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The geographic maps
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given a rectangular region, or a window, the system must determine the
part of the map(roads, cities, and so on) that lie in the window , and
display them. This is called a windowing query.
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Windowing is required whenever one wants to inspect a small portion of a
large, complex object.
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Motivation

rectangle whose edges are axis-parallel.

We assume that the query window is an axis-parallel rectangle, that is, a
Let S be a set of n axis-parallel line segments.
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To solve windowing queries we need a data structure that stores S in such
can be reported efficiently.

a way that the segments intersecting a query window W:=[z : 2/|x[y : ¥/]
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e Segments with both endpoints outside
the rectangle

What ways a segment can intersect the I ? [
rectangle 7 ——o—o
e Segments that have at least one pe "
. . . ._ﬁ
endpoint inside the rectangle
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Segments with at least one endpoint in the rectangle can be found by
building a 2d range tree on the 2n endpoints.

e Keep pointer from each endpoint stored in tree to the segments
contained segments twice.

e Mark segments as you output them, so that you don't output

v
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Let S be a set of n axis-parallel line segments in the plane. The segments
that have at least one endpoint inside an axis-parallel query window W can
be reported in O(logn+k) time with a data structure that uses O(n logn)

storage and preprocessing time, where k is the number of reported
segments.

=] 5

(Yazd University) More Geometric Data Structures

) QC



(\WISSAVELTST I Windowing que

Segments with both endpoints outside the rectangle :

e Store the segments and query with the left side and the bottom side
of the rectangle

S
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Given a set of horizontal (vertical) line
segments, preprocess them into a data —
structure so that the ones intersecting a
vertical (horizontal)query segment can be

- G
reported efficiently.

v, L ———

Consider the problem of finding the —
horizontal segments intersected by the left
edge of W.
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{
e The query segment is a full line.
e [ := (x = q,) denote the query line.
J— ® ®
e A horizontal segment s := (x,y)(2’,y) (x,y) (x',y)
is intersected by 7 iff x < ¢, <2’
e Then the problem is essentially
1-dimensional.
1 1
|| I ||
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Interval Trees

Given a set of intervals I := {[x, : 2], [z5 : 2L], ..., [xn : 2,]} on the real
line, report the ones that contain the query point ¢..
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Interval Trees

Let @,,;q be the median of the 2n interval endpoints,
partition the intervals into three subsets :

o Intervals Jjep; = {[x; : 2] € I : & < Typia}

e Intervals I,,;q == {[z; : x;] €l:zj < Tmig < :L‘;}

e Intervals I,igns := {[; : x;] €1l:xpmiqg <z}

”
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Interval Trees

e If the query value g, lies to the left of x,,,;4 then I,;4,; do not contain
qz-

e Or if the query value g, lies to the right of x,,;q then Ijcf; do not
contain ¢, .

e we construct a binary tree based on this idea.

[m] = = =
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Interval Trees

Recursively build subtrees on interval set as follows:
e the intervals I;.; are stored in the left subtree

e the intervals I,;g; are stored in the right subtree

How should we store I,,;4 ?

we store the set I,,;4 in a g - / \,
separate structure and associate E@

\
that structure with the root of @ /

our tree.

%
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I,,;a could be the same as I.
But there is a difference ,all the Intervals in I,,,;4 contain x,,;q4.

o If the query point(g, is left of x,,;4, then only the left endpoint
determine if an interval is an answer

‘mid

e Symmetrically : If the query point(g is right of 4, then only the
right endpoint determine if an interval is an answer
o 5 =, «E 2I¥e




Interval Trees

e Make a list L. s sorted on

increasing left endpoints of I,,,;4.

I mid-
—
qx

e Make a list L, ;g sorted on
decreasing right endpoints of

Xmid

come to an interval that does not contain g, .

Xmid qx
e we can simply walk along the sorted list reporting intervals, until we
o = = = fae




Interval Trees

The interval tree consist of a root node v storing x,,;q.Furthermore,
e The set I,,,;4 is stored twice; once in a list £;.¢; , and once in a list
Em’ght,
e The left subtree of v is an interval tree for the set I,

e The right subtree of v is an interval tree for the set I,;gp;.

=] 5
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Interval Trees

Liet = $3,54,85

Lright = 55,53,54
Liete = 51,52

Liight = 51,52

Liete = 56,57

51

Liight = 87,56

Xmid

|
} 1
I
56 1 57
Xmid *mid
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(NAVEI RSl Definition

Lemma 10.2

An interval tree on a set of n intervals uses O(n) storage and has depth
O(logn).

e By choosing the median, we split the set of end points in half each
time therefore depth is O(logn).

e cach interval is only stored in a set I,,,;4 onec and,hence, only appears
once in the two sorted lists.consequently, the interval tree uses O(n)
storage.
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Interval Trees

Algorithm CONSTRUCTINTERVALTREE(/)
Input. A set I of intervals on the real line.
Output. The root of an interval tree for 7.

1. if7=40

2, then return an empty leaf

3. else Create a node v. Compute x,,;4, the median of the set of interval
endpoints, and store xpyg with v.

4. Compute I ;4 and construct two sorted lists for I;4: a list Ly (V)

sorted on left endpoint and a list L e (V) sorted on right endpoint.
Store these two lists at v.

5. lc(v) < CONSTRUCTINTERVALTREE(/jes)
6. re(v) «— CONSTRUCTINTERVALTREE (/righ)
7 return v
=] 5 = = E 9DHAE
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Interval Trees

An interval tree on a set of n intervals can be built in O(nlogn) time.
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Interval Trees

An interval tree on a set of n intervals can be built in O(nlogn) time.

@ Presorting all of the interval endpoints requires O(n logn) time.
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(INVSAEINIECS  Construction

An interval tree on a set of n intervals can be built in O(nlogn) time.

@ Presorting all of the interval endpoints requires O(n logn) time.

® Compute Iig,Lictt Iright takes O(n) time.
Over all T(n) = O(n)+2T(n/2) = O(nlogn).
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(INVSAEINIECS  Construction

An interval tree on a set of n intervals can be built in O(nlogn) time.

@ Presorting all of the interval endpoints requires O(n logn) time.

® Compute Iig,Lictt Iright takes O(n) time.
Over all T(n) = O(n)+2T(n/2) = O(nlogn).

© Create Licsr and Lgnt takes O(nmiq log nmiq) time , where n,;q=
card(l,iq). over all take >~ O(nmiq log nmia),
since > Nnia = 1, Y. O(Nmiq log nmiq) < O(nlogn).
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(INVSAEINIECS  Construction

An interval tree on a set of n intervals can be built in O(nlogn) time.

@ Presorting all of the interval endpoints requires O(n logn) time.

® Compute Iig,Lictt Iright takes O(n) time.
Over all T(n) = O(n)+2T(n/2) = O(nlogn).

© Create Licsr and Lgnt takes O(nmiq log nmiq) time , where n,;q=
card(l,iq). over all take >~ O(nmiq log nmia),
since > Nnia = 1, Y. O(Nmiq log nmiq) < O(nlogn).

O The total built time therefore becomes O(n logn).
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Interval Trees

Algorithm QUERYINTERVALTREE(V,gy)

Input. The root v of an interval tree and a query point g,.

Output. All intervals that contain g,.

1. if visnota leaf

2 then if g, < .xmid(V)

3. then Walk along the list L.q( V), starting at the interval with the
leftmost endpoint, reporting all the intervals that contain g.
Stop as soon as an interval does not contain g,.

4. QUERYINTERVALTREE(lc(V), gx)

5. else Walk along the list Lo, (V). starting at the interval with the
rightmost endpoint, reporting all the intervals that contain
g+. Stop as soon as an interval does not contain gj.

6. QUERYINTERVALTREE(rc(V),qy)

o &
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Interval Trees

L left

55,565 ST

54,53, 52

87,85, 86 Lright
54,53,52

89,5810

511, 812

ot —— —
S8 59 511
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Interval Trees

L left

55,565 ST

54, 53, 52

87,85, 56 Lright
54,53,52

59,810

511, 512

— —— —
S8 59 S11
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Interval Trees

Lleft

55556, ST

Sy4, 53, 52

84, 83,52

@ 55,56 Lright

59,510

511,812

— — R
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Interval Trees

55556, ST

@ X7 Sg Lright

54,83, 52

59,810

511, 812
56
S5

87 ¢ 510 : 519
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Interval Trees

Lleft

55556, ST

Sy, 53, 52

84, 83,52

@ x: S6 Lright

59,510

511,812

R e s
58 89 S11
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Interval Trees

55556, ST

54,83, 52

@ x: S6 Lright

59,510

511,812
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Interval Trees

S5y 56, ST

54,53, 52

@ x; S6 Lright

89,810

511, 812
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Interval Trees

55,56, 57

54, 83,52

@ X> S6 Lrig;ht

59,510

51

511, 512
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R e —
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Interval Trees

L left

55556, ST

54, 53,82

54, 83,52

@ xa S6 Lright

59,510

511, 512
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58 59 S11
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Interval Trees

555 56,57

84,83, 52
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Interval Trees

55,56, 57

54,583,582
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Interval Trees

e The total query time is O(logn + k), Since

- At any node v that we visit we spend O(1+ k,) time,where k, is the
number of intervals that we report at v,

- 2k =k,
- We visit at most one node at any depth of the tree,
- The depth of the interval tree is O(logn),

- So the total query time is O(logn + k).

=] 5 = = DA
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Interval Trees

Theorem 10.4

An interval tree for a set I of n intervals uses O(n) storage and can be
built in O(nlogn) time. Using the interval tree we can report all intervals

that contain a query point in O(logn + k) time, where k is the number of
reported intervals.

o &
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e Let Sy C S be the subset of horizontal
segments in S.

T(g09)
—
e And ¢ be the vertical query segment q
gz X [gy QQ/,/] ° ]
_ ~(qx,qy)
o For a segment s := [s; : s,] X sy in Sq,
we call s :=[s, : s,] the x-interval of
the segment.

s
—
/
(5x, sy) (8%, 5y)
o & = = 9ac
(Yazd University) More Geometric Data Structures



according to their x-interval.

e Suppose we have stored the segments in Sy in an interval tree 7

o & = E DA
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e Suppose we have stored the segments in Sy in an interval tree 7
according to their x-interval.

e For a segment s € I,,;4 to be intersected by ¢ , it is not sufficient that
its left (right) endpoint lies to the left (right) of ¢; it is also required
that its y-coordinate lies in the range [g, : q;].

o = = = A
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e Suppose we have stored the segments in Sy in an interval tree 7
according to their x-interval.

e For a segment s € I,,;4 to be intersected by ¢ , it is not sufficient that
its left (right) endpoint lies to the left (right) of ¢; it is also required
that its y-coordinate lies in the range [g, : q;].

e Then the lists L;.¢; and L,ig5: are not suitable anymore to solve the
query problem for the segments corresponding to I,,;4.

[m] = = =
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{52, 55,56, 57,580,522 }

{32:5575&57759:522}
59
—

q s29
g xlgy 4] o

56

93 +e0) x[gy 2 5]
S5

57
~—

*mid
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e We need a assosiated structure.

o & = E DA
(Yazd University) More Geometric Data Structures



segments.

e We need a assosiated structure.

e The main structure is an interval tree 7 on the z-interval of the

o & = E DA
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e We need a assosiated structure.

e The main structure is an interval tree 7 on the z-interval of the
segments.

e Instead of the sorted lists we have two range tree as the associated
structure.

o & = E DA
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e We need a assosiated structure.

e The main structure is an interval tree 7 on the z-interval of the
segments.

e Instead of the sorted lists we have two range tree as the associated
structure.

e A range tree Tjf+(v) on the left endpoints of the segments in I,,,;q(v),
and a range tree 7.ign:(v) on the right endpoints of the segments in

Imid(v)'

[m] = = =
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e We need a assosiated structure.

e The main structure is an interval tree 7 on the z-interval of the
segments.

e Instead of the sorted lists we have two range tree as the associated
structure.

e A range tree Tjf+(v) on the left endpoints of the segments in I,,,;q(v),
and a range tree 7.ign:(v) on the right endpoints of the segments in
Imid(v)'

e Instead of traversing Lot or Lyignt, we perform a query in the range
tree Tiers of Tright-

[m] = = =
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/()\
all left endpoints of

{82:35,56,87,39,522}

: all right endpoints of
— {s2,55,56,57,50,522 }
59
= d 599:
[—oa: X gy g 36 st ¢
g x[gy:4)] o q (4 +e0)  [gy 2 4]
55

ST _
*mid
o & = E DA
(Yazd University) More Geometric Data Structures



e The total amount of storage for the data structure becomes
O(nlogn), Since
- The total amount of storage for a rangr tree is O(n, logn,),
- >on, =mn,
- > 0O(ny logn,) < O(nlogn).
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e The total amount of storage for the data structure becomes
O(nlogn), Since
- The total amount of storage for a rangr tree is O(n, logn,),

- Zn'u =n,
- > 0(ny logn,) < O(nlogn).

e The total query time becomes O(log® n + k),Since

- There are O(logn) nodes v on the search path,

- At each node v have to do an O(logn + k) search on a range tree
(assuming your range trees use fractional cascading),

- The total query time therefore becomes O(log® n + k).
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Theorem 10.5

Let S be a set of n horizontal segments in the plane. The segments
intersecting a vertical query segment can be reported in O(log® n + k) time
with a data structure that uses O(nlogn) storage, where k is the number
of reported segments. The structure can be built in O(nlogn) time.

Priority search trees reduce the storage to O(n).

[m] = = =
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Corollary 10.6

Let S be a set of n axis-parallel segments in the plane. The segments
intersecting a axis-parallel rectangular query window can be reported in
O(log®n + k) time with a data structure that uses O(nlogn) storage,
where k is the number of reported segments. The structure can be built in
O(nlogn) time.

o =) = = D¢
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Priority Search Trees (PST)

10.5 to O(n).

Using priority search tree, that uses this property, instead of range trees in
the data structure for windowing reduces the storage bound in Theorem

L e
[P

[—oo: qx] X [gy : g}

o

Xmid
o & = E DA
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Priority Search Trees (PST)

A priority search tree is like a heap on x-coordinate and binary search tree
Recall the heap :

o & = E DA
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A priority search tree is like a heap on z-coordinate and binary search tree
on y-coordinate at the same time.
Recall the heap :

Example query : (—oco : 5]
Report All values < 5

A heap has the query time O(1+k). J
=] 5 = = E 9DHAE




Priority Search Trees (PST)

Let P := {plapza

,Pn} be a set of points in the plane.

o & = E DA
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Priority Search Trees (PST)

Let P := {plapza

,Pn} be a set of points in the plane.
If P = () then the priority search tree is an empty leaf.otherwise,let

o & = E DA
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Priority Search Trees (PST)

Let P :={pi,ps,...,pn} be a set of points in the plane.

If P = () then the priority search tree is an empty leaf.otherwise,let

Pmin .= point with the smallest x-coordinate,

® Ymia = median of y-coordinates of points in P — {pmin},
* Poetow = {p € P — {Pmin} : Py < Ymia},

Papove :={p € P —{Pmin} : Py > Ymia}

o = A
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Priority Search Trees (PST)

Let P :={pi,ps,...,pn} be a set of points in the plane.

If P = () then the priority search tree is an empty leaf.otherwise,let

Pmin .= point with the smallest x-coordinate,

® Ymia = median of y-coordinates of points in P — {pmin},
* Poetow = {p € P — {Pmin} : Py < Ymia},

Papove :={p € P = {Pmin} : Py > Ymia}

The priority search tree has a root node v where the point p,,;n and the
value ¥,,,;4 are stored.

[m] = = =
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Priority Search Trees (PST)

Let P :={pi,ps,...,pn} be a set of points in the plane.

If P = () then the priority search tree is an empty leaf.otherwise,let

Pmin .= point with the smallest x-coordinate,

® Ymia = median of y-coordinates of points in P — {pmin},
* Poetow = {p € P — {Pmin} : Py < Ymia},

Papove :={p € P = {Pmin} : Py > Ymia}

The priority search tree has a root node v where the point p,,;n and the
value ¥,,,;4 are stored.

The left subtree of v is a priority search tree for the set Ppejon, and right
subtree of v is a priority search tree for the set Pspove.

=] 5
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Priority Search Trees (PST)

*Po e P11
*ps
o 13
* P10 e P14
.p7

® pi12
.pg

Priority search tree can be built in O(nlogn) time. )
=] 5 = = A




A query with a range (—o0 : ¢z X [gy : q]
ina PST :

e First, we find all the points that lie in
lgy : q;](shaded subtrees).

e Then, we search those subtrees based
on z-coordinate only (heap on
x-coordinate).

e Also, must check each node along both
paths because they store points.

=] & = E DA
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A query with a range (—o0 : ¢z X [gy : q]
ina PST :

e First, we find all the points that lie in
lgy : q;](shaded subtrees).

e Then, we search those subtrees based
on z-coordinate only (heap on
x-coordinate).

e Also, must check each node along both
paths because they store points.
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Priority Search Trees (PST)

REPORTINSUBTREE(V, g»)

Input. The root v of a subtree of a priority search tree and a value g,.
Output. All points in the subtree with x-coordinate at most g,.

1. if vis notaleaf and (p(v)), < g

2 then Report p(V).

3. REPORTINSUBTREE(lc(V), gy)

4 REPORTINSUBTREE(rc(V), qx)

o = = A
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REPORTINSUBTREE (v, q;) reports in O(1+k,) time all points in the
number of reported points.

subtree rooted at v whose z-coordinate is at most g, where k, is the

= = = E DA
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Priority Search Trees (PST') eI

Lemma 10.7
REPORTINSUBTREE (v, q;) reports in O(1+k,) time all points in the
subtree rooted at v whose z-coordinate is at most g, where k, is the

number of reported points.

v

e All points with z-coordinate at most ¢, are reported.

e All points that are reported have x-coordinate at most ¢, .

(Yazd University) More Geometric Data Structures 41 / 71



Priority Search Trees (PST') eI

Lemma 10.7
REPORTINSUBTREE (v, q;) reports in O(1+k,) time all points in the
subtree rooted at v whose z-coordinate is at most g, where k, is the

number of reported points.

v

e All points with z-coordinate at most ¢, are reported.

e All points that are reported have x-coordinate at most ¢, .

e The query time for a subtree is like query time for a heap, namely
O(1+ky).
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Priority Search Trees (PST)

Algorithm QUERYPRIOSBARCHTREE(T, (—o0: g X [gy : qy])
Input. A priority search tree and a range, unbounded to the left.
Output. All points lying in the range.
1. Search with g, and q;, in J. Let Vgl be the node where the two search
paths split.
for each node Vv on the search path of g, or q;
doif p(v) € (—oo: q.] X [gy : ¢] then report p(V).
for each node v on the path of gy in the left subtree of Vg
do if the search path goes left at v
then REPORTINSUBTREE(rc(V), ¢x)
for each node v on the path of q;, in the right subtree of Vi
do if the search path goes right at v
then REPORTINSUBTREE(Ic(V),gx)

e A S

[m] = = =
(Yazd University) More Geometric Data Structures
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Priority Search Trees (PST)

Lemma 10.8

Algorithm QUERYPRIOSEARCHTREE reports the points in a query range

(=00 : qz] X [gy : q;] in O(logn + k) time, where k is the number of
reported points.

=] & E DA
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Priority Search Trees (PST') eI

Lemma 10.8
Algorithm QUERYPRIOSEARCHTREE reports the points in a query range
(=00 1 qu] % [gy : qy] in O(logn + k) time, where k is the number of

reported points.

o

e Any point that is reported by the algorithm lies in the query range.

e Any point that lies in the range is reported by the algorithm.
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Priority Search Trees (PST') eI

Lemma 10.8
Algorithm QUERYPRIOSEARCHTREE reports the points in a query range

(=00 1 qu] % [gy : qy] in O(logn + k) time, where k is the number of
reported points.

o

e Any point that is reported by the algorithm lies in the query range.

e Any point that lies in the range is reported by the algorithm.

e The search paths to ¢, and g;, have O(logn) nodes. At each node
O(1) time is spent.

e The time taken by all executions of REPORTINSUBTREE is
O(logn + k).

e The total query time is O(logn + k).
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Priority Search Trees (PST)

Theorem 10.9

A priority search tree for a set P of n points in the plane uses O(n) storage

and can report all points in a query range of the form (—oo : ¢5] X [gy : q;]
in O(logn + k) time, where k is the number of reported points.

o & DA
(Yazd University) More Geometric Data Structures



Two cases of intersection: - ]

e An endpoint lies inside the query
window; solve with range trees

a
AT
"
1
|
~

e The segment intersects the }

window boundary; solve how?

u}
o)
I

i
it
N
£
i)
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A simple solution:
Replace each line segment by its
bounding box.

ZN window

=—

\
ANz
A N

I
So we could search in the 4n
bounding box sides.

y,
o & = E E DA
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Segment Trees

A simple solution: In the worst case:

Replace each line segment by its The solution is quite bad:
bounding box.

N window
/] —

TN

@Z(
zz“mz

All bounding boxes may intersect
So we could search in the 4n W whereas none of the segments
bounding box sides. do.

y v
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Segment Trees

Current problem of our intesect: I

Given a set S of line segments with arbitrary
orientations in the plane, and we want to ]

find those segments in S that intersect a \/\ /

vertical query segment ¢ := g, X [gy : qy]-

u}
o)
I

i
it
N
£
i)
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O .

If the segments have arbitrary orientation, knowing that the right endpoint
of a segment is to the right of ¢ doesn't help us much.

J

—~
e

[—eo 1 qx] % [gy : ] :

Kmid
(Yazd University)

Segment intersects query, but there are
no endpoints in the range
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point (value) can be reported efficiently

Given a set S = {54, Sa,..., S, } of n segments(Intervals) on the real line,
preprocess them into a data structure so that the ones containing a query

53
52
S1 ]

7
S84

Bs

56

o

57

S8

= = = E DA
(Yazd University) More Geometric Data Structures

The new structure is called the segment tree.



Segment Trees

The locus approach is the idea to partition the parameter space into
regions where the answer to a query is the same.
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Segment Trees

The locus approach is the idea to partition the parameter space into
regions where the answer to a query is the same.

Our query has only one parameter, ¢,, so the parameter space is the real

line. Let p,,pa, ..., pm be the list of distinct interval endpoints, sorted from
left to right; m <2n

53
52

Sg s7
4 r

1 - - S8
Il sy |l ss Il Il ||
P1 P2 P3 Pa Ps Pe P Ps

S

o & DA
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Segment Trees

The locus approach is the idea to partition the parameter space into
regions where the answer to a query is the same.

Our query has only one parameter, ¢,, so the parameter space is the real

line. Let p,,pa, ..., pm be the list of distinct interval endpoints, sorted from
left to right; m <2n

S )
52 i 57
7 -

1 - - S8
Il sy |l ss Il Il ||
P1 P2 P3 Pa Ps Pe P Ps

S

The real line is partitioned into

(—00,01), [P1, Pa]s (P15 D2), [P2, P25 (P25 D3), - - -, (Pm, +00), these are

called
the elementary intervals.

=] F = = DA
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Segment Trees

e We could make a binary search tree that

has a leaf for every elementary interval.

o & = E DA
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Segment Trees

e We could make a binary search tree that
has a leaf for every elementary interval.

e We denote the elementary interval
corresponding to a leaf p by Int(u).

o & E DA
(Yazd University) More Geometric Data Structures



Segment Trees

e We could make a binary search tree that
has a leaf for every elementary interval.

e We denote the elementary interval
corresponding to a leaf p by Int(u).

e all the segments (intervals)in .S containing
Int(p) are stored at the leaf u

o & = E DA
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Segment Trees

e We could make a binary search tree that
has a leaf for every elementary interval.

e We denote the elementary interval
corresponding to a leaf p by Int(u).

e all the segments (intervals)in .S containing
Int(p) are stored at the leaf u

e each internal node corresponds to an
interval that is the union of the elementary
intervals of all leaves below it

o &
(Yazd University) More Geometric Data Structures
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Segment Trees

e We could make a binary search tree that
has a leaf for every elementary interval.

(pi. pite]
e We denote the elementary interval
corresponding to a leaf p by Int(u).

e all the segments (intervals)in S containing e s

Int() are stored at the leaf u Pirr.piv]  [piv2, pival
e each internal node corresponds to an i ” :
interval that is the union of the elementary Pir Pige
intervals of all leaves below it
o <] = z 9ac
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Segment Trees

S3 ‘ : | | J S6 | . St
e i T ——=Fss
Sk \
x Pl (( ,pz \PQ,Ps f(ps,m)f(m pa){(ps,pe){(ps,pﬂ\,(pv,ps)l(ps +00)
1.91] [P2. p2] [pa,pa] [pa.p4] [ps, ps] [pe.pal [pr. p7] [ps, ps]

o & = E DA
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Segment Trees

O(n?) storage in the
worst case
53‘: S
e . T —=—=Fss
& :
x Pl ,pz 11)2,193 r(ps,m)f(m Pa){(Ps,Pe){(P&IJ?)l(PhPSﬁ(PS +00)
1.91] [P2. p2] [pa,pa] [pa.p4] [ps, ps] [pe.pal [pr. p7] [ps, ps]

{
”
o & = E DA
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Segment Trees

O(n?) storage in the
worst case:
S3 !
S9 33 ] L } S7
s1 =~ ] =
| (( i | 4 st/
(*'x-[‘Pl) p1,02)|(P2, 13 )[(P3, pa)|(Pa, Ps)

I
I
T

{(ps,-pe){(ps,p7)1(p§,ps)\(ps-1+x)
p1.p1] [p2.p2] [p3.p3] [pa.pa] [ps.p5] [pe-pe] (7. 7] [pe. ps]

86
=

We can report the & intervals containing g, in O(logn + k) time.

=] & = E DA
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(pi—2. Pigal

To avoid quadratic storage, we store any segment s; with v iff Int(v) C s;
but Int(parent(v)) € s;.

(i pivol

(pi, piv1)
Sj

T

(Pit1, Pita)
[])1+1 s ]]H»l]
Pi—-2

(Pi—2: Piya]
T

[Piv2, Pital
Pi—-1

# " Int(parent())
(pi;pive] a7 Int(v)
il I ]
Pi Pi+l Pit+2
The data structure based on this principle is called a segment tree.
or <3 =» «=» T 9ac




Segment Trees

A segment tree on a set S of segments is a balanced binary search tree on
the elementary intervals defined by S, and each node stores its interval,
and its canonical subset of S in a list.

The canonical subset of a node v contains segments s; such that
Int(v) C s;j but Int(parent(v)) ¢ s;

o = = A
(Yazd University) More Geometric Data Structures



Segment Trees

51,82 S3,84
S7.588 S7.88

S7
£ 58

A
(Yazd
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Segment Trees

51,83, 84

51,859

53,84

S5
53

59

81

+
54

7
S5

Yazd

niversity)
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S0 ol Definition

Lemma 10.10

A segment tree on a set of n intervals uses O(n logn) storage.

We claim that any segment is stored for at most two nodes at the same
depth of the tree.

parent Vz

AR
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Segment Trees

Algorithm QUERYSEGMENTTREE(V, gy)

Input. The root of a (subtree of a) segment tree and a query point ¢,.
Output. All intervals in the tree containing g,.

1. Report all the intervals in /(V).

2. if visnot aleaf

3. then if g, € Int(le(Vv))

4. then QUERY SEGMENTTREE(/c(V),q.)

5 else QUERYSEGMENTTREE(re(V),q.)

o = = A
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Segment Trees
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Segment Trees

87,88 87,88
S3 G
S0 56 s7
51 £ £ S8
54 SE
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Segment Trees

Using a segment tree, the intervals containing a query point ¢, can be

reported in O(logn + k) time, where k is the number of reported intervals.

o & = E DA
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Segment Trees

e Build tree :

(Yazd

iversity)
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e Build tree :
the elementary intervals.

- Sort the endpoints of the segments take O(nlogn) time.This give us
be done bottom-up in O(n) time.

- Construct a balanced binary tree on the elementary intervals,this can

o & = E DA
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e Build tree :
the elementary intervals.

- Sort the endpoints of the segments take O(nlogn) time.This give us
be done bottom-up in O(n) time.

- Construct a balanced binary tree on the elementary intervals,this can

e Compute the canonical subset for the nodes.To this end we insert the
intervals one by one into the segment tree by calling :

o & = E DA
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Segment Trees

e Build tree :

- Sort the endpoints of the segments take O(nlogn) time.This give us
the elementary intervals.

- Construct a balanced binary tree on the elementary intervals,this can
be done bottom-up in O(n) time.

e Compute the canonical subset for the nodes.To this end we insert the
intervals one by one into the segment tree by calling :

Algorithm INSERTSEGMENTTREE(V, [x : x'])

Input. The root of a (subtree of a) segment tree and an interval,
Output. The interval will be stored in the subtree.

L ifInt(v) C [x:x]

2 then store [x: x'] at v

3 else if Int(le(v))Mx:x'] £0

4. then INSERTSEGMENTTREE(le(V), [x: ¥])

5 if Int(re(v)) N x:x'] £ 0

6 then INSERTSEGMENTTREE(re(V), [x : x'])

[m] = = =
(Yazd University) More Geometric Data Structures
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Segment Trees

How much time does it take to insert an interval [z : 2'] into the segment
tree?

e an interval is stored at most twice at each level of T

e There is also at most one node at every level whose corresponding
interval contains x and one node whose interval contains z’.
e So we visit at most 4 nodes per level.

e Hence, the time to insert a single interval is O(logn), and the total
time to construct the segment tree is O(nlogn) .

[} = =
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Segment Trees

Theorem 10.12

A segment tree for a set I of n intervals uses O(nlogn) storage and can
be built in O(n logn) time. Using the segment tree we can report all

intervals that contain a query point in O(logn + k) time, where k is the
number of reported intervals.

[} = = €
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Let S be a set of arbitrarily oriented, disjoint

segments in the plane. We want to report
the segments intersecting a vertical query

\L\ b7
segment ¢ := ¢, X [gy : q;] / [~

I~

=]

u}
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i
it
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£
?
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e Build a segment tree 7 on the a-intervals of the segments in S.

o & = E DA
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e Build a segment tree 7 on the a-intervals of the segments in S.
slab Int(v) x (—o0 : +00).

e A node v in 7 can now be considered to correspond to the vertical

o & = E DA
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e Build a segment tree 7 on the a-intervals of the segments in S.

e A node v in 7 can now be considered to correspond to the vertical
slab Int(v) x (—o0 : +00).

e A segment s; is in the canonical subset of v, if it crosses the slab of v
completely, but not the slab of the parent of v.

o & = E DA
(Yazd University) More Geometric Data Structures



Build a segment tree 7 on the x-intervals of the segments in S.

A node v in T can now be considered to correspond to the vertical
slab Int(v) x (—o0 : +00).

e A segment s; is in the canonical subset of v, if it crosses the slab of v
completely, but not the slab of the parent of v.

We denote canonical subset of v with S(v).

o & = E DA
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e When we search with ¢, in T we find il
O(log n) canonical subsets that
collectively contain all the segments
whose z-interval contains ¢. >

e A segment s in such a canonical subset
is intersected by ¢ if and only if the
lower endpoint of ¢ is below s and the
upper endpointof ¢ is above s.

/7 ]\

[} = =
(Yazd University) More Geometric Data Structures



e segments in the canonical subset
S(v) do not intersect each other.
This implies that the segments
can be ordered vertically.

e we can store S(v) in a search
tree 7 (v) according to the
vertical order.

it
)
£
0)
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A query with ¢, follows one path down the main tree(segment tree)

And at every node v on the search path we search with endpoints of ¢
in 7 (v) to report the segments in S(v) intersected by ¢
(a 1-dimensional range query).

The search in T (v) takes O(logn + k) time,wherek, is the number
of reported segments at (v).

Hence, the total query time is O(log®n + k).

=] F = = DA
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Windowing

e Because the associated structure of any node v uses storage linear in

the size of S(v), the total amount of storage remains O(n logn).

e Data structure can be build in O(nlogn) time.

o & = E DA
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Theorem 10.13

Let S be a set of n disjoint segments in the plane. The segments
intersecting a vertical query segment can be reported in O(log®n + k) time
with a data structure that uses O(n logn) storage, where k is the number
of reported segments. The structure can be built in O(nlogn) time.

[} = =
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Windowing

Theorem 10.13

Let S be a set of n disjoint segments in the plane. The segments
intersecting a vertical query segment can be reported in O(log®n + k) time
with a data structure that uses O(n logn) storage, where k is the number
of reported segments. The structure can be built in O(nlogn) time.

| A

Corollary 10.14

Let S be a set of n segments in the plane with disjoint interiors. The
segments intersecting an axis-parallel rectangular query window can be
reported in O(log® n + k) time with a data structure that uses O(n logn)
storage, where k is the number of reported segments. The structure can be
built in O(nlogn) time
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END
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