations and set ~ = ~ (Xl - X2). Let-8 = arg max Lx (8) be "the" MLE.

(a) Show that if I~I < 1, then the MLE exists and is unique. Give the MLE when
I~I < 1.
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(b) Show that if tt::.l > 1, then the MLE is not unique. Find the values of B that
maximize the likelihood Lx(B) when 1t::.1 > l.

Hint: Factor out (x - B) in the likelihood equation.

36. Problem 35 can be generalized as follows (Dharmadhikari and Joag-Dev, 1985). Let 9
be a probability density on R satisfying the following three conditions:

I. 9 is continuous, symmetric about 0, and positive everywhere.
2. 9 is twice continuously differentiable everywhere except perhaps at O.
3. If we write h = log g, then h" (y) > 0 for some nonzero y.
Let (XI, X2) be a random sample from the distribution with density f(x, B) = g(x-B),

where x E Rand B E R. Let XI and X2 be the observed values of XI and X 2 and write
x = (XI + x2)/2 and t::. = (XI - x2)/2. The likelihood function is given by

g(xI - B)g(X2 -B)
g(x + t::. ~ B)g(x - t::. - B).

I I, ,, .
i '

,

I,
,

r'
I'
I

i,
I' ,

,[I,,
.'-
'I'.;

"I: '.'

"'I''II'·'

,'I,
,

-Let B= arg max Lx(B) be "the" MLE.
Show that

(a) The likelihood is symmetric about x.

- -(b) Either B = X or Bis not unique.

(c) There is an interval (a, b), a < b, such that for every y E (a, b) there exists a J > 0
such that h(y + J) - h(y) > h(y) - h(y - J).

-(d) Use (c) to show that if t::. E (a, b), then B is not unique.

37. Suppose X I, ... , X n are Li.d. N (B, 0'2) and let p(x, B) denote their joint density. Show
that the entropy of p(x, B) is ~ n and that the Kullback-Liebler divergence between p(x, B)
andp(x,Bo) is ~n(B- Bo)2/O' 2.

38. Let X'" Pe, BEe. Suppose h is a 1-1 function from e onto n = h(8). Define
'f/ = h(B) and letp*(x,'f/) = p(x,h-I('f/)) denote the density or frequency function of
X for the 'f/ parametrization. Let K(Bo, BI) (K*('f/o, 'f/l)) denote the Kullback-Leibler
divergence between p(x,Bo) andp(x,BI) (p*(x,'f/o) andp*(x,'f/I)). Show that

39. Let Xi denote the number of hits at a certain Web site on day i, i = 1, ... , n. Assume
that 5 = 2::~ I Xi has a Poisson, P(nA), distribution. On day n + 1 the Web Master
decides to keep track of two types of hits (money making and not money making). Let Vj
and W j denote the number of hits of type 1 and 2 on day j, j = n + 1, ... , n +m. Assume

that 51 = 2::';+:+1 Vj and 52 = 2::;+:-1 Wj have P(mAl) and P(mA2) distributions,
where Al + A2 = A. Also assume that 5, 51, and 52 are independent. Find the MLEs of
Al and A2 based on 5, 51, and 52.

;,

I
I
!
•

•

I
I
1
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40. Let XI,' .. ,Xn be a sample from the generalized Laplace distribution with density

10gYi = logo: - Jlog{l + exp[-(3(ti - /-1)/J]} + Ei

151

g(t; 0), where 0

0:

g(t,O) = {I + exp[-(3(t - /-1)/Jj}'"
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(a) Show that a solution to this equation is of the form y
(0:, (3, /-1, J), /-1 E R, and

p

Yi = L h(Zij; Aj) + Ei, i = 1, ... , n
j=1

1 dy (Y) ~
Y dt = (3 1 - 0: ' Y > OJ 0: > 0, (3 > 0, J > O.

(b) Suppose we have observations (t], YI),"" (tn, Yn), n > 4, on a population of a
large number of organisms. Variation in the population is modeled on the log scale by using
the model

1
8 8 exp{-x/81 }, x > 0,
1+ 2

1
8 8 exp{x/82 }, x < 0
1+ 2

(b) Find the maximum likelihood estimates of 81 and 82 in terms of T I and T2 . Care
fully check the "TI = 0 or T2 = 0" case.

41. The mean relative growth of an organism of size Y at time t is sometimes modeled by
the equation (Richards, 1959; Seber and Wild, 1989)

where 8j > 0, j = 1,2.

(a) Show that TI = L: XiI [Xi > 0] and T2 = L: -Xi l[Xi < 0] are sufficient
statistics.

where A = (0:, (3, /-1), h(z; >..) = g(z; 0:, (3, /-1, 1); and EI, ... , En are uncorrelated with mean
zero and variance 0-2 • For the case p = 1, give the least square estimating equations (2.1.7)
for 0:, (3, and /-1.

42. Suppose Xl, ... ,Xn satisfy the autoregressive model of Example 1.1.5.

where EI, ... ,En are uncorrelated with mean 0 and variance 0-
2 . Give the least squares

estimating equations (2.1.7) for estimating 0:, (3, J, and /-1.

(c) Let Y i denote the response of the ith organism in a sample and let Zij denote the
level of the jth covariate (stimulus) for the ith organism, i = 1, ... , n; j = 1, ... ,po An
example of a neural net nwdel is
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(a) If J.1 is known, show that the MLE of (3 is

Methods of Estimation Chapter 2

jj = - I=~-2(Xi-1 - J.1)(Xi - J.1)

I=;' / (Xi - J.1F .

(b) If (3 is known, find the covariance matrix W of the vector f:: = (El"'" En)T

of autoregression errors. (One way to do this is to find a matrix A such that enx I =

An X n f::n X d Then find the weighted least square estimate of J.1. Is this also the MLE of J.1?

Problems for Section 2.3

1. Suppose Y I , ... , Yn are independent

pry; = 1] = P(Xi, 0:, (3) = 1 - pry; = 0], 1 <i < n, n > 2,

Plog (x, 0:, (3) = 0: + (3x, XI < .,. < Xn.
I-p

Show that the MLE of 0:, (3 exists iff (YI , ... , Yn ) is not a sequence of l's followed by all
O's or the reverse.

Hint:

CI LYi + C2 L XiYi = L(CI + C2 Xi)Yi < L(CI + c2x i)l(c2x i + Cl > 0).
i=l i=l i=l i=l

I
I
I ,

n n n n

•,
'.

I,
I

If C2 > 0, the bound is sharp and is attained only if Yi = 0 for Xi <
X > _£1.
,- C2'

_ £1. y'
C2 ' 'l

1 for

'Ii, ,
:r:

2. Let Xl, ... , X n be i.i.d. gamma, f(>",p).

(a) Show that the density of X = (Xl, ... , X n ) T can be written as the rank 2 canonical
exponential family generated by T = (E log Xi, EXi ) and h(x) = X-I with 'f/l = p,
'f/2 = ->.. and

where r denotes the gamma function.

(b) Show that the likelihood equations are equivalent to (2.3.4) and (2.3.5).

3. Consider the Hardy-Weinberg model with the six genotypes given in Problem 2.1.15.
Let e = {(B I ,B2 ) : B1 > 0,B2 > 0,B1 + B2 < I} and let B3 = 1 - (B1 + B2 ). In a sample
of n independent plants, write Xi = j if the ith plant has genotype j, 1 < j < 6. Under
what conditions on (Xl, ... ,xn) does the MLE exist? What is the MLE? Is it unique?

4. Give details of the proof or Corollary 2.3.1.

5. Prove Lemma 2.3.1.
Hint: Let C = l(O). There exists a compact set K c e such that l(lJ) < C for all lJ not

in K. This set K will have a point where the max is attained.

1
1

,
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6. In the heterogenous regression Example 1.6.10 with n > 3,0 < ZI < ... < Zn, show
that the MLE exists and is unique.

7. Let Y I , ... , Yn denote the duration times of n independent visits to a Web site. Suppose
Y has an exponential, [(Ai), distribution where

J.1i = E(Y;) = Ail = exp{a+ i'Jz;}, ZI < ... < Zn

and Zi is the income of the person whose duration time is Y;, 0 < ZI < ... < Zn, n > 2.
Show that the MLE of (a, mT exists and is unique. See also Problem 1.6.40.

8. Let X I, ... , X n E RP be i.i.d. with density,

f(J(x) = c(a) exp{ -Ix - (JI"'}, (J E RP, a > 1

where c-1(a) = JR exp{-Ixl"'}dx and 1·1 is the Euclidean norm.
p

~

(a) Show that if a > 1, the MLE (J exists and is unique.
~

(b) Show that if a = 1, the MLE (J exists but is not unique if n is even.

9. Show that the boundary ac of a convex C set in Rk has volume O.
Hint: If 8C has positive volume, then it must contain a sphere and the center of the

sphere is an interior point by (E.9.1).

10. Use Corollary 2.3.1 to show that in the multinomial Example 2.3.3, MLEs of 'f/j exist
iff all Tj > 0, 1 < j < k - 1.

Hint: The k points (0, ... ,0), (0, n, 0, ... ,0), ... , (0,0, ... , n) are the vertices of the

" convexset{(t l , ... ,tk_l):tj>0,I<j<k-l,L=7 :tj<n}.

11. Prove Theorem 2.3.3.
Hint.' If it didn't there would exist 7Jj = c(ej ) such that 17]to - A(7Jj) ----> max{TJTto

A(17) : 17 E c(e)} > -00. Then {7Jj} has a subsequence that converges to a point 17° E [.

But c(8) is closed so that 17° = c(Oo) and (J0 must satisfy the likelihood equations.

, 12. Let XI, ... , X n be i.i.d. :Jo (X~/L), (J > 0, J.1 E R, and assumefor w -log fo that
, w" > 0 so that w is strictly convex, w(±oo) = 00.

(a) Show that, if n > 2, the likelihood equations

. n•

Xi - J.1LW' =0
(J

i=1
n

(Xi - J.1) , Xi - J.1
L -1 =0w

(J (J
i=l

~ve a unique solution ("ii, a).
"

(b) Give an algorithm such that starting at j10 = 0, 0'0 = 1, "ii(i) ----> "ii,a(i) ----> a.
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(c) Show that for the logistic distribution Fo(x) [1 + exp{-x}]-I, 11) is strictly
convex and give the likelihood equations for /.1 and a. (See Example 2.4.3.)

Hint: (a) Thefunction D(a, b) = 2::7 I w(aXi -b)-nloga is strictly convex in (a,b)
and lim(a,b)~(ao,bo) D(a, b) = x if either ao = 0 or CXJ or bo = ±CXJ.

(b) Reparametrize by a = ;, b = ~ and consider varying a, b successively.
Note: You may use without proof (see Appendix B.9).

(i) If a strictly convex function has a minimum, it is unique.

(1"1) If a2
D a2

D a2
D a2

D ( a2
D ) 2 h D . Iaa2 > 0, ab2 > 0 and aa2 ab2 > aaab ' t en is stnct y convex.

"
I

j,

,

Ii

13. Let (XI, YI ), ... , (Xn , Yn ) be a sample from a N (/.11, /.12, ai ,a~, p) population.

(a) Show that the MLEs of ai, a~, and p when /.11 and /.12 are assumed to be known are
ai = (1 In) 2::~ 1(Xi - /.1d, a~ = (1 In) 2::~ I (Y; - /.12)2. and

I
,,
,

j

j

n

L(Xi - /.1Il(Y; - /.12)lnala2
i=1

p=

respectively, provided that n > 3.

(b) If n > 5 and /.11 and /.12 are unknown. show that the estimates of /.11, /.12, ai, d, p
coincide with the method of moments estimates of Problem 2.1.8.

Hint: (b) Because (XI, Y1 ) has a density you may assume that ai > 0, a~ > o. IP1 < 1.
Apply Corollary 2.3.2.

Y=ZD(3+f:, rank(ZD)=k, EI, ... ,En i.i.d.N(O,a2
).

Problems for Section 2.4

1. EM for bivariate data.

(a) In the bivariate normal Example 2.4.6, complete the E-step by finding E(Zi I Y;),
E(Zll Y;) and E(ZiY; IY;).

(b) In Example 2.4.6, verify the M -step by showing that

2. Show that if T is minimal and £ is open and the MLE doesn't exist, then the coordinate
ascent algorithm doesn't converge to a member of £.

3. Describe in detail what the coordinate ascent algorithm does in estimation of the regres
sion coefficients in the Gaussian linear model

(Check that you are describing the Gauss-Seidel iterative method for solving a system of
linear equations. See, for example, Golub and Van Loan, 1985, Chapter 10.)

,
! .

,

Ij

Ii
i'
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where e = eold and e1 = enew, as the first approximation to the maximum likelihood
estimate of e.

4. Let (Ii, Yi), 1 < i < n, be independent and identically distributed according to Po,
e= (A, /-l) E (0,1) x R where

Po [It = 1] = A = 1 - Po [It = 0],
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n I OX(1_0)n-x
x )

l-(l-o)n , X = 1, ... , n, and that the

-
Y

(~ L:~ l(Yi - Y? - a5)/ (ai - a6)·

Section 2.5 Problems and Complements

(b) Deduce that T is minimal sufficient.

(c) Give explicitly the maximum likelihood estimates of /-l and A, when they exist.

5. Suppose the Ii in Problem 4 are not observed.

(a) Justify the following crude estimates of /-l and A,

and given h = j, Y1 ~ N(/-l, aJ), j = 0, 1 and a6 # ai known.

(a) Show that X {(Ii, Yi) : 1 < i < n} is distributed according to an exponential

family with T = (-h L:i YiIi + ~ L:i Yi(l - Ii), L:Ji)' 711 = /-l, 712 = log C\) +

1
2

(;~ - ;f)·

Do you see any problems with A?

(b) Give as explicitly as possible the E- and M-steps of the EM algorithm for this
problem.

Hint: Use Bayes rule.

6. Consider a genetic trait that is directly unobservable but will cause a disease among a
certain proportion of the individuals that have it. For families in which one member has
the disease, it is desired to estimate the proportion e that has the genetic trait. Suppose that
in a family of n members in which one has the disease (and, thus, also the trait), X is the
number of members who have the trait. Because it is known that X > 1, the model often
used for X is that it has the conditional distribution of a B(n, IJ) variable, e E [0, 1], given
X>l.

(

\
(a) Show that P(X = x I X > 1) =

MLE exists and is unique.

(b) Use (2.4.3) to show that the Newton-Raphson algorithm gives



and

where >..* maximizes

r,new = r,(>..*)

,
;

I

-
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~ N ++e N a+e N +be
Pabe = N' N .

n ++e ++e

P[U = a,v = b IW = c] = P[U = a IW = c]P[V = b IW = c],

- -
(C) If n = 5, X = 2, find 81 of (b) above using 8 = x/n as a preliminary estimate.

7. Consider the following algorithm under the conditions of Theorem 2.4.2. Define r,0 as
before. Let

t;rr,(>..) - A(r,(>")).

r,(>..) r,old + >..A-I(r,old)(A(r,old) - to)

Show that the sequence defined by this algorithm converges to the MLE if it exists.
Hint: Apply the argument of the proof of Theorem 2.4.2 noting that the sequence of

iterates {r,m} is bounded and, hence, the sequence (r,m, r,m+l) has a convergent subse
quence.

8. Let X l ,X2 ,X3 be independent observations from the Cauchy distribution about 8,
f(x,8) = 7[-1(1 + (x - 8)2)-1. Suppose Xl = 0, X 2 = 1, X 3 = a. Show that for a
sufficiently large the likelihood function has local maxima between 0 aqd 1 and between P
and a.

(a) Deduce that depending on where bisection is started the sequence of iterates may
converge to one or the other of the local maxima.

(b) Make a similar study of the Newton-Raphson method in this case.

9. Let XI, .. , , X n be i.i.d. where X = (U, V, W), P[U = a, V = b, W = c] Pabe,

1 < a < A, 1 < b < B, 1 < c < C and L:a b e Pabe = l., ,

(a) Suppose for all a, b, c,

(1) logPabe = flae + l/be where -00 < fl, l/ < 00.

Show that this holds iff

i.e. iff U and V are independent given W.

(b) Show that the family of distributions obtained by letting fl, l/ vary freely is an ex
ponential family of rank (C - 1) + C(A + B-2) = C(A + B-1) - 1 generated by
N++e, Na+e,N+be where N abe = #{i : Xi = (a,b,c)} and "+" indicates summation
over the index.

(c) Show that the MLEs exist iff 0 < N a+e, N+be < N++e for all a, b, c and then are
given by



(b) Consider the following "proportional fitting" algorithm for finding the maximum
likelihood estimate in this model.

Initialize: pdO ) = N a ++ !'!.±2± N++ c

abc n n n

dO)
d1) NaH Pabc
Pabc n dO)

Pab+
d1)

d2) N a+c Pabc
Pabc n d1)

Pa+c
d 2)

d3) N+ bc Pabc
Pabc n d 2)'

P+bc

157

A + B + C - 3 + (A - 1)(C - 1) + (B - 1)(C - 1) + (A - 1)(B - 1)

= AB + AC + BC - (A + B + C) .

Hint:

(b) Consider N a+c - N++c/A, N+ bc - N++c/B, N++ c.

(c) The model implies Pabc = P+bcPa+c/P++c and use the likelihood equations.

10. Suppose X is as in Problem 9, but now

(2) log Pabc = /-lac + I/bc + lab where /-l, 1/, I vary freely.

(a) Show that this is an exponential family of rank

Section 2.5 Problems and Complements

Reinitialize with ~~~. Show that the algorithm converges to the MLE if it exists and di
verges otherwise.

Hint: Note that because {p~~~} belongs to the model so do all subsequent iterates and

that ~~~ is the MLE for the exponential family

ell-abp(O)
abcPabc = --==----'--"""'-;::-;--L ell-a' b' P~~~, c'

a' b' c', ,

obtained by fixing the Hb, e" and Ha, e" parameters.

11. (a) Show that S in Example 2.4.5 has the specified mixture of Gaussian distribution.

(b) Give explicitly the E- and M -steps of the EM algorithm in this case.

12. Justify formula (2.4.8).

Hint: Poo[X = x I S(X) = s] = :(:::~) I(S(x) = s).

13. Let fo(x) = fo(x - e) where

1 2
fo(x) = 3<P(x) + 3<P(x - a)

•
- .- -. '"
~ ·-.~·t

.;:-~.-

.. ,.' ."j,:'•... '. -,
~..."- ~,- -
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and 'P is the N(O, 1) density. Show for 11 = 1 that bisection may lead to a local maximum
of the likelihood, if a is sufficiently large.

14. Establish the last claim in part (2) of the proof of Theorem 2.4.2.
Hint: Use the canonical nature of the family and openness of E.

15. Verify the formula given in Example 2.4.3 for the actual MLE in that example.
Hint: Show that {(Om, Om+ d} has a subsequence converging to (0* ,0*) and necessar-

~

ily 0* = 00 .

16. Establish part (b) of Theorem 2.4.3.
Hint: Show that {(Om,Om+d} has a subsequence converging to (0*,0*) and, thus,

necessarily 0* is the global maximizer.

17. Limitations of the EM Algorithm. The assumption underlying the computations in the
EM algorithm is that the conditional probability that a component X j of the data vector
X is missing given the rest of the data vector is not a function of X j . That is, given
X - {Xj }, the process determining whether X j is missing is independent of X j . This
condition is called missing at random. For example, in Example 2.4.6, the probability that
Y; is missing may depend on Zi, but not on Y;. That is, given Zi, the "missingness" of Y; is
independent of Y;. If Y; represents the seriousness of a disease, this assumption may not be
satisfied. For instance, suppose all subjects with Y; > 2 drop out of the study. Then using
the E-step to impute values for the missing V's would greatly underpredict the actual V's
because all the Y's in the imputation would have Y < 2. In Example 2.4.6, suppose Y;
is missing iff Y; < 2. If P2 = 1.5, (Tl = (T2 = 1 and p = 0.5, find the probability that
E(Y; IZi) underpredicts Y;.

18. EM and Regression. For X = {(Zi, Y;) : i = 1, ... , n }, consider the model

where 101, ... ,En are i.i.d. N(0, (T2), ZI,' .. , Zn are i.i.d. N (PI , (T~) and independent of
101, ... ,En' Suppose that for 1 < i < m we observe both Zi and Y; and for m + 1 < i < n,
we observe only Y;. Complete the E- and M -steps of the EM algorithm for estimating
(PI, /31, (T~, (T2, (32).

2.6 NOTES

Notes for Section 2.1

(1) "Natural" now was not so natural in the eighteenth century when the least squares prin
ciple was introduced by Legendre and Gauss. For a fascinating account of the beginnings
of estimation in the context of astronomy see Stigler (1986).

(2) The frequency plug-in estimates are sometimes called Fisher consistent. R. A. Fisher
(1922) argued that only estimates possessing the substitution property should be considered
and the best of these selected. These considerations lead essentially to maximum likelihood
estimates.

,

J

,
It:!'-',,,,
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(1) Recall that in an exponential family, for any A, P[T(X) E A] = 0 for all or for no
PEP.

159Section 2.7 References

Notes for Section 2.2

Note for Section 2.5

(1) In the econometrics literature (e.g. Appendix A.2; Campbell, Lo, and MacKinlay,
1997), a multivariate version of minimum contrasts estimates are often called generalized
method of moment estimates.

BARLOW, R. E., D. 1. BARTHOLOMEW, 1. M. BREMNER, AND H. D. BRUNK, Statistical Inference Under
Order Restrictions New York: Wiley, 1972.

BAUM, L. E., T. PETRIE, G. SOULES, AND N. WEISS, "A Maximization Technique Occurring in the
Statistical Analysis of Probabilistic Functions of Markov Chains;' Ann. Math. Statist., 41, 164
171(1970).

BISHOP, Y. M. M., S. E. FEINBERG, AND P. W. HOLLAND, Discrete Multivariate Analysis: Theory and
Practice Cambridge, MA: MIT Press, 1975.

CAMPBELL, J. Y., A. W. Lo, AND A. C. MACKrNLAY, The Econometrics ofFinancial Markets Prince-
ton, NJ: Princeton University Press, 1997.

COVER, T. M., AND J. A. THOMAS, Elements ofInformation Theory New York: Wiley, 1991.

DAHLQUIST, G., A. BJORK, AND N. ANDERSON, Numerical Analysis New York: Prentice Hall, 1974.

DEMPSTER, A., M. M. LAIRD, AND D. B. RUBIN, "Maximum Likelihood Estimation from Incomplete
Data via the EM Algorithm," J. Roy. Statist. Soc. B, 1-38 (1977).

DHARMADHIKARI, S., AND K. JOAG-DEV, "Examples of Nonunique Maximum Likelihood Estima
tors," The American Statistician, 39, 199-200 (1985).

EISENHART, c., "The Meaning of Least in Least Squares," Journal Wash. Acad. Sciences, 54, 24-33
(1964).

FAN, J., AND I. GIlBELS, Local Polynomial Modelling and Its Applications London: Chapman and
Hall, 1996.

FISHER, R. A., "On the Mathematical Foundations of Theoretical Statistics," reprinted in Contribu
tions to Mathematical Statistics (by R. A. Fisher 1950) New York: J. Wiley and Sons, 1922.

GoLUB, G. H., AND C. F. VAN LOAN, Matrix Computations Baltimore: John Hopkins University
Press, 1985.

HABERMAN, S. 1., The Analysis ofFrequency Data Chicago: University of Chicago Press,1974.

(1) An excellent historical account of the development of least squares methods may be
found in Eisenhart (1964).

(2) For further properties of Kullback-Leibler divergence, see Cover and Thomas (1991).



160 Methods of Estimation Chapter 2

I

I
I
l !,

I,

"

,
"

;j ,r'
I,
,,

I'!,I

!

KOLMOGOROV, A. N., "On the Shannon Theory of Infomlation Transmission in the Case of Contin-
uous Signals," IRE Trans! Inform. Theory, IT2, 102-108 (1956).

LIlTLE, R. J. A., AND D. B. RUBIN, Statistical Analysis with Missing Data New York: J. Wiley, 1987.

MACLACHLAN, G. J., AND T. KRISHNAN, The EM Algorithm and Extensions New York: Wiley, 1997.

MOSTELLER, E, "Association and Estimation in Contingency Tables," J. Amer. Statist. Assoc., 63,
1-28 (1968).

RICHARDS, E J., "A Flexible Growth Function for Empirical Use," J. Exp. Botany, 10, 290-300
(1959).

RUPPERT, D., AND M. P. WAND, "Multivariate Locally Weighted Least Squares Regression," Ann.
Statist., 22, 1346-1370 (1994).

SEBER, G. A. E, AND C.J. WILD, Nonlinear Regression New York: Wiley, 1989.

SHANNON, C. E., "A Mathematical Theory of Communication;' Bell System Tech. Journal, 27,379
243,623--656 (1948).

SNEDECOR, G. W., AND W. COCHRAN, Statistical Methods, 6th ed. Ames, IA: Iowa State University
Press, 1967.

STIGLER, S., The History ojStatistics Cambridge, MA: Harvard University Press, 1986.

WEISBERG, S., Applied Linear Regression, 2nd ed. New York: Wiley, 1985.

Wu, C. E J., "On the Convergence Properties of the EM Algorithm," Ann. Statist., I 1,95-103 (1983).

•
i



3.1 INTRODUCTION

3.2 BAYES PROCEDURES

161

(3.2.1)r(7r,6) _ ER(fJ, 6) = El(fJ, 6(X)),

R(B,6) = Eo!(B, 6(X)).

MEASURES OF PERFORMANCE,

NOTIONS OF OPTIMALITY, AND

OPTIMAL PROCEDURES

Here we develop the theme of Section 1.3, which is how to appraise and select among de
cision procedures. In Sections 3.2 and 3.3 we show how the important Bayes and minimax
criteria can in principle be implemented. However, actual implementation is limited. Our
examples are primarily estimation of a real parameter. In Section 3.4, we study, in the
context of estimation, the relation of the two major decision theoretic principles to the non
decision theoretic principle of maximum likelihood and the somewhat out of favor principle
of unbiasedness. We also discuss other desiderata that strongly compete with decision the
oretic optimality, in particular computational simplicity and robustness. We return to these
themes in Chapter 6, after similarly discussing testing and confidence bounds, in Chapter 4
and developing in Chapters 5 and 6 the asymptotic tools needed to say something about the
multiparameter case.

Chapter 3

We think of R(·, 6) as measuring a priori the performance of 6 for this model. Strict com
parison of 61 and 62 on the basis of the risks alone is not well defined unless R(B, 61 ) <
R(B, 62 ) for all Bor vice versa. However, by introducing a Bayes prior density (say) 7r for
Bcomparison becomes unambiguous by considering the scalar Bayes risk,

Recall from Section 1.3 that if we specify a parametric model P = {Po : BEe}, ac
tion space A, loss function l(B,a), then for data X '" Po and any decision procedure 6
randomized or not we can define its risk function, R(., 6) : e -> R+ by
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where (0, X) is given the joint distribution specified by (1.2.3). Recall also that we can
define

R(-rr) = inf{r(7f, <5) ; <5 E V} (3.2.2)

the Bayes risk of the problem, and that in Section 1.3 we showed how in an example, we
could identify the Bayes rules <5; such that

(3.2.3)

In this section we shall show systematically how to construct Bayes rules. This exercise is
interesting and important even if we do not view 7f as reflecting an implicitly believed in
prior distribution on (). After all, if 7f is a density and e c R

r(7f, <5) = J R(B, <5)7f(B)dB (3.2.4)

This procedure is called the Bayes estimate for squared error loss.
In view of formulae (1.2.8) for the posterior density and frequency functions, we can

give the Bayes estimate a more explicit form. In the continuous case with 0 real valued and
prior density 7f,

I,
•

•

•

1
!

I

1
j
1,
1

(3.2.5)

(3.2.6)

Here is an

<5*(X) = E[q((}) IX).

and 7f may express that we care more about the values of the risk in some rather than other
regions of e. For testing problems the hypothesis is often treated as more important than
the alternative. We may have vague prior notions such as "IBI > 5 is physically implausi
ble" if, for instance, Bdenotes mean height of people in meters. If 7f is then thought of as a
weight function roughly reflecting our knowledge, it is plausible that <5; if computable will
behave reasonably even if our knowledge is only roughly right. Clearly, 7f(0) = c plays
a special role ("equal weight") though (Problem 3.2.4) the parametrization plays a crucial
role here. It is in fact clear that prior and loss function cannot be separated out clearly either.
Thus, considering h (0, a) and 7fl (0) is equivalent to considering b (0, a) = 7fl (B)ll (0, a)
and 7f2(B) = 1. Issues such as these and many others are taken up in the fundamental
treatises on Bayesian statistics such as Jeffreys (1948) and Savage (1954) and are reviewed
in the modem works of Berger (1985) and Bernardo and Smith (1994). We don't pursue
them further except in Problem 3.2.5, and instead tum to construction of Bayes procedure.

We first consider the problem of estimating q(O) with quadratic loss, leO, a) = (q(B) 
a?, using a nonrandomized decision rule <5. Suppose () is a random variable (or vector)
with (prior) frequency function or density 7f(B). Our problem is to find the function <5 of
X that minimizes r(7f, <5) = E(q((}) - <5(X)? This is just the problem of finding the
best mean squared prediction error (MSPE) predictor of q(O) given X (see Remark 1.4.5).
Using our results on MSPE prediction, we find that either r(7f, <5) - 00 for all <5 or the
Bayes rule <5* is given by

In the discrete case, as usual, we just need to replace the integrals by sums.
example.
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(3.2.7)

•

-1(Y2

1 + 2
n7n

,+x

<5* (X) = 7)0

N 7)0

r(1r, <5*)

Section 3.2 Bayes Procedures

The Bayes estimate is just the mean of the posterior distribution

n/(Y2 + 1/72

Its Bayes risk (the MSPE of the predictor) is just

E(B - E(O IX))2 = E[E((O - E(O IX))2 IX)]
(Y2 (Y2 I

E - 1 + ----=-
n n72 n/(Y2 + 1/72 '

No finite choice of 7)0 and 7 2 will lead to X as a Bayes estimate. But X is the limit of such
estimates as prior knowledge becomes "vague" (7 ---> 00 with 7)0 fixed). In fact, X is the
estimate that (3.2.6) yields, if we substitute the prior "density" 1r((J) _ 1 (Problem 3.2.1).
Such priors with I 1r((J) = 00 or L 1r((J) = 00 are called improper. The resulting Bayes
procedures are also called improper.

Formula (3.2.7) reveals the Bayes estimate in the proper case to be a weighted average

W7)o + (1 - w)X

r(a Ix) = E(l(O,a) IX = x).

Example 3.2.1. Bayes Estimates for the Mean of a Normal Distribution with a Nor
mal Prior. Suppose that we want to estimate the mean (J of a normal distribution with
known variance (Y2 on the basis of a sample Xl, ... , X n . If we choose the conjugate prior
N(7)o, 7

2
) as in Example 1.6.12, we obtain the posterior distribution

-
of the estimate to be used when there are no observations, that is, 7)0, and X with weights
inversely proportional to the Bayes risks of these two estimates. Because the Bayes risk
of x, (Y2 / n, tends to 0 as n ---> 00, the Bayes estimate corresponding to the prior density
N(7)O, 7

2
) differs little from X for n large. In fact, X is approximately a Bayes estimate

for anyone ofthese prior distributions in the sense that [r (1r, K) - r (1r , <5* )] / r (1r, <5*) ---> 0
as n ---> 00. For more on this, see Section 5.5. 0

We now tum to the problem of finding Bayes rules for general action spaces A and loss
functions l. To begin with we consider only nonrandomized rules. If we look at the proof
of Theorem 1.4.1, we see that the key idea is to consider what we should do given X = x.
Thus, E(Y I X) is the best predictor because E(Y I X = x) minimizes the conditional
MSPE E((Y - a)2 I X = x) as a function of the action a. Applying the same idea in the
general Bayes decision problem, we form the posterior risk

This quantity r(a I x) is what we expect to lose, if X = x and we use action a. Intuitively,
we should, for each x, take that action a = <5* (x) that makes r(a Ix) as small as possible.
This action need not exist nor be unique if it does exist. However,
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Proposition 3.2.1. Suppose that there exists a function <5* (x) such that

r(<5*(x) I x) = illf{r(a I x) : a E A}. (3.2.8)

and we conclude that

r(al 11) = 8.35, r(a2 11) = 3.74, r(a3 11) = 5.70

,

1
1

s

o

(3.2.9)

10.67

5.89.

8
91(02, ar)

r(a3 10)

+r(al 10)

r(a2 I0)

Therefore, <5* = <55 as we found previously. The great advantage of our new approach is that
it enables us to compute the Bayes procedure without undertaking the usually impossible
calculation of the Bayes risks of all cOq1peting procedures.

More generally consider the following class of situations.

Example 3.2.2. Bayes Procedures Whfn e and A Are Finite. Let e = {Oo,.··, Op},
A = {ao, ... , aq }, let Wij > 0 be given constants, and let the loss incurred when Oi is true

and action aj is taken be given by

<5*(1) = a2'

Therefore, a2 has the smallest posterior risk and, if <5* is the Bayes rule,

Similarly,

E[l(O,<5(X)) I X = x] = r(<5(x) Ix) > r(<5*(x) Ix) = E[l(O,<5*(X)) I X = x).

<5*(0) = a2.

1 8
1r(01 I X = 0) = 9' 1r(02 I X = 0) = 9'

Thus, the posterior risks of the actions all a2, and a3 are

But, by (3.2.8),

r(1r,<5) = E[l(O,<5(X))) = E[E(l(O,<5(X)) I X)].

E[l(O, <5(X)) IX] > E[l(O, <5*(X)) IX],

and the result follows from (3.2.9).

Therefore,

As a first illustration, consider the oil-drilling example (Example 1.3.5) with prior
1r(Or) = 0.2, 1r(02) = 0.8. Suppose we observe x = O. Then the posterior distribution of

° is by (1.2.8)

Then <5* is a Bayes rule.

Proof As in the proof of Theorem 1.4.1, we obtain for any <5

,
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(a) Classification: Suppose that P = q, we identify aj with (}j, j = 0, ... ,p, and let
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(3.2.10)

1, i I- jW"'J

( I ) - 'EiW ij7T"iP(X Ie;)
r aj x - .

'Ei7T"iP(X lei)

r(<5*(x) Ix) = min r(aj I x).
O<J<q

Here are two interesting specializations.

and minimizing r((}i I x) is equivalent to the reasonable procedure of maximizing
the posterior probability,

and decide either ao or al if equality occurs. See Sections 1.3 and 4.2 on the option
of randomizing between ao and al if equality occurs. As we let 7T" vary between zero

•
and one, we obtain what is called the class of Neyman-Pearson tests, which provides
the solution to the problem of minimizing P (type II error) given P (type I error)
< Q. This is treated further in Chapter 4. D

This can be thought of as the classification problem in which we have p + 1 known
disjoint populations and a new individual X comes along who is to be classified in
one of these categories. In this case,

r( (}i Ix) = prO I- (}i IX = xl

decide () = (}l if (1 - 7T")p(x I (}l) > 7T"p(x I (}o)
decide () = (}o if (1 - 7T")p(x I ().) < 7T"p(x I (}o)

(b) Testing.' Suppose p = q = 1,7T"0 = 7T", 7T"1 = 1 - 7T", 0 < 7T" < 1, ao corresponds
to deciding () = (}o and al to deciding () = el . This is a special case of the testing
formulation of Section 1.3 with 8 0 = {()o} and 8 1 = {(}d. The Bayes rule is then
to

Section 3.2 Bayes Procedures

Let 7T"Ui) be a prior distribution assigning mass 7T"i to ei , so that 7T"i > 0, i = 0, ... ,p, and
2::f 07T"i = 1. Suppose, moreover, that X has density or frequency function p(x I e) for
each e. Then, by (1.2.8), the posterior probabilities are

and, thus,

The optimal action <5* (x) has
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(3.2.11)
,

,..,
! i

", I
,,

,,,
I
I!
,

To complete our illustration of the utility of Proposition 3.2. L we exhibit in "closed
form" the Bayes procedure for an estimation problem when the loss is not quadratic.

Example 3.2.3. Bayes Estimation of the Probability ofSuccess in n Bernoulli Trials. Sup
pose that we wish to estimate () using Xl, ... , Xn, the indicators of n Bernoulli trials with
probability of success (). We shall consider the loss function l given by

(() _ a)2
l((},a)= ( ),O<(}<I,areal.

() 1-()

This close relative of quadratic loss gives more weight to parameter values close to zero and
one. Thus, for () close to zero, this l((}, a) is close to the relative squared error (() - a)2/(}.
It makes X have constant risk, a property we shall find important in the next section. The
analysis can also be applied to other loss functions. See Problem 3.2.5.

By sufficiency we need only consider the number of successes, S. Suppose now that
we have a prior distribution. Then, if all terms on the right-hand side are finite,

I

(3.2.13)

(3.2.14)

(3.2.15)

k+r-l
n+s+r-2'

<5*(k) = E(I/(I- 0) IS = k)
E(I/0(1 - 0) I S = k)

<5* (k)

r(a I k) E
(0 - a)2

S=k =E
0

S=k
0(1 - 0) (1 - 0)

(3.2.12)
1 1

S=k +a2 E S=k2aE
(1 - 0) 0(1 - 0)

•

Minimizing this parabola in a, we find our Bayes procedure is given by

where we are using the notation B.2.11 of Appendix B. If k = 0, it is easy to see that a = 0
is the only a that makes r(a I k) < 00. Thus, <5*(0) = O. Similarly, we get <5*(n) = 1. If
we assume a uniform prior density, (r = s = 1), we see that the Bayes procedure is the
usual estimate, X. This is not the case for quadratic loss (see Problem 3.2.2). 0

provided the denominator is not zero. For convenience let us now take as prior density the
density br,s((}) of the beta distribution f3(r, s). In Example 1.2.1 we showed that this leads
to a f3(k + r, n + 5 - k) posterior distribution for 0 if S = k. If 1 < k < n - 1 and n > 2,
then all quantities in (3.2.12) and (3.2.13) are finite, and

Io\I/(1 - (}))bk+r,n-k+s((})d()

I;(l/O(1 - O))bk+r,n-k+s((})d(}

B(k+r,n-k+s-l)
B(k + r - 1, n - k + s - 1)

"Real" computation of Bayes procedures

The closed forms of (3.2.6) and (3.2.10) make the computation of (3.2.8) appear straight
forward. Unfortunately, this is far from true in general. Suppose, as is typically the case,
that 0 = (0., ... ,Op) has a hierarchically defined prior density,

,
•
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(3.2.16)

(3.2.17)
1

1r((}) = 1r1(p)1r2(CJ;)1r3(CJ~) II 'PO'''' (6 i )

i=i

Here is an example.

Example 3.2.4. The random effects model we shall study in Volume II has

Section 3.2 Bayes Procedures

where E(61) = 0, X = (Xu, ... , XU )T, J-t = E(X) and,8 = Ex~Exlll' For the
given model

where the Eij are Li.d. N(O, CJ;) and p and the vector a = (b'1,' .. ,61 ) is independent
of {Eij : 1 <i< 1,1 < j < J} with6 i ,oo.,61 i.i.d. N(O,CJ~), 1 <j< J,
p ~ N(Pa, CJ;). Here the Xij can be thought of as measurements on individual i and 6 i

is an "individual" effect. If we now put a prior distribution on (p, CJ;, CJ~) making them
independent, we have a Bayesian model in the usual form. But it is more fruitful to think of
this model as parametrized by () = (p, CJ;, CJ~, 6 i , ... ,61 ) with the Xij I () independent
N(p + 6 i , CJ;). Then p(x I (}) = Il,j 'PO'e(Xij - p- 6 i ) and

;SeX) = Eq((}) + [X - E(XW13

where 'PO' denotes the N(O, CJ2) density.
In such a context a loss function frequently will single out some single coordinate (}s

(e.g., 6 1 in 3.2.17) and to compute rea I x) we will need the posterior distribution of
6 1 I X. But this is obtainable from the posterior distribution of () given X = x only by
integrating out (}j, j =f. s, and if p is large this is intractable. In recent years so-called
Markov Chain Monte Carlo (MCMC) techniques have made this problem more tractable
and the use of Bayesian methods has spread. We return to the topic in Volume II. 0

where f3 is as defined in Section 1.4. For example, if in the model (3.2.16), (3.2.17) we
set q((}) = 6 .. we can find the linear Bayes estimate of 6 1 by using 1.4.6 and Problem
1.4.21. We find from (1.4.14) that the best linear Bayes estimator of 6 1 is

Linear Bayes estimates

When the problem of computing r(1r, <5) and <511' is daunting, an alternative is to consider- - -
a class V of procedures for which r( 1r, <5) is easy to compute and then to look for <511' E V-
that minimizes r(1r, <5) for <5 E V. An example is linear Bayes estimates where, in the case
of squared errorIoss [q((}) - aj2, the problem is equivalent to minimizing the mean squared

prediction error among functions of the form a + L~=l bjXj _ If in (1.4.14) we identify
q((}) with Y and X with Z, the solution is
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I
I '

,

E Cov(X1j , X1k Ie) +Cov(E(X1j I (}), E(X1k Ie))
0+ Cov(p + .0.1 , P + .0.1 ) = (T~ + (TL

•,
•

_ 2
-(Tll.,'

From these calculations we find f3 and JL(X). We leave the details to Problem 3.2.10.
Linear Bayes procedures are useful in actuarial science, for example, BOhlmann (1970)
and Norberg (1986).

j,,
1
;

j,
•

•,
•

•
1

j,

i
1
I·

(3.2.19)

(3.2.20)
L[h((}) - a]2 1r ((} I x).
/lEe

L[w-aj2>.(w I x)
wEn

re(a I x) = L[(}-aj21r ((} I x).
/lEe

rn(a Ix)

E(h(fJ) IX) =1= h(E(fJ IX))

If we set w = h( fJ) for h one-to-one onto (2 = h(8), then w has prior >.(w) = 1r(h- 1 (w))
and in the w parametrization, the posterior Bayes risk is

Bayes estimation, maximum likelihood, and equivariance

As we have noted earlier, the maximum likelihood estimate can be thought of as the
mode of the Bayes posterior density when the prior density is (the usually improper) prior
1r((}) = c. When modes and means coincide for the improper prior (as in the Gaussian
case), the MLE is an improper Bayes estimate. In general, computing means is harder than
modes and that again accounts in part for the popularity of maximum likelihood.

An important property of the MLE is equivariance: An estimating method M producing
~

the estimate (}M is said to be equivariant with respect to reparametrization if for every one-
~

to-onefunction h from 8 to (2 = h(8), the estimate of w = h((}) is WM = h((}M); that is,
- - ........
(h((})) M = h( (}M). In Problem 2.2.16 we show that the MLE procedure is equivariant. If

~

we consider squared error loss, then the Bayes procedure (}B = E( fJ IX) is not equivariant
for nonlinear transformations because

for nonlinear h (e.g., Problem 3.2.3).
The source of the lack of equivariance of the Bayes risk and procedure for squared error

loss is evident from (3.2.9): In the discrete case the conditional Bayes risk is

Thus, the Bayes procedure for squared error loss is not equivariant because squared error
loss is not equivariant and, thus, rn (a Ix) =1= re (h- 1 (a) Ix). I

,
,,

Ii
; !

I'
I

I:
I

II,,
II,

1I
iI



Summary. We show how Bayes procedures can be obtained for certain problems by com
puting posterior risk. In particular, we present Bayes procedures for the important cases
of classification and testing statistical hypotheses. We also show that for more complex
problems, the computation of Bayes procedures require sophisticated statistical numerical
techniques or approximations obtained by restricting the class of procedures.

169Section 3.2 Bayes Procedures

Loss functions of the form l(e, a) = Q(Po, Pal are necessarily equivariant. The
Kullback-Leibler divergence K(e, a), e, a E e, is an example of such a loss function.
It satisfies Ko(w, a) = Ke(e, h-1(a)), thus, with this loss function,

To(a I x) = Te(h-1(a) I x).

See Problem 2.2.38. In the discrete case using K means that the importance of a loss
is measured in probability units, with a similar interpretation in the continuous case (see
(A.7.1O)). In the N(e,CJ5) case the KL (Kullback-Leibler) loss K(e,a) is ~n(a - e?
(Problem 2.2.37), that is, equivalent to squared error loss. In canonical exponential families

k

K(1],a) = L[1]j - aj]E1]Tj +A(1]) - A(a).
j=l

Moreover, if we can find the K L loss Bayes estimate ijB K L of the canonical parameter
1] and if 1] = c(0) : e --+ £ is one-to-one, then the K L loss Bayes estimate of 0 in the

~

general exponential family is 0 B K L = c- 1(ijB K L)'

For instance, in Example 3.2.1 where p is the mean of a normal distribution and the
prior is normal, we found the squared error Bayes estimate iiB = W7)o + (1 - W)X, where
7)0 is the prior mean and W is a weight. Because the K L loss is equivalent to squared error
for the canonical parameter p, then if w = h(p), WBKL = h(iiBKL), where iiBKL =
w7)o + (1 - w)X.

Bayes procedures based on the Kullback-Leibler divergence loss function are important
for their applications to model selection and their connection to "minimum description
(message) length" procedures. See Rissanen (1987) and Wallace and Freeman (1987).
More recent reviews are Shibata (1997), Dowe, Baxter, Oliver, and Wallace (1998), and
Hansen and Yu (2000). We will return to this in Volume II.

Bayes methods and doing reasonable things

There is a school of Bayesian statisticians (Berger, 1985; DeGroot, 1969; Lindley,
1965; Savage, 1954) who argue on normative grounds that a decision theoretic framework
and rational behavior force individuals to use only Bayes procedures appropriate to their
personal prior 7r. This is not a view we espouse because we view a model as an imperfect
approximation to imperfect knowledge. However, given that we view a model and loss
structure as an adequate approximation, it is good to know that generating procedures on
the basis of Bayes priors viewed as weighting functions is a reasonable thing to do. This is
the conclusion of the discussion at the end of Section 1.3. It may be shown quite generally
as we consider all possible priors that the class 'Do of Bayes procedures and their limits is
complete in the sense that for any 6 E 'D there is a 60 E 'Do such that R(e, 60 ) < R(e, 6)
for all e.
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3.3 MINIMAX PROCEDURES

, ,
i I;,, ,,

In Section 1.3 on the decision theoretic framework we introduced minimax procedures as
ones corresponding to a worst-case analysis; the true 0 is one that is as "hard" as possible.
That is, 5) is better than 52 from a minimax point of view if sUP/I R(0,51 ) < sUP/I R(O, 52)
and 5* is said to be minimax if

supR(O,5*) = infsupR(O,5).
/I 0 /I

,
I,,,

",'

I,,,
"i!
i
i
"

Here 0 and 5 are taken to range over e and V = {all possible decision procedures (possibly
randomized)} while P = {P/I : 0 E e}. It is fruitful to consider proper subclasses of V
and subsets of P, but we postpone this discussion.

The nature of this criterion and its relation to Bayesian optimality is clarified by consid
ering a so-called zero sum game played by two players N (Nature) and 8 (the statistician).
The statistician has at his or her disposal the set V of all randomized decision procedures
whereas Nature has at her disposal all prior distributions 1r on e. For the basic game, 8
picks 5 without N's knowledge, N picks 1r without 8's knowledge and then all is revealed
and 8 pays N

that is, 1ro is leastfavorable against 5. Knowing the rules of the game 8 naturally picks 5*
such that

forall1r,5. On the other hand, if R(Oo,5) = sUP/I R(O,5), then if 1ro is point mass at 00 ,

r(1ro, 5) = R(00 ,5) and we conclude that

,
•
'I,

i
i
j
I
1,
,

...

(3.3.1)

(3.3.2)

(3.3.3)

r(1ro,5) = sup r(1r, 5),
7T

sup r(1r, 5) = sup R(0,5)
7T /I

r(1ro*,5*) = supr(1r,5*) = infsupr(1r,5).
7T 0 7T

r(1r,5) = J R(O, 5)d1r(O)

where the notation I R(O, 5)d1r(O) stands for I R(O, 5)1r(O)dO in the continuous case and
L R(Oj, 5)1r(Oj) in the discrete case.

8 tries to minimize his or her loss, N to maximize her gain. For simplicity, we assume
in the general discussion that follows that all sup's and inf's are assumed. There are two
related partial information games that are important.

I: N is told the choice 5 of 8 before picking 1r and 8 knows the rules of the game. Then
N naturally picks 1r°such that

We claim that 5* is minimax. To see this we note first that,



are both assumed by (say) -rr* (least favorable), 5* minimax, respectively. Further,
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(3.3.4)

(3.3.5)

(3.3.6).r**.r **u == U1f''''*, 1f == 1f6**

v sup infr(-rr, 5), v _ infsup r(-rr, 5)
rr 0 0 rr

r(-rr*,5rr *) = sup r(-rr, 5rr ) = supinfr(-rr,5).
rr rr 0

Section 3.3 Minimax Procedures

That is, Orr is a Bayes procedure for -rr. Then N should pick -rr* such that

and our claim follows.

II: S is told the choice -rr of N before picking <5 and N knows the rules of the game.
Then S naturally picks 5" such that

For obvious reasons, -rr* is called a least favorable (to S) prior distribution. As we shall see
by example, although the right-hand sides of (3.3.2) and (3.3.4) are always defined, least
favorable priors and/or minimax procedures may not exist and, if they exist, may not be

•umque.
The key link between the search for minimax procedures in the basic game and games

I and II is the von Neumann minimax theorem of game theory, which we state in our
language.

Theorem 3.3.1. (von Neumann). If both 8 and D are finite, then:

and, hence, 5* = 5rr *, -rr* = -rro*.

v and v are called the lower and upper values of the basic game. When v = v = v
(say), v is called the value of the game.

Remark 3.3.1. Note (Problem 3.3.3) that von Neumann's theorem applies to classification
and testing when 8 0 = {eo} and 8 1 = {ed (Example 3.2.2) but is too restrictive in its
assumption for the great majority of inference problems. A generalization due to Wald and
Karlin-see Karlin (I959}-states that the conclusions of the theorem remain valid if 8 and
D are compact subsets of Euclidean spaces. There are more far-reaching generalizations
but, as we shall see later, without some form of compactness of 8 and/or D, although
equality of v and v holds quite generally, existence of least favorable priors and/or minimax
procedures may fail.

The main practical import of minimax theorems is, in fact, contained in a converse and
its extension that we now give. Remarkably these hold without essentially any restrictions
on 8 and D and are easy to prove.

Proposition 3.3.1. Suppose 5**, -rr** can be found such that

(a)
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that is, 15** is Bayes against 7r** and 7r" is least favorable against 15**. Then v = v =

R(7r", 15**). That is. 7r" is least favorable and 0** is minimax.

To utilize this result we need a characterization of 7rJ. This is given by

Proposition 3.3.2. 7rJ is least favorable against 15 iff

7rJ {O : R(0,15) = sup R(0', t5)} = 1.
0'

(3.3.7)

That is, 7rJ assigns probability only to points 0 at which the function R(·, 15) is maximal.

Thus, combining Propositions 3.3.1 and 3.3.2 we have a simple criterion, "A Bayes
rule with constant risk is minimax."

Note that 7rJ may not be unique. In particular, if R(O, 15) _ constant, the rule has
constant risk, then all 7r are least favorable.

We now prove Propositions 3.3.1 and 3.3.2.

Proof ofProposition 3.3.1. Note first that we always have

. ,,
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v<v--

because, trivially,

infr(7r,t5) < r(7r,t5')
J -

for all 7r, 15'. Hence,

v = sup iJ}fr(7r, 15) < supr(7r, 15')
" u "

for all 15' and v < infJ, sup" r(7r, 15') = v. On the other hand, by hypothesis,

v> infr(7r**,15) = r(7r**, 15**) = supr(7r,t5**) > v.
J "

Combining (3.3.8) and (3.3.11) we conclude that

v = i~fr(7r",t5) = r(7r**, 15**) = s~pr(7r,t5**) = v

as advertised.

ProofofProposition 3.3.2. 7r is least favorable for 15 iff

E"R(9,t5) = J r(O,t5)d7r(O) = s~pr(7r,t5).

But by (3.3.3),

sup r(7r, 15) = supR(O,t5).
" 0

Because E"R(9, 15) = sUPo R(O, 15), (3.3.13) is possible iff (3.3.7) holds.

Putting the two propositions together we have the following.

(3.3.8)

(3.3.9)

(3.3.10)

(3.3.11 )

(3.3.12)

o

(3.3.13)

(3.3.14)

o

,,
••



_ E(X - (J)2 (J(1 - (J) 1
R((J, X) = (J(1 _ (J) = n(J(1 - (J) = n'

S+21 In. In. - 1 1
15* (S) = V" = ----=-v_"X + ---=-----,- . _.

n+vn vn+1 vn+1 2
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7f

1-7f
>

7f
L(x, 0, v) < .

1-7f

L(x,O,v) = exp

Section 3.3 Minimax Procedures

and decides p, = 0 if

Example 3.3.2. Minimax Testing. Satellite Communications. A test to see whether a
communications satellite is in working order is run as follows. A very strong signal is
beamed from Earth. The satellite responds by sending a signal of intensity v > 0 for n
seconds or, if it is not working, does not answer. Because of the general "noise" level in
space the signals received on Earth vary randomly whether the satellite is sending or not.

•

The mean voltage per second of the signal for each of the n seconds is recorded. Denote
the mean voltage of the signal received through the ith second less expected mean voltage
due to noise by Xi. We assume that the Xi are independently and identically distributed
as N(p" (J'2) where p, = v, if the satellite functions, and 0 otherwise. The variance (J'2 of
the "noise" is assumed known. Our problem is to decide whether "p, = 0" or "p, = v." We
view this as a decision problem with 0 - 1 loss. If the number of transmissions is fixed, the
minimax rule minimizes the maximum probability of error (see (1.3.6)). What is this risk?

A natural first step is to use the characterization of Bayes tests given in the preceding
section. If we assign probability 7f to 0 and 1 - 7f to v, use 0 - 1 loss, and set L(x, 0, v) =
p(x Iv)/p(x I0), then the Bayes test decides p, = v if

This estimate does have constant risk and is Bayes against a f3(vn/2, vn/2) prior (Prob
lem 3.3.4). This is an example of a situation in which the minimax principle leads us to an
unsatisfactory estimate. For quadratic loss, the limit as n --> 00 of the ratio of the risks of
15* and X is > 1 for every (J =f. ~. At (J = ~ the ratio tends to 1. Details are left to Problem
3.3.4. []

- -
and X does have constant risk. Moreover, we have seen in Example 3.2.3 that X is Bayes,
when () is U(O, 1). By Theorem 3.3.2 we conclude that X is minimax and, by Proposition
3.3.2, the uniform distribution least favorable.

For the usual quadratic loss neither of these assertions holds. The minimax estimate is

Theorem 3.3.2. Suppose 15* has sUPo R((J, 15*) = r < 00. If there exists a prior 7[* such
that 15* is Bayes for 7[* and 7[* {(J : R((J, 6*) = r} = 1, then 15* is minimax.

Example 3.3.1. Minimax Estimation in the Binomial Case. Suppose S has a B(n, (J)
distribution and X = S/n, as in Example 3.2.3. Letl((J,a) = ((J-a)2/(J(I-(}),0 < (J < 1.
For this loss function,
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This test is equivalent to deciding JL = v (Problem 3.3.1) if, and only if,

1
T = ynEXi > t,

(Y n

where,

To get a minimax test we must have R(O, <5,,) = R(v, <5,,), which is equivalent to

! t

If we call this test <5",

(Y

t=-=vyn

R(O, <5,,)

R(v, <5,,)

1r nv2

log 1 + 2 2 .-1r (Y

1 - <I>(t) = <I> ( -t)

<I> (t - vf') .

", ,, ,,,. ,

I
[, ' :

vyn
-t = t - -'-

(Y

or
vyn

t = _:-,-
2(Y •

Because this value of t corresponds to 1r = ~, the intuitive test, which decides JL = v if and
only ifT > ~[Eo(T) +Ev(T)), is indeed minimax. 0

If e is not bounded, minimax rules are often not Bayes rules but instead can be obtained
as limits of Bayes rules. To deal with such situations we need an extension of Theorem
3.3.2.

Theorem 3.3.3. Let <5* be a rule such that sUPII R( (I, <5*) = r < 00, let {1rd denote
a sequence of prior distributions such that 1rd (I : R((I, <5*) = r} = 1, and let r k =
infJr(1rk,<5), where r(1rk,<5) denotes the Bayes risk wrt 1rk. If

If we let k --> 00 the left-hand side of (3.3.16) is unchanged, whereas the right tends to
sUPIIR((I,<5*). 0

rk --> r as k --> 00,

then <5* is minimax.

Proof. Because r(1rk, <5*) = r

sup R((I, <5*) = rk + 0(1)
II

where 0(1) --> 0 as k --> 00. But by (3.3.13) for any competitor <5

SUp R((I, <5) > E1rk (R(O,<5)) > rk = supR((I,<5*) - 0(1).
II II

(3.3.15)

(3.3.16)

r



whereas the Bayes risk of the Bayes rule of Example 3.2.1 is

o
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n
M

n

- Varp(Xrl
max R(F, X) = max --'-----'-

:F :F n
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Theorem 3.3.3 applies and the result follows.

:F = {F: Varp(Xrl < M}.

Evidently, the Bayes risk is now the same as in Example 3.3.3 with (Y2 = M. Because,
evidently,

7 2 (Y2 (Y2 1 (Y2
inf r k(<5) = - = - - -

6 ((Y2/ n ) +72 n n ((Y2/ n ) +72 n'

Because ((Y2 /n)/(( (Y2 In) +72 ) --> 0 as 7 2 --> 00, we can conclude that X is minimax. 0

Example 3.3.4. Minimax Estimation in a Nonparametric Setting (after Lehmann). Suppose
Xl,"" X n are i.i.d. FE:F

Then X is minimax for estimating B(F) - Ep(Xrl with quadratic loss. This can be
viewed as an extension of Example 3.3.3. Let 'Irk be a prior distribution on :F constructed
as follows: (1)

(i) 'lrdF: Varp(Xrll- M} = O.

(ii) 'Irk {F : F I- N(Il, M) for some Il} = O.

(iii) F is chosen by first choosing Il = B(F) from a N(O, k) distribution and then taking
F = N(B(F), M).

-
Example 3.3.3. Normal Mean. We now show that X is minimax in Example 3.2.1. Identify
'Irk with the N(1Jo, 7

2
) prior where k = 7

2
. Then

Minimax procedures and symmetry

As we have seen, minimax procedures have constant risk or at least constant risk on the
"most difficult" B. There is a deep connection between symmetries of the model and the
structure of such procedures developed by Hunt and Stein, Lehmann, and others, which is
discussed in detail in Chapter 9 of Lehmann (1986) and Chapter 5 of Lehmann and Casella
(1998), for instance. We shall discuss this approach somewhat, by example, in Chapters 4
and Volume II but refer to Lehmann (1986) and Lehmann and Casella (1998) for further
reading.

Summary. We introduce the minimax principle in the contex.t of the theory of games.
Using this framework we connect minimaxity and Bayes methods and develop sufficient
conditions for a procedure to be minimax and apply them in several important examples.



More specifically, we show how finding minimax procedures can be viewed as solving
a game between a statistician S and nature N in which S selects a decision rule Ii and N
selects a prior 7['. The lower (upper) value v(v) of the game is the supremum (infimum)
over priors (decision rules) of the infimum (supremum) over decision rules (priors) of the
Bayes risk. A prior for which the Bayes risk of the Bayes procedure equals the lower value
of the game is called least favorable. When v = v, the game is said to have a value v.
Von Neumann's Theorem states that if 8 and V are both finite, then the game of S versus
N has a value v, there is a least favorable prior -rr* and a minimax rule Ii* such that Ii* is
the Bayes rule for 7['* and 7['* maximizes the Bayes risk of Ii* over all priors. Moreover,
v equals the Bayes risk of the Bayes rule Ii* for the prior 7['*. We show that Bayes rules
with constant risk, or more generally with constant risk over the support of some prior, are
minimax. This result is extended to rules that are limits of Bayes rules with constant risk
and we use it to show that x is a minimax rule for squared error loss in the N((}, (T6) model.

:I
!. I '
:1 '
: '

:i
;I
!,

i'
"
!I,
I
!I,.

•

Ii
!I
!,
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::' :,,' ,
3.4 UNBIASED ESTIMATION AND RISK

INEQUALITIES

3.4.1 Unbiased Estimation, Survey Sampling

In the previous two sections we have considered two decision theoretic optimality princi
ples, Bayes and minimaxity, for which it is possible to characterize and, in many cases,
compute procedures (in particular estimates) that are best in the class of all procedures,
V, according to these criteria. An alternative approach is to specify a proper subclass of
procedures, Va c V, on other grounds, computational ease, symmetry, and so on, and
then see if within the Va we can find Ii* E Va that is best according to the "gold standard,"
R( (), Ii) > R( (), Ii*) for all (), all Ii E Va. Obviously, we can also take this point of view with
humbler aims, for example, looking for the procedure Ii; E Va that minimizes the Bayes
risk with respect to a prior 7[' among all Ii E Va. This approach has early on been applied to
parametric families Va. When Va is the class of linear procedures and l is quadratic loss,
the solution is given in Section 3.2.

In the non-Bayesian framework, if Y is postulated as following a linear regression
model with E(Y) = zT {3 as in Section 2.2.1, then in estimating a linear function of the
(3j it is natural to consider the computationally simple class of linear estimates, S(Y) =
Z~ 1 di Ii. This approach coupled with the principle of unbiasedness we now introduce
leads to the famous Gauss-Markov theorem proved in Section 6.6.

We introduced, in Section 1.3, the notion of bias of an estimate Ii(X) of a parameter
q((}) in a model P = {Po: () E 8} as

Biaso(li) = Eoli(X) - q((}).

An estimate such that Biaso (Ii) 0 is called unbiased. This notion has intuitive appeal,
ruling out, for instance, estimates that ignore the data, such as Ii(X) _ q({}o), which can't
be beat for {} = {}o but can obviously be arbitrarily terrible. The most famous unbiased
estimates are the familiar estimates of /l and (T2 when XI, ... ,Xn are Li.d. N(p, (T2)

•,
:
j

I

I
1
j
i
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(3.4.2)

(3.4.1)

(3.4.3)

(3.4.4)

(3.4.5)

(3.4.6)

n-I
1 - -,--,-----

N -I

n
ootherwise.

N
2 1 ~ - 2

(Y = - (X- - X)
x N ' .

i=l

n

52 = 1 ~(Xi _ X)2.
n-I

i=l

2
- - (Y

MSE(X) = Varx(X) = ~
n
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given by (see Example 1.3.3 and Problem 1.3.8)

Because for unbiased estimates mean square error and variance coincide we call an unbi
ased estimate J*(X) of q(e) that has minimum MSE among all unbiased estimates for all
e, UMVU (uniformly minimum variance unbiased). As we shall see shortly for X and in
Volume 2 for 52, these are both UMVU.

Unbiased estimates playa particularly important role in survey sampling.

Example 3.4.1. Vnbiased Estimates in Survey Sampling. Suppose we wish to sample
from a finite population, for instance, a census unit, to determine the average value of a
variable (say) monthly family income during a time between two censuses and suppose
that we have available a list of families in the unit with family incomes at the last census.
Write Xl, ... , XN for the unknown current family incomes and correspondingly UI, ... , UN

for the known last census incomes. We ignore difficulties such as families moving. We
let Xl, ... , X n denote the incomes of a sample of n families drawn at random without
replacement. This leads to the model with x = (Xl, .•. , X N ) as parameter

where

We want to estimate the parameter X = iv 2:.~ I Xj. It is easy to see that the natural

estimate X ~ 2:.7 1 Xi is unbiased (Problem 3.4.14) and has

where b is a prespecified positive constant, Vi is the last census income corresponding to
~

Xi, and U = iv 2:.t' I Ui, V = ~ 2:.7 I Vi. Clearly for each b, X R is also unbiased. If

This method of sampling does not use the information contained in UI, ... , UN. One way
to do this, reflecting the probable correlation between (UI, •.. , UN) and (Xl, ..• , X N ), is
to estimate by a regression estimate
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- - -
the correlation of Ui and Xi is positive and b < 2Cov(U, X)/Var(U), this will be a better
estimate than X and the best choice of b is bopt _ cov(U, X)/Var( U) (Problem 3.4.19).
The value of bopt is unknown but can be estimated by

_ 1. ",n (X - X)(U - U)
b n ~1=1 I topt = c..=....::.==--'--''-,;N~-~--=--....:...·

J.r Lj=l(Uj - U)2

The resulting estimate is no longer unbiased but behaves well for large samples-see Prob
lem 5.3.11.

An alternative approach to using the Uj is to not sample all units with the same prob

ability. Specifically let 0 < 7f1, ... ,7fN < 1 with L; 17fj = n. For each unit 1, ... ,N
toss a coin with probability 7fj of landing heads and select Xj if the coin lands heads. The
result is a sample 5 = {Xl, . .. ,XM } of random size M such that E(M) = n (Problem
3.4.15). If the 7fj are not all equal, X is not unbiased but the following estimate known as
the Horvitz-Thompson estimate is:

,~ii '
: I

I
: ', ,. ,

i1
I){,
if .

"\ I!; ,
•

M

"'" 1 '" Xi
XHT - - L.J

N ;=1 7fJ,

where Ji is defined by Xi = XJi' To see this write

(3.4.7)

N
_ 1 '" Xj
XHT = N L.J ~l(xj E 5).

j=l J

Because 7fj = P[Xj E 5] by construction unbiasedness follows. A natural choice of 7fj is
~n. This makes it more likely for big incomes to be included and is intuitively desirable.
It is possible to avoid the undesirable random sample size of these schemes and yet have
specified 7fj. The Horvitz-Thompson estimate then stays unbiased. Further discussion of
this and other sampling schemes and comparisons of estimates are left to the problems. 0

Discussion. Unbiasedness is also used in stratified sampling theory (see Problem 1.3.4).
However, outside of sampling, the unbiasedness principle has largely fallen out of favor for
a number of reasons.

(i) Typically unbiased estimates do not exist-see Bickel and Lehmann (1969) and
Problem 3.4.18, for instance.

(ii) Bayes estimates are necessarily biased-see Problem 3.4.2G--and minimax esti
mates often are.

(iii) Unbiased estimates do not obey the attractive equivariance property. If B is unbiased- -
for B, q(B) is biased for q(B) unless q is linear. They necessarily in general differ
from maximum likelihood estimates except in an important special case we develop
later.

j
i

I
I,
•



3.4.2 The Information Inequality

whenever the right-hand side of (3.4.8) is finite.
Note that in particular (3.4.8) is assumed to hold if T(x) = 1 for all x, and we can

interchange differentiation and integration in Jp(x, B)dx.
Assumption II is practically useless as written. What is needed are simple sufficient

conditions on p(x, B) for II to hold. Some classical conditions may be found in Apostol
(1974), p. 167. Simpler assumptions can be formulated using Lebesgue integration theory.
For instance, suppose I holds. Then II holds provided that for all T such that Eo( ITIJ < 00

Nevertheless, as we shall see in Chapters 5 and 6, good estimates in large samples
_ 1 _

are approximately unbiased. We expect that !Biaso(Bn)I/Var$ (Bn) ---+ 0 or equivalently- -Varo(Bn)/M5Eo(Bn) ---+ 1 as n ---+ 00. In particular we shall show that maximum like-
lihood estimates are approximately unbiased and approximately best among all estimates.
The arguments will be based on asymptotic versions of the important inequalities in the
next subsection.

Finally, unbiased estimates are still in favor when it comes to estimating residual vari
ances. For instance, in the linear regression model Y = ZDj3 + c of Section 2.2, the
variance (J2 = Var(ci) is estimated by the unbiased estimate 52 = "iT"i/(n - p) where- -"i = (Y - ZDj3), 13 is the least squares estimate, and p is the number of coefficients in 13.
This preference of 52 over the MLE &2 = "iTc/n is in accord with optimal behavior when
both the number of observations and number of parameters are large. See Problem 3.4.9.

179

(3.4.8)JT(x)p(x,B)dx = JT(x) :BP(x,B)dX
a
aB

Section 3.4 Unbiased Estimation and Risk Inequalities

The one-parameter case

We will develop a lower bound for the variance of a statistic, which can be used to
show that an estimate is UMVU. The lower bound is interesting in its own right, has some
decision theoretic applications, and appears in the asymptotic optimality theory of Section
5.4.

We suppose throughout that we have a regular parametric model and further that 8 is
an open subset of the line. From this point on we will suppose p(x, B) is a density. The
discussion and results for the discrete case are essentially identical and will be referred to in
the future by the same numbers as the ones associated with the continuous-case theorems
given later. We make two regularity assumptions on the family {Po: B E 8}.

(I) The set A = {x : p(x,B) > o} does not depend on B. For all x E A, B E 8,
a/aB logp(x, B) exists and is finite.

(II) If T is any statistic such that Eo(IT/) < 00 for all B E 8, then the operations of
integration and differentiation by B can be interchanged in JT(x)p(x, B)dx. That is, for
integration over Rq,
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for all 0, the integrals
,,,

I '
: ; 1 a 1 aT(x) aop(x,O) dxand T(x) aop(x,O) dx

o

Example 3.4.2. Suppose Xl"'" X n is a sample from a Poisson P(O) population. Then

o

(3.4.9)

1 n
=02 nO =0'

p(x,O)dx.
2a

ao logp(x,O)

1 :oP(x,O) p(x,O) p(x,O)dx

1 :op(x, O)dx = :01p(x, O)dx = O.

a
Eo ao logp(X,O)

a 2=11(0) = Eo ao logp(X,O)

a 2:n
_1 Xi

ao logp(x, 0) = '0 - nand 1(0) = Var

are continuous functions(3) of O. It is not hard to check (using Laplace transform theory)
that a one-parameter exponential family quite generally satisfies Assumptions I and II.

Proposition 3.4.1. /fp(x,O) = h(x) exp{1](O)T(x) - B(O)} is an exponential family and
1](0) has a nonvanishing continuous derivative on e, then I and II hold.

For instance, suppose Xl, ... , X n is a sample from aN(0, cr2 ) population, where cr 2

is known. Then (see Table 1.6.1) 1](0) = 0/cr2 and I and II are satisfied. Similarly, I and II
are satisfied for samples from gamma and beta distributions with one parameter fixed.

If I holds it is possible to define an important characteristic of the family {Po}, the
Fisher information number, which is denoted by 1(0) and given by

Note that 0 < 1(0) < 00.

Lemma 3.4.1. Suppose that I and II hold and that

a
E ao log p(X, 0) < 00.

Then

a
Eo ao logp(X, 0) =0 (3.4.10)

,,,
and, thus, j,

a ,

1(0) = Var
I

ao logp(X, 0) • (3.4.11)

I
Proof.

Ii,'



Now let us apply the correlation (Cauchy-Schwarz) inequality (A.l1.l6) to the random
variables a/aB logp(X, B) and T(X). We get
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(3.4.13)

(3.4.14)

(3.4.15)

(3.4.16)

(3.4.17)

a
aBlogp(x,B) p(x,B)dx.

a
aB logp(X, B), T(X) .

a
Var(T(X))Var aB logp(X,B) .

1
Varo(T(X)) > I(B)'

'1/;' (B) = Cov

Here is the main result of this section.

Section 3.4 Unbiased Estimation and Risk Inequalities

'I/;'(B) = J T(x) :BP(x, B)dx = J T(x)

By (A.l1.l4) and Lemma 3.4.1,

Proof. Using I and II we obtain,

The number 1/1(B) is often referred to as the information or Cramer-Roo lower bound
for the variance of an unbiased estimate of ¢(B).

Here's another important special case.

Proposition 3.4.2. Suppose that X = (XI,.'" X n ) is a sample from a population with
density f(x, B), BEe, and that the conditions of Theorem 3.4.1 hold. Let II (B) =

E (go log f(X I , B)) 2, then

I(B) = nIl (B) and Varo(T(X)) > ['I/;'(~)])2,
nIl B

['I/;' (B) j2
Varo(T(X)) > I(()) . (3.4.12)

Theorem 3.4.1. (Information Inequality). Let T(X) be any statistic such that
Varo(T(X)) < 00 for all B. Denote Eo(T(X)) by'l/;(B). Suppose that I and II hold
and 0 < I(B) < 00. Then for all B, 'I/;(B) is differentiable and

The theorem follows because, by Lemma 3.4.1, Var (go log p(X, B)) = I (B). 0

The lower bound given in the information inequality depends on T(X) through ¢(B).
If we consider the class of unbiased estimates of q(B) = B, we obtain a universal lower
bound given by the following.

Corollary 3.4.1. Suppose the conditions of Theorem 3.4.1 hold and T is an unbiased
estimate of B. Then
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Proof This is a consequence of Lemma 3.4.1 and

I(B) = Var
a
aB log p(X, B)

11 [)

Var L aB log f(X i , B)
i=1

n

L Var
1=1

a
aB logf(Xi,B) =nII(B).

o

II (B) is often referred to as the information contained in one observation. We have just
shown that the information I(B) in a sample of size n is nIr (B).

Next we note how we can apply the information inequality to the problem of unbiased
estimation. If the family {Po} satisfies I and II and if there exists an unbiased estimate T*
of "I/;(B) such that Varo[T*(X)] = ["I/;'(BJFII(B) for all BEe, then T* is UMVU as an
estimate of "1/;.

~ -
Example 3.4.2. (Continued). For a sample from a P(B) distribution, the MLE is B = X.

- - -
Because X is unbiased and Var(X) = Bin, then X is UMVU.

Example 3.4.3. Suppose Xl, ... , X n is a sample from a normal distribution with unknown
mean B and known variance (J2. As we previously remarked, the conditions of the infor
mation inequality are satisfied. By Corollary 3.4.1 we see that the conclusion that X is
UMVU follows if

,
i
j

(3.4.18)

(3.4.19)

1
2'(J

=E
2

(J

1
-rp
(J

p(x, B) = h(x) exp[1](B)T*(x) - B(B)].

a
aB

log

- 1
Var(X) = nIr (B) .

Now Var(X) = (J2 In, whereas if rp denotes the N(O, 1) density, then

Conversely, if {Po} is a one-parameter exponential family of the fonn (1.6.1) with natural
sufficient statistic T(X) and 1](B) has a continuous nonvanishing derivative on e, then
T(X) achieves the information inequality bound and is a UMVU estimate ofEo (T(X)).

and (3.4.18) follows. Note that because X is UMVU whatever may be (J2, we have in fact
proved that X is UMVU even if (J2 is unknown. 0

We can similarly show (Problem 3.4.1) that if XI, . .. , X n are the indicators of n
Bernoulli trials with probability of success B, then X is a UMVU estimate of B. These
are situations in which X follows a one-parameter exponential family. This is no accident.

Theorem 3.4.2. Suppose that the family {Po : BEe} satisfies assumptions I and II and
there exists an unbiased estimate T* of "1/;(B), which achieves the lower bound of Theo
rem 3.4.1 for every B. Then {Po} is a one-parameter exponential family with density or
frequency junction of the fonn

,

i:, l"

!,

J :,
, 11
l'~ ,
"c',~'

,
,,

i,
I

:Ij

----------------------------------



for j = 1,2, we see that aI, a2 are linear combinations of alog p(Xj, B) j dB, j = 1,2 and,
hence, continuous in B. But now if X is such that
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(3.4.20)

(3.4.21 )

(3.4.22)

(3.4.23)

(3.4.25)I(B) = Vare(T(X) - A'(B)) = VareT(X) = A"(B).

Section 3.4 Unbiased Estimation and Risk Inequalities

with Pe probability 1 for each B. From this equality of random variables we shall show that
Pe[X E A*j = 1 for all Bwhere

A*= x:~logp(x,())=al(B)T*(x)+a2(B)fOrallBEe.

Proof We start with the first assertion. Our argument is essentially that ofWijsman (1973).
By (3.4.14) and the conditions for equality in the correlation inequality (A. I 1.16) we know
that T* achieves the lower bound for all B if, and only if, there exist functions al (B) and
a2 (B) such that

Upon integrating both sides of (3.4.20) with respect to Bwe get (3.4.19).
The passage from (3.4.20) to (3.4.19) is highly technical. However, it is necessary.

Here is the argument. If Ae denotes the set of x for which (3.4.20) hold, then (3.4.20)
guarantees Pe(Ae) = 1 and assumption I guarantees PO' (Ae) = 1 for all B' (Problem
3.4.6). Let BI, B2, .. , be a denumerable dense subset of e. Note that if A** = nmAe=,
Pe,(A**) = 1 for all B'. Suppose without loss of generality that T(Xl) # T(X2) for
Xl, X2 E A**. By solving for ai, a2 in

so that

for all Bl , B2, . " and both sides are continuous in B, then (3.4.23) must hold for all B. Thus,
A ** = A * and the result follows.

Conversely in the exponential family case (1.6.1) we assume without loss of generality
(Problem 3.4.3) that we have the canonical case with 1](B) = Band B(B) = A(B) =
log Jh(x) exp{BT(xndx. Then

~ 10gp(X,B) = T(X) - A'(B) (3.4.24)

But'ljJ(B) = A'(B) and, thus, the information bound is [A"(B)f jA"(B) AI/(B)
Vare(T(X)) so that T(X) achieves the information bound as an estimate of EeT(X). 0

Example 3.4.4. In the Hardy-Weinberg model of Examples 2,1.4 and 2.2.6,

p(x, B) 2n2 exp{ (2nl + n2) log B+ (2n3 + n3) 10g(1 - Bn

- 2n2 exp{(2nl + n2)[logB -log(1 - B)] + 2nlog(1 - Bn
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where we have used the identity (2nl + 1!2) + (2n3 + n2) = 2n. Because this is an expo
nential family, Theorem 3.4.2 implies that T = (2N I + N2)/2n is UMVU for estimating
E(T) = (2n)-1[2nB 2 + 2nB(1 - B)] = B.

- -This T coincides with the MLE Bof Example 2.2.6. The variance of Bcan be computed
directly using the moments of the multinomial distribution of (Nr, N2, N3), or by trans
forming p(x, B) to canonical form by setting TJ = lag[B/( 1 - B)] and then using Theorem-1.6.2. A third method would be to use Var(B) = 1/[(B) and formula (3.4.25). We find-(Problem 3.4.7) Var(B) = B(1 - B)/2n. 0

Note that by differentiating (3.4.24), we have

fP ( "(8B2 lagp X, B) = -A B).

By (3.4.25) we obtain

82

[(B) = -Eo 8B2 logp(X, B). (3.4.26)

The multiparameter case

We will extend the information lower bound to the case of several parameters, ()
(B I , ... , Bd). In particular, we will find a lower bound on the variance of an estimator

..

•••

l

o

o

(3.4.27)
2

n
B'

8
8B logp(x, B)

82 1 82

8B2 logp(x, B) = p(x, B) 8B2 P(x, B) -

which equals [(B).

and integrate both sides with respect to p(x, B).

Example 3.4.2. (Continued). For a sample from a P(B) distribution

82 n

Eo - 8B2 log p(X, B) = B-2E LXi
i=l

It turns out that this identity also holds outside exponential families:

Proposition 3.4.3. Suppose pC, B) satisfies in addition to I and II: p(', B) is twice differen
tiable and interchange between integration and differentiation is pennitted. Then (3.4.26)
holds.

Proof We need only check that

Discussion. It often happens, for instance, in the U(O, B) example, that I and II fail to hold,
although UMVU estimates exist. See Volume II. Even worse, as Theorem 3.4.2 suggests,
in many situations, assumptions I and II are satisfied and UMVU estimates of t/J(B) exist,
but the variance of the best estimate is not equal to the bound [t/J'(B)]2 / [(B). Sharpenings
of the information inequality are available but don't help in general.

Extensions to models in which B is multidimensional are considered next.

..
..

II
"i
"
",.0'n
~I
il
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(3.4.28)

(3.4.29)

(3.4.30)

(3.4.31)

(3.4.32), 1 < j < d, 1 < k < d.

3
30 logp(X,O) = 0

J

3 3
3 logp(X, 0), 3 logp(X,O) .

OJ Ok

3 3
30

j
log p(X, 0) 30

k
log p(X, 0)

EO (''V0 logp(X, OJ) = 0,

Ijk (0) = CovO

1(0) = - EO

Section 3.4 Unbiased Estimation and Risk Inequalities

where

Proposition 3.4.4. Under the conditions in the opening paragraph,
(a)

That is,

and

~

01 = T of 01 when the parameters O2 , . .. ,Od are unknown. We assume that 8 is an open
subset of R d and that {p(x, 0) : 0 E 8} is a regular parametric model with conditions I
and II satisfied when differentiation is with respect OJ, j = 1, ... , d. Let p(x, 0) denote the
density or frequency function of X where X E X c Rq.

The (Fisher) information matrix is defined as

1(0) = Var(V0 logp(X, 0)).

(b) If Xl, ... , X n are i.i.d. as X, then X = (Xl,"" xnf has information matrix
nIl (0) where II is the information matrix ofX.

(c) If, in addition, p(., 0) is twice differentiable and double integration and differentia
tion under the integral sign can be interchanged,

32

30
j
30

k
logp(X,O)

Proof. The arguments follow the d = 1 case and are left to the problems.

Example 3.4.5. Suppose X ~ N(J.L, ( 2), 0 = (J.L, ( 2). Then

logp(x,O) = -~ log(21r) - ~ loga2
- 2~2 (x - J.L)2

32

III (0) = -E 3J.L2logp(x,0) = E[a- 2] = a-2

3 3
112 (6) = - E 3a2 3J.L logp(x, 0) = _a- 4E(x - J.L) = 0 = 121 (0)

32

122 (0) = -E (3a2 J2 logp(x, 0) = a-4 j2.
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Thus, in this case

1(0) =
a- 2 0
o a- 4 /2

Measures of Performance Chapter 3

(3.4.33)

,
~ , I; , o

Example 3.4.6. Canonical k-Parameter Exponential Family. Suppose
I I,

,

,
Ii:,
; i
j :
•-.. '

k

p(x,O) = eXP{LTj(x)Oj - A(O)}h(x)
j=J

oE e open. The conditions I, II are easily checked and because

(3.4.34)

Proof. We will use the prediction inequality Var(Y) > Var(J.LL(Z)), where J.LL(Z) denotes
the optimal MSPE linear predictor of Y; that is,

I,
•,

j

•,

o

(3.4.35)

(3.4.36)

(3.4.37)

(3.4.38)

•

V 0 logp(x, 0) = T(X) - A(O),

1(0) = VarOT(X).

then

By (3.4.30) and Corollary 1.6.1,

1(0) = VarOT(X) = A(O).

J.LL(Z) = J.Ly + (Z - J.LzfLz~ LZY'

Now set Y = T(X), Z = V0 logp(x, 0). Then

VarO(T(X)) > LZ~ I-J(O) LZY

~

Next suppose OJ = T. is an estimate of OJ with O2 , ... ,Od assumed unknown. Let
'1/;(0) = EOT(X) and let 'lj;(0) = V'I/;(0) be the d x 1 vector of partial derivatives. Then

Theorem 3.4.3. Assume the conditions of the opening paragraph hold and suppose that
•

the matrix 1(0) is nonsingular. Then for all 0, '1/;(0) exists and

where LZY = EO(TV0 logp(X, 0)) = V OEO(T(X)) and the last equality follows
from the argument in (3.4.13). 0

Here are some consequences of this result.

Example 3.4.6. (continued). UMVU Estimates in Canonical Exponential Families. Sup
pose the conditions of Example 3.4.6 hold. We claim that each of Tj(X) is a UMVU

'"
!;!
,1
,1',
'I, :
~ "'.' i'
,I,-, ~

'j" :
, ..
, t,
"t
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(3.4.39)

(3.4.40)

•

•

-I

kxk

02A 02A
OO? ' ... , 00

1
00k

k-l

A(O) = nlog 1 + L ellj

j=1

oA(0) .
'lj;(O) = 00

1
' 'lj;(O) =

We claim that in this case

Section 3.4 Unbiased Estimation and Risk Inequalities

Example 3.4.7. Multinomial Trials. In the multinomial Example 1.6.6 with Xl, ... ,Xn
i.i.d. as X and Aj = P(X = j), j = 1, ... , k, we transfonned the multinomial model
M(n, AI,"" Ak) to the canonical fonn

~(O)I-l(O)~T(O)= ~2~ (3.4.41)
0 1

because -J;(O) is the first row of I(O) and, hence, ~(O)I-I (0) = (1,0, ... ,0). But

0"::2 A(0) is just Var0Tl (X).
1

p(x, 0) = exp{TT(x)O - A(O)}

where TT(x) = (Tl(x), ... ,Tk_I(X)),

Tj(X) = L 1[Xi = jj, X = (XI,"" xnf, 0 = (01 , ... , Ok-If,
j=l

where, without loss of generality, we let j = 1. We have already computed in Proposition
3.4.4

estimate of EOTj(X). This is a different claim than Tj(X) is UMVU for EOTj(X) if Oi,
i # j, are known. To see our claim note that in our case

Note that

o A(O) = __n_e-;-II
J
-,._ = nAj = nE(Tj(X))

oOj 1 + L7 II ell,

02 nellj (1 + L7 II ell, - ellj )
002 A (O) = 2 = nAj(l - Aj) = Var(Tj(X)).

j (1 + L7 II ell, )

Thus, by Theorem 3.4.3, the lower bound on the variance of an unbiased estimator of
'lj;j(O) = E(n-ITj(X)) = Aj is Aj(l - Aj)/n. But because Nj/n is unbiased and has
variance Aj (1 - Aj )/n, then Nj/n is UMVU for Aj. 0
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(3.4.42)
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~ ~

ounbiased =} VarOO > 1-1 (0).

where A > B means aT(A - B)a > Ofor all adxl.

Note that both sides of (3.4.42) are d x d matrices. Also note that

Example 3.4.8. The Normal Case. If XI, . .. ,Xn are i.i.d. N(IL (J2) then X is UMVU
for 11 and ~ 'L, Xl is UMVU for 112 + (J2. But it does not follow that n I I 'L,(Xi - X)2
is UMVU for (J2. These and other examples and the implications of Theorem 3.4.3 are
explored in the problems. 0

Here is an important extension of Theorem 3.4.3 whose proof is left to Problem 3.4.21.

Theorem 3.4.4. Suppose that the conditions ofTheorem 3.4.3 hold and

T(X) = (T1(X), ... ,Td(X)f

3.5 NONDECISION THEORETIC CRITERIA

1jJ(O) = EO(T(X))dX I = ('l/Jl (0), ... ,'l/Jd(O))T

and .(p(O) = (~t' (0)) . Then
J dxd

In Chapters 5 and 6 we show that in smoothly parametrized models, reasonable estimates
are asymptotically unbiased. We establish analogues of the information inequality and use
them to show that under suitable conditions the MLE is asymptotically optimal.

Summary. We study the important application of the unbiasedness principle in survey
sampling. We derive the information inequality in one-parameter models and show how

,.

it can be used to establish that in a canonical exponential family, T(X) is the UMVU
estimate of its expectation. Using inequalities from prediction theory, we show how the
information inequality can be extended to the multiparameter case. Asymptotic analogues
oftbese inequalities are sharp and lead to the notion and construction of efficient estimates.

3.5.1 Computation

In practice, even if the loss function and model are well specified, features other than the
risk function are also of importance in selection of a procedure. The three principal issues
we discuss are the speed and numerical stability of the method of computation used to
obtain the procedure, interpretability of the procedure, and robustness to model departures.

Speed of computation and numerical stability issues have been discussed briefly in Sec
tion 2.4. They are dealt with extensively'in books on numerical analysis such as Dahlquist,

i:

: i
II, ,
,

i
I,

,,,
I : j
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3.5.2 Interpretability
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-Consider estimation of the MLE (J in a general canonical exponential family as in Sec-
tion 2.3. It may be shown that, in the algorithm we discuss in Section 2.4, if we seek to take

-(J)
enough steps J so that I(J - 01 < c < 1 then J is of the order of log ; (Problem 3.5.1).-On the other hand, at least if started close enough to (J, the Newton-Raphson method in

. .. -(j) -(j-I) .. -(j-I) . -;:,.
which the]th Iterate, (J = (J - A-I((J (T(X) - A(O\1-I»)), takes on the order
of log log ; steps (Problem 3.5.2). The improvement in speed may however be spurious

since A-I is costly to compute if d is large-though the same trick as in computing least
squares estimates can be used.

Closed form versus iteratively computed estimates

At one level closed form is clearly preferable. For instance, a method of moments
estimate of (A,p) in Example 2.3.2 is given by

- - 2
- X X
A= -2' fi= -2a a

Bjork, and Anderson (1974). We discuss some of the issues and the subtleties that arise in
the context of some of our examples in estimation theory.

where 0:2 is the empirical variance (Problem 2.2.11). It is clearly easier to compute than
the MLE. Of course, with ever faster computers a difference at this level is irrelevant. But
it reappears when the data sets are big and the number of parameters large.

On the other hand, consider the Gaussian linear model of Example 2.1.1. Then least
squares estimates are given in closed form by equlltion (2.2.10). The closed form here is
deceptive because inversion of a d x d matrix takes on the order of d3 operations when
done in the usual way and can be numerically unstable. It is in fact faster and better to
solve equation (2.1.9) by, say, Gaussian elimination for the particular Z'bY.

The interplay between estimated variance and computation

As we have seen in special cases in Examples 3.4.3 and 3.4.4, estimates of parameters
based on samples of size n have standard deviations of order n- I /

2
. It follows that striving

for numerical accuracy of ordc<r smaller than n- I /
2 is wasteful. Unfortunately it is hard

to translate statements about orders into specific prescriptions without assuming at least
bounds on the constants involved.

Suppose that in the norrnaIN(j.L, ( 2 ) Example 2.1.5 we are interested in the parameter j.L/a.
,

This parameter, the signal-to-noise ratio, for this population of measurements has a clear
interpretation. Its maximum likelihood estimate X /0: continues to have the same intuitive
interpretation as an estimate of j.L/a even if the data are a sample from a distribution with
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~
~I,

mean {L and variance (J2 other than the normaL On the other hand, suppose we initially
postulate a model in which the data are a sample from a gamma, 9(p, A), distribution.
Then E(X)/JVar(X) = (p/A)(p/A2)-1/2 = pl/2. We can now use the MLE fil/2,
which as we shall see later (Section 5.4) is for n large a more precise estimate than X /Ci
if this model is correct. However, the form of this estimate is complex and if the model is
incorrect it no longer is an appropriate estimate of E(X)/[Var(X)F/2. We return to this in
Section 5.5.

3.5.3 Robustness

Finally, we turn to robustness.
This is an issue easy to point to in practice but remarkably difficult to formalize ap

propriately. The idea of robustness is that we want estimation (or testing) procedures to
perform reasonably even when the model assumptions under which they were designed to
perform excellently are not exactly satisfied. However, what reasonable means is connected
to the choice of the parameter we are estimating (or testing hypotheses about). We consider
three situations

(a) The problem dictates the parameter. For instance, the Hardy-Weinberg parameter
ehas a clear biological interpretation and is the parameter for the experiment described in
Example 2.1.4. Similarly, economists often work with median housing prices, that is, the
parameter v that has half of the population prices on either side (formally, v is any value
such that P(X < v) > ~, P(X > v) > ~). Alternatively, they may be interested in total
consumption of a commodity such as coffee, say e = N {L, where N is the population size
and {L is the expected consumption of a randomly drawn individuaL

(b) We imagine that the random variable X* produced by the random experiment we
are interested in has a distribution that follows a "true" parametric model with an inter
pretable parameter e, but we do not necessarily observe X*. The actual observation X is
X* contaminated with "gross errors"-see the following discussion. But eis still the target
in which we are interested.

(c) We have a qualitative idea of what the parameter is, but there are several parameters
that satisfy this qualitative notion. This idea has been developed by Bickel and Lehmann
(1975a, 1975b, 1976) and Doksum (1975), among others. For instance, we may be inter
ested in the center of a population, and both the mean {L and median v qualify. See Problem
3.5.13.

We will consider situations (b) and (c).

Gross error models

Most measurement and recording processes are subject to gross errors, anomalous val
ues that arise because of human error (often in recording) or instrument malfunction. To
be a bit formal, suppose that if n measurements X* = (Xr, ... ,X~) could be taken with
out gross errors then P* E P* would be an adequate approximation to the distribution
of X* (i.e., we could suppose X* '" P* E PO). However, if gross errors occur, we ob
serve not X* but X = (XI, ... , X n ) where most of the Xi = Xi, but there are a few

,
I

~

•i
!

I
•1
•

------------------------------------..



Here h is the density of the gross errors and -\ is the probability of making a gross error.
This corresponds to,

Xi X;* with probability 1 - >.
Y; with probability -\

where the errors are independent, identically distributed, and symmetric about 0 with com
mon density f and d.f. F. If the error distribution is normal, X is the best estimate in a
variety of senses.

In our new formulation it is the X;* that obey (3.5.1). A reasonable formulation of a
model in which the possibility of gross errors is acknowledged is to make the Ci still i.i.d.
but with common distribution function F and density f of the form

191

(3.5.1)

(3.5.2)

i=I, ... ,n,Xi = J.L + ci,

f(x) = (1- -\)~ ~ C) + -\h(x).

Section 3.5 Nondecision Theoretic Criteria

~

wild values. Now suppose we want to estimate B(P*) and use B(XI , ... , X n ) knowing
~ ~

that B(X;, ... , X~) is a good estimate. Informally B(Xr, ... , X n ) will continue to be a
good or at least reasonable estimate if its value is not greatly affected by the Xi # X;*,
the gross errors. Again informally we shall call such procedures robust. Formal definitions
require model specification, specification of the gross error mechanism, and definitions of
insensitivity to gross errors. Most analyses require asymptotic theory and will have to be
postponed to Chapters 5 and 6. However, two notions, the sensitivity curve and the break
down point, make sense for fixed n. The breakdown point will be discussed in Volume II.
We next define and examine the sensitivity curve in the context of the Gaussian location
model, Example 1.1.2, and then more generally.

Consider the one-sample symmetric location model P defined by

where Y; has density h(y - J.L) and (Xi, Y;) are Li.d. Note that this implies the possibly
unreasonable assumption that cornrnitting a gross error is independent of the value of X* .
Further assumptions that are commonly made are that h has a particular form, for example,
h = i a~ (;:a) where K » 1 or more generally that h is an unknown density symmetric
about O. Then the gross error model is semiparametric, Po - {f(' - J.L) : f satisfies (3.5.2)
for some h such that h(x) = h(-x) for all x}. p(IJ.,f) E Po iff Xl, ... ,Xn are Li.d. with
common density f(x - J.L), where f satisfies (3.5.2). The advantage of this formulation is
that J.L remains identifiable. That is, it is the center of symmetry of p(IJ.,f) for all such P.
Unfortunately, the assumption that h is itself symmetric about 0 seems patently untenable
for gross errors. However, if we drop the symmetry assumption, we encounter one of
the basic difficulties in formulating robustness in situation (b). Without h symmetric the
quantity J.L is not a parameter, so it is unclear what we are estimating. That is, it is possible
to have P(lJ.l,j,) = P(1J.2,!2l for J.LI # J.L2 (Problem 3.5.18). Is PI or J.L2 our goal? On the
other hand, in situation (c), we do not need the symmetry assumption. We return to these
issues in Chapter 6.
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~ ~ ~

SC(x;B) =n[B(xI, ... ,Xn-I,X) -B(XI, ... ,Xn-I)],

1

I,

= x.

ifn = 2k + 1

ifn = 2k

XI + ... + Xn-l + x

n

XCk+l)

~ (XCk) + X Ck+ I ))

~

X

SC(X; x) = n

The sensitivity curve

(i) It is the empirical plug-in estimate of the population median v (Problem 3.5.4), and
it splits the sample into two equal halves.

where Xl, ... ,Xn-I represents an observed sample of size n -1 from P and x represents an
observation that (potentially) comes from a distribution different from P. We are interested
in the shape of the sensitivity curve, not its location. In our examples we shall, therefore,
shift the sensitivity curve in the horizontal or vertical direction whenever this produces
more transparent formulas. Often this is done by fixing XI,' .. ,Xn-l as an "ideal" sample

~

of size n - 1 for which the estimator Bgives us the right value of the parameter and then
we see what the introduction of a potentially deviant nth observation x does to the value of
~

B.

~ ~

At this point we ask: Suppose that an estimate T(X I ,.·., X n ) = B(F), where F is
the empirical dJ., is appropriate for the symmetric location model, P, in particular, has the
plug-in property, B(PC/i,n) = J.L for all PC/i,n E P. How sensitive is it to the presence of
gross errors among XI, ... ,Xn? An interesting way of studying this due to Tukey (1972)
and Hampel (1974) is the sensitivity curve defined as follows for plug-in estimates (which
are well defined for all sample sizes n).

We start by defining the sensitivity curve for general plug-in estimates. Suppose that
~ ~

X ~ P and that B = B(P) is a parameter. The empirical plug-in estimate of B is B = B(P)
~

where P is the empirical probability distribution. See Section 2.1.2. The sensitivity curve
~

of B is defined as

We return to the location problem with B equal to the mean J.L = E(X). Because
~ ~

the estimators we consider are location invariant, that is, B(X}, . .. , X n) - J.L = B(XI -
J.L, ... , X n - J.L), and because E(Xj - J.L) = 0, we take J.L = 0 without loss of generality.
Now fix x I, ... ,Xn-I so that their mean has the ideal value zero. This is equivalent to
shifting the SC vertically to make its value at x = 0 equal to zero. See Problem 3.5.14.
Then

where XU)"'" X Cn) are the order statistics, that is, Xl, .. " X n ordered from smallest to
largest. See (2.1.16). (2.1.17), and Problem 2.2.32.

The sample median can be motivated as an estimate of location on various grounds.

Thus, the sample mean is arbitrarily sensitive to gross error-a large gross error can throw
the mean off entirely. Are there estimates that are less sensitive?

~

A classical estimate of location based on the order statistics is the sample median X
defined by



Figure 3.5.1. The sensitivity curves of the mean and median.
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X

,

for X < xCk)

for xCk) < X < xCk+l)- -
for X > X Ck+l )

SC(x)

X

nxCk) = _nxCk+1)

nx

nx Ck+1)

SC(x; £)

SC(x)

1
f(x) = ~ exp{-Ixl/T},

2T

a density having substantially heavier tails than the normal. See Problems 2.2.32 and
3.5.9.

(ii) In the symmetric location model (3.5.1), v coincides with {L and £ is an empirical
plug-in estimate of {L.

(iii) The sample median is the MLE when we assume the common density f(x) of the
errors {cd in (3.5.1) is the Laplace (double exponential) density

Section 3.5 Nondecision Theoretic Criteria

The sensitivity curve of the median is as follows:
If, say, n = 2k + 1 is odd and the median of Xl, ... , Xn-l = (x Ck ) + X(k+I»)/2 = 0,

we obtain

where x(l) < ... < x(n-l) are the ordered Xl, ... , Xn-l.

Although the median behaves well when gross errors are expected, its performance at
the normal model is unsatisfactory in the sense that its variance is about 57% larger than the
variance of X. The sensitivity curve in Figure 3.5.1 suggests that we may improve matters
by constructing estimates whose behavior is more like that of the mean when X is near {L.

A class of estimates providing such intermediate behavior and including both the mean and
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the median has been known since the eighteenth century. Let 0 < a < ~. We define the a
trimmed mean, X n , by

X
n

= X([nnl+l) + ... + X(n-[nn))

n - 2[na]
(3.5.3)

where rna] is the largest integer < na and X(I) < ... < X(n) are the ordered observations.
That is, we throw out the "outer" rna] observations on either side and take the average of
the rest. The estimates can be justified on plug-in grounds (see Problem 3.5.5). For more
sophisticated arguments see Huber (1981). Note that if 00= 0, X n = X, whereas as a i ~,
- ~

X n ---> X. For instance, suppose we take as our data the differences in Table 3.5.1.
If rna] = [(n - 1)00] and the trimmed mean of Xl,' .. , Xn-l is zero, the sensitivity

curve of an a trimmed mean is sketched in Figure 3.5.2. (The middle portion is the line
y = x(l - 2[naJln)-I.)

.,
I,

• •!,; ,

Ii ---------------------------

X

x(n-(nn))

Figure 3.5.2. The sensitivity curve of the trimmed mean.

Intuitively we expect that if there are no gross errors, that is, f = <.p, the mean is better
than any trimmed mean with a > 0 including the median, which corresponds approxi
mately to a = ~. This can be verified in terms of asymptotic variances (MSEs)-see
Problem 5.4.1. However, the sensitivity curve calculation points to an equally intuitive
conclusion. If f is symmetric about 0 but has "heavier tails" (see Problem 3.5.8) than the
Gaussian density, for example, the Laplace density, f(x) = ~e-Ixl, or even more strikingly
the Cauchy, f(x) = llrr(l + x2

), then the trimmed means for a > 0 and even the median
can be much better than the mean, infinitely better in the case of the Cauchy-see Problem
5.4.1 again.

Which a should we choose in the trimmed mean? There seems to be no simple answer.
The range 0.10 < a < 0.20 seems to yield estimates that provide adequate protection
against the proportions of gross errors expected and yet perform reasonably well when
sampling is from the normal distribution. See Andrews, Bickel, Hampel, Haber, Rogers,
and Tukey (1972). There has also been some research into procedures for which a is
chosen using the observations. For a discussion of these and other forms of "adaptation,"
see Jaeckel (1971), Huber (1972), and Hogg (1974).
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(3.5.4)
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Section 3.5 Nondecision Theoretic Criteria

(~2 ~2 )n(Tn-(Tn_1
n-1

2)Xi - n- I x)2 + (X - n- I x)2 - nO'~_1

i=l
n-I

L xl + (n- I x)2 + [(n - 1)jn]2 x 2 - nO'~_l
i=l

Gross errors or outlying data points affect estimates in a variety of situations. We next
consider two estimates of the spread in the population as well as estimates of quantiles;
other examples will be given in the problems. If we are interested in the spread of the
values in a population, then the variance (T2 or standard deviation (T is typically used. A
fairly common quick and simple alternative is the IQR (interquartile range) defined as
T = X.75 - X.25, where X n has 1000c percent of the values in the popUlation on its left
(formally, X n is any value such that P( X < x n ) > oc, P(X > x n ) > 1 - oc). X n is called
a octh quantile and X.75 and X.25 are called the upper and lower quartiles. The IQR is often
calibrated so that it equals (T in the N (fL, (T2) model. Because T = 2 x (.674)(T, the scale
measure used is O.742(x.75 - X.25).

Example 3.5.1. Spread. Let B( P) = Var(X) = (T2 denote the variance in a population and
let XI," . , X n denote a sample from that population. Then O'~ = n- I 2:=~ I (Xi - X)2
is the empirical plug-in estimate of (T2. To simplify our expression we shift the horizontal

. h ",n-1 0 W' - -I ",n -1 haXIs so t at 6i=1 Xi = . nte Xn = n 6i=1 Xi = n X, t en

where the approximation is valid for X fixed, n --+ 00 (Problem 3.5.10). 0

Example 3.5.2. Quantiles and the IQR. Let B(P) = X n dellote a octh quantile of the
distribution of X, 0 < oc < 1, and let xn denote the octh sample quantile (see 2.1.16).

If noc is an integer, say k, the octh sample quantile is xn = ~ [X(k) + X(k+nJ, and at
sample size n - 1, xn = x(k), where x(i) < .,. < x(n-I) are the ordered XI, ... , Xn-I,

It is clear that O'~ is very sensitive to large outlying Ixi values. Similarly,
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thus, for 2 < k < n - 2,
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~[XCk-l) _ XCk)] x < xCk-l)
2 ' -

~[x - XCk)] XCk-I) < x < x Ck+1)
2 ' --

~ [x Ck+1) _ XCk)], X > XCk+I).

(3.5.5)

Clearly, Xo is not sensitive to outlying x's.
Next consider the sample IQR

~ ~ ~

T=X.75- X .25·

Then we can write

SC(x; T) = SC(x; X.75) - SC(x; X.25)

and the sample IQR is robust with respect to outlying gross errors x. o

Remark 3.5.1. The sensitivity of the parameter B(F) to x can be measured by the influence
function, which is defined by

IF(x;B,F) = limIF«x;B,F)
<10

where

;,
•

!.

,,',

( :,
I

and ~x is the distribution function of point mass at x (~x(t) = 1[t < xl). It is easy to see
that (Problem 3.5.15)

~ ~

SC(x;B) = IF.dx;B,Fn-d
n

~

where Fn - I denotes the empirical distribution based on Xl, ... ,Xn-I. We will return to
the influence function in Volume II. It plays an important role in functional expansions of
estimates.

Discussion. Other aspects of robustness, in particular the breakdown point, have been
studied extensively and a number of procedures proposed and implemented. Unfortunately
these procedures tend to be extremely demanding computationally, although this difficulty
appears to be being overcome lately. An exposition of this point of view and some of the
earlier procedures proposed is in Hampel, Ronchetti, Rousseuw, and Stahel (1983).

Summary. We discuss briefly nondecision theoretic considerations for selecting proce
dures including interpretability, and computability. Most of the section focuses on robust
ness, discussing the difficult issues of identifiability. The rest of our very limited treatment

•
focuses on the sensitivity curve as illustrated in the mean, trimmed mean, median, and other
procedures.
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3.6 PROBLEMS AND COMPLEMENTS

Section 3.6 Problems and Complements

fo(x,B) = p(x IB)[7f(B)jw(B)]jc
where

5. Suppose 0", 7f(B), (X IB = B) '" p(x IB).

(a) Show that the joint density of X and B is

f(x, B) = p(x IB)7f(B) = c(x)7f(B I x)

where c(x) = J7f(B)p(x I B)dB.

(b) Let l(B, a) = (B - a)2 jw(B) for some weight function w(B) > 0, BEe. Show that
the Bayes rule is

Problems for Section 3.2

1. Show that if Xl, ... , X n is a N(B, (J2) sample and 7f is the improper prior 7f(B) = 1,
BEe = R, then the improper Bayes rule for squared error loss is o' (x) = x.

2. Let Xl, ... ,Xn be the indicators of n Bernoulli trials with success probability B. Sup
pose 1(B, a) is the quadratic loss (B - a) 2 and that the prior 7f(B) is the beta, ;3(r, s), density.

~ -
Find the Bayes estimate BB of Band write it as a weighted average wBo + (1 - w) X of the

- ~

mean Boof the prior and the sample mean X = Sjn. Show that BB = (S + l)j(n +2) for
the uniform prior.

3. In Problem 3.2.2 preceeding, give the MLE of the Bernoulli variance q(B) = B(l - B)
~ ~

and give the Bayes estimate of q(B). Check whether q(BB) = E(q(O) Ix), where BB is the
Bayes estimate of B.

4. In the Bernoulli Problem 3.2.2 with uniform prior on the probabilility of success B, we
found that (S + l)j(n + 2) is the Bayes rule. In some studies (see Section 6.4.3), the
parameter A = Bj(l - B), which is called the odds ratio (for success), is preferred to B.
If we put a (improper) uniform prior on A, under what condition on S does the Bayes rule
exist and what is the Bayes rule?

c = JJp(x IB)[7f(B)jw(B)]dBdx

is assumed to be finite. That is, if 7f and 1 are changed to a(B)7f(B) and l(B,a)ja(B),
a(B) > 0, respectively, the Bayes rule does not change.

Hint: See Problem 1.4.24.

(c) In Example 3.2.3, change the loss function to l(B, a) = (B - a)2JBO(l - B)fJ. Give
the conditions needed for the posterior Bayes risk to be finite and find the Bayes rule.

6. Find the Bayes risk r(7f, 0) of o(x) = X in Example 3.2.1. Consider the relative risk
e(0, 7f) = R(7f) jr(7f, 0), where R(7f) is the Bayes risk. Compute the limit of e(0, 7f) as
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(a) T ---; 00, (b) '/I ---; 00, (c) 0-2 ---; 00.

7. For the following problems, compute the posterior risks of the possible actions and give
the optimal Bayes decisions when x = O.

(a) Problem 1.3.1(d);

(b) Problem 1.3.2(d)(i) and (ii);

(c) Problem 1.3.19(c).

8. Suppose that N 1 , ... , NT given 9 = 0 are multinomial M ('11,0), 0 = (0 1 , ••. , OT f, and
that 9 has the Dirichlet distribution V(a), a = (001, ... , aTf, defined in Problem 1.2.15.
Let q(0) = 2:;=1 Cj OJ, where CI, ... ,CT are given constants.

(a) If l( 0, a) = [q( 0) _a]2, find the Bayes decision rule 0* and the minimum conditional
Bayes risk r(o*(x) I x).

Hint: If 9 ~ V(a), then E(9j ) = aj/ao, Var(9 j ) = aj(ao - aj)/a~(ao + 1), and
Cov(9j ,9j ) = -aiaj/a~(ao + 1), where 000 = 2:;=laj. (Use these results, do not
derive them.)

(b) When the loss function is 1(0, a) = (q(O) - a)2/ rr;=l OJ, find necessary and
sufficient conditions under which the Bayes risk is finite and under these conditions find
the Bayes rule.

(c) We want to estimate the vector (0 1 , ... , OT) with loss function 1(0, a) = 2:;=1 (OJ
aj)2. Find the Bayes decision rule.

9. Bioequivalence trials are used to test whether a generic drug is, to a close approximation,
equivalent to a name-brand drug. Let 0 = Me - MB be the difference in mean effect of the
generic and name-brand drugs. Suppose we have a sample Xl, ... , X n of differences in the
effect of generic and name-brand effects for a certain drug, where E(X) = O. A regulatory
agency specifies a number { > 0 such that if 0 E (-{, {), then the generic and brand-name
drugs are, by definition, bioequivalent. On the basis of X = (Xl, ... , X n ) we want to
decide whether or not 0 E (-{, {). Assume that given 0, Xl, ... ,Xn are i.i.d. N(0,0-5),
where o-~ is known, and that 9 is random with aN(TJo, TJ) distribution.

There are two possible actions:

a 0 <=} Bioequivalent

a 1 <=} Not Bioequivalent

with losses l(O, 0) and 1(0, 1). Set

>.(0) = 1(0,0) -1(0, 1)

= difference in loss of acceptance and rejection of bioequivalence. Note that >'(0) should
be negative when 0 E (-{, {) and positive when 0 ~ (-{, {). One such function (Lindley,
1998) is
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Problems for Section 3.3

1. In Example 3.3.2 show that L(x, 0, v) > 7r/(1 - 7r) is equivalent to T > t.

2. Suppose 9 : S x T ---+ R. A point (xo, Yo) is a saddle point of9 if

g(xo, Yo) = sup g(x, Yo) = inf g(xo, y).
S T

where 0 < r < 1. Note that >'(±E) = 0 implies that r satisfies

1 2
logr = - 2 E .

2c

This is an example with two possible actions 0 and 1 where 1(0,0) and 1(0,1) are not
constant. Any two functions with difference >'(0) are possible loss functions at a = 0 and
1.
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(a) Show that the Bayes rule is equivalent to

"Accept bioequivalence if E(>.(9) IX = x) < 0"

and show that (3.6.1) is equivalent to

"Accept bioequivalence if[E(9 Ix)j2 < (T6(n) + c2){log(Tg(~;+c2) + ~}"

where

Hint: See Example 3.2.1.

(b) It is proposed that the preceding prior is "uninformative" if it has Tlo = 0 and 76
large ("76 ---+ 00"). Discuss the preceding decision rule for this "prior."

(c) Discuss the behavior of the preceding decision rule for large n ("n ---+ 00"). Con
sider the general case (a) and the specific case (b).

10. For the model defined by (3.2.16) and (3.2.17), find

(a) the linear Bayes estimate of Dol.

(b) the linear Bayes estimate of J.L.

(c) Is the assumption that the Do's are normal needed in (a) and (b)?

Suppose S and T are subsets of Rm, RP, respectively, (Xo, Yo) is in the interior of S x T,
and 9 is twice differentiable.

(a) Show that a necessary condition for (xo,yo) to be a saddle point is that, representing
x = (Xl, ... ,Xm ), Y = (Yr, ... , Yp),

8g 8g
8 (xo, Yo) = 8 (xo,yo) = 0,

Xi Yj
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and

ij2g(xo,yo) > 0
8yci3Yd -

for aliI < i, a, b < m, 1 <j, c, d < p.

(b) Suppose 8 m = {x : Xi > 0, 1 < i < m, 2:7' 1Xi = I}, the simplex, and g(x, y) =

2:7' 12:~=1 CijXiYj with XE 8 m , y ESp. Show that the von Neumann minimax theorem
is equivalent to the existence of a saddle point for any twice differentiable g.

3. Suppose e = {Oo, Od, A = {O, I}, and that the model is regular. Suppose

l(Oi, i) = 0, l(Oi,j) = Wij > 0, i,j = 0, 1, i i- j.

Let Lx(Oo, OI) = p(X, OIllp(X, (0 ) and suppose that Lx(Oo, ( 1) has a continuous distri
bution under both POa and POI' Show that

(a) For every 0 < 7r < 1, the test rule fJrr given by

•
j,
•

1 if Lx(Oo, ( 1) >
ootherwise

(l-rr)wOl
1rWlO

. .,
IS nummax.

4. Let 8 ~ B(n, 0), l(O, a) = (0 - a?, fJ(8) = X = 81n, and

1
fJ*(8) = (8 + 2Vii)/(n + Vii)·

is Bayes against a prior such that P[O = 01] = 7r = 1 - P[O = 00 ], and

(b) There exists 0 < 7r* < 1 such that the prior 7r* is least favorable against fJrr <, that
is, the conclusion of von Neumann's theorem holds.

Hint.' Show that there exists (a unique) 7r* so that

(a) Show that fJ* has constant risk and is Bayes for the beta, fJ( Vii/2, Vii/2), prior.
Thus, fJ* is minimax.

Hint.' See Problem 3.2.2.

(b) Show that limn--+CXJ[R(O,fJ*)IR(O,fJ)] > 1 for 0 i- ~; and show that this limit
equals 1 when 0 = ~.

5. Let Xl, ... , X n be i.i.d. N(J.L, a 2
) and l(a 2

, d) = (~ - 1(
(a) Show that if J.L is known to be 0

fJ*(X1 , ... ,Xn) = 1 '\' xl
n+2L...J•

!
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Show that the minimax rule is to take

•mstance,

where qj = 1 - Pj, 1 < j < k.

201Section 3.6 Problems and Complements

0(X1 , ... , X k) = (R l , .. ·, Rk)

where Rj is the rarrk of Xj, that is, Rj = 2:7 1 1(Xl < Xj).
Hint: Consider the uniform prior on permutations and compute the Bayes rule by show

ing that the posterior risk of a permutation (i l , ... , ik) is smaller than that of (i'l"" ,ik),
h ·, . . -I- b < b" .., . d R < Rw ere Zj = Zj, J r a, , a , Za = Zb, zb = Za, an a b.

7. Show that X has a Poisson (>.) distribution and l (>., a) = (>. - a? / >.. Then X is
• •Ill1mmax.

Hint: Consider the gamma, r(k- l , 1), prior. Let k -+ 00.

8. Let Xi be independent N(J..ti,l), 1 < i < k, /-£ = (J..tl, ... ,J..tk)T. Write X 
(X1, ... , X k) T, d = (d1, ... , dk ) T. Show that if

k

l(/-£, d) = L (di - J..ti)2
i=l

(b) If J..t = 0, show that 0* is unifonnly best among all rules of the form oc(X) =
c 2: Xl· Conclude that the MLE is inadmissible.

(c) Show that if J..t is unknown, O(X) = n~l 2:(Xi - X)2 is best among all rules

of the form oc(X) = C 2:(Xi - X? and, hence, that both the MLE and the estimate
8 2 = (n - 1)-1 2:(Xi - X)2 are inadmissible.

Hint: (a) Consider a gamma prior on () = 1/(T2. See Problem 1.2.12. (c) Use (B.3.29).

6. Let Xl, ... , Xk be independent with means J..tl, ... , J..tko respectively, where

(J..tl, ... , J..tk) = (J..t?"" ., J..t?k)' J..t~ < ... < J..t~

is a known set of values, and ii, ... , ik is an arbitrary unknown permutation of 1, ... , k.
Let A = {(jl, ... , jk) : Permutations of 1, ... , k}

l((i l ,···, ik), (jl, ... ,jk)) = L l(il < im,jl > jm)'
I,m

then 6(X) = X is minimax.

Remark: Stein (1956) has shown that if k > 3, X is no longer unique minimax. For

k-2
O*(X) = 1 - /X/2 X

is also minimax and R(/-£, 0*) < R(/-£, 6) for all/-£. See Volume II.

9. Show that if (Nl , ... , Nk) has a multinomial, M(n,Pl,'" ,Pk), distribution, °< Pj <
1, 1 < j < k, then ~ is minimax for the loss function

l(p,d) = t (dj - PY
j=l Pjqj
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Hint: Consider Dirichlet priors on (PI, ... ,Pk-I) with density defined in Problem
1.2.15. See also Problem 3.2.8.

10. Let Xi(i = 1, ... ,n) be Li.d. with unknown distribution F. For a given x we want to
estimate the proportion F(x) of the population to the left of x. Show that

5 = No. of Xi ::; x . 1 + 1
/ri 1 + /ri 2(1 + /ri)

is minimax for estimating F(x) = P(Xi < x) with squared error loss.
Hint: Consider the risk function of 5. See Problem 3.3.4.

11. Let Xl,'" ,Xn be independent N(M, 1). Define

15(X)
- d - d

X + /ri if X <-/ri

- d
OifIXI</ri
- d - d

X - /ri if X> /ri'

" ,

·
•

~•

.,
'.,

~
r•,,.
i,

· .
".,

(a) Show that the risk (for squared error loss) E( /ri(15(X) - M)? of these estimates is
bounded for all n and M.

-
(b) How does the risk of these estimates compare to that of X?

12. Suppose that given (J = 8, X has a binomial, B(n, 8), distribution. Show that the
Bayes estimate of 8 for the Kullback-Leibler loss function lp(8, a) is the posterior mean
E((J IX).

13. Suppose that given (J = 8 = (81 , ... ,8k)T, X = (Xl,'" ,Xk)T has a multinomial,
M(n,8), distribution. Let the loss function be the Kullback-Leibler divergence lp(8, a)
and let the prior be the uniform prior

k-l

1r(81 , ... , 8k -d = (k - I)!, 8j > 0, I)j = 1.
j=1

Show that the Bayes estimate is (Xi + l)j(n + k).

14. Let K(p(J, q) denote the K LD (Kullback-Leibler divergence) between the densities P(J
and q and define the Bayes Kill between P = {P(J : 8 E 8} and q as

k(q,1r) = J K(p(J,q)1r(8)d8.

Show that the marginal density of X,

p(x) = J P(J(x)1r(8)d8,

j
I

1
j
,
:

1
1

I

...._----------------------------



Problems for Section 3.4

That is, Fisher information is not equivariant under increasing transformations of the pa
rameter.
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'if(O)de.- J PII(X)
I(j,x = Ell log p(X)

Section 3.6 Problems and Complements

minimizes k( q. 'if) and that the minimum is

1. Let X I, ... , X n be the indicators of n Bernoulli trials with success probability O. Show
that X is an UMVU estimate of O.

2. Let A = R. We shall say a loss function is convex, if l(O, aao + (1 - a)ar) <
al(O, ao) + (1- a)l(O, ar), for any ao, aI, 0, a < a < 1. Suppose that there is an unbiased
estimate 6 of q(O) and that T(X) is sufficient. Show that if l(O, a) is convex and 6*(X) =
E(6(X) I t(X)), then R(O,6*) < R(O,6).

Hint: Use Jensen's inequality: If g is a convex function and X is a random variable,
then E(g(X)) > g(E(X)).

I(j x is called the mutual information between (j and X.,

Hint: k(q, 'if) - k(p, 'if) = J [Ell {log ~i~j}] 'if(O)dO > a by Jensen's inequality.

15. Jeffrey's "Prior." A density proportional to viI p(0) is called Jeffrey's prior. It is
often improper. Show that in theN(O, O"~), N(J.Lo, 0) and B(n, 0) cases, Jeffrey's priors are

proportional to 1, 0- 1
, and 0- ~ (1 - 0)- ~, respectively. Give the Bayes rules for squared

error in these three cases.

3. Equivariance. Let X rv p(x,O) with 0 E 8 C R, suppose that assumptions I and
II hold and that h is a monotone increasing differentiable function from 8 onto h(8).
Reparametrize the model by setting TJ = h(O) and let q(x, TJ) = p(x, h-I(TJ)) denote the
model in the new parametrization.

(a) Show that if Ip(O) and Iq(TJ) denote the Fisher information in the two parametriza
tions, then

(b) Equivariance of the Fisher Information Bound. Let B p(8) and Bq(TJ) denote the
information inequality lower bound ('IjJ') 2 / I as in (3.4.12) for the two parametrizations
p(x, 0) and q(x, TJ). Show that Bq(TJ) = Bp(h-I(TJ)); that is, the Fisher information lower
bound is equivariant.

4. Prove Proposition 3.4.4.

5. Suppose Xl, ... , X n are i.i.d. N(J.L, 0"2) with J.L - J.Lo known. Show that

(a) 26 = n- l I:~ I (Xi - J.LO)2 is a UMVU estimate of 0"2.

(b) 26 is inadmissible.



6. Show that assumption I implies that if A {x: p(x, 0) > O} doesn't depend on 0, then
for any set E, Fo(E) = 1 for some 0 if and only if Fo(E) = 1 for all O.

Hint: See Problem 3.3.5(b).

(c) if flo is not known and the true distribution of X, is N(fL, 0"2), fL i- flo, find the bias
f
~2

o 0"0'

~

7. In Example 3.4.4, compute Var(0) using each of the three methods indicated.

8. Establish the claims of Example 3.4.8.
~ ~

9. Show that 8 2 = (Y - Zv{3)T(y - Zv{3)/(n - p) is an unbiased estimate of 0"2 in the
linear regression model of Section 2.2.

-,
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~ ~ ~

10. Suppose 0 is UMVU for estimating O. Let a and b be constants. Show that>. = a + bO
is UMVU for estimating>. = a + bO.

11. Suppose Yl , ... , Yn are independent Poisson random variables with E(Y;) = fLi where
fLi = exp{0: + (3Zi} depends on the levels Zi of a covariate; 0:, (3 E R. For instance, Zi

could be the level of a drug given to the ith patient with an infectious disease and Yi could
denote the number of infectious agents in a given unit of blood from the ith patient 24 hours
after the drug was administered.

(a) Write the model for Yl , ... , Yn in two-parameter canonical exponential form and
give the sufficient statistic.

(b) Let 9 = (0:, (3) T. Compute 1(9) for the model in (a) and then find the lower bound
~

on the variances of unbiased estimators aand (3 of 0: and (3.

(c) Suppose that Zi = log[i/(n + 1)], i = 1, ... ,n. Find limn- l 1(9) as n -t 00, and
~

give the limit of n times the lower bound on the variances of aand (3.
Hint: Use the integral approximation to sums.

12. Let Xl, ... ,Xn be a sample from the beta, B(O, 1), distribution.

(a) Find the MLE of 1/0. Is it unbiased? Does it achieve the information inequality
lower bound?

(b) Show that X is an unbiased estimate of 0I (0 + 1). Does X achieve the information
inequality lower bound?

13. Let:F denote the class of densities with mean 0-1 and variance 0- 2(0) 0) that satisfy
the conditions of the information inequality. Show that a density that minimizes the Fisher
information over:F is f(x, 0) = Oe-OX l(x > 0).

Hint: Consider T(X) = X in Theorem 3.4.l.

14. Show that if (Xl, ,Xn ) is a sample drawn without replacement from an unknown
finite population {Xl, , X N }, then

(a) X is an unbiased estimate of X = J. I:~ 1 Xi'

•
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- -
Show that X is unbiased and if X is the mean of a simple random sample without replace-
ment from the population then

N

E(M) = L If) = n.
j=!

(b) The variance of X is given by (3.4.4).

15. Suppose U1, ... , UN are as in Example 3.4.1 and Uj is retained independently of all

other Uj with probability Ifj where L~ 1 Ifj = n. Show that if M is the expected sample
size, then

16. Suppose the sampling scheme given in Problem 15 is employed with Ifj _ ~. Show
that the resulting unbiased Horvitz-Thompson estimate for the population mean has vari
ance strictly larger than the estimate obtained by taking the mean of a sample of size n
taken without replacement from the population.

17. Stratified Sampling. (See also Problem 1.3.4.) Suppose the Uj can be relabeled into

strata {Xki}, 1 < i < h, k = 1, ... ,K, L~ 1h = N. Let Ifk = it and suppose
Ifk = rr:.,", 1 < k < K.

(a) Take samples with replacement of size ffik from stratum k = {Xk1, ..• , Xkh} and
- -

form the corresponding sample averages X!, ... ,X K. Define

with equality iff Xk. = 1";;1 L~k 1Xki doesn't depend on k for all k such that 'Irk > O.

(b) Show that the inequality between Var X and Var X continues to hold if 7:~!! >
~-=-i for all k, even for sampling without replacement in each stratum.

18. Let X have a binomial, B(n,p), distribution. Show that 1Pp is not unbiasedly es
timable. More generally only polynomials of degree n in p are unbiasedly estimable.

~ -
19. Show that X k given by (3.4.6) is (a) unbiased and (b) has smaller variance than X if
b < 2 Cov(U,X)/Var(U).

20. Suppose X is distributed accordihg to {Po: 0 E e c R} and If is a prior distribution
for (J such that E((J2) < 00.

(a) Show that 6(X) is both an unbiased estimate of (J and the Bayes estimate with
respect to quadratic loss, if and only if, P[6(X) = (J] = 1.

(b) Deduce that if Po = N (0, 0"5), X is not 11 Bayes estimate for any prior If.

•

(c) Explain how it is possible if Po is binomial, B(n, 0), that ~ is a Bayes estimate for
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Hint: Given E(o(X) I lJ) = lJ, E(lJ I X) = o(X) compute E(o(X) - lJ)2.

21. Prove Theorem 3.4.4.
Hint: It is equivalent to show that, for all ad xl,

. . T
> aT ("lj;( lJ)I- 1(lJ)"lj; (lJ))a

[~T (lJ)ajTI-I (lJ) [~T (lJ)a] .

. T ~

Note that"lj; (lJ)a = \7 EO (aTlJ) and apply Theorem 3.4.3.

22. Regularity Conditions are Needed for the Information Inequality. Let X ~ U(O,O)
be the unifonn distribution on (0,0). Note that logp(x, 0) is differentiable for all 0 > x,
that is, with probability 1 for each 0, and we can thus define moments of a/ao logp(x, 0).
Show that, however,

(i) E
aao log p(X, 0)

1
= -- i- 0o

(ii) Var ~ 10gp(X, 0) = 0 and the infonnation bound is infinite. Yet show

(iii) 2X is unbiased for 0 and has finite variance.

,

l
1

O(X1 + C, .. . , Xn + c) = O(X1,' .. , Xn) + C.

~

4. Show that the sample median X is an empirical plug-in estimate of the population
median v.

Problems for Section 3.5

r a

J.La = (1 - 200)-1 iT xdF(x).
Xl-a.

5. Show that the a trimmed mean X a is an empirical plug-in estimate of

6. An estimate o(X) is said to be shift or translation equivariant if, for all Xl, ... , Xn, C,

3. If a = 0.25 and (n - 1)00 is an integer, give and plot the sensitivity curves of the lower
quartile X.25, the upper quartile X.75, and the IQR.

1. If n = 2k is even, give and plot the sensitivity curve of the median.

2. If a = 0.25 and noo = k is an integer, use (3.5.5) to plot the sensitivity curve of the
IQR.

Here JxdF(x) denotes Jxp(x)dx in the continuous case and I;xp(x) in the discrete
case.
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One reasonable choice for k is k = 1.5 and for (j is,
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=0
17

~

med IXi - XI/O.67.
I<i<n- -

17=

15(XI, ... ,Xn) = -15(-XI,"" -Xn)'

Section 3.6 Problems and Complements

It is antisymmetric if for all Xl, ... , X n

where °< k < 00, (j is an estimate of scale, and

(b) Show that XHL is translation equivariant and antisymmetric. (See Problem 3.5.6.)

~ ~ ~

(i.e., 5 is an unbiased estimate of p,). Deduce that X, X Q' X are unbiased estimates of the
center of symmetry of a symmetric distribution.

7. The Hodges-Lehmann (location) estimate xH L is defined to be the median of the
~n(n + 1) pairwise averages ~(Xi + Xj), i < j. Its properties are similar to those of
the trimmed mean. It has the advantage that there is no trimming proportion Q that needs
to be subjectively specified.

(a) Suppose n = 5 and the "ideal" ordered sample of size n - 1 = 4 is -1.03, -.30,
.30,1.03 (these are expected values of four N(O, I)-order statistics). For X > .3, plot the
sensitivity curves of the mean, median, trimmed mean with Q = 1/4, and the Hodges
Lehmann estimate.

1/Jk(X) X if Ixi < k

kifx > k

- -kifx < -k.

n

~ ~ ~

(a) Show that X, X, X Q are translation equivariant and antisymmetric.

(b) Suppose Xl, .. " X n is a sample from a population with d.f. F(x - p,) where p,
is unknown and Xi - P, is symmetrically distributed about 0. Show that if 5 is translation
equivariant and antisymmetric and Eo (15(X)) exists and is finite, then

~

8. The Huber estimate X k is defined implicitly as the solution of the equation

Show that

(a) k = 00 corresponds to X, k -t °to the median.
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~

(b) If ais replaced by a known ao, then Xk is the MLE of Bwhen Xl, ... ,Xn are i.i.d.
with density fo((.); - B)/ao) where

fo(x)

with k and E connected through

for Ixl < k

for Ixl > k,

,,

2cp(k) _ 2-I>(-k) = E .

k l-E

(c) Xk exists and is unique when k > O. Use a fixed known ao in place of a.
(d) Xk is translation equivariant and antisyrnmetric (see Problem 3.5.6).

(e) If k < 00, then limlxl~CXJ SC(x; Xk) is a finite constant.

9. If f(·) and g(.) are two densities with medians v zero and identical scale parameters T,

we say that g(.) has heaviertails than f(·) if g(x) is above f(x) for Ixllarge. In the case of
the Cauchy density, the standard deviation does not exist; thus, we will use the IQR scale
parameter T = X.75 - X.25. In what follows adjust f and 9 to have v = 0 and T = 1.

(a) Find the set of Ixl where g(lxl) > cp(lxl) for 9 equal to the Laplace and Cauchy
densities gL(X) = (27])-1 exp{-lxl/7]} and gc(x) = b[b2 + X2]-1 /1r.

(b) Find the tail probabilities P(IXI > 2), P(!XI > 3) and P(IXI > 4) for the normal,
Laplace, and Cauchy distributions.

(c) Show that gc(x)/cp(x) is of order exp{x2} as Ixl -t 00.

10. Suppose 2:~ 11 Xi = O. Show that SC(x, an) !:. (2a)-1 (x2 - a2) as n -t 00.

11. Let Mo be a hypothesized mean for a certain population. The (student) t-ratio is defined
as t = ..jii(x - MO)/s, where S2 = (n - 1)-1 2:~ 1(Xi - X)2. Let Mo = 0 and choose
the ideal sample X I, ... , X n -1 to have sample mean zero. Find the limit of the sensitivity
curve oft as

(a) Ixl ---> 00, n is fixed, and

(b) n -t 00, X is fixed.

12. For the ideal sample of Problem 3.5.7(a), plot the sensitivity curve of

(a) an, and

(b) the t-ratio of Problem 3.5.11.
This problem may be done on the computer.

13. Location Parameters. Let X be a random variable with continuous distribution function
F. The functional B = Bx = B(F) is said to be scale and shift (translation) equivariant

'., ,
~:

~1

,
I i
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."



14. An estimate On is said to be shift and scale equivariant if for all Xl, ... ,Xn , a, b > 0,
~ ~

On (a + bXI, ... , a + bxn) = a + bOn (Xl, ... , Xn).

209

~

limn~CXJ SC(x, 0) and

Section 3.6 Problems and Complements

if 0a+bX = a + bOx. It is antisymmetric if Ox = 8- x . Let Y denote a random variable
with continuous distribution function G. X is said to be stochastically smaller than Y if

st
F(t) = P(X < t) > P(Y < t) = G(t) for all t E R. In this case we write X < Y. 0

st
is said to be order preserving if X < Y=}Ox < Oy. If 0 is scale and shift equivariant,
antisymmetric, and order preserving, it is called a location parameter.

(a) Show that if F is symmetric about c and 0 is a location parameter, then O(F) = c.

(b) Show that the mean J.L, median v, and trimmed population mean J.Lo: (see Problem
3.5.5) are location parameters.

(c) Let J.L(k) be the solution to the equation E ('l/Jk (X;1')) = 0, where Tis the median

of the distribution of IX - vl/o.67 and 'l/Jk is defined in Problem 3.5.8. Show that J.L(k) is a
location parameter.

(d) For 0 < Q < 1, let Vo: = Vo: (F) = ; (Xa + Xl-a), v(F) = inf{va(F) : 0 < Q <
1/2} and v(F) = sup{vo:(F) : 0 < Q < 1/2}. Show that Vo: is a location parameter and
show that any location parameter O( F) satisfies v(F) < O(F) < v(F).

Hint: For the second part, let H(x) be the distribution function whose inverse is
H-I(Q) = ~ [Xa-Xl-a], 0 < Q < 1, and note that H(x-v(F)) < F(x) < H(x-v(F)).
Also note that H(x) is symmetric about zero.

(e) Show that if the support S(F) = {x : 0 < F(x) < I} of F is a finite interval,
then v(F) and v(F) are location parameters. ([v(F), v(F)] is the location parameter set
in the sense that for any continuous F the value O( F) of any location parameter must be in
[v(F), v(F)] and, if F is also strictly increasing, any point in [v(F), v(F)J is the value of
some location parameter.)

~

(b) Write the SC as SC(x, O,xn-d to show its dependence on Xn-l = (Xl"",
~

Xn-d. Show that if 0 is shift and location equivariant, then for a E R, b > 0, c E R,
d> 0,

(a) Show that the sample mean, sample median, and sample trimmed mean are shift
and scale equivariant.

~ ~

SC(a + bx, c + dO, a + bXn-l) = bdSC(x, 0, Xn-l).

That is, the SC is shift invariant and scale equivariant.

15. In Remark 3.5.1:

(a) Show that SC(x, 0) = IF1-(x; 0, Fn- l ).
n

(b) In the following cases, compare SC(x; 0, F)
IF(x; 0, F).
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(i) O(F) = Itp = J.rdF(l:).

(ii) 8(F) = a}" = I(x - /LF)2dF(x).

(iii) O(F) = 1:". Assume that F is strictly increasing.

Measures of Performance Chapter 3
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(c) Does n-1 [SC(x, 0) - I F(x, 0, F)] !:.., °in the cases (i), (ii), and (iii) preceding?
~

16. Show that in the bisection method, in order to be certain that the Jth iterate OJ is within
~ ~

E of the desired 0 such that 1jJ(0) = 0, we in general must take on the order of log ~ steps.
This is, consequently, also true of the method of coordinate ascent.

17. Let d = 1 and suppose that 1jJ is twice continuously differentiable, 1jJ' > 0, and we seek
~

the unique solution 0 of 1jJ(0) = 0. The Newton-Raphson method in this case is

.1.(0(j-1»
(j(j) = (j(j-l) _ 'f/ ~ .

1jJ'(O(j-I»

~ ~ ~

(a) Show by example that for suitable 1jJ and lOCO) - 01 large enough, {O(j)} do not
converge.

~ ~

(b) Show that there exists, C < 00,6 > °(depending on 1jJ) such that if lOCO) - OJ < 6,
then I(j(j) - 01 < C1(j(j-l) - 01 2 .

Hint: (a) Try1jJ(x) = AlogxwithA > l.
(b)

I
I,,,

I
",
~

I:,

"c,

18. In the gross error model (3.5.2), show that

(a) If h is a density that is symmetric about zero, then J1. is identifiable.

(b) If no assumptions are made about h, then J1. is not identifiable.

3.7 NOTES

Note for Section 3.3

(1) A technical problem is to give the class S of subsets of:F for which we can assign
probability (the measurable sets). We define S as the (J-field generated by SA,B = {F E
:F: FF(A) E B}, A, BE B, where B is the class of Borel sets.

Notes for Section 3.4

(1) The result of Theorem 3.4.1 is commonly known as the Cramer-Rao inequality. Be
cause priority of discovery is now given to the French mathematician M. Frechet, we shall

!
•

I
1

I
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•
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•

1
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for all 0 whereas the continuity (or even boundedness on compact sets) of the second inte
gral guarantees that we can interchange the order of integration in

(4) The finiteness of Varll(T(X)) and 1(0) imply that 1jJ'(O) is finite by the covariance
interpretation given in (3.4.8).
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aop(x,O) dxa 111 100
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Chapter 4

TESTING AND CONFIDENCE

REGIONS: BASIC THEORY

4.1 INTRODUCTION

In Sections 1.3, 3.2, and 3.3 we defined the testing problem abstractly, treating it as a de
cision theory problem in which we are to decide whether P E Po or PI or, parametrically,
whether 0 E 8 0 or 8 1 if P j = {Po: 0 E 8 j }, where Po, PI or 8 0 ,81 are a partition of
the model P or, respectively, the parameter space 8.

This framework is natural if, as is often the case, we are trying to get a yes or no
answer to important questions in science, medicine, public policy, and indeed most human
activities, and we have data providing some evidence one way or the other.

As we have seen, in examples such as 1.1.3 the questions are sometimes simple and
the type of data to be gathered under our control. Does a new drug improve recovery
rates? Does a new car seat design improve safety? Does a new marketing policy increase
market share? We can design a clinical trial, perform a survey, or more generally construct
an experiment that yields data X in X C Rq, modeled by us as having distribution Po,
oE 8, where 8 is partitioned into {80 , 8d with 8 0 and 8 1 corresponding, respectively,
to answering "no" or "yes" to the preceding questions.

Usually, the situation is less simple. The design of the experiment may not be under
our control, what is an appropriate stochastic model for the data may be questionable, and
what 8 0 and 8 1 correspond to in terms of the stochastic model may be unclear. Here are
two examples that illustrate these issues.

Example 4.1.1. Sex Bias in Graduate Admissions at Berkeley. The Graduate Division of the
University of California at Berkeley attempted to study the possibility that sex bias operated
in graduate admissions in 1973 by examining admissions data. They initially tabulated
Nml , Nfl, the numbers of admitted male and female applicants, and the corresponding
numbers N mo , Nfo of denied applicants. If n is the total number of applicants, it might be
tempting to model (Nml , N mo , Nfl, Nfo) by a multinomial, M(n,Pml, PmO,Pfl,PfO),
distribution. But this model is suspect because in fact we are looking at the population
of all applicants here, not a sample. Accepting this model provisionally, what does the

213
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hypothesis of no sex bias correspond to? Again it is natural to translate this into

P[Admit I Male] = pml = P[Admit I Female] = P/l
Pml + PmO P/l + P/O

But is this a correct translation of what absence of bias means? Only if admission is deter
mined centrally by the toss of a coin with probability

pml

Pml + PmO

P/l

P/l + P/O

In fact, as is discussed in a paper by Bickel, Hammel, and O'Connell (1975), admissions
are performed at the departmental level and rates of admission differ significantly from
department to department. If departments "use different coins," then the data are naturally
decomposed into N = (Nm1d , N mOd , N/l d, N/Od , d = 1, ... , D), where N m1d is the
number of male admits to department d, and so on. Our multinomial assumption now
becomes N ~ M(Pmld,PmOd,P/ld,P/Od, d = 1, ... , D). In these terms the hypothesis
of "no bias" can now be translated into:

H: Pml
Pmld + PmOd

P/ld

P/ld + PlOd

j

i
o,,
j,,,,

•

1
1
i

P

for d = 1, ... , D. This is not the same as our previous hypothesis unless all departments
have the same number of applicants or all have the same admission rate,

__--'P--'m:.-=-1=--+--'P--'/c.:1 .

Pml + P/l + PmO + p/o

N AA 1 m 1
-".:.=-- < ---

n 3 - n 3

Fisher conjectured that rather than believing that such a very extraordinary event oc
curred it is more likely that the numbers were made to "agree with theory" by an overzeal
ous assistant. That is, either N AA cannot really be thought of as stochastic or any stochastic

In fact, the same data can lead to opposite conclusions regarding these hypotheses-a phe
nomenon called Simpson's paradox. The example illustrates both the difficulty of speci
fying a stochastic model and translating the question one wants to answer into a statistical
hypothesis. 0

Example 4.1.2. Mendel's Peas. In one of his famous experiments laying the foundation of
the quantitative theory of genetics, Mendel crossed peas heterozygous for a trait with two
alleles, one of which was dominant. The progeny exhibited approximately the expected
ratio of one homozygous dominant to two heterozygous dominants (to one recessive). In
a modem formulation, if there were n dominant offspring (seeds), the natural model is to
assume, if the inheritance ratio can be arbitrary, that N AA, the number of homozygous
dominants, has a binomial (n, p) distribution. The hypothesis of dominant inheritance
corresponds to H : p = ; with the alternative K : p i- ;. It was noted by Fisher
as reported in Jeffreys (1961) that in this experiment the observed fraction ';: was much
closer to ; than might be expected under the hypothesis that NAA has a binomial, B (n, j),
distribution,
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model needs to pennit distributions other than B(n,p), for instance, (1- f)15~ + fB(n,p),
where 1 - f is the probability that the assistant fudged the data and 5 ~ is point mass at
n 0
3 .

What the second of these examples suggests is often the case. The set of distributions
corresponding to one answer, say 8 0 , is better defined than the alternative answer 8 1 . That
a treatment has no effect is easier to specify than what its effect is; see, for instance, our
discussion of constant treatment effect in Example 1.1.3. In science generally a theory
typically closely specifies the type of distribution P of the data X as, say, P = Po, 0 E 8 0 .

If the theory is false, it's not clear what P should be as in the preceding Mendel example.
These considerations lead to the asymmetric fonnulation that saying P E Po (0 E 8 0 )

corresponds to acceptance of the hypothesis H : P E Po and P E PI corresponds to
rejection sometimes written as K : P E Pl. (1)

As we have stated earlier, acceptance and rejection can be thought of as actions a = 0
or 1, and we are then led to the natural 0 - 1 loss l(O, a) = 0 if 0 E 8 a and 1 otherwise.
Moreover, recall that a decision procedure in the case of a test is described by a test function
5 : x --+ {O, I} or critical region C _ {x : 15(x) = I}, the set of points for which we reject.

It is convenient to distinguish between two structural possibilities for 8 0 and 8 1 : If 8 0

consists of only one point, we call 8 0 and H simple. When 8 0 contains more than one
point, 8 0 and H are called composite. The same conventions apply to 8 1 and K.

We illustrate these ideas in the following example.

Example 4.1.3. Suppose we have discovered a new drug that we believe will increase the
rate of recovery from some disease over the recovery rate when an old established drug is
applied. Our hypothesis is then the null hypothesis that the new drug does not improve on
the old drug. Suppose that we know from past experience that a fixed proportion 00 = 0.3
recover from the disease with the old drug. What our hypothesis means is that the chance
that an individual randomly selected from the ill population will recover is the same with
the new and old drug. To investigate this question we would have to perfonn a random
experiment. Most simply we would sample n patients, administer the new drug, and then
base our decision on the observed sample X = (Xl, ... , X n ), where Xi is 1 if the ith
patient recovers and 0 otherwise. Thus, suppose we observe S = EXi , the number of
recoveries among the n randomly selected patients who have been administered the new
drug. (2) If we let 0 be the probability that a patient to whom the new drug is administered
recovers and the population of (present and future) patients is thought of as infinite, then S
has a B(n, 0) distribution. Ifwe suppose the new drug is at least as effective as the old, then
8 = [00 , IJ, where 00 is the probability of recovery using the old drug. Now 8 0 = {Oo}
and H is simple; 8 1 is the interval (00 , 1] and K is composite. In situations such as this one
we shall simplify notation and write H : 0 = 00, K : 0 > 00. Ifwe allow for the possibility
that the new drug is less effective than the old, then 8 0 = [0,00] and 8 0 is composite. It
will tum out that in most cases the solution to testing problems with 8 0 simple also solves
the composite 8 0 problem. See Remark 4.1.

In this example with 8 0 = {Oo} it is reasonable to reject H if S is "much" larger than
what would be expected by chance if H is true and the value of 0 is 00 , Thus, we reject
H if S exceeds or equals some integer, say k, and accept H otherwise. That is, in the

Section 4.1 Introduction 215
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tenninology of Section 1.3, our critical region C is {X : S > k} and the test function or
rule is odX) = 1{S > k} with

PI = probability of type I error = POo (S > k)

Pn = probability of type II error = Po (S < k), 8 > 80 ,

The constant k that detennines the critical region is called the critical value. o

-------------------- -
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In most problems it turns out that the tests that arise naturally have the kind of structure
we have just described. There is a statistic T that "tends" to be small, if H is true, and
large, if H is false. We call T a test statistic. (Other authors consider test statistics T that
tend to be small, when H is false. -T would then be a test statistic in our sense.) We select
a number c and our test is to calculate T( x) and then reject H if T(x) > c and accept H
otherwise. The value c that completes our specification is referred to as the critical value
of the test. Note that a test statistic generates a family of possible tests as c varies. We will
discuss the fundamental issue of how to choose T in Sections 4.2, 4.3, and later chapters.

We now tum to the prevalent point of view on how to choose c.

The Neyman Pearson Framework

The Neyman Pearson approach rests on the idea that, of the two errors, one can be
thought of as more important. By convention this is chosen to be the type I error and that in
tum detennines what we call H and what we call K. Given this position, how reasonable
is this point of view?

In the medical setting of Example 4.1.3 this asymmetry appears reasonable. It has
also been argued that, generally in science, announcing that a new phenomenon has been
observed when in fact nothing has happened (the so-called null hypothesis) is more serious
than missing something new that has in fact occurred. We do not find this persuasive, but
if this view is accepted, it again reasonably leads to a Neyman Pearson fonnulation.

As we noted in Examples 4.1.1 and 4.1.2, asymmetry is often also imposed because one
of 8 0 , 8 1 , is much better defined than its complement and/or the distribution of statistics T
under 8 0 is easy to compute. In that case rejecting the hypothesis at level a is interpreted
as a measure of the weight of evidence we attach to the falsity of H. For instance, testing
techniques are used in searching for regions of the genome that resemble other regions that
are known to have significant biological activity. One way of doing this is to align the
known and unknown regions and compute statistics based on the number of matches. To
determine significant values of these statistics a (more complicated) version of the follow
ing is done. Thresholds (critical values) are set so that if the matches occur at random (i.e.,
matches at one position are independent of matches at other positions) and the probability
of a match is ~, then the probability of exceeding the threshold (type I) error is smaller
than a. No one really believes that H is true and possible types of alternatives are vaguely
known at best, but computation under H is easy.

The Neyman Pearson framework is still valuable in these situations by at least making
us think of possible alternatives and then, as we shall see in Sections 4.2 and 4.3, suggesting
what test statistics it is best to use.
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A plot of this function for n = 10, Bo = 0.3, k = 6 is given in Figure 4.1.1.
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(4.1.1)

n
•

J

oo(c) = sup{Po[T(X) > c] : B E 8 0 }.

n

(3(B,6 k ) = P(S > k) = L
j=k

Section 4.1 Introduction

There is an important class of situations in which the Neyman Pearson framework is
inappropriate, such as the quality control Example 1.1.1. Indeed, it is too limited in any
situation in which, even though there are just two actions, we can attach, even nominally,
numbers to the two losses that are not equal and/or depend on B. See Problem 3.2.9.
Finally, in the Bayesian framework with a prior distribution on the parameter, the approach
of Example 3.2.2(b) is the one to take in all cases with 8 0 and 8 1 simple.

Here are the elements of the Neyman Pearson story. Begin by specifying a small num
ber a > 0 such that probabilities of type I error greater than a are undesirable. Then restrict
attention to tests that in fact have the probability of rejection less than or equal to a for all
B E 8 0 . Such tests are said to have level (oj significance) a, and we speak of rejecting
H at level oo. The values a = 0.01 and 0.05 are commonly used in practice. Because a
test of level a is also of level a' > a, it is convenient to give a name to the smallest level
of significance of a test. This quantity is called the size of the test and is the maximum
probability of type I error. That is, if we have a test statistic T and use critical value c, our
test has size oo(c) given by

Now oo(c) is nonincreasing in c and typically oo(c) lias c 1 -00 and oo(c) 1 0 as c 1 00.

In that case, if 0 < a < 1, there exists a unique smallest c for which oo(c) < oo. This is
the critical value we shall use, if our test statistic is T and we want level oo. It is referred
to as the level a critical value. In Example 4.1.3 with 6(X) = I{S > k}, Bo = 0.3 and
n = 10, we find from binomial tables the level 0.05 critical value 6 and the test has size
00(6) = Poo(S > 6) = 0.0473.

Once the level or critical value is fixed, the probabilities of type II error as Branges over
8 1 are determined. By convention 1 - P [type II error] is usually considered. Specifically,

Definition 4.1.1. The power of a test against the alternative B is the probability of rejecting
H when Bis true.

Thus, the power is 1 minus the probability of type II error. It can be thought of as the
probability that the test will "detect" that the alternative Bholds. The power is a function of
Bon 8 1, If 8 0 is composite as well, then the probability of type I error is also a function of
B. Both the power and the probability of type I error are contained in the power function,
which is definedjor all B E 8 by

(3(B) = (3(B,6) = Po [Rejection] = Po[6(X) = 1] = Po [T(X) > c].

If B E 8 0 , (3(B, 6) is just the probability of type I error, whereas if B E 8 1 , (3(B,6) is the
power against B.

Example 4.1.3 (continued). Here
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Figure 4.1.1. Power function of the level 0.05 one-sided test fJk of H : e= 0.3 versus
K : e> 0.3 for the B(IO, e) family of distributions. The power is plotted as a function of

e, k = 6 and the size is 0.0473.
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Note that in this example the power at e = el > 0.3 is the probability that the level
0.05 test will detect an improvement of the recovery rate from 0.3 to el > 0.3. When el

is 0.5, a 67% improvement, this probability is only .3770. What is needed to improve on
this situation is a larger sample size n. One of the most important uses of power is in the
selection of sample sizes to achieve reasonable chances of detecting interesting alternatives.
We return to this question in Section 4.3. D

Remark 4.1. From Figure 4.1.1 it appears that the power function is increasing (a proof
will be given in Section 4.3). It follows that the level and size of the test are unchanged if
instead of 8 0 = {eo} we used eo = [0, eo]. That is,

a(k) = sup{Po[T(X) > k] : eE eo} = Poo[T(X) > k].

Example 4.1.4. One-Sided Tests for the Mean ofa Normal Distribution with Known Vari
ance. Suppose that X = (Xl," . , X n ) is a sample from N(fl, (72) population with (72 is
known. (The (72 unknown case is treated in Section 4.5.) We want to test H : fl < 0 versus
K : fl > O. This problem arises when we want to compare two treatments or a treatment
and control (nothing) and both treatments are administered to the same subject. For in
stance, suppose we want to see if a drug induces sleep. We might, for each of a group of
n randomly selected patients, record sleeping time without the drug (or after the adminis
tration of a placebo) and then after some time administer the drug and record sleeping time
again. Let Xi be the difference between the time slept after administration of the drug and
time slept without administration of the drug by the ith patient. If we assume Xl, ... , X n

are normally distributed with mean fl and variance (72, then the drug effect is measured by
fl and H is the hypothesis that the drug has no effect or is detrimental, whereas K is the
alternative that it has some positive effect.
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(4.1.2)
vnJ.l- c + -'----'-

(Y
=<1>c-

o:(c) = sup{(3(J.l) : J.l < O} = (3(0) = <I>(-c).

Section 4.1 Introduction

because <I>(z) = 1 - <I>(-z). Because (3(J.l) is increasing,

c=-z(o:)

where -z(o:) = z(l - 0:) is the (1 - 0:) quantile of the N(O, 1) distribution.

The smallest c for which <I>(-c) < 0: is obtained by setting <I>(-c) = 0: or

Because X tends to be larger under K than under H, it is natural to reject H for large
values of X. It is convenient to replace X by the test statistic T(X) = vnX / (Y, which
generates the same family of critical regions. The power function of the test with critical
value c is

The Heuristics of Test Construction

When hypotheses are expressed in terms of an estimable parameter H : eE 8 0 c RP,
~

and we have available a good estimate e of e, it is clear that a reasonable test statis-
~

tic is d(e,80 ), where d is the Euclidean (or some equivalent) distance and d(x, S) =
inf{d( x, y) : YES}. This minimum distance principle is essentially what underlies
Examples 4.1.2 and 4.1.3. In Example 4.1.2, p = P[AA], N~A is the MLE of p and

d (N~A, 8 0 ) = IN~A - j I. In Example 4.1.3, ~ estimates e and d (~, eo) = (~ - eo) +

where y+ = yl(y > 0). Rejecting for large values of this statistic is equivalent to rejecting
for large values of X.

Given a test statistic T(X) we need to determine critical values and eventually the
power of the resulting tests. The task of finding a critical value is greatly simplified if
.co(T(X)) doesn't depend on e for e E 8 0 . This occurs if 8 0 is simple as in Example
4.1.3. But it occurs also in more interesting situations such as testing J.l = J.lo versus
J.l of. J.lo if we have N(J.l, (Y2) observations with both parameters unknown (the t tests of
Example 4.5.1 and Example 4.1.5). In all of these cases, .co, the common distribution of
T(X) under e E 8 0, has a closed form and is tabled. However, in any case, critical values
yielding correct type I probabilities are easily obtained by Monte Carlo methods. That is,
if we generate i.i.d. T(X(1)), ... ,T(X(B)) from .co, then the test that rejects iff T(X) >
T((B+l)(l-a)), where T(l) < .. , < T(B+l) are the ordered T(X), T(X(1)), ... ,T(X(B)),
has level 0: if .co is continuous and (B + 1)(1 - 0:) is an integer (Problem 4.1.9).

The key feature of situations in which .co (Tn) .co for e E 8 0 is usually invariance
under the action of a group of transformations. See Lehmann (1997) and Volume II for
discussions of this property.

Here are two examples of testing hypotheses in a nonparametric context in which the
minimum distance principle is applied and calculation of a critical value is straightforward.
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Example 4.1.5. Goodness of Fit Tests. Let Xl, ... ,Xn be i.i.d. as X ~ F, where F is-continuous. Consider the problem of testing H : F = Fa versus K : F #- Fa. Let F
denote the empirical distribution and consider the sup distance between the hypothesis Fa

~

and the plug-in estimate of F, the empirical distribution function F, as a test statistic

<
J
J,

-D n = sup IF(x) - Fa(x)l·
x

It can be shown (Problem 4.1. 7) that D n, which is called the Kolmogorov statistic, can be
written as

i (i - 1)
D n = . max max - - Fa(x(i)), Fa(x(i)) - -'-----'-

t=l, ... ,n n n
(4.1.3)

'i
.J

where x(1) < ... < x(n) is the ordered observed sample, that is, the order statistics. This
statistic has the following distribution-free property:

Proposition 4.1.1. The distribution of D n under H is the same for all continuous Fa. In
particular, PFo(Dn < d) = Pu(Dn < d), where U denotes theU(O, 1) distribution.

Proof Set Ui = Fa (Xi), then by Problem B.3.4, Ui ~ U(O, 1). Also

~

F(x) n-I I;I{Xi < x} = n- I I;I{Fa(Xi ) < Fa(x)}

n- I I;I{Ui < Fa(x)} = U(Fa(x))

o

~

D n = sup IU(u) - ul
a<u<l

and the result follows.

where U denotes the empirical distribution function of UI , ... , Un. As x ranges over R,
u = Fa(x) ranges over (0, 1), thus,

Note that the hypothesis here is simple so that for anyone of these hypotheses F = Fa,
the distribution can be simulated (or exhibited in closed form). What is remarkable is
that it is independ~nt of which Fa we consider. This is again a consequence of invariance
properties (Lehmann, 1997).

The distribution of D n has been thoroughly studied for finite and large n. In particular,
for n > 80, and

hn(t) = t/(v'n + 0.12 + 0.11/v'n)

close approximations to the size a critical values ka are hn (1.628), hn (1.358), and
hn (1.224) for a = .01, .05, and .10 respectively. 0

Example 4.1.6. Goodness ofFit to the Gaussian Family. Suppose Xl, ... , X n are i.i.d. F
and the hypothesis is H : F = <I> C:t) for some fl, (7, which is evidently composite.
We can proceed as in Example 4.1.5 rewriting H : F(fl + (7x) = <I>(x) for all x where
fl = EF(Xd, (72 = VarF(Xd. The natural estimate of the parameter F(fl + (7x) is

'1,.
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or upon applying <I> to both sides if, and only if,

0: > <I>(-T(x)).

221

(4.1.4)•

-ylnx
<I>(-T(x)) = <I>

Section 4.1 Introduction

r,;:;ynx
T(x) = > -z(o:)

rr

~

sup IG(x) - <I>(x)1
x

~ -

Tn sup IF(X + Cix) - <I>(x)1

F(X + Cix) where X and Ci2 are the MLEs of J.l and rr2 . Applying the sup distance again,
we obtain the statistic

The p-Value: The Test Statistic as Evidence.,
Different individuals faced with the same testing problem may have different criteria

of size. Experimenter I may be satisfied to reject the hypothesis H using a test with size
0: = 0.05, whereas experimenter II insists on using 0: = 0.01. It is then possible that
experimenter I rejects the hypothesis H, whereas experimenter II accepts H on the basis
of the same outcome x of an experiment. If the two experimenters can agree on a common
test statistic T, this difficulty may be overcome by reporting the outcome of the experiment
in terms of the observed size or p-value or significance probability of the test. This quantity
is a statistic that is defined as the smallest level of significance 0: at which an experimenter
using T would reject on the basis of the observed outcome x. That is, if the experimenter's
critical value corresponds to a test of size less than the p-value, H is not rejected; otherwise,
H is rejected.

Consider, for instance, Example 4.1.4. Ifwe observe X = x = (Xl, ... ,xn ), we would
reject H if, and only if, 0: satisfies

~ -
where G is the empirical distribution of (D. l , ... , D.n ) with D. i (Xi - X)/ci. But,
under H, the joint distribution of (D. 1 , ... , D.n ) doesn't depend on J.l, rr2 and is that of

(Zi - Z) / (~ '£7 l(Zi - Z)2) ~, 1 <i < n, where Zl,"" Zn are i.i.d. N(O, 1). (See

Section B.3.2.) Thus, Tn has the same distribution £0 under H, whatever be J.l and rr 2 ,

and the critical value may be obtained by simulating i.i.d. observations Zi, 1 < i < n,
from N(O, 1), then computing the Tn corresponding to those Zi' We do this B times
independently, thereby obtaining Tnl , ... ,TnB . Now the Monte Carlo critical value is the
[(B + 1)(1 - 0:) + l]thorder statistic among Tn, Tnl , ... ,TnB .(3) D

Therefore, if X = x, the p-value is

Considered as a statistic the p-value is <I> (-ylnX/rr).
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In general, let X be a q dimensional random vector. We will show that we can express
the p-value simply in terms of the function n(·) defined in (4.1.1). Suppose that we observe
X = x. Then if we use critical value c, we would reject H if, and only if,

T(x) > c.

Thus, the largest critical value c for which we would reject is c = T(x). But the size of a
test with critical value c is just n( c) and n(c) is decreasing in c. Thus, the smallest n for
which we would reject corresponds to the largest c for which we would reject and is just
n(T(x)). We have proved the following.

Proposition 4.1.2. The p-value is n (T(X) ).

This is in agreement with (4.1.4). Similarly in Example 4.1.3,

n

n(k) = 2:=
j=k

n
•

J

and the p-value is n(s) where s is the observed value of X. The normal approximation is
used for the p-value also. Thus, for min{nOo, n(1 - Oo)} > 5,

s - ~ - nOo
1

[nOo(1- ( 0 )]2
• (4.1.5)

~

to test H. The statistic T has a chi-square distribution with 2n degrees of freedom (Problem
~

4.1.6). Thus, H is rejected if T ~ Xl-a where Xl-a is the 1 - nth quantile of the X~n

distribution. Various methods of combining the data from different experiments in this way
are discussed by van Zwet and Osterhoff (1967). More generally, these kinds of issues
are currently being discussed under the rubric of data-fusion and meta-analysis (e.g., see
Hedges and Olkin, 1985).

The p-value is used extensively in situations of the type we described earlier, when H
is well defined, but K is not, so that type II error considerations are unclear. In this context,
to quote Fisher (1958), "The actual value of p obtainable from the table by interpolation
indicates the strength of the evidence against the null hypothesis" (p. 80).

The p-value can be thought of as a standardized version of our original statistic; that
is, n(T) is on the unit interval and when H is simple and T has a continuous distribution,
n(T) has a uniform, U(O, 1), distribution (Problem 4.1.5).

It is possible to use p-vaIues to combine the evidence relating to a given hypothesis H
provided by several different independent experiments producing different kinds of data.
For example, if T experimenters use continuous test statistics T I , •.. ,Tr to produce p
values n(Ttl, ... ,n(Tr ), then if H is simple Fisher (1958) proposed using

I,
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T = -2 2:= log n(Tj)
j=l

(4.1.6)
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which is large when S = ~Xi is large, and S tends to be large when K : () = ()I > ()o is
true.

4.2 CHOOSING A TEST STATISTIC: THE
NEYMAN-PEARSON LEMMA
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(4.2.1)
(()I/()o)S[(I- ()1)/(1- ()o)]n-S
[()I(I- ()0)/()0(1- ()1)]S[(1 - ()1)/(1 - ()o)]n,

Section 4.2 Choosing a Test Statistic: The Neyman-Pearson Lemma

We have seen how a hypothesis-testing problem is defined and how performance of a given
test J, or equivalently, a given test statistic T, is measured in the Neyman-Pearson theory.
Typically a test statistic is not given but must be chosen on the basis of its performance. In
Sections 3.2 and 3.3 we derived test statistics that are best in terms of minimizing Bayes
risk and maximum risk. In this section we will consider the problem of finding the level a:
test that has the highest possible power. Such a test and the corresponding test statistic are
called most poweiful (MP).

We start with the problem of testing a simple hypothesis H : () = ()o versus a simple
alternative K : () = () I. In this case the Bayes principle led to procedures based on the
simple likelihood ratio statistic defined by

L( () ()) = P(X'()I)
X, 0, 1 (() )P x, 0

The preceding paragraph gives an example in which the hypothesis specifies a distri
bution completely; that is, under H, a:(T;) has a U(O, 1) distribution. This is an instance
of testing goodness offit; that is, we test whether the distribution of X is different from a
specified Fo.

Summary. We introduce the basic concepts and terminology of testing statistical hypothe
ses and give the Neyman-Pearson framework. In particular, we consider experiments in
which important questions about phenomena can be turned into questions about whether
a parameter () belongs to 80 or 8 1 , where 8 0 and 8 1 are disjoint subsets of the parame
ter space 8. We introduce the basic concepts of simple and composite hypotheses, (null)
hypothesis H and alternative (hypothesis) K, test functions, critical regions, test statistics,
type I error, type II error, significance level, size, power, power function, and p-value. In
the Neyman-Pearson framework, we specify a small number a: and construct tests that have
at most probability (significance level) a: of rejecting H (deciding K) when H is true; then,
subject to this restriction, we try to maximize the probability (power) of rejecting H when
K is true.

where p(x, ()) is the density or frequency function of the random vector X. The statistic L
takes on the value 00 when p(x, ()1) > 0, p(x, ()o) = 0; and, by convention, equals 0 when
both numerator and denominator vanish.

The statistic L is reasonable for testing H versus K with large values of L favoring K
over H. For instance, in the binomial example (4.1.3),
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We call 'Pk a likelihood ratio or Neyman-Pearsoll (NP) test (junction) if for some 0 <
k < 00 we can write the test function 'Pk as

()
1 if L(x, 0o,(h) > k

'Pk X = .o If L(x, 00 , OJ} < k

with 'Pdx) any value in (0,1) if equality occurs. Note (Section 3.2) that 'Pk is a Bayes
rule with k = 7T / (1 - 7T), where 7T denotes the prior probability of {Oo}. We show that in
addition to being Bayes optimal, 'Pk is MP for level EOo'Pk(X),

Because we want results valid for all possible test sizes a in [0,1], we consider ran
domized tests 'P, which are tests that may take values in (0,1). If 0 < 'P(x) < 1 for the
observation vector x, the interpretation is that we toss a coin with probability of heads 'P(x)
and reject H iff the coin shows heads. (See also Section 1.3.) For instance, if want size
a = .05 in Example 4.1.3 with n = 10 and 00 = 0.3, we choose 'P(x) = 0 if S < 5,
'P(x) = 1 if S > 5, and

'P(x) = [0.05 - P(S > 5)J1P(S = 5) = .0262

if S = 5. Such randomized tests are not used in practice. They are only used to show that
with randomization, likelihood ratio tests are unbeatable no matter what the size a is.

Theorem 4.2.1. (Neyman-Pearson Lemma).
(a) If a > 0 and 'Pk is a size a likelihood ratio test, then 'Pk is MP in the class oflevel

a tests.
(b) For each 0 < a < 1 there exists an MP size a likelihood ratio test provided that

randomization is permitted, 0 < 'P(x) < l,for some x.
(c) If'P is an MP level a test, then it must be a level a likelihood ratio test; that is, there

exists k such that

(4.2.2)

for 0 = 00 and B = 01.

Proof. (a) Let E; denote Eo" i = 0,1, and suppose 'P is a level a test, then

(4.2.4) ,
•
•

j
1
I
;

•
:

I

(4.2.3)EO'Pk(X) = a, Eo'P(X) < a.

We want to show Ed'Pk(X) - 'P(X)] > O. To this end consider

EI['Pk(X) - 'P(X)]- kEo['Pk(X) - 'P(X)]

= Eo ['Pk(X) - 'P(X)] [:i~:~~l- k] + Ed'Pk(X) - 'P(X)]I{p(X,Bo) = O}
= I + I I (say), where
1= EO{'Pk(X) [L(X, Bo, Bd - k] - 'P(X) [L(X, 00 , ( 1 ) - kJ}.

Because L(x, Bo, Bd - k is < 0 or > 0 according as 'Pk(X) is 0 or 1, and because 0 <
'P(x) < 1, then I > O. Note that a > 0 implies k < 00 and, thus, 'Pk(X) = 1 if
p(x, Bo) = O. It follows that I I > O. Finally, using (4.2.3), we have shown that.~
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Note that any strictly increasing function of an optimal statistic is optimal because the two
statistics generate the same family of critical regions. Therefore,

Example 4.2.1. Consider Example 3.3.2 where X = (Xj , ••. , X n ) is a sample of n
N(fl, (72) random variables with (72 known and we test H : fl = 0 versus K : fl = v,
where v is a known signal. We found

225

(4.2.5)

•

nv2
log L(X, 0, v) + 2

2(7

V n nv2
L(X, 0, v) = exp 2" L Xi - 2 2

(7 ;=1 (7

-
X (7

T(X) = yITi- = ---.=
(7 vylTi
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(b) If a = 0, k = 00 makes 'Pk MP size a. If a = 1, k = 0 makes E1'PdX) = 1
and 'Pk is MP size a. Next consider 0 < a < 1. Let Pi denote Pe" i = 0, 1. Because
Po[L(X, Bo, Bj ) = 00] = 0, then there exists k < 00 such that

Po[L(X, Bo,Bd > k] < a and Po[L(X, Bo,BJ) > k] > a.

If Po[L(X, Bo,Bj ) = k] = 0, then 'Pk is MP size a. If not, define

()
a - Po [L(X, Bo, Bd > k]

'Pk X =
Po[L(X, Bo, Bd = k]

on the set {x; L(x, Bo, ( 1 ) = k}. Now 'Pk is MP size a.
(c) Let x E {x; p(x,B1 ) > O}, then to have equality in (4.2.4) we need tob.ave 'P(x) =

'Pk(X) = 1 when L(x,Bo,B1) > k and have 'P(x) = 'Pk(X) = 0 when L(x,Bo,Bd < k. It
follows that (4.2.2) holds for B= Bj • The same argument works for x E {x : p(x, Bo) > O}
and B = Bo. 0

It follows from the Neyman-Pearson lemma that an MP test has power at least as large
as its level; that is,

Corollary 4.2.1. If'P is an MP level a test, then Ee, 'P(X) > a with equality iffp(·, Bo) =

p(·,Bd·

Proof. See Problem 4.2.7.

Remark 4.2.1. Let 1r denote the prior probability of Bo so that (1-1r) is the prior probability
of Bj . Then the posterior probability of Bj is

1r(B
1
I x) = (1 -1r)p(x, Bd = (1 -1r)L(x, Bo, Bd

(1 - 1r)p(x, Bd + 1rp(x, Bo) (1 - 1r)L(x, Bo, Bd + 1r'

If J.". denotes the Bayes procedure of Example 3.2.2(b), then, when 1r = k/(k + 1), J.". =
'Pk· Moreover, we conclude from (4.2.5) that this J.". decides B1 or Boaccording as 1r(B1 I x)
is larger than or smaller than 1/2.

Part (a) of the lemma can, for 0 < a < 1, also be easily argued from this Bayes
property of 'Pk (Problem 4.2.10).

Here is an example illustrating calculation of the most powerful level a test 'Pk.
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is also optimal for this problem. But T is the test statistic we proposed in Example 4.1.4.
From our discussion there we know that for any specified Ct, the test that rejects if, and only
if.

T>z(l-Ct) (4.2.6)

has probability of type I error Ct.

The power of this test is, by (4.1.2), <I>(z(Ct) + (v..,fii/rr)). By the Neyman-Pearson
lemma this is the largest power available with a level Ct test. Thus, if we want the probability
of detecting a signal v to be at least a preassigned value (3 (say, .90 or .95), then we solve
<I>(z(Ct) + (v..,fii/rr)) = (3 for n and find that we need to take n = (rr /v )2[z(1-Ct) +z((3)j2.
This is the smallest possible n for any size Ct test. D

An interesting feature of the preceding example is that the test defined by (4.2.6) that is
MP for a specified signal v does not depend on v: The same test maximizes the power for
all possible signals v > 0. Such a test is called uniformly most powerful (UMP).

We will discuss the phenomenon further in the next section. The following important
example illustrates, among other things, that the UMP test phenomenon is largely a feature
of one-dimensional parameter problems.

Example 4.2.2. Simple Hypothesis Against Simple Altemative for the Multivariate Nor
mal: Fisher's Discriminant Function. Suppose X ~ N(J-tJ' ~J)' (JJ = (J-tJ' ~J)' j = 0, 1.
The likelihood ratio test for H : (J = (Jo versus K : (J = (Jl is based on

,

", •
,

Rejecting H for L large is equivalent to rejecting for

J
;

,
i
j
,
•j

i
1,

,

1

,

j

j

1
1
;

!
i
J,

I
(4.2.7)

large. Particularly important is the case ~o = ~l when "Q large" is equivalent to "F =
(J-tl - J-tO)~OlX large." The function F is known as the Fisher discriminant function. It is
used in a classification context in which (Jo, (Jl correspond to two known populations and
we desire to classify a new observation X as belonging to one or the other. We return to
this in Volume II. Note that in general the test statistic L depends intrinsically on J-to, J-tl'
However if, say, J-tl = J-to + A~o, A > °and ~l = ~o, then, if J-to, ~o, ~o are known, a
UMP (for all A) test exists and is given by: Reject if

where c = z(l - Ct)[~6~ol~ol~ (Problem 4.2.8). If ~o = (1,0, ... ,O)T and ~o = I,
then this test rule is to reject H if Xl is large; however, if ~o #- I, this is no longer the case
(Problem 4.2.9). In this example we have assumed that (Jo and (Jl for the two populations
are known. If this is not the case, they are estimated with their empirical versions with
sample means estimating population means and sample covariances estimating population

•covanances.

.....,- ,
it
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~

•',' ,



where

227

(4.3.2)

•

k

L = II
;=)

Section 4,3 Uniformly Most Powerful Tests and Monotone Likelihood Ratio Models

p = (1 - ()w)-1(1 - f()W).

(3((), 'P*) > (3((), 'P) for all () E e), (4.3.1)

Here is an interesting special case: Suppose ()jO > 0 for all j, 0 < f < 1 and for some fixed
integer l with 1 < l < k

4.3 UNIFORMLY MOST POWERFUL TESTS AND
MONOTONE LIKELIHOOD RATIO MODELS

Summary. We introduce the simple likelihood ratio statistic and simple likelihood ratio
(SLR) test for testing the simple hypothesis H : () = ()o versus the simple alternative
K : () = ()). The Neyman-Pearson lemma, which states that the size a: SLR test is uniquely
most powerful (MP) in the class of level a: tests, is established.

We note the connection of the MP test to the Bayes procedure of Section 3.2 for de
ciding between ()o and ()l. Two examples in which the MP test does not depend on ()) are
given. Such tests are said to be UMP (uniformly most powerful).

We saw in the two Gaussian examples of Section 4.2 that UMP tests for one-dimensional
parameter problems exist. This phenomenon is not restricted to the Gaussian case as the
next example illustrates. Before we give the example, here is the general definition of
UMP:

Definition 4.3.1. A level a: test 'P* is uniformly most powerful (UMP) for H : () E eo
versus K : () E e) if

for any other level a: test 'P.

Example 4.3.1. Testing for a Multinomial Vector. Suppose that (N), ... ,Nk ) has a multi
nomial M (n, ()l, ... , ()k) distribution with frequency function,

( ()) n! ()n! ()n kpnl, .. ·,nk, =, I)'" k
n) .... nk.

where nl, ... , nk are integers summing to n. With such data we often want to test a simple
hypothesis H : ()) = ()1Q, ... ,()k = ()kO. For instance, if a match in a genetic breeding ex
periment can result in k types, n offspring are observed, and N i is the number of offspring
of type i, then (N), ... , Nk) ~ M(n, ()l,"" ()k). The simple hypothesis would corre
spond to the theory that the expected proportion of offspring of types 1, ... , k are given
by ()1Q, ... ,()kO. Usually the alternative to H is composite. However, there is sometimes a
simple alternative theory K : ()l = ()ll,' .. , ()k = ()kl. In this case, the likelihood ratio L
)S
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That is, under the alternative, type I is less frequent than under H and the conditional
probabilities of the other types given that type I has not occurred are the same under K as
they are under H. Then

,
I,
•

j

o

(4.3.3)J(x)- 1 ifT(x»t
t - ° if T(x) < t

L = pn-N, eN, = pfi(e/p)N1 •

Because e < 1 implies that p > e, we conclude that the MP test rejects H, if and only if,
N I < c. Critical values for level a: are easily determined because Nt ~ B(n, Bw) under H.
Moreover, for a: = P( N 1 < c), this test is UMP for testing H versus K : BEe1 = {{;I : {;I

is of the form (4.3.2) with ° < e < I}. Note that because I can be any of the integers
1, ... , k, we get radically different best tests depending on which Bi we assume to be Bw
underH. 0

Typically the MP test of H : B = Bo versus K : B = B1 depends on B1 and the test is
not UMP. However, we have seen three models where, in the case of a real parameter, there
is a statistic T such that the test with critical region {x : T(x) > c} is UMP. This is part of
a general phenomena we now describe.

Definition 4.3.2. The family of models {Po: BEe} with e c R is said to be a monotone
likelihood ratio (MLR) family if for B1 < B2 the distributions PO, and P02 are distinct and
the ratio p(x, ( 2 )/p(x, ( 1 ) is an increasing function ofT(x). 0

Example 4.3.2 (Example 4.1.3 continued). In this i.i.d. Bernoulli case, set s = 2::7 1 Xi,

then
p(x, B) = BS (1 - Bt- s = (1 - Bt[B/(1 - BW

and the model is by (4.2.1) MLR in s.

Example 4.3.3. Consider the one-parameter exponential family mode!

p(x, B) = h(x) exp{1](B)T(x) - B(B)}.

If 1](B) is strictly increasing in BEe, then this family is MLR. Example 4.2.1 is of this
form with T(x) = vnx/O" and 1](Il-) = (vnO")Il-, where 0" is known. 0

Define the Neyman-Pearson (NP) test function

with Jt(x) any value in (0,1) if T(x) = t. Consider the problem of testing H : B = Bo
versus K: B = B1 with Bo < B1 . If {Po: BEe}, e c R, is an MLR family in T(x), then
L(x, Bo,Bd = h(T(x)) for some increasing function h. Thus, Jt equ~s the likelihood ratio
test 'Ph(t) and is MP. Because J t does not depend on B1> it is UMP at level a: = EooJt(x)
for testing H : B = Bo versus K : B > Bo, in fact.

Theorem 4.3.1. Suppose {Po: BEe}, 8 c R, is an MLRfamily in T(x).
(I) For each t E (0, (0), the power function f3(B) = EoJt(X) is increasing in B.
(2) If EooJt(X) = a: > 0, then J t is UMP level a: for testing H : B < Bo versus

K: B > B1 .

~, ,
"

l
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"
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Proof (I) follows from t5 f = 4'h(t) and Corollary 4.2.1 by noting that for any Ih < ()2, t5t

is MP at level EO
l

t5 t (X) for testing H : () = ()l versus J( : () = ()2. To show (2), recall
that we have seen that t5t maximizes the power for testing H : () = ()o versus K : () > ()o
among the class of tests with level 0: = Eoat5t (X). If () < ()o, then by (1), Eot5t (X) < 0:
and t5t is of level 0: for H : () < ()o. Because the class of tests with level 0: for H : () < ()o
is contained in the class of tests with level 0: for H : () = ()o, and because t5t maximizes the
power over this larger class, t5 t is UMP for H : () < ()o versus J( : () > ()o. 0

The following useful result follows immediately.

Corollary 4.3.1. Suppose {Po: () E e}, e c R, is an MLRfamily in T(x). If the
distribution function Fo ofT(X) under X ~ POa is continuous and ift(l- 0:) is a solution
of Fo (t) = 1 - 0:, then the test that rejects H ifand only ifT( x) > t( 1 - 0:) is UMP level
0: for testing H : () < ()o versus J( : () > ()o.

Example 4.3.4. Testing Precision. Suppose Xl,'" ,Xn is a sample from a N(J.l, 0"2)
population, where J.l is a known standard, and we are interested in the precision 0"-1 of
the measurements Xl, ... ,Xn . For instance, we could be interested in the precision of
a new measuring instrument and test it by applying it to a known standard. Because the
most serious error is to judge the precision adequate when it is not, we test H : 0" > 0"0
versus J( : 0" < 0"0, where 0"0 1 represents the minimum tolerable precision. Let 8 =

L:=~ 1 (Xi - J.l)2, then

1 1
p(x, ()) = exp - 28- -10g(27T0"2) .

20" 2

This is a one-parameter exponential family and is MLR in T = -8. The UMP level 0: test
rejects H if and only if 8 < 8(0:) where 8(0:) is such that Paa (8 < 8(0:)) = 0:. Ifwe write

~ _ ~ Xi - J.l 2
2 - L...J

0"0 ;=1 0"0

we see that 8/0"6 has a X; distribution. Thus, the critical constant 8(0:) is 0"6xn(0:), where
xn(o:) is the o:th quantile of the X; distribution. 0

Example 4.3.5. Quality Control. Suppose that, as in Example 1.1.1, X is the observed
number of defectives in a sample of n chosen at random without replacement from a lot of
N items containing b defectives, where b = N(). If the inspector making the test considers
lots with bo = N()o defectives or more unsatisfactory, she formulates the hypothesis H as
() > ()o, the alternative J( as () < ()o, and specifies an 0: such that the probability of rejecting
H (keeping a bad lot) is at most 0:. If 0: is a value taken on by the distribution of X, we
now show that the test 15* with reject H if, and only if, X < h(o:), where h(o:) is the o:th
quantile of the hypergeometric, 1{(N00 , N, n), distribution, is UMP level 0:. For simplicity
suppose that bo > n, N - bo > n. Then, if N ()l = bl < bo and 0 < x < bl , (1.1.1) yields

L( () () )=bl (b l -1) ... (b l -x+1)(N-bI) (N-b l -n+x+1)
x, 0, 1 bo(bo _ 1) " . (bo - x + l)(N - bo) (N - bo - n + x + 1)'
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Note that L(x, 00 , 0)) = 0 for b) < x < n. Thus, for 0 < :1' < b) - 1,

L(x+ I,Oo,Od
L(x, 00 , 0d

(N - n + 1) - (bo - x)
(N - 11 + 1) - (b) - x)

<1.

Therefore, L is decreasing in x and the hypergeometric model is an MLR family in T(x) =
-x. It follows that <5* is UMP level 0:. The critical values for the hypergeometric distribu
tion are available on statistical calculators and software. D

Power and Sample Size
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In the Neyman-Pearson framework we choose the test whose size is small. That is,
we choose the critical constant so that the maximum probability of falsely rejecting the
null hypothesis H is small. On the other hand, we would also like large power (3(0) when
o E 8); that is, we want the probability of correctly detecting an alternative K to be
large. However, as seen in Figure 4.1.1 and formula (4.1.2), this is, in general, not possible
for all parameters in the alternative 8). In both these cases, H and K are of the form
H : 0 < 00 and K : 0 > 00 , and the powers are continuous increasing functions with
limo~oo (3(0) = 0:. By Corollary 4.3.1, this is a general phenomenon in MLR family
models with p(x, 0) continuous in O.

This continuity of the power shows that not too much significance can be attached to
acceptance of H, if all points in the alternative are of equal significance: We can find
0> 00 sufficiently close to 00 so that (3(0) is arbitrarily close to (3(00 ) = 0:. For such 0 the
probability of falsely accepting H is almost 1 - 0:.

This is not serious in practice if we have an indifference region. This is a subset of
the alternative on which we are willing to tolerate low power. In our normal example
4.1.4 we might be uninterested in values of It in (0, b.) for some small b. > 0 because
such improvements are negligible. Thus, (0, b.) would be our indifference region. Off the
indifference region, we want guaranteed power as well as an upper bound on the probability
of type I error. In our example this means that in addition to the indifference region and
level 0:, we specify (3 close to 1 and would like to have (3 (It) > (3 for all It > b.. This is
possible for arbitrary (3 < 1 only by making the sample size n large enough. In Example
4.1.4 because (3(It) is increasing, the appropriate n is obtained by solving

(3(b.) = <I>(z(o:) + vnb./u) = (3

for sample size n. This equation is equivalent to

z(o:) + v'nb./u = z((3)

whose solution is

n = (b./u)-2[z(1 - 0:) + z((3)f

Note that a small signal-to-noise ratio b./u will require a large sample size n.
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For instance, if 0: = .05, (3 = .90, Bo = 0.3, and B1 = 0.35, we need

n = (0.05)-2 {1.645 X 0.3(0.7) + 1.282 X 0.35(0.55)}2 = 162.4.

231
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nB + ~ - 80

[nB(1 - BJP/2
(3(B) = Po(S > 80) = <I>

Section 43 Uniformly Most Powerful Tests and Monotone Likelihood Ratio Models

x ~
,fii- > z(1 - 0:) + ,fii-.

(7 (7

1 [ 1/2
80 = nBo + 2 + z(1 - 0:) nBo(1 - Bo)] .

Dual to the problem of not having enough power is that of having too much. It is
natural to associate statistical significance with practical significance so that a very low
p-value is interpreted as evidence that the alternative that holds is physically significant,
that is, far from the hypothesis. Formula (4.1.2) shows that, if n is very large and/or (7 is
small, we can have very great power for alternatives very close to O. This problem arises
particularly in goodness-of-fit tests (see Example 4.1.5), when we test the hypothesis that a
very large sample comes from a particular distribution. Such hypotheses are often rejected
even though for practical purposes "the fit is good enough." The reason is that n is so large
that unimportant small discrepancies are picked up. There are various ways of dealing with
this problem. They often reduce to adjusting the critical value so that the probability of
rejection for parameter value at the boundary of some indifference region is 0:. In Example
4.1.4 this would mean rejecting H if, and only if,

Again using the normal approximation, we find

As a further example and precursor to Section 5.4.4, we next show how to find the
sample size that will "approximately" achieve desired power (3 for the size 0: test in the
binomial example.

Example 4.3.6 (Example 4.1.3 continued). Our discussion uses the classical normal ap
proximation to the binomial distribution. First, to achieve approximate size 0:, we solve
(3(Bo) = POD (S > 8) for 8 using (4.1.4) and find the approximate critical value

Our discussion can be generalized. Suppose Bis a vector. Often there is a function q(B)
such that H and K can be formulated as H : q(B) < qo and K : q(B) > qo. Now let

Now consider the indifference region (Bo,Bt), where B1 = eo + ~, ~ > O. We solve
(3(Bt) = (3 for n and find the approximate solution

Thus, the size .05 binomial test of H : B = 0.3 requires appf()ximately 163 observations
to have probability .90 of detecting the 17% increase in B from 0.3 to 0.35. The power
achievable (exactly, using the SPLUS package) for the level .Of) test for B = .35 and n =
163 is 0.86. 0
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~ :,

q1 > qo be a value such that we want to have power j3(0) at least 13 when q(0) > q1. The
set {O : qo < q(0) < qd is our indifference region. For each n suppose we have a level
a: test for H versus J{ based on a suitable test statistic T. Suppose that j3(0) depends on
oonly through q(0) and is a continuous increasing function of q(0), and also increases to
1 for fixed 0 E 8 1 as n -t 00. To achieve level a: and power at least 13, first let Co be the
smallest number c such that

Then let n be the smallest integer such that

Po, [T > col > 13

where 00 is such that q(( 0) = qo and 01 is such that q(Otl = q1. This procedure can be
applied, for instance, to the F test of the linear model in Section 6.1 by taking q(0) equal to
the noncentrality parameter governing the distribution of the statistic under the alternative.

Implicit in this calculation is the assumption that Po, [T > col is an increasing function
ofn.

We have seen in Example 4.1.5 that a particular test statistic can have a fixed distribu
tion £0 under the hypothesis. It may also happen that the distribution of Tn as 0 ranges
over 8 1 is determined by a one-dimensional parameter A(O) so that 80 = {O : A(O) = O}
and 8 1 = {O : A(O) > O} and £0 (Tn) = £>'(0) (Tn) for all O. The theory we have devel
oped demonstrates that if £>.(Tn) is an MLR family, then rejecting for large values of Tn
is UMP among all tests based on Tn. Reducing the problem to choosing among such tests
comes from invariance consideration that we do not enter into until Volume II. However,
we illustrate what can happen with a simple example.

Example 4.3.7. Testing Precision Continued. Suppose that in the Gaussian model of Ex
ample 4.3.4, It is unknown. Then the MLE of (72 is (j2 = ~ 2:7 1 (Xi - X? as in Example
2.2.9. Although H : (7 = (70 is now composite, the distribution of Tn = n(j2/(75 is X;-1'
independent of It. Thus, the critical value for testing H : (7 = (70 versus J{ : (7 < (70 and
rejecting H if Tn is small, is the a: percentile of X;-1. It is evident from the argument of
Example 4.3.3 that this test is UMP for H : (7 > (70 versus J{ : (7 < (70 among all tests
depending on (j2 only. 0

Complete Families of Tests

The Neyman-Pearson framework is based on using the 0-1 loss function. We may
ask whether decision procedures other than likelihood ratio tests arise if we consider loss
functions l(O, a), a E A = {O, I}, 0 E 8, that are not 0-1. For instance, for 8 1 = (00,00),
we may consider l(O, 0) = (0 - ( 0 ), 0 E 8 1. In general, when testing H : 0 < 00 versus
J{ : 0 > 00 , a reasonable class of loss functions are those that satisfy

l(O, 1) -l(O,O) > 0 forO < 00

l(O, 1) -l(O, 0) < 0 for 0> 00 .
(4.3.4)
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We have in Chapter 2 considered the problem of obtaining precise estimates of parameters
and we have in this chapter treated the problem of deciding whether the parameter 0 is a
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(4.3.5)R(O,J) < R(O, <p) for all 0 E e.

Section 4.4 Confidence Bounds, Intervals, and Regions

4.4 CONFIDENCE BOUNDS, INTERVALS, AND
REGIONS

R(O,Jt ) - R(O, <p) = (l(O, 1) -l(O,O))(Eo(Jt(x)) - Eo(<p(X))) < °forO> 00 .

(4.3.6)

Let Jt(X) be such that, for some 00 , EooJt(X) = Eoo<p(X) > 0. If Eo<p(X) =°for all 0
then Joo(X) clearly satisfies (4.3.5). Now Jt is UMP for H : 0 < 00 versus K : 0 > 00 by
Theorem 4.3.1 and, hence,

R(O, <p) = EO{<p(X)l(O, 1) + [1- <p(X)]l(O,O)}
= Eo{ l(O, 0) + [l(O, 1) - l(O, O)]<p(X)}.

That is, if the model is correct and loss function is appropriate, then any procedure not
in the complete class can be matched or improved at all 0 by one in the complete class.
Thus, it isn't worthwhile to look outside of complete classes. In the following the decision
procedures are test functions.

Theorem 4.3.2. Suppose {Po: 0 E 8}, 8 c R, is an MLRfamily in T(x) and suppose
the loss function l(O, a) satisfies (4.3.4), then the class of tests of the form (4.3.3) with
EJt(X) = 0:, °< 0: < 1, is complete.

Proof. The risk function of any test rule <p is

But 1 - J t is similarly UMP for H : 0 > 00 versus K : 0 < 00 (Problem 4.3.12) and,
hence, Eo(l- Jt(X)) = 1 - EoJt(X) > 1- Eo<p(X) for 0 < 00 . Thus, (4.3.5) holds for
allO. 0

The class V of decision procedures is said to be complete (1 ), (2) if for any decision rule <p
there exists J E V such that

Summary. We consider models {Po : 0 E 8} for which there exist tests that are most
powerful for every 0 in a composite alternative 8\ (UMP tests). For 0 real, a model is said
to be monotone likelihood ratio (MLR) if the simple likelihood ratio statistic for testing 00

versus 0\ is an increasing function of a statistic T(x) for every 00 < 0\. For MLR models,
the test that rejects H : 0 < 00 for large values of T(x) is UMP for K : 0 > 00 , In
such situations we show how sample size can be chosen to guarantee minimum power for
alternatives a given distance from H. We also show how, when UMP tests do not exist,
locally most powerful (LMP) tests in some cases can be found. Finally, we show that for
MLR models, the class of NP tests is complete in the sense that for loss functions other
than the 0-1 loss function, the risk of any procedure can be matched or improved by an NP
test.
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member of a specified set 8 0 , Now we consider the problem of giving confidence bounds,
intervals, or sets that constrain the parameter with prescribed probability 1 - a. As an
illustration consider Example 4.1.4 where Xl, ... ,Xn are Li.d. N (J.l, (72) with (72 known.
Suppose that J.l represents the mean increase in sleep among patients administered a drug.
Then we can use the experimental outcome X = (Xl, ... ,Xn ) to establish a lower bound
J.l(X) for J.l with a prescribed probability (1 - a) of being correct. In the non-Bayesian
framework, J.l is a constant, and we look for a statistic J.l(X) that satisfies P(J.l(X) < J.l) =

1 - a with 1 - a equal to .95 or some other desired level of confidence. In our example
this is achieved by writing

p vn(X - J.l) > z(1 _ a) = 1 - a.
(7

By solving the inequality inside the probability for J.l, we find

P(X - (7z(1 - a)/vn < J.l) = 1 - a

and

where

I
i
•,
j

,
1

, i

I

=1-avnl X - J.l1 ( 1)--'------'-----'--'- < z 1 - - a
(7 - 2

p

J.l(X) = X + (7z(1 - a)/vn.

Here J.l(X) is called an upper level (1 - a) confidence bound for J.l.
Finally, in many situations where we want an indication of the accuracy of an estimator,

we want both lower and upper bounds. That is, we want to find a such that the probability
that the interval [X - a, X + a] contains J.l is 1 - a. We find such an interval by noting

J.l±(X) = X ± (7Z (1- ~a)/.;n.

We say that [J.l-(X), J.l+(X)] is a level (1 - a) confidence interval for J.l.
In general, if v = v(P), PEP, is a parameter, and X ~ P, X E Rq, it may not

be possible for a bound or interval to achieve exactly probability (1 - a) for a prescribed
(1 - a) such as .95. In this case, we settle for a probability at least (1 - a). That is,

and solving the inequality inside the probability for J.l. This gives

J.l(X) = X - (7z(1 - a)/vn
is a lower bound with P(J.l(X) < J.l) = 1 - a. We say that J.l(X) is a lower confidence
bound with confidence level 1 - a.

Similarly, as in (1.3.8), we may be interested in an upper bound on a parameter. In the
N(J.l, (72) example this means finding a statistic J.l(X) such that P(J.l(X) > J.l) = 1 - a;
and a solution is

,,,,

,,
•

1



That is, we will need the distribution of

Similarly, v(X) is called a level (1 - a) upper confidence bound for v if for every PEP,
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T(J.l) = vn(X - J.l).
8

n

8
2 = 1 "(Xi - X?

n -1 L....
i=1

The quantities on the left are called the probabilities ofcoverage and (1 - a) is called
a confidence level.

For a given bound or interval, the confidence level is clearly not unique because any
number (1 - 0") < (1 - a) will be a confidence level if (1 - a) is. In order to avoid
this ambiguity it is convenient to define the confidence coefficient to be the largest possible
confidence level. Note that in the case of intervals this is just

inf{P[v(X) < v < v(X), PEP]}

Definition 4.4.1. A statistic v(X) is called a level (1 - a) lower confidence bound for v if
for every PEP,

P[v(X) < v] > 1 - a,

P[v(X) < v < v(X)] > 1 - a.

Moreover, the random interval [v(X), v(X)] formed by a pair of statistics v(X), v(X)
is a level (1 - a) or a 100(1 - 0')% confidence interval for v if, for all PEP,

P[v(X) = v] > 1 - a,

Now Z(J.l) = vn(X - J.l)/O" has a N(O, 1) distribution and is, by Theorem B.3.3, inde
pendent of V = (n - 1)8

2
/0"2, which has a X~-1 distribution, We conclude from the

definition of the (Student) t distribution in Section B.3.1 that Z(JL)/ ylV/(n - 1) = T(J.l)

Example 4.4.1. The (Student) t Interval and Bounds. Let Xl,. , . ,Xn be a sample from a
N(J.l, 0"2) population, and assume initially that 0"2 is known. In the preceding discussion we
used the fact that Z(J.l) = vn(X - J.l)/O" has a N(O, 1) distribution to obtain a confidence
interval for J.l by solving -z (1- ;0') < Z(J.l) < z (1- ~a) for J.l. In this process Z(J.l)
is called a pivot. In general, finding confidence intervals (or bounds) often involves finding
appropriate pivots. Now we tum to the 0"2 unknown case and propose the pivot T(J.l)
obtained by replacing 0" in Z(J.l) by its estimate s, where

(i.e., the minimum probability of coverage). For the normal measurement problem we have
just discussed the probability of coverage is independent of P and equals the confidence
coefficient.
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1
I
I

has the t distribution T"-l whatever be p, and rr2
. Let tk (p) denote the pth quantile of the

Tk distribution. Then

P (-tn-d1 - ~a) < T(p,) < tn- 1 (1-1a)) = 1 - Q.

Solving the inequality inside the probability for p" we find

P [X - stn - 1 (1 - ~a)/ vn < p, < X + stn - 1 (1- ;a)/ vn] = 1- a.

The shortest level (1 - a) confidence interval of the type X ± scivn is, thus,

[X - stn - 1 (1- ;a)/ vn, X + stn - 1 (1- ;a)/ vn]. (4.4.1)
- -

Similarly, X - stn - 1 (1 - a)/vn and X + stn - 1 (1 - a)/vn are natural lower and
upper confidence bounds with confidence coefficients (1 - a).

To calculate the coefficients tn - 1 (1- ;a) and t n - 1(1 - a), we use a calculator,
computer software, or Tables I and II. For instance, if n = 9 and a = 0.01, we enter
Table II to find that the probability that a Tn - 1 variable exceeds 3.355 is .005. Hence,
t n -dl - ;a) = 3.355 and

[X - 3.355s/3, X + 3.355s/3]
j
!,
•,

(4.4.2)

is the desired level 0.99 confidence interval.
From the results of Section B.7 (see Problem B.7.12), we see that as n ---> 00 the Tn - 1

distribution converges in law to the standard nonnal distribution. For the usual values of a,
we can reasonably replace t n - 1 (p) by the standard normal quantile z(p) for n > 120.

Up to this point, we have assumed that Xl, ... , X n are i.i.d. N(p" rr2 ). It turns out
that the distribution of the pivot T(p,) is fairly close to the Tn - 1 distribution if the X's
have a distribution that is nearly symmetric and whose tails are not much heavier than the
nonnal. In this case the interval (4.1.1) has confidence coefficient close to 1 - a. On
the other hand, for very skew distributions such as the X2 with few degrees of freedom,
or very heavy-tailed distributions such as the Cauchy, the confidence coefficient of (4.1.1)
can be much larger than 1 - a. The properties of confidence intervals such as (4.4.1) in
non-Gaussian situations can be investigated using the asymptotic and Monte Carlo methods
introduced in Chapter 5. See Figure 5.3.1. If we assume rr2 < 00, the interval will have
probability (1 - a) in the limit as n ---> 00. D

Example 4.4.2. Confidence Intervals and Bounds for the Variance of a Normal Distri
bution. Suppose that Xl, . .. , X n is 11 sample from a N(p" rr2

) population. By Theorem
B.3.1, V(rr2) = (n - l)s2/rr2 has a X~-l distribution and can be used as a pivot. Thus, if
we let X n -1 (p) denote the pth quantile of the X~-l distribution, and if al + a2 = a, then

P(x(ad < V(rr2) < x(l- (2)) = 1 - a.

[(n - l)s2/x (1 - (2), (n - l)s2/x (ad]

By solving the inequality inside the probability for rr2 we find that

is a confidence interval with confidence coefficient (1 - a).

,
, ,
I

,',
, ,



where

- -
For fixed 0 < X < 1, g(e, X) is a quadratic polynomial with two real roots. In tenns of
S = nX, they are(l)
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(4.4.3)

(4.4.4)

(n + k~)

(n + k~).

= 1- Q.
y'n(X - e) ( I)< z 1--Q
ve(1- e) - 2

P

[B : g(e, X) < 0] = [B(X) < e < B(X)],

k2

S + 2'" - k",V[S(n - S)jn] + k~j4

k2

S + 2'" + k",V[S(n - S)jn] + k~j4

B(X)

B(X)

Because the coefficient of e2 in g(B, X) is greater than zero,

Section 4.4 Confidence Bounds, Intervals, and Regions

g(e, X) =

The length of this interval is random. There is a unique choice of QI and Q2, which
uniformly minimizes expected length among all intervals of this type. It may be shown that
for n large, taking QI = Q2 = ~ Q is not far from optimal (Tate and Klett, 1959).

The pivot V(7"2) similarly yields the respective lower and upper confidence bounds
(n - l)sjx(l - Q) and (n - l)sjx(Q).

In contrast to Example 4.4.1, if we drop the normality assumption, the confidence inter
val and bounds for (7"2 do not have confidence coefficient 1 - Q even in the limit as n ---> 00.

Asymptotic methods and Monte Carlo experiments as described in Chapter 5 have shown
that the confidence coefficient may be arbitrarily small depending on the underlying true
distribution, which typically is unknown. In Problem 4.4.16 we give an interval with cor
rect limiting coverage probability. 0

The method of pivots works primarily in problems related to sampling from normal
populations. If we consider "approximate" pivots, the scope of the method becomes much
broader. We illustrate by an example.

Example 4.4.3. Approximate Confidence Bounds and Intervals for the Probability ofSuc
cess in n Bernoulli Trials. If Xl, ... ,Xn are the indicators of n Bernoulli trials with
probability of success e, then X is the MLE of e. There is no natural "exact" pivot based
on X and e. However, by the De Moivre-Laplace theorem, y'n(X - e)jVB(l- B) has
approximately a N(O, 1) distribution. If we use this function as an "approximate" pivot
and let R:: denote "approximate equality," we can write

Let k", = Z (1 - ; Q) and observe that this is equivalent to

- 2 k2

P (X - e) < ---!!e(1- e) = p[g(e,X) < 0] R:: 1- Q
n
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>
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so that [O(X),O(X)] is an approximate level (1 - a) confidence interval for O. We can
similarly show that the endpoints of the level (1 - 2a) interval are approximate upper and
lower level (1 - a) confidence bounds. These intervals and bounds are satisfactory in
practice for the usual levels, if the smaller of nO, n( 1 - 0) is at least 6. For small n, it is
better to use the exact level (1 - a) procedure developed in Section 4.5. A discussion is
given in Brown, Cai, and Das Gupta (2000).

Note that in this example we can determine the sample size needed for desired accu
racy. For instance, consider the market researcher whose interest is the proportion 0 of a
population that will buy a product. He draws a sample of n potential customers, calls will
ingness to buy success, and uses the preceding model. He can then determine how many
customers should be sampled so that (4.4.4) has length 0.02 and is a confidence interval
with confidence coefficient approximately 0.95. To see this, note that the length, say I, of
the interval is

1== 2k,,{ y'[S(n - S)/n] + k~/4}(n + k~)-l.

Now use the fact that

(4.4.5)

to conclude that

(4.4.6)

Thus, to bound I above by 10 = 0.02, we choose n so that k,,(n + k~)-~ == 10 . That is, we
choose ,

>

j,,
:
I

In this case, 1 - ~a == 0.975, k" = z (1 - ~a)

length 0.02 by choosing n so that
1.96, and we can achieve the desired

This formula for the sample size is very crude because (4.4.5) is used and it is only good
when 0 is near 1/2. Better results can be obtained if one has upper or lower bounds on 0
such as 0 < 00 < ~, 0 > 01 > ~. See Problem 4.4.4.

Another approximate pivot for this example is ,jii.(X - O)/y'X(l - X). This leads
to the simple interval

See Brown, Cai, and Das Gupta (2000) for a discussion.
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(4.4.7)

2

- (1.96)2 = 9,600.16, or n = 9,601.
1.96
0.02

n=
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q(C(X)) = {q(()) : () E C(X)}
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(4.4.8)

Section 4.4 Confidence Bounds, Intervals, and Regions

We can extend the notion of a confidence interval for one-dimensional functions q( ())
to r-dimensional vectors q(()) = (ql (()), ... , qr(())). Suppose q .(X) and qj(X) are real

-J
valued. Then the r-dimensional random rectangle

is a confidence interval for q( ()) with confidence coefficient (1 - a).
If q is not 1 - 1, this technique is typically wasteful. That is, we can find confidence

regions for q( ()) entirely contained in q(C(X)) with confidence level (1 - a). For instance,
we will later give confidence regions C(X) for pairs () = (()l, ()2f. In this case, if q(B) =
()l, q(C(X)) is larger than the confidence set obtained by focusing on ()l alone.

Confidence Regions of Higher Dimension

Confidence Regions for Functions of Parameters

We can define confidence regions for a function q( ()) as random subsets of the range of
q that cover the true value of q(()) with probability at least (1 - a). Note that if C(X) is a
level (1 - a) confidence region for (), then

exp{-x/()} < q(()) < exp{-x/()}

is a level (1 - a) confidence region for q( ()).

Example 4.4.4. Let Xl, ... ,Xn denote the number of hours a sample of internet sub
scribers spend per week on the Internet. Suppose Xl, ... , X n is modeled as a sample from
an exponential, E( ()-l), distribution, and suppose we want a confidence interval for the
population proportion P(X > x) of subscribers that spend at least x hours per week on
the Internet. Here q(()) = 1 - F(x) = exp{-x/()}. By Problem B.3.4, 2nX/() has a
chi-square, X~n' distribution. By using 2nX /() as a pivot we find the (1 - a) confidence
interval

2nX/x (1 - ~a) < () < 2nX/x (~a)

where x(13) denotes the 13th quantile of the X~n distribution. Let () and () denote the lower
and upper boundaries of this interval, then

I(X) = {q(()): q(X) < qj(()) < qj(X), j = I, ... ,r}
-J

is said to be a level (1 - a) confidence region, if the probability that it covers the unknown
but fixed true (ql (()), ... , qr (())) is at least (1 - a). We write this as

P[q(()) E I(X)] > 1 - a.

Note that if I j (X) = [q, qj] is a level (1 - a j) confidence interval for qj (B) and if the
-J

pairs (TI' T I ), ... , (Tr' Tr ) are independent, then the rectangle I( X) = h (X) x ... x
Ir(X) has level
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Thus, an r-dimensional confidence rectangle is in this case automatically obtained from
the one-dimensional intervals. Moreover, if we choose aj = 1 - (1 - a);, then I(X) has
confidence level 1 - a.

An approach that works even if the I j are not independent is to use Bonferroni's in
equality (A.2.7). According to this inequality,

r r

P[q(B) E I(X)] > 1 - L P[qj(B) rt Ij(X)] > 1 - L aj'
j=l j=l

Thus, if we choose aj = air, j = 1, ... , r, then I(X) has confidence level (1 - a).

Example 4.4.5. Confidence Rectangle for the Parameters ofa Normal Distribution. Sup
pose Xl, ... , X n is a N (J1., (J2) sample and we want a confidence rectangle for (J1., (J2).

From Example 4.4.1

h(X) = X ± 8tn - 1 (1 - ~a)/,;n

is a confidence interval for J1. with confidence coefficient (1 - ~ a). From Example 4.4.2,

(
X) = (n - 1)82 (n - 1)82

h (1 )' (1 )X n -1 1 - 4a X n -1 4a

We have shown

•,
,
•
j

I
1

D

P(C(X)(t) :) F(t) for all t E R) = 1 - a

Dn(F) = sup IF(t) - F(t)1
tER

C(x)(t) = (max{O, F(t) - do}, min{l, F(t) + do}).

is a reasonable confidence interval for (J2 with confidence coefficient (1 - ~ a). Thus,
h (X) x 12 (X) is a level (1 - a) confidence rectangle for (J1., (J2). It is possible to show

that the exact confidence coefficient is (1 - ~ a) 2. See Problem 4.4.15. D

The method of pivots can also be applied to oo-dimensional parameters such as F.

Example 4.4.6. Suppose X 1 , ... ,Xn are i.i.d. as X ~ P, and we are interested in the
distribution function F(t) = P(X < t); that is, v(P) = F(·). We assume that F is
continuous, in which case (Proposition 4.1.1) the distribution of

does not depend on F and is known (Example 4.1.5). That is, Dn(F) is a pivot. Let do be
chosen such that PF(Dn(F) < do) = 1 - a. Then by solving Dn(F) < do for F, we
find that a simultaneous in t size 1 - a confidence region C (x) (.) is the confidence band
which, for each t E R, consists of the interval

for all PEP = set of P with P(-oo, t] continuous in t.

"
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We can apply the notions studied in Examples 4.4.4 and 4.4.5 to give confidence regions
for scalar or vector parameters in nonparametric models.

f.L = 1
00

[1 - F(t)]dt.

241

(4.4.9)
•

l- + d",
n

f.L = 1
00

[1- P+(t)]dt = L 1-
o i<n(l-do )

Section 4.5 The Duality Between Confidence Regions and Tests

4.5 THE DUALITY BETWEEN CONFIDENCE
REGIONS AND TESTS

Example 4.4.7. A Lower Confidence Bound for the Mean ofa Nonnegative Random Vari
able. Suppose Xl, ... , X n are i.i.d. as X and that X has a density f (t) = F' (t), which is
zero for t < 0 and nonzero for t > O. By integration by parts, if f.L = IL(F) = 10

00
tf(t)dt

exists, then

~ ~

Let F- (t) and F+ (t) be the lower and upper simultaneous confidence boundaries of Ex-
ample 4.4.6. Then a (1 - a) lower confidence bound for f.L is f.L given by

because for C(X) as in Example 4.4.6, f.L inf{f.L(F): F E C(X)} = f.L(P+) and

sup{f.L(F) : FE C(X)} = f.L(P-) = CX)-see Problem 4.4.19.
Intervals for the case F supported on an interval (see Problem 4.4.18) arise in ac

counting practice (see Bickel, 1992) where such bounds are discussed and shown to be
asymptotically strictly conservative. D

Summary. We define lower and upper confidence bounds (LCBs and DCBs), confidence
intervals, and more generally confidence regions. In a parametric model {P9 : B E 8},
a level 1 - a confidence region for a parameter q(B) is a set C(x) depending only on the
data x such that the probability under P9 that C(X) covers q(B) is at least 1 - a for all
B E 8. For a nonparametric class P = {P} and parameter 1/ = I/(P), we similarly
require P(C(X) :) 1/) > 1 - a for all PEP. We derive the (Student) t interval for f.L
in the N(f.L, 0'2) model with 0'2 unknown, and we derive an exact confidence interval for
the binomial parameter. In a nonparametric setting we derive a simultaneous confidence
interval for the distribution function F(t) and the mean of a positive variable X.

Confidence regions are random subsets of the parameter space that contain the true param
eter with probability at least 1 - a. Acceptance regions of statistical tests are, for a given
hypothesis H, subsets of the sample space with probability of accepting H at least 1 - a
when H is true. We shall establish a duality between confidence regions and acceptance
regions for families of hypotheses.

We begin by illustrating the duality in the following example.

Example 4.5.1. Two-Sided Tests for the Mean ofa Normal Distribution. Suppose that an
established theory postulates the value f.Lo for a certain physical constant. A scientist has
reasons to believe that the theory is incorrect and measures the constant n times obtaining
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measurements Xl ..... X". Knowledge of his instruments leads him to assume that the
Xi are independent and identically distributed normal random variables with mean 11 and
variance (J2. If any value of /1 other than /10 is a possible alternative, then it is reasonable
to formulate the problem as that of testing H : /1 = /10 versus K : /1 i= /10.

We can base a size a test on the level (1 - ct) confidence interval (4.4.1) we constructed
for /1 as follows. We accept H, if and only if, the postulated value /10 is a member of the
level (1 - a) confidence interval

(4.5.1)

(4.5.2)

If we let T = vn(X - /10)/s, then our test accepts H, if and only if, -tn-d1 ~ ~ a) <
T < tn-d1 - ~a). Because P/"[ITI = tn-d1 - ~a)] = 0 the test is equivalently

characterized by rejecting H when ITI > tn-d1 - ~ a). This test is called two-sided
because it rejects for both large and small values of the statistic T. In contrast to the tests
of Example 4.1.4, it has power against parameter values on either side of /10.

Because the same interval (4.5.1) is used for every /10 we see that we have, in fact,
generated a family of level a tests {5(X, /1)} where

1 if vn 1x ;/"I > tn - l (1 - ~a)

ootherwise.

These tests correspond to different hypotheses, 5(X, /10) being of size a only for the hy
pothesis H : /1 = /10·

Conversely, by starting with the test (4.5.2) we obtain the confidence interval (4.5.1)
by finding the set of /1 where 5(X, /1) = O.

We achieve a similar effect, generating a family of level a tests, if we start out with
(say) the level (1 - a) LCB X - tn - l (1 - a)s/vn and define 5*(X, /1) to equal 1 if, and
only if, X - tn - l (l - a)s/vn > /1. Evidently,

= 1- a.

D

These are examples of a general phenomenon. Consider the general framework where
the random vector X takes values in the sample space X c Rq and X has distribution
PEP. Let v = v(P) be a parameter that takes values in the set N. For instance,
in Example 4.4.1, /1 = /1(P) takes values in N = (-00,00), in Example 4.4.2, (J2 =
(J2(P) takes values in N = (0,00), and in Example 4.4.5, (/1, (J2) takes values in N =
(-00,00) x (0,00). For a function space example, consider v(P) = F, as in Example
4.4.6, where F is the distribution function of Xi. Here an example of N is the class of all
continuous distribution functions. Let S = S(X) be a map from X to subsets of N, then
S is a (1 - a) confidence region for v if the probability that S(X) contains v is at least
(1 - a), that is

P[v E S(X)] > 1 - a, all PEP.

i
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where too (1 - a) is the 1 - a quantile of Foo ' By the duality theorem, if

A(I/o) = {x : 5(x, I/o) = O}

A(Bo) = {x: T(x) < too(1- a)}

243Section 4.5 The Duality Between Confidence Regions and Tests

S(t) = {B E e: Fo(t) < 1 - a}.

s(t) = {B E e: t < to(1- a)},

Next consider the testing framework where we test the hypothesis H = Hvo : 1/ = I/o
for some specified value I/o. Suppose we have a test 5(X, I/o) with level a. Then the
acceptance regIOn

is a subset of X with probability at least 1 - a. For some specified I/o, H may be accepted,
for other specified I/o, H may be rejected. Consider the set of I/o for which H vo is accepted;
this is a random set contained in N with probapility at least 1 - a of containing the true
value of I/(P) whatever be P. Conversely, if S(X) is a levell - a confidence region for
1/, then the test that accepts Hvo if and only if I/o is in S(X), is a level a test for Hvo .

Formally, let Pvo = {P : I/(P) = I/o : I/o E V}. We have the following.

Duality Theorem. Let S(X) = {I/O EN: X E A(I/o)}, then

P[X E A(I/o)] > 1 - a for all P E Pvo

ifand only ifS(X) is a 1 - a confidence region for 1/.

We next apply the duality theorem to MLR families:

Theorem 4.5.1. Suppose X ~ Po where {Po: BEe} is MLR in T = T(X) and suppose
that the distribution function Fo(t) ofT under Po is continuous in each of the variables t
and B when the other is fixed. If the equation Fo(t) = 1 - a has a solution Bo.(t) in e,
then B0< (T) is a lower confidence boundfor B with confidence coefficient 1 - a. Similarly,

- -
any solution Bo«T) of Fo(T) = a with Bo< E e is an upper confidence bound for B with
coefficient (1 - a). Moreover, if al + a2 < 1, then [B0<1 ,B0<2] is confidence interval for B
with confidence coefficient 1 - (al + a2)'

Proof. By Corollary 4.3.1, the acceptance region of the UMP size a test of H : B = Bo
versus K : B > Bo can be written

then S (T) is a 1-a confidence region for B. By applying Fo to both sides of t < to (1- a),
we find

By Theorem 4.3.1, the power function Po(T > t) = 1 - Fo(t) for a test with critical
constant t is increasing in B. That is, Fo(t) is decreasing in B. It follows that Fo(t) < 1- a
iff B> f!.c.(t) and S(t) = [f!.c., 00). The proofs for the upper confid<;nce bound and interval
follow by the same type of argument, 0

We next give connections between confidenc~bounds, acceptance regions, and p-values
for MLR families: Let t denote the observed value t = T(x) of T(X) for the datum x, let
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n(t, eo) denote the p-value for the UMP size n test of H : e = eo versus K : e > eo, and
let

A*(e) = T(A(e)) = {T(x) : x E A(e)}.

Corollary 4.5.1. Under the conditions of Theorem 4.4.1,

We have seen in the proof of Theorem 4.3.1 that 1 - Fo(t) is increasing in e. Because
Fe (t) is a distribution function, 1 - Fe (t) is decreasing in t. The result follows. 0

In general, let n(t, va) denote the p-value of a test 5(T, va) = I[T > c] of H : v = va
based on a statistic T = T( X) with observed value t = T( x). Then the set

A*(e)

S(t)

Proof. The p-value is

{t: n(t,e) > n} = (-oo,to(1- n)]

{e: n(t,e) > n} = [ea(t),oo).

n(t, e) = Po(T > t) = 1 - Fo(t). •
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0= {(t, v) : n(t, v) < o} = {(t, v) : 5(t, v) = O}

gives the pairs (t, v) where, for the given t, v will be accepted; and for the given v, tis
in the acceptance region. We call 0 the set of compatible (t, e) points. In the (t, e) plane,
vertical sections of 0 are the confidence regions S (t) whereas horizontal sections are the
acceptance regions A *(v) = {t : 5(t, v) = O}. We illustrate these ideas using the example
of testing H : j.t = j.to when XI, .. . , X n are i.i.d. N(j.t, 0'2) with 0'2 known. Let T = X,
then

0= {(t,j.t): It - j.tl < O'z (1 - ~n)/ In}.
Figure 4.5.1 shows the set 0, a confidence region S(to), and an acceptance set A* (j.to) for
this example.

Example 4.5.2. Exact Confidence Bounds and Intervals for the Probability of Success in
n Binomial Trials. Let X I, ... ,Xn be the indicators of n binomial trials with probability
of success e. For 0 E (0,1), we seek reasonable exact level (1 - 0) upper and lower
confidence bounds and confidence intervals for e. To find a lower confidence bound for e
our preceding discussion leads us to consider level 0 tests for H : e < eo, eo E (0,1).
We shall use some of the results derived in Example 4.1.3. Let k(eo, 0) denote the critical
constant of a level (1 - 0) test of H. The corresponding level (1 - 0) confidence region is
given by

C(XI , ... ,Xn ) = {e: S < k(e,o) -I},

where S = ~i I Xi'
To analyze the structure of the region we need to examine k(e, 0). We claim that

(i) k(e, 0) is nondecreasing in e.

(ii) k(e,o) ---> k(eo,0) if e i eo .



Figure 4.5.1. The shaded region is the compatibility set C for the two-sided test of
H1-'0 : J.t = J.to in the normal model. S (to) is a confidence interval for J.t for a given value

to ofT, whereas A*(J.to) is the acceptance region for HI-'o'

a contradiction.
The assertion (ii) is a consequence of the following remarks. If Bo is a discontinuity

point 0 k(B, a), let j be the limit of k(B, a) as B i Bo. Then PolS > j] < a for all B < Bo
and, hence, Poo [S > j] < a. On the other hand, if B > Bo, Po [S > j] > a. Therefore,
Poo [S > j] = a and j = k(Bo,a). The claims (iii) and (iv) are left as exercises.

From (i), (ii), (iii), and (iv) we see that, if we define

9(S) = inf{B: k(B,a) = S + I},
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if S > 0
if S = 0

(9(S),1]
[0, 1]C(X) =

Section 4.5 The Duality Between Confidence Regions and Tests

(iii) k(B, a) increases by exactly 1 at its points of discontinuity.

(iv) k(O,a) = 1 andk(l,a) = n+ 1.

To prove (i) note that it was shown in Theorem 4.3.1 (i) that Po [S > j] is nondecreasing
in B for fixed j. Clearly, it is also nonincreasing in j for fixed B. Therefore, B1 < B2 and
k(B1 ,a) > k(B2 ,a) would imply that

a >P02 [S> k(B2 ,a)] > Po2 [S > k(B2 ,a) -1] > POllS > k(BI,a) -1] > a,

then
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1
j
I

and 0(8) is the desired level (1 - a) LCB for 0.(2) Figure 4.5.2 portrays the situation.
From our discussion, when 8> 0, then k(0(8),a) = 8 and, therefore, we find 0(8) as
the unique solution of the equation,

,

J

When 8 = 0, 0(8) = O.
Similarly, we define

n

r=S

n
r

or(1 - Or-r = a.

where j (0, a) is given by,

0(8) = sup{O: j(O, a) = 8 - I}

j(O,a)

L
r=O

n
r

j(O,a)+l

or (1 - Or-r < a < L
r=O

n
r

Or(1 - 0r-r. •

- -
Then 0(8) is a level (1 - a) DCB for 0 and when 8 < n, O(8) is the unique solution of

- -
When 8 = n, 0(8) = 1. Putting the bounds 0(8), 0(8) together we get the confidence
interval [0(8), 0(8)] oflevel (1-2a). These intervals can be obtained from computer pack
ages that use algorithms based on the preceding considerations. As might be expected, if n
is large, these bounds and intervals differ little from those obtained by the first approximate
method in Example 4.4.3.

S

L
r=O

n
r

or(1 - Or-r = a. i
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Figure 4.5.2. Plot of k(O, 0.16) for n = 2.
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Summary. We explore the connection between tests of statistical hypotheses and confi
dence regions. If J(x, I/o) is a level a test of H : 1/ = I/o, then the set S(x) of I/o where

Example 4.5.2. Suppose Xl, ... , X n are i.i.d. N(J.L, CJ2) with CJ2 known. In Section 4.4
we considered the level (1 - a) confidence interval X ± CJz(l - ~ a)/v'n for J.L. Using this
interval and (4.5.3) we obtain the following three decision rule based on T = v'n(X 
J.Lo) / CJ:

Similarly, when J.L < J.Lo, the probability of the wrong decision is at most ~ a. Therefore,
by using this kind of procedure in a comparison or selection problem, we can control the
probabilities of a wrong selection by setting the a of the parent test or confidence interval.
We can use the two-sided tests and confidence intervals introduced in later chapters in
similar fashions.
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(4.5.3)

< <I>(-z(l- ~a)) = ~a.-z(l - !a) _ v'n(J.L - J.Lo)
2 CJ

Applications of Confidence Intervals to Comparisons and Selections

1. Make no judgment as (Q whether (J < (Jo or (J > (Jo if I contains (Jo;
2. Decide (J < (Jo if I is entirely to the left of (Jo; and
3. Decide (J > (Jo if I is entirely to the right of (Jo.

P[T < -z(l - ~a)] = <I>

Section 4.5 The Duality Between Confidence Regions and Tests

Do not reject H : J.L = J.Lo if ITj < z(l - ~a).

Decide J.L < J.Lo ifT < -z(l - ~a).

Decide J.L > J.Lo if T > z( 1 - ~ a).

Thus, the two-sided test can be regarded as the first step in the decision procedure where
if H is not rejected, we make no claims of significance, but if H is rejected, we decide
whether this is because (J is smaller or larger than (Jo. For this three-decision rule, the
probability of falsely claiming significance of either (J < (Jo or (J > (Jo is bounded above by
~a. To see this consider first the case (J > (Jo. Then the wrong decision "J.L < J.Lo" is made
when T < -z(1 - ~ a). This event has probability

We have seen that confidence intervals lead naturally to two-sided tests. However,
two-sided tests seem incomplete in the sense that if H : (J = (Jo is rejected in favor of
H : (J i= (Jo, we usually want to know whether H : (J > (Jo or H : (J < (Jo.

For instance, suppose (J is the expected difference in blood pressure when two treat
ments, A and B, are given to high blood pressure patients. Because we do not know whether
A or B is to be preferred, we test H : (J = 0 versus K : (J i= O. If H is rejected, it is natural
to carry the comparison of A and B further by asking whether (J < 0 or (J > O. If we decide
(J < 0, then we select A as the better treatment, and vice versa.

The problem of deciding whether (J = (Jo, (J < (Jo, or (J > (Jo is an example of a three
decision problem and is a special case of the decision problems in Section 1.4, and 3.1-3.3.
Here we consider the simple solution suggested by the level (1 - a) confidence interval I:
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S(;r, va) = 0 is a level (1 - a) confidence region for va. If S (x) is a level (1 ~ a) con
fidence region for v, then the test that accepts H : v = va when va E S(:1') is a level a
test. We give explicitly the construction of exact upper and lower confidence bounds and
intervals for the parameter in the binomial distribution. We also give a connection between
confidence intervals, two-sided tests, and the three-decision problem of deciding whether a
parameter 0 is 00 , less than 00 , or larger than 00 , where 00 is a specified value.

4.6 UNIFORMLY MOST ACCURATE CONFIDENCE
BOUNDS

In our discussion of confidence bounds and intervals so far we have not taken their accuracy
into account. We next show that for a certain notion of accuracy of confidence bounds,
which is connected to the power of the associated one-sided tests, optimality of the tests
translates into accuracy of the bounds.

If 0 and 0* are two competing level (1 - a) lower confidence bounds for 0, they are
both very likely to fall below the true O. But we also want the bounds to be close to O. Thus,
we say that the bound with the smaller probability of being far below 0 is more accurate.
Formally, for X E X c Rq, the following is true.

Definition 4.6.1. A level (1 - a) LCB 0* of 0 is said to be more accurate than a competing
level (1 - a) LCB 0 if, and only if, for any fixed 0 and all 0' < 0,

•,
•

•
•••

,
•

I
•I
j
I,
•
•

-* -
Similarly, a level (1 - a) UCB 0 is more accurate than a competitor 0 if, and only if, for
any fixed 0 and all 0' > 0,

Lower confidence bounds 0* satisfying (4.6.1) for all competitors are called uniformly
most accurate as are upper confidence bounds satisfying (4.6.2) for all competitors. Note
that 0* is a uniformly most accurate level (1 - a) LCB for 0, if and only if -0* is a
uniformly most accurate level (1 - a) UCB for -0.

Example 4.6.1 (Examples 3.3.2 and 4.2.1 continued). Suppose X = (Xl,'" ,Xn) is
a sample of a N(/-L, 0'2) random variables with 0'2 known. A level a test of H : /-L = /-La
vs K : /-L > /-La rejects H when v'n(X - /-Lo)/O' > z(l - a). The dual lower confidence
bound is /-L (X) = X - z(l - a)O'/ v'n. Using Problem 4.5.6, we find that a competing

-1
lower confidence bound is /-L2(X) = X(k), where X(1) < X(2) < .. , < X(n) denotes

the ordered Xl, .. . ,Xn and k is defined by P(S > k) = 1 - a for a binomial, B(n, ~),

random variable S. Which lower bound is more accurate? It does tum out that /-L (X) is
-1

more accurate than /-L (X) and is, in fact, uniformly most accurate in the N(/-L, 0'2) model.
-2

This is a consequence of the following theorem, which reveals that (4.6.1) is nothing more
than a comparison of power functions. D
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Po[O*(X) < 0'] < Po[O(X) < 0'].

Po[O*(X) < 0'] < Po [O(X) < 0'].

(4.6.1)

(4.6.2)
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1 ifO*(x) > 00

ootherwise

S*(x, 00)

Section 4.6 Uniformly Most Accurate Confidence Bounds

or

Then J(X, 00) is a level a test for H : 0 = 00 versus K : 0 > 00. Because S* (X, 00) is
UMP level a for H : 0 = 00 versus K ; 0 > 00, for 01 > 00 we must have

is UMP level a for H : 0 = 00 versus K ; 0 > 00. Then (t is uniformly most accurate at
level (1 - a).

Proof Let 0 be a competing level (1 - a) LCB 00, Defined S(x, 00) by

S(x,Oo) = 0 if, and only if, O(x) < 00.

E Ol (S(X, 00)) < E Ol (S*(X, 00))

Theorem 4.6.1. Let 0* be a level (1 - a) LeB for 0, a real parameter, such that for each
00 the associated test whose critical function S*(x. 00) is given by

PO, [O(X) > Ool < PO, [0* (X) > 00],

Identify 00 with 0' and 01 with 0 in the statement of Definition 4.4.2 and the result
follows. D

If we apply the result and Example 4.2.1 to Example 4.6.1, we find that x - z(1 
a)a/,;n is uniformly most accurate. However, X(k) does have the advantage that we don't
have to know 0' or even the shape of the density f of Xi to apply it. Also, the robustness
considerations of Section 3.5 favor X(k) (see Example 3.5.2).

Uniformly most accurate (UMA) bounds turn out to have related nice properties. For
instance (see Problem 4.6.7 for the proof), they have the smallest expected "distance" to 0:

Corollary 4.6.1. Suppose B*(X) is UMA level (1 - a) lower confidence boundforO. Let
O(X) be any other (1 - a) lower confidence bound, then

whenever q(0') < q(0). Most accurate upper confidence bounds are defined similarly.

Example 4.6.2. Boundsforthe Probability ofEarly Failure ofEquipment. Let Xl, . .. ,Xn

be the times to failure of n pieces of equipment where we assume that the Xi are indepen
dent £(>') variables. We want a uniformly most accurate level (1 - a) upper confidence
bound q* for q(>.) = 1 - e->-to , the probability of early failure of a piece of equipment.

for all 0 where a+ = a, if a > 0, and 0 otherwise.

We can extend the notion of accuracy to confidence bounds for real-valued functions
of an arbitrary parameter. We define q* to be a uniformly most accurate level (1 - a) LCB
for q(0) if, and only if, for any other level (1 - a) LCB g,

Po[q* < g(O')] < Po[q < g(O')]



250 Testing and Confidence Regions Chapter 4

,
l

- -
We begin by finding a uniformly most accurate level (1 - (l) UCB A* for A. To find A*

we invert the family of UMP level (1 tests of H : A > AO versus J{ : A < AO' By Problem
4.6.8, the UMP test accepts H if

II

L X, < X21l (1 - a)/2Ao
1= 1

(4.6.3)
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or equivalently if
A X2n(1-a)
0< 2,\,n X

02=1 'l

where X2n (1 - a) is the (1 - a) quantile of the X~n distribution. Therefore, the confidence
- -

region corresponding to this test is (0, A*) where A* is by Theorem 4.6.1, a uniformly most
accurate level (1 - a) UCB for A and, because q is strictly increasing in A, it follows
that q(A*) is a uniformly most accurate level (1 - a) UCB for the probability of early
failure. D

Discussion

We have only considered confidence bounds. The situation with confidence intervals is
more complicated. Considerations of accuracy lead us to ask that, subject to the require
ment that the confidence level is (1 - a), the confidence interval be as short as possible.
Of course, the length T - T is random and it can be shown that in most situations there is
no confidence interval of level (1 - a) that has uniformly minimum length among all such
intervals. There are, however, some large sample results in this direction (see Wilks, 1962,
pp. 374-376). If we turn to the expected length Ee(T - T) as a measure of precision, the
situation is still unsatisfactory because, in general, there does not exist a member of the
class of level (1 - a) intervals that has minimum expected length for all O. However, as in
the estimation problem, we can restric, attention to certain reasonable subclasses of level
(1 - a) intervals for which members with uniformly smallest expected length exist. Thus,
Neyman defines unbiased confidence intervals of level (1 - a) by the property that

PelT < q(O) < T] > PelT < q(O') < T]

for every 0,0'. That is, the interval must be at least as likely to cover the true value of q(O)
as any other value. Pratt (1961) showed that in many of the classical problems of estimation
there exist level (1 - a) confidence intervals that have uniformly minimum expected length
among all level (1 - a) unbiased confidence intervals. In particular, the intervals developed
in Example 4.5.1 have this property.

Confidence intervals obtained from two-sided tests that are uniformly most powerful
within a restricted class of procedures can be shown to have optimality properties within
restricted classes. These topics are discussed in Lehmann (1997).

•
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II(8 < 81x) > 1 - a, II(8 < 81x) > 1 - a.

It follows that the level 1 - a lower and upper credible bounds for p, are

Ok = {8: 1T(·lx) > k}
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4.7 FREQUENTIST AND BAYESIAN FORMULATIONS

Section 4.7 Frequentist and Bayesian Formulations

Turning to Bayesian credible intervals and regions, it is natural to consider the collec
tion of 8 that is "most likely" under the distribution II(8Ix). Thus,

Definition 4.7.2. Let 1T('lx) denote the density of 8 given X = x, then

We have so far focused on the frequentist formulation of confidence bounds and intervals
where the data X E X c Rq are random while the parameters are fixed but unknown.
A consequence of this approach is that once a numerical interval has been computed from
experimental data, no probability statement can be attached to this interval. Instead, the
interpretation of a 100(1 - a)% confidence interval is that if we repeated an experiment
indefinitely each time computing a 100(1 - a)% confidence interval, then 100(1 - a)% of
the intervals would contain the true unknown parameter value.

In the Bayesian formulation of Sections 1.2 and 1.6.3, what are called level (1 - a)
credible bounds and intervals are subsets of the parameter space which are given probability
at least (1 - a) by the posterior distribution of the parameter given the data. Suppose that,
given 8, X has distribution Po, 8 E 8 c R, and that 8 has the prior probability distribution
II.

Definition 4.7.1. Let II( 'Ix) denote the posterior probability distribution of 8 given X = x,
then 8 and 8 are level (1 - a) lower and upper credible bounds for 8 if they respectively
satisfy

is called a level (1 - a) credible region for 8 if II(Cklx) > 1 - a .

If 1T(81x) is unimodal, then Ck will be an interval of the form [8, 8J. We next give such
an example.

Example 4.7.1. Suppose that given p" Xl, ... ,Xn are i.i.d. N(p,,0"6) with 0"6 known,
and that p, ~ N (p,o, 76), with p,o and 76 known. Then, from Example 1.1.12, the posterior
distribution of p, given Xl, ... ,Xn is N(!iB, (;1), with

nx+ 1
~ ~ -:;:g P,o ~2 1
p,B= n+l 'O"B=n+1

~ ~ ~ ~o 0 0 0
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(a) Use the result of Problem 8.3.4 to show that the test with critical region

[X > f-iox(1 - a)/2n],
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where x(1 - a) is the (1 - a)th quantile of the X§n distribution, is a size a test.

(b) Give an expression of the power in terms of the X§n distribution.

(c) Use the central limit theorem to show that iP[(f-ioz(a)/f-i) + vIri(f-i - f-io)/f-i] is an
approximation to the power of the test in part (a). Draw a graph of the approximate power
function.

Hint: Approximate the critical region by [X > f-io(1 + z(1 - a)/vIri)]

(d) The following are days until failure of air monitors at a nuclear plant. If f-io = 25,
give a normal approximation to the significance probability. Days until failure:

315040343237342316514150274627103037

Is H rejected at level a = 0.05?

3. Let XI, .. . , X n be a P(8) sample.

(a) Use the MLE X of 8 to construct a level a test for H : 8 < 80 versus K : 8 > 80 .

(b) Show that the power function of your test is increasing in 8.

(c) Give an approximate expression for the critical value if n is large and 8 not too close
to 0 or 00. (Use the central limit theorem.)

4. Let X I, ... ,Xn be a sample from a population with the Rayleigh density

f(x,8) = (x/82 )exp{-x2 /282
}, x> 0,8 > O.

(a) Construct a test of H : 8 = 1 versus K : 8 > 1 with approximate size a using a
complete sufficient statistic for this model.

Hint: Use the central limit theorem for the critical value.

(b) Check that your test statistic has greater expected value under K than under H.

S. Show that if H is simple and the test statistic T has a continuous distribution, then the
p-value a(T) has a uniform, U(O, 1), distribution.

Hint: See Problem 8.2.12.

6. Suppose that TI , ... , Tr are independent test statistics for the same simple H and that
each Tj has a continuous distribution, j = 1, ... , r. Let a(Tj) denote the p-value for Tj ,
j=1, ... ,r.

~

(a) Show that, under H, T = -2 L;=llog a(Tj ) has a X§r distribution.
Hint: See Problem 8.3.4.

7. Establish (4.1.3). Assume that Fo and F are continuous.
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(a) For each of these statistics show that the distribution under H does not depend on
Fo.

(b) When 'IjJ(u) = 1 and a = 2, V.,p,o is called the Cramer-von Mises statistic. Express
the Cramer-von Mises statistic as a sum.
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-supPF[lF(x) - Fo(x)1 > ko]'
x

Section 4.10 Problems and Complements

8. (a) Show that the power PF[Dn > ko] of the Kolmogorov test is bounded below by

U.,p,o J 'IjJ(Fo(x))IF(x) - Fo(xWdFo(x)

V,p,o J 'IjJ(F(x))IF(x) - Fo(xWdF(x).

S.,p,o sup'IjJ(Fo(x))/F(x) - Fo(xW
x - -T.,p,o sup'IjJ(F(x))IF(x) - Fo(xW

-Hint: Dn > IF(x) - Fo(x)1 foreachx.

(b) Suppose Fo is N(O, 1) and F(x) = (1 +exp( -x/r) )-1 where r = J3/1f is chosen
so that Joooo x2 dF(x) = 1. (This is the logistic distribution with mean zero and variance

-1.) Evaluate the bound FF(IF(x) - Fo(x)1 > ko) for a = 0.10, n = 80 and x = 0.5,-1, and 1.5 using the normal approximation to the binomial distribution of nF(x) and the
approximate critical value in Example 4.1. 5.

(c) Show that if F and Fo are continuous and F =F Fo, then the power of the Kol
mogorov test tends to 1 as n ---. 00.

9. Let Xj, .. . , X n be i.i.d. with distribution function F and consider H : F = Fo.
Suppose that the distribution LO of the statistic T = T(X) is continuous under H and
that H is rejected for large values of T. Let T(l), ... ,T(B) be B independent Monte
Carlo simulated values of T. (In practice these can be obtained by drawing B indepen
dent samples X(1), ... ,X(B) from Fo on the computer and computing T(j) = T(X(j»),
j = 1, ... , B. Here, to get X with distribution Fo, generate a U(O, 1) variable on the
computer and set X = FO-

1 (U) as in Problem B.2.12(b).) Next let T(1), . .. ,T(B+l) de
note T, T(1), ... ,T(B) ordered. Show that the test rejects H iff T > T(B+l-m) has level
a=m/(B+l).

Hint: If H is true T(X), T(X(1»), ... ,T(X(B») is a sample of size B + 1 from LO.
Use the fact that T(X) is equally likely to be any particular order statistic.

10. (a) Show that the statistic Tn of Example 4.1.6 is invariant under location and scale.
That is, if XI = (Xi - a)/b, b > 0, then Tn(X') = Tn(X).

(b) Use part (a) to conclude that LN(/J.,u') (Tn) = LN(O,1) (Tn).

11. In Example 4.1.5, let 'IjJ(u) be a function from (0,1) to (0,00), and let a > O. Define
the statistics



(c) Are any of the four statistics in (a) invariant under location and scale. (See Problem
4.1.10.)

12. Expected p-values. Consider a test with critical region of the fonn {T > c} for testing
H : B = Bo versus K : B > Bo. Without loss of generality, take Bo = O. Suppose that T
has a continuous distribution Fe, then the p-value is
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U = 1 - Fo(T).

(a) Show that if the test has level a, the power is

(3(B) = P(U < a) = 1 - Fe(Fol (1 - a))

where FO-
1 (u) = inf{ t : Fo(t) > u}.

(b) Define the expected p-value as EPV(B) = EeU. Let To denote a random variable
with distribution Fo, which is independent of T. Show that EPV(B) = P(To > T).

Hint: P(To > T) = JP(To > tiT = t)fe(t)dt where fe(t) is the density of Fe(t).

(c) Suppose that for each a E (0,1), the UMP test is of the fonn I{T > c}. Show that
the EPV(B) for I{T > c} is uniformly minimal in B > 0 when compared to the EPV(B)
for any other test.

Hint: P(T < to I To = to) is 1 minus the power of a test with critical value to.

(d) Consider the problem of testing H : J.l = J.lo versus K : J.l > J.lo on the basis of the
N(J.l, 0'2) sample Xl, ... ,Xn , where 0' is known. Let T = X - J.lo and B= J.l- J.lo. Show
that EPV(B) = ~(-.,jnB/V2O'), where ~ denotes the standard nonnal distribution. (For
a recent review of expected p values see Sackrowitz and Samuel-Cahn, 1999.)

Problems for Section 4.2

1. Consider Examples 3.3.2 and 4.2.1. You want to buy one of two systems. One has
signal-to-noise ratio v/O'o = 2, the other has v/O'o = 1. The first system costs $106 , the
other $105 . One second of transmission on either system costs $103 each. Whichever
system you buy during the year, you intend to test the satellite 100 times. If each time you
test, you want the number of seconds of response sufficient to ensure that both probabilities
of error are < 0.05, which system is cheaper on the basis of a year's operation?

2. Consider a population with three kinds of individuals labeled I, 2, and 3 occuring in the
Hardy-Weinberg proportions f(l, B) = B2, f(2, B) = 2B(1 - B), f(3, B) = (1 - B)2. For
a sample Xl, ... ,Xn from this population, let N lo N 2 , and N 3 denote the number of X j

equal to 1,2, and 3, respectively. Let 0 < Bo < Bl < 1.

(a) Show that L(x, Bo, Bd is an increasing function of 2Nl + N2.

(b) Show that if c > 0 and a E (0,1) satisfy PeD [2Nl + N2 > c] = a, then the test that
rejects H if, and only if, 2Nl + N2 > cis MP for testing H : B = Bo versus K : B = Bl .

3. A gambler observing a game in which a single die is tossed repeatedly gets the impres
sion that 6 comes up about 18% of the time, 5 about 14% of the time, whereas the other
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then the likelihood ratio test with critical value e is best in this sense.

Pea [L(X, 80 , 8d > e] = 1 - Pel [L(X, 80 , 81 ) > e]
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four numbers are equally likely to occur (i.e., with probability .17). Upon being asked to
play, the gambler asks that he first be allowed to test his hypothesis by tossing the die n
times.

(a) What test statistic should he use if the only alternative he considers is that the die is

fair?

(b) Show that if n = 2 the most powerful level .0196 test rejects if, and only if, two 5's
are obtained.

(c) Using the fact that if (NI , ... ,Nk) ~ M(n, 81 , ... ,8k), then a1N1 +- .·+akNk has

approximately a N(np" n(2) distribution, where p, = L7 I ai8i and a2 = L7 I 8i (ai 
p,)2, find an approximation to the critical value of the MP level a test for this problem.

4. A formulation of goodness of tests specifies that a test is best if the maximum probability
of error (of either type) is as small as possible.

(a) Show that if in testing H : 8 = 80 versus K : 8 = 81 there exists a critical value e
such that

(b) Find the test that is best in this sense for Example 4.2.1.

s. A newly discovered skull has cranial measurements (X, Y) known to be distributed
either (as in population 0) according to N(o, 0,1,1,0.6) or (as in population 1) according
to N(l, 1, 1, 1,0.6) where all parameters are known. Find a statistic T(X, Y) and a critical
value e such that if we use the classification rule, (X, Y) belongs to population 1 if T > e,
and to population 0 if T < e, then the maximum of the two probabilities ofmisclassification
porT > e], PI [T < e] is as small as possible.

Hint: Use Problem 4.2.4 and recall (Proposition B.4.2) that linear combinations of
bivariate normal random variables are normally distributed.

6. Show that if randomization is permitted, MP-sized a likelihood ratio tests with 0 < a <
1 have power nondecreasing in the sample size.

7. Prove Corollary 4.2.1.
Hint.' The MP test has power at least that of the test with test function J(x) = a.

8. In Examle 4.2.2, derive the UMP test defined by (4.2.7).

9. In Example 4.2.2, if .6.0 = (1,0, ... , O)T and ~o =F I, find the MP test for testing
H : () = (}o versus K : () = (}l.

10. For 0 < a < 1, prove Theorem 4.2.1(a) using the connection between likelihood ratio
tests and Bayes tests given in Remark 4.2.1.
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Problems for Section 4.3

1. Let X, be the number of arrivals at a service counter on the ith of a sequence of n days.
A possible model for these data is to assume that customers arrive according to a homo
geneous Poisson process and, hence, that the Xi are a sample from a Poisson distribution
with parameter B, the expected number of arrivals per day. Suppose that if B < Bo it is not
worth keeping the counter open.

(a) Exhibit the optimal (UMP) test statistic for H : B < Bo versus K : B > Bo.

(b) For what levels can you exhibit a UMP test?

(c) What distribution tables would you need to calculate the power function of the UMP
test?

2. Consider the foregoing situation of Problem 4.3.1. You want to ensure that if the arrival
rate is < 10, the probability of your deciding to stay open is < 0.01, but if the arrival rate
is > 15, the probability of your deciding to close is also < 0.01. How many days must
you observe to ensure that the UMP test of Problem 4.3.1 achieves this? (Use the normal
approximation.)

3. In Example 4.3.4, show that the power of the UMP test can be written as

(3( (J) = Gn(0"5Xn (a) / (J2)

where G2n denotes the X§n distribution function.
Hint: Show that Xf ~ £(A).

(c) Suppose 1/AO = 12. Find the sample size needed for a level 0.01 test to have power
at least 0.95 at the alternative value 1/Al = 15. Use the normal approximation to the
critical value and the probability of rejection.

S. Show that if XI, ... , X n is a sample from a truncated binomial distribution with

where Gn denotes the X§n distribution function.

4. Let XI, ... ,Xn be the times in months until failure of n similar pieces of equipment. If
the equipment is subject to wear, a model often used (see Barlow and Proschan, 1965) is
the one where Xl, ... , X n is a sample from a Weibull distribution with density f(x, A) =

Acxc~le-Axc, x > O. Here c is a known positive constant and A > 0 is the parameter of
interest.

(a) Show that L~ I Xf is an optimal test statistic for testing H : 1/A < 1/AO versus
K: I/A > I/Ao.

(b) Show that the critical value for the size a test with critical region [L~ I Xf > k]
is k = x2n(1 - a)/2Ao where x2n(1- a) is the (1 - a)th quantile of the X§n distribution
and that the power function of the UMP level a test is given by l
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G(y, t.) = 1 - [1 - Fo(y)JL\ y> 0, t. > O.

(i) Show that if we model the distribution of Y as .c(max{X I , ... , X N } ), then

(ii) Show that if we model the distribution of Y as .c(min {X I, ... , X N }), then
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then 2:.7 1 Xi is an optimal test statistic for testing H : 8 = 80 versus g : 8 > 80.

6. Let XI, ... ,Xn denote the incomes of n persons chosen at random from a certain
population. Suppose that each Xi has the Pareto density

f(x,8) = c()8x-(I+()) , x > c

e)"Fo (y) - 1
P(Y < y) = )., 1 ' Y > 0, A > O.

e -

e-).,Fo(y) - 1
P(Y < y) = _)., 1 ' Y > 0, A > O.

e -

where 8 > 1 and c > O.

(a) Express mean income ji, in terms of 8.

(b) Find the optimal test statistic for testing H : ji, = ji,o versus K : ji, > ji,o.

(c) Use the central limit theorem to find a normal approximation to the critical value of
test in part (b).

Hint: Use the results of Theorem 1.6.2 to find the mean and variance of the optimal test
statistic.

7. In the goodness-of-fit Example 4.1.5. suppose that Fo(x) has a nonzero density on some
interval (a, b), -00 < a < b < 00, and consider the alternative with distribution function
F(x,8) = Fg (x), 0 < 8 < 1. Show that the UMP test for testing H : 8 > 1 versus
K : 8 < 1 rejects H if -2~ log FO(X i ) > XI-a" where XI-a is the (1 - a)th quantile of
the X~n distribution. (See Problem 4.1.6.) It follows that Fisher's method for cgmbining
p-values (see 4.1.6) is UMP for testing that the p-values are uniformly distributed against
F(u)=u(),0<8<1.

8. Let the distribution of survival times of patients receiving a standard treatment be the
known distribution Fo•and let YI , ... , Yn be the i.i.d. survival times of a sample of patients
receiving an experimental treatment.

(a) Lehmann Alte"!{ltive. In Problem 1.1.12, we derived the model

To test whether the new treatment is beneficial we test H : t. < 1 versus K : t. > 1.
Assume that Fo has a density fo. Find the UMP test. Show how to find critical values.

•

(b) Nabeya-M;ura Alternative. For the purpose of modeling, imagine a sequence
XI, X 2 , .•• ofi.i.d. survival times with distribution Fo. Let N be a zero-truncated Poisson,
P(A), random variable, which is independent of XI, X 2 , .•.•



To see whether the new treatment is beneficial, we test H : 8 < 0 versus K : 8 > O.
Assume that Fo has a density Jo(Y). Show that the UMP test is based on the statistic

2::7 J Fo(Yi).

9. Let Xl, ... , X n be i.i.d. with distribution function F(x). We want to test whether F is
exponential, F(x) = 1 - exp(-x), x > 0, or Weibull, F(x) = 1 - exp( _xlJ), x > 0,
8 > O. Find the MP test for testing H : 8 = 1 versus K : 8 = 8 J > 1. Show that the test is
not UMP.

10. Show that under the assumptions of Theorem 4.3.2 the class of all Bayes tests is
complete.

Hint: Consider the class of all Bayes tests of H : 8 = 80 versus K : 8 = 8J where
7r{80 } = 1 - 7r{8d varies between 0 and 1.

11. Show that under the assumptions of Theorem 4.3.1 and 0-1 loss, every Bayes test for
H : 8 < 80 versus K : 8 > 8J is of the form dt for some t.

Hint: A Bayes test rejects (accepts) H if
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(iii) Consider the model

G(y,8)
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eIJFo(Y) - 1
elJ _ 1 ,8 i= 0

Fo(Y), 8 = O.
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The numerator is an increasing function of T(x), the denominator decreasing.

12. Show that under the assumptions of Theorem 4.3.2, 1 - dt is UMP for testing H : 8 >
80 versus K : 8 < 80 .

Problems for Section 4.4

1. Let X J, .•• ,Xn be a sample from a normal population with unknown mean J1 and
unknown variance 172. Using a pivot based on ~i J (Xi - X)2,

(a) Show how to construct level (1 - a) confidence intervals of fixed finite length for
log 17 2 •

(b) Suppose that ~i J (Xi - X)2 = 16.52, n = 2, a = 0.01. What would you
announce as your level (1 - a) UCB for (j2?

2. Let Xi = (8/2)t; + fi, i = 1, ... , n, where the fi are independent normal random
variables with mean 0 and known variance 172 (cf. Problem 2.2.1).

,

--------------------------------------_.-



Then take N - no further observations, with N being the smallest integer greater than no
and greater than or equal to

[SotnO-l (1 - ;a) /d]2 .

Show that, although N is random, ffi(X - ji,)/so, with X = ~f" lXi/N, has a Tno - l
distribution. It follows that

[X - sotno - l (1 - ;a) / ffi, X+ sotno - l (1 - ;a)/ ffi]
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is obtained by taking al = a2 = a/2 (assume (J"2 known).
Hint: Reduce to al +a2 = a by showing that if al +a2 < a, there is a shorter interval

with al + a2 = a. Use calculus.

7. Suppose we want to select a sample size N such that the interval (4.4.1) based on n = N
observations has length at most l for some preassigned length l = 2d. Stein's (1945) two
stage procedure is the following. Begin by taking a fixed number no > 2 of observations
andcalculateXo = (l/no)~7°lXi and

S5 = (no -1)-l~7°l(Xi - X O)2.

(a) Using a pivot based on the MLE (2~i 1tT Xi) /~i 1tt of 8, find a fixed length level
(1 - a) confidence interval for 8.

(b) If 0 < t i < 1, i = 1, ... , n, but we may otherwise choose the t i freely, what values
should we use for the t i so as to make our interval as short as possible for given a?

3. Let Xl, ... ,Xn be as in Problem 4.4.1. Suppose that an experimenter thinking he knows
the value of (J"2 uses a lower confidence bound for ji, of the form ji,(X) = X - c, where c
is chosen so that the confidence level under the assumed value of (J"2 is 1 - a. What is the
actual confidence coefficient of ji" if (J"2 can take on all positive values?

4. Suppose that in Example 4.4.3 we know that 8 < 0.1.

(a) Justify the interval [8, min(8, 0.1)] if 8 < 0.1, [0.1,0.1] if 8 > 0.1, where 8, 8 are
given by (4.4.3).

(b) Calculate the smallest n needed to bound the length of the 95% interval of part (a)
by 0.02. Compare your result to the n needed for (4.4.3).

S. Show that if q(X) is a level (1 - ad LCB and q(X) is a level (1 - a2) UCB for q(8),
then [q(X), q(X)] is a level (1 - (al + a2)) confidence interval for q(8). (Define the
interval arbitrarily if q > q.)

Hint: Use (A.2.7).

6. Show that if Xl, ... , X n are ij.d. N(ji" (J"2) and al + a2 < a, then the shortest level
(1 - a) interval of the form
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is a confidence interval with confidence coefficient (1 - 0:) for 11 of length at most 2d.
(The sticky point of this approach is that we have no control over N, and, if (J is large, we
may very likely be forced to take a prohibitively large humber of observations. The reader
interested in pursuing the study of sequential procedures such as this one is referred to the
book of Wetherill and Glazebrook, 1986, and the fundamental monograph of Wald, 1947.)

Hint: Note that X = (noIN)Xno + (1IN)'i'/( no+lX;, By Theorem B.3.3, sno is
independent of X no ' Because N depends only on sno' given N = k, X has a N(/1, (J2 I k)
distribution. Hence, .jN(X - /1) has a N (0, (J2) distribution and is independent of sno'

8. (a) Show that in Problem 4.4.6, in order to have a level (1 - 0:) confidence interval
of length at most 2d when (J2 is known, it is necessary to take at least Z2 (1 - ~ 0:) (J2 I d2

observations.
Hint: Set up an inequality for the length and solve for n.

(b) What would be the minimum sample size in part (a) if 0: = 0.001, (J2 = 5, d =

0.05?

(c) Suppose that (J2 is not known exactly, but we are sure that (J2 < (Jf. Show that
n > z2 (1 - ; 0:) (JfI d2 observations are necessary to achieve the aim of part (a).

9. Let S ~ B(n, 8) and X = Sin.

(a) Use (A.14.18) to show that sin- 1(v'X) ±z (1 - ~ 0:) / 2-Jii is an approximate level

(1 - 0:) confidence interval for sin- 1
( vB).

(b) If n = 100 and X = 0.1, use the result in part (a) to compute an approximate level
0.95 confidence interval for 8.

10. Let Xl, ... , X n , and Y1 , ... , Yn2 be two independent samples from N(/1, (J2) and
N(1], T 2 ) populations, respectively.

(a) If all parameters are unknown, find ML estimates of /1, V. (J2, T
2

. Show that these
two quadruples are each sufficient.

(b) Exhibit a level (1 - 0:) confidence interval for T
2

1(J2 using a pivot based on the
statistics of part (a). Indicate what tables you wdllid need to calculate the interval.

(c) If (J2, T 2 are known, exhibit a fixed length level (1 - 0:) confidence interval for
(1] - /1).

Such two sample problems arise in comparing the precision of two instruments and in
determining the effect of a treatment.

11. Show that the endpoints of the approximate level (1 - 0:) interval defined by (4.4.3)
are indeed approximate level (1 - ~ 0:) upper and lower bounds.

Hint: [8(X) < 8J = [-Jii(X - 8)/[8(1- 8)] ~ < z (1 - ~o:)].

12. Let S rv B(n, 8). Suppose that it is known that 8 < ~ .

(a) Show that X ± V3z (1 - ;0:)/ 4-Jii is an approximate level (1 - 0:) confidence
interval for 8.
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(b) What sample size is needed to guarantee that this interval has length at most 0.02?

13. Suppose that a new drug is tried out on a sample of 64 patients and that S = 25 cures
are observed. If S ~ 8(64, e), give a 95% confidence interval for the true proportion of
cures eusing (a) (4.4.3), and (b) (4.4.7).

P [vnIX-1L1 < t X < (n-1)8
2 < X ]

8 _,1_ 0-2 - 2

P [n(X-IL)2/a2 < t
2 < (n-l)82 < ](n-l)82/a2 - n-l' Xl _ a2 _ X2 .

14. Suppose that 25 measurements on the breaking strength of a certain alloy yield x =
11.1 and 8 = 3.4. Assuming that the sample is from a N(J.l, 0'2) population, find

(a) A level 0.9 confidence interval for J.l.

(b) A level 0.9 confidence interval for 0'.

(c) A level 0.9 confidence region for (J.l, 0').

(d) A level 0.9 confidence interval for J.l + 0'.

15. Show that the confidence coefficient of the rectangle of Example 4.4.5 is (1 - ~ a) 2.

Hint: Let t = tn-I(1 - ~ a), Xl = Xn-l (~ a), and X2 = xn-I(1 - ~ a), then

By the proof of Theorem B.3.3, (n - 1)82 /0'2 ~ X;'-1 = r n(n - 1), ~) and n(X 
J.l)2 /0'2 ~ xi = r (~, ~) are independent. Now the result follows from Theorem B.2.3.

16. In Example 4.4.2,

(a) Show that x(al) and x(l- a2) can be approximated by x(ad ~ (n -1) +V2(n
1)~ z(al) and x(1 - a2) ~ (n - 1) + V2(n - 1)~ z(1 - a2)'

Hint: By B.3.1, V(0'2) can be written as a sum of squares of n -1 independentN(O, 1)
random variables, 2::7 11 Z;. Now use the central limit theorem.

(b) Suppose that Xi does not necessarily have a normal distribution, but assume that
J.l4 = E(Xi - J.l)4 < 00 and that K = Var[(Xi - J.l)/0']2 = (J.l4/0'4) - 1 is known. Find
the limit of the distribution of n- ~ {[(n - 1)82/0'2] - n} and use this distribution to find
an approximate 1 - a confidence interval for 0'2. (In practice, K is replaced by its MOM
estimate. See Problem 5.3.30.)

Hint: (n - 1)82 = 2::7 1(Xi - J.l)2 - n(X - J.l)2. Now use the law of large numbers,
Slutsky's theorem, and the central limit theorem as given in Appendix A.

(c) Suppose Xi has a x% distribution. Compute the (K known) confidence intervals of
part (b) when k = 1, 10, 100, and 10 000. Compare them to the approximate interval given
in part (a). K - 2 is known as the kurtosis coefficient. In the case where Xi is normal, it
equals O. See A.IUI.

Hint: Use Problem B.2.4 and the fact that X% = r (k, ~).
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17. Consider Example 4.4.6 with .r fixed. That is, we want a level (1 - Q) confidence
~

interval for F(x). In this case nF(:r) = #[Xi < xl has a binomial distribution and

ylnli\x) - F(x)1

y!F(x)[I - F(x)]

is the approximate pivot given in Example 4.4.3 for deriving a confidence interval for e =
F(x).

(a) For 0 < a < b < 1, define

~

v'nIF(x) - F(x)1 F- 1(a) < x < F-l(b)
JF(x)[I- F(x)] , --

•

Typical choices of a and bare .05 and .95. Show that for F continuous

where U denotes the uniform, U (0, 1), distribution function. It follows that the binomial
confidence intervals for e in Example 4.4.3 can be turned into simultaneous confidence
intervals for F(x) by replacing z (1 - ;Q) by the value Uo: determined by Pu(An(U) <
u) = 1 - Q.

(b) ForO < a < b < 1, define
·,
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Show that for F continuous,
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v'n1F(x) - F(x)l, p-l(a) < x <P-l(b)

jP(x)[I- P(x)]
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(c) For testing Ho : F = Fo with Fo continuous, indicate how critical values Uo: and
to: for An (Fo) and En (Fo) can be obtained using the Monte Carlo method of Section 4.1.

18. Suppose Xl, ... , X n are i.i.d. as X and that X has density f(t) = F'(t). Assume that
f(t) > Oifft E (a,b) for some -00 < a <0 < b < 00.

(a) Show that J.l = - f~ F(x)dx + f:[1 - F(x)]dx.

(b) Using Example 4.1.6, find a level (1 - Q) confidence interval for J.l.

19. In Example 4.4.7, verify the lower bounary J.l given by (4.4.9) and the upper boundary
J.l = 00.
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x 3 1504034323734231 65 14 150274627 10 30 37
y 8 26 10 8 29 20 10

Problems for Section 4.5

1. Let Xl, ... ,Xn1 and Yl , ... , Yn2 be independent exponential E(8) and E (>.) samples,
respectively, and let b. = () / >..

(a) If f( a) denotes the ath quantile of the :F2nl,2n2 distribution, show that
[Y f (~ a) / X, Y f (1 - ~ a) / X] is a confidence interval for b. with confidence coefficient
1 - a.

Hint: Use the results of Problems B.3.4 and B.3.5.

(b) Show that the test with acceptance region [j(~a) < X/Y < f(1 - ~a)l has size
a for testing H : b. = 1 versus K : b. i= 1.

(c) The following are times until breakdown in days of air monitors operated under two
different maintenance policies at a nuclear power plant. Experience has shown that the
exponential assumption is warranted. Give a 90% confidence interval for the ratio b. of
mean life times.

Is H : b. = 1 rejected at level a = O.IO?

2. Show that if 8(X) is a level (1 - a) UCB for 8, then the test that accepts, if and only if
8(X) > 80 , is of level a for testing H : 8 > 80 ,

Hint: If 8> 80 , [8(X) < 8] ::::> [8(X) < 80],

3. (a) Deduce from Problem 4.5.2 that the tests of H : (]'2 = (]'6 based on the level (1 - a)
UCBs of Example 4.4.2 are level a for H : (]'2 > (]'6.

(b) Give explicitly the power function of the test of part (a) in tenns of the X;'-l distri
bution function.

(c) Suppose that n = 16, a = 0.05, (]'6 = 1. How small must an alternative (]'2 be
before the size a test given in part (a) has power 0.90?

4. (a) Find c such that de of Problem 4.1.1 has size a for H : 8 < 80 .

(b) Derive the level (1 - a) LCB corresponding to de of part (a).

(c) Similarly derive the level (1 - a) UCB for this problem and exhibit the confidence
intervals obtained by putting two such bounds of level (1 - al) and (1 - (2) together.

(d) Show that [Mn , M n / a l/n ] is the shortest such confidence interval.

S. Let Xl, X 2 be independent N(8l , (]'2),N(82 , (],2), respectively, and consider the prob
lem of testing H : 81 = 82 = 0 versus K : 8r + 8~ > 0 when (]'2 is known.

(a) Let de(X1, X 2 ) = 1 if and only if Xr + X~ > c. What value of c gives size a?

(b) Using Problems B.3.12 and B.3.13 show that the power (3(81 ,82 ) is an increasing
function of 8r + 8~.

281Section 4.10 Problems and Complements
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(c) Modify the test of part (a) to obtain a procedure that is level a for H : 81 = 8~, 82 =
8g and exhibit the corresponding family of confidence circles for (81,82)'

Hint: (c) Xl-8~, X 2-8g are independentN(81-8~, cr2), N(82-8g, cr2), respectively.

6. Let Xl, .. ' , X n be a sample from a population with density f (t - 8) where 8 and fare
unknown, but f(t) = f(-t) for all t, and f is continuous and positive. Thus, we have a
location parameter family.

(a) Show that testing H : 8 < 0 versus K : 8 > 0 is equivalent to testing

H' : P[X1 > 0] < ~ versus K' : P[X1 > 0] > ~.

(b) The sign test of H versus K is given by,

n

1 if I)[Xi > 0] > k
i=l

ootherwise.

Determine the smallest value k = k(a) such that <5k (Q) is level a for H and show that for

n large, k ~ ~n + ~z(l - a)vIn.

(c) Show that <5k (Q) (Xl - 80 , .. , ,Xn - 80 ) is a level a test of H : 8 < 80 versus
K : 8 > 80 .

(d) Deduce that X(n-k(Q)+I) (where X(j) is the jth order statistic of the sample) is a
level (1 - a) LeB for 8 whatever be f satisfying our conditions.

(e) Show directly that Pe[X(j) < 8j and Pe[X(j) < 8 < X(k)] do not depend on f or
8.

,,
,
,

.' ,

(0 Suppose that a = 2-(n-l) L:7-~

1 - a.

n
•

J
. Show that P[X(k) < 8 < X(n-k+1)] =

•
1

(g) Suppose that we drop the assumption that f (t) = f (-t) for all t and replace 8 by
the v = median of F. Show that the conclusions of (a)-(f) still hold.

7. Suppose 8 = (1], T) where 1] is a parameter of interest and T is a nuisance parameter. We
are given for each possible value 1]0 of 1] a level a test <5 (X, 1]0) of the composite hypothesis
H: 1] = 1]0. Let C(X) = {1]: <5(X, 1]) = O}.

(a) Show that C(X) is a level (1 - a) confidence region for the parameter 1] and con
versely that any level (1 - a) confidence region for 1] is equivalent to a family of level a
tests of these composite hypotheses.

(b) Find the family of tests corresponding to the level (1 - a) confidence interval for j1,

of Example 4.4.1 when cr2 is unknown.

1

i,
•



(b) Show that
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. 2 1 1
OlfIX-pYI«l+p )2z(1-2a)

1 otherwise.

b(X, Y, p)

p(}[1](X) < 1]' < 1](X)] < 1 - a for all 1]' f= 1], all ().

1-aif8>O

~(z(l - a) - 28) if 8 < 0

and, hence, that sUPe Fe[q(X) < 82
] = 1.

9. Let X ~ N(8, 1) and q(8) = 82 .

(a) Show that the lower confidence bound for q(8) obtained from the image under q of
the ray (X - z(l - a), (0) is

q(X) (X - z(l - a))2 if X > z(l - a)

oif X < z(l - a).

(a) Show that b(X, Y, Po) is a size a test of H : p = Po.

(b) Describe the confidence region obtained by inverting the family {b (X, Y, p)} as in
Problem 4.5.7. Note that the region is not necessarily an interval or ray. This problem is
a simplified version of that encountered in putting a confidence interval on the zero of a
regression line.

8. Suppose X, Yare independent and X ~ N(v, 1), Y ~ N(1], 1). Let p = v /1],8 =
(p, 1]). Define

That is, the interval is unbiased if it has larger probability of c()vering the true value 1] than
the wrong value 1]'. Show that the Student t interval (4.5.1) is unbiased.

Hint: You may use the result of Problem 4.5.7.

10. Let a(S, 80 ) denote the p-value of the test of H : 8 = 80 versus K : 8 > 80 in
Example 4.1.3 and let [8(S), 8(S)] be the exact level (1 - 2a) confidence interval for 8 of
Example 4.5.2. Show that as 8 ranges from 8(S) to 8(S), a(S, 8) ranges from a to a value
no smaller than 1 - a. Thus, if 80 < 8(S) (S is inconsistent with H : 8 = 80 ), the quantity
t. = 8(S) - 80 indicates how far we have to go from 80 before the value S is not at all
surprising under H.

11. Establish (iii) and (iv) of Example 4.5.2.

12. Let 1] denote a parameter of interest, let 7" denote a nuisance parameter, and let () =
(1],7"). Then the level (1 - a) confidence interval [1](x), 1](x)] for 1] is said to be unbiased
confidence interval if
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13. Confidence Regions for Quantiles. Let XI . .... X n be a sample from a population with
continuous distribution F. Let xp = ~ [F- 1 (p) + Fu 1(P)]' 0 < P < 1, be the pth quantile
of F. (See Section 3.5.) Suppose that p is specified. Thus, lOOX.95 could be the 95th
percentile of the salaries in a certain profession, or lOOx .05 could be the fifth percentile of
the duration time for a certain disease.

(a) Show that testing H : x p < 0 versus J{ : x p > 0 is equivalent to testing H' :
P(X > 0) < (1 ~ p) versus J{' : P(X > 0) > (1 - pl.

(b) The quantile sign test 6k of H versus J{ has critical region {x: 2::7 1 I[X; > 0] >
k}. Determine the smallest value k = k(a) such that 6k (Q) has level a for H and show that
for n large, k(a) ~ h(a), where

h(a) ~n(1-p) +zl-QVnp(l-p).

(c) Let x* be a specified number with 0 < F(x*) < 1. Show that 6k(X1 -X*, ... , X n
x*) is a level a test for testing H : x p < x* versus J{ : xp > X*.

(d) Deduce that X(n-k(Q)+I) (X(i) is the jth order statistic of the sample) is a level
(1 - a) LCB for x p whatever be f satisfying our conditions.

(e) Let S denote a B(n, p) variable and choose k and I such that 1 - a = P(k < S <
n-I+l) = 2::; ~+lpi(1_p)n-j. Show that P(X(k) < xp < X(n-l)) = I-a. That is,
(X(k)' X(n-l)) is a level (1 - a) confidence interval for x p whatever be F satisfying our
conditions. That is, it is distribution free.

(0 Show that k and I in part (e) can be approximated by h (~ a) and h (1 - ~ a) where
h(a) is given in part (b).

~

(g) Let F(x) denote the empirical distribution. Show that the interval in parts (e) and
(f) can be derived from the pivot

~ ~

Hint: Note that F(xp ) = p. Construct the interval using F- 1 and Fu I.

14. Simultaneous Confidence Regions for Quantiles. In Problem 13 preceding we gave a
disstribution-free confidence interval for the pth quantile x p for p fixed. Suppose we want
a distribution-free confidence region for xp valid for all 0 < P < 1. We can proceed as

~ ~

follows. Let F, F-(x), and F+(x) be as in Examples 4.4.6 and 4.4.7. Then

P(P-(x) < F(x) < P+(x)) for all x E (a, b) = 1 - a.

(a) Show that this statement is equivalent to

P(xp < x p < x p for all p E (0,1))

,
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n

n

L 1[F-x (-X;) < Fx(x)] = nFl-u(Fx(x)).
i=l

L 1[-X; < x + t.(x)]
i=l

n

~

nF~x(x + t.(x))

Section 4.10 Problems and Complements

- -nF1-u(F_x(x)) = nFl_U(F(x)) under H.

nF_x(x) - L 1[-Xi < x] = L 1[F_x(-X;) < F-x(x)]
;=1 ;=1

where xl' = SUp{.T: a <.1' < b, F+(x) < p} and.r]! = inf{x: a <.1' < b, F~(x) > p}.
That is, the desired confidence region is the band consisting of the collection of intervals

{[xp,xp]: 0 < p < 1}.

(b) Express xl' and xl' in terms of the critical value of the Kolmogorov statistic and the
order statistics.

D(Fx,F~x) = max{IFx(t) - F~x(t)l: t E R}.

15. Suppose X denotes the difference between responses after a subject has been given
treatments A and B, where A is a placebo. Suppose that X has the continuous distribution
F. We will write Fx for F when we need to distinguish it from the distribution F-x of
- X. The hypothesis that A and B are equally effective can be expressed as H : F-x (t) =

~

Fx(t) for all t E R. The alternative is that F_x(t) =F F(t) for some t E R. Let Fx and
~

F-x be the empirical distributions based on the i.i.d. Xl, ... ,Xn and -Xl, ... , -Xn .

(a) Consider the test statistic

(c) Show how the statistic An(F) of Problem 4.1.17(a) and (c) can be used to give
another distribution-free simultaneous confidence band for xl" Express the band in terms
of critical values for An(F) and the order statistics. Note the similarity to the interval in
Problem 4.4.13(g) preceding.

~ ~

Show that if Fx is continuous and H holds, then D(Fx, F~x) has the same distribution
-... -... -... .........

as D(FU, Fl - U), where Fu and Fl- U are the empirical distributions of U and 1 - U with
U = F(X) rv U(O, 1).

Hint: nFx(x) = L~ l1[Fx (X;) < Fx(x)] = nFu(F(x)) and

See also Example 4.1.5.

(b) Suppose we measure the difference between the effects of A and B by ~ the dif
ference between the quantiles of X and -X, that is, VF(P) = ~[xp + Xl- p], where
P = F (x). Give a distribution-free level (1 - a) simultaneous confidence band for the
curve {VF(P) : 0 < P < 1}.

Hint: Let t.(x) = F l(Fx(x)) - x, then
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i,, - -Moreover, nFx(x) L~ II[Fx(X i ) < FX(.T)] = nFu(Fx(x)), It follows that if

....... --- L""'" ........
we set F*-x D.(x) = F-x(.x + 6o(x)), then D(Fx . F*-x D.) = D(Fu , FI- U ), and by, .- -solving D(Fx, F-x,D.) < do for b., where do is the ath quantile of the distribution of- -D(Fu ,FI- U ), we get a distribution-free level (1 - a) simultaneous confidence band for
60 (x) = F .{. (FX (x)) - x = - 2vF(F( x)), Properties of this and other bands are given
by Doksum, Fenstad and Aaberge (1977),

(c) A Distribution and Parameter-Free Confidence Interval. Let BO : F -. R, where
F is the class of distribution functions with finite support, be a location parameter as defined
in Problem 3,5,17. Let

-- . f -- ( ) -+ -+ ( )vF = m vF p , vF = sup vF p
O<p<l O<p<l

,
,

j

--------------------------------------

where [vF (p), vt (p)] is the band in part (b). Show that for given F E F, the probability is
(1 - a) that the interval [vF , vt] contains the location set LF = {B(F) : B(-) is a location
parameter} of all location parameter values at F.

Hint: Define H by H-I(p) = ~[Fxl(p) - FXI(I - p)] = ~[Fxl(p) + F_.{.(p)].
Then H is symmetric about zero. Also note that

1
x = H-I(F(x)) - 2 6o(x) = H-I(F(x)) + vF(F(x)).

It follows that X is stochastically between XS-v F and XS+VF where X s = H-I(F(X))
has the symmetric distribution H. The result now follows from the properties of BO.
16. As in Example 1.1.3, let Xl, ... , X n be i.i.d. treatment A (placebo) responses and
let Y1 , . .. , Yn be i.i.d. treatment B responses. We assume that the X's and Y's are in
dependent and that they have respective continuous distributions Fx and F y . To test the
hypothesis H that the two treatments are equally effective, we test H : Fx(t) = Fy (t) for- -all t versus K : Fx(t) f= Fy(t) for some t E R. Let Fx and Fy denote the X and Y
empirical distributions and consider the test statistic

D(Fx ,A) = max fA (t) - Fx(t)l·
tER

........ ........ ........ ........

(a) Show that if H holds, then D(Fx , Fy ) has the same distribution as D(Fu , Fv ),- -where Fu and Fv are independent U(O, 1) empirical distributions.

Hint: nFx(t) = L7 1I [Fx (X;) < Fx(t)] = nFu(Fx(t)); nA(t) =

L7 1 1[Fy(Y;) < Fy(xp )] = nFv(Fx(t)) under H.

(b) Consider the parameter 6p (Fx , Fy ) = Yp - x p , where x p and YP are the pth quan
tiles of Fx and F y . Give a distribution-free level (1 - a) simultaneous confidence band

[6;,6:: °< p < 1] for the curve {6p (Fx,Fy ): °< p < I}.
Hint: Let 6o(x) = Fy 1(Fx (x)) - x, then

n n

nFy(x + 6o(x)) = L I[Y; < Fy 1(Fx(x))] = L I[Fy(Y;) < Fx(x)] = nFv(Fx(x)).
;=1 ;=1

1,,
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st st
Y1 > Y, Xl > X =? B(Fx,Fy ) < B(Fx,Fy,), B(Fx,Fy) > B(Fx"Fy ).

B = (2 L Xi)1 L t; - 20'y'nz(1 - a)1 L t;
i=l i=l i=l

is a uniformly most accurate lower confidence bound for B.

(b) Consider the unbiased estimate of B, T = (2 L~ I X;) I L~ I t;. Show that

287
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-
LetJ = minO<p<IJp(Fx,Fy) andb -_maxo<p<IJp(Fx,Fy). ShowthatifB(.,.) isa
shift parameter, then B( Fx, Fy) is in [J, b].

L -
Hint.' Set Y* = X + 6o(X), then y* = Y, moreover X + J < y* < X + J. Now

apply the axioms.

(d) Show that E(Y) - E(X), Jp (" .), 0 < p < 1, J, and b are shift parameters.

n n n
B* = (22:);X;) I 2:)t - 2z(1 - a)O'[L tt]-~

i=l i=l i=l

- - -Moreover, nFX(:E) = nFu (Fx (x)). It follows that if we set F}~ D.(x) = Fy(x + 6o(x)),,
.......... L............-... -... ..........

then D(Fx,FY,D.) = D(Fu,Fv). Let dQ denote a size a critical value for D(Fu,Fv ),
-then by solving D(Fx, FyD.) < dQ for b., we find a distribution-free level (1 - a) simul-,

taneous confidence band for 60 (x p) = Fx I (p) ~ F/ (p) = Jp(Fx, Fy ). Properties of
this and other bands are given by Doksum and Sievers (1976).

(c) A parameter B = J(.,.) : F x F ---. R, where F is the class of distributions with
finite support, is called a shift parameter if B(Fx , Fx +a) = B(FX-a, Fx ) = a and

- -(e) A Distribution and Parameter-Free Confidence Interval. Let J- = minO<p<l J- (p),- -J+ = maxO<p<l J+(p). Show that forgiven (Fx,Fy ) E Fx F, the probability is (I-a)- -that the interval [J-,b+] contains the shift parameter set {B(Fx,Fy ) : B(·,·) is a shift
parameter} of the values of all shift parameters at (Fx, Fy ).

Problems for Section 4.6

1. Suppose Xl, ... , X n is a sample from a r (p, ~) distribution, where p is known and B
is unknown. Exhibit the DMA level (1 - a) DCB for B.

2. (a) Consider the model of Problem 4.4.2. Show that

is also a level (1- a) confidence bound for B.

(c) Show that the statement that B* is more accurate than Bis equivalent to the assertion
that S = (2 L~ 1 t;Xi)1 L~ I tt has uniformly smaller variance than T.

Hint: Both Band B* are normally distributed.

3. Show that for the model of Problem 4.3.4, if ji, = 1/'\, then ji, = 2L~ 1 Xf IX2n(a) is
a uniformly most accurate level 1 - a DCB for ji,.
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4. Construct uniformly most accurate level 1 - Cl upper and lower confidence bounds for
j1, in the model of Problem 4.3.6 for c fixed, n = 1.

- -
S. Establish the following result due to Pratt (1961). Suppose [B*, B*J, [B, Bj are two level
(1 - Q) confidence intervals such that

Fe[B* < B' < B*j < Fe[B < B' < Bj for all B' =F B.

Show that if (B, B), (B*, B*) have joint densities, then Ee(B* - B*) < Ee(B ~ B).

Hint: Ee(B - B) = Joooo Joooo (1: dU) p(s, t)dsdt = Joooo Fe[B < u < B]du, where

p(s, t) is the joint density of (B, B).

6. Let U, V be random variables with d.f.'s F, G corresponding to densities f, g, respec
tively, satisfying the conditions of Problem B.2.l2 so that F- I , G-I are well defined and
strictly increasing. Show that if F(x) < G(x) for all x and E(U), E(V) are finite, then
E(U) > E(V).

Hint: By Problem B.2.l2(b), E(U) = J~ F- 1(t)dt.

7. Suppose that B* is a uniformly most accurate level (1- Q) LCB such that FeW < BJ =
1 - Q. Prove Corollary 4.6.1.

Hint: Apply Problem 4.6.6 to V = (B - B*)+ , U = (B - B)+.

8. In Example 4.6.2, establish that the UMP test has acceptance region (4.6.3).
Hint: Use Examples 4.3.3 and 4.4.4.

Problems for Section 4.7

1. (a) Show that if () has a beta, (3(r, s), distribution with r and s positive integers, then
A = s()/r(l - ()) has the F distribution :F2r,2s.

Hint: See Sections B.2 and B.3.

(b) Suppose that given () = B, X has a binomial, B(n,B), distribution and that () has
beta, (3(r, s) distribution with rand s integers. Show how the quantiles of the F distribution
can be used to find upper and lower credible bounds for>.. and for B.

2. Suppose that given A = >.., XI, ... , X n are i.i.d. Poisson, P( >") and that A is distributed
as V/ so, where So is some constant and V ~ X~. Let T = L~ I Xi'

(a) Show that (A IT = t) is distributed as W / s, where s = So + 2n and W ~ X;" with
m = k + 2t.

(b) Show how quantiles of the X2 distribution can be used to determine level (1 - Q)
upper and lower credible bounds for >...

3. Suppose that given () = B, XI, ... , X n are i.i.d. uniform, U(O, B), and that () has the
Pareto, Fa(c, s), density

1r(t) = scs /e- I
, t > c, s > 0, c> O.

•
j,,

•,
••
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(b) Show that given T, P,I and P,2 are independent in the posterior distribution p(B
x, y) and that the joint density of t. = P,I - P,2 and T is

289Section 4.10 Problems and Complements

t.-(x-y)
t = ----F====~

s/.1...+1.ym n

(a)LetM = max{X1 , ... ,Xn }. Show that (B I M = m) ~ Pa(e',s') withe' =
max{ e, m} and s' = s + n.

(b) Find level (1 - a) upper and lower credible bounds for B.

(c) Give a level (1 - a) confidence interval for B.

(d) Compare the level (1- a) upper and lower credible bounds for Bto the level (I-a)
upper and lower confidence bounds for B. In particular consider the credible bounds as
n ---+ 00.

4. Suppose that given B = (P,1' J.L2, r) = (P,I , P,2, r), XI,' .. ,Xm and Y1, .. . , Yn are two
independent N (p, I, r) and N(p,2' r) samples, respectively. Suppose B has the improper
prior 7r(B) = liT, T > O.

(a) Let So = ~(Xi - X)2 + ~(Yj - y)2. Show formal1y that the posterior 7r(B Ix, y) is
proportional to

7r(T ISO)7r(p,1 IT,X)7r(p,2 IT, y)

where 7r(T I so) is the density of solV with V ~ Xm+n-2, 7r(p,1 I T,X) is aN(x, Tim)
density and 7r(p,2 IT, y) is aN(y,Tln) density.

Hint: p(B I x, y) is proportional to

where 7r(t. I x - y, <p) is theN(x - y, T(m- I + n- I )) distribution.

(c) Set s2 = so/(m + n - 2). Show that the posterior distribution 7r(t Ix, y) of

is (Student) t with m + n - 2 degrees of freedom.
Hint: 7r(t. Ix, y) is obtained by integrating out Tin 7r(t., T Ix, y).

(d) Use part (c) to give level (I-a) credible bounds and a level (I-a) credible interval
for t..

Problems for Section 4.8

1. Let XI, . .. ,Xn +1 be i.i.d. as X ~ N(p" 0'5), where 0'5 is known. Here XI, ... , X n is
observable and X n +1 is to be predicted.

(a) Give a level (1 - a) prediction interval for X n +!.
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(b) Compare the interval in part (a) to the Bayesian prediction interval (4.8.3) by doing
a frequentist computation of the probability of coverage. That is, suppose X I, ... , X n are
i.i.d. N(p" 0"6)' Take 0"6 = T

2 = 1, n = 100, '1)0 = 10, and a = .05. Then the level of the
frequentist interval is 95%. Find the probability that the Bayesian interval covers the true
mean p, for p, = 5,8,9,9.5,10,10.5,11,12,15. Present the results in a table and a graph.

2. Let XI, ... ,Xn + 1 be i.i.d. as X ~ F, where XI, ... ,Xn are observable and X n + 1 is to
be predicted. A level (1 - a) lower (upper) prediction bound on Y = X n +1 is defined to
be a function Y(Y) of XI,' .. ,Xn such that P(Y < Y) > 1 - a (P(Y < Y) > 1 - a).

(a) If F is N(p" 0"6) with 0"6 known, give level (1 - a) lower and upper prediction
bounds for X n + l .

(b) If F is N(p" 0"2) with 0"2 unknown, give level (1 - a) lower and upper prediction
bounds for X n + l .

(c) If F is continuous with a positive density f on (a, b), -00 < a < b < 00, give level
(1 - a) distribution free lower and upper prediction bounds for X n+ I.

3. Suppose XI, ... , X n +1 are i.i.d. as X where X has the exponential distribution

F(x I B) = 1 - e- x
/
o, x > 0, B > O.

1

,

1
•
•

Suppose XI,." ,Xn are observable and we want to predict X n + l . Give a level (1 - a)
prediction interval for X n +l .

Hint: X;jB has a X~ distribution and nXn +1/2::7 I Xi has an F 2 ,2n distribution.

4. Suppose that given (J = B, X is a binomial, B(n, B), random variable, and that (J

has a beta, (J(r, s), distribution. Suppose that Y, which is not observable, has a B(m, B)
distribution given (J = B. Show that the conditional (predictive) distribution of Y given
X = xis

,.
•

•,.

•,
j
,, q(y Ix) =

m
y

B(r + x + y, s + n - x + m - y)/B(r + x, s + n - x)
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where B(·,·) denotes the beta function. (This q(y I x) is sometimes called the P61ya
distribution.)

Hint: First show that

q(y Ix) = J p(y IB)-rr(B I x)dB.

5. In Example 4.8.2, let U(I) < ... < u(n+l) denote U1 , . •• ,Un + 1 ordered. Estab
lish (4.8.2) by using the observation that Un +1 is equally likely to be any of the values
U(l), ... , u(n+1).

Problems for Section 4.9

1. Let X have a binomial, B(n, B), distribution. Show that the likelihood ratio statistic for
testing H : B = ~ versus K : B i= ~ is equivalent to 12X - nl.

1,
,

•

.
•
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.._------------------------------------ d



approximately satisfy (i) and also (ii) in the sense that the ratio

(b) Use the normal approximation to check that

(c) Deduce that the critical values of the commonly used equal-tailed test, Xn-I (~o:),

x n -l(1 - ~o:) also approximately satisfy (i) and (ii) of part (a).

291

-> 1 as n -> 00.
Cln - C2n

n log clnlc2n

Section 4.10 Problems and Complements

Cln n - J2nz(1 - ~o:)

C2n - n+J2nz(I-~o:)

(i) F(c2) - F(cd = 1 - 0:, where F is the d.f. of the X~-I distribution.

(ii) CI - C2 = n log cdC2.

~2 1 n
na ~ - 2
-----;>2 = 2" L.."cXi - X) > c.
a ao 0 i=1

>
Hint: log >-(x) = 0, if 3'2 lug < 1 and = (n/2) [O'2/ag - 1 -log(3'2 lag)] otherwise.

(b) To obtain size 0: for H we should take C = Xn-I (1 - 0:).
Hint: Recall Theorem B.3.3.

n
1 ~ - 2

CI < 2" L...,(Xi - X) < C2 where CI and C2 satisfy,
ao .

1=1

Hint: Show that for x < ~n, >-(x) is an increasing function of -(2x - n) and >-(x) =

>-(n-x).

In Problems 2-4, let XI, . .. ,Xn be a N(p" ( 2
) sample with both p, and a 2 unknown.

2. In testing H : p, < P,o versus K : p, > p,o show that the one-sided, one-sample t test is
the likelihood ratio test (for 0: < ~).

Hint: Note that jio = X if X < P,o and = P,o otherwise. Thus, log >-(x) = 0, if Tn < °
and = (n/2) 10g(1 + T;;./(n - 1)) for Tn> 0, where Tn is the t statistic.

3. One-Sided Tests/or Scale. We want to test H : a2 < ag versus K : a2 > ago Show that

(a) Likelihood ratio tests are of the form: Reject if, and only if,

. ,
(c) These tests coincide with the testS obtained by inverting the family of level (1 - 0:)

lower confidence bounds for a 2 .

•

4. Two-Sided Tests/or Scale. We want to test H : a = ao versus K : a i= ao.

(a) Show that the size 0: likelihood ratio test accepts if, and only if,
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where X o = 0 and €l, ... , €n are independent N(O, a2 ) rarldom variables.
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Xi = eXi- 1 + €i, i = 1, ... ,n,

5. The following blood pressures were obtained in a sample of size n = 5 from a certain
population: 124, 110, 114, 100, 190. Assume the one-sample normal modeL

(a) Using the size ex = 0.05 one-sample t test, can we conclude that the mean blood
pressure in the population is significantly larger than 100?

(b) Compute a level 0.95 confidence interval for a 2 corresponding to inversion of the
equal-tailed tests of Problem 4.9.4.

(c) Compute a level 0.90 confidence interval for the mean blooq pressure ji,.

6. Let Xl, ... ,Xn1 and YI , ... , Yn2 be two independent N(ji,l, a2) andN(ji,2,a2) sam
ples, respectively.

(a) Show that the MLE of B = (ji,l, ji,2, a 2) is (X, Y, a:2), where a:~ is as defined in
Section 4.9.3.

(b) Consider the problem of testing H : ji,l < ji,2 versus K : ji,l > ji,2. Assume ex < ~.

Show that the likelihood ratio statistic is equivalent to the two-sample t statistic T.

(c) Using the normal approximation <I>(z(ex)+ Vnl n2/n(ji,I-ji,2)/a) to the power, find
the sample size n needed for the level 0.01 test to have power 0.95 when nl = n2 = ~ n
and (ji,l - ji,2)/a = ~.

7. The following data are from an experiment to study the relationship between forage pro
duction in the spring and mulch left on the ground the previous fall. The control measure
ments (x's) correspond to 0 pounds of mulch per acre, whereas the treatment measurements
(y's) correspond to 500 pounds of mulch per acre. Forage production is also measured in
pounds per acre.

Assume the two-sample normal model with equal variances.

(a) Find a level 0.95 confidence interval for ji,2 - ji,l.

(b) Can we conclude that leaving the indicated amount of mulch on the ground signifi
cantly improves forage production? Use ex = 0.05.

(c) Find a level 0.90 confidence interval for a by using the pivot 8
2 /a 2

•

8. Suppose X has density p(x, B), BEe, and that T is sufficient for B. Show that
'x(X, eo, ed depends on X only through T.

9. The normally distributed random variables X I, ... , X n are said to be serially correlated
or to follow an autoregressive model if we can write

,

"

,••.,
"

,
I
I,

I



(b) Show that the likelihood ratio statistic of H : B = 0 (independence) versus K : B i=
o(serial correlation) is equivalent to -(L:~ 2 XiXi-d / L:~ 1 Xr

10. (An example due to C. Stein). Consider the following model. Fix 0 < a < ~ and
a/[2(1 - a)] < e < a. Let 8 consist of the point -1 and the interval [0,1]. Define the
frequency functions p(x, B) by the following table.

(a) What is the size a likelihood ratio test for testing H : B = -1 versus K : B i= -I?

(b) Show that the test that rejects if, and only if, X = 0, has level a and is strictly more
powerful whatever be B.

11. The power functions of one- and two-sided t tests. Suppose that T has a noncentral t,
~ a, distribution. Show that,,

(a) Pa[T > t] is an increasing function of 6.

(b) Pa[lTI > t] is an increasing function of 161.
Hint: Let Z and V be independent and have N(6, 1), X~ distributions respectively.

Then, for each v > 0, Pa[Z > tJV/k] is increasing in 6, Pa[lZI > tJV/k] is increasing
in 161. Condition on V and apply the double expectation theorem.

12. Show that the noncentral t distribution, ~,a, has density

f (t) = 1 roc> x~(k-1)e-~{x+(tvrx7k-a)2}dx.
k,a J7rk(~k)2~(k+1) Jo

Hint: Let Z and V be as in the preceding hint. From the joint distribution of Z
and V, get the joint distribution of Y1 = Z/ ..jV/k and 12 = V. Then use py, (Y1) =

f PY"Y2(Y1,Y2)dY2.

13. The F Test for Equality of Scale. Let Xl, ... , X n " Y1 , . .• , Yn2 be two independent
samples from N(J.L1' aD, N(J.L2' a~), respectively, with all parameters assumed unknown.

293

n

p(x, B) = (271"a 2)- ~n exp{-(1/2a2
) 2:)Xi - BXi_1)2}

i=l

X
-2 0 1 2

B
-1

-1 !a 1 a 1 Ia--a --a
2 2 2 2

i= -1 Be U=~)(~-a) e-c)a U=~)(~-a) (1 -B)eI-a

(a) Show that the density of X = (Xl,.'" X n ) is

Section 4.10 Problems and Complements

for-oo < Xi < oo,i = 1, ... ,n,xo =0.
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!
I

•

!I
,.
I
•

(a) Show that the LR test of H : ai = a~ versus K : a~ > ai is of the form: Reject if,
and only if, F = [(n1 - 1)/(n2 - 1)]~(Y; ~ y)2/~(Xi - X)2 > C.

(b) Show that (aUa~)F has an Fn2 - 1,n,-1 distribution and that critical values can be
obtained from the F table.

(c) Justify the two-sided F test: Reject H if, and only if, F > f(1 - 0:/2) or F <
f(0:/2), where f(t) is the tth quantile of the F n2 - 1.n,-1 distribution, as an approximation
to the LR test of H : a1 = a2 versus K : a1 of a2' Argue as in Proplem 4.9.4.

(d) Relate the two-sided test of part (c) to the confidence intervals for aVai obtained
in Problem 4.4.10.

14. The following data are the blood cholesterol levels (x's) and weight/height ratios (y's)
of 10 men involved in a heart study.

x 254 240 279 284 315 250 298 384 310 337
y 2.71 2.96 2.62 2.19 2.68 2.64 2.37 2.61 2.12 1.94

(b) Show that if we have a sample from a bivariate N(J.L1, J.L2, a;, a~, p) distribution,
then P[p > c] is an increasing function of p for fixed c.

Hint: Use the transformations and Problem BA.7 to conclude that phas the same dis
tribution as 8 12/8182, where

Using the likelihood ratio test for the bivariate normal model, can you conclude at the
10% level of significance that blood cholest«rollevel is correlated with weight/height ratio?

15. Let (Xl, YIl, ... , (Xn , Yn ) be a sampl~ from a bivariate N(O, 0, ai ,a~, p) distribution.
Consider the problem of testing H : p = 0 versus K : p of O.

(a) Show that the likelihood ratio ~tatistic is equivalent to Irl where

nn

" X 2 "Y2LJ ,L...JJ'
i=l j=l

n

, j,
I
t

t
}
·,,.

iI,
~J
~' ':
•, .,i
!, -

! I
I ,
• •
, .!:

8i = LuI, 8~ = LV;2, 812 = LUil!;
;=2 i=2 ;=2

and (U2,V2), ... ,(Un ,Vn) is a sample from a N(0,0,1,1,p) distribution. Let R =
8 12 /8182, T = In - 2R/J1 - R2, and using the arguments of Problems BA.7 and
B.4.8, show that given U2 = U2, ... , Un = Un, T has a noncentral Tn- 2 distribution
with noncentrality parameter p. Because this conditional distribution does not depend on
(U2,"" un), the continuous version of (B.l.24) implies that this is also the unconditional
distribution. Finally, note that p has the same distribution as R, that T is an increasing
function of R, and use Probll;{ll4.8.1l(a).

16. Let >.(X) denote the likelihood ratio statistic for testing H : p = 0 versus K ; p of 0 in

the bivariate normal model. Show, using (4.9.4) and (4.9.5) that 2 log >.(X) !:.. V, where
V has a xi distribution,
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Notes for Section 4.1

(1) The point of view usually taken in science is that of Karl Popper [1968]. Acceptance
of a hypothesis is only provisional as an adequate current approximation to what we are
interested in understanding. Rejection is more definitive.
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17. Consider the bioequivalence example in Problem 3.2.9.

(a) Find the level a LR test for testing H : B E [-f, fJ versus K : B i [-f, fl.

(b) Compare your solution to the Bayesian solution based on a continuous loss function
given in Problem 3.2.9. Consider the cases '1)0 = 0, TJ -; 00, and Tlo = 0, n -; 00.

4.11 NOTES

(1) Such a class is sometimes called essentially complete. The term complete is then re
served for the class where strict inequality in (4.3.3) holds for some B if c.p i V.

(2) The theory of complete and essentially complete families is developed in Wald (1950),
see also Ferguson (1967). Essentially, if the parameter space is compact and loss functions
are bounded, the class of Bayes procedures is complete. More generally the closure of the
class of Bayes procedures (in a suitable metric) is complete.

-
(1) If the continuity correction discussed in Section A.15 is used here, Sin B(X) would be
replaced by S + ~, and S in B(X) is replaced by S - ~.

(2) In using B(S) as a confidence bound we are using the region [B(S), 1]. Because the
region contains C(X), it also has confidence level (1 - a).
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(5.1.1)

(5.1.2)

(5.1.3)F k (x)(l - F(x)/ f(x).
2k
k

9n(x) = n

where, from Problem (B.2.13), if n = 2k + 1,

This is a highly informative formula, telling us exactly how the MSE behaves as a
function of n, and calculable for any F and all n by a single one-dimensional integration.
However, consider med(XI , ... , X n ) as an estimate of the population median II(F). If n
is odd, II(F) = F- I (~), and F has density f we can write

Despite the many simple examples we have dealt with, closed form computation of risks
in terms of known functions or simple integrals is the exception rather than the rule. Even
if the risk is computable for a specific P by numerical integration in one dimension, the
qualitative behavior of the risk as a function of parameter and sample size is hard to ascer
tain. Worse, computation even at a single point may involve high-dimensional integrals. In
particular, consider a sample Xl, ... , X n from a distribution F, our setting for this section
and most of this chapter. If we want to estimate p,(F) =EFXI and use X we can write,

Chapter 5
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ASYMPTOTIC APPROXIMATIONS

5.1 INTRODUCTION: THE MEANING AND USES OF
ASYMPTOTICS

Evaluation here requires only evaluation of F and a one-dimensional integration, but
a different one for each n (Problem 5.1.1). Worse, the qualitative behavior of the risk
as a function of n and simple parameters of F is not discernible easily from (5.1.2) and
(5.1.3). To go one step further, consider evaluation of the power function of the one-sided
t test of Chapter 4. If Xl,"" X n are i.i.d. N(p" ( 2

) we have seen in Section 4.9.2 that
y'TiX / S has a noncentral t distribution with parameter p,/ a and n - 1 degrees of freedom.
This distribution may be evaluated by a two-dimensional integral using classical functions



(Problem 5.1.2) and its qualitative properties are reasonably transparent. But suppose F
is not Gaussian. It seems impossible to determine explicitly what happens to the power
function because the distribution of .jTiX / S requires the joint distribution of (X, S) and
in general this is only representable as an n-dimensional integral;

I,

I
!I,
"i'
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,
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where

•

There are two complementary approaches to these difficulties. The first, which occupies us
for most of this chapter, is to approximate the risk function under study

•
l
j,
1

,
1

j
J

•,
!

(5.1.4)

by a qualitatively simpler to understand and easier to compute function, Rn (F). The other,
which we explore further in later chapters, is to use the Monte Carlo method. In its simplest
form, Monte Carlo is described as follows. Draw B independent "samples" of size n,
{X1j, ... , X nj }, 1 < j < B from F using a random number generator and an explicit
form for F. Approximately evaluate Rn(F) by

~ 1 B

RB = B ~1(F,6(X1j, ... ,Xnj)).
j=1

Asymptotic statements are always statements about the sequence. The classical examples
- p

are, X n ----> EF(Xil or

[F( .jTi(Xn - EF(X1))) ----> N(o, VarF(X1)).

By the law of large numbers as B ----> 00, RB ~ Rn(F). Thus, save for the possibility of a
very unlikely event, just as in numerical integration, we can approximate Rn (F) arbitrarily
closely. We now tum to a detailed discussion of asymptotic approximations but will return
to describe Monte Carlo and show how it complements asymptotics briefly in Example
5.3.3.

Asymptotics in statistics is usually thought of as the study of the limiting behavior
of statistics or, more specifically, of distributions of statistics, based on observing n i.i.d.
observations X 1, ... ,Xn as n ----> 00. We shall see later that the scope of asymptotics is
much greater, but for the time being let's stick to this case as we have until now.

Asymptotics, in this context, always refers to a sequence of statistics

{Tn(X1, ... , X n)}n>1,

for instance the sequence of means {Xn}n>1, where X n - ~ 2::7 1 Xi, or the sequence
of medians, or it refers to the sequence of their distributions
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(5.1.5)

(5.1.6)

(5.1.7)

(5.1.8)

(5.1.10)

(5.1.11)

•

-> <I>(z)

- <I>(x)

<z

sup PF
x

Section 5.1 Introduction: The Meaning and Uses of Asymptotics

where <I> is the standard normal d.f.
As an approximation, this reads

for all E > O. We interpret this as saying that, for n sufficiently large, X n is approximately
equal to its expectation. The trouble is that for any specified degree of approximation, say,
E = .01, (5.1.6) does not tell us how large n has to be for the chance of the approximation
not holding to this degree (the left-hand side of (5.1.6)) to fall, say, below .01. Is n > 100
•

enough or does it have to be n > 100, OOO? Similarly, the central limit theorem tells us that

if EFIXll < 00, J.L is as above and a 2 VarF(Xl ), then

P
F

y'n(Xn - J.L)
a

That is, (see A.14.1)

As a bound this is typically far too conservative. For instance, if IX11 < 1, the much
more delicate Hoeffding bound (B.9.6) gives

In theory these limits say nothing about any particular Tn (X1, ... , X n) but in practice we
act as if they do because the Tn (Xl, ... , X n) we consider are closely related as functions of
n so that we expect the limit to approximate Tn(Xl, ... ,Xn) or
LF (Tn (Xl, ... , X n)) (in an appropriate sense). For instance, the weak law of large num
bers tells us that, if EF[Xl [ < 00, then

Because IXII < 1 implies that a 2 < 1 with a 2 = 1 possible (Problem 5.1.3), the right
hand side of (5.1.9) when a 2 is unknown be~omes 11m 2 . For E = .1, n = 400, (5.1.9) is
.25 whereas (5.1.10) is .14.

Further qualitative features of these bounds and relations to approximation (5.1.8) are
given in Problem 5.1.4. Similarly, the celebrated Berry-Esseen bound (A. 15. 11) states that
if E F IXl/ 3 < 00,

Again we are faced with the questions of how good the approximation is for given n, x, and
PF . What we in principle prefer are bounds, which are available in the classical situations
of (5.1.6) and (5.1.7). Thus, by Chebychev's inequality, if EFXl < 00,

_ a 2

PF[lXn -J.LI > E] < 2' (5.1.9)
nE
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where C is a universal constant known to be < 33/4. Although giving us some idea of how
much (5.1.8) differs from the truth, (5.1.11) is again much too conservative generally.(1)
The approximation (5.1.8) is typically much better than (5.1.11) suggests.

Bounds for the goodness of approximations have been available for X n and its distri
bution to a much greater extent than for nonlinear statistics such as the median. Yet, as we
have seen, even here they are not a very reliable guide. Practically one proceeds as follows:

(a) Asymptotic approximations are derived.

(b) Their validity for the given n and Tn for some plausible values of F is tested by
numerical integration if possible or Monte Carlo computation.

If the agreement is satisfactory we use the approximation even though the agreement
for the true but unknown F generating the data may not be as good.

Asymptotics has another important function beyond suggesting numerical approxima
tions for specific nand F. If they are simple, asymptotic formulae suggest qualitative
properties that may hold even if the approximation itself is not adequate. For instance,
(5.1.7) says that the behavior of the distribution of X n is for large n governed (approxi
mately) only by J.L and a 2 in a precise way, although the actual distribution depends on PF

in a complicated way. It suggests that qualitatively the risk of X n as an estimate of J.L, for
any loss function of the form I(F, d) = A(IJ.L - dl) where A(O) = 0, >.'(0) > 0, behaves
like A' (0)(a / y'n)(V27r) (Problem 5.1.5) and quite generally that risk increases with a and
decreases with n, which is reasonable.

~

As we shall see, quite generally, good estimates Bn of parameters B(F) will behave like

X ndoes in relation to J.L. The estimates On will be consistent, On ~ B(F), for all F in the
model, and asymptotically normal,

j
,,
,

1
1

(5.1.12)-> N(O, 1)

~

y'n[Bn - B(F)1
a(B,F)

1.
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where a (B, F) typically is the standard deviation (SD) of y'nBn or an approximation to
this SD. Consistency will be pursued in Section 5.2 and asymptotic normality via the delta
method in Section 5.3. The qualitative implications of results such as are very impor
tant when we consider comparisons between competing procedures. Note that this feature
of simple asymptotic approximations using the normal distribution is not replaceable by
Monte Carlo.

We now tum to specifics. As we mentioned, Section 5.2 deals with consistency of
various estimates including maximum likelihood. The arguments apply to vector-valued
estimates of Euclidean parameters. In particular, consistency is proved for the estimates of
canonical parameters in exponential families. Section 5.3 begins with asymptotic computa
tion of moments and asymptotic normality of functions of a scalar mean and include as an
application asymptotic normality of the maximum likelihood estimate for one-parameter
exponential families. The methods are then extended to vector functions of vector means
and applied to establish asymptotic normality of the MLE Tj of the canonical parameter '"
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(5.2.1)

(5.2.2)

Section 5.2 Consistency

where I. Idenotes Euclidean distance. A stronger requirement is

- p
X ----> p,(P) =E(XI)

5.2.1 Plug-In Estimates and MLEs in Exponential Family
Models

in exponential families among other results. Section 5.4 deals with optimality results for
likelihood-based procedures in one-dimensional parameter models. Finally in Section 5.5
we examine the asymptotic behavior of Bayes procedures. The notation we shall use in the
rest of this chapter conforms closely to that introduced in Sections A14, A15, and B.7.
We will recall relevant definitions from that appendix as we need them, but we shall use
results we need from A14, A15, and B.7 without further discussion.

Summary. Asymptotic statements refer to the behavior of sequences of procedures as the
sequence index tends to 00. In practice, asymptotics are methods of approximating risks,
distributions, and other statistical quantities that are not realistically computable in closed
form, by quantities that can be so computed. Most aSymptotic theory we consider leads to
approximations that in the i.i.d. case become increasingly valid as the sample size increases.
We also introduce Monte Carlo methods and discuss the interaction of asymptotics, Monte
Carlo, and probability bounds.

Suppose that we have a sample Xl, ... ,Xn from Po where 0 E e and want to estimate
a real or vector q(0). The least we can ask of our estimate qn (Xl, . .. ,Xn) is that as

Po
n ----> 00, qn ----> q(O) for all O. That is, in accordance with (AI4.l) and (B.7.!), for all
oE e, € > 0,

Bounds b(n, €) for suPO Po [/qn - q(O)1 > €] that yield (5.2.2) are preferable and we shall
indicate some of qualitative interest when we can. But, with all the caveats of Section 5.1,
(5.2.1), which is called consistency of qn and can be thought of as D'th order asymptotics,
remains central to all asymptotic theory. The stronger statement (5.2.2) is called uniform
consistency. If e is replaced by a smaller set K, we talk of uniform consistency over K.

Example 5.2.1. Means. The simplest example of consistency is that of the mean. If
X!, ... ,Xn are i.i.d. P where P is unknown butEplXII < 00 then, by the WLLN,

~ - ~

and p,(P) = X, where P is the empirical distribution, is a consistent estintate of p,(P).
For P this large it is not uniformly consistent. (See Problem 5.2.2.) However, if, for



instance, P {P: EpXf < M < oo}, then X is unifonnly consistent over P because
by Chebyshev's inequality, for all PEP,,

,
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M

o

;

•
•

~

I

~
1
••

•,
•
j

I

,
1

(5.2.3)

(5.2.5)

(5.2.4)

w(q,6) = sup{lq(p) - q(p')1 ; Ip - p'l < 6},

Example 5.2.2. Binomial Variance. Let Xl, ... ,Xn be the indicators of binomial trials
with P[XI = 1] = p. Then N = 2:: Xi has a B(n,p) distribution, 0 < p < 1, and
~ -
P = X = N / n is a unifonnly consistent estimate of p. But further, consider the plug-in
estimate p(I-p)/n of the variance of p, which is ~ q(p), where q(p) = p(I-p). Evidently,
by A. 14.6, q(P) is consistent. Other moments of Xl can be consistently estimated in the
same way. 0

To some extent the plug-in method was justified by consistency considerations and it is
not suprising that consistency holds quite generally for frequency plug-in estimates.

Theorem 5.2.1. Suppose tlult P = 5 = {(PI,." ,Pk) : 0 < Pj < 1,1 < j <
k,2::~=IPj = I}, the k-dimensional simplex, where Pj = P[XI = Xj], 1 < j < k,

and {Xl, ... ,xd is the range of Xl. Let N j 2::7 II(Xi = Xj) and Pj _ Nj/n,
Pn = (PI, .. · ,Pic) E 5 be the empirical distribution. Suppose tlult q : 5 ----> RP is
continuous. Then qn q(Pn) is a uniformly consistent estimate ofq(p).

Proof By the weak law of large numbers for all p, 6 > 0

Because q is continuous and 5 is compact, it is unifonnly continuous on 5. Thus, for every
€ > O,thereexists6(€) > Osuchthatp,p' E 5, [pi-pi < 6(€), implies Iq(p')-q(p)1 < €.
Then

Pp[lqn - ql > €] < Pp[IPn - pi > 6(€)]

But, sup{Pp[lPn -pi > 6] ; p E 5} < k/4n62 (Problem 5.2.1) and the result follows. 0

In fact, in this case, we can go further. Suppose the modulus ofcontinuity of q, w( q, 6)
is defined by .

Pp [IPn - pi > 6] ----> O.

A simple and important result for the case in which Xl, ... , X n are i.i.d. with Xi E X
is the following:

Evidently, w(q, .) is increasing in 6 and has the range [a, b) say. If q is continuous
w(q,6) ! 0 ad! O. Let w- l : [a, b] < R+ be defined as the inver~e of w,

It easily follows (Problem 5.2.3) that

• ••
i ~

r "



(ii) ij is consistent.

(5.2.6)

Suppose
d, and let

303

1 n

-Lg(Xi )
n.

1.=1

1 n

n L g(X;) ~ Epg(XIl
i=l

q h(g) - h

Section 5.2 Consistency

Proposition 5.2.1. Let g (91, ... ,9d) map X onto Y C Rd.
Eo 19j(XIl I < 00, 1 <j < d,foralle; letmj(e) E09j(XIl,1 < j <
q(e) = h(m(e)), where h : Y -+ RP. Then, if h is continuous,

Proof We need only apply the general weak law of large numbers (for vectors) to conclude
that

If h = m-1 , then

Here is a general consequence of Proposition 5.2.1 and Theorem 2.3.1.

Theorem 5.2.2. Suppose P is a canonical exponentialfamity of rank d generated by T. Let
.,." £ and A(·) correspond to P as in Section 1.6. Suppose £ is open. Then, ifXl, ... ,Xn

are a sample from P.,., E P,

m P.,., [The MLE ij exists] -+ 1.

is a consistent estimate of q(e). More generally if v(P) = h(E pg(Xl)) and P = {P :
~ ~

Ep Ig(XIII < oo}, then v(P) = h(g), where P is the empirical distribution, is consistent
for v(P).

which is well defined and continuous at all points of the range of m. We may, thus, con
clude by Proposition 5.2.1 that the empirical means, variances, and correlation coefficient
are all consistent. Questions of uniform consistency and consistency when P = { Distribu
tions such that EUr < 00, EV1

2 < 00, Var(U1) > 0, Var(VIl > 0, ICorr(U1 , VIlI < 1 }
are discussed in Problem 5.2.4. 0

if Eplg(XIlI < 00. For consistency of h(g) apply Proposition B.7.1: Un ~ U implies

that h(Un ) £. h(U) for all continuous h. 0

Example 5.2.3. Variances and Correlations. Let Xi = (Ui , Vi), 1 < i < n be i.i.d.
NZ(J.L1, J.Lz, ar, a~, p), aT > 0, Ipl < 1. Let g(u, v) = (u, v, u2, v2, uv) so that
L~ 1 g(Ui , Vi) is the statistic generating this 5-parameter exponential family. If we let
(J _ (J.L1,J.L2,ai,a~,p), then



Proof Recall from Corollary 2.3.1 to Theorem 2.3.1 that ij(X1 , ... ,Xn ) exists iff
~ 2::7 1 T(X;) = Tn belongs to the interior CTof the convex support of the distribution

of Tn. Note that, if 7]0 is true, E7]o (T(XI)) must by Theorem 2.3.1 belong to the interior
• •

of the convex support because the equation A(7]) = to, where to = A(7]o) = E7]o T(X1),

is solved by 7]0' By definition of the interior of the convex support there exists a ball
8 6 = {t : It - E7]o T(Xill < 6} C CT' By the law of large numbers,

1 n p,
n LT(X;) ~o E7]o T(XI).

;=1

!
l
I
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,
i

I
Hence,

1 n

P7]o[n LT(X;) E CT] -. 1.
;=1

(5.2.7)

---------------------------------- -

5.2.2 Consistency of Minimum Contrast Estimates

1 n

Pn(X, fJ) = - L p(X;, fJ)
n

;=1

,
j,

I,
i

l

1

J

j
1

,,
i,

,
i
•,
•
!

,
i,,
•
•,
i
j

j
,
,i

1

1

;

1
j
i

(5.2.8)

(5.2.9)

1 n

A(7]) = - LT(X;),
n

;=1

1 n PfJ
sup{l- L[p(Xi,fJ) - D(fJo,fJ)ll: fJ E e} -.00

n,
1=1

inf{D(fJ, fJo) : IfJ - fJol > €} > D(fJo, fJo) for every € > O.

But ij, which solves

exists iff the event in (5.2.7) occurs and (i) follows. We showed in Theorem 2.3.1 that on
•

CT the map 7] -. A(7]) is 1-1 and continuous on E. By a classical result, see, for example,
Rudin (1987), the inverse A-I: A(E) -. E is continuous on 86 and the result follows from
Proposition 5.2.1. 0

where, as usual, D(fJo,fJ) _ EfJop(X1,fJ) is uniquely minimized at fJo for all fJo E e.
Theorem 5.2.3. Suppose

The argument of the the previous subsection in which a minimum contrast estimate, the
MLE, is a continuous function of a mean of i.i.d. vectors evidently used exponential family
properties. A more general argument is given in the following simple theorem whose con-

~

ditions are hard to check. Let Xl, ... ,Xn be i.i.d. Po, (J E e c Rd. Let fJ be a minimum
contrast estimate that minimizes

~

Then fJ is consistent.

and

,,
: ;,,
,

,I
"
I,



Proof Note that,

~ 1 n

P(Jo[/(J - (Jol > E] < POo[inf{n ~)p(Xi,(J) ~ p(Xi,(Jo)]: I(J - (Jol > E} < 0]
i=l

(5.2.10)

o
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(5.2.11)

(5.2.12)

(5.2.14)

>0 -.1.
1 n

- L(p(Xi , (J) - p(X;, (Jo)) : (J E K C

n.
1=1

Section 5.2 Consistency

By hypothesis, for all 6 > 0,

1 n

P(Jo[inf{n ~)p(Xi,(J) - p(Xi,(Jo)): I(J - (Jol > E}
;=1

- inf{D((Jo, (J) - D((Jo, (Jo)) : I(J - (Jol > E} < -6] -. 0

because the event in (5.2.11) implies that

1 n 6
sup{l

n
L[p(X;,(J) - D((Jo,(J)]I: (J E 8} > 2'
;=1

P(Jo[O i= (Jj] = P(Jo[IO - (Jol > E]. (5.2.13)

By Shannon's Lemma 2.2.1 we need only check that (5.2.8) and (5.2.9) hold for p(x, (J) =
logp(x, (J). But because e is finite, (5.2.8) follows from the WLLN and

P(Jo[max{l~L~ l(P(X;,(Jj) - D((Jo,(Jj)): 1 <j< d} > E]
< dmax{P(Jo[l~ L~ l(P(X;,(Jj) - D((Jo,(Jj))1 > E]: 1 < j < d} ---+ O.

and (5.2.9) follows from Shannon's lemma. 0

Condition (5.2.8) can often fail-see Problem 5.2.5. An alternative condition that is
readily seen to work more widely is the replacement of (5.2.8) by

(i) For all compact K c e,
1 n

sup - L Ip(X;, (J) - D((Jo, (J)I : (J E K
n.

1=1

(ii) For some compact K c e,

which has probability tending to 0 by (5.2.8). But for E > 0 let

6 = ~ inf{D((J,(Jo) - D((Jo,(Jo): I(J -(Jol > 6}.

Then (5.2.11) implies that the right-hand side of (5.2.10) tends to O.

A simple and important special case is given by the following.

Corollary 5.2.1. If e is finite, e = {(J1,.·. , (Jd}, E(Jo Ilogp(X1, (J)I < 00 and the
~ ~

parameterization is identifiable, then, if(J is the MLE, P(J [8 i= (Jj] -. ofor all j.
1

Proof Note that for some E > 0,



,

!,
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,
,

We shall see examples in which this modification works in the problems. Unfortunately
checking conditions such as (5.2.8) and (5.2.14) is in general difficult. A general approach
due to Wald and a similar approach for consistency of generalized estimating equation so
lutions are left to the problems. When the observations are independent but not identically
distributed, consistency of the MLE may fail if the number of parameters tends to infinity,
see Problem 5.3.33.

Summary. We introduce the minimal property we require of any estimate (strictly speak

ing, sequence of estimates) consistency. If On is an estimate of B(P), we require that On .!:.
~

B(P) as n -> 00, Uniform consistency for P requires more, that sup{P[lBn - B(P) I > E] :

PEP} -> 0 for all E > O. We show how consistency holds for continuous functions of
vector means as a consequence of the law of large numbers and derives consistency of the
MLE in canonical multiparameter exponential families. We conclude by studying consis
tency of the MLE and more generally Me estimates in the case 8 finite and 8 Euclidean.
Sufficient conditions are explored in the problems.

5.3 FIRST- AND HIGHER-ORDER ASYMPTOTICS:
THE DELTA METHOD WITH APPLICATIONS

We have argued in Section 5.1 that the principal use of asymptotics is to provide quantita
tively or qualitatively useful approximations to risk.

5.3.1 The Delta Method for Moments ,
,,

"

•
•

1

1

I
1

(5.3.1)

where

We begin this section by deriving approximations to moments of smooth functions of scalar
means and even provide crude bounds on the remainders, We then sketch the extension to
functions of vector means.

As usual let Xl, ... ,Xn be i.i.d. X valued and for the moment take X = R. Let
h: R -> R, let IIgll= = sup{lg(t)1 : t E R} denote the sup norm, and assume

(i) (a) h is m times differentiable on R, m > 2. We denote the jth derivative of h by
Mi) and assume

(b) IlhCm)ll= _ suPx IhCm)(x)1 < M < 00

(ii) E/Xllm < 00

Let E(XI) = J.L, Var(XI) = 0'2. We have the following .

Theorem 5.3.1. If(i) and (ii) hold, then

m-l (j)

Eh(X) = h(J.L) + L h .~J.L) E(X - J.L)i + Rm
. I J.
J=

.,
~;

,,
~,.
i

,

f
'.',

Ii
..._-------------------------------------_.~
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(5.3.2)

(5.3.3)

(5.3.4)

•

•

J. .: i 1 + ... + i r = j, i k > 2,1 < k < r
Zl,· .. ,Zr

C
[~]! n(n - 1) ... (n - [j /2] + 1)

. sup IE(Xi1 ... Xij)! = EIX11
J

tl , ... ttj

rn-1 h(k)( ) ,(rn)(x*)
h(X) = h(J.L) + ~ J.L (X - J.L)k + ~ (X - J.L)rn

~ k! m!
k=l

C· = max
J 1<r<U/2]

The proof is an immediate consequence of Taylor's expansion.

(a)

Proof. We give the proof of (5.3.4) for all j and (5.3.3) for j even. The more difficult
argument needed for (5.3.3) and j odd is given in Problem 5.3.2.

Let J.L = E(Xd = 0, then

E(Xj) - n- j E(L~ 1 Xi)j

n-
j L1<i1,... ,ij<n E(Xi1 ... XiJ

Note that for j even, E!X - J.Llj = E(X - J.L)j.

But E(Xi1 ... X ij ) = 0 u!1less each integer that appears among {i1, ... , i j } appears at
least twice. Moreover,

where IX* - J.LI < !X - J.LI, and the following lemma.

Lemma 5.3.1. If EIX1 !j < 00, j > 2, then there are constants C j > 0 and D j > 0 such
that

(b)

by Problem 5.3.5, so the number d of nonzero terms in (a) is

(c)

where

U/~ .
L n L . J .

r. . Zl, ••. ,Zr
r=1 tl +...+tr=i

i.>2 all k

where . n. = . ,n!. I and [t] denotes the greatest integer < t. The expression in (c) is,
tl , ... ,t r t1 ....t T •

for j < n/2, bounded by

(d)
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But

(e)
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n-jn(n - 1) ... (n - [j/2] + 1) < n[j/2]-j

•

1
•

•

•
'I

,

··,
;,.

and (c), (d), and (e) applied to (a) imply (5.3.4) for j odd and (5.3.3) for j even, if J.L = O.
In general by considering Xi - J.L as our basic variables we obtain the lemma but with
Elx1lj replaced by EIX1- J.Llj. By Problem 5.3.6, EIX1- J.Llj < 2jEIX1lj and the
lemma follows. 0

The two most important corollaries ofTheorem 5.3.1, respectively, give approximations
to the bias of heX) as an estimate of h(J.L) and its variance and MSE.

Corollary 5.3.1.

(a) IfEIXl l3 < 00 and Ilh(3)lloo < 00, then

h(2) ( ) 2
Eh(X) = h(J.L) + J.L a + O(n-3/ 2). (5.3.5)

2n

(b) If E(Xt) < 00 and IIM4)lloo < 00 then O(n-3/2
) in (5.3.5) can be replaced by

O(n-2 ).

Proof. For (5.3.5) apply Theorem 5.3.1 with m = 3. Because E(X - J.L? = a 2 /n,
(5.3.5) follows. If the conditions of (b) hold, apply Theorem 5.3.1 with m = 4. Then
Rm = O(n-2) and also E(X - J.L)3 = O(n-2) by (5.3.4). 0

Corollary 5.3.2. If

(a) Ilh(j)lloo < 00, 1 <j< 3andEIXl l
3 < 00, then

Var heX) = a
2

[h(1)(J.LW + O(n-3 / 2) (5.3.6)
n

(b) Ifllh(j)lloo < 00, 1 < j < 3, and EXt < 00, then O(n-3 / 2 ) in (5.3.6) can be
replaced by O(n-2).

Proof. (a) Write

Eh2 (X) = h2(J.L) + 2h(J.L)h(1) (J.L)E(X - J.L) + {h(2) (J.L)h(J.L) + [h(1)]2(J.L)}E(X - J.L)2

+ 1 E[h2](3l(X*)(X _ J.L)3
6

2

= h2 (J.L) + {h(2) (J.L)h(J.L) + [h(1)]2(J.L)}~ + O(n-3 /
2

).
n

(b) Next, using Corollary 5.3.1,

•

•,
••

·

j,
1
.'

,,
•,,
j

1
'~

i
J
\

I•
~

,
•

1
•

1.
j

I
1
1•,

1
"

•

..,--------------
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(5.3.7)

(5.3.8)

(5.3.9)

(5.3.10)

(5.3.11)

~[h(1)(M)12a2 + ~ {h(1)(M)h(2) (M)M3

+ ~[h(2)(M)]2a4} +R~

Var(h(X))

If h(t) = 1 - exp(-2/t), then heX) is the MLE of 1 - exp(-2'x) = heM), where M =

E>..X1 = I/A.
We can use the two corollaries to compute asymptotic approximations to the means and

variance of heX). Thus, by Corollary 5.3.1,

o

subtracting (a) from (b) we get (5.3.6). To get part (b) we need to expand Eh2 (X) to four
terms and similarly apply the appropriate form of (5.3.5). 0

Clearly the statements of the corollaries as well can be turned to expansions as in The
orem 5.3.1 with bounds on the remainders.

Note an important qualitative feature revealed by these approximations. If heX) is
viewed, as we normally would, as the plug-in estimate of the parameter h(M) then, for large
n, the bias of heX) defined by Eh(X) - heM) is O(n- 1

), which is neglible compared to
the standard deviation of heX), which is O(n- 1

/
2) unless h(1)(M) = O. A qualitatively

simple explanation of this important phenonemon will be given in Theorem 5.3.3.

Example 5.3.1. If XI, ... ,Xn are Li.d. £ (,x) the MLE of ,X is X-I. If the Xi represent
the lifetimes of independent pieces of equipment in hundreds of hours and the warranty
replacement period is (say) ZOO hours, then we may be interested in the warranty failure
probability

Example 5.3.2. Bias and Variance of the MLE of the Binomial Variance. We will com
pare E(h(X)) and Var heX) with their approximations, when h(t) = t(1 - t) and Xi '"

Bias>.. (h(X)) - E>..(h(X) - heM))

h(2~(I") ~ + O(n-2 )

- 2e-2>",X3(1-'x)/n+O(n-2 )

because h(2) (t) = 4(t-3 - t-4) exp(-2/t), a2 = 1/,X2, and, by Corollary 5.3.2 (Problem
5.3.1)

with R~ tending to zero at the rate l/n3 . Here Mk denotes the kth central moment of Xi
and we have used the facts that (see Problem 5.3.4)

Further expansion can be done to increase precision of the approximation to Var h(X)
for large n. Tjlus, by expanding Eh2(X) and Eh(X) to six terms we obtain the approxi
mation



I
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B(l,p), and will illustrate how accurate (5.3.10) is in a situation in which the approxima
tion can be checked.

First calculate

Eh(X) = E(X) - E(X2) = P - [Var(X) + (E(X))2]
1 n-1

= p(l ~p) - -p(l-p) = -p(1-p).
n n

Because h(1) (t) = 1 - 2t, h(2) = -2, (5.3.5) yields

- t 1E(h(X)) = pI -p) - -p(l -p)
n

and in this case (5.3.5) is exact as it should be. Next compute

Var h(X) = p(l - p)
n

(1 _ 2p)2 + 2p(1 - p)
n-1

2n-1
n

•

Because /13 = p(l - p)(l - 2p), (5.3.10) yields

The generalization of this approach to approximation of moments for functions of vec
tor means is formally the same but computationally not much used for d larger than 2.

Theorem 5.3.2. Suppose g : X -+ R d and let Y i = g(Xi ) = (gl(Xi ), ... ,9d(Xi))T.
Let h : R d -+ R, assume that h has continuous partial derivatives oforder up to m, and
that

(i) IIDm(h)lloo < 00 where Dmh(x) is the array (tensor)

Thus, the error of approximation is

,
i
"

•

i
!
1
•

,
;,

j

-j
"I
•

-

i,,
1
~
~
i

,
~

1

o

p(l ~ p) [(1 _ 2p)2 - 2p(1 _ p)]
n

p(l ~ p) [1 _ 6p(1 _ p)] = O(n-3 ).
n

R'n

.!.(1- 2p)2p(1 -p) + ~{-2(1 - 2p)p(1- p)(l- 2p)
n n 2

+2p2(1 _ p)2} + R~

p(l - p) {(I _ 2p)2 + .!.[2p(1 - p) - 2(1 - 2p)2]} + R~.
n n

. 8
m

h . (x): i l + ... + id = m, 0 < i J· < m, 1 < J' < d"'1 "'d - - --uXI ••• UXd

Varh(X) =

,
,.'!' ,, '

i
1,

~ Ih d
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5.3.2 The Delta Method for In Law Approximations

(5.3.14)

(5.3.15)£( .,fii(h(X) - h(Ji-))) -+ N(o, a 2 (h))

Var h(Y) ~( g:, (JL)r Var(Yll ) + 2 g:, (JL) g:2 (JL) Cov(Yll , Yd

+ (g:,(JL)r Var(Y12 ) + O(n-2
)

where

and a 2 = Var(Xd.

The result follows from the more generally useful lemma.

Lemma 5.3.2. Suppose {Un} are real random variables and that for a sequence {an} of
constants with an -+ 00 as n -+ 00,

This is a consequence of Taylor's expansion in d variables, B.8.ll, and the appropriate
generalization of Lemma 5.3.1. The proof is outlined in Problem 5.3.4. The most interest
ing application, as for the case d = 1, is to m = 3. We get, for d = 2, EI YI 1

3 < 00

(ii) EIYijlrn < 00,1 < j < d where Yi) - gj(Xi ).

Then, ijYk = ~ L~ 1 Yik' Y = ~ L~ 1 Vi, and JL = EY1, then

Eh(Y) = h(JL)+L711L{ox;~.~~x:d(JL)(il! ... id!)-1

E rr~=1 (Yk - Ji-k)ic : i 1+ ... + id = j, 0 < ik < j} + O(n- rn /2
).

(5.3.12)

- 1 {I02h o2hEh(Y) h(JL) + n 2 ox? (JL) Var(Yll ) + OX,OX2 (JL) Cov(Yll , Y12 )

}
(5.3.13)

+ ~ ~:~ (JL) Var(Y12 ) + O(n-3
/

2
).

Moreover, by (5.3.3), if ElY 11 4 < 00, then O(n-3 /
2

) in (5.3.12) can be replaced by
O(n-2 ). Similarly, under appropriate conditions (Problem 5.3.12)

As usual we begin with d = 1.

Theorem 5.3.3. Suppose that X = R, h : R -+ R, EXr < 00 and h is differentiable at
Ji- = E(Xd. Then

Approximations (5.3.5), (5.3.6), (5.3.13), and (5.3.14) do not help us to approximate risks
for loss functions other than quadratic (or some power of (d - h(Ji-))). The results in the
next subsection go much further and "explain" the form of the approximations we already
have.
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(i) an(Un - 'U) !:.. V for some constant 'U.

(ii) 9 : R -> R is differentiable at 'U with derivative g(1)('U).

•
,,

Theil

(5.3.16) •
•,

•,

Proof. By definition of the derivative, for every E > 0 there exists a 0 > 0 such that

(a) Iv - 'UI < 0 =;. Ig(v) - g('U) - g(1)('U)(v - 'U)I < Elv - 'UI

Note that (i) =;.

(b)

••

•,
•,

and, hence, from (a), for every E > 0,

,
!

'.o

l,
•

,,
•

•

1

1
;

P[IUn - 'UI < 0] -> 1(d)

(c)

Using (c), for every 0 > 0

But (e) implies

(f)

(e)•

•,
•

"•
';j
•
"

'.•

",
[;

",

•,
,

,.

\
,

I
!
I,
i ',
I '
I :·,,

from (b). Therefore,

(g)

But, by hypothesis, an(Un - 'U) !:. V and the result follows. 0

The theorem follows from the central limit theorem letting Un = X, an = n 1/
2

, 'U = J-L,
V ~ N(O, a 2 ). 0

Note that (5.3.15) "explains" Lemma 5.3.1. Formally we expect that if Vn !:. V, then
EVrf. -> EVi (although this need not be true, see Problems 5.3.32 and B.7.8). Consider

- c 2Vn = v'n(X - J-L) -> V ~ N(o, a ). Thus, we expect

,,
,

•,
.!
:,
1
;1,
I
1,
l
1

,
'-i (5.3.17)

I,

.._--------------- -



(5.3.18)

•

S

- -
Y-X

n
1", -2
- L..,,(Xi - X)
n

i=l

-
X

Tn = Vii
S

Tn !:. N(O, 1).

2 n
S =----,-

n-l

•
IS

where

(X - /1) L.
Un =Vii -+ N(O, 1)

a

by the central limit theorem, and
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where Z ~ N(O, 1). But if j is even, EZJ > 0, else EZj = O. Then (5.3.17) yields

E(X - /1)1 = O(a jEZjn- jj2 ) = O(n -j/2), j even

= o(n-J / 2 ),j odd.

In particular this implies not only that tn - l (I-a) -+ Zl-a butthat the tn - 1(1- a) critical
value (or Zl-a) is approximately correct if H is true and F is not Gaussian. For the proof
note that

n

s2 = 1 :2)Xi _ X)2.
n - 1 i=l

If F = {Gaussian distributions}, we can obtain the critical value tn- l (1 - a) for Tn from
the Tn - l distribution. In general we claim that if F E F and H is true, then

Example 5.3.3. "t" Statistics.
(a) The One-Sample Case. Let Xl, .. , ,Xn be i.i.d. F E F where Ep(Xil = /1,

VarF(Xil = a 2 < 00. A statistic for testing the hypothesis H : /1 = 0 versus K : /1 > 0

by Theorem 5.2.2 and Slutsky's theorem. Now Slutsky's theorem yields (5.3.18) because
Tn = Un/(sn/a) = g(Un , sn/a), where g(u, v) = u/v.

(b) The Two-Sample Case. Let Xl, ... ,Xn, and Yi, ... ,Yn2 be two independent sam
ples with J.Ll = E(Xt), ar = Var(X1), J.L2 = E(Yi) and a~ = Var(Yt). Consider testing
H : J.L1 = J.L2 versus K : /12 > /11. In Example 4.9.3 we saw that the two sample t statistic

has a 7,..-2 distribution under H when the X's and Y's are normal with ar = a~. Using the
central limit theorem, Slutsky's theorem, and the foregoing arguments, we find (Problem
5.3.28) that if nI/n -+ >',0 < >. < 1, then

L. (1 - >.)ar + >.a~
Sn -+ N 0, >.ar + (1 _ >.)a~
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It follows that if HI = 112 or ai ai, then the critical value t"_2(1 - a) for S" is
approximately correct if H is true and the X's and Y's are not normal.

Monte Carlo Simulation

As mentioned in Section 5.1, approximations based on asymptotic results should be
checked by Monte Carlo simulations. We illustrate such simulations for the preceding t

tests by generating data from the X~ distribution M times independently, each time com
puting the value of the t statistics and then giving the proportion of times out of M that
the t statistics exceed the critical values from the t table. Here we use the X~ distribution
because for small to moderate d it is quite different from the nonnal distribution. Other
distributions should also be tried. Figure 5.3.1 shows that for the one-sample t test, when
a = 0.05, the asymptotic result gives a good approximation when n > 101.5 ~ 32, and the
true distribution F is X~ with d > 10. The X~ distribution is extremely skew, and in this
case the t,,_1 (0.95) approximation is only good for n > 102 .5 ~ 316.

One sample: 10000 Simulations: Chi-square data
• 0.12r-o------,-----.-------r-----,--------,n

-
df=10______ B_ -

df=20 - +

- -
-~----- -=----- -- --- - --...,,---

df-SO
+-------

0.1

0.08

'">
'"...J

'"o
~ 0.06
o-=c:
C>.-m

0.04, '..

I, :
1',
f"
f

0.02

;
;:..
,j'
".,
•

!, '

OL..L------'-------'-------'------------''-------------'--'
0.5 1 1.5 2 2.5 3

Log10 sample size

,
Figure 5.3.1. Each plotted point represents the results of 10,000 one-sample t tests using
X~ data, where d is either 2, 10, 20, or 50, as indicated in the plot. The simulations are

repeated for different sample sizes and the observed significance levels are plotted.

i,
l
],

"J

~
j

,
,

For the two-sample t tests, Figure 5.3.2 shows that when ar = O'i and n1 = n2, the
t"_2(1-a) critical value is a very good approximation even for small n and for X, Y ~ X~ .

,,

,
.. l

~' 1
G' j"
\j
[.h _

,,

..
ri



0.1

0.02

32.51.5 2
Logl0 sample size

10.5

Figure 5.3.2. Each plotted point represents the results of 10,000 two-sample t tests. For
each simulation the two samples are the same size (the size indicated on the x-axis),

ai = a~, and the data are X~ where d is one of 2, 10, or 50.

o

T _ JTi[h(X) - ho]
n - slh(i)(X)1 .

This is because, in this case, Y - X = ~, L~' j (Y; - X;), and Y; - Xi have a symmetric

distribution. Other Monte Carlo runs (not shown) with ai I' a~ show that as long as
nl = n2, the t n -2(0.95) approximation is good for nj > 100, even when the X's and Y's
have different X~ distributions, scaled to have the same means, and a~ = 12ai. Moreover,
the tn -2(1 - a) approximation is good when nj I' n2 and ai = a2. However, as we
see from the limiting law of Sn and Figure 5.3.3, when both nj I' n2 and ai I' a~, then
the two-sample t tests with critical region 1{Sn > tn- 2 (1 - a)} do not have approximate
level a. In this case Monte Carlo studies have shown that the test in Section 4.9.4 based on
WeIch's approximation works well.

dl.-L------"--------'-----'-------'-------'-'

Two sample; 10000 Simulations, Chi-Square Dala; Equal Variances
0.12,--r----,.------,-------,----,--------,-,
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0.08

Next, in the one-sample situation, let h(X) be an estimate of h(J.L) where h is con

tinuously differentiable at /1, h(i)(/1) I' o. By Theoretn 5.3.3, JTi[h(X) - h(J.L)] !:.
N(o, a2 [h(1) (/1)]2). To test the hypothesis H : h(/1) = ho versus K : h(/1) > ho the
natural test statistic is
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Two Sample;10000 Simulations; Gaussian Data; Unequal Variances; 2nd sample 2x bigger
0.12"----,.-----,------,-·-----,-----,,

,

1
,,
£ !,
I

,,
I 0.1,
i

,,
,,
•

Variance Stabilizing Transformations

so that Z!-a is the asymptotic critical value,

,
'.
•,

••

•

,,
,

3

Gh:1X~ &_-----€0~------- -<3-_--.----'00---__
e ~ e -0

0~ ..L_ '__ _L _:_'_ .LJ

0.5 1 1.5 2 2.5
Log10 (smaller sample size)

0.08

c

'"rf)

0.04

G-3~ - -
~-----B--0.02 - - - _ _ __ 0

"'"'" ~ yx -0-- - - - - - -0- - - -
-.-.! I

-- ----+--___ ! _---+--__ I
---+-- --+

9x

"~
..J

""~ 0.06

"-=

c.
Tn -t N(o, 1)

Figure 5.3.3. Each plotted point represents the results of 10,000 two-sample t tests. For
each simulation the two samples differ in size: The second sample is two times the size of

the first. The x-axis denotes the size of the smaller of the two samples. The data in the
first sample areN(O, 1) and in the second they areN(O,a2 ) where a2 takes on the values

1, 3, 6, and 9, as indicated in the plot.

Combining Theorem 5.3.3 and Slutsky's theorem, we see that here, too, if H is true

Example 5.3.4. In Appendices A and B we encounter several important families of dis
tributions, such as the binomial, Poisson, gamma, and beta, which are indexed by one or
more parameters. If we take a sample from a member of one of these families, then the
sample mean X will be approximately normally distributed with variance a2 In depending
on the parameters indexing the family considered. We have seen that smooth transfor
mations h(X) are also approximately normally distributed. It turns out to be useful to
know transformations h, called variance stabilizing, such that Var h(X) is approximately
independent of the parameters indexing the family we are considering. From (5.3.6) and

J
.,
.'

•,
,,
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(5.3.1 9).,fii,(h(9) - h(r)) -+ N(O, c)

Edgeworth Approximations

for all ,. See Example 5.3.6. Also closely related but different are so-called normalizing
transformations. See Problems 5.3.15 and 5.3.16.

is an approximate 1-a confidence interval for .;>.. A second application occurs for models
where the families of distribution for which variance stabilizing transformations exist are
used as building blocks of larger models. Major examples are the generalized linear models
of Section 6.5. The comparative roles of variance stabilizing and canonical transformations
as link functions are discussed in Volume II. Some further examples of variance stabilizing
transformations are given in the problems.

The notion of such transformations can be extended to the following situation. Suppose,
9n(X1 , ... ,Xn ) is an estimate of a real parameter, indexing a family of distributions from
which X I, ... , X n are an i.i.d. sample. Suppose further that

for all J.L and a appropriate to our family. Such a function can usually be found if a depends
only on J.L, which varies freely. In this case (5.3.19) is an ordinary differential equation.
As an example, suppose that X I, ... , X n is a sample from a P (A) family. In this case
a 2 = A and Var(X) = A/n. To have Var h(X) approximately constant in A, h must
satisfy the differential equation [h (1) (AWA = C > °for some arbitrary c > 0. If we
require that h is increasing, this leads to h(i)(A) = .jC/';>', A > 0, which has as its
solution h(A) = 2vC>: + d, where d is arbitrary. Thus, h(t) = v't is a variance stabilizing
transformation of X for the Poisson family of distributions. Substituting in (5.3.6) we find
Var(X) i ~ 1/4n and yIn((X) i - (A) i) has approximately aN(O, 1/4) distribution. 0

(5.3.13) we see that a first approximation to the variance of h(X) is a 2 [h (1) (J.L)] 2/n. Thus,
finding a variance stabilizing transformation is equivalent to finding a function h such that

IX ± 2z(1 - ~a)

yin

One application of variance stabilizing transformations, by their definition, is to exhibit
monotone functions of parameters of interest for which we can give fixed length (indepen
dent of the data) confidence intervals. Thus, in the preceding P( A) case,

-
The normal approximation to the distribution of X utilizes only the first two moments

of X. Under general conditions (Bhattacharya and Rao, 1976, p. 538) one can improve on

Then again, a variance stabilizing transformation h is such that
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the normal approximation by utilizing the third and fourth moments. Let Fl1 denote the
distribution of Tn = y'n( X - tL) Ia and let IInand 12n denote the coefficient of skewness
and kurtosis of Tn. Then under some conditions, (1)

,

,
•
•
•,

where Tn tends to zero at a rate faster than lin and H 2 , H 3 , and Hs are Hermite polyno-
mials defined by .

(5.3.21)
,
1

The expansion (5.3.20) is caIled the Edgeworth expansion for Fn .

Example 5.3.5. Edgeworth Approximations to the X2 Distribution. Suppose V ~ X~.

According to Theorem B.3.!, V has the same distribution as L~ 1 Xl, where the Xi are
independent and Xi ~ N (0, 1), i = 1, ... ,n. It follows from the central limit theorem that
Tn = (L~ 1 X;- n) IV'f,iL = (V - n) IV'f,iL has approximately aN(O, 1) distribution. To
improve on this approximation, we need only compute lin and 12n. We can use Problem
B.2A to compute

I
.~

i,

E(Vn )3 2V2 E(V - n)4 3 _ 12
lin = (2n)~ = y'n ,'2n = (2n)2 - --;-.

,
•
1
J
1
J

Table 5.3.1 gives this approximation together with the exact distribution and the normal
approximation when n = 10. 0

.'

,
i
•

"

,,

1
;,
1

1
l
1•

V2 1 1
y'n(x2

- 1) + _(x3
- 3x) + _(XS - lOx 3 + 15x) + Tn.

3 n 2n 9n

x -2.04 -1.95 -1.91 -1.75 -1.66 -1.51 -1.35
Exacl 0.0001 0.0005 0.0010 0.0050 0.0100 0.0250 0.0500
EA 0 0 0 0.0032 0.0105 0.0287 0.0553
NA 0.0208 0.0254 0.0284 0.0397 0.0481 0.0655 0.0877

x -U5 ~.85 -0.61 -0.38 ~.15 0.11 0.40 0.77
Exacl 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000
EA 0.1051 0.2024 0.3006 0.4000 0.4999 0.5999 0.6999 0.8008
NA 0.1254 0.1964 0.2706 0.3513 0.4415 0.5421 0.6548 0.7792

x 1.34 1.86 2.34 2.95 3.40 4.38 4.79 5.72
Exacl 0.9000 0.9500 0.9750 0.9900 0.9950 0.9990 0.9995 0.9999
EA 0.9029 0.9506 0.9724 0.9876 0.9943 0.9996 0.9999 OOסס.\

NA 0.9097 0.9684 0.9905 0.9984 0.9997 ooסס.1 ooסס.1 OOסס.1

Fn(x) = <I>(x) - cp(x)

Therefore,

TABLE 5.3.1. Edgeworth(2) and normal approximations EA and NA to the XIo distribu
tion, P(Tn < x), where Tn is a standardized XIo random variable.

, ,

, '

,
r:

,
•

I

I'
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,
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2 ).. )..1,1,0,2711 1,1,2,0,
)..1,1,2,0

2 ).. (5.3.22)720 2,0,2,0 •,
)..1,1,0,2 ).. 2

2,0,2,0 702,

Next we compute

vn(U - u) -+ N(O, E), E =

- -1 - - -2 -1 - 2 -2 -1 - 2C = n E(Xi - X)(Y; - Y), a1 = n E(Xi - X) , a2 = n E(Y; - Y) .
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L
(i) an(Un - u) -+ V dx 1 for some d x 1 vector of constants u.

(ii) g: R d -+ RP has a differential g~lJd(U) at u. Then

The Multivariate Case

Proof. The proof follows from the arguments of the proof of Lemma 5.3.2.

Example 5.3.6. Let (Xl, Yd, ... , (Xn , Yn ) be i.i.d. as (X, Y) where 0 < EX4 < 00,

o < Ey4 < 00. Let p2 = Cov2(X, Y)/arai where a; = Var X, ai = Var Y; and let-?- = C2 /a~a~ where

Lemma 5.3.2 extends to the d-variate case.

Lemma 5.3.3. Suppose {Un} are d-dimensional random vectors and that for some se
quence of constants {an} with an -+ 00 as n -+ 00,

g(1)(u) = (2U1/U2U3,-ui/u~U3,-Ui/U2U~) = (2p,_p2,_p2).

It follows from Lemma 5.3.3 and (B.5.6) that vn(r 2 - ;) is asymptotically normal,
N(O, a5), with

Recall from Section 4.9.5 that in the bivariate normal case the sample correlation coefficient
r is the MLE of the population correlation coefficient p and that the likelihood ratio test-of H : p = 0 is based on Irl. We can write r2 = g(C,a;,ai) : R3 -+ R, where
g(U1, U2, U3) = Ui/U2U3' Because of the location and scale invariance of p and r, we can- -
use the transformations Xi = (Xi -pd/a, and Y j = (Yj -P2) / a2 to conclude that without
loss of generality we may assume PI = P2 = 0, ar = ai = 1, P = E(XY). Using

the central limit and Slutsky's theorems, we can show (Problem 5.3.9) that vn(C - p),
vn(ar - 1) and vn(a~ - 1) jointly have the same asymptotic distribution as vn(Un - u)
where

Un = (n- 1EXi Y;,n- 1 EX;,n- 1EY/)

and u = (p, 1, 1). Let 7L = Var(Xkyj) and )..k,j,m,l = Cov(Xkyj, xmyl), then by the
central limit theorem
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When (X, Y) ~ N(llI,tL2,ai,a2,p), then a6 = 4p2(1 - p2)2, and (Problem 5.3.9)

y'n(r - p) !:., N(O, (1 - p2j2).

Referring to (5.3.19), we see (Problem 5.3.10) that in the bivariate nonnal case a vari

ance stabilizing transfonnation h(r) with y'n[h(r) - h(p)] !:., N(O,I) is achieved by
choosing

h(p) = 1 log 1 + p .
2 I-p

The approximation based on this transfonnation, which is called Fisher's z, has been stud
ied extensively and it has been shown (e.g., David, 1938) that

.C(vn - 3(h(r) - h(p))

is closely approximated by the N(O, 1) distribution, that is,

P(r < c) ~ <fl(vn - 3[h(c) - h(p)]), c E (-1,1).

This expression provides approximations to the critical value of tests of H : p = 0, it gives
approximations to the power of these tests, and it provides the approximate 100(1 - a)%
confidence interval of fixed length,

p = tanh {h (r) ± z (1 - ~ a) / vin - 3}

where tanh is the hyperbolic tangent.

Here is an extension of Theorem 5.3.3.

Theorem 5.3.4. Suppose Y 1, ... , Y n are independent identically distributed d vectors
with EIYl l2 < 00, EY1 = m, Var Y I = :E and h : 0 --+ RP where 0 is an open subset

ofR d, h = (hi, ... ,hpj and h has a total differential h(1) (m) = Igh; (m)1 . Thenx, pXd

Proof. Argue as before using B.8.5•
.<

,,

,
,

(a)

and

(b)

so that

h(y) = h(m) + h(l)(m)(y - m) + o(ly - ml)

- I:.
vn(Y - m) --+ N(O,:E)

(5.3.23)

(5.3.24)
,
<

j
,

i
1,
j

.. --------------------------_...



Using the (b) part of Slutsky's theorem, we conclude that for fixed k,
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o

(5.3.25)

(5.3.26)
1 k

k LY;2
i=l

T _ (11k ) 2:7=1 Xl
k,m - ",k+m 2

(11m ) L..i=k+1 Xi

y'n(h(Y) - h(m)) = y'nh(1)(m)(Y - m) + op(l).(c)

has an Fk,m distribution, where k + m = n. Suppose that n > 60 so that Table IV cannot
be used for the distribution ofTk,m. When k is fixed and m (or equivalently n = k +m) is
large, we can use Slutsky's theorem (A. 14.9) to find an approximation to the distribution of

Tk,m' To show this, we first note that (11m) 2:7+~1 Xl is the average ofm independent
xi random variables. By Theorem B.3.l, the mean ofaxi variable is E(Z2), where
Z ~ N(O, 1). But E(Z2) = Var(Z) = 1. Now the weak law of large numbers (A.15.7)
implies that as m -+ 00,

1
k+m
'"" 2 P- ~ Xi -+ 1.

m.t=k+1

k

.c 1 '"" 2Tk,m -+ k ~Xi
i=l

Example 5.3.7. xi and Normal Approximation to the Distribution of F Statistics. Sup
pose that Xl, ... ,Xn is a sample from a N(O, 1) distribution. Then according to Corol
lary B.3.l, the F statistic

as m -+ 00. By Theorem B.3.l, 2:7 1Xl has a x~ distribution. Thus, when the number of
degrees of freedom in the denominator is large, the Fk,m distribution can be approximated
by the distribution of VI k, where V ~ xi.

To get an idea of the accuracy of this approximation, check the entries of Table IV
against the last row. This row, which is labeled m = 00, gives the quantiles of the distri
bution of Vlk. For instance, if k = 5 and m = 60, then P[T5 ,60 < 2.37] = P[(Vlk) <
2.21] = 0.05 and the respective 0.05 quantiles are 2.37 for the F5 ,60 distribution and 2.21
for the distribution of VI k. See also Figure B.3.l in which the density of VI k, when
k = 10, is given as the F lO,oo density.

Next we turn to the normal approximation to the distribution of Tk,m' Suppose for
simplicity that k = m and k -+ 00. We write Tk for Tk,k' The case m = Ak for some
A > 0 is left to the problems. We do not require the Xi to be normal, only that they be i.i.d.
with EX1 = 0, EX; > 0 and EXt < 00. Then, if (72 = Var(X1 ), we can write,
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where Yil = XI/a 2 and Yi2 = X~+Ja2, i = 1, ... , k. Equivalently Tk = h(Y) where
Y i = (Yil, Yi2)T, E(Y;) = (1, I)T and h(u, 11) = :;. By Theorem 5.3.4,

•
•

(5.3.27)

where 1 = (1, I)T, h(1)(u,v) = (~, _~)T and ~ = Var(Yll)J, where J is the 2 x 2
identity. We conclude that

y'n(Tk -1) -SN(O,2Var(Yll )).

In particular if Xl ~ N(o, a 2 ), as k ---+ 00,

Ly'n(Tk - 1) ---+ N(O, 4).

In general, when min{k, m} ---+ 00, the distribution of :;k (Tk,m - 1) can be ap

proximated by a N(O, 2) distribution. Thus (Problem 5.3.7), when Xi ~ N(O, a 2 ),

•,

,
j
j

I
1
l
1
J

1

(5.3.28)

(5.3.29)

2(m + k)
Zl-a

mk

,,(m+k)
Zl-a

mk
Ck m = 1 +,

P[Tk,m < t] P[ :;k(Tk,m -1) < :;k(t -1)]

~ <fl( :;k(t-l)/V2).

is asymptotically incorrect. In general (Problem 5.3.8(c» one has to use the critical value

An interesting and important point (noted by Box, 1953) is that unlike the t test, the F test
for equality of variances (Problem 5.3.8(a» does not have robustness of level. Specifically,
if Var(Xf) #- 2a4

, the upper Fk,m critical value fk,m (1 - a), which by (5.3.28) satisfies

mk
---=-k Uk m(1 - a) - 1)/V2m+ '

or

where" = Var[(XI - Ill)/ad 2
, III = E(Xd, and a; = Var(Xd. When" is unknown,

it can be estimated by the method of moments (Problem 5.3.8(d». 0

·
• •

~!.,
,l'

~,
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~.
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5.3.3 Asymptotic Normality of the Maximum Likelihood
Estimate in Exponential Families

Our final application of the a-method follows.

Theorem 5.3.5. Suppose P is a canonical exponential family of rank d generated by T
with £ open. Then ifXl, ... , X n are a sample from PTJ E P and 17 is defined as the MLE
if it exists and equal to c (some fixed value) otherwise,

1
1

I
!l :
ff

l I

..._--------------------------------------
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(5.3.30)

(5.3.31)

(5.3.32)

(5.3.33)

•
-1]2 1]1

1]1 1 -1]r(41J2)-1

Hence, (ii) follows from (5.3.24).

Remark 5.3.1. Recall that

where, by Example 2.3.4,

•..
:E = Var(T(X1 )) = A(11)

Thus, (i) follows from (5.3.23). For (ii) simply note that, in our case, by Corollary 1.6.1,

and, therefore,
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. ..
But D A = A by definition and, thus, Ih our case,

•• • 1

(i) 17 = 11 + ~ 'L7 I A-I (11)(T(X;J - A(11)) + oP11(n- 2 )

(iO L11(,fii,(l7-11)) -.;Nd (O,A-I(11)).

Proof The result is a consequence. of Theorems 5.2.2 and 5.3.4. We showed in the proof
of Theorem 5.2.2 that, if T - ~ 'L~ I T(Xi ), P11[T E A(t')] -.; 1 and, hence, P11 [l7 =

A-I(T)] -+ 1.. Identify h in Theorem 5.3.4 with A-I and m with A(11). Note that by
B.8.l4, if t = A(11),

Here 1]1 = Il/a 2
, 1]2 = -1 /2a2 , iii = X /(;2, and ii2 = -1/2,(P where (;2 = T2 - (T1 )2 .

By Theorem 5.3.5,

..
A(11) = Var11(T) = 1(11)

is the Fisher information. Thus, the asymptotic variance matrix 1-1 (11) of ,fii,(17 - 11)
equals the lower bound (3.4.38) on the variance matrix of vn(i1 - 11) for any unbiased
estimator ii. This is an "asymptotic efficiency" property of the MLE we return to in Section
6.2.1.

Example 5.3.8. Let Xi>" ., X n be i.i.d. as X with X "-' N(fL, a2
). Then T 1 = X and

T2 = n -1~X; are sufficient statistics in the canonical model. Now
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Because X = T 1 and (j2 = T2 - (Td 2
, we can use (5.3.33) and Theorem 5.3.4 to find

(Problem 5.3.26)

,,,

l
!
c'

I, "

",

,
i
I'.

- 2 2 L.v'n(X - tI, (j - a ) -> N(O, 0, I;o)

where I;o = diag (a 2 , 2(4 ).

Summary. Consistency is Oth-order asymptotics. First-order asymptotics provides approx
imations to the difference between a quantity tending to a limit and the limit, for instance,
the difference between a consistent estimate and the parameter it estimates. Second-order
asymptotics provides approximations to the difference between the error and its first-order
approximation, and so on. We begin in Section 5.3.1 by studying approximations to mo
ments and central moments of estimates. Fundamental asymptotic formulae are derived for
the bias and variance of an estimate first for smooth function of a scalar mean and then a
vector mean. These "0 method" approximations based on Taylor's formula and elemen
tary results about moments of means of d.d. variables are explained in terms of similar
stochastic approximations to h(Y) - h(J.L) where Y 1, ... , Y n are i.i.d. as Y, EY = jL,

and h is smooth. These stochastic approximations lead to Gaussian approximations to the
laws of important statistics. The moment and in law approximations lead to the definition
of variance stabilizing transformations for classical one-dimensional exponential families.
Higher-order approximations to distributions (Edgeworth series) are discussed briefly. Fi
nally, stochastic approximations in the case of vector statistics and parameters are devel
oped, which lead to a result on the asymptotic normality of the MLE in mUltiparameter
exponential families.

5.4 ASYMPTOTIC THEORY IN ONE DIMENSION

In this section we define and study asymptotic optimality for estimation, testing, and con
fidence bounds, under i.i.d. sampling, when we are dealing with one-dimensional smooth
parametric models. Specifically we shall show that important likelihood based procedures
such as MLE's are asymptotically optimal. In Chapter 6 we sketch how these ideas can be
extended to multi-dimensional parametric families.

5.4.1 Estimation: The Multinomial Case

Following Fisher (1958),(1) we develop the theory first for the case that Xl, . .. , X n are
i.i.d. taking values {Xo, ... , xd only so that P is defined by p = (Po, ... ,Pk) where

(5.4.1)

and p E 5, the (k+ I)-dimensional simplex (see Example 1.6.7). Thus, N = (No, .. . , Nk)
where N j L~ 1 1(Xi = X j) is sufficient. We consider one-dimensional parametric
submodels of 5 defined by P = {(p(xo, B), ... ,p(Xk, B)) ; B E 8}, 8 open c R (e.g., see
Example 2.1.4 and Problem 2.1.15). We focus first on estimation of B. Assume

A; B-+ p(Xj, B), 0 < Pj < 1, is twice differentiable for 0 < j < k.

,,
.3

,
;
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(5.4.3)

(5.4.4)

(5.4.5)

(5.4.6)

(5.4.7)

(5.4.8)

(5.4.9)

k

I(X),B) logp(Xj,B) = 2,)ogp(xj,B)l(Xj = Xj)
j=o

Note that A implies that

8l k

aB(X),B) = L
j=O

h(p(B)) = Bfor all BEe

Section 5.4 Asymptotic Theory in One Dimension

is twice differentiable and g~ (X), B) is a well-defined, bounded random variable

Furthermore (Section 3.4.2),

As usual we call 1 (B) the Fisher information.
Next suppose we are given a plug-in estimator h (~) (see (2.1.11) of Bwhere

h:S->R

8l
Eo aB(X),B) = 0

and g;~ (X), B) is similarly bounded and well defined with

satisfies

H : h is differentiable.

wherep(B) = (p(xo,fJ)"",P(XbB))T. Manysuchhexistifk > 1. Consider Example
2.1.4, for instance. Assume

N.co Vii h - - B
n

,

Then we have the following theorem.

Theorem 5.4.1. Under H, for all B,

where a 2 (B, h) is given by (5.4.11). Moreover, ifA also holds,

a 2 (B,h) > r)(B)

with eqUality ifand only if,

ah _) al ,
a (p(B)) =1 (B)aB(Xj,B),O<J<k.

PJ p(O)
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Proof. Apply Theorem 5.3.2 noting that

N k oh
vn h -; -h(p(B)) =vnLop(p(B))

j=O J

N
----,-J _ p(Xj, B) + op(l).
n

Note that, using the definition of N j ,

k oh N- n k oh
L

o
(p(B)) ~-p(xj,B) =n-ILLop(p(B))(l(Xi=Xj)-p(xJ,B)).

j=O PJ i=l j=O J

(5.4.10)

Thus, by (5.4.10), !lot only is Vii {h (r;;) - h(p(B)) } aSYITIptotically normal with mean 0,
but also its asymptotic variance is

,
•.,
;
I,,
•
,
•

1
1

o

(5.4.11)

(5.4.12)

(5.4.13)

(5.4.15)

•

2

Yare

k

L
j=O

Note that by differentiating (5.4.6), we obtain

k oh opL
o

(p(B))oB(Xj,B) =1
j=O PJ

or equivalently, by noting ~(xj,B) = [cfel(Xj,B)] p(xj,B),

k oh 8l
Cove L 0 _(p(B))l(Xl = Xj), oB(Xll B) = 1.

j=o PJ

By (5.4.13), using the correlation inequality (A.II.16) as in the proof of the information
inequality (3.4.12), we obtain

2 8l 2l<a (B,h)VareoB(X1,B)=a (B,h)I(B) (5.4.14)

with equality iff,

k oh 8l
L 0 . (p(B))(l(Xl = Xj) - p(Xj, B)) = a(B) oB (Xl, B) + b(B)
j=O PJ

for some a(B) #- 0 and some b(B) with probability 1. Taking expectations we get b(B) = O.. ~ .
Noting that the covariance of the right- an~ left-hand sides is a(B), while t1l~ir common
variance is a2 (B)I(B) = a2 (B, h), we sC1l< that equality in (5.4.8) gives

•

a2 ((})I2 (B) = 1, (5.4.16)
•

which implies (5.4.9).

'"
-

I-

•
-,

'1__I,

'I,,

:, -

•

•I, .'
L

n·
:i
-

"

-
r
!•,,'

!

g 1..
'0'
V
I;1.

~:
..._---------------------------------_ ..



and

327

(5.4.17)

(5.4.18)

(5.4.19)•

1
0, I(B)

B= [A]-I(T),

k

h(p) = [A]-l "2':.,T(Xj)Pj
j=O

Section 5.4 Asymptotic Theory in One Dimension

5.4.2 Asymptotic Normality of Minimum Contrast and
M-Estimates

Example 5.4.1. One-Parameter Discrete Exponential Families. Suppose p(x, B) =
exp{BT(x) - A(B)}h(x) where h(x) = l(x E {xo, ... ,xd), BEe, is a canonical
one-parameter exponential family (supported on {xo, .. . ,xd) and e is open. Then Theo--rem 5.3.5 applies to the MLE Band

We shall see in Section 5.4.3 that the information bound (5.4.8) is, if it exists and under- - -regularity conditions, achieved by B = h (r;;), the MLE of Bwhere h is defined implicitly
-by: h(p) is the value of B, which

(i) maximizes L~=o N j log p(x j, B)

with the asymptotic variance aChieving the information bound I-I (B). Note that because

T = n- l L~ I T(Xi ) = L~=o T(x j)!'f;-, then, by (2.3.3)

The binomial (n, p) and Hardy-Weinberg models can both be put into this framework with

canonical parameters such as B = log ( G) in the first case. 0

Both the asymptotic variance bound and its achievement by the MLE are much more
general phenomena. In the next two subsections we consider some more general situations.

We begin with an asymptotic normality theorem for minimum contrast estimates. As in
Theorem 5.2.3 we give this result under conditions that are themselves implied by more
technical sufficient conditions that are easier to check.

Suppose i.i.d. Xl, ... ,Xn are tentatively modeled to be distributed according to Pe,
B E 8 open c R and corresponding density/frequency functions p(., B). Write P = {Pe :
BEe}. Let p : X x e -+ R where

and
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•
••,
,
•

is uniquely minimized at Bo. Let Bn be the minimum contrast estimate

_ 1 n

Bn = argmin - L p(Xi , B).
n,

.=1

Suppose

AO: 'IjJ = ~ is well defined.
Then

1 n _- L 'IjJ(Xi,Bn ) = O.
n,

.=1

(5.4.20)

In what follows we let P, rather than Pe, denote the distribution of Xi. This is because,
as pointed out later in Remark 5.4.3, under regularity conditions the properties developed
in this section are valid for P ~ {Pe : B E 8}. We need only that B(P) is a parameter as
defined in Section 1.1. As we saw in Section 2.1, parameters and their estimates can often
be extended to larger classes of distributions than they originally were defined for. Suppose

AI: The parameter B(P) given by the solution of

J 'IjJ(x, B)dP(x) = 0

is well defined on P. That is,

(5.4.21)

A4: SUPt { ~ L~ 1 (~(Xi,t) - ~(Xi' B(P))) : It - B(P)I < En} f." OifEn --> O.

A5: Bn f." B(P). That is, Bn is consistent on P = {Pe : BE 8}.

Theorem 5.4.2. Under Ao-A5,

•,

•••

I

,,

•,

•
i•

,
•
I
1

,

1
••••
,j

1
•
•j

(5.4.22)

(5.4.23)

1 n
Bn = B(P) + - L ;j(Xi , B(P)) + op(n- 1

/
2)

n,
.=1

-'IjJ(x, P) = 'IjJ(x, B(P))

J 1'IjJ(x, B)ldP(x) < 00, BE 8, PEP

and B(P) is the unique solution of (5.4.21) and, hence, B(Pe) = B.

A2: E p 'IjJ2(X1 , B(P)) < 00 for all PEP.

A3: 'IjJ (', B) is differentiable, ~ (Xl, B) has a finite expectation and

where

. ' I

:i;..
•0,

1:

•

••

f'
~-----------------
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(5.4.24)

(5.4.26)

(5.4.25)

(5.4.27)

(5.4.28)

(5.4.29)

1 n

= -L'IjJ(Xi,O(P)).
n.

'=1

n1" _ -1/2- L 'IjJ(Xi , O(P)) - Op(n ).
n.

,=1

where

a2('IjJ,P) = Ep'IjJ2(XI ,O(P)) 2"

(Ep~(XI'O(P)))

Section 5.4 Asymptotic Theory in One Dimension

Hence,

while

where IO~ - O(P)[ < /On - O(P)I. Apply A5 and A4 to conclude that

I
n

8'IjJ .I
n

8
n L 80 (Xi, On) = n L 80 'IjJ(Xi , O(P)) + op(I)

i=l i=l

n

vn(On - O(P)) = n- I /2L ;;;(Xi ,P) + op(I)
i=1

Proof. Claim (5.4.24) follows from the central limit theorem and Slutsky's theorem, ap
plied to (5.4.22) because

Ep'IjJ(XI ,O(P)) / (-Ep ~~ (Xi> O(P)))

o

and

-2 2Ep'IjJ (XI,P) = a ('IjJ,P) < 00

by AI, A2, and A3. Next we show that (5.4.22) follows by a Taylor expansion of the
- ~ ~

equations (5.4.20) and (5.4.21). Let On = O(P) where P denotes the empirical probability.
By expanding n- I I:~ 1 'IjJ(Xi , On) around O(P), we obtain, using (5.4.20),

In I n 8'IjJ._
- n ~ 'IjJ(Xi ,O(P)) = n ~ 80 (Xi, 0n)(On - O(P))

and A3 and the WLLN to conclude that

But by the central limit theorem and AI,

Combining (5.4.25)-(5.4.27) we get,
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,

Dividing by the second factor in (5.4.28) we finally obtain

1 n _

en - e(p) = - L 'IjJ(Xi , e(p)) + op
n.

1=1

1 n

- '" 'IjJ(Xi , e( P))
n~

i=l

and (5.4.22) follows from the foregoing and (5.4.29). 0

Remark 5.4.1. An additional assumption A6 gives a slightly different formula for
Ep'lilf(Xl , e(p)) if P = Po.

A6: Suppose P = Po so that e(p) = e, and that the model P is regular and let l(x, e) =
logp(x, e) where p(-, e) is as usual a density or frequency function. Suppose I is differen
tiable and assume that

1
•
,
•
•.,-,

,
•

a'IjJ
Eo ae (Xl,e(p))

(5.4.30)
,
•

Note that (5.4.30) is formally obtained by differentiating the equation (5.4.21), written j

(5.4.31)

,
j
.1

I
1,
l

~
l

J 'IjJ(x, e)p(x, e)dp,(x) = 0

for all e. If an unbiased estimate 15 (X1) of e exists and we let 'IjJ (x, B) = 15(x) -e, it is easy to
see that A6 is the same as (3.4.8). If further Xl takes on a finite set of values, {xo, ... , xd,
and we define h(p) = 2::7=0 15(Xj )Pj, we see that A6 corresponds to (5.4.12).

Identity (5.4.30) suggests that if P is regular the conclusion of Theorem 5.4.2 may hold
even if 'IjJ is not differentiable provided that -Eo 'IiIf (Xl, e) is replaced by Covo ('IjJ(X1, e),
Z~ (Xl, e)) and a suitable replacement for A3, A4 is found. This is in fact true-see Prob
lem 5.4.1.

as

•

••

,

•

"

Remark 5.4.2. Solutions to (5.4.20) are called M-estimates. Our arguments apply to M
estimates. Nothing in the arguments require that en be a minimum contrast as well as an
M-estimate (i.e., that'IjJ = ~ for some p).

Remark 5.4.3. Our arguments apply even if Xl, ... , X n are i.i.d. P but P rt P = {Po :
e E 8}. e(p) in AI-AS is then replaced by

(1) e(p) = argmin Epp(Xl ,B)

or more generally, for M-estimates,

(2) B(P) solves Ep'IjJ(Xl ,B) = O.

Theorem 5.4.2 is valid with B(P) as in (1) or (2). This extension will be pursued in Vol
ume 2.

We conclude by stating some sufficient conditions, essentially due to Cramer (1946),
for A4 and A6. Conditions AD, AI, A2, and A3 are readily checkable whereas we have
given conditions for AS in Section 5.2.

1•
•

-I

-,
,
••

•
•

-,

rr

r
~----------------------------------- I
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(5.4.32)

(5.4.34)

(5.4.35)

(5.4.33)

~

Po, then the MLE en

- I( e),

•

1
0, I(e)

sup

Section 5.4 Asymptotic Theory in One Dimension

A4':

(a) e ---7 ~~ (Xl, e) is a continuous function of e for all x.

(b) There exists 0(e) > °such that

81jJ , 81/)
8e (Xl, e) - 8e (Xl, e) : Ie - e'l < o(e) < M(XI ,e),

where EoM(XI,e) < 00.

A6': ~~ (X, e') is defined for all x, le'-el < o(e) and J:+: J~ (x, s) dp,(x)ds < 00 for

some 0 = o(e) > 0, where p,(x) is the dominating measure for P(x) defined in (A. lO.l3).
That is, "dP(x) = p(x)dp,(x)."

Details of how A4' (with AO-A3) implies A4 and A6' implies A6 are given in the
problems. We also indicate by example in the problems that some conditions are needed
(Problem 5.4.4) but A4' and A6' are not necessary (Problem 5.4.1).

The most important special case of (5.4.20) occurs when p(x, e) = l(x, e) = logp(x, e)
and 'I/J(x, e) g~ (x, e) obeys AO-A6. In this case en is the MLE en and we obtain an
identity of Fisher's,

821
-Eo 8e2 (Xl, e)

where 1(e) is t~e Fisher information introduq:d in Section 3.4. We can now state the basic
result on asymptotic normality and efficiency of the MLE.

Theorem 5.4.3. If AO-A6 apply to p(x, e) = l(x, e) and P
satisfies

2 1
CJ ('I/J,Po) > I(e)

with equality iff 'I/J = a(e) g~ for some a # 0.

Furthermore, if en is a minimum contrast estimate whose corresponding p and 'I/J satisfy
AO-A6, then

so that



Proof. Claims (5.4.33) and (5.4.34) follow directly by Theorem 5.4.2. By (5.4.30) and
(5.4.35). claim (5.4.35) is equivalent to

>

r
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(5.4.36)

•
•

Because Eo 'IjJ (X1, e) = 0, cross multiplication shows that (5.4.36) is just the correlation
inequality and the theorem follows because equality holds iff 'IjJ is a nonzero multiple a( e)
of g~ (Xl, e). 0

Note that Theorem 5.4.3 generalizes Example 5.4.1 once we identify 'IjJ(x, e) with
T(x) - A'(e).

The optimality part of Theorem 5.4.3 is not valid without some conditions on the esti
mates being considered.

~",
j
•

,

We can interpret this estimate as first testing H : e = 0 using the test "Reject iff !X I >
n- l / 4

» and using X as our estimate if the test rejects and 0 as our estimate otherwise. We
-

next compute the limiting distribution of vIn(en - e). Let Z '" N(O, 1). Then

~"

~,,

•,,

,
1

,,
1,
,
,

•

1
,,
,
"•

(5.4.38)

(5.4.37)

-
Then X is the

P[IZ + vineI < n l
/

4
]

<I>(n l / 4 - vine) - <I>(_nl / 4 - vine) .

-en 0 if IXI < n- l / 4

X if!XI > n- l
/ 4 .

Example 5.4.2. Hodges's Example.(2) Let Xl, ... ,Xn be i.i.d. N(e,l).
MLE of e and it is trivial to calculate I (e) 1.

Consider the following competitor to X:

•,

.,

.: ,
," ,

Therefore, if e # 0, Po[IXI < n- l / 4 ] ----> 0 because n l / 4 - yTie ----> -00, and, thus,

Po[Bn = X] ----> 1. Ife = 0, Po[IXI < n l /
4

] ----> 1, and Po[Bn = 0] ----> 1. Therefore,

•
i. :

,", ,
'1 f., (5.4.39)

~,

t•,
,'"

I,,
••

where (T2(e) = 1 = do), e # 0, (T2(0) = 0 < I(~)'

The phenomenon (5.4.39) with (T2(e) < I-l(e) for all e E e and (T2(eo) < I-1(eo),
for some eo E e is known as superefficiency. For this estimate superefficiency implies

~

poor behavior of en at values close to 0, see Lehmann and Casella, 1998, p. 442. However,
for higher-dimensional e, the phenomenon becomes more disturbing and has important
practical consequences. We discuss this further in Volume II. 0

5.4.4 Testing

The major testing problem if e is one-dimensional is H : e < eo versus K : e > eo. If
p(', e) is an MLR family in T(X), we know that all likelihood ratio tests for simple e1

~,.......



Property (5.4.42) is sometimes called consistency of the test against a fixed alternative.

Proof. The proof is straightforward:

POD [JnI(Oo) (On - 00) > Z] ----> 1- <1>(z)

Theorem 5.4.4. Suppose the model P = {Po : e E e} is such that the conditions of
~

Theorem 5.4.2 apply to 'IjJ = g~ and en, the MLE. That is,

333

(5.4.42)

(5.4.41)

(5.4.40)

(5.4.43)

(5.4.45)sup IPoo[vn(On - 00 ) > z] - (1 - <1>(z))1 ----> 0,
Z

~

Polen > cn(a,Oo)] ----> O.

~

PO[On > en(a,Oo)] ----> 1.

If0 < 00 ,

Section 5.4 Asymptotic Theory in One Dimension

Lohfii(en - e)) ----> N(0,I-1(e))

where I (e) > 0 for all O. Then

en (a, eo) = 00 + Zl-o./ JnI( eo) + 0(n- 1/2
)

where Zl-o. is the 1 - a quantile ofthe N (0, 1) distribution.
Suppose (A4') holds as well as (A6) and 1(0) < oofor all e. Then
If 0 > 00 ,

versus simple e2 , e1 < e2 , as well as the likelihood ratio test for H versus K, are of the
form "Reject H for T(X) large" with the critical value specified by making the probability
of type I error a at eo. If pC, e) is a one-parameter exponential family in e generated by
T(X), this test can also be interpreted as a test of H : A < AO versus K : A > AO,

• •

where A = A(e) because A is strictly increasing. The test is then precisely, "Reject H for
large values of the MLE T(X) of A." It seems natural in general to study the behavior of

~ ~ ~

the test, "Reject H if en > c(a, eo)" where POo [en > c(a, eo)] = a and en is the MLE
of e. We will use asymptotic theory to study the behavior of this test when we observe
i.i.d. Xl, .. " X n distributed according to Po, e E (a, b), a < eo < b, derive an optimality
property, and then directly and through problems exhibit other tests with the same behavior.

~

Let Cn(a, eo) denote the critical value of the test using the MLE en based on n obser-
•vaHons.

by (5.4.40). Thus,

POD [On > 00 + Zl-o./ JnI( 00 )] = POD [JnI(Oo)(On - 00 ) > Zl-o.] ----> a. (5.4.44)

But Polya's theorem (A. 14.22) guarantees that

which implies that JnI(Oo)(cn(a,Oo) - 00) - ZI-o. ----> 0, and (5.4.41) follows. On the
other hand,

PO[On > cn(a,Oo)] = Po [JnI(O) (On - 0) > JnI(O)(cn(a,eo) - 0)]. (5.4.46)
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By (5.4.41),

y'nI(e)(cn(a, eo) - e) y'nI(e)(eo - e + Zl-cx/ y'nI(eo) + 0(n- 1/ 2 ))

y'nI(e)(eo - e) + 0(1) ----> -00 if e > eo

and --+ 00 if e < eo- Claims (5.4.42) and (5.4.43) follow. 0

Theorem 5.4.4 tells us that the test under discussion is consistent and that for n large
the power function of the test rises steeply to a from the left at eo and continues rising
steeply to 1 to the right of eo. Optimality claims rest on a more refined analysis involving
a reparametrization from e to , _ vn (e - eo). (3)

Theorem 5.4.5. Suppose the conditions of Theorem 5.4.2 and (5.4.40) hold uniformly for
e in a neighborhood of eo. That is, assume

sup{IPo[y'nI(e)(On - B) < z] - (1 - <I>(z))1 : Ie - eol < €(eo)) ----> 0, (5.4.47)

then

,

l
j
•,
,

,
j

1
1,

•
1,,
l
l

I
•

•

1
I

,
,,

,,

I

1

(5.4.48)

(5.4.49)

(5.4.50)

uniformly in ,. Furthermore, if 'Pn(X1 , ..• ,Xn) is any sequence of(possibly randomized)
critical (test)functions such that

Note that (5.4.48) and (5.4.50) can be interpreted as saying that among all tests that are
~

asymptotically level a (obey (5.4.49» the test based on rejecting for large values of Bn is
asymptotically uniformly most powerful (obey (5.4.50» and has asymptotically smallest
probability of type I error for B < Bo. In fact, these statements can only be interpreted as
valid in a small neighborhood of Bo because, fixed means B ----> Bo. On the other hand,
if vn(B - Bo) tends to zero, then by (5.4.50), the power of tests with asymptotic level a

~

tend to a. If vn(B - Bo) tends to infinity, the power of the test based on Bn tends to I by
~

(5.4.48). In either case, the test based on Bn is still asymptotically MP.

Proof. Write

PO[On > cn(a,Bo)] - Po[y'nI(B)(On - B) > JnI(B)(en(a,Bo) - B)]

Po[JnI(B)(On - B) > JnI(B)(Bo - B+ Zl-cx/ JnI(Bo)
+0(n- 1/ 2 ))].

(5.4.51)

for some €(eo) > o. Let Q1 - Po" = vn(e - eo), then

Ql[Bn > cn(a, eo)] --+ 1 - <I>(Zl-CX - ,y'I(eo))

i',

,.

,
i,,,.

,

..,
i
,~,

I
~),

Ii
..._---------------------------------



n

"Reject if L log[p(Xi , B:.)/p(Xi, eo)]I(Bn > eo) > kn(eo,a)."
i=l

If, = y'n(e - eo) is fixed, 1(e) = 1 (eo + In) --+ 1(eo) because our uniformity

assumption implies that e --+ 1(e) is continuous (Problem 5.4.7). Thus,

335

(5.4.52)

1 - <I>(zl-a(1 + 0(1)) + In(I(eo) + o(I))(eo - e) + 0(1))

1 - <I>(Zl-a -,v1(eo)) + 0(1))

~

Q')'[en > cn(a, eo)]

Section 5.4 Asymptotic Theory in One Dimension

where p(x, e) denotes the density of Xi and dn, En are uniquely chosen so that the right
hand side of (5.4.53) is a if, is O.

Further Taylor expansion and probabilistic arguments of the type we have used show
that the right-hand side of (5.4.53) tends to the right-hand side of (5.4.50) for all,. The
details are in Problem 5.4.5. 0

The asymptotic results we have just established do not establish that the test that rejects
~

for large values of en is necessarily good for all alternatives for any n.
~

The test 1[en > cn(a, eo)] of Theorems 5.4.4 and 5.4.5 in the future will be referred
to as a Wald test. There are two other types of test that have the same asymptotic behavior.
These are the likelihood ratio test and the score or Rao test.

It is easy to see that the likelihood ratio test for testing H : () < eo versus K : e > eo
is of the form

and (5.4.48) follows.
To prove (5.4.50) note that by the Neyman-Pearson lemma, if, > 0,

n P (Xi, eo + In)
< POo +In L log (X e ) > dn(a, eo)

i=l P t, 0

n P (Xi, eo + "*)
+EnPOo+* Llog (X e ) = dn(a, eo) ,

i=l P tl 0

(5.4.53)

It may be shown (Problem 5.4.8) that, for a < ~, kn(eo,a) = zr-a + 0(1) and that
if 0Wn(X1"", X n) is the critical function of the Wald test and 0Ln(X1"", X n) is the
critical function of the LR test then, for all"

POo+-j,; [OLn(X1"" ,Xn) = OWn (Xl, "', X",)] --+ 1. (5.4.54)

Assertion (5.4.54) establishes that the test 0Ln yields equality in (5.4.50) and, hence, is
asymptotically most powerful as well.

Finally, note that the Neyman Pearson LR test for H : e = eo versus K : eo + E, E> a
rejects for large values of

1
- [log Pn (Xl, ... , X n, eo + E) - log Pn (X1 , ... , X n , eO) ]
E
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where Pn (X1, ... , X n, e) is the joint density of Xl, ... , X n. For € small, n fixed, this is
approximately the same as rejecting for large values of a~o logPn(X1"", X n,eo).

The preceding argument doesn't depend on the fact that X 1",.,Xn are i.i.d. with
common density or frequency function p(x, e) and the test that rejects H for large values
of a~o log Pn (Xl, ... , X n, eo) is, in general, called the score or Rao test. For the case we
are considering it simplifies, becoming

n a
"Reject H iff L ae 10gp(X;, eo) > Tn(a, eo)."

;=1 0

It is easy to see (Problem 504.15) that

Tn(a, eo) = Zl-a -InI(eo) + o(n1
/

2
)

"I

I
•

•• I,

•
•,

!

!
l
~,
, -:.

,',

and that again if 0Rn (X1, ... , X n) is the critical function of the Rao test then

Pllo+--l...- [oRn(X1"", X n) = OWn (Xl, ... , X n)] --+ 1, (504.56)vn
(Problem 5.4.8) and the Rao test is asymptotically optimal.

Note that for all these tests and the confidence bounds of Section 5.4.5, 1(eo), which
d 2 ~

may require numerical integration, can be replaced by _n- 1 dIl2ln(en) (Problem 5.4.10).

5.4.5 Confidence Bounds

,,
•

,
•

I
••

•,

I·
We define an asymptotic level 1 - a lower confidence bound (LeB) en by the requirement
that

(5.4.57)

,
•

(i) By using a natural pivot.

(ii) By inverting the testing regions derived in Section 5.4.4.

for all eand similarly define asymptotic level 1 - a DeBs and confidence intervals.
We can approach obtaining asymptotically optimal confidence bounds in two ways:

(5.4.60)

(5.4.59)e~ = 'On - Zl-a/JnI('On).

Turning tto method (ii), inversion of OWn gives formally

e~l = inf{e: Cn(a,e) > 'On}

Method (i) is easier: If the assumptions of Theorem 5.4.4 hold, that is, (AO)-(A6),
(A4/), and 1(e) finite for all e, it follows (Problem 5.4.9) that

LII( JnI(Bn)('On - e)) --+ N(o, 1) (5.4.58)

for all eand, hence, an asymptotic level 1 - a lower confidence bound is given by

,

r
I
I
1,,
;II
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d

•
•

,

-----------------------------------------



5.5 ASYMPTOTIC BEHAVIOR AND OPTIMALITY OF
THE POSTERIOR DISTRIBUTION

Bayesian and frequentist inferences merge as n ----> 00 in a sense we now describe. The
framework we consider is the one considered in Sections 5.2 and 5.4, i.i.d. observations
from a regular model in which e is open C R or e = {e l , ... , ed finite, and eis identifi
able.

Most of the questions we address and answer are under the assumption that (J = e, an
arbitrary specified value, or in frequentist terms, that eis true.
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(5.4.61)
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or if we use the approximation cn(a, e) = e + Zl-n/ jnI(e), (5.4.41),
~

e~2 = inf{e : cn(a, e) > en}.

In fact neither e~l' or e~2 properly inverts the tests unless Cn(a, e) and Cn (a, e) are
increasing in e. The three bounds are different as illustrated by Examples 4.4.3 and 4.5.2.

If it applies and can be computed, e~l is preferable because this bound is not only
approximately but genuinely level 1 - a. But computationally it is often hard to implement
because cn(a, e) needs, in general, to be computed by simulation for a grid of evalues.
lYpically, (5.4.59) or some equivalent alternatives (Problem 5.4.10) are preferred but can
be quite inadequate (Problem 5.4.11).

These bounds e~, e~l' e~2' are in fact asymptotically equivalent and optimal in a suit
able sense (Problems 5.4.12 and 5.4.13).

Summary. We have defined asymptotic optimality for estimates in one-parameter models.
In particular, we developed an asymptotic analogue of the information inequality of Chap
ter 3 for estimates of e in a one-dimensional subfamily of the multinomial distributions,
showed that the MLE formally achieves this bound, and made the latter result sharp in the
context of one-parameter discrete exponential families. In Section 5.4.2 we developed the
theory of minimum contrast and M -estimates, generalizations of the MLE, along the lines
of Huber (1967). The asymptotic formulae we derived are applied to the MLE both under
the model that led to it and under an arbitrary P. We also delineated the limitations of
the optimality theory for estimation through Hodges's example. We studied the optimal
ity results parallel to estimation in testing and confidence bounds. Results on asymptotic
properties of statistical procedures can also be found in Ferguson (1996), Le Cam and Yang
(1990), Lehmann (1999), Rao (1973), and Serfling (1980).

Consistency

The first natural question is whether the Bayes posterior distribution as n ----> 00 con
centrates all mass more and more tightly around e. Intuitively this means that the data that
are coming from Po eventually wipe out any prior belief that parameter values not close to
eare likely.

Formalizing this statement about the posterior distribution, II(· I Xl, ... ,Xn ), which
is a function-valued statistic, is somewhat subtle in general. But for e = {e1, ... ,ed it is
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straightforward. Let

(5.5.1)

Then we say that IICI X I, ... , X n) is consistent iff for all 0 E e,

for all E > a. There is a slightly stronger definition: IIC I Xl,' .. ,Xn ) is a.s. consistent
iff for all 0 E e,

71"(0 I Xl, ... , X n) --+ 1 a.s. Po· (5.5.3)

General a.s. consistency is not hard to fonnulate:

(5.5.4)

,
-•-,
•

,
"/.
P:
•
,

"..
•

..
,(
:'
•
•

where =} denotes convergence in law and orO} is point mass at O. There is a completely
satisfactory result for e finite.

Theorem 5.5.1. Let 71"j P[O = OJ], j = 1, ... , k denote the prior distribution ofO. Then
II(· I Xl, ... ,Xn ) is consistent (a.s. consistent) iff71"j > afor j = 1, ... , k.

Proof Let p(', 0) denote the frequency or limit j function of X. The necessity of the
condition is immediate because 71"j = 0 for some j implies that 71" (OJ I X I, ... , X n) = a
for all Xl, ... , X n because, by (1.2.8),

71"(Oj IXl, ... , X n ) P[O = OJ I Xl, ... , X n ]

71"j rr=l p(Xi , OJ) (5.5.5)
k n .

I:a=l 71"a TIi=1 p(Xi , Oa)

Intuitively, no amount of data can convince a Bayesian who has decided a priori that OJ is
impossible.

On the other hand, suppose all71"j are positive. If the true 0 is OJ or equivalently 0 = OJ,
then

in probability (respectively a.s.). But EOj (lOg :t~~::;l) < 0, by Shannon's inequality, if

Oa # OJ. Therefore,

•,,

..
1
!,..,

,
,

i

,
•,

.,,
;

o

•

--+ -00,

1 71"a 1~ I p(Xi,Oa)
- log - + - L.J 0 g '---'----'-'--'-'-
n 71"j n i=l p(Xi,Oj)

1~1 p(Xi,Oa) E
- L.J og --+ OJ
n i=l p(Xi , OJ)

By the weak (respectively strong) LLN, under POj ,

I
71"(Oa I XI, ... ,Xn)

og
71"(Oj I Xl, ... , X n)

in the appropriate sense, and the theorem follows.

•
1

..,
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~;;az _



a.s. Po for all e.
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(5.5.9)

(5.5.6)

(5.5.7)

(5.5.8)

< -E(0, e) --+ 1.
1 n

- 2)z(X;, ef
) -1(X;, e)] : IB' - el > 0

n.,=1

sup IP[vn(() - 0) < x IXl, ... ,Xn ] - <I>(xJI(e))1 --+ 0
x

Po sup

Section 5.5 Asymptotic Behavior and Optimality of the Posterior Distribution

~

Consider.L:(vn(() - e) I Xl, .. " X n ), the posterior probability distribution of vn(O-
~ ~

e(Xl , ... , X n )), where we emphasize that e depends only on the data and is a constant
given Xl,' .. , X n . For conceptual ease we consider A4(a.s.) and A5(a.s.), assumptions
that strengthen A4 and A5 by replacing convergence in Po probability by convergence a.s.
Po. We also add,

A7: For all e, and all 0 > 0 there exists E(O, e) > 0 such that

Asymptotic normality of the posterior distribution

Under conditions AO-A6 for p(x, e) = l(x, e) logp(x, e), we showed in Section 5.4
~

that if eis the MLE,

Remark 5.5.1. We have proved more than is stated. Namely, that for each eE e, PolO #
e 1 Xl, ... , X n] --+ aexponentially. 0

As this proof suggests, consistency of the posterior distribution is very much akin to
consistency of the MLE. The appropriate analogues of Theorem 5.2.3 are valid. Next we
give a much stronger connection that has inferential implications:

AS: The prior distribution has a density 11"(') on e such that 11"(') is continuous and positive
at all e.

Remarkably,

Theorem 5.5.2 ("Bernstein/von Mises"). If conditions AO-A3, A4(a.s.), A5(a.s.), A6,
A7, and A8 hold, then

a.s. under Po for all e.
We can rewrite (5.5.7) more usefully as

for all ea.s. Po and, of course, the statement holds for our usual and weaker convergence
in Po probability also. From this restatement we obtain the important corollary.

Corollary 5.5.1. Under the conditions of Theorem 5.5.2,
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Remarks
(I) Statements (5.5.4) and (5.5.7)-(5.5.9) are, in fact, frequentist statements about the

asymptotic behavior of certain function-valued statistics.
(2) Claims (5.5.8) and (5.5.9) hold with a.s. replaced by in Po probability if A4 and

A5 are used rather than their strong forms-see Problem 5.5.7.
(3) Condition A7 is essentially equivalent to (5.2.8), which coupled with (5.2.9) and

~

identifiability guarantees consistency of Bin a regular model.
~

Proof We compute the posterior density of Vii(O - B) as

n
~ t

Xi,B + Vii (5.5.10)

~

Divide top and bottom of (5.5.10) by rr~ 1 p(Xi , B) to obtain

ds.
~ s

Xi,B + Vii
n

•

i
•

(5.5.11)

(5.5.12)

ds.

for all t = 1

~ s ~

Xi,B+ Vii -1(Xi,B)

~ t ~

Xi, B+ Vii -1(Xi , B)

n

LI
i=1

expdn = /00 71"-00

n

exp L 1
i=1

where lex, B) = logp(x, B) and

We claim that

for all B. To establish this note that

(a) sup { 71" (0+ In) -7I"(B) : ItI < M} ----> 0 a.s. for all M because Ois a.s. consis

tent and 71" is continuous.

(b) Expanding,

1,,
,
,
i
I

l
.j
1

n

L I
i=1

~ t
Xi,B+ Vii

~

-1(Xi,B)
t2 1 n {PI

= 2" n L 8B2 (Xi,B*(t))
,=1

(5.5.13)

i
l

,,,
I
•,

I
---------------------------------------
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(5.5.14)

(5.5.19)

(5.5.18)

for all t = 1.

for all ItI < o(O)yn --+ 1.

(5.5.17)

ds = 1r(0)V21f.
)1(0)

2

1
-Eo
4

1
00 s21(0)

dn --+ 1r(0) exp __-0..-'-

-00 2

1: 1r
n

~ S

L l
~ s ~

dn 0+ ..jii exp Xi,O + ..jii -1(Xi,O) ds
i=1

)( dnqn(s)ds (5.5.15)
Isl<dvn

+..jii J 1r(t) exp

n
L(I(Xi, t) -1(Xi,O))

~

1(lt - 01 > o)dt
i=1

Using A6 we obtain (5.5.12).

Now consider

where Ie - O(t) I < )n. We use 2::7 1 g~ (Xi, e) = 0 here. By M(a.s.), A5(a.s.),

i=1

for all M, a.s. Po. Using (5.5.13), the strong law of large numbers (SLLN) and A8,
we obtain (Problem 5.5.3),

n

P. "'(I(X t) I(X ll)) .' It - III > J.: < e-m(d,O) ~ 1 (5.5.16)o sup exp L...- i, - i, U U u ~

Section 5.5 Asymptotic Behavior and Optimality of the Posterior Distribution

By A5 and A7,

for all 0 so that the second term in (5.5.14) is bounded by yne-m(d,O) --+ 0 a.s. Po for all
o> O. Finally note that (Problem 5.5.4) by arguing as for (5.5.14), there exists 0(0) > 0
such that

By (5.5.15) and (5.5.16), for all 0> 0,

Po dn - r dnqn(s)ds --+ 0 = 1.
J1S1<dvn

Finally, apply the dominated convergence theorem, Theorem B.7.5, to dnqn(sl(lsl <
0(0)..jii)), using (5.5.14) and (5.5.17) to conclude that, a.s. Po,
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Hence, a.s. Po,
qn(t) ----> VI(e)<p(tvI(e))

,
•

where <p is the standard Gaussian density and the theorem follows from Scheffe's Theorem
B.7.6 and Proposition B.7.2. 0

Example 5.5.1. Posterior Behavior in the Normal Translation Model with Normal Prior.
(Example 3.2.1 continued). Suppose as in Example 3.2.1 we have observations from a
N(e, (T2) distribution with (T2 known and we put aN(T/, 7 2 ) prior on (J. Then the posterior

distribution of(J isN (WlnT/ + W2nX, (;2 + Tl,)-I) where

,,,
••
]

~
1,
I
i

(5.5.20)

(5.5.21)
I:

----> N(o, 1).U a
a,b - a + b

1

(a+ b)3 2

ab

Example 5.5.2. Posterior Behavior in the Binomial-Beta Model. (Example 3.2.3 contin
ued). If we observe Sn with a binomial, B(n, e), distribution, or equivalently we observe
XI, ... ,Xn Li.d. Bernoulli (1, B) and put a beta, (3(1', s) prior on B, then, as in Example
3.2.3, (J has posterior (3(Sn + 1', n + s - Sn). We have shown in Problem 5.3.20 that if Ua,b

has a (3(a, b) distribution, then as a ---+ 00, b ----> 00,

Evidently, as n ----> 00, WIn ----> 0, X ----> e, a.s., if (J = e, and (~ + ;2) -1 ---->

0. That is, the posterior distribution has mean approximately B and variance approxi
mately 0, for n large, or equivalently the posterior is close to point mass at e as we

~ - ~

expect from Theorem 5.5.1. Because e = X, vn((J - e) has posterior distribution

N(Vnwln(T/-X),n(~+~)-I). Now, vnWln O(n- 1
/
2) = 0(1) and

n (~ + ~) -1 ---+ (T2 = I-I (B) and we have directly established the conclusion of Theo
rem 5.5.2. 0

I..

il
Ii,
I
1,
•
I

I
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Bayesian optimality of optimal frequentist procedures and frequentist optimality of
Bayesian procedures

Theorem 5.5.2 has two surprising consequences.

If ° < B < 1 is true, Sn/n ~. B so that Sn + l' ----> 00, n + s - Sn ---+ 00 a.s. Po.
By identifying a with Sn + l' and b with n + s - Sn we conclude after some algebra that

~ -
because B = X,

vn((J - X) £, N(O, B(l - e))

a.s. Po, as claimed by Theorem 5.5.2. o

,
•

j

~
1
J

1

••,
•

1.,
(a) Bayes estimates for a wide variety of loss functions and priors are asymptotically

efficient in the sense of the previous section.I,,'
i'

~.
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...._-------------------------------------
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(5.5.22)

(5.5.23)

(5.5.26)

(5.5.24)

(5.5.27)

Section 5.5 Asymptotic Behavior and Optimality of the Posterior Distribution

a.s. Pe for all e. Consequently,

0* = e + ~ t I-I (e) ;~ (Xi, e) + opo (n- l / 2
)

i=l

and LehITi(B* - e)) -7 N(o,I-l(e)).
(ii)

and, hence, that

E(vn(IO - 01-10 - 0*1) 1Xl,'" ,Xn) < 0110 - 0*1-70
a.s. Pe, for alllJ. Because a.s. convergence Pe for alllJ impliel> a.s. convergence P (8.?),
claim (5.5.24) follows and, hence,

E(01(IO - 01-1(1) IXl, ... ,Xn) = E(01(IO - 0*1-1(1) I XI,'" ,Xn) +op(l).
(5.5.28)

But uniform convergence of distribution functions implies convergence ofquantiles that
are unique for the limit distribution (Problem 8.7.11). Thus, any median of the posterior-distribution of 01(0 - e) tends to 0, the median of N(O, I-I OJ)), a.s. Pe. But the median- --of the posterior of 01(0 - IJ) is 01(e* -IJ), and (5.5.22) follows. To prove (5.5.24) note
that

E(01( 10 - 01 - 101 IXl, ... ,Xn) = min E(01(10 - dl - 1(1) I Xl, ... ,Xn) + 0 p (1).
d

(5.5.25)

Thus, (i) corresponds to claim (a) whereas (ii) corresponds to claim (b) for the loss
functionsln(e, d) = y'n(je-dl-jel). But the Bayes estimates for In andforl(e,d) = IIJ
dl must agree whenever E(IOII Xl, ... ,Xn) < 00. (Note that if E(IOII Xl, ... ,Xn) =

00, then the posterior Bayes risk under I is infinite and all estimates are equally poor.)
Hence, (5.5.25) follows. The proof of a corresponding claim for quadratic loss is sketched
in Problem 5.5.5.

Proof. By Theorem 5.5.2 and Polya's theorem (A.l4.22)

sup IP[01(O - 0) < x I Xl,"" X n) - <I>(XvI(e))I---> 0 a.s. Pe.

-Theorem 5.5.3. Suppose the conditions of Theorem 5.5.2 are satisfied. Let e be the MLE-ofe and let e* be the median of the posterior distribution of 0. Then
(i)

(b) The maximum likelihood estimate is asymptotically equivalent in a Bayesian sense
to the Bayes estimate for a variety of priors and loss functions.

As an example of this phenomenon consider the following.
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Because by Problem 1.4.7 and Proposition 3.2.1, e* is the Bayes estimate for In(e, d),
(5.5.25) and the theorem follows. 0

Remark. In fact, Bayes procedures can be efficient in the sense of Sections 5.4.3 and 6.2.3
even if MLEs do not exist. See Le Cam and Yang (1990).

Bayes credible regions
~

There is another result illustrating that the frequentist inferential procedures based on e
agree with Bayesian procedures to first order.

Theorem 5.5.4. Suppose the conditions ofTheorem 5.5.2 are satisfied. Let

where Cn is chosen so that 1r(en I Xl, ... ,X n) = 1 - 0', be the Bayes credible region
defined in Section 4.7. Let Inh) be the asymptotically level 1 -, optimal interval based

~

on e, given by
~ ~

Inh) = [e - dnh), e + dnh)]

,
••

where dn h) = z (1 - ~) VI~). Then,for every € > 0, e,
,
i
•

(5.5.29)
•
!
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The proof, which uses a strengthened version of Theorem 5.5.2 by which the poste-
~

rior density of ,fii((J - B) converges to the N(O,I-I (B)) density uniformly over compact
neighborhoods of Bfor each fixed B, is sketched in Problem 5.5.6. The message of the the
orem should be clear. Bayesian and frequentist coverage statements are equivalent to first
order. A finer analysis both in this case and in estimation reveals that any approximations to
Bayes procedures on a scale finer than n- I / 2 do involve the prior. A particular choice, the
Jeffrey's prior, makes agreement between frequentist and Bayesian confidence procedures
valid even to the higher n- l order (see Schervisch, 1995).

Testing

Bayes and frequentist inferences diverge when we consider testing a point hypothesis.
For instance, in Problem 5.5.1, the posterior probability of Bo given Xl>.'" X n if His
false is of a different magnitude than the p-value for the same data. For more on this so
called Lindley paradox see Berger (1985) and Schervisch (1995). However, if instead of
considering hypothesis specifying one points Bo we consider indifference regions where H
specifies [Bo+~) or (Bo-~, Bo+ ~), then Bayes and frequentist testing procedures agree
in the limit. See Problem 5.5.2.

Summary. Here we established the frequentist consistency of Bayes estimates in the fi
nite parameter case, if all parameter values are a prior possible. Second, we established

J

I
•,
!
l I

~ I

~--------------------

1

J
-



(a) Show that
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1
1
P- 1(t)t k(1 - t)kdt

1
1
[P- 1(tWt k(1 - tldt

2k
k

2k
k

n

n

(a) Show that, if n = 2k + 1,

Section 5.6 Problems and Complements

P[T < t] = 2m1
00

<I>(tw - J.t)fm(mw2)wdw

Problems for Section 5.1

1. Suppose Xl, ... , X n are i.i.d. as X '" P, where P has median p-1 (~) and a continu
ous case density.

where f m (w) is the X~ density, and <I> is the normal distribution function.

00

p(t) = 2L P[R = i] . hi+1(t2)[cp(t - J.t)I(t > 0) + cp(t + J.t)I(t < 0)]
i=O

where R is given in Problem 8.3.12.

the so-called Bernstein-von Mises theorem actually dating back to Laplace (see Le Cam
and Yang, 1990), which establishes frequentist optimality of Bayes estimates and Bayes
optimality of the MLE for large samples and priors that do not rule out any region of the
parameter space. Finally, the connection between the behavior of the posterior given by the
so-called Bernstein-von Mises theorem and frequentist confidence regions is developed.

1

(b) If Xl, . . " X n are i.i.d. N(J.t, 0'2) show that y'riX (nIl L:(Xi - X?) 2 has a

noncentral t distribution with noncentrality parameter y'riJ.t/0' and n - 1 degrees offree
dom.

(c) Show that T 2 in (a) has a noncentral F 1,m distribution with noncentrality parameter
J.t2. Deduce that the density of T is

(b) Suppose P is uniform, U(O, 1). Find the MSE of the sample median for n = 1, 3,
and 5.

2. Suppose Z '" N(J.t, 1) and V is independent of Z with distribution X;". Then T =
Z / (;;.) ~ is said to have a noncentral t distribution with noncentrality J.t and m degrees

of freedom. See Section 4.9.2.
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±1 with1, then Var(X) < 1 with equality iff X

Hint: Condition on ITI.

3. Show that if P[IXI < 1]
probability ~.

Hint: Var(X) < EX2 .

4. Comparison of Bounds: Both the Hoeffding and Chebychev bounds are functions of n
and Ethrough y'iiE.

(a) Show that the ratio of the Hoeffding function h( y'iiE) to the Chebychev function
c( y'iiE) tends to 0 as y'iiE -> 00 so that h(·) is arbitrarily better than c(·) in the tails.

(b) Show that the normal approximation 2<I> ( V;<) - 1 gives lower results than h in

the tails if P[IXI < 1] = 1 because, if (T2 < 1,1 - <I>(t) ~ r.p(t)lt as t -> 00.
Note: Hoeffding (1963) exhibits better bounds for known (T2.

5. Suppose>. : R -> R has >'(0) = 0, is bounded, and has a bounded second derivative >.1/.
Show that if Xl, ... , X n are Li.d., EX I = p and Var Xl = (T2 < 00, then

Problems for Section 5.2

1. Using the notation of Theorem 5.2.1, show that

as n -> 00.
2 1
-+0 -
1r n

E>.(X - p) = >"(O):n

Hint: y'iiE(>.(IX - pi) - >'(0)) = E>"(O)y'iiIX - pi + E e;' (X - p)(X - p)2)

where IX - pi < IX - pl· The last term is < suPx 1>,I/(x)I(T2 In and the first tends to
>" (O)(T rooc Izlr.p(z )dz by Remark B.7.1(2).

2. LetXI , ... ,Xn be i.i.d. N(p, (T2). Show that for all n > 1, all E > 0

,

I',

I
I,

i'
;! •

p = sin21r

sup p(/i,O') [IX - pi > E] = 1.
0'

Hint: Let (T -> 00.

3. Establish (5.2.5).
Hint: llin - q(p)1 > E=;. IPn - pi > W-I(E).

4. Let (Ui, Vi), 1 < i < n, be Li.d. ~ PEP.

(a) Let ,(P) = P[UI > 0, VI > 0]. Show that if P = N(O, 0,1,1, p), then

1
,(P) - 4 .

117 0
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n

211" ~ L l(X; > X)l(Y; > Y)
n

;=1

- .p _ 8m

(b) Deduce that if P is the bivariate normal distribution, then

Section 5.6 Problems and Complements

Eoo inf{p(X, 8') - p(X, 80 ) : 8' E 5(8, q8))} > €.

K n {8: 18 - 80 1 > A} C U5(8j,0(8j )).

j=l

lim Eoo sup{lp(X, 8') - p(X, 8)1 : 8' E 8(8, on = 0
d~O

(ii) Eoo inf{p(X, 8) - p(X, 80 ) : IB - 80 1> A} > 0 for some A < 00.

~

Show that the maximum contrast estimate 8 is consistent.
Hint: From continuity of p, (i), and the dominated convergence theorem,

inf

By compactness there is a finite number 81 , ... , 8r of sphere centers such that

(b) Show that condition (5.2.14)(i),(ii) holds.
Hint: K can be taken as [-A, A], where A is an arbitrary positive and finite constant.

6. Prove that (5.2.14)(i) artd (ii) suffice for consistency.

7. (Wald) Suppose 8 -+ p(X, 8) is continuous, 8 E Rand

(i) For some €(80 ) > 0

Eoo sup{lp(X, 8') - p(X, 8)1 : 18 - 8'1 < €(80 )} < 00.

is a consistent estimate of p.

(c) Suppose p(P) is defined generally as Covp(U, V)/JVarpU VarpV for PEP =
{P : E pU 2 + EpV 2 < 00, VarpU VarpV > O}. Show that the sample correlation
coefficient continues to be a consistent estimate of p(P) but Pis no longer consistent.

5. Suppose Xl, ... ,Xn are ij.d. N(/.1, CJ6) where CJo is known.

(a) Show that condition (5.2.8) fails even in this simplest case in which X .!., /.1 is clear.

Hint: sup 1.. ",n (CXi-I')' _ (1 + (1'-1'0)')) = 00.
JJ. n 0'1,= 1 0-2 0- 2

o 0

where 5(8,0) is the 0 ball about 8. Therefore, by the basic property of maximum contrast
estimates, for each 8 f= 80 , and € > 0 there is 0(8) > 0 such that
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•> mIn
l<j<T

•

For r fixed apply the law of large numbers.

8. The condition of Problem 7(ii) can also fail. Let X, be i.i.d. N(p., (T2). Compact sets
J( can be taken of the form {1p.1 < A, € < (T < 1/€, € > O}. Show that the log likelihood
tends to 00 as (T ----> 0 and the condition fails.

,

",
,,

9. Indicate how the conditions of Problem 7 have to be changed to ensure uniform consis
tency on K.

10. Extend the result of Problem 7 to the case eE RP, P > 1.
,

",

,
•
~,',

, ':

Problems for Section 5.3

1. Establish (5.3.9) in the exponential model of Example 5.3.1.

2. Establish (5.3.3) for j odd as follows:

•!

,
,
•
i,

-

d

< mm+l L EIYk - p.kl m

k=1
< Cm n-k / 2 .

d

E Il(Yk _P.k)i k

k=l

] ]+1 i
n n n ,

LCi€i
J

LCi€i LC~E < Ej+l < M· •- ]

i=1 i=1 i=1

. L

(iv) E IL:~ 1(Xi - X:w < MjE [L:~ 1 (Xi - X:J2]' <
i [1 L:n , 2] L i ( I L: .)M'n,E - . (X-X) , < M'n,E - IX-X'I] <J n 1.=1 t t - J n t t

p.lj·

(i) Suppose X~, ... ,X~ are Li.d. with the same distribution as XI, ... ,Xn but inde
pendent of them, and let X' = n- 1:EXI- Then EIX - p.lj < EIX - X'i j .

(iii) Condition on IXi - Xn, i = 1, ... ,n, in (i) and apply (ii) to get

(ii) If €i are ij.d. and take the values ±1 with probability ~, and if Cl, •.• ,en are con
stants, then by Jensen's inequality, for some constants M j ,

3. Establish (5.3.11).
Hint: See part (a) of the proof of Lemma 5.3.1.

4. Establish Theorem 5.3.2. Hint: Taylor expand and note that if i 1 + ... + id = m

,
•



(c) Now suppose that F and G are not necessarily normal but that

and that 0 < Var( X?) < 00. Show that if m = >'k for some>. > 0 and

. - a
G E Q = F b : a E R, b > 0

349

m

< mm-l L ai·
j=l

m

a~\ . .. , a~d < [max(al"'" ad)]m < L aj
j=l

m

sup{IE(Xi j1" •• ,Xi ,)1 :il, ... ,ij;j =l, ... ,n}=EIXI I·

. .

EIXI - p,1] = E{IXI - p,1] IIXII > 1p,I}P(IXII > 1p,1)

+E{IXI - p,1] IIXII < 1p,I}P(IXII < 1p,1)·

Suppose ad > 0, 1 < j < m, ~~=l i j = m then

Section 5.6 Problems and Complements

5. Let X I, ... , X n be Li.d. R valued with EX1 = O. Show that

6. Show that if Elxllj < oo,j > 2, then EIXI - p,lj < 2j Elxl lj·

Hint: By the iterated expectation theorem

(d) Let Ck,m be Ck,m with Ii, replaced by its method of moments estimate. Show that
under the assumptions of part (c), if 0 < EX~ < 00, PH(sV s~ < Ck,m) --+ 1 - a as
k --+ 00.

7. Establish 5.3.28.

Ii, ( k + m) 2 2)
---'-.,--------'-Zl-c" Ii, = Var[(XI - P,l)/CJI] , P,l = E(XI ), CJI = Var(XI .

km

Then, under H : Var(Xr) = Var(YiJ, P(sV s~ < Ck,m) --+ 1 - a as k --+ 00.

Ck m = 1 +,

8. Let Xl, ... , X n, be Li.d. F and YI , ... , Yn2 be i.i.d. G, and suppose the X's and Y's
are independent.

(a) Show that if F and G are N(p,l,af) and N(p,2,CJ~), respectively, then the LR
test of H : CJr = CJ~ versus K : CJr # CJ~ is based on the statistic s? / s~, where s? =
(nl - 1)-1 2:~'1 (Xi - X)2, s~ = (n2 - 1)-12:72 1(Yj _ y)2.

(b) Show that when F and G are normal as in part (a), then (sVCJr)/(sVCJ~) has an
:h m distribution with k = nl - 1 and m = n2 - 1.,
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(e) Next drop the assumption that G E g. Instead assume that 0 < Var(Y?) < oc.
Under the assumptions of part (c), use a normal approximation to find an approximate
critical value qk,m (depending on h'l = Var[(X1-Jid/0"1]2 and ~2 = Var[(X2 -J.L2)/0"2]2
such that PH(si!s~ < qk,m) ---+ 1 - a as k ---+ 00.

(f) Let qk,m be qk,m with K1 and K2 replaced by their method of moment estimates.
Show that under the assumptions of part (e), if 0 < Exf < 00 and 0 < Ey1

8 < 00, then
P(si!s~ < qk,m) ---+ 1 - a as k ---+ 00.

9. In Example 5.3.6, show that

(a) If J.L1 = J.L2 = 0,0"1 = 0"2 = 1, J1l((C - p), ((;? - 1), ((;~ - 1))T has the same
asymptoticdistributionasn~[n-1~XiYi-p,n-1~X; -1,n-1~Yi2 -If.

(b) If (X, Y) ~ N(J.L1' J.L2, O"i, O"~, p), then J1l(r2 - p2) !:.., N(O, 4p2(1 - p2)2) and,
if p i= 0, then J1l(r - p) ---+ N(O, (1 - p2)2).

(c) Show that if p = 0, J1l(r - p) ---+ N(O, 1).
Hint: Use the central limit theorem and Slutsky's theorem. Without loss of generality,

J.L1 = J.L2 = 0, O"? = O"~ = 1.

10. Show that ; log (i~~) is the variance stabilizing transformation for the correlation

coefficient in Example 5.3.6.

H ' W . 1 1 ( 1 I )tnt: nte (1_p)2 = 2 1-p + l+p .

11. In survey sampling the model-based approach postulates that the population
{x 1, .. , , X N} or {(u 1, X I), , .. , (u N, X N)} we are interested in is itself a sample from a
superpopulation that is known up to parameters; that is, there exists T 1 , •• , , TN ij,d. Pe,
() E e such that Ti = ti where ti - (Ui, x;), i = 1, ... , N, In particular, suppose in
the context of Example 3.4.1 that we use Til, ... , T;n' which we have sampled at random

from {t 1 , ... , t N }, to estimate x - J, L:~ I Xi· Without loss ofgenerality, suppose i j = j,
1 < j < n. Consider as estimates

~ -. -
(ii) X R = bopt(U - u) as in Example 3.4.1.

Show that, if ~ ---+ >.. as N ---+ 00, 0 < >.. < 1, and if EX? < 00 (in the supermodel),
then

(a) J1l(X - x) !:.., N(O, 7 2 (1 - >")) where 7 2 = Var(XI).

(b) Suppose Pe is such that Xl = bUi +Ei, i = 1, ... , N where the Ei are ij,d., EEi = 0,

Var( Ei) = 0"2 < 00 and Var(U) > O. Show that J1l(XR -x) !:.., N(O, (1->")0"2),0"2 < 7 2 ,

Hint: (a) X - x = (1 - ~) (X - XC) wHere XC = N~n L:~ n+1 Xi,
~ -

(b) Use the delta method for the multivariate case and note (bopt - b)(U - u)
I

op(n- 2 ),

•

•
i
],
•
I
••

j
'j

•

1

....._-----------------------------------_.
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12. (a) Suppose that EIYl 1
3 < 00. Show that IE(Ya - J.La)(Yb - J.Lb)(Yc - J.Lc)1 < Mn- 2 .

(b) Deduce fonnula (5.3.14).
Hint: If U is independent of (V, W), EU = 0, E(WV) < 00, then E(UVW) = O.

13. Let Sn have a X;; distribution.

(a) Show that if n is large, vs;, - .jTi has approximately a N(O, ~) distribution. This
is known as Fisher's approximation.

(b) From (a) deduce the approximation P[Sn < x] ~ <I> (J2X - V21l).

(c) Compare the approximation of (b) with the central limit approximation P[Sn <
xl = <I>((x - n)/V21l) and the exact values of P[Sn < xl from the X2 table for x = XO.90,

X = XO.99, n = 5, 10, 25. Here x q denotes the qth quantile of the X;; distribution.

14. Suppose Xl, ... ,Xn is a sample from a population with mean J.L, variance (J"2, and
third central moment J.L3. Justify fonnally

Hint: Use (5.3.12).

15. It can be shown (under suitable conditions) that the nonnal approximation to the distri-
- -

bution of h(X) improves as the coefficient of skewness lIn of h(X) diminishes.

(a) Use this fact and Problem 5.3.14 to explain the numerical results of Problem
5.3.13(c).

(b) Let Sn ~ X;,. The following approximation to the distribution of Sn (due to Wilson
and Hilferty, 1931) is found to be excellent

17. Suppose Xl, ... ,Xn are independent, each with Hardy-Weinberg frequency function
f given by

Use (5.3.6) to explain why.

16. Normalizing Transformation for the Poisson Distribution. Suppose Xl, . .. ,Xn is a
sample from a P()..) distribution.

(a) Show that the only transfonnations h that make E[h(X) - E(h(X))j3 = 0 to tenns
up to order 1/n2 for all)" > 0 are of the fonn h(t) = ct2 / 3 + d.

(b) Use (a) to justify the approximation
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26(1 - 6)
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2
(1 - 6)

..
'.

""

,
'"

where 0 < 6 < 1.

(a) Find an approximation to P[X < t] in terms of 6 and t.

(b) Find an approximation to P[VX < t] in tenns of 6 and t.

(c) What is the approximate distribution of .Jii(X - J.L) + X Z, where J.L = E(Xj )?

18. Variance Stabilizing Transfonnation for the Binomial Distribution. Let X I, ... , X n

be the indicators of n binomial trials with probability of success 6. Show that the only
variance stabilizing transfonnation h such that h(O) = 0, h(l) = 1, and h'(t) > 0 for all t,
is given by h(t) = (2/1f) sin- I (0).

- -
19. Justify fonnally the following expressions for the moments of h(X, Y) where
(XI, }j), ... , (Xn , Yn ) is a sample from a bivariate population with E(X) = J.LI, E(Y) =
J.Lz, Var(X) = O'f, Var(Y) = O'~, Cov(X, Y) = PO'IO'Z .

(a)

(b)

~
j'

~ .;

•,,

Var(h(X, Y))

where

~ ~{[hl (J.Lj, J.LzWO'~
n

+2hl (J.LI, J.LZ)hZ(J.LI, J.Lz)PO'jO'z + [hz(J.Ll> J.LzwO'n + O(n- Z
)

,: '

il
! ',

,..
"

8 8
hl(x,y) = 8x h(x,y), hz(x,y) = 8yh(x,y).

Hint: h(X, Y) - h(J.LI, J.Lz) = hI (J.LI, J.Lz) (X - J.Ld + hZ(J.Ll' J.Lz)(Y - J.Lz) + O(n- j
).

20. Let Bm,n have a beta distribution with parameters m and n, which are integers. Show
that if m and n are both tending to 00 in such a way that m/ (m + n) -+ a, 0 < a < 1,
then

P y'm + n (Bm,n m/(m + n)) < x -+ <I>(x).
/a(l- a) -

Hint: Use Bm,n = (mX /nY)[l + (mX/ny)]-I where XI, ... ,X m, Yj , .. . ,Yn are
independent standard exponentials.

21. Show directly using Problem 8.2.5 that under the conditions of the previous problem,
ifm/(m + n) - a tends to zero at the rate l/(m + n)Z, then

m a(1-a)
E(Bm n) = , Var Bm n = + Rm n

'm+n 'm+n '

where Rm,n tends to zero at the rate l/(m + n)z.

,,
,,,
i

,
j

.... 9
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(It may be shown but is not required that I,fiiRn I is bounded.)

23. Suppose that Xl, ... ,Xn is a sample from a population and that h is a real-valued func
tion of X whose derivatives of order k are denoted by h(k), k > 1. Suppose Ih(4)(x)1 < M
for all x and some constant M and suppose that J.L4 is finite. Show that Eh(X)
h(J.L) + ~h(2)(J.L) + a: + Rnwhere IRnl < h(3) (J.L)1J.L3 1/6n2 + M(J.L4 + 3cr2 )/24n2.

Hint:

where R n / ,fii ---+ 0 as in n ---+ 00. Recall Stirling's approximation:

E(,JS;,) = Vii + Rn

22. Let Sn ~ X;'. Use Stirling's approximation and Problem B.2.4 to give a direct justifi
cation of

24. Let Xl, ... ,Xn be a sample from a population with mean J.L and variance cr2 < 00.

Suppose h has a second derivative h(2) continuous at J.L and that h(1)(J.L) = O.

(a) Show that yn[h(X) - h(J.L)] ---+ 0 while n[h(X -h(J.L)] is asymptotically distributed
as ~ M2) (J.L )cr2V where V ~ xi-

(b) Use part (a) to show that when J.L = ~, n[X(l - X) - J.L(1_- J.L)] ~ -cr2V with
V ~ xi. Give an approximation to the distribution of X (1 - X) in terms of the xi
distribution function when J.L = ~.

25. Let Xl, ... , X n be a sample from a population with cr2 = Var(X) < 00, J.L = E(X)
and let T = X 2 be an estimate of J.L2.

(a) When J.L # 0, find the asymptotic distribution of yn(T - J.L2) using the delta method.

(b) When J.L = 0, find the asymptotic distriution of nT using P(nT < t) = P(-..;t <
ynX < ..;t). Compare your answer to the answer in part (a).

(c) Find the limiting laws of yn(X - J.L)2 and n(X - J.L)2.
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26. Show that if XI, ... , Xl! are i.i.d. N(p, 0"2), then
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r:::- 221:
yn(X-jl,Ci -0") --->N(O,o,~o)

where ~o = diag (0"2, 20"4).
Hint: Use (5.3.33) and Theorem 5.3.4.

27. Suppose (XI, YI ), . .. , (Xn , Yn ) are n sets of control and treatment responses in a
matched pair experiment. Assume that the observations have a common N(jll, jl2, O"i, O"~, p)
distribution. We want to obtain confidence intervals on jl2 - jll = ~. Suppose that instead
of using the one-sample t intervals based on the differences Yi - Xi we treat X I, ... , X n ,

Y I , ... , Yn as separate samples and use the two-sample t intervals (4.9.3). What happens?
Analysis for fixed n is difficult because T(~) no longer has a 72n-2 distribution. Let
n ---> 00 and

(a) Show that P[T(~) < t] ---> <I>

,
t [1 _ 2~,<7'q ]-' .

(<7, +<7,)

I
I
I
!
•
I
t
r.
I
•..
•
•

••

I

,
I •,

•

I,
~J
J
•,
I

(b) Deduce that if p > 0 and In is given by (4.9.3), then limn P[~ E In] > 1 - Q.

(c) Show that if IInl is the length of the interval In,

Viii In I ---> 2VO"r + O"~z(l - ~ Q) > 2(VO"r + O"~ - 2pO"]0"2)z(1 - ~ Q)

where the right-hand side is the limit of Vii times the length of the one-sample t interval
based on the differences.

Hint: (a), (c) Apply Slutsky's theorem.

28. Suppose X I, ... ,Xn, and YI , ... ,Yn , are as in Section 4,9.3 independent samples
with jll = E(XIl, O"i = Var(XIl, jl2 = E(Yd, and O"~ = Var(YIl. We want to study
the behavior of the two-sample pivot T(~) of Example 4.9,3, if nl,n2 ---> 00, so that
ndn ---> >",0 < >.. < L

(a) Show that P[T(~) < t] ---> <I>(t[(>..O"r + (1 - >")0"~)/((1 - >")O"r + >"O"~)] ~).

(b) Deduce that if>" = ~ or 0"1 = 0"2, the intervals (4.9.3) have correct asymptotic
probability of coverage.

(c) Show that if O"~ > O"i and >.. > 1 - >.., the interval (4.9.3) has asymptotic probability
of coverage < 1 - Q, whereas the situation is reversed if the sample size inequalities and
variance inequalities agree.

(d) Make a comparison of the asymptotic length of (4,9.3) and the intervals based on
the pivot ID - ~I/SD where D and SD are as in Section 4.9.4,

29. Let T = (D - ~)/SD where D, ~ and SD are as defined in Section 4.9.4. Suppose
that E(X;) < 00 and E(Y/) < 00.

(a) Show that T has asymptotically a standard normal distribution as nl ---> 00 and
n2 ---> 00.
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Tn = Xl[1XI < 1- n- I
] +nl[IXI > 1- n- I

]

EIYl k < CMn- kj2

Va = (n - 1) + yI'R(n - l)z(Q).
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(c) Show using parts (a) and (b) that the tests that reject H : J-LI = J-L2 in favor of
K : J-L2 > J-LI when T > tk(l - Q), where tk(1 - Q) is the critical value using the Welch
approximation, has asymptotic level Q.

(d) Find or write a computer program that carnes out the Welch test. Carry out a Monte
Carlo study such as the one that led to Figure 5.3.3 using the Welch test based on T rather
than the two-sample t test based on Sn. Plot your results.

30. Generalize Lemma 5.3.3 by showing that if Y" ... , Y nERd are i.i.d. vectors and
ElYIlk < 00, where I . I is the Euclidean norm, then for all integers k:

k p k

iii = k- I L Xij and 0'2 = (kp)-I L L(Xij - iii?'
j=1 i=lj=1

(b) Let k be the Welch degrees of freedom defined in Section 4.9.4. Show that k.£. 00

as nl ---> 00 and n2 ---> 00.

where C depends on d, EIY,l k and k only.

Hint: Iflxh = L~=llxjl, x = (XI,'" ,Xd)T and Ixl is Euclidean distance, then there
exist universal constants 0 < Cd < Cd < 00 Such that cdlxll < Ixl < Cdlxh.
31. Let XI, ... , X n be i.i.d. as X ~ F and let J-L = E(X), cr2 = Var(X), K, = Var[(X 
J-L)/cr]2, 8 2 = (n - 1)-1 L~ I (Xi - X? Then by Theorem B.3.1, Vn = (n - 1)82/cr2

has a X~-I distribution when F is the N (J-L, cr2) distribution.

(a) Suppose E(X 4 ) < 00.

(b) Let Xn-I (Q) be the Qth quantile ofX~_I' Firld approximations to P(Vn < Xn-I (Q))
and P(Vn < Xn-I (1 - Q)) and evaluate the approximations when F is 75.

Hint: See Problems B.3.9 and 4.4.16.

(c) Let 'R be the method of moment estimate of K, and let

Show that if 0 < E X 8 < 00, then P(Vn < va) ---> Q as n ---> 00.

32. It may be shown that if Tn is any sequence of random variables such that Tn !:. T and
if the variances ofT and Tn exist, then lim infn Var(Tn) > Var(T). Let

where X is uniform, U( -1,1). Show that as n ---> 00, Tn !:. X, but Var(Tn) ---> 00.

33. Let Xij(i = 1, ... ,p; j = 1, ... , k) be independent with Xij ~ N(J-Li,cr2).

(a) Show that the MLEs of J-Li and cr2 are



(b) Show that if k is fixed and p ---+ 00, then &,2 ~ (k - 1)(72 / k. That is the MLE jl2
is not consistent (Neyman and Scott, 1948).

(c) Give a consistent estimate of (72.
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Problems for Section 5.4

1. Let Xl, ... , X n be i.i.d. random variables distributed according to PEP. Suppose
'IjJ : R ---+ R

(i) is monotone nondecreasing

(ii) 'IjJ(-00) < 0 < 'IjJ(00)

(iii) 1'ljJI(x) < M < 00 for all x.
,

·
•,

•

o

f
I
f

i
••,.

I,

I

I .
• 0

o

i
i ,

(a) Show that (i), (ii), and (iii) imply that 6(P) defined (not uniquely) by

Ep'IjJ(X I - 6(P)) > 0 > Ep'IjJ(XI - 6'), all 6' > 6(P)

is finite.

(b) Suppose that for all PEP, 6(P) is the unique solution of Ep'lj;(Xl - 6) = O.
........ -- -- --

Let 6n = 6(P), where P is the empirical distribution of Xl, ... , Xn- Show that 6n is
consistent for 6(P) over P. Deduce that the sample median is a consistent estimate of the
population median if the latter is unique. (Use 'IjJ(x) = sgn(x).)

Hint: Show that Ep'IjJ(XI - 6) is nonincreasing in 6. Use the bounded convergence

theorem applied to 'IjJ(Xl - 6) !:. 'IjJ( -00) as 6 ---> 00.

(c) Assume the conditions in (a) and (b). Set >.,(6) = Ep'IjJ(XI - 6) and T
2(6) 

Varp'IjJ(XI - 6). Assume that ,A'(6) < 0 exists and that

for every sequence {6n } with 6n = 6 + t/yTi for t E R. Show that

~ £. T 2 (6)
yTi(6n - 6) ---> N 0, [N(6)j2 .

~ ~ n
Hint: P(yTi(6n - 6)) < t) = P(6 < 6n ) = P(- Li=l 'IjJ(Xi - 6n ) < 0).

(d) Assume part (c) and A6. Show that if f(x) F'(x) exists, then
,A'(6) = Cov('IjJ(Xl - 6), f(Xl )).

(e) Suppose that the dJ. F(x) of Xl is continuous and that f(6) = F'(O) exists. Let

X denote the sample median. Show that, under the conditions of (c), yTi(X - 6) !;
N(0,1/4f2(6)).

,

,
!

1
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I
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1
1
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2. Show that assumption A4' of this section coupled with AD-A3 implies assumption A4.
Hint.'
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Condition A6' permits interchange of the order of integration by Fubini's theorem (Billings
ley, 1979) which you may assume.

4. Let Xl,"" X n be i.i.d. U(O, 6),6> O.

(a) Show that g~(x,6) = -~ for 6 > x and is undefined for 6 < x. Conclude that

g~ (X, 6) is defined with Po probability 1 but

az 1 az
Eo a6(X, 6) = - 6 # 0, Varo a6(X, 6) = O.

< Esup

l
b

J :6(1f;(x,6)P(x,6)djl(x)) = J1f;(x, b)p(x, b)djl(x) - J1f;(x,a)p(x,a)djl(x).

Esup

and CPa denotes the N(O, (J2) density. Find the efficiency ep(X, X) as defined in (f). If
~

(J = 1, T = 4, evaluate the efficiency for E = .05, 0.10, 0.15 and 0.20 and note that X is
more efficient than X for these gross error cases.

(h) Suppose that Xl has the Cauchy density I(x) = 1/7[(1 + x 2
), x E R. Show that

- ~

ep(X,X) = O.

Apply A4 and the dominated convergence theorem B.7.4.

3. Show that A6' implies A6.
Hint: go J1f;(x, 6)p(x, (J)djl(x) = J go(1f;(x,6)p(x,6))djl(x) if for all-oo < a <

b < 00,

(f) For two estimates 61 and 62 with .Jii(6j - 6) !:. N(O, a}), j = 1,2, the asymptotic
--... --... --... --...

relative efficiency of 61 with respect to 62 is defined as ep(61, ( 2 ) = (J~/(Ji- Show that if

Pis N(jl, (J2), then ep(X, X) = 7[/2.

(g) Suppose Xl has the gross error density I,(x - 6) (see Section 3.5) where

(b) Show that if 6 = max(XI, .. , ,Xn ) is the MLE, then Co(n(6 - 6)) --> [; (1/6).
~

Thus, not only does asymptotic normality not hold but 6 converges 6 faster than at rate
n- 1/ 2 • This is compatible with 1(6) = 00, not O!

~ n
Hint.' Po [n(6 - 6) < xl = 1 - (1 - '::0) --> 1 - exp(-x/6).
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j

5. (a) Show that in Theorem 5.4.5

n p (Xi, 00 + J,,) , n a
k log p(X

i
, (

0
) = .;n k ao logp(Xi , ( 0 )

under PeD , and conclude that

·

1
!,

•
••,
<

,,
J,
,

,

I.
; ,

I
I,

I
( (b) Show that

is replaced by the likelihood ratio statistic

I
j
l•,
;

,

t,
1,

••,

,
j

•

1

= Cn ---> 0 for any sequence {cn } by

2

---> N ~ 1(00 ),,21(0) .

(c) Prove (5.4.50).
Hint: (b) Expand as in (a) but around 00 + J".

n p(xi,eD+j.;)
(d) Show that PeD + -.:L Li=1 log (X e )nvn P tl 0

using (b) and Polya's theorem (A.14.22).

6. Show that the conclusions of PrqjJlem 5.4.5 continue to hold if

r
I

,
,
•,

if En ..... O. Apply the dominated convergence theorem (8.7.4) to g;4 (x, O)p(x, 0).

-1(0) and

!:oa
2

z ') I 'Ia02(X, 0 : 0 - 0 <Ensup

7. Suppose A4', A2, and A6 hold for 'IjJ = Ollao so that E eg;4(X,O)
1(0) < 00. Show that 0 ---> 1(0) is continuous.

Hint: 0 ---> g;4 (X, 0) is continuous and

,
,

<
,

!

1
I

l
I
•

I.h _
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g~ at all (J and (A4'), ? is a

Section 5.6 Problems and Complements

8. Establish (5.4.54) and (5.4.56).
Hint: Use Problems 5.4.5 and 5.4.6.

(a) Show that under assumptions (AO)-(A6) for 1/J
consistent estimate of I((J).

(b) Deduce that

9. (a) Establish (5.4.58).
Hint: Use Problem 5.4.7, A.14.6 and Slutsky's theorem.

(b) Suppose the conditions of Theorem 5.4.5 hold. Let (J~ be as in (5.4.59). Then
(5.4.57) can be strengthened to: For each (Jo E 8, there is a neighborhood V((Jo) of (Jo

such that limnsup{Pe[(J~ < (J] : (J E V((Jo)} -> 1 - Q.

10. Let

- ~*

(a) Show that, if X = 0 or 1, the bound (5.4.59), which is just (4.4.7), gives (J = X.
Compare with the exact bound of Example 4.5.2.

(b) Compare the bounds in (a) with the bound (5.4.61), which agrees with (4.4.3), and
give the behavior of (5.4.61) for X = 0 and 1.

12. (a) Show that under assumptions (AO)-(A6) for all (J and (A4'),

for j = 1,2.

(J * - (J* (-1/2)-nj - -n + Op n

is an asymptotic lower confidence bound for (J.

(c) Show that if Pe is a one parameter exponential family the bound of (b) and (5.4.59)
coincide.

Show that (J~1 and, hence, all the (J~j are at least as good as any competitors.
Hint: Compare Theorem 4.4.2.

11. Consider Example 4.4.3, setting a lower confidence bound for binomial (J.

13. Let (Jn1' (Jn2 be two asymptotic level 1 - Q lower confidence bounds. We say that (Jn1-
is asymptotically at least as good as (Jn2 if, for all, > 0
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14. Suppose that Xl, ... ,Xll are i.i.d. inverse Gaussian with parameters J-L and A, where J-L
is known. That is, each Xi has density

1/2 AX A A
exp - + - --

2J-L2 J-L 2x
; X > 0; J-L > 0; A > O.

,

i

!
I

I
•

rI
<1
l)'

"II '

Ii,i
I J.
I ,
! ,

(a) Find the Neyman-Pearson (NP) test for testing H : A = AO versus K : A < AO'

(b) Show that the NP test is UMP for testing H : A > AO versus K : A < AO.

(c) Find the approximate critical value of the Neyman-Pearson test using a normal
approximation.

(d) Find the Wald test for testing H : A = AO versus K : A < AO.

(e) Find the Rao score test for testing H : A = AO versus K : A < AO'

15. Establish (5.4.55).
Hint: By (3.4.10) and (3.4.11), the test statistic is a sum of i.i.d. variables with mean

zero and variance I((}). Now use the central limit theorem.

Problems for Section 5.5

1. Consider testing H : J-L = 0 versus K : J-L i= 0 given X!, ... , X n i.i.d. N(J-L,I).
Consider the Bayes test when /-L is distributed according to 7[ such that

1> 7[({0}) = A > 0, 7[(/-L i= 0) = 1 - A

and given /-L i= 0, /-L has a N(O, 7
2

) distribution.

(a) Show that the posterior probability of {O} is

where m n ( y'1iX) = 7(1 + m 2)-1/2cp ((1+::;)1/2)'
Hint: Use Examples 3.2.1 and 3.2.2.

(b) Suppose that J-L = O. By Problem 4.1.5, the p-value jj 2[1 - <I> (y'1iIXI)] has a

U(O, 1) distribution. Show that jj !:. 1.

(c) Suppose that J-L = 6 > O. Show that j§/jj !:. 00. That is, if H is false, the evidence
against H as measured by the smallness of the p-value is much greater than the evidence
measured by the smallness of the posterior probability of the hypothesis (Lindley's "para
dox").

2. Let Xl, ... , X n be Li.d. N (J-L, 1). Consider the problem of testing H : J-L E [0,.6] versus
K : 1.£ > .6, where .6 is a given number.

(a) Show that the test that rejects H for large values of y'1i(X - .6) has p-value p =

<I>(-y'1i(X - .6)) and that when 1.£ = .6,phas aU(O, 1) distribution.

•
"

j
,
!
••
~
"
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•,,
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-<1>

1 n

< - LSup
n

i=1

n 10 20 50 100
Ll = 0.1 .029 .034 .042 .046

Ll = 1.0 .058 .054 .052 .050

p = <1>

(b) Suppose that /-L has a N(O, 1) prior. Show that the posterior probability of His

Section 5.6 Problems and Complements

3. Establish (5.5.14).
Hint: By (5.5.13) and the SLLN,

logdnqn(t) =

t2 1 n

-2" 1(0)- nL
i=1

where an = n/(n + 1).

- L L
(c) Show that when It = ~, -"fii(anX - ~)/va;; --> N(O, 1) and p --> U(O, 1).

(Lindley's "paradox" of Problem 5.1.1 is not in effect.)

(d) Computeplimn~oop/pforIt i=~.

(e) Verify the following table giving posterior probabilities of [O,~] when "fiiX
1.645 and p = 0.05.

Apply the argument used for Theorem 5.4.2 and the continuity of 7r(O).

4. Extablish (5.5.17).
Hint:

M
a.s. Po. By Theorem 5.5.2, J-M tqn(t)dt --> 0 a.s. for all M < 00. By (5.5.17),

J:J0l"ln Itlqn(t)dt < J:J0l"ln ItIexp {-~I(O)t;}dt < Efor M(E) sufficiently large, all

if ItI < 6"fii. Apply the SLLN and 6 --> Eo sup { t:2l(Xi,O') ; 10 - O'l < 6} continu

ous at 6 = O.

5. Suppose that in addition to the conditions of Theorem 5.5.2, J02 7r (O)dO < 00. Then
~

"fii(E(O I X) - 0) --> 0 a.s. Po.
Hint.' In view of Theorem 5.5.2 it is equivalent to show that



Apply (5.5.16) noting that .jTie-n«o,lJ) ---+ 0 and J ItI7l"(t)dt < 00.

1 1
6. (a) Show that sup{lqn(t) - 12 (O)ip(t/2 (0))1: ItI < M} ---+ 0 a.s. for all O.

(b) Deduce (5.5.29).
Hint: {t: JI(O)ip(tJI(O)) > e(d)} = [-d,d] for some e(d), alld ande(d) / in d.

The sets Cn(e) {t: qn(t) > e} are monotone increasing in e. Finally, to obtain

Asymptotic Approximations Chapter 5362

f > O. Finally,

dn roc tqn(t)dt = roo vn(t -Ii) exp
Jo(IJ)ft!. JIJ+o(IJ)

n

2)l(Xi , t) -l(Xi , Ii))
i=l

7l"(t)dt.

~,
'.
'.

,

i
,
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Ii•
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~

we must have en = e(zl- ~ [/(0)n]-1/2)(1 + op(l)) by Theorem 5.5.1.

7. Suppose that in Theorem 5.5.2 we replace the assumptions A4(a.s.) and A5(a.s.) by A4
and AS. Show that (5.5.8) and (5.5.9) hold with a.s. convergence replaced by convergence
in PIJ probability.

5.7 NOTES

Notes for Section 5.1

(I) The bound is actually known to be essentially attained for Xi = 0 with probability Pn
and 1 with probability 1 - Pn where Pn ---+ 0 or 1. For n large these do not correspond
to distributions one typically faces. See Bhattacharya and Ranga Rao (1976) for further
discussion.

Notes for Section 5.3

(1) If the right-hand side is negative for some x, Fn(x) is taken to be O.

(2) Computed by Winston Chow,

Notes for Section 5.4

(1) This result was first stated by R. A. Fisher (1925). A proof was given by Cramer (1946).

Notes for Section 5.5

(1) This famous result appears in Laplace's work and was rediscovered by S. Bernstein and
R von Mises-see Stigler (1986) and Le Cam and Yang (1990).
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Chapter 6

INFERENCE IN THE

MUlTIPARAMETER CASE

6.1 INFERENCE FOR GAUSSIAN LINEAR MODELS

•

Most modem statistical questions involve large data sets, the modeling of whose stochastic
structure involves complex models governed by several, often many, real parameters and
frequently even more semi- or nonparametric models. In this final chapter of Volume I
we develop the analogues of the asymptotic analyses of the behaviors of estimates, tests,
and confidence regions in regular one-dimensional parametric models for d-dimensional
models {PO: 0 E 8}, 8 C Rd. We have presented several such models already, for
instance, the multinomial (Examples 1.6.7, 2.3.3), multiple regression models (Examples
1.1.4,1.4.3,2.1.1) and more generally have studied the theory of multiparameter exponen
tial families (Sections 1.6.2,2.2,2.3). However, with the exception of Theorems 5.2.2 and
5.3.5, in which we looked at asymptotic theory for the MLE in multiparameter exponen
tial families, we have not considered asymptotic inference, testing, confidence regions, and
prediction in such situations. We begin our study with a thorough analysis of the Gaus
sian linear model with known variance in which exact calculations are possible. We shall
show how the exact behavior of likelihood procedures in this model correspond to limit
ing behavior of such procedures in the unknown variance case and more generally in large
samples from regular d-dirnensional parametric models and shall illustrate our results with
a number of important examples.

This chapter is a lead-in to the more advanced topics of Volume II in which we consider
the construction and properties of procedures in non- and semiparametric models. The
approaches and techniques developed here will be successfully extended in our discussions
of the delta method for function-valued statistics, the properties of nonparametric MLEs,
curve estimates, the bootstrap, and efficiency in semiparametric models. There is, however,
an important aspect of practical situations that is not touched by the approximation, the
fact that d, the number of parameters, and n, the number of observations, are often both
large and commensurate or nearly so. The inequalities of Vapnik-Chervonenkis, Talagrand
type and the modem empirical process theory needed to deal with such questions will also
appear in the later chapters of Volume II.
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Notational Convention: In this chapter we will, when there is no ambiguity, let expres
sions such as () refer to both column and row vectors.

•
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6.1.1 The Classical Gaussian Linear Model

Many of the examples considered in the earlier chapters fit the framework in which the
ith measurement Yi among n independent observations has a distribution that depends on
known constants Zil, ... , Zip. In the classical Gaussian (normal) linear model this depen
dence takes the fonn

P

Yi=L.Zij/3j+Ei, i=l, ... ,n
j=1

where EI,' .. ,En are i.i.d. N(O, 0"2). In vector and matrix notation, we write

Yi = z; f3 + Ei, i = 1, ... ,n

and

(6.1.1 )

(6.1.2)

(6.1.3)

•

where Zi = (Zil,"" Zip)T, Z = (Zij)nxp, and J is the n x n identity matrix.
Here Yi is called the response variable, the Zij are called the design values, and Z is

called the design matrix.
In this section we will derive exact statistical procedures under the assumptions of the

model (6.1.3). These are among the most commonly used statistical techniques. In Sec
tion 6.6 we will investigate the sensitivity of these procedures to the assumptions of the
model. It tum~ out that these techniques are sensible and useful outside the narrow frame
work of model (6.1.3).

Here is Example 1.1.2(4) in this framework.

Example 6.1.1. The One-Sample Location Problem. We have n independent measure
ments Y1 , • •• , Yn from a population with mean /31 = E(Y). The model is

where EI, ... ,En are i.i.d. N(O, 0"2). Here p = 1 and Znx 1 = (1, ... , l)T. 0

The regression frameworlc of Examples 1.1.4 and 2.1.1 is also of the form (6.1.3):

Example 6.1.2. Regression. We consider experiments in which n cases are sampled from
a population, and for each case, say the ith case, we have a response Yi and a set of p - 1
covariate measurements denoted by Zi2, ... ,Zip. We are interested in relating the mean of
the response to the covariate values. The normal linear regression model is

,
I
I

"

!
•

,

!

Yi = /31 + Ei, i = 1, ... ,n

p

Yi = /31 +L. Zij/3j + Ei, i = 1, ... ,n
j=2

(6.1.4)

(6.1.5)

,,
I ,

iI,,
....._---------------------------
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(6.1.6)
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j-I j

1 if L nk + 1 < i < L nk

k=1 k=1

°otherwise

and
II 0 • • • 0
0 12 • • • 0

z= • • •
• • •
• • •

where (31 is called the regression intercept and (32, .... (3p are called the regression coeffi
cients. If we set Zil = 1, i = 1, ... ,11, then the notation (6.1.2) and (6.1.3) applies.

We treat the covariate values zij as fixed (nonrandom). In this case, (6.1.5) is called the
fixed design normal linear regression model. The random design Gaussian linear regression
model is given in Example 1.4.3. We can think of the fixed design model as a conditional
version of the random design model with the inference developed for the conditional dis
tribution of Y given a set of observed covariate values. 0

Example 6.1.3. The p-Sample Problem or One-Way Layout. In Example 1.1.3 and Sec
tion 4.9.3 we considered experiments involving the comparisons of two population means
when we had available two independent samples, one from each population. Two-sample
models apply when the design values represent a qualitative factor taking on only two val
ues. Frequently, we are interested in qualitative factors taking on several values. If we are
comparing pollution levels, we want to do so for a variety of locations; we often have more
than two competing drugs to compare, and so on.

To fix ideas suppose we are interested in comparing the performance of p > 2 treat
ments on a population and that we administer only one treatment to each subject and a
sample of nk subjects get treatment k, 1 < k < p, nl + ... + n p = n. If the control and
treatment responses are independent and normally distributed with the same variance 1J2,

we arrive at the one-way layout or p-sample model,

where Y k1 is the response of the lth subject in the group obtaining the kth treatment, (3k

is the mean response to the kth treatment, and the Ekl are independent N(O, 1J2) random
variables.

To see that this is a linear model we relabel the observations as Y I , , Yn , where
YI , ... ,Yn, correspond to the group receiving the first treatment, Yn, +1, , Yn, +n2 to
that getting the second, and so on. Then for 1 < j < p, if no = 0, the design matrix has
elements:

o 0 . . . I p

where I j is a column vector of nj ones and the 0 in the "row" whose jth member is I j is a
column vector of nj zeros. The model (6.1.6) is an example of what is often called analysis
a/variance models. Generally, this terminology is commonly used when the design values
are qualitative.

The model (6.1.6) is often reparametrized by introducing Q = p-I L~=I (3k and 6k =
(3k - a because then 6k represents the difference between the kth and average treatment



P

/1. = Z(3 = 'L.J3jCj

j=1

where the Cj are the columns of the design matrix,

Cj = (Zlj"",Znj)T, j = 1, ... ,p.

The parameter set for (3 is RP and the parameter set for /1. is

w = {/1. = Z(3; (3 E RP}.

Y = Z* (3* + 1'0, 1'0 ~ N(O, (J'2 J)

where Z;'X(P+I) = (1, Z) and 1 nx1 is the vector with n ones. Note that Z* is of rank p and

that (3* is not identifiable for (3* E RP+I. However, (3* is identifiable in the p-dimensional
linear subspace {(3* E RP+I : L~=I 15k = O} of RP+l obtained by adding the linear
restriction L~=I 15k = 0 forced by the definition of the 15k'S. This type of linear model with
the number of columns d of the design matrix larger than its rank r, and with the parameters
identifiable only once d - r additional linear restrictions have been specified, is common
in analysis of variance models. 0

Even if (3 is not a parameter (is unidentifiable), the vector of means /1. = (/11, ... , /1n)T

of Y always is. It is given by

!
I
•

•

I

,
i

t
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1, ... ,p. In tenns of the new parameter (3* = (Q, 151 , ... , Jp)T, the linear

,

~•
1
1

•,

,..

I
I
•

l
t! :r '

I
•,
••

i,, 
,-

Note that w is the linear space spanned by the columns Cj, j = 1, ... , n, of the design
matrix. Let r denote the number of linearly independent Cj, j = 1, ... ,p, then r is the rank
of Z and w has dimension r. It follows that the parametrization ((3, (J'2) is identifiable if
and only if r = p (Problem 6.1.17). We assume that n > r.

The Canonical Fonn of the Gaussian Linear Model

The linear model can be analyzed easily using some geometry. Because dimw = r,
there exists (e.g., by the Gram-Schmidt process) (see Section B.3.2), an orthononnal basis
VI, ... , Vn for Rn such that VI, ... , Vr span w. Recall that orthononnal means v Tvj = 0
for i =1= j and vTv i = 1. When vTv j = 0, we call viand v j orthogonal. Note that any
tERn can be written

I
!,

I,
•,

·-,
J

I, -•· -

,
•
1

--

-
, 1
,

n

t = 2)vTt)Vi
i=1

and that
T

t E w {=} t = I)vTt)Vi {=} vTt = 0, i = r + 1, ... , n.
i=1

We now introduce the canonical variables and means

Ui = vTY, T/i = E(Ui ) = vT /1., i = 1, ... , n.

(6.1.7)

I
._--------------------------



(iii) Ui is the UMVU estimate of T)i, i = 1, ... , r.

(ii) UI , ... , Ur is the MLE ofT)I,' .. ,T)r'

369

(6.1.9)

(6.1.8)

(6.1.10)

(6.1.11)

n
1", 2 n 2

- 2cr 2 L)Ui - T)i) -"2 log(2JTcr )
i=1

1~2 1~ ~T); n
- 2cr2 LUi + cr2 L T)iUi - L 2cr2 - 2 log(2JTcr

2
).

i=1 i=1 i=1

l.("1,u)

TJi = 0, i = r + 1, ... ,n,

Section 6.1 Inference for Gaussian Linear Models

Theorem 6.1.1. The U, are independent and U i ~ N(TJi, cr2 ), i = 1, ... , n, where

(i) T = (UI, ... , Ur )T is sufficient for "1.

whereas

(v) The MLE of /-L is P, = 2:;=1 ViUi and Iii is UMVU for /1i. i = 1, ... , n. Moreover,
Ui = v[P" making p, and U equivalent.

while (T)I, ... , T)r )T varies freely over Rr.

Proof Let An xn be the orthogonal matrix with rows vf, ... , v ~. Then we can write
U = AY, "1 = A/-L, and by Theorem B.3.2, UI , ,Un are independent normal with
variance cr 2 and E(U;) = v[ /-L = 0 for i = r + 1, ,n because /-L E w. 0

Note that

(iv) IfCI, ... ,Cr are constants, then the MLE of0: = 2:; I CiT)i is Ii = 2:; I CiUi. Ii is
also UMVU for 0:.

It will be convenient to obtain our statistical procedures for the canonical variables U,
which are sufficient for (/-L, cr2) using the parametrization ("1, cr2f, and then translate them
to procedures for /-L, (3, and 1J2 based on Yusing (6.1.8)-(6.1.10). We start by considering
the log likelihood l. ("1, u) based on U

6.1.2 Estimation

So, observing U and Y is the same thing. /-L and "1 are equivalently related,

/-L = A -1"1.

We first consider the 1J2 known case, which is the guide to asymptotic inference in general.

Theorem 6.1.2. In the canonical form of the Gaussian linear model with 1J2 known



Proof (i) By observation, (6.1.11) is an exponential family with sufficient statistic T.
(ii) U1, , U" are the MLEs 0f111, . , , , "7r because, by observation, (6.1.11) is a func-

tion of 1]1, ,11r only through L;' 1(Ui ~ "7;)2 and is minimized by setting "7i = Ui. (We
could also apply Theorem 2.3.1.)

(iii) By Theorem 3.4.4 and Example 3.4.6, Ui is UMVU for E(Ui ) = "7i, i = 1, ... ,r.
(iv) By the invariance of the MLE (Section 2.2.2), the MLE of q(O) = L~ I Ci"7i is

~

q(O) = L~ 1 CiUi· If all thec's are zero, Q is UMVU. Assume that at least one c is different
from zero. By Problem 3.4.10, we can assume without loss of generality that L~=1 c; = l.
By Gram-Schmidt orthogonalization, there exists an orthonormal basis VI, ... , V n of Rn

with VI = C = (cI, ... ,cnO, ... ,of ERn. Let Wi = VrU'~i = viT/,i = 1, ... ,n,
then W ~ N(f., a 2J) by Theorem B.3.2, where J is the n x n identity matrix. The
distribution of W is an exponential family, WI = Q is sufficient for 6 = Q, and is UMVU
for its expectation E(WI) = Q.

(v) Follows from (iv). 0

Next we consider the case in which a 2 is unknown and assume n > r + 1.

Theorem 6.1.3. In the canonical Gaussian linear model with a 2 unknown,

,,
I.

i'

,,
J
i
I

370 Inference in the Multiparameter Case Chapter 6

,,,
,

,
;

1
·:;

,,
,
j

,,
j

I

,,

,

•,
,
,

"

",

I,,
IiI
•.. .,,
I
I

!
,,,
!

!

..! ,

"

,
,

(i) T= (Ul, ... ,Ur,L~ r+l Un T
issufficientjor("71>"',"7n a2 )T.

(ii) The MLE oja2 is n-1 L~ r+l Ul·
(iii) 8 2 = (n - r) -1 L~ r+l ul is an unbiased estimator ofa 2.

(iv) The conclusions of Theorem 6.1.2 (ii), ... ,(v) are still valid.

Proof By (6.1.11), (UI,'''' Un L~ I Un T is sufficient. But because L~ 1 Ul =-
L~ I Ul + L~ r+ 1 ul, this statistic is equivalent to T and (i) follows. To show (ii),
recall that the maximum of (6.1.11) has "7i = Ui . That is, we need to maximize

as a function of a 2
. The maximizer is easily seen to be n- I L7 r+l ul (Problem 6.1.1).

(iii) is clear because EUl = a 2 , i > r+ 1. To show (iv), apply Theorem 3.4.3 and Example
3.4.6 to the canonical exponential family obtained from (6.1.11) by setting Tj Uj ,

OJ = "7j/a2, j = 1, ... , r, Tr+1 = L~ I Ul and Or+l = -1/2a2.

Projections

~

We next express ji. in terms of Y, obtain the MLE (3 of (3, and give a geometric in-
~

terpretation of ji., (3, and 8
2

• To this end, define the norm ItI of a vector tERn by

Itl2 = ""n t2 .L.,,1=1 1

i
•,

I,,
•

,
•,,

I
._-------------------------------------



Theorem 6.1.4. In the Gaussian linear model

That is, the MLE of (3 equal~ the least squares estimate (LSE) of (3 defined in Example
2.1.1 and Section 2.2.1. We have

371

(6.1.13)

(6.1.1 2)

(6.1.14)

Yo = arg min{ly - tl 2
: t E w}.

73 = arg min{ly - Z(31 2
: (3 E RP}.

1 n
10gp(y,(3,a) = - 2 1Y - Z(31 2

- -2 log(27fa2
)

2a

The maximum likelihood estimate (3 of (3 maximizes

8
2 = IY - ji.1 2 /(n - r)

-ji. = Z(3.

(i) ji. is the unique projection ofY on wand is given by

(ii) ji. is orthogonal to Y - ji..

(iii)

Section 6.1 Inference for Gaussian Linear Models

Definition 6.1.1. The projection Yo = 7f(Y I w) of a point y E Rn on w is the point

or, equivalently,

-(v) f3j is the UMVU estimate of f3j, j = 1, ... , p, and J1i is the UMVU estimate of J-li,
i=l, ... ,n.

(iv) Ifp = r, then (3 is identifiable, (3 = (ZTZ)-l ZT J-L, the MLE = LSE of(3 is unique
and given by

Proof. (i) is clear because Z(3, (3 E RP, spans w. (ii) and (iii) are also clear from Theorem

6.1.3 because ji. = L~ 1 ViUi and Y - ji. = L? r+l VjUj . To show (iv), note that-J-L = Z(3 and (6.1.12) implies ZTJ-L = ZTZ(3 and ZTji. = ZTZ(3 and, because Z has-full rank, ZTZ is nonsingular, and (3 = (ZTZ)-lZT J-l, (3 = (ZTZ)-lZTji.. To show-(3 = (ZTZ)-lZTy, note that the space w-l of vectors s orthogonal to w can be written as

w-l = {s E Rn : sT(Z(3) = 0 for all (3 E RP}.

It follows that (3T (ZTs) = 0 for all (3 E RP, which implies ZTs = 0 for all s E w-l. Thus,
ZT (Y - ji.) = 0 and the second equality in (6.1.14) follows.-f3j and J1i are UMVU because, by (6.1.9), any linear combination ofY's is also a linear
combination of U's,'and by Theorems 6.1.2(iv) and 6.1.3(iv), any linear combination of
U's is a UMVU estimate of its expectation. 0
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-Y=HY

Note that in Example 2.1.1 we give an alternative derivation of (6.1.14) and the normal
equations (ZT Z)(3 = ZTy'-

The estimate ii = Z(3 of J-t is called the fitted value and E = Y - 11 is called the residual
from this fit. The goodness of the fit is measured by the residual sum of squares (RSS)
IY - 111 2 = L~ 1 Ef· Example 2.2.2 illustrates this tenninology in the context of Example- -
6.1.2 with p = 2. There the points iii = {31 + {32zi, i = 1, ... ,n lie on the regression line- -
fitted to the data {(Zi, Yi), i = 1, ... , n}; moreover, the residuals Ei = [Yi - ({31 + (32Zi)]
are the vertical distances from the points to the fitted line.

Suppose we are given a value of the covariate z at which a value Y following the linear
model (6.1.3) is to be taken. By Theorem 1.4.1, the best MSPE predictor of Y if (3 is
known as well as z is E(Y) = zT (3 and its best (UMVU) estimate not knowing (3 is- - -Y _ zT (3. Taking z = Zi, 1 < i < n, we obtain iii = Zi{3, 1 < i < n. In this method of-"prediction" of Ii, it is common to write Ii for iii, the ith component of the fitted value 11.-That is, Y = 11. Note that by (6.1.12) and (6.1.14), when p = r, •

•
j
••

•
•

1
•
I,
•

,
1
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•
1
1,,
1
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"•
i

i
j
i

where
H = Z(ZTZ)-lZT.

The matrix H is the projection matrix mapping R n into w, see also Section B.IO. In
statistics it is also called the hat matrix because it "puts the hat on Y." As a projection
matrix H is necessarily symmetric and idempotent,

,
i

•,,
t
~ ,,
•

It follows from this and (B.5.3) that if J = J nxn is the identity matrix, then

Next note that the residuals can be written as

(6.1.15)

•
i,..

-E = Y - Y = (J - H)Y.

The residuals are the projection of Y on the orthocomplement of wand
, j

i, Var(E) = a 2 (J - H). (6.I.I6)

i
j

•• •

J

, I

.,
it, .
I,
, ,

We can now conclude the following.

Corollary 6.1.1. In the Gaussian linear model

-
(i) the fitted values Y = 11 and the residual Eare independent,

-(ii) Y rv N(J-t, a 2H),

(iii) E rv N(o, a 2 (J - H)), and

(iv) ijp=r, (3rvN((3,a2 (Z T Z)-1).

I
._----------------- --



We now return to our examples.
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-
¢k = Yk . - ii, k = 1, ... ,p.

1 p

a= - LYk. (not Y. in general)
p k=l

-{3k = Yk., k = 1, ... ,p.

nk

nk{3k = LYkl, k = 1, ... ,po
1=1

At this point we introduce an important notational convention in statistics. If {Cijk ... }

is a multiple-indexed sequence of numbers or variables, then replacement of a subscript by
a dot indicates that we are considering the average over that subscript. Thus,

where n = nl + ... + np and we can write the least squares estimates as

-Proof (Y, E) is a linear transformation of U and, hence, joint Gaussian. The independence-follows from the identification of "ji and E in terms of the Ui in the theorem. Var(,I3)
a 2(ZTZ)-1 follows from (B.5.3). 0

- -
Example 6.1.1. One Sample (continued). Here J-l = {31 and /1 = {31 Y. Moreover,
the unbiased estimator s2 of a2 is L~ 1(Y; - y)2 / (n - 1), which we have seen before in
Problem 1.3.8 and (3.4.2). 0

Example 6.1.2. Regression (continued). If the design matrix Z has rank p, then the MLE-= LSE estimate is,13 = (ZTZ)-1 ZTy as seen before in Example 2.1.1 and Section 2.2.1.- -We now see that the MLE of J-l is "ji = Z,13 and that {3j and /1i are UMVU for (3j and J-li- - -respectively, j = 1, ... ,p, i = 1, ... ,n. The variances of ,I3,"ji = Y, and € = Y - Y are- -given in Corollary 6.1.1. In the Gaussian case ,13, Y, and E are normally distributed with-Y and E independent. The error variance a 2 = Var(El) can be unbiasedly estimated by
s2=(n_p)-1IY_J-l12. 0

Example 6.1.3. The One-Way Layout (continued). In this example the normal equations
(ZT Z),13 = ZY become

By Theorem 6.1.3, in the Gaussian model, th~ UMVU estimate of the average effect of all
the treatments, 0: = {3., is

and the UMVU estimate of the incremental effect Ok = {3k - 0: of the kth treatment is
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Remark 6.1.1. An alternative approach to the MLEs for the nonnal model and the associ
ated LSEs of this section is an approach based on MLEs for the model in which the errors
El, ... , En in (6.1.1) have the Laplace distribution with density

1 1
- exp --It I
2er er

and the estimates of f3 and J-l are least absolute deviation estimates (LADEs) obtained by
minimizing the absolute deviation distance L~ I IYi - z;f31. The LADEs were introduced
by Laplace before Gauss and Legendre introduced the LSEs-see Stigler (1986). The LSEs
are preferred because of ease of computation and their geometric properties. However,
the LADEs are obtained fairly quickly by modem computing methods; see Koenker and
D'Orey (1987) and Portnoy and Koenker (1997). For more on LADEs, see Problems 1.4.7
and 2.2.31.

6.1.3 Tests and Confidence Intervals

The most important hypothesis-testing questions in the context of a linear model corre
spond to restriction of the vector of means J-l to a linear subspace of the space w, which
together with er 2 specifies the model. For instance, in a study to investigate whether a drug
affects the mean of a response such as blood pressure we may consider, in the context of
Example 6.1.2, a regression equation of the form

(6.1.17)

where Zi2 is the dose level of the drug given the ith patient, Zi3 is the age of the ith patient,
and the matrix Ilzij IInx3 with Zi1 = 1 has rank 3. Now we would test H : 132 = 0
versus K : 132 =I O. Thus, under H, {J-l : J-li = 131 + f33zi3, i = 1, ... , n} is a two
dimensional linear subspace of the full model's three-dimensional linear subspace of Rn
given by (6.1.17).

Next consider the p-sample model of Example 1.6.3 with 13k representing the mean
response for the kth population. The first inferential question is typically "Are the means
equal or not?" Thus we test H : 131 = '" = f3p = 13 for some 13 E R versus K:
"the f3's are not all equal." Now, under H, the mean vector is an element of the space
{J-l : J-li = 13 E R, i = 1, ... ,p}, which is a one-dimensional subspace of Rn, whereas for
the full model J-l is in a p-dimensional subspace of Rn.

In general, we let w correspond to the full model with dimension r and let Wo be a
q-dimensionallinear subspace over which J-l can range under the null hypothesis H; 1 <
q < r.

We first consider the er2 known case and consider the likelihood ratio statistic

>.(y) = sup{p(y, J-l) : J-l E w}
sup{p(y, J-l) : J-l E wo}

1
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(6.1.18)

(6.1.20)

(6.1.21 )

(6.1.19)

1 I~ ~ 12
- 2a2 J.t - J.to

1 2
- IY - J.tl

2a2

r

= exp

r

""' 2 -21 12L "7i = a J.t - J.to
i=q+l

U = AY, TJ = AJ.t

210g),(Y) = L (U;/a)2.
i=q+l

() 2 -2=a

)'(Y) = exp - 1 IY - iW - IY - ;:to12
2a2

Section 6.1 Inference for Gaussian Linear Models

for testing H : J.t E Wo versus J( : J.t E w - wo. Because

then, by Theorem 6.1.4,

r

L "7T = 1J.t - J.to 1
2

.

i=q+l

then, by Theorem 6.1.2(v),

)'(Y) = exp

where;:t and ;:to are the projections of Y on wand wo, respectively.
But if we let An xn be an orthogonal matrix with rows v r, ... ,v;; such that VI, ... , v q

span Wo and VI, ... , V r span wand set

Note that (U;ja) has a N(()i, 1) distribution with ()i = "7;/a. In this case the distribu
tion of ~~_q+I (U;/a)2 is called a chi-square distribution with r - q degrees offreedom

and noncentrality parameter ()2 = IlJ[2 = ~:=q+l ()T, where f) = (()q+l'.··' ()r f (see

Problem B.3.12). We write X;-q (()2) for this distribution. We have shown the following.

Proposition 6.1.1. In the Gaussian linear model with a 2known, 2 log ),(Y) has a X;_q(()2)
distribution with

It follows that

where J.to is the projection of J.t on woo In particular, when H holds, 2 log )'(Y) '" X;-q.

Proof We only need to establish the second equality in (6.1.21). Write "7i = AJ.t where A
is as defined in (6.1.19), then
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Next consider the case in which 0'2 is unknown. We know from Problem 6.1.1 that the
MLEs of 0'2 for It E wand J.L E Wa are

~2 1 1y ~12 ~2 1 1y ~ 12a = - - J.L and 0'0 = - - J.La ,
n 17,

J

i
respectively. Substituting ii, iia' 0'2, and 0'5 into the likelihood ratio statistic, we obtain

n
2

where p(y, J.L, 0'2) denotes the right-hand side of (6.1.18).
The resulting test is intuitive. It consists of rejecting H when the fit, as measured by the

residual sum of squares under the model specified by H, is poor compared to the fit under
the general model. For the purpose of finding critical values it is more convenient to work
with a statistic equivalent to .\(Y),

17, - r IY - iiol2-IY - iil2 _ (r - q)-llii - iiol2
T = I ~ 2 I ~12 .r-q Y-J.LI (n-r)-IY-J.L

(6.1.22)

'1,
•
•1

", .

..
,

I
·•

(6.1.23)
>:(y) = max{p(y, J.L, 0'2) : J.L E w}

max{p(y, J.L, 0'2) : J.L E wa}

Because T = (17, - r)(r - q)-1{[.\(y)]2 j n - 1}, T is an increasing function of .\(Y)
and the two test statistics are equivalent. T is called the F statistic for the general linear
hypothesis.

We have seen in Proposition 6.1.1 that a- 2 lii - iiol2have a X;-q(fP) distribution with
()2 = a -21J.L - J.LoI 2. By the canonical representation (6.1.19), we can write a-2IY-iiI2 =

~~ r+l (U;/a)2, which has a X;-r distribution and is independent of a-2lii - iiol2 =
~~=q+ 1 (U;/a) 2. Thus, T has the representation

T = (noncentral X;-q variable)/df

(central X;-r variable)/df

with the numerator and denominator independent. The distribution of such a variable is
called the noncentral F distribution with noncentrality parameter ()2 and r - q and 17, - r
degrees offreedom (see Problem B.3.14). We write Fk,m (()2) for this distribution where
k = r - q and m = 17, - r. We have shown the following.

Proposition 6.1.2. In the Gaussian linear model the F statistic defined by (6.1.22), which
is equivalent to the likelihood ratio statistic for H : J.L E Wo for K : J.L E w - wo, has the
noncentral F distribution Fr-q,n-r( ()2) where ()2 = a-21J.L - J.Lo 1

2. In particular, when H
holds, T has the (central) Fr-q,n-r distribution.

Remark 6.1.2. In Proposition 6.1.1 suppose the assumption "0'2 is known" is replaced by
"0'2 is the same under H and K and estimated by the MLE 0'2 for J.L E w." In this case,
it can be shown (Problem 6.1.5) that if we introduce the variance equal likelihood ratio
statistic,·" .
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(6.1.24)

(6.1.25)

~

J.t

I
~ ~ 12J.t - J.to

where t is the one-sample Student t statistic of Section
o

k-----f'--+---- Yl

- r - q noncentral X;-q
2 log ),(Y) = T = -------:,----,,-,--'-

(n - r)/n central X~_r/n

Section 6.1 Inference for Gaussian Linear Models

Yl = Y2

Figure 6.1.1. The projections "ii and "iio of Y on w and Wo; and the Pythagorean identity.

Y3

where T is the F statistic (6.1.22).

Remark 6.1.3. The canonical representation (6.1.19) made it possible to recognize the
identity

y

which we exploited in the preceding derivations. This is the Pythagorean identity. See
Figure 6.1.1 and Section B.lO.

then :\(Y) equals the likelihood ratio statistic for the a 2 known case with a 2 replaced by
0'2. It follows that

which we recognize as t2 /n,
4.9.2.

We next return to our examples.

Example 6.1.1. One Sample (continued). We test H : {31 = J.lo versus K : {3 =I- J.lo. In this
case Wo = {J.lo}. q = O. r = 1 and

- 2
T = (Y - J.lo) _

(n - 1)-1 ~(Yi - Y)2'
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Example 6.1.2. Regression (continued). We consider the possibility that a subset of p ~ q
covariates does not affect the mean response. Without loss of generality we ask whether
the last p ~ q covariates in multiple regression have an effect after fitting the first q. To
formulate this question, we partition the design matrix Z by writing it as Z = (Zl, Z2)
where Zl is n x q and Z2 is 11 X (p - q), and we partition {3 as {3T = ({3f, (3f) where
{32 is a (p - q) x 1 vector of main (e.g., treatment) effect coefficients and {31 is a q x 1
vector of "nuisance" (e.g., age, economic status) coefficients. Now the linear model can be
written as

(6.1.26)

~ ~

We test H : {32 = 0 versus K : {32 i=- O. In this case {3 (ZTZ)-lZTy and {3o =
(ZrZl)-lZry are the MLEs under the full model (6.1.26) and H, respectively. Using
(6.1.22) we can write the F statistic version of the likelihood ratio test in the intuitive form

F = (RSSH - RSSF )/(dfH - dfp)

RSSF/dfp

where RSSF = IY - iW and RSSH = IY - iiol2 are the residual sums of squares under
the full model and H, respectively; and dfF = n -p and dfH = n -q are the corresponding
degrees of freedom. The F test rejects H if F is large when compared to the ath quantile
of the Fp-q,n-p distribution.

Under the alternative F has a noncentral Fp- q,n-p(fJ2) distribution with noncentrality
parameter (Problem 6.1.7)

(6.1.27)

In the special case that ZrZ2 = 0 so the variables in Zl are orthogonal to the variables
in Z2, (J2 simplifies to a-2(p - q){3I(ZfZ2){32' which only depends on the second set
of variables and coefficients. However, in general ()2 depends on the sample correlations
between the variables in Zl and those in Z2' This issue is discussed further in Example
6.2.1. 0

Example 6.1.3. The One-Way Layout (continued). Recall that the least squares estimates
of 131, ... ,f3p are Y1., ... , Y; .. As we indicated earlier, we want to test H : 131 = ... = f3p.
Under H all the observations have the same mean so that,

iio = (Y., ... ,yy.
Thus,

P nk P

Iii - J.Lo1 2 = L L(Yk' - y.)2 = L nk(Yk. - y.)2.
k=l 1=1 k=l

Substituting in (6.1.22) we obtain the F statistic for the hypothesis H in the one-way layout

n - p ~~=l nk(Yk. - y.)2
T = ""p ""nk (V 2 .

P - 1 L..k=l L..l=l L kl - Yk.)
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measures variation within the samples. If we define the total sum of squares as

is a measure of variation between the p samples Y l1 , ... , YIn! , ... , Yp1 , ... , Ypnp ' The
sum of squares in the denominator,

which measures the variability of the pooled samples, then by the Pythagorean identity
(6.1.25)

379

(6.1.28)

(6.1.29)SST = SSB + SSw.

P
2 1", -2

15 = 2" L nk({3k - (3) ,
a

k=1

Section 6.1 Inference for Gaussian Linear Models

P nk

SST = L L(Ykl - y.)2,
k=1 1=1

where {3 = n~l Lf 1ni{3i. To derive 152, compute a-2111 - 1101 2 for the vector 11
({31, ... , {31, {32, ... , {32, ... , {3p, ... , {3p)T and its projection 110 = ({3, ... , (3)T.

There is an interesting way of looking at the pieces of information summarized by the
F statistic. The sum of squares in the numerator,

When H holds, T has a Fp~l,n-p distribution. If the (3i are not all equal, T has a noncentral
Fp~ I ,n~p distribution with noncentrality parameter

P nk

SSw = L L(Ykl - yk.)2,
k=1 1=1

P

SSB = L nk(Yk. - y)2
k=1

Thus, we have a decomposition of the variability of the whole set of data, SST, the total
sum of squares, into two constituent components, SSB, the between groups (or treatment)
sum of squares and SSw, the within groups (or residual) sum of squares. SSTla2 is
a (noncentral) X2 variable with (n - 1) degrees of freedom and noncentrality parameter
152. Because SSBIa 2 and SSw Ia 2 are independent X2 variables with (p - 1) and (n - p)
degrees of freedom, respectively, we see that the decomposition (6.1.30) can also be viewed
stochastically, identifying 152 and (p - 1) degrees of freedom as "coming" from SSBla2

and the remaining (n - p) of the (n - 1) degrees of freedom of SSTla2 as "coming" from
SSwla2 .

This information as well as SSBI (p - 1) and SSw I (n - p), the unbiased estimates of
152 and a2 , and the F statistic, which is their ratio, are often summarized in what is known
as an analysis ofvariance (ANOYA) table. See Tables 6.1.1 and 6.1.3.

As an illustration, consider the following data(1) giving blood cholesterol levels of men
in three different socioeconomic groups labeled I, II, and III with I being the "high" end.
We assume the one-way layout is valid. Note that this implies the possibly unrealistic
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TABLE 6.1.1. ANOYA table for the one-way layout

Sum of squares d,L Mean squares F -value

Between samples SSa L " 1 n,.()·k' 1')2 p j A1Sa
SSB AlS B

k p 1 AI SUT

Within samples SSw L P 'I\" n-k(y )'k ) 2 n p AlSw
S S\t\7

k l"-'ll ld
":1'-

Total 55 ~,. P L "k (Y Y )2 n - 1T - '-- k-l 1-1 kl - ,

TABLE 6.1.2. Blood cholesterol levels

I 403 311 269 336 259
II 312 222 302 420 420 386 353 210 286 290

III 403 244 353 235 319 260

i

1

I
1
j
1
1
~

J,
~,
"

J..,,

I,·,
1,
I,
j,
I,
1,..,,

, ,
•,
I

'I:,
'I
•

,I,

,
I

"t,
i ',

",i

assumption that the variance of the measurement is the same in the three groups (not to
speak of nonnality). But see Section 6.6 for "robustness" to these assumptions.

We want to test whether there is a significant difference among the mean blood choles
terol of the three groups. Here p = 3, nj = 5, n2 = 10, n3 = 6, n = 21, and we
compute

TABLE 6.1.3. ANOYA table for the cholesterol data

SS dJ. MS F-value
Between groups 1202.5 2 601.2 0.126
Within groups 85,750.5 18 4763.9
Total 86,953.0 20

From :F tables, we find that the p-value corresponding to the F-value 0.126 is 0.88.
Thus, there is no evidence to indicate that mean blood cholesterol is different for the three
socioeconomic groups. 0

Remark 6.1.4. Decompositions such as (6.1.29) ofthe response total sum of squares SST
into a variety of sums of squares measuring variability in the observations corresponding
to variation of covariates are referred to as analysis of variance. They can be fonnulated
in any linear model including regression models. See Scheffe (1959, pp. 42-45) and Weis
berg (1985, p. 48). Originally such decompositions were used to motivate F statistics and
to establish the distribution theory of the components via a device known as Cochran's the
orem (Graybill, 1961, p. 86). Their principal use now is in the motivation of the convenient
summaries of information we call ANOYA tables.

•,

...._--------------------------------------_.
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Confidence Intervals and Regions

Section 6.1 Inference for Gaussian Linear Models

is, in the Gaussian linear model, a 100(1 - 0:)% confidence interval for l/J.

Example 6.1.1. One Sample (continued). Consider l/J = J-l. We obtain the interval

which is the same as the interval of Example 4.4.1 and Section 4.9.2.

Example 6.1.2. Regression (continued). Assume that p = r. First consider l/J = {3j for
some specified r~gression coefficient (3j. The 100(1 - 0:)% confidence interval for (3j is

- (1) [ T -1] }!{3j = {3j ± tn - p 1 - 20: s{ (Z Z) jj 2

has a Tn - r distribution. Let tn - r (1 - ~ 0:) denote the 1 - ~ 0: quantile of the Tn - r distri
bution, then by solving IT( l/J) I < tn - r (1 - ~ 0:) for l/J, we find that

n

- -where H is the hat matrix, then (l/J -l/J)la(l/J) has a N(O, 1) distribution. Moreover,

- -
T(l/J) = (l/J -l/J)la(l/J) = (;j-l/J)la(;j)

(sla)

-
of the J.l's. If we set l/J = 2:7 1 aiJii = aTJ-t and

l/J = l/J(J-t) = L aiJ.li = aTJ-t
i=1

n

We next use our distributional results and the method of pivots to find confidence inter
vals for J.li, 1 < i < n, (3j, 1 < j < p, and in general, any linear combination

-has a X;- r distribution and is independent of l/J. Let

(n ~ r)s2/a2 = IY - itl 2/ a2 = L (Uda2 )2
i=r+l

- -be an estimate of the standard deviation a(l/J) of l/J. This estimated standard deviation is-called the standard error of l/J. By referring to the definition of the t distribution, we find
that the pivot
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where [( ZTZ) -I ]jj is the jth diagonal element of (ZTZ) -I. Computer software computes

(ZTZ) -I and labels s{ [(ZTZ) -ILj} ~ as the standard error of the (estimated) jth regres
sion coefficient. Next consider 1jJ = J-li = mean response for the ith case, 1 < i < n. The
level (1 - a) confidence interval is

J-li = Iii ± t n - p (1 - ~Q) sVh:,

where hii is the ith diagonal element of the hat matrix H. Here sVh;; is called the standard
error of the (estimated) mean of the ith case.

Next consider the special case in which p = 2 and

Yi = {31 + (32 Zi2 + Ei, i = 1, ... , n.

If we use the identity

n

2)Zi2 - Z.2)(Yi - Y)
i=l

,
,
,

i:

I

we obtain from Example 2.2.2 that

(3- - L~=I (Zi2 - Z.2)Yi
2 - ",n ( )2 .L.,i=1 Zi2 - Z·2

Because Var(Yi) = a 2 , we obtain

n

and the 100(1 - a)% confidence interval for {32 has the form

{32 = /32 ± tn - p (1 - ~a) s/ V"2)Zi2 - Z.2)2.

The confidence interval for {31 is given in Problem 6.1.10.
Similarly, in the p = 2 case, it is straightforward (Problem 6.1.10) to compute

h. = ~ + (Zi2 - Z.2)2

" n L~ I(Zi2 - Z.2)2

(6.1.30)

,
•,

I
, .
•, i

".'i' ;
~.
, '

and the confidence interval for the mean response J-li of the ith case has a simple explicit
form. 0

Example 6.1.3. One-Way Layout (continued). We consider 1jJ = {3k. 1 < k < p. Because-(3k = Yk. rv N({3k' a 2/nk), we find the 100(1 - a)% confidence interval

- 1{3k = {3k ± tn - p (1- 2a ) s/J'nk

where S2 = SSw /(n-p). The intervals for J-l = {3. and the incremental effect Ok = {3k - J-l
are given in Problem 6.1.11. 0

1
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6.2 ASYMPTOTIC ESTIMATION THEORY IN p
DIMENSIONS

In this section we largely parallel Section 5.4 in which we developed the asymptotic prop
erties of the MLE and related tests and confidence bounds for one-dimensional parameters.
We leave the analogue of Theorem 5.4.1 to the problems and begin immediately generaliz
ing Section 5.4.2.

o

383

(6.1.31)

•

Joint Confidence Regions

C=

Section 6.2 Asymptotic Estimation Theory in p Dimensions

We have seen how to find confidence intervals for each individual {3j, 1 < j < p. We
next consider the problem of finding a confidence region C in RP that covers the vector /3
with prescribed probability (1 - a). This can be done by inverting the likelihood ratio test
or equivalently the F test. That is, we let C be the collection of /30 that is accepted when
the level (1 - a) F test is used to test H : /3 = /30' Under H, I-L = I-Lo = Z/3o; and the
numerator of the F statistic (6.1.22) is based on

~ 2 - 2 - TT-
II-L -I-Lol = IZ/3 - Z/3ol = (/3 - /30) (Z Z)(/3 - /30).

Thus, using (6.1.22), the simultaneous confidence region for /3 is the ellipse

- T T -

c= /30: (/3-/30) (~s2Z)(/3-/3o) <fr,n~r(l-~a)

where fr,n-r (1 - ~a) is the 1 - ~a quantile of the fr,n-r distribution.

Example 6.1.2. Regression (continued). We consider the case p = r and as in (6.1.26)
write Z = (Z1, Z2) and /3T = (/3i, /3f), where /32 is a vector of main effect coefficients

..-... ..-...T ..-...T ..-...T
and /31is a vector of "nuisance" coefficients. Similarly, we partition /3 as /3 = (/31 ,/32 )

~ ~

where /31 is q x 1 and /32 is (p - q) x 1. By Corollary 6.1.1, a 2 (ZT Z) is the variance--covariance matrix of /3. It follows that if we let S denote the lower right (p - q) x (p -
~

q) corner of (ZTZ)-l, then a 2S is the variance-covariance matrix of /32' Thus, a joint
100(1 - a)% confidence region for /32 is the p - q dimensional ellipse

Summary. We consider the classical Gaussian linear model in which the resonse Y; for
the ith case in an experiment is expressed as a linear combination J-li = LJ=1 (3jZij of

covariates plus an error tOi, where tOi, ... , tOn are i.i.d. N(0,a2 ). By introducing a suitable
orthogonal transformation, we obtain a canonical model in which likelihood analysis is
straightforward. The inverse of the orthogonal transformation gives procedures and results
in terms of the original variables. In particular we obtain maximum likelihood estimates,
likelihood ratio tests, and confidence procedures for the regression coefficients {{3j}, the
response means {J-li}, and linear combinations of these.
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6.2.1 Estimating Equations

384

Our assumptions are as before save that everything is made a vector:
i.i.d. P where P E Q, a model containing P = {PO: 0 E e} such that

(i) e open C RP.

(ii) Densities of Po are pC 0), BEe.

The following result gives the general asymptotic behavior of the solution of estimating
•equations.

AO. \II = ('l/Jl, ... , 'l/Jp ) T where 'I/J j = ;l is well defined and
J

1 n _- L W(Xi , On) = O.
n.

t=1

(6.2.1)

A solution to (6.2.1) is called an estimating equation estimate or an M -estimate.

AI. The parameter O(P) given by the solution of (the nonlinear system of p equations in p
unknowns):

..
'!

,

"
,
•

I
i
j

I
I.

J w(x, O)dP(x) = 0 (6.2.2)

is well defined on Q so that O(P) is the unique solution of (6.2.2). Necessarily O(PO) = 0
because Q :) P.

A2. E p I\II (XI ,O(P))1 2 < 00 where 1·1 is the Euclidean norm.

A3. 'l/Ji(', 0), 1 < i < p, have first-order partials with respect to all coordinates and using
the notation of Section B.8,

A4. sup {I ~ ~~ 1(Dw (Xi, t) - Dw(Xi ,O(P))) I: It - O(P)I < tOn} ~ 0 if tOn -> O.

- p
AS. On -+ O(P) for all P E Q.

Theorem 6.2.1. Under AD-A5 of this section

i:
!

,
,",,
! i
.: I,
" II'· ;

!
'I,
",

:~ I.

I
I,,
,.
~

: I, .
r"I

where

is nonsingular.

where

E O'I/Ji (X 0)
PoB

j
1,

pxp

(6.2.3)

i '

•
"

~(x, O(P)) = -[EpDw(X1 , O(p))]-lW(X, O(P)). (6.2.4)

,,,.
,nz _



(6.2.8)

(6.2.7)
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(6.2.5)

(6.2.6)

Bl/J;
-Ep BO (X),O(P)) .

J

-EO\l1(X) , O)Dl(X), 0)

-CovO(\I1(X), 0), Dl(X), 0))

1 n 1 n _

-- L lJ!(X;,O(P)) = - LD\I1(X;,O~)(On - O(P)).
n n

;=) ;=)

J-)(O, P) = -EpDlJ!(X), O(P)) =

where

Hence,

Section 6.2 Asymptotic Estimation Theory in p Dimensions

The proof of this result follows precisely that of Theorem 5.4.2 save that we need
multivariate calculus as in Section B.8. Thus,

and

A6. If l (" 0) is differentiable

Note. This result goes beyond Theorem 5.4.2 in making it clear that although the definition
of On is motivated by P, the behavior in (6.2.3) is guaranteed for P E Q, which can include
P rf- P. In fact, typically Q is essentially the set of P's for which O(P) can be defined
uniquely by (6.2.2).

We can again extend the assumptions of Section 5.4.2 to:

defined as in B.5.2. The heuristics and conditions behind this identity are the same as in
the one-dimensional case. Remarks 5.4.2, 5.4.3, and Assumptions A4' and A6' extend to
the multivariate case readily.

Note that consistency of On is assumed. Proving consistency usually requires different
arguments such as those of Section 5.2. It may, however, be shown that with probability
tending to 1, a root-finding algorithm starting at a consistent estimate O~ will find a solution
On of (6.2.1) that satisfies (6.2.3) (Problem 6.2.10).

Note that the left-hand side of (6.2.7) is a p x 1 vector, the right is the product of a p x p
matrix and a p x 1 vector.

The rest of the prooffollows essentially exactly as in Section 5.4.2 save that we need the
observation that the set of nonsingular p x p matrices, when viewed as vectors, is an open
subset of RP2, representable, for instance, as the set of vectors for which the determinant,
a continuous function of the entries, is different from zero. We use this remark to con
clude that A3 and A4 guarantee that with probability tending to 1, ~ ~~ ) D\I1(X;, O~) is
nonsingular.



(6.2.9)
EODl(X1 , O)DT l(X1 , 0))

VarODl(X1 ,O)

where

If we take p(x, 0) = l(x,O) log p(x, 0), and \{1(x, 0) obeys AO-A6, then (6.2.8) be-
comes

386 Inference in the Multiparameter Case Chapter 6

6.2.2 Asymptotic Normality and Efficiency of the MLE

I
. I

I

•, ,
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!~

•f,,
"

~;
- :',

I

I

is the Fisher information matrix 1(0) introduced in Section 3.4. If p: 0 -> R, 0 C R d , is

a scalar function, the matrix afto] (0) is known as the Hessian or curvature matrix of

the surface p. Thus, (6.2.9) states that the expected value of the Hessian of l is the negative
of the Fisher information.

We also can immediately state the generalization of Theorem 5.4.3.

~

Theorem 6.2.2. If AO-A6 hold for p(x, 0) log p(x, 0), then the MLE On satisfies

1 n

On = 0+ - I)-I(O)Dl(Xi ,O) + op(n- 1
/

2
) (6.2.10)

n
i=l

so that

••
•
•

',i,
•,

)

••,
,
,

£(vn(On - 0)) -> N(O, 1-1(0)). (6.2.11 )

,
.' ,, .0'

i ::
'i I'·-, "

"i ;'

,
i '
, -j,
i ;

If On is a minimum contrast estimate with p and 'IjJ satisfying AO-A6 and corresponding
asymptotic variance matrix ~(\{1 ,PO)' then

~(\{1,PO) > 1- 1(0) (6.2.12)

in the sense of Theorem 3.4.4 with equality in (6.2.12) for 0 = 00 iff, under 00 ,

- ~ -1/2
On = On + op(n ). (6.2.13)

•
-j,

I :,. .
,

I
,

•

,.,
r r
r i
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Proof. The proofs of (6.2.10) and (6.2.11) parallel those of (5.4.33) and (5.4.34) exactly.
The proof of (6.2.12) parallels that of Theorem 3.4.4. For completeness we give it. Note
that by (6.2.6) and (6.2.8)

~(\{1,PO) = Cov0
1(D, V)VarO(D)Cov01(V, D) (6.2.I4)

where D _ \{1(X1 , 0), V = Dl(X1 ,0). But by (B.1O.8), for any D, V with
Var(DT,vTf nonsingular

Var(V) > Cov(U, V)Var-1(D)Cov(V, D). (6.2.I5)

Taking inverses of both sides yields

(6.2. I6)
.'

•

I

I! .
• •I ,

, !.... .7



where f is distributed as N(0,a2 ) independent of Z and E(Z) = O. That is, given
Z, Y has a N(o: + ZT (3, a 2 ) distribution.

(ii) The distribution H o of Z is known with density h o and E(ZZT) is nonsingular.

The second assumption is unreasonable but easily dispensed with. It readily follows
(Problem 6.2.6) that the MLE of (3 is given by (with probability 1)

~ -T - -l-T
(3 = [Z(n)Z(n)] Z(n) Y. (6.2.20)

Here Z(n) is the n x p matrix IIZij - Z.j II where Z-j = ~ ~~ I Zij. We used subscripts
(n) to distinguish the use of Z as a vector in this section and as a matrix in Section 6.1. In
the present context, Z(n) = (ZI, ... ,Zn)T is referred to as the random design matrix. This
example is called the random design case as opposed to the fixed design case of Section
6.1. Also the MLEs of 0: and a 2 are

387

(6.2.21)

(6.2.17)

(6.2.19)Y = 0: + ZT (3 + f

p
- "" ~ 2 1 ~2a = Y - ~ Zjf3j, a = -IY - (a + Z(n)(3)1 .

. n
J=I

(i)

Section 6.2 Asymptotic Estimation Theory in p Dimensions

Equality holds in (6.2.15) by (B.1O.2.3) iff for some b = b(O)

U = b + Cov(U, V)Var-I(V)V

with probability 1. This means in view of Eo \II = EODI = 0 that

w(X1,O) = b(O)DI(XI , 0).

In the case of identity in (6.2.16) we must have

- [EODW (X I, O)]~ I \II (X1,0) = ]-1 (O)Dl( X 1,0). (6.2.18)

Hence, from (6.2.3) and (6.2.10) we conclude that (6.2.13) holds. 0
~

We see that, by the theorem, the MLE is efficient in the sense that for any a p x I, aT0 n
has asymptotic bias o(n- I / 2) and asymptotic variance n-IaT ]-I(O)a, which is no larger

. -
than that of any competing minimum contrast estimate. Further any competitor On such

- ~ ~

that aTOn has the same asymptotic behavior as aTOn for all a in fact agrees with On to
order n- I / 2 .

A special case of Theorem 6.2.2 that we have already established is Theorem 5.3.6
on the asymptotic normality of the MLE in canonical exponential families. A number of
important new statistical issues arise in the multiparameter case. We illustrate with an
example.

Example 6.2.1. The Linear Model with Stochastic Covariates. Let Xi = (Zr, Y;f,
1 < i < n, be i.i.d. as X = (ZT, Y)T where Z is a p x 1 vector of explanatory variables
and Y is the response of interest. This model is discussed in Section 2.2.1 and Example
1.4.3. We specialize in two ways:



388 Inference in the Multiparameter Case Chapter 6

j,,
]

•,

•,

•
•,
1

.j,,

,j
I

I
•1
"

1
j
•
~,
j
.!

1
j
,
•.,
•,

-

(6.2.22)

(6.2.24)

(6.2.23)

(6.2.25)

. .. = (3p = O. Let Zi -

o
o
1

2,,4

17- 2 0
o a-2 E(ZZT)
o 0

I(0) =

l(X,O)

Dl(X, 0)

~

Note that although given ZI, ... , Z", (3 is Gaussian, this is not true of the marginal distri-
~

bution of (3.
It is not hard to show that AO-A6 hold in this case because if H o has density ko and if

odenotes (a, (3T, (7 2 )T, then

1 1
- 2 [Y - (a + ZT (3)]2 - -(log 17

2 + log 21r) + log ho(z)
217 2
E E 1 2
2' Z2' 4(E -1)a a 217

and

so that by Theorem 6.2.2

£( ,;n(a - a, 13 - (3, (j2 - (7
2

)) ---> N(O, diag(17
2

,17
2 [E(ZZT)] -1 ,2(7

4
)).

This can be argued directly as well (Problem 6.2.8). It is clear that the restriction of H o
known plays no role in the limiting result for a, 13, (;2. Of course, these will only be the
MLEs if H 0 depends only on parameters other than (a, (3, (7

2 ). In this case we can estimate
E(ZZT) by ~ L~ 1 ZiZr and give approximate confidence intervals for (3j, j = 1, ... ,po

An interesting feature of (6.2.23) is that because 1(0) is a block diagonal matrix so is

I-I (0) and, consequently, 13 and (j2 are asymptotically independent. In the classical linear
model of Section 6.1 where we perform inference conditionally given Zi = Zi, 1 < i < n,
we have noted this is exactly true.

This is an example of the phenomenon of adaptation. If we knew 17
2 , the MLE would

still be 13 and its asymptotic varianc~optimal for this model. Ifwe knew a and (3, (;2 would
no longer be the MLE. But its asymptotic variance would be the same as that of the MLE
and, by Theorem 6.2.2, (j2 would be asymptotically equivalent to the MLE. To summarize,
estimating either parameter with the other being a nuisance parameter is no harder than
when the nuisance parameter is known. Formally, in a model P = {P(9,TJ) : B E 8, "7 E £}-we say we can estimate B adaptively at "70 if the asymptotic variance of the MLE B (or

~ ~

more generally, an efficient estimate of B) in the pair (B, ii) is the same as that of B("7o),
the efficient estimate for PTJO = {P(9,TJo) : B E 8}. The possibility of adaptation is in fact
rare, though it appears prominently in this way in the Gaussian linear model. In particular
consider estimating (31 in the presence of a, ((32 ... , (3p) with

(i) a, (32, .. " (3p known.

(ii) (3 arbitrary.

In case (i), we take, without loss of generality, a = (32
(Zil"'" ZiP)T, then the efficient estimate in case (i) is

(300 _ L~-1 Zil Y;
1 - ",n z2

L..,i=l iI

,
, '

,
: i

,
,I

Irz _

,,
I,
I
I

;I
, I
i j

I
i
I

I
I



-xe
fo(x) = (1 + e-x)2'

the logistic density. Such error densities have the often more realistic, heavier tails(1) than
~

the Gaussian density. The estimates (30,0'0 now solve

389

(6.2.26)

Section 6.2 Asymptotic Estimation Theory in p Dimensions

~ ~

with asymptotic variance a 2 [EZn- 1
. On the other hand, {31 is the first coordinate of (3

given by (6.2.20). Its asymptotic variance is the (1,1) element of a2[EZZTt 1, which
is strictly bigger than a 2[EZf]-1 unless [EZZT ]-1 is a diagonal matrix (Problem 6.2.3).
So in general we cannot estimate {31 adaptively if {32, ... , (3p are regarded as nuisance
parameters. What is happening can be seen by a representation of[Zfn) Zen)] -1 Zfn) Y and

Jll(O) whereJ- 1 (O) -IIJij(O)II. We claim that

n ~(1)

~ ~i=1 (Zil - Zi )Y;
(31 = ""n (Z _2(1))2

L ..n=l 11 1

[E(Zl1 - II(Zl1 I Z21, ... , ZpJ)2j-l

E(Zfl)

n p

LZij.,p
~-1

Y; - L~kOZik =0a
i=l k=1

and
n 1 p

~-1

Y; - LRoZikL ;:;::X =0a
ai=1 k=1

~

where Z(I) is the regression of (Zl1,"" Zln)T on the linear space spanned by (Zjl,""
Zjnf, 2 < j < p. Similarly,

Jl1(O) = a 2; E(Zl1 - II(ZIl I Z21, ... , ZpJ))2 (6.2.27)

where II(Zl1 I Z21, ... , ZpJ) is the projection of Zl1 on the linear span of Z21>"" Zpl
(Problem 6.2.11). Thus, II(Zl1 I Z21, ... , Zpl) = ~~=2 aiZjl where (a:;;, ... , a;) min

imizes E(Zl1 - ~P=2 aj ZjJ)2 over (a2,.'" ap) E RP-I (see Sections 1.4 and B.IO).
What (6.2.26) and (6.2.27) reveal is that there is a price paid for not knowing {32, ... , (3p
when the variables Z2, . .. , Zp are in any way correlated with ZI and the price is measured
by

(6.2.28)

In the extreme case of perfect collinearity the price is 00 as it should be because {31 then
becomes unidentifiable. Thus, adaptation corresponds to the case where (Z2, ... , Zp) have
no value in predicting ZI linearly (see Section 1.4). Correspondingly in the Gaussian linear

~

model (6.1.3) conditional on the Zi, i = 1, ... , n, (31 is undefined if the denominator in
(6.2.26) is 0, which corresponds to the case of collinearity and occurs with probability 1 if
E(ZIl - II(Zl1 I Z21, ... , ZpI))2 = O. 0

Example 6.2.2. M Estimates Generated by Linear Models with General Error Structure.
Suppose that the lOi in (6.2.19) are i.i.d. but not necessarily Gaussian with density ~ fa (~),

for instance,
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(6.2.29)

(6.2.30)

The assumptions of

o
(J-2I({3T,1)

-2 cIE(ZTz)
(J 0

Zj 1/J y - E~=I Zkpk

(J (J

1 Y - E~-I Zkpk
-X(J (J

1(0)

£o(vn(/3o - (30)) ~ N(O, L(1J1, P))

£(vn(O' - (Jo) ~ N(O, (J2(p))

J' ( f' ) - _ - - Twhere1/J = -fo,x(Y) = - yfo(y)+l ,{30 = (PlQ, ".,ppO) .
Theorem 6.2.2 may be shown to hold (Problem 6.2.9) if

(i) log 10 is strictly concave, i.e., fa is strictly decreasing.

(ii) (log 10)" exists and is bounded.

Then, if further 10 is symmetric about 0,

to conclude that

where

where Cl = J (fa (x)) 2 10 (x)dx, C2 = J (x fa (x) + 1) 2 lo(x)dx. Thus, /30,0'0 are opti

mal estimates of {3 and (J in the sense of Theorem 6.2.2 if 10 is true.-Now suppose 10 generating the estimates Po and 0'5 is symmetric and satisfies (i) and
(ii) but the true error distribution has density I possibly different from 10. Under suitable
conditions we can apply Theorem 6.2.1 with

1J1(Z, Y,{3,(J) = (1/JI, ... ,1/Jp,1/Jp+lf(Z, Y,{3,(J)

"

t

·,
,

·1

I
•

I
J,

where {30, (JO solve

:,
l,

(6.2.31)

and ~(1J1, P) is as in (6.2.6). What is the relation between {30, (JO and {3, (J given in the
Gaussian model (6.2.19)? If10 is symmetric about °and the solution of (6.2.31) is unique,

, -
then {30 = {3. But (JO = c(fo)(J for some, cUo) typically different from one. Thus, {30 can
be used for estimating {3 althougb if tlj!f true distribution of the Ei is N(O, (J2) it should- '
perform less wen than {3. On the QtPef hand, 0'0 is an estimate of (J only if normalized
by a constant depending on 10. (See Problem 6.2.5.) These are issues of robustness, that
is, to have a bounded sensitivity curve (Section 3,5, Problem 3.5.8), we may wen wish to
use a nonlinear bounded 1J1 = (1/JI,"" If;p) T to estimate {3 even though it is suboptimal
when E '" N(O, (J2), and to use a suita~ly normalized version of 0'0 for the same purpose.
One effective choice of 1/Jj is the Huper function defined in Problem 3.5.8. We will discuss
these issues further in Section 6.6 and ~lume II. 0

t ...



6.2.3 The Posterior Distribution in the Multiparameter
Case

The asymptotic theory of the posterior distribution parallels that in the one
dimensional case exactly. We simply make 0 a vector, and interpret I . I as the Euclidean
norm in conditions A7 and A8. Using multivariate expansions as in E.8 we obtain

Theorem 6.2.3. lfthe multivariate versions ofAO-A3, A4(a.s.), A5(a.s.) and A6-A8 hold
~

then, if0 denotes the MLE,

391

(6.2.32)

Testing and Confidence Bounds

Section 6.2 Asymptotic Estimation Theory in p Dimensions

There are three principal approaches to testing hypotheses in multiparameter models,
the likelihood ratio principle, Wald tests (a generalization of pivots), and Rao's tests. All of
these will be developed in Section 6.3. The three approaches coincide asymptotically but
differ substantially, in performance and computationally, for fixed n. Confidence regions
that parallel the tests will also be developed in Section 6.3.

Optimality criteria are not easily stated even in the fixed sample case and not very
persuasive except perhaps in the case of testing hypotheses about a real parameter in the
presence of other nuisance parameters such as H : OJ < 0 versus K : OJ > 0 where
O2 , ... ,Op vary freely.

a.s. under Po for all O.

The consequences of Theorem 6.2.3 are the same as those of Theorem 5.5.2, the equiv
alence of Bayesian and frequentist optimality asymptotically.

Again the two approaches differ at the second order when the prior begins to make a
difference. See Schervish (1995) for some of the relevant calculations.

A new major issue that arises is computation. Although it is easy to write down the pos
terior density of 0, 7r(O) IT7 j p(Xi , 0), up to the proportionality constant
J8 7r (t) IT7 1 p(Xi, t) dt, the latter can pose a formidable problem if p > 2, say. The prob
lem arises also when, as is usually the case, we are interested in the posterior distribution
of some of the parameters, say (0 1, ( 2 ), because we then need to integrate out (03 , ... ,Op).
The asymptotic theory we have developed permits approximation to these constants by the
procedure used in deriving (5.5.19) (Laplace's method). We have implicitly done this in
the calculations leading up to (5.5.19). This approach is refined in Kass, Kadane, and Tier
ney (1989). However, typically there is an attempt at "exact" calculation. A class of Monte
Carlo based methods derived from statistical physics loosely called Markov chain Monte
Carlo has been developed in recent years to help with these problems. These methods are
beyond the scope of this volume but will be discussed briefly in Volume II.

Summary. We defined minimum contrast (MC) and M -estimates in the case of p
dimensional parameters and established their convergence in law to a normal distribu
tion. When the estimating equations defining the M -estimates coincide with the likelihood



equations, this result gives the asymptotic distribution of the MLE. We find that the MLE
is asymptotically efficient in the sense that it has "smaller" asymptotic covariance matrix
than that of any MD or M -estimate if we know the correct model P = {Po : B E 8} and
use the MLE for this model. We use an example to introduce the concept of adaptation in

~

which an estimate Bis called adaptive for a model {PO,r/ : B E 8, 17 E E} if the asymptotic
~

distribution of vn(B- B) has mean zero and variance matrix equal to the smallest possible
for a general class of regular estimates of B in the family of models {PO,f)O : B E 8}, 170
specified. In linear regression, adaptive estimation of 131 is possible iff Zl is uncorrelated
with every linear function of Z2, ... ,Zp. Another example deals with M -estimates based
on estimating equations generated by linear models with non-Gaussian error distribution.
Finally we show that in the Bayesian framework where given fJ, Xl, .. . ,Xn are i.i.d. PfJ,- -if fJ denotes the MLE for PfJ' then the posterior distribution of vn(fJ - fJ) converges
a.s. under Po to the N(O,I-1 (fJ)) distribution.
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In Section 6.1 we developed exact tests and confidence regions that are appropriate in re
gression and anaysis of variance (ANOVA) situations when the responses are normally
distributed. We shall show (see Section 6.6) that these methods in many respects are also
approximately correct when the distribution of the error in the model fitted is not assumed
to be normal. However, we need methods for situations in which, as in the linear model, co
variates can be arbitrary but responses are necessarily discrete (qualitative) or nonnegative
and Gaussian models do not seem to be appropriate approximations. In these cases exact
methods are typically not available, and we turn to asymptotic approximations to construct
tests, confidence regions, and other methods of inference. We present three procedures
that are used frequently: likelihood ratio, Wald and Rao large sample tests, and confidence
procedures. These were treated for B real in Section 5.4.4. In this section we will use
the results of Section 6.2 to extend some of the results of Section 5.4.4 to vector-valued
parameters.

6.3.1 Asymptotic Approximation to the Distribution of
the Likelihood Ratio Statistic

In Sections 4.9 and 6.1 we considered the likelihood ratio test statistic,

..\(x) = sup{p(x, fJ) : fJ E 8}
sup{p(x, fJ) : fJ E 8 0 }

for testing H : fJ E 8 0 versus K : fJ E 8 1, 8 1 = 8 - 8 0 , and showed that in several
statistical models involving normal distributions, ..\(x) simplified and produced intuitive
tests whose critical values can be obtained from the Student t and :F distributions.

However, in many experimental situations in which the likelihood ratio test can be used
to address important questions, the exact critical value is not available analytically. In such
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TJ = Ap., U = AY

p(x; B) = ,8Ct x Ct-1 exp{-,8x}Ir(Q); X > 0; Q > 0,,8 > o.

393Section 6.3 Large Sample Tests and Confidence Regions

We illustrate the remarkable fact that X;-q holds as an approximation to the null distri
bution of 2 log A quite generally when the hypothesis is a nice q-dimensional submanifold
of an r-dimensional parameter space with the following.

r

2 log A(Y) = L xl rv X;-q'
i=q+1

where An Xn is an orthogonal matrix with rows vI, ... ,v~ such that VI, •.• , vq span Wo

and VI,"" V r span w.
Set Bi = ",i/O'o, i = 1, ... , r and Xi = Ui/O'o, i = 1, ... , n. Then Xi rv N(Bi , 1),

i = 1, ... ,r and Xi ~ N(O, 1), i = r+ 1, ... ,n. Moreover, the hypothesis H is equivalent
to H : Bq+l = ... = Br = O. Using Section 6.1.3, we conclude that under H,

cases we can tum to an approximation to the distribution of A(X) based on asymptotic
theory, which is usually referred to as Wilks's theorem or approximation. Other approxi
mations that will be explored in Volume II are based on Monte Carlo and bootstrap simu
lations. Here is an example in which Wilks's approximation to £(A(X)) is useful:

Example 6.3.1. Suppose Xl, X 2 , ... ,Xn are i.i.d. as X where X has the gamma, r(Q, ,8),
distribution with density

~ ~

In Example 2.3.2 we showed that the MLE, B = (ii,,8), exists and in Example 2.4.2 we
~

showed how to find Bas a nonexplicit solution of likelihood equations. Thus, the numerator
~ ~

of A(X) is available as p(x, B) = r17 I p(Xi, B). Suppose we want to test H : Q = 1
(exponential distribution) versus K : Q =1= 1. The MLE of,8 under H is readily seen from

~ ~

(2.3.5) to be,8o = 1Ix and p(x; 1, ,80) is the denominator of the likelihood ratio statistic.
It remains to find the critical value. This is not available analytically. 0

The approximation we shall give is based on the result "2 log A(X) !:. ~" for degrees
of freedom d to be specified later. We next give an example that can be viewed as the
limiting situation for which the approximation is exact:

Example 6.3.2. The Gaussian Linear Model with Known Variance. Let Y I , ... ,Yn be
independent with Yi ~ N(JLi, 0'6) where 0'0 is known. As in Section 6.1.3 we test whether
p. = (J.tl,"" J.tn)T is a member of a q-dimensional linear subspace of Rn, Wo, versus
the alternative that p. E w - Wo where w is an r-dimensional linear subspace of Rn and
w :> Wo; and we transform to canonical form by setting

Wilks's theorem states that, under regularity conditions, when testing whether a parameter
vector is restricted to an open subset of Rq or Rr, q < r, the X~-q distribution is an
approximation to £(2 log A(Y)). In this 0'2 known example, Wilks's approximation is
exact. 0
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Example 6.3.3. The Gaussian Linear Model with Unknowll Variance. If Y; are as in
Example 6.3.2 but (J"2 is unknown then B = (p" (J"2) ranges over an r + I-dimensional
manifold whereas under H, B ranges over a q + I-dimensional manifold. In Section 6.1.3,
we derived

,
-

f
1

! l' 2

)
Li=q+l Xi

2 log .\(Y = n log 1 + L;' 1'+1 X; •

••
1,
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(6.3.1)

(6.3.2)

•

1'X1'

We first consider the simple hypothesis H : B = Bo.

Theorem 6.3.1. Suppose the assumptions of Theorem 6.2.2 are satisfied. Then, under
H: B = Bo,

Apply Example 5.3.7 to Vn = L~ q+l X; /n- 1L~ 1'+1 X; and conclude that Vn !:.
X;-q' Finally apply Lemma 5.3.2 with g(t) = 10g(1 + t), an = n, c = 0 and conclude that

2 log .\(Y) !:. X;-q also in the (J"2 unknown case. Note that for :\(Y) defined in Remark
~ L

6.1.2, 2 log .\(Y) = Vn -t X;-q as well. 0

Consider the general i.i.d. case with XI, ... ,Xn a sample from p(x, 0), where x E

X c RS, and B E 8 c R1'. Write the log likelihood as

we can conclude arguing from A.3 and AA that that In(B~) ~ EIn(Bo) = I(Bo). Hence,

n

In(B) = 2)ogp(Xi ,O).
i=1

- -
for some B~ with IB~ - Bnl < IBn - Bol. Here

1 n a a
In(B)= -nLao ao.logp(Xi,B)

;=1 k J

By Theorem 6.2.2, .;n(On - Bo) !:. N(O, 1-1 (Bo)), where 11'x1' (B) is the Fisher infor
mation matrix.

Because

- L T 12[ln(Bn) -In(80 )]-t Y I(Bo)Y, Y '" N(o,I- (Bo)).

The result follows because, by Corollary B.6.2, y T I(Bo)Y '" X;.

-Proof Because Bn solves the likelihood equation DBln(B) = 0, where DB is the derivative-with respect to B, an expansion of In(B) about Bn evaluated at B = Bo gives
,.,
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(6.3.6)

(6.3.4)

(6.3.3)

(6.3.5)

~

{Oo : 2[ln(On) -In(Oo)] < x r (1 - a)}

~ ~

210g A(X) = 2[ln(On) -In(Oo)] - 2[ln(Oo,n) -In(Oo)].

As a consequence of the theorem, the test that rejects H : 0 = 00 when

2 log A(X) > x r (1 - a),

Section 6.3 Large Sample Tests and Confidence Regions

where X r (1 - a) is the 1 - a quantile of the X; distribution, has approximately level 1 - a,
and

is a confidence region for 0 with approximate coverage probability 1 - a.
Next we tum to the more general hypothesis H : 0 E 8 0 , where 8 is open and 8 0

is the set of 0 E 8 with Bj = BO,j, j = q + 1, ... ,r, and {Bo,j} are specified values.

Examples 6.3.1 and 6.3.2 illustrate such 80. We set d = r - q, OT = (0(1),0(2»),0(1) =

(B 1 , ... ,Bq )T,o(2) = (Bq+ 1 , ... ,Br)T,062) = (BO,q+1, ... ,Bo,rl·
Theorem 6.3.2. Suppose that the assumptions of Theorem 6.2.2 hold for p(x, 0), 0 E

8. Let Po be the model {PO: 0 E 8 0 } with corresponding parametrization 0(1) =
~(1) (1) ~(l)

(B1 ,· .. , Bq ). Suppose that 00 is the MLE of 0 under H and that 00 satisfies A6 for
~T ~(1) (2)

Po. Let 00,n = (00 ,00 ). Then under H : 0 E 8 0,

n

8(00 ) = n- 1
/

2 LDI(Xi,O)
i=l

where

Proof. Let 00 E 8 0 and write

TJ = M(O - ( 0 )

where, dropping the dependence on 00 ,

M = pJ1/2

It is easy to see that AO-A6 for Pimply AO-A5 for Po. By (6.2.10) and (6.3.1) applied to
~ ~(1) ~

On and the corresponding argument applied to 00 ., OO,n and (6.3.4),

and 8 = (8 1 ,82 )T where 8 1 is the firstq coordinates of8. Furthermore,

Make a change of parameter, for given true 00 in 8 0 ,
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and P is an orthogonal matrix such that, if A o _ {(J - (Jo : (J E 8 0 }

MAo = {1]: llq+l = ... = 11, = 0,1] E M8}.

Such P exists by the argument given in Example 6.2.1 because JI/2 A o is the intersection
of a q dimensional linear subspace of R' with Jl/2{(J - (Jo : (J E 8}. Now write D(J for
differentiation with respect to (J and D1] for differentiation with respect to 1]. Note that, by
definition, >.. is invariant under reparametrization

'.
!,
•
•

•,
•

>..(X) = ,(X) (6.3.7)
,
•
!

where

,(X) = sup{p(x, (Jo + M- I 1])} / sup{p(x, (Jo + M- 11]) : (Jo + M- I 1] E 8 0 }
1]

and from (B.8.l3)

,
•

D1]I(x, (Jo + M- 11]) = [M- 1
]TD(JI(x, (J).

We deduce from (6.3.6) and (6.3.8) that if

n

T(1]) n- I / 2L D1]I(Xi , (Jo + M- I 1]),
i=1

then

(6.3.8)

•
l

,.,,
i
•
•,

Var T(O) = p T r l / 2n- I / 2 p = J. (6.3.9),

Moreover, because in terms of 1], H is {1] E M 8 : 1"/q+ 1 = '" = 1"/r = O}, then by
applying (6.3.5) to ,(X) we obtain,

210g,(X) TT(O)T(O) - T[(O)T1(O) + op(l)
r q

LTl(O) - LTl(O) + op(l)
i=1 i=1

r

L T?(O) + op(l),
i=q+1

(6.3.10)

f

!

"•,

j
I'
--

which has a limiting X;-q distribution by Slutsky's theorem because T(O) has a limiting
Nr(O, J) distribution by (6.3.9). The result follows from (6.3.7). 0

Note that this argument is simply an asymptotic version of the one given in Example
6.3.2.

Thus, under the conditions of Theorem 6.3.2, rejecting if ..\(X) > x r - q (l - Q) is an
asymptotically level Q test of H : (J E 8 0 . Of equal importance is that we obtain an
asymptotic confidence region for ((Jq+ I, ... , (Jr ), a piece of (J, with (JI, ... ,(Jq acting as
nuisance parameters. This asymptotic level 1 - Q confidence region is

- - -{(Bq+I , ... , (Jr) : 2[ln ((J n) - In (Bo,l, ... , Bo,q, (Jq+l, ... , Br )] < x r - q(1 - Q)} (6.3.11)



The proof is sketched in Problems (6.3.2)-(6.3.3). The essential idea is that, if fJo is
true, ..\(X) behaves asymptotically like a test for H : fJ E 8 00 where

The extension of Theorem 6.3.2 to this situation is easy and given in Problem 6.3.2.
The formulation of Theorem 6.3.2 is still inadequate for most applications. It can be

extended as follows.
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(6.3.12)

(6.3.13)

(6.3.14)

8 0 = {fJ E 8 : g(fJ) = O}.

wo={fJ:fJTVj=o, q+l<j<r}.

800 = {fJ E 8 : Dg(fJo)(fJ - fJo) = O}

Section 6.3 Large Sample Tests and Confidence Regions

Suppose H is specified by:
There exist d functions, 9j : 8 --t R, q + 1 < j < r written as a vector g, such that

Dg(fJ) exists and is of rank r - q at all fJ E 8. Define H : fJ E 8 0 with

- -
where 80.[, ... ,80.q are the MLEs, themselves depending on 8q+[, .... 8r , of B[, ... ,8q

assuming that 8q+l , ... ,8,. are known.
More complicated linear hypotheses such as H : fJ - fJo E Wo where Wo is a linear space

of dimension q are also covered. We only need note that if Wo is a linear space spanned by
an orthogonal basis V[, ... , v q and v q+ [, ... , V r are orthogonal to Wo and V[ , ... , V,. span
R r then,

Evidently, Theorem 6.3.2 falls under this schema with 9j (fJ) = 8j - 80,j, q + 1 < j < To

Examples such as testing for independence in contingency tables, which require the
following general theorem, will appear in the next section.

Theorem 6.3.3. Suppose the assumptions of Theorem 6.3.2 and the previously conditions-on g. Suppose the MLE hold fJo,n under H is consistent for all fJ E 8 0. Then, if ..\(X) is

the likelihood ratio statistic for H : fJ E 80 given in (6.3.13), 210g..\(X) !:. X;-q under
H.

fJo =

a hypothesis of the form (6.3.13).
Wilks's theorem depends critically on the fact that not only is 8 open but that if 8 0

given in (6.3.13) then the set {(8h ... ,8q)T : fJ E 8} is open in Rq. We need both
properties because we need to analyze both the numerator and denominator of ..\(X). As
an example of what can go wrong, let (XiI, X i2 ) be i.i.d. N (81 , 82 , J), where J is the 2 x 2
identity matrix and 8 0 = {fJ : 8[ + 82 < I}. If 81 + fJ2 = 1,

and 2 log ..\(X) --t xi but if 81 + 82 < 1 clearly 2 log ..\(X) = op(I). Here the dimension
of 8 0 and 8 is the same but the boundary of 8 0 has lower dimension. More sophisticated
examples are given in Problems 6.3.5 and 6.3.6.
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6.3.2 Wald's and Rao's Large Sample Tests

The Wald Test

Suppose that the assumptions of Theorem 6.2.2 hold. Then

- £.ji!(O - 0) ---> N(O, I-I (0)) as 11, ---> 00. (6.3.15)

Because 1(0) is continuous in 0 (Problem 6.3.10), it follows from Proposition B.7.I(a) that

(6.3.16)
- p

I(On) ---> 1(0) as 11, ---> 00.

By Slutsky's theorem B.7.2, (6.3.15) and (6.3.16),

11,(iin - ofI(iin)(On - 0) !:. y T I(O)Y, Y ~ Nr (O,I-l (0))

where, according to Corollary B.6.2, y T I(O)Y ~ X;. It follows that the Wald test that
rejects H : 0 = 00 in favor of K : 0 =1= 00 when

•,

;
I

·,
•
•

l
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,
·

:
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i

,
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1
j
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1
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j
j
1
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(6.3.17)

(6.3.18)

111 (0) 112 (0)
121 (0) 122 (0)

1-1(0) =

Wn(O~2)) = 11,(O~2) _ O~2)f[I22(On)]-I(O~) _ O~2))

where 122 (0) is the lower diagonal block of I-I (0) written as

has asymptotic level a. More generally I( ( 0 ) can be replaced by any consistent estimate

of I( ( 0 ), in particular - ~D 2ln(00 ) or I (On) or - ~D 2ln(On). The last Hessian choice is-favored because it is usually computed automatically with the MLE. It and I(On) also have
the advantage that the confidence region one generates {O : Wn(O) < x p (1 - a)} is an
ellipsoid in Rr easily interpretable and computable see (6.1.31). -For the more general hypothesis H : B E 8 0 we write the MLE for 0 E 8 as On =
-(1) -(2) -(1) - - -(2) - -

(On ,On) where On = (B1 , ... ,Bq ) and On = (Bq+l,oo.,Br ) and define the Wald
statistic as

-with diagonal blocks of dimension q x q and d x d, respectively. More generally, 122 (0n)
is replaceable by any consistent estimate of 122 (0), for instance, the lower diagonal block

of the inverse of - ~ D 2In(On), the Hessian (Problem 6.3.9).

Theorem 6.3.4. Under the conditions o/Theorem 6.2.2, if H is true,

Proof. 1(0) continuous implies that I-I (0) is continuous and, hence, 122 is continuous.
-(2) (2) £

But by Theorem 6.2.2, .ji!(On - 00 ) ---> Nd(O, 122 (00 )) if 00 E 8 0 holds. Slutsky's
theorem completes the proof. 0
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The Rao Score Test
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(6.3.19)

(6.3.20)

(6.3.22)

-(2)
Wn(Oo ) = 2 log A(X) + op(1)

Section 6.3 Large Sample Tests and Confidence Regions

where D1ln represents the q x 1 gradient with respect to the first q coordinates and D2ln
the d x 1 gradient with respect to the last d. The Rao test is based on the statistic

(2) _ T - --1 -
Rn(Oo ) = nWn (OO,nP:; wn(OO,n)

The Wald test, which rejects iff Wn (Ob2
») > x r - q (1 - a), is, therefore, asymptotically

level a. What is not as evident is that, under H,

where A(X) is the LR statistic for H : 0 E 8 0 . The argument is sketched in Problem 6.3.9.
Thus, the two tests are equivalent asymptotically.

The Wald test leads to the Wald confidence regions for (0q+ 1, ... , Or) T given by {0(2) :
Wn (0(2») < x r _ q(l - a)}. These regions are ellipsoids in Rd. Although, as (6.3.19)
indicates, the Wald and likelihood ratio tests and confidence regions are asymptotically
equivalent in the sense that the same conclusions are reached for large n, in practice they
can be very different.

For the simple hypothesis H : 0 = 00 , Rao's score test is based on the observation
that, by the central limit theorem,

yTi'l/Jn(OO) !:., N(O, 1(00))

where 'l/Jn = n-1 Dln(Oo) is the likelihood score vector.
It follows from this and Corollary B.6.2 that under H, as n ~ 00,

Rn(Oo) = n'l/J~(Oo)I-l(OO)'l/Jn(OO) !:., X;.
The test that rejects H when Rn(Oo) > x r (1- a) is called the Rao score test. This test has
the advantage that it can be carried out without computing the MLE, and the convergence

Rn (00 ) !:., X; requires much weaker regularity conditions than does the corresponding
convergence for the likelihood ratio and Wald tests.

The extension of the Rao test to H : 0 E 8 0 runs as follows. Let

- -where L is a consistent estimate of L(Oo), the asymptotic variance of yTiwn(OO,n) under
H.

It can be shown that (Problem 6.3.8)

L(OO) = 122 (00) - hl(00)Ili1(00)h2(00) (6.3.21)

where III is the upperleft q x q block of the r x r information matrix I( 00 ), h2 is the upper
right q x d block, and so on. Furthermore, (Problem 6.3.9) under AD-A6 and consistency-
of OO,n under H, a consistent estimate of L- 1 (00) is
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I•

where D~ is the d x d matrix of second partials of i" with respect to 0(1), D 21 the d x d
matrix of mixed second partials with respect to O( 1) , 0(2) , and so on.

Theorem 6.3.5. Under H : 0 E 8 0 and the conditions AO-A5 of Theorem 6.2.2 but with
A6 required only for Po

R (0 (2)) £ 2
n 0 --t Xd'

The Rao large sample critical and confidence regions are {Rn (0~2)) > Xd (1 - a)} and
{0(2) : Rn (0(2)) < xd(1 - a)}.

The advantage of the Rao test over those of Wald and Wilks is that MLEs need to be
computed only under H. On the other hand, it shares the disadvantage of the Wald test that
matrices need to be computed and inverted.

,
j,

Power Behavior of the LR, Rao, and Wald Tests

,
,
"

o

•
'"

,,
",,
i
1

It is possible as in the one-dimensional case to derive the asymptotic power for these

tests for alternatives of the form On = 00 + ~ where 00 E 8 0 . The analysis for 8 0 =
{80 } is relatively easy. For instance, for the Wald test

6.4 LARGE SAMPLE METHODS FOR DISCRETE
DATA

In this section we give a number of important applications of the general methods we
have developed to inference for discrete data. In particular we shall discuss problems of

........ T""""""""
n(On - (0) I(On)(On - (0)

= (,;n(On - On) + ~)I(On)( ,;n(On - On) + A) !:. X~_q(AT I(Oo)A)

where X~ (,2) is the noncentral chi square distribution with m degrees of freedom and
noncentrality parameter ,2.

It may be shown that the equivalence (6.3.19) holds under On and that the power be
havior is unaffected and applies to all three tests.

Consistency for fixed alternatives is clear for the Wald test but requires conditions for
the likelihood ratio and score tests-see Rao (1973) for more on this.

Summary. We considered the problem of testing H : 0 E 8 0 versus K : 0 E 8 - 8 0
where 8 is an open subset of R: and 8 0 is the collection of 0 E 8 with the last r - q
coordinates 0(2) specified. We established Wilks's theorem, which states that if ..\(X)
is the LR statistic, then, under regularity conditions, 2 log ..\(X) has an asymptotic X~-q

distribution under H. We also considered a quadratic form, called the Wald statistic, which
measures the distance between the hypothesized value of 0(2) and its MLE, and showed
that this quadratic form has limiting distribution X~-q. Finally, we introduced the Rao
score test, which is based on a quadratic form in the gradient of the log likelihood. The
asymptotic distribution of this quadratic form is also X~-q.

,
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if i = j,

ifi =I- j.

Section 6.4 Large Sample Methods for Discrete Data

k-1 k-1k-1
Wn((Jo) = n L[~ - BOj ]2/Boj + n L L(Bi - (Joi)(Bj - BOj)/(JOk.

j=l j=li=l

To find the Wald test, we need the information matrix I = II Iij II. For i, j = 1, ... , k -1,
we find using (2.2.33) and (3.4.32) that

k-1
n L(Oj - (JOj)

j=l

6.4.1 Goodness-of-Fit in a Multinomial Model. Pearson's
X2 Test

As in Examples 1.6.7, 2.2.8, and 2.3.3, consider i.i.d. trials in which Xi = j if the
ith trial produces a result in the jth category, j = 1, ... , k. Let Bj = P(Xi = j) be

the probability of the jth category. Because Bk = 1 - Et~ Bj , we consider the pa

rameter (J = (B1, ... , Bk_dT and test the hypothesis H : Bj = BOj for specified Boj ,
j = 1, ... , k - 1. Thus, we may be testing whether a random number generator used in
simulation experiments is producing values according to a given distribution, or we may be
testing whether the phenotypes in a genetic experiment follow the frequencies predicted by

~

theory. In Example 2.2.8 we found the MLE Bj = Nj/n, where Nj = E~ 11{Xi = j}.
It follows that the large sample LR rejection region is

k

Wn((Jo) = L(Nj - n(Joj)2/nBoj .
j=l

goodness-of-fit and special cases oflog linear and generalized linear models (GLM), treated
in more detail in Section 6.5.

k

2 log ..\(X) = 2 L N j log(Nj/nBoj ) > Xk-1 (1 - a).
j=l

Thus, with BOk = 1 - E~-~ Boj , the Wald statistic is

The second term on the right is

Thus,
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The term on the right is called Pearson's chi-square (X 2
) statistic and is the statistic that is

typically used for this multinomial testing problem. It is easily remembered as

where the sum is over categories and "expected" refers to the expected frequency E H (Nj ).

The general form (6.4.1) of Pearson's X2 will reappear in other multinomial applications
in this section.

To derive the Rao test, note that from Example 2.2.8,

i;, '
,

" '1" .;,

~ !, ,
, i

,,
,, ',
j

; ,

Ii

,!

2 (Observed ~ Expected)2
X = SUM -'-------=--.:...---'--

Expected

with

N k .
Ok ' J = 1, ... , k - 1.

(6.4.1)

•,
1,
••
I,
1
•
\

1

i •
; ,

"•

To find I-I, we could invert I or note that by (6.2.11), 1-1(0) = ~ = Var(N), where
N = (N1 , ... , N k _ 1)T and, by A.13.I5, ~ = IllJ'ijll(k-l)x(k-l) with

IJ'ii = Var(N;) = nOi (1 - 0;), IJ'ij = -nOiOj, i =1= j.

Thus, the Rao statistic is

k-l ~ ~ 2
0 Ok

nLRn(Oo) = J OOj
OOj OOkj=1

(6.4.2)
k-lk-l ~ ~ ~ ~

Oi Ok 0 Ok
nLL

J
OOiOOj

OOi OOk OOj OOk
•

j=1 i=1

The second term on the right is

2 2k-l ~ ~ ~

0 Ok Ok
L

J OOj -1-n
OOk

= -n •

OOj OOkj=l

To simplify the first term on the right of (6.4.2), we write

and expand the square keeping the square brackets intact. Then, because

..,,
J
•.,,
,,,



For example, in the Hardy-Weinberg model (Example 2.1.4),

6.4.2 Goodness-of-Fit to Composite Multinomial Models.
Contingency Tables

403

•

n

the first tenn on the right of (6.4.2) becomes

Section 6.4 Large Sample Methods for Discrete Data

It follows that the Rao statistic equals Pearson's X2 .

Example 6.4.1. Testing a Genetic Theory. In experiments on pea breeding, Mendel ob
served the different kinds of seeds obtained by crosses from peas with round yellow seeds
and peas with wrinkled green seeds. Possible types of progeny were: (I) round yellow;
(2) wrinkled yellow; (3) round green; and (4) wrinkled green. If we assume the seeds are
produced independently, we can think of each seed as being the outcome of a multinomial
trial with possible outcomes numbered I, 2, 3, 4 as above and associated probabilities of
occurrence ()I,fh,fh, ()4. Mendel's theory predicted that ()I = 9/16, ()2 = ()3 = 3/16,
()4 = 1/16, and we want to test whether the distribution of types in the n = 556 trials he
performed (seeds he observed) is consistent with his theory. Mendel observed nl = 315,
n2 = 101, n3 = 108, n4 = 32. Then, n()l0 = 312.75, n()20 = n()30 = 104.25,
n()40 = 34.75, k = 4

2 = (2.25)2 (3.25? (3.75)2 (2.75)2 = 0 47
X 312.75 + 104.25 + 104.25 + 34.75 .,

k

8 = {lJ : ()i > 0, 1 < i < k, L ()i = I}.
i=1

which has a p-value of 0.9 when referred to a X~ table. There is insufficient evidence to
reject Mendel's hypothesis. For comparison 2 log ..\ = 0.48 in this case. However, this
value may be too small! See Note 1.

Suppose N = (NI , ... ,Nk)T has a multinomial, M(n, lJ), distribution. We will investi
gate how to test H : () E 8 0 versus K : () f{. 8 0 , where 8 0 is a composite "smooth" subset
of the (k - I)-dimensional parameter space
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I
•

•

,
a 2 0
o n[Zen)Z(n)j-1

~

(e) Show that &2 is unconditionally independent of ([1, ;3).

(f) Combine (a)---{e) to establish (6.2.24).

-1 T P ( T)n Zen) Zen) -> E ZZ .

(c) Construct a method of moment estimate (J" of (J = (,I. T 2 ) based on the first two
moments which are Vii consistent.

(c) Apply Slutsky's theorem to conclude that

and, hence, that

(d) (13 - ;3fZen)Z(n)(f3 -;3) = op(n- 1
/

2
) .

and that &2 is independent of the preceding vector with n&2 / a 2 having a X;-p distribution.

(b) Apply the law of large numbers to conclude that

~

(d) Deduce from Problem 6.2.10 that the estimate (J derived as the limit of Newton-
Raphson estimates from (J" is efficient.

3. In Example 6.2.1, show that ([EZZT j-1 )(1.1) > [Ezit 1 with equality if and only if
EZ1Zi = 0, i > 1.

4. In Example 6.2.2, show that the assumptions of Theorem 6.2.2 hold if (i) and (ii) hold.

5. In Example 6.2.2, show that cUo) = ao/a is 1 if fa is normal and is different from 1 if
fa is logistic.

6. (a) In Example 6.2.1 show that MLEs of;3, p., and a 2 are as given in (6.2.20), (6.2.21).
Hint: fx(x) = fYlz(Y)fz(z).

(b) Suppose that the distribution of Z is not known so that the model is semiparametric,
X ~ P(O,H), {P(O,H) : () E 8, H E H}, () Euclidean, H abstract. In some cases it is
possible to find T(X) such that the distribution of X given T(X) = tis Qo, which doesn't
depend on HE H. The MLE of () based on (X, t) is then called a conditional MLE. Show

~

that if we identify X = (z(n), Y), T(X) = z(n), then (;3, [1, (2) are conditional MLEs.
Hint: (a),(b) The MLE minimizes ~ IY - zen) ;31 2

.

7. Fill in the details of the proof of Theorem 6.2.1.

8. Establish (6.2.24) directly as follows:

(a) Show that if Zn = ~ ~~ 1 Zi then, given Zen), Viieil - p., (13 - j3)T)T has a
multivariate normal distribution with mean 0 and variance,

r
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(iii) Dg(( 0 ) is nonsingular,

(iv) Dg(O) is continuous at 00 ,

427

-0- .

-1
1 n- L 'It(Xi , O~).
n.,=1

1 n- L D1/J(Xi'O~) + op(l) (O~ - ( 0 ),
n

i=l

i=l

.;., ()2 = ;. Show that if ()2 = ()g a unique MLE for ()1 exists and

n

On = O~ - ~ L D1/J(Xi , O~)
n.,=1

1 n 1 n- L 'It(Xi ,O~) = - L 'It(Xi, ( 0 ) -
n. n.,=1 ,=1

Y, = t.l + aEi

Section 6.7 Problems and Complements

(b) Write fh
uniquely solves

(i) sup{IDgn(O) - Dg(O)1 : 10 - 0 0 1 < E} -> 0,

(ii) gn(OO) -> g(Oo),

9. Let Y I • ... , Y" real be independent identically distributed

n

where l.l E R, a > 0 are unknown and E has known density f > 0 such that if p(x) 
-log f(x) then pI! > 0 and, hence, p is strictly convex. Examples are f Gaussian, and
f(x) = e- x (1 + e- x )-2, (logistic).

(a) Show that if a = ao is assumed known a unique MLE for t.l exists and uniquely
solves

10. Suppose AD-A4 hold and O~ is yTi consistent; that is, O~ = 0 0 + Op(n- 1/ 2 ).

(a) Let On be the first iterate of the Newton-Raphson algorithm for solving (6.2.1)
starting at O~,

-
Show that On satisfies (6.2.3).

Hint:

(b) Show that under AD-A4 there exists E > 0 such that with probability tending to 1,
~ L~ 1 'It(Xi , 0) has a unique 0 in S(Oo, E), the E ball about 00 .

Hint: You may use a uniform version ofthe inverse function theorem: If gn : R d -> R d

are such that:
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then. for II sufficiently large. there exists a b > O. t > 0 such that gn are 1 - 1 on b(0 0 , b)

and their image contains a ball S(g(Oo). b).

(c) Conclude that with probability tending to 1. iteration of the Newton-Raphson algo
rithm starting at 0;, converges to the unique root On described in (b) and that On satisfies

(6.2.3).
Hint: You may use the fact that if the initial value of Newton-Raphson is close enough

to a unique solution, then it converges to that solution.

11. Establish (6.2.26) and (6.2.27).
Hint: Write

,
,
J•••,!,,
'j

l

2
n

i=1

n

i=1

,,

--------------------------

Problems for Section 6.3

,

,,
,
,

•

2
n P

'"' ~(I) '"'~ Y; - (Zil - Zi )131 - ~13jZij

i=1 j=2

A(X) = sup{q(X . TJ) : TJ E 2}/ sup{q(X, TJ) : TJ E 2 0 }

and, hence, that Theorem 6.3.2 holds for 8 0 as given in (6.3.12).

for given covariate values zl, ... , Zn' Find the asymptotic likelihood ratio, Wald, and Rao

tests for testing H : O2 = 0 versus K : 82 i- O.

2. Suppose that Wo is given by (6.3.12) and the assumptions of Theorem (6.3.~ hold for
p(x,O),O E 8. Reparametrize P by TJ(O) = ~J=1 r/j(O)vj where r/j(O) = 0 Vj, {Vj}
are orthonormal, q(., TJ) = p(',O) for TJ E 2 and 2 - {TJ(O) : 0 E 8}. Show that if
2 0 = {TJ E 2 : TJj = 0, q+ 1 < j < r} then A(X) for the original testing problem is given

by

log Ai = (II + (}zZi, 0 < ZI < ... < Zn

where 131, /2, ... , /P range freely and ti are i.i.d. N(O, (Y2).

where ZP) = ~~=I Cj z~j) and the Cj do not depend on 13. Thus, minimizing ~~ 1(Yi 

Zr13)2 over all 13 is the same as minimizing

1. Suppose responses YI, ... , Yn are independent Poisson variables with Y; ~ P( Ai), and

p

Y; = 131 (Zil - II(Zil I Zi2,.· ., Zip)) +L /jZij + €i

j=2

Differentiate with respect to 131. Similarly compute the information matrix when the model

is written as

,
!
t· ,

t·, '

,,



and

which is continuously differentiable such that
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log p(X, ,0,)
8

(i) Eoo < 00,p(X"oo )

log p(X, ,01)
8

(ii) E Ol < 00.p(X"Oo)

Section 6.7 Problems and Complements
~'-----~~~~~~~---~----------

. R r --t Rr
1] . . ,

(i) T/j(O) = 9j(0) on S(Oo). q + 1 <j < r and. hence.

S(Oo) n 8 0 = {O E S(Oo): T/j(O) = 0, q + 1 <j< r}.

3. Suppose that 00 E 8 0 and the conditions of Theorem 6.3.3 hold. There exists an open
ball about 00 • S(Oo) C 8 and a map

(ii) 1] is I-Ion S(( 0 ) and D1](0) is a nonsingular r x r matrix for all 0 E S(( 0 ),

(Adjoin to 9q+1, ... , 9r. af0, ... , aJ0 where aI, ... ,aq are orthogonal to the linear span

of ~~, (00 ) .)
, pXd

Show that if we reparametrize {PO: 0 E S(Oo)} by q(-, 1](0)) p(., 0) where q(., 1])
~

is uniquely defined on S = {1](0) : 0 E S(Oo)} then. q(',1]) and Tin = 1](On) and,
~

Tio,n 1](Bo,n) satisfy the conditions of Problem 6.3.2. Deduce that Theorem 6.3.3 is
valid.

4. Testing Simple versus Simple. Let 8 = {Bo,Bd, Xi, . .. ,Xn i.i.d. with density p(', 0).
Consider testing H : B = Bo versus K : B = B1 . Assume that PO, # Poo ' and that for some
<5 > 0,

(a) Let A(X1 , ... ,Xn ) be the likelihood ratio statistic. Show that under H, even if
p

<5 = 0, 210g A(X1 , ... ,Xn ) --t O.

(b) If <5 = 2 show that asymptotically the critical value of the most powerful (Neyman

Pearson) test with Tn = ~7 1 (I(Xi ,OI) -l(Xi, Bo)) is -nK(Bo, BI) + Zl-Ot vlnO"(Bo,OI)
where k(Oo, BI) is a Kullback-Leibler in formation

5. Let (Xi, Yi), 1 < i < n, be i.i.d. with Xi and Yi independent, N(Ol, 1), N(B2 , 1),
respectively. Suppose Bj > 0, j = 1, 2. Consider testing H : B1 = B2 = 0 versus

K : B1 > 0 or B2 > O.
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(a) Show that whatever be n, under H, 2 log A(Xi , Yi : 1 < i < n) is distributed as a
mixture of point mass at 0, XI and X~ with probabilities ~, ~, ~, respectively,

Hint: By sufficiency reduce to n = L Then

(b) Suppose Xi, Yi are as above with the same hypothesis but 8 = {((h, (h) : a <
(h < dh, (h > a}, Show that 2 log A(Xi , Yi : 1 < i < n) has a null distribution, which
is a mixture of point mass at 0, XI and X~ but with probabilities ~ - ~, ~ and ~ where

sin.6. = /1:c2' a <.6. < ;,

(c) Let (Xl, Yll have an N2 (fh ,(h, (Tlo, (T~o, Po) distribution and (Xi, Yi), 1 < i < n,
be i,i,d, Letfh,fh > aand H be as above, Exhibit the null distribution of 2 log A(Xi , Yi :
1 < i < n),

H ' C 'd 2 2 1 d Z X Z POX,-Y,
znt,' ansI er (T10 = (T20 = an 1 = 1, 2 = ~ / 2'

V 1-po

~ ~

6. In the model of Problem 5(a) compute the MLE ((h , (h) under the model and show that

(a) Iffh > 0, (h > 0,

L:(VTi(B1 - (h, B2 - (h)) -+ N(O, 0,1,1, 0).

(b) Iffh = (h = a

"j
•

",,

,

",

I
i

,
"

,,',

where U ~ N (0, 1) with probability ~ and awith probability ~ and V is independent of
U with the same distribution.

~ ~

(c) Obtain the limit distribution of VTi(fh - (h, (h - (h) if 81 = 0, 82 > O.

(d) Relate the result of (b) to the result of Problem 4(a).
Note: The results of Problems 4 and 5 apply generally to models obeying AD-A6 when

we restrict the parameter space to a cone (Robertson, Wright, and Dykstra, 1988). Such
restrictions are natural if, for instance, we test the efficacy of a treatment on the basis of
two correlated responses per individual.

7. Show that (6.3.19) holds.
Hint:

~

(i) Show that I(On) can be replaced by I(O).

(ii) Show that Wn(O~2») is invariant under affine reparametrizations 1] = a + BO where
B is nonsingular.

(iii) Reparametrize as in Theorem 6.3.2 and compute Wn(O~2») showing that its leading
term is the same as that obtained in the proof of Theorem 6.3.2 for 2 log A(X).

~

,

",
!

t,
1

~
i:... 7



P(A n B) - P(A)P(B)
p = --r,~~=~~~~===~~

JP(A)(l - P(A))P(B)(l - P(B))'
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- L
vnw"(O,,,o) ---> N(O, E(Oo))

where E(Oo) is given by (6.3.21).
Hint: Write

-(1 )
8. Show that under AO-AS and A6 for 0"

Problems for Section 6.4

1. Exhibit the two solutions of (6.4.4) explicitly and find the one that corresponds to the
maximizer of the likelihood.

2. (a) Show that for any 2 x 2 contingency table the table obtained by subtracting (esti
mated) expectations from each entry has all rows and columns summing to zero, hence, is
of the form

-(1 )
and apply Theorem 6.2.2 to On .

9. Under conditions AO-A6 for (a) and AO-A6 with A6 for (j~1) for (b) establish that

(a) [-~D2In((jn)]-1 is a consistent estimate of 1-1(00).

(b) (6.3.22) is a consistent estimate of E- 1 (Oo).
Hint: Argue as in Problem 5.3.10.

10. Show that under A2, A3, A6 0 ---> 1(0) is continuous.

(b) Deduce that X2 = Z2 where Z is given by (6.4.8)

(c) Derive the alternative form (6.4.8) for Z.

3. In the 2 x 2 contingency table model let Xi = 1 or 0 according as the ith individual
- -

sampled is an A or A and Y; = 1 or 0 according as the ith individual sampled is a B or B.

(a) Show that the correlation of Xl and Yi is

(b) Show that the sample correlation coefficient r studied in Example 5.3.6 is related
to Z of (6.4.8) by Z = vnr.

(c) Conclude that if A and B are independent, 0 < P(A) < 1,0 < P(B) < 1, then Z
has a limiting N (0, 1) distribution.
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4. (a) Let (N11,NI2,N21,N22) ~ M(n, 8U ,(/12'(hl' ( 22 ) as in the contingency table.
Let R i = Nil + Ni2 , Ci = N 1i + N2i · Show that given R I = rl, R2 = r2 = n - rl, N 11
and N 21 are independent B(rl' 811 /(8 11 + (12 )), B(r2' 821/(821 + (22 )),

(b) Show that 812 /(811 + (12 ) = 821/(821 + (22 ) iff R I and CI are independent.

(c) Show that under independence the conditional distribution of N ii given R; = ri,

Ci = Ci, i = 1,2 is 1t(Ci, n, ri) (the hypergeometric distribution).

5. Fisher's Exact Test
From the result of Problem 6.2.4 deduce that if j (0:) (depending on rl, CI, n) can be

chosen so that

•

j

,.,

,
1

AI hl"al ffi'= B!c!iJ!. .. are t e mu tmOIIl1 coe clents.

\ / , / ,
CI C2 Ca

• • •
nll,.··, nal I \ n12, ... ,na2 \ nal,···, nab

/ ,
n

, rl,"" r a I

nij; i = 1, ... , a, j = 1, ... , b I Ri = r i, Cj = Cj1

A
B,C,D, ...

~ R; ~ Cj
1]il = -, 1]j2 =

n n

then the test that rejects (conditional1y on RI = rio CI = CI) if N ll > j(o:) is exact
level 0:. This is known as Fisher's exact test. It may be shown (see Volume II) that the
(approximate) tests based on Z and Fisher's test are asymptotically equivalent in the sense
of (5.4.54).

6. Let N ij be the entries of an a x bcontingency table with associated probabilities 8ij and

let 1]il = 2:~=1 8ij , 1]j2 = 2:~ I Oij. Consider the hypothesis H : Oij = 1]il1]j2 for all i,j.

(a) Show that the maximum likelihood estimates of 1]il, 1]j2 are given by

where

(b) How would you, in principle, use this result to construct a test of H similar to the
X 2 test with probability of type I error independent of 1]il, 1]j2?

where R; = 2:j N ij, Cj = 2:iNij.

(b) Deduce that Pearson's X 2 is given by (6.4.9) and has approximately a XZa-l)(b-l)

distribution under H.
Hint: (a) Consider the likelihood as a function of 1]il, i = 1, ... , a-I, 1]j2, j =

1, ... , b - 1 only.

7. Suppose in Problem 6.4.6 that H is true.

(a) Show that then



Admit Deny

(C is the complement of C.) Show that (i) and (ii) imply (iii), if A and C are independent
or B and C are independent.

(b) Construct an experiment and three events for which (i) and (ii) hold, but (iii) does
not.

Hint: (b) It is easier to work with N 22 . Argue that the Fisher test is equivalent to
rejecting H if N 22 > q2 + n - (rj + Cj) or N 22 < qj + n - (rj + cI), and that under H,
N 22 is conditional1y distributed 1t(r2, n, C2).

9. (a) If A, B, C are three events, consider the assertions,

433

o
12

5
19Men

Women

Admit Deny Admit Deny
Men 235 35 270 Men 122 93 215
Women 38 7 45 Women 103 69 172

273 42 225 162
n = 315 n= 387
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8. The fol1owing table gives the number of applicants to the graduate program of a smal1
department of the University of California, classified by sex and admission status. Would
you accept or reject the hypothesis of independence at the 0.05 level

(a) using the X2 test with approximate critical value?

(b) using Fisher's exact test of Problem 6.4.5?

(i) P(A n B I C) = P(A IC)P(B I C) (A, B INDEPENDENT GIVEN C)

(ii) P(A n B I C) = P(A IC)P(B IC) (A, B INDEPENDENT GIVEN C)

(iii) P(A n B) = P(A)P(B) (A, B INDEPENDENT)

(c) The fol1owing 2 x 2 tables classify applicants for graduate study in different depart
ments of the university according to admission status and sex. Test in both cases whether
the events [being a man] and [being admitted] are independent. Then combine the two
tables into one, and perform the same test on the resulting table. Give p-values for the three
cases.

(d) Relate your results to the phenomenon discussed in (a), (b).

10. Establish (6.4.14).

11. Suppose that we know that {3j = 0 in the logistic model, 7]i = {31 + {32zi, Zi not all
equal, and that we wish to test H : {32 < {3g versus K : {32 > {3g.

Show that, for suitable a, there is a UMP level a test, which rejects, if and only if,

Er 1 ZiNi > k, where Pf3~ [Er 1 ZiNi > k] = a.



12. Suppose the Zi in Problem 6.4.11 are obtained as realization of i.i.d. Zi and Tn; = Tn

so that (Zi,Xi) are i.i.d. with (Xi I Zi) ~ B(rn,11"(cJ2Zi))'

(a) Compute the Rao test for H : /32 < /3g and show that it agrees with the test of
Problem 6.4.11.

(b) Suppose that /31 is unknown. Compute the Rao test statistic for H : /32 < /3g in this
case.

r,
i,
i

·1
,1,
I
.I
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(c) By conditioning on L: 1 Xi and using the approach of Problem 6.4.5 construct an
exact test (level independent of /3d.

13. Show that if Wo C W1 are nested logistic regression models of dimension q < r < k
and Tn1, ... , rnk -> CXl and H : TJ E Wo is true then the law of the statistic of (6.4.18) tends

2
to Xr-q'

Hint: (Xi - /-I,)/ jrni11"i(1 - 11";),1 < i < k are independent, asymptotically N(O, 1).
Use this to imitate the argument of Theorem 6.3.3, which is valid for the i.i.d. case.

-14. Show that, in the logistic regression model, if the design matrix has rank p, then /30 as
defined by (6.4.15) is consistent.

15. In the binomial one-way layout show that the LR test is asymptotically equivalent to

Pearson's X2 test in the sense that 210g A. - X2 .!:.., 0 under H.

16. Let Xl, ... , X k be independent Xi ~ N(()i, 0'2) where either 0'2 = 0'5 (known) and
()1, ... , ()k vary freely, or ()i = ()iO (known) i = 1, ... , k and 0'2 is unknown.

Show that the likelihood ratio test of H : ()1 = ()lD, ... , ()k = OkQ, 0'2 = 0'6 is of

the form: Reject if (1/0'6) L: 1(Xi - ()iO)2 > k2 or < k1 . This is an approximation (for
large k, n) and simplification of a model under which (N1 , ... , N k ) ~ M(n, ()lD, .. , , ()kO)

under H, but under K may be either multinomial with () # ()o or have Eo (Ni ) = n()io, but
Varo(Ni) < n()iO(1 - ()io)("Cooked data").

Problems for Section 6.5

1. Fisher's Method ofScoring
The following algorithm for solving likelihood equations was proosed by Fisher-see-Rao (1973), for example. Given an initial value 00 define iterates

Show that for GLM this method coincides with the Newton-Raphson method of Section
2.4.

2. Verify that (6.5.4) is as claimed formula (2.2.20) for the regression described after
(6.5.4).

3. Suppose that (Zl, Yi)" .. , (Zn, Yn) have density as in (6.5.8) and,

(a) P[Zl E {z(1), ... ,z(k)}] = 1

•,
j
l,,
1
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1
1,
1
•
•
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(a) Show that the likelihood equations are

n

L d/-Li (Yi - /-L;)Zij
()

= 0, j = 1, ... , p.
i=l d~i V /-Li

Hint: By the chain rule

435

p(y, e;) = h(y, T) exp
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(b) The linear span of {z(I), ... , z(kJ} is RP.

(c) P[Zl = z(jJ] > afor all j. Show that the conditions AD-A6 hold for P = P;3o E P
(where qo is assumed known).

Hint: Show that if the convex support of the conditional distribution of Yi given Zl =
zU) contains an open interval about /-Lj for j = 1, ... , k, then the convex support of the

conditional distribution of~~=1 Aj Yj z (j) given Z j = z (j) , j = 1, ... , k, contains an open

ball about ~~=1 Aj/-LjZU) in RP.

4. Show that for the Gaussian linear model with known variance a;}, the deviance is
D(y, !-to) = !y - !-tof la;}.

5. Let Yi, ... ,Yn be independent responses and suppose the distribution of Y; depends on
a covariate vector Zi. Assume that there exist functions h(y, T), b(e), g(/-L) and C(T) such
that the model for Y; can be written as

(d) Gaussian GLM. Suppose Y; ~ N(/-Li, a;}). Give e, T, h(y, T), b(O), C(T), and v(/-L).
Show that when 9 is the canonical link, 9 = (b' )-l, the result of (c) coincides with (6.5.9).

(e) Suppose that Y; has the Poisson, P(/-Li), distribution. Give e, T, h(y, T), b(O), C(T),
~

and v(/-L). In the random design case, give the asymptotic distribution of ,jTi(;3 - ;3). Find
the canonical link function and show that when 9 is the canonical link, your result coincides
with (6.5.9).

(b) Show that the Fisher information is Z'bWZD where ZD = Ilzijll is the design
matrix and W = diag(w1, , wn ), Wi = W(/-Li) = Ilv(/-Li)(d~;/d/-Li)2.

(c) Suppose (Zl, Yi), , (Zn, Yn) are i.i.d. as (Z, Y) and that given Z = z, Y follow
the model p(y, e(z)) where e(z) solves b' (e) = g-l (zT ;3). Show that, under appropriate
conditions,

eiy - b(ei )
C(T)

where T is known, g(/-Li) = z[;3, and b' and 9 are monotone. Set ~ = g(/-L) and v(/-L) =
Var(Y)/c(T) = b"(e).
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Problems for Section 6.6

1. Consider the linear model of Example 6.6.2 and the hypothesis

(3q+ I = (3o,Q+ I, ... ,(3p = (3o,p

under the sole assumption that Ec = 0, 0 < Var c < 00. Show that the LR, Wald, and Rao
tests are still asymptotically equivalent in the sense that if 2 log An, W n, and Rn are the
corresponding test statistics, then under H,

W n + op(l)

Wn +op (I).

•
1

,

1••

••,

1
~
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(6.7.1)s(t) = 1 - s(-t), t E R.

Note: 2log An, W n and R n are computed under the assumption of the Gaussian linear
model with (Y2 known.

Hint.' Retrace the arguments given for the asymptotic equivalence of these statistics
under parametric model and note that the only essential property used is that the MLEs
under the model satisfy an appropriate estimating equation. Apply Theorem 6.2.1.

2. Show that the standard Wald test for the problem of Example 6.6.3 is as given in (6.6.10).

3. Show that 0:2 given in (6.6.14) is a consistent estimate of 2 VarpX(1) in Example 6.6.3
and, hence, replacing (j2 by 0:2 in (6.6.10) creates a valid level Q test.

4. Consider the Rao test for H : {} = {}o for the model P = {p{} : {} E e} and AD
A6 hold. Suppose that the true P does not belong to P but if {}(P) is defined by (6.6.3)
then {}(P) = (}o. Suppose AD-A6 are valid. Show that, ifVarpDl(X,{}o) is estimated by
I ((}o), then the Rao test does not in general have the correct asymptotic level, but that if
the estimate ~ ~~ I [Dl][DW(Xi , (}o) is used, then it is.

5. Suppose Xl, ... , X n are i.i.d. P. By Problem 5.3.1, if P has a positive density f at
~

v(P), the unique median of P, then the sample median X satisfies

vn(X - v(P)) -> N(O, (Y2(p))

where (Y2(P) = 1/4f(v(p)).

(a) Show that if f is symmetric about p" then v(P) = p,.
(b) Show that if f is N(p" (Y2), then (Y2(P) > (Y2 = Varp(XI ), the information bound

and asymptotic variance of vn(X - p,), but if fp.(x) = ~ exp -Ix - p,1, then (Y2(P) < (Y2,
in fact, (Y2(p)/(Y2 = 2/-rr.

6. Establish (6.6.15) by verifying the condition of Theorem 6.2.1 under this model and
verifying the formula given.

7. In the binary data regression model of Section 6.4.3, let -rr = s(zT(3) where s(t) is the
continuous distribution function of a random variable symmetric about 0; that is,

,
i

--------------------------------

I

I.,
'1
•,

.,
f
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has a limiting nonnal distribution with mean 0 and variance
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n

EPE(p) = n- I E2:)y;* - 9;(P))2.
i=1

(a) Show that J[ can be written in this fonn for both the probit and logit models.

(b) Suppose that Zi are realizations of i.i.d. Zi, that ZI is bounded with probability 1
~

and let 13dx(n)), where x(n) = {(Yi, Zi) : 1 < i < n}, be the MLE for the logit model.
~

Show that if the correct model has J[i given by s as above and {3 = {3o, then 13L is not a
consistent estimate of {3o unless s(t) is the logistic distribution. But if 13L is defined as the
solution of EZ1s(Zf{3o) = Q({3) where Q({3) = E(ZfA(Zf{3)) is p x 1, then

vn(fjL - {3Ll

Here Yt, ... ,Y'; are indepet}dent of Y1, ... , Yn and Y;* is distributed as Yi, i = 1, ... , n.

Let RSS(p) = 2: (Yi - 9;(p)? be the residual sum of squares. Suppose that (Y2 is known.

(a) Show that EPE(p) = (Y2 (1 + ~n + ~ 2:~ I(/-Li - /-L1 P)? where Jl1P
) = z[{3(p)

and {3(p) = (131, ... , 13p, 0, ... , Of.
(b) Show that

and deduce that

(c) EPE(p) - RSS(p) + ~(Y2 is an unbiased estimate of EPE(P).

(d) Show that (a),(b) continue to hold if we assume the Gauss-Markov model. Model- - .........

selection consists in selecting p to minimize EPE(p) and then using Y(P) as a predictor
(Mallows, 1973, for instance).

Q-I({3)Var(ZI(Y1 - A(Zf{3)))[Q-I({3)]

where Q({3) = E(ZfA(Zf{3o)Zd is p x p and necessarily nonsingular.
Hint: Apply Theorem 6.2.1.

8. (Model Selection) Consider the classical Gaussian linear model (6.1.1) Yi = /-Li + Ei,
i = 1, ... , n, where Ei are i.i.d. Gaussian with mean zero /-Li = ZT {3 and variance (Y2, Zi are
d-dimensional vectors for covariate (factor) values. Suppose that the covariates are ranked
in order of importance and that we entertain the possibility that the last d - p don't matter,
13p +1 = ... = 13d = O.

~ ~

Let 13(p) be the LSE under this assumption and Yi (p) the corresponding fitted value.
A natural goal to entertain is to obtain new values Yt, ... ,Y'; at ZI, ... ,Zn and eval

uate the perfonnance of YI(p), ... , Y~p) and, hence, the model with 13d+1 = ... = 13p = 0
by the (average) expected prediction error
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(e) Suppose p = 2 and Jl(z) = /1121 + i:l2 Z2- Evaluate EPE for (i) TJi = GIZi and (ii)
TJi = ;':Ilzil + ;':I2 zi2. Give values of ;':11, {J2 and {2zl. 2i2} such that the EPE in case (i) is
smaller than in case (ii) and vice versa. Use (72 = 1 and 11 = 10.

Hint: (a) Note that

EPE(p)

I,,,
!

n n
1 '" 2 1 '" ~(p) 2RSS(p) = - LJYi ~ /1i) ~ ~ ~(/1i ) -/1i) .
n n

i~1 i=1

Derive the result for the canonical model.
(b) The result depends only on the mean and covariance structure of the Yi, Y;*, Ii;,

i = 1•... , n.

6.8 NOTES

Note for Section 6.1

(1) From the L. A. Heart Study after Dixon and Massey (1969).

i,
r
!,

,
i
I

Note for Section 6.2

(1) See Problem 3.5.9 for a discussion of densities with heavy tails.

Note for Section 6.4

(1) R. A. Fisher pointed out that the agreement of this and other data of Mendel's with his
hypotheses is too good. To guard against such situations he argued that the test should be
used in a two-tailed fashion and that we should reject H both for large and for small values
of X2

• Of course, this makes no sense for the model we discussed in this section, but it is
reasonable, if we consider alternatives to H, which are not multinomial. For instance, we
might envision the possibility that an overzealous assistant of Mendel "cooked" the data.
LR test statistics for enlarged models of this type do indeed reject H for data corresponding
to small values of X2 as well as large ones (Problem 6.4.16). The moral of the story is that
the practicing statisticians should be on their guard! For more on this theme see Section
6.6.
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Appendix A

A REVIEW OF BASIC

PROBABILITY THEORY

In statistics we study techniques for obtaining and using information in the presence of
uncertainty. A prerequisite for such a study is a mathematical model for randomness and
some knowledge of its properties. The Kolmogorov model and the modem theory of prob
ability based on it are what we need. The reader is expected to have had a basic course in
probability theory. The purpose of this appendix is to indicate what results we consider ba
sic and to introduce some of the notation that will be used in the rest of the book. Because
the notation and the level of generality differ somewhat from that found in the standard
textbooks in probability at this level, we include some commentary. Sections A.14 and
A.15 contain some results that the student may not know, which are relevant to our study
of statistics. Therefore, we include some proofs as well in these sections.

In Appendix B we will give additional probability theory results that are of special
interest in statistics and may not be treated in enough detail in some probability texts.

A.1 THE BASIC MODEL

Classical mechanics is built around the principle that like causes produce like effects. Prob
ability theory provides a model for situations in which like or similar causes can produce
one of a number of unlike effects. A coin tha~ is tossed can land heads or tails. A group of
ten individuals selected from the population of the United States can have a majority for or
against legalized abortion. The intensity of solar flares in the same month of two different
years can vary sharply.

The situations we are going to model can all be thought of as random experiments.
Viewed naively, an experiment is an action that consists of observing or preparing a set
of circumstances and then observing the outcome of this situation. We add to this notion
the requirement that to be called an experiment such an action must be repeatable, at least
conceptually. The adjective random is used only to indicate that we do not, in addition,
require that every repetition yield the same outcome, although we do not exclude this case.
What we expect and observe in practice when we repeat a random experiment many times
is that the relative frequency of each of the possible outcomes will tend to stabilize. This
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long-term relative frequency n.t/II, where 11.\ is the number of times the possible outcome
A occurs in n repetitions, is to many statisticians. including the authors, the operational
interpretation of the mathematical concept of probability. In this sense, almost any kind
of activity involving uncertainty, from horse races to genetic experiments, falls under the
vague heading of "random experiment."

Another school of statisticians finds this formulation too restrictive. By interpreting
probability as a subjective measure, they are willing to assign probabilities in any situation
involving uncertainty, whether it is conceptually repeatable or not. For a discussion of this
approach and further references the reader may wish to consult Savage (1954), Raiffa and
Schlaiffer (1961), Savage (1962), Lindley (1965), de Groot (1970), and Berger (1985). We
now tum to the mathematical abstraction of a random experiment, the probability model.

In this section and throughout the book, we presume the reader to be familiar with ele
mentary set theory and its notation at the level of Chapter I of Feller (1968) or Chapter I
of Parzen (1960). We shall use the symbols U, n, c, -, C for union, intersection, comple
mentation, set theoretic difference, and inclusion as is usual in elementary set theory.

A random experiment is described mathematically in terms of the following quantities.

A.I.1 The sample Space is the set of all possible outcomes of a random experiment. We
denote it by fl. Its complement, the null set or impossible event, is denoted by 0.

A.I.2 A sample point is any member of fl and is typically denoted by w.

A.I.3 Subsets of fl are called events. We denote events by A, B, and so on or by a descrip
tion of their members, as we shall see subsequently. The relation between the experiment
and the model is given by the correspondence "A occurs if and only if the actual outcome
of the experiment is a member of A." The set operations we have mentioned have interpre
tations also. For example, the relation A C B between sets considered as events means that
the occurrence of A implies the occurrence of B. If w E fl, {w} is called an elementary
event. If A contains more than one point, it is called a composite event.

A.1,4 We will let A denote a class of subsets of fl to which we an assign probabilities.
For technical mathematical reasons it may not be possible to assign a probability P to ev
ery subset of fl, However, A is always taken to be a sigma field, which by definition is
a nonempty class of events closed under countable unions, intersections, and complemen
tation (cf. Chung, 1974; Grimmett and Stirzaker, 1992; and Loeve, 1977). A probability
distribution or measure is a nonnegative function P on A having the following properties:

(i) P(fl) = 1.

(ii) If A 1 , A2 , ... are pairwise disjoint sets in A, then

00 00

P UAi = :LP(Ai ).
i=l i=l

Recall that Ui' 1Ai is just the collection of points that are in anyone of the sets Ai and
that two sets are disjoint if they have no points in common.
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A.3.1 A probability model is called discrete if rl is finite or countably infinite and every
subset of rl is assigned a probability. That is, we can write rl = {Wl' W2, .•. } and A is the
collection of subsets of rl. In this case, by axiom (ii) of (A.1.4), we have for any event A,

A.1.5 The three objects rl, A, and P together describe a random experiment mathemati
cally. We shall refer to the triple (rl, A, P) either as a probability model or identify the
model with what it represents as a (random) experiment. For convenience, when we refer
to events we shall automatically exclude those that are not members of A.
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(A.3.2)

Section A.2 Elementary Properties of Probability Models

Gnedenko, (1967) Chapter I, Section 8
Grimmett and Stirzaker (1992) Section 1.3
Hoel, Port, and Stone (1992) Section 1.3
Parzen (1960) Chapter 1, Sections 4-5
Pitman (1993) Section 1.3

The following are consequences of the definition of P.

A.2.1 If A c B, then P(B - A) = P(B) - P(A).

A.2.2 P(N) = 1 - P(A), P(0) = O.

A.2.3 If A c B, P(B) > P(A).

A.2.40 < P(A) < 1.

A.2.5 P (U~ 1 An) < ~~ 1 P(An).

A.2.6 If Al c A 2 C ... C An . .. , then P (U~ 1 An) = limn~DO P(An).

A.2.7 P (n7 1 Ai) > 1 - 2:7 1 P(AD (Bonferroni's inequality).

A.3 DISCRETE PROBABILITY MODELS

Gnedenko (1967) Chapter I, Sections 1-3, 6-8
Grimmett and Stirzaker (1992) Sections 1.1-1.3
Hoel, Port, and Stone (1971) Sections 1.1, 1.2
Parzen (1960) Chapter 1, Sections 1-5
Pitman (1993) Sections 1.2 and 1.3
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A.2 ELEMENTARY PROPERTIES OF PROBABILITY
MODELS
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An important special case arises when n has a finite number of elements, say N, all of
which are equally likely. Then P( {w}) = 1/N for every wEn, and

P(A) = Number of elements in A
N' (A.3.3)

A.3.4 Suppose that WI, ... ,WN are the members of some population (humans, guinea pigs,
flowers, machines, etc.). Then selecting an individual from this population in such a way
that no one member is more likely to be drawn than another, selecting at random, is an
experiment leading to the model of (A.3.3). Such selection can be carried out if N is small
by putting the "names" of the Wi in a hopper, shaking well, and drawing. For large N. a
random number table or computer can be used.

A.4 CONDITIONAL PROBABILITY AND
INDEPENDENCE

•,
•

1
i,

••,

•,,
•,,
•
•

(A.4.1 )

(A.4.2)

(AA.3)

(A.4A)

ococ

P(A n B) = P(B)P(A IB).

n

P(A) = LP(A IBj)P(Bj ).
j=l

P UAi IB = L P(Ai IB).
i=l i=l

References

Gnedenko (1967) Chapter 1, Sections 4-5
Parzen (1960) Chapter I, Sections 6-7
Pitman (1993) Section l.l

In fact, for fixed B as before, the function P(. I B) is a probability measure on (n, A)
which is referred to as the conditional probability measure given B.

Transposition of the denominator in (A.4.1) gives the multiplication rule,

Given an event B such that P(B) > 0 and any other event A, we define the conditional
probability of A given B, which we write P(A IB), by

P(A IB) = P(A n B).
P(B)

If P(A) corresponds to the frequency with which A occurs in a large number of repetitions
of the experiment, then P( A IB) corresponds to the frequency of occurrence of A relative
to the class of trials in which B does occur. From a heuristic point of view P(A IB) is the
chance we would assign to the event A if we were told that B has occurred.

If AI, A2 , .•. are (pairwise) disjoint events and P(B) > 0, then

If B 1, B 2 , ... , B n are (pairwise) disjoint events of positive probability whose union is
n, the identity A = U; 1 (A n B j ), (A.1.4)(ii) and (AA.3) yield

" ', ,
! " I
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(A.4.6)

(A.4.8)

(A.4.5)

(A.4.9)

(A.4.l0)

(A.4.ll)

P(A I B) = P(A).

P(A n B) = P(A)P(B).

k

P(A n .. ·n A ) = II P(A )1.1 lk 1.J

j=l

If P(B) > 0, the relation (A.4.8) may be written

Section AA Conditional Probability and Independence

Gnedenko (1967) Chapter 1, Sections 9
Grimmett and Stirzaker (1992) Section 1.4
Hoel, Port, and Stone (1971) Sections 1.4, 1.5
Parzen (1960) Chapter 2, Section 4; Chapter 3, Sections 1,4
Pitman (1993) Section 1.4

P(A I B l , ... , B n) = P(A I B I n··· n I31l )

P(BI n··· n B,,) = P(Bl )P(B2 I BJlP(B3 I I31 , B 2 ) ... P(B" I B l •... , Bn-Jl
(A.4.7)

If P(A) is positive, we can combine (AA. I). (AA.3), and (AAA) and obtain Bayes rille

whenever P(I3l n ... n I3n - l ) > O.
Two events A and B are said to be independent if

for any events A, B l , ... ,Bn such that P(BI n ... n I3,,) > O.
Simple algebra leads to the multiplication rule,

The conditional probability of A given I3l •...• B" is written P( A I I3l , ... , I3n ) and
defined by

for any subset {iI, ... ,id ofthe integers {I, ... , n}. If all the P( Ai) are positive, relation
(A.4.1O) is equivalent to requiring that

In other words, A and B are independent if knowledge of I3 does not affect the probability
of A.

The events AI, ... , An are said to be independent if

for any j and {i l , ... , id such thatj tf- {i l , ... , id·
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A.S COMPOUND EXPERIMENTS

There is an intuitive notion of independent experiments. For example, if we toss a coin
twice, the outcome of the first experiment (toss) reasonably has nothing to do with the
outcome of the second. On the other hand, it is easy to give examples of dependent experi
ments: If we draw twice at random from a hat containing two green chips and one red chip,
and if we do not replace the first chip drawn before the second draw, then the probability
of a given chip in the second draw will depend on the outcome of the first draw. To be able
to talk about independence and dependence of experiments, we introduce the notion of a
compound experiment.

Informally, a compound experiment is one made up of two or more component ex
periments. There are certain natural ways of defining sigma fields and probabilities for
these experiments. These will be discussed in this section. The reader not interested in the
formalities may skip to Section A.6 where examples of compound experiments are given.

A.S.I Recall that if AI,' .. , An are events, the Cartesian product Al x .,. x An of
AI, ... ,An is by definition {(WI,""Wn): W, E Ai, 1 <i< n}. Ifwearegivennex-
periments (probability models) £), ... , £n with respective sample spaces 0 1 , , On, then
the sample space 0 ofthe n stage compound experiment is by definition 0 1 x X On. The
(n stage) compound experiment consists in performing component experiments £1, , £n
and recording all n outcomes. The interpretation of the sample space 0 is that (w), , wn )

is a sample point in 0 if and only if WI is the outcome of £), Wz is the outcome of £z and
so on. To say that £i has had outcome w? E Oi corresponds to the occurrence of the com
pound event (in Ol given by 0 1 X"'XOi_1 x{W?}XOi+1 x· .. xOn = {(WI,""Wn) E
o : Wi = w?}. More generally, if Ai E Ai, the sigma field corresponding to £i, then Ai
corresponds to 0 1 x ... XOi_) XAi X Oi+ I X ... X On in the compound experiment. If
we want to make the £i independent, then intuitively we should have all classes of events
A), . .. , An with Ai E Ai, independent. This makes sense in the compound experiment.
If P is the probability measure defined on the sigma field A of the compound experiment,
that is, the subsets A of 0 to which we can assign probability(1), we should have

P([A I x Oz X ... x On] n [0) x A z x ... X On] n ... )
= P(A) x ... X An)
= P(A I XOz X ... XOn)P(!1 1 X Az x ... X On) ... P(O) x ... X On-I X An).

(A.5.2)

If we are given probabilities p) on (0), AI), Pz on (Oz, Az), ... , Pn on (On, An),
then (A.5.2) defines P for A) X x An by

P(A I X X An) = PI (AI)'" Pn(An). (A.5.3)

It may be shown (Billingsley, 1995; Chung, 1974; Loeve, 1977) that if P is defined by
(A.5.3) for events A) X •. , x An, it can be uniquely extended to the sigma field A spec
ified in note (1) at the end of this appendix. We shall speak of independent experiments
£1, ... , £n if the n stage compound experiment has its probability structure specified by
(A.5.3). In the discrete case (A.5.3) holds provided that

P({(W), ... ,wn)}) = PI({w)}) ... Pn({wn}) for all Wi E Oi, 1 <i< n. (A.5.4)
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(A6.5)

(A6.3)

(A.6.2)

n!n

n
k

P({W}) =pk(w)(l_pr-k(w)

Section A.6 Bernoulli and Multinomial Trials, Sampling With and Without Replacement 447

where k(w) is the number of 5's appearing in w. If A k is the event [exactly k 5's occur],
then

References

where

Specifying P when the [, are dependent is more complicated. In the discrete case we
know P once we have specified P({(Wj ... ,wn )}) for each (Wi.· .. .w,,) with Wi EO"
i = 1, ... , II. By the multiplication rule (A.4.7) we have, in the discrete case, the following.

A.S.S P( {(Wj . ... ,w,,) }) = P([j has outcome wd P([2 has outcome W2 I [j has out
come w,) ... P([" has outcome W n I [1 has outcome Wj, ... • [,,-1 has olltcome wn-d.
The probability structure is determined by these conditional probabilities and conversely.

A.6 BERNOULLI AND MULTINOMIAL TRIALS,
SAMPLING WITH AND WITHOUT
REPLACEMENT

Grimmett and Stirzaker ( 1992) Sections 1.5, J.6
Hoel, Port, and Stone (1971) Section 1.5
Parzen (1960) Chapter 3

A.6.1 Suppose that we have an experiment with only two possible outcomes, which we
shall denote by 5 (success) and F (failure). If we assign P({5}) = p, we shall refer to such
an experiment as a Bernoulli trial with probability of success p. The simplest example of
such a Bernoulli trial is tossing a coin with probability P of landing heads (success). Other
examples will appear naturally in what follows. If we repeat such an experiment n times
independently, we say we have performed n Bernoulli trials with success probability p. If
o is the sample space of the compound experiment, any point W E 0 is an n-dimensional
vector of 5's and F's and,

k k!(n-k)!'

The formula (A6.3) is known as the binomial probability.

A.6.4 More generally, if an experiment has q possible outcomes WI, ... ,wq and P({Wi}) =

Pi, we refer to such an experiment as a multinomial trial with probabilities PI, . .. ,Pq' If
the experiment is performed n times independently, the compound experiment is called n
multinomial trials with probabilities PI, ... ,Pq' If 0 is the sample space of this experiment
and W E 0, then



where ki(w) = number of times Wi appears in the sequencew. If Ak, .... ,k
q

is the event (ex
actly kl WI 's are observed, exactly k2W2 's are observed, ... , exactly kqwq's are observed),
then
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(A.6.6)
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1,(A.6.9)

(A.6.1O)/ N \

1
P({a}) = (N)n

N!
(N)n = (N - n)!'

(Np)k(N(l - P))n-k
(N)nk

n

where

where the ki are natural numbers adding up to n.

A.6.7 If we perform an experiment given by (n, A, P) independently n times, we shall
sometimes refer to the outcome of the compound experiment as a sample of size n from
the population given by (n, A, P). When n is finite the term, with replacement is added to
distinguish this situation from that described in (A.6.S) as follows.

A.6.8 If we have a finite population of cases n = {WI"" WN} and we select cases Wi

successively at random n times without replacement, t1Ie component experiments are not
independent and, for any outcome a = (Wi1 , ..• , Win) of t1Ie compound experiment,

If the case drawn is replaced before t1Ie next drawing, we are sampling with replacement,
and t1Ie component experiments are independent and P({a}) = 1/Nn. If N p of t1Ie mem
bers of n have a "special" characteristic Sand N(l - p) have t1Ie opposite characteristic
F and Ak = (exactly k "special" individuals are obtained in t1Ie sample), t1Ien

/ Np' / N(l - p) ,

, k J , n-k

References

Gnedenko (1967) Chapter 2, Section 1I
Hoe!, Port, and Stone (1971) Section 2.4
Parzen (1960) Chapter 3, Sections 1-4
Pitman (1993) Section 2.1

A.7 PROBABILITIES ON EUCLIDEAN SPACE

for max(O, n - N (1 - p)) < k < min(n, N p), and P(A k ) = °otlIerwise. The formula
(A.6. I0) is known as the hypergeometric probability.

Random experiments whose outcomes are real numbers playa central role in t1Ieory and
practice. The probability models corresponding to such experiments can all be tIIought of
as having a Euclidean space for sample space.
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Conversely, any nonnegative function p on Rk vanishing except on a sequence {XI, ... , x n ,

... } of vectors and that satisfies L:~ I p(Xi) = 1 defines a unique discrete probability
distribution by the relation

A.7.6 A nonnegative function p on R k , which is integrable and which has

r p(x)dx = 1,JRk
where dx denotes dXI ... dXn' is called a density function. Integrals should be interpreted
in the sense of Lebesgue. However, for practical purposes, Riemann integrals are adequate.

A.7.7 A continuous probability distribution on R k is a probability P that is defined by the
relation

449

(A.7.5)

(A.7.4)

(A.7.9)

p(x) = P({x}).

P(A) = L P(Xi)'
xiEA

Section A.7 Probabilities on Euclidean Space

We shall use the notation Rk of k-dimensional Euclidean space and denote members
of Rk by symbols such as x or (XI, ... , Xk)', where ( )' denotes transpose.

A.7.1 If (aI, bl ), , (ak, bk) are k open intervals, we shall call the set (aI, b l ) X '" x
(ak,bk) = {(XI, ,Xk): ai < Xi < bi, 1 <i< k}anopen krectangle.

A.7.2 The Borelfield in R k , which we denote by 8 k
, is defined to be the smallest sigma

field having all open k rectangles as members. Any subset of Rk we might conceivably be
interested in turns out to be a member of 8 k . We will write R for R I and 8 for 8 1 .

A.7.3 A discrete (probability) distribution on R k is a probability measure P such that
L:~ I P({x;}) = 1 for some sequence of points {x;} in Rk

. That is, only an Xi can
occur as an outcome of the experiment. This definition is consistent with (A.3.I) because
the study of this model and that of the model that has n = {XI, ... , x n , ... } are equivalent.

The frequency function p of a discrete distribution is defined on R k by

P(A) = i p(x)dx = 1 (A.7.8)

for some density function p and all events A. P defined by A.7.8 are usually called abso
lutely continuous. We will only consider continuous probability distributions that are also
absolutely continuous and drop the term absolutely. It may be shown that a function P so
defined satisfies (A. 1.4). Recall that the integral on the right of (A.7.8) is by definition

r 1A(x)p(x)dxJRk
where 1A (x) = 1 if x E A, and 0 otherwise. Geometrically, P(A) is the volume of the
"cylinder" with base A and height p(x) at x. An important special case of (A.7.8) is given
by
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It turns out that a continuous probability distribution determines the density that generates
it "uniquely.,,(j)

Although in a continuous model P({x}) = 0 for every x, the density function has an
operational interpretation close to that of the frequency function. For instance, if p is a
continuous density on R, :co and .7:j are in R, and h is close to 0, then by the mean value
theorem

P([xo - h, Xo + h]) :::::; 2hp(xo) and ;ifxo
- ~,xo + ~Ji :::::; ptoi. (A.7.1O)

Xj - , Xj + P Xj

The ratio p(xo)/p(xI) can, thus, be thought of as measuring approximately how much
more or less likely we are to obtain an outcome in a neighborhood of Xo then one in a
neighborhood of Xj.

A.7.11 The distribution function (d.f.) F is defined by

(A.7.12)

The dJ. defines P in the sense that if P and Q are two probabilities with the same d.f.,
then P = Q. When k = 1, F is a function of a real variable characterized by the following
properties:

It may be shown that any function F satisfying (A.7.I3)-(A7.16) defines a unique P on
the real line. We always have
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O<F<l- -

x <y =? F(x) < F(y) (Monotone)

Xn 1 x =? F(xn ) ---? F(x) (Continuous from the right)

limx~CX) F(x) = 1

limx~_CX) F(x) = O.

F(x)-F(x-0)(2) =P({x}).

Thus, F is continuous at x if and only if P( {x}) = o.
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When we are interested in particular random variables or vectors, we will describe
them purely in terms of their probability distributions without any further specification of
the underlying sample space on which they are defined.

The study of real- or vector-valued functions of a random vector X is central in the
theory of probability and of statistics. Here is the formal definition of such transformations.
Let g be any function from R k to Rm, k, m > 1, such that(2) g-I(B) = {y E Rk : g(y) E

A.S.4 A random vector is said to have a continuous or discrete distribution (or to be contin
uous or discrete) according to whether its probability distribution is continuous or discrete.
Similarly, we will refer to the frequency function, density, dj, and so on of a random vector
when we are, in fact, referring to those features of its probability distribution. The subscript
X or X will be used for densities, dJ.'s, and so on to indicate which vector or variable they
correspond to unless the reference is clear from the context in which case they will be
omitted.

The probability of any event that is expressible purely in tenns of X can be calculated
if we know only the probability distribution of X. In the discrete case this means we
need only know the frequency function and in the continuous case the density. Thus, from
(A.7.5) and (A.7.8)

Although sample spaces can be very diverse, the statistician is usually interested primarily
in one or more numerical characteristics of the sample point that has occurred. For example,
we measure the weight of pigs drawn at random from a population, the time to breakdown
and length of repair time for a randomly chosen machine, the yield per acre of a field of
wheat in a given year, the concentration of a certain pollutant in the atmosphere, and so on.
In the probability model, these quantities will correspond to random variables and vectors.

A.S.I A random variable X is a function from n to R such that the set {w : X (w) E B} =
X-I (B) is in () for every B E B. (1)

A.S.2 A random vector X = (Xl,' .. ,xkf is k-tuple of random variables, orequivalentIy
a function from n to Rk such that the set {w : X(w) E B} = X-I(B) is in A for every
B E Bk . (l) For k = 1 random vectors are just random variables. The event X-I(B) will
usually be written [X E B] and P([X E BD will be written P[X E B].

The probability distribution of a random vector X is, by definition, the probability
measure Px in the model (R k , Bk

, Px) given by

451

(A.8.3)

(A.8.5)

L p(x), if X is discrete
xEA

i p(x)dx, if X is continuous.

Px(B) = P[X E B].

P[X E A]

A.a RANDOM VARIABLES AND VECTORS:
TRANSFORMATIONS

Section A.8 Random Variables and Vectors: Transformations
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D} E B"" for every D E Bm. Then the random transfomwtion g(X) is defined by

g(X)(w) = g(X(w)). (A.8.6)

An example of a transformation often used in statistics is g (g1, g2)' with g1 (X) =

/<-1 L~ I Xi = X and g2(X) = k- 1L~' 1 (Xi - X)2. Another common example is
g(X) = (min{X;}, max{X;} )'.

The probability distribution of g(X) is completely determined by that of X through

P[g(X) E B] = P[X E g-1(B)]. (A.8.7)

If X is discrete with frequency function Px, then g(X) is discrete and has frequency func
tion

(A.8.8)Pg(X)(t) = L px(x).
{x:g(x)=t}

Suppose that X is continuous with density px and 9 is real-valued and one-to-one(3)
on an open set S such that P[X E S] = 1. Furthermore, assume that the derivative g' of 9
exists and does not vanish on S. Then g(X) is continuous with density given by

,

I
I

PX(g-1(t))
Pg(X)(t) = Ig'(g-1(t))1

for t E g(S), and 0 otherwise. This is called the change of variable formula.
If g(X) = aX + j1., (J i- 0, and X is continuous, then

(A.8.9)

,,

t - j1.
• (A.8.1O)

I

i

From (A.8.8) it follows that if (X, y)T is a discrete random vector with frequency func
tion p(x,Y), then the frequency function of X, known as the marginal frequency function,
is given by(4)
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•1

(A.S.12)

(A.8.11)px(X) = LP(x,y)(x,y).
y

Similarly, if (X, y)T is continuous with density p(X,Y), it may be shown (as a consequence
of (A.8.7) and (A.7.8» that X is a marginal density function given by

px(x) = 1:P(X,y)(x,y)dy.(5)

These notions generalize to the case Z = (X, Y), a random vector obtained by putting two
random vectors together. The (marginal) frequency or density of X is found as in (A.8.11)
and (A.8.12) by summing or integrating out over y in p(X,Y) (x, y).

Discrete random variables may be used to approximate continuous ones arbitrarily
closely and vice versa.
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(A.9.5)

(A.9.4)

Section A.9 Independence of Random Variables and Vectors

A.9.1 Two random variables XI and X 2 are said to be independent if and only if for sets A
and B in B, the events [XI E A] and [X2 E B] are independent.

A.9.2 The random variables XI,' .. ,Xn are said to be (mutually) independent if and only
if for any sets AI,. , . ,An in B, the events [Xl E AI], ... ,[Xn E An] are independent.
To generalize these definitions to random vectors XI, ... , X n (not necessarily of the same
dimensionality) we need only use the events [Xi E Ai] where Ai is a set in the range of
Xi.

A.9.3 By (A,8.7), if X and Yare independent, so are g(X) and h(Y), whatever be g and
h. For example, if (XI, X 2 ) and (YI , Y2 ) are independent, so are XI + X 2 and YIY2 ,

(XI, X I X 2 ) and Y2 , and so on.

Theorem A.9.1. Suppose X = (XI, . , . , X n ) is either a discrete or continuous random
vector. Then the random variables X I, ... , X n are independent if, and only if, either ofthe
following two conditions hold:

A.9 INDEPENDENCE OF RANDOM VARIABLES AND
VECTORS

Gnedenko (1967) Chapter 4, Sections 21-24
Grimmett and Stirzaker (1992) Section 4.7
Hoel, Port, and Stone (1971) Sections 3.3, 5.2, 6.1, 6.4
Parzen (1960) Chapter 7, Sections 1-5,8,9
Pitman (1993) Section 4.4

In practice, all random variables are discrete because there is no instrument that can
measure with perfect accuracy. Nevertheless, it is common in statistics to work with con
tinuous distributions, which may be easier to deal with. The justification for this may be
theoretical or pragmatic. One possibility is that the observed random variable or vector
is obtained by rounding off to a large number of places the true unobservable continuous
random variable specified by some idealized physical model. Or else, the approximation of
a discrete distribution by a continuous one is made reasonable by one of the limit theorems
of Sections A. I5 and B.7.

A.S.l3 A convention: We shall write X = Y if the probability of the event [X i Y] is O.

A.9.6 If the Xi are all continuous and independent, then X = (XI, ... "Xn ) is continuous,

A.9.7 The preceding equivalences are valid for random vectors XI, .. , ,Xn with X
(XI, .. " X n ),
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A.9.S If Xl, ... ,X" are independent identically distributed k-dimensional random vectors
with dJ. Fx or density (frequency function) PX, then Xl .. " ,Xn is called a random
sample (~r size n from a population with d.f. Fx or density (frequency function) Px. In
statistics, such a random sample is often obtained by selecting n members at random in the
sense of (A.3.4) from a population and measuring k characteristics on each member.

If A is any event, we define the random variable 1A, the indicator of the event A, by

1 ifw E A
ootherwise.

(A.9.9)

If we perform n Bernoulli trials with probability of success P and we let Xi be the indicator
of the event (success on the ith trial), then the Xi form a sample from a distribution that
assigns probability P to 1 and (l-p) to O. Such samples will be referred to as the indicators
ofn Bernoulli trials with probability ofsuccess p.
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••

(A.IO,I)
CX)

1
xi=i,px(i)=,(, ),i=1,2, ....)

l l + 1

E(X) = LXiPX(Xi).
i=l

(Infinity is a possible value of E(X), Take

Gnedenko (1967) Chapter 4, Sections 23, 24
Grimmett and Stirzaker (1992) Sections 3.2,4.2
Hoel, Port, and Stone (1971) Section 3.4
Parzen (1960) Chapter 7, Sections 6, 7
Pitman (1993) Sections 2.5, 5.3

A.lO THE EXPECTATION OF A RANDOM VARIABLE

A.tO.2 More generally, if X is discrete, decompose {Xl, X2,' , , } into two sets A and B
where A consists of all nonnegative Xi and B of all negative Xi, If either L,x,EA XiPX (Xi) <

Let X be the height of an individual sampled at random from a finite population. Then a
reasonable measure of the center of the distribution of X is the average height of an indi
vidual in the given population. If Xl, ... , X q are the only heights present in the population,
it follows that this average is given by L,LI XiP[X = x;] where P[X = x;] is just the
proportion of individuals of height Xi in the population. The same quantity arises (approx
imately) if we use the long-run frequency interpretation of probability and calculate the
average height of the individuals in a large sample from the population in question. In line
with these ideas we develop the general concept of expectation as follows.

If X is a nonnegative, discrete random variable with possible values {x I, X2, ..• }, we
define the expectation or mean of X, written E(X), by

••,
,
,
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i
•
I

[
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If X is an n-dimensional random vector, if 9 is a real-valued function on Rn, and if
E(lg(X) I) < 00, then it may be shown that

r Ig(x)IPx(x)dx < 00,JRk

00 or ~x,EB (-Xi)pX (.1:;) < 00, we define E(X) unambiguously by (A. I0.1). Otherwise,
we leave E(X) undefined.

Here are some properties of the expectation that hold when X is discrete. If X is a
constant, X (w) = c for all w, then
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(A 10.3)

(AW.S)

(A.IOA)

(AW.7)

(AlO.9)

(A.10.6)

i=l

E(X) = c.

E(X) = P(A).

i=l

E(X) = 1: xPx(x)dx

00

E(lXI) = L IXilpx(Xi)'
i=l

00

E(g(X)) = Lg(x;)px(x;).
i=l

n n

E L aiXi = L aiE(Xi )

If X = lA (cf. (A9.9», then

Section A.IO The Expectation of a Random Variable

As a consequence of this result, we have

Taking g(x) = ~~ 1 aixi we obtain the fundamental relationship

if a1,' .' , an are constants and E(IXil) < 00, i = 1, ... , n.

A.tO.S From (A 10.7) it follows that if X < Y and E(X), E(Y) are defined, then E(X) <
E(Y).

If X is a continuous random variable, it is natural to attempt a definition of the expec
tation via approximation from the discrete case. Those familiar with Lebesgue integration
will realize that this leads to

as the definition of the expectation or mean of X whenever Jo
oo

xpx (x )dx or

too xpx(x)dx is finite. Otherwise, E(X) is left undefined.

A.tO.tO A random variable X is said to be integrable if E(IXI) < 00.

It may be shown that if X is a continuous k-dimensional nlIldom vector and g(X) is
any random variable such that
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then E(g(X)) exists and

E(g(X)) = hk g(x)Px(x)dx. (AlO.11)

In the continuous case expectation properties (A.lO.3), (A. 1004), (AlO.7), and (AlO.8)
as well as continuous analogues of (A.lO.S) and (A.lO.6) hold. It is possible to define the
expectation of a random variable in general using discrete approximations. The interested
reader may consult an advanced text such as Chung (1974), Chapter 3.

The formulae (A 10.5) and (A.lO.ll) are both sometimes written as

E(g(X)) = r g(x)dF(x) or r g(x)dP(x) (AlO.12)iRk iRk
where F denotes the distribution function of X and P is the probability function of X
defined by (A8.S).

A convenient notation is dP(x) = p(x )dJl(x), which means

References

(AlO.13)

00

J g(x)dP(x) L g(x;)p(x;), discrete case
;=1

1: g(x)p(x)dx, continuous case.

We refer to Jl = Jlp as the dominating measure for P. In the discrete case Jl assigns weight
one to each of the points in {x : p(x) > O} and it is called counting measure. In the
continuous case dJl(x) = dx and Jl(x) is called Lebesgue measure. We will often refer to
p(x) as the density of X in the discrete case as well as the continuous case.

f
•,

,·.•
•

I :, I
!

I,
I·

I

A.ll MOMENTS

A.H.I If k is any natural number and X is a random variable, the kth moment of X is
defined to be the expectation of X k. We assume that all moments written here exist.

By (A 10.5) and (A 10.11 ),

E(Xk) Lxkpx(x) if X is discrete

j

,
I

j,,,
j

i
l

I
j
j
•

(Al1.2)

Chung (1974) Chapter 3
Gnedenko (1967) Chapter 5, Section 26
Grimmett and Stirzaker (1992) Sections 3.3,4.3
Hoel, Port, and Stone (1971) Sections 4.1,7.1
parzen (1960) Chapter 5; Chapter 8, Sections 1-4
Pitman (1993) Sections 3.3, 304,4.1

x

1: xkpx(x)dx if X is continuous.

In general, the moments depend on the distribution of X only.
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A.1l.10 The third and fourth central moments are used in the coefficient of skewness /1
and the kurtosis /2, which are defined by

A.1l.9 If E(X2
) = 0, then X = O. If Var X = 0, X = E(X) (a constant). These results

follow, for instance, from (A. I 5.2).
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(A. I 1.8)

(A.I 1.6)

E (Z) = 0 and Var Z = 1.

Var(aX + b) = a2 Var X.

Section A.ll Moments

(One side of the equation exists if and only if the other does.)

A.I1.3 The distribution of a random variable is typically uniquely specified by its mo
ments. This is the case, for example, if the random variable possesses a moment generating
function (cf. (A. 12.1».
A.1l.4 The kth central moment of X is by definition E[(X - E(X)Jk], the kth moment of
(X - E(X)), and is denoted by Ilk.

A.1l.S The second central moment is called the variance of X and will be written Var X.
The nonnegative square root of Var X is called the standard deviation of X. The standard
deviation measures the spread of the distribution of X about its expectation. It is also called
a measure of scale. Another measure of the same type is E(!X - E(X)J), which is often
referred to as the mean deviation.

The variance of X is finite if and only if the second moment of X is finite (cf. (A.! 1.15».
If a and b are constants, then by (A.1O.7)

A.1l.7 If X is any random variable with well-defined (finite) mean and variance, the stan
dardized version or Z-score of X is the random variable Z = (X - E(X))jvVar X. By
(A.l0.7) and (A.I 1.6) it follows then that

A.Il.1l If Y = a + bX with b > 0, then the coefficient of skewness and the kurtosis of Y
are the same as those of X. If X ~ N(Il, (J"2), then /1 = /2 = O.

where (J"2 = Var X. See also Section A.12 where /1 and /2 are expressed in terms ofcumu
lants. These descriptive measures are useful in comparing the shapes of various frequently
used densities.

A.1l.12 It is possible to generalize the notion of moments to random vectors. For sim
plicity we consider the case k = 2. If Xl and X 2 are random variables and i, j are nat
ural numbers, then the product moment of order (i,j) of Xl and X 2 is, by definition,
E(XIX4). The central product moment of order (i,j) of Xl and X 2 is again by defi
nition E[(X I - E(X l ))i(X2 - E(X2 ))j]. The central product moment of order (1,1) is
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called the c(}\'Qrionce of X I and Xl and is written Cov( X 1· X 2). By expanding the product
(Xl - E(XIl )(X2 ~ E( X 2 )) and using (A. I 0.3) and (A.IO.n we obtain the relations,

Cov(aX I + bX2 , cX3 + (1){4)

= ae Cov(X1. X~l) + be COV()(2, X 3 ) + ad Cov(X1 , X 4 ) + bd COV(X2, X 4 )

(A.II.I3)

and

i
i
I,

(A.II.I4)

If X; and X~ are distributed as Xl and X 2 and are independent of Xl and X 2 , then

1 X ') ,CoV(X1,X2) = 2E ( 1 - Xl (X2 - X 2 )·

If we put Xl = X 2 = X in (A. I I. I4), we get the formula

(A. I I.I 5)

The covariance is defined whenever Xl and X 2 have finite variances and in that case

·,
,,,

with equality holding if and only if

(I) Xl or X 2 is a constant

,

1
1
j
1,
•

(A. I I.l6)

(A. I I.I7)

or
(2) (Xl - E(Xl )) = cOV~;~:2) (X2 - E(X2 )).

This is the correlation inequality. It may be obtained from the Cauchy-Schwartz inequality,
t,,
r
I,

,
j,

Equality holds if and only if X 2 is linear function (X2 = a + bXl , b i= 0) of Xl.

The correlation of Xl and X 2 is the covariance of the standardized versions of Xl and X 2 .

The correlation inequality is equivalent to the statement
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(A.I I.lS)

(A.I I.l9)

for any two random variables ZlJ Z2 such that E(Zr) < 00, E(Z?) < 00. Equality holds
if and only if one of Zl' Z2 equals 0 or Zl = aZ2 for some constant a. The correlation
inequality corresponds to the special case ZI = Xl - E(X l ), Z2 = X 2 - E(X2). A proof
of the Cauchy-Schwartz inequality is given in Remark 1.4.1.

The correlation of Xl and X 2 , denoted by Corr(Xl , X 2 ), is defined whenever Xl and
X 2 are not constant and the variances of Xl and X 2 are finite by

I,
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If Xl,,'" X" have finite variances, we obtain as a consequence of(AIl.13) the rela
tion

A.12.1 If E(esoIXI) < CXJ for some so> 0, Mx(s) = E(eSX ) is well defined for lsi < So

and is called the moment generating function of X. By (AlO,5) and (A.lO,ll),

459

(All.20)

(A12.2)

(All.2l)

(A.12.3)

(AI 1.23)

if X is discrete

CX) E(X k )

Mx(s) = L k! sk, lsi < so·
k=O

Mx(s)

Var(X I + ... + X n ) = .z= Var X, + 2 .z=Cov(X" X)).
1=1 z<)

n

If Xl and X 2 are independent and Xl and X 2 are integrable, then

Section A.12 Moment and Cumulant Generating Functions

n

References

Gnedenko (1967) Chapter 5, Sections 27, 28, 30
Hoel, Port, and Stone (1971) Sections 4.2--4.5,7.3
Parzen (1960) Chapter 5; Chapter 8, Sections 1--4
Pitman (1993) Section 6A

Var(XI +.,. + X n ) = .z=Var Xi.
i=l

or in view of (AI 1.14),

Cov(XI , X 2 ) = Corr(XI , X 2 ) = °when Var(X;) > 0,1 = 1,2. (A,l1.22)

This may be checked directly. It is not true in general that X I and X 2 that satisfy (A, 11.22)
(i,e., are uncorrelated) need be independent.

The correlation coefficient roughly measures the amount and sign of linear relationship
between X I and X 2 . It is -lor 1 in the case of perfect relationship (X2 = a + bXI, b < °
or b > 0, respectively). See also Section lA,

As a consequence of (AI 1.22) and (A.ll.20), we see that if Xl, .. , , X n are indepen
dent with finite variances, then

A.12 MOMENT AND CUMULANT GENERATING
FUNCTIONS

i=l

1: eS:"px(x)dx if X is continuous.

If Mx is well defined in a neighborhood {s : Is I < so} of zero, all moments of X are
finite and



A.12.4 The moment generating function .\1x has derivatives of all orders at s = 0 and

This follows by induction from the definition and (A I I.21). For a generalization of the
notion of moment generating function to random vectors, see Section B.5.

The function

(A I 2.6)

A Review of Basic Probability Theory Appendix A

n
•

lI!(X1:+Xn)(S) = II lI!x, (S).
i=l

460

A.U.S If defined, lI!x determines the distribution of X uniquely and is itself uniquely
determined by the distribution of X.

If Xl . .... X" are independent random variables with moment generating functions
1.1Xl' ...• l'.1x", then Xl + ... + X" has moment generating function given by
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I

j
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I
,
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i
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Kx(s) = logll!x(s) (A I 2.7)
,
,

is called the cumulant generating function of X. If NIx is well defined in some neighbor
hood of zero, K x can be represented by the convergent Taylor expansion

!
•

00

'" Cj ,Kx(s) = 6 -:-;-sJ
, 0 J.J=

(A 12.8)
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where

dJ

C-y = Cj(X) = dKx(s)ls=o (A.12.9)sJ
is called the jth cumulallt of X, j > 1. For j > 2 and any constant a, Cj (X + a) = Cj(X).
If X and Yare independent, then Cj(X + Y) = Cj(X) + Cj(Y). The first cumulant C1

is the mean J.L of X, C2 and C3 equal the second and third central moments Jl2 and Jl3 of
X, and C4 = J.L4 - 3J.L~' The coefficients of skewness and kurtosis (see (AI 1.10» can be

3

written as 11 = C3/C:j and 12 = C4/C~, If X is normally distributed, Cj = 0 for j > 3. See
Problem B.3.8.
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A.13 SOME CLASSICAL DISCRETE AND
CONTINUOUS DISTRIBUTIONS

,
,

•••,
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By definition, the probability distribution of a random variable or vector is just a probability
measure on a suitable Euclidean space. In this section we introduce certain families of

"
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The parameter n can be any integer > °whereas 0 may be any number in [0,1].

A.13.2 If X is the total number of successes obtained in n Bernoulli trials with probability
of success 0, then X has a B(n, 0) distribution (see (A.6.3».

If X has a B(n, 0) distribution, then

A.13.5 If Xl, X 2 , ... ,Xk are independent random variables distributed as B(nl' 0),
B(n2, 0), ... ,B(nk, 0), respectively, then Xl + X 2 + ... + Xk has a B(nl +-.. + nk, 0)
distribution. This result may be derived by using (A.12.5) and (AI2.6) in conjllnction with
(Al3A).

The hypergeometric distribution with parameters D, N, and n : 1i(D, N,n).

461

(A.l3.I)

(AlB)

(Al3A)

(A.l3.6)

n

D'IN-D'
k n-k

Ok(l-Or-k, k=O,l, ... ,n.
n
k

p(k) = -'-----'-"'7-':N~--J'-

E(X) = nO, Var X = nO(l - 0).

p(k) =

Section A.13 Some Classical Discrete and Continuous Distributions

I. Discrete Distributions

The binomial distribution with parameters nand 0 : B(n,O).

Higher-order moments may be computed from the moment generating function

distributions, which arise frequently in probability and statistics, and list some of their
properties. Following the name of each distribution we give a shorthand notation that
will sometimes be used as will obvious abbreviations such as "binomial (n, 0)" for "the
binomial distribution with parameter (n, OJ". The symbol p as usual stands for a frequency
or density function. If anywhere below p is not specified explicitly for some value of x it
shall be assumed that p vanishes at that point. Similarly, if the value of the distribution
function F is not specified outside some set, it is assumed to be zero to the "left" of the set
and one to the "right" of the set.

for k a natural number with max(O, n - (N - D)) < k < min(n, D). The parameters D
and n may be any natural numbers that are less than or equal to the natural number N.

A.13.71f X is the number ofdefectives (special objects) in a sample of size n taken without
replacement from a population with D defectives and N - D nondefectives, then X has
an 1i(D, N, n) distribution (see (A6.1 0». If the sample is taken with replacement, X has
a B(n, DIN) distribution.
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If X has an H(D, N, n) distribution, then

D D
E(X) = n N' Var X = n N

D
1- 

N

N-n
N -1'

(A 13.8)
,,

Formulae (AI3,8) may be obtained directly from the definition (A I 3,6). An easier way is
to use the interpretation (A.I3.?) by writing X = 'L:]=l I j where I j = 1 if the jth object
sampled is defective and °otherwise, and then applying formulae (AIDA), (AID.?), and
(A. 11.20).

•

The Poisson distribution with parameter A : P(A).

e-).. )"k
p(k) = k! (A.I3.9)

The multinomial distribution with parameters n, {}l, ... ,{}q : M(n, (}l, ... , (}q).

(A I 3. ID)

(A13.I I)

(AI3.13)

(A I3. I5)

•

n {} Var X - n{}·(l - (})" ,-, ,
-n{}i{}j, i i= j, i,j = 1, ... ,q.

q

({}l," .,(}q): {}i > 0, 1 <i< q, L{}i = 1
i=l

8=

E(Xi )

Cov(Xi , Xj)

for k = 0, 1,2, .... The parameter A can be any positive number.
If X has a P(A) distribution, then

E(X) = Var X = A.

The moment generating function of X is given by

Mx(t) = e)..(e'-l).

whenever ki are nonnegative integers such that 'L:? I ki = n. The parl\meter n is any
natural number while ({}1, ... , (}q) is any vector in

A.13.12 If X I,X2, ... ,Xn are independent random variables with P(Ad,P(A2),.'"
P(An) distributions, respectively, then Xl + X 2 + -i-xn has the P(AI + A2 + ... + An)
distribution. This result may be derived in th same manner as the corresponding fact for
the binomial distribution.

A.13.14If X = (Xl, ... , X q )', where Xi is the number of times outcome Wi occurs in n
multinomial trials with probabilities ({}l, ... , (}q), then X has a M(n, {}1,.'" (}q) distribu
tion (see (A6.6».

If X has a M (n, (}l, ... , {}q) distribution,

•
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II. Continuous Distributions

463

= F"T
x-Jl

FI",a(x) = F 0

Section A.13 Some Classical Discrete and Continuous Distributions

E(Y) = 0, Var Y = 1.

FI"(x) = F(X - Jl) = Fo(x - Jl) = F,(x + h - Jl))

These results may either be derived directly or by a representation such as that discussed in
(A.13.8) and an application of fonnulas (A. lOA), (A.IO.7), (A.13. 13), and (A. 11.20).

A.13.16 If X has a M (n, fh, ... ,aq ) distribution, then (Xi), ... , X", 11 - ~;=I Xi) )'

has a M (n, Oil' ... ,ai " 1 - ~;=1 ai ] ) distribution for any set {i1, ... , is} C {I, ... , q}.
Therefore, X j has 8(n,aJ ) distributions for each j and more generally ~;=l Xij has

a 8(11, ~;=l ai.,) distribution if s < q. These remarks follow from the interpretation
(A. 13.14).

and all calculations involving FI" can be referred back to F or any other member of the
family. Similarly, if Y generates FL so does Y + , for any fixed ,. If Y has a first
moment, it follows that we may without loss of generality (as far as generating FL goes)
assume that E(Y) = O. Then if X ~ FI"' E(X) = Jl.

Similarly let F; be the dJ. of oY, 0 > O. The family Fs = {F; : 0 > O} is called a
scale parameterfamily, 0 is a scale parameter, and Y is said to generate Fs. By definition,
for any 0 > 0, X ~ F; {=> X/o ~ F. Again all calculations involving one member of the
family can be referred back to any other because for any 0, T > 0,

we see as before how to refer calculations involving one member of the family back to any
other. Without loss of generality, if Y has a second moment, we may take

Before beginning our listing we introduce some convenient notations: X ~ F will
mean that X is random variable with d.f. F, and X ~ p will similarly mean that X has
density or frequency function p.

Let Y be a random variable with d.f. F. Let FI" be the dJ. of Y + J.L. The family
:h = {FI" : -00 < J.L < oo} is called a location parameter family, J.L is called a location
parameter, and we say that Y generates FL. By definition, for any J.L, X ~ FI" {=> X - J.L ~

F. Therefore, for any Jl, "

If Y generates Fs and Y has a first moment different from 0, we may without loss of
generality take E(Y) = 1 and, hence, if X ~ F;, then E(X) = o. Alternatively, if Y has
a second moment, we may select F as being the unique member of the family Fs having
Var Y = 1 and then X ~ F; =?- Var X = 0

2
. Finally, define FI",a as the d.£. of oY + Jl.

The family FL,s = {FI",a : -00 < Jl < 00,0 > O} is called a location-scale parameter
family, Jl is called a location parameter, and 0 a scale parameter, and Y is said to generate
FL s. From,

-----------------"" -""-
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Then if X ~ FlctY , we obtain

E(X) = j.L, Var X = 0-2
.

Clearly FI" = FI",j, F; = Fo,tY.
The relation between the density of FI",tY and that of F is given by (A8.1 0). All the

families of densities we now define are location-scale or scale families.

The normal distribution with parameters Jl and 0-2 : N(j.L, 0-2
).

1 1
p(x) = ,j exp -2 2 (x- Jl )2 .

211"0- 0-
(Al3.17)

The parameter Jl can be any real number while 0- is positive. The normal distribution with
Jl = 0 and 0- = 1 is known as the standard normal distribution. Its density will be denoted
by cp(z) and its d.f. by 4>(z).

A.13.IS The family ofN(Jl, 0-2 ) distributions is a location-scale family. If Z has aN(O, 1)
distribution, then 0-Z + Jl has a N(Jl, 0-2

) distribution, and conversely if X has a N(Jl, 0-2
)

distribution, then (X - Jl) /0- has a standard normal distribution.
If X has a N(Jl, 0-2 ) distribution, then

E(X) = Jl, Var X = 0-2
. (Al3.19)

More generally, all moments may be obtained from

and, hence, in this case we can conclude from (A 12.4) that

for -00 < t < 00. In particular if Jl = 0, 0-2 = 1, then

~
•
•

,
•
••,,

·,

,

(Al3.20)

(Al3.21)
t2k

(2k)!

00 (2k)!
Mx(t) = L 2k k!

k=O

•
I
I
I:
i

I

l

11

fl
r
r

E(Xk
) 0 if k > 0 is odd,

, k! (Al3.22),

E(Xk
)

, if k > 0 is even.•,
2k / 2 (k /2)!· ,;; :

A.13.23 If Xl, ... ,Xn are independent normal random variables such that E(Xi ) = J.Li,

Var Xi = 0-;, and Cl, ... ,Cn are any constants that are not all 0, then ~~ 1 CiXi has a
N(CIJ.Ll + '" + CnJ.Ln, cio-i + ... + c~o-~) distribution. This follows from (A13.20),
(A 12.5), and (AI2.6).

Further information about the normal distribution may be found in Section Al5 and
Appendix B.

The exponential distribution with parameter>. : £(>.).

1,
'1,
j

•
j
•

,
•,
•

•
I· ;·,•, .,
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(A I 3.27)

(A13.25)

(A. 13.24)

(A13.28)

(A13.29)

(A.I 3.30)

(A.13.31)

p(x) = Ae-.x, x> O.

F(x) = 1 - e-.\x for x > O.

1
p(x) = ( )' a < x < bb-a

(x - a)
F(x) = ( ) for a < x < b.

b-a

E(X)=a+b VarX=(b-a?
2 ' 12

1 1
E(X) = A' Var X = A2 '

1 00 k! tk

Mx(t) = 1 _ (t/A) = L Ak k!
k=O

Section A.13 Some Classical Discrete and Continuous Distributions

The range of A is (0, CXJ). The distribution function corresponding to this p is given by

Gnedenko (1967) Chapter 4, Sections 21-24; Chapter 5, Sections 26-28, 30
Hoel, Port, and Stone (1971) Sections 3.4.1, 5.3.1, 5.3.2
parzen (1962) Chapter 4, Sections 4-6; Chapter 5; Chapter 6
Pitman (1993) pages 475-487

A.13.26 If (J" = 1/A, then (J" is a scale parameter. [(1) is called the standard exponential
distribution.

If X has an [(A) distribution,

More generally, all moments may be obtained from

which is well defined for t < A.
Further information about the exponential distribution may be found in Appendix B.

The unifonn distribution on (a, b) : U(a, b).

where (a, b) is any pair of real numbers such that a < b. The corresponding distribution
function is given by

A.13.32 If we set J.L = a, (J" = (b - a), then we can check that the U(a, b) family is a
location-scale family generated by Y, where Y ~ U(O, 1).

If X has a U (a, b) distribution, then
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A.14 MODES OF CONVERGENCE OF RANDOM
VARIABLES AND LIMIT THEOREMS

I,
I
I

Much of probability theory can be viewed as variations, extensions, and generalizations of
two basic results, the central limit theorem and the law of large numbers. Both of these
theorems deal with the limiting behavior of sequences of random variables. The notions
of limit that are involved are the subject of this section. All limits in the section are as
n ---> 00.

A.14.1 We say that the sequence of random variables {Zn} converges to the random vari

able Z in probability and write Zn !'... Z if P[IZn - ZI > c] ---> 0 as n ---> 00 for every

c > O. That is, Zn !'... Z if the chance that Zn and Z differ by any given amount is
negligible for n large enough.

A.14.2 We say that the sequence {Zn} converges in law (in distribution) to Z and write

Zn !:.. Z if FZn (t) ---> Fz(t) for every point t such that Fz is continuous at t. (Recall
that Fz is continuous at t if and only if P[Z = t] = 0 (A.7.!7).) This is the mode of
convergence needed for approximation of one distribution by another.

Because the right-hand side of (A. 14.7) converges to I, by the definition (A.14.1) the result
follows. D

A.14.6 If Zn !'... Zo (a constant) and 9 is continuous at Zo, then g(Zn) !'... g(zo).

Proof. If c is positive, there exists a 0 such that Iz - zol < 0 implies Ig(z) - g(zo)1 < c.
Therefore,

,
,

,,
1
j

,,
~
I,
1

,

i

!
, ,,
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•,
!,
1
I

1
1
i
1•

(A.14.3)

(A.14.5)

(A.l4.7)

P L
If Zn ---> Z, then Zn ---> Z.

P[Jg(Zn) - g(zo)1 < cJ > P[JZn - zol < 0] = 1 - P[JZn - zol > 0].

P[IZn - zol > c] 1- P(Zn < Zo + c) + P(Zn < Zo - c)

< 1- FZn (zo + ;) + Fzn(zo - c).

By assumption the right-hand side of (A.14.5) converges to (1- Fz(zo +c/2)) + Fz(zo
c) = O. D

Because convergence in law requires nothing of the joint distribution of the Zn and Z
whereas convergence in probability does, it is not surprising and easy to show that, in
general, convergence in law does not imply convergence in probability (e.g., Chung, 1974),
but consider the following.

A.14.4 If Z = Zo (a constant), convergence in law of {Zn} to Z implies convergence in
probability.

Proof. Note that Zo ± c are points of continuity of Fz for every c > O. Then
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Moreover,

A.14.17 Corollary. Suppose that an is a sequence of constants tending to 00, b is a fixed

number; and an(Zn - b) !:. x. Let 9 be afunction ofa real variable that is differentiable
and whose derivative g' is continuous at b. (1) Then
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(A. 14. 10)

(A.14.l8)

(A.14.15)

Section A.14 Modes of Convergence of Random Variables and Limit Theorems

A more general result is given by the following.

A.14.81f Zn !:. Z and 9 is continuous, then g(Zn) !:. g(Z).
The following theorem due to Slutsky will be used repeatedly.

L P
Theorem A.14.9 If Zn ---t Z and Un ---t Uo (a constant), then

L
(a) Zn + Un ---t Z + Uo,

L
(b) UnZn ---t uoZ.

Proof. We prove (a). The other claim follows similarly. Begin by writing

F(Zn+un)(t) P[Zn + Un < t, Un > Uo - c]
+P[Zn+Un <t, Un <uo-c].

Let t be a point of continuity of F(z+uo)' Because a distribution function has at most
countably many points of discontinuity, we may for any t choose c positive and arbitrarily
small such that t ± c are both points of continuity of F(z+uo)' Now by (A. 14.10),

F(Zn+Un)(t) < P[Zn < t - Uo + c] + P[lUn - uol > c]. (A.l4.l1)

and, hence,

liminf F(Zn+un)(t) > limF(zn+uo)(t - c) = F(z+uo)(t - c).
n n

P[Zn < t - Uo + c] = F(zn+uo)(t + c). (A.14.l2)

Because FZn+uo(t) = P[Zn < t-uo] = Fzn(t-uo), we must have Zn +uo.!:. Z +uo.
Thus,

lim sup F(Zn +Un)) (t) < lim F(Zn +uo) (t + c) + lim P[IUn - uol > c] = F(z+uo) (t + c).
n n n

(A.14.13)

Similarly,

1- F(Zn+Un)(t) = P[Zn + Un> t] < P[Zn > t - uo - c] + P[JUn - uol > cJ.
(A.l4.l4)

Therefore,

F(z+uo)(t - c) < liminf F(Zn+Un)(t) < limsup F(zn+un)(t) < F(z+uo)(t + c).
n n

(A.14.16)

Because c may be permitted to tend to 0 and F(z+uo) is continuous at t, the result fol
lows. 0
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Proof. By Slutsky's theorem

Zn - b = ~[an(Zn - b)] !:. o· X = O. (AI4.19)
an

By (A. 14.4), IZn - bl ~ O. Now apply the mean value theorem to g( Zn) - g(b) getting

an[g(Zn) - g(b)] = an[g'(Z~)(Zn - b)]

f ',
•

,
" ,'. j

p p
where IZ~ - bl < IZn - bl. Because IZn - bl ---t 0, so does IZ~ - bl and, hence, Z~ ---t b.

By the continuity of g' and (A.l4.6), g'(Z~) ~ g'(b). Therefore, applying (AI4.9) again,

g'(Z~)[an(Zn - b)] !:. g'(b)X. D

A.14.20 Suppose that {Zn} takes on only natural number values and PZn (z) ---t pz(z) for
c.

all z. Then Zn ---t Z.
This is immediate because whatever be z, F Zn (z) = Lrl a PZn (k) ---t LrJ a pz(k) =

Fz(z) where [z] = greatest integer < z. The converse is also true and easy to establish.

A.14.21 (Scheffe) Suppose that {Zn}, Z are continuous and PZn (z) ---t pz(z) for (almost)

all z. Then Zn !:. Z (Hajek and Sidak, 1967, p. 64).

•,
•

,
•;
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Sn P

---t p.

Grimmett and Stirzaker (1992) Sections 7.1-7.4

A.I5 FURTHER LIMIT THEOREMS AND
INEQUALITIES

The Bernoulli law of large numbers, which we give next, brings us back to the motivation
of our definition of probability. There we noted that in practice the relative frequency of
occurrence of an event A in many repetitions of an experiment tends to stabilize and that
this "limit" corresponds to what we mean by the probability of A. Now having defined
probability and independence of experiments abstractly we can prove that, in fact, the rel
ative frequency of occurrence of an event A approaches its probability as the number of
repetitions of the experiment increases. Such results and their generalizations are known
as laws of large numbers. The first was discovered by Bernoulli in 1713. Its statement is as
follows.

Bernoulli's (Weak) Law of Large Numbers

If {Sn} is a sequence of random variables such that Sn has a B(n, p) distribution for
n > 1, then

n
As in (A 13.2), think of Sn as the number of successes in n binomial trials in which we

identify success with occurrence of A and failure with occurrence of AC. Then Sn/n can

,
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The following result, which follows from Chebychev's inequality, is a useful general
ization of Bernoulli's law.

Chebychev's Inequality

If X is any random variable, then

469

o

(A 15.2)

(A.15.6)

(A.15.5)

Section A.IS Further Limit Theorems and Inequalities

g(a)I[z>aj < g(Z)I[z>a] < g(Z).

be interpreted as the relative frequency of occurrence of A in n independent repetitions of
the experiment in which A is an event and the Bernoulli law is now evidently a statement
of the type we wanted.

Bernoulli's proof of this result was rather complicated and it remained for the Russian
mathematician Chebychev to give a two-line argument. His generalization of Bernoulli's
result is based on an inequality that has proved to be of the greatest importance in proba
bility and statistics.

Khintchin's (Weak) Law of Large Numbers

Let {Xi}, i > 1, be a sequence of independent identically distributed random variables
with finite mean J-t and define Sn = 2:7 1 Xi. Then

Sn P
- ---t J-t. (A.15.?)
n

The Bernoulli law follows readily from (AI5.2) and (A 13.3) via the calculation

Sn E(Sn/n - p)2 Var Sn p(l - p)
p - - p > E < 2 = 2 2 = 2 ---t 0 as n ---t 00. (AI5.3)

n E nE nE

A generalization of (AI5.2), which contains various important and useful inequalities,
is the following. Let 9 be a nonnegative function on R such that 9 is nondecreasing on the
range of a random variable Z. Then

Therefore, by (A.1O.8)

g(a)P[Z > a] = E(g(a)I[z>a]) < E(g(Z)),

which is equivalent to (A.15.4).

P[Z > a] < E(g(Z)). (A.15.4)
- - g(a)

If we put Z = IX I, g( t) = t2 if t > 0 and 0 otherwise, we get (A15 .2). Other important
cases are obtained by taking Z = IXI and g(t) = t if t > 0 and 0 otherwise (Markov's
inequality), and Z = X and g(t) = est for s > 0 and all real t (Bernstein's inequality, see
B.8.1 for the binomial case Bernstein's inequality).

Proofof (A.lS.4). Note that by the properties of g,
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Upon taking the Xi to be indicators of binomial trials, we obtain (A. 15. I).

De Moivre-Laplace Theorem

Suppose that {Sn} is a sequence of random variables such that for each n, Sn has a
B(n,p) distribution where 0 < p < 1. Then

Sn -np

Jnp(l - p)
L

---> Z, (A.15.8)

where Z has a standard normal distribution. That is, the standardized versions of Sn con
verge in law to a standard normal random variable. If we write

Sn -np

Jnp(l- p) Jp(l-p)

Sn
-p

n

and use (A.14.9), it is easy to see that (A.15.8) implies (A.15.1).
The De Moivre-Laplace theorem is generalized by the following.

1
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(A.15.9)

(A.15.1O)•-<I>
b - nJ-t

vna

1 1
P k-~<S <1+-2 - n - 2

P k - np - ~ < Sn - np < 1- np + ~

Jnpq Jnpq - Jnpq

1- np + ~ k - np - ~
::::; <I> - <I>

Jnpq Jnpq

P[a < Sn < b] ::::; <I>

P[k < Sn < I]

Central Limit Theorem

Let {Xi} be a sequence of independent identically distributed random variables with
(common) expectation J-t and variance a 2 such that 0 < a 2 < 00. Then, if Sn = 2:7 1 Xi

Sn - nJ-t L Z
--->,avn

where Z has the standard normal distribution.
The last two results are most commonly used in statistics as approximation theorems.,

Let k and 1 be nonnegative integers. The De Moivre-Laplace theorem is used as

where q = 1 - p. The ~ appearing in k - ~ and 1+ ~ is called the continuity correction. We
have an excellent idea of how good this approximation is. An illustrative discussion is given
in Feller (1968, pp. 187-188). A rule ofthumb is that for most purposes the approximation
can be used when np and n(l - p) are both larger than 5.

Only when the Xi are integer-valued is the first step of (A.15.1O) followed. Otherwise
(A.15.9) is applied iIi the form

•

l

r
Lt ,.

I
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(A.15.11)

(A.15.14)

(AI5.l3)
n
k

- <P(t)
S - nil

n r- < tvna ~
sup P

t

Section A.~5 Further Limit Theorems and Inequalities

For a proof, see Chung (1974, p. 224).
In practice, if we need the distribution of Sn we try to calculate it exactly for small

values of n and then observe empirically when the approximation can be used with safety.
This process of combining a limit theorem with empirical investigations is applicable in
many statistical situations where the distributions of transformations g(x) (see A8.6) of
interest become progressively more difficult to compute as the sample size increases and
yet tend to stabilize. Examples of this process may be found in Chapter 5.

We conclude this section with two simple limit theorems that lead to approximations
of one classical distribution by another. The very simple proofs of these results may, for
instance, be found in Gnedenko (1967, p. 53 and p. 105).

A.IS.12 The first of these results reflects the intuitively obvious fact that if the populations
sampled are large and the samples are comparatively small, sampling with and without
replacement leads to approximately the same probability distribution. Specifically, sup
pose that {XN} is a sequence of random variables such that X N has a hypergeometric
H (DN, N, n), distribution where D N / N ---> p as N ---> 00 and 11- is fixed. Then

The central limit theorem (and some of its generalizations) are also used to justify the
assumption that "most" random variables that are measures of numerical characteristics
of real populations, such as intelligence, height, weight, and blood pressure, are approx
imately normally distributed. The argument is that the observed numbers are sums of a
large number of small (unobserved) independent factors. That is, each of the characteristic
variables is expressible as a sum of a large number of small variables such as influences of
particular genes, elements in the diet, and so on. For example, height is a sum of factors
corresponding to heredity and environment.

If a bound for EIXi - 1t1 3 is known, it is possible to give a theoretical estimate of the
error involved in replacing P( Sn < b) by its normal approximation:

Berry-Esseen Theorem

Suppose that Xl, ... , X n are i.i.d. with mean It and variance a 2 > O. Then, for all n,

where X has a B(n, p) distribution. The approximation of the hypergeometric distri
bution by the binomial distribution indicated by this theorem is rather good. For in
stance, if N = 50, n = 5, and D = 20, the approximatin~ binomial distribution to
H(D, N, n) is B(5, 0.4). If H holds, P[X < 2] = 0.690 while under the approximation,

as N ---> 00 for k = 0, 1, ... ,n. By (A 14.20) we conclude that



P[X < 2] = 0.683. As indicated in this example, the approximation is reasonable when
(n/N) < O.l.

The next elementary result, due to Poisson, plays an important role in advanced proba
bility theory.
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..
1
-}

..•
•

Poisson's Theorem

Suppose that {Xn } is a sequence of random variables such that X n has a B(n,Pn)
distribution and npn ---t ..\ as n ---t 00, where 0 < ..\ < 00. Then

•

\

(A.15.15)

•
j

••,
••

·,
1
t!
;, :
••· ,

for k = 0, 1,2, ... as n ---t 00. By (A.14.20) it follows that X n !:.. X where X has a
P(..\) distribution. This theorem suggests that we approximate the B(n,p) distribution by
the P(np) distribution. Tables 3 on p. 108 and 2 on p. 154 of Feller (1968) indicate the
excellence of the approximation when p is small and np is moderate. It may be shown that
the error committed is always bounded by np2.

References

Gnedenko (1967) Chapter 2, Section 13; Chapter 6, Section 32; Chapter 8, Section 42
Hoel, Port, and Stone (1971) Chapter 3, Section 3.4.2
parzen (1960) Chapter 5, Sections 4,5; Chapter 6, Section 2; Chapter 10, Section 2

A.16 POISSON PROCESS

A.16.1 A Poisson process with parameter ..\ is a collection of random variables {N(t)},
t > 0, such that

(i) N(t) has a P(..\t) distribution for each t.

(ii) N(t + h) - N(t) is independent of N(s) for all s < t, h > 0, and has a P(..\h)
distribution.

Poisson processes are frequently applicable when we study phenomena involving events
that occur "rarely" in small time intervals. For example, if N(t)is the number of disinte
grations of a fixed amount of some radioactive substance in the period from time 0 to time
t, then {N(t)} is a Poisson process. The numbers N(t) of "customers" (people, machines,
etc.) arriving at a service counter from time 0 to time t are sometimes well approximated
by a Poisson process as is the number of people who visit a WEB site from time 0 to t.
Many interesting examples are discussed in the books of Feller (1968), parzen (1962), Kar
lin (1969). In each of the preceding examples of a Poisson process N(t) represents the
number of times an "event" (radioactive disintegration, arrival of a customer) has occurred
in the time from 0 to t. We use the word event here for lack of a better one because these
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(A.16.3)
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Section A.16 Poisson Process

are not events in terms of the probability model on which the N (t) are defined. If we keep
temporarily to this notion of event as a recurrent phenomenon that is randomly determined
in some fashion and define N(t) as the number of events occurring between time 0 and
time t, we can ask under what circumstances {N (t)} will form a Poisson process.

A.16.2 Formally, let {N(t)}, t > 0 be a collection of natural number valued random
variables. It turns out that, {N(t)} is a Poisson process with parameter A if and only if the
following conditions hold:

(a) N(t + h) - N(t) is independent of N(s), s < t, for h > 0,

(b) N(t + h) - N(t) has the same distribution as N(h) for h > 0,

(c) P[N(h) = 1] = Ah + o(h), and

(d) P[N(h) > 1] = o(h).

(The quantity o(h) is such that o(h) j h ---t 0 as h ---t 0.) Physically, these assumptions may
be interpreted as fOllows.

(i) The time of recurrence of the "event" is unaffected by past occurrences.

(ii) The distribution of the number of occurrences of the "event" depends only on the
length of the time for which we observe the process.

(iii) and (iv) The chance of any occurrence in a given time period goes to 0 as the pe
riod shrinks and having only one occurrence becomes far more likely than multiple
occurrences.

This assertion may be proved as follows. Fix t and divide [0, t] into n intervals [0, tjn] ,
(tjn, 2tjn], ... , ((n - l)tjn, t]. Let ljn be the indicator of the event [N(jtjn) - N((j 
l)tjn) > 1] and definer Nn(t) = '£7 1 ljn' Then Nn(t) differs from N(t) only insofar as
multiple occurrences in one of the small subintervals are only counted as one occurrence.
By (a) and (b), Nn(t) has a B(n, P[N(tjn) > 1]) distribution. From (c) and (d) and

Theorem (A.15.l5) we see that Nn(t) !:. Z, where Z has a P(At) distribution. On the
other hand,

P[/Nn(t) - N(t)1 > E] < P[Nn(t) =f. N(t)]
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The first of the inequalities in (A.16.3) is obvious, the second says that if N n (t) # N (t)
there must have been a multiple occurrence in a small subinterval, the third is just (A.2.5),
and the remaining identities follow from (b) and (d). The claim (A.16.3) now follows from
Slutsky's theorem (A.14.9) upon writing N(f) = N,,(t) + (N(t) ~ N,,(t)).

A.16.4 Let T) be the time at which the "event" first occurs in a Poisson process (the first t
such that N(t) = 1), T2 be the time at which the "event" occurs for the second time, and
so on. Then T I , T2 - T j , ••• , Tn - Tn -1, ... are independent, identically distributed [; (A)
random variables.
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A.17 NOTES

Notes for Section A.S

(I) We define A to be the smallest sigma field that has every set of the form Al X ... x
An with Ai E Ai, 1 < i < n, as a member.

Notes for Section A.7

(I) Strictly speaking, the density is only defined up to a set of Lebesgue measure O.

(2) We shall use the notation g(x+O) for lirnxnl x g(x n ) and g(x -0) for lirnxn IX g(x n )

for a function 9 of a real variable that possesses such limits.

Notes for Section A.S

(I) The requirement on the sets X-I (B) is purely technical. It is no restriction in the
discrete case and is satisfied by any function of interest when n is R k or a subset of R k

.

Sets B that are members of B k are called measurable. When considering subsets of R k
,

we will assume automatically that they are measurable.

(2) Such functions g are called measurable. This condition ensures that g(X) satisfies
definitions (A.S.I) and (A.S.2). For convenience, when we refer to functions we shall
assume automatically that this condition is satisfied.

(3) A function g is said to be one to one if g(x) = g(y) implies x = y.

(4) Strictly speaking, (X, Y) and (x, y) in (A.S.II) and (A.S.12) should be transposed.
However, we avoid this awkward notation when the meaning is clear.
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(5) The integral in (A.S.12) may only be finite for "almost all" x. In the regular cases
we study this will not be a problem.
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B.1.1 The Discrete Case

," .. ..

(B.Ll)
p(y, z)

p(y Iz) = pry = y I Z = z] = ~--,'
pz(z)

Appendix B

B.1 CONDITIONING BY A RANDOM VARIABLE OR
VECTOR

ADDITIONAL TOPICS IN

PROBABILITY AND ANALYSIS

In this appendix we give some results in probability theory, matrix algebra, and analysis
that are essential in our treatment of statistics and that may not be treated in enough detail in
more specialized texts. Some of the material in this appendix, as well as extensions, can be
found in Anderson (1958), Billingsley (1995), Breiman (1968), Chung (1978), Dempster
(1969), Feller (1971), Loeve (1977), and Rao (1973).

Measure theory will not be used. We make the blanket assumption that all sets and
functions considered are measurable.

The concept of conditioning is important in studying associations between random vari
ables or vectors. In this section we present some results useful for prediction theory, esti
mation theory, and regression.

The reader is already familiar with the notion of the conditional probability of an event A
given that another event B has occurred. If Y and Z are discrete random vectors possibly
of different dimensions, we want to study the conditional probability structure of Y given
that Z has taken on a particular value z.

Define the conditional frequency function p(. I z) ofY given Z = z by

where p and pz are the frequency functions of (Y, Z) and Z. The conditional frequency
function p is defined only for values of z such that pz(z) > O. With this definition it is
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TABLEB.I

z

Y 0 10 20 py(y)
0 0.25 0.05 0.05 0.35
I 0.05 0.15 0.05 0.25
2 0.05 0.10 0.25 0.40

.

pz(z) I 0.35 I 0.30 I 0.35 ~ 1

•
••,
•,
,

•
J

clear that p(. I z) is the frequency of a probability distribution because

I: p(y I z) = I:yp(y,z) = pz(z) = I
y pz(z) pz(z)

by (AS.II). This probability distribution is called the conditional distribution olY given
that Z = z.

•
1

••,
•,
•
j
•

j

(B.1.2)
I

z
n

z

Example B.1.1 Let Y = (Yj , ... , Yn ), where the Yi are the indicators of a set of n
Bernoulli trials with success probability p. Let Z = I:i 1Yi, the total number of successes.
Then Z has a binomial, B(n, p), distribution and

pry = Y, Z = z] pY(l - p)n-z
p (y I z) = -,---'-:------"-'-----'---

n

if the Yi are all 0 or 1 and I:Yi = z.
Thus, if we are told we obtained k successes in n binomial trials, then these successes

are as likely to occur on one set of trials as on any other. D

Example B.1.2 Let Y and Z have the joint frequency function given by the table
For instance, suppose Z is the number of cigarettes that a person picked at random from
a certain population smokes per day (to the nearest 10), and Y is a general health rating
for the same person with 0 corresponding to good, 2 to poor, and 1 to neither. We find for
Z = 20

, I
·, Y 0 1 2· ,
;i '•

p(y I 20)• - -• 7 7,

•
,; !

i:
.0

I..
,'. i

11
.1

I ~;

,
i

I
•,,

These figures would indicate an association between heavy smoking and poor health be
cause p(2 120) is almost twice as large as py(2). D

The conditional distribution of Y given Z = z is easy to calculate in two special cases.

(i) IfY and Z are independent, then p(y I z) = py(y) and the conditional distribution
coincides with the marginal distribution.

(ii) If Y is a function of Z, h(Z), then the conditional distribution of Y is degenerate,
Y = h(Z) with probability 1.

Both of these assertions follow immediately from Definition(B .1.1).

,I
•
•
•

I
-



(B.1.6)

(B. 1.4)

(B. 1.7)

(B.1.5)

c(y)

•

N-z
n-y

N-z
n-y

y
z

Bayes' Rule

n

\ / N \Z -z

z
y

()Z-Y(I _ ())N-n-(z-y).

vanish unless a, b are integers with b < a.

N-n
z-y

a

Y n-y
()Y(I_())n-z \ / /

/ N

z

z

N

N

z
N

E(Y I Z = z) = L-yYP(y I z).

p(y I z) = q(z I y)py(y)
L-yq(z I y)py(y)

c(y) = L- z

P[Z = z IY = y] =

pry = y. Z = z] =

P[Z = z IY = y] =

p(y, z) = p(y I z)Pz(z) (B. 1.3)

Section B.1 Conditioning by a Random Variable or Vector 479

Two important formulae follow from (B.l.l) and (A.4.5). Let q(z I y) denote the
conditional frequency function of Z given Y = y. Then

where the combinatorial coefficients

whenever the denominator of the right-hand side is positive.
Equation (B.1.3) can be used for model construction. For instance, suppose that the

number Z of defectives in a lot of N produced by a manufacturing process has a B(N, ())
distribution. Suppose the lot is sampled n times without replacement and let Y be the num
ber of defectives found in the sample. We know that given Z = z, Y has a hypergeometric,
'H(z, N, n), distribution. We can now use (B.1.3) to write down the joint distribution of Y
and Z

B.1.2 Conditional Expectation for Discrete Variables

where

This formula simplifies to (see Problem B.1.11) the binomial probability,

b
We can also use this model to illustrate (B.1A). Because we would usually only observe

Y, we may want to know what the conditional distribution of Z given Y = y is. By (8. IA)
this is

Suppose that Y is a random variable with E(IYJ) < 00. Define the conditional expectation
olY given Z = z, written E(Y I Z = z), by

------------~~~~~~~--------
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(B.1.8)

Note that by (B.I.I), if pz(z) > 0,

E(IYII Z = z) = ~ylylp(y I z) < ~yIYIPl'~Y? = E(ln)·
pz z pz z

Thus, when pz (z) > 0, the conditional expected value of Y is finite whenever the expected
value is finite.
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(B. 1.9)

(B. 1.10)

(B.l.lI)

•

•z

n
•z

n - 1 \
i-I

\ /

/ n \

Z
E(Y! I Z) = -.

n

Pz(A) = P(A I [Z = z]) if pz(z) > O.

E(Y! I Z = i) = pry! = 1 I Z = i] =

B.1.3 Properties of Conditional Expected Values

Example B.1.3 Suppose Y and Z have the joint frequency function of Table B.I. We find

I I 5 II
E(Y IZ = 20) = 0 . 7 + I . 7 + 2 . 7 = 7 = 1.57.

Similarly, E(Y I Z = 10) = ~ = 1.17 and E(Y I Z = 0) = ~ = 0.43. Note that in the
health versus smoking context, we can think of E(Y I Z = z) as the mean health rating
for people who smoke z cigarettes a day. 0

Let g(z) = E(Y I Z = z). The random variable g(Z) is written E(Y I Z) and is
called the conditional expectation ofY given Z.(1)

As an example we calculate E(Y1 I Z) where Y! and Z are given in Example B.1.1.
We have

The first of these equalities holds because Y! is an indicator. The second follows from
n-l

(B.I.2) because is just the number of ways i successes can occur in n Bernoulli
i-I

trials with the first trial being a success. Therefore,

In the context of Section A.4, the conditional distribution of a random vector Y given
Z = z corresponds to a single probability measure Pz on (n,A). Specifically, define for
A E A,

This Pz is just the conditional probability measure on (n, A) mentioned in (A.4.2). Now
the conditional distribution of Y given Z = z is the same as the distribution of Y if Pz is
the probability measure on (n, A). Therefore, the conditional expectation is an ordinary
expectation with respect to the probability measure Pz . It follows that all the properties
of the expectation given in (A.1O.3)--(A.1O.8) hold for the conditional expectation given
Z = z. Thus, for any real-valued function r(Y) with Elr(Y) I < 00,

E(r(Y) I Z = z) = ~yr(y)p(y I z)

•

•,
•
•



Another intuitively reasonable result is that the mean of the conditional means is the
mean:

identically in z for any Y1, Y2 such that E( !YI!), E(I Y21) are finite. Because the identity
holds for all z, we have

E(E(Y IZ)) = ~zpz(z)[~yyp(y I z)] = ~y,zyp(y I z)pz(z) = ~y,zyp(y,z) = E(Y).
(B. 1.21)
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(B. 1.12)

(B. 1.13)

(B.1.20)

(B.1.15)

(B. 1.16)

(B. 1.14)

(B.1.19)

E(Y I Z) = E(Y).

E(h(Z) I Z) = h(Z).

E(E(Y I Z)) = E(Y),

E(r(Y)h(Z) I Z) = h(Z)E(r(Y) I Z).

E(q(Y, Z) I Z = z) = E(q(Y, z) I Z = z).

______________________ ~ ...... _ ..c o .-""

E(O:Y1 + ;3Y2 I Z) = o:E( Yj I Z) + ;3E(Y2 I Z).

E(O:Y1 + ;3Y2 I Z = z) = o:E(YI I Z = z) + ;3E(Y2 1 Z = z)

Section B.1 Conditioning by a Random Variable or Vector

and

This is clear by (i).
On the other hand, by (ii)

This process can be repeated for each of (A.1O.3)-(A.1O.8) to obtain analogous properties
of the conditional expectations.

In two special cases we can calculate conditional expectations immediately. If Y and
Z are independent and E(IYI) < 00, then

The notion implicit in (B.1.15) is that given Z = z, Z acts as a constant. If we carry
this further, we have a relation that we shall call the substitution theorem for conditional
expectations:

Therefore,

whenever Y has a finite expectation. We refer to this as the double or iterated expectation
theorem.

To prove (B.1.20) we write, in view of (B. 1.7) and (A. 10.5),

for any a.
If we put q(Y, Z) = r(Y)h(Z), where Elr(Y)h(Z)1 < 00, we obtain by (B.1.16),

E(r(Y)h(Z) I Z = z) = E(r(Y)h(z) IZ = z) = h(z)E(r(Y) I Z = z). (B.1.18)

This is valid for all z such that pz(z) > 0 if Elq(Y, Z)I < 00. This follows from defini
tions (B. 1.1 I) and (B.1.7) because

P[q(Y, Z) = a I Z = z] = P[q(Y, Z) = a, Z = z I Z = z] = P[q(Y, z) = a I Z = z]
(B.1.17)
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The interchange of summation used is valid because the finiteness of E(IYI) implies that
all sums converge absolutely.

As an illustration, we check (B. 1.20) for E(Y] I Z) given by (B.1.I0). In this case,

E(E(Y1 I Z)) = E
Z
n

(B. 1.22)

If we apply (B.l.20) to Y = r(Y)h(Z) and use (B.l.19), we obtain the product expec
tation fonnula:

Theorem B.1.1 IfElr(Y)h(Z)1 < 00, then

E(r(Y)h(Z)) = E(h(Z)E(r(Y) I Z)). (B.1.23)

Note that we can express the conditional probability that YEA given Z = z as

j,
j

•
·

'-~

1

,
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,
•
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(B.1.25)

(B.1.26)

z
N

( I ) - p(y, z)
pyz- ()pz z

pry < y] = I;z

py(y)q(z Iy)
p(y I z) = foooo'" foooo py(t)q(z I t)dt 1 ••• dtn '

For example, if Y and Z are as in (B. 1.5),

pry E A I Z = z] = E(l[Y E A] IZ = z) = I;YEAP(Y I z).

Then by taking r(Y) = 1[Y E A], h = 1 in Theorem B. 1.1 we can express the (uncondi
tional) probability that YEA as

B.1.4 Continuous Variables

where Hz is the distribution function of a hypergeometric distribution with parameters
(z,N,n).

pry E A] = E(E(r(Y) I Z)) = I;zP[Y E A I Z = z]pz(z) = E[P(Y E A I Z)].
(B. 1.24)

Suppose now that (Y, Z) is a continuous random vector having coordinates that are them
selves vectors and having density function p(y, z). We define, following the analogy
between frequency and density functions, the conditional density(l) function of Y given
Z = z by

ifpz(z) > O.
Because the marginal density of Z, pz(z), is given by (A,8.12), it is clear that p(. I z)

is a density. Because (B. 1.25) does not differ formally from (B. 1.1 ), equations (B.1.3) and
(B. 1.6) go over verbatim. Expression (B. 1.4) becomes

,
,

\
,I
,j

I
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, ,· ,., I,,
t",.":"I,, I

"I

~
j
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where q is the conditional density of Z given Y = y. This is also called Bayes' Rule.
i
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•
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If Y and Z are independent, the conditional distributions equal the marginals as in the
discrete case.
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(B. 1.27)

(B. 1.28)

(B.1.31)

(B.1.30)

(B.1.29)

z is unifonn on the interval
o

2 if 0 < z < y < 1

ootherwise.

I

1 2dy = 2(1 - z), 0 < z < 1

ootherwise.

E(r(Y) I Z = z) = J: r(y)p(y I z)dy.

pz(z)

p(z,y)

The marginal density of Z is given by

Section B.1 Conditioning by a Random Variable or Vector

ifO<z,y<l.
The joint density is, therefore,

We conclude that the conditional density of Y given Z
(z,I).

Example B.1.4 Let Yj and Y2 be independent and uniformly, U(O, 1), distributed. Let
Z = min(Y1 , Y2 ), Y = max(Y1, Y2 ). The joint distribution of Z and Y is given by

If E(IYJ) < 00, we denote the conditional expectation ofY given Z = z in analogy to
the discrete case as the expected value of a random variable with density p(y I z). More
generally, if E(lr(Y)I) < 00, (A. 10. I I) shows that the conditional expectation of r(Y)
given Z = z can be obtained from

F(z,y)

As before, if g(z) = E(r(Y) I Z = z), we write g(Z) as E(r(Y) I Z), the conditional
expectation of r(Y) given Z. With this definition we can show that fonnulas 12, 13, 14,
19, 20, 23, and 24 of this section hold in the continuous case also. As an illustration, we
next derive B.1.23:

Let g(z) = E[r(Y) I Z], then, by (A. 10. 11),

E(h(Z)E(r(Y) I Z)) = E(h(Z)g(Z)) = J: h(z)g(z)pz(z)dz

= J: h(z)pz(z) J: r(y)p(y I z)dy dz.



Bya standard theorem on double integrals, we conclude that the right-hand side of (B.I.31)
equals
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·'

I: I: r(y)h(z)pz(z)p(y I z)dydz

= I: I: r(y)h(z)p(y, z)dydz = E(T(Y)h(Z))
(B.I.32)

•
•

by (A. 10.11), and we have established B.1.23.
To illustrate these formulae, we calculate E(Y I Z) in Example B.1.4. Here,

!
• > 1

1 1 jl 1 + z
E(YIZ=z)= yp(y1z)dy =( ) ydy= ,0<z<l,

o l-z z 2

E(sin(ZY) I Z = z) = E(sin(zY) I Z = z).

Because, given Z = z, Y has a U(z, 1) distribution, we can complete the computation by
applying (A.IO.ll) to get

,
"

•
g
J
•

-•,

••

,
"
1
•,
•,
,

1

1,
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•,
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j
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1 + Z
2

E(Y I Z) =

B.1.5 Comments on the General Case

and, hence,

1 jl 1
E(sin(zY) I Z = z) = (1- z) z sin(zy)dy = z(1 _ z) [cosz

2
- cosz].

Clearly the cases (Y, Z) discrete and (Y, Z) contillUOUS do not cover the field. For ex
ample, if Y is uniform on (0,1) and Z = y 2 , then (Y, Z) neither has a joint frequency
function nor a joint density. (The density would have to concentrate on z = y2, but then

it cannot satisfy fo
l f; f(y, z)dydz = 1.) Thus, (Y, Z) is neither discrete nor continuous

in our sense. On the other hand, we should have a concept of conditional probability for
which pry = u I Z = y'u] = 1. To cover the general theory of conditioning is beyond
the scope of this book. The interested student should refer to the books by Breiman (1968),
Loeve (1977), Chung (1974), or Billingsley (1995). We merely note that it is possible to
define E(Y I Z = z) and E(Y I Z) in such a way that they coincide with (B.1.7) and
(B.1.30) in the discrete and continuous cases and moreover so that equations 15, 16, 20,
and 23 of this section hold.

As an illustration, suppose that in Example B.1.4 we want to find the conditional expec
tation of sin(ZY) given Z = z. By our discussion we can calculate E(sin( ZY) I Z = z)
as follows: First, apply (B. 1.16) to get

~

I,
!



(ii) h is one-to-one on B.

(iii) The Jacobian ofh does not vanish on B.

(i) h has continuous first partial derivatives in B.
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a
hI (t)

a
hk(t)

at l
• • •

at l

Jh(t) = • •
• • •
• •

a
hI (t)

a
hk(t)

atk
• • •

atk

-------------------- -_., ...._---

B.2 DISTRIBUTION THEORY FOR
TRANSFORMATIONS OF RANDOM VECTORS

Section B.2 Distribution Theory for Transformations of Random Vectors

B.2.1 The Basic Framework

r If(x) Idx < 00.
Jh(B)

r f(x)dx = r f(h(t))IJh(t)ldt. (B.2.1)
JK J h -l(K)

The principal result of this section, Theorem B.2.2, rests on the change of variable
theorem for multiple integrals from calculus. We now state this theorem without proof (see
Apostol, 1974, p. 421).

Theorem B.2.1 Let h = (hI,.'" hkf be a transfonnation defined on an open subset B
ofR k . Suppose that:(l)

In statistics we will need the distributions of functions of the random variables appearing
in an experiment. Examples of such functions are sums, averages, differences, sums of
squares, and so on. In this section we will develop a result that often is useful in finding the
joint distribution of several functions of a continuous random vector. The result will gen
eralize (A.8.9), which gives the density of a real-valued function of a continuous random
variable.

Let h = (hI, ... , hk)T, where each hi is a real-valued function on Rk. Thus, his
a transfonnation from R k to Rk

. Recall that the Jacobian Jh (t) of h evaluated at t
(t lo ... ,tk)T is by definition the detenninant

Then for every (measurable) subset K of h(B) we have

Let f be a real-valued function (defined and measurable) on the range h(B) 
{(hl(t), ... , hk(t)) : t E B} ofh and suppose f satisfies
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In these expressions we write dx for dXl ... dXk. Moreover, h- l denotes the inverse of
the transformation h; that is, h-1(x) = t if, and only if, x = h(t). We also need another
result from the calculus (see Apostol, 1974, p. 417),

(B.2.2)

It follows that a transformation h satisfies the conditions of Theorem B.2.1 if, and only if,
h- l does.

We can now derive the density of Y = g(X) = (91 (X), ... ,9k(X))T when g satisfies
the conditions of Theorem B.2.1 and X = (Xl, ... , Xk)T is a continuous random vector.

Theorem B.2.2 Let X be continuous and let S be an open subset of R k such that P(X E
S) = 1. If g = (91, ... , 9k)T is a transformation from S to R k such that g and S satisfy
the conditions ofTheorem 8.2.1, then the density ofY = g(Y) is given by

·,
•

J
;
•,,

,,

1
•

1
•,
"

,

1

1
1
"

i•
1,
•

(B.2.3)

1
-- •

2

1
2
1--
2

1
2
1
2

Fy(y) = J

j
Yk jY.

Fy(y) = -00'" -00 Px(g-l(~))IJg-l(t)ldtl" .dtk.

In this case, S = R 2. Also note that 91 (x) = Xl + X2, 92(X) = Xl - X2, 91 l (y)
~ (Yl + Y2), 921(y) = ~ (Yl - Y2), that the range g(S) is R2 and that

where A k = {x E R k
: 9i(X) < Yi, i = 1, ... ,k}. Next we apply Theorem B.2.1

with h = g-l and f = Px. Because h-l(Ak) = g(Ak ) = {g(x) : 9i(X) < Yi, i =
"1, ... , k} = {t : t < Yi, i = 1, ... , k }, we p.ptain

The result now follows if we recall from Section A.7 that whenever Fy (y)
r':xo' .. jY'aa q(t l , ... , tk)dtl ... dtk for some nonnegative function q, then q must be the
density of Y. 0

Example B.2.1 Suppose X = (Xl, X2 f where Xl and X 2 are independent with N(O, 1)
and N(O, 4) distributions, resp~ctively. What is the joint distribution of Yl = Xl +X 2 and
Y2 = Xl - X 2? Here (see (A. B. !7»,

fory E g(S).

Proof. The distribution function of Y is (see (A.7.8»

,
i [,

,

I



Using the fact that g-I is approximately linear on A(y), it is not hard to show that

Y E Rk , where A-I is the inverse of A.
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(B.2.5)

(B.2.4)

py(y)

Upon combining (B.2.2) and (B.2.3) we see that for y E g(S),

PX(g-l(y))
py(y) = IJg(g-l(y))I'

Upon substituting these quantities in (B.2.3), we obtain

Section B.2 Distribution Theory for Transformations of Random Vectors

1 1 1
2Px 2 (YI + Y2), 2 (YI - Y2)

1 1 1 2 1 2
87r exp -2 4(YI+Y2) + 16(YI-Y2)

1 1[ 2 2 ]
87r exp - 32 5YI + 5Y2 + 6YIY2 .

This is an example of bivariate nonnal density. Such densities will be considered further in
Section B.4. 0

V(g-l(A(y))) :::; IJ -1 (y)l.
V(A(y)) g

If X is a random variable (k = 1), the Jacobian of 9 is just its derivative and the
requirements (i) and (iii) that g' be continuous and nonvanishing imply that 9 is strictly
monotone and, hence, satisfies (ii). In this case (B.2.4) reduces to the familiar fonnula
(A.8.9).

It is possible to give useful generalizations of Theorem B .2.2 to situations where g is
not one-to-one (Problem B.2.7).

Theorem B.2.2 provides one of the instances in which frequency and density functions
differ. If X is discrete, g is one-to-one, and Y = g(X), then py(y) = Px(g-I(y)). The
extra factor in the continuous case appears roughly as follows. If A(y) is a "small" cube
surrounding y and we let V (B) denote the volume of a set B, then

P[g(X) E A(y)] PIX E g-I(A(y))] V(g-I(A(y)))
•

V(A(y)) V(g-I(A(y))) V(A(y))

:::; (g-l(y)). V(g-I(A(y))).
Px V(A(y))

The justification of these approximations is the content of Theorem B.2.2.
The following generalization of (A.8.1O) is very important. For a review of the ele

mentary properties of matrices needed in its fonnulation, we refer the reader to Section
B.IO.

Recall that g is called an affine transfonnation of Rk if there exists a k x k matrix A
and a k x 1 vector c such that g(x) = Ax+c. If c = 0, g is called a linear transfonnation.
The function g is one-to-one if, and only if, A is nonsingular and then
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Corollary B.2.1 Suppose X is continuous and S is such that P(X E S) = 1. If g is a
one-to-one affine transformatioll as defined earlier, then Y = g(X) has density

py(y) = Idet AI-1px(A-1(y - e)) (B-Z,6)

,,
I i,
,

1-:
",
"I I

,

for y E g(S), where det A is the detenninant ofA,

The corollary follows from (B-ZA), (B-Z,S), and the relation,

Jg(g-l(y)) - det A, (B.2.7)

,,

B.2.2 The Gamma and Beta Distributions

As a consequence of the transformation theorem we obtain basic properties of two impor
tant families of distributions, which will also figure in the next section. The first family has
densities given by

Example B.2.1 is a special case of the corollary.
section.

Further applications appear in the next
o

for x > 0, where the parameters p and>.. are taken to be positive and qp) denotes the Euler
gamma function defined by

,
•

,
•,
•
"
j,,

•,
•
•
~

,
,

i
1
~

",

~
•,

l
l
~,
ij
,
':,,

(B.2.9)

(B.2.8)

(B.2.1O)

(B.2.11 )

qp) = 100

tp-1e-tdt.

It follows by integration by parts that, for all p > 0,

qp + 1) = pqp) and that q k) = (k - I)! for positive integers k.

The family of distributions with densities given by (B.2.8) is referred to as the gamma
family of distributions and we shall write f(p, >..) for the distribution corresponding to
gp,>.. The special case p = 1 corresponds to the familiar exponential distribution £(>..) of
(A.13.24). By (A.8.1O), X is distributed qp, >') if, and only if, >..X is distributed qp, 1).
Thus, 11>' is a scale parameter for the qp, >..) family.

Let k be a positive integer. In statistics, the gamma density gp,>. with p = ~ k and >. = ~

is referred to as the chi squared density with k degrees offreedom and is denoted by X~.

The other family of distributions we wish to consider is the beta family, which is in
dexed by the positive parameters r and s. Its densities are given by

x r - 1 (1 _ X)S-l

br,s(x) = B(r,s)

forO < x < 1, where B(r, s) = [qr)qs)]/[f(r+s)] is the betafunction. The distribution
corresponding to br,s will be written (3(r, s). Figures B.2.! and B.2.2 show some typical
members of the two families.

••

I
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(B.2.12)

(B.2.13)

(B.2.l4)

•

T

= -Yl·
1- Y2

-Yl

3

Y2
Yl

X

2

---- -- -. . . - -
", --. . . . . -. . . . . . - -. .. . . . . - -• • • • • • • • • • •

_ p = 2,)' = 1--

1

•
. . . 1

P = ), =. '.C.

•
"'t"" - - -

/.

•

•
•

----------------------..,.-._=_.~..-.'.... -. _... ~----
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o

Figure B.2.1 The gamma density, gp,>,,(x), for selectedp,),.
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Section B.2 Distribution Theory for Transformations of Random Vectors

Theorem B.2.3 If Xl and X 2 are independent random variables with f(p,),) and f( q,),)
distributions, respectively, then Yl = Xl + X 2 and 1'2 = XI/(Xl + X 2) are independent
and have, respectively, f(p + q,),) and f3(p, q) distributions.

Proof If), = 1, the joint density of Xl and X 2 is

for Xl > 0, X2 > O. Let

Then g is one-to-one on 8 = {(Xl,X2f : Xl > 0, X2 > O} and its range is 8 1 

{(Yl' Y2f : Yl > 0, 0 < Y2 < I}. We note that on 8 1

Therefore,



If we now substitute (B.2.13) and (B.2.14) in (B.2.4) we get for the density of (Y1, Y2 1'r =

g(.\I' X 2 ).

(
.) _ e- Y1 (Y1Y2)p-l(Y1 - Y1Y2)q-1 Y1

py 1}1·Y2 - f(p)f(q) (B.2.\5)

for Y1 > O. 0 < Y2 < 1. Simplifying (B.2.15) leads to

JiY(Y1,Y2) = Yp+q.l(yJlbp.q(Y2). (B.2.16)

The result is proved for>. = 1. If >. i= 1 define X; = ,\X1 and X~ = >.X2 . Now
X; and X~ are independent f(p, 1), f(q, 1) variables respectively. Because X; + X~

>'(X1 + X 2 ) and X; (X; + X~)-l = Xl (Xl + X 2 )-1 the theorem follows. 0

•
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I
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•
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By iterating the argument of Theorem B.2.3, we obtain the following general result.

Corollary B.2.2 If Xl, . .. ,Xn are independent random variables such that Xi has a
f(Pi, >..) distribution, i = 1, ... , n, then ~i 1 Xi has a f(~i 1Pi, >..) distribution.

Some other properties of the gamma and beta families are given in the problems and in

the next section.
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Figure B.2.2 The beta density, br,s(x), for selected r, 5.
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B.3.1 The X2
• F, and t Distributions

In this section we introduce some distributions that appear throughout modem statistics.
We derive their densities as an illustration of the theory of Section B.2. However, these
distributions should be remembered in tenns of their definitions and qualitative properties
rather than density fonnulas.

491

(B.3.2)

(B.3.1)

(B.3.4)

(B.3.3)

d(n-2)e-~v

pv(v) = 2n / 2r(n /2)

Differentiating both sides we get the density of T

PT(t)=t-~cp(Vt)= 1 t-~e-t/2
v'27r

FT(t) = <I>(Vt) - <I>(-Vt).

Section 8.3 Distribution Theory for Samples from a Normal Population

B.3 DISTRIBUTION THEORY FOR SAMPLES FROM
A NORMAL POPULATION

Throughout this section we shall suppose that X = (x!, ... , Xn)T where the Xi fonn
a sample from a N(O, ( 2 ) population. Some results for nonnal populations, whose mean
differs from 0, are given in the problems. We begin by investigating the distribution of the
~i 1 X;, the squared distance of X from the origin.

Theorem B.3.1 The random variable V = ~i 1X; Ia 2 has a X;' distribution. That is, V
has density

and, thus,

for t > 0, which agrees with 91 1 up to a multiplicative constant. Because the constant is
detennined by the requirement" that PT and 91 1 are densities, we must have PT = 9

'
1

2'2 2'2
and the result follows. 0

Let V and W be independent and have X~ and X~ distributions, respectively, and let
S = (VIk) (W1m). The distribution of S is called the F distribution with k and m degrees
offreedom. We shall denote it by Fk,m'

Next, we introduce the t distribution with k degrees offreedom, which we shall denote
by '4.. By definition '4. is the distribution of Q = zljvlk, where Z and V are inde
pendent with N (0, 1) and X~ distributions, respectively. We can now state the following
elementary consequence of Theorem B.3.1.

for v > o.
Proof Let Zi = Xi/a, i = 1, ... , n. Then Zi ~ N(O, 1). Because the Z; are inde
pendent, it is enough to prove the theorem for n = 1 and then apply Corollary B.2.2. If
T = Z;, then the distribution function of T is
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Corollary B.3.1171e random I'Griable (l11/k)E;' IX; /~;'+t~IX; has an :h,m distrilJll

tion, The random mriable X1/ (1/h:)E~+21X,2 has a TI.: disrribllfion,

Proof For the first assertion we need only note that
,
I

(B.3.5)
I.:+m I.:
'" 2 1", 2L Xi = 2 LX,

iJ
,=1.:+ 1 i= 1

I
I,
•

and apply the theorem and the definition of :h,m' The second assertion follows in the same
w~. 0

To make the definitions of the :h,m and T.: distributions useful for computation, we
need their densities. We assume the S, Q, V, Ware as in the definitions of these distribu-

•nons.
To derive the density of S note that, if U = V/ (V + W), then

•

I
,,
•
f
'.
,

!

S _ V/k _ _m_U_
-W/m-kl-U'

(B.3.6)

,
-'

1•
J,

,
,

,
•

~
j,

"

j

(B.3.7)
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Because V ~ r (~k, ~), W ~ r (~m, ~)(1) and V and Ware independent, then by
Theorem B.2.3, U has a beta distribution with parameters ~ k and ~ m. To obtain the
density of S we need only apply the change of variable formula (A.8.9) to U with g(u) =

(m/k)u/(1 - u). After some calculation we arrive at the :Fk,m density (see Figure B.3.1)

(k/m)~kS~(k-2)(l+ (k/m)s)-~(k+m)

ps(s) = B (~k, ~m)

for s > O.
To get the density of Q we argue as follows. Because -Z has the same distribution as

Z, we may conclude that Q and -Q are identically distributed. It follows that

,,

"••,
•,
•

i
•

,,,

,,
,

,j,
••
j
~

1

(B.3.9)

(B.3.8)

(B.3.1O)
r (~(k + I)) (1 + (q2 /k))-~(k+l)

PQ(q) = v'1l1r (~k)

prO < Q < q] prO < -Q < q]
1

P[-q < Q < 0] = 2 pro < Q2 < q2].

Differentiating prO < Q < q], P[-q < Q < 0] and ~P[O < Q2 < q2] we get

Now Q2 has by Corollary B.3.1 an h,k distribution. We can, therefore, use (B.3.7) and
(B .3.9) to conclude

for -00 < q < 00.
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Figure B.3.! The Fk,m density for selected (k, m).
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Figure B.3.2 The Student t and standard normal densities.
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Section B 3 Distribution Theory for Samples from a Normal Population

The X2 , T, and F cumulative distribution functions are given in Thbles II, III, and IV,
respectively. More precisely, these tables give the inverses or quantiles of these distribu
tions. For a E (0, 1), an ath quantile or 100 ath percentile of the continuous distribution
F is by definition any number x(a) such that F(x(a)) = a.

Continuity of F guarantees the existence of x(Q:) for all a. If F is strictly increasing,
x(a) is unique for each a. As an illustration, we read from Table III that the (0.95)th
quantile or 95th percentile of the 720 distribution is t(0.95) = 1.725.

----------------~-....$_..---...._...._,_•.~-_..,~:.-~ .. ,,". ...-......-. . _._. < ~ .. -
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B.3.2 Orthogonal Transformations

We tum now to orthogonal transformations of normal samples. Let us begin by recal1ing
some classical facts and definitions involving matrices, which may be found in standard
texts, for example, Birkhoff and MacLane (1965).

Suppose that A is a k x m matrix with entry aij in the ith row and jth column, i =
I, ... , k; j = I, ... , m. Then the transpose of A, written AT, is the m x k matrix, whose
entry in the ith row and jth column is aji. Thus, the transpose of a row vector is a column
vector and the transpose of a square matrix is a square matrix.

An n x n matrix A is said to be orthogonal if, and only if,

,
"
"•"

AT = A-I (B.3.1l )

or equivalently if, and only if, either one of the fol1owing two matrix equations is satisfied,

(B.3.12)

AAT =1 (B.3.13)

where 1 is the n xn identity matrix. Equation (B.3.12) requires that the column vectors of A
be oflength I and mutual1y perpendicular, whereas (B.3.13) imposes the same requirement
on the rows. Clearly, (B.3.12) and (B.3.13) are equivalent. Considered as transformations
on Rn orthogonal matrices are rigid motions, which preserve the distance between points.
That is, if a = (al, ... ,an)T, b = (bl, ... ,bn)T, la-bl = J~i 1(ai- bi)2isthe
Euclidean distance between a and b, and A is orthogonal, then

•,
•

-~,
1
1
I
•

la - bl = IAa - Abl· (B.3.14)

·
-~

j
,

,
.1
•,
~,

(B.3.16)

(B.3.17)

(B.3.15)

(B.3.18)

I n

-20'2 L X7
i=l

I 2

2a21xl .

I
-[V2-if--=2=7f'-0']-n exp

I
--:=--exp
[V2-ifO']n

Idet AI = 1.

(a-b)T(a-b) = (a-b)TATA(a-b)

[A(a - bW[A(a - b)] = IAa - Ab1 2.

[det A]2 = [det Aj(det AT] = det[AAT ] = det 1 = 1.

Final1y, we shal1 use the fact that if A is orthogonal,

Because X = (Xl, ... , Xnr is a vector of independent identically distributedN(O, 0'2)

random variables we can write the density of X as

To see this, note that

This fol1ows from

,..

,
, I
,

7
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(B.3.l9)

(B.3.20)

(B.3.2l)

(B.3.22)

(B.3.24)

(B.3.23)

= px(y - c).

Yi - Ci

a

I
-<.p
a

I 2
- Iy - el

20'2

E(Yi ) = Ci + 'LaijE(Zj)
j=1

n

py (y) = Px (y - (Ad + c)).

n

px(y - c) = II
i=l

py(y)

I
py(y) = [J27rO']n exp

Ide~AIPx(A-1(y - c))

px(AT (y - c))

by (B.3.1l) and (B.3.l6). If we substitute AT (y - c) for x in (B .3.18) and apply (B.3.lS),
we get

Because

we see that the Y, are independent normal random variables with E(Y,) = Ci and common
variance 0'2. If, in particular, e = 0, then Y1 , ... , Yn are again a sample from a N(O, 0'2)
population.

More generally it follows that if Z = X + d, then Y = g(Z) = A(X + d) + e =
AX + (Ad + c) has density

We seek the density of Y = g(X) = AX + e, where A is orthogonal, 11 x n, and
e = (Cl,"" cn). By Corollary B.2.1, Y = (Yj , ...• y,,)T has density

Because d = (d l , ... , dn)T is arbitrary and, by definition, E(Zi) = E(Xi + di ) = di ,
i = I, ... , n, we see that we have proved the following theorem.

Theorem B.3.2 IfZ = (ZI, ... , Zn)T has independent normally distributed components
with the same variance 0'2 and g is an affine transformation defined by the orthogonal
matrix A and vector e = (CI, ... , cn)T, then Y = g(Z) = (Y1 , . .. , Ynf has independent
normally distributed components with variance 0'2. Furthermore, if A = (aij)

Then Z and ~k=1 (Zi - Z)2 are independent. Furthermore, Z has a N(p" 0'2 In) distribu
tion while (I10'2)~i 1 (Zi - Z)2 is distributed as X~-I .

fori = I, ... ,n.

This fundamental result will be used repeatedly in the sequel. As an application, we
shall derive another classical property of samples from a normal population.

Theorem B.3.3 Let (ZI, ... , Zn)T be a sample from a N(p" 0'2) population. Define
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Proof Construct an orthogonal matrix A = (aij) whose first row is

1 1

..;n""'..;n
This is equivalent to finding one of the many orthogonal bases in R n whose first mem
ber is al and may, for instance, be done by the Gram-Schmidt process (Birkhoff and
MacLane, 1965, p. 180). An example of such an A is given in Problem B.3.15. Let
AZ = (Y1 , .... , yn)T. By Theorem B.3.2, the Y; are independent and normally distributed
with variance 0'2 and means

n n

E(Y;) = LaijE(Zj) = /.L Laij.
j=l j=l

(B.3.25)

Because alj = 11..;n, 1 < j < n, and A is orthogonal we see that

n n

L aij = ..;n L aljakj = 0, k = 2, ... , n.
j=l j=l

Therefore,

(B.3.26)

••,,,

By Theorem B.3.l, (1IO'2)~k=2Y';has a X~-l distribution. Because by the definition of
A,

E(YI ) = /.L..;n, E(Yk) = 0, k = 2, ... , n. (B.3.27)
•
•..•..
~,,
1
",,
\

- YI
Z = yin'

the theorem will be proved once we establish the identity

n n

(B.3.28)

1.'

~ 2 ~ - 2LYk = L(Zk - Z) .
k=2 k=l

(B.3.29)
i

c,
\

Now
n n n n

,
•..

•

LY'; = IY l2 = IAZ - AOl 2
= IZI 2

= L Z~.
k=l k=l

·,,
.',
l•
;

j,
•,
•

(B.3.30)

(B.3.31)

(B.3.32)
n

nn

~ - 2 ~ 2 - ~ -2 ~ 2 -2L(Zk - Z) = L Zk - 2Z L Zk + nZ = L Zk - nZ .
k=l k=l k=l k=l

n

Finally,

Therefore, by (B.3.28),

Assertion (B.3.29) follows. o

Ii,
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(B.4.I)

(B.4.2)

(B.4.3)

J.L1 + an Zl + a12 Z2

J.L2 + a21 Z1+ a22 Z2'

X = AZ + J-L.

X
Y

----------------------..,.----'~ ... --.... - ........ . ~~.. ........--.

B.4 THE BIVARIATE NORMAL DISTRIBUTION

Section B.4 The Bivariate Normal Distribution

The normal distribution is the most ubiquitous object in statistics. It appears in theory
as an approximation to the distribution of sums of independent random variables, of order
statistics, of maximum likelihood estimates, and so on. In practice it turns out that variables
arising in all sorts of situations, such as errors of measurement, height, weight, yields of
chemical and biological processes, and so on, are approximately normally distributed.

In the same way, the family of k-variate normal distributions arises on theoretical
grounds when we consider the limiting behavior of sums of independent k-vectors of ran
dom variables and in practice as an approximation to the joint distribution of k-variables.
Examples are given in Section 6.2. In this section we focus on the important case k = 2
where all properties can be derived relatively easily without matrix calculus and we can
draw pictures. The general k-variate distribution is presented in Section B.6 following a
more thorough introduction to moments of random vectors.

Recall that if Z has a standard normal distribution, we obtain the N(J.L, ( 2) distribution
as the distribution of g(Z) = aZ + J.L. Thus, Z generates the location-scale family of
N (J.L, ( 2) distributions. The analogue of the standard normal distribution in two dimensions
is the distribution of a random pair with two independent standard normal components,
whereas the generalization of the family of maps g(z) = a z + J.L is the group of affine
transformations. This suggests the following definition, in which we let the independent
N(O, 1) random variables Zl and Z2 generate our family of bivariate distributions.

A planar vector (X, Y) has a bivariate nonnal distribution if, and only if, there exist
constants aij, 1 < i,j < 2, J.L1, J.L2, and independent standard normal random variables
Zl, Z2 such that

Two important properties follow from the Definition (B.4.1).

Proposition B.4.1 The marginal distributions of the components of a bivariate normal
random vector are (univariate) nonnal or degenerate (concentrate on one point).

This is a consequence of (A.13.23). The converse is not true. See Problem B.4.10.
Note that

In matrix notation, if A = (aij), J-L = (J.Ll,J.L2f, X = (X,Yf, Z
definition is equivalent to

a1 = ';Var X, a2 = ';Var Y. (B.4.4)

Then X has aN(J.L1, an and Y aN(J.L2, a~) distribution.

Proposition B.4.2 If we apply an affine transformation g(x) = ex + d to a vector X,
which has a bivariate normal distribution, then g(X) also has such a distribution.
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This is clear because

CX + d = C(AZ + /1) + d = (CA)Z + (C/1 + d). (BA.5)

We now show that the bivariate normal distribution can be characterized in terms of
first- and second-order moments and derive its density. As in Section A.II, let

(X Y)
Cov(X, Y)

p = Cor , = -----'------'-----'
0"10"2

(BA.6)

if 0"10"2 =!= O. If 0"10"2 = 0, it will be convenient to let p = O. We define the variance

covariance matrix of (X, Y) (or of the distribution of (X, Y» as the matrix of central
second moments

~= • (BA.7)

This symmetric matrix is in many ways the right generalization of the variance to two
dimensions. We see this in Theorem B04.1 and (B .4.21). A general definition and its
properties (for k dimensions) are given in Section B.5.

Theorem B.4.1 Suppose that 0"10"2 =!= 0 and Ipl < 1. Then

•

,,
j,

Proof. Because (X, Y) is an affine transformation of (ZI, Z2), we can use Corollary B.2.1
to obtain the joint density of (X, Y) provided A is nonsingular. We start by showing that
AAT = ~. Note that

"

1

1
1

j
"

(BA.8)

(BA.9)

2

•

x - /11

I T -1
--((x-J-L) ~ (x-J-L))

2

I I
- exp -
- 21l"0"1 0"2 \/1 - p2 2(1 - p2)

2
-2p (x - /11) (y - /12) + y - /12

0"1 0"2 0"2

I
px(x) = exp

21l"Vdet ~

,
1,

•,

•

(B.4.lD)

(B.4.11)

2 2all + a12
alla21 + a12 a22

AAT =

PO"I 0"2 Cov(anZl + a12Z2, a21 Z 1 + a22Z2)

- ana21 COV(Zl, Zl)

+(a12a 21 + alla22) Cov(ZI, Z2)

+a12a22 COV(Z2, Z2)

ana21 + a12a22·

while

and

"" ,

I

I
;
7
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(B.4.12)

(B.4.13)

(B.4.14)

(B.4.IS)

(B.4.16)

(B.4.17)

•

-p

1 T--z z2 .
1

pz(z) = - exp
27r

1

~-1 =

27rldet AI
1

27rldet AI

Idet AI

Section B.4 The Bivariate Normal Distribution

Therefore, AAT = ~ and by using elementary properties of determinants we obtain

)[det Aj2 = Vdet Adet AT = vdet AAT

Vdet ~ = 0"10"2)1 - p2.

Because Ipl < 1 and 0"10"2 =!= 0, we see that A is nonsingular and can apply Corollary
B.2.1 to obtain the density of X. The density of Z can be written

As in (B .3.19),

Because

px(x)

we arrive at (B.4.8). Finally (B.4.9) follows because by the formulas for an inverse

From (B.4.7) it is clear that ~ is nonsingular if, and only if, 0"10"2 =!= 0 and Ipl < l.
Bivariate normal distributions with 0"10"2 =!= 0 and Ipl < 1 are referred to as nondegenerate,
whereas others are degenerate. If O"f = ail + ar2 = 0, then X = /1-}, Y is necessarily
distributed as N(/1-2, O"~), while O"~ = 0 implies that Y - /1-2 and X has a N(/1-1' O"f)
distribution. FinaUy, 0"10"2 =!= 0 and Ipl = 1 implies by (A.l1.16) that

(Y - /1-2) (X - /1-1)
=p .

0"2 0"1

Because the marginal distributions of X l!Ud Yare, as we have already noted, N(/1-1' O"f)
and N (/1-2, O"~) respectively, relation (B .4.17) specifies the joint distribution of (X, Y) com
pletely. Degenerate distributions do not have densities but correspond to random vectors
whose marginal distributions are normal or degenerate and are such that (X, Y) faUs on a
fixed line or a point with probability 1.

Note that when p = 0, Px(x) becomes the joint density of two independent normal
variables. Thus, in the bivariate normal case, independence is equivalent to correlation
zero. This is not true in general. An example is given in Problem B.4.1l.

Now, suppose that we are given nonnegative constants 0"1,0"2, a number p such that
Ipl < 1 and numbers /1-I,/1-2' Then we can construct a random vector (X, Y) having a
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(BA.18)

Figure B.4.1 A plot of the bivariate normal density p(x, y) for 11-1 = 11-2 = 2,
0'1 = 0'2 = 1, P = 0 (top) and p = 0,5 (bottom),

bivariate normal distribution with vector of means (11-1, 11-2) and variance-covariance matrix
E given by (B.4.7). For example, take

and apply (B.4.1O) and (BA.II). A bivariate normal distribution with this moment structure
will be referred to as N(11-1' 11-2, at, a~, p) or N(J1., E).



Proof. Because X has a N(J.Ll, an distribution and (Y, X) is nondegenerate, we need only
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(B.4.19)

(B.4.21)

(B.4.22)

(B.4.20)

•

CllX + C12Y + VI

C21 X + C22 Y + V2

(VI, V2)T + C(J.Lb J.L2f = v + CjL,

CECT

VI + CUJ.Ll + C12J.L2, E(U2) = V2 + C21J.Ll + C22}J2
2 2 2 2+2clla1 + c12a2 C12 Cllpa la2
2 2 2 2 2C21a 1 + c22a2 + C21 C22pO"la2

CUc21a; + c12c22a~ + (CllC22 + C12c2I)pala2.

(E(U1 ),E(U2))
E(U)

E(U1 )

VarUl

VarU2

Cov(U1 , U2 )

Now suppose that U = (U1 , U2 )T is obtained by an affine transformation,

In matrix notation we can write compactly

Section 8.4 The Bivariate Normal Distribution

from a vector (X, Y) T having a N(J.Ll' J.L2, ai, a~, p) distribution. By Proposition B.4.2, U
has a bivariate normal distribution. In view of our discussion, this distribution is completely
determined by the means, variances, and covariances of U1 and U2 , which in tum may be
expressed in terms of the J.Li, a'f, p, Cij, and Vi. Explicitly,

where E(U) denotes the covariance matrix of U.
If the distribution of (X, Y) is nondegenerate and we take

Theorem 8.4.2 If (X, Y) has a nondegenerate N(J.Ll' J.L2, a;, a~, p) distribution, then the
conditional distribution ofY given X = x is

then U1 and U2 are independent and identically distributed standard normal random vari
ables. Therefore, starting with any nondegenerate bivariate normal distribution we may by
an affine transformation of the vector obtain any other bivariate normal distribution.

Another very important property of bivariate normal distributions is that normality is
preserved under conditioning. That is,

--------------~-----_.- -- ..
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calculate

1
•

P(y,X)(Y, x)

Px(x)
1 1

--r;o==;c:===;~ exp -
(2)27r(1 - p2) 2(1 - p2)

+[1 _ (1 _ p2)] (x -a~Il2
1

1
------r:o==;c:===;~ exp
a2 )27r(1 - p2)

p(y Ix)
I
I
!

t

,,
,

I
(BA.23)

,
,
J

.]

;-

,

(B.5.1 )E(AU + BV) = AE(U) +BE(V).

B.5 MOMENTS OF RANDOM VECTORS AND
MATRICES

B.5.1 Basic Properties of Expectations

I
J________________________________1

This is the density we want. 0

Theorem BA.2 shows that the conditional mean of Y given X x falls on the line
y = /-L2 + p(a2!aIl(x - /-LIl. This line is called the regression line. See Figure BA.2,
which also gives the contour plot S e = {(x, y) : f( x, y) = c} where c is selected so that
P((X, Y) ESe) = " , = 0.25, 0.50, and 0.75. Such a contour plot is also called a
100,% probability level curve. See also Problem BA.6.

By interchanging the roles of Y and X, we see that the conditional distribution of X
given Y = y is N(/-Ll + (aJ!a2)p(y - /-L2), a?(1- p2)).

With the convention that % = a the theorem holds in the degenerate case as well.
More generally, the conditional distribution of any linear combination of X and Y given
any other linear combination of X and Y is normal (Problem BA.lO).

As we indicated at the beginning of this section the bivariate normal family of distri
butions arises naturally in limit theorems for sums of independent random vectors. The
main result of this type is the bivariate central limit theorem. We postpone its statement
and proof to Section B.6 where we can state it for the k-variate normal.

If A mxk , B mxl are nonrandom and EU, EV are defined, then

We generalize univariate notions from Sections A. 10 to A.12 in this section. Let U, re
spectively V, denote a random k, respectively I, vector or more generally U = IlUij Ilkxl,
a matrix of random variables. Suppose EIUij I < 00 for all i,j. Define the expectation of
Uby

,

I

I
•
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(B.5.3)

(B.5.2)

x3

•
•

•
•

•
•

2

. ./'I
(2,22· .'

•
•

•
•

E(U - E(U))(U - E(U))T

IICov(Ui , Uj)llkxk,

•

1

•
•

Var(U)

o

•

•
•

2

•

y

3

o

1

Section 8.5 Moments of Random Vectors and Matrices

Figure B.4.2 25%, 50%, and 75% probability level-curves, the regression line (solid line),
and major axis (dotted line) for the N(2, 2, 1, 1, 0.5) density.

E(U) = c.

For a random vectorU,suppose EUl < 00 fori = 1, ... , k or equivalently E(IUI 2 ) <
00, where I . I denotes Euclidean distance. Define the variance of U, often called the
variance-covariance matrix, by

This is an immediate consequence of the linearity of expectation for random variables and
the definitions of matrix multiplication.

If U = c with probability 1,

B.5.2 Properties of Variance

Var(AU) = AVar(U)AT
.

Note that Var(U) is k x k, Var(AU) is m x m.

If A is m x k as before,

a symmetric matrix.
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Let Cj,- x 1 denote a constant vector. Then

Var(U + c) = Var(U).

Var(c) = 1101lkxk.

(B.5.4)

(B.5.5)

(B.5.6)

If akx 1 is constant we can apply (B.5.3) to obtain

Var(aTU) = Var(~J=lajUj)

= aTVar(U)a = Li,j aiaj COV(Ui, Uj ).

Because the variance of any random variable is nonnegative and a is arbitrary, we con
clude from (B.5.6) that Var(U) is a nonnegative definite symmetric matrix.

The following proposition is important.

Proposition B.5.1 IfEIUI 2 < 00, then Var(U) is positive definite ifand only if, for every
a =!= 0, b,

P[aTU + b = 0] < 1. (B.5.7)

Proof By the definition of positive definite, (B.IO.I), Var(U) is not positive definite iff
aTVar(U)a =°for some a =!= 0. By (B.5.6) that is equivalent to Var(aTU) = 0, which is
equivalent to (B.5.7) by (A. I 1.9). 0

If Uk x 1 and W kx 1 are independent random vectors with E IU /2 < 00, E IWI 2 < 00,

then

Var(U + W) = Var(U) + Var(W). (B .5.8)

This follows by checking the identity element by element.
More generally, if EIU/2 < 00, EIVI 2 < 00, define the covariance OfUkxlo V lX1 by

.
,
,

,,
,

r: Cov(U, V) E(U - E(U))(V - E(V)f
IICov(Ui, Vj)llkX/,

•

",
q

\ ~,,
,

•

Then, if U, V are independent

Cov(U, V) = O.

In general

Cov(AU + a, BV + b) = ACov(U, V)BT

for nonrandom A, a, B, b, and

Var(U + V) = Var(U) + 2 Cov(U, V) + Var(V).

We leave (B.5.1O) and (B.5.11) to the problems.
Define the moment generating function (m.gJ.) of Uk x 1 for t E R k by

M(t) = Mu(t) = E(etTu
) = E(eEJ=ltJUJ).

(B.5.9)

(B.5.1O)

(B.5.11)

•

~.-j
J
I
1

,
•,
1,

,

1-
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(B.5.14)

(B.5.15)

(B.5.12)

(B.5.13)

. .

= E(U{' ... U~').

kxk

()M (0) = E(U)
()tJ kxl

()PM(O)
• •

{)t~' ... ()t~'

Mu+v(t) = Mu(t)Mv(t), Ku+v(t) = Ku(t) + Kv(t)

and

In particular,

Section 8.5 Moments of Random Vectors and Matrices

r, . = r, . (U) = ()P. K(t) i l + ... + ik = p.
...... , ..." ...... , ..." '" i, "'t" '

utI ... u k t=o

An important consequence of the definitions and (A.9.3) is that if U kxlo Vkxl are
independent then

where we use subscripts to indicate the vector to which the m.g.f. belongs. The same type
of identity holds for c.f.'s. Other properties of cumulants are explored in the problems. See
also Bamdorff-Nielsen and Cox (1989).

(a) S is convex. (See B.9).

(b) If 8 has a nonempty interior So, (contains a sphere S(O,E), E > 0), then M is
analytic on 8 0 . In that case EIUjP < 00 for all p. Then, if i l + ... + ik = p,

Note that M(t) can be 00 for all t =!= O. In parallel(l) define the characteristic function
(c.f.) of U by,

<p(t) = E(e itTu
) = E(cos(tTU)) + iE(sin(tTU))

where i = ;=T. Note that <p is defined for all t E R k , all U. The proofs of the following
theorems are beyond the scope of this book.

Theorem B.5.1 Let 8 = {t : M(t) < oo}. Then,

(c) If SO is nonempty, M determines the distribution ofU uniquely.

Expressions (B.5.I2HB.5.I4) are valid with <p replacing M ifEIUIP/2 < 00, EIUI <
00, EIUI2 < 00, respectively. The characteristic function always determines the distribu
tion ofU uniquely.

Proof. See Billingsley (1995).

The cumulant generating function of U is defined by K (t) = K u (t) = log M (t). If
8 (t) = {t : M (t) < oo} has a nonempty interior, then we define the cumulants as

-----------------_._-~---------_.-- -
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Example 8.5.1 The Bi\'([riafe Normal DisfrihllfiOI1.
N (Ill, 112, o-?, o-i, p) distribution then, it is easy to check that

£(U) = 11

Var(U) = ~

Mu(t) = exp e'J.t + ~tT~t

(B.5.l6)

(B.5.l7)

(B.5.l8)

where t = (t!, t2)T, J.t, and ~ are defined as in (BA.7), (B.4.8). Similarly

. 1
<f'u(t) = exp ztT J.t - -tT~t

2
(B.5.l9)

obtained by substituting itj for tj, 1 < j < k, in (B.5.l8). The result follows directly from
(A.13.20) because

(B.5.20)

,,

,
,

i

"1,
J
~,

I
I

o

8.6.1 Definition and Density

8.6 THE MULTIVARIATE NORMAL DISTRIBUTION

All other cumulants are zero.

and by (BA.20), t! U1+ t2U2 has a N(tTJ.t, tT~t) distribution.
By taking the log in (B.5.l8) and differentiating we find the first five cumulants

We define the multivariate normal distribution in two ways and show they are equivalent.
From the equivalence we are able to derive the basic properties of this family of distribu
tions rapidly.

Definition 8.6.1 U kx ! has a multivariate (k-variate) normal distribution iff U can be
written as

•
;,
•,
•

1.

"..; ,
,

,
h
"i ,
r\,'

U = J.t+AZ

when J.tkx I' A kxk are constant and Z = (ZI,"" ZdT where the Zj are independent
standard normal variables. This is the immediate generalization of our definition of the
bivariate normal. We shall show that as in the bivariate case the distribution of U depends
on J.t = £(U) and ~ - Var(U), only.

Definition 8.6.2 Uk x I has a multivariate normal distribution iff for every ak x I nonran
dom, aTU = ~j=1ajUj has a univariate normal distribution.

Theorem 8.6.1 Definitions B.6.l and 8.6.2 define the samefamity ofdistributions.

t
•

•
1

I-



where A and Z are as in Definition B.6.1. Then

Vkx!=J.L+AZ

507

(B.6.2)

(B.6.1 )

(B.6.3)

(B.6.5)

E(X) = aT E(U)

E(exp(aTU)) = E(ex )
exp {aT E(U) + ~aT Var(U)a}

Var(X) = aT Var(U)a

Mu(a)

1
pu(x) = (27r)k/2[det(~)lk/2 x exp

Section B.6 The Multivariate Normal Distribution

~ = AAT
, (B.6.4)

where A is nonsingular iff ~ is positive definite. Now, given U defined by B.6.2 with
E(U) = J.L, Var(U) = ~, consider

from (B.5.1) and (B.5.4). Note that the finiteness of E(IUI) and Var(U) is guaranteed by
applying Definition B.6.2 to eJU, where ej denotes the k x 1 coordinate vector with 1 in
the jth coordinate and 0 elsewhere. Now, by definition,

E(V) = J.L, Var(V) = A Var(Z)AT = AAT

from (A. 13.20), for all a. Thus, by Theorem B.5.1 the distribution of U under Definition
B.6.2 is completely determined by E(U), Var(U). We now appeal to the principal axis
theorem (B.I 0.1.1). If ~ is nonnegative definite symmetric, there exists Ak xk such that

Proof If U is given by Definition B.6.1, then aTU = aT (AZ + J.L) = [ATajTZ + aTJ.L,
a linear combination of independent normal variables and, hence, normal. Conversely, if
X = aTU has a univariate normal distribution, necessarily this is N(E(X), Var(X)). But

We use Nk(J.L, ~) to denote the k-variate normal distribution of Corolary B.6.1. Argu
ing from Corollary B.2.1 we see the following.

Theorem B.6.2lj~ is positive definite or equivalently nonsingular; then ifU ~ Nk(J.L, ~).
U has a density given by

because Var(Z) = Jkxko the identity matrix.
Then, by definition, V satisfies Definition B.6.1 and, hence, B.6.2 and has the same first

and second moments as U. Since first and second moments determine the k-variate normal
distribution uniquely, U and V have the same distribution and the theorem follows. 0

Notice that we have also proved:

Corollary B.6.1. Given arbitrary J.Lkx! and ~ nonnegative definite symmetric. there is a
unique k-variate normal distribution with mean vector J.L and variance-covariance matrix
~.
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Proof Apply Definition B.6.1 with A such that ~ = AAT.
The converse that U has a density only if~ is positive definite and similar more refined

results are left to Problem B.6.2.
There is another important result that follows from the spectral decomposition theorem

(B .10.1.2).

,

•,
J

Theorem B.6.3 If Uk x 1 has N k (p,~) distribution, there exists an orthogonal matrix
P kxk such that pTU has an Nk(v, D kxk ) distribution where v = pTP and D kxk is
the diagonal matrix whose diagonal entries are the necessarily nonnegative eigenvalues of
~. If~ is of rank I < k, necessarily only I eigenvalues are positive and conversely.

Proof. By the spectral decomposition theorem there exists P orthogonal such that

~ = PDpT.

Then pTU has aNk (v, D) distribution since Var(pTU) = pT~p = D by orthogonality
ofP. 0

1 1 1 (,)-1 (,)~I
~2 = PD2pT, ~-2 = ~2 = P D2 pT

where D~ is the diagonal matrix with diagonal entries equal to the square root of the
eigenvalues of ~, then

•,

),,
•

,
·

,
.j
•••

(B .6.6)
1z= ~-2(U-p)

This result shows that an arbitrary normal random vector can be linearly transformed
to a normal random vector with independent coordinates, some possibly degenerate. In
the bivariate normal case, (BA.19) and (B.4.22) transformed an arbitrary nondegenerate
bivariate normal pair to an i.i .d. N (0, 1) pair.

Note that if rank ~ = k and we set
I

-,
,,

_____________________________a

B.6.2 Basic Properties. Conditional Distributions

If U is Nk(p,~) and A 1xk , b 1x I are nonrandom, then AU + b is N/(Ap + b, A~A').
This follows immediately from Definition B.6.2. In particular, marginal distributions of
blocks of coordinates of D are normal. For the next statement we need the following block
matrix notation. Given ~kxk positive definite, write

•,

(8.6.7)
~II ~12

~21 ~22
~=

has a N(O, J) distribution, where J is the k x k identity matrix.

Corollary B.6.2IfU has an N k (0, ~) distribution and ~ is ofrank k, then UT ~-IU has
a X~ distribution.

Proof. By (B.6.6), UT~-lU = ZTZ, where Z is given by (B.6.6). But ZTZ = 2:7 1 Z'f
where Zi are i.i.d. N(O, 1). The result follows from (B.3.1). 0

•;
•

;, -

I
I



U(1) and U(2)

We next show that independence and uncorrelatedness are the same for the k variate
normal. Specifically

. - .-

509

(8.6.8)

(8.6.9)

(8.6.10)

(8.6.11)

(8.6.12)

o and by construction

, where p. (I) and p. (2) are the mean vectors of

EU* =EU

Var(U) = Var(U*)

has the same distribution as U and, hence, U(l), U(2) are

where ~jj is the lxl varianceof(U j , ... , Utl T , which we denote by U(I), ~22 the (k-l) x
(k ~ I) variance of (Ui+I, .. ·. Ud T denoted by U(2), and ~12 = Cov(U(1), U(2»)lxk_i,

( I )
~ ~T S' '1'1' P.-U21 = -U12' Iml 31 y wnte p. = (2)

P.

by definition, and because U(1) and U(2) have E 12
Var(U(j)*) = Ejj , j = 1,2, then

below that U*

U(1)
, where U(1) and U(2) are k and I vectorsU(2) ,

respectively, has a k + I variate normal distribution, then U(1) and U(2) are independent
iff

Section B.6 The Multivariate Normal Distribution

by (8.6.7). Therefore, U and U* must have the same distribution by the determination of
the k-variate normal by first and second moments. 0

Theorem 8.6.5 If U is distributed as Nk(p., ~), with ~ positive definite as previously,
then the conditional distribution ofU(1) given U(2) = u(2) is N i (p.(I) + ~12~2l (U(2) 
p.(2»), ~II _ ~12~221 ~12)' Moreover ~II - ~12~221 ~21 is positive definite so there is
a conditional density given by (B.6.5) with (~ll - ~12~221~21) substituted for ~ and
p.(1) - ~12~221 (u(2) -p.(2»)for p..

Proof. Identification of the conditional density as normal can be done by direct computa
tion from the formula

after noting that ~II is positive definite because the marginal density must exist.
To derive this and also obtain the required formula for conditional expectation and

variance we proceed as follows. That ~ll, ~22 are positive definite follows by using
aT~a > 0 with a whose last k - I or first I coordinates are O. Next note that

Proof. If U(l) and U(2) are independent, (8.6.8) follows from (A. 11.22). Let U(1)* and
U(2)* be independent N k (E(U(1)), Var(U(I»)), Ail (E(U(2»), Var(U(2»)). Then we show

U(1)*
U(2)*

independent. To see that U* has the same distribution as U note that

Theorem 8.6.4 If U (Hi) x 1

___________~,. •__• -~.-'-'_.-••• - ~_ .• 'r

:~-:-
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because

~12~221 Var(U(2»)~2}~21

~12~221 ~22 ~221 ~21
(B.6.13)

by (B.5.3). Furthermore, we claim

COV(~12~221U(2), U(1) - ~12~221U(2») = 0 (B.6.14)

(Problem B.6.4) and, hence, by Theorem B.6.5, U(1) - ~12~221U(2) and U(2) are inde
pendent. Thus, the conditional distribution of U(1) - E 12 E 22

1U(2) given U(2) = U(2)
is the same as its marginal distribution. By the substitution property of the conditional
distribution this is the same as the conditional distribution of U(1) - ~12~221U(2) given
U(2) = U(2). The result now follows by adding E12E221 U(2) and noting that

(B.6.15)
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(8.6.17)

(B.6.16)

(B.6.18)

L
-+ g(Z)9

where Z ~ Nk(O, ~).

As a consequence, if ~ is positive definite, we can use Theorem B.7.1 to conclude that

S - nJ.L
P n Vii <z -+ P[Z < z]

E(U1 I U 2 = U2) E(U1 - ~12~221U2 I U 2 = U2) + ~12~221U2

- E(U1 - ~12~221U2) + ~12~221U2

J.Ll - ~12~221 J.L2 + ~12~22IU2

J.Ll + ~12~221(U2 - J.L2)·

and

o

Theorem 8.6.6 The Multivariate Central Limit Theorem. Let XI, x 2 , ... ,Xn be
independent and identically distributed random k vectors with EIX 1 1

2 < 00. Let E(Xd =
J.L, Var(XI) = ~, and let Sn = Ei 1Xi. Then,for every continuous function 9 : R k

-+ R,

for all Z E R k . Here {x : x < z} = {x : Xi < Zi, i = 1, ... , k} where as usual subscripts
indicate coordinate labels.

A proof of this result may be found in more advanced texts in probability, for instance,
Billingsley (1995) and in Chung (1974).

An important corollary follows.
,

Coronary 8.6.7 lfthe Xi are as in the statement ofTheorem B.6.6, if~ is positive definite

and if X = ~ Ei IXi, then

,..,
!
I,

i
i

II .



for every E > O.
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(8.7.3)
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or equivalently Znj .£, Zj for 1 < j < d.
Note that this definition also makes sense if the Zn are considered under probabilities

Pn that depend on n. Thus, Zn ~ Z iff

The notion of convergence in probability and convergence in law for random variables dis
cussed in section A.l.5 generalizes to random vectors and even abstract valued random
elements taking their values in metric spaces. We give the required generalizations for ran
dom vectors and, hence, random matrices here. We shall also introduce a unique notation
that makes many computations easier. In the following, I . Idenotes Euclidean distance.

B.7.1 A sequence of random vectors Zn (Znl, ... ,Znd)T converges in probability to

Z (Zl"'" Zd)T iff

Proof J1!(X - J.L) = (Sn - n/-L)/vn. Thus, we need only note that the function g(x) =
xT:E-1x from Ri.' to R is continuous and that if Z ~ 1\'(0, :E), then ZT:E-1Z ~ X;
(Corollary B.6.2). 0

8.7 CONVERGENCE FOR RANDOM VECTORS: Op
AND Op NOTATION

-
WLLN (the weak law of large numbers). Let Zl, ... , Zn be i.i.d. as Z and let Zn

n- I 2:7 1 Zi. If EIZI < 00, then Zn !'.., J.L = EZ.

When EIZI 2 < 00, the result follows from Chebychev's inequality as in Appendix A.
For a proof in the EIZI < 00 case, see Billingsley (1995).

The following definition is subtler.

B.7.2 A sequence {Zn} of random vectors converges in law to Z, written Zn !:. Z or
L:(Zn)--.L:(Z), iff

for all g : Rd--.R continuous and bounded. Note that (B.7.3) implies (A.I4.6). The
following stronger statement can be established.

h(Zn) !:. h(Z)

for all functions h : Rd --.R, h continuous.
We saw this type of convergence in the central limit theorem (B .6.6).
Note that in the definition of convergence in law, the random vectors Zn, Z only play

the role of defining marginal distributions. No requirement is put on joint distributions of
p

{Zn}, Z. Thus, if Zl,' .. ,Zn are Li.d., Zn !:. Zl, but Zn +Zl.
An equivalent statement to (8.7.2) is
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Theorem B.7.1 Z" !:-; Z iff (B. 7.3) holds for eve/)' g : Rd --->RP such that g is bounded
and if A g - {z : g is continuous at z} then P[Z E A g ] = 1.

Here are some further properties,

Proposition B.7.1

(a) IfZn .£, Z and g is continuous from R d to RP, then g(Zn) .£, g(Z),

(b) The implication in (a) continues to hold if "P" is replaced by "C' in premise and
conclusion above,

(c) The conclusion of (a) and (b) continues to hold if continuity of g is replaced by
P[Z E Ag ] = 1 where A g {z : g is continuous at z}.

p c.
B.7.4 If Zn ---> Z then Zn ---> Z.

A partial converse follows,

c. p
B.7.5lf Zn ---> Zo (a constant), then Zn ---> zoo

,

,
,,
,,

,,

,.,

,'.

.1
"

"I',I

Note that (B.7.4) and (B.7.5) generalize (AI4.3), (A 14.4).

Theorem B.7.2 Slutsky's Theorem. Suppose Z;: = (U;:, V;n where Zn is a dvector,
Un is b-dimensional, Vn is c = d - b-dimensional and

L
(a) Un ---> U

(b) Vn !:. V where v is a constant vector.

(c) g is a continuous function from R d to R b
.

Then

,
•

J

!

Again continuity of g can be weakened to P[(UT , vT)T E Ag ] = 1.
We next give important special cases of Slutsky's theorem:

Example B.7.1

(a) d=2,b=c= l,g(u,v) = au +{3v, g(u, v) =uvorg(u,v) = ~ andv#O. This
covers (AI4.9)

(b) V n = IlVnijllbXb,C = b2 ,g(uT ,vT ) = vu where v is a b x b matrix. To apply
Theorem B.7.2, rearrange V n and vase x 1 vectors with c = b2 .

,
•

•,



A somewhat stronger statement can also be made, namely, that

• •-- --
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(B.7.6)

A stronger result (in view of Theorem 8.7.4) is as follows.

Section B.7 Convergence for Random Vectors: 0 p and 0 p Notation

For a proof see Billingsley (1995, p. 209). Evidently, Theorem B.7.4 gives the equiva
lence between (B.7.2) and (B.7.3) and establishes Theorem B.7.1.

The proof of Proposition B.7.I(a) is easy if 9 is uniformly continuous; that is, for every
E > 0 there exists 8 > 0 such that

Zn '::.';. Zif P ( lim Zn = Z) = 1.
n--->oo

(ii) Z~ ~ Z".

(i) L(Z~) = L(Zn) for all n, L(Z") = L(Z)

The proof of Theorem B.7.1 and other preceding results comes from the following the
orem due to Hammersley (1952), which relates the two modes of convergence. Skorokhod
(1956) extended the result to function spaces.

Theorem B.7.3 Hammersley. Suppose vectors Zn !:. Z in the sense ofDefinition B.7.2.
There exists (on a suitable probability space) a sequence of random vectors {Z~} and a
vector Z" such that

where '::.';. refers to almost sure convergence defined by

Z" '::.';. Z"
n

Combining this with b = c = d/2,g(UT ,VT ) = U + v, we obtain, that if the b x b

matrix IIVnl1 ~ Ilvll and W n , b x 1, tends in probability to w, a constant vector, and
f:-Un ---+ U, then

This type of convergence also appears in the following famous law.

SLLN (the strong law of large numbers). Let Zj, ... ,Zn be i.i.d. as Z and let Zn 
n- J 2:7 1 Zi, then Zn '::.';. 1L = EZ iffEIZI < 00.

For a proof, see Billingsley (1995).
The proof of Theorem B.7.3 is easy for d = 1. (Problem B.7.1) For the general case

refer to Skorokhod (1956). Here are the proofs of some of the preceding assertions using
Hammersley's theorem and the following.

Theorem B.7.4 If the vector Un converges in probability to U and 9 is bounded and
P[U E A g ] = 1, then

_____________________0..- .. ~ .__
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Theorem 8.7.5 Dominated Convergence Theorem. If {I-Fn }, IV are random l'ariables,

Wn .!. W, P[IWnl < Ivl'/] = 1 Gild EIWI < 00, then EWn ---+ EW

Proposition 8,7.l(b) and (c) follow from the (a) part and Hammersley'S theorem. Then
(8.7.3) follows from the dominated convergence because if 9 is bounded by M and uni
formly continuous, then for 6 > 0

IEpg(Zn) - Epg(Z)1 <
sup{lg(z) - g(z')J : /z - z'l < 6} + M P[IZn - ZI > 6]

Let n---+oo to obtain that

lim sup /Epg(Zn) - Epg(Z)1 < sup{lg(z) - g(z')1 : Iz - z'l < 6}
n

(8.7.7)

(8.7.8)

,
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and let 6---+0. The general argument is sketched in Problem 8.7.3.
For 8.7.5 let h€(z) = 1(lz - zol > E). Note that Ah, = {z : Iz - zol oJ E}.

Evidently if P[Z = zo] = 1, P[Z E Ah ,] = 1 for all 10 > O. Therefore, by Problem 8.7.4,
P[IZn - zol > E]---+P[lZ - zo/ > E] = 0 because P[Z = zo] = 1 and the result follows.

Finally Slutsky's theorem is easy because by Hammersley's theorem there exist V,:, U;.,
with the same marginal distributions as Vn ,Un and U;., !... U", V,: !... v. Then (U;." V,:) .!.
(U", v), which by Proposition 8.7.1 implies that (Un' Vn ) !:., (U, v), which by Theorem
8.7.1 implies Slutsky's theorem.

In deriving asymptotic properties of some statistical methods, it will be convenient to
use convergence of densities. We will use the following.

Theorem 8.7.6 SchetTe's Theorem. Suppose Pn(z) and p(z) are densities or frequency
functions on Rd such that pn (z) ---+ p(z) as n ---+ 00 for all z E Rd. Then

J IPn(z) - p(z)ldz ---+ °as n ---+ 00

in the continuous case with a sum replacing the integral in the discrete case.

Proof We give the proof in the continuous case. Note that

IPn(z) - p(z)1 = Pn(z) - p(z) + 2[P(z) - Pn(Z)j+

where x+ = max{O, x}. Thus,

J IPn(z) - p(z)/dx = J[Pn(z) - p(z)]dz + 2J[P(z) - Pn(z)j+dz.

The first term on the right is zero. The second term tends to zero by applying the dominated
convergence theorem to Un = [P(Z) - Pn(Z)]+ Ip(Z) and g(u) = u, u E [0,1], because
[P(z) - Pn(z)j+ < p(z). 0

Proposition 8.7.2 IfZn and Z have densities or frequency functions Pn (z) and p(z) with

Pn(z) ---+ p(z) as n ---+ oofor all z E Rd, then Zn !:., Z.
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and

+max{(F(x) - F(xj)),F(xj+d - F(x)}.

o

o
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sup IFn(x) - F(x)1 < (1- Fn(x)) + (1- F(x)).
x>x

IEg(Zn) - Eg(Z)1 = J g(z)[Pn(z) -p(z)]dz < M J IPn(z) - p(z)ldz

Section B.7 Convergence for Random Vectors: Op and Op Notation

and the result follows from (B.7.3) and Theorem B.7.5.

sup IFn(x) - F(x)1 < Fn(x) + F(x)
x<x

sup IFn(x) - F(x)l---+ O.
x

(I) gn ---+ 9 in measure, i.e., J.L{ x : Ign (x) - g(x) I > E} ---+ 0 as n ---+ 00 for all E > 0

Remark B.7.1 Theorem B.7.5 can be strengthened considerably with a suitable back
ground in measure theory. Specifically, suppose J.L is a sigma finite measure on X. If
gn and 9 are measurable functions from X to R such that

(2) JIgnrdJ.L ---+ JIg/rdJ.Lasn ---+ 00 for some r > 1, then J Ign-gldJ.L ---+ Oasn ---+ 00.

A proof of this result can be found in Billingsley (1979, p. 184). 0

Proof We give the proof in the continuous case. Let 9 : Rd ---+ R be continuous and
bounded, say Igi < M < 00. Then

t:.
Theorem B.7.7 Polya's Theorem. Suppose real-valued X n ---+ X. Let Fn,F be the
distribution functions of X n, X, respectively. Suppose F is continuous. Then

Outline of Proof By Proposition B.7.1, Fn(x) ---+ F(x) and Fn(x - 0) ---+ F(x) for
alI x. Given E > 0, choose x, x such that F(x) < E, 1 - F(x) < E. Because F is
uniformly continuous on [x, x], there exists 8(E) > 0 such that for all x < xl, X2 < x,
IXI - x21 < 8(E) => IF(xd - F(X2)1 < E. Let x = XQ < Xl'" < XK = x be such that
IXj - xj-ll < 8(E) torallj.

Then

Conclude that, limn sUPx IFn(x) - F(x)1 < 3E and the theorem follows.

We end this section with some useful notation.
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The following asymptotic order in probability notation is useful.

I,
!
i
),,

i,,
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Un = op(l)

Un = Op(l)

iff

iff

iff

iff

iff

Additional Topics in Probability and Analysis Appendix B

p
Un --> 0

I:/E > 0, 3M < 00 such that 1:/17, PIIUnl > M] < E

rUnl
IVnl =op(l)

IUnl = 0 (1)
IVnl p

Un = Op(Vn ) and Vn = Op(Un ).

Note that

Op(l)op(l) = op(l), Op(l) + op(l) = Op(l), (8.7.9)

, ,

,
1
•
,

,
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t:.
and Un --> U => Un = Op(l).

Suppose ZI, ... , Zn are Li.d. as Z with EIZI < 00. Set J.L = E(Z), then Zn

J.L + op(l) by the WLLN. If EIZI 2 < 00, then Zn = J.L + Op(n-~) by the central limit
theorem.

B.8 MULTIVARIATE CALCULUS

8.8.1 A function T : R d --> R is linear iff

T(aXI + (3X2) = aT(xI) + (3T(X2)

for all a, (3 E R, Xl, X2 E Rd. More generally, T : Rd x ... X Rd
--> R is k linear iff

'" .f
V'

k

T(Xl' X2, ... , xd is linear in each coordinate separately when the others are held fixed.

8.8.2 T (TI , ... , Tp ) mapping,!ld x ... x R~ --> RP is said to be k linear iffTI , ... ,Tp
V'

k
are k linear as in B.8.1.

8.8.3 T is k linear as in B.8.l iff there exists an array {ail ,... ,ik : 1 < ij < d, 1 <j < k}
such that if Xt = (Xtl, ... , Xtd), 1 < t < k, then

•,
J

8.8.5 If h : 0 --> RP, 0 open C Rd, h _ (hi,' .. , hp ), then h is Frechet differentiable at
X E 0 iff there exists a (necessarily unique) linear map Dh(x) : Rd --> RP such that

d d k

T(XI, ... , Xk) = L .,. L ail, ... ,ik II Xji]

ik=1 i l =1 j=l

Ih(y) - h(x) - Dh(x)(y - x)1 = o(ly - xl)

where I. I is the Euclidean norm. If p = 1, Dh is the total differential.

(8.8.4)

(B.8.6)
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D(g 0 h)(x) = Dg(Dh(x)).

Dh- 1 (h(x)) = [Dh(x)tl.

More generally, h is m times Frichet differentiable iff there exist I linear operators
D1h(x) : Rd X ... X Rd

---t RP, 1 < I < m such that
" ",v

517

(B.8.7)

I

m D1h
h(y) - h(x) - L , (x)(y - x, ... ,y - x) = o(ly - xl m).

I.
1=1

Section B.8 Multivariate Calculus

m D1h(x)
h(y) - h(x) - L I! (y - x, ... ,y - x)

1=1

8.8.8 Ifhis m times Frechet differentiable, then for 1 < j < p, h j has partial derivatives of
order < m at x and the jth component of D1h(x) is defined by the array

81hj (x) . .
8 '1 8 'd : 1 < lj < d, E1 + ., .+ Ed = I, a < Ei < I, 1 < l < d .

Xl ... X d

8.8.9 h is m times Frechet differentiable at x if h j has partial derivatives of order up to m
on 0 that are continuous at x.

8.8.10 Taylor's Formula

If h j , 1 < j < P has continuous partial derivatives of order up to m + 1 on 0, then, for
all x,y E 0,

m D1h(x) Dm+1h(x*)
h(y)=h(x)+L 1 (y-x, ... ,y-x)+ ( )1 (y-x, ... ,y-x)

I. m + 1 .1=1
(B.8.11)

As a consequence, we obtain the following.

8.8.14 Let d = p, h be 1 - 1 and continuously Frechet differentiable on a neighborhood

of x E 0, and Dh(x) = gZ' (x) be nonsingular. Then h- 1
: h(O) -> 0 is Frechet

J pxp

differentiable at y = h(x) and

for some x· = x + Q*(Y - x), a < Q* < 1. These classical results may be found,
for instance, in Dieudonne (1960) and Rudin (1991). As a consequence, we obtain the
following.

8.8.12 Under the conditions of B.8.10,

< ((m + 1)!)-1 sup{IDm+1h(x/)1 : lx' - xl < Iy - xl}/y - xl m+1

for all x, yEO.

8.8.13 Chain Rule. Suppose h : 0 -> RP with derivative Dh and g : h(O) -> Rq with
derivative Dg. Then the composition go h : 0 -> Rq is differentiable and
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B.9 CONVEXITY AND INEQUALITIES

Convexity

A subset S of R k is said to be convex if for every x, YES, and every a E [0,1],
ax+ (1- a)y E S. When k = 1, convex sets are finite and infinite intervals. When k > 1,
spheres, rectangles, and hyperplanes are convex. The point Xo belongs to the interior Sa of
the convex set S iff for every d oJ 0,

(B.9.1)

where 0denotes the empty set.
A function 9 from a convex set S to R is said to be convex if

,
>
>

J,
•

>
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•

(B.9.2)

(8.9.3)

(8.9.4)

Eg(U) > g(EU)

P[g(U) = a + bTU] = 1.

g(ax + (1 ~ a)y) < ag(x) + (1 - a)g(y), all x, YES, a E [0,1].

with equality if and only if there are a and b kx 1 such that

, ,J

9 is said to strictly convex if (B.9.2) holds with < replaced by < for all x oJ y, a (j. {O, I}.
Convex functions are continuous on Sa. When k = 1, if g" exists, convexity is equivalent
to g"(x) > 0, xES; strict convexity holds if g"(x) > 0, XES. For 9 convex and
fixed x,y E S, h(a) = g(ax + (1 - p')y)) is convex in a, a E [0,1]. When k > 1, if
og2(x)/ox;OXj exists, convexity is equivalent to

L u;Uj02g(X)/ox;OXj > 0, all U E Rk and XES.

A function h from a convex set S to R is said to be (strictly) concave if 9 = -h is (strictly)
convex.

Jensen's Inequality. If S C Rk is convex and closed, 9 i~ convex on S, P[U E S] = 1,
and EU is finite, then EU E S, Eg(U) exists and

When r = 8 = 2, H61der's inequality becomes the Cauchy-Schwartz inequality (A.II.17).
For a proof of (8.9.4), see Billingsley (1995, p. 80) or Problem 8.9.3.

In particular, if 9 is strictly convex, equality holds in (B.9.3) if and only if P[U = c] = 1
for some Ckx 1.

For a proof see Rockafellar (1970). We next give a useful ineqJlality relating product
moments to marginal moments:

Holder's Inequality. Let rand 8 be numbers with r, 8 > 1, r- 1 + 8-1 = 1. Then

>

l
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>

I

~---- n
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B.IO.1.2 Spectral Theorem
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(B.9.5)

(B.9.6)

(8.10. I)

(B.1O.2)

n

PflSn -nt-tl > x) < 2exp -~x2/Lc7
i=l

(a) A is symmetric nonnegative definite (snd) iff there exist Cpxp such that

A = CCT.

We conclude with bounds for tails of distributions.

Bernstein Inequality for the Binomial Case. Let Sn ~ B(n,p), then

P([Sn - npj > no) < 2 exp{-nc2 /2} for 0 > O.

Section B.10 Topics in Matrix Theory and Elementary Hilbert Space Theory

B.10 TOPICS IN MATRIX THEORY AND
ELEMENTARY HILBERT SPACE THEORY

B.1O.1 Symmetric Matrices

For a proof, see Grimmett and Stirzaker (1992, p. 449) or Hoeffding (1963).

B.I0.1.1. The Principal Axis Theorem

That is, the probability that Sn exceeds its expected value np by more than a multiple nc
of n tends to zero exponentially fast as n ---t 00. For a proof, see Problem B.9.1.

HoetTding's Inequality. The exponential convergence rate (B.9.5) for the sum of indepen
dent Bernoulli variables extends to the sum Sn = L7 1 Xi of i.i.d. bounded variables Xi,
IXi - t-tl < Ci, where t-t = E(X1 )

We establish some of the results on symmetric nonnegative definite matrices used in the
text and B.6. Recall A pxp is symmetric iff A = AT. A is nonnegative definite (nd) iff
x T Ax > 0 for all x, positive definite (pd) if the inequality is strict unless x = o.

(a) Apxp is symmetric iff there exists P orthogonal and D = diag(>"l, ... , >"p) such that

(b) A is symmetric positive definite (spd) iff C above is nonsingular.

The "if' part in (a) is trivial because then x TAx = x TCCTX = ICxI 2 . The "only
if" part in (b) follows because ICxl 2 > 0 unless x = 0 is equivalent to Cx i= 0 unless
x = 0, which is nonsingularity. The "if' part in (b) follows by noting that C nonsingular
iff det(C) i= 0 and det(CCT ) = det2 (C). Parenthetically we note that if A is positive
definite, A is nonsingular (Problem B.IO.I). The "if' part of (a) is deeper and follows from
the spectral theorem.
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(b) The Aj are real, unique up to labeling, and are the eigenvalues of A. That is, there
exist vectors ej, lej I = 1 such that

(c) If A is also snd, all the Aj are nonnegative. The rank of A is the number of nonzero
eigenvalues. Thus, A is positive definite iff all its eigenvalues are positive.

(d) In any case the vectors ei can be chosen orthonormal and are then unique up to label.

Thus, Theorem 8.10.1.2 may equivalently be written

p

A = L eieT Ai
i=l

(8.10.4)

,,
j

!,
I
I

I

where eie[ can be interpreted as projection on the one-dimensional space spanned by ei
(Problem B.IO.2).

1 1

(8.10.1) follows easily from B.IO.3 by taking C = P diag(Af,' .. , Ai) in (B.lO.I).
The proof of the spectral theorem is somewhat beyond our scope-see Birkhoff and

MacLane (1953, pp. 275-277,314), for instance.

B.IO.1.3 If A is spd, so is A-I.

Proof A = P diag(AI, ... , Ap)pT => A-I = P diag(A~I, ... , A;1 )pT.

B.IO.1.4If A is spd, then max{x T Ax : x T x < I} = maxj Aj.

8.10.2 Order on Symmetric Matrices

As we defined in the text for A, B symmetric A < B iff B - A is nonnegative definite.
This is easily seen to be an ordering.

B.IO.2.11f A and B are symmetric and A < B, then for any C

(B.l0.5)

This follows from definition of snd or the principal axis theorem because B - A snd means
B-A = EET andthenCBcT -CACT = C(B-A)CT = CEETCT = (CE)(CE)T.

Furthermore, if A and B are spd and A < B, then

j
•

,

j
,

Proof After Bellman (1960, p. 92, Problems 13, 14). Note first that, if A is symmetric,

A-I> B- 1 • (8.10.6)

(8.10.7)
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(B.IO.8)

(B.IO.9)

(B. 10. 10)

(8.10.11)

be spd, (p + q) x (p + q), with Ell, p x p, E22 , q X q. Then

By (B. 10.7) we obtain x TA-IX > x TB-1x for all x and the result fol
D

because y = A-IX maximizes the quadratic form. Then, if A < B,

2xTY _ yTAy > 2xTY _ yTBy

Section B.10 Topics in Matrix Theory and Elementary Hilbert Space Theory

for all x, y.
lows.

8.10.2.2 The Generalized Cauchy-Schwarz Inequality

L '" Ell E 12et u =
E21 E 22

Ell, E 22 are spd. Furthermore,

and the result follows.

(i) It is endowed with an inner product (', .) : 1i x 1i -t R such that (-, .) is bilinear,

8.10.3 Elementary Hilbert Space Theory

(h,h) > 0

with equality iff h = O.

(ah 1 + bh2 , Ch3 + dh4 ) = ab(h1 , h 2 ) + ac(h1 , h 3) + bc(h2 , h 3) + bd(h2 , h 4 ),

symmetric, (hi, h 2 ) = (h 2 , hd, and

B.IO.2.3 We note also, although this is not strictly part of this section, that if U, Y are
random vectors as previously (not necessarily Gaussian), then equality holds in (B. 10.8) iff
for some b

with probability 1. This follows from (B.IO.9) since aT Var(U - E12E221Y)a = 0 for all
a iff

A linear space 1i over the reals is a Hilbert space iff

Proof From Section B.6 we have noted that there exist (Gaussian) random vectors U pX1 ,

Y qx1 such that E = Var(UT, yT)T, Ell = Var(U), E 22 = Var(Y), E 12 = cov(U, V).
The argument given in B.6 establishes that

for all a where b is E(U-EI2E221y). But (B.IO.11) for all a is equivalentto(B.lO.lO). D
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It follows that if 111t11 2 - (It. It). then Ir·11 is a norm. That is.

(a) II h II = 0 iff It = 0

(b) Ilahll = lalllhil for any scalar a
(c) Ilh l + h211 < IIhlll + Illd. Triangle inequality

(ii) 1{ is complete. That is, if {hrn}m>1 is such that Ilhm - hnll --> 0 as m, n --> 00 then
there exists h E 1{ such that II h n - h II --> O.

The prototypical example of a Hilbert space is Euclidean space RP from which the
abstraction is drawn. In this case if x = (XI, ... ,xp)T, Y = (YI, ... ,Yp)T E RP, (x, y) =

x T Y = L~=I XjYj, II x l1 2
= L~=I X] is the squared length, and so on.

8.10.3.1 Orthogonality and Pythagoras's Theorem

hI is orthogonal to h2 iff (hI, h 2) = O. This is written hI 1- h2. This is the usual
notion of orthogonality in Euclidean space. We then have

Pythagoras's Theorem. If hI 1- h 2• then

(B.IO.12)

An interesting consequence is the inequality valid for all hI, h 2 ,

(B.IO.13)

In R 2 (B.I 0.12) is the familiar "square on the hypotenuse" theorem whereas (B.I 0.13) says
that the cosine between XI and X2 is < 1 in absolute value.

8.10.3.2 Projections on Linear Spaces

We naturally define that a sequence hn E 1{ converges to h iff Ilh n - hll --> o. A linear
subspace L of 1{ is closed iff hn E L for all n, hn --> h =? h E L. Given a closed linear
subspace L of 1{ we define the projection operator IT(· I L) : 1{ --> L by: IT(h I L) is that
h' E L that achieves min{llh - h'll : h' E L}. It may be shown that IT is characterized by
the property

,
•

1

h - IT(h I L) 1- h' for all h' E L

Furthermore,

(i) IT(h IL) exists and is uniquely defined.

(ii) IT (- IL) is a linear operator

IT(ah l + (3h2 IL) = aIT(hl IL) + (3IT(h2 IL).

(iii) IT is idempotent, IT2 = IT.

(8.10.14)

•,
',1
J.J

l
",

•

j



Var(X + Y) = Var(X) + Var(Y)
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(B.10.16)

(B.IO.15)

(B.IO.17)

(B.IO.21)

(B.IO.20)

(B.IO.19)

(B.IO.18)

II(Y I L:) = E(Y I Z).

(X, Y) E(XY)

That is what (1.4.4) tells us.

(a) L: is the linear span of 1, Zl, ... , Zd' Here

II(Y I L:) = E(Y) + (EziEzy)T (Z - 8(Z)).

This isjust (1.4.14).

(b) L: is the space of all X = g(Z) for sOjTIe 9 (measurable). This is evidently a linear
space that can be shown to be closed. Here,

IIII(h IL:)II < Ilhll·

IIhl1 2
= IIII(h 1L:)11 2 + Ilh - II(h 1L:)11 2

(iv) II is norm reducing

In fact, and this follows from (B .10.12),

Section B.lO Topics in Matrix Theory and Elementary Hilbert Space Theory

so that

Here h - II(h I L:) may be interpreted as a projection on L:.l {h : (h, hi) = °for all
hi E L:}. Properties (i)-(iii~ of II above are immediate.

All of these correspond to geometric results in Euclidean space. If x is a vector in RP,
II(x I L:) is the point of L: at which the perpendicular to £ from x meets.c. (B.IO.16) is
Pythagoras's theorem again. If L: is the column space of a matrix Anxp of rank p < n, then

if X and Y are uncorrelated.
The projection formulation now reveals that what we obtained in Section 1.4 are for

mulas for projection operators in two situations,

~ ~ ~

This is the formula for obtaining the fi tted value vector Y = (Y1 , ... , Yn )T by least squares
in a linear regression Y = A,13 + to and (B.IO.16) is the ANOVA identity.

The most important Hilbert space other than RP is L2 (P) - {All random variables X
on a (separable) probability space such that EX 2 < oo}. In this case we define the inner
product by

All properties needed for this to be a Hilbert ~pace are immediate save for complete
ness, which is a theorem of F. Riesz. Maintaining our geolIletric intuition we see that, if
E(X) = E(Y) = 0, orthogonality simply correspond~ to uncorrelatedness and Pythago
ras's theorem is just the familiar

.

'.
;:t;;
,"<'

-~::" .



The identities and inequalities of Section I.e! can readily be seen to be special cases of
(B.IO.16) and (B.IO.15).

For a fuller treatment of these introductory aspects of Hilbert space theory, see Halmos
(1951), Royden (1968), Rudin (1991), or more extensive works on functional analysis such
as Dunford and Schwartz (1964).

524 Additional Topics in Probability and Analysis Appendix B

•,,

k is multinomial
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B.11 PROBLEMS AND COMPLEMENTS

Problems for Section B.l

1. An urn contains four red and four black balls. Four balls are drawn at random without
replacement. Let Z be the number of red balls obtained in the first two draws and Y the
total number of red balls drawn.

(a) Find the joint distribution of Z and Y and the conditional distribution of Y given Z
and Z given Y.

(b) Find E(Y IZ = z) for z = 0,1,2.

2. SupposeYandZhavethejointdensityp(z,y) = k(k-1)(z-y)k- 2 forO < y < z < 1,
where k > 2 is an integer.

(a) Find E(Y I Z).

(b) Compute EY = E(E(Y I Z)) using (a).

3. Suppose Zl and Z2 are independent with exponential E(>..) distributions. Find E(X IY)
when X = Zl and Y = Zl + Z2.

Hint: E(ZI + Z2 IY) = Y.

4. Suppose Y and Z have joint density function p(z, y) = z + y for 0 < z < 1, 0 < Y < 1.

(a) Find E(Y I Z = z).

(b) Find E(Ye[Z+(I/Z)] I Z = z).

5. Let (Xl, ... ,X n) be a sample from a Poisson P(>..) distribution and let Sm = L7' I Xi,
m < n.

(a) Show that the conditional distribution of X given Sn
M(k, lin, ... , lin).

(b) Show that E(Sm ISn) = (mln)Sn-

6. A random variable X has a P(>..) distribution. Given X = k, Y has a binomial B(k,p)
distribution.

(a) Using the relation E(etY ) = E(E(etY I X)) and the uniqueness of moment gen
erating functions show that Y has a P(>"p) distribution.

(b) Show that Y and X - Y are independent and find the conditional distribution of X
given Y = y.

----------------------------

,



(c) Check the identity E[E(Y I Z)] = E(Y)

9. (a) Show that if E(X2 ) and E(y2 ) are finite then

(iii) Z has a unifonn U (0, 1) distribution, Y = Z2.

(iv) Z has a U(-I, 1) distribution, Y = Z2.

(v) Z has a U(-I, 1) distribution, Y = Z2 if Z2 < ~ and Y = ~ if Z2 > ~.

525

1
_, z2 + y2 < 1
n-
Ootherwise.

4zy, 0 < z < 1, 0 < Y < 1
ootherwise.

p(Z,Y) (z, y)

P(Z,y)(z, y)

(i)

(ii)

Section B.11 Problems and Complements

7. Suppose that X has a nonnal N(/L (]"2) distribution and that Y = X + Z, where Z is
independent of X and has aN(-y, 7 2 ) distribution.

(a) What is the conditional distribution of Y given X = x?

(b) Using Bayes rule find the conditional distribution of X given Y = y.

8. In each of the following examples:

(a) State whether the conditional distribution of Y given Z = z is discrete, continuous,
or of neither type.

(b) Give the conditional frequency, density, or distribution function in each case.

Cov(X, Y) = Cov(X, E(Y IX)).

(b) Deduce that the random variables X and Y in Problem B.I.8(c) (i) have correlation
oalthough they are not independent.

10. (a) If Xl, ... ,Xn is a sample from any population and Sm = 2:7' 1 Xi, m < n, show
that the joint distribution of (Xi, Sm) does not depend on i, i < m.

Hint: Show that the joint distribution of (X ll , X n ) is the same as that of (Xi" ... ,
X in ) where (i l , ... , in) is any pennutation of (1, , n).

(b) Assume that if X and Y are any two random variables, then the family of condi
tional distributions of X given Y depends only on the joint distribution of (X, Y). Deduce
from (a) that E(X1 I Sn) = ... = E(Xn I Sn) and, hence, that E(Sm ISn) = (m/n)Sn .

. . - - - - --- ~
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11. Suppose that Z has a binomial, B(N. B), distribution and that given Z = z, Y has a
hypergeometric, 'H(z, N, n), distribution. Show that

P[Z = z IY = y] =
N-n
z-y

BZ-Y (1 _ B)N~n-(z-y)

(i.e., the binomial probability of successes in N - n trials).
Hint:

where

P[Z = z IY = y] =
N-n
z-y

b(y) = L
z

N-n
z-y

,,

j

Problems for Section B.2

1. If B is uniformly distributed on (-7r/2, 7r/2) show that Y = tan B has a Cauchy distri
bution whose density is given by p(y) = 1/[7r(1 + y2)], -00 < Y < 00. Note that this
density coincides with the Student t density with one degree of freedom obtainable from
(B.3.1O).

2. Suppose Xl and X 2 are independent exponential £(>') random variables. Let YI =

Xl - X 2 and Y2 = X 2 •

(a) Find the joint density of YI and Y2 .

(b) Show that YI has density p(y) = ~>.e->'IYI, -00 < y < 00. This is known as the
double exponential or Laplace density.

3. Let Xl and X 2 be independent with (3(rI, 81) and (3(r2' 82) distributions, respectively.
Find the joint density of YI = Xl and Y2 = X 2 (1 - Xl)'

4. Show that if X has a gamma r(p, >') distribution, then

(a) Mx(t) = E(etX
) = (./ t r, t < >..

(b) E(xr) - r(r+p)
- >.rrcp) , r > -po

(c) E(X) = p/>., Var(X) = p/>.2.

5. Show that if X has a beta (3(r, 8) distribution, then

( ) E(Xk) - r r+ k-I)) k - 1 2
a - (r+s) r+s+(k 1»' - , ,....

(b) Var X = (r+s)2C:+S + I )'

6. Let VI, ... ,Vn +I be a sample from a population with an exponential £(1) distribution
(see (A. 13.24)) and let 8 m = I:7' 1 Vi, m < n + 1.

·
"

•

•,,
",
"""

1,

J
~

1,
j
•",

~

,,

~



7. Let Sl' ... , Sr be T disjoint open subsets of Rn such that P[X E Ui IS;] = 1. Suppose
that g is a transformation from Ui I S; to Rn such that
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n!, t; > 0, 1 < i < n, L~ 1 t; < 1,

°otherwise.

{(Xl,'" ,Xn): Xl < ... < X7l },

{(XI""'Xn): X2 < Xl < ... < Xn }

n!, °< UI < U2 < ... < Un < 1,

°otherwise.

(a) Show that T = (SV! ,... , sVn )T has a density given by
n+l n+l

Hint: Derive first the joint distribution of (SV! ,... , sVn , Sn+I)T.
n+l n+l

T
(b) Show that U = (ss! ,... ,sSn) has a density given by

n+l n+l

py(y) = LPx(gil(y))IJgi(gil(y))I-I I;(y) for y E g(Ui IS;)
i=l

r

n

where g; is the restriction of g to S; and I;(y) is 1 ify E g(S;) and °otherwise. (If
I;(y) = 0, the whole summand is taken to be °even though gil is in fact undefined.)

Hint: P[g(X) E B] = L~-l P[g(X) E B,X E Silo

py(y) = n! IT f(y;) for YI < Y2 < ._. < Yn
;=1

Hint: Let

(i) g has continuous first partial derivatives in S; for each i.

(ii) g is one to one on each S;.

(iii) The Jacobian of g does not vanish on each S;.

Show that if X has density Px, Y = g(X) has density given by

Section B.11 Problems and Complements

and so on up to Sn!. Apply the previous problem.

8. Suppose that XI, ... ,Xn is a sample from a populatifjo with density f. The X; ar
ranged in order from smallest to largest are called the order statistics and are denoted by
X(l)' ... , X(n). Show that Y = g(X) = (X(1),' .. ,X(n))1' has density
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•
gIven

9. Let Xl>"" X n be a sample from a unifonn U(O, 1) distribution (cf. (A. 13.29».

(a) Show that the order statistics of X = (XI, .. " X n) have the distribution whose
density is given in Problem B.2.6(b).

(b) Deduce that X(k) has a (3(k, n - k + 1) distribution.

(c) Show that EX(k) = k/(n + 1) and Var X(k) = k(n - k + l)/(n + 1)2(n + 2).
Hint: Use Problem B.2.5.

10. Let Xl, ... , X n be a sample from a population with density f and d.f. F.

(a) Show that the conditional density of (X(l)"",X(n)V

(X(r+l)"'" X(n»)T is

if x(l) < ... < x(r) < X(r+l)'

(b) Interpret this result.

11. (a) Show that if the population in Problem B.2.1O is U(O, 1), then

T

and (X(r+l)"'" X(n»)T are independent.

I
i
I,

I

I
J

(b) D d th X x(n) X(n_1) X(2) • d d . thoe uce at (n), ... , x ' x ' ••• , x are In epen ent In IS case.
(n-1) (n-2) (1)

12. Let the d.f. F have a density f that is continuous and positive on an interval (a, b) such
that F(b) - F(a) = 1, -00 < a < b < 00. (The results are in fact valid if we only suppose
that F is continuous.)

(a) Show that if X has density f, then Y = F(X) is uniformly distributed on (0,1).

(b) Show that if U '" U(O, 1), then F-1(U) has density f.
(c) Let U(l) < ... < U(n) be the order statistics of a sample of size n from a U(O, 1)

population. Show that then F-1(U(l)) < ... < F-l(U(n») are distributed as the order
statistics of a sample of size n from a population with density f.
13. Using Problems B.2.9(b) and B.2.12 show that if X(k) is the kth order statistic of a
sample of size n from a population with density f, then

I
PX(k)(t) = (k _ l)~('n _ k),F

k
-

1
(t)(1 - F(t))"-k f(t).

14. Let X(l), ... , X(n) be the order statistics of a sample of size n from an £(1) population.
Show that nX(l) , (n - 1) (X(2) - X(l»)' (n - 2) (X(3) - X(2))" .. , (X(n) - X(n-I)) are
independent and identically distributed according to £(1).

Hint: Apply Theorem B.2.2 directly to the density given by Problem B.2.8.

·•

•·

,
.'
•,,
•,
i

,

•

J
J,
•

••



n

,;n(Z - /-L)/ 2.:(Zi - Z)2/(n - 1)
i=l

15. Let Tk be the time of the kth occurrence of an event in a Poisson process as in (A. 16.4).

(a) Show that Tk has a r(k, >.) distribution.

(b) From the identity of the events, [N (1) < k - 1] = [Tk > 1J, deduce the identity

1
00 k-l >.j

9k,1(S)ds = 2.: -.,e-".
" j=O J.

529

r even

r odd.

2~r(r/2)! '
0,

E(X - /-Lt

Section B.11 Problems and Complements

Problems for Section B.3

1. Let X and Y be independent and identically distributed N(O, 0'2) random variables.

(a) Show that X 2 + y2 and v'X;C+Y2 are independent.

(b) Let B = sin- l v'X;+Y2' Show that B is uniformly distributed on (-;, ;).

(c) Show that X/Y has a Cauchy distribution.
Hint: Use Problem B.2.1.

2. Suppose that Z '" r (~ k, ~ k), k > 0, and that given Z = z, the conditional distribution
of Y is N(O, Z-l). Show that Y has a '4 distribution. When k = 1, this is an example
where E(E(Y I Z)) = 0, while E(Y) does not exist.

3. Show that if Zl' ... , Zn are as in the statement of Theorem B.3.3, then

has a Tn-I distribution.

4. Show that if Xl, ... ,Xn are independent £(>') random variables, then T = 2>' 2:~ 1 Xi
has a X~n distribution.

Hint: First show that 2>'Xi has a r (1, ~) = X~ distribution.

5. Show that if Xl, ... , X m ; Yl , ... , Yn are independent £ (>') random variables, then

S = (n/m) (2::" 1Xi) / (2:; l}j) has a :F2m,2n distribution.

6. Suppose that Xl and X2 are independent with rep, 1) and r (p + ~, 1) distributions.
Show that Y = 2.jXI X 2 has a r(2p, 1) distribution.

7. Suppose X has density p that is symmetric about 0; that is, p(x) = p( -x) for all x.
Show that E(Xk ) = °if k is odd and the kth moment is finite.

8. Let X '" N (/-L, (72).

(a) Show that the rth central moment of X is
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(b) Show the rth cumulant CT is xero for r > 3.
Hint: Use Problem B.3.7 for r odd. For r even set m = r/2 and note that because

y = [(X - IJ)/erj2 has a xi distribution, we can find E(yrn) from Problem B.2.4. Now
use E(X - IJt = erT E(ym).

9. Show that if X ~ Tk, then

for r even and r < k. The moments do not exist for r > k, the odd moments are zero when
r < k. The mean of X is 0, for k > 1, and Var X = k/(k - 2) for k > 2.

Hint: Using the notation of Section B.3, for r even E(XT) = E(QT) =

k~TE(ZT)E(V-~T), where Z ~ N(O, 1) and V '" x~. Now use Problems B.2.4 and
B.3.7.

10. Let X ~ :Fk m, then,

provided - ~k < r < ~m. For other r, E(XT) does not exist. When m > 2, E(X) =

m/(m - 2), and when m > 4,

X
2m2(k+m-2)

Var = -::-:---'------:-::--,---~
k(m - 2)2(m - 4) .

Hint: Using the notation of Section B.3, E(XT) = E(QT) = (m/kY E(VT)E(W-T),
where V '" x~ and W ~ x~. Now use Problem B.2.4.

11. Let X have a N( (J, 1) distribution.

(a) Show that Y = X 2 has density

py(y) = 1 e-~(Y+92)(ellv'Y + e- IIv'Y), y > 0.
2v'21rY

This density corresponds to the distribution known as noncentral X2 with 1 degree offree
dom and noncentrality parameter (J2.

(b) Show that we can write

DC

py(y) = :LP(R = i)hi+1(Y)
i=1

where R ~ P ( ~ (J2) and f m is the x~ density. Give a probabilistic interpretation of this
formula.

Hint: Use the Taylor expansions for ellv'Y and e-lIv'Y in powers of -/Y.

•

,.
,,,
j

,
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~
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2
-3' ... ,

n-1
--.
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(b) Let

2 2 (m - 1) - )2
8m = 8m - 1 + (Xm - X(m-l) .

m

00

ps(s) = LP(R = i)fk+2i,m(S)
i=O

00

pv(v) = L P(R = i)f2i+n(v), v> °
i=O

12. Let X I, ... , X n be independent nonnal random variables each having variance 1 and
E(X;) = Bi, i = 1, .. , ,n, and let B2 = 2:~ I Br Show that the density of V = 2:~ I xl
is given by

1
00 00

Pv(v) = LP(R = i)f2i+I(V - s) fn-I(S)ds.
o i=O

where R ~ P (~B2) and fm is the X~ density. The distribution of V is known as the
noncentral X2 with n degrees offreedom and (noncentrality) parameter B2 .

Hint: Use an orthogonal transfonnation Y = AX such that Y I = 2:~ I (BiX;/B).
Now V has the same distribution as 2:~ I Y? where Y I , ... , Yn are independent with vari
ances 1 and E(YI ) = B, E(Y;) = 0, i = 2, ... ,n. Next use Problem B.3.11 and

where R '" P (~B2) and fJ,m is the density of Fj,m' The distribution of 8 is known as the
noncentral Fk,m distribution with (noncentrality) parameter B2 •

15. Let Xl, ... ,Xn be independent noqnal random variables with common mean and
variance. Define X(m) = (11m) 2:7' I Xi, and S~ = 2:7' leXi - X(m))2.

(a) Show that

13. Let Xl, ... , X n be independent N(O, 1) random variables and let V = (Xl + B)2 +
2:7 2 Xl· Show that for fixed v and n, P(V > v) is a strictly increasing function of B2.
Note that V has a noncentral X~ distribution with parameter B2 .

14. Let V and W be independent with W '" X~ and V having a noncentral X~ distribution
with noncentrality parameter B2. Show that 8 = (VIk) I(WIm) has density

Show that the matrix A defined by Y = AX is orthogonal and, thus, satisfies the require
ments of Theorem B.3.2.

(c) Give the joint density of (X(n) , 8~, ... ,S~)T.
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- - -
16. Show that under the assumptions of Theorem B.3.3, Z and (Zl - Z, ... , Zn - Z) are
independent.

- --
Hint: It suffices to show that Z is independent of (Z2 - Z, . .. ,Zn - Z). This provides

another proof that Z and I:~ 1 (Zi - Z)2 are independent.

Problems for Section B.4

1. Let (X, Y) ~ N (1, 1, 4, 1, ~). Find

(a) P(X + 2Y < 4).

(b) P(X < 21 Y = 1).

(c) The joint distribution of X + 2Y and 3Y - 2X.
Let (X, Y) have a N (Ih, M2, (J? ,d, p) distribution in the problems 2--6, 9 that follow.

2. Let F(-, " MI, M2, d, d, p) denote the d.f. of (X, Y). Show that

X -MI Y -M2,

has a N(O,O, 1, 1,p) distribution and, hence, express F(-, ',MI,M2,d,(J~,p) in terms of
F(·,·,O,O,l,l,p).

3. Show that X + Y and X - Y are independent, if and only if, (J? = (J~ .

4. Show that if (JI (J2 > 0, Ipl < 1, then

1

I
,

has a X~ distribution.
Hint: Consider (UI, U2) defined by (B.4.19) and (B.4.22).

5. Establish the following relation due to Sheppard.

F(O, 0, 0, 0,1,1, p) = ~ + (l/21f) sin- I p.

Hint: Let UI and U2 be as defined by (B.4.19) and B.4.22, then

•

,
•

PiX < 0, Y < 0]

6. The geometry o/the bivariate normal surface.

(a) Let Be = {(x, y) : p(X,Y) (x, y) = c}. Suppose that (J? = O"~. Show that {Be; C >
O} is a family of ellipses centered at (MI, M2) with common major axis given by (y -M2) =

·,



-'

(x -Ill) if P > 0, (y - JJ2) = -(x - JJl) if p < O. If p = 0, {Se} is a family of concentric
circles.

T=v(n-2)R
VI - R2 .

533Section B.11 Problems and Complements

(b) If x = e, px(e, y) is proportional to a normal density as a function of y. That is,
sections of the surface z = px(x, y) by planes parallel to the (y, z) plane are proportional
to Gaussian (normal) densities. This is in fact true for sections by any plane perpendicular
to the (x, y) plane.

(c) Show that the tangents to Se at the two points where the line y = JJ2 +p((72/ CTl) (x
JJ 1) intersects Se are vertical. See Figure B04.2.

7. Let (X1 ,Y1 ), ... ,(Xn ,Yn ) beasamplefromaN(JJl,JJ2'CTf,CT~,p) = N(I-t,};,) dis
tribution. Let X = (l/n) L~ 1 Xi, Y = (l/n) L~ 1 Y;, S~ = L~ 1(Xi - X)2,

2 n -2 n - -
8 2 = Li=l (Y; - Y) ,S12 = Li=l (Xi - X)(Y; - Y).

(a) Show that n(X - JJl' Y - JJ2)T};,-1 (X - JJl, Y - JJ2) has a X~ distribution.

(b) Show that (X, Y) and (8~ , 8~, 8 12 ) are independent.
Hint: (a): See Problem BAA.

(b): Let A be an orthogonal matrix whose first row is (n- ~ , ,n- ~ ). Let U =

AX and V = AY, where X = (Xl, ... , Xn)T and Y = (Yl, , yn)T. Show that
(U2,V2), ... , (Un, Vn) formasamplefromaN(O,O,CT~,CT~,p)population. Note that 8; =

n 22 n 2 n .- - r.::
Li=2 Ui ' 8 2 = Li=2 Vi ,812 = Li=2 UiVi, whIle X = UI!...;n, Y = VI! v n.

8. In the model of Proplem BA.7 let R = 8 12/818 2 and

(a) Show that wren p = 0, T has a Tn - 2 distribution.

(b) Find the density of R if p = O.
Hint: Without loss of generality, take CT~ = CT~ = 1. Let C be an (n - 1) x (n -

1) orthogonal matrix whose first row is (U2, ... ,Un)/Sl. Define (W2, ... , Wn)T =
C(V2 , .. . , Vn)T and show that T can be written in the form T = L/M where L =

8 12 /81 = W2 and M 2 = (S;8i - 8~2)/(n - 2)S; = L~ 3 W?!(n - 2). Argue that
given U2 = U2, .. . , Un = Un, no matter what U2,.·., Un are, T has a 7;,-2 distribution.
Now use the continuous version of (B.1.24).

9. Show that the conditional distribution of aX + bY given eX + dY = tis nonnal.
Hint: Without loss of generality take a = d = 1, b = e = 0 because (aX + bY, eX +

dY) also has a bivariate normal distribution. Deal directly with the cases (71(72 = 0 and
Ipl = 1.

10. Let PI denote the N(O, 0,1,1,0) density and let P2 be the N(O, 0,1,1, p) density.
Suppose that (X, Y) have the joint density

1 1
p(x,y) = 2P1(x,y) + 2P2 (x,y).
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Show that X and Y have nonnal marginal densities, but that the joint density is nonnal, if
and only if, p = O.

11. Use a construction similar to that of Problem B.4.1 0 to obtain a pair of random variables
(X, Y) that

(i) have marginal nonnal distributions.

(ii) are uncorrelated.

(iii) are not independent.

Do these variables have a bivariate nonnal distribution?

Problems for Section B.5

1. Establish (B.5.lO) and (B.5.II).

2. Let akXl and Bkxk be nonrandom. Show that

and

3. Show that if Mu (t) is well defined in a neighborhood of zero then

where !Ji, ...i. = E(U;' ... Uk') and the sum is over all (iI, ... ,ik ) with i j > 0, L~=l i j =

p, p = 1,2, .... Moreover,

DC

'"' 1 . .
K u(t) = LJ ,Ci, ...i. t~' ... t~'.

p.
p=l

That is, the Taylor series for K u converges in a neighborhood of zero.

4. Show that the second- and higher-degree cumulants (where p = L~=l i j > 2) are
invariant under shift; thus, they depend only on the nioments about the mean.

5. Establish (B.5.16)-{B.5.19).
•

6. In the bivariate case write I-t = E(U), (Jij

(J~ = (J02. Show that
(J20,

•,
•,,
•

•

•",



= (U1 , U2)T has a bivariate
(e U" eU2 )T is said to have a

- - -- - - -
U1 = Zl,U2 = Z2 + aU1,U3 = Z3 +aU2, ... ,Uk = Zk + aUk-I'
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(C40, C04, C22, C31, C13)

= (er40 - 3er?, er04 - 3er~, er22 - er?er~ - 2erll, er31 - 3er?erll' er]3 - 3er~erll)'
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and

Mu(t) = MV (t1 )Mw (t2)Mz(t 1 + t2)

Ku(t) = Kv(t1 ) + K W(t2) + KZ(t1 + t2)

and show that Cij(V) = Ci+j(Z) for i =f. j; i,j > 0.

8. (The bivariate log normal distribution). Suppose V
N (Ih, 1J2, er?, d, p) distribution. Then Y = (Y'i, 1'2)T

bivariate log normal distribution. Show that

7. Suppose V, W, and Z are independent and that U1 = Z + V and U2 = Z + W. Show
that

where erII = er1er2 p.

9. (a) Suppose Z is N(I-£, :E). Show that all cumulants of degree higher than 2 (where

p = 2:;=1 ij > 2) are zero.

(b) Suppose VI, ... , V n are i.i.d. as V. Let Zn = n- ~ 2:~ 1(Vi - 1-£). Show that

K Zn (t) = nKu (n- ~ t) - n ~ I-£T t and that all cumulants of degree higher than 2 tend to
zero as n --+ 00.

10. Suppose V kX1 and Y mxl are independent and Z(k+m)xl = (VT , yT)T. Let C1,J
where 1= {iI, ... ,id and J = {ik+l,' .. , ik~} be a cumulant of Z. Show that C1,J =f. °
unless either 1= {O, ... , O} or J = {O, ... , O}.

2. Let V be as in Definition B.6.1. Show that if :E is not positive definite, then V does not
have a density.

3. Suppose V kx1 has positive definite variance:E. Let U/;)l and Ug~I)Xl be a partition

of V with variances :Ell, :E22 and covariance :E12 = Cov(V(l), V(2))1 x(k-l). Show that

COV(:E12 :E2lv(2), V(1) - :E12:E22V(2)) = 0.

Problems for Section B.6

1. (a) Suppose Ui = IJ + aZi + (3Zi-l, i = 1, ... , k, where Zo, . . ' ,Zk are inde
pendent N(O, er2) random variables. Compute the expectation and covariance matrix of
V = (UI, ... , Uk)' Is V k-variate normal?

(b) Perform the same operation and answer the same question for Ui defined as follows:



. L q L p
(a) Ifp < q, then Zn -+ Z ~ Zn -+ Z.
Hint: Use Jensen's inequality B.9.3.

(b) if Zn ~ Z, then Zn !:. Z.
Hint:

1. Prove Theorem B.7.3 for d = 1 when Zan Zn have continuous distribution functions F
and FT!'

Hint: Let U denote a uniform, U(O, 1), random variable. For any d.f. C define the left
inverse by C-1(u) = inf{t: C(t) > u}. Now define Z~ = F;;l(U) and Z· = F-1(U).

2. Prove Proposition B.7.I(a).

3. Establish (B.7.8).

4. Show that if Zn -6 zo, then P(/Zn - zo/ > t:) -+ P(/Z - zol > E).
Hint: Extend (A.14.5).

1
5. The Lp norm of a random vector X is defined by IX/p = {EIXIP} p, p > 1. The
sequence of random variables {Zn} is said to converge to Z in L p nonn if IZn - Zip -+ °
as n -+ 00. We write Zn ~ Z. Show that

,,
"

f
I

,
•

I
I

li
I
I ,

536

Problems for Section B.7
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6. Show that /Zn - Z/ !:. °is equivalent to Znj !:. Zj for 1 < j < d.
Hint: Use (B.7.3) and note that IZnj - Zj/2 < IZn - Z1 2

.

7. Let U '" U(O, 1) and let U1 = 1, U2 = I{U E [0, ~n, U3 = I{U E [~, In,
U4 = I{U E [0, ~n, Us = I{U E [~, ~n, ... , Un = I{U E [m2- k

, (m + I)2- k n,
p a.s.

where n = m + 2k
, °< m < 2k and k > 0. Show that Un -+ °but Un + 0.

8. Let U '" U(O, 1) and set Un = 2nI{U E [0, ~n. Show that Un ~. 0, Un .!. 0, but
L p

Un +0, p > 1, where L p is defined in Problem B.7.5.

9. Establish B.7.9.

10. Show that Theorem B.7.5 implies Theorem B.7.4.

11. Suppose that as in Theorem B.7.6, Fn(x) -+ F(x) for all x, F is continuous, and
strictly increasing so that F-1 (a) is unique for al! °< a < 1. Show that

foral! E > 0. HereF;;l(a) = inf{x: Fn(x) > a}.
Hint: Argue by contradiction.

- '~
,

T~,

J
:
",
•

j
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Problems for Section B.9

P(X > a) < inf{e-taEetX : t > O}.

Hint: Use inequality (AI5.4).

9. Use Problem 8 above to prove Bernstein's inequality.
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2. If h : Rd -+ Rand h(x) = D 2h(x) is continuous in a sphere {x: Ix - xol < 8}, then
for Izi < 8,

h(xo + z) = h(xo) + h(xo)z + zT 1
1

1
1

h(xo + uvz)vdudv z .

Problems for Section B.8

1. If h : Rd
-+ RP and h(x) = Dh(x) is continuous in a sphere {x: Ix - xol < 8}, then

for Izi < 8

h(xo + z) = h(xo) + 1
1

h(xo + uz)zdu zT.

Here the integral is a p x d matrix of integrals.
Hint: Let g(u) = h(xo + uz). Then by the chain rule, g(u) = h(xo + uz)z and

1
1

h(xo + uz)zdu = 1
1

g(u)du = g(l) - g(O) = h(xo + z) - h(xo).

•

Hint: Apply Problem B.8.1 to h(xo + z) - h(xo) - h(xo)z.

3. Apply Problems B.8.1 and B.8.2 to obtain special cases of Taylor's Theorem B.8.12.

1. State and prove Jensen's inequality for conditional expectations.

2. Use Hoeffding's inequality (B.9.6) to establish Bernstein's inequality (B.9.5). Show that
if p = ~, the bound can be improved to 2 exp{ -2n/(2}.

3. Derive HOlder's inequality from Jensen's inequality with k = 2.

Hint: For (x, y) E R 2, consider g(x, y) = J:;L + IYJ', ; + ~ = 1.

4. Show that if k = 1 and g"(x) exists, then g"(X) > 0, all XES, and convexity are
equivalent.

5. Show that convexity is equivalent to the convexity of g(o:x + (1 - o:)y)) as function of
0: E [0,1] for all x and y in S.

6. Use Problem 5 above to generalize Problem 4 above to the case k > 1.

7. Show that if a~i a~j g2 (x) exists and the matrix a~i a~j g2(x) is positive definite, then

9 is strictly convex.

8. Show that
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10. Show that the sum of (strictly) convex functions is (strictly) convex.

Problems for Section B.lO

1. Verify that if A is snd, then A is ppd iff A is nonsingular.

2. Show that if S is the one-dimensional space S = {ae : a E R} for e orthonormal, then
the projection matrix onto S (B.I 0.17) is just eeT .

3. Establish (B.10.15) and (B.10.16).

4. Show that h - II(h I £.) = II(h 1£.1-) using (B.IO.14).

5. Establish (B.1O.17).

B.12 NOTES

Notes for Section B.l.2

(I) We shall follow the convention of also calling E(Y I Z) any variable that is equal
to g( Z) with probability 1.

Notes for Section B.1.3

(1) The definition of the conditional density (B.1.25) can be motivated as follows:
Suppose that A(x), A(y) are small "cubes" with centers x and y and volumes dx, dy
and p(x, y) is continuous. Then PiX E A(x) lYE A(y)] = PiX E A(x), Y E

A(y)JlP[Y E A(y)]. But PiX E A(x), Y E A(y)] ~ p(x,y)dx dy, PlY E A(y)] ~
py(y)dy, and it is reasonable that we should have p(x I y) ~ PiX E A(x) lYE

A(y)Jldx::::; p(x, y)/py(y).

Notes for Section B.2

(I) We do not dwell on the stated conditions of the transformation Theorem B.2.1 be
cause the conditions are too restrictive. It may, however, be shown that (B.2.1) continues
to hold even if f is assumed only to be absolutely integrable in the sense of Lebesgue and
K is any member of Bk , the Borel a-field on R k

• Thus, f can be any density function and
K any set in R k that one commonly encounters.

Notes for Section B.3.2

(1) In deriving (B.3.15) and (B.3.17) we are using the standard relations, [ABJT 
B TAT, det[ABJ = det A det B, and det A = det AT.

Notes for Section B.5

(I) Both m.gJ.'s and cJ.'s are special cases of the Laplace transform 'I/J of the distribu
tion of U defined by

where z is in the set of k tuples of complex numbers.

•
j
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Appendix C Tables 543

z

-1.282 0 1.282

Area = .1

Pr(Z < z)

Area= .8Area = .1

Pr(Z > z) .50 045 040 .35 .30 .25 .20 .15 .10
z 0 .126 .253 .385 .524 .674 .842 1.036 1.282

Pr(Z > z) .09 .08 .07 .06 .05 .04 .03 .025
z 1.341 10405 1.476 1.555 1.645 1.751 1.881 1.960

Table I' Auxilliary table of the standard normal distribution

Entries in the top row are areas to the right of values in the second row.

Pr(Z ~ z) .02 .01 .005 .001 .0005 .0001 .00005 .00001
z 2.054 2.326 2.576 3.090 3.291 3.719 3.891 4.265



j
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Pr(T > t)
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Table II f distribution critical values

Right tail probability p

df .25 ,10 .05 .025 .02 .01 .005 .0025 .001 .0005
I 1.000 3.078 6.314 12.71 15.89 31.82 63.66 127.3 318.3 636.6
2 0.816 1.886 2.920 4.303 4.849 6.965 9.925 14.09 22.33 31.60
3 0.765 1.638 2.353 3.182 3.482 4.541 5.841 7.453 10.21 12.92
4 0.741 1.533 2.132 2.776 2.999 3.747 4.604 5.598 7,173 8.610
5 0.727 1.476 2.015 2.571 2.757 3.365 4.032 4,773 5.893 6.869
6 0.718 1.440 1.943 2.447 2.612 3,143 3.707 4.317 5.208 5.959
7 0.711 1.415 1.895 2.365 2.517 2.998 3.499 4.029 4,785 5.408
8 0.706 1.397 1.860 2,306 2.449 2.896 3.355 3.833 4.501 5.041
9 0.703 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297 4.781
10 0.700 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144 4.587
1 I 0.697 1.363 1.796 2,201 2.328 2.718 3,106 3.497 4.025 4.437
12 0.695 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.930 4.318
13 0.694 1.350 1.771 2.160 2.282 2.650 3.012 3,372 3.852 4.221
14 0.692 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787 4.140
15 0,691 1.341 1.753 2.131 2.249 2.602 2,947 3.286 3.733 4.073
16 0.690 1.337 1.746 2.120 2.235 2.583 2.921 3.252 3.686 4.015
17 0,689 1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646 3.965
18 0.688 1.330 1.734 2.101 2.214 2.552 2.878 3.197 3.610 3.922
19 0.688 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579 3.883
20 0.687 1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552 3.850
21 0.686 1.323 1.721 2.080 2.189 2.518 2.831 3.135 3.527 3.819
22 0.686 1.321 1.717 2.074 2.183 2.508 2.819 3.1l9 3.505 3.792
23 0.685 1.319 1.714 2,069 2.177 2.500 2.807 3.104 3.485 3.768
24 0.685 1.318 I.711 2.064 2.172 2.492 2.797 3.091 3.467 3.745
25 0,684 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450 3.725
30 0.683 1.310 1.697 2.042 2.147 2.457 2.750 3.030 3.385 3.646
40 0.681 1.303 1.684 2.021 2.123 2.423 2.704 2.971 3.307 3.551
50 0,679 1.299 1.676 2.009 2.109 2.403 2.678 2.937 3.261 3.496
60 0.679 1.296 1.671 2.000 2.099 2.390 2.660 2.915 3.232 3,460
100 0.677 1.290 1.660 1.984 2.081 2.364 2.626 2.871 3.174 3.390

1000 0.675 1.282 1.646 1.962 2.056 2.330 2.581 2.813 3.098 3.300
00 0.674 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.090 3.291

50% 80% 90% 95% 96% 98% 99% 995% 99.8% 99.9%
Confidence level C

The entries in the top row are the probabilities of exceeding the tabled values. The left
column gives the degrees of freedom.
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The entries in the top row are the probabilities of exceeding the tabled values. p = Pr(x2 >
x) where x is in the body of the table and p is in the top row (margin). df denotes degrees
of freedom and is given in the left column (margin).

Right tail probability p
df .25 .10 .05 .025 .02 .01 .005 .0025 .001 .0005
1 1.32 2.71 3.84 5.02 5.41 6.63 7.88 9.14 10.83 12.12
2 2.77 4.61 5.99 7.38 7.82 9.21 10.60 11.98 13.82 15.20
3 4.11 6.25 7.81 9.35 9.84 11.34 12.84 14.32 16.27 17.73
4 5.39 7.78 9.49 11.14 11.67 13.28 14.86 16.42 18.47 20.00
5 6.63 9.24 11.07 12.83 13.39 15.09 16.75 18.39 20.52 22.11
6 7.84 10.64 12.59 14.45 15.03 16.81 18.55 20.25 22.46 24.10
7 9.04 12.02 14.07 16.01 16.62 18.48 20.28 22.04 24.32 26.02
8 10.22 13.36 15.51 17.53 18.17 20.09 21.95 23.77 26.12 27.87
9 11.39 14.68 16.92 19.02 19.68 21.67 23.59 25.46 27.88 29.67
10 12.55 15.99 18.31 20.48 21.l6 23.21 25.19 27.11 29.59 31.42
11 13.70 17.28 19.68 21.92 22.62 24.72 26.76 28.73 31.26 33.14
12 14.85 18.55 21.03 23.34 24.05 26.22 28.30 30.32 32.91 34.82
13 15.98 19.81 22.36 24.74 25.47 27.69 29.82 31.88 34.53 36.48
14 17.12 21.06 23.68 26.12 26.87 29.14 31.32 33.43 36.12 38.11
15 18.25 22.31 25.00 27.49 28.26 30.58 32.80 34.95 37.70 39.72
16 19.37 23.54 26.30 28.85 29.63 32.00 34.27 36.46 39.25 41.31
17 20.49 24.77 27.59 30.19 31.00 33.41 35.72 37.95 40.79 42.88
18 21.60 25.99 28.87 31.53 32.35 34.81 37.16 39.42 42.31 44.43
19 22.72 27.20 30.14 32.85 33.69 36.19 38.58 40.88 43.82 45.97
20 23.83 28.41 31.41 34.17 35.02 37.57 40.00 42.34 45.31 47.50
21 24.93 29.62 32.67 35.48 36.34 38.93 41.40 43.78 46.80 49.01
22 26.04 30.81 33.92 36.78 37.66 40.29 42.80 45.20 48.27 50.51
23 27.14 32.01 35.17 38.08 38.97 41.64 44.18 46.62 49.73 52.00
24 28.24 33.20 36.42 39.36 40.27 42.98 45.56 48.03 51.18 53.48
25 29.34 34.38 37.65 40.65 41.57 44.31 46.93 49.44 52.62 54.95
26 30.43 35.56 38.89 41.92 42.86 45.64 48.29 50.83 54.05 56.41
27 31.53 36.74 40.11 43.19 44.14 46.96 49.64 52.22 55.48 57.86
28 32.62 37.92 41.34 44.46 45.42 48.28 50.99 53.59 56.89 59.30
29 33.71 39.09 42.56 45.72 46.69 49.59 52.34 54.97 58.30 60.73
30 34.80 40.26 43.77 46.98 47.96 50.89 53.67 56.33 59.70 62.16
40 45.62 51.81 55.76 59.34 60.44 63.69 66.77 69.70 73.40 76.09
50 56.33 63.17 67.50 71.42 72.61 76.15 79.49 82.66 86.66 89.56
60 66.98 74.40 79.08 83.30 84.58 88.38 91.95 95.34 99.61 102.69
80 88.13 96.58 101.88 106.63 108.07 112.33 116.32 120.10 124.84 128.26
100 109.14 118.50 124.34 129.56 131.14 135.81 140.17 144.29 149.45 153.17

545Appendix C Tables
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Table IV F distribution critical values

Pr(F > 1)

Tables Appendix C

.
,

i

\,

Tl

Pr(F > f) T2 1 2 3 4 5 6 7 8 10 15
0.05 1 161 199 216 225 230 234 237 239 242 246
0.025 648 799 864 900 922 937 948 957 969 985
0.01 4052 4999 5403 5625 5764 5859 5928 5981 6056 6157
0.05 2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.40 19.43
0.D25 38.5! 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.40 39.43
om 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.40 99.43
0.05 3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.79 8.70
0.025 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.42 14.25
0.01 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.23 26.87
0.05 4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 5.96 5.86
0.025 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.84 8.66
0.01 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.55 14.20
0.05 5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.74 4.62
0.D25 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.62 6.43
0.01 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.05 9.72
0.05 6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.06 3.94
0.025 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.46 5.27
0.01 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.87 7.56
0.05 7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.64 3.51
0.025 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.76 4.57
0.01 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.62 6.31
0.05 8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.35 3.22
0.025 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.30 4.10
om 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.81 5.52
0.05 9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.14 3.01
0.025 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 3.96 3.77
0.01 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.26 4.96
0.05 10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 2.98 2.85
0.025 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.72 3.52
0.01 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.85 4.56
0.05 12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.75 2.62
0.025 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.37 3.18
0.01 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.30 4.01
0.05 15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.54 2.40
0.025 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.06 2.86
0.01 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.80 3.52

Tl = numerator degrees of freedom, T2 = denominator degrees of freedom.

I
I

I
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x ~ F, X is distributed according to F,
463

B(n, e), binomial distribution with param
eters nand e, 461

E(A), exponential distribution with pa
rameter A, 464

H(D, N, n), hypergeometric distribution
with parameters D, N, n, 461

M(n,e 1 , ... ,eq ), multinomial distribu
tion with parameters n, e1 , ... ,

eq , 462
N(JL, E), multivariate normal distribu

tion,507
N(J.L, ( 2), normal distribution with mean

J.L and variance a 2, 464
N (J.L 1, J.L2, a? ,a~ ,p), bivariate normal dis

tribution, 492
P(A), Poisson distribution with parame

ter A, 462
U(a, b), uniform distribution on the inter

val (a, b), 465

acceptance, 215
action space, 17
adaptation, 388
algorithm, 102, 127

bisection, 127,210
coordinate ascent, 129
EM, 133
Newton-Raphson, 102, 132, 189,210

for GLM, 413
proportional fitting, 157

alternative, 215, 217

INDEX

analysis of variance (ANOVA), 367
table, 379

antisymmetric, 207, 209
asymptotic distribution

of quadratic forms, 510
asymptotic efficiency, 331

of Bayes estimate, 342
ofMLE, 331, 386

asymptotic equivalence of MLE and
Bayes estimate, 342

asymptotic normality, 311
of M -estimate, estimating equation

estimate, 330
of estimate, 300
of minimum contrast estimate, 327
of MLE, 331, 386
of posterior, 339, 391
of sample correlation, 319

asymptotic order in probability notation,
516

asymptotic relative efficiency, 357
autoregressive model, 11, 292

Bayes credible bound, 251
Bayes credible interval, 252
Bayes credible region, 251

asympt~tic, 344
Bayes estimiLte, 162

Bernoulli trials, 166
equivariance, 168
Gaussim model, 163
linear, I~7

Bayes risk, 1162

547
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Bayes rule, 27, 162
Bayes' rule, 445, 479, 482
Bayes' theorem, 14
Bayesian models, 12
Bayesian prediction interval, 254
Behrens-Fisher problem, 264
Bernoulli trials, 447
Bernstein's inequality, 469

binomial case,S I 9
Bernstein-von Mises theorem, 339
Berry-Esseen bound, 299
Berry-Esseen theorem, 471
beta distribution, 488

as prior for Bernoulli trials, 15
moments, 526

beta function, 488
bias, 20, 176

sample variance, 78
binomial distribution, 447, 461
bioequivalence trials, 198
bivariate log normal distribution, 535
bivariate normal distribution, 497

cumulants, 506
geometry, 532
nondegenerate, 499

bivariate normal model, 266

Cauchy distribution, 526
Cauchy-Schwartz inequality, 458
Cauchy-Schwarz inequality, 39

generalized, 52 I
center of a population distribution, 71
central limit theorem, 470

multivariate,S 10
chain rule, 517
change of variable formula, 452
characteristic function, 505
Chebychev bound, 346
Chebychev's inequality, 299, 469
chi-square distribution, 49 I

noncentral, 530
chi-square test, 402
chi-squared distribution, 488
classification

Index

Bayes rule, 165
coefficient of determination, 37
coefficient of skewness, 457
collinearity, 69, 90
comparison, 247
complete families of tests, 232
compound experiment, 446
concave function,S I 8
conditional distribution, 478

for bivariate normal case, 501
for multivariate normal case, 509

conditional expectation, 483
confidence band

quantiles
simultaneous, 284

confidence bound, 23, 234, 235
mean

nonparametric, 241
uniformly most accurate, 248

confidence interval, 24, 234,235
Bernoulli trials

approximate, 237
exact, 244

location parameter
nonparametric, 286

median
nonparametric,282

one-sample Student t, 235
quantile

nonparametric, 284
shift parameter

nonparametric,287
two-sample Student t, 263
unbiased, 283

confidence level, 235
confidence rectangle

Gaussian model, 240
confidence region, 233, 239

distribution function, 240
confidence regions

Gaussian linear model, 383
conjugate normal mixture distributions,

92
consistency, 301
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Index

of estimate, 300, 30 I
of minimum contrast estimates, 304
of MLE, 305, 347
of posterior, 338
of test, 333
uniform, 301

contingency tables, 403
contrast function, 99
control observation, 4
convergence

in L p norm, 536
in law, distribution, 466
in law, in distribution

for vectors, 511
in probability, 466

for vectors, 511
of random variables, 466

convergence of sample quantile, 536
convex function, 518
convex support, 122
convexity, 518
correlation, 267,458

inequality, 458
multiple, 40
ratio, 82

covariance, 458
of random vectors, 504

covariate, 10
stochastic, 387, 419

Cramer-Rao lower bound, 181
Cramer-von Mises statistic, 271
critical region, 23, 215
critical value, 216,217
cumulant,460

generating function, 460
in normal distribution, 460

cumulant generating function
for random vector, 505

curved exponential family, 125
existence of MLE, 125

De Moivre-Laplace theorem, 470
decision rule, 19

admissible, 31

549

Bayes, 27, 161, 162
inadmissible, 3 I
minimax, 28, 170, 171
randomized, 28
unbiased, 78

decision theory, 16
delta method, 306

for distributions, 311
for moments, 306

density, 456
conditional, 482

density function, 449
design, 366

matrix, 366
random, 387

values, 366
deviance, 414

decomposition, 414
Dirichlet distribution, 74, 198,202
distribution function (d.f.), 450
distribution of quadratic form, 533
dominated convergence theorem, 514
double exponential distribution, 526
duality between confidence regions and

tests, 241
duality theorem, 243
Dynkin, Lehmann, Scheffe's theorem, 86

Edgeworth approximations, 317
eigenvalues, 520
empirical distribution, 104
empirical distribution function, 8, 139

bivariate, 139
entropy

maximum, 91
error, 3

autoregressive, II
estimate, 99

consistent, 301
empirical substitution, 139
estimating equation, 100
frequency plug-in, 103
Hodges-Lehmann, 149
least squares, 100
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maximum likelihood, 114
method of moments, 10 I
minimum contrast, 99
plug-in, 104
squared error

Bayes, 162
unbiased, 176

estimating equation estimate
asymptotic nonnality, 384

estimation, 16
events, 442

independent, 445
expectation, 454, 455

conditional,479
exponential distribution, 464
exponential family, 49

conjugate prior, 62
convexity, 61
curved,57
identifiability, 60
log concavity, 61
MLE,121
moment generating function, 59
multiparameter, 53

canonical, 54
one-parameter, 49

canonical, 52
rank of, 60
submodel, 56
supennodel,58
UMVU estimate, 186

extension principle, 102, 104

F distribution, 491
moments, 530
noncentral, 531

F statistic, 376
factorization theorem, 43
Fisher consistent, 158
Fisher infonnation, 180

matrix, 185
Fisher's discriminant function, 226
Fisher's genetic linkage model, 405
Fisher's method of scoring, 434

Index

fitted value, 372
fixed design, 387
Frechet differentiable, 516
frequency function, 449

conditional, 477
frequency plug-in principle, 103

gamma distribution, 488
moments, 526

gamma function, 488
gamma model

MLE, 124, 129, 130
Gauss-Marakov linear model, 418
Gauss-Markov assumptions, 108
Gauss-Markov theorem, 418
Gaussian linear model, 366

canonical fonn, 368
confidence intervals, 381
confidence regions, 383
estimation in, 369
identifiability, 371
likelihood ratio statistic, 374
MLE,371
testing, 378
UMVU estimate, 371

Gaussian model
Bayes estimate, 163
existence of MLE, 123
mixture, 134

Gaussian two-sample model, 261
generali;>.:ed linear models (GLM), 411
geometric ~stribution, 72, 87
GLM, 412 '

estimate
asymptotic distributions, 415

Gaussillll,435
likelihood ratio

asymptotic distribution, 415
likelihood ratio test, 414
Poisson, 435

goodness-of-fit test, 220, 223
gross error models, 190

HOlder's iJlequality, 518
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Index

Hammersley's theorem, 513
Hardy-Weinberg proportions, 103,403

chi-square test, 405
MLE, 118, 124
UMVU estimate, 183

hat matrix, 372
hazard rates, 69, 70
heavy tails, 208
Hessian, 386
hierarchical Bayesian normal model, 92
hierarchical binomial-beta model, 93
Hodges's example, 332
Hodges-Lehmann estimate, 207
Hoeffding bound, 299, 346
Hoeffding's inequality, 519
Horvitz-Thompson estimate, 178
Huber estimate, 207, 390
hypergeometric distribution, 3, 461
hypergeometric probability, 448
hypothesis, 215

composite, 215
null, 215
simple, 215

identifiable, 6
independence, 445, 453
independent experiments, 446
indifference region, 230
influence function, 196
information bound, 181

asymptotic variance, 327
information inequality, 179, 181, 186, 188,

206
integrable, 455
interquartile range (IQR), 196
• •mvanance

shift, 77
inverse Gaussian distribution, 94
IQR,196
iterated expectation theorem, 481

Jacobian, 485
theorem, 486

Jensen's inequality, 518

551

Kolmogorov statistic, 220
Kolmogorov's theorem, 86
Kullback-Leibler divergence, 116

and MLE, 116
Kullback-Leibler loss function, 169
kurtosis, 279, 457

Lp norm, 536
Laplace

distribution, 526
Laplace distribution, 374
law of large numbers

weak
Bernoulli's, 468
Khintchin's, 469

least absolute deviation estimates, 149,
374

least favorable prior distribution, 170
least squares, 107, 120

weighted, 107, Il2
Lehmann alternative, 275
level (of significance), 217
life testing, 89
likelihood equations, 117
likelihood function, 47
likelihood ratio, 48, 256

asymptotic chi-square distribution,
394,395

confidence region, 257
asymptotic, 395

logistic regression, 410
test, 256

bivariate normal, 266
Gaussian one-sample model, 257
Gaussian two-sample model, 261
one-sample scale, 291
two-sample scale, 293

likelihood ratio statistic
in Gaussian linear model, 376
simple, 223

likelihood ratio test, 335
linear model

Gaussian, 366
non-Gaussian, 389
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stochastic covariates, 419
Gaussian, 387
heteroscedastic, 421

linear regression model, 109
link function, 412

canonical, 412
location parameter, 209,463
location-scale parameter family, 463
location-scale regression

existence of MLE, 127
log linear model, 412
logistic distribution, 57, 132

likelihood equations, 154
neural nets, 151
Newton-Raphson, 132

logistic linear regression model, 408
logistic regression, 56, 90, 408
logistic transform, 408

empirical, 409
logit, 90, 408
loss function, 18

0- 1, 19
absolute, 18
Euclidean, 18
Kullback-Leibler, 169,202
quadratic, 18

M-estimate, 330
asymptotic normality, 384

marginal density, 452
Markov's inequality, 469
matched pair experiment, 257
maximum likelihood, 114
maximum likelihood estimate, 114,

see MLE
maximum likelihood estimate (MLE), 114
mean, 71,454,455

sensitivity curve, 192
mean absolute prediction error, 80, 83
mean squared error (MSE), 20
mean squared prediction error (MSPE),

32
median, 71

MSE,297

Index

population, 77,80,105
sample, 192
sensitivity curve, 193

Mendel's genetic model, 214
chi-square test, 403

meta-analysis, 222
method of moments, 101
minimax estimate

Bernoulli trials, 173
distribution function, 202

minimax rule, 28, 170
minimax test, 173
MLE, 114, see maximum likelihood esti

mate
as projection, 371
asymptotic normality

exponential family, 322
Cauchy model, 149
equivariance, 114, 144
existence, 121
uniqueness, 121

MLR, 228, see monotone likelihood ratio
model, 1,5

AR(l), II
Cox, 70
Gaussian linear regression, 366
gross error, 190, 210
Lehmann, 69
linear, 10

Gaussian, iO
location

symmetric, 191
logistic linear, 408
nonparametric, 6
one-sample, 3, 366
parametric, 6
proportional hazard, 70
regression, 9
regular, 9
scale, 69
sernipararnetric,6
shift,4
symmetric, 68
two-sample, 4



Index

moment, 456
central, 457
of random matrix, 502

moment generating function, 459
for random vector, 504

monotone likelihood ratio (MLR), 228
Monte Carlo method, 219, 221,298,314
MSE, 20, see mean squared error

sample mean, 21
sample variance, 78

MSPE, 32, see mean squared prediction
error

bivariate normal, 36
multivariate normal, 37

MSPE predictor, 83, 372
multinomial distribution, 462
multinomial trials, 55, 447, 462

consistent estimates, 302
Dirichlet prior, 198
estimation

asymptotic normality, 324
in contingency tables, 403
Kullback-Leibler loss

Bayes estimate, 202
minimax estimate, 20 I
MLE, Il9, 124
Pearson's chi-square test, 401
UMVU estimate, 187

multiple correlation coefficient, 37
multivariate normal distribution, 506

natural parameter space, 52, 54
natural sufficient statistic, 54
negative binomial distribution, 87
neural net model, 151
Neyman allocation, 76
Neyman-Pearson framework, 23
Neyman-Pearson lemma, 224
Neyman-Pearson test, 165
noncentral t distribution, 260
noncentral F distribution, 376
noncentral chi-square distribution, 375
nonnegative definite, 519
normal distribution, 464, see Gaussian

553

central moments, 529
normal equations, 10 I

weighted least squares, 113
normalizing transformation, zero skew

ness, 351

observations,S
one-way layout, 367

binomial
testing, 410

confidence intervals, 382
testing, 378

order statistics, 527
orthogonal, 41
orthogonal matrix, 494
orthogonality, 522

p-sample problem, 367
p-value, 221
parameter, 6

nuisance, 7
parametrization, 6
Pareto density, 85
Pearson's chi-square, 402
placebo, 4
plug-in principle, 102
Poisson distribution, 462
Poisson process, 472
Poisson's theorem, 472
Polya's theorem, 515
population, 448
population R-squared, 37
population quantile, 105
positive definite, 519
posterior, 13
power function, 78, 217

asymptotic, 334
sample size, 230

prediction, 16, 32
training set, 19

prediction error, 32
absolute, 33
squared,32

weighted, 84
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prediction interval, 252
Bayesian, 254
distribution-free, 254
Student t, 253

predictor, 32
linear, 38, 39

principal axis theorem, 519
prior, 13

conjugate, 15
binomial, 15
exponential family, 62
general model, 73
multinomial, 74
normal case, 63
Poisson, 73

improper, 163
Jeffrey's, 203
least favorable, 170

probability
conditional, 444
continuous, 449
discrete, 443, 449
distribution, 442
subjective, 442

probability distribution, 451
probit model, 416
product moment, 457

central,457
projection, 41, 371
projection matrix, 372
projections on linear spaces, 522
Pythagorean identity, 41, 377

in Hilbert space, 522

quality control, 229
quantile

population, 104
sensitivity curve, 195

random, 441
random design, 387
random effects model, 167
random experiments, 441

Index

random variable, 451
random vector, 451
randomization, 5
randomized test, 79, 224
rank,48
ranking, 16
Rao score, 399

confidence region, 400
statistic, 399

asymptotic chi-square distribution,
400

test, 399
multinomial goodness-of-fit, 402

Rao test, 335, 336
Rayleigh distribution, 53
regression, 9, 366

confidence intervals, 381
confidence regions, 383
heteroscedastic,58,153
homoscedastic, 58
Laplace model, 149
linear, 109
location-scale, 57
logistic, 56
Poisson, 204
polynomial, 146
testing, 378
weighted least squares, 147
weighted, linear, 112

regression line, 502
regression toward the mean, 36
rejection, 215
relative frequency, 441
residual, 48, Ill, 372

sum of squares, 379
response, 10, 366
risk function, 20

maximum, 28
testing, 22

risk set, 29
convexity, 79

robustness, 190,418
of level

t-statistics, 314



Index

asymptotic, 419
of tests, 419

saddle point, 199
sample, 3

correlation, 140,267
covariance, 140
cumulant, 139
mean, 8,45
median, 105, 149, 192
quantile, 105
random, 3
regression line, III
variance, 8,45

sample of size n, 448
sample space,S, 442
sampling inspection, 3
scale, 457
scale parameter, 463
Scheffe's theorem, 468

multivariate case, 514
score test, 335, 336, 399
selectiqg at random, 444
selection, 75, 247
sensitivity curve, 192
Shannon's lemma, 116
shift and scale equivariant, 209
shift equivariant, 206, 208
signal to noise

fixed, 126
Slutsky's theorem, 467

multivariate, 512
spectral theorem, 519
square root matrix, 507
standard deviation, 457
standard error, 381
standard normal distribution, 464
statistic, 8

ancillary, 48
equivalent, 43
sufficient, 42

Bayes, 46
minimal, 46
natural, 52
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stochastic ordering, 67, 209
stratified sampling, 76, 205
substitution theorem for conditional ex

pectations, 481
superefficiency, 332
survey sampling, 177

model based approach, 350
survival functions, 70

•
symmetric distribution, 68
symmetric matrices, 519
symmetric variable, 68

t distribution, 491
moments, 530

Taylor expansion, 517
test function, 23
test size, 217
test statistic, 216
testing, 16, 213

Bayes, 165,225
testing independence in contingency ta

bles,405
total differential, 517
transformation

k linear, 516
affine, 487
linear, 487, 516
orthogonal, 494

trimmed mean, 194, 206
sensitivity curve, 194

type I error, 23, 216
type II error, 23, 216

UMP, 226, 227, see uniformly most pow
erful

UMVU, 177, see uniformly minimum vari-
ance unbiased

uncorrelated, 459
unidentifiable, 6
uniform distribution, 465

discrete
MLE,115

uniformly minimum variance unbiased
(UMVU),I77
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uniformly most powerful
asymptotically, 334

uniformly most powerful (UMP), 226, 227

variance, 457
of random matrix, 503
sensitivity curve, 195

variance stabilizing transformation 316, ,
317

for binomial, 352
for correlation coefficient, 320, 350
for Poisson, 317
in GLM, 416

•vanance-covariance matrix, 498

Index

von Neumann's theorem, 171

Wald confidence regions, 399
Wald statistic, 398

asymptotic chi-square distribution,
398

Wald test, 335, 399
multinomial goodness-of-fit, 401

weak law of large numbers
for vectors, 5 II

Weibull density, 84
weighted least squares, 113, 147
Wilks's theorem, 393-395, 397

Z-score, 457


	Mathemathical Statistics: Basic Ideas and Selected Topics, 2nd, Vol 1
	Contents
	Chapter 1 - Statistical Models, Goals, and Performance Criteria
	1.1 Data, Models, Parameters and Statistics
	1.1.1 Data and Models
	1.1.2 Parametrizations and Parameters
	1.1.3 Statistics as Functions on the Sample Space 
	1.1.4 Examples, Regression Models

	1.2 Bayesian Models
	1.3 The Decision Theoretic Framework
	1.3.1 Components of the Decision Theory Framework
	1.3.2 Comparison of Decision Procedures
	1.3.3 Bayes and Minimax Criteria

	1.4 Prediction
	1.5 Sufficiency
	1.6 Exponential Families
	1.6.1 The One-Parameter Case
	1.6.2 The Multiparameter Case
	1.6.3 Building Exponential Families
	1.6.4 Properties of Exponential Families
	1.6.5 Conjugate Families of Prior Distributions

	1.7 Problems and Complements
	1.8 Notes
	1.9 References

	Chapter 2 - Methods of Estimation
	2.1 Basic Heuristics of Estimation
	2.2 Minimum Contrast Estimates and Estimating Equations
	2.3 Maximum Likelihood in Multiparameter Exponential Families
	2.4 Algorithmic Issues

	Chapter 3 - Measures of Performance, Notions of Optimality, and Optimal Procedures
	Chapter 4 - Testing and Confidence Regions: Basic Theory
	Chapter 5 - Asymptotic Approximations
	Chapter 6 - Inteference in the Multiparameter Case 
	Appendix A - A Review of Basic Probability Theory
	A.1 The Basic Model
	A.2 Elementary Properties of Probability Models
	A.3 Discrete Probability Models
	A.4 Conditional Probability and Independence
	A.5 Compound Experiments
	A.6 Bernoulli and Multinomial Trials, Sampling With and Without Replacement
	A.7 Probabilities on Euclidean Space
	A.8 Random Variables and Vectors: Transformations
	A.9 Independence of Random Variables and Vectors
	A.10 The Expectation of a Random Variable
	A.11 Moments
	A.12 Moment and Cumulant Generating Functions
	A.13 Some Classical Discrete and Continuous Distributions
	A.14 Modes of Convergence of Random Variables and Limit Theorems
	A.15 Further Limit Theorems and Inequalities
	A.16 Poisson Process
	A.17 Notes
	A.18 References

	Appendix B - Additional Topics in Probability and Analysis
	B.1 Conditioning by a Random Variable or Vector 
	B.2 Distribution Theory for Transformations of Random Vectors 
	B.3 Distribution Theory for Samples from a Normal Population
	B.4 The Bivariate Normal Distribution
	B.5 Moments of Random Vectors and Matrices 
	B.6 The Multivariate Normal Distribution
	B.7 Convergence for Random Vectors: O_p and o_p Notation 
	B.8 Multivariate Calculus
	B.9 Convexity and Inequalities
	B.10 Topics in Matrix Theory and Elementary Hilbert Space Theory
	B.11 Problems and Complements
	B.12 Notes
	B.13 References

	Appendix C - Tables
	Index



