SAMPLING AND
ANALOG-TO-DIGITAL
CONVERSION

quantization. This analog-to-digital (A/D) conversion sets the foundation of modern

digital communication systems. In the A/D converter, the sampling rate must be large
enough to permit the analog signal to be reconstructed from the samples with sutficient accu-
racy. The sampling theorem, which is the basis for determinin g the proper (lossless) sampling
rate for a given signal, has played a huge role in signal processing, communication theory, and
A/D circuit design.

ﬁ s briefly discussed in Chapter 1, analog signals can be digitized through sampﬁng and

6.1 SAMPLING THEOREM

We first show that a signal g (1) whose spectrum is band-limited to B Hz, that is,
G(f)=0  for|f|>B

can be reconstructed exactly (without any error) from its discrete time samples taken uniformly
at a rate of R samples per second. The condition is that R > 28. In other words, the minimum
sampling frequency for perfect signal recovery is f; = 2B Hz.

To prove the sampling theorem, consider a signal g (¢) (Fig. 6.1a) whose spectrum is band-
limited to B Hz (Fig. 6.1b).* For convenience, spectra are shown as functions of f as well as
of w. Sampling g(r) at a rate of f; Hz means that we take [fs uniform samples per second. This
uniform sampling can be accomplished by multiplying g(7) by an impulse train 87,{r) of Fig.
6.1c, consisting of unit impulses repeating periodically every 7 seconds, where Ty = 1/fs.
This results in the sampled signal z(r) shown in Fig. 6.1d. The sampled signal consists of
impulses spaced every T seconds (the sampling interval). The nth impulse, located at 7 = nTs,
has a strength g (nT) which is the value of g(®) att = nT,. Thus, the relationship between the

* The spectrum G(f) in Fig. 6.1b is shown as real, for convenience. Our arguments are valid for complex G{f).
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Figure 6.1
Sampled signal
and its Fourier
spectra.
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sampled signal g (¢) and the original analog signal g(¢) is

2() = g (087, (1) = Y g(nT8(t = nTy) 6.1)

Because the impulse train 87, (¢) is a periodic signal of period Ty, it can be expressed as
an exponential Fourier series, already found in Example 3.11 as

 R—— - 27
5r,(0) = — > e w0y = = 27f; (6.2)

S oo s

Therefore,

HOES{GLIAD

1 & o
== Y s (6.3)

S fe=—00

To find G(f), the Fourier transform of 2(1), we take the Fourier transform of the summation
in Eq. (6.3). Based on the frequency-shifting property, the transform of the nh term is shifted
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by nf;. Therefore,

oC

— 1
Gy == D G —nfy) (64)

S n=—c0
This means that the spectrum G(f) consists of G(f), scaled by a constant 1/7y, repeating
periodically with period f; = 1/7; Hz, as shown in Fig. 6.1e.

After uniform sampling that generates a set of signal samples {g(k7})}, the vital question
becomes: Can g(z) be reconstructed from z(¢) without any loss or distortion? If we are to
reconstruct g (¢) from g(¢), equivalently in the frequency domain we should be able to recover
G(f) from G(f). Graphically from Fig. 6.1, perfect recovery is possible if there is no overlap
among the replicas in G(f). Figure 6.1e clearly shows that this requires

Js > 2B (6.5)

Also, the sampling interval 7, = 1/f;. Therefore,

1

T, < 75 (6.6)
Thus, as long as the sampling frequency f; is greater than twice the signal bandwidth B (in
hertz), G(f) will consist of nonoverlapping repetitions of G(f). When this is true, Fig. 6.1e
shows that g(#) can be recovered from its samples g(7) by passing the sampled signal g(r)
through an ideal low-pass filter of bandwidth B Hz. The minimum sampling rate f; = 2B
required to recover g(r) from its samples g(¢) is called the Nyquist rate for g(¢), and the
corresponding sampling interval 7y = 1/2B is called the Nyquist interval for the low-pass
signal g(r).*

We need to stress one important point regarding the possibility of f; = 2B and a particular
class of low-pass signals. For a general signal spectrum, we have proved that the sampling
rate fy > 2B. However, if the spectrum G(f) has no impulse (or its derivatives) at the highest
frequency B, then the overlap is still zero as long as the sampling rate is greater than or equal
to the Nyquist rate, that is,

fs=2B

If, on the other hand, G(f) contains an impulse at the highest frequency =B, then the equality
must be removed or else overlap will occur. In such case, the sampling rate f; must be greater
than 2B Hz. A well-known example is a sinusoid g(f) = sin 27 B(¢t — 1). This signal is band-
limited to B Hz, but all its samples are zero when uniformly taken at a rate fs = 2B (starting
atz = fg), and g(z) cannot be recovered from its Nyquist samples. Thus, for sinusoids, the
condition of f; > 2B must be satisfied.

6.1.1 Signal Reconstruction from Uniform Samples

The process of reconstructing a continuous time signal g (#) from its samples is also known as
interpolation. In Fig. 6.1, we used a constructive proof to show that a signal g(¢) band-limited

* The theorem stated here (and proved subsequently) applies to low-pass signals. A bandpass signal whose spectrum
exists over a frequency band f, — B/2 < | f| < f» + B/2 has a bandwidth B Hz. Such a signal is also uniquely
determined by samples taken at above the Nyquist frequency 2B. The sampling theorem is generally more complex
in such case. It uses two interlaced uniform sampling trains, each at half the overall sampling rate Ry > B. See, for
example, the Refs. 1 and 2.
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Figure 6.2
Ideal

interpolation.

to B Hz can be reconstructed (interpolated) exactly from its samples. This means not only
that uniform sampling at above the Nyquist rate preserves all the signal information, but also
that simply passing the sampled signal through an ideal low-pass filter of bandwidth B Hz
will reconstruct the original message. As seen from Eq. (6.3), the sampled signal contains a
component (1/75)g (1), and to recover g (i) [or G(f)], the sampled signal

g0 =y g(nT)(t —nly)

must be sent through an ideal low-pass filter of bandwidth B Hz and gain 7. Such an ideal
filter response has the transfer function

@ N\ ! '
H() =11 (15 ) = T (-ﬁ) 67)

Ideal Reconstruction :

To recover the analog signal from its uniform samples, the ideal interpolation filter transfer
function found in Eq. (6.7) is shown in Fig. 6.2a. The impulse response of this filter, the inverse
Fourier transform of H(f),1s -

h(t) = 2BT, sinc (27 Br) (6.8)

Assuming the use of Nyquist sampling rate, that is, 2B7 = 1, then
h(t) = sinc (2 Bt) 6.9)
This A(7) is shown in Fig. 6.2b. Observe the very interesting fact that h(t) = 0 at all Nyquist
sampling instants (f = =+n/2B) except t = 0. When the sampled signal g(¢) is applied at

the input of this filter, the output is g(¢). Each sample in 2(2), being an impulse, generates a
sinc pulse of height equal to the strength of the sample, as shown in Fig. 6.2c. The process is
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identical to that shown in Fig. 6.6, except that A(7) is a sinc pulse instead of a rectangular pulse.
Addition of the sinc pulses generated by all the samples results in g(7). The kth sample of the
input g(¢) is the impulse g (kT )8 (t — kT,); the filter output of this impulse is g (kT )h(t — k7).
Hence, the filter output to g(z), which is g(2), can now be expressed as a sum,

80 = g(TIh(t - kT)
k

= Y g(kTy) sinc[27B(t — kT})] (6.10a)
k

= Z g(kTy) sinc 27 Bt — ki) (6.10b)
k

Equation (6.10) is the interpolation formula, which yields values of g (¢) between samples as
a weighted sum of all the sample values.

Example 6.1

Figure 6.3
Signal recon-
structed from the
Nyquist samples
in Example 6.1.

Find a signal g(¢) that is band-limited to B Hz and whose samples are
-8 =1 and g(+T) =g(E2Ty) = g(£3T) =--- =0
where the sampling interval Ty is the Nyquist interval for g (1), that is, T, = 1 /2B.
<We use the interpolation formula (6.10b) to construct g(r) from its samples. Since all

but one of the Nyquist samples are zero, only one term (corresponding to k = 0) in the
summation on the right-hand side of Eq. (6.10b) survives. Thus,

g(t) = sinc (27 Br) (6.11)
This signal is shown in Fig. 6.3. Observe that this is the only signal that has a bandwidth

B Hz and sample values g(0) = 1 and g(n7;) = 0 (n s 0). No other signal satisfies these
conditions.
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Practical Signal Reconstruction (Interpolation)

We established in Sec. 3.5 that the ideal low-pass filter is noncausal and unrealizable. This can
be equivalently seen from the infinitely long nature of the sinc reconstruction pulse used in
the ideal reconstruction of Eq. (6.10). For practical application of signal reconstruction (e.g., a
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Figure 6.4
Practical
reconstruction
(inferpolation)
pulse.
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CD player), we need to implement realizable signal reconstruction systems from the uniform
signal samples.

For practical implementation, this reconstruction pulse p(f) must be easy to generate. For
example, we may apply the reconstruction pulse p(#) as shown in Fig. 6.4. However, we must
first use the nonideal interpolation pulse p(f) to analyze the accuracy of the reconstructed
signal. Let us denote the new signal from reconstruction as

F0 2> g(nTp(t —nTy) 6.12)

To determine its relation to the original analog signal g(), we can see from the properties of
convolution and Eq.(6.1) that

F0 =) gTpt —nTy) = p(t) [Z g(nT,)5(r — nTs)}
= p(t) * E(1) (6.132)

In the frequency domain, the relationship between the reconstruction and the original analog
signal can rely on Eq. (6.4)

~ 1
GH =P > G(f —nf) (6.13b)

This means that the reconstructed signal g(z) using pulse p(z) consists of multiple replicas of
G(f) shifted to the frequency center nf; and filtered by P(f). To fully recover g(t), further -
filtering of (f) becomes necessary. Such filters are often referred to as equalizers.

Denote the equalizer transfer function as £(f). Distortionless reconstruction requires that

G(f) = E(HIG()
1
= E(HP(f)7 ) G =nfy)

This relationship clearly illustrates that the equalizer must remove all the shifted replicas
G(f — nf;) in the summation except for the low-pass term with n = 0, that is,

E(HP()=0 |fl>f—B (6.14a)



Figure 6.5
Practical signal
reconstruction.

Figure 6.6
Simple interpo-
lation by means
of simple
rectangular
pulses.
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Additionally, distortionless reconstruction requires that
ENPHHr=Ts |fl<B (6.14b)

The equalizer filter E(f) must be low-pass in nature to stop all frequency content above
f; — B Hz, and it should be the inverse of P(f) within the signal bandwidth of B Hz. Figure 6.5
demonstrates the diagram of a practical signal reconstruction system utilizing such an equalizer.
Let us now consider a very simple interpolating pulse generator that generates short
(zero-order hold) pulses. As shown in Fig. 6.6, :

_ t —0.35T,
p) =11 (——————Tp )

This is a gate pulse of unit height with pulse duration 7;,. The reconstruction will first generate

~ t —nly — 0.57,
70 = };g(nm n (——”—f;-—w’i)

The transfer function of filter P(f) is the Fourier transform of IT(¢/T},) shifted by 0.57:
P(f) = Ty sinc (nf T) e 7T

(6.15)

As a result, the equalizer ﬁequeﬁcy response should satisfy

Ts/P(f) IfI<B
Flexible B < |f| < (1/T; — B)
0 Ifl=1/Ts — B)

E(f)=
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It is important for us to ascertain that the equalizer passband response is realizable. First
of all, we can add another time delay to the reconstruction such that

B =Ty gt (51 <p (6.16)
sin

. For the passband gain of E(f) to be well defined, it is imperative for us to choose a short
pulse width 7}, such that

sin (T[pr

f #0 |fl=B

This means that the equalizer E(f) does not need to achieve infinite gain. Otherwise the
equalizer would become unrealizable. Equivalently, this requires that

I, <1/B

Hence, as long as the rectangular reconstruction pulse width is shorter than 1/B, it may be
possible to design an analog equalizer filter to recover the original analog signal g(¢) from
the nonideal reconstruction pulse train. Of course, this is a requirement for a rectangular
reconstruction pulse generator. In practice, 7, can be chosen very small, to yield the following
equalizer passband response:

anf T

PO S T T,

fl<hB 6.17)

This means that very little distortion remains when very short rectangular pulses are used in
signal reconstruction. Such cases make the design of the equalizer either unnecessary or very
simple. An illustrative example is given as a MATLAB exercise in Sec. 6.9.

We can improve on the zero-order-hold filter by using the first-order-hold filter, which
results in a linear interpolation instead of the staircase interpolation. The linear interpolator,
whose impulse response is a triangle pulse A(#/27;), results in an interpolation in which
successive sample tops are connected by straight-line segments (Prob. 6.1-7).

6.1.2 Practical Issues in Signal Sampling
and Reconstruction

Realizability of Reconstruction Filters

If a signal is sampled at the Nyquist rate f; = 2B Hz, the spectrum G(f) consists of repetitions
of G(f) without any gap between successive cycles, as shown in Fig. 6.7a. To recover g (1)
from g(¢), we need to pass the sampled-signal g(¢) through an ideal low-pass filter (dotted
area in Fig. 6.7a). As seen in Sec. 3.5, such a filter is unrealizable in practice; it can be closely
approximated only with infinite time delay in the response. This means that we can recover
the signal g(f) from its samples with infinite time delay.

A practical solution to this problem is to sample the signal at a rate higher than the Nyquist
rate (f; > 2B or w; > 47 B). This yields G(f), consisting of; repeutxons of G(f) with a finite
band gap between successive cycles, as shown in Fig. 6.7b. “We can now recover G( f) from
G(f) [or from G( )1 by using alow-pass filter with a gradual cutoff characteristic (dotted area -

in Fig. 6.7b). But even in this case, the filter gain is required to be zero beyond the first cycle
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of G(f) (Fig. 6.7b). According to the Paley-Wiener criterion, it is impossible to realize even
this filter. The only advantage in this case is that the required filter can be better approximated
with a smaller time delay. This shows that it is impossible in practice to recover a band-limited
signal g(¢) exactly from its samples, even if the sampling rate is higher than the Nyquist rate.
However, as the sampling rate increases, the recovered sigrial approaches the desired signal
more closely. '

The Treachery of Aliasing

There is another fundamental practical difficulty in feconstructing a signal from its samples.
The sampling theoremn was proved on the assumption that the signal g(r) is band-limited.
All practical signals are time-limited; that is, they are of finite duration or width. We can
demonstrate (Prob. 6.1-8) that a signal cannot be time-limited and band-limited simultaneously.
A time-limited signal cannot be band-limited, and vice versa (but a signal can be simultaneously
non-time-limited and non-band-limited). Clearly, all practical signals, which are necessarily
time-limited, are non-band-limited, as shown in Fig. 6.8a; they have infinite bandwidth, and
the spectrum G(f) consists of overlapping cycles of G(f) repeating every f; Hz (the sampling
frequency), as illustrated in Fig. 6.8b. Because of the infinite bandwidth in this case, the spectral
overlap is unavoidable, regardiess of the sampling rate. Sampling at a higher rate reduces but
does not eliminate overlapping between repeating spectral cycles. Because of the overlapping
tails, G(f) no longer has complete information about G(f), and it is no longer possible, even
theoretically, to recover g(r) exactly from the sampled signal g(¢). If the sampled signal is
passed through an ideal low-pass filter of cutoff frequency f;/2 Hz, the output is not G(f) but
G.(f) (Fig. 6.8¢c), which is a version of G(f) distorted as a result of two separate causes:

1. The loss of the tail of G(f) beyond |f| > f;/2 Hz.
2. The reappearance of this tail inverted or folded back onto the spectrum,

Note that the spectra cross at frequency f5/2 = 1/27 Hz, which is called the folding
frequency. The spectrum may be viewed as if the lost tail is folding back onto itself at the folding
frequency. For instance, a component of frequency (fs/2)+ f; shows up as, or “impersonates,”
acomponent of lower frequency (f;/2) —f; in the reconstructed signal. Thus, the components of
frequencies above f;/2 reappear as components of frequencies below f; /2. This tail inversion,
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Figure 6.8
Aliasing effect.
{a)} Spectrum of a
practical signal
g(@).

(b} Spectrum of
sampled g(#).

{c) Reconstructed
signal spectrum.
{d} Sampling
scheme using
antialiasing filter.
{e) Sampled
signal spectrum
{dotted) and the
reconstructed
signal spectrum
{solid) when
antialiasing filter
is used.
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known as spectral folding or aliasing, is shown shaded in Fig. 6.8b and also in Fig. 6.8¢c. In
the process of aliasing, not only are we losing all the components of frequencies above the
folding frequency f;/2 Hz, but these very components reappear (aliased) as lower frequency
components in Fig. 6.8b or ¢. Such aliasing destroys the integrity of the frequency components
below the folding frequency f;/2, as depicted in Fig. 6.8c.

The problem of aliasing is analogous to that of an army when a certain platoon has secretly
defected to the enemy side but remains nominally loyal to their army. The army is in double
jeopardy. First, it has lost the defecting platoon as an effective fighting force. In addition, during
actual fighting, the army will have to contend with sabotage caused by the defectors and will
have to use loyal platoon to neutralize the defectors. Thus, the army has lost two platoons to
nonproductive activity.

Defectors Eliminated: The Antialiasing Filter

If you were the commander of the betrayed army, the solution to the problem would be obvious.
As soon as you got wind of the defection, you would incapacitate, by whatever means, the
defecting platoon. By taking this action before the fighting begins, you lose only one (the
defecting)* platoon. This is a partial solution to the double jeopardy of betrayal and sabotage,
a solution that partly rectifies the problem and cuts the losses in half.

We follow exactly the same procedure. The potential defectors are all the frequency com-
ponents beyond the folding frequency f;/2 = 1/27 Hz. We should eliminate (suppress) these
components from g(¢) before sampling g(t). Such suppression of higher frequencies can be
accomplished by an ideal low-pass filter of cutoff f;/2 Hz, as shown in Fig. 6.8d. This is called
the antialiasing filter. Figure 6.8d also shows that antialiasing filtering is performed before
sampling. Figure 6.8¢ shows the sampled signal spectrum and the reconstructed signal Gaq (f)
when the antialiasing scheme is used. An antialiasing filter essentially band-limits the signal
2(t) to f;/2 Hz. This way, we lose only the components beyond the folding frequency fs/2 Hz.
These suppressed components now cannot reappear, corrupting the components of frequencies
below the folding frequency. Clearly, use of an antialiasing filter results in the reconstructed
signal spectrin G, (f) = G(f) for | f| < fs/2. Thus, although we lost the spectrum beyond
f+/2 Hz, the spectrum for all the frequencies below f;/2 remains intact. The effective aliasing
distortion is cut in half owing to elimination of folding. We stress again that the antialiasing
operation must be performed before the signal is sampled.

An antialiasing filter also helps to reduce noise. Noise, generally, has a wideband spectrum,
and without antialiasing, the aliasing phenomenon itself will cause the noise components
outside the desired signal band to appear in the signal band. Antialiasing suppresses the entire
noise spectrum beyond frequency f;/2.

The antialiasing filter, being an ideal filter, is unrealizable. In practice we use a steep-cutoff
filter, which leaves a sharply attenuated residual spectrum beyond the folding frequency fy/2.

Sampling Forces Non-Band-Limited Signals to Appear Band-Limited

Figure 6.8b shows the spectrum of a signal g(z) consists of overlapping cycles of G(f). This
means that Z(¢) are sub-Nyquist samples of g (). However, we may also view the spectrum in
Fig. 6.8b as the spectrum G,(f) (Fig. 6.8¢), repeating periodically every fs Hz without overlap.
The spectrum G,(f) is band-limited to f;/2 Hz. Hence, these (sub-Nyquist) samples of g(?)

* Pigure 6.8b shows that from the infinite number of repeating cycles, only the neighboring spectral cycles overlap.
This is a somewhat simplified picture. In reality, all the cycles overlap and interact with every other cycle because
of the infinite width of all practical signal spectra. Fortunately, all practical spectra also must decay at higher
frequencies. This results in an insignificant amount of interference from cycles other than the immediate neighbors.
When such an assumption is not justified, aliasing computations become little more involved.
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are actually the Nyquist samples for signal g,(?). In conclusion, sampling a non-band-limitéd
signal g() at a rate f; Hz makes the samples appear to be the Nyquist samples of some signal
ga(t), band-limited to f;/2 Hz. In other words, sampling makes a non-band-lirited signal
appear to be a band-limited signal g, (¢) with bandwidth f;/2 Hz. A similar conclusion applies
if g(z) is band-limited but sampled at a sub-Nyquist rate.

6.1.3 Maximum Information Rate: Two Pieces of
Information per Second per Hertz

A knowledge of the maximum rate at which information can be transmitted over a channel of
bandwidth B Hz is of fundamental importance in digital communication. We now derive one
of the basic relationships in communication, which states that @ maximum of 2B independent
pieces of information per second can be transmitted, error free, over a noiseless channel of
bandwidih B Hz. The result follows from the sampling theorem.

First, the sampling theorem shows that a low-pass signal of bandwidth B Hz can be fully
recovered from samples uniformly taken at the rate of 2B samples per second. Conversely,
we need to show that any sequence of independent data at the rate of 28 Hz can come from
uniform samples of a low-pass signal with bandwidth B. Moreover, we can construct this
low-pass signal from the independent data sequence.

Suppose a sequence of independent data samples is denoted as {g,,}. Its rate is 2B samples
per second. Then there always exists a (not necessarily band-limited) signal g (¢£) such that

I

gn = g(nTy) Ty == ‘2};

In Figure 6.9a we illustrate again the effect of sampling the non-band-limited signal g(¢) at

- sampling rate f; = 2B Hz. Because of aliasing, the ideal sampled signal

g0) =) g(nT)8(s — nTy)
=Y " ga(nT)8(t — nTy)

where g,(2) is the aliased low-pass signal whose samples g,:7;) equal to the samples of
g(nTy). In other words, sub-Nyquist sampling of a signal g(r) generates samples that can
be equally well obtained by Nyquist sampling of a band-limited signal g,(¢). Thus, through
Figure 6.9, we demonstrate that sampling g(#) and g,(7) at the rate of 2B Hz will generate the
same independent information sequence {g,}:

|

=5 (6.18)

8n = g(nTy) == ga(nTy) T;
Also from the sampling theorem, a low-pass signal g,(#) with bandwidth B can be reconstructed
from its uniform samples [Eq. (6.10)]

ga(t) = Zgn sinc (2Bt — k)

n

Assuming no noise, this signal can be transmitted over a distortionless channel of bandwidth
B Hz, error free. At the receiver, the data sequence {g,} can be recovered from the Nyquist
samples of the distortionless channel output g, () as the desired information data.
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This theoretical rate of communication assumes a noise-free channel. In practice, chan-
nel noise is unavoidable, and consequently, this rate will cause some detection errors. In
Chapter 14, we shall present the Shannon capacity which determines the theoretical error-free
communication rate in the presence of noise.

6.1.4 Nonideal Practical Sampling Analysis

Thus far, we have mainly focused on ideal uniform sampling that can use an ideal impulse
sampling pulse train to precisely extract the signal value g(kT) at the precise instant of t =
kTs. In practice, no physical device can carry out such a task. Consequently, we need to
consider the more practical implementation of sampling. This analysis is important to the
better understanding of errors that typically occur during practical A/D conversion and their
effects on signal reconstruction.

Practical samplers take each signal sample over a short time interval 7, around ¢ = kTs.
In other words, every 7 seconds, the sampling device takes a short snapshot of duration 7,
from the signal g(f) being sampled. This is just like taking a sequence of still photographs
of a sprinter during an 100-meter Olympic race. Much like a regular camera that generates a
still picture by averaging the picture scene over the window 7}, the practical sampler would
generate a sample value at 7 = kT by averaging the values of signal g(¢) over the window T,
that is,

1 /2
g (kTy) = — f QKT + 1) dt (6.19a)
Tp Jo1,2

Depending on the actual device, this averaging may be weighted by a device-dependent
averaging function ¢(#) such that

1 Tp/2
g1(kTy) = — / g(t)g(kTs + 1)y dr (6.19b)
Ty Jor,p2
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Figure 6.10
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Thus we have used the camera analogy to establish that practical samplers in fact generate
sampled signal of the form

g0

F0) = g1(kTy)8( — kT) (6.20)

We will now show the relationship between the practically sampled signal g (¢) and the original
low-pass analog signal g(#) in the frequency domain.

We will use Fig. 6.10 to illustrate the relationship between g(f) and g(¢) for the special
case of uniform weighting. This means that

1 |1 <0.57,
gy = M=
0 |l > 057,

As shown in Fig. 6.10, g1(r) can be equivalently obtained by first using “natural gating” to
generate the signal snapshots

g0 =g -q.,(® (6.21)
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where

o0

4, ()= Y q(t—nT)

A= 00

Figure 6.10b illustrates the snapshot signal g(r). We can then define an averaging filter with
impulse response

1 7, T,
h a (t) sy Tp 2 - 2
0 elsewhere

or transfer function

Hay(f) = SihC (”pr)

Sending the naturally gated snapshot signal Z(¢) into the averaging filter generates the
output signal

81(0) = ha(1) (1)

As illustrated in Fig. 6.10c, the practical sampler generate a sampled signal 3(z) by sampling
the averaging filter output g; (k7). Thus we have used Fig. 6.10c to establish the equivalent
process of taking snapshots, averaging, and sampling in generating practical samples of g (7).
Now we can examine the frequency domain relationships to analyze the distortion generated
by practical samplers.

In the following analysis, we will consider a general weighting function ¢(¢) whose only
constraint is that

q®) =0, ¢ (-0.5T,, 057,
To begin, note that 4, (1) is periodic. Therefore, its Fourier series can be written as
b +
G0 = Y Qe
H=—00

where

1 0.57,

On = *-/ q(t)e“j”“’-‘tdt

Ty J-ost,
Thus, the averaging filter output signal is
g1 = ha (1) % [g(1)qy, (1]

= ()% Y Ong(r)e™st (6.22)

A=z 00
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Tn the frequency domain, we have

G =H) Y 0nG( —nf)

R=—00

=sinc (7fT,) Y CnG(f —nfy) (6.23)

=00

Because

5 = g (KT8 — kTy)
k
we can apply the sampling theorem to show that

o 1
G(f) =+ Z@(f +mf)

1 Z li(Zﬂf + m27ffs)Tp:\ Z 0n G(f + mfs~nfy)

= Z (—;— Z 0, sinc [(nf + (n+ K)”fS)Tp}) G(f + £fy) (6.24)
¢ R

n

The last equality came from the change of the summation index £ = m — n.
We can define frequency responses

1
Fi(f) == S Qusine [(rf + (n + OTf)T]

This definition allows us to conveniently write

G =Y FuHGI(f + ) (6.25)
¢

For the low-pass signal G(f ) with bandwidth B Hz, applying an ideal low-pass (interpolation)
filter will generate a distorted signal

Fo(HG) (6.26a)

in which

1
Fo(f) = 7= ) Qnsine [ (f +nfo) ] (6.26b)

Tt can be seen from Eqgs. (6.25) and (6.26) that the practically sampled signal already contains
a known distortion Fo(f)-
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Moreover, the use of a practical reconstruction pulse p(r) as in Eq. (6.12) will generate
additional distortion. Let us reconstruct g(¢) by using the practical samples to generate

E0) =3 g1(nTy)p(t — nTy)

Then from Eq. (6.13) we obtain the relationship between the spectra of the reconstruction and
the original message G(f) as

G(N) =P() S FulHG( +nf) (6.27)

Since G(f) has bandwidth B Hz, we will need to design a new equalizer with transfer function
E(f) such that the reconstruction is distortionless within the bandwidth B, that is,

1 I/l <B
EFP(f)Fo(f) = {Flexible B < |f|<f, —B (6.28)
0 If1>fi—B

This single equalizer can be designed to compensate for two sources of distortion: nonideal
sampling effect in Fy(f) and nonideal reconstruction effect in P(f). The equalizer design is
made practically possible because both distortions are known in advance.

6.1.5 Some Applications of the Sampling Theorem

The sampling theorem is very important in signal analysis, processing, and transmission
because it allows us to replace a continuous time signal by a discrete sequence of numbers.
Processing a continuous time signal is therefore equivalent to processing a discrete sequence of
numbers. This leads us directly into the area of digital filtering. In the field of communication,
the transmission of a continuous time message reduces to the transmission of a sequence of
numbers. This opens doors to many new techniques of communicating continuous time sig-
nals by pulse trains. The continuous time signal g (¢) is sampled, and sample values are used to
modify certain parameters of a periodic pulse train. We may vary the amplitudes (Fig. 6.11b),
widths (Fig. 6.11c), or positions (Fig. 6.11d) of the pulses in proportion to the sample values of
the signal g(1). Accordingly, we can have pulse amplitude modulation (PAM), pulse width
modulation (PWM), or pulse position modulation (PPM). The most important form of pulse
modulation today is pulse code modulation (PCM), introduced in Sec. 1.2, In all these cases,
mstead of transmitting g(), we transmit the corresponding pulse-modulated signal. At the 7
receiver, we read the information of the pulse-modulated signal and reconstruct the analog
signal g(z).

One advantage of using pulse modulation is that it permits the simultaneous transmission
of several signals on a time-sharing basis—time division multiplexing (TDM). Because a
pulse-modulated signal occupies only a part of the channel time, we can transmit several pulse-
modulated signals on the same channel by interweaving them. Figure 6.12 shows the TDM
of two PAM signals. In this manner we can multiplex several signals on the same channel by
reducing pulse widths.

Another method of transmitting several baseband signals simultaneously is frequency
division multiplexing (FDM), briefly discussed in Chapter 4. In FDM, various signals are mul-
tiplexed by sharing the channel bandwidth, The spectrum of each message is shifted to a specific
band not occupied by any other signal. The information of various signals is located in nonover-
lapping frequency bands of the channel. In a way, TDM and FDM are duals of each other.
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Figure 6.11
Pulse-modulated
signals. [a) The
unmodulated
signal. (b) The
PAM signal.

{c} The PWM
{PDM] signal.
(d) The PPM
signal.

Figure 6.12
Time division
multiplexing of
two signals.

Figure 6.13
PCM system
diagram.
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6.2 PULSE CODE MODULATION (PCM)

PCM is the most useful and widely used of all the pulse modulations mentioned. As shown in
Fig. 6.13, PCM basically is a tool for converting an analog signal into a digital signal (A/D
conversion). An analog signal is characterized by an amplitude that can take on any value over
a continuous range. This means.that it can take on an infinite number of values. On the other
hand, digital signal amplitude can take on only a finite number of values. An analog signal can



Figure 6.14
Quantization of
a sampled
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Allowed quantization levels

be converted into a digital signal by means of sampling and quantizing, that is, rounding off
its value to one of the closest permissible numbers (or quantized levels), as shown in Fig. 6.14.
The amplitudes of the analog signal m(z) lic in the range (~myp, my), which is partitioned into L,
subintervals, each of magnitude Av = 2myp /L. Next, each sample amplitude is approximated
by the midpoint value of the subinterval in which the sample falls (see Fig, 6.14 for L = 16).
Each sample is now approximated to one of the Z numbers. Thus, the signal is digitized, with
quantized samples taking on any one of the L values. Such a signal is known as an L-ary
digital signal.

From practical viewpoint, a binary digital signal (a si gnal that can take on only two values)
is very desirable because of its simplicity, economy, and ease of engineering. We can convert
an L-ary signal into a binary signal by using pulse coding. Such a coding for the case of L = 16
was shown in Fig. 1.5. This code, formed by binary representation of the 16 decimal digits
from 0 to 15, is known as the natural binary code (NBC). Other possible ways of assigning
a binary code will be discussed later. Each of the 16 levels to be transmitted is assigned one
binary code of four digits. The analog signal m(¢) is now converted to a (binary) digital signal.
A binary digit is called a bit for convenience. This contraction of “binary digit” to “bit” has
become an industry standard abbreviation and is used throughout the book.

Thus, each sample in this example is encoded by four bits. To transmit this binary data,
we need to assign a distinct pulse shape to each of the two bits. One possible way is to assign a
negative pulse to a binary 0 and a positive pulse to a binary 1 (Fig. 1.5) so that each sample is
now transmitted by a group of four binary pulses (pulse code). The resulting signal is a binary
signal.

The audio signal bandwidth is about 15 kHz. However, for speech, subjective tests show
that signal articulation (intelligibility) is not affected if all the components above 3400 Hz
are suppressed.®> Since the objective in telephone communication is intelligibility rather than
high fidelity, the components above 3400 Hz are eliminated by a low-pass filter. The resulting
signal is then sampled at a rate of 8000 samples per second (8 kHz). This rate is intentionally
kept higher than the Nyquist sampling rate of 6.8 kHz so that realizable filters can be applied
for signal reconstruction. Each sample is finally quantized into 256 levels (I = 256), which
requires a group of eight binary pulses to encode each sample (28 = 256). Thus, a telephone
signal requires 8 x 8000 = 64, 000 binary pulses per second.

* Components below 300 Hz may also be suppressed without affecting the articulation.
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The compact disc (CD) is a more recent application of PCM. This is a high-fidelity situation
requiring the audio signal bandwidth to be 20 kHz. Although the Nyquist sampling rate is only
40 kHz, the actual sampling rate of 44.1 kHz is used for the reason mentioned earlier. The
signal is quantized into a rather large number (L = 65, 536) of quantization levels, each of
which is represented by 16 bits to reduce the quantizing error. The binary-coded samples (1.4
million bit/s) are then recorded on the compact disc.

6.2.1 Advantages of Digital Communication
Here are some of the advantages of digital communication over analog communication.

1. Digital communication, which can withstand channel noise and distortion much better
than analog as long as the noise and the distortion are within limits, is more rugged than analog
communication. With analog messages, on the other hand, any distortion or noise, no matter
how small, will distort the received signal.

2. The greatest advantage of digital communication over analog communication, how-
ever, is the viability of regenerative repeaters in the former. In an analog communication system,
a message signal becomes progressively weaker as it travels along the channel, whereas the
cumulative channel noise and the signal distortion grow progressively stronger. Ultimately
the signal is overwhelmed by noise and distortion. Amplification offers little help because it
enhances the signal and the noise by the same proportion. Consequently, the distance over
which an analog message can be transmitted is limited by the initial transmission power. For
digital communications, a long transmission path may also lead to overwhelming noise and
interferences. The trick, however, is to set up repeater stations along the transmission path at
distances short enough to be able to detect signal pulses before the noise and distortion have
a chance to accumulate sufficiently. At each repeater station the pulses are detected, and new,
clean pulses are transmitted to the next repeater station, which, in turn, duplicates the same pro-
cess. If the noise and distortion are within limits (which is possible because of the closely spaced
repeaters), pulses can be detected correctly.” This way the digital messages can be transmitted
over longer distances with greater reliability. The most significant error in PCM comes from
quantizing. This error can be reduced as much as desired by increasing the number of quan-
tizing levels, the price of which is paid in an increased bandwidth of the transmission medium
(channel).

3. Digital hardware implementation is flexible and permits the use of microprocessors,
digital switching, and large-scale integrated circuits.

4. Digital signals can be coded to yield extremely low error rates and high fidelity as well
as for privacy.

5. It is casier and more efficient to multiplex several digital signals.

6. Digital communication is inherently more efficient than analog in exchanging SNR for
bandwidth.

7. Digital signal storage is relatively easy and inexpensive. It also has the ability to search
and select information from distant electronic database.

8. Reproduction with digital messages can be extremely reliable without deterioration.
Analog messages such as photocopies and films, for example, lose quality at each successive
stage of reproduction and must be transported physically from one distant place to another,
often at relatively high cost.

* The error in pulse detection can be made negligible.
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9. The cost of digital hardware continues to halve every two or three years, while
performance or capacity doubles over the same time period. And there is no end in sight
yet to this breathtaking and relentless exponential progress in digital technology. As a
result, digital technologies today dominate in any given area of communication or storage
technologies,

A Historical Note

The ancient Indian writer Pingala applied what turns out to be advanced mathematical concepts
for describing prosody, and in doing so presented the firstknown description of a binary numeral
system, possibly as early as the eighth century BCE.® Others, like R. Hall in Mathematics of
Poetry place him later, circa 200 BCE. Gottfried Wilhelm Leibniz (1646-1716) was the first
mathematician in the West to work out systematically the binary representation (using 1s and 0s)
for any number. He felt a spiritual significance in this discovery, believing that 1, representing
unity, was clearly a symbol for God, while 0 represented nothingness. He reasoned that if all
numbers can be represented merely by the use of 1 and 0, this surely proves that God created
the universe out of nothing!

6.2.2 Quantizing

As mentioned earlier, digital signals come from a variety of sources. Some sources such as
computers are inherently digital. Some sources are analog, but are converted into digital form
by a variety of techniques such as PCM and delta modulation (DM}, which will now be
analyzed. The rest of this section provides quantitative discussion of PCM and its various
aspects, such as quantizing, encoding, synchronizing, the required transmission bandwidth
and SNR.

For quantization, we limit the amplitude of the message signal m(r) to the range (—my, M),
as showninFig. 6.14. Note that m,, is not necessarily the peak amplitude of m(r). The amplitudes
of m(r) beyond £my, are simply chopped off. Thus, mp is not a parameter of the signal m(z);
rather, itis the limit of the quantizer. The amplitude range (—my, my) is divided into L uniformly
spaced intervals, each of width Av = 2my, /L. A sample value is approximated by the midpoint
of the interval in which it lies (Fig. 6.14). The quantized samples are coded and transmitted
as binary pulses. At the receiver some pulses may be detected incorrectly. Hence, there are
two sources of error in this scheme: quantization error and pulse detection error. In almost all
practical schemes, the pulse detection error is quite small compared to the quantization error
and can be ignored. In the present analysis, therefore, we shall assume that the error in the
received signal is caused exclusively by quantization.

If m(kT) is the kth sample of the signal m(¢), and if m(kT,) is the corresponding quantized
sample, then from the interpolation formula in Eq. (6.10),

m(i) = Zm(kTs) sinc (2Bt — ki)
k

and

() = Zﬁz(kn) sinc (2Bt — k)
k
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where m(r) is the signal reconstructed from quantized samples. The distortion component q(t)

in the reconstructed signal is g(¢) = () — m(z). Thus,

q(t) = Y _[(kTs) — m(kTy)] sine (2 Bt — k)
k

=Y q(kT,) sinc 2w Bt — k)
k

where g(kT}) is the quantization error in the kth sample. The signal g(¢) is the undesired signal,
and, hence, acts as noise, known as quantization neise. To calculate the power, or the mean
square value of g(f), we have

2 1T,
) = lim — 1)y dr
q-(t) Tgr;ng_T/zq )
1 T2 2
= lim — / Zq(km sinc (2Bt — k) | dt (6.29a)
T—oo T j_ 12 -

We can show that (see Prob. 3.7-4) the signals sinc (2Bt —mm) and sinc (2n Bt — nm) are
orthogonal, that is, ’

00 : 0 mw#£n
j sinc (2w Bt — mar) sinc 2w Bt — nw ) di = 1 (6.29b)
—a0 E‘é m=n

Because of this result, the integrals of the cross-product terms on the right-hand side of
Eqg. (6.292) vanish, and we obtain

[PV 1 T/2
2 . 2 2
= — E k Bt —km)dt
7 ® Tlgnoo T /_T/z 7 ¢ (T:) sine” (2 ™)

.1 .
= TlimOo T ; qz(kTs) [ - sinc? (2Bt — km) dt
From the orthogonality relationship (6.29b), it follows that
atd 1 )
2 : 2
= Hm — kT, 6.30
7o TganBT};q( ) (6.30)

Because the sampling rate is 25, the total number of samples over the averaging interval T is
2BT. Hence, the right-hand side of Eq. (6.30) represents the average, or the mean of the square
of the quantization error. The quantum levels are separated by Av = 2mp /L. Since a sample
value is approximated by the midpoint of the subinterval (of height Av) in which the sample
falls, the maximum quantization error is &=Av/2. Thus, the quantization error lies in the range
(—Av/2, Av/2), where

Ay = — 6.31)
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Assuming that the error is equally likely to lie anywhere in the range (—Av/2, Av/2), the

mean square quantizing error ¢ is given by*

(6.32)

_ M (6.33)

Because g2(7) is the mean square value or power of the quantization noise, we shall denote it
by Ny,

A

2
m
Ny = @)= =%

312

Assuming that the pulse detection error at the receiver is negligible, the reconstructed signal
m(t) at the receiver output is

w(t) = m(t) + q(t)

The desired signal at the output is m(), and the (quantization) noise is g(f). Since the power

of the message signal m(¥) is m?(t), then

So = m(1)

2

m

14

No=Pa= 1312
and

S 2y
Do _ 32" i) (6.34)
No w3

In this equation, m, is the peak amplitude value that a quantizer can accept, and is therefore
a parameter of the quantizer. This means S, /N,, the SNR, is a linear function of the message

signal power m>(r) (see Fig. 6.18 with p = 0).

* Those who are familiar with the theory of probability can derive this result directly by noting that the probability
density of the quantization error g is 1/(2mp/L) = L/2my, over the range |g| < mp/L and is zero elsewhere. Hence,

e

/L mp/L T,
P = / ¢*p(q) dg = / 2———q2 dg =
—tip /L. ~my /L «Mp 3L

8
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6.2.3 Principle of Progressive Taxation: Nonuniform
Quantization

Recall that S, /N,, the SNR, is an indication of the quality of the received signal. Ideally we
would like to have a constant SNR (the same quality) for all values of the message signal power

m2(1). Unfortunately, the SNR is directly proportional to the signal power m?(¢), which varies
from speaker to speaker by as much as 40 dB (a power ratio of 10%). The signal power can also
vary because of the different lengths of the connecting circuits. This indicates that the SNR in
Eg. (6.34) can vary widely, depending on the speaker and the length of the circuit. Fven for
the same speaker, the quality of the received signal will deteriorate markedly when the person
speaks softly. Statistically, it is found that smaller amplitudes predominate in speech and larger
amplitudes are much less frequent. This means the SNR will be low most of the time.

The root of this difficulty livs in the fact that the quantizing steps are of uniform value
Av = 2mp/L. The quantization noise N, = (Av)?/12 [Eq. (6.32)] is directly proportional
to the square of the step size. The problem can be solved by using smaller steps for smaller
amplitudes (nonuniform quantizing), as shown in Fig. 6.15a. The same result is obtained by
first compressing signal samples and then using a uniform quantization. The input-output
characteristics of a compressor are shown in Fig. 6.15b. The horizontal axis is the normalized
input signal (i.e., the input signal amplitude m divided by the signal peak value mp). The
vertical axis is the output signal y. The compressor maps input signal increments Am into
larger increments Ay for small input signals, and vice versa for large input signals. Hence, a
given interval Am contains a larger number of steps (or smaller step size) when m is small.
The quantization noise is lower for smaller input signal power. An approximately logarithmic
compression characteristic yields a quantization noise nearly proportional to the signal power

m?(1), thus makmg the SNR practically independent of the input signal power over a large
dynamic range (see later Fig. 6.18). This approach of equalizing the SNR appears similar to
the use of progressive income tax to equalize incomes. The loud talkers and stronger signals
are penalized with higher noise steps Av to compensate the soft talkers and weaker signals.

Among several choices, two compression laws have been accepted as desirable standards
by the ITU-T:® the yu-law used in North America and J apan, and the A-law used in Europe and
the rest of the world and on international routes. Both the p-law and the A-law curves have
odd symmetry about the vertical axis. The u-law (for positive amplitudes) is given by

1 m m
. Imf1+ 22 0<— <1 6.35a
YTt ( m,,) =y (6-352)
The A-law (for positive amplitudes) is
A m 0 < m < 1
T+ InAd ;;l; = ;n; =4
y= (6.35b)
1 Amy 1 _m
TThA (Hm m,,> A=y =1

These characteristics are shown in Fig. 6.16.

The compression parameter u (or A) determines the degree of compression. To obtain a
nearly constant S,/N, over a dynamic range of for input signal power 40 dB, z should be
greater than 100. Early North American channel banks and other digital terminals used a value
of =100, which yielded the best results for 7-bit (128-level) encoding. An optimum value
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of 1 =255 has been used for all North American 8-bit (256-level) digital terminals, and the
earlier value of ¢ is now almost extinct. For the A-law, a value of A = 87.6 gives comparable
results and has been standardized by the ITU-T.®

The compressed samples must be restored to their original values at the receiver by using
an expander with a characteristic complementary to that of the compressor. The compressor and
the expander together are called the compandor. Figure 6.17 describes the use of compressor
and expander along with a uniform quantizer to achieve nonuniform quantization.

Generally speaking, time compression of a signal increases its bandwidth. But in PCM,
we are compressing not the signal m(¢) in time but its sample values. Because neither the time
scale not the number of samples changes, the problem of bandwidth increase does not arise
here. It happens that when a j.-law compandor is used, the output SNR is

% . m

— [Tl —
N, [In(14 w71 Y

(6.36)
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Figure 6.16
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The output SNR for the cases of 1 = 255 and ¢ = 0 (uniform quantization) as a function of

m?(t) (the message signal power) is shown in Fig. 6.18.

The Compandor

" A logarithmic compressor can be realized by a semiconductor diode, because the V-7

characteristic of such a diode is of the desired form in the first quadrant:

KT I
Vz~—1n(1—l~—)
q I

‘Two matched diodes in paralle] with opposite polarity provide the approximate characteristic
in the first and third quadrants (ignoring the saturation current). In practice, adjustable resistors
are placed in series with each diode and a third variable resistor is added in parallel. By adjusting
various resistors, the resulting characteristic is made to fit a finite number of points (usually
seven) on the ideal characteristics.

An alternative approach is to use a piecewise linear approximation to the logarithmic char-
acteristics. A 15-segmented approximation (Fig. 6.19) to the eighth bit (L = 256) with g = 255
law is widely used in the D2 channel bank that is used in conjunction with the T1 carrier system.
The segmented approximation is only marginally inferior in terms of SNR.® The piecewise
linear approximation has almost universally replaced earlier logarithmic approximations to
the true 0 =255 characteristic and is the method of choice in North American standards.
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Though a true u = 255 compressor working with a u = 255 expander will be superior to sim-
ilar piecewise linear devices, a digital terminal device exhibiting the true characteristic in
today’s network must work end-to-end against other network elements that use the piecewise
linear approximation. Such a combination of differing characteristics is inferior to either of
the characteristics obtained when the compressor and the expander operate using the same
compression law.

In the standard audio file format used by Sun, Unix and Java, the audio in “au”
files can be pulse-code-modulated or compressed with the ITU-T G711 standard through
either the p-law or the A-law.® The p-law compressor (u = 255) converts 14-bit
signed linear PCM samples to logarithmic 8-bit samples, leading to storage saving. The
A-law compressor (A = 87.6) converts 13-bit signed linear PCM samples to logarithmic
8-bit samples. In both cases, sampling at the rate of 8000 Hz, a G.77 encoder thus creates from
audio signals bit streams at 64 kilobits per second (kbit/s). Since the A-law and the p1-law are
mutually compatible, andio recoded into “au” files can be decoded in either format. It should
be noted that the Microsoft WAV audio format also has compression options that use p-law
and A-law.



278 SAMPLING AND ANALOG-TO-DIGITAL CONVERSION

The PCM Encoder

The multiplexed PAM output is applied at the input of the encoder, which quantizes and encodes
each sample into a group of » binary digits. A variety of encoders is available.” 19 We shall
discuss here the digit-at-a-time encoder, which makes n sequential comparisons to generate an
n-bit codeword. The sample is compared with a voltage obtained by a combination of reference
voltages proportional to 27, 28, 23 .| 20 The reference voltages are conveniently generated
by a bank of resistors R, 2R, 2R, ... , 27R.

The encoding involves answering successive questions, beginning with whether the sam-
ple is in the upper or lower half of the allowed range. The first code digit 1 or 0 is generated,
depending on whether the sample is in the upper or the lower half of the range. In the second
step, another digit 1 or {0 is generated, depending on whether the sample is in the upper or the
lower half of the subinterval in which it has been located. This process continues until the Jast
binary digit in the code has been generated.

Decoding is the inverse of encoding. In this case, each of the n digits is applied to a resistor
of different value. The kth digit is applied to a resistor 2¥R. The currents in all the resistors
are added. The sum is proportional to the quantized sample value. For example, a binary code
word 10010110 will give a current proportional to 27 + 0 + 0+ 2% + 0+ 22 + 2! + 0 = 150.
This completes the D/A conversion.

6.2.4 Transmission Bandwidth and the Output SNR

For abinary PCM, we assign a distinct group of n binary digits (bits) to each of the L quantization
levels. Because a sequence of » binary digits can be arranged in 2" distinct patterns,

L=2" o n=loglL (6.37)

each quantized sample is, thus, encoded into n bits. Because a signal m(z) band-limited to B
Hz requires a minimum of 2B samples per second, we require a total of 2uB bit/s, that is, 2nB
pieces of information per second. Because a unit bandwidth (1 Hz) can transmit a maximum of
two pieces of information per second (Sec. 6.1.3), we require a minimum channel of bandwidth
Br Hz, given by

Br =nBHz (6.38)
This is the theoretical minimum transmission bandwidth required to transmit the PCM signal.

In Secs.7.2 and 7.3, we shall see that for practical reasons we may use a transmission bandwidth
higher than this minimum.

Example 6.2 A signal m(s) band-limited to 3kHz is sampled at a rate 331% higher than the Nyquist rate.
The maximum acceptable error in the sample amplitude (the maximum quantization error) is
0.5% of the peak amplitude m,. The quantized samples are binary coded. Find the minimum
bandwidth of a channel required to transmit the encoded binary signal. If 24 such signals
are time-division-multiplexed, determine the minimum transmission bandwidth required to
transmit the multiplexed signal.

-

The Nyquist sampling rate is Ry = 2 x 3000 = 6000 Hz (samples per second). The
actual sampling rate is Ry = 6000 x ( 1%) = 8000 Hz.
The quantization step is Av, and the maximum quantization error is £Ap/2.



6.2 Pulse Code Modulation (PCM] 279

Therefore; from Eq. (6.31),

Ay m 0.5
5 = "Ze: oo = L =200
For binary coding, L must be a power of 2. Hence, the next higher value of L that is a
power of 2 is L = 256.
From Eq. (6.37), we need n = log, 256 = 8 bits per sample. We require to transmit
a total of C = 8 x 8000 = 64, 000 bit/s. Because we can transmit up to 2 bit/s per hertz
of bandwidth, we require a minimum transmission bandwidth By = C/2 = 32 kHz.
The multiplexed signal has a total of Cyy = 24 x 64,000 = 1.536 Mbit/s, which
requires a minimum of 1.536/2 = 0.768 MHz of transmission bandwidth.

S

Exponential Increase of the Output SNR
From Eq. (6.37), L2 = 2°", and the output SNR in Eq. (6.34) or Eq. (6.36) can be expressed as

S
A 6.39
N, c(2) (6.39)
where
2
3 m @) [uncompressed case, in Eq. (6.34)]
¢ = my

-~

mﬂ_“ﬁj {compressed case, in Eq. (6.36)]
n <4

Substitution of Eg. (6.38) into Eq. (6.39) yields

So 2By /B
: )28/ 6.40
N, c(2) ( )

From Eq. (6.40) we observe that the SNR increases exponentially with the transmission band-
width Br. This trade of SNR for bandwidth is attractive and comes close to the upper theoretical
limit. A small increase in bandwidth yields a large benefit in terms of SNR. This relationship
is clearly seen by using the decibel scale to rewrite Eq. (6.39) as

) (%)
— = 10logy { —
(No dB AN,

= 101log5[c(2)*"]
= 1010g10 c + 2n loglo 2
=(u¢-+6n) dB (6.41)

where o = 10 log,q c. This shows that increasing »n by 1 (increasing one bit in the codeword)
quadruples the output SNR (a 6 dB increase). Thus, if we increase » from 8 to 9, the SNR
quadruples, but the transmission bandwidth increases only from 32 kHz to 36 kHz (an increase
of only 12.5%). This shows that in PCM, SNR can be controlled by transmission bandwidth.
We shall see later that frequency and phase modulation also do this. But it requires a doubling of
the bandwidth to quadruple the SNR. In this respect, PCM is strikingly superior to FM or PM.
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Example 6.3 A signal m(t) of bandwidth B = 4 kHz is transmitted using a binary companded PCM with
= 100. Compare the case of L = 64 with the case of L = 256 from the point of view of
transmission bandwidth and the output SNR.

For L = 64, n = 6, and the transmission bandwidth is nB = 24 kHz,

5o _ (w+36) dB

Ny
o =10log — > = 851
=G T
Hence,
S0
20 2749 dB
Ny

For L = 256, n = 8, and the transmission bandwidth is 32 kHz,

: %i:a+6‘n=39.49dB

[4]

The difference between the two SNRs is 12 dB, which is a ratio of 16. Thus, the SNR
for L = 256 is 16 times the SNR for L = 64. The former requires just about 33% more
bandwidth compared to the latter.

Comments on Logarithmic Units v

Logarithmic units and logarithmic scales are very convenient when a variable has a large
dynamic range. Such is the case with frequency variables or SNRs. A logarithmic unit for the
power ratio is the decibel (dB), defined as 101log,, (power ratio). Thus, an SNR is x dB, where

N
x = 10 log;, ¥

We use the same unit to express power gain or loss over a certain transmission medium. For
instance, if over a certain cable the signal power is attenuated by a factor of 15, the cable gain is

1
G =10 logyg 5 = ~11.76 dB

or the cable attenuation (loss) is 11.76 dB.

Although the decibel is a measure of power ratios, it is often used as a measure of power
itself. For instance, “100 watt” may be considered to be a power ratio of 100 with respect to
1-watt power, and is expressed in units of dBW as

PdBW =10 IOgIO 100 = 20 dBW
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Thus, 100-watt power is 20 dBW. Similarly, power measured with respect to | mW power is
dBm. For instance, 100-watt power is

100w
Pygm = 10 log Tow = 50 dBm

6.3 DIGITAL TELEPHONY: PCM IN T1
CARRIER SYSTEMS

A Historical Note

Because of the unavailability of suitable switching devices, more than 20 years elapsed between
the invention of PCM and its implementation. Vacuum tubes, used before the invention of the
transistor, were not only bulky, but they were poor switches and dissipated a lot of heat. Systems
having vacuum tubes as switches were large, rather unreliable, and tended to overheat. PCM
was just waiting for the invention of the transistor, which happens to be a small device that
consumes little power and is a nearly ideal switch.

Coincidentally, at about the time the transistor was invented, the demand for telephone
service had become so heavy that the existing system was overloaded, particularly in large
cities. It was not easy to install new underground cables because space available under the
streets in many cities was already occupied by other services (water, gas, sewer, etc.). Moreover,
digging up streets and causing many dislocations was not very attractive. An attempt was made
on a limited scale to increase the capacity by frequency-division-multiplexing several voice
channels through amplitude modulation. Unfortunately, the cables were primarily designed
for the audio voice range (0—4 kHz) and suffered severely from noise. Furthermore, cross talk
between pairs of channels on the same cable was unacceptable at high frequencies. Ironically,
PCM—requiring a bandwidth several times larger than that required for FDM signals—offered
the solution. This is because digital systems with closely spaced regenerative repeaters can
work satisfactorily on noisy lines that give poor high-frequency performance.? The repeaters,
spaced approximately 6000 feet apart, clean up the signal and regenerate new pulses before the
pulses get too distorted and noisy. This is the history of the Bell System’s T1 carrier system,> 10
A pair of wires that used to transmit one audio si gnal of bandwidth 4 kHz is now used to transmit
24 time-division-multiplexed PCM telephone signals with a total bandwidth of 1.544 MHz.

T1 Time Division Multiplexing

A schematic of a T1 carrier system is shown in Fig. 6.20a. All 24 channels are sampled
in a sequence. The sampler output represents a time-divisionymultiplexed PAM signal. The
multiplexed PAM signal is now applied to the input of an encoder that quantizes each sample
and encodes it into eight binary pulses—a binary codeword* (see Fig. 6.20b). The signal,
now converted to digital form, is sent over the transmission medium. Regenerative repeaters
spaced approximately 6000 feet apart detect the pulses and retransmit new pulses. At the
receiver, the decoder converts the binary pulses into samples (decoding). The samples are
then demultiplexed (i.e., distributed to each of the 24 channels). The desired audio signal is
reconstructed by passing the samples through a low-pass filter in each channel.

* In an earlier version, each sample was encoded by seven bits. An additional bit was added for signaling.



