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PREFACE

This text is a new and improved edition of Rawlings (1988). It is the out-
growth of several years of teaching an applied regression course to graduate
students in the sciences. Most of the students in these classes had taken
a two-semester introduction to statistical methods that included experi-
mental design and multiple regression at the level provided in texts such
as Steel, Torrie, and Dickey (1997) and Snedecor and Cochran (1989). For
most, the multiple regression had been presented in matrix notation.
The basic purpose of the course and this text is to develop an understand-
ing of least squares and related statistical methods without becoming exces-
sively mathematical. The emphasis is on regression concepts, rather than on
mathematical proofs. Proofs are given only to develop facility with matrix
algebra and comprehension of mathematical relationships. Good students,
even though they may not have strong mathematical backgrounds, quickly
grasp the essential concepts and appreciate the enhanced understanding.
The learning process is reinforced with continuous use of numerical exam-
ples throughout the text and with several case studies. Some numerical
and mathematical exercises are included to whet the appetite of graduate
students.
The first four chapters of the book provide a review of simple regression
in algebraic notation (Chapter 1), an introduction to key matrix operations
and the geometry of vectors (Chapter 2), and a review of ordinary least
squares in matrix notation (Chapters 3 and 4). Chapter 4 also provides
a foundation for the testing of hypotheses and the properties of sums of
squares used in analysis of variance. Chapter 5 is a case study giving a
complete multiple regression analysis using the methods reviewed in the
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first four chapters. Then Chapter 6 gives a brief geometric interpretation
of least squares illustrating the relationships among the data vectors, the
link between the analysis of variance and the lengths of the vectors, and
the role of degrees of freedom. Chapter 7 discusses the methods and crite-
ria for determining which independent variables should be included in the
models. The next two chapters include special classes of multiple regres-
sion models. Chapter 8 introduces polynomial and trigonometric regression
models. This chapter also discusses response curve models that are linear
in the parameters. Class variables and the analysis of variance of designed
experiments (models of less than full rank) are introduced in Chapter 9.
Chapters 10 through 14 address some of the problems that might be
encountered in regression. A general introduction to the various kinds of
problems is given in Chapter 10. This is followed by discussions of regression
diagnostic techniques (Chapter 11), and scaling or transforming variables
to rectify some of the problems (Chapter 12). Analysis of the correlational
structure of the data and biased regression are discussed as techniques
for dealing with the collinearity problem common in observational data
(Chapter 13). Chapter 14 is a case study illustrating the analysis of data
in the presence of collinearity.
Models that are nonlinear in the parameters are presented in Chapter
15. Chapter 16 is another case study using polynomial response models,
nonlinear modeling, transformations to linearize, and analysis of residuals.
Chapter 17 addresses the analysis of unbalanced data. Chapter 18 (new
to this edition) introduces linear models that have more than one random
effect. The ordinary least squares approach to such models is given. This is
followed by the definition of the variance–covariance matrix for such models
and a brief introduction to mixed effects and random coefficient models.
The use of iterative maximum likelihood estimation of both the variance
components and the fixed effects is discussed. The final chapter, Chapter
19, is a case study of the analysis of unbalanced data.
We are grateful for the assistance of many in the development of this
book. Of particular importance have been the dedicated editing of the ear-
lier edition by Gwen Briggs, daughter of John Rawlings, and her many
suggestions for improvement. It is uncertain when the book would have
been finished without her support. A special thanks goes to our former
student, Virginia Lesser, for her many contributions in reading parts of the
manuscript, in data analysis, and in the enlistment of many data sets from
her graduate student friends in the biological sciences. We are indebted to
our friends, both faculty and students, at North Carolina State University
for bringing us many interesting consulting problems over the years that
have stimulated the teaching of this material. We are particularly indebted
to those (acknowledged in the text) who have generously allowed the use of
their data. In this regard, Rick Linthurst warrants special mention for his
stimulating discussions as well as the use of his data. We acknowledge the
encouragement and valuable discussions of colleagues in the Department



PREFACE ix

of Statistics at NCSU, and we thank Matthew Sommerville for checking
answers to the exercises. We wish to thank Sharon Sullivan and Dawn
Haines for their help with LATEX. Finally, we want to express appreciation
for the critical reviews and many suggestions provided for the first edi-
tion by the Wadsworth Brooks/Cole reviewers: Mark Conaway, University
of Iowa; Franklin Graybill, Colorado State University; Jason Hsu, Ohio
State University; Kenneth Koehler, Iowa State University; B. Lindsay, The
Pennsylvania State University; Michael Meridith, Cornell University; M.
B. Rajarshi, University of Poona (India); Muni Srivastava, University of
Toronto; and Patricia Wahl, University of Washington; and for the second
edition by the Springer-Verlag reviewers.
Acknowledgment is given for the use of material in the appendix tables.
Appendix Table A.7 is reproduced in part from Tables 4 and 6 of Durbin
and Watson (1951) with permission of the Biometrika Trustees. Appendix
Table A.8 is reproduced with permission from Shapiro and Francia (1972),
Journal of the American Statistical Association. The remaining appendix
tables have been computer generated by one of the authors. We gratefully
acknowledge permission of other authors and publishers for use of material
from their publications as noted in the text.

Note to the Reader

Most research is aimed at quantifing relationships among variables that
either measure the end result of some process or are likely to affect the
process. The process in question may be any biological, chemical, or phys-
ical process of interest to the scientist. The quantification of the process
may be as simple as determining the degree of association between two
variables or as complicated as estimating the many parameters of a very
detailed nonlinear mathematical model of the system.
Regardless of the degree of sophistication of the model, the most com-
monly used statistical method for estimating the parameters of interest is
the method of least squares. The criterion applied in least squares es-
timation is simple and has great intuitive appeal. The researcher chooses
the model that is believed to be most appropriate for the project at hand.
The parameters for the model are then estimated such that the predictions
from the model and the observed data are in as good agreement as possible
as measured by the least squares criterion, minimization of the sum of
squared differences between the predicted and the observed points.
Least squares estimation is a powerful research tool. Few assumptions
are required and the estimators obtained have several desirable properties.
Inference from research data to the true behavior of a process, however,
can be a difficult and dangerous step due to unrecognized inadequacies
in the data, misspecification of the model, or inappropriate inferences of
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causality. As with any research tool it is important that the least squares
method be thoroughly understood in order to eliminate as much misuse or
misinterpretation of the results as possible. There is a distinct difference
between understanding and pure memorization. Memorization can make a
good technician, but it takes understanding to produce a master. A discus-
sion of the geometric interpretation of least squares is given to enhance
your understanding. You may find your first exposure to the geometry of
least squares somewhat traumatic but the visual perception of least squares
is worth the effort. We encourage you to tackle the topic in the spirit in
which it is included.
The general topic of least squares has been broadened to include statis-
tical techniques associated with model development and testing. The
backbone of least squares is the classical multiple regression analysis using
the linear model to relate several independent variables to a response or
dependent variable. Initially, this classical model is assumed to be appro-
priate. Then methods for detecting inadequacies in this model and possible
remedies are discussed.
The connection between the analysis of variance for designed experiments
and multiple regression is developed to build the foundation for the analy-
sis of unbalanced data. (This also emphasizes the generality of the least
squares method.) Interpretation of unbalanced data is difficult. It is impor-
tant that the application of least squares to the analysis of such data be
understood if the results from computer programs designed for the analysis
of unbalanced data are to be used correctly.
The objective of a research project determines the amount of effort to
be devoted to the development of realistic models. If the intent is one of
prediction only, the degree to which the model might be considered realistic
is immaterial. The only requirement is that the predictions be adequately
precise in the region of interest. On the other hand, realism is of primary
importance if the goal is a thorough understanding of the system. The
simple linear additive model can seldom be regarded as a realistic model.
It is at best an approximation of the true model. Almost without exception,
models developed from the basic principles of a process will be nonlinear in
the parameters. The least squares estimation principle is still applicable but
the mathematical methods become much more difficult. You are introduced
to nonlinear least squares regression methods and some of the more
common nonlinear models.
Least squares estimation is controlled by the correlational structure ob-
served among the independent and dependent variables in the data set.
Observational data, data collected by observing the state of nature ac-
cording to some sampling plan, will frequently cause special problems for
least squares estimation because of strong correlations or, more generally,
near-linear dependencies among the independent variables. The serious-
ness of the problems will depend on the use to be made of the analyses.
Understanding the correlational structure of the data is most helpful in in-
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terpreting regression results and deciding what inferences might be made.
Principal component analysis is introduced as an aid in characterizing the
correlational structure of the data. A graphical procedure, Gabriel’s bi-
plot, is introduced to help visualize the correlational structure. Principal
component analysis also serves as an introduction to biased regression
methods. Biased regression methods are designed to alleviate the delete-
rious effects of near-linear dependencies (among the independent variables)
on ordinary least squares estimation.
Least squares estimation is a powerful research tool and, with modern
low cost computers, is readily available. This ease of access, however, also
facilitates misuse. Proper use of least squares requires an understanding of
the basic method and assumptions on which it is built, and an awareness
of the possible problems and their remedies. In some cases, alternative
methods to least squares estimation might be more appropriate. It is the
intent of this text to convey the basic understanding that will allow you to
use least squares as an effective research tool.
The data sets used in this text are available on the internet at
http://www.stat.ncsu.edu/publications/rawlings/applied least squares
or through a link at the Springer-Verlag page. The “readme” file explains
the contents of each data set.

Raleigh, North Carolina John O. Rawlings
March 4, 1998 Sastry G. Pantula

David A. Dickey
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1
REVIEW OF SIMPLE
REGRESSION

This chapter reviews the elementary regression results
for a linear model in one variable. The primary purpose
is to establish a common notation and to point out the
need for matrix notation. A light reading should suffice
for most students.

Modeling refers to the development of mathematical expressions that
describe in some sense the behavior of a random variable of interest. This
variable may be the price of wheat in the world market, the number of
deaths from lung cancer, the rate of growth of a particular type of tumor,
or the tensile strength of metal wire. In all cases, this variable is called the
dependent variable and denoted with Y . A subscript on Y identifies the
particular unit from which the observation was taken, the time at which
the price was recorded, the county in which the deaths were recorded, the
experimental unit on which the tumor growth was recorded, and so forth.
Most commonly the modeling is aimed at describing how the mean of the
dependent variable E(Y ) changes with changing conditions; the variance
of the dependent variable is assumed to be unaffected by the changing
conditions.
Other variables which are thought to provide information on the behavior
of the dependent variable are incorporated into the model as predictor or
explanatory variables. These variables are called the independent vari-
ables and are denoted by X with subscripts as needed to identify different
independent variables. Additional subscripts denote the observational unit
from which the data were taken. The Xs are assumed to be known con-
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stants. In addition to the Xs, all models involve unknown constants, called
parameters, which control the behavior of the model. These parameters
are denoted by Greek letters and are to be estimated from the data.
The mathematical complexity of the model and the degree to which
it is a realistic model depend on how much is known about the process
being studied and on the purpose of the modeling exercise. In preliminary
studies of a process or in cases where prediction is the primary objective,
the models usually fall into the class of models that are linear in the
parameters. That is, the parameters enter the model as simple coefficients
on the independent variables or functions of the independent variables.
Such models are referred to loosely as linear models. The more realistic
models, on the other hand, are often nonlinear in the parameters. Most
growth models, for example, are nonlinear models. Nonlinear models fall
into two categories: intrinsically linear models, which can be linearized
by an appropriate transformation on the dependent variable, and those
that cannot be so transformed. Most of the discussion is devoted to the
linear class of models and to those nonlinear models that are intrinsically
linear. Nonlinear models are discussed in Section 12.2 and Chapter 15.

1.1 The Linear Model and Assumptions

The simplest linear model involves only one independent variable and states Model
that the true mean of the dependent variable changes at a constant rate
as the value of the independent variable increases or decreases. Thus, the
functional relationship between the true mean of Yi, denoted by E(Yi), and
Xi is the equation of a straight line:

E(Yi) = β0 + β1Xi. (1.1)

β0 is the intercept, the value of E(Yi) when X = 0, and β1 is the slope of
the line, the rate of change in E(Yi) per unit change in X.
The observations on the dependent variable Yi are assumed to be random Assumptions
observations from populations of random variables with the mean of each
population given by E(Yi). The deviation of an observation Yi from its
population mean E(Yi) is taken into account by adding a random error εi
to give the statistical model

Yi = β0 + β1Xi + εi. (1.2)

The subscript i indicates the particular observational unit, i = 1, 2, . . . , n.
The Xi are the n observations on the independent variable and are assumed
to be measured without error. That is, the observed values ofX are assumed
to be a set of known constants. The Yi and Xi are paired observations; both
are measured on every observational unit.
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The random errors εi have zero mean and are assumed to have common
variance σ2 and to be pairwise independent. Since the only random element
in the model is εi, these assumptions imply that the Yi also have common
variance σ2 and are pairwise independent. For purposes of making tests
of significance, the random errors are assumed to be normally distributed,
which implies that the Yi are also normally distributed. The random error
assumptions are frequently stated as

εi ∼ NID(0, σ2), (1.3)

where NID stands for “normally and independently distributed.” The quan-
tities in parentheses denote the mean and the variance, respectively, of the
normal distribution.

1.2 Least Squares Estimation

The simple linear model has two parameters β0 and β1, which are to be
estimated from the data. If there were no random error in Yi, any two data
points could be used to solve explicitly for the values of the parameters.
The random variation in Y , however, causes each pair of observed data
points to give different results. (All estimates would be identical only if the
observed data fell exactly on the straight line.) A method is needed that
will combine all the information to give one solution which is “best” by
some criterion.
The least squares estimation procedure uses the criterion that the Least Squares

Criterionsolution must give the smallest possible sum of squared deviations of the
observed Yi from the estimates of their true means provided by the solu-
tion. Let β̂0 and β̂1 be numerical estimates of the parameters β0 and β1,
respectively, and let

Ŷi = β̂0 + β̂1Xi (1.4)

be the estimated mean of Y for each Xi, i = 1, . . . , n. Note that Ŷi is ob-
tained by substituting the estimates for the parameters in the functional
form of the model relating E(Yi) toXi, equation 1.1. The least squares prin-
ciple chooses β̂0 and β̂1 that minimize the sum of squares of the residuals,
SS(Res):

SS(Res) =
n∑
i=1

(Yi − Ŷi)2

=
∑
e2i , (1.5)

where ei = (Yi − Ŷi) is the observed residual for the ith observation. The
summation indicated by

∑
is over all observations in the data set as indi-
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cated by the index of summation, i = 1 to n. (The index of summation is
omitted when the limits of summation are clear from the context.)
The estimators for β0 and β1 are obtained by using calculus to find the
values that minimize SS(Res). The derivatives of SS(Res) with respect to
β̂0 and β̂1 in turn are set equal to zero. This gives two equations in two
unknowns called the normal equations:

n(β̂0) + (
∑
Xi)β̂1 =

∑
Yi

(
∑
Xi)β̂0 + (

∑
X2
i )β̂1 =

∑
XiYi. (1.6)

Solving the normal equations simultaneously for β̂0 and β̂1 gives the esti-
mates of β1 and β0 as

β̂1 =
∑
(Xi −X)(Yi − Y )∑
(Xi −X)2

=
∑
xiyi∑
x2
i

β̂0 = Y − β̂1X. (1.7)

Note that xi = (Xi −X) and yi = (Yi − Y ) denote observations expressed
as deviations from their sample means X and Y , respectively. The more
convenient forms for hand computation of sums of squares and sums of
products are ∑

x2
i =

∑
X2
i −
(
∑
Xi)2

n∑
xiyi =

∑
XiYi − (

∑
Xi)(

∑
Yi)

n
. (1.8)

Thus, the computational formula for the slope is

β̂1 =
∑
XiYi − (

∑
Xi)(

∑
Yi)

n∑
X2
i −

(
∑
Xi)2

n

. (1.9)

These estimates of the parameters give the regression equation

Ŷi = β̂0 + β̂1Xi. (1.10)

The computations for the linear regression analysis are illustrated using Example 1.1
treatment mean data from a study conducted by Dr. A. S. Heagle at North
Carolina State University on effects of ozone pollution on soybean yield
(Table 1.1). Four dose levels of ozone and the resulting mean seed yield of
soybeans are given. The dose of ozone is the average concentration (parts
per million, ppm) during the growing season. Yield is reported in grams
per plant.
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TABLE 1.1. Mean yields of soybean plants (gms per plant) obtained in response
to the indicated levels of ozone exposure over the growing season. (Data courtesy
of Dr. A. S. Heagle, USDA and North Carolina State University.)

X Y
Ozone (ppm) Yield (gm/plt)

.02 242

.07 237

.11 231

.15 201∑
Xi = .35

∑
Yi = 911

X = .0875 Y = 227.75∑
X2
i = .0399

∑
Y 2
i = 208, 495∑

XiYi = 76.99

Assuming a linear relationship between yield and ozone dose, the simple
linear model, described by equation 1.2, is appropriate. The estimates of
β0 and β1 obtained from equations 1.7 and 1.9 are

β̂1 =
76.99− (.35)(911)

4

.0399− (.35)2
4

= −293.531

β̂0 = 227.75− (−293.531)(.0875) = 253.434. (1.11)

The least squares regression equation characterizing the effects of ozone
on the mean yield of soybeans in this study, assuming the linear model is
correct, is

Ŷi = 253.434− 293.531Xi. (1.12)

The interpretation of β̂1 = −294 is that the mean yield is expected to
decrease, since the slope is negative, by 294 grams per plant with each
1 ppm increase in ozone, or 2.94 grams with each .01 ppm increase in
ozone. The observed range of ozone levels in the experiment was .02 ppm
to .15 ppm. Therefore, it would be an unreasonable extrapolation to expect
this rate of decrease in yield to continue if ozone levels were to increase, for
example, to as much as 1 ppm. It is safe to use the results of regression only
within the range of values of the independent variable. The intercept, β̂0 =
253 grams, is the value of Y where the regression line crosses the Y -axis.
In this case, since the lowest dose is .02 ppm, it would be an extrapolation
to interpret β̂0 as the estimate of the mean yield when there is no ozone.
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TABLE 1.2. Observed values, estimated values, and residuals for the linear re-
gression of soybean yield on ozone dosage.

Yi Ŷi ei e2i
242 247.563 −5.563 30.947
237 232.887 4.113 16.917
231 221.146 9.854 97.101
201 209.404 −8.404 70.627∑

ei = 0.0
∑
e2i = 215.592

1.3 Predicted Values and Residuals

The regression equation from Example 1.1 can be evaluated to obtain es-
timates of the mean of the dependent variable Y at chosen levels of the
independent variable. Of course, the validity of such estimates is depen-
dent on the assumed model being correct, or at least a good approximation
to the correct model within the limits of the pollution doses observed in
the study.
Each quantity computed from the fitted regression line Ŷi is used as both Estimates and

Predictions(1) the estimate of the population mean of Y for that particular value of
X and (2) the prediction of the value of Y one might obtain on some
future observation at that level of X. Hence, the Ŷi are referred to both
as estimates and as predicted values. On occasion we write Ŷ predi to
clearly imply the second interpretation.
If the observed values Yi in the data set are compared with their cor- Residuals
responding values Ŷi computed from the regression equation, a measure
of the degree of agreement between the model and the data is obtained.
Remember that the least squares principle makes this agreement as “good
as possible” in the least squares sense. The residuals

ei = Yi − Ŷi (1.13)

measure the discrepancy between the data and the fitted model. The results
for Example 1.1 are shown in Table 1.2. Notice that the residuals sum to
zero, as they always will when the model includes the constant term β0.
The least squares estimation procedure has minimized the sum of squares
of the ei. That is, there is no other choice of values for the two parameters
β0 and β1 that will provide a smaller

∑
e2i .

A plot of the regression equation and the data from Example 1.1 (Fig- Example 1.2
ure 1.1) provides a visual check on the arithmetic and the adequacy with
which the equation characterizes the data. The regression line crosses the
Y -axis at the value of β̂0 = 253.4. The negative sign on β̂1 is reflected in
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FIGURE 1.1. Regression of soybean yield on ozone level.

the negative slope. Inspection of the plot shows that the regression line
decreases to approximately Y = 223 when X = .1. This is a decrease of
30 grams of yield over a .1 ppm increase in ozone, or a rate of change
of −300 grams in Y for each unit increase in X. This is reasonably close
to the computed value of −293.5 grams per ppm. Figure 1.1 shows that
the regression line “passes through” the data as well as could be expected
from a straight-line relationship. The pattern of the deviations from the re-
gression line, however, suggests that the linear model may not adequately
represent the relationship.

1.4 Analysis of Variation in the Dependent
Variable

The residuals are defined in equation 1.13 as the deviations of the observed
values from the estimated values provided by the regression equation. Al-
ternatively, each observed value of the dependent variable Yi can be written
as the sum of the estimated population mean of Y for the given value of
X and the corresponding residual:

Yi = Ŷi + ei. (1.14)

Ŷ is the part of the observation Yi “accounted for” by the model, whereas
ei reflects the “unaccounted for” part. SS(Model)

and SS(RES)The total uncorrected sum of squares of Yi, SS(Total uncorr) =∑
Y 2
i , can be similarly partitioned. Substitute Ŷi + ei for each Yi and
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expand the square. Thus,∑
Y 2
i =

∑
(Ŷi + ei)2

=
∑
Ŷ 2
i +

∑
e2i

= SS(Model) + SS(Res). (1.15)

(The cross-product term
∑
Ŷiei is zero, as can readily be shown with the

matrix notation of Chapter 3. Also see Exercise 1.22.) The term SS(Model)
is the sum of squares “accounted for” by the model; SS(Res) is the “un-
accounted for” part of the sum of squares. The forms SS(Model) =

∑
Ŷ 2
i

and SS(Res) =
∑
e2i show the origins of these sums of squares. The more

convenient computational forms are

SS(Model) = nY
2
+ β̂2

1

∑
(Xi −X)2

SS(Res) = SS(Total uncorr)− SS(Model). (1.16)

The partitioning of the total uncorrected sum of squares can be reexpressed
in terms of the corrected sum of squares by subtracting the sum of
squares due to correction for the mean, the correction factor nY

2
, from

each side of equation 1.15:

SS(Totaluncorr)− nY
2
= [SS(Model)− nY 2

] + SS(Res)

or, using equation 1.16,∑
y2i = β̂2

1

∑
(Xi −X)2 +

∑
e2i

= SS(Regr) + SS(Res). (1.17)

Notice that lower case y is the deviation of Y from Y so that
∑
y2i is the

corrected total sum of squares. Henceforth, SS(Total) is used to denote
the corrected sum of squares of the dependent variable. Also notice that
SS(Model) denotes the sum of squares attributable to the entire model,
whereas SS(Regr) denotes only that part of SS(Model) that exceeds the
correction factor. The correction factor is the sum of squares for a model
that contains only the constant term β0. Such a model postulates that the
mean of Y is a constant, or is unaffected by changes in X. Thus, SS(Regr)
measures the additional information provided by the independent variable.
The degrees of freedom associated with each sum of squares is determined Degrees of

Freedomby the sample size n and the number of parameters p′ in the model. [We
use p′ to denote the number of parameters in the model and p (without
the prime) to denote the number of independent variables; p′ = p+1 when
the model includes an intercept as in equation 1.2.] The degrees of freedom
associated with SS(Model) is p′ = 2; the degrees of freedom associated with
SS(Regr) is always 1 less to account for subtraction of the correction factor,
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TABLE 1.3. Partitions of the degrees of freedom and sums of squares for yield of
soybeans exposed to ozone (courtesy of Dr. A. S. Heagle, N.C. State University).

Source of Degrees of . Mean
Variation Freedom Sum of Squares Square
Total uncorr n =4

∑
Y 2
i = 208, 495.00

Corr. factor 1 nY
2
= 207, 480.25

Totalcorr n− 1 =3 ∑
y2i = 1, 014.75

Due to model p′ =2
∑
Ŷ 2
i = 208, 279.39

Corr. factor 1 207, 480.25

Due to regr. p′ − 1 =1 ∑
Ŷ 2
i − nY 2

= 799.14 799.14
Residual n− p′ =2 ∑

e2i = 215.61 107.81

TABLE 1.4. Analysis of variance of yield of soybeans exposed to ozone pollution
(courtesy of Dr. A. S. Heagle, N.C. State University).

Source d.f. SS MS
Total 3 1014.75
Due to regr. 1 799.14 799.14
Residual 2 215.61 107.81

which has 1 degree of freedom. SS(Res) will contain the (n− p′) degrees of
freedom not accounted for by SS(Model). The mean squares are found by
dividing each sum of squares by its degrees of freedom.

The partitions of the degrees of freedom and sums of squares for the ozone Example 1.3
data from Example 1.1 are given in Table 1.3. The definitional formulae
for the sums of squares are included. An abbreviated form of Table 1.3,
omitting the total uncorrected sum of squares, the correction factor, and
SS(Model), is usually presented as the analysis of variance table (Table 1.4).

One measure of the contribution of the independent variable(s) in the Coefficient of
Determinationmodel is the coefficient of determination, denoted by R2:

R2 =
SS(Regr)∑

y2i
. (1.18)

This is the proportion of the (corrected) sum of squares of Y attributable to
the information obtained from the independent variable(s). The coefficient
of determination ranges from zero to one and is the square of the product
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moment correlation between Yi and Ŷi. If there is only one independent
variable, it is also the square of the correlation coefficient between Yi and
Xi.

The coefficient of determination for the ozone data from Example 1.1 is Example 1.4

R2 =
799.14
1, 014.75

= .7875.

The interpretation of R2 is that 79% of the variation in the dependent
variable, yield of soybeans, is “explained” by its linear relationship with
the independent variable, ozone level. Caution must be exercised in the
interpretation given to the phrase “explained by X.” In this example, the
data are from a controlled experiment where the level of ozone was being
controlled in a properly replicated and randomized experiment. It is there-
fore reasonable to infer that any significant association of the variation in
yield with variation in the level of ozone reflects a causal effect of the pol-
lutant. If the data had been observational data, random observations on
nature as it existed at some point in time and space, there would be no
basis for inferring causality. Model-fitting can only reflect associations in
the data. With observational data there are many reasons for associations
among variables, only one of which is causality.

If the model is correct, the residual mean square is an unbiased estimate Expected
Mean Squaresof σ2, the variance among the random errors. The regression mean square

is an unbiased estimate of σ2 + β2
1(

∑
x2
i ), where

∑
x2
i =

∑
(Xi − X)2.

These are referred to as the mean square expectations and are denoted
by E [MS(Res)] and E [MS(Regr)]. Notice that MS(Regr) is estimating the
same quantity as MS(Res) plus a positive quantity that depends on the
magnitude of β1 and

∑
x2
i . Thus, any linear relationship between Y and

X, where β1 �= 0, will on the average make MS(Regr) larger than MS(Res).
Comparison of MS(Regr) to MS(Res) provides the basis for judging the
importance of the relationship.

The estimate of σ2 is denoted by s2. For the data of Example 1.1, Example 1.5
MS(Res) = s2 = 107.81 (Table 1.4). MS(Regr) = 799.14 is much larger
than s2, which suggests that β1 is not zero. Testing of the null hypothesis
that β1 = 0 is discussed in Section 1.6.
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1.5 Precision of Estimates

Any quantity computed from random variables is itself a random variable.
Thus, Y , Ŷ , e, β̂0, and β̂1 are random variables computed from the Yi.
Measures of precision, variances or standard errors of the estimates, provide
a basis for judging the reliability of the estimates.
The computed regression coefficients, the Ŷi, and the residuals are all Variance of

a Linear
Function

linear functions of the Yi. Their variances can be determined using the
basic definition of the variance of a linear function. Let U =

∑
aiYi be

an arbitrary linear function of the random variables Yi, where the ai are
constants. The general formula for the variance of U is

Var(U) =
∑
a2iVar(Yi) +

∑∑
i�=jaiajCov(Yi, Yj), (1.19)

where the double summation is over all n(n − 1) possible pairs of terms
where i and j are not equal. Cov(·, ·) denotes the covariance between the
two variables indicated in the parentheses. (Covariance measures the ten-
dency of two variables to increase or decrease together.) When the random
variables are independent, as is assumed in the usual regression model, all
of the covariances are zero and the double summation term disappears. If,
in addition, the variances of the random variables are equal, again as in
the usual regression model where Var(Yi) = σ2 for all i, the variance of the
linear function reduces to

Var(U) = (
∑
a2i )σ

2. (1.20)

Variances of linear functions play an extremely important role in every
aspect of statistics. Understanding the derivation of variances of linear
functions will prove valuable; for this reason, we now give several examples.

The variance of the sample mean of n observations is derived. The co- Example 1.6
efficient ai on each Yi in the sample mean is 1/n. If the Yi have common
variance σ2 and zero covariances (for example, if they are independent),
equation 1.20 applies. The sum of squares of the coefficients is

∑
a2i = n

(
1
n

)2

=
1
n

and the variance of the mean becomes

Var(Y ) =
σ2

n
, (1.21)

which is the well-known result for the variance of the sample mean.
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In this example, the variance is derived for a linear contrast of three
treatment means, Example 1.7

C = Y 1 + Y 2 − 2Y 3. (1.22)

If each mean is the average of n independent observations from the same
population, the variance of each sample mean is equal to Var(Y i) = σ2/n
and all covariances are zero. The coefficients on the Y i are 1, 1, and -2.
Thus,

Var(C) = (1)2Var(Y 1) + (1)2Var(Y 2) + (−2)2Var(Y 3)

= (1 + 1 + 4)
(
σ2

n

)
= 6

(
σ2

n

)
. (1.23)

We now turn to deriving the variances of β̂1, β̂0, and Ŷi. To determine Variance
of β̂1the variance of β̂1 express

β̂1 =
∑
xiyi∑
x2
i

(1.24)

as

β̂1 =
(
x1∑
x2
i

)
Y1 +

(
x2∑
x2
i

)
Y2 + · · ·+

(
xn∑
x2
i

)
Yn. (1.25)

(See Exercise 1.16 for justification for replacing yi with Yi.) The coefficient
on each Yi is xi/

∑
x2
j , which is a constant in the regression model. The

Yi are assumed to be independent and to have common variance σ2. Thus,
the variance of β̂1 is

Var(β̂1) =
(
x1∑
x2
i

)2

σ2 +
(
x2∑
x2
i

)2

σ2 + · · ·+
(
xn∑
x2
i

)2

σ2

=
∑
x2
i

(
∑
x2
i )2
σ2 =

σ2∑
x2
i

. (1.26)

Determining the variance of the intercept Variance
of β̂0

β̂0 = Y − β̂1X (1.27)

is a little more involved. The random variables in this linear function are
Y and β̂1; the coefficients are 1 and (−X). Equation 1.19 can be used to
obtain the variance of β̂0:

Var(β̂0) = Var(Y ) + (−X)2Var(β̂1) + 2(−X)Cov(Y , β̂1). (1.28)
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It has been shown that the Var(Y ) = σ2/n and Var(β̂1) = σ2/
∑
x2
i , but

Cov(Y , β̂1) remains to be determined.
The covariance between two linear functions is only slightly more com- Covariances

of Linear
Functions

plicated than the variance of a single linear function. Let U be the linear
function defined earlier with ai as coefficients and let W be a second linear
function of the same random variables using di as coefficients:

U =
∑
aiYi and W =

∑
diYi.

The covariance of U and W is given by

Cov(U,W ) =
∑
aidiVar(Yi) +

∑∑
i�=jaidjCov(Yi, Yj), (1.29)

where the double summation is again over all n(n − 1) possible combina-
tions of different values of the subscripts. If the Yi are independent, the
covariances are zero and equation 1.29 reduces to

Cov(U,W ) =
∑
aidiV ar(Yi). (1.30)

Note that products of the corresponding coefficients are being used, whereas
the squares of the coefficients were used in obtaining the variance of a linear
function.
Returning to the derivation of Var(β̂0), where U andW are Y and β̂1, we Variance

of β̂0 (cont.)note that the corresponding coefficients for each Yi are 1/n and xi/
∑
x2
j ,

respectively. Thus, the covariance between Y and β̂1 is

Cov(Y , β̂1) =
∑(

1
n

)(
xi∑
x2
j

)
Var(Yi)

=
(
1
n

)(∑
xi∑
x2
j

)
σ2 = 0, (1.31)

since
∑
xi = 0. Thus, the variance of β̂0 reduces to

Var(β̂0) = Var(Y ) + (X)2Var(β̂1)

=
σ2

n
+X

2 σ2∑
x2
i

=

(
1
n
+
X

2∑
x2
i

)
σ2. (1.32)

Recall that β̂0 is the estimated mean of Y when X = 0, and thus Var(β̂0) Variance
of Ŷ ican be thought of as the Var(Ŷ ) for X = 0. The formula for Var(β̂0) can

be used to obtain the variance of Ŷi for any given value of Xi by replacing
X with (Xi −X). Since

Ŷi = β̂0 + β̂1Xi = Y + β̂1(Xi −X), (1.33)
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we have

Var(Ŷi) =

[
1
n
+
(Xi −X)2∑

x2
j

]
σ2. (1.34)

The variance of the fitted value attains its minimum of σ2/n when the
regression equation is being evaluated at Xi = X, and increases as the
value of X at which the equation is being evaluated moves away from X.
Equation 1.34 gives the appropriate variance when Ŷi is being used as the
estimate of the true mean β0 + βiXi of Y at the specific value Xi of X.
Consider the problem of predicting some future observation Y0 = β0 + Variance of

Predictionsβ1X0+ ε0, at a specific value X0 of X, where ε0 is assumed to be N(0, σ2),
independent of the current observations. Recall that Ŷ0 = β̂0 + β̂1X0 is
used as an estimate of the mean β0+β1X0 of Y0. Since the best prediction
for ε0 is its mean zero, Ŷ0 is also used as the predictor of Y0. The variance
for prediction must take into account the fact that the quantity being
predicted is itself a random variable. The success of the prediction will
depend on how small the difference is between Ŷ0 and the future observation
Y0. The difference Y0 − Ŷ0 is called the prediction error. The average
squared difference between Ŷ0 and Y0, E(Ŷ0 − Y0)2, is called the mean
squared error of prediction. If the model is correct and prediction is for
an individual in the same population from which the data were obtained,
so that E(Ŷ0 − Y0) = 0, the mean squared error is also the variance of
prediction. Assuming this to be the case, the variance for prediction
Var(Ŷpred0) is the variance of the difference between Ŷ0 and the future
observation Y0:

Var(Ŷpred0) = Var(Ŷ0 − Y0)

= Var(Ŷ0) + σ2

=
[
1 +
1
n
+
(X0 −X)2∑

x2
i

]
σ2. (1.35)

Comparing equation 1.35 with equation 1.34, where X0 is a particular Xi,
we observe that the variance for prediction is the variance for estimation
of the mean plus the variance of the quantity being predicted.
The derived variances are the true variances; they depend on knowl-
edge of σ2. Var(·) and σ2 are used to designate true variances. Estimated
variances are obtained by replacing σ2 in the variance equations with an
estimate of σ2. The residual mean square from the analysis provides an es-
timate of σ2 if the correct model has been fitted. As shown later, estimates
of σ2 that are not dependent on the correct regression model being used are
available in some cases. The estimated variances obtained by substituting
s2 for σ2 are denoted by s2(·), with the quantity in parentheses designating
the random variable to which the variance applies.
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TABLE 1.5. Summary of important formulae in simple regression.

Formula Estimate of (or formula for)

β̂0 = Y − β̂1X β0

Ŷi = β̂0 + β̂1Xi E(Yi)

ei = Yi − Ŷi εi

SS(Totaluncorr) =
∑
Y 2
i Total uncorrected sum of squares

SS(Total) =
∑
Y 2
i − (∑Yi)2/n Total corrected sum of squares

SS(Model) = nY
2
+ β̂2

1(
∑
x2
i ) Sum of squares due to model

SS(Regr) = β̂2
1(

∑
x2
i ) Sum of squares due to X

SS(Res) = SS(Total)− SS(Regr) Residual sum of squares

R2 = SS(Regr)/SS(Total) Coefficient of determination

s2(β̂1) = s2/
∑
x2
i Variance of β̂1

s2(β̂0) =
[

1
n +X

2
/
∑
x2
i

]
s2 Variance of β̂0

s2(Ŷi) =
[ 1

n+(Xi−X)2∑
x2
i

]
s2 Variance of estimated mean at Xi

s2(Ŷpred0) =
[

1+ 1
n+(X0−X)2∑

x2
i

]
s2 Variance of prediction at X0



16 1. REVIEW OF SIMPLE REGRESSION

Table 1.5 provides a summary to this point of the important formulae in
linear regression with one independent variable.

For the ozone data from Example 1.1, s2 = 107.81, n = 4, and
∑
x2
i = Example 1.8

[.0399 − (.35)2/4] = .009275. Thus, the estimated variances for the linear
functions are:

s2(β̂1) =
s2∑
x2
i

=
107.81
.009275

= 11, 623.281

s2(β̂0) =

(
1
n
+
X

2∑
x2
i

)
s2

=
[
1
4
+
(.0875)2

.009275

]
(107.81) = 115.942

s2(Ŷ1) =
(
1
n
+
(X1 −X)2∑

x2
i

)
s2

=
[
1
4
+
(.02− .0875)2
.009275

]
(107.81) = 79.91.

Making appropriate changes in the values of Xi gives the variances of the
remaining Ŷi:

s2(Ŷ2) = 30.51,

s2(Ŷ3) = 32.84, and

s2(Ŷ4) = 72.35.

Note that Ŷ1 may also be used to predict the yield Y0 of a future observation
at the ozone level X0 = X1 = .02. The variance for prediction of Y0 would
be Var(Ŷ1) increased by the amount σ2. Thus, an estimated variance of
prediction for Y0 is s2(Ŷ1) + s2 = 187.72. Similarly, the estimated variance
for predictions of future yields at ozone levels 0.07, 0.11, and 0.15 are 138.32,
140.65, and 180.16, respectively.

1.6 Tests of Significance and Confidence Intervals

The most common hypothesis of interest in simple linear regression is the Tests of
Significancehypothesis that the true value of the linear regression coefficient, the slope,

is zero. This says that the dependent variable Y shows neither a linear
increase nor decrease as the independent variable changes. In some cases,
the nature of the problem will suggest other values for the null hypothesis.
The computed regression coefficients, being random variables, will never
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exactly equal the hypothesized value even when the hypothesis is true.
The role of the test of significance is to protect against being misled by the
random variation in the estimates. Is the difference between the observed
value of the parameter β̂1 and the hypothesized value of the parameter
greater than can be reasonably attributed to random variation? If so, the
null hypothesis is rejected.
To accommodate the more general case, the null hypothesis is written
as H0 : β1 = m, where m is any constant of interest and of course can be
equal to zero. The alternative hypothesis is Ha : β1 �= m, Ha : β1 > m,
or Ha : β1 < m depending on the expected behavior of β1 if the null
hypothesis is not true. In the first case, Ha : β1 �= m is referred to as the
two-tailed alternative hypothesis (interest is in detecting departures of β1
from m in either direction) and leads to a two-tailed test of significance.
The latter two alternative hypotheses, Ha : β1 > m and Ha : β1 < m, are
one-tailed alternatives and lead to one-tailed tests of significance.
If the random errors in the model, the εi, are normally distributed, the

Yi and any linear function of the Yi will be normally distributed [see Searle
(1971)]. Thus, β̂1 is normally distributed with mean β1 (β̂1 is shown to be
unbiased in Chapter 3) and variance Var(β̂1). If the null hypothesis that
β1 = m is true, then β̂1 −m is normally distributed with mean zero. Thus,

t =
β̂1 −m
s(β̂1)

(1.36)

is distributed as Student’s t with degrees of freedom determined by the
degrees of freedom in the estimate of σ2 in the denominator. The com-
puted t-value is compared to the appropriate critical value of Student’s t,
(Appendix Table A), determined by the Type I error rate α and whether
the alternative hypothesis is one-tailed or two-tailed. The critical value of
Student’s t for the two-tailed alternative hypothesis places probability α/2
in each tail of the distribution. The critical values for the one-tailed alter-
native hypotheses place probability α in only the upper or lower tail of the
distribution, depending on whether the alternative is β1 > m or β1 < m,
respectively.

The estimate of β1 for Heagle’s ozone data from Example 1.1 was β̂1 = Example 1.9
−293.53 with a standard error of s(β̂1) =

√
11, 623.281 = 107.81. Thus, the

computed t-value for the test of H0 : β1 = 0 is

t =
−293.53
107.81

= −2.72.

The estimate of σ2 in this example has only two degrees of freedom. Using
the two-tailed alternative hypothesis and α = .05 gives a critical t-value of
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t(.025,2) = 4.303. Since |t| < 4.303, the conclusion is that the data do not
provide convincing evidence that β1 is different from zero.
In this example one might expect the increasing levels of ozone to depress
the yield of soybeans; that is, the slope would be negative if not zero. The
appropriate one-tailed alternative hypothesis would be Ha : β1 < 0. For
this one-tailed test, the critical value of t for α = .05 is t(.05,2) = 2.920.
Although the magnitude of the computed t is close to this critical value,
strict adherence to the α = .05 size of test leads to the conclusion that
there is insufficient evidence in these data to infer a real (linear) effect of
ozone on soybean yield. (From a practical point of view, one would begin
to suspect a real effect of ozone and seek more conclusive data.)

In a similar manner, t-tests of hypotheses about β0 and any of the Ŷi can
be constructed. In each case, the numerator of the t-statistic is the differ-
ence between the estimated value of the parameter and the hypothesized
value, and the denominator is the standard deviation (or standard error) of
the estimate. The degrees of freedom for Student’s t is always the degrees
of freedom associated with the estimate of σ2.
The F -statistic can be used as an alternative to Student’s t for two-tailed
hypotheses about the regression coefficients. It was indicated earlier that
MS(Regr) is an estimate of σ2+ β2

1
∑
x2
i and that MS(Res) is an estimate of

σ2. If the null hypothesis that β1 = 0 is true, both MS(Regr) and MS(Res)
are estimating σ2. As β1 deviates from zero, MS(Regr) will become increas-
ingly larger (on the average) than MS(Res). Therefore, a ratio of MS(Regr)
to MS(Res) appreciably larger than unity would suggest that β1 is not zero.
This ratio of MS(Regr) to MS(Res) follows the F -distribution when the as-
sumption that the residuals are normally distributed is valid and the null
hypothesis is true.

For the ozone data of Example 1.1, the ratio of variances is Example 1.10

F =
MS(Regr)
MS(Res)

=
799.14
107.81

= 7.41.

This can be compared to the critical value of the F -distribution with 1
degree of freedom in the numerator and 2 degrees of freedom in the denom-
inator, F(.05,1,2) = 18.51 for α = .05 (Appendix Table A.3), to determine
whether MS(Regr) is sufficiently larger than MS(Res) to rule out chance as
the explanation. Since F = 7.41 < 18.51, the conclusion is that the data do
not provide conclusive evidence of a linear effect of ozone. The F -ratio with
1 degree of freedom in the numerator is the square of the corresponding
t-statistic. Therefore, the F and the t are equivalent tests for this two-tailed
alternative hypothesis.
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Confidence interval estimates of parameters are more informative Confidence
Intervalsthan point estimates because they reflect the precision of the estimates.

The 95% confidence interval estimate of β1 and β0 are, respectively,

β̂1 ± t(.025,ν)s(β̂1) (1.37)

and

β̂0 ± t(.025,ν)s(β̂0), (1.38)

where ν is the degrees of freedom associated with s2.

The 95% confidence interval estimate of β1 for Example 1.1 is Example 1.11

−293.53± (4.303)(107.81)
or (−757, 170).
The confidence interval estimate indicates that the true value may fall
anywhere between −757 and 170. This very wide range conveys a high de-
gree of uncertainty (lack of confidence) in the point estimate β̂1 = −293.53.
Notice that the interval includes zero. This is consistent with the conclu-
sions from the t-test and the F -test that H0 : β1 = 0 cannot be rejected.
The 95% confidence interval estimate of β0 is

253.43± (4.303)(10.77)
or (207.1, 299.8). The value of β0 might reasonably be expected to fall
anywhere between 207 and 300 based on the information provided by this
study.

In a similar manner, interval estimates of the true mean of Y for various
values of X are computed using Ŷi and their standard errors. Frequently,
these confidence interval estimates of E(Yi) are plotted with the regression
line and the observed data. Such graphs convey an overall picture of how
well the regression represents the data and the degree of confidence one
might place in the results. Figure 1.2 shows the results for the ozone exam-
ple. The confidence coefficient of .95 applies individually to the confidence
intervals on each estimated mean. Simultaneous confidence intervals are
discussed in Section 4.6.
The failure of the tests of significance to detect an effect of ozone on the
yield of soybeans is, in this case, a reflection of the lack of power in this
small data set. This lack of power is due primarily to the limited degrees of
freedom available for estimating σ2. In defense of the research project from
which these data were borrowed, we must point out that only a portion of
the data (the set of treatment means) is being used for this illustration. The
complete data set from this experiment provides for an adequate estimate
of error and shows that the effects of ozone are highly significant. The
complete data are used at a later time.
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FIGURE 1.2. The regression of soybean mean yield (grams per plant) on ozone
(ppm) showing the individual confidence interval estimates of the mean response.
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1.7 Regression Through the Origin

In some situations the regression line is expected to pass through the origin.
That is, the true mean of the dependent variable is expected to be zero when
the value of the independent variable is zero. Many growth models, for
example, would pass through the origin. The amount of chemical produced
in a system requiring a catalyst would be zero when there is no catalyst
present. The linear regression model is forced to pass through the origin by
setting β0 equal to zero. The linear model then becomes

Yi = β1Xi + εi. (1.39)

There is now only one parameter to be estimated and application of the
least squares principle gives

β1(
∑
X2
i ) =

∑
XiYi (1.40)

as the only normal equation to be solved. The solution is

β̂1 =
∑
XiYi∑
X2
i

. (1.41)

Both the numerator and denominator are now uncorrected sums of products
and squares. The regression equation becomes

Ŷi = β̂1Xi, (1.42)

and the residuals are defined as before,

ei = Yi − Ŷi. (1.43)

Unlike the model with an intercept, in the no-intercept model the sum of
the residuals is not necessarily zero.
The uncorrected sum of squares of Y can still be partitioned into the
two parts

SS(Model) =
∑
Ŷ 2
i (1.44)

and

SS(Res) =
∑
(Yi − Ŷi)2 =

∑
e2i . (1.45)

Since only one parameter is involved in determining Ŷi, SS(Model) has only
1 degree of freedom and cannot be further partitioned into the correction for
the mean and SS(Regr). For the same reason, the residual sum of squares
has (n−1) degrees of freedom. The residual mean square is an estimate of σ2
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if the model is correct. The expectation of the MS(Model) is E [MS(Model)]
= σ2 + β2

1(
∑
X2
i ). This is the same form as E [MS(Regr)] for a model with

an intercept except here the sum of squares for X is the uncorrected sum
of squares.
The variance of β̂1 is determined using the rules for the variance of a
linear function (see equations 1.25 and 1.26). The coefficients on the Yi
for the no-intercept model are Xi/

∑
X2
j . With the same assumptions of

independence of the Yi and common variance σ2, the variance of β̂1 is

Var(β̂1) =

(
X1∑
X2
j

)2

+

(
X2∑
X2
j

)2

+ · · ·+
(
Xn∑
X2
j

)2
σ2

=
σ2∑
X2
j

. (1.46)

The divisor on σ2, the uncorrected sum of squares for the independent
variable, will always be larger (usually much larger) than the corrected
sum of squares. Therefore, the estimate of β̂1 in equation 1.41 will be much
more precise than the estimate in equation 1.9 when a no-intercept model
is appropriate. This results because one parameter, β0, is assumed to be
known.
The variance of Ŷi is most easily obtained by viewing it as a linear func-
tion of β̂1:

Ŷi = Xiβ̂1. (1.47)

Thus, the variance is

Var(Ŷi) = X2
i Var(β̂1)

=

(
X2
i∑
X2
j

)
σ2. (1.48)

Estimates of the variances are obtained by substitution of s2 for σ2.

Regression through the origin is illustrated using data on increased risk Example 1.12
incurred by individuals exposed to a toxic agent. Such health risks are often
expressed as relative risk, the ratio of the rate of incidence of the health
problem for those exposed to the rate of incidence for those not exposed
to the toxic agent. A relative risk of 1.0 implies no increased risk of the
disease from exposure to the agent. Table 1.6 gives the relative risk to
individuals exposed to differing levels of dust in their work environments.
Dust exposure is measured as the average number of particles/ft3/year
scaled by dividing by 106. By definition, the expected relative risk is 1.0
when exposure is zero. Thus, the regression line relating relative risk to
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TABLE 1.6. Relative risk of exposure to dust for nine groups of individuals. Dust
exposure is reported in particles/ft3/year and scaled by dividing by 106.

X = Dust Exposure Relative Risk Y = Relative Risk− 1
75 1.10 .10
100 1.05 .05
150 .97 −.03
350 1.90 .90
600 1.83 .83
900 2.45 1.45
1, 300 3.70 2.70
1, 650 3.52 2.52
2, 250 4.16 3.16∑

Xi = 7, 375
∑
Yi = 11.68∑

X2
i = 10, 805, 625

∑
Y 2
i = 27.2408∑

XiYi = 16, 904

exposure should have an intercept of 1.0 or, equivalently, the regression
line relating Y = (relative risk − 1) to exposure should pass through the
origin. The variable Y and key summary statistics on X and Y are included
in Table 1.6.
Assuming a linear relationship and zero intercept, the point estimate of
the slope β1 of the regression line is

β̂1 =
∑
XiYi∑
X2
i

=
16, 904
10, 805, 625

= .00156.

The estimated increase in relative risk is .00156 for each increase in dust
exposure of 1 million particles per cubic foot per year. The regression equa-
tion is

Ŷi = .00156Xi.

When Xi = 0, the value of Ŷi is zero and the regression equation has been
forced to pass through the origin.
The regression partitions each observation Yi into two parts; that ac-
counted for by the regression through the origin Ŷi, and the residual or
deviation from the regression line ei (Table 1.7). The sum of squares at-
tributable to the model,

SS(Model) =
∑
Ŷ 2
i = 26.4441,

and the sum of squares of the residuals,

SS(Res) =
∑
e2i = .7967,
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TABLE 1.7. Yi, Ŷi, and ei from linear regression through the origin of increase
in relative risk (Y = relative risk − 1) on exposure level.

Yi Ŷi ei
.10 .1173 −.0173
.05 .1564 −.1064

−.03 .2347 −.2647
.90 .5475 .3525
.83 .9386 −.1086
1.45 1.4079 .0421
2.70 2.0337 .6663
2.52 2.5812 −.0612
3.16 3.5198 −.3598∑

Y 2
i = 27.2408

∑
Ŷ 2
i = 26.4441

∑
e2i = .7967

TABLE 1.8. Summary analysis of variance for regression through the origin of
increase in relative risk on level of exposure to dust particles.

Source d.f. SS MS E(MS )
Totaluncorr n=9 27.2408
Due to model p=1 26.4441 26.4441 σ2 + β2

1(
∑
X2
i )

Residual n− p=8 .7967 .0996 σ2

partition the total uncorrected sum of squares,∑
Y 2
i = 27.2408.

In practice, the sum of squares due to the model is more easily computed
as

SS(Model) = β̂2
1

(∑
X2
i

)
= (.00156437)2(10, 805, 625) = 26.4441.

The residual sum of squares is computed by difference. The summary anal-
ysis of variance, including the mean square expectations, is given in Ta-
ble 1.8.
When the no-intercept model is appropriate, MS(Res) is an estimate of

σ2. MS(Model) is an estimate of σ2 plus a quantity that is positive if β1 is
not zero. The ratio of the two mean squares provides a test of significance
for H0 : β1 = 0. This is an F -test with one and eight degrees of freedom,
if the assumption of normality is valid, and is significant beyond α = .001.



1.7 Regression Through the Origin 25

There is clear evidence that the linear regression relating increased risk to
dust exposure is not zero.
The estimated variance of β1 is

s2(β̂1) =
s2∑
X2
i

=
.09958533
10, 805, 625

= 92.161× 10−10

or

s(β̂1) = 9.6× 10−5 = .000096.

Since each Ŷi is obtained by multiplying β̂1 by the appropriate Xi, the
estimated variance of a Ŷi is

s2(Ŷi) = X2
i [s

2(β̂1)]
= (92.161× 10−10)X2

i

if Ŷi is being used as an estimate of the true mean of Y for that value of X.
If Ŷi is to be used for prediction of a future observation with dust exposure
Xi, then the variance for prediction is

s2(Ŷpredi) = s2 + s2(Ŷi)

= .09958 + (92.161× 10−10)X2
i .

The variances and the standard errors provide measures of precision of
the estimate and are used to construct tests of hypotheses and confidence
interval estimates.
The data and a plot of the fitted regression line are shown in Figure 1.3.
The 95% confidence interval estimates of the mean response E(Ŷi) are
shown as bands on the regression line in the figure. Notice that with re-
gression through the origin the confidence bands go to zero as the origin is
approached. This is consistent with the model assumption that the mean
of Y is known to be zero when X = 0. Although the fit appears to be
reasonable, there are suggestions that the model might be improved. The
three lowest exposures fall below the regression line and very near zero;
these levels of exposure may not be having as much impact as linear re-
gression through the origin would predict. In addition, the largest residual,
e7 = .6663, is particularly noticeable. It is nearly twice as large as the
next largest residual and is the source of over half of the residual sum of
squares (see Table 1.7). This large positive residual and the overall pattern
of residuals suggests that a curvilinear relationship without the origin being
forced to be zero would provide a better fit to the data. In practice, such
alternative models would be tested before this linear no-intercept model
would be adopted. We forgo testing the need for a curvilinear relationship
at this time (fitting curvilinear models is discussed in Chapters 3 and 8)
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FIGURE 1.3. Regression of increase in relative risk on exposure to dust particles
with the regression forced through the origin. The bands on the regression line
connect the limits of the 95% confidence interval estimates of the means.



1.8 Models with Several Independent Variables 27

and continue with this example to illustrate testing the appropriateness of
the no-intercept model assuming the linear relationship is appropriate.
The test of the assumption that β0 is zero is made by temporarily adopt-
ing a model that allows a nonzero intercept. The estimate obtained for the
intercept is then used to test the null hypothesis that β0 is zero. Including
an intercept in this example gives β̂0 = .0360 with s(β̂0) = .1688. (The
residual mean square from the intercept model is s2 = .1131 with seven
degrees of freedom.) The t-test for the null hypothesis that β̂0 is zero is

t =
.0360
.1688

= .213

and is not significant; t(.025,7) = 2.365. There is no indication in these data
that the no-intercept model is inappropriate. (Recall that this test has been
made assuming the linear relationship is appropriate. If the model were
expanded to allow a curvilinear response, the test of the null hypothesis that
β0 = 0 might become significant.) An equivalent test of the null hypothesis
that β0 = 0 can be made using the difference between the residual sums of
squares from the intercept and no-intercept models. This test is discussed
in Chapter 4.

1.8 Models with Several Independent Variables

Most models will use more than one independent variable to explain the
behavior of the dependent variable. The linear additive model can be ex-
tended to include any number of independent variables:

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + · · ·+ βpXip + εi. (1.49)

The subscript notation has been extended to include a number on each X
and β to identify each independent variable and its regression coefficient.
There are p independent variables and, including β0, p′ = p+1 parameters
to be estimated.
The usual least squares assumptions apply. The εi are assumed to be
independent and to have common variance σ2. For constructing tests of
significance or confidence interval statements, the random errors are also
assumed to be normally distributed. The independent variables are as-
sumed to be measured without error.
The least squares method of estimation applied to this model requires
that estimates of the p+ 1 parameters be found such that

SS(Res) =
∑
(Yi − Ŷi)2

=
∑
(Yi − β̂0 − β̂1Xi1 − β̂2Xi2 − · · · − β̂pXip)2 (1.50)
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is minimized. The β̂j , j = 0, 1, . . . , p, are the estimates of the parameters.
The values of β̂j that minimize SS(Res) are obtained by setting the deriva-
tive of SS(Res) with respect to each β̂j in turn equal to zero. This gives
(p+ 1) normal equations that must be solved simultaneously to obtain the
least squares estimates of the (p+ 1) parameters.
It is apparent that the problem is becoming increasingly difficult as the
number of independent variables increases. The algebraic notation becomes
particularly cumbersome. For these reasons, matrix notation and matrix
algebra are used to develop the regression results for the more complicated
models. The next chapter is devoted to a brief review of the key matrix
operations needed for the remainder of the text.

1.9 Violation of Assumptions

In Section 1.1, we assumed that Basic
Assumptions

Yi = β0 + β1Xi + εi, i = 1, . . . , n,

where the random errors εi are normally distributed independent random
variables with mean zero and constant variance σ2, and the Xi are n ob-
servations on the independent variable that is measured without error.
Under these assumptions, the least squares estimators of β0 and β1 are the
best (minimum variance) among all possible unbiased estimators. Statis-
tical inference procedures, such as hypothesis testing and confidence and
prediction intervals, considered in the previous section are valid under these
assumptions. Here we briefly indicate the effects of violation of assumptions
on estimation and statistical inference. A more detailed discussion of prob-
lem areas in least squares and possible remedies is presented in Chapters
10 through 14.
Major problem areas in least squares analysis relate to failure of the four
basic assumptions — normality, independence and constant variance of the
errors, and the independent variable being measured without error. When
only the assumption of normality is violated, the least squares estimators Normality
continue to have the smallest variance among all linear (in Y ) unbiased
estimators. The assumption of normality is not needed for the partitioning
of total variation or for estimating the variance. However, it is needed for
tests of significance and construction of confidence and prediction inter-
vals. Although normality is a reasonable assumption in many situations,
it is not appropriate for count data and for some time-to-failure data that
tend to have asymmetric distributions. Transformations of the dependent
variable and alternative estimation procedures are used in such situations.
Also, in many situations with large n, statistical inference procedures based
on t- and F -statistics are approximately valid, even though the normality
assumption is not valid.
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When data are collected in a time sequence, the errors associated with
an observation at one point in time will tend to be correlated with the Correlated

Errorserrors of the immediately adjacent observations. Economic and meteoro-
logical variables measured over time and repeated measurements over time
on the same experimental unit, such as in plant and animal growth stud-
ies, will usually have correlated errors. When the errors are correlated, the
least squares estimators continue to be unbiased, but are no longer the best
estimators. Also, in this case, the variance estimators obtained using equa-
tions 1.26 and 1.32 are seriously biased. Alternative estimation methods
for correlated errors are discussed in Chapter 12.
In some situations, the variability in the errors increases with the inde- Nonconstant

Variancependent variable or with the mean of the response variable. For example,
in some yield data, the mean and the variance of the yield both increase
with the amount of seeds (or fertilizer) used. Consider the model

Yi = (β0 + β1Xi)ui
= β0 + β1Xi + (β0 + β1Xi)(ui − 1)
= β0 + β1Xi + εi,

where the errors ui are multiplicative and have mean one and constant
variance. Then the variance of εi is proportional to (β0 + β1Xi)2. The
effect of nonconstant (heterogeneous) variances on least squares estimators
is similar to that of correlated errors. The least squares estimators are no
longer efficient and the variance formulae in equations 1.26 and 1.32 are
not valid. Alternative methods are discussed in Chapter 11.
When the independent variable is measured with error or when the model Measurement

Erroris misspecified by omitting important independent variables, least squares
estimators will be biased. In such cases, the variance estimators are also
biased. Methods for detecting model misspecification and estimation in
measurement error models are discussed in later chapters. Also, the effect
of overly influential data points and outliers is discussed later.

1.10 Summary

This chapter has reviewed the basic elements of least squares estimation
for the simple linear model containing one independent variable. The more
complicated linear model with several independent variables was introduced
and is pursued using matrix notation in subsequent chapters. The student
should understand these concepts:

• the form and basic assumptions of the linear model;
• the least squares criterion, the estimators of the parameters obtained
using this criterion, and measures of precision of the estimates;
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• the use of the regression equation to obtain estimates of mean values
and predictions, and appropriate measures of precision for each; and

• the partitioning of the total variability of the response variable into
that explained by the regression equation and the residual or unex-
plained part.

1.11 Exercises

1.1. Use the least squares criterion to derive the normal equations, equa-
tion 1.6, for the simple linear model of equation 1.2.

1.2. Solve the normal equations, equation 1.6, to obtain the estimates of
β0 and β1 given in equation 1.7.

1.3. Use the statistical model

Yi = β0 + β1Xi + εi

to show that εi ∼ NID(0, σ2) implies each of the following:

(a) E(Yi) = β0 + β1Xi,

(b) σ2(Yi) = σ2, and

(c) Cov(Yi, Yi′) = 0, i �= i′.

For Parts (b) and (c), use the following definitions of variance and
covariance.

σ2(Yi) = E{[Yi − E(Yi)]2}
Cov(Yi, Yi′) = E{[Yi − E(Yi)][Yi′ − E(Yi′)]}.

1.4. The data in the accompanying table relate heart rate at rest Y to
kilograms body weight X.

X Y
90 62
86 45
67 40
89 55
81 64
75 53∑

Xi = 488
∑
Yi = 319∑

X2
i = 40, 092

∑
Y 2
i = 17, 399∑

XiYi = 26, 184
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(a) Graph these data. Does it appear that there is a linear relation-
ship between body weight and heart rate at rest?

(b) Compute β̂0 and β̂1 and write the regression equation for these
data. Plot the regression line on the graph from Part (a). Inter-
pret the estimated regression coefficients.

(c) Now examine the data point (67, 40). If this data point were
removed from the data set, what changes would occur in the
estimates of β0 and β1?

(d) Obtain the point estimate of the mean of Y when X = 88.
Obtain a 95% confidence interval estimate of the mean of Y
when X = 88. Interpret this interval statement.

(e) Predict the heart rate for a particular subject weighing 88kg
using both a point prediction and a 95% confidence interval.
Compare these predictions to the estimates computed in Part
(d).

(f) Without doing the computations, for which measured X would
the corresponding Ŷ have the smallest variance? Why?

1.5. Use the data and regression equation from Exercise 1.4 and compute
Ŷi for each value of X. Compute the product moment correlations
between

(a) Xi and Yi,

(b) Yi and Ŷi, and

(c) Xi and Ŷi.

Compare these correlations to each other and to the coefficient of
determination R2. Can you prove algebraically the relationships you
detect?

1.6. Show that

SS(Model) = nY
2
+ β̂2

1

∑
(Xi −X)2 (equation 1.16).

1.7. Show that∑
(Yi − Ŷi)2 =

∑
y2i − β̂2

1

∑
(Xi −X)2.

Note that
∑
y2i is being used to denote the corrected sum of squares.
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1.8. Show algebraically that
∑
ei = 0 when the simple linear regression

equation includes the constant term β0. Show algebraically that this
is not true when the simple linear regression does not include the
intercept.

1.9. The following data relate biomass production of soybeans to cumu-
lative intercepted solar radiation over an eight-week period following
emergence. Biomass production is the mean dry weight in grams of
independent samples of four plants. (Data courtesy of Virginia Lesser
and Dr. Mike Unsworth, North Carolina State University.)

X Y
Solar Radiation Plant Biomass

29.7 16.6
68.4 49.1
120.7 121.7
217.2 219.6
313.5 375.5
419.1 570.8
535.9 648.2
641.5 755.6

(a) Compute β̂0 and β̂1 for the linear regression of plant biomass on
intercepted solar radiation. Write the regression equation.

(b) Place 95% confidence intervals on β1 and β0. Interpret the in-
tervals.

(c) Test H0 : β1 = 1.0 versus Ha : β1 �= 1.0 using a t-test with
α = .1. Is your result for the t-test consistent with the confidence
interval from Part (b)? Explain.

(d) Use a t-test to test H0 : β0 = 0 against Ha : β0 �= 0. Interpret
the results. Now fit a regression with β0 = 0. Give the analysis of
variance for the regression through the origin and use an F -test
to test H0 : β0 �= 0. Compare the results of the t-test and the
F -test. Do you adopt the model with or without the intercept?

(e) Compute s2(β̂1) for the regression equation without an inter-
cept. Compare the variances of the estimates of the slopes β̂1
for the two models. Which model provides the greater precision
for the estimate of the slope?

(f) Compute the 95% confidence interval estimates of the mean
biomass production for X = 30 and X = 600 for both the
intercept and the no-intercept models. Explain the differences
in the intervals obtained for the two models.
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1.10. A linear regression was run on a set of data using an intercept and one
independent variable. You are given only the following information:

(1) Ŷi = 11.5− 1.5Xi.
(2) The t-test for H0 : β1 = 0 was nonsignificant at the α = .05
level. A computed t of −4.087 was compared to t(.05,2) from
Appendix Table A.1.

(3) The estimate of σ2 was s2 = 1.75.

(a) Complete the analysis of variance table using the given results.

(b) Compute and interpret the coefficient of determination R2.

1.11. An experiment has yielded sample means for four treatment regimes,
Y 1, Y 2, Y 3, and Y 4. The numbers of observations in the four means
are n1 = 4, n2 = 6, n3 = 3, and n4 = 9. The pooled estimate of σ2 is
s2 = 23.5.

(a) Compute the variance of each treatment mean.

(b) Compute the variance of the mean contrast C = Y 3+Y 4−2Y 1.

(c) Compute the variance of (Y 1 + Y 2 + Y 3)/3.

(d) Compute the variance of (4Y 1 + 6Y 2 + 3Y 3)/13.

1.12. Obtain the normal equations and the least squares estimates for the
model

Yi = µ+ β1xi + εi,

where xi = (Xi − X). Compare the results to equation 1.6. (The
model expressed in this form is referred to as the “centered” model;
the independent variable has been shifted to have mean zero.)

1.13. Recompute the regression equation and analysis of variance for the
Heagle ozone data (Table 1.1) using the centered model,

Yi = µ+ β1xi + εi,

where xi = (Xi −X). Compare the results with those in Tables 1.2
to 1.4.

1.14. Derive the normal equation for the no-intercept model, equation 1.40,
and the least squares estimate of the slope, equation 1.41.

1.15. Derive the variance of β̂1 and Ŷi for the no-intercept model.

1.16. Show that∑
(Xi −X)(Yi − Y ) =

∑
(Xi −X)Yi =

∑
Xi(Yi − Y ).



34 1. REVIEW OF SIMPLE REGRESSION

1.17. The variance of Ŷpred0 as given by equation 1.35 is for the prediction
of a single future observation. Derive the variance of a prediction of
the mean of q future observations all having the same value of X.

1.18. An experimenter wants to design an experiment for estimating the
rate of change in a dependent variable Y as an independent variable
X is changed. He is convinced from previous experience that the
relationship is linear in the region of interest, between X = 0 and
X = 11. He has enough resources to obtain 12 observations. Use
σ2(β̂1), equation 1.26, to show the researcher the best allocation of the
design points (choices ofX-values). Compare σ2(β̂1) for this optimum
allocation with an allocation of one observation at each interger value
of X from X = 0 and X = 11.

1.19. The data in the table relate seed weight of soybeans, collected for
six successive weeks following the start of the reproductive stage, to
cumulative seasonal solar radiation for two levels of chronic ozone
exposure. Seed weight is mean seed weight (grams per plant) from
independent samples of four plants. (Data courtesy of Virginia Lesser
and Dr. Mike Unsworth.)

Low Ozone High Ozone
Radiation Seed Weight Radiation Seed Weight
118.4 .7 109.1 1.3
215.2 2.9 199.6 4.8
283.9 5.6 264.2 6.5
387.9 8.7 358.2 9.4
451.5 12.4 413.2 12.9
515.6 17.4 452.5 12.3

(a) Determine the linear regression of seed weight on radiation sep-
arately for each level of ozone. Determine the similarity of the
two regressions by comparing the confidence interval estimates
of the two intercepts and the two slopes and by visual inspection
of plots of the data and the regressions.

(b) Regardless of your conclusion in Part (a), assume that the two
regressions are the same and estimate the common regression
equation.

1.20. A hotel experienced an outbreak of Pseudomona dermatis among its
guests. Physicians suspected the source of infection to be the hotel
whirlpool-spa. The data in the table give the number of female guests
and the number infected by categories of time (minutes) spent in the
whirlpool.
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Time Number Number
(Minutes) of Guests Infected
0–10 8 1
11–20 12 3
21–30 9 3
31–40 14 7
41–50 7 4
51–60 4 3
61–70 2 2

(a) Can the incidence of infection (number infected/number ex-
posed) be characterized by a linear regression on time spent
in the whirlpool? Use the midpoint of the time interval as the
independent variable. Estimate the intercept and the slope, and
plot the regression line and the data.

(b) Review each of the basic assumptions of least squares regression
and comment on whether each is satisfied by these data.

1.21. Hospital records were examined to assess the link between smoking
and duration of illness. The data reported in the table are the number
of hospital days (per 1,000 person-years) for several classes of indi-
viduals, the average number of cigarettes smoked per day, and the
number of hospital days for control groups of nonsmokers for each
class. (The control groups consist of individuals matched as nearly as
possible to the smokers for several primary health factors other than
smoking.)

# Hospital #Cigarettes #Hospital
Days (Smokers) Smoked/Day Days (Nonsmokers)

215 10 201
185 5 180
334 15 297
761 45 235
684 25 520
368 30 210
1275 50 195
3190 45 835
3520 60 435
428 20 312
575 5 590
2280 45 1131
2795 60 225
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(a) Plot the logarithm of number of hospital days (for the smokers)
against number of cigarettes. Do you think a linear regression
will adequately represent the relationship?

(b) Plot the logarithm of number of hospital days for smokers minus
the logarithm of number of hospital days for the control group
against number of cigarettes. Do you think a linear regression
will adequately represent the relationship? Has subtraction of
the control group means reduced the dispersion?

(c) Define Y = ln(# days for smokers)−ln(# days for nonsmokers)
and X = (#cigarettes)2. Fit the linear regression of Y on X.
Make a test of significance to determine if the intercept can
be set to zero. Depending on your results, give the regression
equation, the standard errors of the estimates, and the summary
analysis of variance.

1.22. Use the normal equations in 1.6 to show that

(a)
∑
XiYi =

∑
XiŶi.

(b)
∑
Xiei = 0.

(c)
∑
Ŷiei = 0. (Hint: use Exercise 1.8).

1.23 Consider the regression through the origin model in equation 1.39.
Suppose Xi ≥ 0. Define β̃1 =

∑
Yi/

∑
Xi and β̂1 =

∑
XiYi/

∑
X2
i .

(a) Show that β̃1 and β̂1 are unbiased for β1.

(b) Compare the variances of β̃1 and β̂1.



2
INTRODUCTION TO MATRICES

Chapter 1 reviewed simple linear regression in alge-
braic notation and showed that the notation for models
involving several variables is very cumbersome.

This chapter introduces matrix notation and all matrix
operations that are used in this text. Matrix algebra
greatly simplifies the presentation of regression and is
used throughout the text. Sections 2.7 and 2.8 are not
used until later in the text and can be omitted for now.

Matrix algebra is extremely helpful in multiple regression for simplify-
ing notation and algebraic manipulations. You must be familiar with the
basic operations of matrices in order to understand the regression results
presented. A brief introduction to the key matrix operations is given in
this chapter. You are referred to matrix algebra texts, for example, Searle
(1982), Searle and Hausman (1970), or Stewart (1973), for more complete
presentations of matrix algebra.

2.1 Basic Definitions

A matrix is a rectangular array of numbers arranged in orderly rows and Matrix
columns. Matrices are denoted with boldface capital letters. The following
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are examples.

Z =

 1 26 4
5 7

 X =


1 5
1 6
1 4
1 9
1 2
1 6


B =

[
15 7 −1 0
15 5 −2 10

]
.

The numbers that form a matrix are called the elements of the matrix. A Elements
general matrix could be denoted as

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 .
The subscripts on the elements denote the row and column, respectively,
in which the element appears. For example, a23 is the element found in the
second row and third column. The row number is always given first.
The order of a matrix is its size given by the number of rows and Order
columns. The first matrix given, Z, is of order (3, 2). That is, Z is a
3 × 2 matrix, since it has three rows and two columns. Matrix A is an
m× n matrix.
The rank of a matrix is defined as the number of linearly independent Rank
columns (or rows) in the matrix. Any subset of columns of a matrix are
linearly independent if no column in the subset can be expressed as a
linear combination of the others in the subset. The matrix

A =

 1 2 4
3 0 6
5 3 13


contains a linear dependency among its columns. The first column multi-
plied by two and added to the second column produces the third column.
In fact, any one of the three columns of A can be written as a linear com-
bination of the other two columns. On the other hand, any two columns of
A are linearly independent since one cannot be produced as a multiple of
the other. Thus, the rank of the matrix A, denoted by r(A), is two.
If there are no linear dependencies among the columns of a matrix, the Full-Rank

Matricesmatrix is said to be of full rank, or nonsingular. If a matrix is not of
full rank it is said to be singular. The number of linearly independent
rows of a matrix will always equal the number of linearly independent
columns. The linear dependency among the rows ofA is shown by 9(row1)+
7(row2) = 6(row3). The critical matrices in regression will almost always
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have fewer columns than rows and, therefore, rank is more easily visualized
by inspection of the columns.
The collection of all linear combinations of columns of A is called the Column Space
column space of A or the space spanned by the columns of A.

2.2 Special Types of Matrices

A vector is a matrix having only one row or one column, and is called a Vector
row or column vector, respectively. Although vectors are often designated
with boldface lowercase letters, this convention is not followed rigorously in
this text. A boldface capital letter is used to designate a data vector and a
boldface Greek letter is used for vectors of parameters. Thus, for example,

v =


3
8
2
1

 is a 4× 1 column vector.

µ = (µ1 µ2 µ3 ) is a 1× 3 row vector.
We usually define the vectors as column vectors but they need not be. A
single number such as 4, −2.1, or 0 is called a scalar.
A square matrix has an equal number of rows and columns. Square

Matrix
D =

[
2 4
6 7

]
is a 2× 2 square matrix.

A diagonal matrix is a square matrix in which all elements are zero ex- Diagonal
Matrixcept the elements on the main diagonal, the diagonal of elements, a11, a22,

. . . , ann, running from the upper left postion to the lower right position.

A =

 5 0 00 4 0
0 0 8

 is a 3× 3 diagonal matrix.

An identity matrix is a diagonal matrix having all the diagonal ele- Identity
Matrixments equal to 1; such a matrix is denoted by In. The subscript identifies

the order of the matrix and is omitted when the order is clear from the
context.

I3 =

 1 0 00 1 0
0 0 1

 is a 3× 3 identity matrix.

After matrix multiplication is discussed, it can be verified that multiplying
any matrix by the identity matrix will not change the original matrix.
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A symmetric matrix is a square matrix in which element aij equals Symmetric
Matrixelement aji for all i and j. The elements form a symmetric pattern around

the diagonal of the matrix.

A =

 5 −2 3
−2 4 −1
3 −1 8

 is a 3× 3 symmetric matrix.

Note that the first row is identical to the first column, the second row is
identical to the second column, and so on.

2.3 Matrix Operations

The transpose of a matrix A, designated A′, is the matrix obtained by Transpose
using the rows of A as the columns of A′. If

A =


1 2
3 8
4 1
5 9

 ,
the transpose of A is

A′ =
[
1 3 4 5
2 8 1 9

]
.

If a matrixA has orderm×n, its transposeA′ has order n×m. A symmetric
matrix is equal to its transpose: A′ = A.
Addition of two matrices is defined if and only if the matrices are of Addition
the same order. Then, addition (or subtraction) consists of adding (or sub-
tracting) the corresponding elements of the two matrices. For example,[

1 2
3 8

]
+

[
7 −6
8 2

]
=

[
8 −4
11 10

]
.

Addition is commutative: A+B = B +A.
Multiplication of two matrices is defined if and only if the number of Multiplication

columns in the first matrix equals the number of rows in the second matrix.
If A is of order r×s and B is of order m×n, the matrix product AB exists
only if s = m. The matrix product BA exists only if r = n. Multiplication
is most easily defined by first considering the multiplication of a row vector
times a column vector. Let a′ = ( a1 a2 a3 ) and b′ = ( b1 b2 b3 ).
(Notice that both a and b are defined as column vectors.) Then, the product
of a′ and b is

a′b = ( a1 a2 a3 )

 b1b2
b3

 (2.1)

= a1b1 + a2b2 + a3b3.
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The result is a scalar equal to the sum of products of the corresponding
elements. Let

a′ = ( 3 6 1 ) and b′ = ( 2 4 8 ) .

The matrix product is

a′b = ( 3 6 1 )

 24
8

 = 6 + 24 + 8 = 38.
Matrix multiplication is defined as a sequence of vector multiplications.
Write

A =
[
a11 a12 a13
a21 a22 a23

]
as A =

(
a′

1
a′

2

)
,

where a′
1 = ( a11 a12 a13 ) and a′

2 = ( a21 a22 a23 ) are the 1× 3 row
vectors in A. Similarly, write

B =

 b11 b12
b21 b22
b31 b32

 as B = ( b1 b2 ) ,

where b1 and b2 are the 3 × 1 column vectors in B. Then the product of
A and B is the 2× 2 matrix

AB = C =
[
a′

1b1 a′
1b2

a′
2b1 a′

2b2

]
=

[
c11 c12
c21 c22

]
, (2.2)

where

c11 = a′
1b1 =

3∑
j=1

a1jbj1 = a11b11 + a12b21 + a13b31

c12 = a′
1b2 =

3∑
j=1

a1jbj2 = a11b12 + a12b22 + a13b32

c21 = a′
2b1 =

3∑
j=1

a2jbj1 = a21b11 + a22b21 + a23b31

c22 = a′
2b2 =

3∑
j=1

a2jbj2 = a21b12 + a22b22 + a23b32.

In general, element cij is obtained from the vector multiplication of the
ith row vector from the first matrix and the jth column vector from the
second matrix. The resulting matrix C has the number of rows equal to
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the number of rows in A and number of columns equal to the number of
columns in B.

Let Example 2.1

T =

 1 24 5
3 0

 and W =
( −1
3

)
.

The product WT is not defined since the number of columns in W is not
equal to the number of rows in T . The product TW , however, is defined:

TW =

 1 24 5
3 0

( −1
3

)

=

 (1)(−1) + (2)(3)(4)(−1) + (5)(3)
(3)(−1) + (0)(3)

 =
 5
11
−3

 .
The resulting matrix is of order 3× 1 with the elements being determined
by multiplication of the corresponding row vector from T with the column
vector in W .

Matrix multiplication is not commutative;AB does not necessarily equal
BA even if both products exist. As for the matricesW and T in Example
2.1, the matrices are not of the proper order for multiplication to be defined
in both ways. The first step in matrix multiplication is to verify that the
matrices do conform (have the proper order) for multiplication.
The transpose of a product is equal to the product in reverse order of
the transposes of the two matrices. That is,

(AB)′ = B′A′. (2.3)

The transpose of the product of T and W from Example 2.1 is

(TW )′ =W ′T ′ = (−1 3 )
[
1 4 3
2 5 0

]
= ( 5 11 −3 ) .

Scalar multiplication is the multiplication of a matrix by a single
number. Every element in the matrix is multiplied by the scalar. Thus,

3
[
2 1 7
3 5 9

]
=

[
6 3 21
9 15 27

]
.

The determinant of a matrix is a scalar computed from the elements of Determinant
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the matrix according to well-defined rules. Determinants are defined only
for square matrices and are denoted by |A|, where A is a square matrix.
The determinant of a 1× 1 matrix is the scalar itself. The determinant of
a 2× 2 matrix,

A =
[
a11 a12
a21 a22

]
,

is defined as

|A| = a11a22 − a12a21. (2.4)

For example, if

A =
[
1 6

−2 10
]
,

the determinant of A is

|A| = (1)(10)− (6)(−2) = 22.
The determinants of higher-order matrices are obtained by expanding
the determinants as linear functions of determinants of 2× 2 submatrices.
First, it is convenient to define the minor and the cofactor of an element
in a matrix. Let A be a square matrix of order n. For any element ars
in A, a square matrix of order (n − 1) is formed by eliminating the row
and column containing the element ars. Label this matrix Ars, with the
subscripts designating the row and column eliminated from A. Then |Ars|,
the determinant ofArs, is called theminor of the element ars. The product
θrs = (−1)r+s |Ars| is called the cofactor of ars. Each element in a square
matrix has its own minor and cofactor.
The determinant of a matrix of order n is expressed in terms of the ele-
ments of any row or column and their cofactors. Using row i for illustration,
we can express the determinant of A as

|A| =
n∑
j=1

aijθij , (2.5)

where each θij contains a determinant of order (n − 1). Thus, the deter-
minant of order n is expanded as a function of determinants of one less
order. Each of these determinants, in turn, is expanded as a linear function
of determinants of order (n− 2). This substitution of determinants of one
less order continues until |A| is expressed in terms of determinants of 2× 2
submatrices of A.
The first step of the expansion is illustrated for a 3 × 3 matrix A. To
compute the determinant of A, choose any row or column of the matrix.
For each element of the row or column chosen, compute the cofactor of the
element. Then, if the ith row of A is used for the expansion,

|A| = ai1θi1 + ai2θi2 + ai3θi3. (2.6)
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For illustration, let Example 2.2

A =

 2 4 61 2 3
5 7 9


and use the first row for the expansion of |A|. The cofactors of the elements
in the first row are

θ11 = (−1)(1+1)
∣∣∣∣ 2 37 9

∣∣∣∣ = (18− 21) = −3,

θ12 = (−1)(1+2)
∣∣∣∣ 1 35 9

∣∣∣∣ = −(9− 15) = 6, and

θ13 = (−1)(1+3)
∣∣∣∣ 1 25 7

∣∣∣∣ = (7− 10) = −3.

Then, the determinant of A is

|A| = 2(−3) + 4(6) + 6(−3) = 0

.

If the determinant of a matrix is zero, the matrix is singular, or it is
not of full rank. Otherwise, the matrix is nonsingular. Thus, the matrix
A in Example 2.2 is singular. The linear dependency is seen by noting that
row 1 is equal to twice row 2. The determinants of larger matrices rapidly
become difficult to compute and are obtained with the help of a computer.
Division in the usual sense does not exist in matrix algebra. The concept Inverse of

a Matrixis replaced by multiplication by the inverse of the matrix. The inverse of
a matrix A, designated by A−1, is defined as the matrix that gives the
identity matrix when multiplied by A. That is,

A−1A = AA−1 = I. (2.7)

The inverse of a matrix may not exist. A matrix has a unique inverse if
and only if the matrix is square and nonsingular. A matrix is nonsingular
if and only if its determinant is not zero.
The inverse of a 2× 2 matrix is easily computed. If

A =
[
a11 a12
a21 a22

]
,

then

A−1 =
1
|A|

[
a22 −a12

−a21 a11

]
. (2.8)
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Note the rearrangement of the elements and the use of the determinant of
A as the scalar divisor. For example, if

A =
[
4 3
1 2

]
, then A−1 =

 2
5 − 3

5

− 1
5

4
5

 .
That this is the inverse of A is verified by multiplication of A and A−1:

AA−1 =
[
4 3
1 2

] 2
5 − 3

5

− 1
5

4
5

 = [
1 0
0 1

]
.

The inverse of a matrix is obtained in general by (1) replacing every
element of the matrix with its cofactor, (2) transposing the resulting matrix,
and (3) dividing by the determinant of the original matrix, as illustrated
in the next example.

Consider the following matrix, Example 2.3

B =

 1 3 24 5 6
8 7 9

 .
The determinant of B is

|B| = 1
∣∣∣∣ 5 67 9

∣∣∣∣− 3 ∣∣∣∣ 4 68 9
∣∣∣∣+ 2 ∣∣∣∣ 4 58 7

∣∣∣∣
= (45− 42)− 3(36− 48) + 2(28− 40)
= 15.

The unique inverse ofB exists since |B| �= 0. The cofactors for the elements
of the first row of B were used in obtaining |B| : θ11 = 3, θ12 = 12, θ13 =
−12. The remaining cofactors are:

θ21 = −
∣∣∣∣ 3 27 9

∣∣∣∣ = −13 θ22 =
∣∣∣∣ 1 28 9

∣∣∣∣ = −7 θ23 = −
∣∣∣∣ 1 38 7

∣∣∣∣ = 17
θ31 =

∣∣∣∣ 3 25 6
∣∣∣∣ = 8 θ32 = −

∣∣∣∣ 1 24 6
∣∣∣∣ = 2 θ33 =

∣∣∣∣ 1 34 5
∣∣∣∣ = −7.

Thus, the matrix of cofactors is 3 12 −12
−13 −7 17
8 2 −7


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and the inverse of B is

B−1 =
1
15

 3 −13 8
12 −7 2

−12 17 −7

 .
Notice that the matrix of cofactors has been transposed and divided by
|B| to obtain B−1. It is left as an exercise to verify that this is the inverse
of B. As with the determinants, computers are used to find the inverses of
larger matrices.

Note that if A is a diagonal nonsingular matrix, then A−1 is also a Inverse of
a Diagonal
Matrix

diagonal matrix where the diagonal elements of A−1 are the reciprocals of
the diagonal elements of A. That is, if

A =


a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

...
0 0 0 · · · ann

 ,

where aii �= 0, then

A =


a−1
11 0 0 · · · 0
0 a−1

22 0 · · · 0
0 0 a−1

33 · · · 0
...

...
...

...
0 0 0 · · · a−1

nn

 .

Also, if A and B are two nonsingular matrices, then[
A 0
0 B

]−1

=
[
A−1 0
0 B−1

]
.

2.4 Geometric Interpretations of Vectors

The elements of an n× 1 vector can be thought of as the coordinates of a
point in an n-dimensional coordinate system. The vector is represented in
this n-space as the directional line connecting the origin of the coordinate
system to the point specified by the elements. The direction of the vector
is from the origin to the point; an arrowhead at the terminus indicates
direction.
To illustrate, let x′ = ( 3 2 ). This vector is of order two and is plotted Vector

Lengthin two-dimensional space as the line vector going from the origin (0, 0) to
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FIGURE 2.1. The geometric representation of the vectors x′ = (3, 2) and
w′ = (2, −1) in two-dimensional space.

the point (3, 2) (see Figure 2.1). This can be viewed as the hypotenuse of a
right triangle whose sides are of length 3 and 2, the elements of the vector
x. The length of x is then given by the Pythagorean theorem as the square
root of the sum of squares of the elements of x. Thus,

length(x) =
√
32 + 22 =

√
13 = 3.61.

This result extends to the length of any vector regardless of its order.
The sum of squares of the elements in a column vector x is given by (the
matrix multiplication) x′x. Thus, the length of any vector x is

length(x) =
√
x′x. (2.9)

Multiplication of x by a scalar defines another vector that falls precisely Space
Defined by xon the line formed by extending the vector x indefinitely in both directions.

For example,
u′ = (−1)x′ = (−3 −2 )

falls on the extension of x in the negative direction. Any point on this indef-
inite extension of x in both directions can be “reached” by multiplication
of x with an appropriate scalar. This set of points constitutes the space
defined by x, or the space spanned by x. It is a one-dimensional subspace
of the two-dimensional space in which the vectors are plotted. A single
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FIGURE 2.2. Geometric representation of the sum of two vectors.

vector of order n defines a one-dimensional subspace of the n-dimensional
space in which the vector falls.
The second vector w′ = ( 2 1 ), shown in Figure 2.1 with a dotted Linear

Independenceline, defines another one-dimensional subspace. The two subspaces defined
by x and w are disjoint subspaces (except for the common origin). The
two vectors are said to be linearly independent since neither falls in
the subspace defined by the other. This implies that one vector cannot be
obtained by multiplication of the other vector by a scalar.
If the two vectors are considered jointly, any point in the plane can be Two-

Dimensional
Subspace

“reached” by an appropriate linear combination of the two vectors. For
example, the sum of the two vectors gives the vector y (see Figure 2.2),

y′ = x′ +w′ = ( 3 2 ) + ( 2 −1 ) = ( 5 1 ) .

The two vectors x and w define, or span, the two-dimensional subspace
represented by the plane in Figure 2.2. Any third vector of order 2 in this
two-dimensional space must be a linear combination of x and w. That is,
there must be a linear dependency among any three vectors that fall on
this plane.
Geometrically, the vector x is added tow by moving x, while maintaining Vector

Additionits direction, until the base of x rests on the terminus of w. The resultant
vector y is the vector from the origin (0, 0) to the new terminus of x. The
same result is obtained by moving w along the vector x. This is equivalent
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to completing the parallelogram using the two original vectors as adjacent
sides. The sum y is the diagonal of the parallelogram running from the
origin to the opposite corner (see Figure 2.2). Subtraction of two vectors,
say w′ − x′, is most easily viewed as the addition of w′ and (−x′).
Vectors of order 3 are considered briefly to show the more general be- Three-

Dimensional
Subspace

havior. Each vector of order 3 can be plotted in three-dimensional space;
the elements of the vector define the endpoint of the vector. Each vector
individually defines a one-dimensional subspace of the three-dimensional
space. This subspace is formed by extending the vector indefinitely in both
directions. Any two vectors define a two-dimensional subspace if the two
vectors are linearly independent—that is, as long as the two vectors do
not define the same subspace. The two-dimensional subspace defined by
two vectors is the set of points in the plane defined by the origin and the
endpoints of the two vectors. The two vectors defining the subspace and
any linear combination of them lie in this plane.
A three-dimensional space contains an infinity of two-dimensional sub-
spaces. These can be visualized by rotating the plane around the origin.
Any third vector that does not fall in the original plane will, in conjunction
with either of the first two vectors, define another plane. Any three linearly
independent vectors, or any two planes, completely define, or span, the
three-dimensional space. Any fourth vector in that three-dimensional sub-
space must be a linear function of the first three vectors. That is, any four
vectors in a three-dimensional subspace must contain a linear dependency.
The general results are stated in the box:

1. Any vector of order n can be plotted in n-dimensional space and
defines a one-dimensional subspace of the n-dimensional space.

2. Any p linearly independent vectors of order n, p < n, define a p-
dimensional subspace.

3. Any p+ 1 vectors in a p-dimensional subspace must contain a linear
dependency.

Two vectors x and w of the same order are orthogonal vectors if the Orthogonal
Vectorsvector product

x′w = w′x = 0. (2.10)

If

x =


1
0

−1
4

 and w =


3
4

−1
−1

 ,
then x and w are orthogonal because

x′w = (1)(3) + (0)(4) + (−1)(−1) + (4)(−1) = 0.
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Geometrically, two orthogonal vectors are perpendicular to each other or
they form a right angle at the origin.
Two linearly dependent vectors form angles of 0 or 180 degrees at the Linearly

Dependent
Vectors

origin. All other angles reflect vectors that are neither orthogonal nor lin-
early dependent. In general, the cosine of the angle α between two (column)
vectors x and w is

cos(α) =
x′w√

x′x
√
w′w

. (2.11)

If the elements of each vector have mean zero, the cosine of the angle
formed by two vectors is the product moment correlation between the
two columns of data in the vectors. Thus, orthogonality of two such vectors
corresponds to a zero correlation between the elements in the two vectors. If
two such vectors are linearly dependent, the correlation coefficient between
the elements of the two vectors will be either +1.0 or −1.0 depending on
whether the vectors have the same or opposite directions.

2.5 Linear Equations and Solutions

A set of r linear equations in s unknowns is represented in matrix notation
as Ax = y, where x is a vector of the s unknowns, A is the r× s matrix of
known coefficients on the s unknowns, and y is the r × 1 vector of known
constants on the right-hand side of the equations.
A set of equations may have (1) no solution, (2) a unique solution, or (3)
an infinite number of solutions. In order to have at least one solution, the
equations must be consistent. This means that any linear dependencies
among the rows of A must also exist among the corresponding elements of
y (Searle and Hausman, 1970). For example, the equations 1 2 32 4 6

3 3 3

x1
x2
x3

 =

 610
9


are inconsistent since the second row of A is twice the first row but
the second element of y is not twice the first element. Since they are not
consistent, there is no solution to this set of equations. Note that x′ =
( 1 1 1 ) satisfies the first and third equations but not the second. If the
second element of y were 12 instead of 10, the equations would be consistent
and the solution x′ = ( 1 1 1 ) would satisfy all three equations.



2.5 Linear Equations and Solutions 51

One method of determining if a set of equations is consistent is to com- Consistent
Equationspare the rank of A to the rank of the augmented matrix [A y]. The equa-

tions are consistent if and only if

r(A) = r([A y]). (2.12)

Rank can be determined by using elementary (row and column) operations
to reduce the elements below the diagonal to zero. Operations such as
addition of two rows, interchanging rows, and obtaining a scalar multiple
of a row are called elementary row operations. (In a rectangular matrix,
the diagonal is defined as the elements a11, a22, . . . , add, where d is the
lesser of the number of rows and number of columns.) The number of rows
with at least one nonzero element after reduction is the rank of the matrix.

Elementary operations on Example 2.4

A =

 1 2 32 4 6
3 3 3


give

A∗ =

 1 2 3
0 −3 −6
0 0 0


so that r(A) = 2. [The elementary operations to obtain A∗ are (1) sub-
tract 2 times row 1 from row 2, (2) subtract 3 times row 1 from row 3,
and (3) interchange rows 2 and 3.] The same elementary operations, plus
interchanging columns 3 and 4, on the augmented matrix

[A y] =

 1 2 3 6
2 4 6 10
3 3 3 9


give

[A y]∗ =

 1 2 6 3
0 −3 −9 −6
0 0 −2 0

 .
Thus, r([A y]) = 3. Since r([A y]) �= r(A), the equations are not consistent
and, therefore, they have no solution.

Consistent equations either have a unique solution or an infinity of solu- Unique
Solutiontions. If r(A) equals the number of unknowns, the solution is unique and

is given by
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1. x = A−1y, when A is square; or

2. x = A−1
1 y, where A1 is a full rank submatrix of A, when A is

rectangular.

The equations Ax = y with Example 2.5

A =

 1 23 3
5 7

 and y =

 6
9
21


are consistent. (Proof of consistency is left as an exercise.) The rank of A
equals the number of unknowns [r(A) = 2], so that the solution is unique.
Any two linearly independent equations in the system of equations can be
used to obtain the solution. Using the first two rows gives the full-rank
equations [

1 2
3 3

](
x1
x2

)
=

(
6
9

)
with the solution(

x1
x2

)
=

[
1 2
3 3

]−1 (
6
9

)
=
1
3

[ −3 2
3 −1

](
6
9

)
=

(
0
3

)
.

Notice that the solution x′ = ( 0 3 ) satisfies the third equation also.

When r(A) in a consistent set of equations is less than the number of Infinite
Solutionsunknowns, there is an infinity of solutions.

Consider the equations Ax = y with Example 2.6

A =

 1 2 32 4 6
3 3 3

 and y =

 6
12
9

 .
The rank of A is r(A) = 2 and elementary operations on the augmented
matrix [A y] give

[A y]∗ =

 1 2 3 6
0 −3 −6 −18
0 0 0 0

 .
Thus, r([A y]) = 2, which equals r(A), and the equations are consistent.
However, r(A) is less than the number of unknowns so that there is an
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infinity of solutions. This infinity of solutions comes from the fact that one
element of x can be chosen arbitrarily and the remaining two chosen so
as to satisfy the set of equations. For example, if x1 is chosen to be 1, the
solution is x′ = ( 1 1 1 ), whereas if x1 is chosen to be 2, the solution is
x′ = ( 2 −1 2 ).

A more general method of finding a solution to a set of consistent equa- Solutions
Using
Generalized
Inverses

tions involves the use of generalized inverses. There are several defini-
tions of generalized inverses [see Searle (1971), Searle and Hausman (1970),
and Rao (1973)]. An adequate definition for our purposes is the following
(Searle and Hausman, 1970).

A generalized inverse of A is any matrix A− that satisfies the
condition AA−A = A.

(A− is used to denote a generalized inverse.) The generalized inverse is not
unique (unless A is square and of full rank, in which case A− = A−1). A
generalized inverse can be used to express a solution to a set of consistent
equations Ax = y as x = A−y. This solution is unique only when r(A)
equals the number of unknowns in the set of equations. (The computer is
used to obtain generalized inverses when needed.)

For illustration, consider the set of consistent equations Ax = y where Example 2.7

A =

 1 23 3
5 7

 and y =

 6
9
21

 .
It has been shown that r(A) = 2 which equals the number of unknowns so
that the solution is unique. A generalized inverse of A is

A− =
1
18

[ −10 16 −4
8 −11 5

]
and the unique solution is given by

x = A−y =
(
0
3

)
.

It is left as an exercise to verify the matrix multiplication of A−y and that
AA−A = A.

For another illustration, consider again the consistent equations Ax = y Example 2.8
from Example 2.6, where

A =

 1 2 32 4 6
3 3 3

 and y =

 6
12
9

 .
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This system has been shown to have an infinity of solutions. A generalized
inverse of A is

A− =


− 1

10 − 2
10

4
9

0 0 1
9

1
10

2
10 − 2

9

 ,
which gives the solution

x = A−y = ( 1 1 1 )′ .

This happens to agree with the first solution obtained in Example 2.6.
Again, it is left as an exercise to verify that x = A−y and AA−A = A.
A different generalized inverse of A may lead to another solution of the
equations.

2.6 Orthogonal Transformations and Projections

The linear transformation of vector x to vector y, both of order n, is
written as y = Ax, where A is the n×n matrix of coefficients effecting the
transformation. The transformation is a one-to-one transformation only if
A is nonsingular. Then, the inverse transformation of y to x is x = A−1y.
A linear transformation is an orthogonal transformation if AA′ = I. Orthogonal

TransformationsThis condition implies that the row vectors of A are orthogonal and of unit
length. Orthogonal transformations maintain distances and angles between
vectors. That is, the spatial relationships among the vectors are not changed
with orthogonal transformations.

For illustration, let y′
1 = ( 3 10 20 ), y

′
2 = ( 6 14 21 ), and Example 2.9

A =

 1 1 1
−1 0 1
−1 2 −1

 .
Then

x1 = Ay1 =

 1 1 1
−1 0 1
−1 2 −1

 310
20

 =
 3317

−3


and

x2 = Ay2 =

 1 1 1
−1 0 1
−1 2 −1

 6
14
21

 =
 4115
1


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are linear transformations of y1 to x1 and y2 to x2. These are not orthog-
onal transformations because

AA′ =

 3 0 00 2 0
0 0 6

 �= I.

The rows of A are mutually orthogonal (the off-diagonal elements are zero)
but they do not have unit length. This can be made into an orthogonal
transformation by scaling each row vector of A to have unit length by
dividing each vector by its length. Thus,

x∗
1 = A∗y1 =


1√
3

1√
3

1√
3

− 1√
2

0 1√
2

− 1√
6

2√
6

− 1√
6

y1 =


33√
3

17√
2

− 3√
6


and

x∗
2 = A∗y2 =


41√
3

15√
2

1√
6


are orthogonal transformations. It is left as an exercise to verify that the
orthogonal transformation has maintained the distance between the two
vectors; that is, verify that

(y1 − y2)
′(y1 − y2) = (x

∗
1 − x∗

2)
′(x∗

1 − x∗
2) = 26.

[The squared distance between two vectors u and v is (u− v)′(u− v).]

Projection of a vector onto a subspace is a special case of a transforma- Projections
tion. (Projection is a key step in least squares.) The objective of a projec-
tion is to transform y in n-dimensional space to that vector ŷ in a subspace
such that ŷ is as close to y as possible. A linear transformation of y to ŷ,
ŷ = Py, is a projection if and only if P is idempotent and symmetric
(Rao, 1973), in which case P is referred to as a projection matrix.
An idempotentmatrix is a square matrix that remains unchanged when Idempotent

Matricesmultiplied by itself. That is, the matrix A is idempotent if AA = A. It can
be verified that the rank of an idempotent matrix is equal to the sum of the
elements on the diagonal (Searle, 1982; Searle and Hausman, 1970). This
sum of elements on the diagonal of a square matrix is called the trace of
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the matrix and is denoted by tr(A). Symmetry is not required for a matrix
to be idempotent. However, all idempotent matrices with which we are
concerned are symmetric.
The subspace of a projection is defined, or spanned, by the columns or
rows of the projection matrix P . If P is a projection matrix, (I−P ) is also
a projection matrix. However, since P and (I−P ) are orthogonal matrices,
the projection by (I − P ) is onto the subspace orthogonal to that defined
by P . The rank of a projection matrix is the dimension of the subspace
onto which it projects and, since the projection matrix is idempotent, the
rank is equal to its trace.

The matrix Example 2.10

A =
1
6

 5 2 −1
2 2 2

−1 2 5


is idempotent since

AA = A2 =
1
6

 5 2 −1
2 2 2

−1 2 5

 1
6

 5 2 −1
2 2 2

−1 2 5


=
1
6

 5 2 −1
2 2 2

−1 2 5

 = A.

The rank of A is given by

r(A) = tr(A) =
1
6
(5 + 2 + 5) = 2.

Since A is symmetric, it is also a projection matrix. Thus, the linear
transformation

ŷ = Ay1 =
1
6

 5 2 −1
2 2 2

−1 2 5

 3
10
20

 =
 2.5
11.0
19.5


is a projection of y1 = ( 3 10 20 )

′ onto the subspace defined by the
columns of A. The vector ŷ is the unique vector in this subspace that
is closest to y1. That is, (y1 − ŷ)′(y1 − ŷ) is a minimum. Since A is a
projection matrix, so is

I −A =

 1 0 00 1 0
0 0 1

− 1
6

 5 2 −1
2 2 2

−1 2 5

 = 1
6

 1 −2 1
−2 4 −2
1 −2 1

 .
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Then,

e = (I −A)y1 =
1
6

 1 −2 1
−2 4 −2
1 −2 1

 3
10
20

 =
 1

2−1
1
2


is a projection onto the subspace orthogonal to the subspace defined by A.
Note that ŷ′e = 0 and ŷ + e = y1.

2.7 Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors of matrices are needed for some of the meth-
ods to be discussed, including principal component analysis, principal com-
ponent regression, and assessment of the impact of collinearity (see Chap-
ter 13). Determining the eigenvalues and eigenvectors of a matrix is a dif-
ficult computational problem and computers are used for all but the very
simplest cases. However, the reader needs to develop an understanding of
the eigenanalysis of a matrix.
The discussion of eigenanalysis is limited to real, symmetric, nonneg-
ative definite matrices and, then, only key results are given. The reader
is referred to other texts [such as Searle and Hausman (1970)] for more
general discussions. In particular, Searle and Hausman (1970) show sev-
eral important applications of eigenanalysis of asymmetric matrices. Real
matrices do not contain any complex numbers as elements. Symmetric,
nonnegative definite matrices are obtained from products of the type
B′B and, if used as defining matrices in quadratic forms (see Chapter 4),
yield only zero or positive scalars.
It can be shown that for a real, symmetric matrix A (n × n) there Definitions
exists a set of n scalars λi, and n nonzero vectors zi, i = 1, . . . , n, such
that

Azi = λizi,

or Azi − λizi = 0,

or (A− λiI)zi = 0, i = 1, . . . , n. (2.13)

The λi are the n eigenvalues (characteristic roots or latent roots) of the
matrix A and the zi are the corresponding (column) eigenvectors (char-
acteristic vectors or latent vectors).
There are nonzero solutions to equation 2.13 only if the matrix (A−λiI) Solution
is less than full rank—that is, only if the determinant of (A− λiI) is zero.
The λi are obtained by solving the general determinantal equation

|A− λI| = 0. (2.14)
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Since A is of order n × n, the determinant of (A − λI) is an nth degree
polynomial in λ. Solving this equation gives the n values of λ, which are not
necessarily distinct. Each value of λ is then used in turn in Equation 2.13
to find the companion eigenvector zi.
When the eigenvalues are distinct, the vector solution to Equation 2.13
is unique except for an arbitrary scale factor and sign. By convention, each
eigenvector is defined to be the solution vector scaled to have unit length;
that is, z′

izi = 1. Furthermore, the eigenvectors are mutually orthogonal;
z′
izj = 0 when i �= j. When the eigenvalues are not distinct, there is an
additional degree of arbitrariness in defining the subsets of vectors corre-
sponding to each subset of nondistinct eigenvalues. Nevertheless, the eigen-
vectors for each subset can be chosen so that they are mutually orthogonal
as well as orthogonal to the eigenvectors of all other eigenvalues. Thus, if
Z = (z1 z2 · · · zn ) is the matrix of eigenvectors, then Z ′Z = I. This
implies that Z ′ is the inverse of Z so that ZZ ′ = I as well.
Using Z and L, defined as the diagonal matrix of the λi, we can write Decomposition

of a Matrixthe initial equations Azi = λizi as

AZ = ZL, (2.15)
or Z ′AZ = L, (2.16)
or A = ZLZ ′. (2.17)

Equation 2.17 shows that a real symmetric matrix A can be transformed to
a diagonal matrix by pre- and postmultiplying by Z ′ and Z, respectively.
Since L is a diagonal matrix, equation 2.17 shows that A can be expressed
as the sum of matrices:

A = ZLZ ′ =
∑
λi(ziz′

i), (2.18)

where the summation is over the n eigenvalues and eigenvectors. Each term
is an n× n matrix of rank 1 so that the sum can be viewed as a decompo-
sition of the matrix A into n matrices that are mutually orthogonal. Some
of these may be zero matrices if the corresponding λi are zero. The rank of
A is revealed by the number of nonzero eigenvalues λi.

For illustration, consider the matrix Example 2.11

A =
[
10 3
3 8

]
.

The eigenvalues of A are found by solving the determinantal equation
(equation 2.14),

|(A− λI)| =
∣∣∣∣[ 10− λ 3

3 8− λ
]∣∣∣∣ = 0

Administrator
ferret
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or

(10− λ)(8− λ)− 9 = λ2 − 18λ+ 71 = 0.

The solutions to this quadratic (in λ) equation are

λ1 = 12.16228 and λ2 = 5.83772

arbitrarily ordered from largest to smallest. Thus, the matrix of eigenvalues
of A is

L =
[
12.16228 0
0 5.83772

]
.

The eigenvector corresponding to λ1 = 12.16228 is obtained by solving
equation 2.13 for the elements of z1:

(A− 12.16228I)
(
z11
z21

)
= 0

or [−2.162276 3
3 −4.162276

](
z11
z21

)
= 0.

Arbitrarily setting z11 = 1 and solving for z21, using the first equation,
gives z21 = .720759. Thus, the vector z′

1 = ( 1 .720759 ) satisfies the first
equation (and it can be verified that it also satisfies the second equation).
Rescaling this vector so it has unit length by dividing by

length(z1) =
√
z′

1z1 =
√
1.5194935 = 1.232677

gives the first eigenvector

z1 = ( .81124 .58471 )′ .

The elements of z2 are found in the same manner to be

z2 = (−.58471 .81124 )′ .

Thus, the matrix of eigenvectors for A is

Z =
[
.81124 −.58471
.58471 .81124

]
.

Notice that the first column of Z is the first eigenvector, and the second
column is the second eigenvector.

Continuing with Example 2.11, notice that the matrix A is of rank two Example 2.12
because both eigenvalues are nonzero. The decomposition of A into two
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orthogonal matrices each of rank one, A = A1 + A2, equation 2.18, is
given by

A1 = λ1z1z
′
1 = 12.16228

(
.81124
.58471

)
( .81124 .58471 )

=
[
8.0042 5.7691
5.7691 4.1581

]
and

A2 = λ2z2z
′
2 =

[
1.9958 −2.7691

−2.7691 3.8419

]
.

Since the two columns of A1 are multiples of the same vector u1, they are
linearly dependent and, therefore, r(A1) = 1. Similarly, r(A2) = 1. Multi-
plication of A1 with A2 shows that the two matrices are orthogonal to each
other:A1A2 = 0, where 0 is a 2×2 matrix of zeros. Thus, the eigenanalysis
has decomposed the rank-2 matrix A into two rank-1 matrices. It is left as
an exercise to verify the multiplication and that A1 +A2 = A.

Notice that the sum of the eigenvalues in Example 2.11, λ1+λ2 = 18, is
equal to tr(A). This is a general result: the sum of the eigenvalues for any
square symmetric matrix is equal to the trace of the matrix. Furthermore,
the trace of each of the component rank-1 matrices is equal to its eigenvalue:

tr(A1) = λ1 and tr(A2) = λ2.

Note that for A = B′B, we have

z′
iAzi = λiz

′
izi

and

λi =
z′
iAzi
z′
izi

=
z′
iB

′Bzi
z′
izi

=
c′ici
z′
izi
,

where ci = Bzi. Therefore, if A = B′B for some real matrix B, then the
eigenvalues of A are nonnegative. Symmetric matrices with nonnegative
eigenvalues are called nonnegative definite matrices.

2.8 Singular Value Decomposition

The eigenanalysis, Section 2.7, applies to a square symmetric matrix. In
this section, the eigenanalysis is used to develop a similar decomposition,
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called the singular value decomposition, for a rectangular matrix. The
singular value decomposition is then used to give the principal compo-
nent analysis.
Let X be an n× p matrix with n > p. Then X ′X is a square symmetric Singular Value

Decompositionmatrix of order p × p. From Section 2.7, X ′X can be expressed in terms
of its eigenvalues L and eigenvectors Z as

X ′X = ZLZ ′. (2.19)

Here L is a diagonal matrix consisting of eigenvalues λ1, . . . , λp of X ′X.
From Section 2.7, we know that λ1, . . . , λp are nonnegative. Similarly,XX ′

is a square symmetric matrix but of order n × n. The rank of XX ′ will
be at most p so there will be at most p nonzero eigenvalues; they are in
fact the same p eigenvalues obtained from X ′X. In addition, XX ′ will
have at least n− p eigenvalues that are zero. These n− p eigenvalues and
their vectors are dropped in the following. Denote with U the matrix of
eigenvectors ofXX ′ that correspond to the p eigenvalues common toX ′X.
Each eigenvector ui will be of order n× 1. Then,

XX ′ = ULU ′. (2.20)

Equations 2.19 and 2.20 jointly imply that the rectangular matrix X can
be written as

X = UL1/2Z ′, (2.21)

where L1/2 is the diagonal matrix of the positive square roots of the p
eigenvalues of X ′X. Thus, L1/2L1/2 = L. Equation 2.21 is the singular
value decomposition of the rectangular matrixX. The elements of L1/2,
λ

1/2
i are called the singular values and the column vectors in U and Z
are the left and right singular vectors, respectively.
Since L1/2 is a diagonal matrix, the singular value decomposition ex-
presses X as a sum of p rank-1 matrices,

X =
∑
λ

1/2
i uiz

′
i, (2.22)

where summation is over i = 1, . . . , p. Furthermore, if the eigenvalues have
been ranked from largest to smallest, the first of these matrices is the
“best” rank-1 approximation to X, the sum of the first two matrices is
the “best” rank-2 approximation of X, and so forth. These are “best”
approximations in the least squares sense; that is, no other matrix (of the
same rank) will give a better agreement with the original matrix X as
measured by the sum of squared differences between the corresponding
elements of X and the approximating matrix (Householder and Young,
1938). The goodness of fit of the approximation in each case is given by
the ratio of the sum of the eigenvalues (squares of the singular values)
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used in the approximation to the sum of all eigenvalues. Thus, the rank-1
approximation has a goodness of fit of λ1/

∑
λi, the rank-2 approximation

has a goodness of fit of (λ1 + λ2)/
∑
λi, and so forth.

Recall that there is an arbitrariness of sign for the eigenvectors obtained
from the eigenalysis of X ′X and XX ′. Thus, care must be exercised in
choice of sign for the eigenvectors in reconstructing X or lower-order ap-
proximations ofX when the left and right eigenvectors have been obtained
from eigenanalyses. This is not a problem when U and Z have been ob-
tained directly from the singular value decomposition of X.

Singular value decomposition is illustrated using data on average mini- Example 2.13
mum daily temperature X1, average maximum daily temperature X2, total
rainfall X3, and total growing degree days X4, for six locations. The data
were reported by Saeed and Francis (1984) to relate environmental con-
ditions to cultivar by environment interactions in sorghum and are used
with their kind permission. Each variable has been centered to have zero
mean, and standardized to have unit sum of squares. (The centering and
standardization are not necessary for a singular value decomposition. The
centering removes the mean effect of each variable so that the dispersion
about the mean is being analyzed. The standardization puts all variables
on an equal basis and is desirable in most cases, particularly when the
variables have different units of measure.) The X matrix is

X = (X1 X2 X3 X4 )

=


.178146 −.523245 .059117 −.060996
.449895 −.209298 .777976 .301186

−.147952 .300866 −.210455 −.053411
−.057369 .065406 .120598 −.057203
−.782003 −.327028 −.210455 −.732264
.359312 .693299 −.536780 .602687

 .

The singular value decomposition of X into UL1/2Z ′ gives

U =


−.113995 .308905 −.810678 .260088
.251977 .707512 .339701 −.319261
.007580 −.303203 .277432 .568364

−.028067 .027767 .326626 .357124
−.735417 −.234888 .065551 −.481125
.617923 −.506093 −.198632 −.385189



L1/2 =


1.496896 0 0 0
0 1.244892 0 0
0 0 .454086 0
0 0 0 .057893


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Z =


.595025 .336131 .383204 .621382
.451776 .540753 .657957 .265663
.004942 .768694 .639051 .026450
.664695 .060922 .108909 .736619

 .
The columns ofU andZ are the left and right singular vectors, respectively.
The first column of U , u1, the first column of Z, z1, and the first singular
value, λ1 = 1.496896, give the best rank-1 approximation of X,

A1 = λ
1/2
1 u1z

′
1

= (1.4969)


−.1140
.2520
.0076

−.0281
−.7354
.6179

 ( .5950 .4518 .0049 .6647 )

=


−.101535 −.077091 −.000843 −.113423
.224434 .170403 .001864 .250712
.006752 .005126 .000056 .007542

−.024999 −.018981 −.000208 −.027927
−.655029 −.497335 −.005440 −.731725
.550378 .417877 .004571 .614820

 .

The goodness of fit of A1 to X is measured by

λ1∑
λi
=
(1.4969)2

4
= .56

or the sum of squares of the differences between the elements of X and
A1, the lack of fit, is 44% of the total sum of squares of the elements in X.
This is not a very good approximation.
The rank-2 approximation to X is obtained by adding to A1 the matrix

A2 = λ
1/2
2 u2z

′
2. This gives

A1 +A2 =


.027725 −.285040 .295197 −.089995
.520490 −.305880 .678911 .304370

−.120122 .209236 −.290091 −.015453
−.013380 −.037673 .026363 −.025821
−.753317 −.339213 −.230214 −.749539
.338605 .758568 −.479730 .576438

 ,

which has goodness of fit

λ1 + λ2∑
λi

=
(1.4969)2 + (1.2449)2

4
= .95.
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In terms of approximatingX with the rank-2 matrixA1+A2, the goodness
of fit of .95 means that the sum of squares of the discrepancies between
X and (A1 +A2) is 5% of the total sum of squares of all elements in X.
The sum of squares of all elements in X is

∑
λi, the sum of squares of all

elements in (A1+A2) is (λ1+λ2), and the sum of squares of all elements in
[X− (A1+A2)] is (λ3+λ4). In terms of the geometry of the data vectors,
the goodness of fit of .95 means that 95% of the dispersion of the “cloud”
of points in the original four-dimensional space is, in reality, contained in
two dimensions, or the points in four-dimensional space very nearly fall on
a plane. Only 5% of the dispersion is lost if the third and fourth dimensions
are ignored.
Using all four singular values and their singular vectors gives the com-
plete decomposition ofX into four orthogonal rank-1 matrices. The sum of
the four matrices equals X, within the limits of rounding error. The anal-
ysis has shown, by the relatively small size of the third and fourth singular
values, that the last two dimensions contain little of the dispersion and can
safely be ignored in interpretation of the data.

The singular value decomposition is the first step in principal com- Principal
Component
Analysis

ponent analysis. Using the result X = UL1/2Z ′ and the property that
Z′Z = I, one can define the n× p matrix W as

W = XZ = UL1/2. (2.23)

The first column of Z is the first of the right singular vectors of X, or
the first eigenvector of X ′X. Thus, the coefficients in the first eigenvector
define the particular linear function of the columns of X (of the original
variables) that generates the first column ofW . The second column ofW
is obtained using the second eigenvector of X ′X, and so on. Notice that
W ′W = L. Thus, W is an n× p matrix that, unlike X, has the property
that all its columns are orthogonal. (L is a diagonal matrix so that all
off-diagonal elements, the sums of products between columns of W , are
zero.) The sum of squares of the ith column of W is λi, the ith diagonal
element of L. Thus, if X is an n× p matrix of observations on p variables,
each column of W is a new variable defined as a linear transformation of
the original variables. The ith new variable has sum of squares λi and all
are pairwise orthogonal. This analysis is called the principal component
analysis of X, and the columns of W are the principal components
(sometimes called principal component scores).
Principal component analysis is used where the columns ofX correspond
to the observations on different variables. The transformation is to a set
of orthogonal variables such that the first principal component accounts
for the largest possible amount of the total dispersion, measured by λ1, the
second principal component accounts for the largest possible amount of the
remaining dispersion λ2, and so forth. The total dispersion is given by the
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sum of all eigenvalues, which is equal to the sum of squares of the original
variables; tr(X ′X) = tr(W ′W ) =

∑
λi.

For the Saeed and Francis data, Example 2.13, each column of Z contains Example 2.14
the coefficients that define one of the principal components as a linear
function of the original variables. The first vector in Z,

z1 = ( .5950 .4518 .0049 .6647 )′ ,

has similar first, second, and fourth coefficients with the third coefficient
being near zero. Thus, the first principal component is essentially an aver-
age of the three temperature variables X1, X2, and X4. The second column
vector in Z,

z2 = ( .3361 −.5408 .7687 .0609 )′ ,

gives heavy positive weight to X3, heavy negative weight to X2, and mod-
erate positive weight to X1. Thus, the second principal component will be
large for those observations that have high rainfall X3, and small difference
between the maximum and minimum daily temperatures X2 and X1.
The third and fourth principal components account for only 5% of the to-
tal dispersion. This small amount of dispersion may be due more to random
“noise” than to real patterns in the data. Consequently, the interpretation
of these components may not be very meaningful. The third principal com-
ponent will be large when there is high rainfall and large difference between
the maximum and minimum daily temperatures,

z3 = (−.3832 .6580 .6391 −.1089 )′ .

The variable degree days X4 has little involvement in the second and third
principal components; the fourth coefficient is relatively small. The fourth
principal component is determined primarily by the difference between an
average minimum daily temperature and degree days,

z4 = ( .6214 .2657 −.0265 −.7366 )′ .

The principal component vectors are obtained either by the multiplica-
tion W = UL1/2 or W = XZ. The first is easier since it is the simple
scalar multiplication of each column of U with the appropriate λ1/2

i .

The principal component vectors for the Saeed and Francis data of Ex- Example 2.15
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ample 2.13 are (with some rounding)

W =


−.1706 .3846 −.3681 .0151
.3772 .8808 .1543 −.0185
.0113 −.3775 .1260 .0329

−.0420 .0346 .1483 .0207
−1.1008 −.2924 .0298 −.0279
.9250 −.6300 −.0902 −.0223

 .

The sum of squares of the first principal component, the first column ofW ,
is λ1 = (1.4969)2 = 2.2407. Similarly, the sums of squares for the second,
third, and fourth principal components are

λ2 = (1.2449)2 = 1.5498
λ3 = (.4541)2 = .2062
λ4 = (.0579)2 = .0034.

These sum to 4.0, the total sum of squares of the original three variables
after they were standardized. The proportion of the total sum of squares
accounted for by the first principal component is λ1/

∑
λi = 2.2407/4 = .56

or 56%. The first two principal components account for (λ1 + λ2)/4 =
3.79/4 = .95 or 95% of the total sum of squares of the four original variables.
Each of the original data vectors in X was a vector in six-dimensional
space and, together, the four vectors defined a four-dimensional subspace.
These vectors were not orthogonal. The four vectors in W , the principal
component vectors, are linear functions of the original vectors and, as such,
they fall in the same four-dimensional subspace. The principal component
vectors, however, are orthogonal and defined such that the first principal
component vector has the largest possible sum of squares. This means that
the direction of the first principal component axis coincides with the major
axis of the elipsoid of observations, Figure 2.3. Note that the “cloud” of
observations, the data points, does not change; only the axes are being
redefined. The second principal component has the largest possible sum
of squares of all vectors orthogonal to the first, and so on. The fact that
the first two principal components account for 95% of the sum of squares
in this example shows that very little of the dispersion among the data
points occurs in the third and fourth principal component dimensions. In
other words, the variability among these six locations in average minimum
and average maximum temperature, total rainfall, and total growing degree
days, can be adequately described by considering only the two dimensions
(or variables) defined by the first two principal components.
The plot of the first two principal components from the Saeed and Fran-
cis data, Figure 2.3, shows that locations 5 and 6 differ from each other
primarily in the first principal component. This component was noted ear-
lier to be mainly a temperature difference; location 6 is the warmer and has



2.8 Singular Value Decomposition 67

FIGURE 2.3. The first two principal components of the Saeed and Francis (1984)
data on average minimum temperature, average maximum temperature, total rain-
fall, and growing degree days for six locations. The first principal component pri-
marily reflects average temperature. The second principal component is a measure
of rainfall minus the spread between minimum and maximum temperature.
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the longer growing season. The other four locations differ primarily in the
second principal component which reflects amount of rainfall and the dif-
ference in maximum and minimum temperature. Location 2 has the highest
rainfall and tends to have a large difference in maximum and minimum daily
temperature. Location 6 is also the lowest in the second principal compo-
nent indicating a lower rainfall and small difference between the maximum
and minimum temperature. Thus, location 6 appears to be a relatively hot,
dry environment with somewhat limited diurnal temperature variation.

2.9 Summary

This chapter has presented the key matrix operations that are used in
this text. The student must be able to use matrix notation and matrix
operations. Of particular importance are

• the concepts of rank and the transpose of a matrix;
• the special types of matrices: square, symmetric, diagonal, identity,
and idempotent;

• the elementary matrix operations of addition and multiplication; and
• the use of the inverse of a square symmetric matrix to solve a set of
equations.

The geometry of vectors and projections is useful in understanding least
squares principles. Eigenanalysis and singular value decomposition are used
later in the text.

2.10 Exercises

2.1. Let

A =

 1 0
2 4
−1 2

 , B =
[
1 2 −1
0 3 −4

]
,

c′ = ( 1 2 0 ) , and d = 2, a scalar.

Perform the following operations, if possible. If the operation is not
possible, explain why.

(a) c′A

(b) A′c
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(c) B′ +A

(d) c′B

(e) A− d
(f) (dB′ +A).

2.2. Find the rank of each of the following matrices. Which matrices are
of full rank?

A =


1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

 B =


1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0



C =


1 1 0 0
1 0 1 0
1 0 0 1
1 −1 −1 −1

 .
2.3. Use B in Exercise 2.2 to compute D = B(B′B)−1B′. Determine
whether D is idempotent. What is the rank of D?

2.4. Find aij elements to make the following matrix symmetric. Can you
choose a33 to make the matrix idempotent?

A =


1 2 a13 4
2 −1 0 a24
6 0 a33 −2

a41 8 −2 3

 .
2.5. Verify that A and B are inverses of each other.

A =
[
10 5
3 2

]
B =

[ 2
5 −1

− 3
5 2

]
.

2.6. Find b41 such that a and b are orthogonal.

a =


2
0

−1
3

 b =


6

−1
3
b41

 .
2.7. Plot the following vectors on a two-dimensional coordinate system.

v1 =
(
1
1

)
v2 =

(
4
1

)
v3 =

(
1

−4
)
.

By inspection of the plot, which pairs of vectors appear to be orthog-
onal? Verify numerically that they are orthogonal and that all other
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pairs in this set are not orthogonal. Explain from the geometry of
the plot how you know there is a linear dependency among the three
vectors.

2.8. The three vectors in Exercise 2.7 are linearly dependent. Find the
linear function of v1 and v2 that equals v3. Set the problem up as a
system of linear equations to be solved. Let V = (v1 v2 ), and let
x′ = (x1 x2 ) be the vector of unknown coefficients. Then, V x = v3
is the system of equations to be solved for x.

(a) Show that the system of equations is consistent.
(b) Show that there is a unique solution.
(c) Find the solution.

2.9. Expand the set of vectors in Exercise 2.7 to include a fourth vector,
v′

4 = ( 8 5 ). Reformulate Exercise 2.8 to include the fourth vector
by including v4 in V and an additional coefficient in x. Is this system
of equations consistent? Is the solution unique? Find a solution. If
solutions are not unique, find another solution.

2.10. Use the determinant to determine which of the following matrices has
a unique inverse.

A =
[
1 1
4 10

]
B =

[
4 −1
0 6

]
C =

[
6 3
4 2

]
.

2.11. Given the following matrix,

A =
[
3

√
2√

2 2

]
,

(a) find the eigenvalues and eigenvectors of A.
(b) What do your findings tell you about the rank of A?

2.12. Given the following eigenvalues with their corresponding eigenvectors,
and knowing that the original matrix was square and symmetric,
reconstruct the original matrix.

λ1 = 6 z1 =
(
0
1

)
λ2 = 2 z2 =

(
1
0

)
.

2.13. Find the inverse of the following matrix,

A =

 5 0 0
0 10 2
0 2 3

 .
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2.14. Let

X =



1 .2 0
1 .4 0
1 .6 0
1 .8 0
1 .2 .1
1 .4 .1
1 .6 .1
1 .8 .1


Y =



242
240
236
230
239
238
231
226


.

(a) Compute X ′X and X ′Y . Verify by separate calculations that
the (i, j) = (2, 2) element in X ′X is the sum of squares of
column 2 in X. Verify that the (2, 3) element is the sum of
products between columns 2 and 3 of X. Identify the elements
in X ′Y in terms of sums of squares or products of the columns
of X and Y .

(b) Is X of full column rank? What is the rank of X ′X?

(c) Obtain (X ′X)−1. What is the rank of (X ′X)−1? Verify by ma-
trix multiplication that (X ′X)−1X ′X = I.

(d) Compute P = X(X ′X)−1X ′ and verify by matrix multiplica-
tion that P is idempotent. Compute the trace tr(P ). What is
r(P )?

2.15. Use X as defined in Exercise 2.14.

(a) Find the singular value decomposition of X. Explain what the
singular values tell you about the rank of X.

(b) Compute the rank-1 approximation of X; call it A1. Use the
singular values to state the “goodness of fit” of this rank-1 ap-
proximation.

(c) Use A1 to compute a rank-1 approximation of X ′X; that is,
compute A′

1A1. Compare tr(A′
1A1) with λ1 and tr(X ′X).

2.16. Use X ′X as computed in Exercise 2.14.

(a) Compute the eigenanalysis of X ′X. What is the relationship
between the singular values of X obtained in Exercise 2.15 and
the eigenvalues obtained for X ′X?

(b) Use the results of the eigenanalysis to compute the rank-1 ap-
proximation of X ′X. Compare this result to the approximation
of X ′X obtained in Exercise 2.15.

(c) Show algebraically that they should be identical.
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2.17. Verify that

A =
1
15

 3 −13 8
12 −7 2

−12 17 −7


is the inverse of

B =

 1 3 24 5 6
8 7 9

 .
2.18. Show that the equations Ax = y are consistent where

A =

 1 23 3
5 7

 and y =

 69
21

 .
2.19. Verify that

A− =
1
18

[ −10 16 −4
8 −11 5

]
is a generalized inverse of

A =

 1 23 3
5 7

 .
2.20. Verify that

A− =


− 1

10 − 2
10

4
9

0 0 1
9

1
10

2
10 − 2

9


is a generalized inverse of

A =

 1 2 32 4 6
3 3 3

 .
2.21. Use the generalized inverse in Exercise 2.20 to obtain a solution to

the equations Ax = y, where A is defined in Exercise 2.20 and y =
( 6 12 9 )′. Verify that the solution you obtained satisfies Ax = y.

2.22. The eigenanalysis of

A =
[
10 3
3 8

]
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in Section 2.7 gave

A1 =
[
8.0042 5.7691
5.7691 4.1581

]
and A2 =

[
1.9958 −2.7691

−2.7691 3.8419

]
.

Verify the multiplication of the eigenvectors to obtain A1 and A2.
Verify that A1 + A2 = A, and that A1 and A2 are orthogonal to
each other.

2.23. In Section 2.6, a linear transformation of y1 = ( 3 10 20 )
′ to x1 =

( 33 17 −3 )′ and of y2 = ( 6 14 21 )
′ to x2 = ( 41 15 1 )

′ was
made using the matrix

A =

 1 1 1
−1 0 1
−1 2 −1

 .
The vectors of A were then standardized so that A′A = I to produce
the orthogonal transformation of y1 and y2 to

x∗
1 = ( 33/

√
3 17/

√
2 −3/√6 )′

and
x∗

2 = ( 41/
√
3 15/

√
2 1/

√
6 )′ ,

respectively. Show that the squared distance between y1 and y2 is
unchanged when the orthogonal transformation is made but not when
the nonorthogonal transformation is made. That is, show that

(y1 − y2)
′(y1 − y2) = (x

∗
1 − x∗

2)
′(x∗

1 − x∗
2)

but that

(y1 − y2)
′(y1 − y2) �= (x1 − x2)′(x1 − x2).

2.24. (a) Let A be an m×n matrix and B be an n×m matrix. Then show
that tr(AB) = tr(BA).
(b) Use (a) to show that tr(ABC) = tr(BCA), where C is anm×m
matrix.

2.25. Let a∗ be an m× 1 vector with a∗′a∗ > 0. Define a = a∗/(a∗′a∗)1/2

and A = aa′. Show that A is a symmetric idempotent matrix of rank
1.

2.26. Let a and b be two m× 1 vectors that are orthogonal to each other.
Define A = aa′ and B = bb′. Show that AB = BA = 0, a matrix
of zeros.
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2.27. Gram–Schmidt orthogonalization. An orthogonal basis for a space
spanned by some vectors can be obtained using the Gram–Schmidt
orthogonalization procedure.

(a) Consider two linearly independent vectors v1 and v2. Define
z1 = v1 and z2 = v2 − v1c2.1, where c2.1 = (v′

1v2)/(v′
1v1).

Show that z1 and z2 are orthogonal. Also, show that z1 and z2
span the same space as v1 and v2.

(b) Consider three linearly independent vectors v1, v2, and v3. De-
fine z1 and z2 as in (a) and z3 = v3 − c3.1z1 − c3.2z2, where
c3.i = (z′

iv3)/(z′
izi), i = 1, 2. Show that z1, z2, and z3 are

mutually orthogonal and span the same space as v1, v2, and v3.



3
MULTIPLE REGRESSION IN
MATRIX NOTATION

We have reviewed linear regression in algebraic nota-
tion and have introduced the matrix notation and op-
erations needed to continue with the more complicated
models.

This chapter presents the model, and develops the nor-
mal equations and solution to the normal equations for
a general linear model involving any number of inde-
pendent variables. The matrix formulation for the vari-
ances of linear functions is used to derive the measures
of precision of the estimates.

Chapter 1 provided an introduction to multiple regression and suggested
that a more convenient notation was needed. Chapter 2 familiarized you
with matrix notation and operations with matrices. This chapter states
multiple regression results in matrix notation. Developments in the chapter
are for full rank models. Less than full rank models that use generalized
inverses are discussed in Chapter 9.

3.1 The Model

The linear additive model for relating a dependent variable to p indepen-
dent variables is

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip + εi. (3.1)
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The subscript i denotes the observational unit from which the observations
on Y and the p independent variables were taken. The second subscript
designates the independent variable. The sample size is denoted with n, i =
1, . . . , n, and p denotes the number of independent variables. There are
(p+ 1) parameters βj , j = 0, . . . , p to be estimated when the linear model
includes the intercept β0. For convenience, we use p′ = (p+1). In this book
we assume that n > p′. Four matrices are needed to express the linear Matrix

Definitionsmodel in matrix notation:

Y : the n×1 column vector of observations on the dependent variable Yi;
X: the n× p′ matrix consisting of a column of ones, which is labeled 1,
followed by the p column vectors of the observations on the indepen-
dent variables;

β: the p′ × 1 vector of parameters to be estimated; and
ε: the n× 1 vector of random errors.

With these definitions, the linear model can be written as

Y = Xβ + ε, (3.2)

or 
Y1
Y2
...
Yn

 =


1 X11 X12 X13 · · · X1p
1 X21 X22 X23 · · · X2p
...

...
...

...
...

1 Xn1 Xn2 Xn3 · · · Xnp



β0
β1
...
βp

+

ε1
ε2
...
εn

 .
(n× 1) (n× p′) (p′ × 1) (n× 1)

Each column ofX contains the values for a particular independent variable. The X Matrix
The elements of a particular row of X, say row r, are the coefficients on
the corresponding parameters in β that give E(Yr). Notice that β0 has the
constant multiplier 1 for all observations; hence, the column vector 1 is the
first column of X. Multiplying the first row of X by β, and adding the
first element of ε confirms that the model for the first observation is

Y1 = β0 + β1X11 + β2X12 + · · ·+ βpX1p + ε1.

The vectors Y and ε are random vectors; the elements of these vectors are
random variables. The matrix X is considered to be a matrix of known
constants. A model for whichX is of full column rank is called a full-rank
model.
The vector β is a vector of unknown constants to be estimated from the The β Vector
data. Each element βj is a partial regression coefficient reflecting the change
in the dependent variable per unit change in the jth independent variable,
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assuming all other independent variables are held constant. The definition
of each partial regression coefficient is dependent on the set of independent
variables in the model. Whenever clarity demands, the subscript notation
on βj is expanded to identify explicitly both the independent variable to
which the coefficient applies and the other independent variables in the
model. For example, β2.13 would designate the partial regression coefficient
for X2 in a model that contains X1, X2, and X3.
It is common to assume that εi are independent and identically dis-
tributed as normal random variables with mean zero and variance σ2. Since The Random

Vector εεi are assumed to be independent of each other, the covariance between εi
and εj is zero for any i �= j. The joint probability density function of
ε1, ε2, . . . , εn is

n∏
i=1

[(2π)−1/2σ−1 e−ε
2
i /2σ

2
] = (2π)−n/2σ−n e−

∑n

i=1
ε2i /2σ

2

. (3.3)

The random vector ε is a vector ( ε1 ε2 · · · εn )
′ consisting of random

variables εi.
Since the elements of X and β are assumed to be constants, the Xβ The Y Vector
term in the model is a vector of constants. Thus, Y is a random vector
that is the sum of the constant vector Xβ and the random vector ε. Since
εi are assumed to be independent N(0, σ2) random variables, we have that

1. Yi is a normal random variable with mean β0+β1Xi1+β2Xi2+ · · ·+
βpXip and variance σ2;

2. Yi are independent of each other.

The covariance between Yi and Yj is zero for i �= j. The joint probability
density function of Y1, . . . , Yn is

(2π)−n/2σ−n e−
∑

[Yi−(β0+β1Xi1+···+βpXip)]2/2σ2
. (3.4)

The conventional tests of hypotheses and confidence interval estimates Importance
of Normality
Assumption

of the parameters are based on the assumption that the estimates are nor-
mally distributed. Thus, the assumption of normality of the εi is critical
for these purposes. However, normality is not required for least squares
estimation. Even in the absence of normality, the least squares estimates
are the best linear unbiased estimates (b.l.u.e.). They are best in the sense
of having minimum variance among all linear unbiased estimators. If nor-
mality does hold, the maximum likelihood estimators are derived using the
criterion of finding those values of the parameters that would have max-
imized the probability of obtaining the particular sample, called the like-
lihood function. Maximizing the likelihood function in equation 3.4 with
respect to β = (β0 β1 · · · βp )

′ is equivalent to minimizing the sum
of squares in the exponent, and hence the least squares estimates coincide
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with maximum likelihood estimates. The reader is referred to statistical
theory texts such as Searle (1971), Graybill (1961), and Cramér (1946) for
further discussion of maximum likelihood estimation.

For the ozone data used in Example 1.1 (see Table 1.1 on page 5), Example 3.1

X =


1 .02
1 .07
1 .11
1 .15

 Y =


242
237
231
201

 β =
(
β0
β1

)

and ε is the vector of four (unobservable) random errors.

3.2 The Normal Equations and Their Solution

In matrix notation, the normal equations are written as

X ′Xβ̂ = X ′Y . (3.5)

The normal equations are always consistent and hence will always have a
solution of the form

β̂ = (X ′X)−X ′Y . (3.6)

If X ′X has an inverse, then the normal equations have a unique solution
given by

β̂ = (X ′X)−1(X ′Y ). (3.7)

The multiplication X ′X generates a p′ × p′ matrix where the diagonal X ′X
elements are the sums of squares of each of the independent variables and
the off-diagonal elements are the sums of products between independent
variables. The general form of X ′X is

n
∑
Xi1

∑
Xi2 · · · ∑

Xip∑
Xi1

∑
X2
i1

∑
Xi1Xi2 · · · ∑

Xi1Xip∑
Xi2

∑
Xi1Xi2

∑
X2
i2 · · · ∑

Xi2Xip

...
...

...
...∑

Xip
∑
Xi1Xip

∑
Xi2Xip · · · ∑

X2
ip


. (3.8)
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Summation in all cases is over i = 1 to n, the n observations in the data.
When only one independent variable is involved, X ′X consists of only the
upper-left 2 × 2 matrix. Inspection of the normal equations in Chapter
1, equation 1.6, reveals that the elements in this 2 × 2 matrix are the
coefficients on β̂0 and β̂1.
The elements of the matrix product X ′Y are the sums of products be- X ′Y
tween each independent variable in turn and the dependent variable:

X ′Y =



∑
Yi∑
Xi1Yi∑
Xi2Yi

...∑
XipYi


. (3.9)

The first element
∑
Yi is the sum of products between the vector of ones

(the first column of X) and Y . Again, if only one independent variable
is involved, X ′Y consists of only the first two elements. The reader can
verify that these are the right-hand sides of the two normal equations,
equation 1.6.
The unique solution to the normal equations exists only if the inverse of A Unique

SolutionX ′X exists. This, in turn, requires that the matrix X be of full column
rank; that is, there can be no linear dependencies among the independent
variables. The practical implication is that there can be no redundancies
in the information contained in X. For example, the amount of nitrogen
in a diet is sometimes converted to the amount of protein by multiplica-
tion by a constant. Because the same information is reported two ways,
a linear dependency occurs if both are included in X. Suppose the inde-
pendent variables in a genetics problem include three variables reporting
the observed sample frequencies of three possible alleles (for a particular
locus). These three variables, and the 1 vector, create a linear dependency
since the sum of the three variables, the sum of the allelic frequencies, must
be 1.0. Only two of the allelic frequencies need be reported; the third is
redundant since it can be computed from the first two and the column of
ones.
It is always possible to rewrite the model such that the redundancies
among the independent variables are eliminated and the corresponding X
matrix is of full rank. In this chapter, X is assumed to be of full column
rank. The case where X is not of full rank is discussed in Chapter 9.

Matrix operations usingX and Y from the ozone example, Example 1.1, Example 3.2
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give

X ′X =
[
4 .3500

.3500 .0399

]
X ′Y =

(
911
76.99

)
and

(X ′X)−1 =
[
1.07547 −9.43396

−9.43396 107.81671
]
.

The estimates of the regression coefficients are

β̂ = (X ′X)−1X ′Y =
(
253.434

−293.531
)
.

3.3 The Ŷ and Residuals Vectors

The vector of estimated means of the dependent variable Y for the values Ŷ and P
of the independent variables in the data set is computed as

Ŷ = Xβ̂. (3.10)

This is the simplest way to compute Ŷ . It is useful for later results, however,
to express Ŷ as a linear function of Y by substituting [(X ′X)−1X ′Y ] for
β̂. Thus,

Ŷ = [X(X ′X)−1X ′]Y
= PY . (3.11)

Equation 3.11 defines the matrix P , an n × n matrix determined entirely
by the Xs. This matrix plays a particularly important role in regression
analysis. It is a symmetric matrix (P ′ = P ) that is also idempotent (PP =
P ), and is therefore a projection matrix (see Section 2.6). Equation 3.11
shows that Ŷ is a linear function of Y with the coefficients given by P . (For
example, the first row of P contains the coefficients for the linear function
of all Yi that gives Ŷ 1.)

For the Heagle ozone data used in Example 1.1, Example 3.3

P =


1 .02
1 .07
1 .11
1 .15

[
1.0755 −9.4340

−9.4340 107.8167
] [

1 1 1 1
.02 .07 .11 .15

]

=


.741240 .377358 .086253 −.204852
.377358 .283019 .207547 .132075
.086253 .207547 .304582 .401617

−.204852 .132075 .401617 .671159

 .
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Thus, for example,

Ŷ1 = .741Y1 + .377Y2 + .086Y3 − .205Y4.

The residuals vector e reflects the lack of agreement between the observed e
Y and the estimated Ŷ :

e = Y − Ŷ . (3.12)

As with Ŷ , e can be expressed as a linear function of Y by substituting
PY for Ŷ :

e = Y − PY = (I − P )Y . (3.13)

Recall that least squares estimation minimizes the sum of squares of the
residuals; β̂ has been chosen so that e′e is a minimum. Like P , (I −P ) is
symmetric and idempotent.
This has partitioned Y into two parts, that accounted for by the model Ŷ + e

Ŷ and the residual e. That the two parts are additive is evident from the fact
that e was obtained by difference (equation 3.12), or can be demonstrated
as follows.

Ŷ + e = PY + (I − P )Y = (P + I − P )Y = Y . (3.14)

Continuing with Example 3.3, we obtain Example 3.4

Ŷ =Xβ̂ =


1 .02
1 .07
1 .11
1 .15

(
253.434

−293.531
)
=


247.563
232.887
221.146
209.404

 .
The residuals are

e = Y − Ŷ =


−5.563
4.113
9.854

−8.404

 .
The results from the ozone example are summarized in Table 3.1.
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TABLE 3.1. Results for the linear regression of soybean yield on levels of ozone.

Xi Y i Ŷi ei

0.02 242 247.563 −5.563
0.07 237 232.887 4.113
0.11 231 221.146 9.854
0.15 201 209.404 −8.404

3.4 Properties of Linear Functions of Random
Vectors

Note that β̂, Ŷ , and e are random vectors because they are functions of
the random vector Y . In the previous sections, these vectors are expressed
as linear functions AY of Y . The matrix A is

• (X ′X)−1X ′ for β̂,

• P for Ŷ , and

• (I − P ) for e.

Before studying the properties of β̂, Ŷ , and e, it is useful to study the
general properties of linear functions of random vectors.
Let Z = ( z1 · · · zn )

′ be a random vector consisting of random vari- Random
Vectors Zables z1, z2, . . . , zn. The mean µz of the random vector Z is defined as an

n×1 vector with the ith coordinate given by E(zi). The variance–covariance
matrix V z for Z is defined as an n×n symmetric matrix with the diagonal
elements equal to the variances of the random variables (in order) and the
(i, j)th off-diagonal element equal to the covariance between zi and zj . For
example, if Z is a 3× 1 vector of random variables z1, z2, and z3, then the E(Z)
mean vector of Z is the 3× 1 vector

E(Z) =
 E(z1)

E(z2)
E(z3)

 = µz =

µ1
µ2
µ3

 (3.15)

and the variance–covariance matrix is the 3× 3 matrix Var(Z)

Var(Z) =


V ar(z1) Cov(z1, z2) Cov(z1, z3)

Cov(z2, z1) V ar(z2) Cov(z2, z3)

Cov(z3, z1) Cov(z3, z2) V ar(z3)


= V z (3.16)
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=


E [(z1 − µ1)2] E [(z1 − µ1)(z2 − µ2)] E [(z1 − µ1)(z3 − µ3)]

E [(z2 − µ2)(z1 − µ1)] E [(z2 − µ2)2] E [(z2 − µ2)(z3 − µ3)]

E [(z3 − µ3)(z1 − µ1)] E [(z3 − µ3)(z2 − µ2)] E [(z3 − µ3)2]


= E{[Z − E(Z)][Z − E(Z)]′}. (3.17)

Let Z be an n × 1 random vector with mean µz and variance–covariance Linear
Functions
of Z

matrix V z. Let

A =


a′

1
a′

2
...
a′
k


be a k×nmatrix of constants. Consider the linear transformation U = AZ.
That is, U is a k × 1 vector given by U=AZ

U =


a′

1Z
a′

2Z
...

a′
kZ

 =

u1
u2
...
uk

 . (3.18)

Note that

E(ui) = E(a′
iZ)

= E [ai1z1 + ai2z2 + · · ·+ ainzn]
= ai1E(z1) + ai2E(z2) + · · ·+ ainE(zn)
= a′

iµz,

and hence E(U)

E [U ] =


E(u1)
E(u2)
...

E(uk)

 =

a′

1µz
a′

2µz
...

a′
kµz


= Aµz. (3.19)

The k × k variance–covariance matrix for U is given by Var(U)

Var(U) = V u

= E [U − E(U)][U − E(U)]′.
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Substitution of AZ for U and factoring gives

V u = E [AZ −Aµz][AZ −Aµz]
′

= EA[Z − µz][Z − µz]
′A′

= AE [Z − µz][Z − µz]
′A′

= A[Var(Z)]A′

= AV zA
′. (3.20)

The factoring of matrix products must be done carefully; remember that
matrix multiplication is not commutative. Therefore, A is factored both to
the left (from the first quantity in square brackets) and to the right (from
the transpose of the second quantity in square brackets). Remember that
transposing a product reverses the order of multiplication (CD)′ =D′C ′.
Since A is a matrix of constants it can be factored outside the expectation
operator. This leaves an inner matrix which by definition is Var(Z).
Note that, if Var(Z) = σ2I, then

Var(U) = A[σ2I]A′

= AA′σ2. (3.21)

The ith diagonal element of AA′ is the sum of squares of the coefficients
(a′
iai) of the ith linear function ui = a′

iZ. This coefficient multiplied by
σ2 gives the variance of the ith linear function. The (i,j)th off-diagonal
element is the sum of products of the coefficients (a′

iaj) of the ith and jth
linear functions and, when multiplied by σ2, gives the covariance between
two linear functions ui = a′

iZ and uj = a′
jZ.

Note that if A is just a vector a′, then u = a′Z is a linear function of
Z. The variance of u is expressed in terms of Var(Z) as

σ2(u) = a′Var(Z)a. (3.22)

If Var(Z) = Iσ2, then

σ2(u) = a′(Iσ2)a = a′aσ2. (3.23)

Notice that a′a is the sum of squares of the coefficients of the linear function∑
a2i , which is the result given in Section 1.5.
Two examples illustrate the derivation of variances of linear functions
using the preceding important results.

Matrix notation is used to derive the familiar expectation and variance of Example 3.5
a sample mean. Suppose Y1, Y2, . . . , Yn are independent random variables
with mean µ and variance σ2. Then, for Y = (Y1 Y2 · · · Yn )

′,

E(Y ) =


µ
µ
...
µ

 = µ1
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and
Var(Y ) = Iσ2.

The mean of a sample of n observations, Y =
∑
Yi/n, is written in matrix

notation as

Y = ( 1
n

1
n · · · 1

n )Y . (3.24)

Thus, Y is a linear function of Y with the vector of coefficients being

a′ = ( 1
n

1
n · · · 1

n ) .

Then,

E(Y ) = a′E(Y ) = a′1µ = µ (3.25)

and

Var(Y ) = a′[Var(Y )]a = a′(Iσ2)a

= ( 1
n

1
n · · · 1

n ) (Iσ
2)



1
n

1
n

...
1
n


= n

(
1
n

)2

σ2 =
σ2

n
. (3.26)

For the second example, consider two linear contrasts on a set of four Example 3.6
treatment means with n observations in each mean. The random vector in
this case is the vector of the four treatment means. If the means have been
computed from random samples from four populations with means µ1, µ2,
µ3, and µ4 and equal variance σ2, then the variance of each sample mean
will be σ2/n (equation 3.26, and all covariances between the means will be
zero. The mean of the vector of sample means Y = (Y 1 Y 2 Y 3 Y 4 )

′

is µ = (µ1 µ2 µ3 µ4 )
′. The variance–covariance matrix for the vector

of means Y is Var(Y ) = I(σ2/n). Assume that the two linear contrasts of
interest are

c1 = Y 1 − Y 2 and c2 = Y 1 − 2Y 2 + Y 3.

Notice that Y 4 is not involved in these contrasts. The contrasts can be
written as

C = AY , (3.27)
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where

C =
(
c1
c2

)
and A =

[
1 −1 0 0
1 −2 1 0

]
.

Then,

E(C) = AE(Y ) = Aµ =
[

µ1 − µ2
µ1 − 2µ2 + µ3

]
(3.28)

and

Var(C) = A[Var(Y )]A′ = A

[
I

(
σ2

n

)]
A′

= AA′
(
σ2

n

)
=

[
2 3
3 6

]
σ2

n
. (3.29)

Thus, the variance of c1 is 2σ2/n, the variance of c2 is 6σ2/n, and the
covariance between the two contrasts is 3σ2/n.

We now develop the multivariate normal distribution and present some Multivariate
Normal
Distribution

properties of multivariate normal random vectors. We first define a mul-
tivariate random vector when the elements of the vector are mutually in-
dependent. We then extend the results to normal random vectors with a
nonzero mean and a variance–covariance matrix that is not necessarily di-
agnonal. Finally, we present a result for linear functions of normal random
vectors.
Suppose z1, z2, . . . , zn are independent normal random variables with Normal

Random
Vectors

mean zero and variance σ2. Then, the random vector Z = ( z1 · · · zn )
′ is

said to have a multivariate normal distribution with mean 0 = ( 0 · · · 0 )′
and variance–covariance matrix V z = Iσ2. This is denoted as

Z ∼ N(0, Iσ2).

The probability density function of Z is given in equation (3.3) and can
also be expressed as

(2π)−n/2|Iσ2|−1/2 e
−
[
Z ′(Iσ2)−1Z/2

]
. (3.30)

It is a general result that if U is any linear function U = AZ+b, where A
is a k× n matrix of constants and b is a k× 1 vector of constants, then U
is itself normally distributed with mean µu = b and variance–covariance
matrix Var(U) = V u = AA′σ2 (Searle, 1971). The random vector U has
a multivariate normal distribution which is denoted by

U ∼ N(µu,V u). (3.31)



3.5 Properties of Regression Estimates 87

If A is of rank k, then the probability density function of U is given by

(2π)−k/2|V u|−1/2 e
−(1/2)

{
[U−µu]

′V −1
u [U−µu]

}
. (3.32)

The preceding result holds for vectors other than Z also. For example,
if U ∼ N(µu,V u) and if

Y = BU + c, (3.33)

where B is a matrix of constants and c is a vector of constants, then

Y ∼ N(µy,V y), (3.34)

where µy = Bµu + c and V y = BV uB
′. In Examples 3.5 and 3.6, if the

data are assumed to be from a normal population, then Y in equation 3.24
is N(µ, σ2/n) and C in equation 3.27 is

N

([
µ1 − µ2

µ1 − 2µ2 + µ3

]
,

[
2 3
3 6

]
σ2

n

)
.

3.5 Properties of Regression Estimates

The estimated regression coefficients β̂, the fitted values Ŷ , and the resid-
uals e are all linear functions of the original observations Y . Recall that

Y =Xβ + ε.

Since we have assumed that εi are independent random variables with mean
zero and variance σ2, we have

E(ε) = 0
and

V ar(ε) = Iσ2.

Note that The Y Vector

E(Y ) = E [Xβ + ε] = E [Xβ] + E [ε]
= Xβ (3.35)

and

Var(Y ) = Var(Xβ + ε) = Var(ε) = Iσ2. (3.36)

Here, Var(Y ) is the same as Var(ε) since adding a constant like Xβ
to a random variable does not change the variance. When ε is normally
distributed, Y is also multivariate normally distributed. Thus,

Y ∼ N(Xβ, σ2I). (3.37)
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This result is based on the assumption that the linear model used is the
correct model. If important independent variables have been omitted or
if the functional form of the model is not correct, Xβ will not be the
expectation of Y . Assuming that the model is correct, the joint probability
density function of Y is given by

(2π)−n/2|Iσ2|−1/2e−(1/2){(Y −Xβ)′(Iσ2)−1(Y −Xβ)}

= (2π)−n/2σ−ne−(1/2σ2)(Y −Xβ)′(Y −Xβ). (3.38)

Expressing β̂ as β̂ = [(X ′X)−1X ′]Y shows that the estimates of the
regression coefficients are linear funtions of the dependent variable Y , with β̂ Vector
the coefficients being given by A = [(X ′X)−1X ′]. Since the Xs are con-
stants, the matrix A is also constant. If the model Y =Xβ+ ε is correct,
the expectation of Y is Xβ and the expectation of β̂ is

E(β̂) = [(X ′X)−1X ′]E(Y )
= [(X ′X)−1X ′]Xβ

= [(X ′X)−1X ′X]β
= β. (3.39)

This shows that β̂ is an unbiased estimator of β if the chosen model is
correct. If the chosen model is not correct, say E(Y ) = Xβ +Zγ instead
of Xβ, then [(X ′X)−1X ′]E(Y ) does not necessarily simplify to β.
Assuming that the model is correct,

Var(β̂) = [(X ′X)−1X ′][Var(Y )][(X ′X)−1X ′]′

= [(X ′X)−1X ′]Iσ2[(X ′X)−1X ′]′.

Recalling that the transpose of a product is the product of transposes in
reverse order [i.e., (AB)′ = B′A′], that X ′X is symmetric, and that the
inverse of a transpose is the transpose of the inverse, we obtain

Var(β̂) = (X ′X)−1X ′X(X ′X)−1σ2

= (X ′X)−1σ2. (3.40)

Thus, the variances and covariances of the estimated regression coefficients
are given by the elements of (X ′X)−1 multiplied by σ2. The diagonal
elements give the variances in the order in which the regression coefficients
are listed in β and the off-diagonal elements give their covariances. When ε
is normally distributed, β̂ is also multivariate normally distributed. Thus,

β̂ ∼ N(β, (X ′X)−1σ2). (3.41)

In the ozone example, Example 3.3, Example 3.7
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(X ′X)−1 =
[
1.0755 −9.4340

−9.4340 107.8167
]
.

Thus, Var(β̂0) = 1.0755σ2 and Var(β̂1) = 107.8167σ2. The covariance be-
tween β̂0 and β̂1 is Cov(β̂0, β̂1) = −9.4340σ2.

Recall that the vector of estimated means Ŷ is given by

Ŷ = [X(X ′X)−1X ′]Y = PY .

Therefore, using PX =X, the expectation of Ŷ is

E(Ŷ ) = P E(Y ) = PXβ =Xβ. (3.42)

Thus, Ŷ is an unbiased estimator of the mean of Y for the particular values
of X in the data set, again if the model is correct. The fact that PX =X
can be verified using the definition of P :

PX = [X(X ′X)−1X ′]X
= X[(X ′X)−1(X ′X)]
= X. (3.43)

The variance–covariance matrix of Ŷ can be derived using either the rela-
tionship Ŷ =Xβ̂ or Ŷ = PY . Recall that P =X(X ′X)−1X ′. Applying
the rules for variances of linear functions to the first relationship gives

Var(Ŷ ) = X[Var(β̂)]X ′

= X(X ′X)−1X ′σ2

= Pσ2. (3.44)

The derivation using the second relationship gives

Var(Ŷ ) = P [Var(Y )]P ′

= PP ′σ2

= Pσ2, (3.45)

since P is symmetric and idempotent. Therefore, the matrix P multiplied
by σ2 gives the variances and covariances for all Ŷi. P is a large n × n
matrix and at times only a few elements are of interest. The variances of
any subset of the Ŷi can be determined by using only the rows of X, say
Xr, that correspond to the data points of interest and applying the first
derivation. This gives

Var(Ŷ r) =Xr[Var(β̂)]X ′
r =Xr(X ′X)−1X ′

rσ
2. (3.46)
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When ε is normally distributed,

Ŷ ∼ N(Xβ,Pσ2). (3.47)

Recall that the vector of residuals e is given by (I − P )Y . Therefore, e Vector
the expectation of e is

E(e) = (I − P )E(Y ) = (I − P )Xβ

= (X − PX)β = (X −X)β = 0, (3.48)

where 0 is an n×1 vector of zeros. Thus, the residuals are random variables
with mean zero.
The variance–covariance matrix of the residual vector e is

Var(e) = (I − P )σ2 (3.49)

again using the result that (I − P ) is a symmetric idempotent matrix. If
the vector of regression errors ε is normally distributed, then the vector of
regression residuals satisfies

e ∼ N(0, (I − P )σ2). (3.50)

Prediction of a future random observation, Y0 = x′
0β + ε0 at a given Prediction Ŷ 0

vector of independent variables x′
0, is given by Ŷ0 = x′

0β̂. It is easy to see
that

Ŷ0 ∼ N(x′
0β̂,x

′
0(X

′X)−1x0σ
2). (3.51)

This result is used to construct confidence intervals for the mean x′
0β.

If the future ε0 is assumed to be a normal random variable with mean
zero and variance σ2, and is independent of the historic errors of ε, then
the prediction error Y0 − Ŷ0 = x′

0(β − β̂) + ε0 satisfies

Y0 − Ŷ0 ∼ N (
0, [1 + x′

0(X
′X)−1x0]σ2) . (3.52)

This result is used to construct a confidence interval for an individual Y0
that we call a prediction interval for Y0. Recall that the variance of (Y0−Ŷ0)
is denoted by Var(Ŷpred0

).

The matrix P =X(X ′X)−1X ′ was computed for the ozone example in Example 3.8
Example 3.3. Thus, with some rounding of the elements in P ,

Var(Ŷ ) = Pσ2

=


.741 .377 .086 −.205
.377 .283 .208 .132
.086 .208 .305 .402

−.205 .132 .402 .671

σ2.
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The variance of the estimated mean of Y when the ozone level is .02 ppm
is Var(Ŷ1) = .741σ2. For the ozone level of .11 ppm, the variance of the
estimated mean is Var(Ŷ3) = .305σ2. The covariance between the two esti-
mated means is Cov(Ŷ1, Ŷ3) = .086σ2.
The variance–covariance matrix of the residuals is obtained by Var(e) =
(I − P )σ2. Thus,

Var(e1) = (1− .741)σ2 = .259σ2

Var(e3) = (1− .305)σ2 = .695σ2

Cov(e1, e3) = −Cov(Ŷ1, Ŷ3) = −.086σ2.

It is important to note that the variances of the least squares residuals are
not equal to σ2 and the covariances are not zero. The assumption of equal
variances and zero covariances applies to the εi, not the ei.

The variance of any particular Ŷi and the variance of the corresponding Var(Ŷi)
≤ Var(Yi)ei will always add to σ2 because

Var(Y ) = Var(Ŷ + ε̂)

= Var(Ŷ ) +Var(ε̂) +Cov(Ŷ , ε̂) +Cov(ε̂, Ŷ )
= Pσ2 + (I − P )σ2 + P (I − P )σ2 + (I − P )Pσ2

= Pσ2 + (I − P )σ2

= Iσ2. (3.53)

Since variances cannot be negative, each diagonal element of P must be
between zero and one: 0 < vii < 1.0, where vii is the ith diagonal element
of P . Thus, the variance of any Ŷi is always less than σ2, the variance
of the individual observations. This shows the advantage of fitting a con-
tinuous response model, assuming the model is correct, over simply using
the individual observed data points as estimates of the mean of Y for the
given values of the Xs. The greater precision from fitting a response model
comes from the fact that each Ŷi uses information from the surrounding
data points. The gain in precision can be quite striking. In Example 3.8, the
precision obtained on the estimates of the means for the two intermediate
levels of ozone using the linear response equation were .283σ2 and .305σ2.
To attain the same degree of precision without using the response model
would have required more than three observations at each level of ozone.
Equation 3.53 implies that data points having low variance on Ŷi will Role by Xs
have high variance on ei and vice versa. Belsley, Kuh, and Welsch (1980)
show that the diagonal elements of P , vii can be interpreted as measures
of distance of the corresponding data points from the center of the X-space
(from X in the case of one independent variable). Points that are far from
the center of the X-space have relatively large vii and, therefore, relatively
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high variance on Ŷi and low variance on ei. The smaller variance of the
residuals for the points far from the “center of the data” indicates that
the fitted regression line or response surface tends to come closer to the
observed values for these points. This aspect of P is used later to detect
the more influential data points.
The variances (and covariances) have been expressed as multiples of σ2. Controlling

PrecisionThe coefficients are determined entirely by the X matrix, a matrix of con-
stants that depends on the model being fit and the levels of the independent
variables in the study. In designed experiments, the levels of the indepen-
dent variables are subject to the control of the researcher. Thus, except for
the magnitude of σ2, the precision of the experiment is under the control
of the researcher and can be known before the experiment is run. The effi-
ciencies of alternative experimental designs can be compared by computing
(X ′X)−1 and P for each design. The design giving the smallest variances
for the quantities of interest would be preferred.

3.6 Summary of Matrix Formulae

Model: Y =Xβ + ε

Normal equations: (X ′X)β=X ′Y

Parameter estimates: β̂=(X ′X)−1X ′Y

Fitted values: Ŷ =Xβ̂

=PY , where P =X(X ′X)−1X ′

Residuals: e=Y − Ŷ

=(I − P )Y

Variance of β̂ : Var(β̂)= (X ′X)−1σ2

Variance of Ŷ : Var(Ŷ )=Pσ2

Variance of e : Var(e)= (I − P )σ2
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3.7 Exercises

3.1. The linear model in ordinary least squares is Y = Xβ + E . Assume
there are 30 observations and five independent variables (containing
no linear dependencies). Give the order and rank of:

(a) Y .

(b) X (without an intercept in the model).

(c) X (with an intercept in the model).

(d) β (without an intercept in the model).

(e) β (with an intercept in the model).

(f) ε.

(g) (X ′X) (with an intercept in the model).

(h) P (with an intercept in the model).

3.2. For each of the following matrices, indicate whether there will be a
unique solution to the normal equations. Show how you arrived at
your answer.

X1 =


1 2 4
1 3 8
1 0 6
1 −1 2

 X2 =


1 1 0
1 1 0
1 0 0
1 0 1

 X3 =


1 2 4
1 1 2
1 −3 −6
1 −1 −2

 .

3.3. You have a data set with four independent variables and n = 42
observations. If the model is to include an intercept, what would be
the order of X ′X? Of (X ′X)−1? Of X ′Y ? Of P ?

3.4. A data set with one independent variable and an intercept gave the
following (X ′X)−1,

(X ′X)−1 =

 31
177

−3
177

−3
177

6
177

 .
How many observations were there in the data set? Find

∑
X2
i . Find

the corrected sum of squares for the independent variable.

3.5. The data in the accompanying table relate grams plant dry weight
Y to percent soil organic matter X1, and kilograms of supplemental
soil nitrogen added per 1,000 square meters X2:
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Y X1 X2

78.5 7 2.6
74.3 1 2.9
104.3 11 5.6
87.6 11 3.1
95.9 7 5.2
109.2 11 5.5
102.7 3 7.1

Sums: 652.5 51 32.0
Means: 93.21 7.29 4.57

(a) Define Y ,X,β, and ε for a model involving both independent
variables and an intercept.

(b) Compute X ′X and X ′Y .

(c) (X ′X)−1 for this problem is

(X ′X)−1 =

 1.7995972 −.0685472 −.2531648
−.0685472 .0100774 −.0010661
−.2531648 −.0010661 .0570789

 .
Verify that this is the inverse ofX ′X. Compute β̂ and write the
regression equation. Interpret each estimated regression coeffi-
cient. What are the units of measure attached to each regression
coefficient?

(d) Compute Ŷ and e.

(e) The P matrix in this case is a 7× 7 matrix. Illustrate the com-
putation of P by computing v11, the first diagonal element, and
v12, the second element in the first row. Use the preceding results
and these two elements of P to give the appropriate coefficient
on σ2 for each of the following variances.

(i) Var(β̂1)
(ii) Var(Ŷ1)
(iii) Var(Ŷpred1)
(iv) Var(e1).

3.6. Use the data in Exercise 3.5. Center each independent variable by
subtracting the column mean from each observation in the column.
Compute X ′X,X ′Y , and β̂ using the centered data. Were the com-
putations simplified by using centered data? Show that the regression
equation obtained using centered data is equivalent to that obtained
with the original uncentered data. Compute P using the centered
data and compare it to that obtained using the uncentered data.
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3.7. The matrix P for the Heagle ozone data is given in Example 3.3. Ver-
ify that P is symmetric and idempotent. What is the linear function
of Yi that gives Ŷ3?

3.8. Compute (I − P ) for the Heagle ozone data. Verify that (I − P ) is
idempotent and that P and (I − P ) are orthogonal to each other.
What does the orthogonality imply about the vectors Ŷ and e?

3.9. This exercise uses the Lesser–Unsworth data in Exercise 1.19, in
which seed weight is related to cumulative solar radiation for two
levels of exposure to ozone. Assume that “low ozone” is an exposure
of .025 ppm and that “high ozone” is an exposure of .07 ppm.

(a) Set up X and β for the regression of seed weight on cumulative
solar radiation and ozone level. Center the independent variables
and include an intercept in the model. Estimate the regression
equation and interpret the result.

(b) Extend the model to include an independent variable that is the
product term between centered cumulative solar radiation and
centered ozone level. Estimate the regression equation for this
model and interpret the result. What does the presence of the
product term contribute to the regression equation?

3.10. This exercise uses the data from Exercise 1.21 (number of hospital
days for smokers, number of cigarettes smoked, and number of hospi-
tal days for control groups of nonsmokers). Exercise 1.21 used the in-
formation from the nonsmoker control groups by defining the depen-
dent variable as Y = ln(number of hospital days for smokers/number
of hospital days for nonsmokers). Another method of taking into ac-
count the experience of the nonsmokers is to use X2 = ln(number of
hospital days for nonsmokers) as an independent variable.

(a) Set up X and β for the regression of Y = ln(number of hospi-
tal days for smokers) on X1 = (number cigarettes)2 and X2 =
ln(number of hospital days for nonsmokers).

(b) Estimate the regression equation and interpret the results. What
value of β2 would correspond to using the nonsmoker experience
as was done in Exercise 1.21?

3.11. The data in the table relate the annual catch of Gulf Menhaden,
Brevoortia patronus, to fishing pressure for 1964 to 1979 (Nelson and



96 3. MULTIPLE REGRESSION IN MATRIX NOTATION

Ahrenholz, 1986).

Catch Number Pressure
Year Met. Ton ×10−3 Vessels Vessel-Ton-Weeks ×10−3

1964 409.4 76 282.9
1965 463.1 82 335.6
1966 359.1 80 381.3
1967 317.3 76 404.7
1968 373.5 69 382.3
1969 523.7 72 411.0
1970 548.1 73 400.0
1971 728.2 82 472.9
1972 501.7 75 447.5
1973 486.1 65 426.2
1974 578.6 71 485.5
1975 542.6 78 536.9
1976 561.2 81 575.9
1977 447.1 80 532.7
1978 820.0 80 574.3
1979 777.9 77 533.9

Run a linear regression of catch (Y ) on fishing pressure (X1) and
number of vessels (X2). Include an intercept in the model. Interpret
the regression equation.

3.12. A simulation model for peak water flow from watersheds was tested by
comparing measured peak flow (cfs) from 10 storms with predictions
of peak flow obtained from the simulation model. Qo and Qp are the
observed and predicted peak flows, respectively. Four independent
variables were recorded:

X1 = area of watershed (mi2),

X2 = average slope of watershed (in percent),

X3 = surface absorbency index (0 = complete absorbency, 100
= no absorbency), and

X4 = peak intensity of rainfall (in/hr) computed on half-hour
time intervals.
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Q0 Qp X1 X2 X3 X4

28 32 .03 3.0 70 .6
112 142 .03 3.0 80 1.8
398 502 .13 6.5 65 2.0
772 790 1.00 15.0 60 .4
2, 294 3, 075 1.00 15.0 65 2.3
2, 484 3, 230 3.00 7.0 67 1.0
2, 586 3, 535 5.00 6.0 62 .9
3, 024 4, 265 7.00 6.5 56 1.1
4, 179 6, 529 7.00 6.5 56 1.4
710 935 7.00 6.5 56 .7

(a) Use Y = ln(Qo/Qp) as the dependent variable. The dependent
variable will have the value zero if the observed and predicted
peak flows agree. Set up the regression problem to determine
whether the discrepancy Y is related to any of the four inde-
pendent variables. Use an intercept in the model. Estimate the
regression equation.

(b) Further consideration of the problem suggested that the discrep-
ancy between observed and predicted peak flow Y might go to
zero as the values of the four independent variables approach
zero. Redefine the regression problem to eliminate the intercept
(force β0 = 0), and estimate the regression equation.

(c) Rerun the regression (without the intercept) using only X1 and
X4; that is, omit X2 and X3 from the model. Do the regression
coefficients for X1 and X4 change? Explain why they do or do
not change.

(d) Describe the change in the standard errors of the estimated re-
gression coefficients as the intercept was dropped [Part (a) versus
Part (b)] and as X2 and X3 were dropped from the model [Part
(b) versus Part (c)].

3.13. You have fit a linear model using Y = Xβ + ε where X involves r
independent variables. Now assume that the true model involves an
additional s independent variables contained in Z. That is, the true
model is

Y =Xβ +Zγ + ε,

where γ is the vector of regression coefficients for the independent
variables contained in Z.

(a) Find E(β̂) and show that, in general, β̂ = (X ′X)−1X ′Y is a
biased estimate of β.
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(b) Under what conditions would β̂ be unbiased?

3.14. The accompanying table shows the part of the data reported by
Cameron and Pauling (1978) related to the effects of supplemental
ascorbate, vitamin C, in the treatment of colon cancer. The data are
taken from Andrews and Herzberg (1985) and are used with permis-
sion.

Sex Age Days a Control b

F 76 135 18
F 58 50 30
M 49 189 65
M 69 1, 267 17
F 70 155 57
F 68 534 16
M 50 502 25
F 74 126 21
M 66 90 17
F 76 365 42
F 56 911 40
M 65 743 14
F 74 366 28
M 58 156 31
F 60 99 28
M 77 20 33
M 38 274 80

aDays = number of days survival after date of untreatability.
bControl = average number of days survival of 10 control patients.

Use Y = ln(days) as the dependent variable and X1 = sex (coded −1
for males and +1 for females), X2 = age, and X3 = ln(control) in a
multiple regression to determine if there is any relationship between
days survival and sex and age. Define X and β, and estimate the
regression equation. Explain why X3 is in the model if the purpose
is to relate survival to X1 and X2.

3.15. Suppose U ∼ N(µu,V u). Let

U =
(
u1
u2

)
, µu =

(
µ1
µ2

)
, and V u =

[
V 11 V 12
V 21 V 22

]
.

Use equation 3.32 to show that u1 and u2 are independent if V 12 = 0.
That is, if u is multivariate normal, then u1 and u2 uncorrelated
implies u1 and u2 are independent. (The joint density of u1 and u2
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is the product of the marginal densities of u1 and u2, if and only if
u1 and u2 are independent.)

3.16. Consider the model Y =Xβ + ε, where ε ∼ N(0, σ2I). Let

U =
[
β̂
e

]
=

[
(X ′X)−1X ′

(I − P )

]
Y .

Find the distribution ofU . Show that β̂ and e are independent. (Hint:
Use the result in equation 3.31 and Exercise 3.15.)



4
ANALYSIS OF VARIANCE AND
QUADRATIC FORMS

The previous chapter developed the regression results
involving linear functions of the dependent variable, β̂,
Ŷ , and e. All were shown to be normally distributed
random variables if Y was normally distributed.

This chapter develops the distributional results for all
quadratic functions of Y . The distribution of quadratic
forms is used to develop tests of hypotheses, confidence
interval estimates, and joint confidence regions for β.

The estimates of the regression coefficients, the estimated means, and
the residuals have been presented in matrix notation; all were shown to
be linear functions of the original observations Y . In this chapter it is
shown that the model, regression and residual sums of squares, and the
sums of squares used for testing a linear contrast or a collection of linear
hypotheses are all quadratic forms of Y. This means that each sum of
squares can be written as Y ′AY , where A is a matrix of coefficients called
the defining matrix. Y ′AY is referred to as a quadratic form in Y .
The aim of model fitting is to explain as much of the variation in the
dependent variable as possible from information contained in the indepen-
dent variables. The contributions of the independent variables to the model
are measured by partitions of the total sum of squares of Y attributable
to, or “explained” by, the independent variables. Each of these partitions
of the sums of squares is a quadratic form in Y . The degrees of freedom
associated with a particular sum of squares and the orthogonality between
different sums of squares are determined by the defining matrices in the
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quadratic forms. The matrix form for a sum of squares makes the compu-
tations simple if one has access to a computer package for matrix algebra.
Also, the expectations and variances of the sums of squares are easily de-
termined in this form. We give a brief introduction to quadratic forms and
their properties. We also discuss how the properties of quadratic forms are
useful for testing linear hypotheses and for the analysis of variance of the
dependent variable Y .

4.1 Introduction to Quadratic Forms

Consider first a sum of squares with which you are familiar from your Quadratic
Form for One
Contrast

earlier statistical methods courses, the sum of squares attributable to a
linear contrast. Suppose you are interested in the linear contrast

C∗
1 = Y1 + Y2 − 2Y3. (4.1)

The sum of squares due to this contrast is

SS(C∗
1 ) =

(C∗
1 )

2

6
. (4.2)

The divisor of 6 is the sum of squares of the coefficients of the contrast. This
divisor has been chosen to make the coefficient of σ2 in the expectation of
the sum of squares equal to 1. If we reexpress C∗

1 so that the coefficients on
the Yi include 1/

√
6, the sum of squares due to the contrast is the square

of the contrast. Thus, C1 = C∗
1/

√
6 can be written in matrix notation as

C1 = a′Y =
1√
6
Y1 +

1√
6
Y2 − 2√

6
Y3 (4.3)

by defining a = ( 1/
√
6 1/

√
6 −2/√6 )′ and Y = (Y1 Y2 Y3 )

′. The
sum of squares for C1 is then

SS(C1) = C2
1 = (a

′Y )′(a′Y )
= Y ′(aa′)Y
= Y ′AY . (4.4)

Thus, SS(C1) has been written as a quadratic form in Y where A, the Defining
Matrixdefining matrix, is the 3× 3 matrix A = aa′. The multiplication aa′ for

this contrast gives

A = aa′ =


1√
6

1√
6

− 2√
6


( 1√

6
1√
6

− 2√
6

)
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=


1
6

1
6 − 2

6

1
6

1
6 − 2

6

− 2
6 − 2

6
4
6

 . (4.5)

Completing the multiplication of the quadratic form gives

Y ′AY =
(
Y1 Y2 Y3

)


1
6

1
6 − 2

6

1
6

1
6 − 2

6

− 2
6 − 2

6
4
6


Y1
Y2
Y3



=
1
6
[Y1(Y1 + Y2 − 2Y3) + Y2(Y1 + Y2 − 2Y3)

+ Y3(−2Y1 − 2Y2 + 4Y3)]

=
1
6
Y 2

1 +
1
6
Y 2

2 +
4
6
Y 2

3 +
2
6
Y1Y2 − 46Y1Y3 − 46Y2Y3. (4.6)

This result is verified by expanding the square of C∗
1 , equation 4.1, in terms

of Yi and dividing by 6.
Comparison of the elements ofA, equation 4.5, with the expansion, equa-
tion 4.6, shows that the diagonal elements of the defining matrix are the co-
efficients on the squared terms and the sums of the symmetric off-diagonal
elements are the coefficients on the product terms. The defining matrix for
a quadratic form is always written in this symmetric form.
Consider a second linear contrast on Y that is orthogonal to C1. Let

C2 = (Y1 − Y2)/
√
2 = d′Y where d = ( 1/

√
2 −1/√2 0 )′. The sum of

squares for this contrast is

SS(C2) = Y ′DY , (4.7)

where the defining matrix is

D = dd′ =


1
2 − 1

2 0

− 1
2

1
2 0

0 0 0

 . (4.8)

Each of these sums of squares has 1 degree of freedom since a single linear Degrees of
Freedomcontrast is involved in each case. The degrees of freedom for a quadratic

form are equal to the rank of the defining matrix which, in turn, is equal
to the trace of the defining matrix if the defining matrix is idempotent.
(The defining matrix for a quadratic form does not have to be idempotent.
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However, the quadratic forms with which we are concerned have idempotent
defining matrices.) The defining matrices A and D in the two examples
are idempotent. It is left to the reader to verify that AA = A and DD =
D (see Exercise 2.25). A and D would not have been idempotent if, for
example, the 1/

√
6 and 1/

√
2 had not been incorporated into the coefficient

vectors. Notice that tr(A) = tr(D) = 1, the degrees of freedom for each
contrast.
The quadratic forms defined by A and D treated each linear function Quadratic

Form—Joint
Functions

separately. That is, each quadratic form was a sum of squares with 1 degree
of freedom. The two linear functions can be considered jointly by defining
the coefficient matrix K ′ to be a 2 × 3 matrix containing the coefficients
for both contrasts:

K ′Y =

 1√
6

1√
6

− 2√
6

1√
2

− 1√
2

0


Y1
Y2
Y3

 . (4.9)

The defining matrix for quadratic form Y ′KK ′Y is

F = KK ′ =


2
3 − 1

3 − 1
3

− 1
3

2
3 − 1

3

− 1
3 − 1

3
2
3

 . (4.10)

In this example, the defining matrix F is idempotent and its trace indicates
that there are 2 degrees of freedom for this sum of squares. (The quadratic
form defined in this way is idempotent only because the two original con-
trasts were orthogonal to each other, a′d = 0. The general method of defin-
ing quadratic forms, sums of squares, for specific hypotheses is discussed
in Section 4.5.1.)
Two quadratic forms (of the same vector Y ) are orthogonal if the product Orthogonal

Quadratic
Forms

of the defining matrices is 0. Orthogonality of the two quadratic forms in
the example is verified by the multiplication of A and D:

DA =


1
2 − 1

2 0

− 1
2

1
2 0

0 0 0




1
6

1
6 − 2

6

1
6

1
6 − 2

6

− 2
6 − 2

6
4
6

=
 0 0 00 0 0
0 0 0

 , (4.11)

which equals AD since A, D, and DA are all symmetric. Note that
DA = dd′aa′ and will be zero if d′a = 0. Thus, the quadratic forms
associated with two linear functions will be orthogonal if the two vectors of
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coefficients are orthogonal—that is, if the sum of products of the coefficient
vectors d′a is zero (see Exercise 2.26). When the two linear functions are
orthogonal, the sum of sums of squares (and degrees of freedom) of the
two contrasts considered individually will equal the sum of squares (and
degrees of freedom) of the two contrasts considered jointly. For this addi-
tivity to hold when more than two linear functions are considered, all must
be pairwise orthogonal. Orthogonality of quadratic forms implies that the
two pieces of information contained in the individual sums of squares are
independent.
The quadratic forms of primary interest in this text are the sums of
squares associated with analyses of variance, regression analyses, and tests
of hypotheses. All have idempotent defining matrices.

The following facts about quadratic forms are important [see
Searle (1971) for more complete discussions on quadratic forms].

1. Any sum of squares can be written as Y ′AY , where A is
a square symmetric nonnegative definite matrix.

2. The degrees of freedom associated with any quadratic form
equal the rank of the defining matrix, which equals its trace
when the matrix is idempotent.

3. Two quadratic forms are orthogonal if the product of their
defining matrices is the null matrix 0.

For illustration of quadratic forms, let Example 4.1

Y = ( 3.55 3.49 3.67 2.76 1.195 )′

be the vector of mean disease scores for a fungus disease on alfalfa. The five
treatments were five equally spaced day/night temperature regimes under
which the plants were growing at the time of inoculation with the fungus.
The total uncorrected sum of squares is

Y ′Y = 3.552 + 3.492 + · · ·+ 1.1952 = 47.2971.
The defining matrix for this quadratic form is the identity matrix of order
5. Since I is an idempotent matrix and tr(I)= 5, this sum of squares has
5 degrees of freedom.
The linear function of Y that gives the total disease score over all treat-
ments is given by

∑
Yi = a′

1Y , where

a′
1 = ( 1 1 1 1 1 )

′
.

The sum of squares due to correction for the mean, the correction factor,
is (

∑
Yi)2/5 = 43.0124. This is written as a quadratic form as

Y ′(J/5)Y ,
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where J = a1a
′
1 is a 5 × 5 matrix of ones. The defining matrix J/5 is an

idempotent matrix with tr(J/5) = 1. Therefore, the sum of squares due to
correction for the mean has 1 degree of freedom.
Based on orthogonal polynomial coefficients for five equally spaced treat-
ments, the linear contrast for temperature effects is given by

C∗
2 = a∗′

2 Y = (−2 −1 0 1 2 )Y .

Incorporating the divisor
√
a∗′

2 a
∗
2 =

√
10 into the vector of coefficients

gives

a2 =
(− 2√

10
− 1√

10
0 1√

10
2√
10

)′
.

The sum of squares due to the linear regression on temperature is given by
the quadratic form

Y ′A2Y = 2.9594,

where

A2 = a2a
′
2 =


.4 .2 0 −.2 −.4
.2 .1 0 −.1 −.2
0 0 0 0 0

−.2 −.1 0 .1 .2
−.4 −.2 0 .2 .4

 .
The defining matrix A2 is idempotent with tr(A2) = 1 and, therefore, the
sum of squares has 1 degree of freedom.
The orthogonal polynomial coefficients for the quadratic term, including
division by the square root of the sum of squares of the coefficients, is

a3 =
1√
14
( 2 −1 −2 −1 2 )′ .

The sum of squares due to quadratic regression is given by the quadratic
form

Y ′A3Y = 1.2007,

where

A3 = a3a
′
3 =


.2857 −.1429 −.2857 −.1429 .2857

−.1429 .0714 .1429 .0714 −.1429
−.2857 .1429 .2857 .1429 −.2857
−.1429 .0714 .1429 .0714 −.1429
.2857 −.1429 −.2857 −.1429 .2857

 .
The defining matrix A3 is idempotent and tr(A3) = 1 so that this sum of
squares also has 1 degree of freedom.
It is left to the reader to verify that each of the defining matrices J/5,

A2, and A3 is idempotent and that they are pairwise orthogonal to each
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other. Since they are orthogonal to each other, these three sums of squares
represent independent pieces of information. However, they are not orthog-
onal to the uncorrected total sum of squares; the defining matrix I is not
orthogonal to J/5, A2, or A3. In fact, as is known from your previous
experience, the sums of squares defined by J/5, A2, and A3 are part of
the total uncorrected sum of squares.
We could continue the partitioning of the uncorrected total sum of squares
by defining two other mutually orthogonal idempotent matrices, say A4
and A5, that have rank one; are pairwise orthogonal to J/5, A2, and A3;
and for which the sum of all five matrices is I. The sums of squares de-
fined by these five matrices would form a complete single degree of freedom
partitioning of the total uncorrected sum of squares Y ′Y .

4.2 Analysis of Variance

The vector of observations on the dependent variable Y was partitioned
in Chapter 3 into the vector of estimated means of Y , Ŷ and the residuals
vector e. That is,

Y = Ŷ + e. (4.12)

This partitioning of Y is used to provide a similar partitioning of the total
sum of squares of the dependent variable.
It has been previously noted that the product Partitioning

of Y ′Y
Y ′Y =

∑
Y 2
i (4.13)

gives the total sum of squares SS(Total) of the elements in the column
vector Y . This is a quadratic form where the defining matrix is the identity
matrix Y ′Y = Y ′IY . The matrix I is an idempotent matrix and its trace
is equal to its order, indicating that the total (uncorrected) sum of squares
has degrees of freedom equal to the number of elements in the vector. The
identity matrix is the only full rank idempotent matrix.
Since Y = Ŷ + e,

Y ′Y = (Ŷ + e)′(Ŷ + e) = Ŷ
′
Ŷ + Ŷ

′
e+ e′Ŷ + e′e.

Substituting Ŷ = PY and e = (I − P )Y gives

Y ′Y = (PY )′(PY ) + (PY )′[(I − P )Y ] + [(I − P )Y ]′(PY )
+ [(I − P )Y ]′[(I − P )Y ]

= Y ′P ′PY + Y ′P ′(I − P )Y + Y ′(I − P )′PY
+ Y ′(I − P )′(I − P )Y . (4.14)
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Both P and (I −P ) are symmetric and idempotent so that P ′P = P and
(I − P )′(I − P ) = (I − P ). The two middle terms in equation 4.14 are
zero since the two quadratic forms are orthogonal to each other:

P ′(I − P ) = P − P = 0.

Thus,

Y ′Y = Y ′PY + Y ′(I − P )Y = Ŷ
′
Ŷ + e′e. (4.15)

The total uncorrected sum of squares has been partitioned into two
quadratic forms with defining matrices P and (I − P ), respectively. Ŷ

′
Ŷ

is that part of Y ′Y that can be attributed to the model being fit and is
labeled SS(Model). The second term e′e is that part of Y ′Y not explained
by the model. It is the residual sum of squares after fitting the model and
is labeled SS(Res).
The orthogonality of the quadratic forms ensures that SS(Model) and Degrees of

FreedomSS(Res) are additive partitions. The degrees of freedom associated with
each will depend on the rank of the defining matrices. The rank of P =
[X(X ′X)−1X ′] is determined by the rank of X. For full-rank models, the
rank ofX is equal to the number of columns inX, which is also the number
of parameters in β. Thus, the degrees of freedom for SS(Model) is p′ when
the model is of full rank.
The r(P ) is also given by tr(P ) since P is idempotent. A result from
matrix algebra states that tr(AB) = tr(BA). (See Exercise 2.24.) Note the
rotation of the matrices in the product. Using this property, with A = X
and B = (X ′X)−1X ′ we have

tr(P ) = tr[X(X ′X)−1X ′] = tr[(X ′X)−1X ′X]
= tr(Ip′) = p′. (4.16)

The subscript on I indicates the order of the identity matrix. The degrees
of freedom of SS(Res), n − p′, are obtained by noting the additivity of
the two partitions or by observing that the tr(I − P ) = tr(In)− tr(P ) =
(n−p′). The order of this identity matrix is n. For each sum of squares, the
corresponding mean square is obtained by dividing the sum of squares
by its degrees of freedom.
The expressions for the quadratic forms, equation 4.15, are the defini- Computational

Formstional forms; they show the nature of the sums of squares being computed.
There are, however, more convenient computational forms. The computa-
tional form for SS(Model) = Ŷ

′
Ŷ is

SS(Model) = β̂
′
X ′Y , (4.17)

and is obtained by substitutingXβ̂ for the the first Ŷ andX(X ′X)−1X ′Y
for the second. Thus, the sum of squares due to the model can be computed
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TABLE 4.1. Analysis of variance summary for regression analysis.

Sum of Squares
Source of Degrees of Definitional Computational
Variation Freedom Formula Formula

Total(uncorr) r(I) = n Y ′Y

Due to model r(P ) = p′ Ŷ
′
Ŷ = Y ′PY β̂

′
X ′Y

Residual r(I − P ) = (n− p′) e′e = Y ′(I − P )Y Y ′Y − β̂
′
X ′Y

without computing the vector of fitted values or the n×n matrix P . The β̂
vector is much smaller than Ŷ , andX ′Y will have already been computed.
Since the two partitions are additive, the simplest computational form for
SS(Res)= e′e is by subtraction:

SS(Res) = Y ′Y − SS(Model). (4.18)

The definitional and computational forms for this partitioning of the total
sum of squares are summarized in Table 4.1.

(Continuation of Example 3.8) The partitioning of the sums of squares is
illustrated using the Heagle ozone example (Table 3.1, page 82). The total Example 4.2
uncorrected sum of squares with four degrees of freedom is

Y ′Y = ( 242 237 231 201 )


242
237
231
201


= 2422 + 2372 + 2312 + 2012 = 208, 495.

The sum of squares attributable to the model, SS(Model), can be obtained
from the definitional formula, using Ŷ from Table 3.1, as

Ŷ
′
Ŷ = ( 247.563 232.887 221.146 209.404 )


247.563
232.887
221.146
209.404


= 247.5632 + 232.8872 + 221.1462 + 209.4042

= 208, 279.39.

The more convenient computational formula gives

β̂
′
X ′Y = ( 253.434 −293.531 )

(
911
76.99

)
= 208, 279.39.
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(See the text following equation 3.12 for β̂ and X ′Y .)
The definitional formula for the residual sum of squares (see Table 3.1
for e) gives

e′e = (−5.563 4.113 9.854 −8.404 )


−5.563
4.113
9.854

−8.404


= 215.61.

The simpler computational formula gives

SS(Res) = Y ′Y − SS(Model) = 208, 495− 208, 279.39
= 215.61.

The total uncorrected sum of squares has been partitioned into that Meaning of
SS(Regr)due to the entire model and a residual sum of squares. Usually, however,

one is interested in explaining the variation of Y about its mean, rather
than about zero, and in how much the information from the independent
variables contributes to this explanation. If no information is available from
independent variables, the best predictor of Y is the best available estimate
of the population mean. When independent variables are available, the
question of interest is how much information the independent variables
contribute to the prediction of Y beyond that provided by the overall mean
of Y .
The measure of the additional information provided by the indepen-
dent variables is the difference between SS(Model) when the independent
variables are included and SS(Model) when no independent variables are
included. The model with no independent variables contains only one pa-
rameter, the overall mean µ. When µ is the only parameter in the model,
SS(Model) is labeled SS(µ). [SS(µ) is commonly called the correction
factor.] The additional sum of squares accounted for by the independent
variable(s) is called the regression sum of squares and labeled SS(Regr).
Thus,

SS(Regr) = SS(Model)− SS(µ), (4.19)

where SS(Model) is understood to be the sum of squares due to the model
containing the independent variables.
The sum of squares due to µ alone, SS(µ), is determined using matrix SS(µ)
notation in order to show the development of the defining matrices for the
quadratic forms. The model when µ is the only parameter is still written
in the form Y =Xβ + ε, but now X is only a column vector of ones and
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β = µ, a single element. The column vector of ones is labeled 1. Then,

β̂ = (1′1)−11′Y =
(
1
n

)
1′Y = Y (4.20)

and

SS(µ) = β̂
′
(1′Y ) =

(
1
n

)
(1′Y )′(1′Y )

= Y ′(
1
n
11′)Y . (4.21)

Notice that 1′Y =
∑
Yi so that SS(µ) is (

∑
Yi)2/n, the familiar result for

the sum of squares due to correcting for the mean. Multiplication of 11′

gives an n× n matrix of ones. Convention labels this the J matrix. Thus,
the defining matrix for the quadratic form giving the correction factor is

1
n
(11′) =

1
n


1 1 1 · · · 1
1 1 1 · · · 1
1 1 1 · · · 1
...
...
...

...
1 1 1 · · · 1

 = 1nJ . (4.22)

The matrix (J/n) is idempotent with rank equal to tr(J/n) = 1 and,
hence, the correction factor has 1 degree of freedom.
The additional sum of squares attributable to the independent variable(s) Quadratic

form for
SS(Regr)

in a model is then

SS(Regr) = SS(Model)− SS(µ)
= Y ′PY − Y ′(J/n)Y
= Y ′(P − J/n)Y . (4.23)

Thus, the defining matrix for SS(Regr) is (P − J/n). The defining matrix
J/n is orthogonal to (P −J/n) and (I−P ) (see exercise 4.15) so that the
total sum of squares is now partitioned into three orthogonal components:

Y ′Y = Y ′(J/n)Y + Y ′(P − J/n)Y + Y ′(I − P )Y
= SS(µ) + SS(Regr) + SS(Res) (4.24)

with 1, (p′ − 1) = p, and (n − p′) degrees of freedom, respectively. Usu-
ally SS(µ) is subtracted from Y ′Y and only the corrected sum of squares
partitioned into SS(Regr) and SS(Res) reported.

For the Heagle ozone example, Example 4.2, Example 4.3

SS(µ) =
(911)2

4
= 207, 480.25
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TABLE 4.2. Summary analysis of variance for the regression of soybean yield on
ozone exposure (Data courtesy A. S. Heagle, N. C. State University).

Source of Mean
Variation d.f. Sum of Squares Squares

Totaluncorr 4 Y ′Y = 208, 495.00
Mean 1 nY

2
= 207, 480.25

Totalcorr 3 Y ′Y − nY 2
= 1, 014.75

Regression 1 β̂
′
X ′Y − nY 2

= 799.14 799.14
Residuals 2 Y ′Y − β̂

′
X ′Y = 215.61 107.81

so that
SS(Regr) = 208, 279.39− 207, 480.25 = 799.14.

The analysis of variance for this example is summarized in Table 4.2.

The key points to remember are summarized in the following.

• The rank ofX is equal to the number of linearly independent columns
in X.

• The model is a full rank model if the rank of X equals the number
of columns of X, (n > p′).

• The unique ordinary least squares solution exists only if the model is
of full rank.

• The defining matrices for the quadratic forms in regression are all
idempotent. Examples are I, P , (I − P ), and J/n.

• The defining matrices J/n, (P − J/n), and (I − P ) are pairwise
orthogonal to each other and sum to I. Consequently, they partition
the total uncorrected sum of squares into orthogonal sums of squares.

• The degrees of freedom for a quadratic form are determined by the
rank of the defining matrix which, when it is idempotent, equals its
trace. For a full rank model,

r(I) = n, the only full rank idempotent matrix
r(P ) = p′

r(J/n) = 1
r(P − J/n) = p

r(I − P ) = n− p′.
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4.3 Expectations of Quadratic Forms

Each of the quadratic forms computed in the analysis of variance of Y is
estimating some function of the parameters of the model. The expectations
of these quadratic forms must be known if proper use is to be made of the
sums of squares and their mean squares. The following results are stated
without proofs. The reader is referred to Searle (1971) for more complete
development.
Let E(Y ) = µ, a general vector of expectations, and let Var(Y ) = V y = General

ResultsV σ2, a general variance–covariance matrix. Then the general result for the
expectation of the quadratic form Y ′AY is

E(Y ′AY ) = tr(AV y) + µ′Aµ
= σ2tr(AV ) + µ′Aµ. (4.25)

Under ordinary least squares assumptions, E(Y ) =Xβ andVar(Y ) = Iσ2

and the expectation of the quadratic form becomes

E(Y ′AY ) = σ2tr(A) + β′X ′AXβ. (4.26)

The expectations of the quadratic forms in the analysis of variance are
obtained from this general result by replacingA with the appropriate defin-
ing matrix. When A is idempotent, the coefficient on σ2 is the degrees of
freedom for the quadratic form.
The expectation of SS(Model) is E[SS(Model)]

E [SS(Model)] = E(Y ′PY ) = σ2tr(P ) + β′X ′PXβ

= p′σ2 + β′X ′Xβ, (4.27)

since tr(P ) = p′ and PX = X. Notice that the second term in equa-
tion 4.27 is a quadratic form in β, including β0 the intercept.
The expectation for SS(Regr) is E[SS(Regr)]

E [SS(Regr)] = E [Y ′(P − J/n)Y ]
= σ2tr(P − J/n) + β′X ′(P − J/n)Xβ

= pσ2 + β′X ′(I − J/n)Xβ, (4.28)

sinceX ′P =X ′. This quadratic form in β differs from that for E [SS(Model)]
in thatX ′(I−J/n)X is a matrix of corrected sums of squares and products
of the Xj . Since the first column of X is a constant, the sums of squares
and products involving the first column are zero. Thus, the first row and
column of X ′(I − J/n)X contain only zeros, which removes β0 from the
quadratic expression (see Exercise 4.16). Only the regression coefficients for
the independent variables are involved in the expectation of the regression
sum of squares.
The expectation for SS(Res) is E[SS(Res)]
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E [SS(Res)] = E [Y ′(I − P )Y ]
= σ2tr(I − P ) + β′X ′(I − P )Xβ

= (n− p′)σ2 + β′X ′(X −X)β
= (n− p′)σ2. (4.29)

The coefficient on σ2 in each expectation is the degrees of freedom for the Expectations
of
Mean Squares

sum of squares. After division of each expectation by the appropriate de-
grees of freedom to convert sums of squares to mean squares, the coefficient
on σ2 will be 1 in each case:

E [MS(Regr)] = σ2 + [β′X ′(I − J/n)Xβ]/p (4.30)
E [MS(Res)] = σ2. (4.31)

This shows that the residual mean square MS(Res) is an unbiased esti-
mate of σ2. The regression mean square MS(Regr) is an estimate of σ2

plus a quadratic function of all βj except β0. Comparison of MS(Regr) and
MS(Res), therefore, provides the basis for judging the importance of the
regression coefficients or, equivalently, of the independent variables. Since
the second term in E [MS(Regr)] is a quadratic function of β, which cannot
be negative, any contribution from the independent variables to the pre-
dictability of Yi makes MS(Regr) larger in expectation than MS(Res). The
ratio of the observed MS(Regr) to the observed MS(Res) provides the test
of significance of the composite hypothesis that all βj , except β0, are zero.
Tests of significance are discussed more fully in the following sections.
The expectations assume that the model used in the analysis of variance
is the correct model. This is imposed in the preceding derivations when
Xβ is substituted for E(Y ). For example, if E(Y ) =Xβ+Zγ �=Xβ, but
we fit the model E(Y ) =Xβ, then

E [SS(Res)] = σ2tr(I − P ) + [Xβ +Zγ]′(I − P )[Xβ +Zγ]
= σ2(n− p′) + γ′Z ′(I − P )Zγ (4.32)

and

E [MS(Res)] = σ2 + γ′Z ′(I − P )Zγ/(n− p′). (4.33)

The second term in equation 4.33 represents a quadratic function of regres-
sion coefficients of important variables that were mistakenly omitted from
the model. From equation 4.33, it can be seen that MS(Res), in such cases,
will be a positively biased estimate of σ2.

From Example 4.3 using the ozone data, the estimate of σ2 obtained Example 4.4
from MS(Res) is s2 = 107.81 (Table 4.2). This is a very poor estimate of
σ2 since it has only two degrees of freedom. Nevertheless, this estimate of
σ2 is used for now. (A better estimate is obtained in Section 4.7.)
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In Chapter 3, the variance–covariance matrices for β̂, Ŷ , and e were Estimated
Variancesexpressed in terms of the true variance σ2. Estimates of the variance–

covariance matrices are obtained by substituting s2 = 107.81 for σ2 in each
Var(·) formula; s2(·) is used to denote an estimated variance–covariance
matrix. (Note the boldface type to distinguish the matrix of estimates from
individual variances.)

In the ozone example, Example 4.3, Example 4.5

s2(β̂) = (X ′X)−1s2

=
[
1.0755 −9.4340

−9.4340 107.8167
]
107.81

=
[

115.94 −1, 017.0
−1, 017.0 11, 623

]
.

Thus,

s2(β̂0) = (1.0755)(107.81) = 115.94,

s2(β̂1) = (107.8167)(107.81) = 11, 623, and

Cov(β̂0, β̂1) = (−9.4340)(107.81) = −1, 017.0.

In each case, the first number in the product is the appropriate coefficient
from the (X ′X)−1 matrix; the second number is s2. (It is only coincidence
that the lower right diagonal element of (X ′X)−1 is almost identical to
s2.)

The estimated variance–covariance matrices for Ŷ and e are found sim-
ilarly by replacing σ2 with s2 in the corresponding variance–covariance
matrices.

4.4 Distribution of Quadratic Forms

The probability distributions of the quadratic forms provide the basis for
parametric tests of significance. It is at this point (and in making confidence
interval statements about the parameters) that the normality assumption
on the εi comes into play. The results are summarized assuming that nor-
mality of ε and therefore normality of Y are satisfied. When normality is
not satisfied, the parametric tests of significance must be regarded as ap-
proximations.
A general result from statistical theory [see, for example, Searle (1971)]
states:
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If Y is normally distributed, with E(Y ) = µ and Var(Y ) =
V σ2, where V is a nonsingular matrix (µ may be Xβ and V
may be I), then

1. a quadratic form Y ′(A/σ2)Y is distributed as a noncen-
tral chi-square with

(a) degrees of freedom equal to the rank of A, df = r(A),

and

(b) noncentrality parameter Ω = (µ′Aµ) /2σ2,

if AV is idempotent (if V = I, the condition reduces to
A being idempotent);

2. quadratic forms Y ′AY and Y ′BY are independent of
each other if AV B = 0 (if V = I, the condition reduces
to AB = 0; that is, A and B are orthogonal to each
other); and

3. a quadratic function Y ′AY is independent of a linear func-
tion BY if BV A = 0. (If V = I, the condition reduces
to BA = 0.)

In the normal multiple regression model, the following hold. Application
to Regression

1. The sums of squares for model, mean, regression, and residuals all
involve defining matrices that are idempotent. Recall that

SS(Model)/σ2 = Y ′PY /σ2.

Since P is idempotent, SS(Model)/σ2 is distributed as a chi-square
random variable with r(P ) = p′ degrees of freedom and noncentrality
parameter

Ω = β′X ′PXβ/2σ2 = β′X ′Xβ/2σ2.

Similarly:

(a) SS(µ)/σ2 = Y ′(J/n)Y /σ2 is distributed as a chi-square random
variable with r(J/n) = 1 degree of freedom and noncentrality
parameter

Ω = β′X ′(J/n)Xβ/2σ2 = (1′Xβ)2/2nσ2.

(b) SS(Regr)/σ2 = Y ′(P −J/n)Y /σ2 is distributed as a chi-square
random variable with r(P−J/n) = p (see Exercise 4.15) degrees
of freedom and noncentrality parameter

Ω = [β′X ′(P − J/n)Xβ]/2σ2 = [β′X ′(I − J/n)Xβ]/2σ2.
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(c) SS(Res)/σ2 = Y ′(I − P )Y /σ2 is distributed as a chi-square
random variable with r(I − P ) = (n − p′) degrees of freedom
and noncentrality parameter

Ω = β′X ′(I − P )Xβ/2σ2 = 0.

That is, SS(Res)/σ2 has a central chi-square distribution with
degrees of freedom (n − p′). (A central chi-square distribution
has noncentrality parameter equal to zero.)

2. Since (I − P )(P − J/n) = 0 (see Exercise 4.15), SS(Res) = Y ′(I −
P )Y and SS(Regr) = Y ′(P − J/n)Y are independent. Similarly,
since P (I − P ) = 0, J/n(P − J/n) = 0, and J/n(I − P ) = 0,
we have that SS(Model) and SS(Res) are independent, SS(µ) and
SS(Regr) are independent, and SS(µ) and SS(Res) are independent,
respectively.

3. SinceX ′(I−P ) = 0, any linear functionK ′β̂ =K ′(X ′X)−1X ′Y =
BY is independent of SS(Res)= Y ′(I − P )Y . This follows from
noting that B(I − P ) =K ′(X ′X)−1X ′(I − P ) = 0.

Thus, the normality assumption on ε implies that the sums of squares,
divided by σ2, are chi-square random variables. The chi-square distribution
and the orthogonality between the quadratic forms provide the basis for the
usual tests of significance. For example, when the null hypothesis is true,
the t-statistic is the ratio of a normal deviate to the square root of a scaled
independent central chi-square random variable. The F -statistic is the ra-
tio of a scaled noncentral chi-square random variable (central chi-square
random variable if the null hypothesis is true) to a scaled independent cen-
tral chi-square random variable. The scaling in each case is division of the
chi-square random variable by its degrees of freedom.
The noncentrality parameter Ω = (µ′Aµ)/2σ2 is important for two rea- Noncentrality

Parameter
and F -Test

sons: the condition that makes the noncentrality parameter of the numera-
tor of the F -ratio equal to zero is an explicit statement of the null hypoth-
esis; and the power of the test to detect a false null hypothesis is deter-
mined by the magnitude of the noncentrality parameter. The noncentrality
parameter of the chi-square distribution is the second term of the expecta-
tions of the quadratic forms divided by 2 (see equation 4.25). SS(Res)/σ2

is a central chi-square since the second term was zero (equation 4.29). The
noncentrality parameter for SS(Regr)/σ2 (see equation 4.28) is

Ω =
β′X ′(I − J/n)Xβ

2σ2 , (4.34)

which is a quadratic form involving all βj except β0. Thus, SS(Regr)/σ2 is
a central chi-square only if Ω = 0, which requires (I −J/n)Xβ = 0. Since
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X is assumed to be of full rank, it can be shown that Ω = 0 if and only if
β1 = β2 = · · · = βp = 0. Therefore, the F -ratio using

F =
MS(Regr)
MS(Res)

is a test of the composite hypothesis that all βj , except β0, equal zero. This
hypothesis is stated as

H0 : β∗ = 0
Ha : β∗ �= 0,

where β∗ is the p× 1 vector of regression coefficients excluding β0.
An observed F -ratio, equation 4.35, sufficiently greater than 1 suggests
that the noncentrality parameter is not zero. The larger the noncentrality
parameter for the numerator chi-square, the larger will be the F -ratio, on
the average, and the greater will be the probability of detecting a false null
hypothesis. This probability, by definition, is the power of the test. (The
power of an F -test is also increased by increasing the degrees of freedom
for each chi-square, particularly the denominator chi-square.) All of the
quantities except β in the noncentrality parameter are known before the
experiment is run (in those cases where the Xs are subject to the control
of the researcher). Therefore, the relative powers of different experimental
designs can be evaluated before the final design is adopted.

In the Heagle ozone example, Example 4.2, Example 4.6

F =
MS(Regr)
MS(Res)

=
799.14
107.81

= 7.41.

The critical value for α = .05 with 1 and 2 degrees of freedom is F(.05;1,2) =
18.51. The conclusion is that these data do not provide sufficient evidence
to reject the null hypothesis that β1 equals zero. Even though MS(Regr)
is considerably larger than MS(Res), the difference is not sufficient to be
confident that it is not due to random sampling variation from the un-
derlying chi-square distributions. The large critical value of F , 18.51, is a
direct reflection of the very limited degrees of freedom for MS(Res) and,
consequently, large sampling variation in the F -distribution. A later anal-
ysis that uses a more precise estimate of σ2 (more degrees of freedom) but
the same MS(Regr) shows that β1 clearly is not zero.

The key points from this section are summarized as follows.

1. The expectations of the quadratic forms are model de-
pendent. If the incorrect model has been used, the expec-
tations are incorrect. This is particularly critical for the
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MS(Res) since it is used repeatedly as the estimate of σ2.
For this reason it is desirable to obtain an estimate of
σ2 that is not model dependent. This is discussed in Sec-
tion 4.7.

2. The expectations of the mean squares provide the basis
for choosing the appropriate mean squares for tests of hy-
potheses with the F -test; the numerator and denominator
mean squares must have the same expectations if the null
hypothesis is true and the expectation of the numerator
mean square must be larger if the alternative hypothesis
is true.

3. The assumption of a normal probability distribution for
the residuals is necessary for the conventional tests of sig-
nificance and confidence interval estimates of the parame-
ters to be correct. Although tests of significance appear to
be reasonably robust against nonnormality, they must be
regarded as approximations when the normality assump-
tion is not satisfied.

4.5 General Form for Hypothesis Testing

The ratio of MS(Regr) to MS(Res) provides a test of the null hypothesis
that all βj , except β0, are simultaneously equal to zero. More flexibility is
needed in constructing tests of hypotheses than is allowed by this proce-
dure. This section presents a general method of constructing tests for any
hypothesis involving linear functions of β. The null hypothesis may involve
a single linear function, a simple hypothesis, or it may involve several
linear functions simultaneously, a composite hypothesis.

4.5.1 The General Linear Hypothesis
The general linear hypothesis is defined as

H0 :K ′β = m

Ha :K ′β �= m, (4.35)

whereK ′ is a k×p′ matrix of coefficients defining k linear functions of the βj
to be tested. Each row ofK ′ contains the coefficients for one linear function;
m is a k × 1 vector of constants, frequently zeros. The k linear equations
in H0 must be linearly independent (but they need not be orthogonal).
Linear independence implies thatK ′ is of full rank, r(K) = k, and ensures
that the equations in H0 are consistent for every choice of m (see Section
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2.5). The number of linear functions in H0 cannot exceed the number of
parameters in β; otherwise, K ′ would not be of rank k.

Suppose β′ = (β0 β1 β2 β3 ) and you wish to test the composite null Example 4.7
hypothesis that β1 = β2, β1 + β2 = 2β3, and β0 = 20 or, equivalently,

H0 : β1 − β2 = 0
β1 + β2 − 2β3 = 0
β0 = 20

. (4.36)

These three linear functions can be written in the form K ′β = m by
defining

K ′ =

 0 1 −1 0
0 1 1 −2
1 0 0 0

 and m =

 0
0
20

 . (4.37)
The alternative hypothesis is Ha : K ′β �= m. The null hypothesis is vio-
lated if any one or more of the equalities in H0 is not true.

The least squares estimate of K ′β − m is obtained by substituting Estimator and
Variancethe least squares estimate β̂ for β to obtain K ′β̂ −m. Under the ordi-

nary least squares assumptions, including normality, K ′β̂−m is normally
distributed with mean E(K ′β̂ − m) = K ′β − m, which is zero if the
null hypothesis is true, and variance–covariance matrix Var(K ′β̂ −m) =
K ′(X ′X)−1Kσ2 = V σ2, say. The variance is obtained by applying the
rules for variances of linear functions (see Section 3.4).
The sum of squares for the linear hypothesis H0 :K ′β =m is computed Sum of

Squaresby [see Searle (1971)]

Q = (K ′β̂ −m)′[K ′(X ′X)−1K]−1(K ′β̂ −m). (4.38)

This is a quadratic form in K ′β̂ −m with defining matrix

A = [K ′(X ′X)−1K]−1 = V −1. (4.39)

The defining matrix, except for division by σ2, is the inverse of the variance–
covariance matrix of the linear functions K ′β̂ − m. Thus, tr(AV ) =
tr(Ik) = k and the expectation of Q (see equation 4.25) is

E(Q) = kσ2 + (K ′β −m)′[K ′(X ′X)−1K]−1(K ′β −m). (4.40)

With the assumption of normality, Q/σ2 is distributed as a noncentral chi-
square random variable with k degrees of freedom. This is verified by noting
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that AV = Ik, which is idempotent (see Section 4.4). The degrees of free-
dom are determined from r(A) = r(K) = k. The noncentrality parameter
is

Ω =
(K ′β −m)′[K ′(X ′X)−1K]−1(K ′β −m)

2σ2 ,

which is zero when the null hypothesis is true. Thus, Q/k is an appropriate
numerator mean square for an F -test of the stated hypothesis.
The appropriate denominator of the F -test is any unbiased and indepen- F -Test
dent estimate of σ2; usually MS(Res) is used. Thus,

F =
Q/r(K)
s2

(4.41)

is a proper F -test of H0 : K ′β−m = 0 with numerator degrees of freedom
equal to r(K) and denominator degrees of freedom equal to the degrees of
freedom in s2. Since K ′β̂ is independent of SS(Res), Q is independent of
MS(Res).
This general formulation provides a convenient method for testing any
hypotheses of interest and is particularly useful when the computations
are being done with a matrix algebra computer program. It is important
to note, however, that all sums of squares for hypotheses are dependent
on the particular model being used. In general, deleting an independent
variable or adding an independent variable to the model will change the
sum of squares for every hypothesis.

4.5.2 Special Cases of the General Form
Three special cases of the general linear hypothesis are of interest.

Case 1. A simple hypothesis.
When a simple hypothesis on β is being tested,K ′ is a single row vector
so that [K ′(X ′X)−1K] is a scalar. Its inverse is 1/[K ′(X ′X)−1K]. The
sum of squares for the hypothesis can be written as

Q =
(K ′β̂ −m)2

K ′(X ′X)−1K
(4.42)

and has 1 degree of freedom. The numerator of Q is the square of the linear
function of β̂ and the denominator is its variance, except for σ2. Thus, the
F -ratio is

F =
(K ′β̂ −m)2

[K ′(X ′X)−1K]s2
. (4.43)

The F -test of a simple hypothesis is the square of a two-tailed t-test:

t =
K ′β̂ −m

{[K ′(X ′X)−1K]s2}1/2
. (4.44)
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The denominator is the standard error of the linear function in the numer-
ator.

Case 2. k specific βj equal zero.
The null hypothesis of interest is that each of k specific regression coeffi-
cients is zero. For this case K ′ is a k× p′ matrix consisting of zeros except
for a single one in each row to identify the βj being tested; m = 0. With
thisK ′, the matrix multiplication [K ′(X ′X)−1K] extracts from (X ′X)−1

the k × k submatrix consisting of the coefficients for the variances and co-
variances of the k β̂j being tested. Suppose the null hypothesis to be tested
is that β1, β3, and β5 are each equal to zero. The sum of squares Q has the
form

Q =
(
β̂1 β̂3 β̂5

) c11 c13 c15
c31 c33 c35
c51 c53 c55

−1  β̂1
β̂3
β̂5

 , (4.45)

where cij is the element from row (i+ 1) and column (j + 1) of (X ′X)−1.
The sum of squares for this hypothesis measures the contribution of
this subset of k independent variables to a model that already contains the
other independent variables. This sum of squares is described as the sum of
squares for these k variables adjusted for the other independent variables
in the model.

Case 3. One βj equals zero; the partial sum of squares.
The third case is a further simplification of the first two. The hypothesis Partial Sum

of Squaresis that a single βj is zero; H0 : βj = 0. For this hypothesis, K ′ is a row
vector of zeros except for a one in the column corresponding to the βj
being tested. As described in case 2, the sum of squares for this hypothesis
is the contribution of Xj adjusted for all other independent variables in the
model. This sum of squares is called the partial sum of squares for the
jth independent variable.
The matrix multiplication [K ′(X ′X)−1K] in Q extracts only the (j +
1)st diagonal element cjj from (X ′X)−1. This is the coefficient for the
variance of β̂j . The sum of squares, with one degree of freedom, is

Q =
β̂2
j

cjj
. (4.46)

This provides an easy method of computing the partial sum of squares for
any independent variable. For this case, the two-tailed t-test is

t =
β̂j

(cjjs2)1/2
. (4.47)

4.5.3 A Numerical Example
For illustration of the use of the general linear hypothesis, data from a Example 4.8
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physical fitness program at N. C. State University are used. (The data
were provided by A. C. Linnerud and are used with his permission.) Mea-
surements were taken on n = 31 men. In addition to age and weight, oxygen
uptake (Y ), run time (X1), heart rate while resting (X2), heart rate while
running (X3), and maximum heart rate (X4) while running 1.5 miles were
recorded for each subject. The data are given in Table 4.3. The results we
discuss are from the regression of oxygen uptake Y on the four variables
X1, X2, X3, and X4.
The model is Y =Xβ+ ε, where β = (β0 β1 β2 β3 β4 )

′ with the
subscripts matching the identification of the independent variables given
previously. The estimated regression equation is

Ŷi = 84.26902− 3.06981Xi1 + .00799Xi2 − .11671Xi3 + .08518Xi4.
The analysis of variance for this model is summarized in Table 4.4. The
residual mean square s2 = 7.4276 is the estimate of σ2 and has 26 degrees
of freedom. The tests of hypotheses on β require (X ′X)−1:

(X ′X)−1 =


17.42309 −.159620 .007268 −.014045 −.077966
−.159620 .023686 −.001697 −.000985 .000948
.007268 −.001697 .000778 −.000094 −.000085

−.014045 −.000985 −.000094 .000543 −.000356
−.077966 .000948 −.000085 −.000356 .000756

.
The first example tests the composite null hypothesis that the two re-
gression coefficients β2 and β4 are zero, H0 : β2 = β4 = 0. The alternative
hypothesis is that either one or both are not zero. This null hypothesis is
written in the general form as

K ′β =
[
0 0 1 0 0
0 0 0 0 1

]
β0
β1
β2
β3
β4

 =
(
0
0

)
.

Multiplication of the first row vector ofK ′ with β gives β2 = 0; the second
row gives β4 = 0.
There are two degrees of freedom associated with the sum of squares for
this hypothesis, since r(K) = 2. The sum of squares is

Q = (K ′β̂ −m)′[K ′(X ′X)−1K]−1(K ′β̂ −m)

=
(
.00799
.08518

)′ [
.0007776 −.0000854

−.0000854 .0007560

]−1 (
.00799
.08518

)
= 10.0016.

Notice that the product K ′(X ′X)−1K extracts the c22, c24, c42, and c44
elements from (X ′X)−1. The F -test of the null hypothesis is

F =
Q/2
s2
=
(10.0016)/2
7.4276

= .673.
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TABLE 4.3. Physical fitness measurements on 31 men involved in a physical
fitness program at North Carolina State University. The variables measured were
age (years), weight (kg), oxygen uptake rate (ml per kg body weight per minute),
time to run 1.5 miles (minutes), heart rate while resting, heart rate while running
(at the same time oxygen uptake was measured), and maximum heart rate while
running. (Data courtesy A. C. Linnerud, N. C. State University.)

Heart Rate
Age Weight O2 Uptake Time Resting Running Maximum
(yrs) (kg) (ml/kg/min) (min)
44 89.47 44.609 11.37 62 178 182
40 75.07 45.313 10.07 62 185 185
44 85.84 54.297 8.65 45 156 184
42 68.15 59.571 8.17 40 166 172
38 89.02 49.874 9.22 55 178 180
47 77.45 44.811 11.63 58 176 176
40 75.98 45.681 11.95 70 176 180
43 81.19 49.091 10.85 64 162 170
44 81.42 39.442 13.08 63 174 176
38 81.87 60.055 8.63 48 170 186
44 73.03 50.541 10.13 45 168 168
45 87.66 37.388 14.03 56 186 192
45 66.45 44.754 11.12 51 176 176
47 79.15 47.273 10.60 47 162 164
54 83.12 51.855 10.33 50 166 170
49 81.42 49.156 8.95 44 180 185
51 69.63 40.836 10.95 57 168 172
51 77.91 46.672 10.00 48 162 168
48 91.63 46.774 10.25 48 162 164
49 73.37 50.388 10.08 67 168 168
57 73.37 39.407 12.63 58 174 176
54 79.38 46.080 11.17 62 156 176
52 76.32 45.441 9.63 48 164 166
50 70.87 54.625 8.92 48 146 186
51 67.25 45.118 11.08 48 172 172
54 91.63 39.203 12.88 44 168 172
51 73.71 45.790 10.47 59 186 188
57 59.08 50.545 9.93 49 148 160
49 76.32 48.673 9.40 56 186 188
48 61.24 47.920 11.50 52 170 176
52 82.78 47.467 10.50 53 170 172
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TABLE 4.4. Summary analysis of variance for the regression of oxygen uptake on
run time, heart rate while resting, heart rate while running, and maximum heart
rate.

Source d.f. SS MS
Totalcorr 30 851.3815
Regression 4 658.2368 164.5659
Residual 26 193.1178 7.4276 = s2

The computed F is much smaller than the critical value F(.05,2,26) = 3.37
and, therefore, there is no reason to reject the null hypothesis that β2 and
β4 are both zero.
The second hypothesis illustrates a case where m �= 0. Suppose prior
information suggested that the intercept β0 for a group of men of this
age and weight should be 90. Then the null hypothesis of interest is β0 =
90 and, for illustration, we construct a composite hypothesis by adding
this constraint to the two conditions in the first null hypothesis. The null
hypothesis is now

H0 : K ′β −m = 0,

where

K ′β −m =

 1 0 0 0 00 0 1 0 0
0 0 0 0 1



β0
β1
β2
β3
β4

−
 900
0

 .
For this hypothesis

(K ′β̂ −m) =

 84.26902− 90.00799
.08518

 =
 −5.73098

.00799

.08518


and

[K ′(X ′X)−1K]−1 =

 17.423095 .0072675 −.0779657
.0072675 .0007776 −.0000854

−.0779657 −.0000854 .0007560

−1

.

Notice that (K ′β̂ −m) causes the hypothesized β0 = 90 to be subtracted
from the estimated β̂0 = 84.26902. The sum of squares for this composite
hypothesis is

Q = (K ′β̂ −m)′[K ′(X ′X)−1K]−1(K ′β̂ −m) = 11.0187
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and has 3 degrees of freedom. The computed F -statistic is

F =
Q/3
s2
=
11.0187/3
7.4276

= .494,

which, again, is much less than the critical value of F for α = .05 and 3
and 26 degrees of freedom, F(.05,3,26) = 2.98. There is no reason to reject
the null hypothesis that β0 = 90 and β2 = β4 = 0.

4.5.4 Computing Q from Differences in Sums of Squares
As an alternative to the general formula for Q, equation 4.38, the sum of Full and

Reduced
Models

squares for any hypothesis can be determined from the difference between
the residual sums of squares of two models. The current model, in the
context of which the null hypothesis is to be tested, is called the full model.
This model must include all parameters involved in the null hypothesis and
will usually include additional parameters. The second model is obtained
from the full model by assuming the null hypothesis is true and imposing
its constraints on the full model. The model obtained in this way is called
the reduced model because it will always have fewer parameters than the
full model. For example, the null hypothesis H0 : β2 = c, where c is some
known constant, gives a reduced model in which β2 has been replaced with
the constant c. Consequently, β2 is no longer a parameter to be estimated.
The reduced model is a special case of the full model and, hence, its Computing Q
residual sum of squares must always be at least as large as the residual
sum of squares for the full model. It can be shown that, for any general
hypothesis, the sum of squares for the hypothesis can be computed as

Q = SS(Resreduced)− SS(Resfull), (4.48)

where “reduced” and “full” identify the two models.
There are (n−p′) degrees of freedom associated with SS(Resfull). Gener- Degrees of

Freedomating the reduced model by imposing the k linearly independent constraints
of the null hypothesis on the full model reduces the number of parameters
from p′ to (p′−k). Thus, SS(Resreduced) has [n−(p′−k)] degrees of freedom.
Therefore, Q will have [(n− p′ + k)− (n− p′)] = k degrees of freedom.
AssumeX is a full-rank matrix of order n× 4 and β′ = (β0 β1 β2 β3). Illustration
Suppose the null hypothesis to be tested is

H0 :K ′β = m,

where

K ′ =
[
0 1 −1 0
1 0 0 0

]
and m =

(
0
20

)
.
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The full model was

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi.

If there were n observations, the residual sum of squares from this model
would have (n− 4) degrees of freedom. The null hypothesis states that (1)
β1 = β2 and (2) β0 = 20. The reduced model is generated by imposing on
the full model the conditions stated in the null hypothesis. Since the null
hypothesis states that β1 and β2 are equal, one of these two parameters, say
β2, can be eliminated by substitution of β1 for β2. Similarly, β0 is replaced
with the constant 20. These substitutions give the reduced model:

Yi = 20 + β1Xi1 + β1Xi2 + β3Xi3 + εi.

Moving the constant 20 to the left side of the equality and collecting the
two terms that involve β1 gives

Yi − 20 = β1(Xi1 +Xi2) + β3Xi3 + εi

or

Y ∗
i = β1X

∗
i1 + β3Xi3 + εi,

where Y ∗
i = Yi − 20 and X∗

i1 = Xi1 +Xi2.
In matrix notation, the reduced model is

Y ∗ = X∗β∗ + ε,

where

Y ∗ =


Y1 − 20
Y2 − 20
...

Yn − 20



X∗ =


(X11 +X12) X13
(X21 +X22) X23

...
...

(Xn1 +Xn2) Xn3

 =

X∗

11 X13
X∗

21 X23
...

...
X∗
n1 Xn3


and

β∗ =
(
β1
β3

)
.

The rank of X∗ is 2 so that SS(Resreduced) will have (n − 2) degrees of
freedom. Consequently,

Q = SS(Resreduced)− SS(Resfull)
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will have [(n− 2)− (n− 4)] = 2 degrees of freedom. Note that this agrees
with r(K ′) = 2.
The F -test of the null hypothesis is

F =
Q/2
s2

with 2 and ν degrees of freedom, where ν is the degrees of freedom in s2.
The denominator of F must be an unbiased estimate of σ2 and must be
statistically independent of the numerator sum of squares. This condition
is satisfied if σ2 is estimated from a model that contains at least all of the
terms in the full model or is estimated from independent information such
as provided by true replication (see Section 4.7).

The oxygen consumption example, Example 4.8, is used to illustrate Example 4.9
computation of Q using the difference between the residual sums of squares
for full and reduced models. The reduced model for the first hypothesis
tested, H0 : β2 = β4 = 0, is obtained from the full model by setting β2
and β4 equal to zero. This leaves a bivariate model containing only X1 and
X3. Fitting this reduced model gives a residual sum of squares of

SS(Resreduced) = 203.1194

with [n− (p′ − k)] = (31− 3) = 28 degrees of freedom. The residual sum of
squares from the full model was

SS(Resfull) = 193.1178

with (n− p′) = 31− 5 = 26 degrees of freedom. The difference gives
Q = SS(Resreduced)− SS(Resfull)
= 203.1194− 193.1178 = 10.0016.

with (28 − 26) = 2 degrees of freedom. This agrees, as it should, with the
earlier result for Q obtained in Example 4.8.
The second hypothesis tested in the previous example included the state-
ment that β0 = 90 in addition to β2 = β4 = 0. The reduced model for this
null hypothesis is

Yi = 90 + β1Xi1 + β3Xi3 + εi

or
(Yi − 90) = β1Xi1 + β3Xi3 + εi.

The reduced model has a new dependent variable formed by subtracting
90 from every Yi, has only X1 and X3 as independent variables, and has
no intercept. The residual sum of squares from this model is

SS(Resreduced) = 204.1365
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with (31−2) = 29 degrees of freedom. The SS(Resfull) is the same as before
and the difference gives

Q = 204.1365− 193.1178 = 11.0187

with 3 degrees of freedom.

The sum of squares Q for any null hypothesis can always be computed as Caution
a difference in residual sums of squares. For null hypotheses wherem = 0,
the same result can be obtained, sometimes more conveniently, by taking
the difference in the model sums of squares; that is,

Q = SS(Modelfull)− SS(Modelreduced).

This follows from noting that

SS(Modelfull) = SS(Total)− SS(Resfull)

and
SS(Modelreduced) = SS(Total)− SS(Resreduced).

If β0 is in the model and not involved in the null hypothesis K ′β = 0, the
differences in regression sums of squares, SS(Regrfull)−SS(Regrreduced), will
also giveQ. The first hypothesis in Example 4.9 involved only β2 and β4 and
hadm = 0. The sum of squares due to regression for the reduced model was
SS(Regrreduced) = 648.2622. Comparison of this to SS(Regrfull) = 658.2638
verifies that the difference again gives Q = 10.0016.
The difference in regression sums of squares, however, cannot be used to
compute Q in the second example where β0 = 20 is included in the null
hypothesis. In this case, SS(Total) for the reduced model is based on Y ∗

i

and hence it is different from SS(Total) for the full model. Consequently, it
is important to develop the habit of either always using the residual sums of
squares, since that procedure always gives the correct answer, or being very
cautious in the use of differences in regression sums of squares to compute
Q.

4.5.5 The R-Notation to Label Sums of Squares
The sum of squares for the null hypothesis that each of a subset of the
partial regression coefficients is zero is dependent on both the specific subset
of parameters in the null hypothesis and on the set of all parameters in the
model. To clearly specify both in each case, a more convenient notation for
sums of squares is needed. For this purpose, the commonly used R-notation
is introduced.
Let R(β0 β1 β2 . . . βp) = SS(Model) denote the sum of squares due
to the model containing the parameters listed in parentheses. The sum
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of squares for the hypothesis that a subset of βj is zero can be obtained
by subtraction of SS(Model) for the reduced model from that for the full
model. Assume the subset of βj being tested against zero consists of the
last k βj . Then

SS(Modelfull) = R(β0 β1 . . . βp−k βp−k+1 . . . βp),
SS(Modelreduced) = R(β0 β1 . . . βp−k)

and

Q = SS(Modelfull)− SS(Modelreduced)
= R(β0 β1 . . . βp−k βp−k+1 . . . βp)−R(β0 β1 . . . βp−k). (4.49)

The final R-notation expresses this difference in sums of squares as

R(βp−k+1 βp−k+2 . . . βp|β0 β1 . . . βp−k). (4.50)

The βj appearing before the vertical bar are those specified to be zero by
the null hypothesis, whereas the βj appearing after the bar are those for
which the former are adjusted. Alternatively, the full model consists of all
parameters in parentheses, whereas the reduced model contains only those
parameters appearing after the bar. In this notation,

SS(Regr) = SS(Model)− SS(µ)
= R(β1 β2 . . . βp|β0). (4.51)

To illustrate the R-notation, consider a linear model that contains three Partial
Sums of
Squares

independent variables plus an intercept, given by

Yi = β0Xi0 + β1Xi1 + β2Xi2 + β3Xi3 + εi, (4.52)

where εi are NID(0, σ2) and Xi0 = 1. The partial sums of squares for this
model would be

R(β1|β0 β2 β3),

R(β2|β0 β1 β3), and

R(β3|β0 β1 β2).

Each is the additional sum of squares accounted for by the parameter (or
its corresponding variable) appearing before the vertical bar when added
to a model that already contains the parameters appearing after the bar.
Each is the appropriate numerator sum of squares for testing the simple
hypothesis H0 : βj = 0, for j = 1, 2, and 3, respectively.
Consider the model

Yi = β0Xi0 + β3Xi3 + β1Xi1 + β2Xi2 + εi, (4.53)
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where we have changed the order of the independent variables in model 4.52.
The partial sums of squares for X3, X1, and X2 are

R(β3|β0 β1 β2), R(β1|β0 β3 β2), and R(β2|β0 β3 β1),

respectively, and are the same as those obtained for model 4.52. That is,
the partial sums of squares for the independent variables of a given model
are independent of the order in which the variables are listed in the model.
The sequential sums of squares measure the contributions of the Sequential

Sums of
Squares

variables as they are added to the model in a particular sequence. The se-
quential sum of squares for Xj is the increase in SS(Regr), or the decrease
in SS(Res), when Xj is added to the existing model. This sum of squares
measures the contribution of Xj adjusted only for those independent vari-
ables that preceded Xj in the model-building sequence.
For illustration, suppose a model is to be built by adding variables in
the sequence X0, X1, X2, and X3 as in model 4.52. The first model to be
fit will contain X0 (the intercept) and X1. SS(Regr) from this model is the
sequential sum of squares for X1. In the R-notation, this sequential sum
of squares is given by R(β1|β0). The second model to be fit will contain
X0, X1, and X2. The sequential sum of squares for X2 is SS(Regr) for this
model minus SS(Regr) for the first model and, in R-notation, it is given
by R(β2|β0 β1). The third model to be fit will contain the intercept and
all three independent variables. The sequential sum of squares for X3 is
SS(Regr) for this three-variable model minus SS(Regr) for the preceding
two-variable model. In R-notation, the sequential sum of squares for X3
is R(β3|β0 β1 β2). Note that because X3 is the last variable added to the
model, the sequential sum of squares for X3 coincides with the partial sum
of squares for X3.
Consider now equation 4.53 where the model is built in the sequence

X0, X3, X1, and X2. The sequential sums of squares for X3, X1, and
X2 are R(β3|β0), R(β1|β0 β3), and R(β2|β0 β3 β1). These are different
from the sequential sums of squares obtained in the model 4.52. That is,
the sequential sums of squares are dependent on the order in which the
variables are added to the model. It should be clear from the definition of
the R-notation that the ordering of the parameters after the vertical bar is
immaterial.
The partial sums of squares measure the contributions of the individual Using Sequen-

tial Sums
of Squares

variables with each adjusted for all other independent variables in the
model (see Section 4.5.2) and are appropriate for testing simple hypotheses
of the form H0 : βj = 0. Each sequential sum of squares is the appropriate
sum of squares for testing the jth partial regression coefficient,H0 : βj = 0,
for a model that contains Xj and only those independent variables that
preceded Xj in the sequence. For example, the sequential sum of squares,
R(β1|β0), for X1 is appropriate for testing H0 : β1 = 0 in the model Yi =
β0+β1Xi1+εi. Note that this model assumes that β2 and β3 of model 4.52
are zero. The sequential sum of squares R(β2|β0 β1) for X2 is appropriate
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for testing H0 : β2 = 0 in the model Yi = β0 + β1Xi1 + β2Xi2 + εi.
This model assumes β3 = 0 in model 4.52. Similarly, the sequential sum of
squares R(β3|β0) (in model 4.53) is appropriate for testing H0 : β3 = 0
in the model Yi = β0 + β3Xi3 + εi. This is, however, not appropriate for
testing H0 : β3 = 0 in the model Yi = β0 + β3Xi3 + β1Xi1 + β2Xi2 + εi.
The partial sums of squares, although useful for testing simple hypotheses
of the form H0 : βj = 0, are not useful for testing joint hypotheses of
the form H0 : βj = 0, βk = 0 or H0 : βj = 0, βk = 0, βl = 0. The
sequential sums of squares can be combined to obtain appropriate sums of
squares for testing certain joint hypotheses. For example, if we wish to test
H0 : β2 = β3 = 0 in model 4.52, we know that the appropriate numerator
sum of squares is

R(β2 β3|β0 β1) = R(β0 β1 β2 β3)−R(β0 β1)
= [R(β0 β1 β2 β3)−R(β0 β1 β2)]
+ [R(β0 β1 β2)−R(β0 β1)]

= R(β3|β0 β1 β2) +R(β2|β0 β1)
= sum of the sequential sums of squares for

X2 and X3 in model 4.52.

Similarly, if we wish to test the hypothesis that H0 : β1 = β2 = 0 in
model 4.53 (or 4.52), the appropriate sum of squares is

R(β1 β2|β0 β3) = R(β0 β3 β1 β2)−R(β0 β3)
= [R(β0 β3 β1 β2)−R(β0 β3 β1)]
+ [R(β0 β3 β1)−R(β0 β3)]

= R(β2|β0 β3 β1) +R(β1|β0 β3)
= sum of the sequential sums of squares for

X2 and X1 in model 4.53.

Note that the sequential sums of squares from model 4.52 cannot be used
for testing H0 : β1 = β2 = 0. Note that in both models, equations 4.52 and
4.53,

SS(Regr) = R(β1 β2 β3|β0)
= R(β1|β0) +R(β2|β0 β1) +R(β3|β0 β1 β2)
= R(β3|β0) +R(β1|β0 β3) +R(β2|β0 β1 β3).

That is, the sequential sums of squares are an additive partition of SS(Regr)
for the full model.
There are some models (for example, purely nested models and polyno-
mial response models) where there is a logical order in which terms should
be added to the model. In such cases, the sequential sums of squares pro-
vide the appropriate tests for determining which terms are to be retained
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TABLE 4.5. Regression sum of squares, sequential sums of squares, and the resid-
ual sum of squares for the oxygen uptake example.

Sequential Sums of Squares d.f. F
SS(Regr) = R(β1 β3 β2 β4|β0)=658.2638 4 22.16

R(β1|β0) =632.9001 (1)
R(β3|β0 β1) = 15.3621 (1)
R(β2|β0 β1 β3) = .4041 (1)
R(β4|β0 β1 β3 β2)= 9.5975 (1)

SS(Error) =193.1178 26

in the model. In other cases, prior knowledge of the behavior of the system
will suggest a logical ordering of the variables according to their relative
importance. Use of this prior information and sequential sums of squares
should simplify the process of determining an appropriate model.

4.5.6 Example: Sequential and Partial Sums of Squares
The oxygen uptake example, Example 4.8, is used to illustrate the R- Example 4.10
notation and the sequential and partial sums of squares. The sum of squares
due to regression for the full model was

SS(Regr) = R(β1 β2 β3 β4|β0) = 658.2638

with four degrees of freedom (Table 4.4). The sequential sums of squares,
from fitting the model in the order X1, X3, X2, and X4 are shown in
Table 4.5. Each sequential sum of squares measures the stepwise improve-
ment in the model realized from adding one independent variable. The
sequential sums of squares add to the total regression sum of squares,
SS(Regr) = R(β1 β3 β2 β4|β0) = 658.2638; that is, this is an orthogonal
partitioning.
The regression sum of squares, R(β1 β3 β2 β4|β0) is used to test the
composite hypothesis H0 : β1 = β3 = β2 = β4 = 0. This gives F = 22.16
which, with 4 and 26 degrees of freedom is highly significant. That is, there
is evidence to believe that the independent variables need to be included
in the model to account for the variability in oxygen consumption among
runners.
Adjacent sequential sums of squares at the end of the list can be added to
generate the appropriate sum of squares for a composite hypothesis. For ex-
ample, the sequential sums of squares R(β2|β0 β1 β3) and R(β4|β0 β1 β3 β2)
for X2 and X4, respectively, in Table 4.5, can be added to give the addi-
tional sum of squares one would obtain from adding both X2 and X4 in one
step to the model containing only X1 and X3 (and the intercept). Thus,

R(β2|β0 β1 β3) +R(β4|β0 β1 β3 β2) = .4041 + 9.5975
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TABLE 4.6. Cumulative sequential sums of squares, the null hypothesis being
tested by each cumulative sum of squares, and the F -test of the null hypothesis
for the oxygen uptake example.

Cumulative Sequential
Sums of Squares d.f. Null Hypothesis F

R(β1 β3 β2 β4|β0)=658.2638 4 β1 = β3 = β2 = β4 = 0 22.16
R(β3 β2 β4|β0 β1)= 25.3637 3 β3 = β2 = β4 = 0 .67
R(β2 β4|β0 β1 β3)= 10.0026 2 β2 = β4 = 0 1.14
R(β4|β0 β1 β3 β2)= 9.5975 1 β4 = 0 1.29
SS(Error) =193.1178 26

= 10.0016
= R(β2 β4|β0 β1 β3)

in the R-notation. This is the appropriate sum of squares for testing the
composite hypothesis that both β2 and β4 are zero. This gives F = .67
which, with 2 and 26 degrees of freedom, does not approach significance.
That is, the run time X1 and the heart rate while running X3 are sufficient
to account for oxygen consumption differences among runners.
If this particular ordering of the variables was chosen because it was ex-
pected that X1 (run time) likely would be the most important variable with
the others being of secondary importance, it is logical to test the composite
null hypothesis H0 : β3 = β2 = β4 = 0. The sum of the sequential sums
of squares for X3, X2, and X4 is the appropriate sum of squares and gives
R(β3 β2 β4|β0 β1) = 25.3637 with 3 degrees of freedom. This gives F = 1.14
which, with 3 and 26 degrees of freedom, does not approach significance.
This single test supports the contention that X1 alone is sufficient to ac-
count for oxygen consumption differences among the runners. (Since the
variables are not orthogonal, this does not rule out the possibility that a
model based on the other three variables might do better.)
The cumulative sequential sums of squares (from bottom to top) and
the corresponding F -statistics and null hypotheses are summarized in Ta-
ble 4.6. The appropriate sum of squares to test the null hypothesis H0 :
β2 = β3 = 0 is R(β2 β3|β0 β1 β4). This sum of squares cannot be ob-
tained from the sums of squares given in Tables 4.5 and 4.6. The sum of
squares R(β2 β3|β0 β1 β4) may be obtained by adding the sequential sums
of squares for X2 and X3 from fitting the model in the order X0, X1, X4,
X2, and X3.
The partial sums of squares, their null hypotheses, and the F -tests are
shown in Table 4.7. This is not an orthogonal partitioning; the partial
sums of squares will not add to SS(Regr). Each partial sum of squares
reflects the contribution of the particular variable as if it were the last to
be considered for the model. Hence, it is the appropriate sum of squares
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TABLE 4.7. Partial sums of squares, the null hypothesis being tested by each,
and the F-test of the null hypothesis for the oxygen uptake example.

Null
Partial Sum of Squares Hypothesis F a

R(β1|β0, β2, β3, β4) = 397.8664 β1 = 0 53.57
R(β3|β0, β1, β2, β4) = 25.0917 β3 = 0 3.38
R(β2|β0, β1, β3, β4) = .0822 β2 = 0 .01
R(β4|β0, β1, β2, β3) = 9.5975 β4 = 0 1.29

aAll F -tests were computed using the residual mean square from the full model.

for deciding whether the variable might be omitted. The null hypotheses
in Table 4.7 reflect the adjustment of each partial regression coefficient for
all other independent variables in the model.
The partial sum of squares for X2, R(β2|β0 β1 β3 β4) = .0822 is much
smaller than s2 = 7.4276 and provides a clear indication that this variable
does not make a significant contribution to a model that already contains
X1, X3, and X4. The next logical step in building the model based on tests
of the partial sums of squares would be to omit X2. Even though the tests
for β3 and β4 are also nonsignificant, one must be cautious in omitting more
than one variable at a time on the basis of the partial sums of squares. The
partial sums of squares are dependent on which variables are in the model;
it will almost always be the case that all partial sums of squares will change
when a variable is dropped. (In this case, we know from the sequential sums
of squares that all three variables can be dropped. A complete discussion
on choice of variables is presented in Chapter 7.)

4.6 Univariate and Joint Confidence Regions

Confidence interval estimates of parameters convey more information to
the reader than do simple point estimates. Univariate confidence inter-
vals for several parameters, however, do not take into account correlations
among the estimators of the parameters. Furthermore, the individual confi-
dence coefficients do not reflect the overall degree of confidence in the joint
statements. Joint confidence regions address these two points. Univariate
confidence interval estimates are discussed briefly before proceeding to a
discussion of joint confidence regions.

4.6.1 Univariate Confidence Intervals

If ε ∼ N(0, Iσ2), then β̂ and Ŷ have multivariate normal distributions Confidence
Intervals for βj(see equation 3.37). With normality, the classical (1 − α)100% confidence
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interval estimate of each βj is

β̂j ± t(α/2,ν)s(β̂j), j = 0, . . . , p, (4.54)

where t(α/2,ν) is the value of the Student’s t-distribution, with ν degrees of
freedom, that puts α/2 probability in the upper tail. [In the usual multiple
regression problem, ν = (n−p′).] The standard error of β̂j is s(β̂j) =

√
cjjs2

where s2 is estimated with ν degrees of freedom and cjj is the (j + 1)th
diagonal element from (X ′X)−1.
Similarly, the (1 − α)100% confidence interval estimate of the mean of Confidence

Interval for
E(Y0)

Y for a particular choice of values for the independent variables, say x′
0 =

( 1 X01 · · · X0p ), is

Ŷ0 ± t(α/2,ν)s(Ŷ0), (4.55)

where Ŷ0 = x′
0β̂; s(Ŷ0) =

√
x′

0(X
′X)−1x0s2, in general, or s(Ŷ0) =

√
viis2

if x′
0 corresponds to the ith row of X; vii is the ith diagonal element in P ;

t(α/2,ν) is as defined for equation 4.54.
A (1−α)100% prediction interval of Y0 = x′

0β + ε, for a particular choice Prediction
Interval for Y0of values of the independent variables, say x′

0 = ( 1 X01 · · · X0p ) is

Ŷ0 ± t(α/2,ν)s(Y0 − Ŷ0), (4.56)

where Ŷ0 = x′
0β̂ and s(Y0 − Ŷ0) =

√
s2[1 + x′

0(X
′X)−1x0].

The univariate confidence intervals are illustrated with the oxygen uptake Example 4.11
example (see Example 4.8). s2 = 7.4276 was estimated with 26 degrees of
freedom. The value of Student’s t for α = .05 and 26 degrees of freedom is
t(.025,26) = 2.056. The point estimates of the parameters and the estimated
variance-covariance matrix of β̂ were

β̂
′
= ( 84.2690 −3.0698 .0080 −.1167 .0852 )

and

s2(β̂) = (X ′X)−1s2

=


129.4119 −1.185591 .053980 −.104321 −.579099

−1.185591 .175928 −.012602 −.007318 .007043
.053980 −.012602 .005775 −.000694 −.000634

−.104321 −.007318 −.000694 .004032 −.002646
−.579099 .007043 −.000634 −.002646 .005616

 .

The square root of the (j + 1)st diagonal element gives s(β̂j). If d̂ is
defined as the column vector of s(β̂j), the univariate 95% confidence interval
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estimates can be computed as

CL(β̂) = [β̂ − t(α/2,ν)d̂ β̂ + t(α/2,ν)d̂]

=


60.880 107.658
−3.932 −2.207
−.148 .164
−.247 .014
−.069 .239

 ,
where the two columns give the lower and upper limits, respectively, for
the βj in the same order as listed in β.

4.6.2 Simultaneous Confidence Statements
For the classical univariate confidence intervals, the confidence coefficient
(1−α) = .95 applies to each confidence statement. The level of confidence
associated with the statement that all five intervals simultaneously contain
their respective parameters is much lower. If the five intervals were sta-
tistically independent, which they are not, the overall or joint confidence
coefficient would be only (1− α)5 = .77.
There are two procedures that keep the joint confidence coefficient for
several simultaneous statements near a prechosen level (1−α). The oldest
and simplest procedure, commonly called the Bonferroni method, con-
structs the individual confidence intervals as given in equations 4.54 and
4.55, but uses α∗ = α/k where k is the number of simultaneous intervals
or statements. That is, in equation 4.54, t(α/2,ν) is replaced with t(α/2k,ν).
This procedure ensures that the true joint confidence coefficient for the k
simultaneous statements is at least (1− α).
The Bonferroni simultaneous confidence intervals for the p′ parameters
in β are given by

β̂j ± t(α/2p′,ν)s(β̂j). (4.57)

This method is particularly suitable for obtaining simultaneous confidence
intervals for k prespecified (prior to analyzing the data) parameters or lin-
ear combinations of parameters. When k is small, generally speaking, the
Bonferroni simultaneous confidence intervals are not very wide. However, if
k is large, the Bonferroni intervals tend to be wide (conservative) and the
simultaneous coverage may be much larger than the specified confidence
level (1 − α). For example, if we are interested in obtaining simultaneous
confidence intervals of all pairwise differences of p parameters (e.g., treat-
ment means), then k is p(p+ 1)/2 which is large even for moderate values
of p. The Bonferroni method is not suitable for obtaining simultaneous
confidence intervals for all linear combinations. In this case, k is infinity
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and the Bonferroni intervals would be the entire space. For example, in a
simple linear regression, if we wish to compute a confidence band on the
entire regression line, then the Bonferroni simultaneous band would be the
entire space.
The second procedure applies the general approach developed by Scheffé Scheffé’s

Method(1953). Scheffé’s method provides simultaneous confidence statements for
all linear combinations of a set of parameters in a d-dimensional subspace of
the p′-dimensional parameter space. The Scheffé joint confidence intervals
for the p′ parameters in β and the means of Y , E(Yi), are obtained from
equations 4.54 and 4.55 by replacing t(α/2,ν) with [p′F(α,p′,ν)]1/2. (If only
a subset of d linearly independent parameters βj is of interest, t(α/2,ν) is
replaced with [dF(α,d,ν)]1/2.) That is,

β̂j ± (p′F(α,p′,ν))1/2s(β̂j) (4.58)

Ŷ0 ± (p′F(α,p′,ν))1/2s(Ŷ0). (4.59)

This method provides simultaneous statements for all linear combinations
of the set of parameters. As with the Bonferroni intervals, the joint confi-
dence coefficient for the Scheffé intervals is at least (1 − α). That is, the
confidence coefficient of (1−α) applies to all confidence statements on the
βj , the E(Yi), plus all other linear functions of βj of interest. Thus , equa-
tion 4.59 can be used to establish a confidence band on the entire regression
surface by computing Scheffé confidence intervals for E(Y0) for all values
of the independent variables in the region of interest. The confidence band
for the simple linear regression case was originally developed by Working
and Hotelling (1929) and frequently carries their names.
The reader is referred to Miller (1981) for more complete presentations on
Bonferroni and Scheffé methods. Since the Scheffé method provides simul-
taneous confidence statements on all linear functions of a set of parameters,
the Scheffé intervals will tend to be longer than Bonferroni intervals, partic-
ularly when a small number of simultaneous statements is involved (Miller,
1981). One would choose the method that gave the shorter intervals for the
particular application.

The oxygen uptake model of Example 4.8 has p′ = 5 parameters and Example 4.12
ν = 26 degrees of freedom for s2. In order to attain an overall confidence
coefficient no smaller than (1−α) = .95 with the Bonferroni method, α∗ =
.05/5 = .01 would be used, for which t(.01/2,26) = 2.779. Using this value
of t in equation 4.54 gives the Bonferroni simultaneous confidence intervals
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with an overall confidence coefficient at least as large as (1− α) = .95:

CLB(β̂) =


52.655 115.883
−4.235 −1.904
−.203 −.219
−.293 .060
−.123 .293

 .
The Scheffé simultaneous intervals for the p′ = 5 parameters in β are
obtained by using [p′F(.05,5,26)]1/2 = [5(2.59)]1/2 = 3.599 in place of t(α/2,ν)
in equation 4.54. The results are

CLS(β̂) =


43.331 125.207
−4.579 −1.560
−.265 .281
−.345 .112
−.184 .355

 .
The Bonferroni and Scheffé simultaneous confidence intervals will always
be wider than the classical univariate confidence intervals in which the
confidence coefficient applies to each interval. In this example, the Scheffé
intervals are wider than the Bonferroni intervals.

The 100(1 − α)% simultaneous confidence intervals for β obtained us-
ing either Bonferroni or Sheffé methods, provide confidence intervals for
each individual parameter βj in such a way that the p′-dimensional region
formed by the intersection of the p′-simultaneous confidence intervals gives
at least a 100(1−α)% joint confidence region for all parameters. The shape
of this joint confidence region is rectangular or cubic. Sheffé also derives
an ellipsoidal 100(1 − α)% joint confidence region for all parameters that
is contained in the boxed region obtained by the Sheffé simultaneous confi-
dence intervals. This distinction is illustrated after joint confidence regions
are defined in the next section.

4.6.3 Joint Confidence Regions
A joint confidence region for all p′ parameters in β is obtained from the
inequality

(β − β̂)′(X ′X)(β − β̂) ≤ p′s2F(α,p′,ν), (4.60)

where F(α,p′,ν) is the value of the F -distribution with p′ and ν degrees of
freedom that leaves probability α in the upper tail; ν is the degrees of
freedom associated with the s2. The left-hand side of this inequality is a
quadratic form in β, because β̂ and X ′X are known quantities computed
from the data. The right-hand side is also known from the data. Solving
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this quadratic form for the boundary of the inequality establishes a p′-
dimensional ellipsoid which is the 100(1 − α)% joint confidence region for
all the parameters in the model. The slope of the axes and eccentricity of
the ellipsoid show the direction and strength, respectively, of correlations
between the estimates of the parameters.
An ellipsoidal confidence region with more than two or three dimen- Interpretation
sions is difficult to interpret. Specific choices of β can be checked, with a
computer program, to determine whether they fall inside or outside the
confidence region. The multidimensional region, however, must be viewed
two or at most three dimensions at a time. One approach to visualizing
the joint confidence region is to evaluate the p′-dimensional joint confi-
dence region for specific values of all but two of the parameters. Each set
of specified values produces an ellipse that is a two-dimensional “slice”
of the multidimensional region. To develop a picture of the entire region,
two-dimensional “slices” can be plotted for several choices of values for the
other parameters.
An alternative to using the p′-dimensional joint confidence region for all
parameters is to construct joint confidence regions for two parameters at
a time ignoring the other (p′ − 2) parameters. The quadratic form for the
joint confidence region for a subset of two parameters is obtained from that
for all parameters, equation 4.60, by

1. replacing (β̂ − β) with the corresponding vectors involving only the
two parameters of interest;

2. replacing (X ′X) with the inverse of the 2 × 2 variance–covariance
matrix for the two parameters; and

3. replacing p′s2F(α,p′,ν) with 2F(α,2,ν). Notice that s2 is not in the sec-
ond quantity since it has been included in the variance–covariance
matrix in step 2.

Thus, if βj and βk are the two distinct parameters of interest, the joint
confidence region is given by[(

β̂j
β̂k

)
−

(
βj
βk

)]′
(s2(β̂j , β̂k))−1

[(
β̂j
β̂k

)
−

(
βj
βk

)]
≤ 2F(α,2,ν). (4.61)

The confidence coefficient (1 − α) applies to the joint statement on the
two parameters being considered at the time. This procedure takes into
account the joint distribution of β̂j and β̂k but ignores the values of the
other parameters. Since this bivariate joint confidence region ignores the
joint distribution of β̂j and β̂k with the other (p′− 2) parameter estimates,
it suffers from the same conceptual problem as the univariate confidence
intervals.
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The oxygen uptake data, given in Example 4.8, are used to illustrate joint Example 4.13
confidence regions, but the model is simplified to include only an intercept
and two independent variables, time to run 1.5 miles (X1) and heart rate
while running (X3). The estimate of β, X ′X, and the variance–covariance
matrix for β̂ for this reduced model are

β̂
′
= ( 93.0888 −3.14019 −0.073510 )

X ′X =

 31 328.17 5, 259
328.17 3531.797 55, 806.29
5, 259 55, 806.29 895, 317


and

s2(β̂) =

 68.04308 −.47166 −.37028
−.47166 .13933 −.00591
−.37028 −.00591 .00255

 .
The residual mean square from this model is s2 = 7.25426 with 28 degrees
of freedom.
The joint confidence region for all three parameters is obtained from
equation 4.60 and is a three-dimensional ellipsoid. The right-hand side of
equation 4.60 is

p′s2F(α,3,28) = 3(7.25426)(2.95)

if α = .05. This choice of α gives a confidence coefficient of .95 that
applies to the joint statement involving all three parameters. The three-
dimensional ellipsoid is portrayed in Figure 4.1 with three two-dimensional
“slices” (solid lines) from the ellipsoid at β0 = 76.59, 93.09, and 109.59.
These choices of β0 correspond to β̂0 and β̂0±2s(β̂0). The “slices” indicate
that the ellipsoid is extremely thin in one plane but only slightly elliptical
in the other, much like a slightly oval pancake. This is reflecting the high
correlation between β̂0 and β̂3 of −.89 and the more moderate correlations
of −.15 and −.31 between β̂0 and β̂1 and between β̂1 and β̂3, respectively.
The bivariate joint confidence region for β̂1 and β̂3 ignoring β̂0, obtained
from equation 4.61, is shown in Figure 4.1 as the ellipse drawn with the
dashed line. The variance–covariance matrix to be inverted in equation 4.61
is the lower-right 2×2 matrix in s2(β̂). The right-hand side of the inequality
is 2F(α,2,28) = 2(3.34) if α = .05. The confidence coefficient of .95 applies
to the joint statement involving only β1 and β3. The negative slope in this
ellipse reflects the moderate negative correlation between β̂1 and β̂3. For
reference, the Bonferroni confidence intervals for β1 and β3, ignoring β0,
using a joint confidence coefficient of .95 are shown by the corners of the
rectangle enclosing the intersection region.
The implications as to what are “acceptable” combinations of values for
the parameters are very different for the two joint confidence regions. The
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FIGURE 4.1. Two-dimensional “slices” of the joint confidence region for the
regression of oxygen uptake on time to run 1.5 miles (X1), and heart rate while
running (X3) (solid ellipses), and the two-dimensional joint confidence region
for β1 and β3 ignoring β0 (dashed ellipse). The intersection of the Bonferroni
univariate confidence intervals is shown as the corners of the rectangle formed by
the intersection .

joint confidence region for all parameters is much more restrictive than
the bivariate joint confidence region or the univariate confidence intervals
would indicate. Allowable combinations of β1 and β3 are very dependent
on choice of β0. Clearly, univariate confidence intervals and joint confidence
regions that do not involve all parameters can be misleading.

The idea of obtaining joint confidence regions in equation 4.60 can also
be extended to obtain joint prediction regions. Let X0 : k × p′ be a
set of k linearly independent vectors of explanatory variables at which we
wish to predict Y 0. That is, we wish to simultaneously predict

Y 0 =X0β + ε0, (4.62)

where ε0 is N(0, σ2Ik) and is assumed to be independent of Y . The best
linear unbiased predictor of Y 0 is

Ŷ 0 =X0β̂, (4.63)

where β̂ = (X ′X)−1X ′Y . Note that the prediction error vector

Y 0 − Ŷ 0 = X0(β − β̂) + ε0
∼ N(0, σ2[Ik +X0(X ′X)−1X ′

0]). (4.64)
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A joint 100(1− α)% prediction region is obtained from the inequality

(Y 0 − Ŷ 0)′[Ik +X0(X ′X)−1X ′
0]

−1(Y 0 − Ŷ 0) ≤ ks2F(α,k,ν), (4.65)

where ν is the degrees of freedom associated with s2. The Bonferroni pre-
diction intervals are given by

(Y 0 − Ŷ 0)± t(α/2k,ν)d s, (4.66)

where d is a vector of the diagonal elements of [Ik+X0(X ′X)−1X ′
0]. The

corresponding Sheffé prediction intervals are given by

(Y 0 − Ŷ 0)± [kF(α,k,ν)]1/2d s. (4.67)

4.7 Estimation of Pure Error

The residual mean square has been used, until now, as the estimate of
σ2. One of the problems with this procedure is the dependence of the
residual mean square on the model being fit. Any inadequacies in the model,
important independent variables omitted, or an incorrect form of the model
will cause the residual mean square to overestimate σ2. An estimate of σ2

is needed that is not as dependent on the choice of model being fit at the
time.
The variance σ2 is the variance of the εi about zero or, equivalently, Definition of

Pure Errorthe variance of Yi about their true means E(Yi). The concept of modeling
Yi assumes that E(Yi) is determined by some unknown function of the
relevant independent variables. Let x′

i be the row vector of values of all
relevant independent variables for the ith observation. Then, all Yi that
have the same x′

i also will have the same true mean regardless of whether
the correct model is known. Hence, σ2 is by definition the variance among
statistically independent observations that have the same x′

i. Such repeated
observations are called true replicates. The sample variance of the Yi
among true replicates provides a direct estimate of σ2 that is independent
of the choice of model. (It is, however, dependent on having identified
and taken data on all relevant independent variables.) The estimate of
σ2 obtained from true replication is called pure error. When several sets
of replicate observations are available, the best estimate of σ2 is obtained
by pooling all estimates.
True replication is almost always included in the design of controlled
experiments. For example, the estimate of experimental error from the
completely random design or the randomized complete block design when
there is no block-by-treatment interaction is the estimate of pure error.
Observational studies, on the other hand, seldom have true replication
since they impose no control over the independent variables. Then, true
replication occurs only by chance and is very unlikely if several independent
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TABLE 4.8. Replicate yield data for soybeans exposed to chronic levels of ozone
and estimates of pure error. (Data courtesy A. S. Heagle, North Carolina State
University.)

Ozone Level (ppm)
.02 .07 .11 .15
238.3 235.1 236.2 178.7
270.7 228.9 208.0 186.0
210.0 236.2 243.5 206.9
248.7 255.0 233.0 215.3
242.4 228.9 233.0 219.5

Y i 242.02 236.82 230.74 201.28
s2i 476.61 114.83 179.99 325.86

variables are involved. In addition, apparent replicates in the observational
data may not, in fact, be true replicates due to important variables having
been overlooked. Pseudoreplication or near replication is sometimes used
with observational data to estimate σ2. These are sets of observations in
which the values of the independent variables fall within a relatively narrow
range.

To illustrate the estimation of pure error, the ozone example used in Example 4.14
Example 1.1 is used. The four observations used in that section were the
means of five replicate experimental units at each level of ozone from a
completely random experimental design. The full data set, the treatment
means, and the estimates of pure error within each ozone level are given in
Table 4.8.
Each s2 is estimated from the variance among the five observations for
each ozone level, with 4 degrees of freedom, and is an unbiased estimate of
σ2. Since each is the variation of Yij about Y i for a given level of ozone, the
estimates are in no way affected by the form of the response model that
might be chosen to represent the response of yield to ozone. Figure 4.2
illustrates that the variation among the replicate observations for a given
level of ozone is unaffected by the form of the regression line fit to the data.
The best estimate of σ2 is the pooled estimate

s2 =
∑
(ni − 1)s2i∑
(ni − 1) =

4(476.61) + · · ·+ 4(325.86)
16

= 274.32

with 16 degrees of freedom, where ni = 4, i =1, 2, 3, 4.
The analysis of variance for the completely random design is given (Ta-
ble 4.9) to emphasize that s2 is the experimental error from that analysis.
The previous regression analysis (Section 1.4, Tables 1.3 and 1.4) used the
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FIGURE 4.2. Comparison of “pure error” and “deviations from regression” using
the data on soybean response to ozone.

TABLE 4.9. The analysis of variance for the completely random experimental
design for the yield response of soybean to ozone.

Source d.f. SS MS
Total(corr) 19 9366.61
Treatments 3 4977.47 1659.16
Regression 1 3956.31 3956.31
Lack of Fit 2 1021.16 510.58
Pure Error 16 4389.14 274.32
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treatment means (of r = 5 observations). Thus, the sums of squares from
that analysis have to be multiplied by r = 5 to put them on a “per ob-
servation” basis. That analysis of variance, Table 1.4, partitioned the sum
of squares among the four treatment means into 1 degree of freedom for
the linear regression of Y on ozone level and 2 degrees of freedom for lack
of fit of linear regression. The middle three lines of Table 4.9 contain the
results from the original analysis multiplied by r = 5. The numbers differ
slightly due to rounding the original means to whole numbers.

The expectations of the mean squares in the analysis of variance show
what function of the parameters each mean square is estimating. The mean
square expectations for the critical lines in Table 4.9 are

E [MS(Regr)] = σ2 + β2
1

∑
x2
i ,

E [MS(Lack of fit)] = σ2 + (Model bias)2, (4.68)
E [MS(Pure error)] = σ2.

Recall that
∑
x2
i is used to indicate the corrected sum of squares of the

independent variable.
The square on “model bias” emphasizes that any inadequacies in the
model cause this mean square to be larger, in expectation, than σ2. Thus,
the “lack of fit” mean square is an unbiased estimate of σ2 only if the linear
model is correct. Otherwise, it is biased upwards. On the other hand, the
“pure error” estimate of σ2 obtained from the replication in the experiment
is unbiased regardless of whether the assumed linear relationship is correct.
The mean square expectation of MS(Regr) is shown as if the linear model
relating yield to ozone level is correct. If the model is not correct (for exam-
ple, if the treatment differences are not due solely to ozone differences), the
second term in E [MS(Regr)] will include contributions from all variables
that are correlated with ozone levels. This is the case even if the variables
have not been identified. The advantage of controlled experiments such as
this ozone study is that amount of ozone is, presumably, the only variable
changing consistently over the ozone treatments. Random assignment of
treatments to the experimental units should destroy any correlation be-
tween ozone level and any incidental environmenal variable. Thus, treat-
ment differences in this controlled study can be attributed to the effects of
ozone and E [MS(Regr)] should not be biased by the effects of any uncon-
trolled variables. One should not overlook, however, this potential for bias
in the regression sum of squares, particularly when observational data are
being analyzed.
The independent estimate of pure error, experimental error, provides the Adequacy of

the Modelbasis for two important tests of significance. The adequacy of the model
can be checked by testing the null hypothesis that “model bias” is zero. Any
inadequacies in the linear model will make this mean square larger than
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σ2 on the average. Such inadequacies could include omitted independent
variables as well as any curvilinear response to ozone.

In the ozone example, Example 4.14, the test of the adequacy of the Example 4.15
linear model is

F =
MS(Lack of fit)
MS(Pure error)

=
510.58
274.32

= 1.86,

which, if the model is correct, is distributed as F with 2 and 16 degrees of
freedom. Comparison against the critical value F(.05,2,16) = 3.63 shows this
to be nonsignificant, indicating that there is no evidence in these data that
the linear model is inadequate for representing the response of soybean to
ozone.

The second hypothesis of interest is H0 : β1 = 0 against the alternative H0 : β1 = 0
hypothesis Ha : β1 �= 0. If the fitted model is not adequate, then the
parameter β1 may not have the same interpretation as when the model is
adequate. Therefore, when the model is not adequate, it does not make
sense to test H0 : β1 = 0.
Suppose that the fitted model is adequate and we are interested in testing

H0 : β1 = 0. The ratio of regression mean square to an estimate of σ2

provides a test of this hypothesis. The mean square expectations show that
both mean squares estimate σ2 when the null hypothesis is true and that
the numerator becomes increasingly larger as β1 deviates from zero. One
estimate of σ2 is, again, the pure error estimate or experimental error.

For the ozone example, a test statistic for testing H0 : β1 = 0 is Example 4.16

F =
MS(Regr)

MS(Pure error)
=
3, 956.31
274.32

= 14.42.

Comparing this to the critical value for α = .01, F(.01,1,16) = 8.53, indicates
that the null hypothesis that β1 = 0 should be rejected. This conclusion
differs from that of the analysis in Chapter 1 because σ2 is now estimated
with many more degrees of freedom. As a result, the test has more power
for detecting departures from the null hypothesis.

Note that, if the model is truly adequate, then the mean square for lack of
fit is also an estimate of σ2. A pooled estimate of σ2 is given by the sum of
SS(Lack of fit) and SS(Pure error) divided by the sum of the corresponding
degrees of freedom.

For the ozone example, consider the analysis of variance given in Ta- Example 4.17
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TABLE 4.10. The analysis of variance for the ozone data.
Source d.f. SS MS

Total (corr) 19 9,366.61
Regression 1 3,956.31 3,956.31
Error 18 5,410.30 300.57
Lack of Fit 2 1,021.16 510.58
Pure Error 16 4,389.14 274.32

ble 4.10. Based on the pooled error, a test statistic for testing H0 : β1 = 0
is

F =
MS(Regression)
MS(Error)

=
3, 956.31
300.57

= 13.16.

Comparing this to the critical value for α = .01, F(.01,1,18) = 8.29, indicates
that H0 : β1 = 0 should be rejected. This F -statistic coincides with the
F -statistic given in Chapter 1 for testing H0 : β1 = 0 in the model Yi =
β0+β1Xi+ εi when all of the data in Table 4.8 (instead of only the means,
Table 1.1) are used. This test statistic is more powerful than that based
on the MS(Pure error). However, if the fitted model is inadequate, then
MS(Error) is no longer an unbiased estimate of σ2, whereas MS(Pure error)
is even if the fitted model is not adequate.
Finally, a composite test for H0 : β1 = 0 and that the model is adequate
is given by

F =
[SS(Regression) + SS(Lack of fit)]/(1 + 2)

MS(Pure Error)

=
(3, 956.31 + 1, 021.16)/3

274.32
=
1659.16
274.32

= 6.05.

Comparing this to the critical value for α = .01, F(.01,3,16) = 3.24, indicates
that either the model is not adequate or β1 is not zero. This is equivalent
to testing the null hypothesis of no treatment effects in the analysis of
variance which is discussed in Chapter 9.

In summary, multiple, statistically independent observations on the de-
pendent variable for given values of all relevant independent variables is
called true replication. True replication provides for an unbiased estimate
of σ2 that is not dependent on the model being used. The estimate of pure
error provides a basis for testing the adequacy of the model. True replica-
tion should be designed into all studies where possible and the pure error
estimate of σ2, rather than a residual mean square estimate, used for tests
of significance and standard errors.
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4.8 Exercises

4.1. A dependent variable Y (20 × 1) was regressed onto 3 independent
variables plus an intercept (so that X was of dimension 20× 4). The
following matrices were computed.

X ′X =


20 0 0 0
0 250 401 0
0 401 1, 013 0
0 0 0 128

 X ′Y =


1, 900.00
970.45
1, 674.41
−396.80


Y ′Y = 185.883.

(a) Compute β̂ and write the regression equation.

(b) Compute the analysis of variance of Y . Partition the sum of
squares due to the model into a part due to the mean and a
part due to regression on the Xs after adjustment for the mean.
Summarize the results, including degrees of freedom and mean
squares, in an analysis of variance table.

(c) Compute the estimate of σ2 and the standard error for each
regression coefficient. Compute the covariance between β̂1 and
β̂2, Cov(β̂1, β̂2). Compute the covariance between β̂1 and β̂3,
Cov(β̂1, β̂3).

(d) Drop X3 from the model. Reconstruct X ′X and X ′Y for this
model without X3 and repeat Questions (a) and (b). Put X3
back in the model but drop X2 and repeat (a) and (b).

(i) Which of the two independent variables X2 or X3 made the
greater contribution to Y in the presence of the remaining
Xs; that is, compare R(β2|β0, β1, β3) and R(β3|β0, β1, β2).

(ii) Explain why β̂1 changed in value when X2 was dropped but
not when X3 was dropped.

(iii) Explain the differences in meaning of β1 in the three models.

(e) From inspection of X ′X how can you tell that X1, X2, and X3
were expressed as deviations from their respective means? Would
(X ′X)−1 have been easier or harder to obtain if the original Xs
(without subtraction of their means) had been used? Explain.

4.2. A regression analysis led to the following P =X(X ′X)−1X ′ matrix
and estimate of σ2.

1
70


62 18 −6 −10 6
18 26 24 12 −10
−6 24 34 24 −6
−10 12 24 26 18
6 −10 −6 18 62

 , s2 = .06.
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(a) How many observations were in the data set?
(b) How many linearly independent columns are inX—that is, what
is the rank of X? How many degrees of freedom are associated
with the model sum of squares? Assuming the model contained
an intercept, how many degrees of freedom are associated with
the regression sum of squares?

(c) Suppose Y = ( 82 80 75 67 55 )′. Compute the estimated
mean Ŷ1 of Y corresponding to the first observation. Compute
s2(Ŷ1). Find the residual e1 for the first observation and com-
pute its variance. For which data point will Ŷi have the smallest
variance? For which data point will ei have the largest variance?

4.3. The following (X ′X)−1, β̂, and residual sum of squares were ob-
tained from the regression of plant dry weight (grams) from n = 7
experimental fields on percent soil organic matter (X1) and kilograms
of supplemental nitrogen per 1000 m2 (X2). The regression model in-
cluded an intercept.

(X ′X)−1 =

 1.7995972 −.0685472 −.2531648
−.0685472 .0100774 −.0010661
−.2531648 −.0010661 .0570789



β̂ =

 51.56971.4974
6.7233

 , SS(Res) = 27.5808.

(a) Give the regression equation and interpret each regression coef-
ficient. Give the units of measure of each regression coefficient.

(b) How many degrees of freedom does SS(Res) have? Compute s2,
the variance of β̂1, and the covariance of β̂1 and β̂2.

(c) Determine the 95% univariate confidence interval estimates of
β1 and β2. Compute the Bonferroni and the Scheffé confidence
intervals for β1 and β2 using a joint confidence coefficient of .95.

(d) Suppose previous experience has led you to believe that one
percentage point increase in organic matter is equivalent to .5
kilogram/1,000 m2 of supplemental nitrogen in dry matter pro-
duction. Translate this statement into a null hypothesis on the
regression coefficients. Use a t-test to test this null hypothesis
against the alternative hypothesis that supplemental nitrogen is
more effective than this statement would imply.

(e) Define K ′ and m for the general linear hypothesis H0 :K ′β −
m = 0 for testing H0 : 2β1 = β2. Compute Q and complete
the test of significance using the F -test. What is the alternative
hypothesis for this test?
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(f) Give the reduced model you obtain if you impose the null hy-
pothesis in (e) on the model. Suppose this reduced model gave a
SS(Res) = 164.3325. Use this result to complete the test of the
hypothesis.

4.4. The following analysis of variance summarizes the regression of Y on
two independent variables plus an intercept.

Source d.f. SS MS
Total( corr) 26 1,211
Regression 2 1,055 527.5
Residual 24 156 6.5

Variable Sequential SS Partial SS
X1 263 223
X2 792 792

(a) Your estimate of β1 is β̂1 = 2.996. A friend of yours regressed Y
on X1 and found β̂1 = 3.24. Explain the difference in these two
estimates.

(b) Label each sequential and partial sum of squares using the R-
notation. Explain what R(β1|β0) measures.

(c) Compute R(β2|β0) and explain what it measures.

(d) What is the regression sum of squares due to X1 after adjust-
ment for X2?

(e) Make a test of significance (use α = .05) to determine if X1
should be retained in the model with X2.

(f) The original data contained several sets of observations having
the same values of X1 and X2. The pooled variance from these
replicate observations was s2 = 3.8 with eight degrees of free-
dom. With this information, rewrite the analysis of variance to
show the partitions of the “residual” sum of squares into “pure
error” and “lack of fit.” Make a test of significance to determine
whether the model using X1 and X2 is adequate.

4.5. The accompanying table presents data on one dependent variable and
five independent variables.
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Y X1 X2 X3 X4 X5

6.68 32.6 4.78 1,092 293.09 17.1
6.31 33.4 4.62 1,279 252.18 14.0
7.13 33.2 3.72 511 109.31 12.7
5.81 31.2 3.29 518 131.63 25.7
5.68 31.0 3.25 582 124.50 24.3
7.66 31.8 7.35 509 95.19 .3
7.30 26.4 4.92 942 173.25 21.1
6.19 26.2 4.02 952 172.21 26.1
7.31 26.6 5.47 792 142.34 19.8

(a) Give the linear model in matrix form for regressing Y on the
five independent variables. Completely define each matrix and
give its order and rank.

(b) The following quadratic forms were computed.

Y ′PY = 404.532 Y ′Y = 405.012
Y ′(I − P )Y = 0.480 Y ′(I − J/n)Y = 4.078
Y ′(P − J/n)Y = 3.598 Y ′(J ′/n)Y = 400.934.

Use a matrix algebra computer program to reproduce each of
these sums of squares. Use these results to give the complete
analysis of variance summary.

(c) The partial sums of squares forX1,X2,X3,X4, andX5 are .895,
.238, .270, .337, and .922, respectively. Give the R-notation that
describes the partial sum of squares for X2. Use a matrix algebra
program to verify the partial sum of squares for X2.

(d) Assume that none of the partial sums of squares for X2, X3,
and X4 is significant and that the partial sums of squares for
X1 and X5 are significant (at α = .05). Indicate whether each
of the following statements is valid based on these results. If it
is not a valid statement, explain why.

(i) X1 and X5 are important causal variables whereas X2, X3,
and X4 are not.

(ii) X2, X3, and X4 can be dropped from the model with no
meaningful loss in predictability of Y .

(iii) There is no need for all five independent variables to be
retained in the model.

4.6. This exercise continues with the analysis of the peak water flow data
used in Exercise 3.12. In that exercise, several regressions were run to
relate Y = ln(Q0/Qp) to three characteristics of the watersheds and
a measure of storm intensity. Y measures the discrepancy between
peak water flow predicted from a simulation model (Qp) and observed
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peak water flow (Q0). The four independent variables are described
in Exercise 3.12.

(a) The first model used an intercept and all four independent vari-
ables.

(i) Compute SS(Model), SS(Regr), and SS(Res) for this model
and summarize the results in the analysis of variance table.
Show degrees of freedom and mean squares.

(ii) Obtain the partial sum of squares for each independent vari-
able and the sequential sums of squares for the variables
added to the model in the order X1, X4, X2, X3.

(iii) Use tests of significance (α = .05) to determine which partial
regression coefficients are different from zero. What do these
tests suggest as to which variables might be dropped from
the model?

(iv) Construct a test of the null hypothesis H0 : β0 = 0 using
the general linear hypothesis. What do you conclude from
this test?

(b) The second model used the four independent variables but forced
the intercept to be zero.

(i) Compute SS(Model), SS(Res), and the partial and sequen-
tial sums of squares for this model. Summarize the results
in the analysis of variance table.

(ii) Use the difference in SS(Res) between this model with no
intercept and the previous model with an intercept to test
H0 : β0 = 0. Compare the result with that obtained under
(iv) in Part (a).

(iii) Use tests of significance to determine which partial regres-
sion coefficients in this model are different from zero. What
do these tests tell you in terms of simplifying the model?

(c) The third model used the zero-intercept model and only X1 and
X4.

(i) Use the results from this model and the zero-intercept model
in Part (b) to test the composite null hypothesis that β2 and
β3 are both zero.

(ii) Use the general linear hypothesis to construct the test of the
composite null hypothesis that β2 and β3 in the model in
Part (b) are both zero. DefineK ′ andm for this hypothesis,
compute Q, and complete the test of significance. Compare
these two tests.

4.7. Use the data on annual catch of Gulf Menhaden, number of fishing
vessels, and fishing effort given in Exercise 3.11.
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(a) Complete the analysis of variance for the regression of catch
(Y ) on fishing effort (X1) and number of vessels (X2) with an
intercept in the model. Determine the partial sums of squares for
each independent variable. Estimate the standard errors for the
regression coefficients and construct the Bonferroni confidence
intervals for each using a joint confidence coefficient of 95%.
Use the regression equation to predict the “catch” if number of
vessels is limited to X2 = 70 and fishing effort is restricted to
X1 = 400. Compute the variance of this prediction and the 95%
confidence interval estimate of the prediction.

(b) Test the hypothesis that the variable “number of vessels” does
not add significantly to the explanation of variation in “catch”
provided by “fishing effort” alone (use α = .05). Test the hy-
pothesis that “fishing effort” does not add significantly to the
explanation provided by “number of vessels” alone.

(c) On the basis of the tests in Part (b) would you keep both X1 and
X2 in the model, or would you eliminate one from the model?
If one should be eliminated, which would it be? Does the re-
maining variable make a significant contribution to explaining
the variation in “catch”?

(d) Suppose consideration is being given to controlling the annual
catch by limiting either the number of fishing vessels or the total
fishing effort. What is your recommendation and why?

4.8. This exercise uses the data in Exercise 3.14 relating Y = ln(days survival)
for colon cancer patients receiving supplemental ascorbate to the vari-
ables sex (X1), age of patient (X2), and ln(average survival of control
group) (X3).

(a) Complete the analysis of variance for the model using all three
variables plus an intercept. Compute the partial sum of squares
for each independent variable using the formula β̂2

j /cjj . Demon-
strate that each is the same as the sum of squares one obtains
by computing Q for the general linear hypothesis that the cor-
responding βj is zero. Compute the standard error for each re-
gression coefficient and the 95% confidence interval estimates.

(b) Does information on the length of survival time of the control
group (X3) help explain the variation in Y ? Support your answer
with an appropriate test of significance.

(c) Test the null hypothesis that “sex of patient” has no effect on
survival beyond that accounted for by “age” and survival of the
control group. Interpret the results.

(d) Test the null hypothesis that “age of patient” has no effect on
survival beyond that accounted for by “sex” and survival time
of the control group. Intrepret the results.
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(e) Test the composite hypothesis that β1 = β2 = β3 = 0. From
these results, what do you conclude about the effect of sex and
age of patient on the mean survival time of patients in this study
receiving supplemental ascorbate? With the information avail-
able in these data, what would you use as the best estimate of
the mean ln(days survival)?

4.9. The Lesser–Unsworth data (Exercise 1.19) was used in Exercise 3.9
to estimate a bivariate regression equation relating seed weight to
cumulative solar radiation and level of ozone pollution. This exercise
continues with the analysis of that model using the centered indepen-
dent variables.

(a) The more complex model used in Exercise 3.9 included the in-
dependent variables cumulative solar radiation, ozone level, and
the product of cumulative solar radiation and ozone level (plus
an intercept).

(i) Construct the analysis of variance for this model showing
sums of squares, degrees of freedom, and mean squares.
What is the estimate of σ2?

(ii) Compute the standard errors for each regression coefficient.
Use a joint confidence coefficient of 90% and construct the
Bonferroni confidence intervals for the four regression co-
efficients. Use the confidence intervals to draw conclusions
about which regression coefficients are clearly different from
zero.

(iii) Construct a test of the null hypothesis that the regression
coefficient for the product term is zero (use α = .05). Does
your conclusion from this test agree with your conclusion
based on the Bonferroni confidence intervals? Explain why
they need not agree.

(b) The simpler model in Exercise 3.9 did not use the product term.
Construct the analysis of variance for the model using only the
two independent variables cumulative solar radiation and ozone
level.

(i) Use the residual sums of squares from the two analyses to
test the null hypothesis that the regression coefficient on the
product term is zero (use α = .05). Does your conclusion
agree with that obtained in Part (a)?

(ii) Compute the standard errors of the regression coefficients
for this reduced model. Explain why they differ from those
computed in Part (a).

(iii) Compute the estimated mean seed weight for the mean level
of cumulative solar radiation and .025 ppm ozone. Compute
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the estimated mean seed weight for the mean level of radi-
ation and .07 ppm ozone. Use these two results to compute
the estimated mean loss in seed weight if ozone changes
from .025 to .07 ppm. Define a matrix of coefficients K ′

such that these three linear functions of β̂ can be written as
K ′β̂. Use this matrix form to compute their variances and
covariances.

(iv) Compute and plot the 90% joint confidence region for β1
and β2 ignoring β0. (This joint confidence region will be an
ellipse in the two dimensions β1 and β2.)

4.10. This is a continuation of Exercise 3.10 using the number of hospital
days for smokers from Exercise 1.21. The dependent variable is Y =
ln(number of hospital days for smokers). The independent variables
are X1 = (number of cigarettes)2 and X2 = ln(number of hospi-
tal days for nonsmokers). Note that X1 is the square of number of
cigarettes.

(a) Plot Y against number of cigarettes and against the square of
number of cigarettes. Do the plots provide any indication of why
the square of number of cigarettes was chosen as the independent
variable?

(b) Complete the analysis of variance for the regression of Y on X1
and X2. Does the information on number of hospital days for
nonsmokers help explain the variation in number of hospital days
for smokers? Make an appropriate test of significance to support
your statement. Is Y, after adjustment for number of hospital
days for nonsmokers, related to X1? Make a test of significance
to support your statement. Are you willing to conclude from
these data that number of cigarettes smoked has a direct effect
on the average number of hospital days?

(c) It is logical in this problem to expect the number of hospital days
for smokers to approach that of nonsmokers as the number of
cigarettes smoked goes to zero. This implies that the intercept in
this model might be expected to be zero. One might also expect
β2 to be equal to one. (Explain why.) Set up the general linear
hypothesis for testing the composite null hypothesis that β0 = 0
and β2 = 1.0. Complete the test of significance and state your
conclusions.

(d) Construct the reduced model implied by the composite null hy-
pothesis under (c). Compute the regression for this reduced
model, obtain the residual sum of squares, and use the differ-
ence in residual sums of squares for the full and reduced models
to test the composite null hypothesis. Do you obtain the same
result as in (c)?
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(e) Based on the preceding tests of significance, decide which model
you feel is appropriate. State the regression equation for your
adopted model. Include standard errors on the regression coef-
ficients.

4.11. You are given the following matrices computed for a regression anal-
ysis.

X ′X =


9 136 269 260
136 2114 4176 3583
269 4176 8257 7104
260 3583 7104 12276

 X ′Y =


45
648
1, 283
1, 821



(X ′X)−1 =


9.610932 .0085878 −.2791475 −.0445217
.0085878 .5099641 −.2588636 .0007765

−.2791475 −.2588636 .1395 .0007396
−.0445217 .0007765 .0007396 .0003698



(X ′X)−1X ′Y =


−1.163461
.135270
.019950
.121954

 , Y ′Y = 285.

(a) Use the preceding results to complete the analysis of variance
table.

(b) Give the computed regression equation and the standard errors
of the regression coefficients.

(c) Compare each estimated regression coefficient to its standard
error and use the t-test to test the simple hypothesis that each
regression coefficient is equal to zero. State your conclusions (use
α = .05).

(d) Define the K ′ andm for the composite hypothesis that β0 = 0,
β1 = β3, and β2 = 0. Give the rank of K ′ and the degrees of
freedom associated with this test.

(e) Give the reduced model for the composite hypothesis in Part
(d).

4.12. You are given the following sequential and partial sums of squares
from a regression analysis.

R(β3|β0) = 56.9669 R(β3|β0 β1 β2) = 40.2204
R(β1|β0 β3) = 1.0027 R(β1|β0 β2 β3) = .0359

R(β2|β0 β1 β3) = .0029 R(β2|β0 β1 β3) = .0029.
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Each sequential and partial sum of squares can be used for the nu-
merator of an F -test. Clearly state the null hypothesis being tested
in each case.

4.13. A regression analysis using an intercept and one independent variable
gave

Ŷi = 1.841246 + .10934Xi1.

The variance–covariance matrix for β̂ was

s2(β̂) =
[
.1240363 −.002627
−.002627 .0000909

]
.

(a) Compute the 95% confidence interval estimate of β̂1. The esti-
mate of σ2 used to compute s2(β̂1) was s2 = 1.6360, the residual
mean square from the model using only X0 and X1. The data
had n = 34 observations.

(b) Compute Ŷ for X1 = 4. Compute the variance of Ŷ if it is being
used to estimate the mean of Y when X1 = 4. Compute the
variance of Ŷ if it is being used to predict a future observation
at X1 = 4.

4.14. You are given the following matrix of simple (product moment) cor-
relations among a dependent variable Y (first variable) and three
independent variables.

1.0 −.538 −.543 .974
−.538 1.0 .983 −.653
−.543 .983 1.0 −.656
.974 −.653 −.656 1.0

 .
(a) From inspection of the correlation matrix, which independent
variable would account for the greatest variability in Y ? What
proportion of the corrected sum of squares in Y would be ac-
counted for by this variable? If Y were regressed on all three
independent variables (plus an intercept), would the coefficient
of determination for the multiple regression be smaller or larger
than this proportion?

(b) Inspection of the three pairwise correlations among the X vari-
ables suggests that at least one of the independent variables will
not be useful for the regression of Y on the Xs. Explain exactly
the basis for this statement and why it has this implication.

4.15. Let X be an n× p′ matrix with rank p′. Suppose the first column of
X is 1, a column of 1s. Then, show that
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(a) P1 = 1.

(b) (J/n), P − J/n, and (I −P ) are idempotent and pairwise or-
thogonal, where P = X(X ′X)−1X ′ and J/n is given in equa-
tion 4.22.

4.16. Let X be a full rank n× p′ matrix given in equation 3.2. For J given
in equation 4.22,

(a) show that

(I − J/n)X =


0 x11 x12 · · · x1p
0 x21 x22 · · · x2p
...
...

...
...

0 xn1 xn2 · · · xnp

 ,
where xij = Xij −X .j and X .j = n−1 ∑n

i=1Xij ; and

(b) hence, show that X ′(I − J/n)X has zero in each entry of the
first row and first column.



5
CASE STUDY: FIVE
INDEPENDENT VARIABLES

The last two chapters completed the presentation of
the basic regression results for linear models with any
number of variables.

This chapter demonstrates the application of least squares
regression to a problem involving five independent vari-
ables. The full model is fit and then the model is sim-
plified to a two-variable model that conveys most of the
information on Y.

The basic steps in ordinary regression analysis have now been covered.
This chapter illustrates the application of these methods. Computations
and interpretations of the regression results are emphasized.

5.1 Spartina Biomass Production in the Cape Fear
Estuary

The data considered are part of a larger study conducted by Dr. Rick
Linthurst (1979) at North Carolina State University as his Ph.D. thesis
research. The purpose of his research was to identify the important soil
characteristics influencing aerial biomass production of the marsh grass
Spartina alterniflora in the Cape Fear Estuary of North Carolina.
One phase of Linthurst’s research consisted of sampling three types of Design
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Spartina vegetation (revegetated “dead” areas, “short” Spartina areas, and
“tall” Spartina areas) in each of three locations (Oak Island, Smith Island,
and Snows Marsh). Samples of the soil substrate from 5 random sites within
each location–vegetation type (giving 45 total samples) were analyzed for
14 soil physicochemical characteristics each month for several months. In
addition, above-ground biomass at each sample site was measured each
month. The data used in this case study involve only the September sam-
pling and these five substrate measurements:

X1 = salinity ◦/◦◦(SALINITY )

X2 = acidity as measured in water (pH )

X3 = potassium ppm (K )

X4 = sodium ppm (Na)

X5 = zinc ppm (Zn).

The dependent variable Y is aerial biomass gm−2. The data from the
September sampling for these six variables are given in Table 5.1. The ob-
jective of this phase of the Linthurst research was to identify the substrate Objective
variables showing the stronger relationships to biomass. These variables
would then be used in controlled studies to investigate causal relationships.
The purpose of this case study is to use multiple linear regression to relate
total variability in Spartina biomass production to total variability in the
five substrate variables. For this analysis, total variation among vegetation
types, locations, and samples within vegetation types and locations is be-
ing used. It is left as an exercise for the student to study separately the
relationships shown by the variation among vegetation types and locations
(using the location–vegetation type means) and the relationships shown by
the variation among samples within location–vegetation type combinations.

5.2 Regression Analysis for the Full Model

The initial model assumes that BIOMASS, Y , can be adequately charac- Model
terized by linear relationships with the five independent variables plus an
intercept. Thus, the linear model

Y = Xβ + ε (5.1)

is completely specified by defining Y ,X, and β and stating the appropriate
assumptions about distribution of the random errors ε. Y is the vector of
BIOMASS measurements

Y = ( 676 516 · · · 1, 560 )′ .
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TABLE 5.1. Aerial biomass (BIO) and five physicochemical properties of the sub-
strate (salinity (SAL), pH, K, Na, and Zn) in the Cape Fear Estuary of North
Carolina. (Data used with permission of Dr. R. A. Linthurst.)

Obs. Loc. Type BIO SAL pH K Na Zn
1 OI DVEG 676 33 5.00 1,441.67 35,185.5 16.4524
2 OI DVEG 516 35 4.75 1,299.19 28,170.4 13.9852
3 OI DVEG 1,052 32 4.20 1,154.27 26,455.0 15.3276
4 OI DVEG 868 30 4.40 1,045.15 25,072.9 17.3128
5 OI DVEG 1,008 33 5.55 521.62 31,664.2 22.3312
6 OI SHRT 436 33 5.05 1,273.02 25,491.7 12.2778
7 OI SHRT 544 36 4.25 1,346.35 20,877.3 17.8225
8 OI SHRT 680 30 4.45 1,253.88 25,621.3 14.3516
9 OI SHRT 640 38 4.75 1,242.65 27,587.3 13.6826

10 OI SHRT 492 30 4.60 1,281.95 26,511.7 11.7566
11 OI TALL 984 30 4.10 553.69 7,886.5 9.8820
12 OI TALL 1,400 37 3.45 494.74 14,596.0 16.6752
13 OI TALL 1,276 33 3.45 525.97 9,826.8 12.3730
14 OI TALL 1,736 36 4.10 571.14 11,978.4 9.4058
15 OI TALL 1,004 30 3.50 408.64 10,368.6 14.9302
16 SI DVEG 396 30 3.25 646.65 17,307.4 31.2865
17 SI DVEG 352 27 3.35 514.03 12,822.0 30.1652
18 SI DVEG 328 29 3.20 350.73 8,582.6 28.5901
19 SI DVEG 392 34 3.35 496.29 12,369.5 19.8795
20 SI DVEG 236 36 3.30 580.92 14,731.9 18.5056
21 SI SHRT 392 30 3.25 535.82 15,060.6 22.1344
22 SI SHRT 268 28 3.25 490.34 11,056.3 28.6101
23 SI SHRT 252 31 3.20 552.39 8,118.9 23.1908
24 SI SHRT 236 31 3.20 661.32 13,009.5 24.6917
25 SI SHRT 340 35 3.35 672.15 15,003.7 22.6758
26 SI TALL 2,436 29 7.10 528.65 10,225.0 0.3729
27 SI TALL 2,216 35 7.35 563.13 8,024.2 0.2703
28 SI TALL 2,096 35 7.45 497.96 10,393.0 0.3205
29 SI TALL 1,660 30 7.45 458.38 8,711.6 0.2648
30 SI TALL 2,272 30 7.40 498.25 10,239.6 0.2105
31 SM DVEG 824 26 4.85 936.26 20,436.0 18.9875
32 SM DVEG 1,196 29 4.60 894.79 12,519.9 20.9687
33 SM DVEG 1,960 25 5.20 941.36 18,979.0 23.9841
34 SM DVEG 2,080 26 4.75 1,038.79 22,986.1 19.9727
35 SM DVEG 1,764 26 5.20 898.05 11,704.5 21.3864
36 SM SHRT 412 25 4.55 989.87 17,721.0 23.7063
37 SM SHRT 416 26 3.95 951.28 16,485.2 30.5589
38 SM SHRT 504 26 3.70 939.83 17,101.3 26.8415
39 SM SHRT 492 27 3.75 925.42 17,849.0 27.7292
40 SM SHRT 636 27 4.15 954.11 16,949.6 21.5699
41 SM TALL 1,756 24 5.60 720.72 11,344.6 19.6531
42 SM TALL 1,232 27 5.35 782.09 14,752.4 20.3295
43 SM TALL 1,400 26 5.50 773.30 13,649.8 19.5880
44 SM TALL 1,620 28 5.50 829.26 14,533.0 20.1328
45 SM TALL 1,560 28 5.40 856.96 16,892.2 19.2420
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X (45 × 6) consists of the column vector 1, the 45 × 1 column vector of
ones, and the five column vectors of data for the substrate variables X1 =
SALINITY, X2 = pH, X3 = K, X4 = Na, and X5 = Zn:

X = [1 X1 X2 X3 X4 X5 ]

=


1 33 5.00 1, 441.67 35, 184.5 16.4524
1 35 4.75 1, 299.19 28, 170.4 13.9852
...
...

...
...

...
...

1 28 5.40 856.96 16, 892.2 19.2420

 . (5.2)

The vector of parameters is

β = (β0 β1 β2 β3 β4 β5 )
′
. (5.3)

The random errors ε are assumed to be normally distributed, ε ∼ N (
0, Iσ2

)
.

The assumption that the variance–covariance matrix for ε is Iσ2 contains
the two assumptions of independence of the errors and common variance.

5.2.1 The Correlation Matrix
A useful starting point in any multiple regression analysis is to compute the
matrix of correlations among all variables including the dependent variable.
This provides a “first look” at the simple linear relationships among the
variables. The correlation matrix is obtained by

ρ̂ = S
[
W ′(I − J/n)W

]
S, (5.4)

where n = 45, I is an identity matrix (45× 45), J is a (45× 45) matrix of
ones,W is the (45× 6) matrix of BIOMASS (Y ) and the five independent
variables, and S is a diagonal matrix of the reciprocals of the square roots
of the corrected sums of squares of each variable. The corrected sums of
squares are given by the diagonal elements of W ′(I − J/n)W . For the
Linthurst data,

Y SAL pH K Na Zn

ρ̂ =


1 −.103 .774 −.205 −.272 −.624

−.103 1 −.051 −.021 .162 −.421
.774 −.051 1 .019 −.038 −.722

−.205 −.021 .019 1 .792 .074
−.272 .162 −.038 .792 1 .117
−.624 −.421 −.722 .074 .117 1

 .

The first row of ρ̂ contains the simple correlations of the dependent variable
with each of the independent variables. The two variables pH and Zn have
reasonably high correlations with BIOMASS. They would “account for”
60% (r2 = .7742) and 39%, respectively, of the variation in BIOMASS if
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TABLE 5.2. Results of the regression of BIOMASS on the five independent vari-
ables SALINITY, pH, K, Na, and Zn (Linthurst September data).

Variable β̂j s(β̂j) t Partial SS
SAL −30.285 24.031 −1.26 251, 921
pH 305.525 87.879 3.48 1, 917, 306
K −.2851 .3484 −.82 106, 211
Na −.0087 .0159 −.54 47, 011
Zn −20.676 15.055 −1.37 299, 209

Analysis of variance for BIOMASS
Source d.f. Sum of Squares Mean Square
Total 44 19, 170, 963
Regression 5 12, 984, 700 2, 596, 940 F = 16.37
Residual 39 6, 186, 263 158, 622

used separately as the only independent variable in the regressions. Na
and K are about equally correlated with BIOMASS but at a much lower
level than pH and Zn. There appears to be almost no correlation between
SALINITY and BIOMASS.
There are two high correlations among the independent variables, K and

Na with r = .79 and pH and Zn at r = −.72. The impact of these correla-
tions on the regression results is noted as the analysis proceeds. With the
exception of a moderate correlation between SALINITY and Zn, all other
correlations are quite small.

5.2.2 Multiple Regression Results: Full Model
The results of the multiple regression analysis using all five independent Summary

of Resultsvariables are summarized in Table 5.2. There is a strong relationship be-
tween BIOMASS and the independent variables. The coefficient of deter-
mination R2 is .677. (See Table 1.5, page 15, for the definition of coefficient
of determination.) Thus, 68% of the sums of squares in BIOMASS can be
associated with the variation in these five independent variables. The test
of the composite hypothesis that all five regression coefficients are zero is
highly significant; F = 16.37 compared to F(.01,5,39) = 3.53.
The computations for this analysis were done using a matrix algebra Computations
computer program [SAS/IML (SAS Institute Inc., 1989d)] operating on
the X and Y matrices only. The steps in the language of SAS/IML and
an explanation of each step is given in Table 5.3. The simplicity of matrix
arithmetic can be appreciated only if one attempts to do the analysis with,
say, a hand calculator.
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TABLE 5.3. The matrix algebra steps for the regression analysis as written for
SAS/IML,a an interactive matrix programming language. It is assumed that Y
and X have been properly defined in the matrix program and that X is of full
rank.

SAS/IML Program Stepa Matrix Being Computed
INVX=INV(X`*X); (X ′X)−1

X` indicates transpose of X
B=INVX*X`*Y; β̂

CF=SUM(Y)##2/NROW(X); Y ′(J/n)Y = (
∑
Y )2/n

The “##2” squares SUM(Y)
SST=Y`*Y-CF; Y ′(I − J/n)Y
Corrected sum of squares
for BIOMASS
SSR=B`*X`*Y-CF; Y ′(P − J/n)Y = SS(Regr)
Notice that P need not be computed
SSE=SST-SSR; Y ′(I − P )Y = SS(Res)
S2=SSE/(NROW(X)-NCOL(X)); s2

The estimate of σ2 with degrees
of freedom = n− r(X)

SEB=SQRT(VECDIAG(INVX)*S2); Standard errors of β̂
“VECDIAG” creates a vector
from diagonal elements
T=B/SEB; t for H0 : βj = 0
“/” indicates elementwise division
of B by SEB
PART=B##2/VECDIAG(INVX); Partial sums of squares

YHAT=X*B; Ŷ , estimated means for Y
E=Y-YHAT; e, estimated residuals

aProgram steps for SAS/IML (1985a), an interactive matrix language program devel-
oped by SAS Institute, Inc., Cary, North Carolina.
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Obtaining (X ′X)−1 is the most difficult and requires the use of a com-
puter for all but the simplest problems. Most of the other computations
are relatively easy. Notice that the large 45×45 P matrix is not computed
and generally is not needed in its entirety. The Ŷ vector is more easily
computed as Ŷ = Xβ̂, rather than as Ŷ = PY . The only need for P is
for Var(Ŷ ) = Pσ2 and Var(e) = (I − P )σ2. Even then, the variance of
an individual Ŷi or ei of interest can be computed using only the ith row
of X, rather than the entire X matrix.
The residual mean square, s2 = 158, 622 with 39 degrees of freedom, is Residual

Mean Squarean unbiased estimate of σ2 if this five-variable model is the correct model.
Of course, this is almost certainly not the correct model because (1) im-
portant variables may have been excluded, or (2) the mathematical form
of the model may not be correct. (Including unimportant variables will not
generally bias the estimate of σ2.) Therefore, s2 must be regarded as the
tentative “best” estimate of σ2 and is used for tests of significance and for
computing the standard errors of the estimates.
The regression of BIOMASS on these five independent variables is highly Inconsistencies

in the Resultssignificant. Yet, only one partial regression coefficient β̂2 for pH is signifi-
cantly different from zero, with t = 3.48. Recall that the simple correlation
between BIOMASS and pH showed that pH alone would account for 60%,
or 11.5 million, of the total corrected sum of squares for BIOMASS. When
pH is used in a model with the other four variables, however, its partial
sum of squares, 1,917,306, is only 10% of the total sum of squares and less
than 15% of the regression sum of squares for all five variables. On the
other hand, the partial sum of squares for SALINITY is larger than the
simple correlation between BIOMASS and SALINITY would suggest.
These apparent inconsistencies are typical of regression results when the
independent variables are not orthogonal. They are not inconsistencies if
the meaning of the word “partial” in partial regression coefficients and
partial sums of squares is remembered. “Partial” indicates that the regres-
sion coefficient or the sum of squares is the contribution of that particular
independent variable after taking into account the effects of all other inde-
pendent variables. Only when an independent variable is orthogonal to all
other independent variables are its simple and partial regression coefficients
and its simple and partial sums of squares equal.

5.3 Simplifying the Model

The t-tests of the partial regression coefficients H0 : βj = 0 would seem Removing
Variablesto suggest that four of the five independent variables are unimportant and

could be dropped from the model. The dependence of the partial regres-
sion coefficients and sums of squares on the other variables in the model,
however, means that one must be cautious in removing more than one vari-
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able at a time from the regression model. Removing one variable from the
model will cause the regression coefficients and the partial sums of squares
for the remaining variables to change (unless they are orthogonal to the
variable dropped). These results do indicate that not all five independent
variables are needed in the model. It would appear that any one of the four,
SALINITY, pH, Na, or K, could be dropped without causing a significant
decline in predictability of BIOMASS. It is not clear at this stage of the
analysis, however, that more than one can be dropped.
There are several approaches for deciding which variables to include in
the final model. These are studied in Chapter 7. For this example, one
variable at a time is eliminated— the one whose elimination will cause
the smallest increase in the residual sum of squares. The process will stop
when the partial sums of squares for all variables remaining in the model
are significant (α = .05). As discussed in Chapter 7, data-driven variable
selection and multiple testing to arrive at the final model alter the true
significance levels; probability levels and confidence intervals should be used
with caution.
The variable Na has the smallest partial sum of squares in the five- A 4-Variable

Modelvariable model. This means that Na is the least important of the five vari-
ables in accounting for the variability in BIOMASS after the contributions
of the other four variables have been taken into account. As a result, Na is
the logical variable to eliminate first. And, since the partial sum of squares
for Na, R(β4 | β1 β2 β3 β5 β0) = 47, 011 is not significant, there is no rea-
son X4 = Na should not be eliminated.
Dropping Na means that X must be redefined to be the 45 × 5 matrix
consisting of 1, X1 = SALINITY, X2 = pH, X3 = K, and X5 = Zn;
the column vector of Na observations X4 is removed from X. Similarly, β
must be redefined by removing β4. The regression analysis using these four
variables (Table 5.4) shows the decrease in the regression sum of squares,
now with four degrees of freedom, and the increase in the residual sum
of squares to be exactly equal to the partial sum of squares for Na in the
previous stage. This demonstrates the meaning of “partial sum of squares.”
In the absence of independent information on σ2, the residual mean square
from this reduced model is now used (tentatively) as the estimate of σ2,
s2 = 155, 832. (Notice that the increase in the residual sum of squares does
not necessarily imply an increase in the residual mean square.)
The partial sums of squares at the four-variable stage (Table 5.4) show A 3-Variable

ModelSALINITY and Zn to be equally unimportant to the model; the partial
sum of squares for Zn is slightly smaller and both are nonsignificant. The
next step in the search for the final model is to eliminate one of these two
variables. Again, it is not safe to assume that both variables can be dropped
since they are not orthogonal.
Since Zn has the slightly smaller partial sum of squares, Zn will be elim-
inated and pH, SALINITY, and K retained as the three-variable model.
One could have used the much higher simple correlation between Zn and
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TABLE 5.4. Results of the regression of BIOMASS on the four independent vari-
ables SALINITY, pH, K, and Zn (Linthurst data).

Variable β̂j s(β̂j) t Partial SS
Sal −35.94 21.48 −1.67 436, 496
pH 293.9 84.5 3.48 1, 885, 805
K −0.439 0.202 −2.17 732, 606
Zn −23.45 14.04 −1.67 434, 796

Analysis of variance
Source d.f. Sum of Squares Mean Square

Total 44 19, 170, 963
Regression 4 12, 937, 689 3, 234, 422
Residual 40 6, 233, 274 155, 832

TABLE 5.5. Results of the regression of BIOMASS on the three independent
variables SALINITY, pH, and K (Linthurst data).

Variable β̂j s(β̂j) t Partial SS
SAL −12.06 16.37 −.74 88, 239
pH 410.21 48.83 8.40 11, 478, 835
K −.490 .204 −2.40 935, 178

Analysis of variance
Source d.f. Sum of Squares Mean Square

Total 44 19, 170, 963
Regression 3 12, 502, 893 4, 167, 631
Residual 41 6, 668, 070 162, 636

BIOMASS, r = −.62 versus r = −.10, to argue that SALINITY is the
variable to eliminate at this stage. This is a somewhat arbitrary choice
with the information at hand, and illustrates one of the problems of this
sequential method of searching for the appropriate model. There is no as-
surance that choosing to eliminate Zn first will lead to the best model by
whatever criterion is used to measure “goodness” of the model.
Again, X and β are redefined, so that Zn is eliminated, and the compu-
tations repeated. This analysis gives the results in Table 5.5. The partial
sum of squares for pH increases dramatically when Zn is dropped from the
model, from 1.9 million to 11.5 million. This is due to the strong corre-
lation between pH and Zn (r = −.72). When two independent variables
are highly correlated, either positively or negatively, much of the predic-
tive information contained in either can be usurped by the other. Thus, a
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TABLE 5.6. Results of the regression of BIOMASS on the two independent vari-
ables pH, and K (Linthurst data).

Variable β̂j s(β̂j) t Partial SS
pH 412.04 48.50 8.50 11, 611, 782
K −0.487 0.203 −2.40 924, 266

Analysis of variance
Source d.f. Sum of Squares Mean Square

Total 44 19, 170, 963
Regression 2 12, 414, 654 6, 207, 327
Residual 42 6, 756, 309 160, 865

very important variable may appear as insignificant if the model contains a
correlated variable and, conversely, an otherwise unimportant variable may
take on false significance.
The contribution of SALINITY in the three-variable model is even smaller A 2-Variable

Modelthan it was before Zn was dropped and is far from being significant. The
next step is to drop SALINITY from the model. In this particular example,
one would not have been misled by eliminating both SALINITY and Zn
at the previous step. This is not true in general.
The two-variable model containing pH and K gives the results in Ta-
ble 5.6. Since the partial sums of squares for both pH and K are significant,
the simplification of the model will stop with this two-variable model. The
degree to which the linear model consisting of the two variables pH and K
accounts for the variability in BIOMASS is R2 = .65, only slightly smaller
than the R2 = .68 obtained with the original five-variable model.

5.4 Results of the Final Model

This particular method of searching for an appropriate model led to the The Equation
two-variable model consisting of pH and K. The regression equation is

Ŷi = −507.0 + 412.0Xi2 − 0.4871Xi3 (5.5)

or, expressed in terms of the centered variables,

Ŷi = 1000.8 + 412.0(Xi2 − 4.60)− .4871(Xi3 − 797.62),

where X2 = pH and X3 = K. This equation accounts for 65% of the varia-
tion in the observed values of aerial BIOMASS. That is, the predicted values
computed from Ŷ = Xβ̂ account for 65% of the variation of BIOMASS
or, conversely, the sum of squares of the residuals e′e is 35% of the original
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corrected sum of squares of BIOMASS. The square root of R2 is the simple
correlation between BIOMASS and Ŷ :

r(Y , Ŷ ) =
√
.65 = .80.

The estimate of σ2 from this final model is s2 = 160, 865 with (n − p′) = s2(β̂)
42 degrees of freedom. The variance–covariance matrix for the regression
coefficients is

s2(β̂) = (X ′X)−1s2

=

 .4865711 −.0663498 −.0001993
−.0663498 .0146211 −.0000012
−.0001993 −.0000012 .00000026

 (160, 865)
=

 78, 272 −10, 673 −32.0656
−10, 673 2, 352.0 −0.18950
−32.0656 −0.18950 0.04129

 .
The square roots of the diagonal elements give the standard errors of the
estimated regression coefficients in the order in which they are listed in β.
In this model,

β = (β0 β2 β3 )
′
.

Thus, the standard errors of the estimated regression coefficients are

s(β̂0) =
√
78, 272 = 280

s(β̂2) =
√
2, 352.0 = 48.5 (5.6)

s(β̂3) =
√
.04129 = .2032.

The regression coefficients for pH and K are significantly different from
zero as shown by the t-test (Table 5.6). The critical value of Student’s t is
t(.05/2,42) = 2.018. (The intercept β̂0 = −507.0 is not significantly different
from zero, t = −1.81, and if one had reason to believe that β0 should be
zero the intercept could be dropped from the model.)
The univariate 95% confidence interval estimates of the regression coef- Univariate

Confidence
Intervals

ficients (Section 4.6.1),

β̂j ± t(.05/2,42)s(β̂j)

are
−1, 072 < β0 < 58
314 < β2 < 510

−.898 < β3 < −.077.
The value of Student’s t for these intervals is t(.05/2,42) = 2.018. The confi-
dence coefficient of .95 applies to each interval statement.
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The Bonferroni confidence intervals (Section 4.6.2), using a joint Bonferroni
Confidence
Intervals

confidence coefficient of .95, are

−1, 206 < β0 < 192
291 < β2 < 533

−.995 < β3 < .021.

The joint confidence of 1− α is obtained by using the value of Student’s t
for α∗ = α/2p′ : t(.05/(2×3),42) = 2.50.
The Bonferroni intervals are necessarily wider than the univariate con-
fidence intervals to allow for the fact that the confidence coefficient of .95
applies to the statement that all three intervals contain their true regres-
sion coefficients. In this example, the Bonferroni interval for β3 overlaps
zero whereas the univariate 95% confidence interval did not.
The 95% joint confidence region for the three regression coefficients is Joint

Confidence
Region

determined from the quadratic inequality shown in equation 4.60 (Sec-
tion 4.6.3). This three-dimensional 95% confidence ellipsoid is shown in
Figure 5.1 for the Linthurst data. The outer box in Figure 5.1 is the Scheffé
95% confidence region. The inner box in the figure is the Bonferroni confi-
dence region.
The ellipsoid in Figure 5.1 has been constructed using 19 cross-sectional
planes in each of the three dimensions. The cross-sectional slices were cho-
sen equally spaced and such that the most extreme in each direction coin-
cided with a side of the Bonferroni box. These extreme slices and areas of
the ellipsoid that extend beyond have been darkened to clearly show the
portions of the joint confidence ellipsoid that extend beyond the Bonferroni
box. Although the ellipsoid extends beyond the Bonferroni box in several
areas, it is clear that the ellipsoid takes less volume of the parameter space
to ensure 95% confidence in this example.
The sides of the Scheffé box (Figure 5.1) are tangent to the confidence
ellipsoid and, consequently, the Scheffé box completely contains the ellip-
soid. It can be shown in this particular example that the volume of the
Bonferroni box is approximately 63% of the volume of the Scheffé box.
To more clearly show the shape of the joint confidence ellipsoid, the
slices created by two sides of the Bonferroni box and the midplane in one
dimension have been projected onto the floor in Figure 5.2. The slices show
that the ellipsoid is very flattened in one dimension and clearly illustrate
the strong interdependence among the regression coefficients as to what
constitutes “acceptable” values of the parameters. Also inscribed on the
floor is the two-dimensional 95% confidence ellipse calculated from the
2 × 2 variance–covariance matrix of β̂2 and β̂3 ignoring β̂0. This shows
that the two-dimensional confidence ellipse is not a projection of the three-
dimensional confidence ellipsoid.
The general shape of the confidence region can be seen from the three-
dimensional figure. However, it is very difficult to read the parameter values
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FIGURE 5.1. Three-dimensional 95% joint confidence region (ellipsoid) for β0,
β2, and β3. The intersection of the Bonferroni confidence intervals (inner box)
and the intersection of the Scheffé confidence intervals (outer box).

FIGURE 5.2. Three-dimensional 95% joint confidence region for β0, β2, and β3

showing projections of three 2-dimensional slices, corresponding to three values
of β0, onto the floor. The three values of β0 chosen to define the slices were the
midpoint and the limits of the 95% Bonferroni confidence interval for β0.
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corresponding to any particular point in the figure. Furthermore, the joint
confidence ellipsoid for more than three parameters cannot be pictured.
A more useful presentation of the joint confidence region is obtained
by plotting two-dimensional “slices” through the ellipsoid for pairs of pa-
rameters of particular interest. This is done by evaluating the joint con-
fidence equation at specific values of the other parameters. Three such
two-dimensional ellipses for β2 and β3 are those shown in Figure 5.2. These
slices help picture the three-dimensional ellipsoid but they are not to be
interpreted individually as joint confidence regions for β2 and β3.
Alternatively, one can determine the two-dimensional 95% joint confi-
dence region for β2 and β3 ignoring β0. This region is also shown in Fig-
ure 5.2 as the larger ellipse on the floor of the figure. In this case, β̂2 and
β̂3 are only slightly negatively correlated so that the two-dimensional joint
confidence region is only slightly elliptical. The very elliptical slices from
the original joint confidence region show that the choice of β2 and β3 for a
given value of β0 are more restricted than the two-dimensional joint con-
fidence region would lead one to believe. This illustrates the information
obscured by confidence intervals or regions that do not take into account
the joint distribution of the full set of parameter estimates.
Two-dimensional slices through the joint confidence region in another
direction, for given values of β2, and the two-dimensional confidence region
for β0 and β3 ignoring β2 are shown in Figure 5.3. The strong negative
correlation between β̂0 and β̂3 is evident in the two-dimensional joint con-
fidence region and the slices from the three-dimensional region. Again, it
is clear that reasonable combinations of β0 and β3 are dependent on the
assumed value of β2, a result that is not evident from the two-dimensional
joint confidence region ignoring β2.
Ŷ and e for this example are not given. They are easily computed as Ŷ1 and s2(Ŷ1)
shown in Table 5.2. Likewise, s2(Ŷ ) = P s2 and s2(e) = (I − P )s2 are
not given; each is a 45 × 45 matrix. Computation of Ŷi and its variance
is illustrated using the first data point. Each Ŷi is computed using the
corresponding row vector from X, which is designated x′

i. For the first
observation,

x′
1 = ( 1 5.00 1, 441.67 ) .

Thus,

Ŷ1 = x′
1β̂

= ( 1 5.00 1, 441.67 )

 −506.9774
412.0392
−.4871

 = 850.99.
The variance of Ŷ1, used as an estimate of the mean aerial BIOMASS at
this specific level of pH (X2) and K (X3), is s2(Ŷ1) = v11s2, where v11 is
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FIGURE 5.3. Two-dimensional slices of the joint confidence region for three val-
ues of β2 and the joint confidence region for β0 and β3 ignoring β2 (shown in
dashed line). The arrows indicate the limits of the intersection of the Bonferroni
confidence intervals for β0 and β3.

the first diagonal element from P . The ith diagonal element of P can be
obtained individually as vii = x′

i(X
′X)−1xi. Or, the variance for any one

Ŷi is obtained as the variance of a linear function of β̂. Thus,

s2(Ŷ1) = x′
1[s

2(β̂)]x1

= ( 1 5.00 1, 441.67 )

 78, 272 −10, 673 −32.0656
−10, 673 2, 352.0 −.18950
−32.0656 −.18950 .04129

 1
5.00
1, 441.67


= 20, 978.78.

Its standard error is

s(Ŷ1) =
√
20, 978.78 = 144.8.

If Ŷ1 is used as a prediction of a future observation Y0 at the specified level
x′

1, then the variance of the prediction error is the variance of Ŷ1 increased
by s2 = 160, 865. This accounts for the variability of the random variable
being predicted. This gives

s2(Ŷpred1) = s2(Y0 − Ŷ1)
= 20, 979 + 160, 865 = 181, 843
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or the standard error of prediction is

s(Ŷpred1) =
√
181, 843 = 426.4.

The residual for the first observation is e1 and s2(e1)

e1 = Y1 − Ŷ1 = 676− 850.99 = −174.99.

The estimated variance of e1 is

s2(e1) = (1− v11)s2.

Since s2(Ŷ1) = v11s2 has already been computed, s2(e1) is easily obtained
as

s2(e1) = s2 − s2(Ŷ1)
= 160, 865− 20, 979 = 139, 886.

The standard error is

s(e1) =
√
139, 886 = 374.0.

These variances are used to compute confidence interval estimates for
each of the corresponding parameters. Student’s t has 42 degrees of free-
dom, the degrees of freedom in the estimate of σ2. For illustration, the
95% confidence interval estimate of the mean BIOMASS production when
pH = 5.00 and K = 1, 441.67 ppm, E(Y1), is Confidence

Intervals on
E(Ŷi)Ŷ1 ± t(.05/2,42)s(Ŷ1)

or

850.99 ± (2.018)(144.8),

which becomes

558.7 < E(Y1) < 1, 143.3.

These results indicate that, with 95% confidence, the true mean BIOMASS
for pH= 5.00 and K = 1, 441.67 is between 559 and 1,143 gm−2.
If we wish to predict the BIOMASS production Y0 at x0 = x1 (pH= 5.00 Prediction

Intervals for Y0and K= 1, 441.67), then a 95% prediction interval for Y0 is given by

Ŷ1 ± t(.025,42)s(Y0 − Ŷ1),

which gives
−9.60 < Y0 < 1, 711.5.
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Since BIOMASS cannot be negative, this is usually reported as

0 < Y0 < 1, 711.5.

This example stops at this point. A complete analysis includes plots of
regression results to verify that the regression equation gives a reasonable
characterization of the observed data and that the residuals are behaving
as they should. Such an extended analysis, however, would get into topics
that are discussed in Chapters 7 and 9.

5.5 General Comments

The original objective of the Linthurst research was to identify important
soil variables that were influencing the amount of BIOMASS production
in the marshes. The wording of this objective implies that the desire is to
establish causal links.
Observational data cannot be used to establish causal relationships. Any Cannot Infer

Causalityanalysis of observational data must build on the observed relationships,
or the correlational structure, in the sample data. There are many reasons
why correlations might exist in any set of data, only one of which is a causal
pathway involving the variables. Some of the correlations observed will be
fortuitous, accidents of the sampling of random variables. This is particu-
larly likely if small numbers of observations are taken or if the sample points
are not random. Some of the correlations will result from accidents of nature
or from the variables being causally related to other unmeasured variables
which, in turn, are causally related to the dependent variable. Even if the
linkage between an independent and dependent variable is causal in origin,
the direction of the causal pathway cannot be established from the observa-
tional data alone. The only way causality can be established is in controlled
experiments where the causal variable is changed and the impact on the
response variable observed.
Thus, it is incorrect in this case study to conclude that pH and K are im-
portant causal variables in BIOMASS production. The least squares anal-
ysis has established only that variation in BIOMASS is associated with
variation in pH and K. The reason for the association is not established.
Furthermore, there is no assurance that this analysis has identified all of
the variables which show significant association with BIOMASS. The rea-
sonably high correlation between pH and Zn, for example, has caused the
regression analysis to eliminate Zn from the model; the partial sum of
squares for Zn is nonsignificant after adjustment for pH. This sequential
method of building the model may have eliminated an important causal
variable.
Another common purpose of least squares is to develop prediction equa-
tions for the behavior of the dependent variable. Observational data are
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frequently the source of information for this purpose. Even here, care must Interpreting
the Regression
Equation

be used in interpreting the results. The results from this case study predict
that, on the average, BIOMASS production changes by 412 gm−2 for each
unit change in pH and −.5 gm−2 for each ppm change in K. This predic-
tion is appropriate for the population being sampled by this set of data, the
marshes in the Cape Fear Estuary of North Carolina. It is not appropriate
if the population has been changed by some event nor is it appropriate for
points outside the population represented by the sample.
The regression coefficient for pH gives the expected change in BIOMASS
per unit change in pH. This statement treats the other variables in the
system two different ways, depending on whether they are included in the
prediction equation. The predicted change in BIOMASS per unit change in
pH ignores all variables not included in the final prediction equation. This
means that any change in pH, for which a prediction is being made, will
be accompanied by simultaneous changes in these ignored variables. The
nature of these changes will be controlled by the correlational structure of
the data. For example, Zn would be expected to decrease on the average as
pH is increased due to the negative correlation between the two variables.
Thus, this predicted change in BIOMASS is really associated with the
simultaneous increase in pH and decrease in Zn . It is incorrect to think
the prediction is for a situation where, somehow, Zn is not allowed to
change.
On the other hand, the predicted change of 412 gm−2 BIOMASS associ-
ated with a unit change in pH assumes that the other variables included in
the prediction equation, in this case K, are being held constant. Again, this
is unrealistic when the variables in the regression equation are correlated.
The appropriate view of the regression equation obtained from obser-
vational data is as a description of the response surface of the dependent
variable, where the independent variables in the equation are serving as sur-
rogates for the many variables that have been omitted from the equation.
The partial regression coefficients are the slopes of the response surface in
the directions represented by the corresponding independent variables. Any
attempt to ascribe these slopes, or changes, to the particular independent
variables in the model implicitly assumes a causal relationship of the inde-
pendent variable to the dependent variable and that all other variables in
the system, for which the variables in the equation serve as surrogates, are
unimportant in the process.
The response surface equation obtained from observational data can
serve as a useful prediction equation as long as care is taken to ensure
that the points for which predictions are to be made are valid points in the
sampled population. This requires that the values of the independent vari-
ables for the prediction points must be in the sample space. It is easy, for
example, when one variable at a time is being changed, to create prediction
points that are outside the sample space. Predictions for these points can
be very much in error.
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5.6 Exercises

The data in the accompanying table are simulated data on peak rate of
flow Q (cfs) of water from six watersheds following storm episodes. The
storm episodes have been chosen from a larger data set to give a range of
storm intensities. The independent variables are

X1 = Area of watershed (mi2)

X2 = Area impervious to water (mi2)

X3 = Average slope of watershed (percent)

X4 = Longest stream flow in watershed (thousands of feet)

X5 = Surface absorbency index, 0 = complete absorbency, 100 =
no absorbency

X6 = Estimated soil storage capacity (inches of water)

X7 = Infiltration rate of water into soil (inches/hour)

X8 = Rainfall (inches)

X9 = Time period during which rainfall exceeded 1
4 inch/hr.

Computations with this set of data will require a computer.

5.1. Compute the correlation matrix for all variables including the depen-
dent variable Q. By inspection of the correlations determine which
variables are most likely to contribute significantly to variation in Q.
If you could use only one independent variable in your model, which
would it be?

5.2. Compute the correlation matrix using LQ = log(Q) and the loga-
rithms of all independent variables. How does this change the corre-
lations and your conclusions about which variables are most likely to
contribute significantly to variation in LQ?

5.3. Use LQ = ln(Q) as the dependent variable and the logarithm of
all nine independent variables plus an intercept as the “full” model.
Compute the least squares regression equation and test the compos-
ite null hypothesis that all partial regression coefficients for the in-
dependent variables are zero. Compare the estimated partial regres-
sion coefficients to their standard errors. Which partial regression
coefficients are significantly different from zero? Which independent
variable would you eliminate first to simplify the model?

5.4. Eliminate the least important variable from the model in Exercise 5.3
and recompute the regression. Are all partial sums of squares for the
remaining variables significant (α = .05)? If not, continue to eliminate
the least important independent variable at each stage and recompute



180 5. CASE STUDY: FIVE INDEPENDENT VARIABLES

Peak flow data from six watersheds.
X1 X2 X3 X4 X5 X6 X7 X8 X9 Q
.03 .006 3.0 1 70 1.5 .25 1.75 2.0 46
.03 .006 3.0 1 70 1.5 .25 2.25 3.7 28
.03 .006 3.0 1 70 1.5 .25 4.00 4.2 54
.03 .021 3.0 1 80 1.0 .25 1.60 1.5 70
.03 .021 3.0 1 80 1.0 .25 3.10 4.0 47
.03 .021 3.0 1 80 1.0 .25 3.60 2.4 112

.13 .005 6.5 2 65 2.0 .35 1.25 .7 398

.13 .005 6.5 2 65 2.0 .35 2.30 3.5 98

.13 .005 6.5 2 65 2.0 .35 4.25 4.0 191

.13 .008 6.5 2 68 .5 .15 1.45 2.0 171

.13 .008 6.5 2 68 .5 .15 2.60 4.0 150

.13 .008 6.5 2 68 .5 .15 3.90 3.0 331

1.00 .023 15.0 10 60 1.0 .20 .75 1.0 772
1.00 .023 15.0 10 60 1.0 .20 1.75 1.5 1,268
1.00 .023 15.0 10 60 1.0 .20 3.25 4.0 849
1.00 .023 15.0 10 65 2.0 .20 1.80 1.0 2,294
1.00 .023 15.0 10 65 2.0 .20 3.10 2.0 1,984
1.00 .023 15.0 10 65 2.0 .20 4.75 6.0 900

3.00 .039 7.0 15 67 .5 .50 1.75 2.0 2,181
3.00 .039 7.0 15 67 .5 .50 3.25 4.0 2,484
3.00 .039 7.0 15 67 .5 .50 5.00 6.5 2,450
5.00 .109 6.0 15 62 1.5 .60 1.50 1.5 1,794
5.00 .109 6.0 15 62 1.5 .60 2.75 3.0 2,067
5.00 .109 6.0 15 62 1.5 .60 4.20 5.0 2,586

7.00 .055 6.5 19 56 2.0 .50 1.80 2.0 2,410
7.00 .055 6.5 19 56 2.0 .50 3.25 4.0 1,808
7.00 .055 6.5 19 56 2.0 .50 5.25 6.0 3,024
7.00 .063 6.5 19 56 1.0 .50 1.25 2.0 710
7.00 .063 6.5 19 56 1.0 .50 2.90 3.4 3,181
7.00 .063 6.5 19 56 1.0 .50 4.76 5.0 4,279
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the regression. Stop when all independent variables in the model are
significant (use α = .05). What do the results indicate about the
need for the intercept? Does it make sense to have β0 = 0 in this
exercise? Summarize the results of your final model in an analysis of
variance table. Discuss in words your conclusions about what factors
are important in peak flow rates.

5.5. Determine the 95% univariate confidence interval estimates of the
regression coefficients for your final model. Determine the 95% Bon-
ferroni confidence interval estimates. Determine also the 95% Scheffé
confidence interval estimates.

5.6. Construct the 95% joint confidence region for the partial regression
coefficients for X8 and X9 ignoring the parameters for the other vari-
ables in your final model in Exercise 5.4.



6
GEOMETRY OF LEAST SQUARES

Matrix notation has been used to present least squares
regression and the application of least squares has been
demonstrated. This chapter presents the geometry of
least squares. The data vectors are represented by vec-
tors plotted in n-space and the basic concepts of least
squares are illustrated using relationships among the
vectors. The intent of this chapter is to give insight
into the basic principles of least squares. This chapter
is not essential for an understanding of the remaining
topics.

All concepts of ordinary least squares can be visualized by applying a few
principles of geometry. Many find the geometric interpretation more helpful
than the cumbersome algebraic equations in understanding the concepts of
least squares. Partial regression coefficients, sums of squares, degrees of
freedom, and most of the properties and problems of ordinary least squares
have direct visual analogues in the geometry of vectors.
This chapter is presented solely to enhance your understanding. Although
the first exposure to the geometric interpretation may seem somewhat con-
fusing, the geometry usually enhances understanding of the least squares
concepts. You are encouraged to study this chapter in the spirit in which
it is presented. It is not an essential chapter for the use and understanding
of regression. Review of Section 2.4 before reading this chapter may prove
helpful.
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6.1 Linear Model and Solution

In the geometric interpretation of least squares,X is viewed as a collection X-Space
of p′ column vectors. It is assumed for this discussion that the column
vectors of X are linearly independent (any linear dependencies that might
have existed in X have been eliminated). Each column vector of X can be
plotted as a vector in n-dimensional space (see Section 2.4). That is, the n
elements in each column vector provide the coordinates for identifying the
endpoint of the vector plotted in n-space. The p′ vectors jointly define a p′-
dimensional subspace of the n-dimensional space in which they are plotted
(p′ < n). This p′-dimensional subspace consists of the set of points that
can be reached by linear functions of the p′ vectors of X. This subspace is
called the X-space. (When the vectors of X are not linearly independent,
the dimensionality of the X-space is determined by the rank of X.)
The Y vector is also a vector in n-dimensional space. Its expectation E(Y ) Vector

E(Y ) = Xβ = β01+ β1X1 + · · ·+ βpXp (6.1)

is a linear function of the column vectors ofX with the elements of β being
the coefficients. Thus, the linear model

Y =Xβ + ε (6.2)

says that the mean vector E(Y ) = Xβ falls exactly in the X-space. The
specific point at which E(Y ) falls is determined by the true, and unknown,
partial regression coefficients in β.
The vector of observations on the dependent variable Y will fall some- Y Vector
where in n-dimensional space around its mean E(Y ), with its exact position
being determined by the random elements in ε. The model (equation 6.2)
states that Y is the sum of the two vectors E(Y ) and ε. Although E(Y ) is in
the X-space, ε and, consequently, Y are random vectors in n-dimensional
space. Neither ε nor Y will fall in theX-space (unless an extremely unlikely
sample has been drawn).

To illustrate these relationships, we must limit ourselves to three-dimen- Example 6.1
sional space. The concepts illustrated in two and three dimensions extend
to n-dimensional geometry. Assume that X consists of two vectors X1
and X2, each of order 3, so that they can be plotted in three-dimensional
space (Figure 6.1). The plane in Figure 6.1 represents the two-dimensional
subspace defined by X1 and X2. The vector E(Y ) lies in this plane and
represents the true mean vector of Y , as the linear function of X1 and X2
expressed in the model. The dashed lines in Figure 6.1 show the addition
of the vectors β1X1 and β2X2 to give the vector E(Y ). This, of course,
assumes that the model is correct. In practice, E(Y ) is not known because
β is not known. One of the purposes of the regression analysis is to find
“best” estimates of β1 and β2.
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FIGURE 6.1. The geometric interpretation of E(Y ) as a linear function of X1

and X2. The plane represents the space defined by the two independent vectors.
The vector E(Y ) is shown as the sum of β1X1 and β2X2.

The position of E(Y ) in Figure 6.1 represents a case where both β1 The Partial
Regression
Coefficients

and β2 are positive; the vectors to be added to give E(Y ), β1X1 and
β2X2, have the same direction as the original vectors X1 and X2. When
E(Y ) falls outside the angle formed by X1 and X2, one or both of the
regression coefficients must be negative. Multiplication of a vector by a
negative coefficient reverses the direction of the vector. For example, −.1X1
defines a vector that is 1

10 the length of X1 and has opposite direction to
X1. Figure 6.2 partitions the two-dimensional X-space according to the
signs β1 and β2 take when E(Y ) falls in the particular region. Figure 6.3
uses the same X-space and E(Y ) as Figure 6.1 but includes Y , at some
distance from E(Y ) and not in the X-space (because of ε), and Ŷ . Since
Ŷ is a linear function of the columns of X, Ŷ = Xβ̂, it must fall in
the X-space. The estimated regression coefficients β̂1 and β̂2 are shown as
the multiples of X1 and X2 that give Ŷ when summed. The estimated
regression coefficients serve the same role in determining Ŷ that the true
regression coefficients β1 and β2 do in determining E(Y ). Of course, Ŷ will
almost certainly never coincide with E(Y ). Figure 6.3 is drawn so that both
β̂1 and β̂2 are positive. The signs of β̂1 and β̂2 are determined by the region
of the X-space in which Ŷ falls, as illustrated in Figure 6.2 for β1 and β2.
The short vector connecting Ŷ to Y in Figure 6.3 is the vector of resid- The e Vector
uals e. The least squares principle requires that β̂, and hence Ŷ , be chosen
such that

∑
(Yi− Ŷi)2 = e′e is minimized. But e′e is the squared length of

e. Geometrically, it is the squared distance from the end of the Y vector
to the end of the Ŷ vector. Thus, Ŷ must be that unique vector in the
X-space that is closest to Y in n-space. The closest point on the plane to
Y (in Figure 6.3) is the point that would be reached with a perpendicular
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FIGURE 6.2. Partitions of the two-dimensional X-space according to the signs
β1 and β2 take when E(Y ) falls in the indicated region.

FIGURE 6.3. The geometric relationship of Y and Ŷ to the X-space. Y is not
in the plane defined by X1 and X2. The perpendicular projection from Y to
the plane defines the vector Ŷ , which is in the plane. The estimated regression
coefficients are the proportions of X1 and X2 that, when added, give Ŷ . The
short vector connecting Ŷ to Y is the vector of residuals e.
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projection from Y to the plane. That is, e must be perpendicular to the
X-space. Ŷ is shown as the shadow on the plane cast by Y with a light
directly “overhead.”
Visualize the floor of a room being the plane defined by the X-space. Let
one corner of the room at the floor be the origin of the three-dimensional
coordinate system, the line running along one baseboard be theX1 vector,
and the line running along the adjoining baseboard be the X2 vector.
Thus, the floor of the room is the X-space. Let the Y vector run from
the origin to some point in the ceiling. It is obvious that the point on
the floor closest to this point in the ceiling is the point directly beneath.
That is, the “projection” of Y onto the X-space must be a perpendicular
projection onto the floor. A line from the end of Y to Ŷ must form a
right angle with the floor. This “vertical” line from Y to Ŷ is the vector
of observed residuals e = Y − Ŷ (plotted at Ŷ instead of at the origin).
The two vectors Ŷ and e clearly add to Y .
Common sense told us that e must be perpendicular to the plane for Ŷ
to be the closest possible vector to Y . The least squares procedure requires
this to be the case. Note that,

X ′e = X ′(Y − Ŷ ) =X ′(Y −Xβ̂)

= X ′Y −X ′Xβ̂

= 0, (6.3)

since we know that from the normal equations

X ′Xβ̂ =X ′Y .

The statement X ′e = 0 shows that e must be orthogonal (or perpendic-
ular) to each of the column vectors in X. (The sum of products of the
elements of e with those of each vector in X is zero.) Hence, e must be
perpendicular to any linear function of these vectors in order for the result
to be a least squares result.
Ŷ may also be written as Ŷ = PY . The matrix P = X(X ′X)−1X ′ P Matrix
is the matrix that projects Y onto the p′-dimensional subspace defined by
the columns of X. In other words, premultiplying Y by P gives Ŷ such
that the vector e is perpendicular to the X-space and as short as possible.
P is called a projection matrix; hence its label P .

Consider the model Example 6.2
Y =Xβ + ε,

where X = ( 1 1 )′ and β is a scalar. In this case, the X-space is one-
dimensional and given by the straight line Z2 = Z1, where Z1 and Z2
represent the coordinates of a two-dimensional plane. The E(Y ) vector is
given by (β β )′, which is a point on the straight line Z2 = Z1. Suppose we
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Y=(2,4)

X=(1,1)

(3,3)

(-1,1)

Z1

Z2

FIGURE 6.4. Geometric interpretation of the regression in Example 6.2.

observe Y to be Y = ( 2 4 )′. This is a vector in the two-dimensional plane
(Figure 6.4). Since Ŷ = Xβ̂, where β̂ = (X ′X)−1X ′Y = (2)−16 = 3, we
have Ŷ = ( 3 3 )′. Note that Ŷ is a point (vector) in the X-space that
is the closest to the observed vector Y . The line that connects Y and Ŷ
is perpendicular to (orthogonal to) the straight line given by Z2 − Z1 =
0 which is the X-space. The residual vector is given by e = Y − Ŷ =
(−1 1 )′. It is easy to verify that X ′e = ( 1 1 ) (−1 1 )′ = 0.

The results of this section are summarized as follows.

1. Y is a vector in n-space.

2. Each column vector of X is a vector in n-space.

3. The p′ linearly independent vectors ofX define a p′-dimensional sub-
space.

4. The linear model specifies that E(Y ) = Xβ is in the X-space; the
vector Y is (almost certainly) not in the X-space.

5. The least squares solution Ŷ = Xβ̂ = PY is that point in the
X-space that is closest to Y .

6. The residuals vector e is orthogonal to the X-space.
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7. The right triangle formed by Y , Ŷ , and e expresses Y as the sum of
the other two vectors, Y = Ŷ + e.

6.2 Sums of Squares and Degrees of Freedom

The Pythagorean theorem in two-dimensional space states that the length Length of Y
of the hypotenuse of a right triangle is the square root of the sum of the
squares of the sides of the triangle. In Section 2.4 it was explained that this
extends into n dimensions—the length of any vector is the square root of
the sum of the squares of all its elements. Thus, Y ′Y , the uncorrected sum
of squares of the dependent variable, is the squared length of the vector Y .
The vectors Y , Ŷ , and e form a right triangle with Y being the hy- Partitioning

the Total Sum
of Squares

potenuse (Figure 6.3). One side of the triangle Ŷ lies in the X-space; the
other side e is perpendicular to the X-space. The Pythagorean theorem
can be used to express the length of Y in terms of the lengths of Ŷ and e:

length(Y ) =
√
[length(Ŷ )]2 + [length(e)]2.

Squaring both sides yields

Y ′Y = Ŷ
′
Ŷ + e′e. (6.4)

Thus, the partitioning of the total sum of squares of Y ′Y into SS(Model) =
Ŷ

′
Ŷ and SS(Res) = e′e corresponds to expressing the squared length of

the vector Y in terms of the squared lengths of the sides of the right
triangle.

In Example 6.2, note that Example 6.3

Y ′Y = ( 2 4 )
(
2
4

)
= 20

Ŷ
′
Ŷ = ( 3 3 )

(
3
3

)
= 18

e′e = (−1 1 )
( −1
1

)
= 2

and hence equation 6.4 is satisfied.

The “room” analogy given in Figure 6.3 can be used to show another SS(Res)
property of least squares regression. The regression of Y on one indepen-
dent variable, say X1, cannot give a smaller residual sum of squares e′e
than the regression on X1 and X2 jointly. The X-space defined by X1
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alone is the set of points along the baseboard representing X1. Therefore,
the projection of Y onto the space defined only by X1 (as if X1 were the
only variable in the regression) must be to a point along this baseboard.
The subspace defined by X1 alone is part of the subspace defined jointly
by X1 and X2. Therefore, no point along this baseboard can be closer
to the end of the Y vector than the closest point on the entire floor (the
X-space defined by X1 and X2 jointly). The two vectors of residuals, that
from the regression of Y onX1 alone and that from the regression of Y on
X1 and X2 jointly, would be the same length only if the projection onto
the floor happened to fall exactly at the baseboard. In this case, β̂2 must
be zero. This illustrates a general result that the residual sum of squares
from the regression of Y on a subset of independent variables cannot be
smaller than the residual sum of squares from the regression on the full set
of independent variables.
The “degrees of freedom” associated with each sum of squares is the Degrees of

Freedomnumber of dimensions in which that vector is “free to move.” Y is free to
fall anywhere in n-dimensional space and, hence, has n degrees of freedom.
Ŷ , on the other hand, must fall in the X-space and, hence, has degrees of
freedom equal to the dimension of the X-space—two in Figure 6.3 or p′

in general. The residual vector e can fall anywhere in the subspace of the
n-dimensional space that is orthogonal to the X-space. This subspace has
dimensionality (n − p′) and, hence, e has (n − p′) degrees of freedom. In
Figure 6.3, e has (3− 2) = 1 degree of freedom. In general, the degrees of
freedom associated with Ŷ and e will be r(X) and [n−r(X)], respectively.
Figures 6.1 through 6.3 have been described as if all vectors were of
order 3 so that they could be fully represented in the three-dimensional
figures. This is being more restrictive than needed. Three vectors of any
order define a three-dimensional subspace and, if one forgoes plotting the
individual vectors in n-space, the relationships among the three vectors can
be illustrated in three dimensions as in Figures 6.1 through 6.3.

This example uses the data from Exercise 1.4, which relate heart rate at Example 6.4
rest to kilograms of body weight. The model to be fit includes an intercept
so that the two vectors defining the X-space are 1, the vector of ones, and
X1, the vector of body weights. The Y andX1 vectors in the original data
are an order of magnitude longer than 1, so that both Y andX1 have been
scaled by 1

20 for purposes of this illustration. The rescaled data are

X ′
1 = ( 4.50 4.30 3.35 4.45 4.05 3.75 )

Y ′ = ( 3.10 2.25 2.00 2.75 3.20 2.65 ) .

The X-space is defined by 1 and X1. The lengths of the vectors are

length(1) =
√
1′1 =

√
6 = 2.45

length(X1) =
√
X ′

1X1 =
√
100.23 = 10.01
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5.2� 5.7� .5�

7.5� 90�

Y e

Y = .24 1 + .59X1
ˆ

ˆ

X1

length (X1) = 10.01
length (1)   =   2.45
length (Y )   =   6.60
length (Y )  =   6.54
length (e)   =     .86

1

FIGURE 6.5. Geometric interpretation of the regression of heart rate at rest (Y )
on kilograms body weight (X1). The plane in the figure is the X-space defined by
1 and X1. The data are from Exercise 1.4 with both X1 and Y scaled by 1

20 .
Angles between vectors are shown in degrees. Y protrudes away from the plane at
an angle of 7.5◦. Perpendicular projection of Y onto the plane defines Ŷ which
forms an angle of 5.2◦ with 1 and .5◦ with X1.

and the angle between the two vectors θ(1, X1) is

θ(1,X1) = arccos

(
1′X1√

1′1
√
X ′

1X1

)

= arccos
(

24.4√
6
√
100.23

)
= 5.7◦.

The vectors 1 and X1 are plotted in Figure 6.5 using their relative lengths
and the angle between them. The X-space defined by 1 andX1 is the plane
represented by the parallelogram.
The Y vector is drawn as protruding above the surface of the plane at
an angle of θ(Y , Ŷ ) = 7.5◦, the angle between Y and Ŷ . [All angles are
computed as illustrated for θ(1, X1).] The length of Y is

length(Y ) =
√
Y ′Y =

√
43.4975 = 6.60.

This is the square root of the uncorrected sum of squares of Y which, since
Y can fall anywhere in six-dimensional space, has six degrees of freedom.
The projection of Y onto the plane defines Ŷ as the sum

Ŷ = (.24)1+ (.59)X1.

The angles between Ŷ and the two X-vectors are

θ(Ŷ , 1) = 5.2◦
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and
θ(Ŷ , X1) = .5◦.

The length of Ŷ is the square root of SS(Model):

length(Ŷ ) =
√
Ŷ

′
Ŷ =

√
42.7552 = 6.539.

Since Ŷ must fall in the two-dimensional X-space, SS(Model) has two de-
grees of freedom. The residuals vector e connecting Ŷ to Y is perpendicular
to the plane and its length is the square root of SS(Res):

length(e) =
√
e′e =

√
.7423 = .862.

Since e must be orthogonal to the X-space, SS(Res) has four degrees of
freedom. Thus, the squared lengths of Y , Ŷ , and e and the dimensions in
which each is free to move reflect the analysis of variance of the regression
results.
In this example, Ŷ falls very close to X1; the angle between the two
vectors is only .5◦. This suggests that very nearly the same predictability
of Y would be obtained from the regression of Y on X1 alone—that is, if
the model forced the regression line to pass through the origin. If the no-
intercept model is adopted, theX-space becomes the one-dimensional space
defined by X1. The projection of Y onto this X-space gives Ŷ = .65X1.
That is, Ŷ falls on X1. The length of Ŷ is

length(Ŷ ) =
√
42.7518 = 6.538,

which is trivially shorter than that obtained with the intercept model,√
42.7518 versus

√
42.7552. The residuals vector is, correspondingly, only

slightly longer:

length(e) =
√
.7457 = .864.

6.3 Reparameterization

Consider the model

Y =Xβ + ε. (6.5)

Let C be a p′ × p′ nonsingular matrix. Then, we can rewrite the model
shown in equation 6.5 also as

Y = XCC−1β + ε
= Wα+ ε, (6.6)
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where W = XC and α = C−1β. Here the model in equation 6.6 is
a reparameterization of the model in equation 6.5. Note that since C is
nonsingular, the W -space, the p′-dimensional subspace spanned by the p′

columns of W , is the same as the X-space. Recall that Ŷ is the point
in the X-space that is closest to Y and is given by Ŷ = PY = PXY ,
where the X subscript identifies the projection matrix based on X, PX =
X(X ′X)−1X ′. Since the W -space is the same as the X-space, we have
Ŷ = PWY and PW =W (W ′W )−1W ′ = PX . See Exercise 6.9.
In Chapter 8, we consider orthogonal polynomial models that are repa-
rameterizations of polynomial models. We show that they are also repa-
rameterizations of analysis of variance models. Also, the models where the
input variables are centered are reparameterizations of corresponding un-
centered models.

Consider the model Example 6.5

Y = Xβ + ε,

where

X =

 1 00 1
0 0

 .
Then, the X-space consists of all points of the form ( z1 z2 0 )′. In terms
of the “room” analogy considered in Figure 6.3, the X-space consists of the
floor. Suppose we observe the Y vector to be Y = ( 2 4 3 )′. Then,

β̂ = (X ′X)−1X ′Y = ( 2 4 )′

and

Ŷ = Xβ̂ = ( 2 4 0 )′ .

Figure 6.6 shows the vector Y = ( 2 4 3 )′ and its projection Ŷ =
( 2 4 0 )′ in a plane that forms the “floor” of the plot. We can think
of this “floor” as the plane spanned by the vectors X1 = ( 1 0 0 )

′

and X2 = ( 0 1 0 )
′. Around the origin, on the floor of the plot, we

have placed for reference circles of radii 1 and 4. The vectors X1 and
X2, each of unit length, are shown with the end of each vector touching
the unit circle. The vectors are also extended to 2X1 = ( 2 0 0 )

′ and
4X2 = ( 0 4 0 )

′. Their sum 2X1 + 4X2 = ( 2 4 0 )
′ is shown as Ŷ ,

the projection of Y onto the two-dimensional X-space.
The plane represented by the “floor” of the plot is also spanned by the
two vectors W 1 = ( 1 1 0 )

′ and W 2 = ( 1 2 0 )
′. Thus, the floor of

the plot is the set of all linear combinations of W 1 and W 2 (as well as
all linear combinations of X1 and X2). Note that the linear combination
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FIGURE 6.6. Projection of Y onto the two-dimensional space spanned by X1

and X2. Ŷ is equal to the sum of 2X1 and 4X2. Any two other vectors in the
floor of the plot, say W 1 and W 2, will be linear combinations of X1 and X2

and will define the same space. Ŷ is also obtained as a linear function of W 1 and
W 2; Ŷ = 0W 1 + 2W 2.
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FIGURE 6.7. Geometric interpretation of the regression of heart rate at rest
(Y ) on kilograms body weight using the centered variable (Xc). The plane in the
figure is defined by 1 and Xc and is identical to the plane defined by 1 and X1

in Figure 6.5. All vectors are the same as in Figure 6.5 except Xc replaces X1.

0W 1 + 2W 2 also gives Ŷ ; the vector W 2 is extended to Ŷ to illustrate
this. Mathematically, all points on the floor of the plot are of the form

( a b 0 )′ = aX1 + bX2 = (2a− b)W 1 + (b− a)W 2

showing explicitly how any point ( a b 0 ) in the floor can be expressed
as a linear combination of X1 and X2 or ofW 1 andW 2. In this example
a = 2 and b = 4.

It is common in least squares regression to express the model in terms Centered
Independent
Variables

of centered independent variables. That is, each independent variable is
coded to have zero mean by subtracting the mean of the variable from
each observation. The only effect, geometrically, of centering the indepen-
dent variable is to shift the position, in the original X-space, of the vector
representing the independent variable so that it is orthogonal to the vector
1. In general, when more than one independent variable is involved, each
centered variable will be orthogonal to 1. The centering will change the
angles between the vectors of the independent variables but the X-space
remains as defined by the original variables. That is, the model with the
centered independent variable is a reparameterization of the original model.
See Exercise 6.11.

The geometric interpretation of the effect of centering the independent Example 6.6
variable is illustrated in Figure 6.7 for the heart rate/body weight data
from Example 6.2. Let Xc be the centered vector. Xc is obtained by the
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subtraction

Xc =X1 − (4.0667)1,
where 4.0667 is the mean of the elements in X1. Since Xc is a linear
function of 1 and X1, it is by definition in the space defined by 1 and X1.
Thus, the X-space defined by 1 and Xc in Figure 6.7 is identical to the
X-space defined by 1 and X1 in Figure 6.5. Centering the independent
variable does not alter the definition of the X-space. The centered vector
Xc is orthogonal to 1, because 1′Xc = 0, and has length 1.002. Y is the
same as in Figure 6.5 and, because the X-space is the same, the projection
of Y onto the X-space must give the same Ŷ . The regression equation,
however, is now expressed in terms of a linear function of 1 and Xc rather
than in terms of 1 and X1.

6.4 Sequential Regressions

Equation 6.4 gave the partitioning of the total uncorrected sum of squares Correction for
the Meanfor Y . Interest is usually in partitioning the total corrected sum of squares.

The partitioning of the corrected sum of squares is obtained by subtracting
the sum of squares attributable to the mean, or the correction factor, from
both Y ′Y and SS(Model):

Y ′Y − SS(µ) = [SS(Model)− SS(µ)] + e′e
= SS(Regr) + e′e. (6.7)

The correction for the mean SS(µ) is the sum of squares attributable
to a model that contains only the constant term β0. Geometrically, this
is equivalent to projecting Y onto the one-dimensional space defined by
1. The least squares estimate of β0 is Y , and the residuals vector from
this projection is the vector of deviations of Yi from Y , yi = Yi − Y . The
squared length of this residuals vector is the corrected sum of squares for
Y . Since the space defined by 1 is a one-dimensional space, this residuals
vector lies in (n−1)-dimensional space and has (n−1) degrees of freedom.
SS(Regr) and the partial regression coefficients are the results obtained
when this residuals vector is, in turn, projected onto the p-dimensional
subspace (p = p′ − 1) defined by the independent variables where each in-
dependent variable has also been “corrected for” its mean. Thus, obtaining
SS(Regr) can be viewed as a two-stage process. First, Y and the indepen-
dent variables are each projected onto the space defined by 1. Then, the
residuals vector for Y is projected onto the space defined by the residuals
vectors for the independent variables. The squared length of Ŷ for this
second projection is SS(Regr).
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The sequential sum of squares for an independent variable is an ex- Sequential
Sums of
Squares

tension of this process. Now, however, Y and the independent variable of
current interest are first projected onto the space defined by all indepen-
dent variables that precede the current X in the model, not just 1. Then,
the residuals vector for Y (call it ey) is projected onto the space defined
by the residuals vector for the current X (call it ex). The sequential sum
of squares for the current independent variable is the squared length of Ŷ
for this projection of ey onto ex. Note that both the dependent variable
and the current independent variable have been “adjusted” for all preced-
ing independent variables. At each step in the sequential analysis, the new
X-space is a one-dimensional space and, therefore, the sequential sum of
squares at each stage has one degree of freedom.
Since the residuals vector in least squares is always orthogonal to the

X-space onto which Y is projected, ey and ex are both orthogonal to all
independent variables previously included in the model. Because of this
orthogonality to the previous X-space, the sequential sums of squares and
degrees of freedom are additive. That is, the sum of the sequential sums of
squares and the sum of the degrees of freedom for each step are equal to
what would have been obtained if a single model containing all independent
variables had been used.

6.5 The Collinearity Problem

The partial regression coefficient and partial sum of squares for any inde- Definition of
Collinearitypendent variable are, in general, dependent on which other independent

variables are in the model. In the case study in Chapter 5, it was observed
that the changes in regression coefficients and sums of squares as other
variables were added to or removed from the model could be large. This
dependence of the regression results for each variable on what other vari-
ables are in the model derives from the independent variables not being
mutually orthogonal. Lack of orthogonality of the independent variables is
to be expected in observational studies, those in which the researcher is
restricted to making observations on nature as it exists. In such studies,
the researcher

... cannot impose on a subject, or withhold from the subject,
a procedure or treatment whose effects he desires to discover,
or cannot assign subjects at random to different procedures.
(Cochran, 1983).

On the other hand, controlled experiments are usually designed to avoid
the collinearity problems.
The extreme case of nonorthogonality, where two or more independent
variables are very nearly linearly dependent, creates severe problems in least
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squares regression. This is referred to as the collinearity problem. The
regression coefficients become extremely unstable; they are very sensitive to
small random errors in Y and may fluctuate wildly as independent variables
are added to or removed from the model. The instability in the regression
results is reflected in very large standard errors for the partial regression
coefficients. Frequently, none of the individual partial regression coefficients
will be significantly different from zero even though their combined effect
is highly significant.
The impact of collinearity is illustrated geometrically in Figure 6.8. Con- Geometry of

Collinearitysider the model and a reparameterization of the model given byY1
Y2
Y3

 =

X11 X21
X12 X22
X13 X23

(
β1
β2

)
+

 ε1ε2
ε3


=

W11 W21
W12 W22
W13 W23

(
α1
α2

)
+

 ε1ε2
ε3

 .
Suppose thatX1 andX2 are orthogonal to each other, whereasW 1 and

W 2 are not orthogonal.W 1 andW 2 represent two vectors that show some
degree of collinearity. The X-space and W -space are the same since one is
a reparameterization of the other. This two-dimensional space is shown as
the “floor” in the three-dimensional figure, panel (a), and as the plane in
panels (b) and (c) of Figure 6.8. The central 95% of the population of all
possible Y -vectors is represented in the three-dimensional figure, panel (a),
as the shaded sphere.
Recall that Ŷ is the projection of Y onto the “floor” (= X-space =W -
space). The circular area on the “floor” encloses the collection of all projec-
tions Ŷ of the points Y in the sphere. Two possible projections Ŷ 1 and Ŷ 2
(on opposing edges of the circle), representing two independent Y , are used
to illustrate the relative sensitivity of the partial regression coefficients to
variation in Y in the collinear case compared to the orthogonal case. It is
assumed that the linear model E(Y ) is known and that the input variables
are fixed and measured without error. Thus, only the effect of variation in
Y , different samples of ε, is being illustrated by the difference between Ŷ 1
and Ŷ 2 in Figure 6.8.
The partial regression coefficients are the multipliers that get attached to
each of the vectors so that the vector addition gives Ŷ . The vector addition
is illustrated in Figure 6.8 by completion of the parallelogram for each Ŷ .
This is most easily seen in panel (b) for the orthogonal vectors X1 and
X2 and in panel (c) for the nonorthogonal vectorsW 1 andW 2. The point
to note is that the change in γ1 and γ2, the partial regression coefficients
for the nonorthogonal system [panel (c)], as one shifts from Ŷ 1 to Ŷ 2
is much greater than the corresponding change in β1 and β2, the partial
regression coefficients for the orthogonal system [panel (b)]. This illustrates
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FIGURE 6.8. Illustration of the effect of collinearity on the stability of the partial
regression coefficients. The points in the shaded sphere centered on the plane
[panel (a)] represent 95% of a population of three-dimensional vectors Y . E(Y )
is at the center of the sphere and at the center of the circle of projections of all Y
onto the two-dimensional plane spanned by either the two orthogonal vectors X1,
X2 or the two nonorthogonal (somewhat collinear) vectors W 1 and W 2. Points
shown on opposite sides of the circle represent Ŷ1 and Ŷ2, projections from two
independent Y . The parallelograms connecting each Ŷ to the two sets of vectors
show the relative magnitudes of the partial regression coefficients for the pair of
orthogonal vectors [panel (b)] and the pair of nonorthogonal vectors [panel (c)].
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the greater sensitivity of the partial regression coefficients in the presence of
collinearity; comparable changes in Y cause larger changes in the partial
regression coefficients when the vectors are not orthogonal. As the two
vectors approach collinearity (the angle between the vectors approaches 0◦

or 180◦), the sensitivity of the regression coefficients to random changes in
Y increases dramatically. In the limit, when the angle is 0◦ or 180◦, the
two vectors are linearly dependent and no longer define a two-dimensional
subspace. In such cases, it is not possible to estimate β1 and β2 separately;
only the joint effect of X1 and X2 on Y is estimable.
Figure 6.8 illustrates the relative impact of variation in ε on the partial Variation in

the X-Vectorsregression coefficients in the orthogonal and nonorthogonal cases. In most
cases, and particularly when the data are observational, the X-vectors are
also subject to random variation in the population being sampled. Con-
sequently, even if the independent variables are measured without error,
repeated samples of the population will yield different X-vectors. Mea-
surement error on the independent variables adds another component of
variation to the X-vectors. Geometrically, this means that the X-space de-
fined by the observed Xs, the plane in Figure 6.8, will vary from sample to
sample; the amount of variation in the plane will depend on the amount of
sampling variation and measurement error in the independent variables.
The impact of sampling variation and measurement error in the indepen-
dent variables is magnified with increasing collinearity of the X-vectors.
Imagine balancing a cardboard (the plane) on two pencils (the vectors). If
the pencils are at right angles, the plane is relatively insensitive to small
movements in the tips of the pencils. On the other hand, if the pencils form
a very small angle with each other (the vectors are nearly collinear), the
plane becomes very unstable and its orientation changes drastically as the
pencils are shifted even slightly. In the limit as the angle goes to 0◦ (the
two vectors are linearly dependent), the pencils merge into one and in one
direction all support for the plane disappears.
In summary, collinearity causes the partial regression coefficients to be
sensitive to small changes in Y ; the solution to the normal equations be-
comes unstable. In addition, sampling variation and measurement error in
the independent variables causes the X-space to be poorly defined, which
magnifies the sensitivity of the partial regression coefficients to collinear-
ity. The instability in the least squares solution due to variation in Y is
reflected in larger standard errors on the partial regression coefficients. The
instability due to sampling variation in the independent variables, however,
is ignored in the usual regression analysis because the independent variables
are assumed to be fixed constants.
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6.6 Summary

The following regression results are obtained from the geometric interpre-
tation of least squares.

1. The data vectors Y and Xj are vectors in n-dimensional
space.

2. The linear model states that the true mean of Y , E(Y ),
is in the X-space, a p′-dimensional subspace of the n-
dimensional space.

3. Ŷ is the point in the X-space closest to Y ; e is orthogonal
to the X-space.

4. The partial regression coefficients multiplied by their re-
spective X-vectors define the set of vectors that must be
added to “reach” Ŷ .

5. The vectors Ŷ and e are the two sides of a right triangle
whose hypotenuse is Y . Thus, Y = Ŷ + e.

6. The squared lengths of the sides of the right triangle give
the partitioning of the sums of squares of Y : Y ′Y =
Ŷ

′
Ŷ + e′e.

7. The correlation structure among the Xs influences the re-
gression results. In general, β̂1 �= β̂1.2. However if X1 and
X2 are orthogonal, then β̂1 = β̂1.2.

8. Regression of Y on one independent variable, sayX1, can-
not give smaller e′e than regression onX1 andX2 jointly.
More generally, regression on a subset of independent vari-
ables cannot give a better fit (smaller e′e) than regression
on all variables.

9. If X1 and X2 are nearly collinear, small variations in Y
cause large shifts in the partial regression coefficients. The
regression results become unstable.

6.7 Exercises

6.1. Use Figure 6.3 as plotted to approximate the values of β̂1and β̂2.
Where would Ŷ have to have fallen for β̂1 to be negative? For β̂2 to
be negative? For both to be negative?

6.2. Construct a figure similar to Figure 6.3 except draw the projection
of Y onto the space defined by X1. Similarly, draw the projection of
Y onto the space defined by X2.
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(a) Approximate the values of the simple regression coefficients in
each case and compare them to the partial regression coefficients
in Figure 6.3.

(b) Identify the residuals vector in both cases and in Figure 6.3.
(c) Convince yourself that the shortest residuals vector is the one
in Figure 6.3.

6.3. Construct a diagram similar to Figure 6.3 except make X1 and X2
orthogonal to each other. Convince yourself that, when the indepen-
dent variables are orthogonal, the simple regression coefficients from
the projection of Y onto X1 and X2 separately equal the partial re-
gression coefficients from the projection of Y onto the space defined
by X1 and X2 jointly.

6.4. Assume we have two vectors of order 10, X1 and X2. Jointly these
two vectors define a plane, a 2-dimensional subspace of the original 10-
dimensional space. Let Z1 and Z2 be an arbitrary coordinate system
for this 2-dimensional subspace. Represent the vectors X1 and X2
in this plane by the coordinates of the two vectors Z1 = ( 5 2 )

′ and
Z2 = ( 0 −4 )′. Suppose the projection of Y onto this plane plots
at (−1 3 )′ in this coordinate system.
(a) Use your figure to approximate the regression coefficients for the
regression of Y on X1 and X2.

(b) From your figure compute the sum of squares due to the regres-
sion of Y on X1 and X2 jointly. How many degrees of freedom
does this sum of squares have?

(c) Do you have enough information to compute the residual sum of
squares? How many degrees of freedom would the residual sum
of squares have?

(d) Suppose someone told you that the original vector Y had length
3. Would there be any reason to doubt their statement?

6.5. Plot the two vectors X1 = ( 5 0 )
′ and X2 = (−4 .25 )′. Sup-

pose two different samples of Y give projections onto this X-space at
Ŷ 1 = ( 4 .5 )′ and Ŷ 2 = ( 4 −.5 )′. Approximate from the graph
the partial regression coefficients for the two cases. Note the shift
in the partial regression coefficients for the two cases. Compare this
shift to what would have been realized if X2 = ( 0 4 )

′, orthogonal
to X1.

6.6. Data from Exercise 1.9 relating plant biomass Y to total accumulated
solar radiation Xwas used to fit a no-intercept model. Ŷ and e were
determined from the regression equation. The matrixW (8× 4) was
defined as

W = [X Y Ŷ e]
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and the following matrix of sums of squares and products was com-
puted.

W ′W =


1, 039, 943.1 1, 255, 267.1 1, 255, 267.1 0
1, 255, 267.1 1, 523, 628.9 1, 515, 174.7 8, 454.2
1, 255, 267.1 1, 515, 174.7 1, 515, 174.7 0

0 8, 454.2 0 8, 454.2

 .
(a) Determine the length of each (column) vector in W.

(b) Compute the angles between all pairs of vectors.

(c) Use the lengths of the vectors and the angles between the vectors
to show graphically the regression results. What is the dimen-
sion of the X-space? Why is the angle between X and Ŷ zero?
Estimate the regression coefficient from the figure you construct.

6.7. This exercise uses the data given in Exercise 1.19 relating seed weight
of soybeans Y to cumulative seasonal solar radiation X for two levels
of ozone exposure. For simplicity in plotting, rescale X by dividing
by 2 and Y by dividing by 100 for this exercise.

(a) Use the “Low Ozone” data to compute the linear regression of
Y on X (with an intercept). Compute Ŷ and e, the lengths of
all vectors, and the angle between each pair of vectors. Use the
vector lengths and angles to display graphically the regression
results (similar to Figure 6.5). Use your figure to “estimate” the
regression coefficients. From the relative positions of the vectors,
what is your judgment as to whether the intercept is needed in
the model?

(b) Repeat Part (a) using the “High Ozone” data.

(c) Compare the graphical representations of the two regressions.
What is your judgment as to whether the regressions are homo-
geneous—that is, are the same basic relationships—within the
limits of random error, illustrated in both figures.

6.8. The angle θ between the intercept vector 1 and an independent vari-
able vector X depends on the coefficient of variation of the indepen-
dent variable. Use the relationship

cos(θ) =
1′X√
1′1

√
X ′X

to show the relationship to the coefficient of variation. What does
this relationship imply about the effect on the angle of scaling the
X by a constant? What does it imply about the effect of adding a
constant to or subtracting a constant from X?
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6.9. Consider the reparameterization

Y =Wα+ ε

of the model Y =Xβ + ε, where W =XC and C is nonsingular.

(a) Show that W -space is the same as the X-space.

(b) Show that PW = PX .

(c) Express α̂ as a function of β̂.

6.10 Verify the results of Exercise 6.9 for the data in Example 6.5.

6.11 Consider the simple linear regression model

Yi = β0 + β1Xi + εi.

(a) Let Xci = Xi−X denote the centered input variable. Show that

Yi = α0 + α1Xci + εi

is a reparameterization of the preceding model.

(b) Express α0 and α1 in terms of β0 and β1 and vice versa.

(c) Are there any advantages in using the centered model?



7
MODEL DEVELOPMENT:
VARIABLE SELECTION

The discussion of least squares regression thus far has
presumed that the model was known with respect to
which variables were to be included and the form these
variables should take.

This chapter discusses methods of deciding which vari-
ables should be included in the model. It is still as-
sumed that the variables are in the appropriate form.
The effect of variable selection on least squares, the
use of automated methods of selecting variables, and
criteria for choice of subset model are discussed.

The previous chapters dealt with computation and interpretation of least
squares regression. With the exception of the case study in Chapter 5, it has
been assumed that the independent variables to be used in the model, and
the form in which they would be expressed, were known. The properties of
the least squares estimators were based on the assumption that the model
was correct.
Most regression problems, however, require decisions on which variables
to include in the model, the form the variables should take (for example,
X, X2, 1/X, etc.), and the functional form of the model. This chapter
discusses the choice of variables to include in the model. It is assumed
that there is a set of t candidate variables, which presumably includes all
relevant variables, from which a subset of r variables is to be chosen for the
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regression equation. The candidate variables may include different forms of
the same basic variable, such as X and X2, and the selection process may
include constraints on which variables are to be included. For example, X
may be forced into the model if X2 is in the selected subset; this a common
constraint in building polynomial models (see Chapter 8).
These distinct problem areas are related to this general topic:

1. the theoretical effects of variable selection on the least squares regres-
sion results;

2. the computational methods for finding the “best” subset of variables
for each subset size; and

3. the choice of subset size (for the final model), or the “stopping rule.”

An excellent review of these topics is provided by Hocking (1976). This
chapter gives some of the key results on the effects of variable selection,
discusses the conceptual operation of automated variable selection pro-
cedures (without getting involved in the computational algorithms), and
presents several of the commonly used criteria for choice of subset size.

7.1 Uses of the Regression Equation

The purpose of the least squares analysis—how the regression equation is
to be used—will influence the manner in which the model is constructed.
Hocking (1976) relates these potential uses of regression equations given by
Mallows (1973b):

1. providing a good description of the behavior of the response variable;

2. prediction of future responses and estimation of mean responses;

3. extrapolation, or prediction of responses outside the range of the data;

4. estimation of parameters;

5. control of a process by varying levels of input; and

6. developing realistic models of the process.

Each objective has different implications on how much emphasis is placed
on eliminating variables from the model, on how important it is that the
retained variables be causally related to the response variable, and on the
amount of effort devoted to making the model realistic. The concern in this
chapter is the selection of variables. Decisions on causality and realism must
depend on information from outside the specific data set—for example, on
details of how the data were obtained (the experimental design), and on
fundamental knowledge of how the particular system operates.
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When the object is simple description of the behavior of the response Describing
Behavior
of Y

variable in a particular data set, there is little reason to be concerned
about elimination of variables from the model, about causal relationships,
or about the realism of the model. The best description of the response
variable, in terms of minimum residual sum of squares, will be provided
by the full model, and it is unimportant whether the variables are causally
related or the model is realistic.
Elimination of variables becomes more important for the other purposes Why Eliminate

Variables?of least squares regression. Regression equations with fewer variables have
the appeal of simplicity, as well as an economic advantage in terms of ob-
taining the necessary information to use the equations. In addition, there
is a theoretical advantage of eliminating irrelevant variables and, in some
cases, even variables that contain some predictive information about the
response variable; this is discussed in Section 7.2. The motivation to elimi-
nate variables is tempered by the biases and loss of predictability that are
introduced when relevant variables are eliminated. The objective is to reach
a compromise where the final equation satisfies the purpose of the study.
Of the uses of regression, prediction and estimation of mean responses Prediction

and
Estimation

are the most tolerant toward eliminating variables. At the same time, it is
relatively unimportant whether the variables are causally related or the
model is realistic. It is tacitly assumed that prediction and estimation are
to be within the X-space of the data and that the system continues to
operate as it did when the data were collected. Thus, any variables that
contain predictive information on the dependent variable, and for which
information can be obtained at a reasonable cost, are useful variables. Of
course, more faith could be placed in predictions and estimates based on
established causal relationships, because of the protection such models pro-
vide against inadvertent extrapolations and unrecognized changes in the
correlational structure of the system.
Extrapolation requires more care in choice of variables. There should Extrapolation
be more concern that all relevant variables are retained so that the behavior
of the system is described as fully as possible. Extrapolations (beyond the
X-space of the data) are always dangerous but can become disastrous if the
equation is not a reasonably correct representation of the true model. Any
extrapolation carries with it the assumption that the correlational structure
observed in the sample continues outside the sample space. Validation and
continual updating are essential for equations that are intended to be used
for extrapolations (such as forecasts).
One should also be conservative in eliminating variables when estima- Estimation of

Parameterstion of parameters is the objective. This is to avoid the bias introduced
when a relevant variable is dropped (see Section 7.2). There is an advantage
in terms of reduced variance of the estimates if variables truly unrelated to
the dependent variable are dropped.
Control of a system also implies that good estimates of the parameters Control of

a Systemare needed, but it further implies that the independent variables must have
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a causal effect on the response variable. Otherwise, one cannot intervene in
a system and effect a change by altering the value of independent variables.
The objective of basic research is often related to building realistic Developing

Realistic
Models

models, usually the most preliminary stages of model building. Under-
standing the process is the ultimate goal. Whether explicitly stated or
not, there will be the desire to identify the variables that are important,
through some causal link, in the expression of the dependent variable. For
this purpose, variable selection procedures based on the observed correla-
tional structure in a particular set of data become relatively unimportant.
At best, they can serve as tools for identifying classes of variables that
warrant further study of the causal relationships, usually in controlled ex-
periments. As the objective of the research becomes more oriented toward
understanding the process, there will be increasing emphasis on develop-
ing models whose functional forms realistically reflect the behavior of the
system.
The purpose of introducing these differing objectives is to emphasize that Approach

Depends on
Purpose

the approach to the selection of variables will depend on the objectives of
the analysis. Furthermore, how far a researcher can move in the direction of
establishing the importance of variables or causality depends on the source
and nature of the data. Least squares regression results reflect only the
correlational structure of the data being analyzed. Of itself, least squares
analysis cannot establish causal relationships. Causality can be established
only from controlled experiments in which the value of the suspected causal
variable is changed and the impact on the dependent variable measured.
The results from any variable selection procedure, and particularly those
that are automated, need to be studied carefully to make sure the models
suggested are consistent with the state of knowledge of the process being
modeled. No variable selection procedure can substitute for the
insight of the researcher.

7.2 Effects of Variable Selection on Least Squares

The effects of variable selection on the least squares results are explicitly
developed only for the case where selection is not based on information from
the current data. This often is not the case, as in the variable selection
techniques discussed in this chapter, but the theoretical results for this Theoretical

Effects of
Eliminating
Variables

situation provide motivation for variable selection.
Assume that the correct model involves t independent variables but that
a subset of p variables (chosen randomly or on the basis of external informa-
tion) is used in the regression equation. LetXp and βp denote submatrices
of X and β that relate to the p selected variables. β̂p denotes the least
squares estimate of βp obtained from the p-variate subset model. Simi-
larly, Ŷpi, Ŷpredpi , and MS(Resp) denote the estimated mean for the ith
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observation, the prediction for the ith observation, and the mean squared
residual, respectively, obtained from the p-variate subset model. Hocking
(1976) summarizes the following properties.

1. MS(Resp) is a positively biased estimate of σ2 unless the true re-
gression coefficients for all deleted variables are zero. (See Exercise
7.13.)

2. β̂p is a biased estimate of βp and Ŷpi is a biased estimate of E(Yi)
unless the true regression coefficient for each deleted variable is zero
or, in the case of β̂p, each deleted variable is orthogonal to the p
retained variables. (See Exercise 7.13.)

3. β̂p, Ŷpi, and Ŷpredpi are generally less variable than the correspond-

ing statistics obtained from the t-variate model. (See Exercise 7.13.)

4. There are conditions under which the mean squared errors (variance
plus squared bias) of β̂p, Ŷpi, and Ŷpredpi are smaller than the vari-
ances of the estimates obtained from the t-variate model.

Thus, a bias penalty is paid whenever relevant variables, those with
βj �= 0, are omitted from the model (Statements 1 and 2). On the other
hand, there is an advantage in terms of decreased variance for both estima-
tion and prediction if variables are deleted from the model (Statement 3).
Furthermore, there may be cases in which there is a gain in terms of mean
squared error of estimation and prediction from omitting variables whose
true regression coefficients are not zero (Statement 4).
These results provide motivation for selecting subsets of variables, but Sample-Based

Selection of
Variables

they do not apply directly to the usual case where variable selection is
based on analyses of the current data. The general nature of these effects
may be expected to persist, but selection of variables based on their perfor-
mance in the sample data introduces another class of biases that confound
these results. The process of searching through a large number of potential
subset models for the one that best fits the data capitalizes on the random
variation in the sample to “overfit” the data. That is to say, the chosen
subset model can be expected to show a higher degree of agreement with
the sample data than the true equation would show with the population
data. Another problem of sample-based selection is that relative impor-
tance of variables as manifested in the sample will not necessarily reflect
relative importance in the population. The best subset in the sample, by
whatever criterion, need not be the best subset in the population. Impor-
tant variables in the population may appear unimportant in the sample
and consequently be omitted from the model, and vice versa.
Simulation studies of the effects of subset selection (Berk, 1978) gave Bias in

Residual Mean
Squared Error

sample mean squared errors that were biased downward as much as 25%
below the population residual variance when the sample size was less than
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50. The bias decreased, as sample size increased, to 2 or 3% when there were
several hundred observations in the sample. The percentage bias tended to
be largest when the number of variables in the subset was relatively small,
1
5 to

1
2 of the number of variables in the full model. This bias in the residual

mean squared error translated into bias in the F -ratios for “testing” the
inclusion of a variable. The bias in F tended to be largest (positive) for
inclusion of the first or second predictor, dropped to near zero before half
the variables were added, and became a negative bias as more variables
were added.

7.3 All Possible Regressions

When the independent variables in the data set are orthogonal, as they Nonorthogon-
ality Among
the Indepen-
dent Variables

might be in a designed experiment, the least squares results for each vari-
able remain the same regardless of which other variables are in the model.
In these cases, the results from a single least squares analysis can be used to
choose those independent variables to keep in the model. Usually, however,
the independent variables will not be orthogonal. Nonorthogonality is to
be expected with observational data and will frequently occur in designed
experiments due to unforeseen mishaps. Lack of orthogonality among the
independent variables causes the least squares results for each independent
variable to be dependent on which other variables are in the model. The full
subscript notation for the partial regression coefficients and the R-notation
for sums of squares explicitly identify the variables in the model for this
reason.
Conceptually, the only way of ensuring that the best model for each Computing

All Possible
Regressions

subset size has been found is to compute all possible subset regressions.
This is feasible when the total number of variables is relatively small, but
rapidly becomes a major computing problem even for moderate numbers of
independent variables. For example, if there are 10 independent variables
from which to choose, there are 210 − 1 = 1, 023 possible models to be
evaluated. Much effort has been devoted to finding computing algorithms
that capitalize on the computations already done for previous subsets in
order to reduce the total amount of computing for all possible subsets [e.g.,
Furnival (1971)]. Furnival (1971) also pointed out that much less computing
is required if one is satisfied with obtaining only the residual sum of squares
from each subset model.
More recently, attention has focused on identifying the best subsets Finding Best

Subsetswithin each subset size without computing all possible subsets. These meth-
ods utilize the basic least squares property that the residual sums of squares
cannot decrease when a variable is dropped from a model. Thus, comparison
of residual sums of squares from different subset models is used to eliminate
the need to compute other subsets. For example, if a two-variable subset
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has already been found that gives a residual sum of squares less than some
three-variable model, then none of the two-variable subsets of the three-
variable model need be computed; they will all give residual sums of squares
larger than that from the three-variable model and, hence, larger than for
the two-variable model already found. The leaps-and-bounds algorithm
of Furnival and Wilson (1974) combines comparisons of residual sums of
squares for different subset models with clever control over the sequence in
which subset regressions are computed. This algorithm guarantees finding
the best m subset regressions within each subset size with considerably less
computing than is required for all possible subsets. The RSQUARE method
in PROC REG (SAS Institute Inc., 1989b) uses the leaps-and-bounds al-
gorithm. These computing advances have made all possible regressions a
viable option in most cases.

The Linthurst data used in the case study in Chapter 5 are used to Example 7.1
illustrate the model selection methods of this chapter. First, the regressions
for all possible models are computed to find the “best” model for this data
set and to serve as references for the stepwise methods to follow. The five
independent variables used in Chapter 5 are also used here as potential
variables for the model. Thus, there are 25 − 1 = 31 possible regression
models: 5 one-variable, 10 two-variable, 10 three-variable, 5 four-variable,
and 1 five-variable model.
The RSQUARE method in PROC REG (SAS Institute, Inc., 1989b) was
used to compute all possible regressions. In Table 7.1,the subset models
are ranked within each subset size (p′) from the best to the worst fitting
model. (Table 7.1 includes the results from six criteria discussed later. For
the present discussion, only the coefficient of determination R2 is used.)
The full model p′ = 6 accounts for 100R2 = 67.7% of the variation in the
dependent variable BIOMASS. No subset of the independent variables can
give a larger R2.
Of the univariate subsets, the best, pH, accounted for 59.9% of the vari-
ation in BIOMASS, 8% below the maximum. The second best univariate
subset Zn accounted for only 39% of the variation in Y . The best two-
variable model pH and Na accounted for 65.8%, only 2% below the max-
imum. The second best two-variable subset pH and K is very nearly as
good, with 100R2 = 64.8%. Note that the second best single variable is not
contained in either of the two best two-variable subsets.
There are three 3-variable models that are equally effective for all prac-
tical purposes, with 100R2 ranging from 65.9% to 66.3%. All three of these
subsets include pH and Na. Thus, it makes little difference which of the
three variables SAL, Zn, or K is added to the best 2-variable subset. The
two best 4-variable subsets are also equally effective; the best in this subset
does not include the best 2-variable or 3-variable subsets.
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TABLE 7.1. Summary statistics R2, MS(Res), R2
adj, and Cp from all possible re-

gressions for Linthurst data using the five independent variables SALINITY, pH,
K, Na, and Zn. All models included an intercept. (Data used with permission.)

p′ Variables R2 MS(Res) R2
adj Cp AIC SBC

2 pH .599 178618 .590 7.4 546.1 549.8
Zn .390 272011 .376 32.7 565.1 568.7
Na .074 412835 .053 70.9 583.8 587.5
K .042 427165 .020 74.8 585.4 589.0
SAL .011 441091 −.012 78.6 586.8 590.4

3 pH, Na .658 155909 .642 2.3 541.0 546.4
pH, K .648 160865 .631 3.6 542.2 547.8
pH, Zn .608 178801 .590 8.3 547.1 552.5
SAL, pH .603 181030 .585 8.9 547.7 553.1
SAL, Zn .553 204209 .531 15.1 553.1 558.5
Na, Zn .430 260164 .403 29.9 564.0 569.4
K, Zn .415 266932 .387 31.7 565.2 570.6
SAL, Na .078 421031 .034 72.5 585.7 591.1
K, Na .074 422520 .030 72.9 585.8 591.2
SAL, K .053 432069 .008 75.4 586.8 592.3

4 pH, Na, Zn .663 157833 .638 3.8 542.4 549.7
pH, K, Na .660 158811 .636 4.1 542.7 549.9
SAL, pH, Na .659 159424 .634 4.2 542.9 550.1
SAL, pH, K .652 162636 .627 5.0 543.8 551.0
pH, K, Zn .652 162677 .627 5.1 543.8 551.0
SAL, pH, Zn .637 169900 .610 6.9 545.7 553.0
SAL, K, Zn .577 198026 .546 14.2 552.6 559.9
SAL, Na, Zn .564 203666 .533 15.6 553.9 561.1
K, Na, Zn .430 266509 .388 31.9 566.0 573.2
SAL, K, Na .078 431296 .010 74.5 587.7 594.9

5 SAL, pH, K, Zn .675 155832 .642 4.3 542.7 551.8
SAL, pH, Na, Zn .672 157312 .639 4.7 543.2 552.2
pH, K, Na, Zn .664 160955 .631 5.6 544.2 553.2
SAL, pH, K, Na .662 162137 .628 5.9 544.5 553.6
SAL, K, Na, Zn .577 202589 .535 16.1 554.6 563.6

6 SAL, pH, K, Na, Zn .677 158622 .636 6 544.4 555.2
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A key point to note from the all-possible-regressions analysis is that
more than one model is in contention for nearly every subset size. With
only minor differences in R2 for the best two or three subsets in each case,
it is very likely that other considerations, such as behavior of the residuals,
cost of obtaining information, or prior knowledge on the importance of the
variables, could shift the final choice of model away from the “best” subset.
For this example, adding a second independent variable to the model
increasedR2 by 6%. However, the third, fourth, and fifth variables increased
R2 by only .4%, 1.2%, and .2%, respectively. The improvement obtained
from the second variable would appear worthwhile, but the value of adding
the third, fourth, and fifth variables is questionable. Further discussion of
choice of subset size is delayed until the different criteria for the choice of
subset size have been discussed.

7.4 Stepwise Regression Methods

Alternative variable selection methods have been developed that identify
good (although not necessarily the best) subset models, with considerably
less computing than is required for all possible regressions. These methods
are referred to as stepwise regression methods. The subset models are
identified sequentially by adding or deleting, depending on the method, the
one variable that has the greatest impact on the residual sum of squares.
These stepwise methods are not guaranteed to find the “best” subset for
each subset size, and the results produced by different methods may not
agree with each other.
Forward stepwise selection of variables chooses the subset models Forward

Selectionby adding one variable at a time to the previously chosen subset. Forward
selection starts by choosing as the one-variable subset the independent
variable that accounts for the largest amount of variation in the dependent
variable. This will be the variable having the highest simple correlation
with Y . At each successive step, the variable in the subset of variables
not already in the model that causes the largest decrease in the residual
sum of squares is added to the subset. Without a termination rule, forward
selection continues until all variables are in the model.
Backward elimination of variables chooses the subset models by start- Backward

Eliminationing with the full model and then eliminating at each step the one variable
whose deletion will cause the residual sum of squares to increase the least.
This will be the variable in the current subset model that has the smallest
partial sum of squares. Without a termination rule, backward elimination
continues until the subset model contains only one variable.
Neither forward selection nor backward elimination takes into account Stepwise

Selectionthe effect that the addition or deletion of a variable can have on the con-
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tributions of other variables to the model. A variable added early to the
model in forward selection can become unimportant after other variables
are added, or variables previously dropped in backward elimination can
become important after other variables are dropped from the model. The
variable selection method commonly labeled stepwise regression is a for-
ward selection process that rechecks at each step the importance of all pre-
viously included variables. If the partial sums of squares for any previously
included variables do not meet a minimum criterion to stay in the model,
the selection procedure changes to backward elimination and variables are
dropped one at a time until all remaining variables meet the minimum
criterion. Then, forward selection resumes.
Stepwise selection of variables requires more computing than forward
or backward selection but has an advantage in terms of the number of
potential subset models checked before the model for each subset size is
decided. It is reasonable to expect stepwise selection to have a greater
chance of choosing the best subsets in the sample data, but selection of the
best subset for each subset size is not guaranteed.
The computer programs for the stepwise selection methods generally Stopping Rules
include criteria for terminating the selection process. In forward selection,
the common criterion is the ratio of the reduction in residual sum of squares
caused by the next candidate variable to be considered to the residual
mean square from the model including that variable. This criterion can
be expressed in terms of a critical “F -to-enter” or in terms of a critical
“significance level to enter” (SLE), where F is the “F -test” of the partial
sum of squares of the variable being considered. The forward selection
terminates when no variable outside the model meets the criterion to enter.
This “F -test,” and the ones to follow, should be viewed only as stopping
rules rather than as classical tests of significance. The use of the data to
select the most favorable variables creates biases that invalidate these ratios
as tests of significance (Berk, 1978).
The stopping rule for backward elimination is the “F -test” of the smallest
partial sum of squares of the variables remaining in the model. Again, this
criterion can be stated in terms of an “F -to-stay” or as a “significance
level to stay” (SLS). Backward elimination terminates when all variables
remaining in the model meet the criterion to stay.
The stopping rule for stepwise selection of variables uses both the for-
ward and backward elimination criteria. The variable selection process ter-
minates when all variables in the model meet the criterion to stay and no
variables outside the model meet the criterion to enter (except, perhaps, for
the variable that was just eliminated). The criterion for a variable to enter
the model need not be the same as the criterion for the variable to stay.
There is some advantage in using a more relaxed criterion for entry to force
the selection process to consider a larger number of subsets of variables.
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(Continuation of Example 7.1) The FORWARD, BACKWARD, and Example 7.2
STEPWISE methods of variable selection in PROC REG (SAS Institute,
Inc., 1989b) are illustrated with the Linthurst data. In this program, the
termination rules are expressed in terms of significance level to enter, and
significance level to stay. For this example, the criteria were set at SLE =
.50 in forward selection, SLS = .10 in backward elimination, and SLE =
.50 and SLS = .15 in stepwise selection. The values were chosen for forward
and backward selection to allow the procedures to continue through most
of the subset sizes. One can then tell by inspection of the results where the
selection would have terminated with more stringent criteria.
The results from the forward selection method applied to the Linthurst
data are summarized in Table 7.2. The F -ratio given is the ratio of the
partial sum of squares for the variable to the mean square residual for
the model containing all previously admitted variables plus the one being
considered.
The best single variable is pH which gives (100)R2 = 59.9% (see Ta-
ble 7.1) and F = 64.3. The corresponding significance level is far beyond
the significance level needed to enter, SLE = .50. The second step of the
forward selection computes the partial sums of squares for each of the re-
maining variables, SALINITY, K, Na, and Zn, in a model that contains
pH plus that particular variable. The partial sum of squares for Na is the
largest and gives F = 7.26, or Prob > F = .0101, which satisfies the
criterion for entry. Thus, Na is added to the model and the selection pro-
cess goes to Step 3. At the third step, the partial sum of squares for Zn
is the largest and Prob > F = .4888 just meets the criterion for entry.
SALINITY meets the criterion for entry at the fourth step, and K at the
fifth step.
In this case, the choice of SLE = .50 allowed all variables to be included
in the model. The selection would have stopped at the two-variable model
with pH and Na had SLE been chosen anywhere between .4888 and .0101.
Any choice of SLE less than .0101 would have stopped the selection process
with the one-variable model.
Forward selection chose the best subset models for p = 1, 2, and 3,
but the second best model for p = 4 (see Table 7.1). This illustrates the
fact that the stepwise methods are not guaranteed to find the best subset
model for each subset size. In addition, the stepwise methods do not alert
the user to the fact that other subsets at each stage may be as good. For
example, one is not aware from the forward selection results that two other
three-variable subsets [(pH, K, Na) and (SAL, pH, Na)] are essentially
equivalent to the one chosen.
The stepwise regression results using backward elimination are summa-
rized in Table 7.3. Starting with the full model, the procedure eliminates
the variable with the smallest partial sum of squares if its sum of squares
does not meet the criterion to stay in the model. In this example, the signif-
icance level to stay is set at SLS = .10. Na has the smallest partial sum of
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TABLE 7.2. Summary statistics for forward selection of variables for the Linthurst
data using significance level for variable to enter the model of SLE = .50.

Step Variable Partial SS MS(Res) R2 F a Prob > F b

1. Determine best single variable and test for entry:
Sal 204048 441091 .0106 .46 .5001
pH 11490388 178618 .5994 64.33 .0001
K 802872 427165 .0419 1.88 .1775
Na 1419069 412834 .0740 3.44 .0706
Zn 7474474 272011 .3899 27.48 .0001
Best 1-variable model: pH Cp = 7.42

2. Determine best second variable and test for entry:
Sal 77327 181030 .6034 .43 .5170
K 924266 160865 .6476 5.75 .0211
Na 1132401 155909 .6584 7.26 .0101
Zn 170933 178801 .6083 .96 .3338
Best 2-variable model: pH Na Cp = 2.28

3. Determine best third variable and test for entry:
Sal 11778 159424 .6590 .07 .7871
K 36938 158804 .6604 .23 .6322
Zn 77026 157833 .6625 .49 .4888
Best 3-variable model: pH Na Zn Cp = 3.80

4. Determine best fourth variable and test for entry:
SAL 178674 157312 .6718 1.136 .2929
K 32964 160955 .6642 .205 .6533
Best 4-variable model: pH Na Zn SAL Cp = 4.67

5. Test last variable for entry:
K 106211 158622 .6773 .670 .4182
Last variable is added with SLE = .50 Cp = 6.00

aF -test of partial sum of squares.
bProb > F assuming the ratio is a valid F -statistic.
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TABLE 7.3. Summary statistics for the backward elimination of variables for the Linthurst
data using significance level for staying of SLS = .10. All models included an intercept.

Step Variable Partial SS R2a F b Prob > F c

0 Model : All variables; R2 = .6773, Cp = 6, s2 = 158, 616 with 39 d.f.
SAL 251, 921 .6642 1.59 .2151
pH 1, 917, 306 .5773 12.09 .0013
K 106, 211 .6718 .67 .4182
Na 46, 011 .6749 .30 .5893
Zn 299, 209 .6617 1.89 .1775

1 Model : Na removed; R2 = .6749, Cp = 4.30, s2 = 155, 824 with 40 d.f.
Sal 436, 496 .6521 2.80 .1020
pH 1, 885, 805 .5765 12.10 .0012
K 732, 606 .6366 4.70 .0361
Zn 434, 796 .6522 2.79 .1027

2 Model : Zn removed; R2 = .6522, Cp = 5.04, s2 = 162, 636 with 41 d.f.
Sal 88, 239 .6476 .54 .4656
pH 11, 478, 835 .0534 70.58 .0001
K 935, 178 .6034 5.75 .0211

3 Model : Sal removed; R2 = .6476, Cp = 3.59, s2 = 160, 865 with 42 d.f.
pH 11, 611, 782 .0419 72.18 .0001
K 924, 266 .5994 5.75 .0211

STOP. Prob> F for each remaining variable exceeds SLS = .10.
Final model contains pH, K and an intercept.

aR2 is for the model with the indicated variable removed.
bF -ratio for the partial sum of squares for the indicated variable.
cProbability of a larger F assuming it is a valid F -statistic.
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squares and is eliminated from the model since Prob > F = .5893 is larger
than SLS = .10. This leaves (SAL, pH, K, Zn) as the chosen four-variable
subset. Of these four variables, Zn has the smallest partial sum of squares
(by a very small margin over SALINITY ) and Prob > F = .1027, slightly
larger than the criterion to stay SLS = .10. Therefore, Zn is dropped from
the model leaving (SAL, pH, K) as the chosen three-variable model. At
the next step, SAL is dropped, giving (pH, K) as the chosen two-variable
model. Both pH and K meet the criterion to stay (Prob > F is less than
SLS), and the backward selection process stops with that model.
Backward elimination identifies the best four-variable subset whereas for-
ward selection did not. On the other hand, backward elimination chose the
fourth best three-variable subset and the second best two-variable subset,
whereas forward selection identified the best subset at these stages. If SLS
had been set low enough, say at .02, backward elimination would have gone
one step further and correctly identified pH as the best one-variable subset.
The stepwise method of stepwise variable selection applied to the Lint-
hurst data starts the same as forward selection (Table 7.2). After the second
step when pH and Na are both in the model, the stepwise method rechecks
the contribution of each variable to determine if each should stay in the
model. The partial sums of squares are

R(βpH |βNa) = 11, 203, 720
R(βNa|βpH) = 1, 132, 401.

The mean square residual for this model is MS(Res) = 155,909 with 42
degrees of freedom. Both give large F -ratios with Prob > F much smaller
than SLS = .15 so that both pH and Na are retained.
The forward selection phase of stepwise selection resumes with the choice
of Zn as the third variable to be added (Table 7.2). Again, the contribution
of each variable in the model is rechecked to determine if each should stay.
The partial sums of squares are

R(βpH |βNa βZn) = 4, 455, 726,
R(βNa|βpH βZn) = 1, 038, 493, and
R(βZn|βpH βNa) = 77, 026.

The mean square residual for this model is MS(Res) = 157,833 with 41
degrees of freedom. Both pH and Na meet the criterion to stay, but the
F -ratio for Zn is less than 1.0 with Prob > F = .4888, which does not
meet the criterion of SLS = .15. Therefore, Zn, which has just been added,
is immediately dropped from the model.
The stepwise procedure then checks to see if any variables other than

Zn meet the criterion to enter the model. The two remaining variables
to be checked are SALINITY and K. The partial sum of squares for
each, adjusted for pH and Na, is given in Step 3 of the forward selection,
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Table 7.2. The Prob > F for both variables is larger than SLE = .50.
Therefore, no other variables meet the criterion to enter the model and all
variables in the model meet the criterion to stay so the selection terminates
with the two-variable subset (pH, Na).
In general, the rechecking of previous decisions in stepwise selection
should improve the chances of identifying the best subsets at each sub-
set size. In this particular example, the choice of SLS = .15 caused the
stepwise selection to terminate early. If SLS had been chosen equal to SLE
= .50, stepwise regression would have followed the same path as forward
selection until the fifth variable K had been added to the model. Then,
rechecking the variables in the model would have caused Na to be dropped
from the model leaving (SAL, pH, K, Zn) as the selected four-variable
subset. This is the best four-variable subset (Table 7.1), which forward
selection failed to identify.

Even in the small example just discussed, there are several close con- Warnings on
Using Stepwise
Methods

tenders within most subset sizes as shown by all possible regressions (Ta-
ble 7.1). Each stepwise regression method reveals only one subset at each
step and, if the stopping criteria are set to select a “best” subset size, only
part of the subset models are identified. (Choice of criteria for this pur-
pose are discussed in Section 7.5.) In general, it is not recommended that
the automated stepwise regression methods be used blindly to identify a
“best” model. It is imperative that any model obtained in this manner be
thoroughly checked for any inadequacies (see Chapter 10) and validated
against an independent data set before being adopted (see Section 7.6).
If stepwise variable selection methods are to be used, they are best used
as screening tools to identify contender models. For this purpose, forward
selection and backward elimination methods alone provide very narrow
views of the possible models. Stepwise selection would be somewhat bet-
ter. An even better option would be the joint use of all three methods.
If forward selection and backward elimination identify the same subsets,
then it is known that they will have identified the best subset in each
subset size (Berk, 1978). One still would not have information on close
contenders within each subset size. For screening purposes, the choice of
the termination criteria should be such as to provide the greatest exposure
to alternative models. For forward selection, this means that SLE should
be large, say SLE = .5 or larger. For backward elimination, SLS should be
small. For the stepwise method of selection, SLE should be large but the
choice of SLS is not so easily specified. It may be worthwhile to try more
than one choice of each.
For the purpose of identifying several contender models, one should not
overlook the possible use of a program that utilizes the “leaps-and-bounds”
algorithm, such as the RSQUARE option in PROC REG (SAS Institute,
Inc., 1989b). This algorithm guarantees that the best m subset models
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within each subset size will be identified. Changing m from 1 to 10 approx-
imately doubles the computing time (Furnival and Wilson, 1974). Although
the computing cost will be higher than for any of the stepwise methods, the
cost may not be excessive and considerably more information is obtained.

7.5 Criteria for Choice of Subset Size

Many criteria for choice of subset size have been proposed. These criteria
are based on the principle of parsimony which suggests selecting a model
with small residual sum of squares with as few parameters as possible.
Hocking (1976) reviews 8 stopping rules, Bendel and Afifi (1977) compare
8 (not all the same as Hocking’s) in forward selection, and the RSQUARE
method in PROC REG (SAS Institute, Inc., 1989b) provides the option
of computing 12. Most of the criteria are monotone functions of the resid-
ual sum of squares for a given subset size and, consequently, give identical
rankings of the subset models within each subset size. However, the choice
of criteria may lead to different choices of subset size, and they may give
different impressions of the magnitude of the differences among subset mod-
els. The latter may be particularly relevant when the purpose is to identify
several competing models for further study.
Six commonly used criteria are discussed briefly. In addition, the choice
of F -to-enter and F -to-stay, or the corresponding “significance levels” SLE
and SLS are reviewed. The six commonly used criteria to be discussed are

• coefficient of determination R2,

• residual mean square MS(Res),
• adjusted coefficient of determinationR2

adj,

• Mallows’ Cp statistic, and
• two information criteria AIC and SBC.

The values for these criteria are given in Table 7.1 for all possible subsets
from the Linthurst data.

7.5.1 Coefficient of Determination
The coefficient of determination R2 is the proportion of the total (cor- Behavior of R2

rected) sum of squares of the dependent variable “explained” by the inde-
pendent variables in the model:

R2 =
SS(Regr)
SS(Total)

. (7.1)
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FIGURE 7.1. R2, R2
adj, and MS(Res) plotted against p′ for the best model from

each subset size for the Linthurst data.

The objective is to select a model that accounts for as much of the variation
in Y as is practical. Since R2 cannot decrease as independent variables are
added to the model, the model that gives the maximum R2 will necessarily
be the model that contains all independent variables. The typical plot of
R2 against the number of variables in the model starts as a steeply up-
ward sloping curve, then levels off near the maximum R2 once the more
important variables have been included. Thus, the use of the R2 criterion
for model building requires a judgment as to whether the increase in R2

from additional variables justifies the increased complexity of the model.
The subset size is chosen near the bend where the curve tends to flatten.

(Continuation of Example 7.1) The best one-variable subset accounted Example 7.3
for 100R2 = 59.9% of the variation in BIOMASS, the best two-variable
subset accounted for 100R2 = 65.8%, and the best three-variable subset
accounted for 100R2 = 66.3% (see Figure 7.1 on page 221). The increase in
R2 from two to three variables was small and R2 is close to the maximum
of 100R2 = 67.7%. Thus, the R2 criterion leads to the choice of the two-
variable subset containing pH and Na as the “best.”
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7.5.2 Residual Mean Square
Expected
Behavior of
MS(Res)

The residual mean squareMS(Res) is an estimate of σ2 if the model con-
tains all relevant independent variables. If relevant independent variables
have been omitted, the residual mean square is biased upward. Including
an unimportant independent variable will have little impact on the residual
mean square. Thus, the expected behavior of the residual mean square, as
variables are added to the model, is for it to decrease toward σ2 as impor-
tant independent variables are added to the model and to fluctuate around
σ2 once all relevant variables have been included.
The previous paragraph describes the expected behavior of MS(Res) Behavior with

Variable
Selection

when the selection of variables is not based on sample data. Berk (1978)
demonstrated with simulation that selection of variables based on the sam-
ple data causes MS(Res) to be biased downward. In his studies, the bias
was as much as 25% when sample sizes were less than 50. The bias tended
to reach its peak in the early stages of forward selection, when one-third to
one-half of the total number of variables had been admitted to the model.
In backward elimination, the bias tended to peak when slightly more than
half of the variables had been eliminated. These results suggest that the
pattern of MS(Res) as variables are added in a variable selection procedure
will be to drop slightly below σ2 in the intermediate stages of the selection
and then return to near σ2 as the full model is approached. It is unlikely
that a bias of this magnitude would be detectable in plots of MS(Res)
against number of variables, particularly in small samples where the bias
is most serious.
The pattern of the residual mean squares, as variables are added to the
model, is used to judge when the residual mean square is estimating σ2 and,
by inference, when the model contains the important independent variables.
In larger regression problems, with many independent variables and several
times as many observations, a plot of the residual mean square against the
number of parameters in the model will show when the plateau has been
reached. The plateau may not be clearly defined in smaller problems.

For the Linthurst data (Example 7.1), MS(Res) drops from MS(Res) Example 7.4
= 178,618 for the best one-variable subset to MS(Res) = 155,909 for the
best two-variable subset, and then changes little beyond that point (see
Table 7.1 and Figure 7.1). The two-variable subset would be chosen by this
criterion.

7.5.3 Adjusted Coefficient of Determination
The adjusted R2, which is labeled as R2

adj , is a rescaling of R
2 by degrees Behavior

of R2
adjof freedom so that it involves a ratio of mean squares rather than sums of
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squares:

R2
adj = 1− MS(Res)

MS(Total)

= 1− (1−R
2)(n− 1)

(n− p′) . (7.2)

This expression removes the impact of degrees of freedom and gives a quan-
tity that is more comparable than R2 over models involving different num-
bers of parameters. Unlike R2, R2

adj need not always increase as variables
are added to the model. The value of R2

adj will tend to stabilize around
some upper limit as variables are added. The simplest model with R2

adj

near this upper limit is chosen as the “best” model. R2
adj is closely related

to MS(Res) (see equation 7.2) and will lead to the same conclusions.

For the Linthurst data, the maximum R2
adj for the one-variable subset is Example 7.5

R2
adj = .590 (see Table 7.1 and Figure 7.1). This increases to .642 for the
two-variable subset, and then shows no further increase; R2

adj = .638, .642,
and .636 for p′ = 4, 5, and 6, respectively.

7.5.4 Mallows’ Cp Statistic
The Cp statistic is an estimate of the standardized total mean squared error Behavior of Cp
of estimation for the current set of data (Hocking, 1976). The Cp statistic
and the Cp plot were initially described by Mallows [see Mallows (1973a)
for earlier references]. The Cp statistic is computed as

Cp =
SS(Res)p
s2

+ 2p′ − n, (7.3)

where SS(Res)p is the residual sum of squares from the p-variable subset
model being considered and s2 is an estimate of σ2, either from independent
information or, more commonly, from the model containing all independent
variables. When the model is correct, the residual sum of squares is an
unbiased estimate of (n − p′)σ2; in this case, Cp is (approximately) equal
to p′. When important independent variables have been omitted from the
model, the residual sum of squares is an estimate of (n−p′)σ2 plus a positive
quantity reflecting the contribution of the omitted variables; in this case,
Cp is expected to be greater than p′.
The Cp plot presents Cp as a function of p′ for the better subset models Cp Plot
and provides a convenient method of selecting the subset size and judging
the competitor subsets. The usual pattern is for the minimum Cp statistic
for each subset size Cpmin to be much larger than p′ when p′ is small, to
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FIGURE 7.2. The Cp plot of the Linthurst data. The dashed line connects Cpmin

for each subset size. The two solid lines are the reference lines for subset selection
according to Hocking’s criteria.

decrease toward p′ as the important variables are added to the model, and
then to fall below or fluctuate around p′. When the residual mean square
from the full model has been used as s2, Cp will equal p′ for the full model.
A value of Cp near p′ indicates little bias in MS(Res) as an estimate of
σ2. (This interpretation assumes that s2 in the denominator of Cp is an
unbiased estimate of σ2. If s2 has been obtained from the full model, s2

is an unbiased estimate of σ2 only if the full model contains all relevant
variables.)
Different criteria have been advanced for the use of Cp. Mallows (1973a) Cp Criterion
suggested that all subset models with small Cp and with Cp close to p′ be
considered for further study. Hocking (1976) defined two criteria depending
on whether the model is intended primarily for prediction or for parameter
estimation. He used the criterion Cp ≤ p′ for prediction. For parameter
estimation, Hocking argued that fewer variables should be eliminated from
the model, to avoid excessive bias in the estimates, and provided the selec-
tion criterion Cp ≤ 2p′ − t, where t is the number of variables in the full
model.

The Cp plot for the Linthurst example is given in Figure 7.2. Only the Example 7.6
smaller Cp statistics, the dots, are shown for each value of p′, with the Cpmin
values connected by the dashed line. The figure includes two reference lines
corresponding to Hocking’s two criteria Cp = p′ and Cp = 2p′ − t. The Cp
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statistics for all subsets are given in Table 7.1. For the 1-variable subsets,
Cpmin = 7.42, well above p′ = 2. For the 2-variable subsets, Cpmin = 2.28,
just below p′ = 3. The next best 2-variable subset has Cp = 3.59, somewhat
above p′ = 3. Three 3-variable subsets give Cp close to p′ = 4 with Cpmin =
3.80. The Cp statistics for the 4-variable subsets identify two subsets with
Cp ≤ p′. Two other subsets have Cp slightly greater than p′.
Mallows’ Cp criterion (which requires Cp small and near p′) identifies
the two-variable subsets (pH, Na) and (pH, K), and possibly the three-
variable subsets (pH, Na, Zn), (pH, K, Na), and (SALINITY , pH, Na).
Preference would be given to (pH, Na) if this model appears to be adequate
when subjected to further study. Hocking’s criterion for selection of the
best subset model for prediction leads to the two-variable model (pH, Na);
Cp = 2.28 is less than p′ = 3. The more restrictive criterion for subset
selection for parameter estimation leads to the best four-variable subset
(SALINITY , pH, K, Zn); Cp = 4.30 is less than 2p′ − t = 5.

7.5.5 Information Criteria: AIC and SBC
The Akaike (1969) Information Criterion (AIC) is computed as Behavior of

AIC and SBC
AIC(p′) = n ln(SS(Res)p) + 2p

′ − n ln(n). (7.4)

(Note that all logarithmic functions in this text use base e.) Since SS(Res)p
decreases as the number of independent variables increases, the first term
in AIC decreases with p′. However, the second term in AIC increases with
p′ and serves as a penalty for increasing the number of parameters in the
model. Thus, it trades off precision of fit against the number of parameters
used to obtain that fit. A graph of AIC(p′) against p′ will, in general, show a
minimum value, and the appropriate value of the subset size is determined
by the value of p′ at which AIC(p′) attains its minimum value.
The AIC criterion is widely used, although it is known that the criterion
tends to select models with larger subset sizes than the true model. [See
Judge, Griffiths, Hill, and Lee (1980).] Because of this tendency to select
models with larger number of independent variables, a number of alter-
native criteria have been developed. One such criterion is Schwarz (1978)
Bayesian Criterion (SBC) given by

SBC(p′) = n ln(SS(Res)p) + [ln(n)]p
′ − n ln(n). (7.5)

Note that SBC uses the multiplier ln(n), (instead of 2 in AIC) for the
number of parameters p′ included in the model. Thus, it more heavily
penalizes models with a larger number of independent variables than does
AIC. The appropriate value of the subset size is determined by the value
of p′ at which SBC(p′) attains its minimum value.
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FIGURE 7.3. Minimum AIC and SBC values plotted against p′ for each subset
size for the analysis of the Linthurst data.

The values of AIC and SBC for the regression analysis of the Linthurst Example 7.7
data are given in the last two columns of Table 7.1 and the minimum values
for each subset size are plotted in Figure 7.3. The minimum value for both
criteria occurs at p′ = 3 and for the model containing pH and Na as the
independent variables. It should be noted that the AIC and SBC values
for the two-variable containing pH and K are only slightly larger than the
minimum values.

7.5.6 “Significance Levels” for Choice of Subset Size
F -to-enter and F -to-stay, or the equivalent “significance levels,” in the Use of “Signifi-

cance Levels”stepwise variable selection methods serve as subset size selection criteria
when they are chosen so as to terminate the selection process before all
subset sizes have been considered. Bendel and Afifi (1977) compared several
stopping rules for forward selection and showed that the sequential F -
test based on a constant “significance level” compared very favorably. The
optimum “significance level to enter” varied between SLE = .15 and .25.
Although not the best of the criteria they studied, the sequential F -test
with SLE = .15 allowed one to do “almost best” when n − p ≤ 20. When
n−p ≥ 40, the Cp statistic was preferred over the sequential F -test but by
a very slight margin if SLE = .20 were used.
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This is similar to the conclusion reached by Kennedy and Bancroft (1971)
for the sequential F -test but where the order of importance of the variables
was known a priori. They concluded that the significance level should be
.25 for forward selection and .10 for backward elimination. Bendel and Afifi
did not speculate on the choice of “significance level to stay” in backward
elimination. For stepwise selection, they recommended the same levels of
SLE as for forward selection and half that level for SLS.

For the Linthurst data of Example 7.1, the Bendel and Afifi level of Example 7.8
SLE = .15 would have terminated forward selection with the two-variable
subset (pH, Na) (see Table 7.2). The Kennedy and Bancroft suggestion
of using SLS = .10 for backward elimination gives the results shown in
Table 7.3 terminating with the two-variable subset (pH, K). In this case,
the backward elimination barely continued beyond the second step where
the least significant of the four variables had Prob > F = .1027. The
recommended significance levels of SLE = 2(SLS) = .15 for the stepwise
selection method terminates at the same point as forward selection.

In summary of the choice of subset size, some of the other conclusions of Conclusions
Bendel and Afifi (1977) regarding stopping rules are of importance. First,
the use of all independent variables is a very poor rule unless n − p′ is
very large. For their studies, the use of all variables was always inferior
to the best stopping rule. This is consistent with the theoretical results
(Section 7.2) that showed larger variances for β̂, Ŷ , and Ŷ pred for the
full models. Second, most of the stopping rules do poorly if n − p′ ≤ 10.
The Cp statistic does poorly when n − p′ ≤ 10 (but is recommended for
n − p′ ≥ 40). Third, the lack-of-fit test of the (t − p′) variables that have
been dropped (an intuitively logical procedure but not discussed in this
text) is generally very poor as a stopping rule regardless of the significance
level used. Finally, an unbiased version of the coefficient of determination
generally did poorly unless n − p′ was large. This suggests that R2, and
perhaps R2

adj and MS(Res), may not serve as good stopping rules for subset
size selection.
Mallows’ Cp statistic and significance levels appear to be the most fa-
vored criteria for subset size selection. The Cp statistic was not the op-
timum choice of Bendel and Afifi in the intermediate-sized data sets and
it did poorly for very small samples. Significance level as a criterion did
slightly better than Cp in the intermediate-sized studies. The poor perfor-
mance of Cp in the small samples should not be taken as an indictment.
First, none of the criteria did well in such studies and, second, no variable
selection routine or model building exercise should be taken seriously when
the sample sizes are as small as n− p′ ≤ 10.
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7.6 Model Validation

Validation of a fitted regression equation is the demonstration or confir- Importance of
Validationmation that the model is sound and effective for the purpose for which it

was intended. This is not equivalent to demonstrating that the fitted equa-
tion agrees well with the data from which it was computed. Validation of
the model requires assessing the effectiveness of the fitted equation against
an independent set of data, and is essential if confidence in the model is to
be expected.
Results from the regression analysis—R2, MS(Res), and so forth—do
not necessarily reflect the degree of agreement one might obtain from fu-
ture applications of the equation. The model-building exercise has searched
through many possible combinations of variables and mathematical forms
for the model. In addition, least squares estimation has given the best pos-
sible agreement of the chosen model with the observed data. As a result,
the fitted equation is expected to fit the data from which it was computed
better than it will an independent set of data. In fact, the fitted equation
quite likely will fit the sample data better than the true model would if it
were known.
A fitted model should be validated for the specific objective for which it
was planned. An equation that is good for predicting Yi in a given region
of the X-space might be a poor predictor in another region of the X-space,
or for estimation of a mean change in Y for a given change in X even in
the same region of the X-space. These criteria are of interest:

1. Does the fitted regression equation provide unbiased predictions of
the quantities of interest?

2. Is the precision of the prediction good enough (the variance small
enough) to accomplish the objective of the study?

Both quantities, bias and variance, are sometimes incorporated into a single Mean Squared
Error of
Prediction

measure called the mean squared error of prediction (MSEP). Mean
square error of prediction is defined as the average squared difference be-
tween independent observations and predictions from the fitted equation for
the corresponding values of the independent variables. The mean squared
error of prediction incorporates both the variance of prediction and the
square of the bias of the prediction.

For illustration, suppose a model has been developed to predict maxi- Example 7.9
mum rate of runoff from watersheds following rain storms. The independent
variables are rate of rainfall (inches per hour), acreage of watershed, average
slope of land in the watershed, soil moisture levels, soil type, amount of ur-
ban development, and amount and type of vegetative cover. The dependent
variable is maximum rate of runoff (ft3 sec−1), or peak flow. Assume the
immediate interest in the model is prediction of peak flow for a particular
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TABLE 7.4. Observed rate of runoff, predicted rate of runoff, and prediction error
for validation of water runoff model. Results are listed in increasing order of
runoff (ft3 sec−1).

Predicted Observed Prediction Error
P Y δ = P − Y
2, 320 2, 380 −60
3, 300 3, 190 110
3, 290 3, 270 20
3, 460 3, 530 −70
3, 770 3, 980 −210
4, 210 4, 390 −180
5, 470 5, 400 70
5, 510 5, 770 −260
6, 120 6, 890 −770
6, 780 8, 320 −1, 540

Mean 4, 423 4, 712 −289

watershed. The model is to be validated for this watershed by comparing
observed rates of peak flow with the model predictions for 10 episodes of
rain. The observed peak flow, the predicted peak flow, and the error of
prediction are given in Table 7.4 for each episode. The average prediction
bias is δ = −289 ft3 sec−1; the peak flow in these data is underestimated by
approximately 6%. The variance of the prediction error is s2(δ) = 255, 477,
or s(δ) = 505 ft3 sec−1. The standard error of the estimated mean bias is
s(δ) = 505/

√
10 = 160. A t-test of the hypothesis that the bias is zero gives

t = −1.81, which, with 9 degrees of freedom and α = .05, is not significant.
The mean squared error of prediction is

MSEP =
δ′δ
n
= 313, 450

or

MSEP =
(n− 1)s2(δ)

n
+ (δ)2

=
9(255, 477)
10

+ (−289)2 = 313, 450.

The bias term contributes 27% of MSEP. The square root of MSEP gives
560 ft3 sec−1, an approximate 12% error in prediction.
Even though the average bias is not significantly different from zero, the
very large prediction error on the largest peak flow (Table 7.4) suggests
that the regression equation is not adequate for heavy rainfalls. Review of
the data from which the equation was developed shows very few episodes
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of rainfall as heavy as the last in the validation data set. If the last rain-
fall episode is omitted from the computations, the average bias drops to
δ = −150 ft3 sec−1 with a standard deviation of s(δ) = 265, or a standard
error of the mean of s(δ) = 88.2. Again, the average bias is not significantly
different from zero using these nine episodes. However, the error of predic-
tion on the largest rainfall differs from zero by -1540/265 = -5.8 standard
deviations. This is a clear indication that the regression equation is seri-
ously biased for the more intense rainfalls and must be modified before it
can be used with confidence.

In Example 7.9, the peak flow model was being validated for a particular Choosing the
Data Set for
Validation

watershed. If the intended use of the model had been prediction of peak
flow from several watersheds over a large geographical area, this sample of
data would have been inadequate for validation of the model. Validation on
one watershed would not have provided assurance that the equation would
function well over a wide range of watersheds. The data to be used for val-
idation of a model must represent the population for which the predictions
are to be made.
It often is impractical to obtain an adequate independent data set with Splitting the

Data Setwhich to validate a model. If the existing data set is sufficiently large, an
alternative is to use those data for both estimation and validation. One
approach is to divide the data set into two representative halves; one half
is then used to develop the regression model and the other half is used for
validation of the model. Snee (1977) suggests that the total sample size
should be greater than 2p′ + 25 before splitting the sample is considered.
Of course, one could reverse the roles of the two data sets and have double
estimation and validation. Presumably, after the validation, and assuming
satisfactory results, one would prefer to combine the information from the
two halves to obtain one model which would be better than either alone.
Methods have been devised for estimating the mean squared error of Estimating

MSEPprediction MSEP when it is not practical to obtain new independent data.
The Cp statistic can be considered an estimator of MSEP. Weisberg (1981)
presents a method of allocating Cp to the individual observations which
facilitates detecting inadequacies in the model. Another approach is to
measure the discrepancy between each observation and its prediction but
where that observation was not used in the development of the prediction
equation. The sum of squares of these discrepancies is the PRESS statis-
tic given by Allen (1971b). Let Ŷpredi(i) be the prediction of observation

i, where the (i) indicates that the ith observation was not used in the
development of the regression equation. Then,

PRESS =
n∑
i=1

(Yi − Ŷpredi(i))
2. (7.6)
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The individual discrepancies are of particular interest for model validation.
Unusually large discrepancies or patterns to the discrepancies can indicate
inadequacies in the model. Bunke and Droge (1984) derive a best unbiased
estimator and a minimum mean squared error estimator of MSEP where
there is replication and all variables are assumed to have a multivariate
normal distribution.
Validation of the model based on an independent sampling of the pop-
ulation is to be preferred to the use of estimates of mean squared error of
prediction based on the original sample data. Part of the error of predic-
tion may arise because the original data do not adequately represent the
original population. Or, the population may have changed in some respects
since the original sample was taken. Estimates of MSEP computed from
the original data cannot detect these sources of inadequacies in the model.

7.7 Exercises

7.1. Show algebraically the relationship between R2 and MS(Res).

7.2. Show algebraically the relationship between R2 and Cp, and between
MS(Res) and Cp.

7.3. Substitute expectations in the numerator and denominator of the
Cp statistic and show that Cp is approximately an estimate of p′

when the model is correct. (This is approximate because the ratio of
expectations is not the same as the expectation of the ratio.)

7.4. Use the relationship between R2 and MS(Res), Exercise 7.1, to show
equality between the two forms of R2

adj in equation 7.2.

7.5. The following approach was used to determine the effect of acid rain
on agricultural production. U.S. Department of Agriculture statistics
on crop production, fertilizer practices, insect control, fuel costs, land
costs, equipment costs, labor costs, and so forth for each county in the
geographical area of interest were paired with county-level estimates
of average pH of rainfall for the year. A multiple regression analysis
was run in which “production ($)” was used as the dependent vari-
able and all input costs plus pH of rainfall were used as independent
variables. A stepwise regression analysis was used with pH forced to
be in all regressions. The partial regression coefficient on pH from
the model chosen by stepwise regression was taken as the measure of
the impact of acid rain on crop production.

(a) Discuss the validity of these data for establishing a causal rela-
tionship between acid rain and crop production.
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(b) Suppose a causal effect of acid rain on crop production had al-
ready been established from other research. Discuss the use of
the partial regression coefficient for pH from these data to pre-
dict the change in crop production that would result if rain acid-
ity were to be decreased. Do you see any reason the prediction
might not be valid?

(c) Suppose the regression coefficient for pH were significantly neg-
ative (higher pH predicts lower crop production). Do you see
any problem with inferring that stricter government air pollu-
tion standards on industry would result in an increase in crop
production?

(d) Do you see any potential for bias in the estimate of the partial
regression coefficient for pH resulting from the omission of other
variables?

7.6. The final model in the Linthurst example in this chapter used pH and
Na content of the marsh substrate as the independent variables for
predicting biomass (in the forward selection and stepwise methods).
The regression equation was

Ŷi = −476 + 407XpH − .0233XNa.
What inference are you willing to make about the relative importance
of pH andNa versus SALINITY,K, and Zn as biologically important
variables in determining biomass? When all five variables were in the
model, the partial regression coefficient for pH was a nonsignificant
−.009(±.016). Does this result modify your inference?

Exercises 7.7 through 7.12 use the simulated data
on peak flow of water used in the exercises in Chap-
ter 5. Use LQ = ln(Q) as the dependent variable
with the logarithms of the nine independent vari-
ables.

7.7. Determine the total number of possible models when there are nine
independent variables, as in the peak water flow problem. Your com-
puting resources may not permit computing all possible regressions.
Use a program such as the METHOD = RSQUARE option in PROC
REG (SAS Institute, Inc., 1989b) to find the n = 6 “best” subsets in
each stage. This will require using the SELECT = n option. Plot the
behavior of the Cp statistic and determine the “best” model.

7.8. Use a forward selection variable selection method to search for an
acceptable model for the peak flow data. Use SLE = .50 for entry of
a variable into the model. What subset would you select if you used
SLE = .15? Compute and plot the Cp statistic for the models from
SLE = .50. What subset model do you select for prediction using Cp?
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7.9. Repeat Exercise 7.8 using backward elimination. Use SLS = .10 for
elimination of a variable. What subset model is selected? Compute
and plot the Cp statistic for the models used and decide on the “best”
model. Does backward elimination give the same model as forward
selection in Exercise 7.8?

7.10. Repeat Exercise 7.8 using the stepwise method of variable selection.
Use SLE = .50 and SLS = .20 for elimination of a variable from the
model. What subset model is selected? Plot the Cp statistic for the
models used to decide which model to adopt. Do you arrive at the
same model as with forward selection? As with backward elimination?

7.11. Give a complete summary of the results for the model you adopted
from the backward elimination method in Exercise 7.9. Give the anal-
ysis of variance, the partial regression coefficients, their standard er-
rors, and R2.

7.12. Your analysis of the peak flow data has been done on ln(Q). Reexpress
your final model on the original scale (by taking the antilogarithm
of your equation). Does this equation make sense; that is, are the
variables the ones you would expect to be important and do they
enter the equation the way common sense would suggest? Are there
omitted variables you would have thought important?

7.13. Consider the model

Y =X1β1 +X2β2 + ε,

where X1 : n×p′, and X2 : n× (t−p′) and ε ∼ N(0, Iσ2). Suppose
we estimate β1 and σ2 using the subset model

Y =X1β1 + u.

That is,
β̂1 = (X ′

1X1)−1X ′
1Y

and
σ̂2 = Y ′(I − PX1)Y /(n− p′).

(a) Show that E(β̂1) = β1+ (X
′
1X1)−1X ′

1X2β2. Under what con-
ditions is β̂1 unbiased for β1?

(b) Using the result for quadratic forms E [Y ′AY ] = tr(AVar(Y ))+
E(Y ′)A E(Y ), show that

E [σ̂2] = σ2 + β′
2X

′
2(I − PX1)X2β2/(n− p′)

≥ σ2.

Under what conditions is σ̂2 unbiased for σ2?
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(c) Let X = (X1 X2 ) be of full column rank. Show that

(X ′X)−1 =

X ′
1X1 X ′

1X2

X ′
2X1 X ′

2X2


−1

=

 (X ′
1X1)−1 +AQ−1A′ −AQ−1

−Q−1A′ Q−1

 ,
where A = (X ′

1X1)−1X ′
1X2 and Q =X ′

2(I − PX1)X2.

(d) Using (c), show that the least squares estimators of the elements
in β1, based on the subset model in (a), have smaller variance
than the corresponding estimators of the full model.



8
POLYNOMIAL REGRESSION

To this point we have assumed that the relationship be-
tween the dependent variable Y and any independent
variable X can be represented with a straight line. This
clearly is inadequate in many cases. This chapter intro-
duces the extensively used polynomial and trigonomet-
ric regression response models to characterize curvilin-
ear relationships. Such models are linear in the param-
eters and linear least squares is appropriate for estima-
tion of the parameters. Models that are nonlinear in
the parameters are introduced in Chapter 15.

Most models previously considered have (1) specified a linear relationship
between the dependent variable and each independent variable and (2) have
been linear in the parameters. The linear relationship results from each
independent variable appearing only to the first degree and in only one
term of the model; no terms are included that contain powers or products
of independent variables. This restriction forces the rate of change in the
mean of the dependent variable with respect to an independent variable to
be constant over all values of that and every other independent variable
in the model. Linearity in the parameters means that each (additive) term
in the model contains only one parameter and only as a multiplicative
constant on the independent variable. This restriction excludes many useful
mathematical forms including nearly all models developed from principles
of behavior of the system. These simple models are very restrictive and
should be viewed as first-order approximations to true relationships.
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In this chapter, the class of models is extended to allow greater flexibil-
ity and realism by introducing the higher-degree polynomial models and
trigonometric models. These models still are to be regarded as approxima-
tions to the true models for most situations. Even more realistic models
that are nonlinear in the parameters are introduced in Chapter 15. Al-
though this chapter does not dwell on the behavior of the residuals, it is
important that the assumptions of least squares be continually checked.
Growth data, for example, often will not satisfy the homogeneous variance
assumption, and will contain correlated errors if the data are collected
as repeated measurements over time on the same experimental units. For
discussion on experimental designs for fitting response surfaces and for es-
timating the values (settings) of the independent variables that optimize
the response, the reader is referred to design texts such as Box, Hunter,
and Hunter (1978).

8.1 Polynomials in One Variable

An assumed linear relationship between a dependent (response) variable
and an independent (input) variable implies a constant rate of change and
may not represent the true relationship adequately. For example, the con-
centration of a drug in the blood stream may not be linear over time.
Many economic time series such as the inflation index and the gross do-
mestic product exhibit trends over time that may not be linear. Although
the time to bake a cake may decrease as the temperature of the oven in-
creases, it may not decrease linearly. In all of these examples, the rate of
change in the mean of the dependent variable (Y ) is not constant with
respect to the independent variable (X).
The simplest extension of the straight-line model involving one indepen- Quadratic

Modeldent variable is the second-order polynomial (quadratic) model,

E(Y ) = β0 + β1X + β2X
2. (8.1)

The quadratic model includes the term X2 in addition to X. Note that
this model is a special case of the multiple regression model where X1 = X
and X2 = X2. Hence, the estimation methods considered in Chapter 4 are
appropriate. Higher-order polynomials of the form Polynomial

Model
E(Y ) = β0 + β1X + β2X

2 + β3X
3 + · · ·+ βpXp (8.2)

allow increasing flexibility of the response relationship and are also special
cases of the multiple regression models where Xi = Xi, i = 1, . . . , p. The
model in equation 8.2 is called a pth degree polynomial model.
An important aspect of the polynomial model that distinguishes it from
other multiple regression models is that the mean of the dependent variable
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TABLE 8.1. Algae density measures over time.

Day Rep 1 Rep 2 Day Rep 1 Rep 2
1 .530 .184 8 4.059 3.892
2 1.183 .664 9 4.349 4.367
3 1.603 1.553 10 4.699 4.551
4 1.994 1.910 11 4.983 4.656
5 2.708 2.585 12 5.100 4.754
6 3.006 3.009 13 5.288 4.842
7 3.867 3.403 14 5.374 4.969

is a function of a single independent variable. Even though the independent
variables in a general multiple regression model may be related to each
other, typically they are not assumed to be functions of one another. The
fact that the “independent” variables in a simple polynomial model are
functions of a single independent variable affects the interpretation of the
parameters. Consider, for example, the model

E(Y ) = β0 + β1X1 + β2X2. (8.3)

In this model, β1 is interpreted as the change in the mean of the dependent
variable per unit change in X1 at any fixed value of X2. (Likewise, β2 is the
change in the mean of the dependent variable per unit change in X2 at any
fixed value of X1.) However, if X2 = X2

1 , then changing X1 by a unit will
also change the value of X2 . In the second-degree model, equation 8.1, the
rate of change in the mean of the dependent variable as a function of X is
called the slope at X or the derivative at X. From calculus, the derivative
for equation 8.1 with respect to X is

dE(Y )
dX

= β1 + 2β2X. (8.4)

That is, the slope of E(Y ) depends on the value of the independent variable.
The parameter β1 is the slope only at X = 0. The parameter β2 is half the
velocity of change in E(Y ) or, equivalently, it is half the rate of change in
the slope of E(Y ).
Note that any polynomial model in one variable can be represented by
a curvilinear plot on a two-dimensional graph, rather than a surface in
higher-dimensional space, since the dependent variable is considered as a
function of a single independent variable.

The data in Table 8.1 are from a growth experiment with blue-green al- Example 8.1
gae Spirulina platensis conducted by Linda Shurtleff, North Carolina State
University (data used with permission). The complete data are presented in
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FIGURE 8.1. Algae density versus days of study.

Exercise 8.8. The data in Table 8.1 are for the treatment where CO2 is bub-
bled through the culture. There were two replicates for this treatment, each
consisting of 14 independent solutions. The 14 solutions in each replicate
were randomly assigned for measurement to one of each of 14 successive
days of study. The dependent variable reported is a log-scale measurement
of the increased absorbance of light by the solution. This is interpreted as a
measure of algae density. The plot of the algae density measurement versus
days (Figure 8.1) clearly shows a curvilinear relationship.

Since polynomial response models are a special subset of multiple regres- Fitting
Polynomialssion models, fitting polynomial models with least squares does not intro-

duce any new conceptual problems. As long as the usual assumptions on
the errors are appropriate, ordinary least squares can be used. The higher-
degree terms are included in the model by augmenting X with columns of
new variables defined as the appropriate powers of the independent vari-
ables. Testing procedures discussed for the multiple regression model are
also appropriate for testing relevant hypotheses.

Consider the data for the first replicate given in Example 8.1. We consider Example 8.2
a cubic polynomial model given by

Yi1 = β0 + β1Xi + β2X
2
i + β3X

3
i + εi1, (8.5)
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where Xi = i represents the day and Yi1 represents the response variable
for the first replicate on day i. Note that the model in equation 8.5 can be
expressed as a multiple regression model given by

.530
1.183
1.603
...

5.374

 =


1 1 1 1
1 2 4 8
1 3 9 27
...
...

...
...

1 14 196 2, 744



β0
β1
β2
β3

+

ε1
ε2
ε3
...
ε14

 (8.6)

or

Y =Xβ + ε.

The ordinary least squares fit of the model is given by

Ŷi = .00948 + .53074Xi + 0.00595X2
i − .00119X3

i (8.7)
(.16761) (.09343) (.01422) (.00062),

where the standard errors of the estimates are given in parentheses.
Assuming that a cubic model is adequate, we can test the hypotheses

H0 : β3 = 0 and H0 : β2 = β3 = 0. Given a cubic polynomial model,
H0 : β3 = 0 tests the hypothesis that a quadratic polynomial model is
adequate whereas H0 : β2 = β3 = 0 tests the hypothesis that a linear trend
model is adequate. The t-statistic for testing β3 = 0 is

t =
−.00119
.00062

= −1.91.

Comparing |t| = 1.91 with t(.025;10) = 2.228, we fail to reject H0 : β3 = 0.
To test H0 : β2 = β3 = 0, we fit the reduced model

Yi = β0 + β1Xi + εi

and compute the F -statistic

F =
[SS(Resreduced)− SS(Resfull)]/2

SS(Resfull)/10

=
[1.45812− .13658]/2

.01366
= 48.37.

Since F(.05;2,10) = 4.10, we reject H0 : β2 = β3 = 0. That is, we conclude
that a linear trend model is not adequate.

It is interesting to note that the t-statistic for testing H0 : β2 = 0 in
Example 8.2 is t = .418 and we would fail to reject H0 : β2 = 0. That is, we



240 8. POLYNOMIAL REGRESSION

fail to reject the individual null hypotheses H0 : β2 = 0 and H0 : β3 = 0,
but we reject the joint null hypothesis H0 : β2 = β3 = 0. This is due to
the fact that X3 = X3 is highly correlated with the linear and quadratic
variables. When the columns of an X matrix are nearly linearly dependent
on each other, the matrix X ′X is nearly singular and, hence, the matrix
Var(β̂) = (X ′X)−1σ2 tends to have large elements. That is, the standard
errors of the least squares estimators will be large and the corresponding
t-statistics will be small. This problem is known as the multicollinearity
problem. This and other related problems are discussed in Chapter 10.
Since polynomial models are special cases of multiple linear regression, Testing

Model
Adequacy

diagnostics based on the residuals can be used to check the adequacy of
the model. Another approach is to fit a higher-order polynomial that is
deemed adequate and use statistical tests to obtain a low-order polynomial
that is adequate. For example, in Example 8.2, we assume that a cubic
polynomial model is adequate and test sequentially whether a quadratic
polynomial model or a linear trend model is adequate. When one measure-
ment is observed at each of k distinct values of the input variable, then it
is possible to fit a polynomial of degree (k − 1). However, in this case, the
(k − 1)th degree polynomial will fit the k observations perfectly and the
residual sum of squares will be zero. Therefore, in testing the adequacy of
a polynomial model, it is important to choose a high, but not too high,
order polynomial model.
When replicate measurements are observed at at least one of the values Lack of Fit
of the independent variable, an alternative test for the adequacy of the
model can be used. Suppose we have ni replicate measuements at Xi, for
i = 1, . . . , k. Assume that the Xis are distinct, ni ≥ 1, and at least one
of the ni is strictly greater than 1. In this case, we can fit a (k − 1)th
degree polynomial and the error sum of squares will have

∑
ni− k degrees

of freedom. Using the (k − 1)th degree polynomial as the full model, we
can test the adequacy of a low-order polynomial model. Let Yij denote the
jth replicate value of the response variable at the ith value (Xi) of the
independent variable. We wish to test the adequacy of the degree q(< k)
polynomial model

Yij = β0 + β1Xi + β2X
2
i + · · ·+ βqXqi + εij . (8.8)

We first fit the full model

Yij = β0 + β1Xi + β2X
2
i + · · ·+ βqXqi

+ βq+1X
q+1
i + · · ·+ βk−1X

k−1
i + εij (8.9)

and then fit the reduced model in equation 8.8. We use the F -statistic for
testing H0 : βq+1 = · · · = βk−1 = 0 to test the adequacy of the model in
equation 8.8. That is, we use the F -statistic

F =
[SS(Resreduced)− SS(Resfull)]/(k − 1− q)

SS(Resfull)/(
∑
ni − k) (8.10)
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=
[Lack-of-Fit Sum of Squares]/(k − 1− q)
[Pure Error Sum of Squares]/(

∑
ni − k) . (8.11)

We show in Chapter 9 that

Pure Error Sum of Squares = SS(Resfull)

=
k∑
i=1

ni∑
j=1

(Yij − Y i.)2.

The adequacy of the model in equation 8.8 is rejected if F is larger than
F(α;k−1−q,

∑
ni−k).

In Example 8.1, we have two replicates each day. That is, we have k = 14 Example 8.3
and ni = 2 for i = 1, . . . , 14. To test the adequacy of a quadratic polynomial
model, we fit the model

Yij = β0 + β1Xi + β2X
2
i + εij (8.12)

to obtain

SS(Resreduced) = .7984.

The pure-error sum of squares is

Pure-Error Sum of Squares =
14∑
i=1

2∑
j=1

(Yij − Y i.)2

= .6344

and hence the lack-of-fit sum of squares is

Lack-of-Fit Sum of Squares = .7984− .6344
= .1640.

The value of the F -statistic for testing the adequacy of the quadratic poly-
nomial model (equation 8.12) is

F =
.1640/(14− 1− 2)
.6344/(28− 14) = .329.

Since F(.05;11,14) = 2.57, we fail to reject the null hypothesis that the
quadratic model (equation 8.12) is adequate. Also, from Figure 8.2, we
observe that the quadratic polynomial model fits the data reasonably well.
Figure 8.2 also shows the fit from the full model (a 13th degree polynomial).
Even though the full model has smaller residual sum of squares, we observe
that the fitted curve has a considerable number of wild oscillations. These
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FIGURE 8.2. Algae density data with the fitted quadratic model (solid line) and
fitted 13th degree polynomial model.

fits also indicate that care must be used when interpolating or extrapolat-
ing based on high-order polynomial models. Issues related to extrapolation
are discussed further in Section 8.3.2.

In Example 8.2, we have observed that the “natural” polynomials Xi, Orthogonal
PolynomialsX2

i , and X
3
i are nearly linearly dependent on each other. Such relationships

among the columns of the X matrix lead to multicollinearity problems.
The collinearity problems and diagnostics are discussed in Sections 10.3
and 11.3. When columns are not orthogonal to each other, the sequential
and partial sums of squares of the coefficients will be different. On the other
hand, if the columns are orthogonal, the sequential sums of squares equal
the partial sums of squares.
Consider the cubic polynomial model in equation 8.5 given by

Yi1 = β0 + β1Xi + β2X
2
i + β3X

3
i + εi1, i = 1, . . . , 14, (8.13)

where Xi = i. In this case, the sequential sums of squares R(β1|β0) and
R(β2|β1 β0) based on the “natural” polynomials are different from the
partial sums of squares R(β1|β0 β2 β3) and R(β2|β0 β1 β3). Define a set of
orthogonal polynomials

O0i = 1,
O1i = 2Xi − 15,
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O2i = .5X2
i − 7.5Xi + 20, and (8.14)

O3i =
5
3
X3
i − 37.5X2

i +
698.5
3
Xi − 340.

Note that O1i, O2i, and O3i are linear combinations of the “natural” poly-
nomials Xi, X2

i , and X
3
i . Arranging the values of the orthogonal polyno-

mials (i = 1, . . . , 14) from equation 8.14 in a (14× 4) matrix gives

O = (O0 O1 O2 O3 )

=



1 −13 13 −143
1 −11 7 −11
1 −9 2 66
1 −7 −2 98
1 −5 −5 95
1 −3 −7 67
1 −1 −8 24
1 1 −8 −24
1 3 −7 −67
1 5 −5 −95
1 7 −2 −98
1 9 2 −66
1 11 7 11
1 13 13 143



. (8.15)

Note that the columns O0, O1, O2, and O3 in the matrix O are mutually
orthogonal. When the values of Xi are equally spaced, orthogonal polyno-
mials may be obtained from tables given in Steel, Torrie, and Dickey (1997).
Regardless of whether Xis are equally spaced, the orthogonal polynomials
can be obtained using the Gram–Schmidt orthogonalization procedure (see
Exercise 2.27) or by a computing program such as the ORPOL function in
PROC IML of SAS (SAS Institute Inc., 1989d).
GivenXi,X2

i , andX
3
i , we can obtainO1i,O2i, andO3i as linear functions

of Xi, X2
i , and X

3
i (equation 8.14). Also, given O1i, O2i, and O3i, we can

get back to Xi, X2
i , and X

3
i , using

Xi = 7.5 + .5O1i,

X2
i = 72.5 + 7.5O1i + 2O2i, and (8.16)
X3
i = 787.5 + 98.9O1i + 45O2i + .6O3i.

Note that, from equations 8.13 and 8.16, we get

Yi1 = β0 + β1(7.5 + .5O1i) + β2(72.5 + 7.5O1i + 2O2i)
+ β3(787.5 + 98.9O1i + 45O2i + .6O3i) + εi1 (8.17)

= γ0 + γ1O1i + γ2O2i + γ3O3i + εi1,
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where

γ0 = β0 + 7.5β1 + 72.5β2 + 787.5β3,

γ1 = .5β1 + 7.5β2 + 98.9β3,

γ2 = 2β2 + 45β3, and (8.18)
γ3 = .6β3.

That is, the model in equation 8.17 is a reparameterization of the model
in equation 8.13. Similarly, using equations 8.14 and 8.17, or by solving
equation 8.18 for the βs, we get

β0 = γ0 − 15 γ1 + 20 γ2 − 340 γ3,
β1 = 2 γ1 − 7.5 γ2 + 698.53 γ3,

β2 = .5 γ2 − 37.5 γ3, and (8.19)

β3 =
5
3
γ3.

That is, the model using Xs, equation 8.13, is equivalent to the model using
the orthogonal polynomials, equation 8.17. One of the advantages of work-
ing with orthogonal polynomials is that the columns corresponding to O1i,
O2i, and O3i are mutually orthogonal and hence avoid numerical problems
associated with the near-singularity. Also, the sequential and partial sums
of squares coincide for the model in equation 8.17. Note also that β3 = 0
if and only if γ3 = 0 and β2 = β3 = 0 if and only if γ2 = γ3 = 0. Hence,
testing H0 : β3 = 0 and H0 : β2 = β3 = 0 in equation 8.13 is equivalent to
testing H0 : γ3 = 0 and H0 : γ2 = γ3 = 0, respectively, in equation 8.17.

For the data in Example 8.2, we get Example 8.4

Ŷi1 = 3.48164 + .19198O1i − .04179O2i − .00072O3i

(.03123) (.00387) (.00433) (.00037).

Note that the t-statistic for testing H0 : γ3 = 0 in equation 8.17 is

t =
−.00072
.00037

= −1.91.

This is the same as the t-statistic for testing H0 : β3 = 0 in equation 8.13
(Example 8.2). Similarly, the F -statistic for testing H0 : γ2 = γ3 = 0 in
equation 8.13 is the same as the F -statistic we have computed for testing
H0 : β2 = β3 = 0 in Example 8.2. However, the t-statistic (−9.649) for
testing H0 : γ2 = 0 is not the same as the t-statistic (.418) for testing
H0 : β2 = 0. Using equation 8.18, a test of H0 : γ2 = 0 would be the same
as a test of H0 : 2β2 + 45β3 = 0.
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TABLE 8.2. Quarterly U. S. beer production from the first quarter of 1975 to the
fourth quarter of 1982 (millions of barrels).

Quarter
Year I II III IV

1975 36.14 44.60 44.15 35.72
1976 36.19 44.63 46.95 36.90
1977 39.66 49.72 44.49 36.54
1978 41.44 49.07 48.98 39.59
1979 44.29 50.09 48.42 41.39
1980 46.11 53.44 53.00 42.52
1981 44.61 55.18 52.24 41.66
1982 47.84 54.27 52.31 42.03

8.2 Trigonometric Regression Models

Measurements on a response variable (Yt) collected over time (t), as in
Example 8.3, are called time series data. Although not present in Example
8.3, such data often display periodic behavior that repeats itself every s
time periods. For example, the average monthly temperatures in Raleigh
may exhibit a periodic behavior that is expected to repeat itself over the
years. That is, the average temperature value for January in one year is
expected to be similar to January values in other years, the February value
in one year is expected to be similar to February values in other years,
and so forth for each month. Economic time series often exhibit periodic
behavior that reflects business cycles. For example, total monthly sales of
greeting cards is expected to be periodic over the years as are total monthly
retail sales and housing starts. Trigonometric functions such as sin(ωt) and
cos(ωt) are periodic over time with a period of 2π/ω. That is, sin(ωt) is
the same as sin[ω(t + (2π/ω)j)] for j = 1, 2, . . .. Hence, time series with
periodic behavior may be modeled parsimoniously using trigonometric
regression models.
Consider, for example, quarterly U. S. beer production from the first
quarter of 1975 to the fourth quarter of 1982 (Table 8.2 and Figure 8.3).
We see that the behavior of the production is periodic and it is repeated
over the years. Production tends to be highest in the second quarter and
lowest in the fourth quarter of each year. A trigonometric regression model
that may be appropriate for these data is given by

Yt = β0 + β1 cos(2πt/4) + β2 sin(2πt/4) + β3 cos(πt) + εt. (8.20)

The cosine and sine terms appear in pairs. The term sin(πt) is not included
since it is identically zero in this case. The intercept column may also be
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FIGURE 8.3. Quarterly U.S. beer production versus time.

thought of as the cos(0t) term. Note that

cos(2πt/4) = cos(2π(t+ 4j)/4) = cos(2πt/4 + 2πj)

and

sin(2πt/4) = sin(2π(t+ 4j)/4) = sin(2πt/4 + 2πj)

for any integer j. That is, cos(2πt/4) and sin(2πt/4) are periodic with a
period of 4. They take the same value every 4 quarters. On the other hand,

cos(πt) = cos(π(t+ 2j)) = cos(2πt/2 + 2πj)

for any integer j and, hence, it has a period of 2. That is, it takes the same
value, 1 or −1, every 2 quarters. Note that this model (equation 8.20) is
a special case of the multiple regression model with Xt1 = cos(2πt/4),
Xt2 = sin(2πt/4), and Xt3 = cos(πt).
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The X-matrix for this model (equation 8.20) is given by

X =



1 0 1 −1
1 −1 0 1
1 0 −1 −1
1 1 0 1
1 0 1 −1
1 −1 0 1
1 0 −1 −1
1 1 0 1
...

...
...

...
1 0 1 −1
1 −1 0 1
1 0 −1 −1
1 1 0 1



. (8.21)

Note that the columns of X in equation 8.21 are mutually orthogonal and
the X ′X matrix is given by

X ′X =


32 0 0 0
0 16 0 0
0 0 16 0
0 0 0 32

 .
In addition to the periodic behavior, Figure 8.3 shows an increasing trend
in beer production over time. A more appropriate model would account for
a time trend by including the term δt in the trigonometric model, equa-
tion 8.20, where δ is the linear regression coefficient for the average change
in beer production per year. In this case, X ′X is no longer a diagonal
matrix.
For monthly data like the average temperatures or average river flow
measures that exhibit periodic behavior every 12 months, a model of the
form

Yt = a0 +
5∑
j=1

[aj cos(2πjt/12) + bj sin(2πjt/12)] + a6 cos(πt) + εt (8.22)

may be appropriate. The trigonometric functions

cos(2πjt/12) and sin(2πjt/12), j = 1, . . . , 6,

are periodic with a period of 12/j. That is, they have the same value every
12/j months. As in the beer production example, the cosine and sine terms
appear as pairs at each frequency. An interpretation of the coefficients aj
and bj in terms of the phase angle of the trend and the period is given in
Anderson (1971).
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The trigonometric regression model in equation 8.22 is also a special
case of the multiple linear regression model. Suppose we have data on
the average monthly temperatures for the period January 1987 through
December 1996. Then the X ′X matrix for the model in equation 8.22
is a 12 × 12 diagonal matrix with diagonal elements 120, 60, 60,. . . , 60,
120. That is, the columns of the X-matrix are mutually orthogonal. This
orthogonality stems from the fact that the data cover complete cycles of the
anticipated periodicity. If our data had included the averages for January
1997 through May 1997, a partial cycle, the columns of the X-matrix would
no longer be orthogonal. Orthogonality of the columns of the X-matrix
makes it simple to obtain the least squares estimators of the parameters.
For this model (equation 8.22), with 10 years of data, the least squares
estimators of aj and bj are given by

â0 =
1
120

120∑
t=1

Yt = Y ,

âj =
1
60

120∑
t=1

cos(2πjt/12)Yt, j = 1, . . . , 5,

b̂j =
1
60

120∑
t=1

sin(2πjt/12)Yt, j = 1, . . . , 5, and (8.23)

â6 =
1
120

120∑
t=1

cos(πt)Yt.

The residual mean square error for this model (equation 8.22) is

σ̂2 =

∑120
t=1 Y

2
t − 120â20 − 60

[∑5
j=1(â

2
j + b̂

2
j )

]
− 120â26

120− 12 , (8.24)

where
∑
Y 2
t − 120â20 =

∑
Y 2
t − nY 2

is seen to be the corrected total sum
of squares.
As in the case of multiple regression models, t- and F -statistics can be
used to test hypotheses regarding the significance of certain parameters.
For example, to test the hypothesis H0 : a6 = 0, we use the t-statistic

t =
â6√
σ̂2/120

(8.25)

and rejectH0 : a6 = 0 if |t| > t(α/2;108). Similarly, to test the null hypothesis
H0 : a5 = b5 = 0 (that is, no periodic component of period 12/5 months),
we use the F -statistic

F =
60

[
â25 + b̂

2
5

]
/2

σ̂2 (8.26)
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and reject H0 : a5 = b5 = 0 if F > F(α;2,108). In trigonometric regression
models, it is appropriate to test aj = bj = 0 simultaneously, since, as a
pair, they correspond to a periodic component of period 12/j months.
The assumption that the errors εt in equation 8.22 are independent over
time may not be realistic for time series data. For example, the tempera-
tures in different months may be correlated with each other. If the errors are
correlated, the ordinary least squares estimators may not be efficient. Also,
the standard errors and the test statistics constructed under the assump-
tion of independent errors may not be valid when the errors are correlated.
We discuss in Chapter 10 appropriate methods when the assumptions are
violated.

8.3 Response Curve Modeling

8.3.1 Considerations in Specifying the Functional Form
Regression to
Summarize
Data

The degree of realism that needs to be incorporated into a model will
depend on the purpose of the regression analysis. The least demanding
purpose is the simple use of a regression model to summarize the observed
relationships in a particular set of data. There is no interest in the func-
tional form of the model per se or in predictions to other sets of data or
situations. The most demanding is the more esoteric development of math-
ematical models to describe the physical, chemical, and biological processes
in the system. The goal of the latter is to make the model as realistic as
the state of knowledge will permit.
The use of regression models simply to summarize observed relationships
places no priority on realism because no inference, even to other samples,
is intended. The overriding concern is that the model adequately portray
the observed relationships. In practice, however, readers will often attach
a predictive inference to the presentation of regression results, even if the
intent of the author is simply to summarize the data.
When the regression equation is to be used for prediction, it is bene- Regression for

Predictionficial to incorporate into the model prior information on the behavior of
the system. This serves certain goals. First, other things being equal, the
more realistic model would be expected to provide better predictions for
unobserved points in the X-space, either interpolations or extrapolations.
Although extrapolations are always dangerous and are to be avoided, it is
not always easy, particularly with observational data, to identify points out-
side the sample space. Realistic models will tend to provide more protection
against large errors in unintentional extrapolations than purely approxi-
mating models. Second, incorporating current beliefs about the behavior
of the system into the model provides an opportunity to test and update
these theories.
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The prior information used in the model may be nothing more than
recognizing the general shape the response curve should take. For example, Use of Prior

Informationit may be that the response variable should not take negative values, or
the response should approach an asymptote for high or low values of an
independent variable. Recognizing such constraints on the behavior of the
system will often lead to the use of nonlinear models. In some cases, these
(presumably) more realistic models will also be simpler models in terms of
the number of parameters to be estimated. A response with a plateau, for
example, may require several terms of a polynomial model to fit the plateau,
but might be characterized very well with a two-parameter exponential
model. Polynomial models should not a priori be considered the simpler
and nonlinear models the more complex. Models that are nonlinear in the
parameters are discussed in Chapter 15.
At the other extreme, prior information on the behavior of a system may
include minute details on the physical and chemical interactions in each of
several different components of the system and on how these components
interact to produce the final product. Such models can become extremely
complex and most likely cannot be written as a single functional relation-
ship between E(Y ) and the independent variables. Numerical integration
may be required to evaluate and combine the effects of the different com-
ponents. The detailed crop growth models that predict crop yields based
on daily, or even hourly, data on the environmental and cultural conditions
during the growing season are examples of such models. The development
of such models is not pursued in this text. They are mentioned here as
an indication of the natural progression of the use of prior information in
model building.

8.3.2 Polynomial Response Models
The models previously considered have been first-degree polynomial mod-
els, models in which each term contains only one independent variable to
the first power. The first-degree polynomial model in two variables is

Yi = β0 + β1Xi1 + β2Xi2 + εi. (8.27)

A second-degree polynomial model includes terms, in addition to the first-
degree terms, that contain squares or products of the independent variables.
The full second-degree polynomial model in two variables is

Yi = β0 + β1Xi1 + β2Xi2 + β11X
2
i1 + β12Xi1Xi2 + β22X

2
i2 + εi. (8.28)

The degree (or order) of an individual term in a polynomial is defined Degree of a
Polynomialas the sum of the powers of the independent variables in the term. The

degree of the entire polynomial is defined as the degree of the highest-
degree term. All polynomial models, regardless of their degree, are linear
in the parameters. For the higher-degree polynomial models, the subscript
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FIGURE 8.4. A first-degree bivariate polynomial response surface.

notation on the βs is expanded to reflect the degree of the polynomial
term. In general, the number of 1s and the number of 2s in the subscript
identify the powers of X1 and X2, respectively, in the polynomial term.
For example, the two 1s identify β11 as the regression coefficient for the
second-degree term in X1.
The higher-degree polynomial models provide greatly increased flexibil-
ity in the response surface. Although it is unlikely that any complex process
will be truly polynomial in form, the flexibility of the higher-degree poly-
nomials allows any true model to be approximated to any desired degree
of precision.
The increased flexibility of the higher-degree polynomial models is illus- First-Degree

Polynomialtrated with a sequence of polynomial models containing two independent
variables. The first-degree polynomial model, equation 8.1, uses a plane to
represent E(Yi). This surface is a “table top” tilted to give the slopes β̂1 in
the X1 direction and β̂2 in the X2 direction (Figure 8.4).
The properties of any response equation can be determined by observing
how E(Y ) changes as the values of the independent variables change. For
the first-degree polynomial, equation 8.27, the rate of change in E(Y ) as
X1 is changed is the constant β1, regardless of the values of X1 and X2.
Similarly, the rate of change in E(Y ) as X2 changes is determined solely
by β2. The changes in E(Y ) as the independent variables change are given
by the partial derivatives of E(Y ) with respect to each of the independent
variables. For the first-degree polynomial, the partial derivatives are the
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constants β1 and β2:

∂E(Y )
∂X1

= β1, and

∂E(Y )
∂X2

= β2. (8.29)

The partial derivative with respect to Xj gives the slope of the surface, or
the rate of change in E(Y ), in the Xj direction.
The polynomial model is expanded to allow the rate of change in E(Y ) Second-Degree

Polynomialwith respect to one independent variable to be dependent on the value of
that variable by including a term that contains the square of the variable.
For example, adding a second-degree term in X1 to equation 8.27 gives

Yi = β0 + β1Xi1 + β11X
2
i1 + β2Xi2 + εi. (8.30)

The partial derivatives for this model are

∂E(Y )
∂X1

= β1 + 2β11Xi1

∂E(Y )
∂X2

= β2. (8.31)

Now the rate of change in E(Y ) with respect to X1 is a linear function
of X1, increasing or decreasing according to the sign of β11. The rate of
change in E(Y ) with respect to X2 remains a constant β2. Notice that
the meaning of β1 is not the same in equation 8.30 as it was in the first-
degree polynomial, equation 8.27. Here β1 is the slope of the surface in the
X1 direction only where X1 = 0. The nature of this response surface is
illustrated in Figure 8.5.
The rate of change in E(Y ) with respect to one independent variable Interaction

Termcan be made dependent on another independent variable by including the
product of the two variables as a term in the model:

Yi = β0 + β1Xi1 + β2Xi2 + β12Xi1Xi2 + εi. (8.32)

The product term β12Xi1Xi2 is referred to as an interaction term. It
allows one independent variable to influence the impact of another. The
derivatives are

∂E(Y )
∂X1

= β1 + β12Xi2, and

∂E(Y )
∂X2

= β2 + β12Xi1. (8.33)

The rate of change in E(Y ) with respect to X1 is now dependent on X2
but not onX1, and vice versa. Notice the symmetry of the interaction effect;
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FIGURE 8.5. A polynomial response surface that is of second degree in X1 and
first degree in X2.

both partial derivatives are influenced in the same manner by changes in
the other variable. This particular type of interaction term is referred to as
the linear-by-linear interaction, because the linear slope in one variable
is changed linearly (at a constant rate) by changes in the other variable
and vice versa. This response function gives a “twisted plane” where the
response in E(Y ) to changes in either variable is always linear but the
slope is dependent on the value of the other variable. This linear-by-linear
interaction is illustrated in Figure 8.6 with the three-dimensional figure
in part (a) and a two-dimensional representation showing the relationship
between Y and X1 for given values of X2. The interaction is shown by the
failure of the three lines in (b) to be parallel.
The full second-degree bivariate model includes all possible second-degree Full Second-

Degree Bivari-
ate Model

terms as shown in equation 8.28. The derivatives with respect to each
independent variable are now functions of both independent variables:

∂E(Y )
∂X1

= β1 + 2β11Xi1 + β12Xi2, and

∂E(Y )
∂X2

= β2 + 2β22Xi2 + β12Xi1. (8.34)

The squared terms allow for a curved response in each variable. The product
term allows for the surface to be “twisted” (Figure 8.7). β1 and β2 are the
slopes of the response surface in theX1 andX2 directions, respectively, only
at the point X1 = 0 and X2 = 0. A quadratic response surface will have a
maximum, a minimum, or a saddle point, depending on the coefficients in
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FIGURE 8.6. Bivariate response surface (a) with interaction and (b) a
two-dimensional representation of the surface.

FIGURE 8.7. A bivariate quadratic response surface with a maximum.
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FIGURE 8.8. A polynomial response surface with a third-degree term in X1.

the regression equation. The reader is referred to Box and Draper (1987) for
a discussion of the analyis of the properties of quadratic response surfaces.
The computer program PROC RSREG (SAS Institute Inc., 1989b) fits
a full quadratic model to a set of data and provides an analysis of the
properties of the response surface.
The flexibility of the polynomial models is demonstrated by showing the Third-Degree

Polynomialeffects of a third-degree term for one of the variables. For example, consider
the model

Yi = β0 + β1Xi1 + β2Xi2 + β11X
2
i1 + β111X

3
i1 + εi. (8.35)

The partial derivative with respect to X1 is now a quadratic function of
X1:

∂E(Y )
∂X1

= β1 + 2β11Xi1 + 3β111X
2
i1. (8.36)

The derivative with respect to X2 is still β2. An example of this response
surface is shown in Figure 8.8. The full third-degree model in two variables
would include all combinations of X1 and X2 with sums of the exponents
equal to 3 or less.
Increasingly higher-degree terms can be added to the polynomial re- Flexibility of

Polynomialssponse model to give an arbitrary degree of flexibility. Any continuous
response function can be approximated to any level of precision desired by
a polynomial of appropriate degree. Thus, an excellent fit of a polynomial
model (or, for that matter, any model) cannot be interpreted as an indica-
tion that it is in fact the true model. Due to this extreme flexibility, some
caution is needed in the use of polynomial models; it is easy to “overfit”
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a set of data with polynomial models. Nevertheless, polynomial response
models have proven to be extremely useful for summarizing relationships.
Polynomial models can be extended to include any number of indepen- Presenting the

Response
Surface

dent variables. Presenting a multivariate response surface so it can be visu-
alized, however, becomes increasingly difficult. Key features of the response
surface (maxima, minima, inflection points) can be determined with the
help of calculus. Two- or three-dimensional plots of “slices” of the multi-
variate surface can be obtained by evaluating the response surface equation
at specific values for all independent variables other than the ones of inter-
est.
Extrapolation is particularly dangerous when higher-degree polynomial Caution with

Extrapolationsmodels are being used. The highest degree term in each independent vari-
able eventually dominates the response in that dimension and the surface
will “shoot off” in either the positive or negative direction, depending on
the sign of the regression coefficient on that term. Thus, minor extrapola-
tions can have serious errors. See Figure 8.2 for an example.
Fitting polynomial response models with least squares introduces no new Fitting

Polynomialsconceptual problems. The model is still linear in the parameters and, as
long as the usual assumptions on ε are appropriate, ordinary least squares
can be used. The higher-degree terms are included in the model by aug-
menting X with columns of new variables defined as the appropriate pow-
ers and products of the independent variables and by augmenting β with
the respective parameters. The computational problems associated with
collinearity are aggravated by the presence of the higher-degree terms be-
cause X, X2, X3, and so on are often highly collinear. To help alleviate
this problem, orthogonal polynomials as discussed in Section 8.1 can be
used (Steel, Torrie, and Dickey, 1997) or each independent variable can be
centered before the higher-degree terms are included in X. For example,
the quadratic model

Yi = β0 + β1Xi1 + β2Xi2 + β11X
2
i1 + β22X

2
i2 + β12Xi1Xi2 + εi (8.37)

becomes

Yi = γ0 + γ1(Xi1 −X .1) + γ2(Xi2 −X .2) + γ11(Xi1 −X .1)2
+ γ22(Xi2 −X .2)2 + γ12(Xi1 −X .1)(Xi2 −X .2) + εi. (8.38)

Centering the independent variables changes the definition of the regression
coefficients for all but the highest-degree terms. For example, γ1 and γ2 are
the rates of change in E(Y ) in the X1 and X2 directions, respectively, at
X1 = X .1 and X2 = X .2, whereas β1 and β2 are the rates of change
at X1 = X2 = 0. The relationship between the two sets of regression
coefficients is obtained by expanding the square and product terms in the
centered model, equation 8.38, and comparing the coefficients for similar
polynomial terms with those in the original model, equation 8.37. Thus,

β0 = γ0 − γ1X .1 − γ2X .2 + γ11X2
.1 + γ22X

2
.2 + γ12X .1X .2,
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β1 = γ1 − 2γ11X .1 − γ12X .2,
β2 = γ2 − 2γ22X .2 − γ12X .1, (8.39)
β11 = γ11, β22 = γ22, and β12 = γ12.

When the sample X-space does not include the origin, the parameters for
the centered model are more meaningful because they relate more directly
to the behavior of the surface in the region of interest.
The polynomial model is built sequentially, starting either with a first- Building the

Modeldegree polynomial and adding progressively higher-order terms as needed,
or with a high-degree polynomial and eliminating the unneeded higher-
degree terms. The lowest-degree polynomial that accomplishes the degree
of approximation needed or warranted by the data is adopted. The error
term for the tests of significance at each stage must be an appropriate
independent estimate of error, preferably estimated from true replication if
available. Otherwise, the residual mean square from a model that contains
at least all the terms in the more complex model being considered is used
as the estimate of error.
It is common practice to retain in the model all lower-degree terms, Retaining

Lower-Order
Terms

regardless of their significance, that are contained in, or are subsets of, any
significant term. For example, if a second-degree term is significant, the
first-degree term in the same variable would be retained even if its partial
regression coefficient is not significantly different from zero. If the X2

1X
2
2

term is significant, the X1, X2, X
2
1X2, X1X

2
2 , and X1X2 terms would be

retained even if nonsignificant.
The argument for retaining lower-order terms even if not significant is
based on these points. First, the meanings and values of the regression
coefficients on all except the highest-degree terms change with a simple
shift in origin of the independent variables. Recall that reexpressing the
independent variables as deviations from their means in a quadratic model
changed the meaning of the coefficient for each first-degree term. Thus,
the significance or nonsignificance of a lower-order term will depend on the
choice of origin for the independent variable during the analysis. A lower-
order term that might have been eliminated from a regression equation
because it was nonsignificant could “reappear,” as a function of the higher-
order regression coefficients, when the regression equation was reexpressed
with different origins for the independent variables.
Second, eliminating lower-order terms from a polynomial tends to give
biased interpretations of the nature of the response surface when the result-
ing regression equation is studied. For example, eliminating the first-degree
term from a second-degree polynomial forces the critical point (maximum,
minimum, or saddle point) of the fitted response surface to occur precisely
at X = 0. (The critical point on a quadratic response surface is found by
setting the partial derivatives equal to zero and solving for the values of the
independent variable.) For the second-degree polynomial in one variable,
the critical point is X = −β1/(2β11), which is forced to be zero if the first-



258 8. POLYNOMIAL REGRESSION

degree term has been dropped from the model (β1 = 0). Even though β1
may not be significantly different from zero, it would be more informative
to investigate the nature of the response surface before such constraints are
imposed. The position of the critical point could then be estimated with
its standard error and appropriate inferences made.
These arguments for retaining all lower-degree polynomial terms apply
when the polynomial model is being used as an approximation of some
unknown model. They are not meant to apply to the case where there is
a meaningful basis for a model that contains a higher-order term but not
the lower-order terms. The development of a prediction equation for the
volume of timber from information on diameter and height of the trees
provides an illustration. Geometry would suggest that volume should be
nearly proportional to the product of (diameter)2 and height. Consequently,
a model without the lower-order terms, diameter and diameter × height,
would be realistic and appropriate.

A study of the effects of salinity, temperature, and dissolved oxygen on Example 8.5
the resistance of young coho salmon to pentachlorophenate is used to illus-
trate the use of polynomial models [Alderdice (1963) used with permission].
The study used a 3-factor composite design in two stages to estimate the
response surface for median survival time (Y ) following exposure to 3 mg/l
of sodium pentachlorophenate. The treatment variables were water salinity,
temperature, and dissolved oxygen content. The first 15 trials (2 replicates)
used a 23 design of the 3 factors plus the six axial points and the center
point (Table 8.3). The last 10 trials were a second-stage study to improve
the definition of the center of the response surface. The basic levels of the
3 factors were 9, 5, and 1% salinity; 13, 10, and 7◦C temperature; and 7.5,
5.5, and 3.5 mg/1 dissolved oxygen. The independent variables were coded
as follows.

X1 = (salinity− 5%)/4,
X2 = (temperature− 10◦C)/3, and
X3 = (dissolved oxygen− 5.5mg/l)/2.

The dependent variable, median lethal time, was computed on samples of
10 individuals per experimental unit. The treatment combinations and the
observed responses are given in Table 8.3.
It was verified by Alderdice (1963), using the first 15 trials for which there
was replication, that a quadratic polynomial response model in the three
independent variables was adequate for characterizing the response surface.
The replication provided an unbiased estimate of experimental error, which
was used to test the lack of fit of the quadratic polynomial. Alderdice then
fit the full quadratic or second-degree polynomial model to all the data and
presented interpretations of the trivariate response surface equation.
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TABLE 8.3. Treatment combinations of salinity (X1), temperature (X2), and
dissolved oxygen (X3), and median lethal time for exposure to 3 mg/l of sodium
pentachlorophenate. [Data from Alderdice (1963), and used with permission.]

Salinity Temperature Oxygen Median Lethal Time
Trial X1 X2 X3 Rep 1 Rep 2
1 −1 −1 −1 53 50
2 −1 −1 1 54 42
3 −1 1 −1 40 31
4 −1 1 1 37 28
5 1 −1 −1 84 57
6 1 −1 1 76 78
7 1 1 −1 40 49
8 1 1 1 50 54
9 0 0 0 50 50
10 1.215 0 0 61 76
11 −1.215 0 0 54 45
12 0 1.215 0 39 33
13 0 −1.215 0 67 54
14 0 0 1.215 44 45
15 0 0 −1.215 61 38
16 −1.2500 −1.8867 −.6350 46
17 .8600 −2.2200 −.4250 66
18 1.0000 −2.2400 −.3100 68
19 2.1165 −2.4167 −.1450 75
20 2.5825 −2.4900 −.0800 75
21 3.2475 −2.6667 .0800 68
22 1.1760 −1.3333 0 78
23 1.4700 −1.6667 0 93
24 1.7640 −2.0000 0 96
25 2.0580 −2.3333 0 66



260 8. POLYNOMIAL REGRESSION

TABLE 8.4. Partial regression coefficients for the full second-degree poly-
nomial model in three variables for the Alderdice (1963) data.

Term β̂j s(β̂j) Student’s ta

X1 9.127 1.772 5.151
X2 −9.852 1.855 −5.312
X3 .263 1.862 .141
X2

1 −1.260 1.464 −.861
X2

2 −6.498 2.014 −3.225
X2

3 −2.985 2.952 −1.011
X1X2 −.934 1.510 −.618
X1X3 2.242 2.150 1.042
X2X3 −.139 2.138 −.065

aThe estimate of σ2 from this model was s2 = 76.533 with 28 degrees of
freedom.

For this example, the full set of data is used to develop the simplest
polynomial response surface model that adequately represents the data. Quadratic

ModelSince the full quadratic model appears to be more than adequate, that
model is used as the starting point and higher-degree terms are eliminated
if nonsignificant. In addition to the polynomial terms, the model must
include a class variable “REP” to account for the differences between the
two replications in the first stage and between the first and second stages.
Thus, the full quadratic model is

Yij = µ+ ρi + β1Xij1 + β2Xij2 + β3Xij3 + β11X
2
ij1 + β22X

2
ij2 + β33X

2
ij3

+ β12Xij1Xij2 + β13Xij1Xij3 + β23Xij2Xij3 + εij , (8.40)

where ρi is the effect of the ith “rep,” i = 1, 2 labels the two replications
in stage one, i = 3 labels the trials in the second stage, and j designates
the observation within the replication. This model allows each rep to have
its own level of performance but requires the shape of the response surface
to be the same over replications. The presence of the replication effects
creates a singularity in X and methods of handling this are discussed in
Chapter 9. For this example, we avoid the singularity by letting µi = µ+
ρi, i = 1, 2, 3. Thus, X for the full-rank model consists of three columns
of indicator variables, 0 or 1, identifying to which of the three replications
the observation belongs, followed by nine columns of X1, X2, X3, and their
squares and products. The partial regression coefficients, their standard
errors, and the t-statistics for this full model are given in Table 8.4.
Several of the partial regression coefficients do not approach significance,

t(.05/2,28) = 2.048; at least some terms can be eliminated from the model.
It is not a safe practice, however, to delete all nonsignificant terms in one
step unless the columns of the X matrix are orthogonal. The common
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FIGURE 8.9. Bivariate response surface relating survival time of coho salmon
exposed to 3 mg/l of sodium pentachlorophenate to water temperature and water
salinity. There was no significant effect of dissolved oxygen (X3). [Data from
Alderdice (1963); used with permission].

practice with polynomial models is to eliminate the least important of the
highest-degree terms at each step. In this example, the X2X3 term would
be dropped first. Notice that X3 is retained in the model at this stage, even
though it has the smallest t-value, because there are higher-order terms in
the model that contain X3.
The subsequent steps consist of dropping X1X2, X1X3, X

2
1 , X

2
3 , and, fi- Final Model

nally, X3 in turn. The final polynomial model is

Yij = µi + β1Xij1 + β2Xij2 + β22X
2
ij2 + εij . (8.41)

The residual mean square for this model is 69.09 with 34 degrees of free-
dom. (The estimate of experimental error from the replicated data is 62.84
with 14 degrees of freedom.) The regression equation, using the weighted
average, 59.92, of the estimates of µi is

Ŷ = 59.92 + 9.21X1 − 9.82X2 − 6.896X2
2 (8.42)

(2.85) (1.72) (1.76) (1.56).

The standard errors of the estimates are shown in parentheses. Thus, within
the limits of the observed values of the independent variables, survival time
of coho salmon with exposure to sodium pentachlorophenate is well repre-
sented by a linear response to salinity, and a quadratic response to tem-
perature (Figure 8.9, page 261). There is no significant effect of dissolved
oxygen on survival time and there appear to be no interactions among the
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three environmental factors. The linear effect of salinity is to increase sur-
vival time 9.2 minutes per coded unit of salinity, or 9.2/4 = 2.3 minutes per
percent increase in salinity. The quadratic response to temperature has a
maximum at X2 = −β̂2/(2β̂22) = −.71, which is 7.9◦C on the original tem-
perature scale. (The variance of the estimated maximum point is obtained
by using the linear approximation of the ratio of two random variables.
This is discussed in Chapter 15, for the more general case of any nonlinear
function with nonlinear models.)
The maximum survival times with respect to temperature for given val-
ues of salinity are shown with the line on the surface connecting the open
circles at X2 = −.71. The investigated region appears to contain the maxi-
mum with respect to temperature, but the results suggest even higher salin-
ities will produce greater survival. The linear response to salinity cannot
continue without limit. Using the original full quadratic model to inves-
tigate the critical points on the response surface, Alderdice (1963) found
a maximum at X1 = 3.2 (salinity = 17.8%), X2 = −1.7 (temperature =
4.9◦C), and X3 = 1.1 (dissolved oxygen = 7.7 mg/l). These critical points
are near the limits of the sample X-space and should be used with caution.
Tests of significance indicate that the data are not adequate to support a
statement on curvature with respect to salinity or on even a linear response
with respect to dissolved oxygen.

8.4 Exercises

8.1. The critical point (maximum or minimum) on a quadratic response
curve is that point where the tangent to the curve has slope zero.
Plot the equation

Y = 10 + 2.5X − .5X2

and find the value of X where the tangent to the curve has slope zero.
Is the point on the response curve a maximum or a minimum? The
derivative of Y with respect to X is dY/dX = 2.5− 1.0X. Solve for
the value of X that makes the derivative equal to zero. How does this
point relate to the value of X where the tangent was zero?

8.2. Change the quadratic equation in Exercise 8.1 to

Y = 10 + 2.5X + .5X2.

Again, plot the equation and find the value of X where the tangent
to the curve has slope zero. Is this point a maximum or minimum?
What characteristic in the quadratic equation determines whether
the critical point is a maximum or a minimum?
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8.3. The critical point on a bivariate quadratic response surface is a max-
imum, minimum, or saddle point. Plot the bivariate polynomial

Y = 10−X1 + 4X2 + .25X2
1 − .5X2

2

over the region 0 < X1 < 5 and 2 < X2 < 6. Visually locate the
critical point where the slopes of the tangent lines in the X1 direction
and the X2 direction are zero. Is this point a maximum, a minimum,
or a saddle point? Now use the partial derivatives to find this critical
point.

8.4 Assume you have fit the following cubic polynomial to a set of growth
data where X ranged from 6 to 20.

Y = 50− 20X + 2.5X2 − .0667X3.

Plot the response equation over the interval of the data. Does it ap-
pear to have a reasonable “growth” form? Demonstrate the sensitiv-
ity of the polynomial model to extrapolation by plotting the equation
over the interval X = 0 to X = 30.

8.5 You have obtained the regression equation Y = 40 − .5X2 over the
interval −5 < X < 5, where X = ( temperature in ◦F−95). Assume
the partial regression coefficient for the linear term was not signifi-
cant and was dropped from the model. Reexpress the regression equa-
tion in degrees centigrade, ◦C = 5(◦F−32)/9. Find the conversion of
X = (◦F−95) to ◦C and convert the regression equation. What is
the linear regression coefficient in the converted equation? What do
you conclude about this linear regression coefficient being different
from zero if the coefficient on X2, the .5, in the original equation is
significantly different from zero?

8.6 The first four columns of the following data give the average pre-
cipitation (inches averaged over 30 years) in April and May for five
western U. S. cities and five eastern U. S. cities. (Source: 1993 Al-
manac and Book of Facts. Pharos Books, Scripps Howard Company,
New York.) The last three columns include numbers we use later in
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the exercise.

Coast City April May SE XE XW
East Albany, N. Y. 2.9 3.3 1 2.9 0
East Washington, D.C. 3.1 3.6 1 3.1 0
East Jacksonville, Fla. 3.3 4.9 1 3.3 0
East Raleigh, N.C. 2.9 3.7 1 2.9 0
East Burlington, Vt. 2.8 3.0 1 2.8 0
West Los Angeles, Ca. 1.2 .2 0 0 1.2
West Seattle, Wash. 2.4 1.6 0 0 2.4
West Portland, Ore. 2.3 2.1 0 0 2.3
West San Diego, Ca. 2.6 1.5 0 0 2.6
West Fresno, Ca. 1.2 .3 0 0 1.2

(a) Plot May precipitation versus April using E and W as plot sym-
bols to represent the coasts. What do you conclude from the
plot? Is it appropriate to fit a single straight line for both coasts?

(b) Regress the May precipitation on the April precipitation for each
region. Add together the error sums of squares and refer to this
as the full model residual sum of squares where the full model
allows two different slopes and two different intercepts. Compute
the difference in the two slopes and in the two intercepts.

(c) Now, regress the May precipitation on the April precipitation
using all n = 10 points. The error sum of squares here is the re-
duced model residual sum of squares. The reduced model forces
the same intercept and slope for the two groups. Compare the
full to the reduced model using an F -test. What degrees of free-
dom did you use?

(d) Run a multiple regression of May precipitation on columns SE ,
XE , and XW . What do the coefficients on XE and XW repre-
sent? Have you seen these numbers before? How about the error
sum of squares and the coefficient on SE? Write out the X ma-
trix for this regression. What would happen to the rank of X if
we appended the column of 10 April precipitation numbers to
it?

(e) Finally run a multiple regression of May precipitation on April
precipitation, SE , and XE . Write out the X matrix for this
regression. Compute the F -test for the hypothesis that SE and
XE can be omitted from this model. Have you seen this test
before? The coefficient on XE in this regression estimates the
difference of the two slopes in (b) and thus can be used to test
the hypothesis of parallel lines. Test the hypothesis that the lines
have equal slopes. Omission of SE from this model produces
two lines emanating from the same origin. Test the hypothesis
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that both lines have the same intercept (with possibly different
slopes).

8.7 You are given the accompanying response data on concentration of a
chemical as a function of time. The six sets of observations Y1 to Y6
represent different environmental conditions.

Time (h) Y1 Y2 Y3 Y4 Y5 Y6

6 .38 .20 .34 .43 .10 .26
12 .74 .34 .69 .82 .16 .48
24 .84 .51 .74 .87 .18 .51
48 .70 .41 .62 .69 .19 .44
72 .43 .29 .43 .60 .15 .33

(a) Use cubic polynomial models to relate Y = concentration to
X = time, where each environment is allowed to have its own
intercept and response curve. Is the cubic term significant for any
of the environments? [For the purposes of testing homogeneity
in Part (c), retain the minimum-degree polynomial model that
describes all responses.]

(b) Your knowledge of the process tells you that Y must be zero
when X = 0. Test the composite null hypothesis that the six
intercepts are zero using the model in Part (a) as the full model.
What model do you adopt based on this test?

(c) Use the model determined from the test in Part (b) and test the
homogeneity of the six response curves. State the conclusion of
the test and give the model you have adopted at this stage.

8.8 The data in the table are from a growth experiment with blue-green
algae Spirulina platensis conducted by Linda Shurtleff, North Car-
olina State University (data used with permission). These treatments
were determined by the amount of “aeration” of the cultures:

1. no shaking and no CO2 aeration;
2. CO2 bubbled through the culture;
3. continuous shaking of the culture but no CO2; and
4. CO2 bubbled through the culture and continuous shaking of the
culture.

There were two replicates for each treatment, each consisting of 14 in-
dependent solutions. The 14 solutions in each replicate and treatment
were randomly assigned for measurement to 1 of each of the 14 days
of study. The dependent variable reported is a log-scale measurement
of the increased absorbance of light by the solution, which is inter-
preted as a measure of algae density. The readings for DAY S = 0
are a constant zero and are to be omitted from the analyses.
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Growth experiment with blue-green algae.
Treatment

Time Control CO2
(days) Rep 1 Rep 2 Rep 1 Rep 2
0 0 0 0 0
1 .220 .482 .530 .184
2 .555 .801 1.183 .664
3 1.246 1.483 1.603 1.553
4 1.456 1.717 1.994 1.910
5 1.878 2.128 2.708 2.585
6 2.153 2.194 3.006 3.009
7 2.245 2.639 3.867 3.403
8 2.542 2.960 4.059 3.892
9 2.748 3.203 4.349 4.367
10 2.937 3.390 4.699 4.551
11 3.132 3.626 4.983 4.656
12 3.283 4.003 5.100 4.754
13 3.397 4.167 5.288 4.842
14 3.456 4.243 5.374 4.969

Treatment
Time Shaking CO2 + Shaking
(days) Rep 1 Rep 2 Rep 1 Rep 2
0 0 0 0 0
1 .536 .531 .740 .638
2 .974 .926 1.251 1.143
3 1.707 1.758 2.432 2.058
4 2.032 2.021 3.054 2.451
5 2.395 2.374 3.545 2.836
6 2.706 2.933 4.213 3.296
7 3.009 3.094 4.570 3.594
8 3.268 3.402 4.833 3.790
9 3.485 3.564 5.074 3.898
10 3.620 3.695 5.268 4.028
11 3.873 3.852 5.391 4.150
12 4.042 3.960 5.427 4.253
13 4.149 4.054 5.549 4.314
14 4.149 4.168 5.594 4.446
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(a) Use quadratic polynomials to represent the response over time.
Fit a model that allows each treatment to have its own intercept
and quadratic response. Then fit a model that allows each treat-
ment to have its own intercept but forces all to have the same
quadratic response. Use the results to test the homogeneity of
the responses for the four treatments. (Note: Use the residual
mean square from the analysis of variance as your estimate of
σ2.) Use the quadratic model you have adopted at this point
and define a reduced model that will test the null hypothesis
that all intercepts are zero. Complete the test and state your
conclusions.

(b) The test of zero intercepts in Part (a) used quadratic polynomi-
als. Repeat the test of zero intercepts using cubic polynomials
for each treatment. Summarize the results.

8.9 Assigning a visual volume score to vegetation is a nondestructive
method of obtaining measures of biomass. The volume score is the
volume of space occupied by the plant computed according to an ex-
tensive set of rules involving different geometric shapes. The accom-
panying data on volume scores and biomass dry weights for grasses
were obtained for the purpose of developing a prediction equation for
dry weight biomass based on the nondestructive volume score. (Data
were provided by Steve Byrne, North Carolina State University, and
are used with permission.)

Volume Dry Wt. Volume Dry Wt.
5 0.8 1, 753 3.4

1, 201 2.2 70, 300 107.6
108, 936 87.5 62, 000 42.3
105, 000 94.4 369 1.0
1, 060 4.2 4, 100 6.9
1, 036 0.5 177, 500 205.5
33, 907 67.7 91, 000 120.9
48, 500 72.4 2, 025 5.5
314 0.6 80 1.3
1, 400 3.9 54, 800 110.3
46, 200 87.7 51, 000 26.0
76, 800 86.8 55 3.4
24, 000 57.6 1, 605 3.4
1, 575 0.5 15, 262 32.1
9, 788 20.7 1, 362 1.5
5, 650 15.1 57, 176 85.1
17, 731 26.5 25, 000 50.5
38, 059 9.3



268 8. POLYNOMIAL REGRESSION

Use a polynomial response model to develop a prediction equation
for Y = (dry weight)1/2 on X = 1n(volume + 1). What degree poly-
nomial do you need? Would it make sense in this case to force the
origin to be zero? Will your fit to the data still be satisfactory if you
do?



9
CLASS VARIABLES IN
REGRESSION

In all previous discussions, the independent variables
were continuous or quantitative variables. There are
many situations in which this is too restrictive.

This chapter introduces the use of categorical or class
variables in regression models. The use of class vari-
ables broadens the scope of regression to include the
classical analysis of variance models and models con-
taining both continuous and class variables, such as
analysis of covariance models and models to test ho-
mogeneity of regressions over groups.

To this point, only quantitative variables have been used as independent
variables in the models. This chapter extends the models to include qual-
itative (or categorical) variables. Quantitative variables are the result of
some measurement such as length, weight, temperature, area, or volume.
There is always a logical ordering attached to the measurements of such
variables. Qualitative variables, on the other hand, identify the state, cat-
egory, or class to which the observation belongs, such as hair color, sex,
breed, or country of origin. There may or may not be a logical ordering to
the classes. Such variables are called class variables.
Class variables greatly increase the flexibility of regression models. This
chapter shows how class variables are included in regression models with
the use of indicator variables or dummy variables. The classical anal-
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yses of variance for the standard experimental designs are then shown to be
special cases of ordinary least squares regression using class variables. This
forms the basis for the more general linear model analysis of unbalanced
data where conventional analyses of variance are no longer valid (Chap-
ter 17). Then class variables and continuous variables are used jointly to
discuss the test of homogeneity of regressions (Section 9.6) and the analysis
of covariance (Section 9.7).
Some of the material in the analysis of variance sections of this chapter
(Sections 9.2 through 9.5) is not used again until Chapter 17. This material
is placed here, rather than immediately preceding Chapter 17, in order to
provide the reader with an early appreciation of the generality of regression
analyses, and to provide the tools for tests of homogeneity that are used
from time to time throughout the text.

9.1 Description of Class Variables

A class variable identifies, by an appropriate code, the distinct classes Class
Variablesor levels of the variable. For example, a code that identifies the different

genetic lines, or cultivars, in a field experiment is a class variable. The
classes or levels of the variable are the code names or numbers that have
been assigned to represent the cultivars. The variation in the dependent
variable attributable to this class variable is the total variation among the
cultivar classes. It usually does not make sense to think of a continuous
response curve relating a dependent variable to a class variable. There
frequently is no logical ordering of the class variable or, if there is a logical
ordering, the relative spacing of the classes on a quantitative scale is often
not well defined.
There are situations in which a quantitative variable is treated (tem- Quantitative

Variables as
Class Variables

porarily) as a class variable. That is, the quantitative information con-
tained in the variable is ignored and only the distinct categories or classes
are considered. For example, assume the treatments in an experiment are
the amounts of fertilizer applied to each experimental unit. The indepen-
dent variable “amount of fertilizer” is, of course, quantitative. However, as
part of the total analysis of the effects of the fertilizer, the total variation
among the treatment categories is of interest. The sum of squares “among
levels of fertilizer” is the treatment sum of squares and is obtained by using
the variable “amount of fertilizer” as a class variable. For this purpose, the
quantitative information contained in the variable “amount of fertilizer” is
ignored; the variable is used only to identify the grouping or class identifi-
cation of the observations. Subsequent analyses to determine the nature of
the response curve would use the quantitative information in the variable.
The completely random and the randomized complete block experimen-
tal designs are used to illustrate the use of class variables in the least squares
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regression model. Then, a class variable is introduced to test homogeneity
of regression coefficients (for a continuous variable) over the levels of the
class variable. Finally, continuous and class variables are combined to give
the analysis of covariance in the regression context.

9.2 The Model for One-Way Structured Data

The model for one-way structured data, of which the completely random
design (CRD) is the most common example, can be written either as

Yij = µi + εij or
Yij = µ+ τi + εij , (9.1)

where µi = µ + τi is the mean of the ith group or treatment and εij is
the random error associated with the jth observation in the ith group,
j = 1, . . . , r. The group mean µi in the first form is expressed in the second
form in terms of an overall constant µ and the effect of the ith group or
treatment τi, i = 1, . . . , t. The first form is called the means model; the
second is the classical effects model (equation 9.1).
The model assumes that the members of each group are randomly se-
lected from the population of individuals in that group or, in the case of
the completely random experimental design, that each treatment has been
randomly assigned to r experimental units. (The number of observations
in each group or treatment need not be constant but is assumed to be
constant for this discussion.)
The data set consists of two columns of information, one containing the Class Variable

Definedresponse for the dependent variable Yij and one designating the group or
treatment from which the observation came. The code used to designate
the group is the class variable. In the case of the CRD, the class variable is
the treatment code. For convenience, the class variable is called treatment
and i = 1, 2, . . . , t designates the level of the class variable.
It is easier to see the transition of this model to matrix form if the Model in

Matrix
Notation

observations are listed:

Y11 = µ+ τ1 + ε11
Y12 = µ+ τ1 + ε12

...
Y1r = µ+ τ1 + ε1r
Y21 = µ+ τ2 + ε21 (9.2)

...
Y2r = µ+ τ2 + ε2r
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...
Ytr = µ+ τt + εtr.

The observations here are ordered so that the first r observations are from
the first treatment, the second r observations are from the second treat-
ment, and so forth. The total number of observations is n = rt so that the
vector of observations on the dependent variable Y is of order n× 1. The
total number of parameters is t+ 1: µ and t τs. The vector of parameters
is written

β′ = (µ τ1 τ2 · · · τt ) . (9.3)

In order to express the algebraic model (equation 9.1) in matrix form, we Dummy
Variablesmust define X such that the product Xβ associates µ with every observa-

tion but each τi with only the observations from the ith group. Including
µ with every observation is the same as including the common intercept
in the usual regression equation. Therefore, the first column of X is 1,
a column of ones. The remaining columns of X assign the treatment ef-
fects to the appropriate observations. This is done by defining a series of
indicator variables or dummy variables, variables that take only the
values zero or one. A dummy variable is defined for each level of the class
variable. The ith dummy variable is an n × 1 column vector with ones in
the rows corresponding to the observations receiving the ith treatment and
zeros elsewhere. Thus, X is of order n× (t+ 1).

To illustrate the pattern, assume there are 4 treatments (t = 4) with 2 Example 9.1
replications per treatment (r = 2). Then Y is an 8×1 vector,X is an 8×5
matrix, and β is 5× 1:

Y =



Y11
Y12
Y21
Y22
Y31
Y32
Y41
Y42


, X =



1 1 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 1 0
1 0 0 0 1
1 0 0 0 1


, β =


µ
τ1
τ2
τ3
τ4

 . (9.4)

The second column ofX is the dummy variable identifying the observations
from treatment 1, the third column identifies the observations from treat-
ment 2, and so on. For this reason, the dummy variables are sometimes
called indicator variables and X the indicator matrix. The reader
should verify that multiplication of X by β generates the same pattern of
model effects shown in equation 9.2.

With these definitions of Y , X, and β, the model for the completely X is Singular
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random design can be written as

Y =Xβ + ε, (9.5)

which is the usual matrix form of the least squares model. The difference
now is that X is not a full-rank matrix; r(X) is less than the number of
columns ofX. The singularity inX is evident from the fact that the sum of
the last four columns is equal to the first column. This singularity indicates
that the model as defined has too many parameters; it is overparameterized.
Since X is not of full rank, the unique (X ′X)−1 does not exist. There-
fore, there is no unique solution to the normal equations as there is with
the full-rank models. The absence of a unique solution indicates that at
least some of the parameters in the model cannot be estimated; they are
said to be nonestimable. (Estimability is discussed more fully later.)
Recall that the degrees of freedom associated with the model sum of SS(Regr)
squares is determined by the rank of X. In full-rank models, r(X) always
equals the number of columns of X. Here, however, there is one linear
dependency among the columns of X, so the rank of X is t rather than
t + 1. There will be only t degrees of freedom associated with SS(Model).
Adjusting the sum of squares for µ uses 1 degree of freedom, leaving (t −
1) degrees of freedom for SS(Regr). This SS(Regr) is the partial sum of
squares for the t dummy variables defined from the class variable. For
convenience, we refer to SS(Regr) more simply as the sum of squares for
the class variable. This sum of squares, with (t− 1) degrees of freedom, is
the treatment sum of squares in the analysis of variance for the completely
random experimental design.
Approaches to handling linear models that are not of full rank include: Approaches

When X Is
Singular1. redefine, or reparameterize, the model so that it is a full-rank model;

or

2. use one of the nonunique solutions to the normal equations to obtain
the regression results.

Reparameterization of the model was the standard approach before com-
puters and is still used in many instances. Understanding reparameteriza-
tion is helpful in understanding the results of the second approach, which is
used in most computer programs for the analysis of general linear models.

9.3 Reparameterizing to Remove Singularities

The purpose of reparameterization is to redefine the model so that it is Purpose
of full rank. This is accomplished by imposing linear constraints on the
parameters so as to reduce the number of unspecified parameters to equal
the rank of X. Then, with X∗ of full rank, ordinary least squares can be
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used to obtain a solution. If there is one singularity in X, one constraint
must be imposed, or the number of parameters must be reduced by 1. Two
singularities require the number of parameters to be reduced by 2, and so
on. There are several alternative reparameterizations for each case. Three
common ones are illustrated, each of which gives a full-rank model.
Each reparameterization carries with it a redefinition of the parameters Notation
remaining in the model and corresponding modifications in X. To distin-
guish the reparameterized model from the original model, an asterisk is
appended to β and X, and to the individual parameters when the same
symbols are used for both sets. Thus, the reparameterized models are writ-
ten as Y =X∗β∗ + ε with X∗ and β∗ appropriately defined.

9.3.1 Reparameterizing with the Means Model
The means model, letting µi = µ+ τi, is presented here as a reparameter- Defining the

Modelization of the classical effects model. The (t+ 1) parameters in the effects
model are replaced with the t parameters µi. The model becomes

Yij = µi + εij . (9.6)

(This redefinition of the model is equivalent to imposing the constraint that
µ = 0 in the original model, leaving τ1 to τt to be estimated. Because of the
obvious link of the new parameters to the group means, the usual notation
for a population mean µ is used in place of τ .)
Although the means model is used here as a reparameterization of the
effects model, it is a valid model in its own right and is often proposed
as the more direct approach to the analysis of data (Hocking, 1985). The
essential difference between the two models is that the algebraic form of
the classical effects model conveys the structure of the data, which in turn
generates logical hypotheses and sums of squares in the analysis. The means
model, on the other hand, conveys the structure of the data in constraints
imposed on the µi and in hypotheses specified by the analyst. This text
emphasizes the use of the classical effects model. The reader is referred to
Hocking (1985) for discussions on the use of the means model.
The reparameterized model is written as Defining the

Matrices
Y =X∗β∗ + ε,

where (for the case t = 4)

X∗ =



1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1


, β∗ =


µ1
µ2
µ3
µ4

 . (9.7)
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The columns ofX∗ are the dummy variables defined for the original matrix,
equation 9.4. Since the first column 1 ofX is the sum of the columns ofX∗,
the space spanned by the columns of X is the same as that spanned by the
columns of X∗. Thus, the model in equation 9.7 is a reparameterization of
the model given by equation 9.2. For the general case, X∗ will be a matrix
of order (n × t), where n = rt is the total number of observations. In this
form, X∗ is of full rank and ordinary least squares regression can be used
to estimate the parameters β∗.
The form ofX∗ in this reparameterization makes the least squares arith- Solution
metic particularly simple. X∗′

X∗ is a diagonal matrix of order (t× t) with
the diagonal elements being the number of replications r of each treat-
ment. Thus, (X∗′

X∗)−1 is diagonal with diagonal elements 1/r. X∗′
Y is

the vector of treatment sums. The least squares solution is

β̂
∗′
= (Y 1. Y 2. · · · Y t. ) , (9.8)

which is the vector of treatment means. (A dot in a subscript indicates that
the observations have been summed over that subscript; thus, Yi. is the ith
treatment sum and Y i. is the ith treatment mean.)
Since this is the least squares solution to a full-rank model, β̂

∗
is the Meaning of β̂

∗

best linear unbiased estimator of β∗, but not of β. (The parameters β in
the original model are not estimable.) It is helpful in understanding the
results of the reparameterized model to know what function of the original
parameters is being estimated by β̂

∗
. This is determined by finding the

expectation of β̂
∗
in terms of the expectation of Y from the original model,

E(Y ) = Xβ:

E(β̂∗
) = (X∗′

X∗)−1X∗′E(Y )
= [(X∗′

X∗)−1X∗′
X]β. (9.9)

Notice that the last X is the original matrix. Evaluating this expectation
for the current reparameterization (again using t = 4) gives

E(β̂∗
) =


1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1



µ
τ1
τ2
τ3
τ4

 =

µ+ τ1
µ+ τ2
µ+ τ3
µ+ τ4

 . (9.10)

Thus, each element of β̂
∗
, µ̂i = Y i., is an estimate of µ + τi. This is the

expectation of the ith group mean under the original model.
Unbiased estimators of other estimable functions of the original parame- Estimable

Functions of βters are obtained by using appropriate linear functions of β̂
∗
. For example,

(τ1 − τ2) is estimated unbiasedly by µ̂1 − µ̂2 = Y 1. − Y 2.. Notice, however,
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that there is no linear function of β̂
∗
that provides an unbiased estimator

of µ, or of one of the τi. These are nonestimable functions of the original
parameters, and no reparameterization of the model will provide unbiased
estimators of such nonestimable quantities. (In a general linear model, a
linear combination λ′β of parameters is said to be estimable if there is a
linear function a′Y that is unbiased for λ′β. If no such linear combination
exists, then it is said to be nonestimable.)
The sum of squares due to this model is the uncorrected treatment sum SS(Model) and

SS(Res)of squares

SS(Model) = β̂
∗′
X∗′

Y

=

[
t∑
i=1

(Y 2
i. )

]
/r (9.11)

because the elements of β̂
∗
are the treatment means and the elements of

X∗′
Y are the treatment sums. The residual sum of squares is the pooled

sum of squares from among the replicate observations within each group

SS(Res) = Y ′Y − SS(Model)

=
t∑
i=1

r∑
j=1

Y 2
ij −

∑t
i=1(Yi.)

2

r

=
t∑
i=1

r∑
j=1

(Yij − Y i.)2 (9.12)

and has (n− t) degrees of freedom.
SS(Model) measures the squared deviations of the treatment means from Treatment

Sum of Squareszero. Comparisons among the treatment means are of greater interest. Sums
of squares for these comparisons are generated using the general linear
hypothesis (discussed in Section 4.5). For example, the sum of squares for
the null hypothesis that all µi are equal is obtained by constructing a K ′

matrix of rank (t− 1) to account for all differences among the t treatment
parameters. One such K ′ (for t = 4) is

K ′ =

 1 −1 0 0
0 1 −1 0
0 0 1 −1

 . (9.13)

This matrix defines the three nonorthogonal but linearly independent con-
trasts of treatment 1 versus treatment 2, treatment 2 versus treatment 3,
and treatment 3 versus treatment 4. (A linear combination

∑
aiµi is said

to be a contrast of the treatment means if
∑
ai = 0). Any set of three

linearly independent contrasts would produce the sum of squares for the
hypothesis that the t = 4 µi are equal. The sum of squares for this hypothe-
sis is the treatment sum of squares for the t = 4 treatments. In general, the
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TABLE 9.1. Relationship between the conventional analysis of variance and ordi-
nary least squares regression computations for the completely random experimen-
tal design.

Source of Traditional Regression
Variation d.f. AOV SS SS

Totaluncorr rt
∑∑

Y 2
ij Y ′Y

Model t
∑
(Yi.)2/r β̂

′
X ′Y

C.F. 1 nY
2

nY
2

Treatments t− 1 ∑
(Yi.)2/r − nY 2

β̂
′
X ′Y − nY 2

Residual t(r − 1) ∑∑
Y 2
ij −

∑
(Yi.)2/r Y ′Y − SS(Model)

treatment sum of squares can be obtained by defining a matrix of contrasts
K ′ with r(K ′) = (t− 1).
Alternatively, the treatment sum of squares can be obtained by using
the difference in sums of squares between full and reduced models. The
reduced model for the null hypothesis that all µi are equal contains only
one parameter, a constant mean µ. The sum of squares for such a model
is SS(µ) = nY

2
.., or the sum of squares due to correction for the mean,

commonly called the correction factor (C.F.). Thus, the treatment sum
of squares for the completely random experimental design can be obtained
as SS(Model) − SS(µ). The relationship between the conventional analysis
of variance and the regression analysis for the completely random design is
summarized in Table 9.1.

9.3.2 Reparameterization Motivated by
∑

τi = 0
The original model defined the τi as deviations from µ. If µ is thought of as Redefining

the Modelthe overall true mean µ· of the t treatments and τi as µi−µ·, it is reasonable
to impose the condition that the sum of the treatment deviations about
the true mean is zero; that is,

∑
τi = 0. This implies that one τi can

be expressed as the negative of the sum of the other τi. The number of
parameters to be estimated is thus reduced by 1.
The constraint

∑
τi = 0 is used to express the last treatment effect τt in

terms of the first (t− 1) treatment effects. Thus,

τt = −(τ1 + τ2 + · · ·+ τt−1)

is substituted for τt everywhere in the original model. In the example with
t = 4, τ4 = −(τ1 + τ2 + τ3) so that the model for each observation in the
fourth group changes from

Y4j = µ+ τ4 + ε4j
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to

Y4j = µ+ (−τ1 − τ2 − τ3) + ε4j .
This substitution eliminates τ4, reducing the number of parameters from 5
to 4 or, in general, from (t+ 1) to t. The vector of redefined parameters is

β∗′
= (µ∗ τ∗1 τ∗2 τ∗3 ) . (9.14)

The design matrix X∗ for this reparameterization is obtained from the X∗

originalX as follows assuming t = 4. The dummy variable for treatment 4,
the last column of X, equation 9.4, identifies the observations that contain
τ4 in the model. For each such observation, the substitution of −(τ1 + τ2 +
τ3) for τ4 is accomplished by replacing the “0” coefficients on τ1, τ2, and
τ3 with “−1,” and dropping the dummy variable for τ4. Thus, X∗ for this
reparameterization is

X∗ =



1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 −1 −1 −1
1 −1 −1 −1


. (9.15)

It is not difficult to show that the space spanned by the columns of X∗

in equation 9.15 is the same as that spanned by X in equation 9.4. See
Exercise 9.7.
Again, the reparameterized model is of full rank and ordinary least β̂

∗

squares gives an unbiased estimate of the new parameters defined in β∗.
The expectation of β̂

∗
in terms of the parameters in the original model

and the means model is found from equation 9.9 using X∗ from the cur-
rent reparameterization. This gives

E(β̂∗
) =


1 1

4
1
4

1
4

1
4

0 3
4 − 1

4 − 1
4 − 1

4

0 − 1
4

3
4 − 1

4 − 1
4

0 − 1
4 − 1

4
3
4 − 1

4



µ
τ1
τ2
τ3
τ4



=


µ+ τ
τ1 − τ
τ2 − τ
τ3 − τ

 =


µ·
µ1 − µ·
µ2 − µ·
µ3 − µ·

 , (9.16)

where τ is the average of the four τi. Note that the expectation of β̂
∗
is

expressed in terms of the parameters of the original model with no con-
straints. The constraint

∑
τi = 0 was used only to generate a full rank
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reparameterization of the original model. Thus, µ̂∗ is an estimator of µ+τ ,
τ̂∗1 is an estimator of (τ1−τ), and so forth. Note that an unbiased estimator
of τ4 − τ is given by

τ̂∗4 = −(τ̂∗1 + τ̂∗2 + τ̂∗3 ). (9.17)

Other estimable functions of the original parameters are obtained from Functions of
the βiappropriate linear functions of β∗. For example, the least squares estimator

of the ith treatment mean (µ + τi) is given by (µ̂∗ + τ̂∗i ). The estimator
of the difference between two treatment effects, say (τ2 − τ3), is given by
(τ̂∗2 − τ̂∗3 ).
The analysis of variance for the completely random design is obtained Treatment

Sum of
Squares

from this reparameterization in much the same way as with the means
reparameterization. The sum of squares for treatments is obtained as the
sum of squares for the null hypothesis

Ho : τ∗i = 0, for i = 1, 2, 3

or as
SS(Model)− SS(µ).

In terms of the original parameters, this null hypothesis is satisfied only if
all τi are equal.

9.3.3 Reparameterization Motivated by τt = 0
Another method of reducing the number of parameters in an overparam- Redefining

the Modeleterized model is to arbitrarily set the required number of nonestimable
parameters equal to zero. In the model for the completely random experi-
mental design, one constraint is needed so that one parameter—usually the
last τi—is set equal to zero. In the example with four treatments, setting
τ4 = 0 gives

β∗′
= (µ∗ τ∗1 τ∗2 τ∗3 )

and an X∗ that contains only the first four columns of the original X.
Since the last column of X is the difference between the first column and
the sum of the last three columns of X∗, the space spanned by columns of
X∗ is the same as that spanned by the columns of X. As with the other
reparameterizations, this model is of full rank and ordinary least squares
can be used to obtain the solution β̂

∗
.

The expectation of β̂
∗
in terms of the parameters in the original model β̂

∗

(from equation 9.9) using the current X∗ is

E(β̂∗
) =


1 0 0 0 1
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1



µ
τ1
τ2
τ3
τ4


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=


µ+ τ4
τ1 − τ4
τ2 − τ4
τ3 − τ4

 =


µ4
µ1 − µ4
µ2 − µ4
µ3 − µ4

 . (9.18)

With this parameterization, µ̂∗ is an estimator of the mean of the fourth
treatment µ + τ4, and each τ̂∗i estimates the difference between the true
means of the ith treatment and the fourth treatment. Hence, this reparam-
eterization is also called the reference cell model . The ith treatment mean
µ+ τi is estimated by µ̂∗+ τ̂∗i . The difference between two means (τi− τi′)
is estimated by (τ̂∗i − τ̂∗i′).
The treatment sum of squares for this parameterization is given as the Treatment

Sum of
Squares

sum of squares for the composite null hypothesis

H0 : τ∗i = 0 for i = 1, 2, 3

or as

SS(Model)− SS(µ).

In terms of the original parameters, this hypothesis implies that the first
three τi are each equal to τ4 (equation 9.18), or that τ1 = τ2 = τ3 = τ4.
Each of the three reparameterizations introduced in this section has pro- Estimable

Functionsvided estimates of the meaningful functions of the original parameters, the
true means of the treatments, and all contrasts among the true treatment
means. These are estimable functions of the original parameters. As a gen-
eral result, if a function of the original parameters is estimable, it can
be estimated from β̂∗ obtained from any reparameterization. Furthermore,
the same numerical estimate for any estimable function of the original pa-
rameters will be obtained from every reparameterization. Estimability is
discussed more fully in Chapter 17 and the reader is referred to Searle
(1971) for the theoretical developments.

9.3.4 Reparameterization: A Numerical Example
A small numerical example illustrates the three reparameterizations. An Example 9.2
artificial data set was generated to simulate an experiment with t = 4
and r = 2. The conventional one-way model was used with the parameters
chosen to be µ = 12, τ1 = −3, τ2 = 0, τ3 = 2, and τ4 = 4. A random
observation from a normal distribution with mean zero and unit variance
was added to each expectation to simulate random error. (The τi are chosen
so they do not add to zero for this illustration.) The vector of observations
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TABLE 9.2. Estimates obtained from simulated data for three reparameterizations
of the one-way model, t = 4 and r = 2. Expectations of the estimators are in terms
of the parameters of the original singular model.

Reparameterization:
Means Model

∑
τi = 0 τ4 = 0a

β̂
∗ E(β̂∗

) β̂
∗ E(β̂∗

) β̂
∗ E(β̂∗

)
8.830 µ+ τ1 12.731 µ+ τ 16.680 µ+ τ4
11.925 µ+ τ2 −3.901 τ1 − τ −7.850 τ1 − τ4
13.490 µ+ τ3 −.806 τ2 − τ −4.755 τ2 − τ4
16.680 µ+ τ4 .759 τ3 − τ −3.190 τ3 − τ4

aThe solution obtained from the general linear models solution in PROC
GLM corresponds to that for τ4 = 0.

generated in this manner was

Y =



Y11
Y12
Y21
Y22
Y31
Y32
Y41
Y42


=



µ+ τ1 + ε11
µ+ τ1 + ε12
µ+ τ2 + ε21
µ+ τ2 + ε22
µ+ τ3 + ε31
µ+ τ3 + ε32
µ+ τ4 + ε41
µ+ τ4 + ε42


=



8.90
8.76
11.78
12.07
14.50
12.48
16.79
16.57


. (9.19)

The parameter estimates from these data for each of the three reparame-
terizations and their expectations in terms of the original parameters are
shown in Table 9.2. Most notable are the numerical differences in β̂

∗
for the

different parameterizations. All convey the same information but in very
different packages. The results from the means model are the most directly
useful; each regression coefficient estimates the corresponding group mean.
Contrasts among the τi are estimated by the same contrasts among the
estimated regression coefficients. For example,

µ̂∗1 − µ̂∗2 = 8.8300− 11.9250 = −3.0950
is an estimate of (τ1 − τ2), which is known to be −3 from the simulation
model.
The reparameterization motivated by the “sum” constraint gives µ̂∗ =
12.73125, which is an estimate of the overall mean plus the average of
the treatment effects. [From the simulation model, (µ + τ) is known to
be 12.75.] Each of the other computed regression coefficients is estimating
the deviation of a τi from τ . The estimate of (τ4 − τ) is obtained from
equation 9.17. This gives

τ̂∗4 = −(−3.90125− .80625 + .75875) = 3.94875.
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The sum of the first two estimates,

µ̂∗ + τ̂∗1 = 12.73125 + (−3.90125) = 8.8300,

is an estimate of (µ + τ1). This estimate is identical to that obtained for
(µ+ τ1) from the means model. Similarly, the estimate of (τ1 − τ2),

τ̂∗1 − τ̂∗2 = −3.90125− (−.80625) = −3.095,

is the same as that obtained from the means model.
The third reparameterization motivated by τ4 = 0 gives µ̂∗ = 16.6800,
which is an estimate of (µ + τ4), the true mean of the fourth group. The
sum of the first two regression coefficients again estimates (µ+ τ1) as

µ̂∗ + τ̂∗1 = 16.6800 + (−7.8500) = 8.8300.

Each τ̂∗1 in this reparameterization estimates the difference in effects be-
tween the ith group and the fourth group. The numerical values obtained
for these estimates are identical to those obtained from the other models.

The results from these three reparameterizations illustrate general re- Unique Results
from Reparam-
eterizations

sults. Least squares estimates of β∗ obtained from different reparameter-
izations estimate different functions of the original parameters. The rela-
tionship of the redefined parameters to those in the original model must
be known in order to properly interpret these estimates. Even though the
solution appears to change with the different reparameterizations, all give
identical numerical estimates of every estimable function of the original
parameters. This includes Ŷ =X∗β̂

∗
and e = Y − Ŷ . Furthermore, sums

of squares associated with any estimable contrast on β are identical, which
implies that all parameterizations give the same analysis of variance. In
Example 9.2, all models gave

SS(Regr) = 64.076238 and SS(Res) = 2.116250.

9.4 Generalized Inverse Approach

When X is not of full rank there is no unique solution to the normal
equations (X ′X)β =X ′Y . A general approach to models of less than full
rank is to use one of the nonunique solutions to the normal equations. This
is accomplished by using a generalized inverse ofX ′X. (The generalized
inverse of a matrix A is denoted by A−.) There are many different kinds of
generalized inverses which, to some extent, have different properties. The
reader is referred to Searle (1971) for complete discussions on generalized
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inverses. It is sufficient for now to know that a generalized inverse provides
one of the infinity of solutions that satisfies the normal equations. Such a
solution is denoted with β0 to emphasize the fact that it is not a unique
solution. β̂ is reserved as the label for the unique least squares solution
when it exists. Thus,

β0 = (X ′X)−X ′Y . (9.20)

Computers are used to obtain the generalized inverse solutions.
Since β0 is not unique, its elements per se are meaningless. Another gen- Estimable

Functionseralized inverse would give another set of numbers from the same data.
However, many of the regression results obtained from using a nonunique
solution are unique; the same numerical results are obtained regardless of
which solution is used. It was observed in Section 9.3 that all reparame-
terizations gave identical estimates of estimable functions of the parame-
ters. This important result applies to all generalized inverse solutions to
the normal equations. Any estimable function of the original parameters
is uniquely estimated by the same linear function of one of the nonunique
solutions β0. That is, if K ′β is estimable, then K ′β0 is the least squares
estimate of K ′β and the estimate is unique with respect to choice of solu-
tion. Such estimates of estimable linear functions of the original parameters
have all the desirable properties of least squares estimators.
Results concerning other unique quantities follow from this statement. Unique Results
For example, Xβ is an estimable function of β and, hence, Ŷ = Xβ0 is
the unique unbiased estimate of Xβ. Then, e = Y − Ŷ must be unique.
Since SS(Model) = Ŷ

′
Ŷ and SS(Res) = e′e, these sums of squares are also

unique with respect to choice of solution. The uniqueness extends to the
partitions of the sums of squares, as long as the sums of squares relate to
hypotheses that are estimable linear functions of the parameters.
Thus, the generalized inverse approach to models of less than full rank
provides all the results of interest. The only quantities not estimated unique-
ly are those quantities for which the data contain no information—the non-
estimable functions of β.
The generalized inverse approach is used for the least squares analysis PROC GLM
of models of less than full rank by many computer programs, including
PROC GLM (SAS Institute Inc., 1989b). In their procedure, any variable
in the model that is to be regarded as a class variable must be identified in
a CLASS statement in the program. Each class variable will generate one
or more singularities that make the model less than full rank. (Singulari-
ties can also result from linear dependencies among continuous variables,
but this chapter is concerned with the use of class variables in regression
models.) Since the estimates of the regression coefficients in the singular
model are not unique, PROC GLM does not print the solution β0 unless
it is specifically requested. The unique results from the analysis are ob-
tained by requesting estimation of specific estimable functions and tests of
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testable hypotheses. (A testable hypothesis is one in which the linear
functions of parameters in the null hypothesis are estimable functions.)
When a class variable is specified, PROC GLM creates β and the set of
dummy variables for the X matrix as was done in Section 9.2. No repa-
rameterization is done so that X remains singular. The particular general-
ized inverse used by PROC GLM gives the same solution as that obtained
with reparameterization using the constraint τt = 0. The solution vector
in PROC GLM contains an estimate for every parameter including τ∗t .
But, because each τ̂∗i is estimating τi − τt, the numerical value of τ̂∗t is
always zero. Thus, the PROC GLM solution for the simulated data from
the completely random design is the same as that given in the last column
of Table 9.2, except the vector of estimates includes τ̂∗4 in the fifth position.
The estimates obtained for all estimable functions and sums of squares are
identical to those obtained from the reparameterizations.

9.5 The Model for Two-Way Classified Data

The conventional model for two-way classified data, of which the random- Defining the
Modelized complete block design (RCB) is the most common example, is

Yij = µ+ γi + τj + εij , (9.21)

where µ is an overall mean, γi is the effect of the ith block, τj is the effect of
the jth treatment, and εij is the random error. In this model there are two
class variables—“block” and “treatment”—which identify the particular
block and treatment associated with the ijth experimental unit. There are
b levels (i = 1, . . . , b) of the block class variable and t levels (j = 1, . . . , t)
of the treatment class variable.
Defining the X matrix for this model requires b dummy variables for X and β
blocks and t dummy variables for treatments. The vector of observations is
assumed to be ordered with all of the treatments occurring in order for the
first block followed by the treatments in order for the second block, and so
forth. The parameter vector β is defined with the block effects γi occurring
before the treatment effects τj . For illustration, assume that b = 2 and
t = 4 for a total of bt = 8 observations. Then,

X =



1 1 0 1 0 0 0
1 1 0 0 1 0 0
1 1 0 0 0 1 0
1 1 0 0 0 0 1
1 0 1 1 0 0 0
1 0 1 0 1 0 0
1 0 1 0 0 1 0
1 0 1 0 0 0 1


, and β =



µ
γ1
γ2
τ1
τ2
τ3
τ4


. (9.22)
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The second and third columns of X are the dummy variables for blocks;
the last four columns are the dummy variables for treatments.
There are two linear dependencies in X. The sum of the block dummy Degrees of

Freedomvariables (columns 2 and 3) and the sum of the treatment dummy variables
(the last four columns) both equal column 1. Thus, the rank ofX is r(X) =
7−2 = 5, which is the degrees of freedom for SS(Model). In the conventional
RCB analysis of variance these degrees of freedom are partitioned into 1
for the correction factor, (b − 1) = 1 for SS(Blocks), and (t − 1) = 3 for
SS(Treatments).
Reparameterizing this model to make it full rank requires two con- Reparameter-

izing Using
γ2 = τ4 = 0

straints. The effective number of parameters must be reduced to 5, the
rank of X. The simplest constraints to obtain a full rank reparameteriza-
tion would be to use γ2 = 0 and τ4 = 0. These constraints have the effect
of eliminating γ2 and τ4 from β and columns 3 and 7 from X. Thus, X∗

would be an 8 × 5 matrix consisting of columns 1, 2, 4, 5, and 6 from X
and β∗ would be

β∗′
= (µ∗ γ∗1 τ∗1 τ∗2 τ∗3 ) . (9.23)

The constraints requiring the sum of the effects to be zero would be Reparameter-
izing Using
Sum
Constraints

∑
γi = 0 and

∑
τj = 0. These constraints are imposed by substituting

−γ1 for γ2 and −(τ1 + τ2 + τ3) for τ4 in the original model. This reduces
the number of parameters by two and gives

X∗ =



1 1 1 0 0
1 1 0 1 0
1 1 0 0 1
1 1 −1 −1 −1
1 −1 1 0 0
1 −1 0 1 0
1 −1 0 0 1
1 −1 −1 −1 −1


. (9.24)

Either of these reparameterizations will generate the conventional analy-
sis of variance of two-way classified data when the least squares regression
concepts are applied. The full model consists of µ∗, the γ∗i , and the τ

∗
j .

The residual mean square from this model estimates σ2. The general lin-
ear hypothesis can be used to generate the sum of squares for testing the
null hypothesis that γ∗1 is zero. In the more general case, this would be a
composite hypothesis that all γ∗i are zero. The sum of squares Q, generated
for this hypothesis, will have 1 degree of freedom [or, in general, (b − 1)
degrees of freedom] and is algebraically identical to SS(Blocks) in the con-
ventional analysis of variance. Similarly, the sum of squares associated with
the composite hypothesis that all τ∗j are zero is identical to SS(Treatments)
in the conventional analysis of variance. These sums of squares can also be
computed from the procedure based on [SS(Resreduced)− SS(Resfull)].
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The model could also be made full rank by using the means model repa- Reparameter-
izing Using the
Means Model

rameterization. Each cell of the two-way table would be assigned its own
mean. Thus,

Y ij = µij + εij , (9.25)

where µij = µ + γi + τj in terms of the parameters of the original model.
This model is different from the original, however. The original model spec-
ified a column (or treatment) effect and a row (or block) effect that added
to give the “cell” effect; the same column effect was imposed on all rows
and the same row effects applied to all columns. Deviations from the sum
of the block and treatment effects were assumed to be random error. The
means model as given, on the other hand, imposes no restrictions on the
relationships among the µij . The means model is made analogous to the
classical RCB effects model by imposing constraints on the µij so as to sat-
isfy the conditions of no interaction in every 2×2 subtable of the b×t table
of µij . The reader is referred to Hocking (1985) for complete discussions
on analyses using means models.
The generalized inverse approach also can be used for two-way classi- Generalized

Inverse
Approach

fied data. The two class variables would be used to generate the singular
X (equation 9.22) and a generalized inverse would be used to obtain a
(nonunique) solution. SS(Res) from that analysis would be the interaction
sum of squares for the two-way table, which in the RCB design is the es-
timate of experimental error. Appropriate hypotheses on the subsets of
parameters generate the usual analysis of variance for two-way data.
A more general model for two-way classified data includes interaction Two-Way

Model with
Interaction
Effects

effects in the model. Suppose the γi and τj are the effects of two treatment
factors, A and B, with a levels of factor A and b levels of factor B. Let the
interaction effects between the two factors be represented by (γτ)ij and
assume there are r observations in each cell, k = 1, . . . , r. The linear model
is

Yijk = µ+ γi + τj + (γτ)ij + εijk, (9.26)

where i = 1, . . . , a and j = 1, . . . , b. In matrix notation, β contains (1+a+
b + ab) = (a + 1)(b + 1) parameters and X contains an equal number of
columns. The number of rows of X will equal the number of observations,
n = abr. The r observations from the same treatment combination have
the same expectation (equation 9.26), so that there will be ab distinct rows
in X with r repeats of each.

For illustration, assume a = 2 and b = 4. Then X contains 15 columns Example 9.3
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and 8 distinct rows. Each of the 8 rows will be repeated r times. Then,

X =



1 1 0 1 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 1 0 0 0 0 0
1 1 0 0 0 0 1 0 0 0 1 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0 1 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 1 0
1 0 1 0 0 0 1 0 0 0 0 0 0 0 1


, (9.27)

where only the 8 distinct rows of X are shown.
The first 7 columns of X are as defined in equation 9.22. The last 8
columns are the dummy variables for the interaction effects. The dummy
variable for (γτ)ij takes the value 1 if the observation is from the ijth treat-
ment combination, and 0 otherwise. The dummy variable for (γτ)ij can also
be obtained as the element-by-element product of the dummy variables for
the corresponding γi and τj effects. (This is a general result that extends to
higher-order interaction effects.) AlthoughX contains 15 columns, its rank
is only 8. (The rank of X cannot be greater than the number of linearly
independent rows.) Thus, there must be 7 linear dependencies among the
columns ofX. These dependencies would have to be identified if the model
were to be reparameterized. Note that each of the first 7 columns can be
obtained as a linear combination of the last 8 columns. The generalized
inverse approach, however, uses X as defined.

The size ofX increases very rapidly as additional factors and particularly Computing
Loadtheir interactions are added to the model. The number of columns of X

required for each set of interaction effects is the product of the number of
levels of all the factors in the interaction. The total number of parameters
in a model with class variables and their interactions is the product of the
number of levels plus 1 of all class variables in the model; for example,
(2 + 1)(4 + 1) = 15 in Example 9.3. It is not uncommon for the full X
matrix of a reasonably sized experiment to have more than 100 columns.
The computational load of finding the generalized inverse and operating on
this very large X matrix would be exorbitant without modern computers.
On the other hand, the conventional analysis of variance formulas, which
result from the least squares analysis of balanced data, are computation-
ally very efficient. Very large models can be easily analyzed. The more
general approach has been introduced to demonstrate the link between
least squares regression analysis and the conventional analyses of variance,
and to set the stage for the analysis of unbalanced data (Chapter 17).
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9.6 Class Variables To Test Homogeneity of
Regressions

Consider the situation where two or more subsets of data are available, each
of which provides information on the dependent variable of interest and the
potential predictor variables. The subsets of data originate from different
levels of one or more class variables. For example, data relating yield in
corn to levels of nitrogen and phosphorous fertilization may be available for
several corn hybrids grown in several environments. Yield is the dependent
variable, amount of nitrogen fertilizer and amount of phosphorous fertilizer
are independent variables, and “hybrid” and “environment” are two class
variables.
The objective is to model the response of yield to changing rates of
nitrogen and phosphorous fertilization. The question is whether a single
regression equation will adequately describe the relationship for all hybrids
and environments or will different regressions be required for each hybrid–
environment combination. The most complete description of the response
(the best fit to the data) would be obtained by allowing each combination
to have its own regression equation. This would be inefficient, however, if
the responses were similar over all groups; the researcher would be estimat-
ing more parameters than necessary. On the other hand, a single regression
equation to represent the response for all groups will not characterize any
one group as well and could be very misleading if the relationships dif-
fered among groups. The simplicity of the single regression equation is to
be preferred if it can be justified. Intermediate models may allow a com-
mon regression for some independent variables but require others to have
different regression coefficients for different subsets of data.
The decision to use a regression coefficient for each subset or a common Illustration
regression coefficient for all subsets is based on the test of homogeneity of
regression coefficients over levels of the class variable. The test of homo-
geneity is illustrated assuming a linear relationship between a dependent
variable and an independent variable. The general method extends to any
number of independent variables and any functional relationship.
Suppose the data consist of t groups with ni observations in each group. Defining the

ModelThere will be
∑
ni = n data points, each consisting of an observation

on the Y , X, and the class variable identifying the group from which the
observations came. The most general model for this situation allows each
group to have its own intercept and slope coefficient. The separate models
can be written as

Group 1 : Y1j = β10 + β11X1j + ε1j
Group 2 : Y2j = β20 + β21X2j + ε2j

... (9.28)
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Group t : Ytj = βt0 + βt1Xtj + εtj .

If the subscript i designates the group code, or the level of the class variable,
the models can be written as

Yij = βi0 + βi1Xij + εij , (9.29)

where i = 1, . . . , t and j = 1, . . . , ni. This model contains 2t parameters: t
β0-parameters and t β1-parameters. The random errors εij for all groups
are assumed to be normally and independently distributed with zero mean
and common variance σ2.
The model encompassing all t groups is written in matrix notation by Model in

Matrix
Notation

using t dummy variables to identify the levels of the class variable “group.”
Let

W1ij
=

{
1 if the observation is from group 1
0 otherwise

W2ij =
{
1 if the observation is from group 2
0 otherwise

...

Wtij =
{
1 if the observation is from group t
0 otherwise.

Then

Yij = W1ij
(β10 + β11X1j) +W2ij

(β20 + β21X2j)
+ · · ·+Wtij (βt0 + βt1Xtj) + εij

= β10W1ij + β11(W1ijX1j) + β20W2ij + β21(W2ijX2j)
+ · · ·+ βt0Wtij + βt1(WtijXtj) + εij (9.30)

or

Y =Xβ + ε, (9.31)

where

X =



1 X11 0 0 · · · 0 0
...

...
...

...
...

...
1 X1n1 0 0 · · · 0 0
0 0 1 X21 · · · 0 0
...

...
...

...
...

...
0 0 1 X2n2 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 1 Xt1
...

...
...

...
...

...
0 0 0 0 · · · 1 Xtnt



, β =



β10
β11
β20
β21
...
βt0
βt1


.
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The odd-numbered columns of X are the dummy variables and provide
for the tβ0s in the model. The even-numbered columns are the elementwise
products of the dummy variables and the independent variable. These bring
in the level of the X variable times the appropriate βi1 only when the
observations are from the ith group. We assume that

∑ni

j=1(Xij−Xi.)2 > 0,
for i = 1, . . . , t. That is, within each group, the X variable takes at least
two distinct values. This is a full-rank model; r(X) = 2t and there are 2t
parameters to be estimated.
The two columns associated with any particular group are orthogonal to
all other columns. Therefore, the results of the least squares regression using
this large model to encompass all groups are identical to the results that
would be obtained if each group were analyzed separately. The SS(Model)
will have 2t degrees of freedom and will be the sum of the SS(Model)
quantities from the separate analyses. The residual mean square from this
full analysis will be identical to the pooled residual mean squares from the
separate analyses. The pooled residual mean square is the best estimate of
σ2 unless a pure error estimate is available.
There are several tests of homogeneity of interest. The test of homogene- Testing

Homogeneity
of Slopes

ity of slopes of regression lines is most common in the context of allowing
the intercepts to be different. Thus, the different groups are allowed to have
different mean levels of Y but are required to have the same response to
changes in the independent variable. The null hypothesis is the composite
hypothesis

H0 : β11 = β21 = · · · = βt1. (9.32)

The difference in SS(Res) for full and reduced models is used to test this hy-
pothesis of common β1. The reduced model is obtained from equation 9.30
by replacing the t different slopes βi1 with a common slope β1:

Yij = β10W1ij + β20W2ij + · · ·+ βt0Wtij + β1Xij + εij . (9.33)

The independent variable is no longer multiplied by the dummy variables
Wi. The X matrix for the reduced model consists of t columns for the
dummy variables plus one column of the observations on the independent
variable; the Xij are no longer separated by groups. The rank of X in the
reduced model is t+1, t degrees of freedom for estimating the t intercepts
and 1 degree of freedom for estimating the common slope.
The difference between the residual sum of squares for the full model
and the residual sum of squares for the reduced model,

Q = SS(Resreduced)− SS(Resfull) (9.34)

has (t − 1) degrees of freedom, (∑ni − t − 1) − (
∑
ni − 2t). This is the

appropriate sum of squares for testing the composite null hypothesis given
in equation 9.32. The test statistic is an F -ratio with Q/(t − 1) as the
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numerator and the residual mean square from the full model as the denom-
inator. A nonsignificant F -ratio leads to the conclusion that the regressions
of Y on X for the several groups are adequately represented by a series of
parallel lines. The differences in the “heights” of the lines reflect differences
of the intercepts among the groups.
The same general procedure can be used to test other hypotheses. The Testing Homo-

geneity of In-
tercepts

composite null hypothesis of common intercepts βi0 in the presence of het-
erogeneous slopes is not a meaningful hypothesis unless there is some logic
in expecting the regressions for all groups to converge to a common value
of Y at X = 0. (The intercept is usually defined as the value of Y at X = 0
or, if the Xs are centered, the value of Y at X = X. The origin of the
independent variable can be shifted by adding a constant to or subtracting
a constant from each value of X so that it is possible to test convergence
of the regression lines at any chosen value of X.) It is quite common, how-
ever, to test homogeneity of intercepts after having decided that the groups
have common slope. For this test, the reduced model with t βi0-parameters
and common β1 (equation 9.33) becomes the full model. The new reduced
model for H0 : β10 = β20 = · · · = βt0 is the simple regression model

Yij = β0 + β1Xij + εij . (9.35)

The X matrix for this reduced model has only two columns, the column of
ones for the intercept and the column ofXij . The difference in residual sums
of squares for this model and the full model will have t−1 degrees of freedom
and is appropriate for testing the null hypothesis of equal intercepts in the
presence of equal slopes.
A numerical example showing the tests of homogeneity of regression co-
efficients is presented in Section 9.8.
In the model in equation 9.29, we have assumed that the variance of εij Testing

Equality of
Variances

is the same for all t groups. Bartlett (1937) proposed a general test for
testing the equality of variances of t normal populations. Let s21, . . . , s

2
t be

the sample variances with ν1, . . . , νt degrees of freedom, respectively, from
t normal populations. Bartlett’s test statistic is given by

B =
1
C

[
ν log(MSE)−

t∑
i=1

νi log(s2i )

]
, (9.36)

where

C = 1 +
1

3(t− 1)

[
t∑
i=1

νi
−1 − ν−1

]
, and

MSE =
1
ν

t∑
i=1

νi s
2
i

and ν =
∑
νi. In the model in equation 9.29, s2i represents the residual

mean square error from the simple linear regression for the ith group so
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TABLE 9.3. Pre-test and post-test scores from the listening–reading skills study
at the Governor Morehead School. The test scores came from the Gilmore Oral
Reading Test. (Used with permission of Dr. Larry Nelson.)

Treatments Pre-Test Score (X) Post-Test Score (Y )
T1 89 87

82 86
88 94
94 96

T2 89 84
90 94
91 97
92 93

T3 89 96
99 97
84 100
87 98

that νi = ni − 2. MSE is the residual mean square error from the full model
with ν =

∑t
i=1(ni − 2) degrees of freedom. We reject the null hypothesis

that the variances of εij are equal among groups if the test statistic B is
larger than χ2

(t−1;α).

A study was conducted at the Governor Morehead School in Raleigh, Example 9.4
North Carolina to evaluate some techniques intended to improve “listening–
reading” skills of subjects who were visually impaired. The listening–reading
treatments were: (1) instruction in listening techniques plus practice listen-
ing to selected readings; (2) the same as (1) but with copies of the selected
readings in Braille; and (3) the same as (1) but with copies of selected
readings in ink print. The number of individuals per group was four. The
response data are measures of reading accuracy as measured by the Gilmore
Oral Reading Test. Both pre- and post-test data were taken. The pre-test
scores are intended to serve as a covariable to adjust for differences in
the abilities of the subjects before the study. The data are summarized in
Table 9.3.
The ultimate intent of the study was to test for differences among treat-
ments as measured by the post-test scores after taking into account differ-
ences in ability levels of the individuals as measured by the pre-test scores.
However, we use this study to illustrate the test of homogeneity of regres-
sions over the three treatment groups. First, we test the homogeneity of the
slope coefficients from the regression of post-test scores on pre-test scores.
We fit the full model in equation 9.29 allowing each treatment group to
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have its own slope and intercept. The residual sum of squares from this
model is observed to be SS(Res)= 86.0842 with 6 degrees of freedom. To
test the hypothesis in equation 9.32 that the slopes are equal, we fit the
reduced model in equation 9.33 and compute

F =
[SS(Resreduced)− SS(Resfull)]/(8− 6)

SS(Resfull)/6

=
(164.2775− 86.0842)/2

86.0842/6
= 2.73.

Comparing this value to F(.05;2,6) = 14.54, we fail to reject the null hypoth-
esis of common slopes among the three treatment groups. Now assuming
that the model in equation 9.33 is the full model, we test the hypothesis
that the three intercepts are equal. The F -statistic is given by

F =
(269.9488− 164.2775)/2

164.2775/8
= 2.57,

where 269.9488 is the residual sum of squares of the reduced model given
in equation 9.35. Comparing F = 2.57 with F(.05;2,8) = 11.044, we fail to
reject the null hypothesis that the intercepts are the same for all three
treatment groups, assuming that they have common slopes.
A joint test of the hypothesis that the intercepts and the slopes are
constant among the groups is given by

F =
(269.9488− 86.0842)/4

86.0842/6
= 3.20.

Comparing this value with F(.05;4,6) = 12.04, we fail to reject the null
hypothesis that a single line is adequate for all three treatment groups. In
fact, in this particular example, it is observed that neither the treatment
nor the pre-test score have a significant effect on the post-treatment score.
Given the small number of degrees of freedom for error, the test statistics
may not be powerful enough to detect differences among the treatment
groups and the significance of the pre-test score.

The tests of significance in Example 9.4 assume that the variance of the Example 9.5
errors in the model is the same for all three groups. Estimating the simple
linear regression for the three groups separately, we obtain the residual
mean squares s21 = 15.63, s

2
2 = 24.5, and s

2
3 = 2.91 each with two degrees

of freedom. Bartlett’s test statistic in equation 9.36 is 1.596, which is not
significant since χ2

(.05;2) = 10.06. Therefore, there is not enough evidence
to conclude that the variances are different among the three groups.
These examples provide a good illustration of the importance of sample
size in experimentation. The lack of significance of the tests in Example



294 9. CLASS VARIABLES IN REGRESSION

9.4, and even more so in the test of variances in Example 9.5, is as likely
to be due to lack of power of the tests (due to small sample size) as to the
absence of true differences. In particular, an estimate of variance with only
two degrees of freedom is essentially meaningless.

9.7 Analysis of Covariance

The classical purpose of the analysis of covariance is to improve the preci- Covariance
to Improve
Precision

sion of the experiment by statistical control of variation among experimen-
tal units. A useful covariate identifies variation among the experimental
units that is also associated with variation in the dependent variable. For
example, variation in density of plants in the experimental units causes
variation in yield of most plant species, or variation in age or body weight
of animals often causes variation in rate of gain in feeding trials. The covari-
ance analysis removes this source of variation from experimental error and
adjusts the treatment means for differences attributable to the covariate.
For this purpose, the covariate should not be affected by the treatments.
Otherwise, adjustment for the covariate will bias the estimates of treatment
effects and possibly lead to incorrect inferences.
As an illustration, consider a study to measure the effects of nutrient
levels on the growth rate of a species of bacteria. It is well known that
temperature has an effect on growth rate. Therefore, any differences in
temperature of the experimental units can be expected to cause differences
in growth rates even if the experimental units receive the same nutrient
treatment. Such differences will inflate experimental error and, to the extent
the nutrient groups differ in mean temperature, cause biases in the observed
treatment effects. Suppose the available resources do not permit sufficient
control of temperature to rule out these effects. Covariance analysis, with
the measured temperature of each experimental unit as the covariate, could
be used to adjust the observed growth rates to a common temperature.
A second use of the analysis of covariance is as an aid in the interpreta- Covariance

to Interpret
Treatment
Effects

tion of treatment effects on a primary response variable. In this case, the
covariate is another response variable that may be involved in the response
of the primary response variable. The questions to be addressed by the co-
variance analysis are whether the treatment effects on the primary response
variable are essentially independent of those on the secondary variable (the
covariate) and, if not, how much of the effect on the primary response
variable might be attributed to the indirect effects of the treatments on
the covariate. For this purpose, it is quite likely that the covariate will be
affected by the treatments. (In cases such as this, a multivariate analy-
sis of variance of the two response variables would be a more appropriate
analysis.)
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Analysis of covariance is a special case of regression analysis where both
continuous and class variables are used. The class variables take into ac-
count the experimental design features as discussed earlier in this chapter.
The covariate will (almost) always be a continuous variable for which the
experimental results are to be “adjusted.”
The usual linear model for the analysis of covariance for a randomized Two-Way

Model with
Covariate

complete block design is

Yij = µ+ τi + γj + β(Xij −X ..) + εij (9.37)
for i = 1, . . . , a treatments and j = 1, . . . , b blocks,

where the term β(Xij − X ..) has been added to the RCB model, equa-
tion 9.21, to incorporate the effect of the covariate Xij on the dependent
variable. The covariate is expressed in terms of the deviations about its
sample mean X ... This emphasizes that it is the variation in the covariate
that is of interest, and simplifies the subsequent adjustment of the treat-
ment means. Equation 9.37 is the simplest form in which a covariate effect
can be included in a model—one covariate acting in a linear manner. The
covariate model can be extended to include more than one covariate and
more complicated relationships.
The covariance model is written in matrix form by augmenting the design Model in

Matrix
Notation

matrixX and parameter vector β for the appropriate experimental design.
X is expanded to include a column vector of (Xij − X ..). β is expanded
to include the regression coefficient for the covariate β. The ordering of
the observations for the covariate must be identical to the ordering of ob-
servations in Y . The numerical example in Section 9.8 illustrates X and
β.
The covariance model is of less than full rank, because the design matrix Quantities

of Interestto which the covariate vector was appended is singular. None of the singu-
larities, however, involves the covariate vector. Reparameterization or the
generalized inverse approach is used to obtain the relevant sums of squares
and to estimate the estimable functions of the parameters. The quantities
of primary interest are:

1. partial sums of squares attributable to the covariate and to differences
among the treatments,

2. estimate of experimental error after removal of the variation attributable
to the covariate, and

3. estimated treatment means and mean contrasts after adjustment to
a common level of the covariate.

The covariance analysis is first discussed as if the purpose of the analysis
were to increase precision of the experiment. Then, the key changes in
interpretation are noted for the case when covariance analysis is being used
to help interpret the treatment effects.
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TABLE 9.4. Partial sums of squares and mean squares from the analysis of co-
variance for a randomized complete block design with b blocks and t treatments.

Source d.f. Partial SSa MS
Total bt− 1 Y ′Y − C.F.
Blocks b− 1 R(γ′|τ ′ β µ)
Treatments t− 1 R(τ ′|γ′ β µ)
Covariate 1 R(β|γ′ τ ′ µ)
Residual (b− 1)(t− 1)− 1 Y ′Y −R(γ′ τ ′ β µ) s2

aγ′ and τ ′ designate the row vectors of effects for the class variables “blocks”
and “treatments,” respectively.

The partial sums of squares for the class variables, “blocks” and “treat- Analysis of
Variancements” in the RCB, and the covariate are shown in Table 9.4. These are

not additive partitions of the total sum of squares even when the data
are balanced. The covariate destroys the orthogonality that might have
been present in the basic experimental design. The error variance is esti-
mated from the residual mean square, the “block by treatment” interaction
mean square after adjustment for the covariate. The degrees of freedom for
residual reflect the loss of one degree of freedom for estimating β for the
covariate.
This model and analysis assume that the basic datum is one observation
on the ijth experimental unit, so that the residual mean square from the
regression analysis is also the error variance. If the data involve multiple
samples from each experimental unit, the residual mean square in Table 9.4
will contain both experimental error and sampling error.
A simple way to approach analysis of covariance in the presence of sam- Covariance

with Samplingpling is to do the analysis of covariance based on the experimental unit
means. The errors associated with the experimental unit means are inde-
pendent and identically distributed with constant variance. Another proce-
dure would be to use a more general model that recognizes the correlated
error structure introduced by the multiple sampling on the same experi-
mental unit. (See Chapter 18 for mixed models.)
The presence of the covariate reduces the residual sum of squares by Testing the

Effect of the
Covariate

the amount R(β|γ′ τ ′ µ), the partial sum of squares attributable to the
covariate. This reflects the direct impact of the covariate on the magnitude
of σ2 and, hence, on the precision of the experiment. The null hypothesis
that the covariate has no effect, H0 : β = 0, is tested with

F =
R(β|γ′ τ ′ µ)

s2
, (9.38)

which has 1 and [(b−1)(t−1)−1] degrees of freedom. If F is not significant
at the chosen α, it is concluded that the covariate is not important in con-
trolling precision and the covariance analysis is abandoned. Interpretations
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are based on the conventional analysis of variance. If the null hypothesis is
rejected, it is concluded that the covariate is effective in increasing precision
and the covariance analysis is continued to obtain estimates of treatment
means and contrasts adjusted for the effects of the covariate. The residual
mean square is the estimate of σ2 for all subsequent computations.
The appropriate sum of squares for testing the composite null hypothesis Testing Treat-

ment Effectsthat all effects for a class variable are zero is the partial sum of squares
for that class variable R(τ ′|γ′ β µ) or R(γ′|τ ′ β µ). As always, these sums
of squares can be computed either by defining an appropriate K ′ for the
general linear hypothesis or by the difference between residual sums of
squares for full and reduced models. The partial sum of squares for a class
variable adjusted for the covariate measures the variability among the levels
of the class variable as if all observations had occurred at the mean level
of the covariate. The null hypothesis that all treatment effects are zero is
tested by

F =
R(τ ′|γ′ β µ)/(t− 1)

s2
. (9.39)

The conventional, unadjusted treatment means are computed as simple Unadjusted
Treatment
Means

averages of the observations in each treatment. The vector of unadjusted
treatment means can be written as

Y = T ′Y , (9.40)

where T is defined as the matrix of the t treatment dummy variables with
each divided by the number of observations in the treatment. Thus, T is

T =
1
b



1 0 · · · 0
...
...

...
1 0 0
0 1 0
...
...

...
0 1 0

. . .
0 0 1
...
...

...
0 0 · · · 1



(9.41)

when there are b observations per treatment. The expectation of Y is

E(Y ) = T ′Xβ. (9.42)

If the model includes a covariate, the expectation of the ith mean contains
the term β(Xi. −X ..) in addition to the appropriate linear function of the
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other model effects. Because of this term, comparisons among the treatment
means include differences due to the covariate unless β = 0 or Xi. is the
same for all treatments being compared.
The adjusted treatment means are designed to remove this confound- Adjusted

Treatment
Means

ing. Adjustment is accomplished either by estimating directly from β0 the
linear function of the parameters of interest, or by subtracting an estimate
of the bias term from each unadjusted treatment mean. The linear func-
tions of the parameters that need to be estimated are appropriately defined
by equation 9.42 if X is redefined by replacing the column of covariate val-
ues with a column of zeros. If this redefined X is labeled Xc, the linear
functions to be estimated by the adjusted treatment means are

E(Y adj) = T ′Xcβ, (9.43)

where Y adj denotes the vector of adjusted treatment means. The least
squares estimate of the adjusted treatment means is given by the same
linear function of the least squares solution β0,

Y adj = T ′Xcβ
0. (9.44)

The adjusted treatment means are estimates of the treatment means for the
case where all treatments have the mean level of the covariate, Xi. = X ..
for all i. The adjustment can be made to any level of the covariate, say C,
by defining Xc to be the matrix with the column vector of covariate values
replaced with (C −X ..) rather than with zeros.
Alternatively, each adjusted treatment mean can be obtained by remov-
ing the bias β(Xi. − X ..) from the corresponding unadjusted treatment
mean. This leads to the more traditional method of computing the ad-
justed treatment means:

Y adji. = Y i. − β̂(Xi. −X ..). (9.45)

The covariance adjustment is illustrated in Figure 9.1. The diagonal line
passing through the point (X .., Y ..) is the regression line with slope β̂
relating the dependent variable to the covariate. The original observations
are represented with ×s. The adjustment can be viewed as moving each
observation along a path parallel to the fitted regression line from the
observed value of the covariateX = Xij to the common valueX = X ... The
dots on the vertical line at X = X .. represent the adjusted observations.
The amount each Yij is adjusted during this shift is determined by the
slope of the regression line and the change in X,

Yadjij = Yij − β̂(Xij −X ..).

Averaging the adjusted observations within each treatment gives the ad-
justed treatment means, equation 9.45.
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–   (Xij – X..)

Yij

Yadjij

Y..

β̂

XijX..

FIGURE 9.1. Illustration of the adjustment of the response variable Y for differ-
ences in the covariate X.



300 9. CLASS VARIABLES IN REGRESSION

The variance–covariance matrix of the adjusted treatment means follows Variances of
Adjusted
Treatment
Means

directly from the matrix equation for the variance of a linear function.
Thus,

Var(Y adj) = (T
′Xc)(X ′X)−(T ′Xc)′σ2. (9.46)

The variances of the adjusted treatment means, the diagonal elements of
equation 9.46, simplify to the classical formula for the variance:

σ2(Y adji.) =
[
1
n
+
(Xi. −X ..)2

Exx

]
σ2, (9.47)

where Exx is the residual sum of squares from the RCB analysis of variance
of the covariate. That is, Exx =

∑a
i=1

∑b
j=1[Xij −Xi. −X .j +X ..]2.

When the covariance analysis is being used to aid interpretation of the Covariance to
Help Interpret
Treatment
Effects

treatment effects, the primary interest is in comparison of the treatment
means and sums of squares before and after adjustment for the covariate.
The adjustment of the means and sums of squares is not viewed as a method
of obtaining unbiased estimates of treatment effects. Rather, the changes in
the means and sums of squares provide some indication of the proportion
of the treatment effects that can be viewed as direct effects on Y versus
possible indirect effects on Y through X, or through some other variable
that in turn affects bothX and Y . For example, highly significant treatment
effects that remain about the same after adjustment for X would suggest
that most of the treatment effects on Y are essentially independent of
any treatment effects on X. On the other hand, dramatic changes in the
treatment effects with adjustment would suggest that X and Y are closely
linked in the system being studied so that the responses of both variables
to the treatments are highly correlated.
The test of the null hypothesis H0 : β = 0 is a test of the hypothesis
that the correlation between the residuals for X and the residuals for Y is
zero, after both have been adjusted for block and treatment effects. If the
covariate was chosen because it was expected to have a direct impact on
Y , then β would be expected to be nonzero and this test would serve only
as a confirmation of some link between the two variables. A nonsignificant
test would suggest that the link between the two variables is very weak, or
the power of the test is not adequate to detect the link. In either case, any
effort devoted to interpretation of the adjusted treatment means and sums
of squares would not be very productive.

9.8 Numerical Examples

Two examples are used. The first example combines several concepts cov-
ered in this chapter:
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1. analysis of variance as a regression problem including reparameteri-
zation;

2. use of dummy variables to test homogeneity of regressions; and

3. analysis of covariance to aid in the interpretation of treatment effects.

The covariable in the first example can be viewed as another response vari-
able and is expected to be affected by the treatments. A multivariate anal-
ysis of variance of the two response variables would be a more appropriate
analysis.
The second example illustrates the more classical use of covariance and
uses a generalized inverse solution to the normal equations.

The purpose of this study was to compare ascorbic acid content in cab- Example 9.6
bage from two genetic lines (cultivars) planted on three different dates
(Table 9.5). The experimental design was a completely random design with
r = 10 experimental units for each combination of planting date and ge-
netic line, for a total of 60 observations. It was anticipated that ascorbic
acid content might be dependent on the size of the cabbage head; hence,
head weight was recorded for possible use as a covariate. (The data are
from the files of the late Dr. Gertrude M. Cox.)
Ascorbic acid content is the dependent variable of interest and head
weight is used as a covariate. The variables “date” and “line” are treated as
class variables. The first analysis is the conventional analysis of variance for
the factorial experiment. Then, in anticipation of the analysis of covariance,
the homogeneity of regression coefficients, relating ascorbic acid content to
head size, over the six date-line treatment combinations is tested. Finally,
the analysis of covariance is run.
The purpose of the covariance analysis in this example is as an aid in
interpreting the effects of planting date and genetic line on ascorbic acid
content, rather than for control of random variation among the experimen-
tal units. It is expected that the covariable head weight will be affected
by the date and line treatment factors. Hence, adjustment of ascorbic acid
content to a common head weight would redefine treatment effects. When
the response variable and the covariate are affected by the treatment, a
multivariate approach that studies the treatment effects is preferred.

9.8.1 Analysis of Variance
The conventional model for a factorial set of treatments in a completely
random design is

Yijk = µ+ γi + τj + (γτ)ij + εijk, (9.48)
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TABLE 9.5. Head weight and ascorbic acid content for two cabbage varieties on
three planting dates.

Planting Date
16 20 21

Line Head Ascorbic Head Ascorbic Head Ascorbic
Number Wt. Content Wt. Content Wt. Content
39 2.5 51 3.0 65 2.2 54

2.2 55 2.8 52 1.8 59
3.1 45 2.8 41 1.6 66
4.3 42 2.7 51 2.1 54
2.5 53 2.6 41 3.3 45
4.3 50 2.8 45 3.8 49
3.8 50 2.6 51 3.2 49
4.3 52 2.6 45 3.6 55
1.7 56 2.6 61 4.2 49
3.1 49 3.5 42 1.6 68

52 2.0 58 4.0 52 1.5 78
2.4 55 2.8 70 1.4 75
1.9 67 3.1 57 1.7 70
2.8 61 4.2 58 1.3 84
1.7 67 3.7 47 1.7 71
3.2 68 3.0 56 1.6 72
2.0 58 2.2 72 1.4 62
2.2 63 2.3 63 1.0 68
2.2 56 3.8 54 1.5 66
2.2 72 2.0 60 1.6 72
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where γi are the “date” effects (i = 1, 2, 3), τj are the “line” effects (j =
1, 2), and (γτ)ij are the “date by line” interaction effects. This model con-
tains 12 parameters to define only 6 group means. Thus, there are 6 linear
dependencies in the model and a full rank reparameterization requires 6
constraints. There must be 1 constraint on the γi, 1 on the τj , and 4 on
the (γτ)ij .
For this illustration, the means model is used as the reparameterized
model and then the general linear hypothesis is used to partition the varia-
tion among the six treatments into “date,” “line,” and “date by line” sums
of squares. Thus, the (full-rank) model for the analysis of variance is

Yijk = µij + εijk, (9.49)

where µij is the true mean of the ijth date-line group. In this model X
is of order (60 × 6) where each column is a dummy variable showing the
incidence of the observations for one of the date-line groups. That is, the
ijth dummy variable takes the value one if the observation is from the ijth
date-line group; otherwise the dummy variable takes the value zero. It is
assumed that the elements of β∗ are in the order

β∗′ = (µ11 µ12 µ21 µ22 µ31 µ32 ) .

The least squares analysis using this model gives SS(Model) = 205,041.9
with 6 degrees of freedom and SS(Residual) = 2,491.1 with 54 degrees of
freedom. The least squares estimates of µij are the group means:

β̂
∗′
= ( 50.3 62.5 49.4 58.9 54.8 71.8 ) .

Each µ̂ij is estimating µ + γi + τj + (γτ)ij , the mean of the treatment
group in terms of the original parameters. These are the estimated group
means for ascorbic acid ignoring any differences in head weight since the
model does not include the covariate.
The partitions of SS(Model) are obtained by appropriate definition ofK ′

for general linear hypotheses on the µij . For this purpose, it is helpful to
view the µij as a 3× 2 “date by line” table of means. The marginal means
for this table µi. and µ.j represent the “date” means and the “line” means,
respectively. For each sum of squares to be computed, the appropriate null
hypothesis is stated in terms of the µij , the appropriate K ′ is defined for
the null hypothesis, and the sum of squares Q computed using the general
linear hypothesis, equation 4.38, is given. In all hypotheses m = 0 and Q
is computed as

Q = (K ′β̂
∗
)′[K ′(X∗′X∗)−1K]−1(K ′β̂

∗
).

1. Correction factor: The sum of squares due to the correction for the
mean, the correction factor, measures the deviation of the overall
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mean µ.. from zero. The overall mean is zero only if the sum of the
µij is zero. Therefore,

H0 : µ.. = 0 or
∑∑

µij = 0,

K ′
1 = ( 1 1 1 1 1 1 ) , (9.50)

r(K1) = 1 and
Q1 = 201, 492.1 with 1 degree of freedom.

2. Sum of squares for “dates”: The hypothesis of no date effects is equiv-
alent to the hypothesis that the three marginal means µi. are equal.
The equality of the three means can be expressed in terms of two
linearly independent differences being zero:

H0 : µ1. = µ2. = µ3.

or

H0 : (µ11 + µ12)− (µ21 + µ22) = 0 and
(µ11 + µ12) + (µ21 + µ22)− 2(µ31 + µ32) = 0,

K ′
2 =

[
1 1 −1 −1 0 0
1 1 1 1 −2 −2

]
, (9.51)

r(K2) = 2, and
Q2 = 909.3 with 2 degrees of freedom.

3. Sum of squares for “lines”: The hypothesis of no “line” effects is
equivalent to the hypothesis that the two marginal means for “lines”
µ.j are equal or that the difference is zero:

H0 : µ.1 − µ.2
or

H0 : µ11 + µ21 + µ31 − µ12 − µ22 − µ32 = 0,
K ′

3 = ( 1 −1 1 −1 1 −1 ) , (9.52)
r(K3) = 1, and
Q3 = 2, 496.15 with 1 degree of freedom.

4. Sum of squares for “dates by lines”: The null hypothesis of no interac-
tion effects between “dates” and “lines” is equivalent to the hypoth-
esis that the difference between lines is the same for all dates, or that
the differences among dates are the same for all lines. The former is
easier to visualize because there are only two lines and one difference
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TABLE 9.6. Factorial analysis of variance of ascorbic acid content of cabbage.

Source d.f. Sum of Squares Mean Square
Totaluncorr 60 207, 533.0
Model 6 205, 041.9
C.F. 1 201, 492.1
Dates 2 909.3 454.7
Lines 1 2, 496.2 2, 496.2
Dates × Lines 2 144.3 72.2
Residual 54 2, 491.1 46.1

between lines for each date. There are three such differences which,
again, require two linearly independent statements:

H0 : µ11 − µ12 = µ21 − µ22 = µ31 − µ32

or

H0 : (µ11 − µ12)− (µ21 − µ22) = 0 and
(µ11 − µ12) + (µ21 − µ22)− 2(µ31 − µ32) = 0,

K ′
4 =

[
1 −1 −1 1 0 0
1 −1 1 −1 −2 2

]
, (9.53)

r(K4) = 2, and
Q4 = 144.25 with 2 degrees of freedom.

The K ′ matrix appropriate for the hypothesis of no interaction is the
more difficult matrix to define. The statements were generated using the
fact that interaction measures the failure of the simple effects to be consis-
tent over all levels of the other factor. It should be observed, however, that
K ′

4 is easily generated as the elementwise product of each row vector inK
′
2

with the row vector in K ′
3. Interaction contrasts can always be generated

in this manner.
This analysis of variance is summarized in Table 9.6. The results are iden-
tical to those from the conventional analysis of variance for a two-factor
factorial in a completely random experimental design. The residual mean
square serves as the denominator for F -tests of the treatment effects (if
treatment effects are fixed effects). There are significant differences among
the planting dates and between the two genetic lines for ascorbic acid con-
tent. The interaction between dates and lines is not significant, indicating
that the difference between the lines is reasonably constant over all planting
dates.
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9.8.2 Test of Homogeneity of Regression Coefficients
The analysis of covariance assumes that all treatments have the same rela-
tionship between the dependent variable and the covariate. In preparation
for the covariance analysis of the cabbage data (Section 9.8.3), this section
gives the test of homogeneity of the regression coefficients.
The full model for the test of homogeneity allows each treatment group
to have its own regression coefficient relating ascorbic acid content to head
size. The means model used in the analysis of variance (equation 9.49 is
expanded to give

Yijk = µij + βij(Xijk −X ...) + εijk, (9.54)

where the ij subscripts on β allow for a different regression coefficient
for each of the six treatment groups. There are now 12 parameters and X∗

must be of order (60×12). Each of the additional six columns inX∗ consists
of the covariate values for one of the treatment groups. The elements in the
column for the ijth group take the values (Xijk − X ...) if the observation
is from that group and zero otherwise. These six columns can be generated
by elementwise multiplication of the dummy variable for each treatment
by the original vector of (Xijk −X ...). The X∗ matrix has the form

X∗ =


1 0 0 0 0 0 x11 0 0 0 0 0
0 1 0 0 0 0 0 x12 0 0 0 0
0 0 1 0 0 0 0 0 x21 0 0 0
0 0 0 1 0 0 0 0 0 x22 0 0
0 0 0 0 1 0 0 0 0 0 x31 0
0 0 0 0 0 1 0 0 0 0 0 x32

 ,

where each symbol inX∗ is a column vector of order 10×1; xij is the 10×1
column vector of the deviations of head weight from the overall mean head
weight for the ijth treatment group. The least squares analysis using this
model gives SS(Resfull)= 1847.2 with 60− 12 = 48 degrees of freedom.
The reduced model for the null hypothesis of homogeneity of regression
coefficients, H0 : βij = β for all ij combinations, is

Yijk = µij + β(Xijk −X ...) + εijk. (9.55)

There are seven parameters in this reduced model—the six µij plus the
common β. (This is the covariance model that is used in the next section.)
The least squares analysis of this reduced model gives SS(Resreduced)=
1, 975.1 with 53 degrees of freedom.
The difference in residual sums of squares for the full and reduced models
is:

Q = SS(Resreduced)− SS(Resfull)
= 1, 975.1− 1, 847.2 = 127.9
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with 53 − 48 = 5 degrees of freedom. This is the appropriate numerator
sum of squares for the F -test of the null hypothesis. The appropriate de-
nominator for the F -test is the residual mean square from the full model,

s2 =
1, 847.24
48

= 38.48.

Thus,

F =
127.9/5
38.48

= .66

which is nonsignificant. A common regression coefficient for all treatments
is sufficient for describing the relationship between ascorbic acid content
and the head weight of cabbage in these data.
If the regression coefficients are heterogeneous, the covariance analysis
for whatever purpose must be used with caution. The meaning of “adjusted
treatment means” is not clear when the responses to the covariate differ.
The choice of the common level of the covariate to which adjustment is
made becomes critical. The treatment differences and even the ranking of
the treatments can depend on this choice.

9.8.3 Analysis of Covariance
The analysis of covariance is used on the ascorbic acid content of cabbage as
an aid in interpreting the treatment effects. The differences among adjusted
treatment means are not to be interpreted as treatment effects. The changes
in the sums of squares and treatment means as they are adjusted provide
insight into the degree of relationship between the treatment effects on the
two response variables, ascorbic acid content and head weight.
The model for the analysis of covariance, using the means parameteriza-
tion and a common regression of ascorbic acid on head size for all groups,
was given as the reduced model in the test of homogeneity, equation 9.55.
The least squares analysis of this model gives the analysis of covariance.
The X∗ matrix from the analysis of variance is augmented with the col-
umn of observations on the covariate, expressed as deviations from the
mean of the covariate. The vector of parameters is expanded to include β,
the regression coefficient for the covariate.
Least squares analysis for this model gives SS(Model) = 205,557.9 with 7
degrees of freedom and SS(Residual) = 1,975.1 with 53 degrees of freedom.
The decrease in the residual sum of squares from the analysis of variance
model to the covariance model is due to the linear regression on the co-
variate. This difference in SS(Res) for the two models is the partial sum
of squares for β, R(β|µ′) = 2, 491.1 − 1, 975.1 = 516.0 with 1 degree of
freedom, and is the appropriate numerator sum of squares for the F -test
of the null hypothesis H0 : β = 0. The denominator is the residual mean
square from the covariance model, s2 = 1, 975.1/53 = 37.3.
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TABLE 9.7. Partial sums of squares for the analysis of covariance of ascorbic
acid content for the cabbage data. The covariate is head weight.

Source d.f. Sum of Squares Mean Square
Totaluncorr 60 207, 533.0
Model 7 205, 557.9
C.F. 1 201, 492.1
Dates 2 239.8 119.9
Lines 1 1, 237.3 1, 237.3
Dates × Lines 2 30.7 15.4
Covariate 1 516.0 516.0
Residual 53 1, 975.1 37.3

The F -test of H0 : β = 0 is

F =
516.0
37.3

= 13.8

with 1 and 53 degrees of freedom, which is significant beyond α = .001.
This confirms that there is a significant correlation between the variation in
ascorbic acid content and head size after both have been adjusted for other
effects in the model. This can be interpreted as a test of the hypothesis that
the correlation between the random plot-to-plot errors of the two traits is
zero.
General linear hypotheses are used to compute the partial sum of squares
attributable to each of the original class variables. These sums of squares
will differ from the analysis of variance sums of squares because they will
now be adjusted for the covariate. The K ′ matrices defined in the analysis
of variance, equations 9.50 through 9.53, need to be augmented on the right
with a column of zeros as coefficients for β so that K ′ and β̂

∗
conform for

multiplication. These sums of squares are no longer additive partitions of
the model sum of squares because the adjustment for the covariate has
destroyed the orthogonality. An additional K ′ could be defined for the
hypothesis that β = 0, but the appropriate F -test based on the difference
in residual sums of squares has already been performed in the previous
paragraph. The analysis of variance summary for the covariance model is
given in Table 9.7.
A comparison of Tables 9.6 and 9.7 shows major decreases in the sums
of squares for “dates” and “lines” after adjustment for differences in head
weight. The test for “date by line” effects is nonsignificant both before and
after adjustment. The sum of squares for “dates” was reduced from a highly
significant 909 to a just-significant 240 (α = .05). The sum of squares for
“lines” was reduced by half but is still highly significant. These results
suggest that a significant part of the variation in ascorbic acid content
among dates of planting and between lines is associated with variation in
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TABLE 9.8. Adjustment of treatment means for ascorbic acid content in cabbage
for differences in the covariable head weight.

Mean Mean Mean
Head Ascorbic Acid Adjustment Ascorbic Acid

Group Weight (Unadjusted) −β̂(Xij. −X ...) (Adjusted)
11 3.18 50.3 2.64 52.94 (2.06)a

12 2.26 62.5 −1.50 61.00 (1.97)
21 2.80 49.4 .93 50.33 (1.95)
22 3.11 58.9 2.33 61.23 (2.03)
31 2.74 54.8 .66 55.46 (1.94)
32 1.47 71.8 −5.06 66.74 (2.36)
Mean 2.593 57.95 .00 57.95
aStandard errors of adjusted treatment means are shown in parentheses. The standard error

on each unadjusted treatment mean is 2.15.

head size. However, not all of the variation in ascorbic acid content can be
explained by variation in head size.
The estimate of the parameters is:

β̂
∗′
= ( 52.94 61.00 50.33 61.23 55.46 66.74 −4.503 ) .

The µ̂ij from the means reparameterization are estimates of the treatment
means for ascorbic acid content, which are now adjusted for differences
in head weight. (The estimate of the parameters contains the adjusted
treatment means only because the means reparameterization was used and
the covariate was centered. Otherwise, linear functions of the parameter
estimates would have to be used to compute the adjusted means.) The
estimate of the regression coefficient for the covariate is β̂ = −4.50265.
Each increase of 1 unit in head weight is associated with a decrease in
ascorbic acid content of 4.5 units on the average.
The adjustments to mean ascorbic acid content for differences in mean
head weight are shown in Table 9.8. The biggest adjustment is for the
third planting date for line 2, which had a very small head weight and
high ascorbic acid content. Adjustment for head size reduced the average
difference in ascorbic acid content between the two lines from about 12 units
to 10 units. The first two planting dates differ very little for either line, but
the third planting date gives appreciably higher ascorbic acid content even
after adjustment for smaller head size on that planting date.
The analysis shows that there is considerable genetic and environmental
correlation between ascorbic acid content and head size in cabbage. Some
of the higher ascorbic acid content in line 2 on the third planting date
may be attributable to the smaller head size produced by that treatment
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TABLE 9.9. Average dry forage yields (lbs/A) from a study of sources and rates
of phosphorus fertilization. The experimental design was a randomized complete
block design with seven sources of phosphorus, each applied at two rates (lbs/A).
The phosphorus content of the soil (ppm of P2O5) at the beginning of the study
was recorded for use as a possible covariate. (Data are from the files of the late
Dr. Gertrude M. Cox.)

Treatment Block I Block II Block III
Source Rate Phos. Forage Phos. Forage Phos. Forage

SUPER 40 32.0 2, 475 43.2 3, 400 51.2 3, 436
SUPER 80 44.8 3, 926 56.0 4, 145 75.2 3, 706
TSUPER 40 43.2 2, 937 52.8 2, 826 27.2 3, 288
TSUPER 80 41.6 3, 979 64.0 4, 065 36.8 4, 344
BSLAG 40 49.6 3, 411 62.4 3, 418 46.4 2, 915
BSLAG 80 51.2 4, 420 62.4 4, 141 48.0 4, 297
FROCK 40 48.0 3, 122 75.2 3, 372 22.4 1, 576
FROCK 80 48.0 4, 420 76.8 3, 926 24.0 1, 666
RROCK 40 54.4 2, 334 60.8 2, 530 49.6 1, 275
RROCK 80 60.8 3, 197 59.2 3, 444 46.4 2, 414
COLOID 40 72.0 3, 045 59.2 2, 206 19.2 540
COLOID 80 76.8 3, 333 32.0 410 70.4 4, 294
CAMETA 40 64.0 3, 594 62.4 3, 787 44.8 3, 312
CAMETA 80 62.4 3, 611 76.8 4, 211 48.0 4, 379

combination. This does not mean, however, that this adjusted mean is a
better estimate of the ascorbic acid content of line 2 when planted late.
The smaller head size may be an innate trait of line 2 when grown under
the environmental conditions of the late planting. If so, the adjustment to
a common head size underestimates the ascorbic acid content for line 2
grown under those conditions.

The next example illustrates the classical use of covariance to control
experimental error.

The data for the example are from a study to compare seven sources Example 9.7
of phosphorus each applied at two rates (40 and 80 lbs/A). The exper-
imental design is a randomized complete block experimental design with
b = 3 blocks. The dependent variable is 3-year dry weight forage production
(lbs/A). The covariate is soil phosphorus content (ppm P2O5) measured at
the beginning of the study. The data are given in Table 9.9. (The data are
from the files of the late Dr. Gertrude M. Cox.)
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The linear model for a factorial set of treatments in a randomized com-
plete block design is

Yijk = µ+ ρi + γj + τk + (γτ)jk + εijk, (9.56)

where

ρi = effect of ith block (i = 1, 2, 3)
γj = effect of jth source of phosphorus (j = 1, . . . , 7)
τk = effect of kth rate of application (k = 1, 2)

(γτ)jk = interaction effect of jth source and kth rate.

The covariate is included in the model by adding the term β(Xijk −X ...)
to equation 9.56. In this example, the covariate was measured before the
treatments were applied to the experimental units, so there is no chance
the covariate could have been affected by the treatments.
The analysis of variance model contains 27 parameters but the rank of

X is r(X) = 17; reparameterization would therefore require 10 constraints.
Analysis of these data uses the generalized inverse approach, rather than
reparameterization, to obtain the solution to the normal equations. PROC
ANOVA and PROC GLM, the general linear models procedure, (SAS In-
stitute Inc., 1989a, 1989b) are used for the analyses.
The analysis of variance is obtained from PROC ANOVA using the state-
ments:

PROC ANOVA; CLASS BLOCK SOURCE RATE; MODEL
FORAGE = BLOCK SOURCE RATE SOURCE*RATE;

The CLASS statement identifies the variables that are to be regarded as
class variables. Whenever a class variable is encountered in the MODEL
statement, the program constructs a dummy variable for each level of the
class variable. Thus, X will contain 3 dummy variables for BLOCK, 7
dummy variables for SOURCE, and 2 dummy variables for RATE. An in-
teraction between two (or more) class variables in the MODEL statement
instructs the program to construct a dummy variable for each unique joint
level of the two factors; there will be 14 dummy variables for SOURCE*RATE.
The summary of the analysis of variance for the experiment is given in
Table 9.10. There are significant differences among the sources of phos-
phorus (α = .05) and highly significant differences between the rates of
application (α = .01). Block effects and source-by-rate interaction effects
are not significant. The residual mean square is s2 = 735, 933 and the
coefficient of variation is 26.7%.
The purpose of the covariance analysis is to use the information on soil
phosphorus content to “standardize” the experimental results to a common
level of soil phosphorus and, thereby, improve the precision of the compar-
isons. The analysis of covariance is obtained from PROC GLM (PROC
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TABLE 9.10. Analysis of variance of dry forage from the phosphorus fertilization
data.

Sum of Mean
Source d.f. Squares Square F Prob > F

Corrected total 41 41, 719, 241
BLOCK 2 1, 520, 897 760, 449 1.03 .3700
SOURCE 6 13, 312, 957 2, 218, 826 3.01 .0226
RATE 1 7, 315, 853 7, 315, 853 9.94 .0040
SOURCE∗RATE 6 435, 267 72, 544 .10 .9959
Error 26 19, 134, 266 735, 933

ANOVA cannot handle a continuous variable) by expanding the model
statement to include the covariate PHOSDEV as follows.

MODEL FORAGE=BLOCK SOURCE RATE SOURCE*RATE
PHOSDEV/SOLUTION;

The variable PHOSDEV has been previously defined in the program as the
centered covariate. The “/SOLUTION” portion of the statement requests
PROC GLM to print a solution to the normal equations.
The analysis of covariance is summarized in Table 9.11. The lower two
sections of Table 9.11 present the sequential sums of squares (TYPE I
in SAS) and the partial sums of squares (TYPE III in SAS). Since the
covariate was placed last in the model statement and the experimental
design was balanced, the first four lines of the sequential sums of squares
reproduce the analysis of variance sums of squares (Table 9.10).
The first question to ask of the analysis is whether the covariate has
improved the precision of the comparisons. The residual mean square after
adjustment for the covariate is s2 = 384, 776. This is a reduction of 48%
from s2 = 735, 933 in the analysis of variance (Table 9.10). The coefficient
of variation has been reduced from 26.7% to 19.3%. The reduction in the
residual sum of squares is the partial sum of squares for the covariate and
provides a test of the hypothesis H0 : β = 0, where β is the regression
coefficient on PHOSDEV. This test gives F = 24.73 with 1 and 25 degrees
of freedom, which is significant beyond α = .0001. [β̂ = 39.7801 with
s(β̂) = 7.9996]. The use of the covariate, initial soil phosphorus content,
has greatly improved the precision of the experiment.
Adjustment of the treatment effects for differences in the covariate changed
the treatment sums of squares (compare the sequential and partial sums
of squares in Table 9.11) but did not change any of the conclusions from
the F -tests of the treatment effects. Sources of phosphorus and rates of ap-
plication remain significant, both beyond α = .01, and the source-by-rate
interaction remains nonsignificant. The absence of any interaction between
sources and rates of fertilization means that differences in forage produc-
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TABLE 9.11. Covariance analysis for dry forage yield from a randomized complete
block design with seven sources of phosphorus applied at two rates. The covariate
is amount of soil phosphorus in the plot at the beginning of the three-year study.

Sum of Mean
Source d.f. Squares Square F Prob > F

Model 16 32, 099, 838 2, 006, 240 5.21 .0001
Error 25 9, 619, 403 384, 776
Corrected Total 41 41, 719, 241

Sequential Sums of Squares:
Source d.f. SS MS F Prob > F

BLOCK 2 1, 520, 897 760, 449 1.98 .1596
SOURCE 6 13, 312, 957 2, 218, 826 5.77 .0007
RATE 1 7, 315, 853 7, 315, 853 19.01 .0002
SOURCE*RATE 6 435, 267 72, 544 .19 .9773
PHOSDEV 1 9, 514, 863 9, 514, 863 24.73 .0001

Partial Sums of Squares:
Source d.f. SS MS F Prob > F

BLOCK 2 1, 173, 100 586, 550 1.52 .2373
SOURCE 6 15, 417, 193 2, 569, 532 6.68 .0003
RATE 1 3, 623, 100 3, 623, 100 9.42 .0051
SOURCE*RATE 6 999, 892 166649 .43 .8497
PHOSDEV 1 9, 514, 863 9, 514, 863 24.73 .0001
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tion among the 14 phosphorus fertilization treatments can be summarized
in the marginal means for the two treatment factors, sources and rates.
However, both sets of means need to be adjusted to remove biases due to
differences in initial levels of soil phosphorus.
The adjusted SOURCE marginal means are obtained as

Y adj.j. =
Y .j. − β̂(X .j. −X ...),

where X .j. is the marginal mean for the covariate for those experimental
plots receiving the jth source of phosphorus, and X ... is the overall mean
for the covariate, β̂ = 39.7801. This adjusts the SOURCE means to the
common level of initial soil phosphorus X ... = 52.4 ppm. Similarly, the
adjusted RATE marginal means are obtained as

Y adj..k = Y ..k − β̂(X ..k −X ...).

The unadjusted marginal means and the steps in the adjustment to obtain
the adjusted means are shown in Table 9.12. The standard errors of the
adjusted treatment means are also shown. The standard errors on the un-
adjusted treatment means were s(Y .j.) = 350.2 and s(Y ..k) = 229.3. The
differences between standard errors for the unadjusted and adjusted means
show a marked increase in precision from the use of the covariate.
PROC GLM computes the adjusted means as linear functions of the
solution β0. The appropriate linear functions to be estimated for each mean
are determined by the expectations of means in balanced data with the
covariate set equal to X .... For example, the expectation of the marginal
mean for the first source, BSLAG, is

E(Y .1.) = µ+ ρ1 + ρ2 + ρ33
+ γ1 +

τ1 + τ2
2

+
(γτ)11 + (γτ)12

2
.

The expectation contains, in addition to µ + γ1, the average of the block
effects ρi, the average of the rate effects τk, and the average of the inter-
action effects in which source 1 is involved. The covariate is not involved
in this expectation because adjusting to the mean level of the covariate is
equivalent to adjusting to PHOSDEV = 0 when the centered covariate is
used. This is the particular linear function of β that is to be estimated
as the marginal FORAGE mean for SOURCE = BSLAG. The estimate is
obtained by computing the same linear function of β0. The adjusted means
are obtained from PROC GLM with the statement

LSMEANS SOURCE RATE/STDERR;

The “/STDERR” asks for the standard errors on the adjusted means to
be printed.
Interpretations of the treatment effects are based on the adjusted treat-
ment means. In this example, adjustment for differences in the covariate
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TABLE 9.12. Unadjusted and adjusted treatment means for “Source” and “Rate”
of phosphorus fertilization. There was no “Rate by Source” interaction so that
the experimental results are summarized in terms of the marginal means.

Forage Phosphorus Forage
Mean Mean Covariance Mean Std.

Treatment (Unadj)a Deviationb Adjustmentc (Adj.) Error
SOURCE means:

BSLAG 3, 767.0 0.914 −36.4 3, 730.6 253.3
CAMETA 3, 815.7 7.314 −291.0 3, 524.7 259.9
COLOID 2, 304.7 2.514 −100.1 2, 204.6 254.0
FROCK 3, 013.7 −3.352 133.3 3, 147.0 254.7
RROCK 2, 532.3 2.781 −110.6 2, 421.7 254.2
SUPER 3, 514.7 −2.019 80.3 3, 595.0 253.8
TSUPER 3, 573.2 −8.152 324.3 3, 897.5 261.5

RATE means:
40 2, 800.0 −2.895 115.2 2, 915.1 137.3
80 3, 634.7 2.895 −115.2 3, 519.5 137.3
aThe standard errors for the unadjusted treatment means are s(Y .j.) = 350.2 for the

SOURCE means and s(Y ..k) = 229.3 for the RATE means.
b“Phosphorus mean deviation” is (X.j.−X...) for SOURCE means and (X..k −X...)

for RATE means.
c“Covariance adjustment” is −β̂(Phosphorus mean deviation) where β̂ = 39.7801.
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changed the ranking of the four best sources of phosphorus, which did not
differ significantly, and decreased the difference between the two rates of
application. The adjusted means suggest an average rate of change in for-
age of 15lbs/A for each lb/A of phosphorus compared to 21lbs/A suggested
by the unadjusted means.

9.9 Exercises

9.1. Use matrix multiplication to verify that the linear model in equa-
tion 9.5, where X and β are as defined in equation 9.4, generates the
combinations of effects shown in equation 9.2.

9.2. Determine the number of rows and columns in X before reparame-
terization for one-way structured data with t groups (or treatments)
and n observations in each group. How does the order of X change
if there are ni observations in each group?

9.3 Suppose you have one-way structured data with t = 3 groups. Define
the linear model such that µ is the mean of the first group and the
second and third groups are measured as deviations from the first. Is
X for this model of full rank? Does this form of the model relate to
any of the three reparameterizations?

9.4. The accompanying table gives survival data for tropical corn borer
under field conditions in Thailand (1974). Researchers inoculated 30
experimental plots with egg masses of the corn borer on the same date
by placing egg masses on each corn plant in the plot. After each of 3,
6, 9, 12, and 21 days, the plants in 6 random plots were dissected and
the surviving larvae were counted. This gives a completely random
experimental design with the treatments being “days after inocula-
tion.” (Data are used with permission of Dr. L. A. Nelson, North
Carolina State University.)

Days After Numbers of Larvae
Inoculation Surviving in 6 Plots

3 17 22 26 20 11 14
6 37 26 24 11 11 16
9 8 5 12 3 5 4
12 14 8 4 6 3 3
21 10 13 5 7 3 4

(a) Do the classical analysis of variance by hand for the completely
random design. Include in your analysis a partitioning of the
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sum of squares for treatments to show the linear regression on
“number of days” and deviations from linearity.

(b) Regard “days after inoculation” as a class variable. Define Y ,
X, and β so that the model for the completely random design
Yij = µ + τi + εij can be represented in matrix form. Show
enough of each matrix to make evident the order in which the
observations are listed. Identify the singularity that makes X
not of full rank.

(c) Show the form of X and β for each of the three reparameteriza-
tions—the means model, the

∑
τi = 0 constraint, and the τ5 = 0

constraint.
(d) Choose one of the reparameterizations to compute R(τ ′|µ) and
SS(Res). Summarize the results in an analysis of variance table
and compare with the analysis of variance obtained under (a).

(e) Use SAS PROC GLM, or a similar program for the analysis of
less than full-rank models, to compute the analysis of variance.
Ask for the solution to the normal equations so that “estimates”
of β are obtained. Compare these sums of squares and estimates
of β with the results from your reparameterization in Part (d).
Show that the unbiased estimates of µ+ τ1 and τ1 − τ2 are the
same from both analyses.

(f) Now regard X as a quantitative variable and redefine X and
β so that Y = Xβ + ε expresses Y as a linear function of
“number of days.” Compute SS(Regr) and compare the result
with that under Part (a). Test the null hypothesis that the linear
regression coefficient is zero. Test the null hypothesis that the
linear function adequately represents the relationship.

(g) Do you believe the assumptions for least squares are valid in this
example? Justify.

9.5. Use X and β as defined for the completely random design, equa-
tion 9.4. Define K ′ for the null hypothesis H0 : τ1 = τ2. Define K ′

for the null hypothesis H0 : τ3 = τ4. Define K ′ for the composite null
hypothesis H0 : τ1 = τ2 and τ3 = τ4 and τ1 + τ2 = τ3 + τ4. Is each
of these hypotheses testable? How does the sum of squares generated
by the composite hypothesis relate to the analysis of variance?

9.6. Show that the means model reparameterization for the completely
random design is equivalent to imposing the constraint that µ = 0.

9.7. Express the columns of X in equation 9.4 as linear combinations of
columns of X∗ in equation 9.15. Also, express the columns of X∗ in
equation 9.15 as linear combinations of columns ofX. Thus, the space
spanned by columns of X is the same as that spanned by columns of
X∗.
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9.8. Use the means model reparameterization on a randomized complete
block design with b = 2 and t = 4. As discussed in the text, this
reparameterization leaves zero degrees of freedom for the estimate of
error. However, experimental error can be estimated as the block-
by-treatment interaction sum of squares. Define K ′ for the means
reparameterization so that the sum of squares obtained from Q is the
error sum of squares.

9.9. Show X∗ and β∗ for the model for the randomized complete block
design (equation 9.21) with b = 2 and t = 4 using the constraint
γ2 = 0 and µj = µ+ τj . Determine the expectation of β̂

∗
in terms of

the original parameters.

9.10. Use matrix multiplication of X and β in equation 9.22 to verify that
the linear model in equation 9.21 is obtained.

9.11. Determine the general result for the number of columns inX for two-
way classified data when there are b levels of one factor and t levels
of the other factor if the model does not contain interaction effects.
How many additional columns are needed if the model does contain
interaction effects?

9.12. A randomized complete block experimental design was used to de-
termine the joint effects of temperature and concentration of herbi-
cide on absorption of 2 herbicides on a commercial charcoal material.
There were 2 blocks and a total of 20 treatment combinations—2
temperatures by 5 concentrations by 2 herbicides. (The data are used
with permission of Dr. J. B. Weber, North Carolina State University.)

Temp. Concentration ×105
Block ◦C Herb. 20 40 60 80 100
1 10 A .280 .380 .444 .480 .510

B .353 .485 .530 .564 .620
55 A .266 .332 .400 .436 .450

B .352 .474 .556 .590 .625
2 10 A .278 .392 .440 .470 .500

B .360 .484 .530 .566 .611
55 A .258 .334 .390 .436 .446

B .358 .490 .560 .570 .600

The usual linear model for a randomized complete block experiment,
Yij = µ+ γi+ τj + εij , where γi is the effect of the ith block and τj is
the effect of the jth treatment, can be expanded to include the main
and interaction effects of the three factors:

Yijkl = µ+ γi + Tj +Hk + Cl + (TH)jk + (TC)jl
+ (HC)kl + (THC)jkl + εijkl,
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where Tj , Hk, and Cl refer to the effects of temperature, herbicide,
and concentration, respectively. The combinations of letters refer to
the corresponding interaction effects.

(a) Show the form of X and β for the usual RCB model, the model
containing γi and τj . Assume the data in Y are listed in the
order that would be obtained if successive rows of data in the
table were appended into one vector. What is the order of X
and how many singularities does it have? Use γ2 = 0 and τ20 = 0
to reparameterize the model and compute the sums of squares
for blocks and treatments.

(b) Define K ′ for the singular model in Part (a) for the composite
null hypothesis that there is no temperature effect at any of the
combinations of herbicide and concentration. (Note: τ1 is the ef-
fect for the treatment having temperature 10◦, herbicide A, and
concentration 20 × 10−5. τ11 is the effect for the similar treat-
ment except with 55◦ temperature. The null hypothesis states
that these two effects must be equal, or their difference must be
zero, and similarly for all other combinations of herbicide and
concentration.) How many degrees of freedom does this sum of
squares have? Relate these degrees of freedom to degrees of free-
dom in the conventional factorial analysis of variance. DefineK ′

for the null hypothesis that the average effect of temperature is
zero. How many degrees of freedom does this sum of squares
have and how does it relate to the analysis of variance?

(c) Show the form of X and β if the factorial model with only the
main effects Tj , Hk, and Cl is used. How many singularities
does this X matrix contain? Show the form of X∗ if the “sum”
constraints are used. Use this reparameterized form to compute
the sums of squares due to temperature, due to herbicides, and
due to concentration.

(d) Demonstrate how X in Part (c) is augmented to include the
(TH)jk effects. How many columns are added to X? How many
additional singularities does this introduce? How many columns
would be added to X to accommodate the (TC)jl effects? The
(HC)kl effects? The (THC)jkl effects? How many singularities
does each introduce?

(e) Use PROC ANOVA in SAS, or a similar computer package, to
compute the full factorial analysis of variance. Regard blocks,
temperature, herbicide, and concentration as class variables.

9.13. The effect of supplemental ascorbate, vitamin C, on survival time of
terminal cancer patients was studied. [Data are from Cameron and
Pauling (1978) as reported in Andrews and Herzberg (1985).] The
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Effect of supplemental ascorbate on survival time of cancer patients.
Stomach Cancer Bronchus Cancer Colon Cancer

Age Days Cont. Age Days Cont. Age Days Cont.
Females: Females: Females:
61 124 38 48 87 13 76 135 18
62 19 36 64 115 49 58 50 30
66 45 12 Males: 70 155 57
69 876 19 74 74 33 68 534 16
59 359 55 74 423 18 74 126 21
Males: 66 16 20 76 365 42
69 12 18 52 450 58 56 911 40
63 257 64 70 50 38 74 366 28
79 23 20 77 50 24 60 99 28
76 128 13 71 113 18 Males:
54 46 51 70 857 18 49 189 65
62 90 10 39 38 34 69 1, 267 17
46 123 52 70 156 20 50 502 25
57 310 28 70 27 27 66 90 17

55 218 32 65 743 14
74 138 27 58 156 31
69 39 39 77 20 33
73 231 65 38 274 80

survival time (Days) of each treated patient was compared to the
mean survival time of a control group (Cont.) of 10 similar patients.
Age of patient was also recorded. For this exercise, the results are
used from three cancer types—stomach, bronchus, and colon. There
were 13, 17, and 17 patients in the three groups, respectively. For this
question use the logarithm of the ratio of days survival of the treated
patient to the mean days survival of his or her control group as the
dependent variable.

(a) Use the means model reparameterization to compute the analy-
sis of variance for ln(survival ratio). Determine X∗′X∗, X∗′Y ,
β̂
∗
, SS(Model), SS(Res), and s2. What is the least squares es-

timate of the mean ln(survival ratio) for each cancer group and
what is the standard error of each mean? Two different kinds of
hypotheses are of interest: does the treatment increase survival
time; that is, is ln(survival ratio) significantly greater than zero
for each type cancer; and are there significant differences among
the cancer types in the effect of the treatment? Use a t-test to



9.9 Exercises 321

test the null hypothesis that the true mean ln(survival ratio)
for each group is zero. Use an F -test to test the significance of
differences among cancer types.

(b) The ages of the patients in the study varied from 38 to 79;
the mean age was 64.3191 years. Augment the X∗ matrix in
Part (a) with the vector of centered ages. Compute the residual
sum of squares and the estimate of σ2 for this model. Compute
the standard error of each estimated regression coefficient. Use
a t-test to test the null hypothesis that the partial regression
coefficient for the regression of ln(survival ratio) on age is zero.
Use the difference in residual sums of squares between this model
and the previous model to test the same null hypothesis. How
are these two tests related? What is your conclusion about the
importance of adjusting for age differences?

(c) Since the means model was used in Part (b) and ages were ex-
pressed as deviations from the mean age, the first three regres-
sion coefficients in β̂ are the estimates of the cancer group means
adjusted to the mean age of 64.3191. Construct K ′ for the hy-
pothesis that the true means, adjusted for age differences, of
the stomach and bronchus cancer groups, the first and second
groups, are the same as for colon cancer, the third group. Com-
plete the test and state your conclusion.

(d) Describe how X∗
c would be defined to adjust all observations to

age 60 for all patients. Show the form of T for averaging the
adjusted observations to obtain the adjusted group means. The
adjusted group means are obtained as T ′X∗

c β̂
∗
, equation 9.44.

Compute T ′X∗
c and s

2(Y adj) for this example.

(e) Even though the average regression on age did not appear im-
portant, it was decided that each cancer group should be allowed
to have its own regression on age to verify that age was not im-
portant in any of the three groups. Illustrate how X∗ would be
expanded to accomodate this model and complete the test of
the null hypothesis that the regressions on age are the same for
all three cancer groups. State your conclusion.

9.14. The means reparameterization was used on the cabbage data ex-
ample (Example 9.5) in the text. Define β∗ and X∗ for this model
(equation 9.48 using the reparameterization constraints γ3 = τ2 =
(γτ)31 = (γτ)32 = (γτ)12 = (γτ)22 = 0. Define K ′ for the reparame-
terized model so as to obtain the sum of squares for “dates-by-lines”
interaction.

9.15. Equation 9.55 defines the reduced model for H0 : βij = β for all ij.
Define the reduced model for the test of homogeneity of regressions
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within lines:

H0 : β11 = β21 = β31 and β12 = β22 = β32.

Find SS(Res) for this reduced model and complete the test of homo-
geneity.

9.16. The means model was used in the cabbage data example (equa-
tion 9.49) and K ′ was defined to partition the sums of squares. De-
velop a reduced model that reflects H0 : µ1. = µ2. = µ3. Use the full
and reduced models to obtain the sum of squares for this hypothesis
and verify that this is equivalent to that using K ′ (equation 9.51) in
the text.

9.17. The covariance analysis of the phosphorus study in Section 9.8.3 as-
sumed a common regression of forage yield on soil phosphorus. Use
a general linear analysis program (such as PROC GLM in SAS) to
test the homogeneity of regressions over the 14 treatment groups.

9.18. The Linthurst data used in Chapters 5 and 7 came from nine sites
classified according to location (LOC ) and type of vegetation (TYPE ).
(The data are given in Table 5.1.) Do the analysis of variance on
BIOMASS partitioning the sum of squares into that due to LOC,
TYPE, and LOC -by-TYPE interaction. The regression models in
Chapter 7 indicated that pH and Na were important variables in ac-
counting for the variation in BIOMASS. Add these two variables to
your analysis of variance model as covariates (center each) and com-
pute the analysis of covariance. Obtain the adjusted LOC, TYPE,
and LOC -by-TYPE treatment means. Interpret the results of the
covariance analysis. For what purpose is the analysis of covariance
being used in this case?

9.19. Consider the analysis of covariance model given by

Yij = µ+ τi + β(Xij −X ..) + εij ; i = 1, . . . , a; j = 1, . . . , r,

where εijs are independent normal random variables with mean zero
and variance σ2.

(a) Show that all of the following models are reparameterizations of
the prededing model.

(i) Yij = µi + β(Xij −X ..) + εij .
(ii) Yij = µ∗i + β(Xij −Xi.) + εij .
(iii) Yij = µ∗ + τ∗i + βXij + εij .

Interpret the parameters µi and µ∗i .
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(b) Use the reparameterization (ii) in (a) to derive

SSEfull =
a∑
i=1

r∑
j=1

(Yij − Y i.)2 − β̂2
a∑
i=1

r∑
j=1

(Xij −Xi.)2

and

R(β|µ∗1, . . . , µ∗a) = β̂2
a∑
i=1

r∑
j=1

(Xij −Xi.)2,

where

β̂ =

∑a
i=1

∑r
j=1(Xij −Xi.)Yij∑a

i=1
∑r
j=1(Xij −Xi.)2

.

(c) To test the hypothesis that there is “no treatment effect,” con-
sider the reduced model

Yij = µ+ β(Xij −X ..) + εij .

Show that

SSE(Reduced) =
a∑
i=1

r∑
j=1

(Yij − Y ..)2 − β̃2
a∑
i=1

r∑
j=1

(Xij −X ..)2,

where

β̃ =
a∑
i=1

r∑
j=1

(Xij −X ..)Yij
/

a∑
i=1

r∑
j=1

(Xij −X ..)2 .

[Note that we can now obtain R(τ |β) as SS(Resreduced)−SS(Resfull).]



10
PROBLEM AREAS IN LEAST
SQUARES

All discussions to this point have assumed that the least
squares assumptions of normality, common variance,
and independence are valid, and that the data are cor-
rect and representative of the intended populations.

In reality, the least squares assumptions hold only ap-
proximately and one can expect the data to contain ei-
ther errors or observations that are somewhat unusual
compared to the rest of the data. This chapter presents
a synopsis of the problem areas that commonly arise in
least squares analysis.

The least squares regression method discussed in the previous chapters
was based on the assumptions that the errors are additive (to the fixed-
effects part of the model) and are normally distributed independent ran-
dom variables with common variance σ2. Least squares estimation based
on these assumptions is referred to as ordinary least squares. When the
assumptions of independence and common variance hold, least squares es-
timators have the desirable property of being the best (minimum variance)
among all possible linear unbiased estimators. When the normality assump-
tion is satisfied, the least squares estimators are also maximum likelihood
estimators.
Three of the major problem areas in least squares analysis relate to fail-
ures of the basic assumptions: normality, common variance, and indepen-
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dence of the errors. Other problem areas are overly influential data points,
outliers, inadequate specification of the functional form of the model, near-
linear dependencies among the independent variables (collinearity), and
independent variables being subject to error. This chapter is a synopsis
of these problem areas with brief discussions on how they might be de-
tected, their impact on least squares, and what might be done to remedy
or at least reduce the problem. Subsequent chapters discuss in greater de-
tail techniques for detecting the problems, transformations of variables as a
means of alleviating some of the problems, and analysis of the correlational
structure of the data to understand the nature of the collinearity problem.
This process of checking the validity of the assumptions, the behavior of
the data, and the adequacy of the model is an important step in every
regression analysis. It should not, however, be regarded as a substitute for
a proper validation of the regression equation against an independent set
of data.
The emphasis here is on making the user aware of problem areas in the
data or the model and insofar as possible removing the problems. An alter-
native to least squares regression when the assumptions are not satisfied is
robust regression. Robust regression refers to a general class of statistical
procedures designed to reduce the sensitivity of the estimates to failures in
the assumptions of the parametric model. For example, the least squares
approach is known to be sensitive to gross errors, or outliers, in the data
because the solution minimizes the squared deviations. A robust regression
procedure would reduce the impact of such errors by reducing the weight
given to large residuals. This can be done by minimizing the sum of abso-
lute residuals, for example, rather than the sum of squared residuals. In the
general sense, procedures for detecting outliers and influential observations
can be considered part of robust regression. Except for this connection,
robust regression is not discussed in this text. The reader is referred to
Huber (1981) and Hampel, Ronchetti, Rousseeuw, and Stahel(1986) for
discussions on robust statistics.

10.1 Nonnormality

The assumption that the residuals ε are normally distributed is not neces- Importance of
Normalitysary for estimation of the regression parameters and partitioning of the total

variation. Normality is needed only for tests of significance and construc-
tion of confidence interval estimates of the parameters. The t-test, F -test,
and chi-square test require the underlying random variables to be nor-
mally distributed. Likewise, the conventional confidence interval estimates
depend on the normal distribution, either directly or through Student’s
t-distribution.
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Experience has shown that normality is a reasonable assumption in many “Nonnormal”
Datacases. However, in some situations it is not appropriate to assume nor-

mality. Count data will frequently behave more like Poisson-distributed
random variables. The proportion of subjects that show a response to the
agent in toxicity studies is a binomially distributed random variable if the
responses are independent. Time to failure in reliability studies and time
to death in toxicity studies will tend to have asymmetric distributions and,
hence, not be normally distributed.
The impact of nonnormality on least squares depends on the degree of
departure from normality and the specific application. Nonnormality does
not affect the estimation of the parameters; the least squares estimates are
still the best linear unbiased estimates if the other assumptions are met.
The tests of significance and confidence intervals, however, are affected by
nonnormality. In general, the probability levels associated with the tests of
significance or the confidence coefficients will not be correct. The F -test is
generally regarded as being reasonably robust against nonnormality.
Confidence interval estimates can be more seriously affected by nonnor- Effect on

Confidence
Intervals

mality, particularly when the underlying distribution is highly skewed or
has fixed boundaries. The two-tailed symmetric confidence interval esti-
mates based on normality will not, in fact, be allocating equal probability
to each tail if the distribution is asymmetric and may even violate natural
boundaries for the parameter. The confidence interval estimate for propor-
tion of affected individuals in a toxicity study, for example, may be less
than zero or greater than one if the estimates ignore the nonnormality in
the problem.
Plots of the observed residuals e and skewness and kurtosis coefficients Detecting

Nonnormalityare helpful in detecting nonnormality. The skewness coefficient measures
the asymmetry of the distribution whereas kurtosismeasures the tendency
of the distribution to be too flat or too peaked. The skewness coefficient for
the normal distribution is 0; the kurtosis coefficient is 3.0. Some statistical
computing packages provide these coefficients in the univariate statistics
analysis. (Often, the kurtosis coefficient is expressed as a deviation from
the value for the normal distribution.) When the sample size is sufficiently
large, a frequency distribution of the residuals can be used to judge symme-
try and kurtosis. A full-normal or half-normal plot, which gives a straight
line under normality, is probably easier to use. These plots compare the
ordered residuals from the data to the expected values of ordered observa-
tions from a normal distribution (with mean zero and unit variance). The
full-normal plot uses the signed residuals; the half-normal plot uses the
absolute values of the residuals. Different shapes of the normal plots reveal
different kinds of departure from normality. More details on these plots are
given in Section 11.1.
Transformation of the dependent variable to a form that is more nearly Improving

Normalitynormally distributed is the usual recourse to nonnormality. Statistical the-
ory says that such a transformation exists if the distribution of the original
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dependent variable is known. Many of the common transformations (such
as the arcsin, the square root, the logarithmic, and the logistic transfor-
mations) were developed for situations in which the random variables were
expected a priori to have specific nonnormal distributions.
In many cases, the sample data provide the only information available for
determining the appropriate normalizing transformation. The plots of the
residuals may suggest transformations, or several transformations might be
tried and the one adopted that most nearly satisfies the normality criteria.
Alternatively, an empirical method of estimating the appropriate power
transformation might be used (Box and Cox, 1964). Chapter 12 is devoted
to transformations of variables.

10.2 Heterogeneous Variances

The assumption of common variance plays a key role in ordinary least Importance of
Homogeneous
Variance

squares. The assumption implies that every observation on the dependent
variable contains the same amount of information. Consequently, all ob-
servations in ordinary least squares receive the same weight. On the other
hand, heterogeneous variances imply that some observations contain more
information than others. Rational use of the data would require that more
weight be given to those that contain the most information.
The minimum variance property of ordinary least squares estimators is
directly dependent on this assumption. Equal weighting, as in ordinary
least squares, does not give the minimum variance estimates of the pa-
rameters if the variances are not equal. Therefore, the direct impact of
heterogeneous variances in ordinary least squares is a loss of precision in
the estimates compared to the precision that would have been realized if
the heterogeneous variances had been taken into account.
Heterogeneous variance, as with nonnormality, is expected a priori with Data Having

Heterogeneous
Variances

certain kinds of data. The same situations that give nonnormal distribu-
tions will usually give heterogeneous variances since the variance in most
nonnormal distributions is related to the mean of the distribution. Even in
situations where the underlying distributions are normal within groups, the
variances of the underlying distributions may change from group to group.
Most commonly, larger variances will be associated with groups having the
larger means. Various plots of the residuals are useful for revealing hetero-
geneous variances.
Two approaches to handling heterogeneous variances are transformation Decreasing

Heterogeneityof the dependent variable and use of weighted least squares; the former
is probably the more common. The transformation is chosen to make the
variance homogeneous (or more nearly so) on the transformed scale. Prior
information on the probability distribution of the dependent variable or
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empirical information on the relationship of the variance to the mean may
suggest a transformation. For example, the arcsin transformation is de-
signed to stabilize the variance when the dependent variable is binomially
distributed. Weighted least squares uses the original metric of the depen-
dent variable but gives each observation weight according to the relative
amount of information it contains. Weighted least squares is discussed in
Section 12.5.1.

10.3 Correlated Errors

Correlations among the residuals may arise from many sources. It is com-
mon for data collected in a time sequence to have correlated errors; the error
associated with an observation at one point in time will tend to be corre-
lated with the errors of the immediately adjacent observations. Almost any
physical process that is continuous over time will show serial correlations.
Hourly measurements on the pollutant emissions from a coal smokestack,
for example, have very high serial correlations. Biological studies in which
repeated measurements are made over time on the same individuals, such
as plant and animal growth studies or clinical trials, will usually have cor-
related errors.
Many of the experimental designs, including the randomized complete
block design and the split-plot design, allow us to capitalize on the corre-
lated errors among the observations within a block or within a whole plot to
improve the precision of certain comparisons. The observations among sam-
ples within experimental units will have correlated errors, and the conven-
tional analyses take these correlations into account. In some cases, however,
correlations may be introduced inadvertently by the way the experiment
is managed. For example, the grouping of experimental units for conve-
nience in exposing them to a treatment, applying nutrient solution, taking
measurements, and so forth, will tend to introduce positively correlated
errors among the observations within the groups. These correlations are
frequently overlooked and are not taken into account in the conventional
analyses.
The impact of correlated errors on the ordinary least squares results is Impact of Cor-

related Errorsloss in precision in the estimates, similar to the effect of heterogeneous
variances. Correlated errors that are not recognized appropriately in the
analysis will seriously bias the estimates of variances with the direction and
magnitude of the bias depending on the nature of the correlations. This,
in turn, causes all measures of precision of the estimates to be biased and
invalidates tests of significance.
The nature of the data frequently suggest the presence of correlated er- Detecting Cor-

related Errorsrors. Any data set collected in a time sequence should be considered suspect
and treated as time series data unless the correlation can be shown to be
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negligible. There are many texts devoted to the analysis of time series data
(Fuller, 1996; Bloomfield, 1976). A clear understanding of the design and
conduct of the experiment will reveal many potential sources of correlated
errors. The more troublesome to detect are the inadvertent correlated er-
rors arising from inadequate randomization of the experiment or failure to
adhere to the randomization plan. In such cases, inordinately small error
variances may provide the clue. In other cases, plotting of the residuals ac-
cording to the order in which the data were collected or the grouping used
in the laboratory may reveal patterns of residuals that suggest correlated
errors.
The remedy to the correlated errors problem is to utilize a model that Handling Cor-

related Errorstakes into account the correlation structure in the data. Various time series
models and analyses have been constructed to accomodate specific corre-
lated error structures. Generalized least squares is a general approach
to the analysis of data having correlated errors. This is an extension of
weighted least squares where the entire variance–covariance matrix of the
residuals is used. The difficulty with generalized least squares is that the co-
variances are usually not known and must be estimated from the data. This
is a difficult estimation problem, unless the correlation structure is simple,
and poor estimation of the correlation matrix can cause a loss in precision,
rather than a gain, compared to ordinary least squares. Generalized least
squares is discussed in Section 12.5.2.

10.4 Influential Data Points and Outliers

The method of ordinary least squares gives equal weight to every observa- Influential
Data Pointstion. However, every observation does not have equal impact on the various

least squares results. For example, the slope in a simple linear regression
problem is influenced most by the observations having values of the inde-
pendent variable farthest from the mean. A single point far removed from
the other data points can have almost as much influence on the regression
results as all other points combined. Such observations are called influen-
tial points or high leverage points.
The potential influence of a data point on the least squares results is
determined by its position in the X-space relative to the other points. In
general, the more “distant” the point is from the center of the data points
in the X-space, the greater is its potential for influencing the regression
results.
The term outlier refers to an observation which in some sense is inconsis- Outliers
tent with the rest of the observations in the data set. An observation can be
an outlier due to the dependent variable or any one or more of the indepen-
dent variables having values outside expected limits. In this book the term
outlier is restricted to a data point for which the value of the dependent
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variable is inconsistent with the rest of the sample. The phrase outlier in
the residuals refers to a data point for which the observed residual is larger
than might reasonably be expected from random variation alone. The term
potentially influential observation is used to refer to an observation that
is an outlier in one or more of the independent variables. The context of
the usage makes clear whether outlier refers to the value of the dependent
variable or of the residual.
A data point may be an outlier or a potentially influential point because Origin of Out-

liers and Influ-
ential Points

of errors in the conduct of the study (machine malfunction; recording, cod-
ing, or data entry errors; failure to follow the experimental protocol) or
because the data point is from a different population. The latter could re-
sult, for example, from management changes that take the system out of
the realm of interest or the occurrence of atypical environmental condi-
tions. A valid data point may appear to be an outlier, have an outlier in
the residual, because the model being used is not adequately representing
the process. On the other hand, a data point that is truly an outlier may
not have an outlier residual, and almost certainly will not if it happens
also to be an influential point. The influential data points tend to force the
regression so that such points have small residuals.
Influential points and outliers need to be identified. Little confidence Handling Out-

liers and Influ-
ential Points

can be placed in regression results that have been dominated by a few
observations, regardless of the total size of the study. The first concern
should be to verify that these data points are correct. Clearly identifiable
errors should be corrected if possible or else eliminated from the data set.
Data points that are not clearly identified as errors or that are found to be
correct should be studied carefully for the information they might contain
about the system being studied. Do they reflect inadequacies in the model
or inadequacies in the design of the study? Outliers and overly influential
data points should not be discarded indiscriminately. The outlier might be
the most informative observation in the study.
Detection of the potentially more influential points is by inspection of Detection of

Influential
Points

the diagonal elements of P the projection matrix. The diagonal elements of
P are measures of the Euclidean distances between the corresponding sam-
ple points and the centroid of the sample X-space. Whether a potentially
influential point has, in fact, been influential is determined by measuring
directly the impact of each data point on various regression results. Appro-
priate influence statistics are discussed in Section 11.2.
Outliers are detected by analysis of the observed residuals and related Detection of

Outliersstatistics. It is usually recommended that the residuals first be standardized
to have a common variance. Some suggest the use of recursive residuals
(Hedayat and Robson, 1970). A residual that is several standard deviations
from zero identifies a data point that needs careful review. Plots of residuals
for detecting nonnormality and heterogeneous variances are also effective
in identifying outliers. The detection of outliers is discussed in Section 11.1.
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10.5 Model Inadequacies

The ordinary least squares estimators are unbiased if the model is correct. Missing
Independent
Variables

They will not be unbiased if the model is incorrect in any of several dif-
ferent ways. If, for example, an important independent variable has been
omitted from the model, the residual mean square is a (positively) biased
estimate of σ2 and the regression coefficients for all independent variables
are biased (unless the omitted variable is orthogonal to all variables in the
model). The common linear model that uses only the first power of the in-
dependent variables assumes that the relationship of Y to each of the inde-
pendent variables is linear and that the effect of each independent variable
is independent of the other variables. Omitting any important higher-order
polynomial terms, including product terms, has the same effect as omitting
an independent variable.
One does not expect a complicated physical, chemical, or biological pro- Approximating

the “True”
Model

cess to be linear in the parameters. In this sense, the ordinary linear least
squares model (including higher-degree polynomial terms) must be consid-
ered an approximation of the true process. The rationale for using a linear
model, in cases where the true relationship is almost certainly nonlinear,
is that any nonlinear function can be approximated to any degree of accu-
racy desired with an appropiate number of terms of a linear function. Thus,
the linear model is used to provide what is believed to be a satisfactory
approximation in some limited region of interest. To the extent that the
approximation is not adequate, the least squares results will contain biases
similar to those created by omitting a variable.
Detection of model inadequacies will depend on the nature of the prob- Detecting

Inadequacieslem and the amount of information available on the system. Bias in the
residual mean square and, hence, indication of an omitted term, can be
detected if an independent estimate of σ2 is available as would be the case
in most designed experiments. In other cases, previous experience might
provide some idea of the size of σ2 from which a judgment can be made
as to the presence of bias in the residual mean square. Overlooked higher-
order polynomial terms are usually easily detected by appropriate residuals
plots. Independent variables that are missing altogether are more difficult
to detect. Unusual patterns of behavior in the residuals may provide clues.
More realistic nonlinear models might be formulated as alternatives to Nonlinear

Modelsthe linear approximations. Some nonlinear models will be such that they
can be linearized by an appropriate transformation of the dependent vari-
able. These are called intrinsically linear models. Ordinary least squares
can be used on linearized models if the assumptions on the errors are sat-
isfied after the transformation is made. The intrinsically nonlinear models
require the use of nonlinear least squares for the estimation of the pa-
rameters. The nonlinear form of even the intrinsically linear models might
be preferred if it is believed the least squares assumptions are more nearly
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satisfied in that form. Nonlinear models and nonlinear least squares are
discussed in Chapter 15.

10.6 The Collinearity Problem

Singularity of X results when some linear function of the columns of X Near-
Singularities
in X

is exactly equal to the zero vector. Such cases become obvious when the
least squares analysis is attempted because the unique (X ′X)−1 does not
exist. A more troublesome situation arises when the matrix is only close to
being singular; a linear function of the vectors is nearly zero. Redundant
independent variables—the same information expressed in different forms—
will causeX to be nearly singular. Interdependent variables that are closely
linked in the system being studied can cause near-singularities in X.
A unique solution to the normal equations exists in these nearly singular
cases but the solution is very unstable. Small changes (random noise) in
the variables Y or X can cause drastic changes in the estimates of the re-
gression coefficients. The variances of the regression coefficients, for the in-
dependent variables involved in the near-singularity, become very large. In
effect, the variables involved in the near-singularity can serve as surrogates
for each other so that widely different combinations of the independent
variables can be used to give nearly the same value of Y . The difficulties
that arise from X being nearly singular are referred to collectively as the
collinearity problem. The collinearity problem was defined geometrically
in Section 6.5.
The impact of collinearity on least squares is very serious if primary in- Effects of

Collinearityterest is in the regression coefficients per se or if the purpose is to identify
“important” variables in the process. The estimates of the regression coef-
ficients can differ greatly from the parameters they are estimating, even to
the point of having incorrect sign. The collinearity will allow “important”
variables to be replaced in the model with incidental variables that are in-
volved in the near-singularity. Hence, the regression analysis provides little
indication of the relative importance of the independent variables.
The use of the regression equation for prediction is not seriously affected
by collinearity as long as the correlational structure observed in the sample
persists in the prediction population and prediction is carefully restricted to
the sample X-space. However, prediction to a system where the observed
correlation structure is not maintained or for points outside the sample
space can be very misleading. The sample X-space in the presence of near-
collinearities becomes very narrow in certain dimensions so that it is easy
to choose prediction points that fall outside the sample space and, at the
same time, difficult to detect when this has been done. Points well within
the limits of each independent variable may be far outside the sample space.
Most regression computer programs are not designed to warn the user au- Detecting

Collinearity
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tomatically of the presence of near-collinearities. Certain clues are present,
however: unreasonable values for regression coefficients, large standard er-
rors, nonsignificant partial regression coefficients when the model provides
a reasonable fit, and known important variables appearing as unimportant
(or with an opposite sign from what the theory would suggest) in the re-
gression results. High correlations between independent variables will iden-
tify near-collinearities involving two variables but may miss those involving
more than two variables. A more direct approach to detecting the presence
of collinearity is with a singular value decomposition of X or an eigenanal-
ysis of X ′X. These were discussed in Sections 2.7 and 2.8. Their use and
other collinearity diagnostics are discussed in Section 11.3.
The remedies for the collinearity problem depend on the objective of Handling

Collinearitythe model-fitting exercise. If the objective is prediction, collinearity causes
no serious problem within the sample X-space. The limitations discussed
previously must be understood, however. When primary interest is in esti-
mation of the regression coefficients, one of the biased regression methods
may be useful (Chapter 13). A better solution, when possible, is to obtain
new data or additional data such that the sample X-space is expanded to
remove the near-singularity. It is not likely that this will be possible when
the near-singularity is the result of internal constraints of the system be-
ing studied. When the primary interest of the research is to identify the
“important” variables in a system or to model the system, the regression
results in the presence of severe collinearity will not be very helpful and
can be misleading. It is more productive for this purpose to concentrate
on understanding the correlational structure of the variables and how the
dependent variable fits into this structure. Principal component analysis,
Gabriel’s (1971) biplot, and principal component regression can be helpful
in understanding this structure. These topics are discussed in Chapter 13.

10.7 Errors in the Independent Variables

The original model assumed that the independent variables were measured
without error; they were considered to be constants in the regression model.
With the errors-in-variables model, the true values of the independent vari-
ables are masked by measurement errors. Thus, the observed Xi is

Xi = Zi + Ui, (10.1)

where Zi is the unobserved true value of Xi and Ui is the measurement
error. The error Ui is assumed to have zero mean and variance σ2

U . For
example, in an experiment to study the effect of temperature in an oven
on baking time, the observed temperature may be different from the actual
temperature in the oven. Fuller (1987) gives several examples where the
independent variable is measured with error. In an experiment to study
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the relationship between dry weight of the plant and available nitrogen in
the leaves, the independent variable is measured with error. Typically, the
true nitrogen content (Zi) in the leaves is unknown and is estimated (Xi)
from a small sample of leaves. See also Carroll, Ruppert, and Stefanski
(1995) for some examples.
The regression model assumes that Yi is a function of the true value Zi:

Yi = µ+ βZi + vi, (10.2)

where vi are assumed to be independent mean zero and variance σ2
v random

variables, and are independent of Zi and Ui. However, we estimate the
parameters µ and β using the model

Yi = µ+ βXi + εi. (10.3)

The ordinary least squares estimator of β, based on the model in equa- Bias in β̂
tion 10.3, is

β̂ =
∑
xiYi/

∑
x2
i (10.4)

= β

[
(
∑
z2i +

∑
ziui)

(
∑
z2i + 2

∑
ziui +

∑
u2
i )

]
+

∑
xivi∑
x2
i

, (10.5)

where xi, zi, and ui represent the centered values of Xi, Zi, and Ui, respec-
tively. Note that, if there is no measurement error (Ui = 0), the first term
reduces to β and, since the second term has zero expectation, β̂ is unbiased
for β. However, if measurement error is present, then the first term shows
the bias in β. If we assume that the Zi are independently and identically
distributed N(0, σ2

z), the Ui are independent and identically distributed
N(0, σ2

U ) and that the {Zi} and {Ui} are independent, then Fuller (1987)
shows that

E(β̂) = β
[

σ2
Z

σ2
Z + σ

2
U

]
= β

[
1

1 + σ2
U/σ

2
Z

]
. (10.6)

Also, if the true independent variable values Zi are considered fixed, then
the expectation of β̂ is

E(β̂) .≈ β
[

1
1 + nσ2

U/
∑
z2i

]
. (10.7)

The denominators of equations 10.6 and 10.7 are always greater than one
whenever there is measurement error, σ2

U > 0. Thus, β̂ is biased toward
zero. The bias is small if σ2

U is small relative to σ
2
z or

∑
z2i /n. That is, the

bias is small if the measurement errors in the independent variable are small
relative to the variation in the true values of the independent variable.
There have been numerous proposals for estimating β under these condi- Proposals for

Estimating βtions. Some of the procedures assume that additional information is avail-
able.
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(a) Known Reliability Ratio: σ2
Z/(σ

2
Z + σ

2
U ). If we assume that Zi ∼

NID(0, σ2
Z), Ui ∼ NID(0, σ2

U ), and that {Zi} and {Ui} are indepen-
dent, then

β̃R =
[
σ2
Z + σ

2
U

σ2
Z

]
β̂ (10.8)

is an unbiased estimator of β. Fuller (1987) gives examples from psy-
chology, sociology, and survey sampling where the reliability ratio
σ2
Z/(σ

2
Z + σ

2
U ) is known.

(b) Known Measurement Error Variance: σ2
U . In some situations,

the scientist may have a good knowledge of the measurement error
variance σ2

U . For example, it may be possible to obtain a large number
of repeated measurements to determine σ2

U . Madansky (1959) and
Fuller (1987) consider the estimator

β̃U =
∑
xiyi∑

x2
i − (n− 1)σ2

U

(10.9)

which adjusts the denominator for the measurement error variance.

(c) Known Ratio of Error Variances: δ = σ2
v/σ

2
U . Under the nor-

mality assumptions on Zi, Ui, and vi, Fuller (1987) shows that the
maximum likelihood estimator of β is

β̃δ =
∑
y2i − δ

∑
x2
i + [(

∑
y2i − δ

∑
x2
i )

2 + 4δ
∑
xiyi]1/2

2
∑
xiyi

, (10.10)

where δ = σ2
v/σ

2
U . It can be shown that β̃δ is also the “orthogonal

regression” estimator of β obtained by minimizing the distance∑
(Yi − µ− βZi)2 + δ

∑
(Xi − Zi)2 (10.11)

with respect to µ, β, Z1, . . . , Zn. When δ = 1, equation 10.11 is the
sum of the Euclidean distances between the observed vector (Yi Xi )
and the point (µ+ βZi Zi ) on the line that generated it. [Carroll,
Ruppert, and Stefanski (1995) prefer to restrict the use of the term
“orthogonal regression” to the case where δ = 1.]

Riggs, Guarnieri, and Addelman (1978) used computer simulation to Comparison of
the Estimatorsstudy the behavior of a large number of published estimators and several

additional ones they developed. Fuller (1987) and Carroll, Ruppert, and
Stefanski (1995) also discuss the behavior of these estimators. To summa-
rize:

(i) β̃U behaves erratically whenever measurement error variances are
large;
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(ii) β̃R is unbiased. However, when σ2
Z and σ

2
U are replaced by their esti-

mates, the sampling distribution of β̃R is highly skewed;

(iii) β̃δ tends to give highly unreliable estimates when σ2
U is large and n

is small.

The reader is referred to the original references for more discussion of the
problems and the summary of their comparisons.
Several alternative approaches for estimating are also available. We dis- Instrumental

Variablescuss two such approaches. One approach to the errors-in-variables problem
is to use information from other variables that are correlated with Zi, but
not with Ui, to obtain consistent estimators of β. Such variables are called
instrumental variables . (A consistent estimator converges to the true
value as the sample size gets large.) For example, the true nitrogen in the
leaves Zi may be correlated with the amount of nitrogen fertilizer Wi ap-
plied to the experimental plot. In this case, it may be reasonable to assume
that Wi is not correlated with the measurement error Ui. An instrumental
variable estimator of β is given by

β̃W =
∑
wiYi∑
wiXi

, (10.12)

where wi is the centered value of Wi. The reader is referred to Feldstein
(1974), Carter and Fuller (1980), and Fuller (1987) for more discussion on
the use of instrumental variables.
We have seen that, in the errors-in-variables model, the ordinary least SIMEX

Estimatorsquares estimator β̂ of β is biased and its expectation is given by βσ2
Z/(σ

2
Z +

σ2
U ). The effect of measurement error on the ordinary least squares esti-
mator can also be determined experimentally via simulations. The Simu-
lation Extrapolation (SIMEX) method of Cook and Stefanski (1995)
determines this effect using simulations at various known levels of the mea-
surement error and extrapolates the results to the no-measurement error
case to obtain the SIMEX estimator of β.
Assume that σ2

U is known. Consider m data sets with independent vari-
ablesX(λ)

i = Xi+λ1/2U∗
i , i = 1, . . . , n, where U

∗
i ∼ NID(0, σ2

U ), and λ takes
known values 0 = λ1 < λ2 < · · · < λm. Note that the measurement error
variance in X(λ)

i is (1+λ)σ2
U and we are considering (m−1) new data sets

with increasing measurement errors. The least squares estimate β̂λ from the
regression of Yi on X

(λ)
i consistently estimates βλ = βσ2

Z/[σ
2
Z +(1+λ)σ

2
U ].

That is, as n tends to infinity, the estimator β̂λ converges to βλ. Note
that, at λ = −1, βλ estimates β consistently. The SIMEX method uses
β̂λ1 , . . . , β̂λm

to fit a model for β̂λ as a function of λ and uses this function
to extrapolate back to the no-measurement error case, λ = −1. This extrap-
olated value is called the SIMEX estimate of β. The process is described
schematically in Figure 10.1.
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FIGURE 10.1. A generic plot of the effect of measurement error of size (1+λ)σ2
U

on the slope estimates. The ordinary least squares estimate occurs at λ = 0 and
the SIMEX estimate is an extrapolation to λ = −1.

Cook and Stefanski (1995) recommend generating several data sets at
each value of λ and use the average of the estimates of β to obtain β̂λ.
For example, at λ = .5, generate 10 sets of X(.5)

i ; compute β̂.5 for each
of the 10 data sets and compute the average of these 10 estimates to get
β̂.5. Similarly, obtain β̂λ for several values of λ. Use these β̂λs to obtain
the SIMEX estimate of β. See Carroll, Ruppert, and Stefanski (1995) for
properties and extensions of the SIMEX estimates.
There are serious problems associated with estimation of other parame-
ters and variances in the errors-in-variables model. The reader is referred
to Fuller (1987) and Carroll, Ruppert, and Stefanski (1995) for more com-
plete discussions. These authors also considered extensions to multiple and
nonlinear regression models with measurement errors in the independent
variables.
The errors-in-variables issue greatly complicates the regression problem. Control with

DesignThere appears to be no one solution that does well in all situations and
it is best to avoid the problem whenever possible. The bias from ordinary
least squares is dependent on the ratio of σ2

U to σ
2
Z or to

∑
z2i /n. Thus, the

problem can be minimized by designing the research so that the dispersion
in X is large relative to any measurement errors. In such cases, ordinary
least squares should be satisfactory.
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10.8 Summary

This chapter is a synopsis of the common problems in least squares regres-
sion emphasizing their importance and encouraging the user to be critical
of his or her own results. Because least squares is a powerful and widely
used tool, it is important that the user be aware of its pitfalls. Some of the
diagnostic techniques (such as the analysis of residuals) are useful for detec-
tion of several different problems. Similarly, some of the remedial methods
(such as transformations) attack more than one kind of problem. The fol-
lowing three chapters are devoted to discussions of the tools for detecting
the problems and some of the remedies.

10.9 Exercises

10.1. Several levels of a drug were used to assess its toxic effects on a
particular animal species. Twenty-four animals were used and each
was administered a particular dose of the drug. After a fixed time
interval, each animal was scored as 0 if it showed no ill effects and as
1 if a toxic effect was observed. That is, the dependent variable takes
the value of 0 or 1 depending on the absence or presence of a toxic
reaction.

(a) Which assumptions of ordinary least squares would you expect
not to be satisfied with this dependent variable?

(b) The dependent variable was used in a linear regression on dose.
The resulting regression equation was Ŷ = −.214+ .159X. Plot
this regression line for X = 1 to X = 8. Superimpose on the
plot what you might expect the observed data to look like if
24 approximately equally spaced dose levels were used. What
problems do you see now?

(c) The researcher anticipated using Ŷ to estimate the proportion
of affected individuals at the given dose. What is the estimated
proportion of individuals that will be affected by a dose of X = 2
units? Use the conventional method to compute the 95% con-
fidence interval estimate of the mean at X = 2 if s2 = .1284
with 22 degrees of freedom, X = 4.5, and

∑
(Xi − X)2 = 126.

Comment on the nature of this interval estimate.

(d) Suppose each observation consisted of the proportion of mosqui-
toes in a cage of 50 that showed response to the drug rather than
the response of a single animal. Would this have helped satisfy
some of the least squares assumptions? Which?
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10.2. Identify an independent variable in your area of research that you
would not expect to be normally distributed. How is this variable
usually handled in the analysis of experimental results?

10.3. Suppose there are three independent observations that are to be av-
eraged. The known variances of the three observations are 4, 9, and
16. Two different averages are proposed, the simple arithmetic aver-
age and the weighted average where each observation is weighted by
the reciprocal of its variance. Use variances of linear functions, equa-
tion 3.21 and following, to demonstrate that the weighted average has
the smaller variance. Can you find any other weighting that will give
an even smaller variance?

10.4. Find a data set from your area of research in which you do not ex-
pect the variances to be homogeneous. Explain how you expect the
variances to behave. How are these data usually handled in analysis?

10.5. A plant physiologist was studying the relationship between inter-
cepted solar radiation and plant biomass produced over the growing
season. Several experimental plots under different growing conditions
were monitored for radiation. Several times during the growing season
biomass samples were taken from the plots to measure growth. The
resulting data for each experimental plot showed cumulative solar
radiation and biomass for the several times the biomass was mea-
sured during the season. Would you expect the dependent variable,
biomass, to have constant variance over the growing season? Would
you expect the several measurements of biomass on each plot to be
statistically independent? Would you expect the measurements from
different random experimental units to be statistically independent?

10.6. The relatively greater influence of observations farther from the center
of the X-space can be illustrated using simple linear regression. Ex-
press the slope of the regression line as β̂1 =

∑
(Xi − X)Yi/

∑
(Xi −

X)2. In this form it is clear that a perturbation of the amount δ on
any Yi′ changes β̂1 by the amount δ(Xi′ −X)/

∑
(Xi − X)2. (Sub-

stitute Yi′ + δ for Yi′ to get a new β̂1 and subtract out the original
β̂1.) Assume a perturbation of δ = 1 on each Yi in turn. Compute
the amount β̂1 would change if the values of X are 0, 1, 2, and 9.
Compute P = X(X ′X)−1X ′ for this example. Which observation
has the largest diagonal element of P ?

10.7. Find an example in your field for which you might expect collinearity
to be a problem. Explain why you expect there to be collinearity.
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REGRESSION DIAGNOSTICS

Chapter 10 summarized the problems that are encoun-
tered in least squares regression and the impact of these
problems on the least squares results.

This chapter presents methods for detecting problem
areas. Included are graphical methods for detecting
failures in the assumptions, unusual observations, and
inadequacies in the model, statistics to flag observa-
tions that are dominating the regression, and meth-
ods of detecting situations in which strong relationships
among the independent variables are affecting the re-
sults.

Regression diagnostics refers to the general class of techniques for detect-
ing problems in regression—problems with either the model or the data set.
This is an active field of research with many recent publications. It is not
clear which of the proposed techniques will eventually prove most useful.
Some of the simpler techniques that appear to be gaining favor are pre-
sented in this chapter. Belsley, Kuh, and Welsch (1980) and Cook and
Weisberg (1982) are recommended for a more thorough coverage of the
theory and methods of diagnostic techniques.
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11.1 Residuals Analysis

Analysis of the regression residuals, or some transformation of the residu- Characteristics
of the
Residuals

als, is very useful for detecting inadequacies in the model or problems in
the data. The true errors in the regression model are assumed to be nor-
mally and independently distributed random variables with zero mean and
common variance ε ∼ N(0, Iσ2). The observed residuals, however, are not
independent and do not have common variance, even when the Iσ2 assump-
tion is valid. Under the usual least squares assumptions, e = (I−P )Y has
a multivariate normal distribution with E(e) = 0 and Var(e) = (I−P )σ2.
The diagonal elements of Var(e) are not equal, so the observed residuals
do not have common variance; the off-diagonal elements are not zero, so
they are not independent.
The heterogeneous variances in the observed residuals are easily corrected Standardized

Residualsby standardizing each residual. The variances of the residuals are estimated
by the diagonal elements of (I−P )s2. Dividing each residual by its standard
deviation gives a standardized residual, denoted with ri,

ri =
ei

s
√
(1− vii)

, (11.1)

where vii is the ith diagonal element of P . All standardized residuals (with
σ in place of s in the denominator) have unit variance. The standardized
residuals behave much like a Student’s t random variable except for the
fact that the numerator and denominator of ri are not independent.
Belsley, Kuh, and Welsch (1980) suggest standardizing each residual with Studentized

Residualsan estimate of its standard deviation that is independent of the residual.
This is accomplished by using, as the estimate of σ2 for the ith residual,
the residual mean square from an analysis where that observation has been
omitted. This variance is labeled s2(i), where the subscript in parentheses
indicates that the ith observation has been omitted for the estimate of σ2.
The result is the Studentized residual, denoted r∗i ,

r∗i =
ei

s(i)
√
1− vii

. (11.2)

Each Studentized residual is distributed as Student’s t with (n − p′ − 1)
degrees of freedom when normality of ε holds. As with ei and ri, the r∗i
are not independent of each other. Belsley, Kuh, and Welsch show that the
s(i) and Studentized residuals can be obtained from the ordinary residuals
without rerunning the regression with the observation omitted.
The standardized residuals ri are called Studentized residuals in many Notation
references [e.g., Cook and Weisberg (1982); Pierce and Gray (1982); Cook
and Prescott (1981); and SAS Institute, Inc. (1989b)]. Cook and Weis-
berg refer to ri as the Studentized residual with internal Studentization
in contrast to external Studentization for r∗i . The r

∗
i are called the cross-

validatory or jackknife residuals by Atkinson (1983) and RSTUDENT by
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Belsley, Kuh, andWelsch (1980) and SAS Institute, Inc. (1989b). The terms
standardized and Studentized are used in this text as labels to distinguish
between ri and r∗i .
The observed residuals and the scaled versions of the observed residuals Using

Residualshave been used extensively to study validity of the regression model and its
assumptions. The heterogeneous variances of the observed residuals and the
lack of independence among all three types of residuals complicate interpre-
tation of their behavior. In addition, there is a tendency for inadequacies
in the data to be spread over several residuals. For example, an outlier will
have the effect of inflating residuals on several other observations and may
itself have a relatively small residual. Furthermore, the residuals from least
squares regression will tend to be “supernormal.” That is, when the nor-
mality assumption is not met, the observed residuals from a least squares
analysis will fit the normal distribution more closely than would the origi-
nal εi (Huang and Bolch, 1974; Quesenberry and Quesenberry, 1982; Cook
and Weisberg, 1982). As a result, there will be a tendency for failures in the
model to go undetected when residuals are used for judging goodness-of-fit
of the model.
In spite of the problems associated with their use, the observed, stan-
dardized, and Studentized residuals have proven useful for detecting model
inadequacies and outliers. For most cases, the three types of residuals give
very similar patterns and lead to similar conclusions. The heterogeneous
variances of ei can confound the comparisons somewhat, and for that rea-
son use of one of the standardized residuals ri or r∗i is to be preferred
if they are readily available. The primary advantage of the Studentized
residuals over the standardized residuals is their closer connection to the
t-distribution. This allows the use of Student’s t as a convenient criterion
for judging whether the residuals are inordinately large.
Exact tests of the behavior of the observed residuals are not available;
approximations and subjective judgments must be used. The use of the
standardized or Studentized residuals as a check for an outlier is a multiple
testing procedure, since the residual to be tested will be the largest out
of the sample of n, and appropriate allowances on α must be made. The
first-order Bonferroni bound on the probability would suggest using the
critical value of t for α = α∗/n, as was done for the Bonferroni confidence
intervals in Chapter 4. (α∗ is the desired overall significance level.) Cook
and Prescott (1981), in a study assessing the accuracy of the Bonferroni
significance levels for detecting outliers in linear models, conclude that the
bounds can be expected to be reasonably accurate if the correlations among
the residuals are not excessively large. Cook and Weisberg (1982) suggest
using α = viiα∗/p′ for testing the ith Studentized residual. This choice of
α maintains the overall significance level but gives greater power to cases
with large vii.
Another class of residuals, recursive residuals, are constructed so that Recursive

Residualsthey are independent and identically distributed when the model is correct
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and are recommended by some for residuals analysis (Hedayat and Rob-
son, 1970; Brown, Durbin, and Evans, 1975; Galpin and Hawkins, l984;
Quesenberry, 1986). Recursive residuals are computed from a sequence of
regressions starting with a base of p′ observations (p′ = number of pa-
rameters to be estimated) and adding one observation at each step. The
regression equation computed at each step is used to compute the residual
for the next observation to be added. This sequence continues until the last
residual has been computed. There will be (n− p′) recursive residuals; the
residuals from the first p′ observations will be zero.
Assume a particular ordering of the data has been adopted for the pur- Computation

of Recursive
Residuals

pose of computing the recursive residuals. Let yr and x′r be the rth rows
from Y andX, respectively. LetXr be the first r rows ofX and β̂r be the
least squares solution using the first r observations in the chosen ordering.
Then the recursive residual is defined as

wr =
yr − x′

rβ̂r−1

[1− x′
r(X

′
r−1Xr−1)−1xr]1/2

(11.3)

for r = p′ + 1, . . . , n. The original proposal defined the recursive residuals
for time sequence data. Galpin and Hawkins (1984) contend, however, that
they are useful for all data sets, but particularly so when there are natural
orderings to the data.
Recursive residuals are independent and have common variance σ2. Each Characteristics

of Recursive
Residuals

is explicitly associated with a particular observation and, consequently, re-
cursive residuals seem to avoid some of the “spreading” of model defects
that occurs with ordinary residuals. Since the recursive residuals are inde-
pendently and identically distributed, exact tests for normality and outliers
can be used. The major criticisms of recursive residuals are the greater
computational effort required, no residuals are associated with the first p′

observations used as the base, and the residuals are not unique since the
data can be ordered in different ways. Appropriate computer programs can
remove the first problem. The last two are partially overcome by computing
recursive residuals for different orderings of the data.
Graphical techniques are very effective for detecting abnormal behav- Graphical

Techniquesior of residuals. If the model is correct and the assumptions are satisfied,
the residuals should appear in any plot as random variation about zero.
Any convincing pattern to the residuals would suggest some inadequacy
in the model or the assumptions. To emphasize the importance of plot-
ting, Anscombe (1973) presents four (artificial) data sets that give identi-
cal least squares regression results [same β̂, Ŷ , SS(Total), SS(Regression),
SS(Residual), and R2], but are strikingly different when plotted. The fitted Anscombe

Plotsmodel appears equally good in all cases if one looks only at the quantita-
tive results. The plots of Y versus X, however, show obvious differences
[Figure 11.1; adapted from Anscombe (1973)].
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FIGURE 11.1. Four data sets that give the same quantitative results for the linear
regression of Y on X. [Adapted from Anscombe (1973).]
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The first data set, Figure 11.1(a), shows a typical linear relationship
between Y and X with apparent random scatter of the data points above
and below the regression line. This is the expected pattern if the model is
adequate and the ordinary least squares assumptions hold.
The data in Figure 11.1(b) show a distinct quadratic relationship and
a very patterned set of residuals. It is clear from the plot that the linear
model is inadequate and that the fit would be almost perfect if the model
were expanded to include a quadratic term.
Figure 11.1(c) illustrates a case where there is a strict linear relationship
between Y and X except for one aberrant data point. Removal of this one
point would cause the residual sum of squares to go to zero. The residuals
pattern is a clear indication of a problem with the data or the model. If
this is a valid data point, the model must be inadequate. It may be that
an important independent variable has been omitted.
The data in Figure 11.1(d) represent a case where the entire regression
relationship is determined by one observation. This observation is a partic-
ularly influential point because it is so far removed (on the X-scale) from
the other data points. Even if this is a valid data point, one could place
little faith in estimates of regression parameters so heavily dependent on a
single observation.
The Anscombe plots emphasize the power of simple graphical techniques
for detecting inadequacies in the model. There are several informative plots
one might use. No single plot can be expected to detect all types of prob-
lems. The following plots are presented as if the ordinary residuals ei are
being used. In all cases, the standardized, Studentized, or recursive resid-
uals could be used.

11.1.1 Plot of e Versus Ŷ
The plot of the residuals against the fitted values of the dependent variable Expected

Behavioris particularly useful. A random scattering of the points above and below
the line e = 0 with nearly all the data points being within the band defined
by e = ±2s (Figure 11.2) is expected if the assumptions are satisfied. (Ŷ is
used rather than Y because e is orthogonal to Ŷ but not to Y . A plot of
e versus Y will show a pattern due to this lack of orthogonality.)
Any pattern in the magnitude of the dispersion about zero associated
with changing Ŷi suggests heterogeneous variances of εi. The fan-shaped
pattern in Figure 11.3 is the typical pattern when the variance increases
with the mean of the dependent variable. This is the pattern to be expected
if the dependent variable has a Poisson or a log-normal distribution, for
example, or if the errors are multiplicative rather than additive. Binomially
distributed data would show greater dispersion when the proportion of
“successes” is in the intermediate range.
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FIGURE 11.2. Typical pattern expected for a plot of e versus Ŷ when assumptions
are met.

FIGURE 11.3. Plot of e versus Ŷ showing increasing dispersion (larger variance)
with larger Ŷ .
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FIGURE 11.4. An asymmetric (curved) pattern of residuals plotted against Ŷ
suggests that the model is missing an important independent variable, perhaps a
quadratic term.

Any asymmetry of the distribution of the residuals about zero suggests a
problem with the model or the basic assumptions. A majority of relatively Detecting

Model
Inadequacies

small negative residuals and fewer but larger positive residuals would sug-
gest a positively skewed distribution of residuals rather than the assumed
symmetric normal distribution. (A skewed distribution would be more evi-
dent in either a frequency plot or a normal plot of the residuals.) A prepon-
derance of negative residuals for some regions of Ŷ and positive residuals
in other regions, such as the curved pattern of residuals in Figure 11.4,
suggests a systematic error in the data or an important variable missing
from the model. The obvious candidate in this illustration would be the
square of one of the present independent variables. A missing independent
variable can cause unusual patterns of residuals depending on the scatter
of the data with respect to that variable.
An outlier residual would appear in any of the plots of e as a point well Outlier

Residualsoutside the band containing most of the residuals. However, an outlier in
Y will not necessarily have an outlier residual.

The Lesser–Unsworth data in Exercise 1.19 related seed weight of soy- Example 11.1
beans to cumulative solar radiation for plants exposed to two different
levels of ozone. The Studentized residuals from the regression of Yi =
(seed weight)1/2 on solar radiation and ozone level are plotted against Ŷi in
Figure 10.5. The residuals for the low and high levels of ozone are shown as
dots and ×s, respectively. One observation from the high ozone treatment
seems to stand out from the others. Is this residual the result of an error
in the data, an incorrect model, or simply random variation in the data?
The value of this Studentized residual is r∗i = 2.8369. This is distributed
as Student’s t with (n− p′ − 1) = 8 degrees of freedom. The probability of



11.1 Residuals Analysis 349

1

2

–2

–4

0

2

4

4 5

3
Yi
ˆri*

: Low ozone
: High ozone

FIGURE 11.5. Plot of r∗i versus Ŷi for the Lesser–Unsworth data (Exercise 1.19)
relating seed weight of soybeans to cumulative solar radiation for two levels of
ozone exposure. The model included linear regression of (seed weight)1/2 on ozone
level and solar radiation.

|t| > 2.8369 is slightly less than .02. Allowing for the fact that this is the
most extreme residual out of a sample of 12, this does not appear to be
unusually large. Overall, the remaining residuals tend to show an upward
trend suggesting that this observation is pulling the regression line down.
Inspection of the residuals by treatment, however, shows that the high
ozone treatment, the ×s, have a slight downward slope. Perhaps the large
residual results from an incorrect model that forces both ozone treatments
to have a common regression on solar radiation.

The standardized residuals from the regression of oxygen uptake on time Example 11.2
to run a fixed course, resting heart rate, heart rate while running, and
maximum heart rate while running, Table 4.3, are plotted against Ŷi in
Figure 11.6. Although the pattern is not definitive, there is some semblance
of the fan-shaped pattern of residuals suggesting heterogeneous variance.
The larger dispersion for the higher levels of oxygen consumption could also
result from the model being inadequate in this region. Perhaps the faster
runners, who tended to use more oxygen, differed in ways not measured by
the four variables.
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FIGURE 11.6. Plot of ri versus Ŷi for the regression of oxygen uptake on time,
resting heart rate, running heart rate, and maximum heart rate. The original data
are given in Table 4.3.

11.1.2 Plots of e Versus X i

Plots of the residuals against the independent variables have interpreta- Interpretation
tions similar to plots against Ŷ . Differences in magnitude of dispersion
about zero suggest heterogeneous variances. A missing higher-degree poly-
nomial term for the independent variable should be evident in these plots.
However, inadequacies in the model associated with one variable, such as a
missing higher-degree polynomial term, can be obscured by the effects and
distribution of other independent variables. The partial regression lever-
age plots (discussed in Section 11.1.6) may be more revealing when several
independent variables are involved.
Outlier residuals will be evident. Observations that appear as isolated Outliers and

Influential
Points

points at the extremes of the Xi scale are potentially influential because of
their extreme values for that particular independent variable. Such points
will tend to have small residuals because of their high leverage. However,
data points can be far outside the sample X-space without being outside
the limits of any one independent variable by having unlikely combinations
of values for two or more variables. Such points are potentially influential
but will not be easily detected by any univariate plots.

(Continuation of Example 11.1) The plot of the Studentized residuals Example 11.3
against radiation from the regression of seed weight on ozone exposure and
cumulative solar radiation (Lesser–Unsworth data) is given in Figure 11.7.
[Seed weight is being used as the dependent variable rather than (seed
weight)1/2 as in Figure 11.5.] One residual (not the same as in Figure 11.5)
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FIGURE 11.7. Plot of the Studentized residual versus radiation (X) for the
Lesser–Unsworth data. The residuals are from the regression of seed weight on
ozone level and cumulative solar radiation.

stands out as a possible outlier. In this case, r∗6 = 4.1565 and is very close to
being significant, α∗ = .05. It is evident from the general negative slope of
the other residuals that this point has had a major effect on the regression
coefficient.

11.1.3 Plots of e Versus Time
Data collected over time on individual observational units will often have
serially correlated residuals. That is, the residual at one point in time de-
pends to some degree on the previous residuals. Classical time series data,
such as the data generated by the continuous monitoring of some process,
are readily recognized as such and are expected to have correlated residuals.
Time series models and analyses take into account these serial correlations
and should be used in such cases (Fuller, 1996; Bloomfield, 1976).
There are many opportunities, however, for time effects to creep into Causes of

Correlated
Residuals

data that normally may not be thought of as time series data. For example,
resource limitations may force the researcher to run the experiment over
some period of time to obtain even one observation on each treatment. This
is common in industrial experiments where an entire production process
may be utilized to produce an observation. The time of day or time of
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FIGURE 11.8. Plot of ri versus year of catch for the regression of yearly Men-
haden catch on year. [Data are from Nelson and Ahrenholz (1986).]

week can have effects on the experimental results even though the process
is thought to be well controlled.
Even in biological experiments, where it is usual for all experimental
units to be under observation at the same time, some phases of the study
may require extended periods of time to complete. For example, autopsies
on test animals to determine the incidence of precancerous cell changes may
require several days. The simple recording of data in a field experiment may
take several days. All such situations provide the opportunity for “time”
to have an impact on the differences among the experimental observations.
A plot of the residuals against time may reveal effects not previously
thought to be important and, consequently, not taken into account in the
design of the study. Serial correlations will appear as a tendency of neigh-
boring residuals to be similar in value.

The standardized residuals from a regression adjusting yearly Menhaden Example 11.4
catch from 1964 to 1979 for a linear time trend are shown in Figure 11.8.
[Data are taken from Nelson and Ahrenholz (1986) and are given in Exercise
3.11.] The serial correlation is relatively weak in the case; the lag-one serial
correlation is .114. (The lag-one serial correlation is the correlation between
residuals one time unit apart.) Even though the serial correlation is weak,
the residuals show the typical pattern of the positive and negative residuals
occurring in runs.

Changes in the production process, drifting of monitoring equipment,
time-of-day effects, time-of-week effects, and so forth, will show up as shifts
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in the residuals plot. “Time” in this context can be the sequence in which
the treatments are imposed, in which measurements are taken, or in which
experimental units are tended. Alternatively, “time” could represent the
spatial relationship of the experimental units during the course of the trial.
In this case, plots of e versus “time” might detect environmental gradients
within the space of the experiment.
The runs test is frequently used to detect serial correlations. The test Runs Test
consists of counting the number of runs, or sequences of positive and neg-
ative residuals, and comparing this result to the expected number of runs
under the null hypothesis of independence. (The lack of statistical indepen-
dence among the observed residuals will confound the runs test to some
degree. This effect can probably be ignored as long as a reasonable pro-
portion of the total degrees of freedom are devoted to the residual sum of
squares.)

(Continuation of Example 11.4) The data of annual catch of Menhaden Example 11.5
for 1964 to 1979 show the following sequence of positive and negative resid-
uals when regressed against time (see Figure 11.8):

+ + − − − + + + − − − − − − + + .

There are u = 5 runs in a sample consisting of n1 = 7 positives and n2 = 9
negatives. The cumulative probabilities for number of runs u in sample sizes
of (n1, n2) are given by Swed and Eisenhart (1943) for n1+n2 ≤ 20. In this
example with (n1, n2) = (7, 9), the probability of u ≤ 5 is .035, indicating
significant departure from independence. Appendix Tables A.9 and A.10
give the critical number of runs to attain 5% and 1% significance levels for
the runs test for n1 + n2 ≤ 20. These were generated using the Swed and
Eisenhart formulae. The critical 5% value for this example is u ≤ 5. (It
would take u ≤ 3 to be significant at the 1% level.) The low number of
runs in this example suggests the presence of a positive serial correlation.

If n1 and n2 are greater than 10, a normal approximation for the distri-
bution of runs can be used, where

µ =
2n1n2

n1 + n2
+ 1 (11.4)

and

σ2 =
2n1n2(2n1n2 − n1 − n2)
(n1 + n2)2(n1 + n2 − 1) . (11.5)

Then

z =
u− µ+ 1

2

σ
(11.6)
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FIGURE 11.9. Typical plot of ei versus ei−1 showing a positive serial correlation
among successive residuals.

is the standardized normal deviate, where the 1
2 is the correction for con-

tinuity.

(Continuation of Example 11.5) Applying the normal approximation to Example 11.6
the Menhaden catch data of Example 10.5, even though n1 and n2 are less
than 10, gives µ = 8.875 and σ2 = 3.60944, which yields z = −1.776. The
probability of z being less than −1.776 is .0384, very close to the probability
of .035 taken from Swed and Eisenhart.

11.1.4 Plots of ei Versus ei−1

A serial correlation in time series data is more clearly revealed with a plot of
each residual against the immediately preceding residual. A positive serial
correlation would produce a scatter of points with a clear positive slope as
in Figure 11.9.

The plot of ri versus ri−1 for the Menhaden data is shown in Figure 11.10. Example 11.7
The extreme point in the upper left-hand quadrant is the plot of the second
largest positive residual (1978) against the largest negative residual (1977).
This sudden shift in catch from 1977 to 1978 is largely responsible for
the serial correlation being as small as it is. Even so, the positive serial
correlation is evident.

The presence of a serial correlation in the residuals is also detected by Durbin–
Watson Testthe Durbin–Watson test for independence (Durbin and Watson, 1951). The
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FIGURE 11.10. Plot of ri versus ri−1 for the Menhaden catch data. The residuals
are from the regression of annual catch on year of catch.

Durbin–Watson test statistic is

d =
∑n
i=2(ei − ei−1)2∑n

i=1 e
2
i

≈ 2(1− ρ̂), (11.7)

where ρ̂ is the sample correlation between ei and ei−1. The Durbin–Watson
statistic d gets smaller as the serial correlation increases. The one-tailed
Durbin–Watson test of the null hypothesis of independence H0 : ρ = 0,
against the alternative hypothesis Ha : ρ > 0, uses two critical values
dU and dL which depend on n, p, and the choice of α. Critical values for
the Durbin–Watson test statistic are given in Appendix Table A.7. The
test procedure rejects the null hypothesis if d < dL, does not reject the
null hypothesis if d > dU , and is inconclusive if dL < d < dU . Tests of
significance for the alternative hypothesis Ha : ρ < 0 use the same critical
values dU and dL, but the test statistic is first subtracted from 4.
Some statistical computing packages routinely provide the Durbin–Wat-
son test for serial correlation of the residuals. In PROC GLM (SAS In-
stitute, Inc., 1989b), for example, the Durbin–Watson statistic is reported
as part of the standard results whenever the residuals are requested, even
though the data may not be time series data. The statistic is computed on
the residuals in the order in which the data are listed in the data set. Care
must be taken to ensure that the test is appropriate and that the ordering
of the data is meaningful before the Durbin–Watson test is used. Also, note
that the Durbin–Watson test is computed for the unstandardized residuals
ei.
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11.1.5 Normal Probability Plots
The normal probability plot is designed to detect nonnormality. It is the
plot of the ordered residuals against the normal order statistics for the
appropriate sample size. The normal order statistics are the expected values
of ordered observations from the normal distribution with zero mean and
unit variance.
Let z1, z2, . . . , zn be the observations from a random sample of size n. The Normal Order

Statisticsn observations ordered (and relabeled) so that z(1) ≤ z(2) ≤ · · · ≤ z(n) give
the sample order statistics. The average for each z(i) over repeated sam-
plings gives the ith order statistic for the probability distribution being
sampled. These are the normal order statistics if the probability distribu-
tion being sampled is the normal distribution with zero mean and unit
variance. For example, the normal order statistics for a sample of size five
are −1.163, −.495, .0, .495, and 1.163. The expected value of the smallest
observation in a sample of size five from an N(0,1) distribution is −1.163,
the second smallest has expectation −.495, and so forth.
The normal order statistics were tabled for sample sizes to n = 204 by
Pearson and Hartley (1966), Biometrika Tables for Statisticians, and have
been reproduced in many references [e.g., Weisberg (1985), Table D, or
Rohlf and Sokal (1981), Table 27]. In some references the indexing of the
normal order statistics is in the reverse order so that the first order statistic
refers to the largest. The order statistics are easily approximated by any
computer program that provides the inverse function of the cumulative
normal distribution. Thus, z(i) ≈ Φ−1(p), where p is chosen as a function
of the ranks of the residuals. Several choices of p have been suggested.
Blom’s (1958) suggestion of using

p =
Ri − 3

8

n+ 1
4

, (11.8)

where Ri is the rank and n is the sample size, provides an excellent ap-
proximation if n ≥ 5. Plotting the ordered observed residuals against their
normal order statistics provides the normal plot.
The expected result from a normal plot when the residuals are a sam- Expected

Behaviorple from a normal distribution is a straight line passing through zero with
the slope of the line determined by the standard deviation of the residu-
als. There will be random deviations from a straight line due to sampling
variation of the sample order statistics. Some practice is needed to develop
judgment for the amount of departure one should allow before concluding
that nonnormality is a problem. Daniel and Wood (1980) give illustrations
of the amount of variation in normal probability plots of samples from nor-
mal distributions. The normal probability plots for small samples will not
be very informative, because of sampling variation, unless departures from
normality are large.



11.1 Residuals Analysis 357

FIGURE 11.11. Normal plot of residuals from the analysis of variance of final
plant heights in a study of blue mold infection on tobacco. (Data courtesy of M.
Moss and C. C. Main, North Carolina State University.)

Figure 11.11 shows a well-behaved normal plot of the residuals from an Example 11.8
analysis of variance of final plant heights in a study of blue mold infection
in tobacco. (Data provided courtesy of M. Moss and C. C. Main, North
Carolina State University.) There are a total of 80 observations and the
residual sum of squares has 36 degrees of freedom. The amount of depen-
dence among the residuals will be related to the proportion of degrees of
freedom used by the model, 44

80 in this case. This relatively high degree
of dependence among the residuals and the “supernormal” tendencies of
least squares residuals mentioned earlier may be contributing to the very
normal-appearing behavior of this plot.

The pattern of the departure from the expected straight line suggests Interpretation
of Normal
Plots

the nature of the nonnormality. A skewed distribution will show a curved
normal plot with the direction of the curve determined by the direction
of the skewness. An S-shaped curve suggests heavy-tailed or light-tailed
distributions (Figure 11.12), depending on the direction of the S. (Heavy-
tailed distributions have a relatively higher frequency of extreme observa-
tions than the normal distribution; light-tailed distributions have relatively
fewer.) Other model defects can mimic the effects of nonnormality. For ex-
ample, heterogeneous variances or outlier residuals will give the appearance
of a heavy-tailed distribution. The ordinary least squares residuals are con-
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FIGURE 11.12. A normal probability plot with a pattern typical of a heavy-tailed
distribution. In this case, the S-shape resulted from heterogeneous variances in
the data.

strained to have zero mean if the model includes the intercept term, and
the plot of the residuals should pass through the origin. (The recursive
residuals, on the other hand, are not so constrained and, thus, the nor-
mal plot of recursive residuals need not pass through the origin even if the
model is correct.) Failure to pass through the origin can be interpreted as
an indication of an outlier in the base set of observations or as a model
misfit such as an omitted variable (Galpin and Hawkins, 1984).
There are many tests for nonnormality under independence. However, Tests for

Nonnormalitythese tests must be used with caution when applied to regression residu-
als, since the residuals are not independent. The limiting distributions of
the test statistics show that they are appropriate for regression residuals if
the sample size is infinite (Pierce and Kopecky, 1979). For finite samples,
however, all are approximations and the question becomes one of how large
the sample must be for the approximation to be satisfactory. The required
sample size will depend on the number of parameters p′, and the nature of
P , which is determined by the configuration of the Xs (Cook and Weis-
berg, 1982). Simulation studies have suggested that the approximation is
adequate, insofar as size of the test is concerned, for samples as small as
n = 20 when there are four or six independent variables (White and Mac-
Donald, 1980; Pierce and Gray, 1982), or with n = 40 when there are eight
independent variables (Pierce and Gray, 1982). However, caution must be
used; Weisberg (1980) gives an example using an experimental design ma-
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trix with n = 20 where the observed size of the test is near α = .30, rather
than the nominal α = .10 level.
It appears that many tests for normality applied to regression residuals Shapiro–

Francia
Statistic

will provide acceptable approximations if the sample size is reasonable, say
n > 40 or n > 80 if p′ is large. The size and power of the tests in small
samples make them of questionable value. The Shapiro–Francia (1972) W ′

test statistic for normality, a modification of the Shapiro–Wilk (1965) W ,
provides a direct quantitative measure of the degree of agreement between
the normal plot and the expected straight line. The Shapiro–Francia statis-
tic is the squared correlation between the observed ordered residuals and
the normal order statistics. Let u be the vector of centered observed or-
dered residuals (the ei, ri, or r∗i ) and let z be the vector of normal order
statistics. Then

W ′ =
(u′z)2

(u′u)(z′z)
. (11.9)

The observed residuals are expressed as deviations from their mean. The
ei will have zero mean if the model includes an intercept, but this does not
apply to ri or r∗i . The null hypothesis of normality is rejected for sufficiently
small values of W ′. Critical values for W ′ are tabulated by Shapiro and
Francia (1972) for n = 35, 50, 51(2)99, and are reproduced in Appendix
Table A.8. For n < 50, the percentage points provided by Shapiro and
Wilk (1965) for W are good approximations of those for W ′ (Weisberg,
1974).
Other test statistics are frequently used as tests for nonnormality. For ex- Additional

Testsample, PROC UNIVARIATE (SAS Institute, Inc., 1990) uses the Shapiro–
Wilk W statistic if n < 2000 and the Kolomogorov D statistic if n > 2000.
PROC UNIVARIATE also reports skewness and kurtosis coefficients for
the sample; these are sometimes used for testing normality.

11.1.6 Partial Regression Leverage Plots
When several independent variables are involved, the relationship of the
residuals to one independent variable can be obscured by effects of other
variables. Partial regression leverage plots are an attempt to remove
the confounding effects of the other variables. Let e(j) denote the residuals
from the regression of the dependent variable on all independent variables
except the jth. Similarly, let u(j) denote the residuals from the regression
of the jth independent variable on all other independent variables. The
plot of e(j) versus u(j) is the partial regression leverage plot for the jth
variable. Note that both e(j) and u(j) have been adjusted for all other
independent variables in the model.
This plot reflects what the least squares regression is “seeing”when the Interpretation

jth variable is being added last to the model. The slope of the linear re-
gression line in the partial regression leverage plot is the partial regression
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FIGURE 11.13. Partial regression leverage plot for catch versus fishing pressure
from the regression of yearly catch of Menhaden on number of vessels and fish-
ing effort. The model included an intercept. [Data from Nelson and Ahrenholz
(1986).]

coefficient for that independent variable in the full model. The deviations
from the linear regression line correspond to the residuals e from the full
model.
Any curvilinear relationships not already taken into account in the model
should be evident from the partial regression leverage plots. The plot is use-
ful for detecting outliers and high-leverage points and for showing how sev-
eral leverage points might be interacting to influence the partial regression
coefficients.

The partial regression leverage plot of catch versus fishing pressure for Example 11.9
the Menhaden yearly catch data of Example 11.4 is given in Figure 11.13. In
this case, yearly catch was regressed on number of vessels and fishing effort;
the model also included an intercept. Thus, the partial residuals for catch
and fishing pressure are adjusted for the intercept and number of vessels.
The figure shows a clear linear relationship between catch and pressure and
there may be some suggestion of a slight curvilinear relationship. None of
the points appears to be an obvious outlier. The two leftmost points and
the uppermost point appear to be influential points in terms of the possible
curvilinear relationship.
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11.2 Influence Statistics

Potentially influential points or points with high leverage are the data Potentially
Influential
Points

points that are on the fringes of the cloud of sample points in X-space.
The ith diagonal element vii of the projection matrix P (called the Hat
matrix in some references) can be related to the distance of the ith data
point from the centroid of the X-space. This distance measure takes into
account the overall shape of the cloud of sample points. For example, a
data point at the side of an elliptical cloud of data points will have a larger
value of vii than another data point falling at a similar distance from the
centroid but along the major axis of the elliptical cloud. The ith diagonal
element of P is given by

vii = x′
i(X

′X)−1xi, (11.10)

where x′
i is the ith row of X. The limits on vii are 1/n ≤ vii ≤ 1/c, where

c is the number of rows of X that have the same values as the ith row.
The lower bound 1/n is attained only if every element in xi is equal to
the mean for that independent variable—in other words, only if the data
point falls on the centroid. The larger values reflect data points that are
farther from the centroid. The upper limit of 1 (when c = 1) implies that
the leverage for the data point is so high as to force the regression line
to pass exactly through that point. The variance of Ŷ for such a point
is σ2 and the variance of the residual is zero. The average value of vii is
p′/n. [There are n vii-elements and the sum tr(P ) is p′.] Belsley, Kuh, and
Welsch (1980) suggest using vii > 2p′/n to identify potentially influential
points or leverage points.
The diagonal elements of P only identify data points that are far from Identifying the

Influential
Points

the centroid of the sampleX-space. Such points are potentially but not nec-
essarily influential in determining the results of the regression. The general
procedure for assessing the influence of a point in a regression analysis is to
determine the changes that occur when that observation is omitted. Sev-
eral measures of influence have been developed using this concept. They
differ in the particular regression result on which the effect of the deletion
is measured, and the standardization used to make them comparable over
observations. All influence statistics can be computed from the results of
the single regression using all data.
Some influence measures are discussed, each of which measures the effect Influence

Measuresof deleting the ith observation:

1. Cook’s Di, which measures the effect on β̂;

2. DFFITSi, which measures the effect on Ŷi;

3. DFBETASj(i), which measures the effect on β̂j ; and

4. COVRATIOi, which measures the effect on the variance–covariance
matrix of the parameter estimates.
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The first three of these, Cook’sD, DFFITS, and DFBETAS, can be thought
of as special cases of a general approach for measuring the impact of deleting
the ith observation on any set of k linearly independent functions of β̂
(Cook and Weisberg, 1982). Let U =K ′β be a set of linear functions of β
of interest. Then the change in the estimate of U when the ith observation
is dropped is given by K ′(β̂ − β̂(i)), where β̂(i) is the vector of regression
coefficients estimated with the ith observation omitted. This change can be
written in a quadratic form similar to the quadratic form for the general
linear hypothesis in Chapter 4:

[K ′(β̂ − β̂(i))]′[K
′(X ′X)−1K]−1[K ′(β̂ − β̂(i))]
r(K)σ̂2 . (11.11)

IfK ′ is chosen as Ip′ and s2 is used for σ2, Cook’s D results. IfK ′ is chosen
as x′

i, the ith row of X, and s
2
(i) is used for σ

2, the result is (DFFITSi)2.
ChoosingK ′ = ( 0 . . . 0 1 0 . . . 0 ), where the 1 occurs in the (j+
1)st position, and using s2(i) for σ

2 gives (DFBETASj(i))2.

11.2.1 Cook’s D
Cook’s D (Cook, 1977; Cook and Weisberg, 1982) is designed to measure Computation
the shift in β̂ when a particular observation is omitted. It is a combined
measure of the impact of that observation on all regression coefficients.
Cook’s D is defined as

Di =
(β̂(i) − β̂)′(X ′X)(β̂(i) − β̂)

p′s2
. (11.12)

Computationally, Di is more easily obtained as

Di =
r2i
p′

(
vii
1− vii

)
, (11.13)

where ri is the standardized residual and vii is the ith diagonal element
of P computed from the full regression. Notice that Di is large if the
standardized residual is large and if the data point is far from the centroid
of the X-space—that is, if vii is large.
Cook’s D measures the distance from β̂ to β̂(i) in terms of the joint Interpretation

confidence ellipsoids about β̂. Thus, if Di is equal to F(α,p′,n−p′), the β̂(i)

vector is on the 100(1 − α)% confidence ellipsoid of β computed from β̂.
This should not be treated as a test of significance. A shift in β̂ to the
ellipsoid corresponding to α = .50 from omitting a single data point would
be considered a major shift. For reference, the 50th percentile for the F -
distribution is 1.0 when the numerator and denominator degrees of freedom
are equal and is always less than 1 if the denominator degrees of freedom
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is the larger. The 50th percentile does not get smaller than .8 unless the
numerator degrees of freedom is only 1 or 2. Thus, Cook’s Di in the vicinity
of .8 to 1.0 would indicate a shift to near the 50th percentile in most
situations.
Cook’s D can also be written in the form

Di =
(Ŷ (i) − Ŷ )′(Ŷ (i) − Ŷ )

p′s2
, (11.14)

where Ŷ (i) = Xβ̂(i). In this form, Cook’s D can be interpreted as the
Euclidean distance between Ŷ (i) and Ŷ and, hence, measures the shift in
Ŷ caused by deleting the ith observation.

11.2.2 DFFITS
Equation 11.13 showed that Cook’s D provides a measure of the shift in Computation
Ŷ when the ith observation is not used in the estimation of β. A closely
related measure is provided by DFFITS (Belsley, Kuh, and Welsch, 1980)
defined as

DFFITSi =
Ŷi − Ŷi(i)
s(i)

√
vii

=
(

vii
1− vii

)
ei

s(i)(1− v(ii))1/2
, (11.15)

where Ŷi(i) is the estimated mean for the ith observation but where the ith
observation was not used in estimating β. Notice that σ has been estimated
with s(i), the estimate of σ obtained without the ith observation. s(i) is
obtained without redoing the regression by using the relationship

(n− p′ − 1)s2(i) = (n− p′)s2 −
e2i
1− vii . (11.16)

The relationship of DFFITS to Cook’s D is Interpretation

Di = (DFFITSi)2
(
s2(i)
p′s2

)
. (11.17)

Belsley, Kuh, and Welsch (1980) suggest that DFFITS larger in absolute
value than 2

√
p′/n be used to flag influential observations. Ignoring the

difference between s2 and s2(i), this cutoff number for DFFITS suggests a
cutoff of 4/n for Cook’s D.
A modified version of Cook’s D suggested by Atkinson (1983) is even
more closely related to DFFITS:

Ci = |r∗i |
[(
n− p′
p′

)(
vii
1− vii

)]1/2
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=
(
n− p′
p′

)1/2

|DFFITSi|. (11.18)

The cutoff point for DFFITS for flagging large values translates into a cutoff
for Ci of 2[(n−p′)/n]1/2. Atkinson recommends that signed values of Ci be
plotted in any of the ways customary for residuals. (This recommendation
can be extended to any of the measures of influence.) Very nearly identical
interpretations are obtained from DFFITSi, Cook’s Di, and Atkinson’s Ci
if these reference numbers are used. There is no need to use more than one.

11.2.3 DFBETAS
Cook’s Di reveals the impact of the ith observation on the entire vec-
tor of the estimated regression coefficients. The influential observations for
the individual regression coefficients are identified by DFBETASj(i), j =
0, 1, 2, . . . , p (Belsley, Kuh, and Welsch, 1980), where each DFBETASj(i)
is the standardized change in β̂j when the ith observation is deleted from
the analysis. Thus,

DFBETASj(i) =
β̂j − β̂j(i)
si
√
cjj

, (11.19)

where cjj is the (j + 1)st diagonal element from (X ′X)−1. Although the
formula is not quite as simple as for DFFITSi, DFBETASj(i) can also be
computed from the results of the original regression. The reader is referred
to Belsley, Kuh, and Welsch (1980) for details.
DFBETASj(i) measures the change in β̂j in multiples of its standard Interpretation
error. Although this looks like a t-statistic, it should not be interpreted as
a test of significance. Values of DFBETASj(i) greater than 2 would certainly
indicate a major, but very unlikely, impact from a single point. The cutoff
point of 2/

√
n is suggested by Belsley, Kuh, and Welsch as the point that

will tend to highlight the same proportion of influential points across data
sets.

11.2.4 COVRATIO
The impact of the ith observation on the variance–covariance matrix of the
estimated regression coefficients is measured by the ratio of the determi-
nants of the two variance–covariance matrices. Belsley, Kuh, and Welsch
(1980) formulate this as

COVRATIO =
det(s2(i)[X

′
(i)X(i)]−1)

det(s2[X ′X]−1)

=
[(
n− p′ − 1
n− p′ +

r∗2i
n− p′

)p
(1− vii)

]−1

. (11.20)
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The determinant of a variance–covariance matrix is a generalized mea- Interpretation
sure of variance. Thus, COVRATIO reflects the impact of the ith observa-
tion on the precision of the estimates of the regression coefficients. Values
near 1 indicate the ith observation has little effect on the precision of the
estimates. A COVRATIO greater than 1 indicates that the presence of the
ith observation increases the precision of the estimates; a ratio less than
1 indicates that the presence of the observation impairs the precision of
the estimates. Belsley, Kuh, and Welsch (1980) suggest that observations
with values of COVRATIO outside the limits 1 ± 3(p′/n) be considered
influential in the sense of having an inordinate effect on either increasing
or decreasing the precision of the estimates.
The influence statistics are to be used as diagnostic tools for identify- Using the

Influence
Statistics

ing the observations having the greatest impact on the regression results.
Although some of the influence measures resemble test statistics, they are
not to be interpreted as tests of significance for influential observations.
The large number of influence statistics that can be generated can cause
confusion. One should concentrate on that diagnostic tool that measures
the impact on the quantity of primary interest. The first two statistics,
Cook’s Di and DFFITSi, are very similar and provide “overall” measures
of the influence of each observation. One of these will be of primary inter-
est in most problems. In those cases where interest is in the estimation of
particular regression parameters, DFBETASj(i) for those j of interest will
be most helpful.

(Continuation of Example 11.3) The Studentized residuals and DFFITSi Example 11.10
for the Lesser–Unsworth example are plotted against observation number in
Figure 11.14. The close relationship between DFFITSi and r∗i is evident;
DFFITSi is the product of r∗i and (vii/(1 − vii)) (equation 11.15). The
latter is a measure of the potential leverage of the observation which, in
this example, varies from .48 for observation 9 to .80 for observation 1.
The suggested cutoff value for DFFITS is 2

√
p′/n = 2

√
3/12 = 1. Only

DFFITS6 exceeds this value and the residual for this observation certainly
appears to be an outlier, r∗6 = 4.16. The closely related Cook’s Di are
plotted against observation number in Figure 11.15.
The most influential point on β̂ is observation 6 with D6 = 1.06. Thus,
deleting observation 6 from the analysis causes β̂ to shift to beyond the
.50 confidence ellipsoid of β, F(.50;3,9) = .852. (In fact, the shift in this
case is to the edge of the 58.7% ellipsoid.) The cutoff point translated from
DFFITS to Cook’s D is 4/n = .33; only observation 6 exceeds this number.
The impact of each observation on the estimate of β0 and β1, where β1 is
the regression of seed weight on total solar radiation, is shown in the plots
of DFBETAS0 and DFBETAS1 in Figure 11.16. The suggested cutoff point
for DFBETASj is 2/

√
n = .58 in this example. None of the observations

exceed this cutoff point for DFBETAS0 and only observation 6 exceeds
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FIGURE 11.14. Studentized residuals and DFFITSi plotted against observation
number from the regression of seed weight on ozone level and cumulative solar
radiation using the Lesser–Unsworth data.

FIGURE 11.15. Cook’s Di plotted against observation number from the regres-
sion of seed weight on ozone level and cumulative solar radiation using the
Lesser–Unsworth data.
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this cutoff for DFBETAS1. This illustrates a case where an observation
has major impact on the regression [D6, DFFITS6, and DFBETAS1(6) are
large] but has very little effect on the estimation of one parameter, in this
case β0.
The suggested cutoff values for COVRATIOi in the Lesser–Unsworth
example are 1 ± 3p′/n = (0.25, 1.75). Observations 1, 5, and 7 exceed the
upper cutoff point (values not shown) indicating that the presence of these
three observations has the greatest impact on increasing the precision of
the parameter estimates. COVRATIO6 = .07 is the only one that falls
below the lower limit. This indicates that the presence of observation 6
greatly decreases the precision of the estimates; the large residual from
this observation will cause s2 to be much larger than s2(6).
The influence diagnostics on the Lesser–Unsworth example flag observa-
tion 6 as a serious problem in this analysis. This can be due to observation
6 being in error in some sense or the model not adequately representing the
relationship between seed weight, solar radiation, and ozone exposure. The
seed weight and radiation values for observation 6 were both the largest
in the sample. There is no obvious error in either. The most logical expla-
nation of the impact of this observation is that the linear model does not
adequately represent the relationship for these extreme values.

11.2.5 Summary of Influence Measures
The following summarizes the influence measures.

Influence Observation i May Be
Measure Formula Influential If:

Cook’s Di
(β̂(i)−β̂)′(X ′X)(β̂(i)−β̂)

p′s2 Di > F(.5,p′,n−p′)

DFFITSi
Ŷi−Ŷi(i)
s(i)

√
vii

|DFFITSi| > 2
√
p′/n

Atkinson’s Ci
(
n−p′
p′

)1/2
|DFFITSi| |Ci| > 2[(n− p′)/n]1/2

DFBETASj(i)
β̂j−β̂j(i)
si
√
cjj

|DFBETASj(i)| > 2/
√
n

COVRATIOi
det(s2(i)[X

′
(i)X(i)]

−1)

det(s2[X ′X ]−1)
COVRATIO

{
< 1− 3p′/n
> 1 + 3p′/n
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FIGURE 11.16. DFBETAS0(i) and DFBETAS1(i) plotted against observation
number from the regression of seed weight on ozone level and cumulative solar
radiation using the Lesser–Unsworth data.
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11.3 Collinearity Diagnostics

The collinearity problem in regression refers to the set of problems created Effects of
Collinearitywhen there are near-singularities among the columns of the X matrix; cer-

tain linear combinations of the columns of X are nearly zero. This implies
that there are (near) redundancies among the independent variables; es-
sentially the same information is being provided in more than one way.
Geometrically, collinearity results when at least one dimension of the X-
space is very poorly defined in the sense that there is almost no dispersion
among the data points in that dimension.
Limited dispersion in an independent variable results in a very poor
(high variance) estimate of the regression coefficient for that variable. This
can be viewed as a result of the near-collinearity between the variable
and the column of ones (for the intercept) in X. (A variable that has
very little dispersion relative to its mean is very nearly a multiple of the
vector of ones.) This is an example of collinearity that is easy to detect by
simple inspection of the amount of dispersion in the individual independent
variables. The more usual, and more difficult to detect, collinearity problem
arises when the near-singularity involves several independent variables. The
dimension of the X-space in which there is very little dispersion is some
linear combination of the independent variables, and may not be detectable
from inspection of the dispersion of the individual independent variables.
The result of collinearity involving several variables is high variance for
the regression coefficients of all variables involved in the near-singularity. In
addition, and perhaps more importantly, it becomes virtually impossible to
separate the influences of the independent variables and very easy to pick
points for prediction that are (unknowingly) outside the sample X-space,
representing extrapolations.
The presence of collinearity is detected with the singular value decom- Detecting

Collinearity
with
Eigenanalysis

position of X or the eigenanalysis of X ′X (Sections 2.7 and 2.8). The
eigenvalues λi provide measures of the amount of dispersion in the dimen-
sions corresponding to the principal component axes of the X-space. The
elements in the eigenvectors are the coefficients (for the independent vari-
ables) defining the principal component axes. All principal components are
pairwise orthogonal.
The first principal component axis is defined so as to identify the direc-
tion through the X-space that has the maximum dispersion. The second
principal component axis identifies the dimension orthogonal to the first
that has the second most variation and so forth until the last principal
component axis identifies the dimension with the least dispersion. The rel-
ative sizes of the eigenvalues reveal the relative amounts of dispersion in the
different dimensions of the X-space, and the eigenvectors identify the lin-
ear combinations of the independent variables that define those dimensions.
The smaller eigenvalues, and their eigenvectors, are of particular interest
for the collinearity diagnostics.
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The eigenanalysis for purposes of detecting collinearity typically is done Standardizing
XonX ′X afterX has been scaled so that the length of each vector, the sum

of squares of each column, is one. Thus, tr(X ′X) = p′. This standardization
is necessary to prevent the eigenanalysis from being dominated by one
or two of the independent variables. The sum of the eigenvalues equals
the trace of the matrix being analyzed,

∑
λk = tr(X ′X), which is the

sum of the sum of squares of the independent variables including X0. The
independent variables in their original units of measure would contribute
unequally to this total sum of squares and, hence, to the eigenvalues. A
simple change of scale of a variable, such as from inches to centimeters,
would change the contribution of the variable to the principal components
if the vectors were not rescaled to have equal length.
The standardization of X is accomplished by dividing the elements of
each column vector by the square root of the sum of squares of the elements.
In matrix form, define a diagonal (p′×p′) matrixD, which consists of square
roots of the diagonal elements of X ′X. The standardized X matrix Z is
given by

Z =XD−1. (11.21)

The eigenanalysis is done on Z ′Z.
Some authors argue that the independent variables should first be cen- Centering the

Independent
Variables

tered by subtracting the mean of each independent variable. This cen-
tering makes all independent variables orthogonal to the intercept column
and, hence, removes any collinearity that involves the intercept. Marquardt
(1980) calls this the “nonessential collinearity.” Any independent variable
that has a very small coefficient of variation, small dispersion relative to its
mean, will be highly collinear with the intercept and yet, when centered,
be orthogonal to the intercept. Belsley, Kuh, and Welsch (1980) and Bel-
sley (1984) argue that this correction for the mean is part of the multiple
regression arithmetic and should be taken into account when assessing the
collinearity problem. For further discussion on this topic, the reader is re-
ferred to Belsley (1984) and the discussions following his article by Cook
(1984), Gunst (1984), Snee and Marquardt (1984), and Wood (1984).
The seriousness of collinearity and whether it is “nonessential” collinear- “Nonessential”

Collinearityity depends on the specific objectives of the regression. Even under severe
collinearity, certain linear functions of the parameters may be estimated
with adequate precision. For example, the estimate of the change in Y
between two points in X may be very precisely estimated even though
the estimates of some of the parameters are highly variable. If these linear
functions also happen to be the quantities of primary interest, the collinear-
ity might be termed “nonessential.” However, any collinearity, including
collinearity with the intercept, that destroys the stability of the quantities
of interest cannot be so termed.
This discussion of collinearity diagnostics assumes that the noncentered
independent variables (scaled to have unit vector length) are being used.



11.3 Collinearity Diagnostics 371

The diagnostics from the centered data can be used when they are more
relevant for the problem. In any specific case, it is best to look at the
seriousness of the collinearity in terms of the objectives of the study.

11.3.1 Condition Number and Condition Index
The condition numberK(X) of a matrix X is defined as the ratio of the Condition

Numberlargest singular value to the smallest singular value (Belsley, Kuh, and
Welsch, 1980),

K(X) =
[
λmax
λmin

]1/2

. (11.22)

The condition number provides a measure of the sensitivity of the solution
to the normal equations to small changes in X or Y . A large condition
number indicates that a near-singularity is causing the matrix to be poorly
conditioned. For reference, the condition number of a matrix is 1 when all
the columns are pairwise orthogonal and scaled to have unit length; all λk
are equal to 1.
The condition number concept is extended to provide the condition Condition

Indexindex for each (principal component) dimension of the X-space. The con-
dition index δk for the kth principal component dimension of the X-space
is

δk =
[
λmax
λk

]1/2

. (11.23)

The largest condition index is also the condition number K(X) of the
matrix. Thus, condition indices identify the dimensions of the X-space
where dispersion is limited enough to cause problems with the least squares
solution.
Belsley, Kuh, and Welsch (1980) suggest that condition indices around Interpretation
10 indicate weak dependencies that may be starting to affect the regres-
sion estimates. Condition indices of 30 to 100 indicate moderate to strong
dependencies and indices larger than 100 indicate serious collinearity prob-
lems. The number of condition indices in the critical range indicates the
number of near-dependencies contributing to the collinearity problem.
Another measure of collinearity involves the ratios of the squares of the
eigenvalues. Thisted (1980) suggested

mci =
p′∑
j=1

(
λp′

λj

)2

(11.24)

as a multicollinearity index, where λp′ is the smallest eigenvalue of X ′X.
Values of mci near 1.0 indicate high collinearity; values greater than 2.0
indicate little or no collinearity.
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TABLE 11.1. The singular values and the condition indices for the numerical
example.

Principal Singular Condition
Component Values Index

1 1.7024 1.00
2 1.0033 1.70
3 0.3083 5.52
4 0.0062 273.60

A small numerical example is used to illustrate the measures of collinear- Example 11.11
ity. An X matrix 20× 4 consists of the intercept column, and three inde-
pendent variables constructed in the following way.

X1 is the sequence of numbers 20 to 29 and repeated.

X2 is X1 minus 25 with the first and eleventh observations changed
to -4 (from −5) to avoid a complete linear dependency.
X3 is a periodic sequence running 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, and
repeated. X3 is designed to be nearly orthogonal to the variation in
X1 and X2.

The singular values and the condition indices using the noncentered, unit-
length vectors for this X matrix are given in Table 11.1. The largest con-
dition index δ4 = 1.702410/0.006223 = 273.6 indicates a severe collinearity
problem. This is the condition numberK(X) ofX as scaled. The condition
indices for the other dimensions do not indicate any collinearity problem;
they are well below the value of 10 suggested by Belsley, Kuh, and Welsch
as the point at which collinearity may be severe enough to begin having an
effect. The multicollinearity index of Thisted, mci, is very close to 1 (mci
= 1.061),which indicates severe collinearity.

11.3.2 Variance Inflation Factor
Another common measure of collinearity is the variance inflation factor Definition
for the jth regression coefficient VIFj . The variance inflation factors are
computed from the correlation matrix ρ̂ of the independent variables. Thus,
the independent variables are centered and standardized to unit length. The
diagonal elements ρ̂−1, the inverse of ρ̂, are the variance inflation factors.
The link between VIFj and collinearity (of the standardized and centered
variables) is through the relationship

VIFj =
1

1−R2
j

, (11.25)
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where R2
j is the coefficient of determination from the regression of Xj on

the other independent variables. If there is a near-singularity involving Xj
and the other independent variables, R2

j will be near 1.0 and VIFj will be
large. If Xj is orthogonal to the other independent variables, R2

j will be 0
and VIFj will be 1.0.
The term variance inflation factor comes from the fact that the variance
of the jth regression coefficient can be shown to be directly proportional
to VIFj (Theil, 1971; Berk, 1977):

s2(β̂j) =
σ2

x′
jxj
(VIFj), (11.26)

where xj is the jth column of the centered X matrix.
The variance inflation factors are simple diagnostics for detecting overall Interpretation
collinearity problems that do not involve the intercept. They will not detect
multiple near-singularities nor identify the source of the singularities. The
maximum variance inflation factor has been shown to be a lower bound
on the condition number (Berk, 1977). Snee and Marquardt (1984) suggest
that there is no practical difference between Marquardt’s (1970) guideline
for serious collinearity V IF > 10, and Belsley, Kuh, and Welsch’s (1980)
condition number of 30.

The variance inflation factors computed from the correlation matrix of Example 11.12
the independent variables for Example 11.11 are

VIF1 = 169.4,
VIF2 = 175.7, and
VIF3 = 1.7.

The variance inflation factors indicate that the estimates of β1 and β2
would be seriously affected by the very near-singularity in X. In this case,
the near-singularity is known to be due to the near-redundancy between
X1 and X2. Notice that the variance inflation factor of β̂3 is near 1, the
expected result if all variables are orthogonal. The variance inflation factors
are computed on the centered and scaled data, and as a result are orthog-
onal to the intercept column. Thus, the variance inflation factors indicate
a collinearity problem in this example that does not involve the intercept.

11.3.3 Variance Decomposition Proportions
The variance of each estimated regression coefficient can be expressed as a
function of the eigenvalues λk ofX ′X and the elements of the eigenvectors.
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Let ujk be the jth element of the kth eigenvector. Then,

Var(β̂j) = σ2
∑
k

(
u2
jk

λk

)
. (11.27)

The summation is over the k = 1, . . . , p′ principal component dimensions.
Thus, the variance of each regression coefficient can be decomposed into
the contributions from each of the principal components. The size of each
contribution (for the variance of the jth regression coefficient) is determined
by the square of the ratio of the jth element from the kth eigenvector ujk
to the singular value λ1/2

k .
The major contributions to the variance of a regression coefficient oc-
cur when the coefficient in the eigenvector is large in absolute value, and
the eigenvalue is small. A large coefficient ujk indicates that the jth inde-
pendent variable is a major contributor to the kth principal component.
The small eigenvalues identify the near-singularities that are the source of
the instability in the least squares estimates. Not all regression coefficients
need be affected. If the jth variable is not significantly involved in the
near-singularity, its coefficient in the kth eigenvector ujk will be near zero
and its regression coefficient will remain stable even in the presence of the
collinearity.
It is helpful to express each of the contributions as a proportion of the Variance

Decomposition
Proportions

total variance for that particular regression coefficient. These partitions(
u2
jk/λk∑
i

(
u2
ji/λi

))

of the variances are called the variance decomposition proportions.

The variance decomposition proportions for the data in Example 11.11 Example 11.13
are given in Table 11.2. The entries in any one column show the proportion
of the variance for that regression coefficient that comes from the principal
component indicated on the left. For example, 34% of the variance of β̂3
comes from the fourth principal component, 65% from the third, and only
slightly over 1% from the first and second principal components.

The critical information in Table 11.2 is how the variances are being Interpretation
affected by the last principal component, the one with the least dispersion
and the greatest impact on the collinearity problem. For reference, if the
columns of X were orthogonal, the variance decomposition proportions
would be all 0 except for a single 1 in each row and column. That is,
each principal component would contribute to the variance of only one
regression coefficient. Serious collinearity problems are indicated when a
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TABLE 11.2. Variance decomposition proportions for Example 11.11 us-
ing all principal components (upper half of table) and with the fourth
principal component deleted (lower half).

Principal Variance Proportion
Component Intercept X1 X2 X3

1 .0000a .0000a .0000a .0102
2 .0000a .0000a .0055 .0008
3 .0001 .0001 .0003 .6492
4 .9999 .9998 .9942 .3398

1.0000 1.0000 1.0000 1.0000
1 .070 .060 .001 .015
2 .002 .002 .942 .001
3 .928 .939 .057 .983

1.000 1.000 1.000 1.000

aVariance proportions are less than 10−4.

principal component with a small eigenvalue contributes heavily—more
than 50%—to two or more regression coefficients.

(Continuation of Example 11.13) The fourth principal component is re- Example 11.14
sponsible for over 99% of s2(β̂0), s2(β̂1), and s2(β̂2). The fourth principal
component had a condition index of δ4 = 274, well above the critical point
for severe collinearity. The fourth principal component identifies a nearly
singular dimension of the X-space that is causing severe variance inflation
of these three regression coefficients. Notice, however, that the variance of
β̂3 is not seriously affected by this near-singularity. This implies that X3
is not a major component of the near-singularity defined by the fourth
principal component.

The interpretation of the variance decomposition proportions required
these conditions for the result to be an indication of serious collinearity:

1. the condition index for the principal component must be “large”; and

2. the variance decomposition proportions must show that the principal
component is a major contributor (> 50%) to at least two regression
coefficients.

More than one near-singularity may be causing variance inflation prob- Multiple Near-
Singularitieslems. In such a situation, the variance decomposition table will be domi-

nated by the principal component with the smallest eigenvalue so that the
effect of other near-singularities may not be apparent. The variance contri-
butions of the next principal component are found by rescaling each column
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so that the proportions add to 100% without the last principal component.
This approximates what would happen to the variance proportions if the
fourth principal component were “removed.”

Since the condition index (δk = 5.5) for the third principal component Example 11.15
from Example 11.14 is not in the critical range, the analysis of the variance
proportions normally would not proceed any further. However, to illus-
trate the process, we give in the lower portion of Table 11.2 the variance
decomposition proportions for the example without the fourth principal
component. If the condition index for the third principal component had
been sufficiently high, this result would be suggesting that this dimension
also was causing variance inflation problems.

The variance decomposition proportions provide useful information when Linear
Functionsthe primary interest is in the regression coefficients per se. When the pri-

mary objective of the regression analysis is the use of the estimated regres-
sion coefficients in some linear function, such as in a prediction equation, it
is more relevant to measure the contributions of the principal components
to the variance of the linear function of interest. Let c =K ′β̂ be the linear
function of interest. The variance of c is

σ2(c) =K ′(X ′X)−1Kσ2, (11.28)

which can be decomposed into the contributions from each of the principal
components as

σ2(c) =
∑
k

(
(K ′uk)2

λk

)
σ2. (11.29)

Each term reflects the contribution to the variance of the corresponding
principal component.

(Continuation of Example 11.15) Suppose the linear funtion of interest Example 11.16
is c =K ′β̂, where

K ′ = ( 1 25 0 3 ) .

Then the variance of c = K ′β̂ is σ2(c) = 0.0597σ2. The partitions of this
variance into the contributions from the four principal components and
the variance proportions are given in Table 11.3. For this (deliberately cho-
sen) linear function, the fourth principal component, which was causing the
collinearity problem and the severe variance inflation of the regression coef-
ficients, is having almost no impact. Thus, if this particular linear function
were the primary objective of the analysis, the near-singularity identified by
the fourth principal component could be termed a “nonessential collinear-
ity.” This can be viewed as a generalization of the concept of “nonessential
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TABLE 11.3. The variance partitions and the variance proportions for the linear
function K ′β̂ where K ′ = (1 25 0 3).

Principal Variance Variance
Component Partition Proportion

1 .0451 .7542
2 .0003 .0050
3 .0142 .2375
4 .0002 .0033

Total .0597 1.0000

ill-conditioning” used by Marquardt (1980) to refer to near-singularities
involving the intercept.

11.3.4 Summary of Collinearity Diagnostics

Collinearity
Diagnostic Formula Collinear if

Condition Index, δk
[
λmax

λk

]1/2
{
30 ≤ δk ≤ 100 (moderate)

δk > 100 (strong)

mci
∑p′

j=1

[
λp′
λj

]2
{
mci
mci

≤ 2
≈ 1 (strong)

Variance Inflation
Factor, V IF 1

1−R2
j

V IF > 10

11.4 Regression Diagnostics on the Linthurst Data

The Linthurst data were used in Chapter 5 to illustrate the choice of vari- Example 11.17
ables in a model-building process. In that exercise, the modeling started
with five independent variables, SALINITY, pH,K,Na, and Zn, and ended
with a model that contained two variables. The usual assumptions of or-
dinary least squares were made and all of the variables were assumed to
be related linearly to the dependent variable BIOMASS. In this section,
the regression diagnostics are presented for the Linthurst data for the five-
variable regression model.
The residuals ei standardized residuals ri (called STUDENT residual
in PROC REG), and Cook’s D for the regression of BIOMASS on the
five independent variables were obtained from the RESIDUAL option in
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PROC REG (SAS Institute Inc., 1989b) and are given in Table 11.4. The
Studentized residuals r∗i (called RSTUDENT in PROC REG), and several
influence statistics were obtained from the INFLUENCE option and are
given in Tables 11.5 and 11.6 (pages 380 and 381).
The standardized residual for observation 34 is the largest with a value Residuals
of r34 = 2.834; this residual is 2.834 standard deviations away from zero.
When expressed as the Studentized residual, its value is r∗34 = 3.14. Four
other Studentized residuals are greater than 2.0 in absolute value. This
frequency of large residuals (11%) is higher than might be expected from a
sample size of 45. An approximate chi-square test, however, does not show
a significant departure from an expected 5% frequency of residuals greater
than 2.0 in absolute value. (This test has an additional approximation
compared to the conventional goodness-of-fit test because the residuals are
not independent.)
These large residuals must not be interpreted, however, as indicating
that these points are in error or that they do not belong to the population
sampled. Of course, the data should be carefully checked to verify that
there are no errors and that the points represent legitimate observations.
But as a general rule, outlier points should not be dropped from the data
set unless they are found to be in error and the error cannot be corrected.
An excessively high frequency of large residuals on a carefully edited data
set is probably an indication of an inadequate model. The model and the
system being modeled should be studied carefully. Perhaps an important
independent variable has been overlooked or the relationships are not linear
as has been assumed.

11.4.1 Plots of Residuals
The plot of the ordinary least squares residuals against the predicted val- e Versus Ŷ
ues, Figure 11.17(a), shows the presence of five predicted values that are
greater than 2,000, much larger than any of the others. Four of the five
residuals associated with these points are not particularly notable, but the
fifth point is the largest negative residual, −748 or a standardized residual
of r29 = 2.0804. A second point of interest in Figure 11.17(a) is the appar-
ently greater spread among the positive residuals than among the negative
residuals. This suggests that the distribution of the residuals might be
skewed. The skewness is seen more clearly in a frequency polygon of the
residuals, Figure 11.18 (page 383). There are four residuals greater than
2.0 but only one less than −2.0 and there is a high frequency of relatively
small negative residuals.
The normal probability plot of the standardized residuals, Figure 11.19, Normal

Probability
Plot

shows a distinct curvature rather than the straight line expected of nor-
mally distributed data. The shape of this normal plot, except for the addi-
tional bend caused by the four most negative residuals, is consistent with
the positively skewed distribution suggested by the frequency polygon. The
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TABLE 11.4. Residuals analysis from the regression of BIOMASS on the five
independent variables SAL, pH, K, Na, and Zn (from SAS PROC REG, option
R). An * on the measure of influence indicates that the value exceeds the reference
value.

Obs. Yi Ŷi s(Ŷi) ei s(ei) ri Cook’s D
1 676 724 176 −48 357 −.135 .001
2 516 740 142 −224 372 −.601 .009
3 1, 052 691 127 361 378 .956 .017
4 868 815 114 53 382 .140 .000
5 1, 008 1, 063 321 −56 235 −.236 .017
6 436 958 126 −522 378 −1.381 .035
7 544 527 214 17 336 .050 .000
8 680 827 141 −147 373 −.394 .004
9 640 676 174 −36 358 −.101 .000
10 492 911 165 −419 362 −1.155 .046
11 984 1, 166 167 −182 362 −.503 .009
12 1, 400 573 147 827 370 2.232 .130∗
13 1, 276 816 153 460 368 1.252 .045
14 1, 736 953 137 783 374 2.093 .099∗
15 1, 004 898 166 106 362 .293 .003
16 396 355 135 41 375 .109 .000
17 352 577 127 −225 377 −.595 .007
18 328 586 139 −258 373 −.691 .011
19 392 586 118 −194 380 −.511 .004
20 236 494 131 −258 376 −.687 .010
21 392 596 122 −204 379 −.537 .005
22 268 570 120 −302 380 −.795 .010
23 252 584 124 −332 378 −.877 .014
24 236 479 100 −243 386 −.631 .004
25 340 425 131 −85 376 −.226 .001
26 2, 436 2, 296 170 140 360 .388 .006
27 2, 216 2, 202 196 14 347 .040 .000
28 2, 096 2, 230 187 −134 351 −.381 .007
29 1, 660 2, 408 171 −748 360 −2.080 .163∗
30 2, 272 2, 369 168 −97 361 −.270 .003
31 824 1, 110 115 −286 381 −.750 .008
32 1, 196 982 118 214 381 .562 .005
33 1, 960 1, 155 120 805 380 2.120 .075
34 2, 080 1, 008 124 1072 378 2.834 .145∗
35 1, 764 1, 254 136 510 374 1.363 .041
36 412 959 111 −547 383 −1.431 .029
37 416 626 133 −210 376 −.558 .006
38 504 624 107 −120 384 −.313 .001
39 492 588 99 −96 386 −.250 .001
40 636 837 95 −201 387 −.521 .003
41 1, 756 1, 526 129 230 377 .610 .007
42 1, 232 1, 298 97 −66 386 −.171 .000
43 1, 400 1, 401 106 −1 384 −.004 .000
44 1, 620 1, 306 113 314 382 .822 .010
45 1, 560 1, 265 90 295 388 .759 .005
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TABLE 11.5. Residuals and influence statistics from the regression of BIOMASS
on the five independent variables SAL, pH, K, Na, and Zn (from SAS’s PROC
REG, option INFLUENCE). An * on the measure of influence indicates that the
value exceeds the reference value.

COV- DF-
Obs. ei r∗i vii RATIO FITS
1 −48 −.133 .195 1.447∗ −.065
2 −224 −.596 .127 1.266 −.228
3 361 .955 .101 1.128 .321
4 53 .138 .082 1.269 .041
5 −55 −.233 .651∗ 3.318∗ −.318
6 −522 −1.398 .100 .961 −.466
7 17 .050 .289∗ 1.642∗ .032
8 −147 −.390 .125 1.304 −.147
9 −36 −.100 .191 1.443∗ −.049
10 −419 −1.160 .172 1.146 −.529
11 −182 −.498 .175 1.362 −.229
12 827 2.359 .135 .595∗ .934∗
13 460 1.261 .148 1.073 .526
14 783 2.193 .119 .649 .806∗
15 106 .289 .173 1.395 .132
16 41 .107 .115 1.317 .039
17 −225 −.590 .102 1.232 −.199
18 −258 −.687 .121 1.235 −.255
19 −194 −.506 .088 1.230 −.157
20 −258 −.682 .108 1.218 −.238
21 −204 −.532 .094 1.234 −.172
22 −302 −.791 .090 1.165 −.249
23 −332 −.874 .097 1.149 −.287
24 −243 −.626 .063 1.173 −.162
25 −85 −.224 .108 1.300 −.078
26 140 .384 .181 1.395 .181
27 14 .039 .243 1.543∗ .022
28 −134 −.376 .222 1.468∗ −.201
29 −748 −2.177 .184 .708 −1.034∗
30 −97 −.267 .178 1.406∗ −.124
31 −286 −.745 .083 1.168 −.224
32 214 .557 .087 1.219 .172
33 805 2.225 .091 .617 .704
34 1, 072 3.140 .098 .325∗ 1.032∗
35 510 1.379 .117 .988 .502
36 −547 −1.451 .078 .917 −.421
37 −210 −.553 .111 1.253 −.196
38 −120 −.309 .072 1.241 −.086
39 −96 −.247 .062 1.235 −.064
40 −201 −.516 .057 1.188 −.127
41 230 .605 .106 1.233 .208
42 −66 −.168 .060 1.237 −.043
43 −1 −.004 .070 1.257 −.001
44 314 .819 .081 1.144 .242
45 295 .755 .051 1.127 .176
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TABLE 11.6. Influence statistics (DFBETAS) from the regression of BIOMASS
on the five independent variables SAL, pH, K, Na, and Zn (from SAS’s PROC
REG, option INFLUENCE). An * on the measure of influence indicates that the
value exceeds the reference value.

DFBETAS
Obs. X0 SAL pH K Na Zn
1 .010 −.004 −.004 −.002 −.032 .001
2 .074 −.086 −.014 −.081 −.016 −.007
3 .123 −.094 −.166 −.005 .152 −.171
4 .020 −.020 −.019 −.010 .027 −.021
5 .065 −.030 −.108 .245 −.244 −.083
6 .054 −.069 .022 −.220 .007 .078
7 −.019 .022 .009 .026 −.021 .013
8 −.075 .069 .810 −.030 −.041 .091
9 .029 −.034 −.014 −.017 .004 −.014
10 −.310∗ .285 .317∗ −.068 −.177 .378∗
11 −.174 .116 .172 .004 .022 .180
12 −.151 .442∗ −.150 −.294 .092 .020
13 .307∗ −.126 −.398∗ −.052 −.023 −.351∗
14 .133 .165 −.346∗ −.041 −.090 −.331∗
15 .107 −.076 −.104 −.062 .042 −.098
16 −.014 .013 .010 −.011 .005 .024
17 −.020 .027 .000 .081 −.028 −.061
18 .013 −.032 −.010 .084 .024 −.093
19 .008 −.056 .036 .041 .006 −.007
20 .043 −.118 .046 .039 .006 −.014
21 −.100 .070 .104 .106 −.084 .069
22 −.022 .012 .017 .074 .008 −.069
23 .010 −.075 .054 −.069 .163 −.044
24 .011 −.043 .030 −.014 .050 −.037
25 .041 −.057 −.012 −.007 .022 −.037
26 .074 −.074 −.006 −.047 .025 −.091
27 −.011 .012 .013 .005 −.010 .006
28 .090 −.094 −.118 .011 .037 −.042
29 −.130 .154 −.250 .235 −.010 .247
30 −.023 .026 −.024 .033 −.012 .038
31 −.141 .174 .069 .052 −.108 .097
32 −.066 .060 .059 .126 −.139 .078
33 −.044 −.179 .291 .027 .048 .249
34 .584∗ −.752∗ −.309∗ −.183 .533∗ −.406∗
35 −.125 .041 .213 .307∗ −.341∗ .210
36 −.119 .206 .015 −.114 .039 −.002
37 .060 −.023 −.069 −.079 .076 −.119
38 −.026 .035 .020 −.023 .011 −.002
39 −.001 .009 −.001 −.015 .009 −.020
40 −.059 .065 .047 −.043 .018 .033
41 .033 −.081 .058 .017 −.044 .026
42 .010 .001 −.024 −.004 .009 −.020
43 .000 .000 −.001 −.000 .000 −.000
44 −.127 .075 .180 .080 −.105 .159
45 −.056 .013 .109 .025 −.024 .083
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FIGURE 11.17. Least squares residuals plotted against the predicted values (a)
and each of the five independent variables [(b)–(f)] for the Linthurst September
data.
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FIGURE 11.18. Frequency polygon of the standardized residuals from the regres-
sion of BIOMASS on the five independent variables SALINITY, pH, K, Na, and
Zn for the Linthurst September data.

FIGURE 11.19. Normal plot of the standardized residuals from the regression of
BIOMASS on the five independent variables for the Linthurst September data.
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most negative residual, r29 = −2.080, is sufficiently larger in magnitude
than the other negative residuals to raise the possibility that it might be
an outlier. (A extreme standardized residual of −2.080 is not large for a
normal distribution but seems large in view of the positive skewness and
the fact that the next largest negative residual is −1.431.) The overall be-
havior of the residuals suggests that they may not be normally distributed.
A transformation of the dependent variable might improve the symmetry
of the distribution.
The values for the dependent variable BIOMASS cover a wide range Standardized

Residuals
Versus Ŷ

from 236 to 2,436, Table 11.4. In such cases it is not uncommon for the
variance of the dependent variable to increase with the increasing level
of performance. The plot of the standardized residuals against Ŷi does not
suggest any increase in dispersion for the larger Ŷi. The five random samples
taken at each of the nine sites, however, provide independent estimates of
variation for BIOMASS. These “within-sampling-site” variances are not
direct estimates of σ2 because the five samples at each site are not true
replicates; the values of the independent variables are not the same in all
samples. They do provide, however, a measure of the differences in variance
at very different levels of BIOMASS.
The plot of the standard deviation from each site versus the mean BIO- Standard

Deviation
Versus Mean

MASS at each site, Figure 11.20, suggests that the standard deviation
increases at a rate approximately proportional to the mean. As shown in
Chapter 12, this suggests the logarithmic transformation of the dependent
variable to stabilize the variance. The logarithmic transformation would
also reduce the positive skewness noticed earlier. Continued analysis of
these data would entail a transformation of BIOMASS to ln(BIOMASS ),
or some other similar transformation, and perhaps a change in the model
as a result of the transformation. For the present purpose, however, the
analysis is continued on the original scale.
Inspection of the remaining plots in Figure 11.17—the residuals versus Residuals

Versus Xjthe independent variables—provides only one suggestion that the relation-
ship of BIOMASS with the independent variable is other than linear. The
residuals plot for SALINITY, Figure 11.17(b), suggests a slight curvilin-
ear relationship between BIOMASS and SALINITY. A quadratic term for
SALINITY in the model might be helpful. The five extreme points noticed
in Figure 11.17(a) appear again as high values for pH, Figure 11.17(c),
and as low values for Zn, Figure 11.17(f). These points are the five points
from one sampling site, observations 26 to 30, and they are clearly having a
major impact on the regression results. This site had very high BIOMASS,
high pH, and low Zn.
The effects of the other independent variables may obscure relationships Partial

Regression
Leverage Plots

in plots of the residuals against any one independent variable. The partial
regression leverage plots, Figure 11.21, are intended to avoid this problem.
Each partial regression leverage plot shows the relationship between the
dependent variable and one of the independent variables (including the
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FIGURE 11.20. The standard deviation among observations within sites plot-
ted against the mean BIOMASS from the five observations at each site for the
Linthurst September data.
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FIGURE 11.21. The partial regression leverage plots from the regression of
BIOMASS on the intercept and five independent variables for the Linthurst data.
The slope of the plotted line is the partial regression coefficient for that variable.
Numbers associated with specific points refer to observation number.
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intercept as an independent variable) after both have been adjusted for the
effects of the other independent variables. The partial regression coefficient
for the independent variable is shown by the slope of the relationship in the
partial residuals plots, and any highly influential points will stand out as
points around the periphery of the plot. Some of the critical observations
in the plots have been labeled with their observation numbers for easier
reference.
The following points are notable from the partial regression leverage
plots.

1. The partial plot for SALINITY seems to indicate that if there is any
curvilinear relationship as suggested by Figure 11.17(b) it is largely
due to the influence of Observation 34 and, possibly, Observation 12.

2. Observation 34 repeatedly has a large positive residual for BIOMASS
and may be having a marked influence on several regression coef-
ficients. This is also the observation with the largest standardized
residual, r34 = 2.834. It is important that the data for this point be
verified.

3. The partial plots for K, Figure 11.21(d), and Na, Figure 11.21(e),
show that points 5 and 7 are almost totally responsible for any sig-
nificant relationship between BIOMASS and K and BIOMASS and
Na. Without these two points in the data set, there would be no
obvious relationship in either case.

4. Several other data points repeatedly occur on the periphery of the
plots but not in such extreme positions. Point 29, the observation
with the largest negative residual, always has a small partial residual
for the independent variable. That is, Point 29 never deviates far
from the zero mean for each independent variable after adjustment
for the other variables. It is therefore unlikely that this observation
has any great impact on any of the partial regression coefficients in
this model. Nevertheless, it would be wise to recheck the data for this
observation also.

5. One of the inadequacies of the influence statistics for detecting in-
fluential observations is illustrated with Points 5, 27, and 28 in the
partial plot for pH, Figure 11.21(c). (Points 5, 27, and 28 are the clus-
ter of three points where Observation 5 is labeled.) These three points
have the largest partial residual for pH and would appear to have a
major impact on the regression coefficient for pH. (Visualize what
the slope of the regression would be if all three points were missing.)
However, dropping only one of the three points may not apprecia-
bly affect the slope since the other two points are still “pulling” the
line in the same direction. This illustrates that the simple influence
statistics, where only one observation is dropped at a time, may not
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detect influential observations when several points are having simi-
lar influence. The partial residuals plots show these jointly influential
points.

Except for pH, these partial plots do not show any relationship between
Y and the independent variable. This is consistent with the regression re-
sults using these five variables; only pH had a partial regression coefficient
significantly different from zero (Table 5.2, page 165). In the all-possible
regressions (Table 7.1, page 212), K and Na were about equally effective
as the second variable in a two-variable model. The failure to see any as-
sociation between Y and either of these two variables in the partial plots
results from the collinearity in these data. (The collinearity is shown in
Section 11.4.3.) Collinearity among the independent variables will tend to
obscure regression relationships in the partial plots.

11.4.2 Influence Statistics
The influence statistics have been presented in Table 11.4 (Cook’s D) and
Table 11.5. The reference values for the influence statistics for this example,
p′ = 6 and n = 45, are as follows.

• vii, elements of P (called HAT DIAG in PROC REG): Average value
is p′/n = 6/45 = .133. A point is potentially influential if vii ≥
2p′/n = .267.

• Cook’s D: Cutoff value for Cook’s D is 4/n = 4/45 = .09 if the
relationship to DFFITS is used.

• DFFITS: Absolute values greater than 2√p′/n = 2√6/45 = .73
indicate influence on Ŷi.

• DFBETASj : Absolute values greater than 2/
√
n = .298 indicate in-

fluence on β̂j .

• COVRATIO: Values outside the interval 1±3p′/n = (.6, 1.4) indicate
a major effect on the generalized variance.

The points that exceed these limits are marked with an asterisk in Ta-
bles 11.4 (Cook’s D) and 11.5. Nine observations appear potentially influ-
ential, based on values of vii, or influential by Cook’s D, DFFITS, or one
or more of the DFBETASj ; COVRATIO is ignored for the moment. These
nine points are summarized in Table 11.7.
The influence statistics need to be studied in conjunction with the par- vii
tial regression leverage plots, Figure 11.21. The plots give insight into why
certain observations are influential and others are not. The ith diagonal el-
ements of P , vii, relate to the relative distance the ith observation is from
the centroid of the sample X-space and, hence, that point’s potential for
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TABLE 11.7. Nine observations showing potential influence (vii) or influence in
the Linthurst data. The asterisk in the column indicates that the measure exceeded
its cutoff point.

DFBETAS
Obs. vii Cook’s D DFFITS Intercept SAL pH K Na Zn
5 ∗
7 ∗
10 ∗ ∗ ∗
12 ∗ ∗ ∗
13 ∗ ∗ ∗
14 ∗ ∗ ∗ ∗
29 ∗ ∗
34 ∗ ∗ ∗ ∗ ∗ ∗ ∗
35 ∗ ∗

influencing the regression results. Two observations, 5 and 7, are flagged
by vii meaning that these two points are the most “distant” in the sense of
being on the fringe of the cloud of sample points. This is difficult to detect
from simple inspection of the data, Table 5.1. Although both points have
values near the extremes for one or more of the variables, neither has the
most extreme value for any of the variables. They do, however, appear as
extreme points in several of the residuals plots, particularly the plots for
K and Na. Note, however, that neither observation is detected as being
influential by any of the measures of influence. This appears to be a con-
tradiction, but the measures of influence show the impact when only that
one observation is dropped from the analysis. In the partial plots for K
and Na it is clear that the two observations are operating in concert; elim-
inating either 5 or 7 has little effect on the regression coefficient because of
the influence of the remaining observation. Similarly, and as noted earlier,
the cluster of four points 5, 7, 16, and 37 (only 5 and 7 are labeled) are
operating together in the partial plot for Zn to mask the effect of elimi-
nating one of these points. In other cases, as with Point 5 in the partial
plot for SALINITY or Point 7 in the partial plot for pH, the potentially
influential point is not an extreme point in that dimension and is, in fact,
not influential for that particular regression coefficient.
Cook’s D and DFFITS are very similar measures and identify the same Cook’s D,

DFFITS,
and DFBETAS

four observations as being influential: Observations 12, 14, 29, and 34.
Dropping any one of these four points causes a relatively large shift in
β̂ or Ŷ , depending on the interpretation used. They are consistently on
the periphery of the partial plots. Point 33 is also on the periphery in all
plots but was not flagged by either Cook’sD or DFFITS. However, its value
for both measures is only slightly below the cutoff. Of these four points,
only 34 has influence on most of the individual regression coefficients; only
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DFBETAS for K is not flagged. This is consistent with the position of 34
in the partial plots.
Finally, there are three observations, 10, 13, and 35, that have been
flagged as having influence on one or more regression coefficients but which
were not detected by any of the general influence measures, vii, Cook’s D,
or DFFITS. In these cases, however, the largest DFBETASj(i) was .3457,
only slightly above the critical value of .298.
The COVRATIO statistic identifies nine observations as being influential COVRATIO
with respect to the variance–covariance matrix of β̂; all but two of these
nine points increase the precision of the estimates. The two points, 12
and 34, whose presence inflates the generalized variance (COVRATIO <
1.0) are two points that were influential for several regression coefficients.
These two points have the largest standardized residuals, so when they are
eliminated the estimate of σ2 and the generalized variance decrease. Thus,
in this case, the low COVRATIO might be reflecting inadequacies in the
model.
What is gained from the partial regression leverage plots and the influ- Discussion
ence measures? They must be viewed as diagnostic techniques, as methods
for studying the relationship between the regression equation and the data.
These are not tests of significance, and flagging an observation as influen-
tial does not imply that the observation is somehow in error. Of course,
an error in the data can make an observation very influential and, there-
fore, careful editing of the data should be standard practice. Detection of a
highly influential point suggests that the editing of the data, and perhaps
the protocol for collecting the data, be rechecked.
A point may be highly influential because, due to inadequate sampling,
it is the only observation representing a particular region of the X-space.
Is this the reason Points 5 and 7 are so influential? They are the two most
“remote” points and are almost totally responsible for the estimates of the
regression coefficients for K and Na. More data might “fill in the gaps” in
theX-space between these two points and the remaining sample points and,
as a result, tend to validate these regression estimates. Alternatively, more
data might confirm that these two points are anomalies for the population
and, hence, invalidate the present regression estimates. If one is forced to be
content with this set of data, it would be prudent to be cautious regarding
the importance of K and Na since they are so strongly influenced by these
two data points.
The purpose of the diagnostic techniques is to identify weaknesses in the
regression model or the data. Remedial measures, correction of errors in the
data, elimination of true outliers, collection of better data, or improvement
of the model, will allow greater confidence in the final product.
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TABLE 11.8. Collinearity diagnostics for the regression of BIOMASS on the
five independent variables SAL, pH, K, Na, and Zn, Linthurst data (from SAS
PROC REG, option COLLIN).

Prin.
Comp. Eigen- Cond. Variance Decompositon Proportion
Dimen. values Index Inter. SAL pH K Na Zn
1 5.57664 1.000 .0001 .0002 .0006 .0012 .0013 .0011
2 .21210 5.128 .0000 .0007 .0265 .0004 .0000 .1313
3 .15262 6.045 .0015 .0032 .0141 .0727 .1096 .0155
4 .03346 12.910 .0006 .0713 .1213 .2731 .2062 .0462
5 .02358 15.380 .0024 .0425 .1655 .5463 .5120 .0497
6 .00160 58.977 .9954 .8822 .6719 .1062 .1709 .7561

11.4.3 Collinearity Diagnostics
The collinearity diagnostics (Table 11.8) were obtained from the “COLLIN”
option in PROC REG (SAS Institute Inc., 1989b). The collinearity mea-
sures are obtained from the eigenanalysis of the standardized X ′X; the
sum of squares for each column is unity and the eigenvalues must add to
p′ = 6. The condition number for X is 58.98, an indication of moderate
to strong collinearities. The condition indices for the fourth and fifth di-
mensions are greater than 10, indicating that these two dimensions of the
X-space may also be causing some collinearity problems.
The variance decomposition proportions show that the sixth principal Variance

Decomposition
Proportions

component dimension is accounting for more than 50% of the variance in
four of the six regression coefficients. Thus, the intercept, SALINITY, pH,
and Zn are the four independent variables primarily responsible for the
near-singularity causing the collinearity problem. (The eigenvectors would
be required to determine the specific linear function of the X vectors that
causes the near-singularity.)
If the sixth principal component dimension is eliminated from considera-
tion and the variance proportions of the remaining dimensions restandard-
ized to add to one, the variance proportions associated with the fifth prin-
cipal component dimension account for more than 50% of the remaining
variance for four of the six regression coefficients. Similarly, eliminating the
fifth principal component dimension leaves the fourth principal component
dimension accounting for more than 50% of the variance of four of the six
regression coefficients.
Thus, it appears that the three last principal component dimensions may
be contributing to instability of the regression coefficients. The course of
action to take in the face of this problem is discussed in Chapter 13.
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11.5 Exercises

11.1. Plot the following Studentized residuals against Ŷi. Does the pattern
suggest any problem with the model or the data?

r∗i Ŷi r∗i Ŷi r∗i Ŷi r∗i Ŷi
−.53 10 −.92 11 −1.55 15 −.82 18
.23 19 −.45 23 −1.00 26 .47 32

−.36 38 .75 41 1.27 43 1.85 48
1.16 49 .04 49 .96 51 −1.03 60
−.25 65 −.92 67 −1.84 69 .52 73
−.80 76 −.88 79 .57 85 −.25 90
1.51 93 1.62 99 .65 100

11.2. Plot the following Studentized residuals against the corresponding Ŷi.
What does the pattern in the residuals suggest?

r∗i Ŷi r∗i Ŷi r∗i Ŷi r∗i Ŷi
−.53 60 −.92 81 −1.55 83 −.82 78
.23 19 −.45 53 −1.00 63 .47 42

−.36 48 .75 41 1.27 23 1.85 98
1.16 29 .04 49 .96 21 −1.03 80
−.25 65 −.92 57 −1.84 72 .52 33
−.80 76 −.88 69 .57 65 −.25 30
1.51 13 1.62 19 .65 25

11.3. For each of the following questions, choose the one you would use
(for example, a plot or an influence statistic) to answer the question.
Describe your choice and what you would expect to see if there were
no problem.

(a) Do the εi have homogeneous variance?

(b) Is the regression being unduly influenced by the 11th observa-
tion?

(c) Is the regression on X3 really linear as the model states?

(d) Is there an observation that does not seem to fit the model?

(e) Has an important independent variable been omitted from the
model?

11.4. For each of the following diagnostic tools, indicate what aspects of
ordinary least squares are being checked and how the results might
indicate problems.

(a) Normal plot of r∗i .



11.5 Exercises 393

(b) Plot of e versus Ŷ .
(c) Cook’s D.
(d) vii, the diagonal elements of P .
(e) DFBETASj .

11.5. The collinearity diagnostics in PROC REG in SAS gave the eigenval-
ues 2.1, 1.7, .8, .3, and .1 for a set of data.

(a) Compute the condition number for the matrix and the condition
index for each principal component dimension.

(b) Compute Thisted’s measure of collinearity mci. Does the value
of mci indicate a collinearity problem?

11.6. A regression problem gave largest and smallest eigenvalues of 3.29
and .02, and the following variance decomposition proportions corre-
sponding to the last principal component.

Parameter: β̂0 β̂1 β̂2 β̂3 β̂4 β̂5
Variance Proportion: .72 .43 .18 .85 .71 .02

(a) Do these results indicate collinearity problems?

(b) Which β̂s, if any, are “suffering” from collinearity? Explain the
basis for your conclusion.

11.7. PROC REG (in SAS) was run on a set of data with n = 40 ob-
servations on Y and three independent variables. The collinearity
diagnostics gave the following results.

Num- Eigen- Cond. Variance Proportions
ber value Index Intercept X1 X2 X3

1 3.84682 1.000 .0007 .0010 .0043 .0075
2 .09992 6.205 .0032 .0059 .1386 .8647
3 .04679 9.067 .0285 .0942 .7645 .0912
4 .00647 24.379 .9676 .8990 .0926 .0366

(a) What is the rank of X in this model?
(b) What is the condition number forX? What does that say about
the potential for collinearity problems?

(c) Interpret the variance proportions for the fourth principal com-
ponent. Is there variance inflation from the collinearity? Which
regression coefficients are being affected most?

(d) Compute the variance proportions for the third principal com-
ponent after the fourth has been removed. Considering the con-
dition index and the variance proportions for the third principal
component, is there variance inflation from the third compo-
nent?
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11.8. An experiment was designed to estimate the response surface re-
lating Y to two quantitative independent variables. A 4 × 4 facto-
rial set of treatments was used with X1 = 1, 2, 3, and 4, and X2 =
65, 70, 75, and 80.

(a) Set up X for the linear model,

Yij = β0 + β1X1i + β2X2i + εij .

(You need only use the 16 distinct rows of X.) Do the singular
value decomposition on the scaled X. Is there any indication of
collinearity problems?

(b) Redefine the model so that X1 and X2 are both expressed as
deviations from their means. Redo the singular value decompo-
sition. Have the collinearity diagnostics changed? Explain the
differences, if any.

(c) Use the centered Xs but include squares of the Xs in the model.
Redo the singular value decomposition. Have the collinearity
diagnostics changed? Explain the changes.

11.9. The following are the results of a principal component analysis, on Z,
of data collected from a fruit fly experiment attempting to relate a
measure of fly activity,WFB = wing beat frequency, to the chemical
activity of four enzymes, SDH, FUM , GH, and GO. Measurements
were made on n = 21 strains of fruit fly. (Data courtesy of Dr. Laurie
Alberg, North Carolina State University.)

Eigenvalues: 2.1970 1.0790 .5479 .1762

Eigenvectors
Variable 1st 2nd 2rd 4th
SDH .547 −.465 −.252 −.649
FUM .618 −.043 −.367 .694
GH .229 .870 −.306 −.312
GO .516 .158 .842 −.005

(a) Compute the proportion of the dispersion in the X-space ac-
counted for by each principal component.

(b) Compute the condition number for Z and the condition index
for each principal component. What do the results suggest about
possible variance inflation from collinearity?

(c) Describe the first principal component in terms of the original
centered and standardized variables. Describe the second prin-
cipal component.
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(d) The sum of the variances of the estimates of the least squares
regression coefficients, tr[Var(β̂)] =

∑
(1/λj)σ2, must be larger

than σ2/λ4. Compute this minimum (in terms of σ2). How does
this compare to the minimum if the four variables had been
orthogonal?

11.10. The following questions relate to the residuals analysis reported in
Tables 11.4 and 11.5.

(a) Compute s2(Ŷi) + s2(ei) for several choices of i. How do you
explain the fact that you obtain very nearly the same number
each time?

(b) Find the largest and smallest s(Ŷi) and the largest and smallest
vii. Explain why they derive from the same observations in each
case.

(c) A COVRATIO equal to 1.0 implies that the ith point has no real
impact on the overall precision of the estimates. A COVRATIO
less than 1.0 indicates that the presence of the ith observation
has decreased the precision of the estimates (e.g., Observation
12). How do you explain the presence of an additional observa-
tion causing less precision?

(d) Cook’s D provides a measure of the shift in β̂. The DFBETAS
measure shifts in the individual β̂j . How do you explain the fact
that Observation 29, which has the largest value of Cook’s D,
has no DFBETASj that exceed the cutoff point, whereas Obser-
vation 34, which has the next to the largest value of Cook’s D,
shows major shifts in all but one of the regression coefficients?
Conversely, explain why Observation 10 has a small Cook’s D
but shows major shifts in the intercept and the regression coef-
ficients for pH and Zn.

11.11. The accompanying table reports data on percentages of sand, silt, and
clay at 20 sites. [The data are from Nielsen, Biggar, and Erh (1973),
as presented by Andrews and Herzberg (1985). The depths 1, 2, and
3 correspond to depths 1, 6, and 12 in Andrews and Herzberg.] Use
sand, silt, and clay percentages at the three depths as nine columns
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of an X matrix.

Plot Depth 1 Depth 2 Depth 3
No. Sand Silt Clay Sand Silt Clay Sand Silt Clay
1 27.3 25.3 47.4 34.9 24.2 40.7 20.7 36.7 42.6
2 40.3 20.4 39.4 42.0 19.8 38.2 45.0 25.3 29.8
3 12.7 30.3 57.0 25.7 25.4 49.0 13.1 37.6 49.3
4 7.9 27.9 64.2 8.0 26.6 64.4 22.1 30.8 47.1
5 16.1 24.2 59.7 14.3 30.4 55.3 5.6 33.4 61.0
6 10.4 27.8 61.8 18.3 27.6 54.1 8.2 34.4 57.4
7 19.0 33.5 47.5 27.5 37.6 34.9 .0 30.1 69.9
8 15.5 34.4 50.2 11.9 38.8 49.2 4.4 40.8 54.8
9 21.4 27.8 50.8 20.2 30.3 49.3 18.9 36.1 45.0
10 19.4 25.1 55.5 15.4 35.7 48.9 3.2 44.4 52.4
11 39.4 25.5 35.6 42.6 23.6 33.8 38.4 32.5 29.1
12 32.3 32.7 35.0 20.6 28.6 50.8 26.7 37.7 35.6
13 35.7 25.0 39.3 42.5 20.1 37.4 60.7 13.0 26.4
14 35.2 19.0 45.8 32.5 27.0 40.5 20.5 42.5 37.0
15 37.8 21.3 40.9 44.2 19.1 36.7 52.0 21.2 26.8
16 30.4 28.7 40.9 30.2 32.0 37.8 11.1 45.1 43.8
17 40.3 16.1 43.6 34.9 20.8 44.2 5.4 44.0 50.6
18 27.0 28.2 44.8 37.9 30.3 31.8 8.9 57.8 32.8
19 32.8 18.0 49.2 23.2 26.3 50.5 33.2 26.8 40.0
20 26.2 26.1 47.7 29.5 34.9 35.6 13.2 34.8 52.0

(a) From the nature of the variables, is there any reason to expect
a collinearity problem if these nine variables were to be used as
independent variables in multiple regression analysis?

(b) Center and scale the variables and do a singular value decompo-
sition on Z. Does the SVD indicate the presence of a collinearity
problem? Would you have obtained the same results if the vari-
ables had not been centered and the intercept included? Explain.



12
TRANSFORMATION OF
VARIABLES

Several methods for detecting problem areas were dis-
cussed in Chapter 11 and their applications to real data
were demonstrated.

This chapter discusses the use of transformations of
variables to simplify relationships, to stabilize variances,
and to improve normality. Weighted least squares and
generalized least squares are presented as methods of
handling the problems of heterogeneous variances and
lack of independence.

There are many situations in which transformations of the dependent
or independent variables are helpful in least squares regression. Chapter
10 suggested transformation of the dependent variable as a possible rem-
edy for some of the problems in least squares. In this chapter, the reasons
for making transformations, including transformations on the independent
variables, and the methods used to choose the appropriate transforma-
tions are discussed more fully. Generalized least squares and weighted least
squares are included in this chapter because they can be viewed as ordinary
least squares regression on a transformed dependent variable.

12.1 Reasons for Making Transformations

There are three basic reasons for transforming variables in regression. Trans-
formations of the dependent variable were indicated in Chapter 10 as possi-
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ble remedies for nonnormality and for heterogeneous variances of the errors.
A third reason for making transformations is to simplify the relationship
between the dependent variable and the independent variables.
A basic rule of science says that, all other things being equal, the sim- The Simplest

Modelplest model that describes the observed behavior of the system should be
adopted. Simple relationships are more easily understood and communi-
cated to others. With statistical models, the model with the fewest param-
eters is considered the simplest, straight-line relationships are considered
simpler than curvilinear relationships, and models linear in the parameters
are simpler than nonlinear models.
Curvilinear relationships between two variables frequently can be simpli- Curvilinear

Relationshipsfied by a transformation on either one or both of the variables. The power
family of transformations and a few of the two-bend transformations are
discussed for this purpose (Section 12.2).
Many models nonlinear in the parameters can be linearized, reexpressed Nonlinear

Modelsas a linear function of the parameters, by appropriate transformations. For
example, the relationship

Y = αXβ

is linearized by taking the logarithm of both sides of the equality giving

ln(Y ) = ln(α) + β[ln(X)]

or
Y ∗ = α∗ + βX∗.

The nonlinear relationship between Y and X is represented by the linear
relationship between Y ∗ and X∗.
The effects of heterogeneous variances and nonnormality on least squares Heterogeneous

Variances and
Nonnormality

regression have already been noted (Chapter 10). Transformation of the de-
pendent variable was indicated as a possible remedy for both. Sections 12.3
and 12.4 discuss the choice of transformations for these two situations. Al-
ternatively, weighted least squares or its more general version, generalized
least squares, can be used to account for different degrees of precision in
the observations. These methods are discussed in Section 12.5.
Throughout this discussion, it should be remembered that it may not
be possible to find a set of transformations that will satisfy all objectives.
A transformation on the dependent variable to simplify a nonlinear rela-
tionship will destroy both homogeneous variances and normality if these
assumptions were met with the original dependent variable. Or, a transfor-
mation to stabilize variance may cause nonnormality. Fortunately, transfor-
mations for homogeneity of variance and normality tend to go hand-in-hand
so that often both assumptions are more nearly satisfied after an appropri-
ate transformation (Bartlett, 1947). If one must make a choice, stabilizing
variance is usually given precedence over improving normality. Many rec-
ommend that simplifying the relationship should take precedence over all.
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The latter would seem to depend on the intrinsic value and the general
acceptance of the nonlinear relationship being considered. If a nonlinear
model is meaningful and is readily interpreted, a transformation to lin-
earize the model would not seem wise if it creates heterogeneous variance
or nonnormality.

12.2 Transformations to Simplify Relationships

It is helpful to differentiate two situations where transformations to simplify
relationships might be considered. In the first case, there is no prior idea of
the form the model should take. The objective is to empirically determine
mathematical forms of the dependent and independent variables that allow
the observed relationship to be represented in the simplest form, preferably
a straight line. The model is to be linear in the parameters; only the form
in which the variables are expressed is being considered.
In the second case, prior knowledge of the system suggests a nonlinear
mathematical function, nonlinear in the parameters, for relating the de-
pendent variable to the independent variable(s). The purpose of the trans-
formation in this case is to reexpress the nonlinear model in a form that is
linear in the parameters and for which ordinary least squares can be used.
Such linearization of nonlinear models is not always possible but when it is
possible the transformation to be used is dictated by the functional form
of the model.
The power family of transformations X∗ = Xk or Y ∗ = Y k provides “One-Bend”

Transforma-
tions

a useful set of transformations for “straightening” a single bend in the
relationship between two variables. These are referred to as the “one-
bend” transformations (Tukey, 1977; Mosteller and Tukey, 1977) and
can be used on either X or Y . Ordering the transformations according to
the exponent k gives a sequence of power transformations, which Mosteller
and Tukey (1977) call the ladder of reexpressions. The common powers
considered are

k = −1, −1
2
, 0,

1
2
, 1, 2,

where the power transformation k = 0 is to be interpreted as the logarith-
mic transformation. The power k = 1 implies no transformation.
The rule for straightening a “one-bend” relationship is to move up or Ladder of

Transforma-
tions

down the ladder of transformations according to the direction in which the
bulge of the curve of Y versus X points. For example, if the bulge in the
curve points toward lower values of Y , as in the exponential decay and
growth curves shown in Figure 12.1, moving down the ladder of transfor-
mations to

√
Y , ln(Y ), and 1/Y will tend to straighten the relationship.

[In the specific case of the exponential function, it is known that the log-
arithmic transformation (k = 0) will give a linear relationship.] For the
exponential decay curve, the bulge also points toward lower values of X.
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FIGURE 12.1. Examples of the exponential growth curve and the exponential
decay curve.

Therefore, moving down the ladder for a power transformation of X will
also tend to straighten the relationship. For the exponential growth curve,
however, one must move up the ladder to X2 or X3 for a power trans-
formation on X to straighten the relationship; the bulge points upward
with respect to X. The inverse polynomial curve (Figure 12.2) points up-
ward with respect to Y and downward with respect to X. Therefore, higher
powers of Y or lower powers of X will tend to straighten the relationship.
How far one moves on the ladder of transformations depends on the
sharpness of the curvature. This is easily determined when only one in-
dependent variable is involved by trying several transformations on a few
observations covering the range of the data and then choosing that transfor-
mation which makes the points most nearly collinear. Several independent
variables make the choice more difficult, particularly when the data are not
balanced or when there are interactions among the independent variables.
The partial regression leverage plots for the first-degree polynomial model
will show the relationship between Y and a particular independent variable
after adjustment for all other independent variables, and should prove help-
ful in determining the power transformation. Since only one transformation
on Y can be used in any one analysis, attention must focus on transforma-
tions of the independent variables when several independent variables are
involved.
Box and Tidwell (1962) give a computational method for determining Box–Tidwell

Methodthe power transformations on independent variables such that lower-order
polynomial models of the transformed variables might be used. They as-
sume that the usual least squares assumptions are well enough satisfied on
the present scale of Y (perhaps after some transformation) so that further
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FIGURE 12.2. Examples of the inverse polynomial model and the logistic model.

transformations to simplify relationships must be done on the independent
variables. The Box–Tidwell method is a general method applicable to
any model and any class of transformations. However, its consideration
here is restricted to the polynomial model and power transformations on
individual Xs. The steps of the Box–Tidwell method are given for a full,
second-degree polynomial model in two variables. The simplifications of
the procedure and an illustration for the first-degree polynomial model are
given.
The proposed second degree model is Procedure

Yi = F (U ,β) + ε
= β0 + β1Ui1 + β2Ui2 + β11U

2
i1 + β22U

2
i2 + β12Ui1Ui2 + εi,

where i = 1, . . . , n and j = 1, 2. The Uij are power transformations on Xij :

Uij =


X
αj

ij if αj �= 0
ln(Xij) if αj = 0.

(12.1)

The objective is to find the α1 and α2 for transforming Xi1 and Xi2 to Ui1
and Ui2, respectively, that provide the best fit of F (U , β̂) to Y . The steps
in the Box–Tidwell method to approximate the αj are as follows.

1. Fit the polynomial model to Y to obtain the regression equation in
the original variables Ŷ = F (X, β̂).

2. Differentiate Ŷ with respect to each independent variable and eval-
uate the partial derivatives for each of the n observations to obtain
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Wij = ∂(Ŷ )/∂Xj , i = 1, . . . , n. For the quadratic model,

Wi1 = β̂1 + 2β̂11Xi1 + β̂12Xi2

and
Wi2 = β̂2 + 2β̂22Xi2 + β̂12Xi1.

(For the first degree polynomial model, the partial derivatives are
simply the constants Wi1 = β̂1 and Wi2 = β̂2.)

3. Create two new independent variables Zi1 and Zi2 by multiplying
each Wij by the corresponding values of Xij [ln(Xij)], j = 1, 2.

4. Refit the polynomial model augmented with the two new variables
Z1 and Z2. Let γ̂j be the partial regression coefficient obtained for
Zj .

5. Compute the desired power transformations as α̂j = γ̂j + 1, j = 1, 2.

This is the end of the first round of iteration to approximate the coefficients
for the power transformation. The αj are then used to transform the origi-
nal Xs (according to Equation 12.1) and the process is repeated using the
power-transformed variables as if they were the original variables. The αj
obtained on the second iteration are used to make a power transformation
on the previously transformed variables. (This is equivalent to transform-
ing the original variables using the product of αj from the first and second
steps as the power on the jth variable.) The iteration terminates when αj
converges close enough to 1.0 to cause only trivial changes in the power
transformation.

The Box–Tidwell method is illustrated using data from an experiment to Example 12.1
test tolerance of certain families of pine to salt water flooding (Land, 1973).
Three seedlings from each of eight families of pine were subjected to 0, 72,
or 144 hours of flooding in a completely random experimental design. The
data are given in Table 12.1. The response variable is the chloride content
(% dry matter) of the pine needles. (The Y = .00% chloride measurement
for Family 3 was changed to Y = .01 andX = 0 hours flooding was changed
to X = 1 hour. Both changes were made to avoid problems with taking
logarithms in the Box–Tidwell method and in the Box–Cox method used
in Exercise 12.1.)
The regression of Y = (% Chloride) on X = hours of exposure, and al-
lowing a different intercept for each family, required a quadratic polynomial
to adequately represent the relationship. The Box–Tidwell method is used
to search for a power transformation on X that allows the relationship to
be represented by a straight line. The first step fits the model

Yijk = β0i + βXj + εijk,
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TABLE 12.1. Chloride content (percent dry weight) of needles of pine seedlings
exposed to 0, 72, or 144 hours of flooding with sea water. Nine seedlings of each
of eight genetic families were used in a completely random experimental design.
(Data from S. B. Land, Jr., 1973, Ph.D. Thesis, N.C. State University, and used
with permission.)

Hours of Flooding with Saltwater
Family 0 72 144
1 .36 .47 .30 3.54 4.35 4.88 6.13 6.49 7.04
2 .32 .63 .51 4.95 4.45 1.50 6.46 4.35 2.18
3 .00 .43 .72 4.26 3.89 6.54 5.93 6.29 9.62
4 .54 .70 .49 3.69 2.81 4.08 5.68 4.68 5.79
5 .44 .42 .39 3.01 4.08 4.54 6.06 6.05 6.97
6 .55 .57 .45 2.32 3.57 3.59 4.32 6.11 6.49
7 .20 .51 .27 3.16 3.17 3.75 4.79 5.74 5.95
8 .31 .44 .84 2.80 2.96 2.04 10.58 4.44 1.70

where i = 1, . . . , 8 designates the family, Xj is the number of hours of
flooding, j = 1, 2, 3, and k = 1, 2, 3 designates the seedling within each
i, j combination. The estimate of the regression coefficient is β̂ = .01206.
This is the partial derivative of Ŷijk with respect to X when the model
is linear in X; therefore, Wi = β̂ in step two. Thus, the new independent
variable is

Zj = 0.01206Xj [ln(Xj)].

The model is augmented with Zj to give

Yijk = β0i + βXj + γZj + εijk.

Fitting this model gives γ̂ = −.66971; thus, α̂ = γ̂ + 1 = .33029 is the
estimated power transformation on X from the first iteration. The cycle is
repeated using the transformed X(1)j = (Xj).33029 in place of Xj .
The second iteration gives β̂ = 0.41107, γ̂ = .22405, and α̂ = 1.22405.
Thus, the power transformation on X(1)j is X(2)j = (X(1)j)1.22405. The
third iteration uses X(2)j in place of X(1)j .
The third iteration gives β̂ = .26729, γ̂ = .00332, and α̂ = .99668. If the
iterations were to continue, the new independent variable would beX(3)j =
(X(2)j).99668. Since α̂ is very close to 1.0, giving only trivial changes in
X(2)j , the iterations can stop. The estimated power transformation on X
is the product of the three αs, (.33029)(1.22405)(.99668) = .4023, which
is close to the square root transformation on X. In this example, a linear
model using the transformed X∗ = X .4023 provides the same degree of fit
as a quadratic model using the original Xj ; the residual sums of squares
from the two models are very nearly identical.
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An alternative method of determining the power transformations is to Estimating
Power with
Nonlinear
Regression

include the powers on the independent variables as parameters in the model
and use nonlinear least squares to simultaneously estimate all parameters
(Chapter 15). This may, in some cases, lead to overparameterization of
the model and failure of the procedure to find a solution. There is no
assurance that appropriate power transformations will exist to make the
chosen polynomial fit the data. The usual precautions should be taken to
verify that the model is adequate for the purpose.
The objective to this point has been to find the power transformation of Transformations

and Model
Assumptions

either Y or X that most nearly straightens the relationship. However, any
transformation on the dependent variable will also affect the distributional
properties of Y . Hence, the normality and common variance assumptions
on ε must be considered at the same time as transformations to simplify
relationships. The power family of transformations on the dependent vari-
able is considered in Section 12.4, where the criteria are to have E(Y )
adequately represented by a relatively simple model and the assumptions
of normality and constant variance approximately satisfied (Box and Cox,
1964).
Relationships that show more than one bend, such as the classical S- Two-Bend

Transforma-
tions

shaped growth curve (see the logistic curve in Figure 12.2), cannot be
straightened with the power family of transformations. A few commonly
used two-bend transformations are:

1. logit: Y ∗ = 1
2 log[p/(1− p)] ,

2. arcsin (or angular): Y ∗ = arcsin(
√
p) ,

3. probit: Y ∗ = Φ−1(p), where Φ−1(p) is the standard normal deviate
that gives a cumulative probability of p.

These transformations are generally applied to situations where the variable
p is the proportion of “successes” and consequently bounded by 0 and 1.
The effect of the transformation in all three cases is to “stretch” the upper
and lower tails, the values of p near one and zero, making the relationship
more nearly linear (Bartlett, 1947). The logit is sometimes preferred as
a means of simplifying a model that involves products of probabilities.
The probit transformation arises as the logical transformation when, for
example, the chance of survival of an organism to a toxic substance is
related to the dose, or ln(dose), of the toxin through a normal probability
distribution of sensitivities. That is, individuals in the population vary
in their sensitivities to the toxin and the threshold dose (perhaps on the
logarithmic scale) that “kills” individuals has a normal distribution. In
such case, the probit transformation translates the proportion affected into
a linear relationship with dose, or ln(dose). The logit transformation has
a similar interpretation but where the threshold distribution is the logistic
distribution.
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Nonlinear models that can be linearized are called intrinsically lin- Intrinsically
Linear Modelsear. The function Y = αXβ in Section 12.1 was linearized by taking the

logarithm of both Y and X. If a positive multiplicative random error is
incorporated to make it a statistical model, the model becomes

Yi = αX
β
i εi. (12.2)

The linearized form of this model is

ln(Yi) = ln(α) + β[ln(Xi)] + ln(εi)

or

Y ∗
i = α∗ + βX∗

i + ε
∗
i , (12.3)

where α∗ = ln(α), X∗
i = ln(Xi), and ε

∗
i = ln(εi). This transformation is

repeated here to emphasize the impact of the transformation of Y on the
random errors. The least squares model assumes that the random errors
are additive. Thus, in order for the random error to be additive on the log
scale, they must have been multiplicative on the original scale. Further-
more, the ordinary least squares assumptions of normality and homoge-
neous variances apply to the ε∗i = ln(εi), not to the εi. The implication is
that linearization of models, and transformations in general, must also take
into account the least squares assumptions. It may be better in some cases,
for example, to forgo linearization of a model if the transformation destroys
normality or homogeneous variances. Likewise, it may not be desirable to
go to extreme lengths to achieve normality or homogeneous variances if it
entails the use of an excessively complicated model.
Another example of an intrinsically linear model is the exponential Exponential

Growth Modelgrowth model,

Yi = αeβXiεi. (12.4)

This growth function starts at Yi = α when X = 0 and increases expo-
nentially with a relative rate of growth equal to β (α > 0, β > 0). The
exponential decay model has the same form but with a negative expo-
nential term. The decay model starts at Yi = α when X = 0 and declines
at a relative rate equal to β. The two exponential functions are illustrated
in Figure 12.1. Both are linearized with the logarithmic transformation.
Thus, for the growth model,

Y ∗
i = α

∗ + βXi + ε∗i ,

where Y ∗
i , α, and ε

∗
i are the natural logarithms of the corresponding quan-

tities in the original model.
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One version of the inverse polynomial model has the form Inverse Poly-
nomial Model

Yi =
Xi

α+ βXi + εi
. (12.5)

This function, illustrated in Figure 12.2, is a monotonically increasing func-
tion of X that very slowly approaches the asymptote Y = 1/β. The recip-
rocal transformation on Y , Y ∗ = 1/Y , gives

Y ∗
i = β + α

(
1
Xi

)
+ ε∗i .

Thus, Y ∗ is a first-degree polynomial in 1/X with intercept β and slope α.
Values of X equal to zero must be avoided for this transformation to work.
The frequently used logistic growth model is Logistic Model

Yi =
α

1 + γe−βXiεi
. (12.6)

This function gives the characteristic growth curve starting at Y = α/(1+
γ) at X = 0 and asymptoting to Y = α as X gets large (Figure 12.2). The
function is intrinsically linear only if the value of α is known, as is the case,
for example, when the dependent variable is the proportion of individuals
showing reaction to a treatment. If α is known, the model is linearized by
defining

Y ∗ = ln
( α
Y

− 1
)

and the model becomes

Y ∗
i = γ

∗ − βXi + ε∗i ,

where γ∗ = ln(γ) and ε∗i = ln(εi).
In these examples, the placement of the error in the original model was
such that the transformed model had an additive error. If there were reason
to believe that the errors were additive in the original models, all would
have become intrinsically nonlinear. The least squares assumptions on the
behavior of the errors applies to the errors after transformation. Decisions
as to how the errors should be incorporated into the models will depend
on one’s best judgment as to how the system operates and the analysis of
the behavior of the residuals before and after transformation.
Any mathematical function relating Y to one or more independent vari- Approximating

Functions with
Polynomials

ables can be approximated to any degree of precision desired with an ap-
propriate polynomial in the independent variables. This is the fundamen-
tal reason polynomial models have proven so useful in regression, although
seldom would one expect a polynomial model to be the true model for a
physical, chemical, or biological process. Even intrinsically nonlinear mod-
els can be simplified, if need be, in the sense that they can be approximated
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with polynomial models, which are linear in the parameters. (Some cau-
tion is needed in using a polynomial to approximate a nonlinear response
that has an asymptote. The polynomial will tend to oscillate about the
asymptote and eventually diverge.) The regression coefficients in the poly-
nomial model will usually be nonlinear functions of the original parameters.
This will make it more difficult to extract the physical meaning from the
polynomial model than from the original nonlinear model. Nevertheless,
polynomial models will continue to serve as very useful approximations,
at least over limited regions of the X-space, of the more complicated, and
usually unknown, true models.

12.3 Transformations to Stabilize Variances

The variance and the mean are independent in the normal probability dis- Links Between
Mean and
Variance

tribution. All other common distributions have a direct link between the
mean and the variance. For example, the variance is equal to the mean in
the Poisson distribution, the distribution frequently associated with count
data. The plot of the Poisson variance against the mean would be a straight
line with a slope of one. The variance of the count of a binomially dis-
tributed random variable is np(1− p) and the mean is np. The plot of the
binomial variance against the mean would show zero variance at p = 0 and
p = 1 and maximum variance at p = 1/2. The variance of a chi-square dis-
tributed random variable is equal to twice its mean. As with the Poisson,
this is a linear relationship between the variance and the mean but with
a steeper slope. A priori, one should expect variances to be heterogeneous
when the random variable is not normally distributed.
Even in cases where there is no obvious reason to suspect nonnormality,
there often is an association between the mean and the variance. Most
commonly, the variance increases as the mean increases. It is prudent to
suspect heterogeneous variances if the data for the dependent variable cover
a wide range, such as a doubling or more in value between the smallest and
largest observations.
If the functional relationship between the variance and the mean is General Trans-

formation to
Stabilize
Variance

known, a transformation exists that will make the variance (approximately)
constant (Bartlett, 1947). Let

σ2 = Ω(µ),

where Ω(µ) is the function of the mean µ that gives the variance. Let f(µ)
be the transformation needed to stabilize the variance. Then f(µ) is the
indefinite integral

f(µ) =
∫

1
[Ω(µ)]1/2

dµ.

(See Exercise 12.21.)
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For example, if σ2 is proportional to µ, σ2 = cµ as in the case of a Example 12.2
Poisson random variable,

f(µ) =
∫

1
[(cµ)]1/2

dµ = 2c−1/2√µ.

Thus, except for a proportionality constant and the constant of integration,
the square-root transformation on the dependent variable would stabilize
the variance in this case.

In general, if the variance is (approximately) proportional to µ2k, the Variance Pro-
portional to
Power of Mean

appropriate transformation to stabilize the variance is Y ∗ = Y 1−k. (See
Exercise 12.22.) In the Poisson example, k = 1

2 . When k = 1, the variance
is proportional to the square of the mean and the logarithmic transforma-
tion is appropriate; Y 0 is interpreted as the logarithmic transformation.
When the relationship between the mean and the variance is not known,
empirical results can be used to approximate the relationship and suggest
a transformation.
When the variance is proportional to a power of the mean, the transfor-
mation to stabilize the variance is a power transformation on the dependent
variable—the same family of transformations used for “straightening” one-
bend relationships. Thus, a possible course of action is to use a power
transformation on the dependent variable to stabilize the variance and an-
other power transformation on the independent variable to “straighten”
the relationship.
The variance may not be proportional to a power of the mean. A bino- Arcsin Trans-

formationmially distributed random variable, for example, has maximum variance
at p = 1

2 with decreasing variance as p goes toward either zero or one,
σ2(p̂) = p(1 − p)/n. The transformation that approximately stabilizes the
variance is the arcsin transformation, Y ∗ = arcsin(

√
p̂) = sin−1

√
p̂. See

Exercise 12.22. This assumes that the number of Bernoulli trials in each
p̂i is constant. Although the arcsin transformation is designed for binomial
data, it seems to stabilize the variance sufficiently in many cases where the
variance is not entirely binomial in origin.
The arcsin transformation is the only one of the three two-bend trans-
formations given in Section 12.2 that also stabilizes the variance (if the
data are binomially distributed). The other two, the logit and the probit,
although they are generally applied to binomial data, will not stabilize the
variance.
A word of caution is in order regarding transformation of proportional
data. Not all such data are binomially distributed, and therefore they
should not be automatically subjected to the arcsin transformation. For ex-
ample, chemical proportions that vary over a relatively narrow range, such
as the oil content in soybeans, may be very nearly normally distributed
with constant variance.
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12.4 Transformations to Improve Normality

Transformations to improve normality have generally been given lower pri-
ority than transformations to simplify relationships or stabilize variance.
Even though least squares estimation per se does not require normality and
moderate departures from normality are known not to be serious (Bartlett,
1947), there are sufficient reasons to be concerned about normality (see
Section 10.2).
Fortunately, transformations to stabilize variance often have the effect
of also improving normality. The logit, arcsin, and probit transformations
that are used to stabilize variance and straighten relationships also make
the distribution more normal-like by “stretching” the tails of the distri-
bution, values near zero or one, to give a more bell-shaped distribution.
Likewise, the power family of transformations, which have been discussed
for straightening one-bend relationships and stabilizing variance, are also
useful for increasing symmetry (decreasing skewness) of the distribution.
The expectation is that the distribution will also be more nearly normal.
The different criteria for deciding which transformation to make will not
necessarily lead to the same choice, but it often happens that the optimum
transformation for one will improve the other.
Box and Cox (1964) present a computational method for determining a Box–Cox

Methodpower transformation for the dependent variable where the objective is to
obtain a simple, normal, linear model that satisfies the usual least squares
assumptions. The Box–Cox criterion combines the objectives of the pre-
vious sections—simple relationship and homogeneous variance—with the
objective of improving normality. The method is presented in this section
because it is the only approach that directly addresses normality. The Box–
Cox method results in estimates of the power transformation (λ), σ2, and
β that make the distribution of the transformed data as close to normal as
possible [at least in large samples and as measured by the Kullback–Leibler
information number (Hernandez and Johnson, 1980)]. However, normality
is not guaranteed to result from the Box–Cox transformation and all the
usual precautions should be taken to check the validity of the model.
The Box–Cox method uses the parametric family of transformations de-
fined, in standardized form, as

Y
(λ)
i =

{
Y λ
i −1

λ(
.
Y )(λ−1)

for λ �= 0
.
Y ln(Yi) for λ = 0,

(12.7)

where
.
Y is the geometric mean of the original observations,

.
Y= exp

∑
[ln(Yi)]/n.

The method assumes that for some λ the Y (λ)
i satisfy all the normal-theory

assumptions of least squares; that is, they are independently and normally
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distributed with mean Xβ and common variance σ2. With these assump-
tions, the maximum likelihood estimates of λ, β, and σ2 are obtained.
[Hernandez and Johnson (1980) point out that this is not a valid likelihood
because Y (λ)

i cannot be normal except in the special case of the original dis-
tribution being log-normal. Nevertheless, the Box–Cox method has proven
to be useful.]
The maximum likelihood solution is obtained by doing the least squares Estimating λ
analysis on the transformed data for several choices of λ from, say λ = −1
to 1. Let SS[Res(λ)] be the residual sum of squares from fitting the model
to Y (λ)

i for the given choice of λ and let σ2(λ) = {SS[Res(λ)]}/n. The
likelihood for each choice of λ is given by

Lmax = −1
2
ln[σ̂2(λ)]. (12.8)

Maximizing the likelihood is equivalent to minimizing the residual sum
of squares. The maximum likelihood solution for λ̂, then, is obtained by
plotting SS[Res(λ)] against λ and reading off the value where the minimum,
SS[Res(λ)]min, is reached. It is unlikely that the exact power transformation
defined by λ̂ will be used. It is more common to use one of the standard
power transformations, λ = 1

2 , 0,− 1
2 , −1, in the vicinity of λ̂.

Approximate confidence intervals on λ can be determined by drawing a Confidence
Intervals on λhorizontal line on the graph at

SS[Res(λ)]min

(
1 +

t2(α/2,ν)

ν

)
, (12.9)

where ν is the degrees of freedom for SS[Res(λ)]min and t(α/2,ν) is the
critical value of Student’s t with α/2 probability in each tail. Confidence
limits on λ are given as the values of λ where the horizontal line intersects
the SS[Res(λ)] curve (Box, Hunter, and Hunter, 1978).
The functional relationship between Y and the independent variables is Considerations

Before Using
Box–Cox

specified in Xβ before the maximum likelihood estimate of λ is obtained.
Thus, the solution obtained, λ̂, is conditional on, and can be sensitive to, the
presumed form of the model (Cook and Wang, 1983). The Box–Cox method
is attempting to simultaneously satisfy the three objectives, E(Y (λ)) =Xβ,
constant variance, and normality. The relative weights given to satisfying
the three objectives will depend on which will yield the greatest impact on
the likelihood function. For example, if Xβ specifies a linear relationship
between Y (λ) and X when the observed relationship between Y and X
is very curvilinear, it is likely that pressure to “straighten” the relation-
ship will dominate the solution. The transformed data can be even more
nonnormal and their variances more heterogeneous.
If emphasis is to be placed on improving normality or constancy of vari-
ance, the functional form of the model specified by Xβ should be flexible
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enough to provide a reasonable fit to a range of transformations, includ-
ing no transformation. For example, suppose the data show a curvilinear
relationship that could be straightened with an appropriate power transfor-
mation. SpecifyingXβ as a linear model would force the Box–Cox transfor-
mation to try to straighten the relationship. On the other hand, a quadratic
model forXβ would reduce the pressure to straighten the relationship and
allow more pressure on improving normality and constancy of variance. Box
and Cox (1964) show how to partition the effects of simple model, constant
variance, and normality on the likelihood estimate of λ.

The following example of a Box–Cox transformation is from a combined Example 12.3
analysis of residuals from four studies on the effects of ozone and sulfur
dioxide on soybean yields.1 Each of the studies was subjected to the appro-
priate analysis of variance for the experimental design for that year. The
observed residuals were pooled for checking model assumptions. There were
a total of 174 residuals and 80 degrees of freedom for the pooled residual
sum of squares.
Plots of the residuals suggested an increase in variance associated with
increased yield (Figure 12.3). The normal plot of residuals was only slightly
S-shaped with suggestive slightly heavy tails, but not sufficiently nonnormal
to give concern. The Box–Cox standardized transformation, Equation 12.7,
was applied for λ = −1, − 1

2 , 0,
1
2 , 1, and the analyses of variance repeated

for each λ. The plot of the pooled residual sum of squares against λ, Fig-
ure 12.4 (page 412), suggested λ̂ = −.05 with 95% confidence limits of
approximately −.55 to .40. The confidence limits on λ overlap both λ = 0
and λ = −.5 but, since λ̂ was much nearer 0 than .5, the logarithmic trans-
formation was adopted. The plot of the residuals of the log-transformed
data showed no remaining trace of heterogeneous variance or nonnormality
(Figure 12.5) and the normal plot of the residuals was noticeably straighter.

12.5 Generalized Least Squares

There will be cases where it is necessary, or at least deemed desirable, to
use a dependent variable that does not satisfy the assumption of homo-
geneous variances. The transformation required to stabilize the variances
may not be desirable because it destroys a good relationship between Y and
X, or it destroys the additivity and normal distribution of the residuals.

1Analyses by V. M. Lesser on data courtesy of A. S. Heagle, North Carolina State
University.
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FIGURE 12.3. Plot of ei versus Ŷi (untransformed) from the combined analysis
of four experiments on the effects of ozone and sulfur dioxide on soybean yields.

FIGURE 12.4. Residual sum of squares plotted against λ for the Box–Cox trans-
formation in the soybean experiments. The upper and lower limits of the approxi-
mate 95% confidence interval estimate of λ are shown by λ− and λ+, respectively.
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FIGURE 12.5. Plot of ei versus Ŷi, after the logarithmic transformation, from the
combined analysis of four experiments on the effects of ozone and sulfur dioxide
on soybean yields.

It may be that no transformation adequately stabilized the variances, or
a transformation made to simplify a relationship left heterogeneous vari-
ances. The logit and probit transformations, for example, do not stabilize
the variances. The arcsin transformation of binomial proportions will sta-
bilize the variances only if the sample sizes ni are equal. Otherwise, the
variances will be proportional to 1/ni and remain unequal after transfor-
mation. If treatment means are based on unequal numbers of observations,
the variances will differ even if the original observations had homogeneous
variances. Analysis on the original scale is preferred in such cases.
Ordinary least squares estimation does not provide minimum variance Weighted

Versus
Generalized
Least Squares

estimates of the parameters when Var(ε) �= Iσ2. This section presents
the estimation procedure that does provide minimum variance linear un-
biased estimates when the variance–covariance matrix of the errors is an
arbitrary symmetric positive definite matrix Var(ε) = σ2V . This proce-
dure is considered in two steps although the same principle is involved in
both. First, the case is considered where the εi have unequal variances but
are independent; σ2V is a diagonal matrix of the unequal variances. Sec-
ondly, the general case is considered where, in addition to heterogeneous
variances, the errors are not independent. Convention labels the first case
weighted least squares and the second more general case generalized
least squares.
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12.5.1 Weighted Least Squares
The linear model is assumed to be

Y = Xβ + ε (12.10)

with

Var(ε) = V σ2

= Diag ( a21 a22 · · · a2n )σ
2.

The variance of εi and Yi is a2iσ
2, and all covariances are zero.

The variance of a random variable is changed when the random variable General
Principleis multiplied by a constant:

σ2(cZ) = Var(cZ) = c2Var(Z)
= c2[σ2(Z)], (12.11)

where c is a constant. If the constant is chosen to be proportional to the
reciprocal of the standard deviation of Z, c = k/σ(Z), the variance of the
rescaled variable is k2:

σ2(cZ) =
(
k

σ(Z)

)2

σ2(Z) = k2. (12.12)

Thus, if each observation in Y is divided by the proportionality factors ai,
the rescaled dependent variables will have equal variances σ2 and ordinary
least squares can be applied.
This is the principle followed in weighted least squares. The dependent
variable is rescaled such that V = I after rescaling. Then ordinary least
squares is applied to the rescaled variables. (The same principle is used in
generalized least squares although the weighting is more complicated.) This
rescaling gives weight to each observation proportional to the reciprocal
of its standard deviation. The points with the greater precision (smaller
standard deviation) receive the greater weight.
Consider, for example, the model

Yi = 1β0 +Xi1β1 + · · ·+Xipβp + εi, (12.13)

where the εi are uncorrelated random variables with mean zero. Suppose
the variance of εi is a2iσ

2. Then, consider the rescaled model

Yi
ai
=

(
1
ai

)
β0 +

(
1
ai
Xi1

)
β1 + · · ·+

(
1
ai
Xip

)
βp +

εi
ai

or

Y ∗
i = X∗

i0β0 +X∗
i1β1 + · · ·+X∗

ipβp + ε
∗
i . (12.14)



12.5 Generalized Least Squares 415

Notice that ε∗i in equation 12.14 have constant variance σ
2. In fact, the

ε∗i s are uncorrelated (0, σ
2) random variables. Therefore, we can obtain

the best linear (in Y ∗
i ) unbiased estimators of β0, . . . , βp by using ordinary

least squares regression of Y ∗
i on X

∗
i0, . . . , X

∗
ip. Since any linear function of

Y ∗
i is a linear function of Yi (and vice versa), these are also the best linear
(in Yi) unbiased estimates of β0, . . . , βp in equation 12.13.
The matrix formulation of weighted regression is as follows. Define the Matrix

Formulationmatrix V 1/2 to be the diagonal matrix consisting of the square roots of the
diagonal elements of V , so that V 1/2V 1/2 = V . The weighting matrixW
that rescales Y to have common variances is

W = (V 1/2)−1

=


1/a1 0 · · · 0
0 1/a2 0
...

...
. . .

...
0 0 · · · 1/an

 , (12.15)

where the ai are constants which reflect the proportional differences in the
variances of εi. Notice thatWW = V −1. Premultiplying both sides of the
model by W gives

WY = WXβ +Wε (12.16)

or

Y ∗ = X∗β + ε∗, (12.17)

where Y ∗ =WY , X∗ =WX, and ε∗ =Wε. The variance of ε∗ is, from
the variances of linear functions,

Var(ε∗) = W [Var(ε)]W ′ =WVWσ2 = Iσ2, (12.18)

since WVW = (V 1/2)−1V 1/2V 1/2(V 1/2)−1 = I. The usual assumption
of equal variances is met and ordinary least squares can be used on Y ∗ and
X∗ to estimate β.
The weighted least squares estimate of β is β̂W

β̂W = (X∗′X∗)−1X∗′Y ∗ (12.19)

or, expressed in terms of the original X and Y ,

β̂W = (X ′W ′WX)−1(X ′W ′WY )
= (X ′V −1X)−1(X ′V −1Y ). (12.20)

The variance of β̂W is

Var(β̂W ) = (X∗′X∗)−1σ2 = (X ′V −1X)−1σ2. (12.21)
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Weighted least squares, which is equivalent to applying ordinary least
squares to the transformed variables, finds the solution β̂W that minimizes
e∗′e∗ = e′V −1e, not e′e. The analysis of variance of interest is the analysis
of Y ∗. The fitted values Ŷ

∗
and the residuals e∗ on the transformed scale

are the appropriate quantities to inspect for behavior of the model. Not
all regression programs automatically provide the weighted residuals e∗;
BMDP does (Dixon, 1981). Usually, the regression results will be presented
on the original scale so that some of the following results are given for both
scales. The transformation between scales for the fitted values and for the
residuals is the same as the original transformation between Y and Y ∗.
The fitted values on the transformed scale are obtained by Ŷ

∗
and Ŷ W

Ŷ
∗
= X∗β̂W
= X∗(X∗′X∗)−1X∗′Y ∗ = P ∗Y ∗, (12.22)

where P ∗ is the projection matrix for projecting Y ∗ onto the space defined
by X∗. The Ŷ

∗
are transformed back to the original scale by

Ŷ W = W−1Ŷ
∗
=Xβ̂W . (12.23)

Their respective variances are

Var(Ŷ
∗
) = X∗(X ′V −1X)−1X∗′σ2 = P ∗σ2 (12.24)

and

Var(Ŷ W ) = X(X ′V −1X)−1X ′σ2. (12.25)

The observed residuals are e∗ = Y ∗ − Ŷ
∗
on the transformed scale and e∗ and e

e = Y − Ŷ W on the original scale. Note that e =W−1e∗. Their variances
are

Var(e∗) = [I −X∗(X ′V −1X)−1X∗′]σ2

= (I − P ∗)σ2 (12.26)

and

Var(e) = [V −X(X ′V −1X)−1X ′]σ2. (12.27)

Note that the usual properties of ordinary least squares apply to the trans-
formed variables Y ∗, e∗, and X∗.

For illustration, suppose the dependent variable is a vector of treatment Example 12.4
means with unequal numbers ri of observations per mean. If the original
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observations have equal variances, the means will have variances σ2/ri.
Thus,

V σ2 =


1/r1 0 · · · 0
0 1/r2 · · · 0
...

...
. . .

...
0 0 · · · 1/rn

 . (12.28)

The weighting matrix that gives Var(ε∗) = Iσ2 is

W =


√
r1 0 · · · 0
0

√
r2 · · · 0

...
...

. . .
...

0 0 · · · √
rn

 . (12.29)

See also Exercise 12.24.

In Example 12.4, it is clear that the variances of the dependent variable Estimating the
Weightswill not be equal and what the weighting matrix should be. In other cases,

the variances may not be known a priori and their relative sizes will have to
be determined from the data. If true replicates were available in the data
set, the different variances could be estimated from the variance among
the replicates for each group. In the absence of true replication, one might
estimate the variances by using “near” replicates, groups of observations
having nearly the same level of the independent variable(s). The variances
of the “near” replicates might be plotted against the means of the “near”
replicates, from which the relationship between the variance and the mean
might be deduced and used to approximate the variance for each Yi.
A weighted least squares procedure is available in most least squares Computer

Programscomputer programs. Care must be used to specify the appropriate weights
for the specific program. The weights in PROC GLM and PROC REG
(SAS Institute, Inc., 1989b), for example, must be specified as a column
vector of the squares of the diagonal elements in W .

12.5.2 Generalized Least Squares
Generalized least squares extends the usual linear model to allow for an
arbitrary positive definite variance–covariance matrix of ε, Var(ε) = V σ2.
The diagonal elements need not be equal and the off-diagonal elements
need not be zero. The positive definite condition ensures that it is a proper
variance matrix; that is, any linear function of the observations will have a
positive variance. As with weighted least squares, a linear transformation
is made on Y such that the transformed model will satisfy the least squares
assumption of Var(ε∗) = Iσ2.
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For any positive definite matrix V it is possible to find a nonsingular Finding the
Weighting
Matrix

matrix T such that

TT ′ = V . (12.30)

For example, if we express V as ZLZ ′ where Z is the matrix of eigenvec-
tors of V and L is a diagonal matrix of eigenvalues (see equation 2.18),
then T = ZL1/2Z ′ satisfies equation 12.30. Note that T in equation 12.30
is not unique. If T satisfies equation 12.30, then TQ, where Q is an orthog-
onal matrix, also satisfies equation 12.30. Since T is nonsingular, it has an
inverse T−1. Premultiplying the model by T−1 gives

Y ∗ = X∗β + ε∗, (12.31)

where Y ∗ = T−1Y , X∗ = T−1X, and ε∗ = T−1ε. With this transforma-
tion,

Var(ε∗) = T−1V (T−1)′σ2 = Iσ2. (12.32)

Note that ordinary least squares estimation is again appropriate for Y ∗

and X∗ in the model in equation 12.31, and is given by

β̂G = (X∗′X∗)−1X∗′Y ∗

= (X ′(T−1)′T−1X)−1X ′(T−1)′T−1Y

= [X ′(TT ′)−1X]−1X ′(TT ′)−1Y

= [X ′V −1X]−1X ′V −1Y . (12.33)

Note that β̂G is invariant to the choice of T that satisfies equation 12.30.
That is, even though the transformed vector Y ∗ may be different for dif-
ferent choices of T satisfying equation 12.30, we get the same estimate of
β̂G for β. Recall that β̂G minimized e∗

′e∗ = e′V −1e (see Exercise 12.25).
β̂G is called the generalized least squares estimate of β. The variance
of β̂G is given by

Var(β̂G) = (X∗′X∗)−1σ2

= (X ′V −1X)−1σ2.

Note that weighted least squares is a special case of generalized least
squares. If V is a diagonal matrix, the appropriate T−1 isW as defined in
equation 12.15.
Many of the least squares regression computer programs are not de-
signed to handle generalized least squares. It is always possible, however,
to make the indicated transformations, equation 12.31, and use ordinary
least squares, or to resort to a matrix algebra computer program to do
generalized least squares.
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When variables, like weight and blood pressure, are measured on a single Example 12.5
individual over time, we expect the observations to be correlated over time.
Consider the model

Yi = β0 + εi, i = 1, . . . , n (12.34)

for my weight over n consecutive days. Clearly, we do not expect Var(ε)
to be Iσ2. Rather, we anticipate the weight measurements to be correlated
over time and, furthermore, we expect measurements on two consecutive
days to be more highly correlated than measurements that are further
apart in time. One of the models that is used to model such behavior is a
first-order autoregressive model:

εi = ρεi−1 + ηi, i = 1, . . . , n, (12.35)

where ηi are uncorrelated (0, σ2) random variables. Assuming that ε1 has
mean zero, variance σ2/(1 − ρ2), is independent of ηi for i ≥ 2, and that
|ρ| < 1, it can be shown that

Var(ε) =
1

1− ρ2


1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

...
...

...
...

ρn−1 ρn−2 ρn−3 · · · 1

σ2 (12.36)

= V σ2.

See Fuller (1996). Also, it can be shown that

T−1 =



√
1− ρ2 0 0 · · · 0 0
−ρ 1 0 · · · 0 0
0 −ρ 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · −ρ 1

 (12.37)

is such that T−1V T−1′ = I and TT ′ = V .
Therefore, model 12.34 is transformed by premultiplying by T−1 to give

Y ∗
1
Y ∗

2
...
Y ∗
n

 =


√
1− ρ2Y1
Y2 − ρY1
...

Yn − ρYn−1



=


√
1− ρ2
1− ρ
...
1− ρ

β0 +


ε∗1
η2
...
ηn


= X∗β0 + ε∗, (12.38)
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andVar(ε∗) = Iσ2. The generalized least squares estimate of β0 is obtained
by regressing Y ∗ on X∗ and is given by

β̂0,G = (X∗′X∗)−1X∗′Y ∗

=
(1− ρ2)Y1 + (1− ρ)(Y2 − ρY1) + · · ·+ (1− ρ)(Yn − ρYn−1)

(1− ρ2) + (1− ρ)2 + · · ·+ (1− ρ)2

=
Y1 + (1− ρ)[Y2 + · · ·+ Yn−1] + Yn

1 + (1− ρ)(n− 2) + 1 . (12.39)

The variance of β̂0,G is given by

V ar(β̂0,G) = (X∗′X∗)−1σ2

=
σ2

(1− ρ2) + (n− 1)(1− ρ)2 . (12.40)

For the model in equation 12.34, the ordinary least squares estimator of
β0 is

β̂0 = (X ′X)−1X ′Y
= Y . (12.41)

Note that, since Var(ε) �= Iσ2, we have

Var(β̂0) = (X ′X)−1X ′Var(ε)X(X ′X)−1

= (X ′X)−1X ′V X(X ′X)−1σ2 (12.42)
�= (X ′X)−1σ2 = σ2/n.

Since X in equation 12.34 is a column of ones, Var(β̂0) reduces to

Var(β̂0) =
σ2

n(1− ρ)2
[
1− 2ρ(1− ρ

n)
n(1− ρ2)

]
(12.43)

�= σ2

n
.

It can be shown that Var(β̂0) ≥ Var(β̂0,G) for all values of n and ρ. Ta-
ble 12.2 gives a comparison of relative efficiency of β̂0 for various values of
n and ρ. [The relative efficiency of two estimates θ̂1 to θ̂2 is measured as
the ratio of variances R.E. = s2(θ̂2)/s2(θ̂1).]
From Table 12.2, we observe that the relative efficiency of the ordinary
least squares estimator is small for large values of ρ. Also, as the sample
size increases, generally the relative efficiency increases. In this example,
it can be shown that, for any fixed ρ, the relative efficiency converges to
one as the sample size n tends to infinity. For some regression models, the
relative efficiency of the ordinary least squares estimates may be quite small
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TABLE 12.2. Relative efficiency of ordinary least squares estimator with respect
to the generalized least squares estimator of β0 in an AR(1) model.

n .1 .3 .5 .7 .9 .95
25 .999 .993 .978 .947 .897 .909
50 1.000 .996 .988 .968 .906 .887
75 1.000 .997 .992 .977 .923 .890
100 1.000 .998 .994 .982 .936 .899

compared to the generalized least squares estimates. For example, see page
715 of Fuller (1996).

In this example, we have assumed that the correlation ρ between two
consecutive observations is known. However, in practice ρ is unknown. An
estimate of ρ is given by the sample correlation of consecutive observations:

ρ̂ =
∑n
i=2(Yt − Y )(Yt−1 − Y )√∑n

t=2(Yt−1 − Y )2
√∑n

t=2(Yt − Y )2
. (12.44)

When ρ is unknown, it is common to replace ρ in the transformations given
in equation 12.38 with ρ̂. The estimated generalized least squares estimate,
β̃0,EG, obtained by replacing ρ with ρ̂ in equation 12.39,

β̃0,EG =
Y1 + (1− ρ̂)[Y2 + · · ·+ Yn−1] + Yn

1 + (1− ρ̂)(n− 2) + 1 , (12.45)

is not necessarily a better estimator than the ordinary least squares esti-
mator β̂0.
We need to emphasize that one must be somewhat cautious in the use of Warnings
generalized least squares. The point made relative to equation 12.45 that
the estimated generalized least squares estimate is not necessarily a better
estimator than the ordinary least squares estimator applies in general. As
with weighted least squares, the sum of squares e∗′e∗ is minimized and
β̂G is the best linear unbiased estimator of β if V is known. In most
cases, however, V is unknown and must be estimated from the data. When
an estimate of V is used, the solution obtained, called the estimated
generalized least squares estimate, is no longer the minimum variance
solution. In the worst cases where there is limited information with which
to estimate V , the estimated generalized least squares estimators can have
larger variances than the ordinary least squares estimators. (This comment
also applies to weighted least squares, but there the estimation problem
is much less difficult.) Furthermore, it is possible for the generalized least
squares regression line, if plotted on the original scale, to “miss” the data.
That is, all of the observed data points can fall on one side of the regression
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line. The necessary condition for this to occur is sufficiently large positive
off-diagonal elements in V . This does not depend on whether V is known or
estimated. Estimation of V , however, will likely cause the problem to occur
more frequently. Such a result is not a satisfactory solution to a regression
problem even though it may be the best linear unbiased estimate (as it is
when V is known). Plotting the data and the regression line on the original
scale will make the user aware of any such results.

The example used to illustrate weighted and generalized least squares Example 12.6
comes from an effort to develop a prediction equation for tree diameter at
54 inches above the ground (DBH ) based on data from diameters at various
stump heights. The objective was to predict amount of timber illegally
removed from a tract of land and DBH was one of the measurements
needed. Diameter at 54 inches (DBH ) and stump diameters (SD) at stump
heights (SHt) of 2, 4, 6, 8, 10, and 12 inches above ground were measured
on 100 standing trees in an adjacent, similar stand. The trees were grouped
into 2-inch DBH classes. There were n = 4, 16, 42, 26, 9, and 3 trees in
DBH classes 6, 8, 10, 12, 14, and 16 inches, respectively.
It was argued that the ratio ofDBH to the stump diameter at a particular
height should be a monotonically decreasing function approaching one as
the stump height approached 54 inches. This relationship has the form of
an exponential decay function but with much sharper curvature than the
exponential function allows. These considerations led to a model in which
the dependent variable was defined as

Yijk = [ln(SDijk)− ln(DBHik)]

and the independent variable as

Xj = [54c − (SHtj)c],

where i is the DBH class (i = 1, . . . , 6); j is the stump height class
j = 1, . . . , 6); k is the tree within each DBH class (k = 1, . . . , ni); and
ln(SD ijk) and ln(DBH ik) are the logarithms of stump diameters and DBH.
The averages of Yijk over k for each DBH –stump height category are given
in Table 12.3. The exponent c, applied to the stump heights, was used to
straighten the relationship (on the logarithmic scale) and was chosen by
finding the value c = 0.1 that minimized the residual sum of squares for
the linear relationship. Thus, the model is

Y ij. = βXj + εij.,

a no-intercept model, where the Y ij. are the DBH –stump height cell means
of Yijk given in Table 12.3. Thus, Y is a 36 × 1 vector of the six values
of Y 1j. in the first row of Table 12.3 followed by the six values of Y 2j. in
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TABLE 12.3. Averages by DBH class of logarithms of the ratios of
stump diameter to diameter at 54 inches of 100 pine trees Y ij.., where
Yijk = ln(SDijk) − ln(DBHik). The values for the independent variable
Xj = 54c−SHt c for c = .1 are shown in the last row. (Data from B. J. Rawlings,
unpublished.)

DBH No. Stump Height (Inches Above Ground)
(in.) Trees 2 4 6 8 10 12
6 4 .3435 .3435 .2715 .1438 .0719 .0719
8 16 .3143 .2687 .2548 .2294 .1674 .1534
10 42 .2998 .2514 .2083 .1733 .1463 .1209
12 26 .3097 .2705 .2409 .1998 .1790 .1466
14 9 .2121 .1859 .1597 .1449 .1039 .1039
16 3 .2549 .2549 .1880 .1529 .1529 .1529
Xj .4184 .3415 .2940 .2590 .2313 .2081

the second row, and so on. The X vector consists of six repeats of the six
values of Xj corresponding to the six stump heights.
It is not appropriate to assume Var(ε) = Iσ2 in this example for two
reasons: the dependent variable consists of averages of differing numbers
of trees within each DBH class ranging from n = 3 to n = 42; and all
Yijk from the same tree (same i and j) are correlated due to the fact that
DBH ij is involved in the definition of Yijk in each case. Also, the stump
diameters at different heights on the same tree are expected to be corre-
lated. Observations in different DBH classes are independent since different
trees are involved. It is assumed that the variance–covariance matrix of the
observations within each DBH class is the same over DBH classes. Thus,
the 36× 36 variance–covariance matrix Var(ε) will have the form

Var(ε) =


B/4 0 0 0 0 0
0 B/16 0 0 0 0
0 0 B/42 0 0 0
0 0 0 B/26 0 0
0 0 0 0 B/9 0
0 0 0 0 0 B/3

 , (12.46)

where B is the 6 × 6 variance–covariance matrix for Yijk from the same
tree. That is, the diagonal elements of B are variances of Yijk for a given
stump height and the off-diagonal elements are covariances between Yijk
at two different stump heights for the same tree.
The estimate ofB was obtained by defining 6 variables from the Yijk, one
for each stump height (level of j). Thus, the matrix Y of data is 100 × 6
(there were 100 trees), with each column containing the measurements
from one of the 6 stump heights. The variance–covariance matrix B was
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estimated as

B̂ = [Y ′(I − J/n)Y ]/99

=


86.2 57.2 63.0 53.9 48.9 52.5
57.2 71.4 59.5 45.2 35.0 39.3
63.0 59.5 100.2 73.8 51.8 50.6
53.9 45.2 73.8 97.3 62.9 53.7
48.9 35.0 51.8 62.9 76.5 59.3
52.5 39.3 50.6 53.7 59.3 78.6

 10−4, (12.47)

where J is a 100× 100 matrix of ones and n = 100. The correlations in B̂
range from .47 to .77. It is likely that the form of B̂ could be simplified
by assuming, for example, a common variance or equality of subsets of
the correlations. This would improve the estimates of the weights if the
simplications were justified. For this example, the general covariance matrix
was used.
Generalized least squares was used to estimate β and its standard error.

B̂ was multiplied by (99×102), rounded to two digits, and then substituted
for B in Equation 12.46 to give the weighting matrix for generalized least
squares. The computations were done with IML (SAS Institute, Inc., 1989d)
which is an interactive matrix program. The regression equation obtained
was

Ŷij = .7277Xj

with s(β̂EG) = .0270, where β̂EG is the estimated generalized least squares
estimate of β. The regression coefficient is significantly different from zero.
For comparison, the unweighted regression and the weighted regression
using only the numbers of trees in the DBH classes as weights were also
run. The resulting regression equations differed little from the generalized
regression results but the computed variances of the estimates were very
different. The computed results from the two regressions were as follows.

Unweighted:

Ŷij = .6977Xj with s(β̂) = .0237.

Weighted by ni:

Ŷij = .7147Xj with s(β̂W ) = .0148.

Comparison of the standard errors appears to indicate a loss in precision
from using generalized least squares. However, the variances computed by
the standard regression formulae assumed that Var(ε) = Iσ2 in the un-
weighted case and Var(ε) = Diag({1/ni})σ2 in the weighted regression,
neither of which is correct in this example.
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The correct variance when ordinary least squares is used but where
Var(ε) �= Iσ2 is given by

σ2(β̂) = (X ′X)−1X ′[Var(ε)]X(X ′X)−1. (12.48)

When weighted least squares is used but with an incorrect weight matrix
W , the correct variance is given by

σ2(β̂W ) = (X ′W ′WX)−1X ′W ′[Var(ε)]WX(X ′W ′WX)−1.

(12.49)

When B̂ (equation 12.47) is substituted in equation 12.46 to give an esti-
mate ofVar(ε), equations 12.48 and 12.49 give estimates of the variances of
the regression coefficients for the unweighted and weighted (by ni) analyses.
The resulting standard errors of β̂ are as follows.

Unweighted:
s(β̂) = .04850.

Weighted by ni:
s(β̂W ) = .03215.

The efficiency of estimated generalized least squares relative to unweighted
least squares and to weighting by ni is 3.22 and 1.42, respectively, in this
example. These relative efficiencies are biased in favor of generalized least
squares regression since an estimated variance–covariance matrix has been
used in place of the true variance–covariance matrix. Nevertheless, in this
example they show major increases in precision that result from account-
ing for unequal variances and correlation structure in the data. Compari-
son of the standard errors computed from the unweighted analysis and the
weighted analysis with the results of equations 12.47 and 12.48 illustrates
the underestimation of variances that commonly occurs when positively
correlated errors in the data are ignored.

The following example illustrates another important problem related to
correlated errors. If autocorrelation exists but is ignored, the computed
standard errors will be incorrect.
Consider the model in Example 12.5 given by Example 12.7

Yi = β0 + εi, i = 1, . . . , n,

and
εi = ρεi−1 + ηi,

where −1 < ρ < 1 and ηi ∼ NID(0, σ2). In this case, one might use the
ordinary least squares estimator β̂0 = Y for β0 and mistakenly use s2/n as
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an estimator of the variance of Y , where s2 =
∑n
i=1(Yi−Y )2/(n−1) is the

residual mean square error. When ρ �= 0, we have seen that the ordinary
least squares estimate is inefficient, but the efficiency is close to 1 in large
samples. A more serious problem is the estimate of variance of Y . When n
is large, we have seen that

Var(Y ) ≈ σ2

n(1− ρ)2 .

Also, it can be shown that s2 is not an unbiased estimate of σ2, but is
a very good estimate of Var(Yi) = σ2/(1 − ρ2). Therefore, s2/n under
(over) estimates Var(Y ) by a factor of (1−ρ)/(1+ρ), approximately, when
ρ > 0 (< 0). For example, for ρ = .8 the ordinary least squares standard
error

√
s2/n is expected to be only

√
(1− .8)/(1 + .8) = 1

3 of the true
standard error.

12.6 Summary

The first sections of this chapter discussed transformations of the indepen-
dent and dependent variables to make the model simpler in some sense,
or to make the assumptions of homogeneous variance and normality more
nearly satisfied. Transformations on the independent variable affect only
the form of the model. Transformations to stabilize variances or to more
nearly satisfy normality must be made on the dependent variable. The
power family of transformations plays an important role in all three cases.
The ladder of transformations and the rules for determining the trans-
formation are easily applied as long as the model is reasonably simple. In
more complex cases, the Box–Tidwell method provides power transforma-
tions on the independent variables that give the best fit to a particular
model; the result is dependent on the model chosen. The Box–Cox trans-
formation provides a power transformation on the dependent variable with
the more general criterion of satisfying all aspects of the distributional as-
sumption on Y ; Y ∼ N(Xβ, Iσ2). The result and the relative emphasis
the method gives to simplifying the model, stabilizing variance, and im-
proving normality is dependent on the choice of Xβ. In no case are we
assured that the appropriate power transformation exists to satisfy all cri-
teria. All precautions should be taken to verify the adequacy of the model
and the least squares results.
The last section covered weighted least squares and generalized least
squares methods. These methods address the specific situation where the
scale of the dependent variable has already been decided but where the
basic assumption of Var(ε) = Iσ2 is not satisfied. In such cases, the mini-
mum variance estimators are obtained only if the true Var(ε) is taken into
account by using weighted least squares or generalized least squares, as the
situation requires.
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12.7 Exercises

12.1. This exercise uses Land’s data on tolerance of certain families of pine
to salt water flooding given in Table 12.1. For this exercise, replace
Hours = 0 with 1 and Y = .00 in Family 3 with .01 to avoid problems
with taking logarithms.

(a) Plot Y = chloride content against X = Hours. Summarize what
the plot suggests about homogeneous variances, about normal-
ity, and about the type of response curve needed if no transfor-
mations are made.

(b) Use the plot of the data and the ladder of transformations to
suggest a transformation on Y that might straighten the rela-
tionship. Suggest a transformation on X that might straighten
the relationship. In view of your answer to Part (a), would you
prefer the transformation on Y or on X?

(c) Assume a common quadratic relationship of Y (λ) with X for all
families, but allow each family to have its own intercept. Use
the Box–Cox transformation for λ = 0, .2, .3, .4, .5, .7, and
1.0 and plot the residual sum of squares in each case against λ.
At what value of λ does the minimum residual sum of squares
occur? Graphically determine 95% confidence limits on λ. What
power transformation on Y do you choose?

(d) Repeat Part (c) using a linear relationship between Y (λ) and
X. Show how this changes the Box–Cox results and explain (in
words) why the results differ.

(e) Use the Box–Cox transformation adopted in Part (c) as the de-
pendent variable. If Y (λ) is regressed on X using the quadratic
model in Part (c), the quadratic term is highly significant. Use
the Box–Tidwell method to find a power transformation on X
that will straighten the relationship. Plot the residuals from the
regression of Y (λ) on Xα, the Box–Tidwell transformation on X,
against Ŷ and in a normal plot. Do you detect any problems?

12.2. The Land data given in Table 12.1 are percentage data. Are they
binomially distributed data? Would you a priori expect the arcsin
transformation to work?

12.3. A replicated corn yield trial (25 entries in 3 blocks) grown at five lo-
cations gave data in which the response variable (yield) varied from
55 bu/acre in a particularly dry location to 190 bu/acre in the most
favorable environment. The mean yields and the experimental error
variances (each with 48 degrees of freedom) for the five locations were
as follows.
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Mean Yield Error Variance
55 68
105 139
131 129
148 325
190 375

Consider these options for handling the heterogeneous variances in a
combined analysis of variance: (1) an appropriate transformation on
Y and (2) weighted least squares.

(a) What transformation would you suggest from inspection of the
relationship between the mean and the variance?

(b) Explain what your weighting matrix would be if you used weight-
ed least squares. This will be a very large matrix. Explain how
you could do the weighting without forming this matrix.

(c) A third option would be to ignore the heterogeneous variances
and proceed with the combined analysis. Discuss the merits of
the three alternatives and how you would decide which to use.

12.4. The monomolecular growth model has the form

Y = α(1− βe−kt).

Is this model nonlinear in the parameters? Can it be linearized with
an appropriate transformation on Y ? Can it be linearized if α is
known?

12.5. A dose response model based on the Weibull function can be written
as

Y = α{exp[−(X/γ)δ]}.
Does taking the logarithm of Y linearize this model?

12.6. A nonlinear model for a chemical reaction rate can be formulated as

Y = αX1/(1 + βX1 + γX2).

Does the reciprocal transformation on Y give a model that is linear
in the parameters? Does a redefinition of the parameters make the
model linear in the parameters?

12.7. The water runoff data in Exercise 5.1 were analyzed using ln(Q) where
Q was the peak rate of flow. Use the Box–Cox method with a linear
model containing the logarithms of all nine independent variables
to determine the transformation on Q. Is λ = 0 within the 95%
confidence interval estimate of λ ?
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12.8. The following growth data (Y = dry weight in grams) were taken
on four independent experimental units at each of six different ages
(X = age in weeks).

X (Weeks of Age)
Item 1 2 3 5 7 9
1 8 35 57 68 76 85
2 10 38 63 76 95 98
3 12 42 68 86 103 105
4 15 48 74 90 105 110

(a) Plot Y versus X. Use the ladder of transformations to deter-
mine a power transformation on Y that will straighten the re-
lationship. Determine a power transformation on X that will
straighten the relationship.

(b) Use the Box–Tidwell method to determine a power transforma-
tion on X for the linear model. Does this differ from what you
decided using the ladder of transformations? Is there any prob-
lem with the behavior of the residuals?

(c) Observe the nature of the dispersion of Y for each level of X.
Does there appear to be any problem with respect to the least
squares assumption of constant variance? Will either of your
transformations in (a) improve the situation? (Do trial transfor-
mations on Y for the first, fourth, and sixth levels of X, ages 1,
5, and 9, and observe the change in the dispersion.)

12.9. Use the data in Exercise 12.8 and the Box–Cox method to arrive at
a transformation on Y . Recall that the Box–Cox method assumes a
particular model E(Y ) = Xβ. For this exercise, use E(Yi) = β0 +
β1Xi. Plot SS[Res(λ)] versus λ, find the minimum, and determine
approximate 95% confidence limits on λ. What choice of λ does the
Box–Cox method suggest for this model? Fit the resulting regression
equation, plot the transformed data and the regression equation, and
observe the nature of the residuals. Does the transformation appear
to be satisfactory with respect to the straight-line relationship? With
respect to the assumption of constant variance? (Note: The purposes
of Exercises 12.9 to 12.12 are, in addition to demonstrating the use of
the Box–Cox transformation, to show the dependence of the method
on the assumed model and to illustrate that obtaining the power
transformation via the Box–Cox method does not guarantee either
that the model fits or that the usual least squares assumptions are
automatically satisfied.)
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12.10. Repeat Exercise 12.9 using the quadratic polynomial model in X.
Using this model, to which transformation does the Box–Cox method
lead and does it appear satisfactory?

12.11. Repeat Exercise 12.9 using X∗ = ln(X) in the linear model. What
transformation do you obtain this time and is it satisfactory?

12.12. Repeat Exercise 12.11 but allow a quadratic model in X∗ = ln(X).
What transformation do you obtain and does it appear to be more
satisfactory?

12.13. The corn borer survival data, number of larvae surviving 3, 6, 9, 12,
and 21 days after inoculation, in Exercise 9.4 were analyzed without
transformation. “Number of larvae” might be expected not to have
homogeneous variance. Plot the residuals from the analysis of vari-
ance against Ŷ . Do they provide any indication of a problem? Use
the Box–Cox method to estimate a transformation for “number of
larvae” where Xβ is defined for the analysis of variance model. Is a
transformation suggested? If so, do the appropriate transformation
and summarize the results.

12.14. Show that P ∗ in Ŷ
∗
= P ∗Y ∗, equation 12.22, is idempotent.

12.15. Use equation 12.23 to obtain the coefficient matrix on Y , the original
variable, that gives Ŷ W . Show that this matrix is idempotent.

12.16. Use equation 12.23 to express Ŷ
′
W Ŷ W as a quadratic function of Y .

Likewise, obtain e′e, where e = Y − Ŷ W , as a quadratic function of
Y . Show that:

(a) neither coefficient matrix is idempotent;

(b) the two coefficient matrices are not orthogonal.

What are the implications of these results?

12.17. Use the variance of linear functions to deriveVar(β̂W ), equation 12.21.

12.18. Use the variance of linear functions to deriveVar(Ŷ
∗
), equation 12.24.

12.19. Derive Var(β̂) when ordinary least squares is used to estimate β but
where Var(ε) �= Iσ2, equation 12.48.

12.20. The data used in the generalized least squares analysis in the text to
develop a model to relate DBH (diameter at breast height, 54 inches)
to diameters at various stump heights, Example 12.6, are given in
Table 12.3. The numbers in the table are Y ij., where Yijk and Xj
are defined in the text. The estimated variance–covariance matrix is
shown in equation 12.47.
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(a) Use a matrix computer program to do the generalized least
squares analysis on these data as outlined in Example 12.6. No-
tice that the model contains a zero intercept. Give the regression
equation, the standard error of the regression coefficient, and the
analysis of variance summary. (Your answers may differ slightly
from those in Example 12.6 unless the variance–covariance ma-
trix is rounded as described.)

(b) It would appear reasonable to simplify the variance–covariance
matrix, equation 12.46, by assuming homogeneous variances and
common covariances. Average the appropriate elements of B̂ to
obtain a common variance and a common covariance. Redo the
generalized regression with B redefined in this way. Compare
the results with the results in (a) and the unweighted regression
results given in Example 12.6.

12.21 Consider a random variable Y with mean µ and variance σ2. Suppose
σ2 = Ω(µ). Consider a transformation f(Y ) of Y to stabilize the
variance. Using the first-order Taylor series approximation,

f(Y )
.≈ f(µ) + f ′(µ)(Y − µ),

where f ′(µ) is the first derivative of f(·) at µ. This suggests

Var[f(Y )]
.≈ [f ′(µ)]2Ω(µ).

Show that if f(µ) =
∫
(1/[Ω(µ)]1/2) dµ, then the variance of f(Y ) is

constant, approximately.

12.22. Consider Ω(µ) and f(µ) defined in Exercise 12.21.

(a) Suppose Ω(µ) = µ2k; then show that f(µ) is proportional to
µ1−k, for k �= 1.

(b) Suppose Ω(µ) = µ2; then show that f(µ) is proportional to
ln(µ).

(c) When do you use the inverse transformation? [That is, for what
function Ω(µ) is f(µ) = µ−1?]

(d) If Ω(µ) = µ(1−µ), show that f(µ) is proportional to sin−1(
√
µ).

(e) If Y has a chi-square distribution with degrees of freedom ν,
what transformation of Y would approximately stabilize the
variance?

(f) Suppose Y corresponds to a sample variance s2, based on n in-
dependent N(µ0, σ

2
0) variables. What transformation would you

recommend to stabilize the variance of Y = s2?
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12.23. Consider the Box–Cox transformation given in equation 12.7. Assume
that the linear model includes an intercept term. For λ �= 0, show that
σ̂2(λ) obtained using Y (λ)

i is proportional to σ̃2(λ) obtained from Y λi ,
where the proportionality constant is 1/[λ2

.
Y 2(λ−1)].

12.24. Consider the model

Model (a): Yij = β0 +Xi1β1 + · · ·+Xipβp + εij
for i = 1, . . . , n and j = 1, . . . , ri, where we have ri replicates at
each vector (1, Xi1, . . . , Xip) of independent variables. Assume that
εij are uncorrelated random variables with mean zero and variance
σ2. Consider also the model

Model (b): Y i· = β0 +Xi1β1 + · · ·+Xipβp + εi·, i = 1, . . . , n,

where Y i· is the mean of the ri replicates.

(a) Show that the weighted least squares estimator of
(β0 β1 · · · βp )

′ in Model (b) is also the ordinary least squares
estimator of (β0 β1 · · · βp )

′ in Model (a).

(b) Show also that they coincide with the ordinary least squares
estimates in the rescaled model:
√
riY i· = (

√
ri)β0 + (

√
riXi1)β1 + · · ·+ (√riXip)βp +√

riεi·,

for i = 1, . . . , n.

12.25. Show that ε∗′ε∗ = ε′V −1ε, where ε∗ = Y ∗ −X∗β as given in equa-
tion 12.31.

12.26. Consider the model

Yi = β0 + εi , i = 1, . . . , n,

where εi = ε∗1 + ε
∗
2 + · · ·+ ε∗i and ε∗i s are uncorrelated (0, σ2) random

variables.

(a) Find the ordinary least squares estimator β̂0. Compute Var(β̂0).

(b) Find the appropriate transformation Y ∗. (Hint: Consider Yi −
Yi−1.)

(c) Find the generalized least squares estimator β̂0,G of β̂0.

(d) Compute Var(β̂0,G) and compare it with Var(β̂0).
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COLLINEARITY

Chapters 10 through 12 have outlined the problem ar-
eas, discussed methods of detecting the problems, and
discussed the use of transformations to alleviate the
problems.

This chapter addresses the collinearity problem, with
the emphasis on understanding the relationships among
the independent variables rather than on the routine
application of biased regression methods. Principal com-
ponent analysis and Gabriel’s biplots are used to ex-
plore the correlational structure. One of the biased re-
gression methods, the principal component regression,
is presented and its limitations are discussed.

The collinearity problem in regression arises when at least one linear Origins of
Collinearityfunction of the independent variables is very nearly equal to zero. (Techni-

cally, a set of vectors is collinear when a linear function is exactly equal to
zero. In general discussions of the collinearity problem, the term “collinear”
is often used to apply to linear functions that are only approximately zero.
This convention is followed in this text.) This near-singularity may arise in
several ways.

1. An inbuilt mathematical constraint on variables that forces them to
add to a constant will generate a collinearity. For example, frequencies
of alleles at a locus will add to one if the frequencies of all alleles are
recorded, or nearly to one if a rare allele is not scored. Generating
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new variables as transformations of other variables can produce a
collinearity among the set of variables involved. Ratios of variables
or powers of variables frequently will be nearly collinear with the
original variables.

2. Component variables of a system may show near-linear dependen-
cies because of the biological, physical, or chemical constraints of the
system. Various measures of size of an organism will show dependen-
cies as will amounts of chemicals in the same biological pathway, or
measures of rainfall, temperature, and elevation in an environmental
system. Such correlational structures are properties of the system and
can be expected to be present in all observational data obtained from
the system.

3. Inadequate sampling may generate data in which the near-linear de-
pendencies are an artifact of the data collection process. Unusual cir-
cumstances also can cause unlikely correlations to exist in the data,
correlations that may not be present in later samplings or samplings
from other similar populations.

4. A bad experimental design may cause some model effects to be nearly
completely confounded with others. This is the result of choosing lev-
els of the experimental factors in such a way that there are near linear
dependencies among the columns of X representing the different fac-
tors. Usually, experimental designs are constructed so as to ensure
that the different treatment factors are orthogonal, or very nearly
orthogonal, to each other.

One may not always be able to clearly identify the origin of the collinear-
ity problem but it is important to understand its nature as much as possible.
Knowing the nature of the collinearity problem will often suggest to the
astute researcher its origin and, in turn, appropriate ways of handling the
problem and of interpreting the regression results.
The first section of this chapter discusses methods of analyzing the cor-
relational structure of the X-space with a view toward understanding the
nature of the collinearity. The second section introduces biased regression
as one of the classical methods of handling the collinearity problem. For
all discussions in this chapter, the matrix of centered and scaled in-
dependent variables Z is used so that Z ′Z is the correlation matrix.
The artificial data set used in Section 11.3 to illustrate the measures of
collinearity is again used here. Chapter 14 is a case study using the meth-
ods discussed in this chapter.
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TABLE 13.1. Correlation matrix of the independent variables for the artificial
data set demonstrating collinearity.

X1 X2 X3

X1 1.000 .996 .290
X2 .996 1.000 .342
X3 .290 .342 1.000

13.1 Understanding the Structure of the X-Space

The matrix of sums of squares and products of the centered and scaled Correlation
Matrix Z’Zindependent variables Z ′Z, scaled so that the sum of squares of each vari-

able is unity, is a useful starting point for understanding the structure of
the X-space. (This is the correlation matrix if the independent variables
are random variables and, for convenience, is referred to as the correlation
matrix even when the Xs are fixed constants.) The off-diagonal elements
of this matrix are the cosines of the angles between the corresponding cen-
tered and scaled vectors in X-space. Values near 1.0 or −1.0 indicate nearly
collinear vectors; values near 0 indicate nearly orthogonal vectors.

The correlation matrix for the artificial data from Example 11.11 shows Example 13.1
a very high correlation between X1 and X2 of r12 = .996 (Table 13.1).
This indicates a near-linear dependency, which is known to exist from the
manner in which the data were constructed. The relatively low correlations
of X1 and X2 with X3 suggest that X3 is not involved in the collinearity
problem.

Correlations will reveal linear dependencies involving two variables, but
they frequently will not reveal linear dependencies involving several vari-
ables. Individual pairwise correlations can be relatively small when several
variables are involved in a linear dependency. Thus, the absence of high
correlations cannot be interpreted as an indication of no collinearity prob-
lems.
Near-linear dependencies involving any number of variables are revealed Detecting

Near-
Singularities

with a singular value decomposition of the matrix of independent vari-
ables, or with an eigenanalysis of the sums of squares and products ma-
trix. (See Sections 2.7 and 2.8 for discussions of eigenanalysis and singular
value decomposition.) For the purpose of detecting near-singularities, the
independent variables should always be scaled so that the vectors are of
equal length. In addition, the independent variables are often centered to
remove collinearities with the intercept. (Refer to Section 11.3 for discus-
sion on this point.) The discussion here is presented in terms of the centered
and scaled independent variables Z. The eigenvectors of Z ′Z that corre-
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TABLE 13.2. Eigenvalues and eigenvectors of the correlation matrix of indepen-
dent variables for the artificial data set.

Eigenvalue Eigenvectors
λ1=2.166698 v′

1= ( .65594 .66455 .35793 )
λ2= .830118 v′

2=(−.28245 −.22365 .93285 )
λ3= .002898 v′

3= ( .69998 −.71299 .04100 )

spond to the smaller eigenvalues identify the linear functions of the Zs that
show least dispersion. It is these specific linear functions that are causing
the collinearity problem if one exists.

The results of the eigenanalysis of the correlation matrix for Example Example 13.2
13.1 are shown in Table 13.2. The eigenvalues reflect a moderate collinear-
ity problem, with the condition number being (2.16698/.00290)1/2 = 27.3.
(This differs from the results in Section 11.3 since collinearities involving
the intercept have been eliminated by centering the variables.) The eigen-
vector corresponding to the smallest eigenvalue defines the third principal
component, the dimension causing the collinearity problem, as

W 3 = .69998Z1 − .71299Z2 + .04100Z3.

The variables primarily responsible for the near-singularity are Z1 and Z2
as shown by their relatively large coefficients in the third eigenvector. The
coefficient for Z3 is relatively close to zero. The coefficients on Z1 and Z2
are very similar in magnitude but opposite in sign, suggesting that the
near-singularity is due to (Z1 −Z2) being nearly zero. This is known to be
true from the way the data were constructed; X2 was defined as (X1−25)
with 2 of the 20 numbers changed by 1 digit to avoid a complete singularity.
After centering and scaling, Z1 and Z2 are very nearly identical so that
their difference is almost 0.
Inspection of the first eigenvector shows that the major dispersion in
the Z-space is in the dimension defined as a weighted average of the three
variables

W 1 = .65594Z1 + .66455Z2 + .35793Z3

with Z1 and Z2 receiving nearly twice as much weight as Z3. W 1 is the
first principal component. The second dimension, the second principal com-
ponent, is dominated by Z3,

W 2 = −.28245Z1 − 0.22365Z2 + 0.93285Z3.

The correlational structure of the independent variables is displayed with Gabriel’s
BiplotGabriel’s biplot (Gabriel 1971, 1972, 1978). This is an informative plot
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that shows (1) the relationships among the independent variables, (2) the
relative similarities of the individual data points, and (3) the relative values
of the observations for each independent variable. The name “biplot” comes
from this simultaneous presentation of both row (observation) and column
(variable) information in one plot.
The biplot uses the singular value decomposition of Z, Z = UL1/2V ′.
The matrices L1/2 and V can be obtained from the results of the eige-
nanalysis of Z ′Z shown in Table 13.2. V is the matrix of eigenvectors,
each column being an eigenvector, and L is the diagonal matrix of the
positive square roots of the eigenvalues. More computations are required
to obtain U . If the dispersion in Z-space can be adequately represented by
two dimensions, one biplot using the first and second principal component
information will convey most of the information in Z. If needed, additional
biplots of first and third, and second and third principal components can
be used. Each biplot is the projection of the dispersion in Z-space onto the
plane defined by the two principal components being used in the biplot.

(Continuation of Example 13.2) The first two principal component di- Example 13.3
mensions account for

λ1 + λ2∑
λi

=
2.16698 + .83012

3
= .999 (13.1)

or 99.9% of the total dispersion in the three dimensions. Therefore, a single
biplot of the first and second principal components suffices; only .1% of the
information in Z is ignored by not using the third principal component.
The biplot using the first two principal component dimensions is shown
in Figure 13.1. The vectors in the figure are the vectors of the independent
variables as seen in this two-dimensional projection. The coordinates for
the endpoints of the vectors, which are called column markers, are obtained
from L1/2V ′,

L1/2V ′ =

 .9656 .9783 .5269
−.2573 −.2038 .8499
.0377 −.0384 .0022

 . (13.2)

The first and second elements in column 1 are the coordinates for the Z1
vector in the biplot using the first and second principal components, the
first and second elements in column 2 are the coordinates of the Z2 vector,
and so on. The third number in each column of L1/2V ′ gives the coordinate
in the third dimension for each vector, which is being ignored in this biplot.
Notice, however, that none of the variable vectors are very far from zero in
the third dimension. This reflects the small amount of dispersion in that
dimension.
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FIGURE 13.1. Gabriel’s biplot of the first two principal component dimensions
for Example 13.3.

Since the Zj vectors were scaled to have unit length in the original n- Variable Infor-
mationdimensional space, the deviation of each vector length from unity in the

biplot provides a direct measure of how far the original vector is from
the plane being plotted. Thus, plotted vectors that are close to having
unit length are well represented by the biplot and relationships among
such vectors are accurately displayed. Conversely, plotted vectors that are
appreciably shorter than unity are not well represented in that particular
biplot; other biplots should be used to study relationships involving these
vectors. In this example, all three plotted vectors are very close to having
unit length.
The dots in the biplot represent the observations. The coordinates for the Observation

Informationobservations, called row markers, are the elements of U from the singular
value decomposition. Recall that the principal components can be written
asW = UL1/2. Thus, each column of U is one of the principal components
rescaled to remove λj .

(Continuation of Example 13.3) The first ten rows of U are Example 13.4
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U =



−.2350 .4100 −.4761
−.2365 .2332 .4226
−.2011 .0363 .2355
−.1656 −.1605 .0485
−.1302 −.3574 −.1385
−.0222 −.2491 −.0985
.0857 −.1407 −.0584
.1937 −.0323 −.0184
.3016 .0761 .0217
.4096 .1844 .0617
...

...
...


. (13.3)

The second 10 rows in U duplicate the first 10 in this example. The first
and second columns are the first and second principal components, respec-
tively, except for multiplication by λ1 and λ2. These two columns are the
coordinates for the observations in the biplot (Figure 13.1). The first ob-
servation, for example, has coordinates (-.2350, .4100). The horizontal and
vertical scales for plotting the row markers need not be the same as the
scales for the column markers. Often the scales for the row markers will
be shown across the top and across the right side of the plot as illustrated
later in Figure 13.2.

The following are the key elements for the interpretation of Gabriel’s
biplot.

1. The length of the variable vector in a biplot, relative to its length
in the original n-space, indicates how well the two-dimensional bi-
plot represents that vector. Vectors that do not lie close to the plane
defined by the two principal components being used in the biplot
will project onto the biplot as much shorter vectors than they are
in n-space. For such variables, that particular biplot will be a poor
representation of the relationship among the variables and interpre-
tations involving them should be avoided.

2. The angle between two variable vectors reflects their pairwise correla-
tion as seen in this two-dimensional projection. The correlation is the
cosine of the angle. Hence, a 90◦ angle indicates 0 correlation; a 0◦ or
180◦ degree angle indicates correlations of 1.0 and −1.0, respectively.
[The angles between the vectors translate into correlations only be-
cause the variables have been centered before the eigenanalysis was
done. The biplot is also used for some purposes on uncentered and/or
unscaled data. See Bradu and Gabriel (1974, 1978), Gabriel (1971,
1972, 1978), and Corsten and Gabriel (1976) for examples.]

3. The spatial proximity of individual observations reflects their similar-
ities with respect to this set of independent variables and as seen in
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the two dimensions being plotted. Points close together have similar
values and vice versa.

4. The relative values of the observations for a particular variable are
seen by projecting the observation points onto the variable vector,
extended as need be in either the positive or negative direction. The
vector points in the direction of the largest values for the variable.

The biplot of Example 13.4 shows that Z1 and Z2 are very highly posi- Example 13.5
tively correlated; the angle between the two vectors is close to 0. Z1 and Z2
are nearly orthogonal to Z3 since both angles are close to 90◦. One would
have to conclude from this biplot that Z1 and Z2 are providing essentially
the same information.
Although the three variables technically define a three-dimensional space,
two of the vectors are so nearly collinear that the third dimension is almost
nonexistent. No regression will be able to separate the effects of Z1 and
Z2 on Y from this set of data; the data are inadequate for this purpose.
Furthermore, if the collinearity between Z1 and Z2 is a reflection of the
innate properties of the system, additional data collected in the same way
will show the same collinearity, and clear separation of their effects on
any dependent variable will not be possible. When that is the case, it is
probably best to define a new variable that reflects the (Z1, Z2)-axis and
avoid the use of Z1 and Z2 per se. On the other hand, if the collinearity
betweenZ1 andZ2 is a result of inadequate sampling or a bad experimental
design, additional data will remove the collinearity and then separation of
the effects of Z1 and Z2 on the dependent variable might be possible.
The proximity of the observations (points) to each other reflects their
similarities for the variables used in the biplot. For example, Points 1 and
2 are very much alike but quite different from Points 10 or 5. Real data
will frequently show clusters of points that reflect meaningful groupings of
the observations.
The perpendicular projections of the observations (points) onto one of
the vectors, extended in either direction as needed, gives the relative values
of the observations for that variable. If the projection of the observations
onto the Z1 or Z2 axes is visualized, the points as numbered monotonically
increase in value. Projection of the observations onto the Z3 vector shows
that their values for Z3 decrease to the fifth point and then increase to
the tenth point. (Recall that Points 11 to 20 are a repeat of 1 to 10.) This
pattern is a direct reflection of the original values for the three variables.

A second example of a biplot is taken from Shy-Modjeska, Riviere, and Example 13.6
Rawlings (1984). This biplot, shown in Figure 13.2, displays the relation-
ships among nephrotoxicity, physiological, and pharmacokinetic variables.
The study used 24 adult female beagles which were subtotally nephrec-
tomized (3/4 or 7/8 of the kidneys were surgically removed) and assigned
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FIGURE 13.2. Biplot of transformed physiologic data, Kel ratio, and histopatho-
logic index for 23 subtotally nephrectomized and 6 control animals. The first two
dimensions accounted for 76% of the dispersion in the full matrix. Triangles des-
ignate dogs that developed toxicity, open circles designate dogs that were nephrec-
tomized but did not develop toxicity, and the closed circles designate control ani-
mals. (Used with permission.)

to one of four different treatments. A control group of 6 dogs was used.
Nine variables measuring renal function are used in this biplot. Complete
data were obtained on 29 of the 30 animals. Six of the 24 nephrectomized
animals developed toxicity. The biplot presents the information from the
first two principal component dimensions of the 29× 9 data matrix. These
two dimensions account for 76% of the total dispersion in Z-space.
The biplot represents most of the vectors reasonably well. The shortest
vectors are ClUREA and ClH2O. All other vectors are at least 80% of their
original length. The complex of five variables labeled SUN, SCR, Histo,
Kel4/Kel1, and ClCR comprises a highly correlated system in these data.
The first three are highly positively correlated as are the last two (the
vectors point in the same direction), whereas there are high negative corre-
lations between the two groups (the vectors point in different directions).
The variable ClNA, on the other hand, is reasonably highly negatively cor-
related with ClK . ClUREA and ClH2O also appear to be highly negatively
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correlated but, recall, these are the two shortest vectors and may not be
well represented in this biplot.
The horizontal axis across the bottom and the vertical axis on the left of
Figure 13.2 are the scales for the column markers (variables) and row mark-
ers (animals), respectively, for the first principal component. The horizontal
axis across the top and the vertical axis on the right are the scales for the
column and row markers, respectively, for the second principal component.
The vectors for the complex of five variables first mentioned are closely
aligned with the axis of the first principal component; the first principal
component is defined primarily by these five variables. Variation along the
second principal component axis is primarily due to the variables ClUREA,
ClK , ClH2O, and ClNA, although these four variables are not as closely
aligned with the axis.
The observations, the animals, tend to cluster according to the treatment
received. Visualizing the projections of these points onto the vectors dis-
plays how the animals differ for these nine variables. The major differences
among the animals will be along the first principal component axis and
are due to the difference between toxic and nontoxic animals. The toxic
animals tend to have high values for SUN, SCR, and Histo and low values
for Kel4/Kel1 and ClCR. This suggests that these are the key variables to
study as indicators of toxicity. (Which of the five variables caused the tox-
icity or are a direct result of the toxicity cannot be determined from these
data. The biplot is simply showing the association of variables.) One toxic
animal, the triangle in the lower left quadrant, is very different from all
other animals. It has high values for the toxicity variables and a very high
level of ClUREA. This would suggest a review of the data for this particular
animal to ensure correctness of the values. If all appears to be in order, the
other characteristics of the animal need to be studied to try to determine
why it is responding so differently. The control animals separate from the
nontoxic animals in the dimension of the second principal component. They
have higher values for ClK and lower values for ClUREA and ClNA than
the nontoxic animals.
This biplot accounts for 76% of the dispersion. Although this is the major
part of the variation, a sizable proportion is being ignored. In this case,
one would also study the information provided by the third dimension by
biplotting the first and third and, perhaps, the second and third dimensions.
These plots would reveal whether the negative correlation between ClUREA
and ClH2O is as strong as the first biplot suggests.

Gabriel’s biplot is a graphical technique for revealing relationships in a Overview of
Gabriel’s
Biplot

matrix of data. It is an exploratory tool and is not intended to provide
estimates of parameters or tests of significance. Its graphical presentation
of (1) the correlational structure among the variables, (2) the similarity
of the observations, and (3) the relative values of the data points for the
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variables measured can be most helpful in understanding a complex set of
data.
For the artificial data set used in Examples 13.1 through 13.5, it is clear
from the correlation matrix and the biplot that there is sufficient collinear-
ity to cause a severe problem for ordinary least squares. With the high
degree of collinearity between Z1 and Z2, it is unreasonable to expect any
regression method to identify properly the contributions to Y of these two
independent variables. Similarly, the biplot from Shy-Modjeska et al. (1984)
showed a highly correlated complex of five variables that appeared to sep-
arate toxic from nontoxic animals. However, any regression analysis that
attempts to assign relative importance to the five variables can be expected
to be very misleading. “Seeing” the nature of the correlational structure in
these data enhances the understanding of the problem and should intro-
duce caution into the use of regression results. If it is important that effects
of the individual variables be identified, data must be obtained in which
the strong dependencies among the independent variables have been suffi-
ciently weakened so that the collinearity problem no longer exists. In cases
where the structure in the data is intrinsic to the system as it may be in the
toxicity study of Example 13.6, it will be necessary to obtain data using
experimental protocols that will disrupt the natural associations among the
variables before reliable estimates of the effects can be obtained.

13.2 Biased Regression

The least squares estimators of the regression coefficients are the best linear Biased
Estimatorsunbiased estimators. That is, of all possible estimators that are both linear

functions of the data and unbiased for the parameters being estimated,
the least squares estimators have the smallest variance. In the presence of
collinearity, however, this minimum variance may be unacceptably large.
Relaxing the least squares condition that estimators be unbiased opens for
consideration a much larger set of possible estimators from which one with
better properties in the presence of collinearity might be found. Biased
regression refers to this class of regression methods in which unbiasedness
is no longer required. Such methods have been suggested as a possible solu-
tion to the collinearity problem. (See Chapters 10 and 11.) The motivation
for biased regression methods rests in the potential for obtaining estimators
that are closer, on average, to the parameter being estimated than are the
least squares estimators.

13.2.1 Explanation
A measure of average “closeness” of an estimator to the parameter being Mean Squar-

ed Errorestimated is the mean squared error (MSE) of the estimator. If θ̃ is an
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FIGURE 13.3. Illustration of a biased estimator having smaller mean squared
error than an unbiased estimator.

estimator of θ, the mean squared error of θ̃ is defined as

MSE(θ̃) = E(θ̃ − θ)2. (13.4)

Recall that variance of an estimator θ̃ is defined as

Var(θ̃) = E [θ̃ − E(θ̃)]2. (13.5)

Note that MSE is the average squared deviation of the estimator from
the parameter being estimated, whereas variance is the average squared
deviation of the estimator from its expectation. If the estimator is unbiased,
E(θ̃) = θ and MSE(θ̃) = σ2(θ̃). Otherwise, MSE is equal to the variance
of the estimator plus the square of its bias, where Bias(θ̃) = E(θ̃) − θ.
See Exercise 13.1. It is possible for the variance of a biased estimator to be
sufficiently smaller than the variance of an unbiased estimator to more than
compensate for the bias introduced. In such a case, the biased estimator
is closer on average to the parameter being estimated than is the unbiased
estimator. Such is the hope with the biased regression techniques.
The possible advantage of biased estimators is illustrated in Figure 13.3. Potential for

Biased
Estimators

The normal curve centered at E(θ̃) represents the probability distribution
of an unbiased estimator θ̂ of θ; the bias is the difference between E(θ̃) and
θ. The smaller spread in this distribution reflects its smaller variance. By
allowing some bias, it may be possible to find an estimator for which the
sum of its variance and squared bias, MSE, is smaller than the variance of
the unbiased estimator.

To illustrate the concept of biased regression methods, consider the linear Example 13.7
model

Yi = β0 + Zi1β1 + Zi2β2 + εi, i = 1, . . . , n, (13.6)

where Zi1 and Zi2 are centered and scaled and εi ∼ NID(0, σ2). That is,∑n
i=1 Zi1 =

∑n
i=1 Zi2 = 0 and

∑n
i=1 Z

2
i1 =

∑n
i=1 Z

2
i2 = 1. Let ρ denote
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i=1 Zi1Zi2. Sincen 0 0

0
∑
Z2
i1

∑
Zi1Zi2

0
∑
Zi1Zi2

∑
Z2
i2

−1

=

 1
n 0 0
0 (1− ρ2)−1 −ρ(1− ρ2)−1

0 −ρ(1− ρ2)−1 (1− ρ2)−1

 ,
the variance of the ordinary least squares estimators β̂0, β̂1, and β̂2 of
β0, β1, and β2 are σ2/n, σ2/(1−ρ2), and σ2/(1−ρ2), respectively. When ρ
is close to one, then the variables Zi1 and Zi2 are highly correlated and we
have a collinearity problem. Notice that, when ρ is close to one, the variance
of both β̂1 and β̂2 is σ2/(1 − ρ2) which is very large. Even though β̂1 is
the best linear unbiased estimator of β1, we may be able to find a biased
estimator that has smaller mean square error. Consider, for example, an
estimator of β1 given by

β̃1 =
∑n
i=1 Zi1Yi∑n
i=1 Z

2
i1
. (13.7)

Note that β̃1 is the ordinary least squares estimator of β1 if we assume that
β2 = 0 in model 13.6. The estimator β̃1 is not unbiased for β1 since

E(β̃1) = β1 + ρβ2. (13.8)

The bias of β̃1 is E(β̃1)− β1 = ρβ2 and the variance of β̃1 is σ2.
Therefore, the mean squared error of β̃1 is

MSE(β̃1) = V ar(β̃1) + [Bias(β̃1)]2

= σ2 + ρ2β2
2 .

For small values of β2, MSE(β̃1) may be smaller than MSE(β̂1).

Several biased regression methods have been proposed as solutions to the
collinearity problem; Stein shrinkage (Stein, 1960), ridge regression (Hoerl
and Kennard, 1970a, 1970b), and principal component regression and vari-
ations of principal component regression (Lott, 1973; Hawkins, 1973; Hock-
ing, Speed, and Lynn, 1976; Marquardt, 1970; Webster, Gunst, and Mason,
1974). Although ridge regression has received the greatest acceptance, all
have been used with apparent success in various problems. Nevertheless,
biased regression methods have not been universally accepted and should
be used with caution. The MSE justification for biased regression methods
makes it clear that such methods can provide better estimates of the pa-
rameters in the sense of mean squared. It does not necessarily follow that
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a biased regression solution is acceptable or even “better” than the least
squares solution for purposes other than estimation of parameters.
Although collinearity does not affect the precision of the estimated re-

sponses (and predictions) at the observed points in the X-space, it does
cause variance inflation of estimated responses at other points. Park (1981)
shows that the restrictions on the parameter estimates implicit in princi-
pal component regression are also optimal in the MSE sense for estimation
of responses over certain regions of the X-space. This suggests that bi-
ased regression methods may be beneficial in certain cases for estimation
of responses also. However, caution must be exercised when using collinear
data for estimation and prediction of responses for points other than the
observed sample points.
The biased regression methods do not seem to have much to offer when
the objective is to assign some measure of “relative importance” to the in-
dependent variables involved in a collinearity. In essence, the biased estima-
tors of the regression coefficients for the variables involved in the collinearity
are weighted averages of the least squares regression coefficients for those
variables. Consequently, each is reflecting the joint effects of all variables
in the complex. (This is illustrated later with the data from Examples
13.1 through 13.5). The best recourse to the collinearity problem when the
objective is to assign relative importance is to recognize that the data are
inadequate for the purpose and obtain better data, perhaps from controlled
experiments.
Ridge regression and principal component regression are two commonly
used biased regression methods. The biased regression methods attack
the collinearity problem by computationally suppressing the effects of the
collinearity. Ridge regression does this by reducing the apparent magnitude
of the correlations. Principal component regression attacks the problem by
regressing Y on the important principal components and then parceling out
the effect of the principal component variables to the original variables. We
briefly discuss the principal component regression here and refer the read-
ers to Hoerl and Kennard (1970a, 1970b), Hoerl, Kennard, and Baldwin
(1975), Marquardt and Snee (1975), and Smith and Campbell (1980) for
ridge regression.

13.2.2 Principal Component Regression
Principal component regression approaches the collinearity problem from
the point of view of eliminating from consideration those dimensions of
the X-space that are causing the collinearity problem. This is similar, in
concept, to dropping an independent variable from the model when there is
insufficient dispersion in that variable to contribute meaningful information
on Y . However, in principal component regression the dimension dropped
from consideration is defined by a linear combination of the variables rather
than by a single independent variable.
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Principal component regression builds on the principal component analy- Eigenvectors
of Zsis of the matrix of centered and scaled independent variables Z. The SVD

of Z has been used in the analysis of the correlational structure of the
X-space and in Gabriel’s biplot. This section continues with the notation
and results defined in that section. The SVD of Z is used to give

Z = UL1/2V ′, (13.9)

where U (n × p) and V (p × p) are matrices containing the left and
right eigenvectors, respectively, and L1/2 is the diagonal matrix of sin-
gular values. The singular values and their eigenvectors are ordered so that
λ

1/2
1 > λ

1/2
2 > · · · > λ1/2

p . The eigenvectors are pairwise orthogonal and
scaled to have unit length so that

U ′U = V ′V = I. (13.10)

The principal components of Z are defined as the linear functions of the Principal
Components
of Z

Zj specified by the coefficients in the column vectors of V . The first eigen-
vector in V (first column) defines the first principal component, the second
eigenvector in V defines the second principal component, and so forth. Each
principal component is a linear function of all independent variables. The
principal componentsW are also given by the columns of U multiplied by
the corresponding λ1/2

j . Thus,

W = ZV

or

W = UL1/2 (13.11)

is the matrix of principal component variables. Each column in W gives
the values for the n observations for one of the principal components.
The sum of squares and products matrix of the principal component W ′W
variables W is the diagonal matrix of the eigenvalues,

W ′W = (UL1/2)
′
(UL1/2) = L1/2U ′UL1/2 = L, (13.12)

where L = Diag (λ1 λ2 · · · λp ). Thus, the principal components are
orthogonal to each other, since all sums of products are zero, and the sum
of squares of each principal component is equal to the corresponding eigen-
value λj . The first principal component has the largest sum of squares, λ1.
The principal components corresponding to the smaller eigenvalues are the
dimensions of the Z-space having the least dispersion. These dimensions of
the Z-space with the limited dispersion are responsible for the collinearity
problem if one exists.

(Continuation of Example 13.7) Recall that λ1 and λ2 are eigenvalues of Example 13.8
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Z ′Z and V consists of the corresponding eigenvectors. Assume that ρ > 0.
In our example,

Z ′Z =
[
1 ρ
ρ 1

]
, (13.13)

λ1 = 1 + ρ > 1− ρ = λ2, and (13.14)

V =
1√
2

[
1 1
1 −1

]
. (13.15)

The principal components W are given by W = ZV . That is,

Wi1 = (Zi1 + Zi2)/
√
2 and Wi2 = (Zi1 − Zi2)/

√
2. (13.16)

Note that

W ′W =
[
1 + ρ 0
0 1− ρ

]
. (13.17)

The linear model Linear Model

Y = 1β0 +Zβ + ε (13.18)

can be written in terms of the principal components W as

Y = 1β0 +Wγ + ε. (13.19)

This uses the fact that V V ′ = I to transform Zβ into Wγ:

Zβ = ZV V ′β =Wγ. (13.20)

Notice that γ = V ′β is the vector of regression coefficients for the princi-
pal components; β is the vector of regression coefficients for the Zs. The
translation of γ back to β is

β = V γ. (13.21)

(Continuation of Example 13.8) Consider a reparameterization of model Example 13.9
(13.6) given by

Yi = β0 +Wi1γ1 +Wi2γ2 + εi. (13.22)

Using equation 13.16,

Yi = β0 +
1√
2
(Zi1 + Zi2)γ1 +

1√
2
(Zi1 − Zi2)γ2 + εi

= β0 + Zi1
1√
2
(γ1 + γ2) + Zi2

1√
2
(γ1 − γ2) + εi (13.23)



13.2 Biased Regression 449

and, comparing this with equation 13.6 we see that

β1 =
1√
2
γ1 +

1√
2
γ2 and (13.24)

β2 =
1√
2
γ1 − 1√

2
γ2. (13.25)

Also, note that

γ1 =
1√
2
β1 +

1√
2
β2 and (13.26)

γ2 =
1√
2
β1 − 1√

2
β2. (13.27)

Ordinary least squares using the principal components as the indepen- Solution
dent variables gives

γ̂ = (W ′W )−1W ′Y = L−1W ′Y (13.28)

=



(
∑
iWi1Yi) / λ1

(
∑
iWi2Yi) / λ2

...
(
∑
iWipYi) / λp


=



γ̂1

γ̂2

...
γ̂p


. (13.29)

The regression coefficients for the principal components can be com-
puted individually since the principal components are orthogonal; W ′W
is a diagonal matrix. Likewise, the variance–covariance matrix of γ̂ is the
diagonal matrix

Var(γ̂) = L−1σ2. (13.30)

That is, the variance of γ̂j is σ2(γ̂j) = σ2/λj , and all covariances are zero.
Because of the orthogonality of the principal components, the partial and
sequential sums of squares for each principal component are equal and each
regression sum of squares can be computed individually as

SS(γj) = γ̂2
jλj . (13.31)

If all principal components are used, the results are equivalent to ordinary Relationship to
Ordinary Least
Squares

least squares regression. The estimate of β is obtained from γ̂ as

β̂ = V γ̂ (13.32)
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and the regression equation can be written as either

Ŷ = 1Y +Wγ̂

or

Ŷ = 1Y +Zβ̂. (13.33)

(Continuation of Example 13.9) From equation 13.22, the ordinary least Example 13.10
squares estimators of γ1 and γ2 are γ̂1

γ̂2

 =


∑
iWi1Yi/(1 + ρ)∑
iWi2Yi/(1− ρ)

 . (13.34)

The ordinary least squares estimators of β1 and β2 are given by

β̂1 =
1√
2
γ̂1 +

1√
2
γ̂2 and (13.35)

β̂2 =
1√
2
γ̂1 − 1√

2
γ̂2. (13.36)

Note that V ar(γ̂1) = σ2/(1+ρ) and V ar(γ̂2) = σ2/(1−ρ). When ρ is close
to 1 (or −1), the variance of γ̂2 (or γ̂1) will be very large.

The idea behind principal component regression, however, is to elim- Eliminating
Principal
Components

inate those dimensions that are causing the collinearity problem, those
dimensions for which the λj are very small. Assume it has been decided
to eliminate s principal components, usually those having the s smallest
eigenvalues, and retain g principal components for the analysis (g+ s = p).
The subscript (g) is used on V , L, W , and γ̂ to designate the partitions
of the corresponding matrices that relate to the g principal component di-
mensions retained in the analysis. Thus, V (g) is the p×g matrix of retained
eigenvectors,W (g) is the n× g matrix of the corresponding principal com-
ponents, and γ̂(g) is the vector of their estimated regression coefficients. The
subscript (g) is used on other results to designate the number of principal
components retained in the analysis.
Recall that the principal component regression coefficients, their vari-
ances, and the sums of squares attributable to each can be computed inde-
pendently since the principal components are orthogonal. Therefore, γ̂(g) is
obtained from γ̂ by simply extracting the g elements corresponding to the
retained principal components. The principal component regression
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estimate of β, the regression coefficients for the Zs, is given by

β+
(g)

(p× 1)
= V (g)

(p× g)
γ̂(g)

(g × 1).
(13.37)

The notation β+ is used in place of β̂ to distinguish the principal compo-
nent estimates of β from the least squares estimates. Notice that there are
p elements in β+

(g), even though there are only g elements in γ̂.
The variance of β+

(g) is

Var[β+
(g)] = V (g)L

−1
(g)V

′
(g)σ

2. (13.38)

These variances involve the reciprocals of only the larger eigenvalues. The
smaller ones causing the variance inflation in the ordinary least squares
solution have been eliminated.

(Continuation of Example 13.10) Suppose we decide to eliminate the Example 13.11
second principal componentW 2 and retain only the first principal compo-
nentW 1. SinceW 1 andW 2 are orthogonal to each other, the estimator of
γ1 obtained by eliminatingW 2 (or setting γ2 = 0) is the same as γ̂1 given
in equation 13.34. Then, the principal component estimators of β1 and β2
are

β+
1 =

1√
2
γ̂1 and (13.39)

β+
2 =

1√
2
γ̂1. (13.40)

Note that

Var(β+
1 ) = Var(β+

2 ) = Cov(β
+
1 , β

+
2 ) =

σ2

2(1 + ρ)
. (13.41)

These variances are always smaller than Var(β̂1) = Var(β̂2) = σ2/(1− ρ2)
and are much smaller when ρ is close to 1.

The sum of squares due to regression is the sum of the contributions SS(Regr)
from the g principal components retained and has g degrees of freedom:

SS(Regr) =
∑
j∈{g}

SS(γj), (13.42)

where summation is over the subset of g principal components retained in
the model.
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The regression equation can be written either as Regression
Equations

Ŷ (g) = 1Y +Zβ+
(g) or

Ŷ (g) = 1Y +W (g)γ̂(g), (13.43)

whereW (g) is the matrix of retained principal components; β̂0 = Y and is
orthogonal to each β+

(g).

The variance of Ŷ (g) can be written in several forms. Perhaps the sim-
plest is

Var
[
Ŷ (g)

]
=

[
J

n
+W (g)L

−1
(g)W

′
(g)

]
. (13.44)

The principal component regression coefficients can be expressed as linear Relationship
of β+

(g) to β̂functions of the least squares estimates:

β+
(g) = V (g)V

′
(g)β̂

= [I − V (s)V
′
(s)]β̂, (13.45)

where V (s) is the matrix of s eigenvectors that were dropped from the
analysis. Since β̂ is unbiased, the expectation and bias of the principal
component regression coefficients follow from equation 13.45;

E [β+
(g)] = β − V (s)V

′
(s)β

or the bias is

Bias = E [β+
(g)]− β = −V (s)V

′
(s)β. (13.46)

The fact that β+
(g) has p elements, a regression coefficient for each in- Linear Restric-

tions on β+
(g)dependent variable, even though only g regression coefficients γ(g) were

estimated implies that there are linear restrictions on β+
(g). There is one

linear restriction for each eliminated principal component. The linear re-
strictions on β+

(g) are defined by V (s) as

V ′
(s)β = 0. (13.47)

(Continuation of Example 13.11) Using β+
1 and β

+
2 , the regression equa- Example 13.12

tion can be written as

Ŷi(1) = Y + Zi1β̂+
1 + Zi2β̂

+
2

= Y +Wi1γ̂1.
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The variance of the vector Ŷ (1) is given by

Var(Ŷ (1)) = σ2
[
J

n
+

1
(1 + ρ)

W 1W
′
1

]
.

Even though the estimates of β+
1 and β

+
2 have smaller variance than β̂1

and β̂2, respectively, they are biased. Note that

E [β+
1 ] =

1√
2
E [γ̂1]

=
1√
2
γ1

and hence the bias of β+
1 is

E [β+
1 ] =

1√
2
γ1 − ( 1√

2
γ1 +

1√
2
γ2)

= − 1√
2
γ2

= −1
2
(β1 − β2).

Similarly, the bias of β+
2 is

E [β+
2 ] =

1
2
(β1 − β2).

Finally, note that the principal component regression coefficients satisfy a
linear restriction: β+

1 − β+
2 = 0.

It is best to be conservative in eliminating principal components since Eliminating
Principal
Components

each one eliminated introduces another constraint on the estimates and
another increment of bias. The bias term, equation 13.46, can also be ex-
pressed as −V(s)γ(s), where γ(s) is the set of principal component regression
coefficients dropped. Hence, one does not want to eliminate a principal com-
ponent for which γj is very different from zero. A good working rule seems
to be to eliminate only those principal components that

1. have small enough eigenvalues to cause serious variance inflation (see
Section 11.3) and

2. for which the estimated regression coefficient γ̂j is not significantly
different from zero.

One may wish to use a somewhat lower level of significance (say α = .10
or .20) for testing the principal component regression coefficients in order
to allow for the low power that is likely to be present for the dimensions
that have limited dispersion.
The key steps in principal component regression are the following.
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1. Obtain the singular value decomposition on the matrix of centered
and scaled independent variables Z = UL1/2V ′.

2. The principal components are given by W = ZV or W = UL1/2.

3. Regress Y onW to obtain the estimates of the regression coefficients
for the p principal components γ̂, their estimated variances s2(γ̂),
and the sums of squares due to regression SS(γ̂j). The residual mean
square from the full model is used as the estimate of σ2 in s2(γ̂).

4. Test H0 : γj = 0 for each j using Student’s t or F . Eliminate from
the regression all principal components that

a. are causing a collinearity problem (condition index > 10, for
example) and

b. do not make a significant contribution to the regression.

5. γ̂(g) is the vector of estimated regression coefficients retained. SS(Regr)
=

∑
SS(γj), where summation is over the g components retained.

SS(Regr) has g degrees of freedom.

6. Convert the regression coefficients for the principal components to the
regression coefficients for the original independent variables (centered
and scaled) by

β+
(g) = V (g)γ̂(g),

which has estimated variance

s2[β+
(g)] = V (g)L

−1
(g)V

′
(g)s

2.

7. The regression equation is either

Ŷ (g) = 1Y +Zβ
+
(g) or Ŷ (g) = 1Y +Wγ̂(g).

The principal component regression analysis for the example begins with Example 13.13
the principal component analysis using the data from Example 13.2. The
singular values λj showed that the dimension defined by the third princi-
pal component accounted for less than .1% of the total dispersion of the
centered and standardized variables Z. The second dimension accounted
for 28% of the total dispersion.
The estimates of the regression coefficients for the principal components
and the sum of squares attributable to each are shown in Table 12.5.
The total sum of squares accounted for by the three principal components
equals the total sum of squares due to regression of the original variables,
SS(Regr)= 20.784. The regression coefficients for the first two principal
components are highly significant; the regression coefficient for the third
component is not significant even at α = .20. Consequently, no important
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TABLE 13.3. Estimated regression coefficients for the principal compo-
nents, their standard errors, and the sum of squares attributable to each.

Principal Regression
Component Coefficients Standard Sum of

j γ̂j Errors Squaresa

1 2.3473 .598 11.940∗∗

2 3.0491 .967 7.718∗∗

3 19.7132 16.361 1.126
a ∗∗ indicates sum of squares is significant at the .01 level of probability.

Each sum of squares has 1 degree of freedom and was tested against the residual
mean square from the full model, s2 = .776 with 16 degrees of freedom.

information on Y would be lost if the third principal component were to be
dropped from the regression. The very large standard error on γ̂3 reflects
the extremely small amount of variation in the dimension defined by the
third principal component.
The principal component analysis and Gabriel’s biplot showed that the
first principal component is defined primarily by Z1 and Z2 with a much
smaller contribution from Z3. This particular linear function of Z1, Z2, and
Z3 contains information on Y as shown by its significance. Likewise, the
second principal component dominated by Z3 is important for Y . However,
the third principal component, essentially the difference between Z1 and
Z2, does not make a significant contribution to the regression. This does
not imply that the difference between Z1 and Z2 is unimportant in the
process being studied. In fact, the equation used to generate Y in this
artificial example gives greater weight to the difference than it gives to the
sum of Z1 and Z2. In this particular set of data, however, Z1 and Z2 are so
nearly collinear that their difference is always very close to being a constant
and, therefore, the impact of the difference is estimated only with very low
precision.
The principal component regression estimate of β (Table 13.4) using all
principal components (g = 3) reproduces the ordinary least squares re-
sult. The estimate of β using only the first two principal components β+

(2)
shows a marked change toward zero in the first two regression coefficients,
and a marked decrease in their standard errors. The change is small in
the third regression coefficient and its standard error. The large changes
associated with Z1 and Z2 and the small change associated with Z3 di-
rectly reflect the relative involvement of the independent variables in the
near-singularity shown by the third principal component. The coefficient
of determination for the principal component regression using the first two
principal components is R2

(2) = .592, only slightly less than R
2 = .626 for

ordinary least squares. The regression equation estimated from principal
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TABLE 13.4. Principal component regression estimates of the regres-
sion coefficients for the original variables using all principal components
(g = 3) and omitting the third principal component (g = 2).

Scaled Regression Coefficients Using Mean
Variable g Principal Componentsa Squared
Zj g = 3 g = 2 Error
1 14.480 (11.464) .678 (0.478) 14.83
2 −13.182 (11.676) 0.878 (0.452) 15.34
3 4.493 (1.144) 3.685 (0.927) 1.16

aStandard errors given in parentheses. The mean squared errors are for the
g = 2 principal component solution.

component regression with g = 2 is

Ŷ(g)i = 21.18 + .678Zi1 + .878Zi2 + 3.685Zi3.

Since the parameters β are known in this artificial example, the mean
squared errors for the principal component regression are computed and
given in the last column of Table 13.4. The mean squared errors for the
variables involved in the near-singularity are an order of magnitude smaller
than for ordinary least squares. Comparison with the variances of the es-
timated regression coefficients shows that most of MSE for β+

(2)1 and β
+
(2)2

is due to bias.
The relationship between the principal component regression estimates
and the least squares estimates for this example are shown by evaluating
equation 13.45. This givesβ

+
(2)1

β+
(2)2

β+
(2)3

 =

 .510 .499 −.029
.499 .492 .029
−.029 .029 .998

 β̂1
β̂2
β̂3

 .
The principal component estimates of β1 and β2 are very nearly simple
averages of the corresponding least squares estimates. The principal com-
ponent estimate of β3 is nearly identical to the least squares estimate.
This illustrates a general result of principal component regression: the esti-
mated coefficients for any variables that are nearly orthogonal to the axes
causing the collinearity problems are nearly identical to the least squares
estimates. However, for variables involved in the collinearity problem, their
estimates given by principal component regression are weighted averages
of the least squares regression coefficients of all variables involved in the
collinearity. Principal component regression provides no information on the
relative contribution (to the response variable) of variables involved in the
collinearity.
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For illustration, it is helpful to follow up on the obvious suggestion from
the principal component analysis and the biplot that Z1 and Z2, for all
practical purposes, present the same information. If the two variables are
redundant, a logical course of action is to use only one of the two or their
average. The regression analysis was repeated using Z = (Z1 + Z2)/2 as
one variable, rescaled to have unit length, and Z3 as the second variable.
Of course, the collinearity problem disappeared. This regression analysis
gave R2 = .593, essentially the same as the principal component regres-
sion result. The least squares regression coefficient for Z was 1.55 (with a
standard error of .93). This is almost exactly the sum of the two regres-
sion coefficients for Z1 and Z2 estimated from the principal component
regression using g = 2. Thus, the principal component regression analysis
replaces the correlated complex of variables causing the near-singularity
with a surrogate variable, the principal component, and then “parcels out”
the estimated effect of the surrogate variable among the variables that made
up the complex.

13.3 General Comments on Collinearity

The course of action in the presence of collinearity depends on the nature
and origin of the collinearity and on the purpose of the regression analysis.
If the regression analysis is intended solely for prediction of the depen- Less Serious for

Predictiondent variable, the presence of near singularities in the data does not create
serious problems as long as certain very important conditions are met:

1. The collinearity shown in the data is a reflection of the correlational
structure of the X-space. It must not be an artifact of the sampling
process or due to outliers in the data. [Mason and Gunst (1985) dis-
cuss the effects and detection of collinearities induced by outliers.]

2. The system continues to operate in the same manner as when the
data were generated so that the correlational structure of theX-space
remains consistent. This implies that the regression equation is not
to be used to predict the response to some modification of the system
even if the prediction point is in the sample X-space (Condition 3).

3. Prediction is restricted to points within the sample X-space. Extrap-
olation beyond the data is dangerous in any case but can quickly lead
to serious errors of prediction when the regression equation has been
estimated from highly collinear data.

These conditions are very limiting and simply reflect the extreme sensitivity
of ordinary least squares when collinearity is present. Nevertheless, the



458 13. COLLINEARITY

impact of collinearity for prediction is much less than it is for estimation
(Thisted, 1980). Any variable selection process for model building will tend
to select one independent variable from each correlated set to act as a
surrogate variable for the complex. The remaining variables in that complex
will be dropped. It does not matter for prediction purposes whether the
retained variable is a causal variable in the process; it is only important
that the system continue to “act” as it did when the data were collected so
that the surrogate variable continues to adequately represent the complex
of variables.
On the other hand, collinearity creates serious problems if the purpose of Serious

Problemsthe regression is to understand the process, to identify important variables
in the process, or to obtain meaningful estimates of the regression coeffi-
cients. The ordinary least squares estimates can be far from the true values.
In the numerical example, the true values of the regression coefficients were
5.138, −2.440, and 2.683 compared to the estimated values of 14.5, −13.2,
and 4.49. Although there is always uncertainty with observational data re-
garding the true importance of a variable in the process being studied, the
presence of collinearity almost ensures that the identification of important
variables will be wrong. If all potentially important variables are retained in
the model, all variables in any correlated complex will appear to be unim-
portant because any one of them, important or not to the process, can
usurp the function of the others in the regression equation. Furthermore,
any variable selection process to choose the best subset of variables will
almost certainly “discard” important variables and the variable retained
to represent each correlated complex may very well be unimportant to the
process. For these purposes, it is extremely important that the presence of
collinearity be recognized and its nature understood.
Some degree of collinearity is expected with observational data. “Seeing”
the correlational structure should alert the researcher to the cases where the
collinearity is the result of inadequate or erroneous data. The solution to
the problem is obvious for these cases; near-singularities that result from
inadequate sampling or errors in the data will disappear with more and
better data. It may be necessary to change sampling strategy to obtain data
points in regions of the X-space not previously represented. Correlations
inherent to the system will persist. Analysis of the correlational structure
should provide insight to the researcher on how the system operates and
may suggest alternative parameterizations and models. In the final analysis,
it will probably be necessary to resort to controlled experimentation to
separate the effects of highly collinear variables. Collinearity should seldom
be a problem in controlled experiments. The choice of treatment levels for
the experiment should be such that the factors are orthogonal, or nearly
so.
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13.4 Summary

The purposes of this chapter were to emphasize the importance of un-
derstanding the nature of any near-singularities in the data that might
cause problems with the ordinary least squares regression, to introduce
principal component analysis and Gabriel’s biplots as tools for aiding this
understanding, and to acquaint the reader with one (of the several) biased
regression methods. All of the biased regression methods are developed on
the premise that estimators with smaller mean squared errors can be found
if unbiasedness of the estimators is not required. As with many regression
techniques, the reader is cautioned against indiscriminate use of biased re-
gression methods. Every effort should be made to understand the nature
and origin of the problem and to correct it with better data if possible.

13.5 Exercises

13.1. Use the definition of mean squared error in equation 13.4 to show
that MSE is the variance of the estimator plus the square of the bias.

13.2. Use the variance of linear functions and γ̂ = L−1W ′Y to show that
Var(γ̂) = L−1σ2, equation 13.30.

13.3. Use equation 13.37 and the variance of linear functions to derive
Var(β+

(g)), equation 13.38.

13.4. Show that the sum of the variances of β+
(g)j is equal to the sum of the

variances of γ̂j . That is, show that tr{Var[β+
(g)]} = tr{Var[γ̂(g)]}.

13.5. Show that the length of the β+
(g) vector is the same as the length of

γ̂(g).

13.6. Use the logarithms of the nine independent variables in the peak flow
runoff data from Exercise 5.1.

(a) Center and scale the independent variables to obtain Z and
Z ′Z, the correlation matrix.

(b) Do the singular value decomposition on Z and construct the
biplot for the first and second principal component dimensions.
What proportion of the dispersion in the X-space is accounted
for by these first two dimensions?

(c) Use the correlation matrix and the biplot to describe the corre-
lational structure of the independent variables.
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13.7. Do principal component regression on the peak flow runoff data (Ex-
ercise 5.1) to estimate the regression equation using the logarithms
of all independent variables and ln(Q) as the dependent variable.

(a) Which principal components are causing a collinearity problem?

(b) Test the significance of the individual principal component re-
gression coefficients. Which principal components will you retain
for your regression?

(c) Convert the results to β+
(g), compute estimates of their variances,

and give the final regression equation (in terms of the Zs).

(d) Compute R2.

13.8. Use the data from Andrews and Herzberg (1985) on percentages of
sand, silt, and clay in soil at 20 sites given in Exercise 11.11.

(a) Do the singular value decomposition on Z, the centered and
scaled variables, and construct Gabriel’s biplot of the data.

(b) How many principal components must be used in order to ac-
count for 80% of the dispersion?

(c) Interpret the results of the biplot (of the first and second prin-
cipal components) in terms of (i) which variable vectors are not
well represented by the biplot, (ii) the correlational structure of
the variables, (iii) how the 20 sites tend to cluster, and (iv) which
site has very low sand content at depths 1 and 2 but moderately
high sand content at depth 3.

13.9. This exercise is a continuation of the Laurie-Alberg experiment on
relating the activity of fruit flies to four enzymes (Exercise 11.9). The
results of the SVD on Z are given in Exercise 11.9. Some of the results
from principal component regression are given in the accompanying
tables.

Estimates of the regression coefficients (for Zs) retaining the indi-
cated principal components:

Principal Components Retained
Variable All 1, 2, 3 1, 2 1
Intercept 13.118 13.118 13.118 13.118
SDH −1.594 2.700 2.472 4.817
FUM 10.153 5.560 5.229 5.444
GH 4.610 6.676 6.400 4.543
GO 4.547 4.580 5.340 4.543

Variances of estimated regression coefficients retaining the indicated
principal components:
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Principal Components Retained
Variable All 1, 2, 3 1, 2 1
Intercept .05 .05 .05 .05
SDH 56.8 9.0 6.74 2.72
FUM 63.1 8.4 3.51 3.47
GH 29.0 17.9 14.50 .48
GO 28.8 28.8 2.89 2.42
tr{Var[β+

(g)]} 177.6 64.1 27.64 9.10

(a) From the SVD in Exercise 11.9, are any principal components
cause for concern in variance inflation? Which Zs are heavily
involved in the fourth principal component?

(b) From inspection of the behavior of the variances as the principal
components are dropped, which variables are heavily involved in
the fourth principal component? Which are involved in the third
principal component?

(c) Which principal component regression solution would you use?
The variances continue to decrease as more principal compo-
nents are dropped from the solution. Why would you not use
the solution with only the first principal component?

(d) Do a t-test of the regression coefficients for your solution. (There
were n = 21 observations in the data set.) State your conclu-
sions.

13.10. Consider the model in equation 13.22 given by

Yi = β0 +Wi1γ1 +Wi2γ2 + εi,

where εi ∼ NID(0, σ2),
∑
iWi1 =

∑
iWi2 =

∑
iWi1Wi2 = 0,

∑
iW

2
i1 =

(1 + ρ), and
∑
iW

2
i2 = (1− ρ). Consider the estimators

γ̃1(k1) =
∑
Wi1Yi /

(∑
W 2
i1 + k1

)
, and

γ̃2(k2) =
∑
Wi2Yi /

(∑
W 2
i2 + k2

)
.

(a) For k1 > 0 and k2 > 0, show that γ̃1(k1) and γ̃2(k2) are biased
estimates of γ1 and γ2.

(b) Find the mean squared errors of γ̃1(k1) and γ̃2(k2).

[These are called the generalized ridge regression estimators.
When k1 = k2, they are called the ridge regression estimators. Hoerl,
Kennard, and Baldwin (1975) suggest the use of

k1 = k2 = 2s2/(γ̂2
1 + γ̂

2
2),
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where γ̂1 and γ̂2 are the ordinary least squares estimators of γ1 and
γ2, and s2 is the residual mean square error from the least squares
regression.]



14
CASE STUDY: COLLINEARITY
PROBLEMS

Chapter 13 discussed methods of handling the collinear-
ity problem. This chapter uses the Linthurst data to
illustrate the behavior of ordinary least squares when
collinearity is a problem. The correlational structure is
then analyzed using principal component analysis and
Gabriel’s biplots. Finally, principal component regres-
sion is used and its limitations for the objective of this
study are discussed.

This chapter gives the analysis of a set of observational data where
collinearity is a problem. The purpose of this case study is (1) to demon-
strate the inadequacies of ordinary least squares in the presence of collinear-
ity, (2) to show the value of analyzing the correlational structure of the data,
and (3) to demonstrate the use, and limitations, of principal component re-
gression.

14.1 The Problem

This analysis is a continuation of the first case study (Chapter 5) which
used five variables from the September sampling of the Linthurst data on
Spartina BIOMASS production in the Cape Fear Estuary of North Car-
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olina.1 The objective of the study was to identify physical and chemical
properties of the substrate that are influential in determining the widely
varying aerial biomass production of Spartina in the Cape Fear Estuary.
The sampling plan included three marshes in the estuary and three sites in
each marsh representing three ecosystems: an area where the Spartina had
previously died but had recently regenerated, an area consisting of short
Spartina, and an area consisting of tall Spartina. In each of the nine sites,
five random sampling points were chosen from which aerial biomass and
the following physicochemical properties of the substrate were measured
on a monthly schedule.

1. free sulfide (H2S), moles

2. salinity (SAL), ◦/◦◦

3. redox potentials at pH 7 (Eh7), mv

4. soil pH in water (pH), 1:1 soil/water

5. buffer acidity at pH 6.6 (BUF ), meg/100 cm3

6. phosphorus concentration (P ), ppm

7. potassium concentration (K), ppm

8. calcium concentration (Ca), ppm

9. magnesium concentration (Mg), ppm

10. sodium concentration (Na), ppm

11. manganese concentration (Mn), ppm

12. zinc concentration (Zn), ppm

13. copper concentration (Cu), ppm

14. ammonium concentration (NH4), ppm.

Table 5.1 (page 163) gives the “Loc” and “Type” codes, the data for aerial
biomass, and the five substrate variables used in that case study. Table 14.1
contains the data for the nine additional substrate variables for the Septem-
ber sampling date. The “Loc” and “Type” codes in Table 5.1 identify, re-
spectively, the three islands in the Cape Fear Estuary and the nature of
the Spartina vegetation at each sampling site; DVEG labels the recently
regenerated areas, and TALL and SHRT identify the commonly labeled tall
and short Spartina areas, respectively.

1The authors appreciate Dr. Rick A. Linthurst’s permission to use the data and his
contributions to this discussion.
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TABLE 14.1. Nine additional physicochemical properties of the substrate in the
Cape Fear Estuary of North Carolina. Refer to Table 5.1 for aerial biomass (BIO)
and the five physicochemical variables previously used. (Data used with permission
of Dr. R. A. Linthurst.)

OBS H2S Eh7 BUF P Ca Mg Mn Cu NH4
1 −610 −290 2.34 20.238 2, 150.00 5, 169.05 14.2857 5.02381 59.524
2 −570 −268 2.66 15.591 1, 844.76 4, 358.03 7.7285 4.19019 51.378
3 −610 −282 4.18 18.716 1, 750.36 4, 041.27 17.8066 4.79221 68.788
4 −560 −232 3.60 22.821 1, 674.36 3, 966.08 49.1538 4.09487 82.256
5 −610 −318 1.90 37.843 3, 360.02 4, 609.39 30.5229 4.60131 70.904
6 −620 −308 3.22 27.381 1, 811.11 4, 389.84 9.7619 4.50794 54.206
7 −590 −264 4.50 21.284 1, 906.63 4, 579.33 25.7371 4.91093 84.982
8 −610 −340 3.50 16.511 1, 860.29 3, 983.09 10.0267 5.11364 53.275
9 −580 −252 2.62 18.199 1, 799.02 4, 142.40 9.0074 4.64461 47.733

10 −610 −288 3.04 19.321 1, 796.66 4, 263.93 12.7140 4.58761 60.674
11 −540 −294 4.66 16.622 1, 019.56 1, 965.95 31.4815 1.74582 65.875
12 −560 −278 5.24 22.629 1, 373.89 2, 366.73 64.4393 3.21729 104.550
13 −570 −248 6.32 13.015 1, 057.40 2, 093.10 48.2886 2.97695 75.612
14 −580 −314 4.88 13.678 1, 111.29 2, 108.47 22.5500 2.71841 59.888
15 −640 −328 4.70 14.663 843.50 1, 711.42 33.4330 1.85407 77.572
16 −610 −328 6.26 60.862 1, 694.01 3, 018.60 52.7993 3.72767 102.196
17 −600 −374 6.36 77.311 1, 667.42 2, 444.52 60.4025 2.99087 96.418
18 −630 −356 5.34 73.513 1, 455.84 2, 372.91 66.3797 2.41503 88.484
19 −640 −354 4.44 56.762 2, 002.44 2, 241.30 56.8681 2.45754 91.758
20 −600 −348 5.90 39.531 1, 427.89 2, 778.22 64.5076 2.82948 101.712
21 −640 −390 7.06 39.723 1, 339.26 2, 807.64 56.2912 3.43709 179.809
22 −650 −358 7.90 55.566 1, 468.69 2, 643.62 58.5863 3.47090 168.098
23 −630 −332 7.72 35.279 1, 377.06 2, 674.65 56.7497 3.60202 210.316
24 −640 −314 8.14 97.695 1, 747.56 3, 060.10 57.8526 3.92552 211.050
25 −630 −332 7.44 99.169 1, 526.85 2, 696.80 45.0128 4.23913 185.454
26 −620 −338 −0.42 3.718 6, 857.39 1, 778.77 16.4856 3.41143 16.497
27 −620 −268 −1.04 2.703 7, 178.00 1, 837.54 11.4075 3.43998 13.655
28 −570 −300 −1.12 2.633 6, 934.67 1, 586.49 7.9561 3.29673 17.627
29 −620 −328 −0.86 3.148 6, 911.54 1, 483.41 10.4945 3.11813 15.291
30 −570 −374 −0.90 2.626 6, 839.54 1, 631.32 9.4637 2.79145 14.750
31 −620 −336 3.72 16.715 1, 564.84 3, 828.75 10.3375 5.76402 95.721
32 −630 −342 4.90 16.377 1, 644.37 3, 486.84 21.6672 5.36276 86.955
33 −630 −328 2.78 21.593 1, 811.00 3, 517.16 13.0967 5.48042 83.935
34 −630 −332 3.90 18.030 1, 706.36 4, 096.67 15.6061 5.27273 104.439
35 −610 −322 3.60 34.693 1, 642.51 3, 593.05 6.9786 5.71123 79.773
36 −640 −290 3.58 28.956 2, 171.35 3, 553.17 57.5856 3.68392 118.178
37 −610 −352 5.58 25.741 1, 767.63 3, 359.17 72.5160 3.91827 123.538
38 −600 −280 6.58 25.366 1, 654.63 3, 545.32 64.4146 4.06829 135.268
39 −620 −290 6.80 17.917 1, 620.83 3, 467.92 53.9583 3.89583 115.417
40 −590 −328 5.30 20.259 1, 446.30 3, 170.65 22.6657 4.70368 108.406
41 −560 −332 1.22 134.426 2, 576.08 2, 467.52 51.9258 4.11065 57.315
42 −550 −276 1.82 35.909 2, 659.36 2, 772.99 75.1471 4.09826 77.193
43 −550 −282 1.60 38.719 2, 093.57 2, 665.02 71.0254 4.31487 68.294
44 −540 −370 1.26 33.562 2, 834.25 2, 991.99 70.1465 6.09432 71.337
45 −570 −290 1.56 36.346 3, 459.26 3, 059.73 89.2593 4.87407 79.383
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Analysis of the full data set showed a serious collinearity problem in the
data for every sampling date. The five variables used in Chapter 5—SAL,
pH, K, Na, and Zn, were chosen from the larger data set to preserve some
of the collinearity problem and yet reduce the dimension of the problem to
a more convenient size for presentation. The multiple regression analysis
of that subset of data with the five variables in the model showed signifi-
cance only for pH. Backward elimination of one variable at a time led to
a final model containing pH and K. In Chapter 7, all-possible regressions
showed pH and Na to be the best two-variable model. Section 11.4 gave
the residuals analysis, influence statistics, and the collinearity diagnostics
for the model with these five variables.
In this chapter, BIOMASS is used as the dependent variable but all 14
physicochemical variables are investigated as independent variables. The
primary objective of this research was to study the observed relationships
of BIOMASS with the substrate variables with the purpose of identifying
substrate variables that with further study might prove to be causal. As
in Chapter 5, this analysis concentrates on the total variation over the 9
sites. The analysis of the “among-site” variation is left as exercises at the
end of this chapter. The “within-site” variation can be studied in a similar
manner.
Ordinary least squares is perhaps the most commonly used statistical
tool for assessing importance of variables, and was the first method ap-
plied by the researcher. The results obtained, and reported here for the
September data, were typical of ordinary least squares results in the pres-
ence of collinearity; the inadequacies of the method were evident. Principal
component analysis and Gabriel’s biplot are used here to develop an un-
derstanding of the correlational structure of the independent variables. To
complete the case study, principal component regression is applied to the
data to illustrate its use, and to show that biased regression methods suffer
some of the same inadequacies as least squares when the purpose of the
analysis is to identify “important” variables.
Although more and better data is the method of first choice for solv-
ing the collinearity problem, there will be situations where (1) it is not
economically feasible with observational studies to obtain the kind of data
needed to disrupt the near-singularities or (2) the near-singularities are a
product of the system and will persist regardless of the amount of data
collected. One purpose of this case study is to raise flags of caution on the
use of least squares and biased regression methods in such cases. Biased
regression methods can have advantages over least squares for estimation
of the individual parameters, in terms of mean squared error, but suffer
from the same problems as least squares when the purpose is identification
of “important” variables.
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TABLE 14.2. Ordinary least squares regression of aerial biomass on 14 soil vari-
ables and stepwise regression results using the maximum R-squared option in
PROC REG (SAS Institute Inc., 1989b). All independent variables are centered
and standardized to have unit length vectors.

Multiple Regression Maximum R-Squared
Soil Variable
Variable Added (+)
Xj β̂j s(β̂j) Step Removed (−) Cp R2

H2S 89 610 1 +pH 21.4 .599
SAL −591 646 2 +Mg 14.1 .659
Eh7 626 493 3 +Ca 5.7 .726
pH 2006 2764 4 +Cu 4.0 .750
BUF −115 2059 5 +P 3.8 .764
P −311 483 6 +K,−P,+Zn 3.8 .777
K −2066 952 7 +NH4 4.1 .788
Ca −1322 1432 8 +Eh7,−Zn,+P 4.7 .797
Mg −1746 1710 9 +Zn,−P,+SAL 5.6 .804
Na 203 1129 10 +P 7.2 .806
Mn −272 873 11 +Mn 9.1 .807
Zn −1032 1196 12 +Na 11.0 .807
Cu 2374 771 13 +H2S 13.0 .807
NH4 −848 1015 14 +BUF 15.0 .807

14.2 Multiple Regression: Ordinary Least Squares

The purpose of presenting this analysis is to illustrate the behavior of or-
dinary least squares in the presence of collinearity and to demonstrate the
misleading nature of the results both for estimation of regression coefficients
and for identification of important variables in the system.
Ordinary least squares regression of BIOMASS on all 14 variables gave Full Model

ResultsR2 = .807. The regression coefficients and their standard errors are given
in the first three columns of Table 14.2. Only 2 variables, K and Cu, have
regression coefficients differing from zero by more than twice their standard
error. Taken at face value, these results would seem to suggest that K and
Cu are the only important variables in “determining” BIOMASS. However,
the magnitude of the regression coefficients and their standard errors in any
nonorthogonal data set depends on which other variables are included in the
model. [Recall that pH was the only significant variable in the regression on
the 5 variables (Chapter 5: salinity, pH, K, Na, and Zn.)] The conclusion
that K and Cu are the only important variables is not warranted.
To demonstrate the dependence of the least squares results on the method Stepwise

Regressionused, three stepwise variable selection options in PROC REG (SAS Insti-
tute, Inc., 1989b), maximum R-square (MAXR), backwards elimination
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TABLE 14.3. Regression of aerial biomass on 14 soil variables using backward
elimination and stepwise regression options in PROC REG (SAS). All indepen-
dent variables are centered and standardized to have unit length vectors.

Backward Elimination Stepwise
Variable

Variable Prob Added (+) Prob
Step Removed(−) Cp > F Step Removed(−) Cp > F

1 −BUF 13.0031 .9559 1 +PH 64.3294 .0001
2 −H2S 11.0208 .8935 2 +MG 7.4217 .0094
3 −NA 9.0745 .8123 3 +CA 9.9068 .0031
4 −MN 7.1585 .7634 4 +CU 3.8339 .0572
5 −P 5.5923 .4891 5 +P 2.2881 .1384
6 −SAL 4.7860 .2505 6 −P
7 −EH7 4.0826 .2335
8 −NH4 3.8077 .1731
9 −K 4.3928 .1012

10 −ZN 3.9776 .2061

(BACKWARD), and STEPWISE, were used to simplify the model and se-
lect “important” variables. The results of the MAXR option are shown in
the last columns of Table 14.2. The MAXR option follows a sequence of
adding (and deleting) variables until all variables are included in the model.
In this selection option, the fourth step where Cu was added was the first
step for which the Cp statistic was less than p′ (Cp = 4.0 with p′ = 5). The
major increases in R2 had been realized at this point (R2 = .75). Based
on these results, one would choose the four-variate model consisting of pH,
Mg, Ca, and Cu. Note that the two variables that were the only significant
variables in the full model, Cu and K, entered in the fourth and sixth steps
in the maximum R-square stepwise regression option.
The selection paths for backward elimination (with SLS = .10) and the
stepwise options (with SLE = .15 and SLS = .10) are shown in Table 14.3.
These two selection procedures, with the specified values of SLS and SLE,
terminated at the same four-variate model consisting of pH, Mg, Ca, and
Cu. Notice that the stepwise option would have retained P in the model if
the default option of SLS = .15 had been used.
With the other 10 variables dropped, the magnitudes of the regression
coefficients for the 4 retained variables and their standard errors changed
considerably (Table 14.4). The coefficient for pH more than doubled, the
coefficients for Mg and Ca nearly doubled, and the coefficient for Cu was
halved. The standard errors for pH and Mg were reduced by 2

3 , and the
standard errors for Cu and Ca by 1

4 and
1
3 , respectively. Of these 4 variables,

pH andMg appear to be the more important, as judged by their early entry
into the model and the ratio of their coefficients to their standard errors.
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TABLE 14.4. Estimated regression coefficients and their standard errors for the
4 independent variables chosen by the stepwise regression procedures compared to
the estimates from the 14-variable model.

Estimates from Estimates from
14-Variable Model 4-Variable Model

Variable β̂j s(β̂j) β̂j s(β̂j)
pH 2, 006 2, 764 4, 793 894
Mg −1, 746 1, 710 −2, 592 564
Ca −1, 322 1, 432 −2, 350 908
Cu 2, 374 771 1, 121 573

Inspection of the correlation matrix, Table 14.5, reveals five variables Correlation
Matrixwith reasonably high correlations with BIOMASS ; pH, BUF , Ca, Zn, and

NH4. Each of these five variables would appear important if used as the only
independent variable, but none of these five were identified in the full model
and only pH and Ca were revealed as important in stepwise regression. The
other two variables declared important by the stepwise procedure, Mg and
Cu, had correlations with BIOMASS of only −.38 and .09, respectively.
The second most highly correlated variable with BIOMASS, BUF , was the
last of the 14 variables to enter the model in the “MAXR” variable selection
option.
The two stepwise regression methods suggest that future studies concen- Inconsistencies
trate on pH, Mg, Ca, and Cu. On the other hand, ordinary least squares
regression using all variables identified only K and Cu as the important
variables, and simple regressions on one variable at a time identify pH,
BUF , Ca, Zn, and NH4. None of the results were satisfying to the biolo-
gist; the inconsistencies of the results were confusing and variables expected
to be biologically important were not showing significant effects.
Ordinary least squares regression tends either to indicate that none of the
variables in a correlated complex are important when all variables are in the
model, or to arbitrarily choose one of the variables to represent the complex
when an automated variable selection technique is used. A truly important
variable may appear unimportant because its contribution is being usurped
by variables with which it is correlated. Conversely, unimportant variables
may appear important because of their associations with the real causal
factors. It is particularly dangerous in the presence of collinearity to use
the regression results to impart a “relative importance,” whether in a causal
sense or not, to the independent variables.
These seemingly inconsistent results are typical of ordinary least squares
regression when there are high correlations or, more generally, near-linear
dependencies among the independent variables. Inspection of the correla-
tion matrix shows several pairs of independent variables with reasonably
high correlations and three with |r| ≥ .90. The largest absolute correlation,
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TABLE 14.5. Product moment correlations among all variables in the Linthurst
September data.

BIO H2S SAL Eh7 pH BUF P K
BIO 1.00
H2S .33 1.00
SAL −.10 .10 1.00
Eh7 .05 .40 .31 1.00
pH .77 .27 −.05 .09 1.00
BUF −.73 −.37 −.01 −.15 −.95 1.00
P −.35 −.12 −.19 −.31 −.40 .38 1.00
K −.20 .07 −.02 .42 .02 −.07 −.23 1.00
Ca .64 .09 .09 −.04 .88 −.79 −.31 −.26
Mg −.38 −.11 −.01 .30 −.18 .13 −.06 .86
Na −.27 −.00 .16 .34 −.04 −.06 −.16 .79
Mn −.35 .14 −.25 −.11 −.48 .42 .50 −.35
Zn −.62 −.27 −.42 −.23 −.72 .71 .56 .07
Cu .09 .01 −.27 .09 .18 −.14 −.05 .69
NH4 −.63 −.43 −.16 −.24 −.75 .85 .49 −.12

Ca Mg Na Mn Zn Cu NH4

Ca 1.00
Mg −.42 1.00
Na −.25 .90 1.00
Mn −.31 −.22 −.31 1.00
Zn −.70 .35 .12 .60 1.00
Cu −.11 .71 .56 −.23 .21 1.00
NH4 −.58 .11 −.11 .53 .72 .93 1.00
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r = -0.95, is between pH and buffer acidity, the first and last variables to
enter the model in the “maximum R-squared” stepwise analysis. Any in-
ference that pH is an important variable and buffer acidity is not is clearly
an unacceptable conclusion. Other less obvious near-linear dependencies
among the independent variables may also be influencing the inclusion or
exclusion of variables from the model. The correlational structure of the
independent variables makes any simple interpretation of the regression
analyses unacceptable.

14.3 Analysis of the Correlational Structure

The purpose of the analysis of the correlational structure is to gain insight Purpose
into the relationships among the variables being studied and the causes of
the collinearity problem. The analysis may suggest ways of removing some
of the collinearity problem by obtaining more data or redefining variables.
The improved understanding will identify the systems of variables that are
closely related to the variation in the dependent variable and, hence, which
sets of variables merit further study.
Inspection of the correlations among the independent variables in Ta- Principal

Component
Analysis

ble 14.5 reveals several reasonably high correlations. However, the correla-
tions reveal only pairwise associations and provide an adequate picture of
the correlational structure only in the simplest cases. A more complete un-
derstanding is obtained by using principal component analysis, or singular
value decomposition, of the n× p matrix of the independent variables. For
this purpose, the independent variables are centered and scaled so that the
sum of squares of each independent variable is one; the vectors have unit
length in n-space. (Refer to Sections 2.7, 2.8, and 13.1 for review of eige-
nanalysis, singular value decomposition, and construction of the principal
component variables.)
The eigenvalues (λj) and eigenvectors (vj) for these data are given in
Table 14.6. The first principal component accounts for 35% of the disper-
sion in Z-space, λ1/

∑
λj = .35, and is defined primarily by the complex

of variables pH, BUF , Ca, Zn, and NH4; these are the variables with the
largest coefficients in the first eigenvector v1. The second principal compo-
nent, defined primarily by K, Mg, Na, and Cu, accounts for 26% of the
dispersion. The four dimensions with eigenvalues greater than 1.0 account
for 83% of the dispersion. (If all independent variables had been orthog-
onal, all eigenvalues would have been 1.0 and each would have accounted
for 7% of the dispersion.)
With the singular value decomposition, the measures of collinearity can
be used to assess the extent of the collinearity problem. The full impact
will not be seen from the singular value decomposition of the centered
and scaled matrix since collinearities involving the intercept have been
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TABLE 14.6. Eigenvalues and eigenvectors of the Z ′Z matrix for the 14 indepen-
dent variables in the Linthurst September data. All variables were centered and
standardized so that Z ′Z is the correlation matrix.

Eigen- λ1 λ2 λ3 λ4 λ5 λ6 λ7
values 4.925 3.696 1.607 1.335 .692 .500 .385
Eigen-
vectorsa v1 v2 v3 v4 v5 v6 v7
H2S .164 −.009 .232 −.690 .014 .422 −.293
SAL .108 −.017 .606 .271 .509 −.008 −.389
Eh7 .124 −.225 .458 −.301 −.166 −.598 .308
pH .408 .028 −.283 −.082 .092 −.190 −.056
BUF −.412 −.000 .205 .166 −.162 .024 −.110
P −.273 .111 −.160 −.200 .747 .018 .357
K .034 −.488 −.023 −.043 −.062 .016 .073
Ca .358 .181 −.207 .054 .206 −.427 −.117
Mg −.078 −.499 −.050 .037 .103 −.034 .036
Na .018 −.470 .051 .055 .240 .059 .160
Mn −.277 .182 .020 −.483 .039 −.300 −.152
Zn −.404 −.089 −.176 −.150 −.008 −.036 .062
Cu .011 −.392 −.377 −.102 .064 −.075 −.549
NH4 −.399 .026 −.011 .104 −.005 −.378 −.388
Eigen- λ8 λ9 λ10 λ11 λ12 λ13 λ14
values .381 .166 .143 .0867 .0451 .0298 .0095
Eigen-
vectors v8 v9 v10 v11 v12 v13 v14
H2S .087 .169 .296 .221 −.015 −.007 .080
SAL −.081 −.174 −.227 .090 −.155 .095 −.089
Eh7 .299 −.225 .084 −.023 .055 .033 .023
pH .033 .024 .147 .042 −.332 −.025 −.750
BUF .159 .097 .103 .340 .455 −.354 −.478
P .381 .077 −.018 −.035 .064 −.066 −.015
K .112 .560 −.554 .219 −.029 .249 −.073
Ca −.179 .189 .076 .508 .348 −.082 .306
Mg −.173 −.012 .111 .119 −.400 −.689 .193
Na −.459 .088 .439 −.219 .363 .275 −.144
Mn −.524 .086 −.363 −.270 .076 −.172 −.141
Zn −.211 −.438 .016 .572 −.217 .396 −.042
Cu .305 −.376 −.129 −.194 .304 .000 .043
NH4 .165 .420 .394 .132 .303 .232 .118

aThe sum of squares of the elements in each eigenvector is 1. Thus, if a particular
variable’s contribution were spread equally over all components, the coefficients would
be approximately ±1/

√
14 = ±.27.
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eliminated. Nevertheless, the smaller eigenvalues (Table 14.6) show that
there is very little dispersion in several dimensions. The last 4 principal
component dimensions together account for only 1% of the dispersion in
the Z-space; the last 6 principal components account for 3.4% of the total
dispersion in the Z-space. Thus, there is very little dispersion in at least 6
dimensions of a nominal 14-dimensional space. The dimension with the least
dispersion, λ = .0095, is due primarily to a linear restriction on pH, BUF ,
and Ca. The correlation between pH and BUF , −.95, is the correlation of
highest magnitude among the independent variables (Table 14.5).
Based on a result of Hoerl and Kennard (1970a), the lower bound on the
sum of the variances of estimated coefficients is σ2/λ14 = 105σ2. This is
compared to 14σ2 if all independent variables had been pairwise orthogonal.
The condition number for the matrix of centered variables is 22.8, above the
value of 10 suggested as the point above which collinearity can be expected
to cause problems. Thisted’s (1980) measure of collinearity is

mci =
14∑
j=1

λ−2
j λ

2
14 = 1.17

indicating severe collinearity. (Values ofmci near 1.0 indicate high collinear-
ity; values greater than 2.0 indicate little or no collinearity.) The variance
inflation factors (V IF ), the diagonal elements of (Z ′Z)−1, also show the
effects of collinearity. The largest V IF is 62 for pH, followed by 34.5 for
BUF , 23.8 for Mg, 16.6 for Ca, and 11.6 for Zn. The smallest are 1.9 for
P and 2.0 for EH7; these two variables are not seriously involved in the
near-singularities. (If all independent variables were orthogonal, all V IF s
would be 1.0.)
In summary, the dispersion of the sample points in at least four princi-
pal component dimensions is trivial, accounting for only 1.2% of the total
dispersion. This limited dispersion in these principal component dimen-
sions inflates the variances of regression coefficients for all independent
variables involved in the near-singularities. The observed instability of the
least squares regression estimates was to be expected.
The major patterns of variation in the Z-space can be displayed by plot- Gabriel’s

Biplotting the information contained in the major principal components. Gabriel’s
(1971) biplot using the first two principal components shows the structure
of the Z matrix as “seen” in these two dimensions, Figure 14.1. This bi-
plot of the first and second principal components accounts for 61% of the
dispersion in the original 14-dimensional Z-space.
Vectors in the biplot are projections of the original variable vectors (in
the 14-dimensional subspace they define) onto the plane defined by the
first two principal components. The original vectors were scaled to have
unit length. Therefore, the length of each projected vector is its correlation
with the original vector and reflects the closeness of the original vector
to the plane. Thus, the longest vectors, Ca, pH, Mg, Na, K, Zn, BUF ,
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FIGURE 14.1. Gabriel’s biplot of the first and second principal components of the
14 marsh substrate variables. The variables have been centered and scaled so that
all vectors have unit length in the original 14-dimensional Z-space. The first and
second components account for 35.2% and 26.4% of the dispersion in the Z-space.
Column markers are shown with the vectors, row markers with •.
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and NH4, indicate the variables are close to the plane being plotted and,
consequently, their relationships are well represented by the biplot. The
shorter vectors in the biplot, H2S, SAL, and EH7, identify variables that
are more nearly orthogonal to this plane and, therefore, not well represented
by this biplot. The other vectors, Mn, P , and Cu, are intermediate and
relationships in this biplot involving these variables should be interpreted
with caution.
The near-zero angle between the Ca and pH vectors, Figure 14.1, shows
that the two variables are highly positively correlated (r = .88, Table 14.5)
as are the three variables NH4, BUF , and Zn (r ≥ .71) and the three
variablesMg, Na, and K (r ≥ .79). Ca is highly negatively correlated with
BUF and Zn (r ≤ −.70), as is pH with BUF , Zn, and NH4 (r ≤ −.72);
the angles are nearly 180◦. On the other hand, pH, NH4, BUF , and Zn
are nearly orthogonal to K and Na. The angles between these vectors are
close to 90◦ and the highest correlation is r = .12. The Cu and Na vectors
illustrate the caution needed in interpreting associations between vectors
that are not close to unity in length. Even though the angle between the
two vectors is close to zero in this biplot, the correlation beteen Cu and
Na is only .56 (Table 14.5). This apparent inconsistency is because the Cu
vector is not well represented by this biplot as indicated by the projected
Cu vector being appreciably shorter than unity.
More important than the pairwise associations are the two systems of
variables revealed by this biplot. The five variables Ca, pH, NH4, BUF ,
and Zn strongly associated with the first principal component axis behave
as one system; the three variables Mg, Na, and K, which are strongly
associated with the second principal component axis, behave as another.
The two sets of variables are nearly orthogonal to each other.
The points in the biplot reflect the relative spatial similarities of the
observations (or rows) of the Z matrix. The number label indicates the
sampling site. This biplot indicates that the five samples labeled 6 are
very similar to each other and very different from all other samples. The
other points also show a distinct tendency to group according to sampling
site. The perpendicular projection of the points onto each variable vector
shows the relative values of the observations for that variable. Thus, the
observations labeled 6 differ from the other points primarily because of
their much higher values of Ca and pH and lower values of NH4, BUF ,
and Zn. On the other hand, observations labeled 1 and 2 tend to be high
and observations labeled 3, 4, 5, and 6 tend to be low in Mg, Na, and K.
Since the first two dimensions account for only 61% of the dispersion
in Z-space, it is of interest to study the behavior in the third dimension.
The first three dimensions account for 73% of the dispersion. Gabriel’s
biplot of the first and third dimensions (Figure 14.2) shows how the vectors
in Figure 14.1 deviate above and below the plane representing the first
two dimensions. The vectors primarily responsible for defining the second
dimension now appear very short because the perspective in Figure 14.2
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FIGURE 14.2. Gabriel’s biplot of the first and third principal components of the
14 marsh substrate variables. The variables are centered and scaled so that all
vectors have unit length in 14-dimensional Z-space. The third principal compo-
nent accounted for 11.5% of the dispersion in the Z-space. Column markers are
shown with the vectors, row markers with the •.

is down the second axis; only the deviations from the plane of the Na, K,
and Mg vectors are observed. The third dimension is defined primarily by
SAL with some impact from EH7 and Cu.
The fourth principal component is dominated by H2S and Mn and ac-
counts for 10% of the dispersion. The fifth is dominated by P and SAL and
accounts for 5% of the dispersion, and so on. Gabriel’s biplot also could
be used to view these dimensions. The principal component analysis and
Gabriel’s biplots show that the major variation in the Z-space is accounted
for by relatively few complexes of substrate variables, variables that have
a strong tendency to vary together. Interpretation of the associations with
BIOMASS should focus on these complexes rather than on the individual
variables.
The relationship of BIOMASS to the principal component variables can Regression of

BIOMASS
on Principal
Components

be determined by regressing BIOMASS on the principal components. (This
is the first step of principal component regression but is presented here to
see how BIOMASS fits into the principal component structure. Conversion
of the regression coefficients for the principal components to the regression
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TABLE 14.7. Regression of aerial biomass on individual prin-
cipal components Wj. (Linthurst September data.)

Wj SS(Regr) F (df = 1, 30)a

1 10, 117, 269 82.2∗
2 1, 018, 472 8.3∗
3 1, 254, 969 10.2∗
4 496, 967 4.0
5 215, 196 1.8
6 10, 505 .1
7 267, 907 2.2
8 675, 595 5.5∗
9 803, 786 6.5∗
10 110, 826 .9
11 430, 865 3.5
12 40, 518 .3
13 2, 160 .0
14 34, 892 .3

aA * indicates significance at α = .05 using as error the residual
mean square from the full model.

coefficients for the original variables are completed in Section 14.4.) The
sums of squares due to regression and the tests of significance of the prin-
cipal components are given in Table 14.7. The first principal component
W1 dominates the regression, accounting for 65% of the regression sum of
squares. (Note that the first principal component is defined so as to account
for the greatest dispersion in the Z-space, but it does not follow that W1
will necessarily be the best predictor of BIOMASS.) W2, W3, W8, and W9
also account for significant (α = .05) amounts of variation in BIOMASS.
For ease of relating the principal components to the original variables, Correlations of

Independent
Variables with
Principal
Components

the correlations of each of the 14 original independent variables with these
five principal components are given in Table 14.8. The importance of the
first principal component in the regression strongly suggests that the pH–
BUF–Ca–Zn–NH4 complex of 5 variables be given primary consideration
in future studies of the causes of variation in BIOMASS production of
Spartina. Perhaps P and Mn should be included in this set for consider-
ation because of their reasonably high correlations with W1. Variables of
secondary importance are K,Mg, Na, and Cu, which are highly correlated
with W2, and SAL and EH7, which are reasonably highly correlated with
W3.W2 andW3 account for 7% and 8%, respectively, of the regression sum
of squares for BIOMASS. H2S is the only variable not highly correlated
with at least one of the three most predictive principal components.
The principal component analysis of the centered and standardized inde- Dispersion in

Z-Spacependent variables has demonstrated that most of the dispersion in Z-space
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TABLE 14.8. Correlations between original independent variables Xk and the
significant principal components Wj: ρ̂(Xk,Wj) = vjkλj.

Variable Principal Component
Xk W1 W2 W3 W8 W9

H2S .364 −.017 .294 .054 .069
SAL .240 −.033 .768 −.050 −.071
Eh7 .275 −.433 .581 .185 −.092
pH .905 .054 −.359 .020 .010
BUF −.914 .000 .260 .098 .040
P .606 .213 −.203 .235 .031
K .075 −.938 −.029 .069 .228
Ca .794 .348 −.262 −.110 .077
Mg −.173 −.959 −.063 −.107 −.005
Na .040 −.904 .065 −.283 .036
Mn −.615 .350 .025 −.323 .035
Zn −.897 −.171 −.223 −.130 −.178
Cu .024 −.754 −.478 .188 −.153
NH4 −.885 .050 −.014 .102 .171

can be described by a few complexes of correlated variables. One of these
systems, W1, accounts for a major part of the variation in BIOMASS. This
complex includes the five variables most highly correlated individually with
BIOMASS. Three other complexes account for significant but much smaller
amounts of variation in BIOMASS. The analysis does not identify which
variable in the complex is responsible for the association. The principal
component analysis shows that the data do not contain information that
will allow separation of the effects of the individual variables in each com-
plex.
A pseudosolution to the collinearity problem would be to eliminate from Eliminating

Variables
to Control
Collinearity

the regression model enough independent variables to remove the collinear-
ity. This would be equivalent to retaining one independent variable to rep-
resent each major dimension of the original X-space. Variable selection
techniques in ordinary least squares regression are, in effect, doing this in a
somewhat arbitrary manner. Eliminating variables is not a viable solution
when the primary interest is in identifying the important variables. The
correlated complexes of variables still exist in nature; it is only that they
are no longer “seen” by the regression analysis. It is likely that some of the
truly important variables will be lost with such a procedure.
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14.4 Principal Component Regression

Principal component regression has been suggested as a means of obtaining
estimates with smaller mean squared errors in the presence of collinearity.
Results from principal component regression are presented for this exam-
ple to illustrate the impact the method has on stability of the estimates
and the inadequacy of the method for assigning relative importance to the
independent variables. The reader is referred to Section 13.2 for a review
of this method.
The principal component analysis for these data revealed that the six Deleting

Principal
Components

dimensions of the Z-space having the least dispersion accounted for only
3.4% of the total dispersion in Z-space. Regression of BIOMASS on the
principal components and tests of significance of the principal component
regression coefficients revealed that, of these six, only W9 had significant
predictive value for BIOMASS (Table 14.7). Using the rule that princi-
pal components which have small eigenvalues and contain no predictive
information for Y should be eliminated, the five principal components cor-
responding to the five smaller eigenvalues W10 to W14 were deleted for the
principal component regression; the first nine principal components, g = 9,
were retained.
Deleting these five principal components results in a loss of 2.2% of the
dispersion in Z-space, a loss in predictive value of Y from R2 = .807 to
R2 = .7754, a decrease in tr[Var(β+)]/σ2 from 196 to 17, and a decrease
in (β+′

β+)1/2 from 4,636 to 3,333 (Table 14.9). The stability of the re-
gression estimates increased greatly with an acceptable loss in apparent
predictability of BIOMASS.
It is of interest to follow the sequential change in these quantities as in-
dividual principal components are deleted from the regression (Table 14.9).
There is virtually no loss in predictability when W12, W13, and W14 are
deleted (see R2, Table 14.9). The variances of the estimates decrease dra-
matically, particularly with elimination of the 14th principal component
(see tr[Var(β+)]/σ2, Table 14.9). Since W9 and W8 are significant, none
of the results where W9 to W1 have been eliminated would be used. They
are presented here only to show the entire pattern.
The first 9 principal components, g = 9, were used in principal compo- Regression

with Nine
Principal
Components

nent regression. The regression coefficients for the 9 principal components
were converted to estimates of the regression coefficients for the 14 original
variables, β+

(g) = V (g)γ̂(g). The results are given in the last two columns
of Table 14.10. Eight of the 14 regression coefficients for the independent
variables are significant, pH, BUF , K, Mg, Na, Mn, Cu, and NH4. (Re-
sults from ordinary least squares, g = 14, and from the first 11 principal
components, g = 11, are included for comparison.) The variables pH, BUF ,
and NH4 are significant primarily because of their contribution to W1; K,
Mg, and Na are significant primarily through W2. The significance of Cu
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TABLE 14.9. Cumulative effect of deleting principal components in principal com-
ponent regression starting with the principal component with the least dispersion,
W14. (Linthurst September data.)

Com- Information
ponent Loss in X ′X

Deleted (%) 100R2 tr[Var(β+
)]

σ2 (β+′
β+)1/2

None(OLS) .0 80.7 196 4, 636
14 .1 80.6 91 4, 226
13 .3 80.6 57 4, 218
12 .6 80.3 35 4, 111
11 1.2 78.1 23 3, 451
10 2.2 77.5 17 3, 333
9 3.4 73.3 10 2, 507
8 6.2 69.8 8 2, 151
7 8.9 68.4 5 1, 952
6 12.5 68.3 3 1, 948
5 17.4 67.2 1.8 1, 866
4 26.8 64.6 1.1 1, 763
3 38.4 58.1 .5 1, 526
2 64.8 52.8 .2 1, 434

and Mn appears to come through their contributions to several principal
components. On the other hand, even though Ca and Zn are major com-
ponents of W1 and SAL is a major component of W3, their contributions
to BIOMASS through severalWj apparently tend to cancel and make then
nonsignificant.
The increased stability of the principal component regression estimates Comparison

with
Ordinary Least
Squares

compared to ordinary least squares is evident in Table 14.10. The cost of
the increased stability is a loss in R2 from .807 to .775, and an introduction
of an unknown amount of bias. It is hoped that the decrease in variance
is sufficient to more than compensate for the bias so that the principal
component estimates will have smaller mean squared error. The large de-
creases in variance for several of the coefficients makes this a reasonable
expectation.
The principal component regression has little impact on the regression
coefficients for the variables that are not involved in the near-singularities.
The regression coefficients and standard errors for EH7 and P change rela-
tively little. These two variables have small coefficients for all five principal
components eliminated from the principal component regression. All other
variables are involved in one or more of the near-singularities. Judging

Importance
of Variables

The purpose of this study was to identify “important” variables for fur-
ther study of the causal mechanisms of BIOMASS production. It is dan-
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TABLE 14.10. Principal component regression estimates of regression coeffi-
cients and standard errors using g = 14 (OLS), 11 and 9 principal components.
(Linthurst September data.)

g = 14 (OLS)a g = 11 g = 9
Variable β̂ s(β̂) β+ s(β+) β+ s(β+)
H2S 88 610 257 538 489 379
SAL −591 645 −639 458 −238 393
Eh7 626 493 609 473 482 465
pH 2005 2763 896∗ 210 858∗ 152
BUF −117 2058 −1364∗ 459 −685∗ 183
P −312 483 −383 449 −445 446
K −2069∗ 952 −2247∗ 761 −1260∗ 495
Ca −1325 1431 −1046 690 30 317
Mg −1744 1709 −817∗ 228 −652∗ 145
Na 203 1128 −488 577 −1365∗ 317
Mn −274 872 −570 604 −848∗ 385
Zn −1031 1195 −1005 791 251 410
Cu 2374∗ 771 2168∗ 563 1852∗ 500
NH4 −847 1015 −400 621 −1043∗ 479
R2 .807 .803 .775
V IFmax 62.1 5.1 2.0
aA * indicates the estimate exceeds twice its standard error.
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gerous to attempt to assign “relative importance” to the variables based
on the relative magnitudes of their partial regression coefficients. This is
the case whether the estimates are from ordinary least squares or principal
component regression. The least squares estimates are too unstable in this
example to give meaningful results. Principal component regression esti-
mates are a pooling of the least squares estimates for all variables involved
in the strong collinearities (see equation 13.45). The greater stability of
the biased regression estimates can be viewed as coming from this “aver-
aging” of information from the correlated variables. However, this does not
prove helpful in judging the relative importance of variables in the same
correlated complex.
Principal component analysis has shown that the independent variables Complexes of

Variablesin this set of data behave as correlated complexes of variables with mean-
ingful variation in only 9 dimensions of the 14-dimensional space. The W1
complex of variables, for example, behaves more or less as a unit in this data
set, and it would be inappropriate to designate any one of the five variables
as “the variable of importance.” It is the complex that must, for the mo-
ment at least, be considered of primary importance insofar as BIOMASS
is concerned. Further research under controlled conditions where the effect
of the individual variables in the complex can be disassociated is needed
before specific causal relationships can be defined.

14.5 Summary

The classical results of ordinary least squares regression in the presence of
collinearity are demonstrated with the Linthurst data; either all variables
of a correlated complex appear insignificant, if a full multiple regression
model is fit, or only one variable in each correlated complex is retained
if some stepwise regression procedure is used. In either case, any infer-
ence as to which are the “important” variables can be very misleading.
The apparent insignificance of the variables arises from the fact that the
near-singularities in X, reflected in the near-zero eigenvalues, cause the
ordinary least squares estimates of the regression coefficients to be very
unstable. Geometrically, there is only trivial dispersion of the data in one
or more dimensions of the Z-space and, consequently, the impact of these
dimensions on the dependent variable is determined only with very low pre-
cision. Conversely, the dimensions of the Z-space showing major dispersion
are defined by sets of correlated variables. Ordinary least squares some-
what arbitrarily picks one of the variables to represent the complex. If the
objective is simply to predict BIOMASS, such a procedure is satisfactory
as long as care is taken in making predictions. However, when the objective
is to identify “important” variables, such a procedure will be misleading.
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Principal component analysis and Gabriel’s biplot clarify the complex
relationships among the independent variables. Correlated complexes of
variables can be identified and their associations with the dependent vari-
able assessed. The primary variables in the complexes that have predictive
value can then be studied under controlled conditions to determine their ef-
fects on the dependent variable. Principal component regression, although
it may be useful in some cases for estimating regression coefficients, does
not prove helpful in assigning relative importance to the independent vari-
ables involved in the near-singularities.

14.6 Exercises

The singular value decomposition of the Linthurst data in this case study
was run on the 45 × 14 matrix of individual observations on the 14 inde-
pendent variables. That analysis operated on the total variation within and
among sampling sites. The following exercises study the correlational struc-
ture among the independent variables and their relationship to BIOMASS
production using only the variation among sampling sites. The data to be
used are the sampling site means for all variables computed from the data
in Table 14.1. The “Loc–Type” codes identify the nine sampling sites.

14.1. Compute the 9 × 15 matrix of sampling site means for BIOMASS
and the 14 independent variables. Center and standardize the ma-
trix of means and compute the correlation matrix of all 15 variables.
Which independent variables appear to be most highly correlated
with BIOMASS? Identify insofar as possible the subsets of indepen-
dent variables that are highly correlated with each other. Are there
any independent variables that are nearly independent of the others?

14.2. Extract from the 9×15 matrix of centered and standardized variables
the 14 independent variables to obtain Z. Do the principal compo-
nent analysis on this matrix. Explain why only eight eigenvalues are
nonzero. Describe the composition (in terms of the original variables)
of the three principal components that account for the most disper-
sion. What proportion of the dispersion do they account for? Compare
these principal components to those given for the case study using all
observations.

14.3. Drop BUF and NH4 from the data set and repeat Exercise 14.2. De-
scribe how the principal components change with these two variables
omitted. Notice that the two variables dropped were primary vari-
ables in the first principal component computed with all variables,
Exercise 14.2.

14.4. Use the principal components defined in Exercise 14.2 to construct
Gabriel’s biplot. Use enough dimensions to account for 75% of the
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dispersion in Z-space. Interpret the biplots with respect to the corre-
lation structure of the variables, the similarity of the sampling sites,
and the major differences in the sampling sites.

14.5. Use the first eight principal components defined in Exercise 14.2 as
independent variables and the sampling site means for BIOMASS as
the dependent variable. Regress BIOMASS on the principal compo-
nents (plus an intercept) and compute the sum of squares attributable
to each principal component. These sums of squares, multiplied by
five to put them on a “per observation” basis, are an orthogonal par-
titioning of the “among site” sum of squares. Compute the analysis of
variance for the original data to obtain the “among site” and “within
site” sums of squares. Verify that the “among site” sums of squares
computed by the two methods agree. Test the significance of each
principal component using the “within site” mean square as the es-
timate of σ2. Which principal component dominates the regression
and which variables does this result suggest might be most impor-
tant? Which principal component is nearly orthogonal to BIOMASS
and what does this imply, if anything, about some of the variables?



15
MODELS NONLINEAR IN THE
PARAMETERS

Chapter 14 completed the series of chapters devoted to
problem areas in least squares regression. This chapter
returns to regression methods for fitting a variety of
models. Chapter 8 introduced the use of polynomial
and trigonometric response models for characterizing
responses that cannot be adequately represented by
straight-line relationships. This chapter extends those
ideas to the large class of usually more realistic models
that are nonlinear in the parameters. First, several ex-
amples of nonlinear models are given. Then regression
methods for fitting these models are presented.

The models considered to this point have been linear functions of the
parameters. This means that each (additive) term in the model contains
only one parameter and only as a multiplicative constant on the indepen-
dent variable (or function of the independent variable). This restriction
excludes many useful mathematical forms, including nearly all models de-
veloped from principles of behavior of the system being studied. These
linear models should be viewed as first-order approximations to the true
relationships.
In this chapter, the class of models is extended to the potentially more
realistic models that are nonlinear in the parameters. Emphasis is placed
on the functional form of the model, the part of the model that gives the
relationship between the expectation of the dependent variable and the in-
dependent variables. Whenever model development goes beyond the simple
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summarization of the relationships exhibited in a set of data, it is likely
that models nonlinear in the parameters will come under consideration.
The use of prior information on the behavior of a system in building a
model will often lead to nonlinear models. This prior information may be
nothing more than recognizing the general shape the response curve (sur-
face) should take. For example, it may be that the response variable should
not take negative values, or the response should approach an asymptote for
high or low values of an independent variable. Imposing these constraints
on a system will usually lead to nonlinear models.
At the other extreme, prior information on the behavior of a system may
include minute details on the physical and chemical interactions in each of
several different components of the system and on how these components
interact to produce the final product. Such models can become extremely
complex and most likely cannot be written as a single functional relation-
ship between E(Y ) and the independent variables. The detailed growth
models that predict crop yields based on daily, or even hourly, data on the
environmental and cultural conditions during the growing season are exam-
ples of such models. (The development of such models is not pursued in this
text. They are mentioned here as an indication of the natural progression
of the use of prior information in model building.)
Although this chapter does not dwell on the behavior of the residuals, it
is important that the assumptions of least squares be continually checked.
Growth data, for example, often will not satisfy the homogeneous variance
assumption, and will contain correlated errors if the data are collected as
repeated measurements over time on the same experimental units.

15.1 Examples of Nonlinear Models

The more general class of models that are nonlinear in the parameters Form of the
Modelallows the mean of the dependent variable to be expressed in terms of any

function f(x′
i;θ) of the independent variables and the parameters. The

model becomes

Yi = f(x′
i;θ) + εi, (15.1)

where f(x′
i;θ) is the nonlinear function relating E(Y ) to the independent

variable(s), x′
i is the row vector of observations on k independent variables

for the ith observational unit, and θ is the vector of p parameters. (It is
common in nonlinear least squares to use θ as the vector of parameters
rather than β.) The usual assumptions are made on the random errors.
That is, εis are assumed to be independent N(0, σ2) random variables.
A sample of nonlinear models is presented to illustrate the types of func-
tions that have proven useful and to show how information on the system
can be used to develop more realistic models. Nonlinear models are usu-
ally chosen because they are more realistic in some sense or because the



15.1 Examples of Nonlinear Models 487

functional form of the model allows the response to be better character-
ized, perhaps with fewer parameters. The procedures for estimating the
parameters, using the least squares criterion, are discussed in Section 15.2.
In many cases the rate of change in the mean level of a response vari- Exponential

Decay Modelable at any given point in time (or value of the independent variable) is
expected to be proportional to its value or some function of its value. Such
information can be used to develop a response model. Models developed in
this manner often involve exponentials in some form. For example, assume
that the concentration of a drug in the bloodstream is being measured at
fixed time points after the drug was injected. The response variable is the
concentration of the drug; the independent variable is time (t) after injec-
tion. If the rate at which the drug leaves the bloodstream is assumed to be
proportional to the mean concentration of the drug in the bloodstream at
that point in time, the derivative of E(Y ), drug concentration, with respect
to time t is

∂E(Y )
∂t

= −βE(Y ). (15.2)

Integrating this differential equation, and imposing the condition that the
concentration of the drug at the beginning (t = 0) was α gives

E(Y ) = α e−βt. (15.3)

This is the exponential decay curve. If additive errors are assumed, the
nonlinear model for a process that operates in this manner would be

Yi = αe−βti + εi. (15.4)

This is a two-parameter model with θ′ = (α β). If multiplicative errors are
assumed,

Yi = α(e−βti)εi. (15.5)

The latter is intrinsically linear and is linearized by taking logarithms as
discussed in Section 12.2. The model with additive errors, however, cannot
be linearized with any transformation and, hence, is intrinsically nonlinear.
The remaining discussions in this chapter assume the errors are additive.
The rate of growth of bacterial colonies might be expected to be propor- Exponential

Growth Modeltional to the size of the colony if all cells are actively dividing. The partial
derivative in this case would be

∂E(Y )
∂t

= βE(Y ). (15.6)

This is the positive version of equation 15.2, reflecting the expected growth
of this system. This differential equation yields the exponential growth
model

Yi = αeβti + εi, (15.7)
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FIGURE 15.1. Typical forms for the exponential decay model and the exponential
growth model. The parameter β is positive in both cases.

where α is the size of the colony at t = 0. In both models β is positive; the
sign in front of β indicates whether it is an exponential decay process or an
exponential growth process. Their general shapes are shown in Figure 15.1.

A two-term exponential model results when, for example, a drug Two-Term
Exponential
Model

in the bloodstream is being monitored and the amount in the bloodstream
depends on two processes, the movement into the bloodstream from muscle
tissue or the digestive system and removal from the bloodstream by, say
the kidneys. Let the amount of the drug in the source tissue be E(Ym) and
that in the blood be E(Yb). Suppose the drug moves into the bloodstream
from the muscle at a rate proportional to its amount in the muscle θ1E(Ym)
and is removed from the bloodstream by the kidneys at a rate proportional
to its amount in the bloodstream −θ2E(Yb). Assume θ1 > θ2 > 0. The net
rate of change of the drug in the bloodstream is

∂E(Yb)
∂t

= θ1E(Ym)− θ2E(Yb). (15.8)

Assume the initial amount in the muscle (at t = 0) is E(Ym0) = 1. This
process models the amount in the blood stream as

Ybi =
θ1

θ1 − θ2
(
e−θ2ti − e−θ1ti)+ εi. (15.9)

This response curve shows an increasing amount of the drug in the blood
in the early stages, which reaches a maximum and then declines asymp-
totically toward zero as the remnants of the drug are removed. This model
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FIGURE 15.2. The two-term exponential model with θ1 = .6 and θ2 = .3, equa-
tion 15.9; and its simpler form with θ1 = θ2 = .6, equation 15.10.

would also apply to a process where one chemical is being formed by the
decay of another, at reaction rate θ1 and is itself decaying at reaction rate
θ2. If θ1 = θ2, the solution to the differential equations gives the model

Yi = θ1tie−θ1ti + εi. (15.10)

The forms of these models are shown in Figure 15.2.
When the increase in yield (of a crop) per unit of added nutrient X is Mitscherlich

Growth
Model

proportional to the difference between the maximum attainable yield α and
the actual yield, the partial derivative of Y with respect to X is

∂E(Y )
∂X

= β[α− E(Y )]. (15.11)

This partial derivative generates the model known as the Mitscherlich
equation (Mombiela and Nelson, 1981):

Yi = α[1− e−β(Xi+δ)] + εi, (15.12)

where δ is the equivalent nutrient value of the soil. This model gives an
estimated mean yield of

Ŷ = α̂(1− e−β̂δ̂) (15.13)

with no added fertilizer and an asymptotic mean yield of Ŷ = α̂ when the Monomolecular
Growth
Model

amount of added fertilizer is very high. If γ = e−βδ is substituted in equa-
tion 15.12, this model takes the more familiar form known asmonomolec-
ular growth model. The form of the Mitscherlich equation is shown in
Figure 15.3.
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FIGURE 15.3. The form of the Mitscherlich and inverse polynomial models. The
parameter α in the Mitscherlich equation is the upper asymptote and β controls
the rate at which the asymptote is approached. The inverse polynomial model
approaches its asymptote of 1/β1 very slowly and at a decreasing rate determined
by β0/[β0 + β1(X + δ)]2.

If the rate of increase in yield is postulated to be proportional to the
square of [α−E(Y )], one obtains the inverse polynomial model (Nelder, Inverse

Polynomial
Model

1966),

Yi =
Xi + δ

β0 + β1(Xi + δ)
. (15.14)

The inverse polynomial model is also shown in Figure 15.3.
The logistic or autocatalytic growth function results when the rate Logistic

Growth
Model

of growth is proportional to the product of the size at the time and the
amount of growth remaining:

∂E(Y )
∂t

=
βE(Y )[α− E(Y )]

α
. (15.15)

This differential equation gives the model

Yi =
α

1 + γe−βti
+ εi, (15.16)

which has the familiar S-shape associated with growth curves. The curve
starts at α/(1 + γ) when t = 0 and increases to an upper limit of α when
t is large. Gompertz

Growth ModelThe Gompertz growth model results from a rate of growth given by

∂E(Y )
∂t

= βE(Y )
{
ln

[
α

E(Y )
]}

(15.17)
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FIGURE 15.4. The general form of the logistic function and the Gompertz growth
model.

and has the double exponential form

Yi = αe−γe
βti + εi. (15.18)

Examples of the logistic and Gompertz curves are given in Figure 15.4.
Von Bertalanffy’s model is a more general four-parameter model that Von Berta-

lanffy’s Modelyields three of the previous models by appropriate choice of values for the
parameter m:

Yi = (α1−m − θe−βti)1/(1−m) + εi. (15.19)

When m = 0, this becomes the monomolecular model with θ = αe−βδ,
equation 15.12. When m = 2, it simplifies to the logistic model with θ =
−γ/α, equation 15.16, and if m is allowed to go to unity, the limiting form
of Von Bertalanffy’s model is the Gompertz model, equation 15.18.
Another class of nonlinear models arises when individuals in a popu- Toxicity

Studieslation are being scored for their reaction to some substance, and the in-
dividuals differ in their sensitivities to the substance. Such models have
been developed most extensively in toxicity studies where it is of interest
to determine the dose of a substance that causes a certain proportion of
injuries or deaths. It is assumed that there is an underlying probability
distribution, called the threshold distribution, of sensitivities of individuals
to the toxin. The response curve for the proportion of individuals affected
at various doses then follows the cumulative probability distribution of the
underlying threshold distribution.
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If the threshold distribution is the normal probability distribution, the Probit and
Logit Modelsproportion of individuals affected at dose X follows the cumulative normal

distribution. This model leads to the probit analysis common in toxicol-
ogy. Frequently, the response data are better characterized by the normal
distribution after dose has been transformed to 1n(dose). Thus, the thresh-
old distribution on the original dose metric is the log-normal distribution.
The logit transformation results when the underlying threshold distribu-
tion is the logistic probability distribution. The probit and logit transforma-
tions linearize the corresponding response curves. Alternatively, nonlinear
least squares can be used to estimate the parameters of the logistic func-
tion. (Weighting should be used to take into account the heterogeneous
variances of percentage data.) The cumulative normal distribution has no
closed form so that nonlinear least squares cannot be applied directly to
estimate the normal parameters.
The Weibull probability distribution is common as the underlying Weibull Model
distribution for time-to-failure studies of, for example, electrical systems.
The distribution is generated by postulating that a number of individual
components must fail, or a number of independent “hits” are needed, before
the system fails. Recently, the cumulative form of the Weibull probability
distribution has been found to be useful for modeling plant disease progres-
sion (Pennypacker, Knoble, Antle, and Madden, 1980) and crop responses
to air pollution (Rawlings and Cure, 1985; Heck et al., 1984). The cumu-
lative Weibull probability function is

F (X;µ, γ, δ) = 1− e−[(Xi−µ)/δ]γ , (15.20)

where µ is the lower limit on X. The two parameters δ and γ control the
shape of the curve. This function is an increasing function approaching the
upper limit of F = 1 when X is large.
As a response model, the asymptote can be made arbitrary by introduc-
ing another parameter α as a multiplicative constant, and the function can
be turned into a monotonically decreasing function by subtracting from
α. Thus, the form of the Weibull function used to model crop response to
increasing levels of pollution is

Yi = αe−(Xi/δ)γ + εi. (15.21)

This form assumes that the minimum level of X is zero. The vector of
parameters is θ′ = (α δ γ ). Other experimental design effects such
as block effects, cultivar effects, and covariates can be introduced into the
Weibull model by expanding the α parameter to include a series of additive
terms (Rawlings and Cure, 1985).
These examples of nonlinear models illustrate the variety of functional Choosing a

Nonlinear
Model

forms available when one is not restricted to linear additive models. There
are many other mathematical functions that might serve as useful models.
Ideally, the functional form of a model has some theoretical basis as illus-
trated with the partial derivatives. On the other hand, a nonlinear model
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FIGURE 15.5. An illustration of a quadratic–linear segmented polynomial re-
sponse curve.

might be adopted for no other reason than that it is a simple, convenient
representation of the responses being observed. The Weibull model was
adopted for characterizing crop losses from ozone pollution because it had
a biologically realistic form and its flexibility allowed the use of a common
model for all studies at different sites and on different crop species.
In some cases, it is simpler to model a complicated response by using Segmented

Polynomial
Models

different polynomial equations in different regions of the X-space. Usually
constraints are imposed on the polynomials to ensure that they meet in the
appropriate way at the “join” points. Such models are called segmented
polynomial models. When the join points are known, the segmented
polynomial models are linear in the parameters and can be fitted using
ordinary least squares. However, when the join points must be estimated,
the models become nonlinear.
This class of models is illustrated with the quadratic-linear segmented Quadratic-

Linear
Segmented
Polynomial

polynomial model. Assume the first part of the response curve is adequately
represented by a quadratic or second-degree polynomial, but at some point
the response continues in a linear manner. The value of X at which the
two polynomials meet, the “join” point, is labeled θ (Figure 15.5). Thus,
the quadratic-linear model is

Yi =
{
β0 + β1Xi + β2X

2
i + εi if Xi ≤ θ

γ0 + γ1Xi + εi if Xi > θ.
(15.22)

This equation contains six parameters, β0, β1, β2, γ0, γ1, and θ. Esti-
mating all six parameters, however, puts no constraints on how, or even if,
the two segments meet at the join point. It is common to impose two con-
straints. The two polynomials should meet when X = θ and the transition
from one polynomial to the other should be smooth. The first requirement
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implies that

β0 + β1θ + β2θ
2 = γ0 + γ1θ. (15.23)

The second constraint requires the first derivatives of the two functions to
be equal at X = θ; that is, the slopes of both segments must be the same
at the join point. Thus,

∂Y (X ≤ θ)
∂X

∣∣∣∣
X=θ
=
∂Y (X > θ)

∂X

∣∣∣∣
X=θ

or

β1 + 2β2θ = γ1. (15.24)

The second constraint requires that γ1 be a function of θ, β1, and β2.
Substituting this result into the first constraint and solving for γ0 gives

γ0 = β0 − β2θ
2. (15.25)

Imposing these two constraints on the original model gives

Yi =
{
β0 + β1Xi + β2X

2
i + εi if X ≤ θ

(β0 − β2θ
2) + (β1 + 2β2θ)Xi + εi if X > θ.

(15.26)

There are four parameters to be estimated.
This model can be written in one statement if a dummy variable is defined
to identify when X is less than θ or greater than θ. Let T = 0 if X ≤ θ
and T = 1 if X > θ. Then,

Yi = (1− T )(β0 + β1Xi + β2X
2
i ) + T [(β0 − β2θ

2) + (β1 + 2β2θ)Xi]
= β0 + β1Xi + β2[X2

i − T (Xi − θ)2]. (15.27)

This model is nonlinear in the parameters because the products β2θ and
β2θ

2 are present. Also, note that the dummy variable T is a function of θ.
If θ is known, the model becomes linear in the parameters. The reader is
referred to Anderson and Nelson (1975) and Gallant and Fuller (1973) for
more discussion on segmented polynomial models.

15.2 Fitting Models Nonlinear in the Parameters

The least squares principle is used to estimate the parameters in nonlinear Least Squares
Principlemodels just as in the linear models case. The least squares estimate of θ,

labeled θ̂, is the choice of parameters that minimizes the sum of squared
residuals

SS[Res(θ̂)] =
n∑
i=1

[Yi − f(x′
i; θ̂)]

2
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or, in matrix notation,

SS[Res(θ̂)] = [Y − f(θ̂)]′[Y − f(θ̂)], (15.28)

where f(θ̂) is the n × 1 vector of f(x′
i; θ̂) evaluated at the n values of

x′
i. Under the assumption that the random errors in equation 15.1 are
independent N(0, σ2) variables, the least squares estimate of θ is also the
maximum likelihood estimate of θ. The partial derivatives of SS[Res(θ̂)],
with respect to each θ̂j in turn, are set equal to zero to obtain the p normal
equations. The solution to the normal equations gives the least squares
estimate of θ.
Each normal equation has the general form Form of the

Normal
Equations∂{SS[Res(θ̂)]}

∂θ̂j
= −

n∑
i=1

[Yi − f(x′
i; θ̂)]

[
∂f(x′

i; θ̂)

∂θ̂j

]
= 0, (15.29)

where the second set of brackets contains the partial derivative of the func-
tional form of the model. Unlike linear models, the partial derivatives of a
nonlinear model are functions of the parameters. The resulting equations
are nonlinear equations and, in general, cannot be solved to obtain explicit
solutions for θ̂.
The normal equations for a nonlinear model are illustrated using the
exponential growth model Yi = α[exp(βti)]+ εi, equation 15.7. The partial
derivatives of the model with respect to the two parameters are

∂f

∂α
=
∂(αeβti)
∂α

= eβti

and

∂f

∂β
=
∂(αeβti)
∂β

= αtieβti . (15.30)

The two normal equations for this model are

n∑
i=1

(Yi − α̂eβ̂ti)(eβ̂ti) = 0

and
n∑
i=1

(Yi − α̂eβ̂ti)(α̂tieβ̂ti) = 0. (15.31)

A difficulty with nonlinear least squares arises in trying to solve the Solving the
Normal
Equations

normal equations for θ̂. There is no explicit solution even in this simple
example. Since explicit solutions cannot be obtained, iterative numerical
methods are used. These methods require initial guesses, or starting values,
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for the parameters; the starting values are labeled θ0. The initial guesses are
substituted for θ to compute the residual sum of squares and to compute
adjustments to θ0 that will reduce SS(Res) and (it is hoped) move θ0

closer to the least squares solution. The new estimates of the parameters
are then used to repeat the process until a sufficiently small adjustment is
being made at each step. When this happens, the process is said to have
converged to a solution.
Several methods for finding a solution to the normal equations are used Grid Search

Methodin various nonlinear least squares computer programs. The simplest con-
ceptual method of finding the solution is a grid search over the region of
possible values of the parameters for that combination of values that gives
the smallest residual sum of squares. This method can be used to provide
reasonable starting values for other methods or, if repeated on successively
finer grids, to provide the final solution. Such a procedure is not efficient.
Four other methods of solving the normal equations are commonly used. Gauss–Newton

MethodThe Gauss–Newton method uses a Taylor’s expansion of f(x′
i;θ) about

the starting values θ0 to obtain a linear approximation of the model in the
region near the starting values. That is, f(x′

i;θ) is replaced with

f(x′
i;θ)

.= f(x′
i;θ

0) +
p∑
j=1

(
∂f(x′

i;θ
0)

∂θj

)
(θj − θ0j )

or

f(θ) .= f(θ0) + F (θ0)(θ − θ0), (15.32)

where F (θ0) is the n× p matrix of partial derivatives, evaluated at θ0 and
the n data points x′

i. F (θ
0) has the form

F (θ0) =



∂[f(x′
1;θ

0
)]

∂θ1

∂[f(x′
1;θ

0
)]

∂θ2
· · · ∂[f(x′

1;θ
0
)]

∂θp
∂[f(x′

2;θ
0
)]

∂θ1

∂[f(x′
2;θ

0
)]

∂θ2
· · · ∂[f(x′

2;θ
0
)]

∂θp
...

...
...

∂[f(x′
n;θ0

)]
∂θ1

∂[f(x′
n;θ0

)]
∂θ2

· · · ∂[f(x′
n;θ0

)]
∂θp

 . (15.33)

Linear least squares is used on the linearized model to estimate the shift
in the parameters, or the amount to adjust the starting values. That is, the
shift in the parameters (θ − θ0) is obtained by regressing Y − f(θ0) on
F (θ0). New values of the parameters are obtained by adding the estimated
shift to the initial values. The model is then linearized about the new values
of the parameters and linear least squares is again applied to find the second
set of adjustments, and so forth, until the desired degree of convergence is
attained. The adjustments obtained from the Gauss–Newton method can
be too large and bypass the solution, in which case the residual sum of
squares may increase at that step rather than decrease. When this happens,



15.2 Fitting Models Nonlinear in the Parameters 497

a modified Gauss–Newton method can be used that successively halves the
adjustment until the residual sum of squares is smaller than in the previous
step (Hartley, 1961).
A second method, the method of steepest descent, finds the path Method of

Steepest
Descent

for amending the initial estimates of the parameters that gives the most
rapid decrease in the residual sum of squares (as approximated by the
linearization). After each change in the parameter values, the residual sum
of squares surface is again approximated in the vicinity of the new solution
and a new path is determined. Although the method of steepest descent
may move rapidly in the initial stages, it can be slow to converge (Draper
and Smith, 1981).
The third method, calledMarquardt’s compromise (Marquardt, 1963) Marquardt’s

Compromiseis designed to capitalize on the best features of the previous two meth-
ods. The adjustment computed by Marquardt’s method tends toward the
Gauss–Newton adjustment if the residual sum of squares is reduced at
each step, and toward the steepest descent adjustment if the residual sum
of squares increases in any step. This method appears to work well in most
cases.
These three methods require the partial derivatives of the model with Derivative-

Free Methodrespect to each of the parameters. Alternatively, a derivative-free method
(Ralston and Jennrich, 1978) can be used in which numerical estimates of
the derivatives are computed from observed shifts in Ŷ as the values of the
θj are changed. The derivative-free method appears to work well as long
as the data are “rich enough” for the model being fit. There have been
cases with relatively limited data where the derivative-free method did not
appear to work as well as the derivative methods. Convergence was either
not obtained, was not as fast, or the “solution” did not appear to be as
good.
The details of the numerical methods for finding the least squares so- Summary of

Methodslution are not discussed in this text. Gallant (1987) presents a thorough
discussion of the theory and methods of nonlinear least squares including
the methods of estimation. It is sufficient for now to understand that (1)
the least squares principle is being used to find the estimates of the param-
eters, (2) the nonlinear least squares methods are iterative and use various
numerical methods to arrive at the solution, and (3) apparent convergence
of the estimates to a solution does not necessarily imply that the solution
is, in fact, the optimum. The methods differ in their rates of convergence
to a solution and, in some cases, whether a solution is obtained. No one
method can be proclaimed as universally best and it may be desirable in
some difficult cases to try more than one method.
It is important that the starting values in nonlinear regression be reason- Starting

Valuesably good. Otherwise, convergence may be slow or not attained. In addition,
there may be local minima on the residual sum of squares surface, and poor
starting values for the parameters increase the chances that the iterative
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process will converge to a local minimum rather than the global minimum.
To protect against convergence to a local minimum, different sets of start-
ing values can be used to see if convergence is to the same solution in all
cases. Plotting the resulting response function with the data superimposed
is particularly important in nonlinear regression to ensure that the solution
is reasonable.
Convergence to a solution may not be obtained in some cases. One rea- Nonconver-

genceson for nonconvergence is that the functional form of the model is in-
consistent with the observed response. For example, an exponential decay
model cannot be made to adequately characterize a logistic growth model.
“Convergence” in such cases, if attained, would be meaningless. Errors in
specification of the derivatives is another common reason for lack of con-
vergence.
Even with an appropriate form for the model and correct derivatives,
convergence may not be attained. The reason for lack of convergence can
be stated in several ways. (1) The model may be overdefined, meaning
the model has more parameters or is more complex than need be for the
process. The two-term exponential in the previous section is an overdefined
model if the two rate constants are the same. When the two rate constants
are too close to the same value, the estimation process will begin to behave
as an overdefined model. (2) There may not be sufficient data to fully
characterize the response curve. This implies that the model is correct; it is
the data that are lacking. Of course, a model may appear to be overdefined
because there are not sufficient data to show the complete response curve.
(3) The model may be poorly parameterized with two (or more) parameters
playing very similar roles in the nonlinear function. Thus, very nearly the
same fitted response curve can be obtained by very different combinations
of values of the parameters. These situations are reflected in the estimates
of the parameters being very highly correlated, perhaps .98 or higher. This
is analogous to the collinearity problem in linear models and has similar
effects.

15.3 Inference in Nonlinear Models

Confidence intervals and hypothesis testing for parameters in nonlinear Distribution
of θ̂ and
SS(Res)

models are based on the approximate distribution of the nonlinear least
squares estimator. The familiar properties of linear least squares apply only
approximately or asymptotically for nonlinear least squares. The matrix
F (θ) = F , equation 15.33, plays the role in nonlinear least squares that X
plays in linear least squares. Gallant (1987) shows that if ε ∼ N(0, Iσ2), θ̂ is
approximately normally distributed with mean θ andVar(θ̂) = (F ′F )−1σ2:

θ̂
.∼ N [θ, (F ′F )−1σ2], (15.34)
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where the symbol “ .∼” is read “approximately distributed.” The residual
sum of squares SS[Res(θ̂)], when divided by σ2, has approximately a chi-
squared distribution with (n−p) degrees of freedom. Alternatively, asymp-
totic arguments can be used to show asymptotic normality of θ̂ as n gets
large, without the normality assumption on ε (Gallant, 1987).
In practice, F (θ) is computed as F (θ̂), which is labeled F̂ for brevity,
and σ2 is estimated with s2 = SS[Res(θ̂)]/(n − p), so that the estimated
asymptotic variance–covariance matrix for θ̂ is

s2(θ̂) = (F̂
′
F̂ )−1s2. (15.35)

Standard errors given in computer programs are based on this approxima-
tion. [Some computer programs for nonlinear least squares give only the
standard errors of θ̂j and the estimated correlation matrix for θ̂, labeled ρ̂.
The variance–covariance matrix can be recovered as

s2(θ̂) = Sρ̂S, (15.36)

where S is the p× p diagonal matrix of standard errors of θ̂.]
The approximate normality of θ̂ and chi-squared distribution of (n − Confidence

Intervals and
Tests of
Significance

p)s2/σ2 [and their independence (Gallant, 1987)] permit the usual com-
putations of confidence limits and tests of significance of the θ̂j and func-
tions of θ̂j . Let C = K ′θ to be any linear function of interest. The point
estimate of C is Ĉ = K ′θ̂ with (approximate) standard error s(Ĉ) =
{K ′[s2(θ̂)]K}1/2. The 95% confidence interval estimate of C is

Ĉ ± t[α/2,(n−p)]s(Ĉ). (15.37)

A test statistic for the null hypothesis that C = C0 is

t =
Ĉ − C0

s(Ĉ)
, (15.38)

which is distributed approximately as Student’s t with (n − p) degrees of
freedom.
Usually the function of interest in nonlinear regression is a nonlinear Nonlinear

Functions
of θ̂

function of θ, which is estimated with the same nonlinear function of θ̂. For
example, the fitted values of the response variable Ŷ = f(θ̂) are nonlinear
functions of θ̂. Let h(θ) be any nonlinear function of interest. Gallant (1987)
shows that h(θ̂) is approximately normally distributed with mean h(θ) and
variance H(F ′F )−1H ′σ2; that is,

h(θ̂) .∼ N [h(θ),H(F ′F )−1H ′σ2], (15.39)

where

H =
(
∂[h(θ)]
∂θ1

∂[h(θ)]
∂θ2

· · · ∂[h(θ)]
∂θp

)
(15.40)
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is the row vector of partial derivatives of the function h(θ) with respect to
each of the parameters. This result uses the first-order terms of a Taylor’s
series expansion to approximate h(θ) with a linear function. Thus, h(θ̂)
is (approximately) an unbiased estimate of h(θ). Letting Ĥ = H(θ̂) and
F̂ = F (θ̂), we can estimate the variance of h(θ̂) by

s2[h(θ̂)] =
[
Ĥ(F̂

′
F̂ )−1Ĥ

′]
s2. (15.41)

The approximate 100(1− α)% confidence interval estimate of h(θ) is

h(θ̂)± t[α/2,(n−p)]
[
Ĥ(F̂

′
F̂ )−1Ĥ

′
s2

]1/2
(15.42)

and an approximate test statistic for the null hypothesis that h(θ) = h0 is

t =
h(θ̂)− h0

s[h(θ̂)]
, (15.43)

which is distributed approximately as Student’s t with (n − p) degrees of
freedom.
If there are q functions of interest, h(θ) becomes a vector of order q and Several

FunctionsH becomes a q × p matrix of partial derivatives with each row being the
derivatives for one of the functions. Assume that the rank of H is q. The
composite hypothesis

H0 : h(θ) = 0

is tested against the two-tailed alternative hypothesis with an approximate
test referred to as theWald statistic (Gallant, 1987);

W =
h(θ̂)′

[
Ĥ(F̂

′
F̂ )−1Ĥ

′]−1
h(θ̂)

qs2
. (15.44)

Notice the similarity in the form of W to the F -statistic in general linear
hypotheses.W is approximately distributed as F with q and (n−p) degrees
of freedom.
Note that if the functions of interest are the n values of Ŷi, then h(θ̂) =

f(θ̂) and H(θ̂) = F (θ̂), so that

s2(Ŷ ) =
[
F̂ (F̂

′
F̂ )−1F̂

′]
s2. (15.45)

The matrix
[
F̂ (F̂

′
F̂ )−1F̂

′]
is analogous to P , the projection matrix, in Wald and

Likelihood
Ratio

linear least squares.
In general, the confidence limits in equation 15.42, the t-test in equa-
tion 15.43, and W in equation 15.44 are referred to as the Wald methodol-
ogy. The Wald approximation appears to work well in most cases in that
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the stated probability levels are sufficiently close to the true levels (Gallant,
1987). However, Gallant has shown cases where the Wald approach can be
seriously wrong. Tests and confidence intervals based on the more difficult
likelihood ratio test, however, gave results consistent with the stated prob-
abilities in all cases investigated. For this reason, Gallant recommends that
the Wald results be compared to the likelihood ratio results for some cases
in each problem to verify that the simpler Wald approach is adequate.
The approximate joint 100(1 − α)% confidence region for θ, based on
likelihood ratio theory, is defined as that set of θ for which

SS[Res(θ)]− SS[Res(θ̂)] ≤ pσ̂2F(α;p,ν), (15.46)

where σ̂ is an estimate of σ2 based on ν degrees of freedom. The reader is
referred to Gallant (1987) for discussion of the likelihood ratio procedure.
The validity of the Wald approach depends on how well f(x′

i;θ) is rep-
resented by the linear approximation in θ. This depends on the parameter-
ization of the model and is referred to as parameter effects curvature.
Clarke (1987) defined components of overall parameter effects curvature
that could be identified with each parameter. These component measures
of curvature are then used to define severe curvature, cases in which the
Wald methodology may not be adequate for the particular parameters,
and to provide higher-order correction terms for the confidence interval
estimates. The reader is referred to Clarke (1987) for details.

The example to illustrate nonlinear regression comes from calcium ion ex- Example 15.1
periments for biochemical analysis of intracellular storage and transport of
Ca++ across the plasma membrane. The study was run by Howard Grimes,
Botany Department, North Carolina State University, and is used with
his permission. The data consist of amount of radioactive calcium in cells
(nmole/mg) that had been in “hot” calcium suspension for given periods
of time (minutes). Data were obtained on 27 independent cell suspensions
with times ranging from .45 to 15.00 minutes (Table 15.1). The kinetics
involved led the researchers to postulate that the response would follow Proposed

Modelthe nonlinear model

Yi = α1[1− exp(−λ1ti)] + α2[1− exp(−λ2ti)] + εi, (15.47)

where Y is nmoles/mg of Ca++. (This model is referred to as the Michaelis–
Menten model.) The partial derivatives for this model are

∂f

∂α1
= 1− e−λ1t,

∂f

∂λ1
= tα1e

−λ1t,

∂f

∂α2
= 1− e−λ2t, and
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TABLE 15.1. Calcium uptake of cells suspended in a solution of radioactive cal-
cium. (Data from H. Grimes, North Carolina State University, and used with
permission.)

Suspen. Time Calcium Suspen. Time Calcium
Number (min) (nmoles/mt) Number (min) (nmoles/mt)
1 .45 .34170 15 6.10 2.67061
2 .45 −.00438 16 8.05 3.05959
3 .45 .82531 17 8.05 3.94321
4 1.30 1.77967 18 8.05 3.43726
5 1.30 0.95384 19 11.15 4.80735
6 1.30 0.64080 20 11.15 3.35583
7 2.40 1.75136 21 11.15 2.78309
8 2.40 1.27497 22 13.15 5.13825
9 2.40 1.17332 23 13.15 4.70274
10 4.00 3.12273 24 13.15 4.25702
11 4.00 2.60958 25 15.00 3.60407
12 4.00 2.57429 26 15.00 4.15029
13 6.10 3.17881 27 15.00 3.42484
14 6.10 3.00782 – – –

∂f

∂λ2
= tα2e

−λ2t.

In this case, a derivative-free method was used to fit the data in Table 15.1
to the two-term exponential model. The starting values used for the four
parameters were

θ0 =


α0

1

λ0
1

α0
2

λ0
2

 =

.05
.09
.20
.20

 .
These were not well-chosen starting values because α1 and α2 are the up-
per asymptotes of the two exponential functions and their sum should be
near the upper limits of the data, approximately 4.5. Likewise, the rate
constants were chosen quite arbitrarily. This was simply an expedient; if
there appeared to be convergence problems or a logical inconsistency in
the final model, more effort would be devoted to choice of starting values.
We have used the NLIN procedure in SAS (SAS Institute Inc., 1989b) to
obtain these results.
A solution appeared to have been obtained. The residual sum of squares Convergence

Not Attaineddecreased from SS[Res(θ0)] = 223 with the starting values θ0 to SS[Res(θ̂)]
= 7.4645 with the final solution θ̂. A plot of Ŷ superimposed on the data
appeared reasonable. However, the results raised several flags. First, a pro-
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TABLE 15.2. Nonlinear regression results from the Grimes data using the
two-term exponential model.

Analysis of Variance:
Source d.f. Sum of Squares Mean Square

Model 3a 240.78865 80.26288
Residual 24 7.46451 0.31102
Uncorr. total 27 248.25315
mboxCorr.total 26 53.23359

Asymptotic Asymptotic 95%
Parameter Estimate Std. Error Lower Upper

α̂1 .000100 .0000000 .0000000 .0000000
λ̂1 4, 629.250 12, 091.767 −20, 326.728 29, 585.229
α̂2 4.310418 .9179295 2.4159195 6.2049156
λ̂2 .208303 .0667369 .0705656 .3460400

Asymptotic Correlation Matrix of the Parameters
α̂1 λ̂1 α̂2 λ̂2

α̂1 .0000 .0000 .0000 .0000
λ̂1 .0000 1.0000 −.5751 −1.0000
α̂2 .0000 −.5751 1.0000 .5751
λ̂2 .0000 −1.0000 .5751 1.0000

aAlthough the model contained four parameters, the convergence of α̂1 to
the lower bound of .0001 has effectively removed it as a parameter to be esti-
mated.

gram message “CONVERGENCE ASSUMED” indicated that the con-
vergence criterion had not been attained. The iterations had terminated be-
cause no further progress in reducing the residual sum of squares had been
realized during a sequence of halving the size of the parameter changes.
Furthermore, the estimates of the parameters and their correlation ma-
trix revealed an overdefined model (Table 15.2). α̂1 converged to the lower
bound imposed to keep the estimate positive, .0001, and its standard error
was reported as zero. λ̂1 converged to a very high value with an extremely
large standard error and confidence interval. The correlation matrix for the
parameter estimates showed other peculiarities. The zeros for the first row
and column of the correlation matrix are reflections of the zero approx-
imated variance for α̂1. The correlation matrix showed λ̂1 and λ̂2 to be
perfectly negatively correlated, and the correlations of α̂2 with λ̂1 and λ̂2
were identical in magnitude.
These results are a reflection of the model being overly complex for the
response shown in the data. The first exponential component of the model,
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when evaluated using the parameter estimates, goes to α̂1 for extremely
small values of t. For all practical purposes, the first term is contribut-
ing only a constant to the overall response curve. This suggests that a
single-term exponential model would adequately characterize the behavior
of these data.
To verify that these results were not a consequence of the particular
starting values, another analysis was run with θ0′

= (1.0 3.9 .50 .046).
Again, the “CONVERGENCE ASSUMED” message was obtained and
the residual sum of squares was slightly larger, SS(Res) = 7.4652. The
solution, however, was very different (results not given). Now, the estimate
of λ2 and its standard error were exceptionally large, but the correlation
matrix appeared quite reasonable. Evaluation of the first exponential term
produced very nearly the same numerical results as the second did in the
first analysis and the second exponential term converged to α̂2 for very
small values of t. The model was simplified to contain only one exponential Simplified

Modelprocess,

Yi = α{1− exp[−(t/δ)γ ]}.

This is the Weibull growth model, with an upper asymptote of α, and
reduces to the exponential growth model if γ = 1.0. The presence of γ
in the model permits greater flexibility than the simple exponential and
can be used to test the hypothesis that the exponential growth model is
adequate, H0 : γ = 1.0. (Notice that δ in this model is equivalent to 1/λ in
the previous exponential models.)
The convergence criterion was met for this model with SS[Res(θ̂)] =
7.4630, even slightly smaller than that obtained with the two-term ex-
ponential model. The key results are shown in Table 15.3. There are no
indications of any problems with the model. The standard errors and con-
fidence limits on the parameter estimates are reasonable and the correlation
matrix shows no extremely high correlations. The Wald t-test of the null
hypothesis H0 : γ = 1.0 can be inferred from the confidence limits on γ;
γ̂ is very close to 1.0 and the 95% confidence interval (.55, 1.48) overlaps
1.0. These results indicate that a simple exponential growth model would
suffice.
The logical next step in fitting this model would be to set γ = 1.0 and
fit the simple one-term exponential model

Yi = α[1− exp(−ti/δ)] + εi.

Rather than proceed with that analysis, we use the present analysis to show
the recovery of s2(θ̂) from the correlation matrix, and the computation of
approximate variances and standard errors for nonlinear functions of the
parameters.
The estimated variance–covariance matrix of the parameter estimates, s2(θ̂)
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TABLE 15.3. Nonlinear regression results from the Weibull growth model applied
to the Grimes data.

Analysis of Variance:
Source d.f. Sum of Squares Mean Square

Model 3 240.79017 80.2634
Residual 24 7.46297 .3110
Uncorr. total 27 248.25315
Corr. total 26 53.23359

Asymptotic Asymptotic 95%
Parameter Estimate Std. Error Lower Upper

α̂ 4.283429 .4743339 3.3044593 5.2623977
δ̂ 4.732545 1.2700253 2.1113631 7.3537277
γ̂ 1.015634 .2272542 .5466084 1.4846603

Asymptotic Correlation Matrix of the Parameters
α̂ δ̂ γ̂

α̂ 1.0000 .9329 −.7774
δ̂ .9329 1.0000 −.7166
γ̂ −.7774 −.7166 1.0000

equation 15.35, is recovered from the correlation matrix ρ̂ by

s2(θ̂) = Sρ̂S,

where S is the diagonal matrix of standard errors of the estimates from
Table 15.3,

S =

 .47433392 0 0
0 1.27002532 0
0 0 .22725425

 .
The resulting asymptotic variance–covariance matrix, s2(θ̂) = (F̂

′
F̂ )−1s2,

equation 15.35, is

s2(θ̂) =

 .2250 .5620 −.0838
.5620 1.6130 −.2068

−.0838 −.2068 .0516

 .
To illustrate the computation of approximate variances and confidence lim- Proportional

Response
Estimates

its for nonlinear functions of the parameters, assume that the functions of
interest are the estimated responses as a proportion of the upper asymp-
tote, α for t = 1, 5, and 15 minutes. That is, the function of interest is

h(t,θ) = 1− exp[−(t/δ)γ ]
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evaluated at t = 1, 5, and 15. Writing h(t, θ) for the three values of t
as a column vector and substituting θ̂ = ( 4.2834 4.7325 1.0156 )′ from
Table 15.3 for θ gives

h(θ̂) =

 h(1, θ̂)
h(5, θ̂)
h(15, θ̂)

 =
 .1864
.6527
.9603


as the point estimates of the proportional responses.
The partial derivatives of h(θ) are needed to obtain the variance–covariance
matrix for h(θ̂) equations 15.40 and 15.41. The partial derivatives are

∂h

∂α
= 0

∂h

∂δ
= −

(γ
δ

)(
t

δ

)γ {
exp

[
−

(
t

δ

)γ]}
∂h

∂γ
=

(
t

δ

)γ [
ln

(
t

δ

)]{
exp

[
−

(
t

δ

)γ]}
.

Writing the partial derivatives as a row vector, equation 15.40, substituting
θ̂ for θ, and evaluating the vector for each value of t gives the matrix Ĥ:

Ĥ =

 0 −.03601 −.26084
0 −.07882 .02019
0 −.02747 .14768

 .
The variance–covariance matrix for the predictions, equation 15.41, is

s2(h) = Ĥ[s2(θ̂)]Ĥ
′

=

 .001720 .000204 −.000776
.000204 .010701 .006169

−.000776 .006169 .004002

 .
The square roots of the diagonal elements are the standard errors of the
estimated levels of Ca++ relative to the upper limit at t = 1, 5, and 15
minutes. The 95% confidence interval estimates of these increases are given
by the Wald approximation as h(θ̂) ± s[h(θ̂)]t(.05/2,24) since the residual
mean square had 24 degrees of freedom. The Wald confidence limits are
summarized as follows:

t h(θ̂) Lower Limit Upper Limit
1 .186 .101 .272
5 .653 .439 .866
15 .960 .829 1.091

Note that the upper limit on the interval for t = 15 exceeds 1.0, the log-
ical upper bound on a proportion. This reflects inadequacies in the Wald



15.4 Violation of Assumptions 507

approximation as the limits are approached. Simultaneous confidence in-
tervals based on Bonferroni and Scheffé methods can be computed using
formulas given in Section 4.6.2.

15.4 Violation of Assumptions

In Section 15.3, we have assumed that the random errors εi in equation 15.1
are independent N(0, σ2) variables. For inferences on the parameters of the
nonlinear model, equation 15.1, the assumption of normality is not essential
provided the sample size is large and some other mild assumptions are met.
However, the violation of assumptions regarding homogeneous and uncor-
related errors has an impact on the inferences in nonlinear models. When
errors are heterogeneous and/or correlated, the least squares estimators are
inefficient and the estimated variances of θ̂ given in equation 15.35 are not
appropriate.

15.4.1 Heteroscedastic Errors
Consider the model given in equation 15.1 where the εis are indepen-
dent (0, σ2

i ) variables (but not necessarily normally distributed). Under
some weak regularity conditions on σ2

i and f(x
′
i;θ), Gallant (1987) shows

that the least squares estimator θ̂ is approximately normally distributed
with mean θ and variance Var(θ̂) = (F ′F )−1F ′V F (F ′F )−1, where V =
diag (σ2

1 σ2
2 · · · σ2

n ). When V �= σ2I, the variance estimator given in
equation 15.35 is not appropriate.
In practice, several types of models are assumed for the behavior of σ2

i .
One such model is given by σ2

i = σ
2/wi where the wis are assumed to be

known constants. For example, if Yi is the mean of ni measurements Yij ,
j = 1, . . . , ni, where we assume that var(Yij) = σ2, then Yi = n−1

i

∑ni

j=1 Yij
has variance σ2/wi, where wi = ni. As in the case of linear models, the
transformed model

w
1/2
i Yi = w

1/2
i f(x′

i;θ) + w
1/2
i εi (15.48)

has homogeneous errors. The least squares estimator of θ in this model,
equation 15.48, minimizes

Sw(θ) =
n∑
i=1

wi[Yi − f(x′
i;θ)]

2. (15.49)

The estimator θ̂w that minimizes Sw(θ) is known as the weighted least Weighted
Least Squaressquares estimator of θ. If the εis are independent N(0, σ2/wi), then

θ̂w is also the maximum likelihood estimator of θ. Under mild regularity
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conditions, θ̂w is approximately normally distributed with mean θ and
Var(θ̂w) = (F ′WF )−1σ2, whereW = diag (w1 w2 · · · wn ) (Gallant,
1987).
If σ2 is unknown, but an estimate s2i is available for i = 1, . . . , n, then we
may use an estimated generalized least squares estimator obtained
as the value of θ that minimizes

∑n
i=1 s

−2
i [Yi − f(x′

i;θ)]
2. For example,

if Yi is the mean of ni measurements Yij , then an estimate of σ2
i is given

by s2i = (ni − 1)−1 ∑ni

j=1(Yij − Yi)2. If the nis are small, then s2i may
not estimate σ2

i very well. In such cases, another estimator of σ
2
i that is

commonly used is given by

s2i = n
−1
i

ni∑
j=1

[Yij − f(x′
i; θ̂)]

2, (15.50)

where θ̂ is the least squares estimate of θ.
Another class of heteroscedastic variance models has σ2

i = h(f(x
′
i;θ)), Variance

Related to
the Mean

where h(·) is a known function. That is, the variance of the response variable
is a function of its mean. Consider for example, a binary response variable
Yi that takes the value 1 or 0 depending on whether the ith patient receiving
a dose of xi units is disease-free or not. Let pi denote P (Yi = 1) and assume
pi is a function f(x′

i;θ) of xi that is nonlinear in the parameters. Note that,
in this case,

Yi = f(x′
i;θ) + εi,

where E(Yi) = f(x′
i;θ) and Var(εi) = Var(Yi) = f(x

′
i;θ)[1 − f(x′

i;θ)].
Here, Var(εi) is a known function of the mean function f(x′

i;θ). Similarly,
if Yi is a count variable that has a Poisson distribution with mean f(x′

i;θ),
then the variance of Yi is also f(x′

i;θ).
For models with σ2

i = h(f(x
′
i;θ)), a weighted least squares estimator of

θ̂h is obtained as the value of θ that minimizes
n∑
i=1

[h(f(x′
i;θ))]

−1 [Yi − f(x′
i;θ)]

2
. (15.51)

It can be shown that θ̂h is not necessarily the maximum likelihood esti-
mator of θ even if εi are assumed to be normally distributed. Under some
weak regularity conditions, Gallant (1987) shows the θ̂h is approximately
normally distributed. van Houwelingen (1988) shows that θ̂h and the max-
imum likelihood estimator may be inconsistent when the variance function
h(·) is misspecified.
Iterative methods are used to compute θ̂h. One approach is to obtain Iterative

Reweighted
Least Squares

θ̂
(j+1)
h as the value of θ that minimizes

n∑
i=1

[
h(f(x′

i; θ̂
(j)
))
]−1

[Yi − f(x′
i;θ)]

2
, (15.52)
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where θ̂
(1)
h = θ̂, the least squares estimate of θ. This procedure is repeated

until θ̂
(j)
h converges, and is called iteratively reweighted least squares.

Carroll and Ruppert (1988) present the properties of iterative reweighted
least squares estimators. They also discuss the Box–Cox transformations
and power transformations on both sides of the model.

15.4.2 Correlated Errors
In growth curve models, where data are observed on a single animal or an
individual, the errors may exhibit significant serial correlation over time.
Also, some economic data may be serially correlated over time. In such
cases, Var(ε) = σ2V is not σ2I. If V were known, the generalized least Generalized

Least Squaressquares estimator θ̂V is the value of θ that minimizes

SV (θ) = [Y − f(x′
i;θ)]

′
V −1 [Y − f(x′

i;θ)] . (15.53)

If ε ∼ N(0, σ2V ), then θ̂V corresponds to the maximum likelihood esti-
mator of θ. Under some regularity conditions, Gallant (1987) shows that
θ̂V is approximately normally distributed with mean θ and Var(θ̂V ) =
(F ′V −1F )−1. Iterative methods are used to obtain θ̂V .
In some cases, V may be a known function of some unknown parame- AR(1) Errors
ters δ. For example, consider the first-order autoregressive model given in
equation 12.35. For this case, V is given in equation 12.36 and δ = ρ. If ρ
is unknown, an estimate ρ̂ of ρ may be obtained as

ρ̂ =
∑n
t=2 ε̂t−1ε̂t∑n
t=2 ε̂

2
t−1

, (15.54)

where ε̂t = Yt−f(x′
t; θ̂). An estimated generalized least squares estimate of Estimated

Generalized
Least Squares

θ is obtained by minimizing S
V̂
(θ), where SV (θ) is given in equation 15.53

and V̂ is V given in equation 12.36 with ρ replaced by ρ̂. Care must be
used when δ includes some or all of θ. See Carroll and Ruppert (1988) and
Gallant (1987) for details. Warnings described in Section 12.5 for linear
models are also appropriate for nonlinear models.

15.5 Logistic Regression

We now consider a particular nonlinear regression model where the variance
of the response variable is a function of its mean. Consider a binary response
variable Yi that takes the values 0 and 1. For example, Yi = 1 or 0 depending
on whether the ith patient has a certain disease. In this case,

E(Yi) = P [Yi = 1] = pi
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and

Var(Yi) = pi(1− pi).

We wish to relate pi to certain explanatory variables. For example, if we are
interested in studying heart disease, pi may be related to the ith individual’s
age, cholesterol level, sex, race, and so on. The relationship between pi and
the explanatory variables may not be linear. Several models are proposed
in the literature for pi as a function of the explanatory variables. One such
function is given by the logistic regression model,

pi = f(x′
i;θ) (15.55)

=
exp(x′

iθ)
1 + exp(x′

iθ)
. (15.56)

Note that 0 ≤ pi ≤ 1 for all values of θ and xi. Also, it can be shown
that pi is a monotone function of each explanatory variable, when all other
explanatory variables are fixed. This is called the logistic regression model The Logit
since the logit, the log odds ratio,

log
(

pi
1− pi

)
= x′

iθ (15.57)

is linear in the parameters θ. [The ratio pi/(1−pi) = P (Yi = 1)/P (Yi = 0)
is known as the odds ratio.]
As seen in Section 15.4, the logistic regression may be viewed as a non-
linear model with heteroscedastic errors. In particular,

Yi =
exp(x′

iθ)
1 + exp(x′

iθ)
+ εi, (15.58)

where E(εi) = 0 and Var(εi) = pi(1 − pi). An iteratively reweighted least
squares estimator of θ is obtained by minimizing

n∑
i=1

1
p̂i(1− p̂i)

[
Yi − exp(x′

iθ)
1 + exp(x′

iθ)

]2

,

where p̂i is the value of pi evaluated at the current estimate of θ. We initiate
the process with θ = θ̂, the least squares estimate of θ. These estimates
can be obtained using the CATMOD procedure in SAS (SAS Institute Inc.,
1989a).
Agresti (1990) presents the maximum likelihood estimator θ̂ML of θ and
shows that θ̂ML is the value of θ that maximizes

L(θ) =
n∑
i=1

Yix
′
iθ −

n∑
i=1

log[1 + exp(x′
iθ)].
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He presents iterative procedures to obtain θ̂ML and shows that the esti-
mator is approximately normally distributed with mean θ and variance[
X ′ diag (p̂i(1− p̂i))X

]−1. The asymptotic distribution of θ̂ML and like-
lihood ratio tests can be used to test relevant hypotheses regarding the
parameter θ.

15.6 Exercises

15.1. The data in the accompanying table were taken to develop stan-
dardized soil moisture curves for each of six soil types. Percent soil
moisture is determined at each of six pressures. The objective is to
develop a response curve for prediction of soil moisture from pressure
readings. (Data courtesy of Joanne Rebbeck, North Carolina State
University.)

Pressure Soil Type
(Bars) I II III IV V VI
0.10 15.31 17.32 14.13 16.75 14.07 14.15
0.33 11.59 14.88 10.58 14.20 11.39 10.57
0.50 9.74 13.17 8.71 12.07 9.40 9.27
1.00 9.5 12.44 7.62 11.38 8.62 8.73
5.00 6.09 10.08 5.30 9.62 5.17 5.32
15.00 4.49 8.75 4.09 8.59 3.92 4.08

(a) Plot percent moisture against pressure for each soil type. Search
for a transformation on X or Y or both that linearizes the rela-
tionship for all soils. Fit your transformed data and test homo-
geneity of the responses over the six soil types.

(b) Use the nonlinear model Yij = αj + βjX
γ
i + εij to summarize

the relationship between Y and X on the original scale, where Y
= moisture, X = pressure, and j indexes soil types. (Caution:
Your nonlinear program may not be able to iterate γ across
γ = 0 and you may have to try both γ > 0 and γ < 0.) The
full model allows for a value of αj and βj for each soil. Fit
the reduced model for H0 : β1 = β2 = β3 = β4 = β5 = β6
and test this composite null hypothesis. Plot the residuals for
your adopted model and summarize the results. What does the
estimate of γ suggest about the adequacy in Part (a) of only a
logarithmic transformation on pressure?

15.2. What model is obtained if θ2 = 0 in the two-term exponential model,
equation 15.9?

15.3. Use the data in Exercise 8.8 to fit the nonlinear Mitscherlich model,
equation 15.12 with δ = 0, to describe the change in algae density
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with time. Allow each treatment to have its own response. Then fit
reduced models to test (1) the composite hypothesis that all βj are
equal, and (2) the composite hypothesis that all αj are equal. Sum-
marize the results and state your conclusions.

15.4 This exercise uses the data from Exercise 8.9. Use the nonlinear model
Y = αXγ + ε to represent the relationship between Y (on the original
scale, Y = dry weight) and volume. Divide volume by 1,000 to make
the numbers more manageable. Fit the model, plot the residuals,
and summarize the results. Define a reduced model that will test
H0 : γ = 1. Is this reduced model nonlinear? Complete the test and
state your conclusion.

15.5. Use the data in Exercise 8.7 to fit the two-term exponential model
(equation 15.9) to the data from each environment separately. Use the
derivative-free method and θ1 = .2 and θ2 = .02 as starting values. Do
you get convergence with all six data sets? Plot the response curves
and the data. Do the solutions appear reasonable?

15.6. The following data are from a study of the colony-forming activity
of six bacterial strains (only strain 3 reported here) under exposure
to three pH levels (4.5, 6.5, 8.5) and three concentrations of chlo-
rine dioxide CLO2 in phosphate buffer (20, 50, 80 ppm). (Chlorine
dioxide is important in sanitation for controlling bacterial growth.)
After suspension of bacteria in the solutions, colony counts were taken
on samples from the solutions at recorded time intervals. Use Y =
ln(count) in all analyses. (The data from Vipa Hemstapat, North
Carolina State University, used with permission.)

(a) Characterize the response of the bacterial strain to CLO2 for
each of the nine pH × CLO2 combinations by fitting the Weibull
model using Y = ln(count) as the dependent variable and time
as the independent variable. You should get convergence in all
cases with reasonable starting values; try α = 20, δ = 20, and
γ = 2. Summarize your results with a 3× 3 table of the estimates
of the parameters.

(b) Verify algebraically that the time to 50% decline in the colony
is estimated by

t50 = δ̂(.693)(1/γ̂).

Use your fitted Weibull response curves to estimate t50 in each
case. Do an analysis of variance of the 3 × 3 table of “times to
50% count.” (You do not have an estimate of error with which to
test the main effects of concentration and pH, but the analysis
will show the major patterns.) Summarize the results.
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Colony forming activity of six bacterial strains.
pH = 4.5 pH = 6.5 pH = 8.5

CLO2 Time Colony Time Colony Time Colony
(ppm) (min) Count (min) Count (min) Count
80 0 2, 700, 000 0 3, 100, 000 0 2, 400, 000
80 5 2, 300, 000 6 1, 700, 000 5 2, 100, 000
80 10 610, 000 11 180, 000 10 730, 000
80 15 140, 000 15 13, 000 15 130, 000
80 20 142 20 1 20 186

50 0 7, 500, 000 0 2, 900, 000 0 720, 000
50 10 2, 800, 000 10 2, 600, 000 10 220, 000
50 20 670, 000 20 1, 300, 000 20 8, 000
50 30 89, 000 30 400, 000 30 260
50 40 20 40 94 40 1
50 50 2 50 1

20 0 16, 000, 000 0 2, 400, 000 0 2, 100, 000
20 10 13, 000, 000 10 2, 800, 000 10 2, 500, 000
20 20 11, 000, 000 20 2, 400, 000 20 2, 300, 000
20 30 6, 300, 000 30 2, 500, 000 30 2, 000, 000
20 40 5, 900, 000 40 1, 800, 000 50 440, 000
20 50 3, 400, 000 50 970, 000 60 260, 000
20 60 1, 500, 000 60 250, 000 70 120, 000
20 70 340, 000 70 240, 000 80 46
20 80 1 80 840 90 24

90 12
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(c) The nonlinear function of interest in Part (b) is t50. Use the
Wald procedure to find the approximate standard error and
95% confidence interval estimate of t50 for the middle cell of
your 3 × 3 table. You will have to obtain the partial deriva-
tives of t50 with respect to the three parameters and recover the
variance–covariance matrix for θ̂, and then use these results in
equation 15.41.

15.7. Fit a polynomial model to the Grimes data, Table 15.1, where Y =
Calcium (nmoles/mg) and X = time. (The description of the study
is given in Example 15.1.) Is there a reason to force β0 to be zero
in this case? Plot your polynomial response curve and the Weibull
response curve given in the text, and superimpose the observed data.
Compare the two curves. Does one appear to provide a better fit than
the other? If so, in what ways?

15.8. In his famous experiments on gravity and motion in 1608, Galileo
rolled a ball down a ramp that was sitting at the edge of a table,
recording the release height above the table top H, and the horizontal
distance D, from the end of the table at which the ball hit the floor.
Our modern knowledge of physics implies the model

D2 − γH D − δH = 0,

where γ and δ are constants that are functions of the table height,
ramp angle, and acceleration of gravity. Galileo carefully controlled
H while simply observing D so H should be thought of as the inde-
pendent variable and D as the dependent variable. Solving for D and
adding an error term, we find

D = γH/2 +
√
γ2H2/4 + δH + ε.

The data are from Drake (1978) and are in punti (points):

D 573 534 495 451 395 337 253
H 1000 800 600 450 300 200 100

(a) Regress D2 on HD and H (with no intercept). Even though D is
the independent variable this should give rough initial estimates
of γ and δ.

(b) Now we want to fit the model using the estimates from (a)
as initial values. Compute the partial derivatives of E(D) =
γH/2 +

√
(γ2H2/4 + δH) with respect to the parameters γ and

δ. Fit the correct version of the model in which D is treated as
the dependent variable as shown previously.



16
CASE STUDY: RESPONSE CURVE
MODELING

Chapters 8 and 15 discussed the use of polynomial
and nonlinear response models, respectively. This chap-
ter uses polynomial models and the nonlinear Weibull
model to characterize the seed yield response of soy-
beans to levels of ozone pollution in one experiment.
Then data from four experiments on yield response to
ozone are combined, the residuals are inspected, and
the response variable is transformed as indicated by
the analysis. The response models are fit to the trans-
formed data.

The data used in this case study came from research on the effects of air
pollutants on crop yields conducted by Dr. A. S. Heagle, Professor of Plant
Pathology, North Carolina State University and USDA. The pollutant of
primary interest is ozone. Ozone has been shown to cause crop yield losses
and the purpose of this research, as part of a nationwide program, was
to quantify the effects of air pollutants on the agricultural industry. Of
critical importance in the assessment are the possible interactive effects of
ozone with other pollutants and environmental factors. The data from the
1981–1984 studies on soybeans, cultivar Davis, are used in this case study.
The studies included effects of sulfur dioxide in 1981, different methods of
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dispensing ozone in 1982, and different levels of moisture stress in 1983 and
1984.1

The pollution studies are conducted in the field using open-top chambers Description of
Experimentsto partially contain the pollutants so that higher than ambient levels of

the pollutant gases can be maintained. The air flow through the open-top
chamber is sufficient to avoid temperature buildup; plant growth within
the chambers is normal. There are measurable chamber effects but they are
relatively small. The pollutant levels are controlled by dispensing the gas
for 7 hours daily, 10:00 A.M. to 5:00 P.M., into the air stream being forced
through the chamber. The level of pollutant in the chamber is continuously
monitored and dispensing is adjusted to meet the target value. Since the
target value of pollutant is never precisely met, treatments with the same
target level have slightly different levels of the gas in different replicates.
The basic details of the four experiments are as follows.

1981. The purpose of the 1981 study was to investigate the bivariate re-
sponse surface of two pollutant gases—ozone and sulfur dioxide. The
experimental design was a randomized complete block design with
two blocks and 24 treatments per block. The 24 treatments were all
combinations of six levels of ozone and four levels of sulfur dioxide.
The six levels of ozone were charcoal-filtered air (CF) which gives
about .025 ppm ozone; nonfiltered air (NF), which gives the ambient
level of ozone; and constant additions to ambient levels of ozone of
.020, .030, .050, and .070 ppm. The constant addition treatments are
labeled CA20, CA30, CA50, and CA70, respectively. The four levels
of SO2 were ambient air (NF) and constant additions of .030, .090,
and .350 ppm, which are labeled S1, S2, and S3, respectively.

1982. The 1982 study had the purposes of developing more information on
the ozone dose–response curves and of investigating possible effects of
different methods of dispensing pollutant into the chambers. Prior to
1982, the target with ozone dispensing was to add a constant amount
to the ambient levels at any given time. It was believed by some
that a proportional increase in the gas at any given time would give
more realistic distributions of the pollutant and that differences in
distributions of the pollutant might affect plant response. Therefore,
the treatments in this study included, in addition to CF and NF,
both constant additions of .020, .040, and .060 ppm and proportional
increases of 30, 60, and 90% of ambient. The proportional treatments
are labeled P13, P16, and P19, respectively. There were a total of
eight treatments in a randomized complete block design with two
blocks.

1Some of the analyses in this case study were done by V. M. Lesser, N. C. State
University.
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1983. The purpose of the 1983 study was to investigate the effects of mois-
ture stress to the plants on their response to ozone. In addition, phys-
iological data were taken on half the plants in each plot so that yield
was reported for only one-half plot per chamber. There were two levels
of moisture stress and four levels of ozone, CF, NF, CA30, and CA60,
giving eight treatments. The experimental design was a randomized
complete block design with three blocks.

1984. This was a continuation of the 1983 moisture stress study with, again,
only half the plot being used for yield measurement. There were two
levels of moisture and six levels of ozone, CF, NF, CA15, CA30,
CA45, and CA60, giving 12 treatments in a randomized complete
block design with two replications.

Two distinct analyses are presented in this case study. First, the 1981
data alone are analyzed. The bivariate response surface is fit using a poly-
nomial response model and a nonlinear response model. Then, all four years
of data are combined in an analysis of the residuals. The residuals analy-
sis suggests a transformation of the data, and a nonlinear response model
involving ozone, sulfur dioxide, and moisture level is fit to the transformed
data.

16.1 The Ozone–Sulfur Dioxide Response Surface
(1981)

The objective is to develop a bivariate response surface model to char-
acterize the 1981 yield response of soybeans, cultivar Davis, to pollutant
mixtures of ozone and sulfur dioxide. The yield data and the observed sea-
sonal averages of ozone and sulfur dioxide for each experimental unit are
given in Table 16.1. The north and south halves of the experimental plots
are recorded separately as Y1 and Y2, respectively. This was done to in-
vestigate the possibility of an effect of position within the chamber on the
response to the pollutant. Preliminary analyses indicated that although
there was a north–south position effect within the chambers, there was no
position by treatment interaction effect. Therefore, all analyses reported in
this section use the average of Y1 and Y2 for each experimental unit.
The analysis of variance for the 1981 soybean data is given in Table 16.2. Analysis of

VarianceThe model for this analysis is

Yijk = µ+ ρi + τj + γk + (τγ)jk + εijk, (16.1)

where ρi, τj , and γk are the block, ozone treatment, and sulfur dioxide
treatment effects, respectively. All effects are assumed to be fixed; εijk are
assumed to be normally and independently distributed with zero mean and
common variance σ2.
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TABLE 16.1. Yields of soybean (grams per meter row) following exposure to ozone
(O3) and sulfur dioxide (SO2) for seven hours daily during the growing season.
Ozone and sulfur dioxide levels (ppm) are seasonal averages during the exposure
period. (Data courtesy A. S. Heagle, Plant Pathologist, N. C. State University
and USDA; data used with permission.)

Treatment Block 1 Block 2
O3 SO2 O3 SO2 Y1

a Y2 O3 SO2 Y1 Y2

CF NF .025 .000 516.5 519.5 .025 .000 603.0 635.0
CF S1 .023 .022 552.0 596.0 .022 .015 796.0 454.5
CF S2 .028 .075 569.0 500.5 .018 .100 597.5 697.0
CF S3 .029 .389 419.0 358.5 .025 .380 458.0 365.5
NF NF .059 .000 503.5 449.5 .051 .000 652.0 496.0
NF S1 .058 .016 411.0 484.0 .052 .028 590.5 292.5
NF S2 .058 .070 502.5 477.0 .055 .092 440.0 427.5
NF S3 .058 .350 353.0 338.5 .051 .341 487.0 284.0
CA20 NF .068 .000 449.5 480.5 .067 .000 533.5 321.5
CA20 S1 .073 .016 472.5 478.0 .066 .023 486.0 317.0
CA20 S2 .072 .085 382.5 411.5 .069 .104 420.5 456.0
CA20 S3 .068 .395 291.0 266.5 .068 .377 271.0 280.5
CA30 NF .084 .000 399.0 414.5 .089 .000 390.5 324.5
CA30 S1 .086 .034 321.5 336.5 .087 .040 373.0 320.5
CA30 S2 .082 .067 373.0 384.5 .085 .091 321.0 246.0
CA30 S3 .090 .350 269.0 303.0 .083 .379 246.5 274.0
CA50 NF .105 .000 438.0 345.0 .110 .000 307.0 281.5
CA50 S1 .111 .018 346.5 347.5 .107 .047 387.5 329.5
CA50 S2 .108 .084 297.0 316.5 .100 .098 270.0 246.0
CA50 S3 .106 .369 242.5 244.0 .100 .362 197.5 196.0
CA70 NF .123 .000 342.5 331.5 .121 .000 275.0 278.5
CA70 S1 .131 .021 269.0 298.5 .125 .028 266.0 243.5
CA70 S2 .126 .056 297.5 308.5 .127 .099 303.0 215.5
CA70 S3 .123 .345 211.0 227.0 .122 .355 283.5 208.0
aY1 and Y2 are the yields from the north and south halves of the plot, respectively.
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TABLE 16.2. Analysis of variance of 1981 soybean yield following exposure to
ozone and sulfur dioxide pollutants.

Sum of Mean
Source d.f. Squares Square F Prob > F

Total 47 606, 481
Block 1 467 467
Ozone 5 408, 117 81, 623 46.01 .0001
Sulfur Dioxide 3 126, 697 42, 232 23.81 .0001
Ozone × Sulfur 15 30, 400 2, 027 1.14 .3766
Error 23 40, 799 1, 774

TABLE 16.3. Soybean mean yields (grams per meter row) for the 1981
ozone by sulfur dioxide study.

SO2 Ozone treatment
Trt. CF NF CA20 CA30 CA50 CA70 Mean
NF 568.5a 525.3 446.3 382.1 342.9 306.9 428.6
S1 599.6 444.5 438.4 337.9 352.8 269.3 407.1
S2 591.0 461.8 417.6 331.1 282.4 281.1 394.2
S3 400.3 365.6 277.3 273.1 220.0 232.4 294.8
Mean 539.8 449.3 394.9 331.1 299.5 272.4 381.2

as(Y ·jk) = 29.8 is the standard error for the cell means. s(Y ·j·) = 14.9
and s(Y ··k) = 12.2 are the standard errors for the ozone and sulfur dioxide
marginal means, respectively.

The analysis of variance shows that there are highly significant ozone and
sulfur dioxide effects on soybean seed yield but gives no indication that the
two pollutants interact (Table 16.2). The treatment means, Table 16.3,
show a 30% change in yield over the sulfur dioxide treatments and a 45%
change over the ozone treatments. The standard errors of the treatment
means are given in the footnote of Table 16.3. It is this joint response to
the two pollutants that is to be characterized with an appropriate response
model. For this purpose, the quantitative levels of the pollutants for each
plot, rather than the treatment codes, are used.
Using the quantitative levels of the pollutant in each plot introduces a Pollutant

Levelsproblem that is somewhat unique to these studies. The specified treatments
are target levels of the pollutant to be added to ambient air levels. Due to
some imprecision in both the monitoring and the dispensing systems, the
target levels are not precisely attained. These small discrepancies cause a
slight imbalance in the study when the treatments are viewed in terms of
the quantitative levels attained. (The effects of imbalance are discussed in
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Chapter 17. In general, imbalance in an experiment causes the analysis of
variance to be inappropriate in that the sum of squares due to one factor
will contain effects of other factors.)
In this particular case, the discrepancies in the pollutant levels are rel-
atively minor, Table 16.1, and the analysis of variance can be viewed as
a close approximation to the effects of the pollutants. Nevertheless, the
ozone treatment sum of squares may contain some bias due to differences
in sulfur dioxide levels and vice versa, the ozone by sulfur dioxide interac-
tion sum of squares may contain main effects of the two pollutants, and
experimental error may be biased upward by the effects of the pollutants.
Thus, the analysis of variance is used only as a guide to what to expect
in the response surface modeling. The lack of fit of the polynomial model
cannot be judged solely on how much of the treatment sums of squares is
not explained, and experimental error from the analysis of variance is not
used as the unbiased estimate of σ2.

16.1.1 Polynomial Response Model
The analysis of variance showed significant main effects for both ozone and Second-Degree

Polynomialsulfur dioxide but no indication of an interaction between the two gases
(Table 16.2). Therefore, the first polynomial model tried was a second-
degree polynomial in both pollutants but with no product, or interaction,
term:

Yijk = β0 + ρDi + β1Xijk1 + β11X
2
ijk1 + β2Xijk2

+ β22X
2
ijk2 + εijk, (16.2)

where Di is a dummy variable coded +1 and −1 to identify the two blocks,
ρ is the regression coefficient to account for the block effect, and Xijk1
and Xijk2 are the observed seasonal averages of ozone and sulfur dioxide,
respectively, for the ijkth experimental unit. X for this model is of order
48 × 6 and consists of the column of ones for the intercept, a column for
the dummy variable Di, and the four columns of X1, X2

1 , X2, and X2
2 .

The analysis for this model is summarized in Table 16.4. [The analysis was
obtained using PROC GLM (SAS Institute, Inc., 1989b).]
The nonorthogonality of the data, due to the variable treatment lev- Nonorthogonality
els, is evident. The “SO2 linear” sum of squares (135,161 in Table 16.4)
exceeds the total treatment sum of squares for sulfur dioxide (126,697 in
Table 16.2), and the residual mean square from the regression analysis
is appreciably smaller than experimental error in the analysis of variance,
1,494 versus 1,774. Neither result is possible in the balanced case. Also, dif-
ferences between sequential (Type I) and partial (Type III) sums of squares
for “Block” and “O3 quadratic” show that the replication effects are not
orthogonal to the realized levels of ozone and sulfur dioxide, and that ozone
levels are not orthogonal to sulfur dioxide levels.
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TABLE 16.4. Analysis of variance for the second degree polynomial model in both
gases with no interaction.

Sum of Mean
Source d.f. Squares Square F Prob > F

Total 47 606, 481
Regression 5 543, 713 108, 743 72.76 .0001
Residual 42 62, 768 1, 494

SS(Regr) partition:
Sequential Prob Partial Prob

Source d.f. SS F > F SS F > F
Block 1 467 .31 .5791 1, 792 1.20 .2798
O3 linear 1 397, 665 266.09 .0001 54, 922 36.75 .0001
SO2 linear 1 135, 161 90.44 .0001 2, 613 1.75 .1933
O3 quadratic 1 10, 281 6.88 .0121 10, 295 6.89 .0120
SO2 quadratic 1 138 .09 .7630 138 .09 .7630

The key results from the analysis of the first polynomial model (Ta- Summary
ble 16.4) can be summarized as follows.

1. The quadratic term for sulfur dioxide makes no significant contribu-
tion and can be dropped from the model.

2. The quadratic term for ozone is significant in both the sequential and
partial sums of squares and, consequently, will remain significant even
after the “SO2 quadratic” term is dropped.

3. The sequential sum of squares for “SO2 linear” is highly significant,
and even exceeds the total sulfur dioxide treatment sum of squares.
Although it is very likely “SO2 linear” will remain significant after
“SO2 quadratic” has been dropped, one cannot be certain that it
will from this analysis (since the sequential sum of squares for “SO2
linear” has not been adjusted for “O3 quadratic”). The nonsignificant
partial sum of squares for “SO2 linear” should be ignored; remember
that it has been adjusted for the higher-degree “SO2 quadratic” term.

4. Block effects are nonsignificant but, since they were part of the basic
experimental design, they will be retained in the model. Dropping
the block effects, in this case, causes only trivial changes in the final
model.

Comparison of the sums of squares for the polynomial model with the Modifying
the Modelcorresponding treatment sums of squares for ozone and sulfur (remember

that in these data they are not precisely comparable) suggests that there
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TABLE 16.5. Analysis of variance for the polynomial model allowing a quadratic
response for ozone, linear response for sulfur dioxide, and a linear-by-linear in-
teraction.

Sum of Mean
Source d.f. Squares Square F Prob > F

Total 47 606, 481
Regression 5 550, 004 110, 001 81.80 .0001
Residual 42 56, 477 1, 345

SS(Regr) partitions:
Sequential Prob Partial Prob

Source d.f. SS F > F SS F > F
Block 1 467 .35 .5587 1, 709 1.27 .2659
O3 linear 1 397, 665 295.73 .0001 60, 087 44.69 .0001
SO2 linear 1 135, 161 100.52 .0001 46, 385 34.50 .0001
O3 quadratic 1 10, 281 7.65 .0084 10, 756 8.00 .0071
Linear × Linear 1 6, 429 4.79 .0344 6, 429 4.78 .0344

is nothing to be gained by expanding the polynomial model to include
cubic terms in either variable. On the other hand, there may be some
improvement in the model from a second-degree product term, the “O3
linear × SO2 linear” interaction term. Even though the interaction sum
of squares in the analysis of variance was not significant, it is possible
for a single degree-of-freedom contrast to be significant. Hence, the second
polynomial model to be fitted dropped the quadratic term for sulfur dioxide
and added the linear-by-linear product term:

Yijk = β0 + ρDi + β1Xijk1 + β2Xijk2 + β11X
2
ijk1

+ β12Xijk1Xijk2 + εijk. (16.3)

The analysis of this model is summarized in Table 16.5.
All terms in this model are significant and will be retained. There re-
mains the possibility that a higher-order product term would contribute
significantly to the model. The most logical possibility is the “O3 quadratic
×SO2 linear” interaction term, X2

1X2, since there is significant quadratic
response to ozone and the analysis of variance interaction sum of squares
is the largest partition not explained by the present model. It is left as an
exercise for the student to show whether this term is needed. Although a
plot of the data superimposed on the response surface showed considerable
dispersion about the surface, there was no apparent pattern suggesting in-
adequacies in this model. Likewise, the plot of the residuals versus Ŷ and
the normal plot appeared reasonable.
This polynomial model, equation 16.3, is adopted as a reasonable char- Final Response

Surfaceacterization of the ozone–sulfur dioxide response surface in these data. The
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FIGURE 16.1. The bivariate polynomial response surface for yield of soybeans
exposed to chronic doses of ozone and sulfur dioxide. The surface is represented
by three traces from the surface for different levels of SO2.

final response surface equation, averaged over the block effects, is

Ŷ = 724− 5, 152X1 + 13, 944X2
1 − 543X2 + 2, 463X1X2 (16.4)

(28) (771) (4930) (92) (1126).

The standard errors of the regression coefficients are shown in parentheses.
The response surface is shown in Figure 16.1 as a series of three response
curves for ozone at three levels of SO2.
The response surface has a negative slope with respect to both ozone and Understanding

the Responsesulfur dioxide at near-zero pollution. Thus, there is evidence that increasing
levels of either pollutant causes yield of Davis soybean to decline in this
environment. The positive sign of the quadratic regression coefficient β̂11
indicates that the rate of decline in yield is decreasing with increasing
ozone and the polynomial response curve will eventually reach a minimum
with yield appearing to increase for levels of ozone beyond that point. The
minimum point on the ozone response curve for a given level of sulfur
dioxide is obtained by setting the partial derivative of Y with respect to
X1 equal to zero and solving for X1. The partial derivative is

∂Y

∂X1
= −5, 152 + 2(13, 944)X1 + 2, 463X2. (16.5)

Setting this equation equal to zero and solving for X1min gives

X1min =
(5, 152− 2, 463X2)
2(13, 944)

.
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X1min ranges from .1847 for X2 = 0 to .1582 for X2 = .3. These levels of
ozone are beyond the limits of the experiment since the average ozone level
for CA70 was .125 and, consequently, any inference that sufficiently high
levels of ozone would cause yield to increase would be an inappropriate
extrapolation.
The interaction term has the effect of decreasing the rate of decline in
yield as the level of the other pollutant increases. The impact of SO2 at the
highest level of O3 is approximately half, in absolute terms, what it is at
the low level of O3. This diminished effect of one pollutant at higher levels
of the other is reasonable since there is less yield to be lost at the higher
levels.
Within the limits of the levels of pollutant in this experiment, the polyno- Extrapolations
mial model provides a reasonable characterization of the response surface.
Any extrapolation beyond the limits of the experiment encounters biolog-
ically inconsistent predictions: minimum yield in the vicinity of .16 ppm
ozone with predictions of increasing yields at higher levels, and predictions
of negative yields when SO2 is sufficiently high, approximately 1.3 ppm.

16.1.2 Nonlinear Weibull Response Model
A nonlinear response model based on the functional form of the Weibull
probability distribution has been used as a dose–response model in the
ozone pollution research simply because it has a biologically realistic form
with sufficient flexibility to cover the range of responses encountered for
the various crop species and environmental conditions. A single flexible
form facilitates comparing responses and summarizing the results with a
minimum number of response equations.
The Weibull model in its simplest form was given in equation 15.21. For Form of the

Modelthis experiment, the α term in that model must be extended to account for
additional effects—block effects and the effect of sulfur dioxide. Thus, the
Weibull model takes the form

Yijk = (α1 + α2Di + βXijk2)e−(Xijk1/δ)γ + εijk, (16.6)

where the exponential term controls the relative response to ozone, decreas-
ing from 1 at X1 = 0 to a limit of zero when X1 is large. If γ = 1, this
becomes the exponential decay curve. The three terms in parentheses in
front of the exponential term control the yield level under the hypothetical
situation of X1 = 0, which is expressed here as an overall constant α1, a
block effect α2, and a linear adjustment for the level of sulfur dioxide βX2.
The dummy variable D is defined as 1 if the observation is from block 1
and −1 if the observation is from block 2. Thus, setting D = 0 gives an
average result for the two blocks so that α1 is the expected yield for this
environment with X1 = X2 = 0. (On the basis of the polynomial results,
SO2 is handled with a linear response in this model.)
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The derivative-free method of PROC NLIN in SAS (SAS Institute Inc., Fitting the
Model1989b) was used to fit this model. The program statements that generated

the analysis are as follows:

PROC NLIN METHOD=DUD;

PARMS A1=700 A2=0 B= −0.5 DELTA=0.14 GAMMA=1;
MODEL PODWT=(A1 + A2*D + B*X2)
*EXP(−(X1/DELTA)**GAMMA);
OUTPUT OUT=OUT.R5 P=PWHAT R=PWRESID;

(A1, A2, B, DELTA, and GAMMA are used in place of α1, α2, β, δ, and
γ, respectively, because the programming language will not accomodate
Greek letters.) The starting values for the parameters are given in the
PARMS statement. These values were chosen on the basis of a preliminary
plot of the data. The highest yields for the low ozone treatment were in
the vicinity of α1 = 700; thus, α0

1 = 700. The “block” effects were small,
suggesting α0

2 = 0. The starting value for β, β
0 = −.5, resulted from a visual

assessment of the change in yield per unit change in SO2 but contained an
error in placement of the decimal. The value should have been β0 = −500.
The parameter δ is interpreted as the dose at which yield has been reduced
to the fraction e−1 of what it is at zero ozone. The starting value was read
from a plot of the data as δ0 = .14. Finally, γ0 = 1 was chosen because the
plot appeared to be similar in shape to an exponential decay curve.
In spite of a very poor starting value for β, convergence was quickly Solution
attained. The summary of this analysis is given in Table 16.6. The residual
sum of squares is SS(Res) = 59, 049 with 43 degrees of freedom, compared
to SS(Res) = 56, 478 with 42 degrees of freedom for the final polynomial
model. The corresponding mean squares are 1,373 and 1,345. Thus, the
nonlinear model with five parameters fits the data nearly as well as the
polynomial model with six parameters. (Note: The difference in the residual
sums of squares for the two models cannot be tested as previously done since
neither model is “nested” in the other.) The resulting nonlinear response
equation is

Ŷ = (759.4 + 3.7D − 631X2)e−(X1/.134).88 . (16.7)

The plot of this response equation (not given here) is almost indistin- Checking the
Equationguishable, within the limits of the design space, from the plot for the poly-

nomial response model given in Figure 16.1. Estimated responses for the
two equations are compared in Table 16.7. The nonlinear equation has
slightly less curvature except at the low levels of ozone when sulfur dioxide
is near zero. The plot of the residuals against Ŷ , Figure 16.2, and the nor-
mal plot of the residuals, Figure 16.3, give no reason for concern about the
adequacy of the model. (These plots are very similar to the corresponding
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TABLE 16.6. Nonlinear regression results from fitting the Weibull model to the
1981 yield data of soybeans following exposure to ozone and sulfur dioxide.

Source d.f. Sum of Squares Mean Square
Model 5 7, 521, 067 1, 504, 213
Residual 43 59, 049 13, 73
Uncorrected total 48 7, 580, 116
(Corrected total) 47 606, 481

Asymptotic 95%
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper
α1 759.4479 88.2776 581.4198 937.4761
α2 3.6723 9.4117 −15.3082 22.6529
β −631.2867 93.9163 −820.6862 −441.8871
δ 0.1336 .0145 .1044 .1629
γ 0.8788 .2248 .4255 1.3320

TABLE 16.7. Estimated responses for the nonlinear model and the polynomial
model for the 1981 soybean yield response to ozone and sulfur dioxide.

Ozone SO2 = 0 ppm SO2 = .30 ppm
(ppm) Nonlinear Polynomial Nonlinear Polynomial
.02 629.0 626.2 472.2 478.1
.04 537.1 539.8 403.1 406.5
.06 463.1 464.7 347.6 346.2
.08 401.6 400.7 301.5 296.9
.10 349.9 347.8 262.6 258.8
.12 305.8 306.1 229.5 231.9
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FIGURE 16.2. The residuals from the nonlinear model for the 1981 soybean re-
sponse to ozone and sulfur dioxide plotted against the estimated yield.

plots for the polynomial model. For that reason, the plots are given only
for the nonlinear model.)
The standard error on γ̂ and the confidence interval estimate of γ (Ta- Setting γ = 1
ble 16.6) suggest that the exponential decay model for ozone effects γ = 1
would be adequate. The next step in the model-building process would be
to fit the model with γ = 1. The nonlinear model would be reduced to
four parameters that, it appears, would provide nearly the same fit as the
polynomial model with six parameters. This step of the model building is
left as an exercise for the student, and the current five-parameter nonlinear
response equation is used for interpretation.
The (asymptotic) correlation matrix for the estimates of the parameters ρ̂ and s2(θ̂)

θ̂
′
=

(
α̂1 α̂2 β̂ δ̂ γ̂

)
is

ρ̂ =


1 .121322 −.790652 −.914682 −.960015

.121322 1 −.072519 −.128904 −.108028
−.790652 −.072519 1 .683393 .716938
−.914682 −.128904 .683393 1 .799745
−.960015 −.108028 .716938 .799745 1


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FIGURE 16.3. The normal plot of the residuals from the nonlinear model for the
1981 soybean response to ozone and sulfur dioxide.

The variance–covariance matrix for the estimates of the parameters, recon-
structed from the correlation matrix, is

s2(θ̂) =


7, 792.94 100.800 −6, 555.065 −1.170042 −19.04732
100.800 88.5810 −64.1007 −.017580 −.228514

−6, 555.06 −64.1007 8, 820.27 .930020 15.13310
−1.17004 −.01758 .93002 .000210 .002605
−19.0473 −.22851 15.1331 .002646 .050514


The variance–covariance matrix is needed to compute approximate stan-
dard errors of any quantities computed from the regression results.
The quantities of particular interest are the estimated yields at specific Estimated

Yields and
Yield Losses

levels of ozone and sulfur dioxide and the relative yield losses for given
changes in the level of ozone or sulfur dioxide pollution. The use of the
regression equation and the determination of variances of the estimated
quantities are illustrated for

1. the estimated yield level for X1 = .05 ppm and X2 = .10 ppm, and

2. the relative yield losses expected from a change in the ozone level
from X1r = .025 ppm to X1o = .06 ppm and from X1r = .025 ppm
to X1o = .08 ppm. (X1r and X1o designate the reference level and
the postulated new level of ozone, respectively.)

The estimated yield level for X1 = .05 and X2 = .10 is obtained by
substitution of these values in the regression equation, along with D = 0
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to give the average for the two blocks. This gives Ŷ = 456.83 gm−1. The
variance is approximated by applying equation 15.41. This requires the
partial derivatives of the nonlinear function with respect to each parameter,
which for Ŷ (with D = 0) are

∂Ŷ

∂α1
= E,

∂Ŷ

∂α2
= 0,

∂Ŷ

∂β
= X2E, (16.8)

∂Ŷ

∂δ
= (α1 + βX2)E

(γ
δ

)(
X1

δ

)γ
, and

∂Ŷ

∂γ
= −(α1 + βX2)E

(
X1

δ

)γ [
ln

(
X1

δ

)]
,

where

E = exp
[
−

(
X1

δ

)γ]
.

Evaluating the partial derivatives by substituting the estimates of the pa-
rameters X1 = .05 and X2 = .10, and arranging them in a column vector,
gives

Ĥ = ( .65606 0 .065606 1, 266.172 −189.3025 )′ .
Thus, the variance of Ŷ is approximated by

s2(Ŷ ) = Ĥ
′
[s2(θ̂)]Ĥ

= 78.6769

and so the estimated standard error is s(Ŷ ) = 8.87.
The estimated relative yield loss (RYL) resulting from a change in ozone
pollution from X1r to X1o is

RYL(X1r, X1o) =
Ŷ (X1r)− Ŷ (X1o)

Ŷ (X1r)

= 1− exp[−(X1o/δ̂)γ̂ ]

exp[−(X1r/δ̂)γ̂ ]
= 1− exp(−DIF), (16.9)

where

DIF =
(
X1o

δ̂

)γ̂
−

(
X1r

δ̂

)γ̂
.
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For (X1r, X1o) = (.025, .06), RYL = .233. That is, there is estimated to
be a 23% loss in yield associated with an increase in ozone level from .025
ppm to .06 ppm. For (X1r, X1o) = (0.025, .08), RYL = .335 or a 34% loss.
The partial derivatives of RYL are needed to obtain approximate vari- Variances

of Relative
Yield Losses

ances of the estimated relative yield losses. The partial derivatives with
respect to α1, α2, and β are zero since the function does not involve these
parameters. The partial derivatives with respect to δ and γ are

∂(RYL)
∂δ

=
(γ
δ

)
(DIF) exp(−DIF), and

(16.10)
∂(RYL)
∂γ

= exp(−DIF)
{(
X1o

δ

)γ[
ln
(
X1o

δ

)]
−
(
X1r

δ

)γ[
ln
(
X1r

δ

)]}
,

where DIF is as defined following equation 16.9. Evaluating the derivatives
at θ̂ with X1r = .025 and X1o = .06 gives

Ĥ = ( 0 0 0 −1.338825 −0.0091626 )′

and

s2(RYL) = Ĥ
′
[s2(θ̂)]Ĥ

= .0004445,

or an estimated standard error of

s(RYL) = .0211.

For estimated relative yield loss for the (X1r, X1o) = (0.025, .08) interval,

Ĥ = ( 0 0 0 −1.783608 .0381499 )′

and s(RYL) = .033. These estimated relative yield losses are summarized
in the following table.

X1r X1o RYL s(RYL) 95% Confidence Interval
.025 .06 .233 .0211 (0.191, .276)
.025 .08 .335 .0197 (0.295, .375)

16.2 Analysis of the Combined Soybean Data

The purpose of this analysis is to use the combined information from the
four years of experiments, 1981 to 1984, to produce a response equation
characterizing the response of Davis soybeans to ozone pollution, sulfur
dioxide pollution, and moisture stress. First, the combined data are used
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TABLE 16.8. Soybean yield data, cultivar Davis, from the 1982, 1983, and 1984
studies on the effects of ozone, dispensing method, and moisture stress. (Data
courtesy of Dr. A. S. Heagle, Plant Pathologist, N.C. State University and USDA;
used with permission).

1982:
Block 1 Block 2

Treatment Ozone Y1 Y2 Ozone Y1 Y2

CA20 .0674 487.80 476.40 .0637 511.15 423.00
CA40 .0866 499.95 377.20 .0863 479.50 382.45
CA60 .1135 398.95 283.00 .1051 344.25 266.40
CF .0149 653.30 583.40 .0222 652.70 600.70
NF .0406 671.75 525.30 .0483 724.70 627.45
P13 .0635 599.65 412.15 .0672 620.85 513.55
P16 .0798 395.40 378.40 .0817 518.20 438.35
P19 .0933 354.55 288.85 .0902 419.25 325.50

1983:
Moisture Ozone Block 1 Block 2 Block 3
Stress Trt. Ozone Y Ozone Y Ozone Y
W CA30 .0755 477.9 .0773 512.6 .0756 487.2
W CA60 .0975 395.7 .1010 415.6 .1025 498.0
W CF .0299 535.9 .0277 642.0 .0255 639.5
W NF .0526 565.4 .0517 493.4 .0488 706.4
D CA30 .0779 344.0 .0758 225.6 .0753 238.3
D CA60 .0980 248.4 .1004 237.1 .0947 299.0
D CF — — .0314 448.8 .0293 282.5
D NF .0523 271.9 .0533 211.2 .0520 255.3

1984:
Moisture Ozone Block 1 Block 2
Stress Trt. Ozone Y Ozone Y

W CF .024 344 .024 416
W NF .043 438 .045 428
W CA15 .065 268 .069 283
W CA30 .082 293 .082 344
W CA45 .087 297 .095 231
W CA60 .104 249 .112 214
D CF — — .027 297
D NF .043 279 .047 330
D CA15 .066 254 .064 363
D CA30 .077 202 .081 213
D CA45 .095 215 .093 229
D CA60 .107 138 .105 216
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TABLE 16.9. Pooled residual sums of squares for several choices of λ for the
Box–Cox transformation on the 1981 to 1984 soybean experiments.

λ Pooled SS
−1 243, 433
−.5 207, 201
0 = ln(Y ) 198, 633
.5 212, 027
1 249, 122

to check the validity of the assumptions of normality and constant variance.
The 1981 data were given in Table 16.1. The 1982, 1983, and 1984 data are
given in Table 16.8.
The individual yearly experiments do not provide sufficient information Checking

Normality
and Constancy
of Variance

to critically check normality and constancy of variance. Therefore, data
from all experiments were combined to check these assumptions. In 1983
and 1984, half of each chambered plot was used destructively for physio-
logical measurements and, consequently, yield was measured on only the
remaining half. In order to keep plot sizes comparable over years, all anal-
yses used the “half plot” yield as the basic unit. Thus, the north (N) and
south (S) halves of each plot in 1981 and 1982 were used as different data
sets. (The correlations between the subsets of data in the two experiments
were ignored for this analysis of residuals.) The appropriate analysis of
variance was run on each data set and the residuals from all analyses were
combined to study their behavior. The combined data set has a total of 174
observations and the pooled residuals have 80 degrees of freedom. A miss-
ing observation in each of 1983 and 1984 made the data unbalanced from
the analysis of variance point of view. (The analysis of unbalanced data
is discussed in Chapter 17.) For present purposes, the effects and dummy
variables are defined so as to give a full rank model and regression analyses
are used.
The plot of the residuals from the analyses of variance versus Ŷ , Fig-
ure 16.4, showed a tendency for increased dispersion at the higher values
of Ŷ . The normal plot of the residuals, Figure 16.5, showed a very slight
S-shaped curvature. On the basis of these graphical results, the Box–Cox
method was used to find a transformation on Y that would improve nor-
mality and constancy of variance.
The criterion used for choice of power transformation was minimum Logarithmic

Transforma-
tion Used

pooled residual sum of squares from the analyses of variance for the four
years of data. The pooled residual sums of squares for several choices of
λ in the Box–Cox transformation are given in Table 16.9. Quadratic in-
terpolation using the three middle points indicated that the minimum was
near λ = −.05 with SS[Res(λ)]= 198, 471. The plot of these residual sums
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FIGURE 16.4. Pooled residuals from the separate analyses of variance of yield
for the 1981 to 1984 soybean studies plotted against Ŷ .
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FIGURE 16.5. Normal plot of the pooled residuals from the analyses of variance
of yield for the 1981 to 1984 soybean studies.
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FIGURE 16.6. Pooled residuals from the analyses of variance of ln(Y ) for the
1981 to 1984 soybean studies plotted against Ŷ .

of squares and the confidence interval estimate of λ, presented in Chap-
ter 12, Figure 12.4, suggested a logarithmic transformation. The analy-
ses of variance were repeated using ln(Y ) as the dependent variable. The
pooled residuals obtained from the analyses on ln(Y ) showed better behav-
ior both with respect to constancy of variance, Figure 16.6, and normality,
Figure 16.7. Consequently, the response model for the combined data is
developed using ln(Y ) as the dependent variable.
A complete model for the combined 1981 to 1984 soybean experiments Full Model
needs to account for differences among years, differences among blocks in
years, the joint ozone and sulfur dioxide response in 1981, the joint ozone
and method of dispensing effects in 1982, the joint ozone and moisture stress
effects in 1983 and 1984, and possible ozone by year, ozone by dispensing
method, ozone by moisture, and ozone by sulfur dioxide interaction effects.
However, previous analyses had shown the main and interaction effects due
to ozone dispensing methods not to be significant and, consequently, these
effects are not included. The year, block, and moisture stress effects are
incorporated in the model with the use of dummy variables. A plot of the
data suggested that a linear regression term would adequately account for
the average sulfur dioxide effects. The logarithm of the exponential com-
ponent in the original Weibull model gives −(X1/δ)γ , suggesting that the
ozone response on the logarithmic scale can be characterized by a non-
linear term β(X1)γ , where β = −(1/δ)γ . Thus, a power parameter γ on
the level of ozone is included in the full model. The interaction effects are
incorporated as product terms in the usual way.
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FIGURE 16.7. Normal plot of the pooled residuals from the analyses of variance
of ln(Y) for the 1981 to 1984 soybean studies.

Let T1, T2, T3, and T4 be dummy variables identifying the four years,
respectively, by taking the value of 1 if the observation is from the year
indicated by the subscript and 0 otherwise. Let R11, R21, R31, R32, and R41
be dummy variables to account for block differences within each year. Each
Rij takes the value 1 if the observation is from the jth block in the ith year
and 0 otherwise. Notice that there is one less Rij dummy variable for each
year than the number of blocks in that year. The moisture-stressed plots
are identified byM = 1 and the well-watered plots withM = 0. LetMI be
a dummy variable to allow for a moisture stress by year interaction between
1983 and 1984, taking the value of 1 if the plot is a moisture-stressed plot
in 1983, −1 if it is a moisture-stressed plot in 1984, and 0 otherwise. Thus,
the full model, without subscripts to identify the experimental unit, is

ln(Y ) = β1T1 + β2T2 + β3T3 + β4T4

+ β5R11 + β6R21 + β7R31 + β8R32 + β9R41

+ β10M + β11MI + β12X2 + β13X
γ
1 (16.11)

+ β14X2X
γ
1 + β15MX

γ
1 + β16T1X

γ
1

+ β17T2X
γ
1 + β18T3X

γ
1 + ε,

where X2 is the level of sulfur dioxide and X1 is the level of ozone. The
product term MXγ1 allows the moisture-stressed plots to have a different
response to ozone, and the last three terms allow for year by ozone inter-
actions. This is a nonlinear model only because of the power parameter on
X1.
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This model was fitted using the derivative-free option in PROC NLIN Fitting the
Model(SAS Institute Inc., 1989b). The starting values for the parameters were

β1 = β2 = β3 = β4 = 6.5, β12 = −1, β13 = −5, γ = 1, and all others zero.
Although convergence was obtained, the derivative-free method appeared
to be inefficient. With 19 parameters in the model, 20 iterations are re-
quired with the derivative-free method before the numerical estimates of
all derivatives can be computed. In this particular case, 7 additional iter-
ations were made and then iterations were restarted with a smaller grid
around the current estimates. This required an additional 20 iterations to
recompute the numerical derivatives and a final 5 iterations to reach con-
vergence. Thus, there were a total of 52 iterations to find the solution.
Except for the terms involving Xγ1 , this model is linear in the parameters.
In models that are “nearly” linear in the parameters, convergence is usually
fairly rapid when the derivatives are specified. It is left as an exercise for
the reader to fit this model using derivatives.
The summary of this analysis is shown in Table 16.10. The asymptotic Summary of

the Analysisconfidence intervals can be used as guides to the significance of the vari-
ous parameters. This is equivalent to testing the corresponding hypotheses
using the Wald statistics. The year parameters β1 to β4 are different from
zero, as expected, and are retained in the model. The block differences
within years are not significantly different from zero as shown by the confi-
dence intervals for β5 to β9 overlapping zero. However, the block effects are
part of the original experimental designs and are kept in the model. The
average moisture stress effect β10, the moisture stress by year interaction
effect β11, and the regression coefficients for sulfur dioxide β12, and ozone
β13, are significantly different from zero. The analysis gives no indication
of an ozone by sulfur dioxide interaction β14, a moisture stress by ozone
interaction β15, nor any year by ozone interactions β16, β17, and β18.
Rather than dropping all nonsignificant interaction terms at one time,
the analysis proceeds more cautiously by dropping first the year by ozone
interaction effects and then dropping other interaction effects if they remain
unimportant. This protects against dropping effects that may become sig-
nificant after other effects in the model have been dropped, and it provides
the opportunity to test the significance of the effects with the likelihood
ratio test using the difference in residual sums of squares from the two
models.
The residual sum of squares from the model in which all year by ozone Dropping Year

by Ozone
Interactions

interaction effects β16, β17, and β18 are set equal to zero is SS(Res) =
3.8088 with 158 degrees of freedom. Comparing this to the residual sum
of squares from the full model, Table 16.8, and computing the F -statistic
gives

F =
(SS(Resreduced)− SS(Resfull))/q

SS(Resfull)/(n− p)
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TABLE 16.10. Summary of the nonlinear least squares analysis of ln(seed yield)
for the 1981–1984 soybean data using the full model.

Source d.f. Sum of Squares Mean Square
Model 19 6, 089.9388 320.5231
Residual 155 3.6824 .0238
Uncorrected total 174 6, 093.6212
(Corrected total) 173 20.0321

Asymptotic Asymptotic 95%
Parameter Estimate Std. Error Confidence Interval

β1
β2
β3
β4

 Years
6.4828
6.6811
6.5359
6.2472

.0948

.1092

.1129

.1278

(6.2956, 6.6700)a

(6.4654, 6.8968)a

(6.3129, 6.7589)a

(5.9948, 6.4997)a

β5
β6
β7
β8
β9

 Blocks/Years
.0604

−.0614
−.0346
−.0552
−.1005

.0315

.0546

.0805

.0771

.0647

(−.0018, .1227)
(−.1693, .0465)
(−.1936, 0.1245)
(−0.2075, .0971)
(−.2284, 0.0273)

β10 : M −.4712 .1206 (−.7094,−.2330)a
β11 : M × Yr −.2059 .0460 (−.2967,−.1151)a
β12 : SO2 −10194 .2563 (−1.5257,−.5130)a
β13 : O3 −9.3216 4.4734 (−18.1584,−.4848)a
β14 : SO2 × O3 .3332 4.0286 (−7.6249, 8.2913)
β15 : M × O3 .7626 2.1813 (−3.5464, 5.0716)
β16
β17
β18

 Yr × O3

.4954
−.9537
3.9134

1.9172
2.2033
2.7087

(−3.2918, 4.2827)
(−5.3061, 3.3987)
(−1.4375, 9.2642)

γ : O3 power 1.1287 .2330 (.6684, 1.5889)a

a95% confidence interval does not overlap zero.
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=
(3.8088− 3.6824)/3
3.6824/155

= 1.77,

where q = 3 is the number of constraints placed on the parameters. This is
an approximate F -test with q and n−p degrees of freedom and is nonsignif-
icant. Gallant (1987) shows that this is equivalent to the likelihood ratio
test. This confirms the decision based on the Wald statistic that β16, β17,
and β18 are not different from zero. The reduced model continues to show
that β14 and β15, the sulfur dioxide by ozone interaction and the moisture
stress by ozone interaction, are not different from zero.
The model without β16, β17, and β18 is adopted as the full model for test- Moisture

Stress
by Ozone
Interaction

ing the significance of β15. The reduced model, with β15 set equal to zero,
gives SS(Resreduced) = 3.8447 with 159 degrees of freedom. The likelihood
ratio test of H0 : β15 = 0 gives

F =
3.8447− 3.8088
3.8088/158

= 1.49

which, with 1 and 158 degrees of freedom, is not significant and β15 is
dropped from the model.
The Wald confidence interval for this model with β15 dropped continues Sulfur Dioxide

by Ozone
Interaction

to indicate that β14 is not significantly different from zero. The model was
further reduced by setting β14 = 0. This gives SS(Resreduced) = 3.8449 with
160 degrees of freedom (Table 16.11). Comparing this to the residual sum
of squares for the previous model gives

F =
3.8449− 3.8447
3.8447/159

= .01,

which is nonsignificant. Thus, the sulfur dioxide by ozone interaction effect
is also not important and can be dropped from the model. The only inter-
action effect remaining is the moisture stress by year interaction β11, which
is significant in this reduced model. Likewise, the moisture stress effect, the
sulfur dioxide effect, and the ozone effect remain significant as judged by
their 95% approximate confidence interval estimates.
The final stage in simplifying this model relates to the power parameter Setting γ = 1
on X1. The logical null hypothesis for γ is H0 : γ = 1.0 which, if true,
removes the nonlinearity of the model. The point estimate of γ (in the last
reduced model) is γ̂ = 1.078 and the 95% confidence interval estimate is
(0.625, 1.530). There appears to be no reason to reject the null hypothesis
that γ = 1.0. Since the model with γ = 1 is linear in the parameters, PROC
GLM with the no-intercept option is used to fit this final reduced model.
The results for this model are summarized in Table 16.12. The likelihood
ratio test of the null hypothesis that γ = 1.0 gives

F =
3.8479− 3.8449
3.8449/160

= .12,
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TABLE 16.11. Summary of the nonlinear least squares analysis of ln(seed yield)
for the 1981 to 1984 soybean data using the reduced model.

Source d.f. Sum of Squares Mean Square
Model 14 6, 089.7763 434.9840
Residual 160 3.8449 .0240
Uncorrected total 174 6, 093.6212
(Corrected total) 173 20.0321

Asymptotic Asymptotic 95%
Parameter Estimate Std. Error Confidence Interval

β1
β2
β3
β4

 Years
6.4910
6.6180
6.6931
6.2316

.0870

.0986

.1065

.1022

(6.3191, 6.6629)a

(6.4233, 6.8127)a

(6.4828, 6.9034)a

(6.0299, 6.4333)a

β5
β6
β7
β8
β9

 Blocks/Years
.0603

−.0616
−.0143
−.0496
−.0987

.0317

.0549

.0805

.0775

.0648

(−.0023, .1228)
(−.1701, .0469)
(−.1732, .1446)
(−.2027, .1035)
(−.2267, .0293)

β10 : M −.4283 .0459 (−.5190,−.3376)a
β11 : M × Yr −.2020 .0458 (−0.2925,−0.1114)a
β12 : SO2 −.9996 .1083 (−1.2135,−.7856)a
β13 : O3 −7.9230 3.2129 (−14.2682,−1.5778)a
γ : O3 power 1.0778 .2292 (0.6253, 1.55304)a

a95% confidence interval does not overlap zero.
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TABLE 16.12. Summary of the analysis of ln(seed yield) for the 1981 to 1984
soybean data using the final linear model.

Source d.f. Sum of Squares Mean Square
Model 13 6, 089.7733 468.4441
Residual 161 3.8479 .0239
Uncorrected total 174 6, 093.6212
(Corrected total) 173 20.0321

Asymptotic Asymptotic 95%
Parameter Estimate Std. Error Confidence Interval

β1
β2
β3
β4

 Years
6.5193
6.6486
6.7227
6.2611

.0394

.0473

.0678

.0611

(6.4421, 6.5966)a

(6.5559, 6.7414)a

(6.5899, 6.8555)a

(6.1413, 6.3809)a

β5
β6
β7
β8
β9

 Blocks/Years
.0605

−.0627
−.0133
−.0494
−.0981

.0316

.0547

.0802

.0773

.0646

(−.0014, .1224)
(−.1699, .0446)
(−.1704, .1439)
(−.2009, .1021)
(−.2247, .0285)

β10 : M −.4275 .0457 (−.5171,−.3378)a
β11 : M × Yr −.2019 .0457 (−.2915,−0.1123)a
β12 : SO2 −.9977 .1079 (−1.2091,−.7862)a
β13 : O3 −6.9170 .3869 (−7.6753,−6.1587)a
a95% confidence interval does not overlap zero.
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FIGURE 16.8. Pooled residuals from the final response model for the 1981 to 1984
soybean data plotted against Ŷ .

which is clearly nonsignificant. All the remaining terms in this model, ex-
cept the block effects, are significant. The plot of the residuals versus Ŷ
(Figure 16.8) and the normal plot of the residuals (Figure 16.9) give no
reason for concern about inadequacies in the model.
Thus, the final model to represent the 1981 to 1984 soybean response Relative

Yield Lossesto sulfur dioxide and ozone shows a decline in ln(Y ) of 6.9 units per ppm
increase in ozone and a decline of 1.0 unit per ppm increase in sulfur dioxide.
Translating this regression equation back to the original scale, by taking
the antilog, and computing the relative yield loss for changes in ozone gives

RYL = 1− exp[β̂13(X1o −X1r)]
= 1− exp[−6.917(X1o −X1r)].

The partial derivatives of RYL with respect to the parameters in the model
are all zero except for the partial derivative with respect to β13,

∂(RYL)
∂β13

= {− exp[β13(X1o −X1r)]}(X1o −X1r).

Thus, s2(RYL) involves only the one variance s2(β̂13), multiplied by the
square of the partial derivative evaluated at β̂13. The estimated relative
yield losses (RYL), their approximate standard errors, and the 95% ap-
proximate confidence interval estimates for several choices of X1o are given
in Table 16.13.
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FIGURE 16.9. Normal plot of the residuals from the final response model for the
1981 to 1984 soybean data.

TABLE 16.13. Estimates of relative yield losses, their approximate standard er-
rors, and approximate 95% confidence interval estimates.

Estimation Interval Approx. Approximate 95%
X1r X1o RYL s(RYL) Confidence Interval
.025 .03 .034 .0019 (.030, .038)

.04 .099 .0052 (.088, .109)

.05 .158 .0081 (.143, .175)

.06 .215 .0106 (.194, .236)

.07 .267 .0128 (.242, .292)

.08 .316 .0145 (.288, .345)
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An alternative approach to obtain confidence interval estimates of RYL
in this example is to first compute the confidence interval estimates of

ln(1−RYL) = β13(X1o −X1r)

as
[β̂13 ± t(α/2,ν)s(β̂13)](X1o −X1r)

and then transform the limits. The antilogs of these limits subtracted from
unity give the limits on RYL. In this example, the limits obtained in this
way agreed to the third decimal with those in Table 16.13 in all cases except
for a difference of one in the third decimal when X1o = .08.
The estimates of relative yield losses are very similar to those obtained
from the 1981 data alone, .215 versus .233 for X1o = .06 and .316 versus
.335 for X1o = .08. The standard errors are appreciably smaller as expected
from the use of additional information, .011 versus .018 and .015 versus
.033.
Most of the point estimates of the parameters changed only slightly when Consequences

of
Setting γ = 1

γ was set equal to 1.0 in the last step of developing this model. The estimate
of β13 changed most noticeably from −7.92 to −6.924, but this was to be
expected since β13 is now the coefficient on X1, not Xγ − 1. The standard
error on β13, however, decreased to only one-tenth its previous value when
γ was set equal to 1.0. This greatly increased precision in the estimate
of β13 is the result of eliminating a collinearity problem; the correlation
between β̂13 and γ̂ was .990. This high negative correlation means that
changes in one parameter could be offset by compensating changes in the
other parameter; the joint confidence region for the two parameters would
be a very elongated ellipse.

16.3 Exercises

16.1. The polynomial response model adopted for the 1981 soybean data
did not use the O3 quadratic × SO2 linear interaction term but the
text suggested that it would be the next most logical term to test. Add
the term X2

1X2 to the model shown in equation 16.4 and fit the 1981
soybean data (Table 16.1). Compare these results to those obtained
from the model shown in equation 16.4 and test the significance of
the new term. State your conclusions.

16.2. Determine whether cubic terms in either ozone or sulfur dioxide would
have significantly improved the polynomial response model, equa-
tion 16.4, for the 1981 soybean data.

16.3. The sums of squares due to the polynomial terms in the analysis of
the 1981 data were not partitions of the analysis of variance due to the
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fact that a given pollutant treatment was not constant over the levels
of the other pollutant and the two replications. Rerun the polynomial
analysis using the mean ozone level for each ozone treatment and the
mean sulfur dioxide level for each sulfur dioxide treatment; that is, use
Xi··1 and X ·j·2. How does this change your results? What polynomial
model do you adopt? Are the sums of squares due to the polynomial
terms in ozone level partitions of the ozone treatment sum of squares?
Are the sequential sums of squares due to the polynomial terms in
sulfur dioxide level partitions of the sulfur dioxide treatment sum of
squares?

16.4. Refit the Weibull model, equation 16.6, to the 1981 soybean data
using one of the methods that require derivatives. Compare your re-
sults to those reported in the text for the derivative-free method
(Table 16.6).

16.5. Use the likelihood ratio test with the 1981 data to test the null hy-
pothesis that the parameter γ in the Weibull model is equal to 1.
(Refit the nonlinear model you obtain from the Weibull model by
setting γ = 1. Test the increase in residual sums of squares of this
“reduced” model over the “full” model against the residual mean
square from the “full” model using an F -test.) Is the result of this
test consistent with the conclusion you reach if you use the Wald
test?

16.6. The nonlinear model used in relating ln(Y ) to the treatment vari-
ables in the combined 1981–1984 data, equation 16.11, was fit us-
ing the derivative-free method. Convergence was slow because of the
large number of parameters in the model. Refit the model using one
of the methods requiring derivatives. Use the same starting values
used in the text. Was convergence obtained or assumed? How many
iterations were required? Does the solution agree with that from the
derivative-free method, Table 16.10? Does it appear reasonable from
these results to set γ = 1? On what do you base your answer?

16.7. The nonlinear model used in relating ln(Y ) to the treatment variables
in the combined 1981–1984 data, equation 16.11, can also be fit using
linear least squares. If γ is fixed at some value, the model is linear
in the parameters. Fitting this linear model gives a residual sum of
squares that is conditional on the chosen value of γ. Repeating the
analysis for a series of values of γ from which the one with the min-
imum residual sum of squares is chosen will eventually lead to the
least squares solution if small enough steps in γ are used. Obtain the
least squares solution by this grid search method and compare your
results with those obtained from nonlinear least squares. Use γ = 1.0,
1.1, 1.12, 1.13, 1.14, 1.20 as trial values.



17
ANALYSIS OF UNBALANCED
DATA

Chapter 9 introduced the use of class variables, with
which the classical analyses of variance for balanced
data became special cases of least squares regression.

This chapter discusses the analysis of unbalanced data
using least squares regression with class variables. Em-
phasis is on understanding estimability and the estimable
functions of the parameters that are tested by the vari-
ous sums of squares. Treatment means adjusted for the
effects of imbalance are defined.

The classical analyses of variance for the standard experimental designs Definition of
“Balance”are appropriate only for data from balanced experiments. The common

definition of balance is that an experiment is balanced if all cells of the
data table have equal numbers of observations. Critical to this definition
is the understanding, which is often not stated, that the “cells” of the
data table must include a cell for every possible combination of the levels
of all treatment factors and, if blocking is used, for each combination of
treatments and blocks. These conditions imply that every possible multiway
table involving different treatment factors (and blocks) will have the same
number of observations in all cells of the table.
The balance in the data allows contrasts, and sums of squares associated
with the contrasts, to be computed directly from corresponding marginal
data tables. (Marginal data tables are constructed by summing across fac-
tors not involved in the contrast of immediate interest.) Without balance,



546 17. ANALYSIS OF UNBALANCED DATA

contrasts on the marginal sums (or means) will include unwanted effects of
other treatment factors. This leads to a “working” definition of balance:

Data are balanced if the contrasts of interest, and sums of
squares for the contrasts, can be computed directly from the
marginal sums (or means) for the factors involved in the con-
trast.

[There are other definitions of balance; see, for example, Basson (1965).
The definition given here is more restrictive than necessary. Unequal but
proportional numbers, for example, may be sufficient for some cases.]
In this chapter, methods of analyzing unbalanced data are discussed. Methods for

Unbalanced
Data

The first two methods attempt to avoid the effects of imbalance by apply-
ing least squares analysis to cell means. (The analysis of cell means is not
to be confused with the use of the means model.) The third method ap-
plies least squares principles to obtain estimates of estimable functions of
the parameters and sums of squares for relevant testable hypotheses. The
emphasis in this text is on the application of least squares to the classical
effects models. The reader is referred to Hocking (1985) for a thorough
discussion of the alternative of using means models.
Many procedures for the analysis of unbalanced data concentrate more
on partitioning sums of squares than on the hypotheses being tested. Conse-
quently, the hypotheses often are not the most meaningful and may not even
be clearly specified. [See Hocking and Speed (1975), Speed and Hocking
(1976), and Speed, Hocking, and Hackney (1978), for extensive discussions
on analysis of unbalanced data.] The emphasis in this text is on estimable
functions and testable hypotheses in order to enhance the reader’s under-
standing of the analyses. The general linear models procedure, PROC GLM
(SAS Institute Inc., 1989b), is used extensively. This procedure computes
four types of sums of squares, which include most of the options usually
considered, and provides the estimable functions of the parameters being
tested by these sums of squares. This book concentrates on the SAS Type
I and Type III testable hypotheses and sums of squares. [The reader is
referred to Freund, Littell, and Spector (1986) and Searle and Henderson
(1979) for more discussion on PROC GLM.]

17.1 Sources Of Imbalance

Imbalance in data can arise for different reasons and at different “levels”
in the experiment. The imbalance may be deliberate in the design of the
experiment or it may be the result of failure to give adequate considera-
tion to the design. Certain treatment combinations, such as simultaneous
high temperature and high pressure, may not be possible for the particu-
lar system being studied, or limited resources may restrict the number of
treatment combinations that can be handled.



17.2 Effects Of Imbalance 547

Most often, however, unequal numbers arise due to accidents during the
experiment; contamination of material or mortality of animals or plants
causes the loss of experimental units, sample material is lost or handled in-
correctly before it can be analyzed and data recorded, or data are recorded
incorrectly and subsequently have to be discarded. The loss of data may
occur at the sampling unit level (if sampling units are used), at the experi-
mental unit level, or at the treatment level. The loss of an entire treatment
will cause confounding of effects if the treatment is one of a factorial set of
treatments.
Although imbalance is occasionally deemed necessary because of the na-
ture of the system being studied and often occurs accidentally, the avail-
ability of computing power and general analysis programs such as PROC
GLM should never be the justification for conducting an unbalanced exper-
iment. As shown, the analysis and interpretation of results are much more
difficult for unbalanced data and, frequently, the imbalance will result in
the loss of important information.

17.2 Effects Of Imbalance

The confounding effects of imbalance are illustrated with a 2× 3 factorial Two-Way
Modelset of treatments in a completely random experimental design. The effects

model for this case is

Yijk = µ+ αi + βj + γij + εijk, (17.1)

where αi and βj are the effects of the ith and jth levels of treatment factors
A and B, respectively; γij is the interaction effect between the ith level of
A and the jth level of B, and εijk is the random error associated with the
observation from the kth experimental unit receiving the ijth treatment
combination.
When the data are balanced, the sums of squares for the standard anal- Balanced Data:

Expectations
of Cell Means

ysis of variance are computed directly from contrasts on the treatment
means. Functions of the squared differences among the A treatment means
generate the sum of squares for the A treatment factor unconfounded by
the effects of factor B, and vice versa. The simplicity of the analysis of
variance is a direct result of the balance in the data. The reason is evi-
dent from the expectations of the cell and marginal means (Table 17.1).
Expectations of the cell means are obtained by averaging the fixed effects
in the model, equation 17.1, over subscript k, the observations within each
cell. In this case, the fixed effects do not involve the subscript k so that the
expectation for the ijth cell mean is

E(Y ij.) = µ+ αi + βj + γij .
The expectations of the marginal means are obtained by averaging the cell
expectations over each row or column, as the case may be, giving equal



548 17. ANALYSIS OF UNBALANCED DATA

TABLE 17.1. The expectations of the cell means and the marginal means for a
2× 3 factorial in a completely random experimental design. The marginal means
are computed assuming equal numbers of observations in each cell.

B
A 1 2 3 E(Y i..)a
1 µ+ α1 µ+ α1 µ+ α1 µ+ α1

+ β1 + γ11 + β2 + γ12 + β3 + γ13 + β. + γ1.

2 µ+ α2 µ+ α2 µ+ α2 µ+ α2

+ β1 + γ21 + β2 + γ22 + β3 + γ23 + β. + γ2.
E(Y .j.) µ+ α. µ+ α. µ+ α. µ+ α.

+ β1 + γ.1 + β2 + γ.2 + β3 + γ.3 + β. + γ..
aThe bar over the symbol indicates the average over the subscript that has been

replaced with a dot.

weight to each cell. The equal weight for each cell simulates the averaging
one would do if all cells had the same number of observations.
The expectations of all marginal means for the B factor contain exactly Balanced Data:

Expectations
of Contrasts

the same function of the αi effects (Table 17.1). Thus, all αi effects will
cancel in the expectation of any contrast on the marginal means for the B
factor. For example, the contrast between levels 1 and 2 for the B factor
has expectation

E(Y .1. − Y .2.) = β1 − β2 + (γ.1 − γ.2), (17.2)

which involves no αi. The result is that any contrast of interest on the βj
effects is estimated with the same contrast on the marginal means for the B
factor and is not confounded with the effects of the A factor. Similarly, any
contrast of interest on the αi effects is estimated with the same contrast
on the marginal means for the A factor without being confounded with βj
effects. It follows that the sums of squares for contrasts among the A factor
means will not involve the βj effects and sums of squares for contrasts
among the B factor means will not involve the αi effects when the data are
balanced.
The interaction effects γij do not cancel in contrasts on the marginal Balanced Data:

Interaction
Effects

means in balanced data, but they are present in very specific ways. The
expectation of any contrast on marginal means in balanced data involves
the same contrast on the simple marginal averages of the γij effects. There is
no function of the data that will estimate a contrast on main effects without
involving interaction effects, if the model contains interaction effects, unless
constraints are imposed on the parameters. In this discussion, all results are
presented in terms of the full model without constraints. Thus, contrasts
involving only main effects, α1 − α2, for example, are nonestimable.
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The effect of imbalance is illustrated by considering the same set of fac- Unbalanced
Data:
Expectations

torial treatments but with unequal cell numbers. Let

n11 = 1, n12 = 2, n13 = 1,
n21 = 3, n22 = 1, n23 = 1.

(17.3)

The expectations of the cell means remain as shown in Table 17.1. However,
the expectations of the marginal means now are weighted averages of the
expectations of the cell means, where the weighting is by nij . Thus,

E(Y 1..) =
[E(Y 11.) + 2E(Y 12.) + E(Y 13.)]

4

= µ+ α1 +
β1 + 2β2 + β3

4
+
γ11 + 2γ12 + γ13

4
(17.4)

and

E(Y 2..) =
[3E(Y 21.) + E(Y 22.) + E(Y 23.)]

5

= µ+ α2 +
3β1 + β2 + β3

5
+
3γ21 + γ22 + γ23

5
. (17.5)

The marginal means for the A factor now involve different functions of the
βj so that they will not cancel in a contrast on the A treatment means:

E(Y 1.. − Y 2..) = α1 − α2 +
(−7β1 + 6β2 + β3)

20

+
[
(γ11+ 2γ12+ γ13)

4
− (3γ21+ γ22+ γ23)

5

]
.(17.6)

Similarly, contrasts on the B treatment means will be confounded with αi
effects. Furthermore, the expectations contain different functions of the in-
teraction effects from the balanced case. Simple contrasts on the treatment
means, and sums of squares for these contrasts, no longer provide direct
estimates of the appropriate functions of the parameters. Other approaches
become necessary.
This illustration assumed that the unequal numbers did not create any Empty Cells
empty cells, cells with nij = 0. As long as there are no empty cells, all
functions of the parameters that were estimable with balanced data re-
main estimable in the unbalanced data. However, when there are empty
cells, some additional functions may become nonestimable and it may be
impossible to obtain estimates of some functions of interest.

17.3 Analysis of Cell Means

The method of unweighted analysis of cell means is an attempt to Averaging
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avoid the effects of imbalance by replacing the unequal numbers of obser-
vations with their cell means. The method is dependent on there being
no empty cells. If the imbalance arises from unequal numbers of sampling
units within experimental units, the available sampling observations from
each experimental unit are averaged to obtain a mean response for each
experimental unit. The analysis is then conducted on these experimental
unit means, as if there had been no sampling. If the imbalance arises from
experimental units being lost, data from the available experimental units
for each treatment are averaged and then used for the analysis of treatment
effects.
The analysis of cell means is described in terms of a completely random Model for

Observationsexperimental design with a 2× 3 factorial set of treatments. Let nij be the
number of experimental units receiving the ijth treatment combination.
The effects model for the individual observations is

Yijk = µ+ αi + βj + γij + εijk, (17.7)

where αi (i = 1, . . . , a) is the effect of the ith level of factor A, βj (j =
1, . . . , b) is the effect of the jth level of factor B, and γij is the interaction
effect between the ith level of factor A and the jth level of factor B. The
subscript k designates the observation receiving the ijth treatment combi-
nation (k = 1, . . . , nij). The usual least squares assumptions apply to εijk.
The data are unbalanced if the nij are not equal.
The cell means are obtained by averaging over the nij observations re- Model for

Cell Meansceiving the ijth treatment,

Y ij. =
1
nij

(
nij∑
k=1

Yijk

)
. (17.8)

The model in terms of these cell means is

Y ij. = µ+ αi + βj + γij + εij.. (17.9)

If the variance–covariance matrix of the εijk in the original data isVar(ε) =
Iσ2, the variance–covariance matrix for the εij. in the cell means model will
be

Var(ε) =


1/n11 0 · · · 0
0 1/n12 · · · 0
...

...
. . .

...
0 0 · · · 1/nab

 . (17.10)

The unweighted analysis of cell means ignores these unequal variances and
proceeds as if Var(εij.) = Iσ2.
The expectations of the cell means, given by the first four terms in the Expectations

of Meansmodel, equation 17.9, and the expectations of the marginal means, obtained
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TABLE 17.2. Degrees of freedom and mean square expectations for the unweighted
analysis of cell means for an A×B factorial with nij observations per treatment
in a completely random design; all nij > 0.

Source d.f. E(Mean Square)a

Total ab− 1
A a− 1 σ2 + nhθ2γ + bnhθ2α
B b− 1 σ2 + nhθ2γ + anhθ

2
β

A×B (a− 1)(b− 1) σ2 + nhθ2γ
Exp. error n.. − ab σ2

aThe θ2 terms are quadratic forms of the fixed effects indicated by the
subscript.

by unweighted averaging of the cell means, have the same composition of
all fixed effects as with balanced data (Table 17.1).
The analysis of variance of the a×b table of cell means, with each sum of Analysis of

Variancesquares multiplied by nh, the harmonic mean of the numbers of observations
per cell, gives the SS(A), SS(B), and SS(AB). The harmonic mean is

nh =
ab∑a

i=1
∑b
j=1

1
nij

(17.11)

which simplifies to n when all nij = n. The mean squares estimate the same
functions of the fixed effects as the corresponding analysis with balanced
data except the coefficient n is replaced with nh (Table 17.2).
The estimate of σ2 is obtained from a separate computation of the vari- Variances
ances among experimental units within treatments and pooled over the ab
treatments. Thus,

MS(Error) =

∑a
i=1

∑b
j=1

[∑nij

k=1(Yijk − Y ij.)2
]

ν
, (17.12)

where

ν =
a∑
i=1

b∑
j=1

(nij − 1) = n.. − ab (17.13)

is the degrees of freedom.
The variance of the ijth treatment mean is σ2/nij as shown in equa-
tion 17.10. The variance of a marginal treatment mean, computed as the
unweighted average of cell means, is σ2/k, where the divisor k is the prod-
uct of the number of cell means in the average and the harmonic mean
of the nij for those cells. The variance of the difference between two un-
weighted marginal treatment means is the sum of the variances of the
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two means. Consider for example a 2 × 3 factorial experiment with nij
given in equation 17.3. Consider the unweighted averages of cell means
(Y 11. + Y 12. + Y 13.)/3 and (Y 21. + Y 22. + Y 23.)/3 for the two levels of
factor A. These two unweighted averages of cell means have variances
σ2

( 1
1 +

1
2 +

1
1

)
/9 and σ2

( 1
3 +

1
1 +

1
1

)
/9, respectively. Also, the variance

of the difference between these two means is given by the sum of the vari-
ances of the two means.
The analysis of cell means will avoid the confounding of effects associated
with imbalance only in those cases where the averaging is over observations
that have the same expectation. Or, equivalently, the averaging must be
over observations that differ only in random elements. Averaging over un-
equal numbers of sampling units always provides unbiased estimates of
treatment comparisons. Averaging over experimental units to obtain cell
means, however, requires care to avoid confounding fixed effects in the final
analysis. If the experimental design is a completely random design or if the
experimental design is a randomized complete block design with random
block effects, the analysis of cell means will yield unbiased comparisons of
treatment effects. However, some of the efficiency of blocking will be lost
because variances of treatment comparisons will involve the component of
variance due to random block effects. If the block effects are fixed effects,
treatment comparisons based on unweighted means will be confounded with
block effects.
Although the unweighted analysis of cell means is simple, it is not an effi- Inefficiency
cient analysis since unequal variances (of the cell means) are being ignored.
Furthermore, the sums of squares that are generated are not distributed
as chi-squared random variables and, hence, the conventional tests of sig-
nificance are only approximate. With the computing facilities generally
available, the simplicity of the unweighted analysis of cell means does not
justify its use (Speed, Hocking, and Hackney, 1978).
The weighted analysis of cell means uses weighted least squares to Weighted

Analysistake into account the unequal variances of the cell means. The relative sizes
of the variances of the cell means are determined by 1/nij , equation 17.10,
so that the appropriate weighting matrix is a diagonal matrix of the nij .
Note that if we consider the transformed model

n
1/2
ij Y ij. = n

1/2
ij µ+ n

1/2
ij αi + n

1/2
ij βj + n

1/2
ij γij + n

1/2
ij εij.,

then the errors n1/2
ij εij. have equal variances. The least squares estimates

from the transformed model of estimable functions of the parameters are
best linear unbiased estimates. The sums of squares obtained correspond
to those obtained from the general linear models analysis of the original
observations discussed in the next section.
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17.4 Linear Models for Unbalanced Data

Least squares regression with linear models containing class variables repro-
duces the analyses of variance for the standard experimental designs when
the data are balanced (Chapter 9). The general linear models approach,
however, does not require balanced data. As long as the parametric func-
tions of interest remain estimable, the general linear models approach will
provide estimates of the functions and sums of squares for tests of signif-
icance of any testable hypotheses. This section discusses the use of least
squares regression with class variables for the analysis of unbalanced data.
The general procedure is as discussed in Chapter 9. To review briefly, a General

Procedurelinear model is constructed using dummy variables in X to bring in the
effects of class variables, such as treatments. Each set of dummy variables
introduces at least one linear dependency among the columns of X so that
the model is not of full rank and the unique inverse does not exist. The
general linear models approach uses a generalized inverse ofX ′X to obtain
one of the nonunique solutions to the normal equations,

β0 = (X ′X)−X ′Y , (17.14)

where (X ′X)− is a generalized inverse of X ′X. Even though β0 is not
unique, it can be used to obtain a unique estimate of any estimable function
of the parameters and a unique sum of squares for any testable hypothesis.
That is, if K ′β is an estimable function of β, it is uniquely estimated with
K ′β0, where β0 is one of the nonunique solutions. Furthermore, if K ′β is
estimable andK ′ is of full row rank, thenK ′β = 0 is a testable hypothesis
for which the unique sum of squares is

Q = (K ′β0)′[K ′(X ′X)−K]−1(K ′β0) (17.15)

with r(K ′) degrees of freedom.
The specific linear functions of parameters that are estimable play a Estimable

Functionsdominant role in the the analysis of models of less than full rank. This was
indicated in the discussion of the analysis of balanced data (Chapter 9),
but the specific form of the estimable functions was not critical to that
discussion and was not pursued at that time. In the analysis of unbalanced
data, however, the form of the estimable functions defines different types of
sums of squares that might be computed and serves as a convenient vehicle
for describing these differences. First, and for background, the general form
of the estimable functions and the specific forms that generate the sums
of squares in the analysis of variance of balanced data are presented. Then,
the estimable functions that generate the sums of squares for two classes
of hypotheses with unbalanced data are discussed. The two classes of hy-
potheses with which we are concerned are labeled Types I and III in the
general linear models program PROC GLM (SAS Institute Inc., 1989b).
Type I hypotheses and their sums of squares are generated by sequentially
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testing model effects as they are added to the model. These correspond to
what we have labeled as the sequential hypotheses and sums of squares.
The Type III hypotheses and their sums of squares generated by PROC
GLM are one of many possible types of hypotheses one could generate
where effects of interest have been adjusted (according to specific rules) for
other effects in the model. These correspond to what we have labeled as
the partial hypotheses and sums of squares. Other types of hypotheses are
discussed by Speed, Hocking, and Hackney (1978, Table 7) for the two-way
classified model.

17.4.1 Estimable Functions with Balanced Data
A general form L′β that encompasses all linear estimable functions can be General

Formobtained from the X matrix. The coefficients in each row of X define an
estimable function of β. This follows from the fact that each observation
in Y is an unbiased estimate of the particular function of β defined by the
corresponding row of X. That is, E(Yi) = x′

iβ, where x
′
i is the ith row of

X. It also follows that any linear function of the rows of X also defines an
estimable function of β.
This principle is used to generate, by row operations on X, a general
form that encompasses all estimable functions for a given model and set
of data. Only the unique rows of X need to be considered. That is, no
new estimable function is generated by an additional observation that has
the same expectation (identical values of X) as a previously considered
observation. (A corollary of this statement is that imbalance in data does
not change the set of estimable functions as long as none of the unique rows
of X has been lost. This requires that there be at least one observation in
every cell.)
Derivation of the general form of the estimable functions is illustrated Illustration

with CRDfor the completely random experimental design with t = 4 treatments. The
general linear model is

Yij = µ+ τi + εij (i = 1, . . . , 4; j = 1, . . . , ni)

from which the unique rows of X are

A =


1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

 .
The linear functions of the parameters defined by Aβ are estimable. To
obtain the general form of estimable functions as given by PROC GLM,
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row operations on A are used to reduce it to a simpler form given by

A∗ =


1 0 0 0 1
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1

 .
The row operations on A are linear operators so that all linear functions
defined by A∗ are also estimable. The first row of A∗ says that (µ+ τ4) is
estimable, the second row says that (τ1 − τ4) is estimable, and so forth.
Furthermore, any arbitrary linear function of these estimable functions
will be estimable. Let the arbitrary linear function be defined by the coef-
ficients

C ′ = (C1 C2 C3 C4 ) .

Thus, the general form that encompasses all estimable functions for this
example is

C ′A∗β = C1µ+ C2τ1 + C3τ2 + C4τ3 + (C1 − C2 − C3 − C4)τ4

or, letting L′ = C ′A∗,

L′ = [L1 L2 L3 L4 L5 ]
= [C1 C2 C3 C4 (C1 − C2 − C3 − C4) ] . (17.16)

Notice the fifth element L5 of L, the coefficient of τ4, is a linear function
of other Lj . This reflects the over-parameterization of the model.
Any choice of values for the Lj yields an estimable function of the param-
eters as long as L5 satisfies the relationship in equation 17.16. For example,
setting L1 = 1, L2 = 1, and all others equal to zero gives (µ + τ1), which
is the expectation of the mean of the first treatment. Setting L1 = 1 and
L2 = L3 = L4 = 1

4 (and L5 = 1
4 ) shows that (µ+ τ .) is estimable.

To obtain an estimable contrast on the treatment effects, L1 must be Estimable
Contrasts
for CRD

set to zero to avoid having µ involved. There are three remaining “free”
coefficients in L involving only the τi so that there are a maximum of
three linearly independent estimable functions of the τi. (This is why three
degrees of freedom are assigned to the treatment sum of squares.) Setting
L2 = 1 and L3 = L4 = 0 (hence L5 = −1) gives (τ1 − τ4) as one estimable
contrast. Similarly, setting L3 = 1 and L2 = L4 = 0 (hence L5 = −1) gives
(τ2 − τ4) and setting L4 = 1 and L2 = L3 = 0 (and hence L5 = −1) gives
(τ3 − τ4). If these three choices of the Lj are combined in one matrix,

K ′ =

 0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1

 , (17.17)

then K ′β is a set of linearly independent estimable functions (contrasts)
involving the τi. The composite hypothesis that all τi are equal, or that
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TABLE 17.3. The general form for estimable functions in a 2 × 3 factorial (with
no empty cells) and choices of Lk that give the conventional analysis of variance
results with balanced data.

Specific Estimable Functions
Param- Coefficients for for αs for βs for γs
eters General Forma (1) (2) (1) (2)
µ L1 0 0 0 0 0

α1 L2 1 0 0 0 0
α2 L3 = L1 − L2 −1 0 0 0 0

β1 L4 0 1 0 0 0
β2 L5 0 0 1 0 0
β3 L6 = L1 − L4 − L5 0 −1 −1 0 0

γ11 L7
1
3

1
2 0 1 0

γ12 L8
1
3 0 1

2 0 1
γ13 L9 = L2 − L7 − L8

1
3 − 1

2 − 1
2 −1 −1

γ21 L10 = L4 − L7 − 1
3

1
2 0 −1 0

γ22 L11 = L5 − L8 − 1
3 0 1

2 0 −1
γ23 L12 = L1 − L2 − L4 − 1

3 − 1
2 − 1

2 1 1
− L5 + L7 + L8

aThe subscripts on the L coefficients correspond to the sequence of the parameters.
The coefficients, L3, L6, L9, L10, L11, and L12 are constrained by the design and the
model as shown.

there are no differences among the treatments, can be written as H0 :
K ′β = 0. This is a testable hypothesis since each row vector in K ′ defines
an estimable function of β.
Return now to the 2× 3 factorial in a completely random experimental General Form

for 2× 3
Factorial

design, which was used to illustrate the effects of imbalance (Section 17.2).
The general form for all estimable functions for the 2× 3 factorial with in-
teraction is given in the second column of Table 17.3. The last five columns
give the specific estimable functions that generate the sums of squares for
the conventional analysis of variance with balanced data.
The estimable function (contrast) of the αs that generates SS(A) (col- SS(A)
umn 3 of Table 17.3) is obtained by setting L1 equal to zero to remove
µ from the contrast, the remaining free coefficient on the αi, L2, equal to
unity, and L4 and L5 equal to zero to remove the βj effects from the con-
trast. This leaves L7 and L8 to be determined. When the data are balanced,
comparisons on the marginal means for the A factor involve the same com-
parisons on the row averages of the γij effects. That result is obtained by



17.4 Linear Models for Unbalanced Data 557

setting L7 = L8 = 1
3L2 (see Table 17.1). The divisor of 3 comes from the

number of levels of the B factor being averaged across.
Two linearly independent contrasts, two degrees of freedom, are required SS(B)
to generate SS(B), the variation due to the βj . This is evident in the general
form by the two “free” coefficients L4 and L5 associated with the βj . There
are several ways contrasts can be defined whenever more than one degree
of freedom is involved. It is only necessary that the contrasts be linearly
independent. The contrasts on βj require that L1 = L2 = 0 to avoid
confounding the contrast with µ and αi. The first contrast in Table 17.3
sets L4 = 1 and L5 = 0; the second contrast is the converse where L4 = 0
and L5 = 1. The L7 and L8 coefficients are chosen in each case so as to
give the same contrast on the column averages of the interaction effects.
The sum of squares due to the composite hypothesis that both contrasts
are zero is SS(B) in the analysis of variance of balanced data.
Finally, contrasts for the γij effects require that all Lk except L7 and SS(AB)

L8 be zero to avoid confounding the interaction contrasts with µ, αi, and
βj . This leaves two free coefficients L7 and L8, and hence two linearly
independent contrasts to be defined. The first contrast in Table 17.3 uses
L7 = 1 and L8 = 0; the second uses the converse L7 = 0 and L8 = 1. The
sum of squares due to the composite hypothesis that both contrasts are
zero is SS(AB) in the analysis of variance of balanced data.
This illustrates the general nature of the estimable functions or the Properties for

Balanced Datatestable hypotheses that generate the sums of squares in the conventional
analyses of variance for balanced data (Table 17.3). These linear functions
define the hypotheses being tested with balanced data and they provide a
guide for the kinds of hypotheses that might be considered in the analy-
sis of unbalanced data. They possess the following properties that can be
used to define various types of hypotheses, and their sums of squares, for
unbalanced data.

Property 1: No estimable function for generating a main effect sum of
squares, such as the contrast on αi or the contrasts on the
βj , involves main effects of the other factor. Each does,
however, contain a contrast on higher order interaction
effects involving the same factor. This illustrates the more
general result:
Estimable functions for the sum of squares for any
one class of effects, main effects or interaction ef-
fects, will not involve any other class of effects ex-
cept those that are higher-order interaction effects
or higher-level nested effects of the same factor.

For example, the estimable functions for the A×B interac-
tion sum of squares in a three-factor factorial will have zero
coefficients on all main effects and the A × C and B × C
interaction effects. They will have nonzero coefficients on
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the A×B×C interaction effects since this is a higher-level
interaction effect involving A × B. The A × B × C inter-
action effect is said to “contain” (in notation) the A × B
interaction effect. Thus, estimable functions for any class
of effects will have zero coefficients on all other classes of
effects that do not contain the effects being contrasted.

Property 2: An estimable function for the sum of squares for one class
of main effects includes the same contrast on averages of
the corresponding interaction effects. In effect, the coef-
ficient on each main effect is divided and equitably dis-
tributed over the interaction effects associated with the
same cells as the main effect. For example, the “−1” coef-
ficient on α2 in the first contrast (Table 17.3) is distributed
equally over the three interaction effects γ21, γ22, and γ23,
with a coefficient of − 1

3 on each. In multifactor experi-
ments, this property of “equitable distribution” of coeffi-
cients extends to all higher-order interaction effects that
contain the class of effects on which the estimable function
is being constructed. This is referred to as the equitable
distribution property of the coefficients and is always
obtained in balanced data.

Property 3: The estimable function for the sum of squares for the αi ef-
fects is orthogonal to both estimable functions constructed
for the sum of squares for the γij effects. Similarly, the two
estimable functions constructed for the sum of squares for
the βj effects are pairwise orthogonal to the two estimable
functions constructed for the γij effects. [The sum of prod-
ucts of the coefficients in any one of columns 3, 4, or 5
with the coefficients in either one of columns 6 or 7 is zero
(Table 17.3).] This is referred to as the orthogonality
property and is always obtained in balanced data. More
generally, the orthogonality property states that:

The estimable functions, or the testable hypothe-
ses, constructed for the sum of squares for any
class of effects are pairwise orthogonal to the es-
timable functions constructed for the sum of squares
for any class of effects that contain them.

17.4.2 Estimable Functions with Unbalanced Data
Effect of
Imbalance
on Estimable
Functions

Imbalance in the data does not change the general form of estimable func-
tions as long as all cells of the table have at least one observation. When
there are empty cells, the general form of estimable functions will change,
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and some additional linear functions will become nonestimable if the miss-
ing data have caused the loss of one or more of the unique rows of X. Even
if the general form of estimable functions has not changed, imbalance does
change the functions being estimated by the standard analysis of variance
sums of squares, and there are different methods of adjusting for the con-
founding of effects that results. These different methods of adjusting are
equivalent to imposing different conditions on the choice of coefficients in
the general form of estimable functions.
PROC GLM (SAS Institute Inc., 1989b) is programed to compute four
types of sums of squares for unbalanced data, all of which might be consid-
ered logical extensions in one way or another of the analysis of variance for
balanced data to the unbalanced case. In all cases, the sums of squares are
conveniently described in terms of the testable hypotheses they represent.
Type I and Type II sums of squares can be described solely in terms of the
other effects in the model for which the sum of squares has been adjusted.
(If a sum of squares has been adjusted for a particular class of effects,
the testable hypotheses for that sum of squares have zero coefficients on
that class of effects.) For both the Type I and Type II sums of squares, no
control is exercised over the coefficients on classes of effects for which the
sum of squares has not been adjusted. The Type III and Type IV sums
of squares differ from Type I and Type II in that regard; constraints are
imposed on the coefficients of the classes of effects for which the sum of
squares has not been adjusted. Constraints are imposed so that the under-
lying hypotheses possess the orthogonality property Type III, the equitable
distribution property Type IV, or both.
Other analysis programs compute various ones of these four types or
variations of these. The reader is referred to Speed, Hocking, and Hack-
ney (1978) for a summary of the hypotheses being tested by the sums of
squares from various programs. Speed, Hocking, and Hackney specify their
hypotheses in terms of the full-rank means model, but there is an equiva-
lence to the classical effects model (Speed and Hocking, 1976). In this text
we are concerned only with the Type I (sequential) and Type III (partial)
hypotheses and sums of squares.

Sequential sums of squares: Type I

The Type I sums of squares are the classical sequential sums of squares
obtained from adding the terms to the model in some logical sequence. The
sum of squares for each class of effects is adjusted for only those effects that
precede it in the model. Thus, the sums of squares and their expectations
are dependent on the order in which the model is specified. Using the 2×3
factorial for illustration, adding the terms to the model in the order A, B,
AB would generate Type I sums of squares described with the R-notation
as

SS(A) = R(α|µ)
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SS(B) = R(β|αµ)
SS(AB) = R(γ|αβ µ).

The sum of squares for the α effects SS(A) has been adjusted only for µ. It SS(A)
is computed as the (corrected) sum of squares among the A treatment totals
giving no consideration to the βj and γij effects. The estimable function
that generates this Type I sum of squares is obtained from the general form,
Table 17.3, by setting L2 = 1, to give a contrast on α1 and α2, and L1 = 0,
to remove the effect of µ. All other coefficients in the general estimable form
take the values that result from computing the minimum variance unbiased
estimate of this contrast on the αi adjusted for µ. These coefficients will
be functions of the nij , the numbers of observations in the cells. SS(A) will
almost certainly be confounded with βj effects in unbalanced data. It is
often referred to as the sum of squares for A ignoring B.
The Type I sum of squares for the β effects SS(B) is adjusted for both µ SS(B)
and the αi effects, since these effects precede B in the model statement. It
is computed as the sum of squares for differences among the levels of the
B factor but further adjusted to remove any αi effects. The presence of the
γij effects is ignored. The two estimable functions that generate this sum of
squares have L1 = L2 = 0, to remove µ and the αi, and L4 and L5 chosen
to specify two contrasts on the βj as in Table 17.3. The free coefficients on
the γij , L7 and L8, however, take whatever values the minimum variance
unbiased estimators of the two β contrasts happen to have and, again, are
functions of the numbers of observations. Thus, the Type I SS(B) is not
confounded with the αi effects but the function of the γij effects contained
in the contrasts is not as shown in the balanced data example of Table 17.3.
The Type I sum of squares for interaction SS(AB) is adjusted for all SS(AB)
other effects in the model since it occurs last in the model statement. The
estimable functions that generate this sum of squares are the same as those
shown in Table 17.3 for balanced data.
Because of the sequential manner in which the Type I sums of squares Uses of

Type I SSare adjusted, they are not appropriate for many hypotheses used in analy-
sis of variance problems. They are appropriate sums of squares for testing
hypotheses when there is some logic in the particular sequence of adjust-
ments such as, for example, the contributions of successively higher degree
terms in a polynomial model or the sequential terms in a purely nested
model. Sums of Type I sums of squares are useful for testing composite
hypotheses of several class effects if appropriately ordered in the model. In
general, however, the Type I sums of squares should be used with caution.

Partial Sums of Squares: Type III

The Type III sums of squares is a partial sums of squares in that each is
adjusted for all other classes of effects in the model according to two general
rules. First, the estimable functions that generate the sum of squares for
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one class of effects will not involve any other classes of effects except those
that “contain” the class of effects in question. This is the first general
property noted in Section 17.4.1 on the nature of estimable functions in
balanced data. Thus, Type III sums of squares are defined so as to test
hypotheses that contain the same classes of effects as the corresponding
hypotheses in balanced data. For example, the estimable functions that
generate SS(AB) in a three-factor factorial will have zero coefficients on
all main effects and the A × C and B × C interaction effects. They will
contain nonzero coefficients on the A×B ×C interaction effects, since the
A×B × C interaction “contains” the A×B interaction.
Secondly, the Type III sums of squares require the coefficients on the
higher-order interaction or nested effects that contain the effects in question
to satisfy the orthogonality property. The coefficients on these effects
are no longer functions of the nij and, consequently, are the same for all
designs with the same general form of estimable functions. If there are
no empty cells, no nij = 0, the Type III sums of squares also satisfy the
equitable distribution property and the hypotheses being tested are the
same as when the data are balanced.
When data are balanced, the four types of sums of squares computed Which Type is

Appropriateby PROC GLM are the same and identical to the conventional analysis
of variance for the particular design. When the data are unbalanced, the
four types of sums of squares and the hypotheses being tested may differ.
Decisions as to which are the appropriate sums of squares to use should
be based on which sums of squares test the most meaningful hypotheses.
A Type I sum of squares, being a sequential sum of squares adjusted only
for effects that precede it in the model, is usually not appropriate for the
classical analysis of variance hypotheses. They are appropriate in special
cases as already noted.
The Type III sums of squares are adjusted so that the classes of effects
involved (those that have nonzero coefficients) in each sum of squares are
the same as in the sums of squares for balanced data. [This is also true
for the Type II and Type IV sums of squares computed by PROC GLM
but their adjustment for the higher-order interaction effects that contain
the effects in question is either not done (Type II) or done so as to satisfy
the equitable distribution property (Type IV). We consider the Type II
and IV sums of squares to have limited usefulness and do not discuss them
in this text.] The Type III sums of squares adjust the nonzero coefficients
on the higher-order effects to satisfy the orthogonality property that is
present when data are balanced. The hypotheses being tested by the Type
III sums of squares are no longer dependent on the particular nij as they
are for the Type II sums of squares and would appear to be the more
appropriate for testing the usual hypotheses associated with analysis of
variance problems. [The reader is referred to Freund, Littell, and Spector
(1986), and SAS/STAT User’s Guide (SAS Institute Inc., 1989a) for more
discussion of the four types of sums of squares.)
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Unbalanced Data: An Example

The differences in the Type I and Type III sums of squares and their Example 17.1
estimable functions are illustrated using a specific unbalanced case of the
2 × 3 factorial. The example is taken from Searle and Henderson (1979),
and is used with their permission. The data and numbers of observations
per cell are as follows.

Data:
Factor B
1 2 3

Factor A 1 2, 4, 6 4, 6 5
2 12, 8 11, 7 —

nij :
Factor B
1 2 3 ni.

Factor A 1 3 2 1 6
2 2 2 0 4
n.j 5 4 1 n.. = 10

The data contain one missing cell: n23 = 0. The numbers of observations

for the other cells vary from n13 = 1 to n11 = 3. The model is the same as
used earlier, equation 17.7,

Yijk = µ+ αi + βj + γij + εijk,

where αi and βj are the main effects and the γij the interaction effects.
The difference is that the (i, j) = (2, 3) combination does not occur since
that cell is empty. The sequential (Type I) and partial (Type III) sums
of squares (computed using PROC GLM with the model specified in the
order A, B, AB) are given in Table 17.4.
The general form of the estimable functions for this set of data differs General Form
from that for the balanced 2× 3 factorial, Table 17.3, only because of the
empty cell. The general form for the estimable functions is obtained by row
operations on the unique rows of X. The absence of an observation in cell
(2, 3) caused the loss of the row of X containing γ23 and, consequently,
must affect the estimable functions. The general coefficients for the αi and
βj effects remain as shown in Table 17.3; the general coefficients on the
interaction effects change to the following:

γ11 : L7

γ12 : −L1 + L2 + L4 + L5 − L7

γ13 : L1 − L4 − L5 (17.18)
γ21 : L4 − L7

γ22 : L1 − L2 − L4 + L7.
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TABLE 17.4. Analysis of data for an unbalanced 2 × 3 factorial with one empty
cell. (From Searle and Henderson, BU-641-M, May 1979. Used with permission.)

Source d.f. Sum of Squares Mean Square
Model 4 62.5 15.625
Error 5 26.0 5.200
Total 9 88.5

Sum of Squares
Source d.f. Type I Type III
A 1 60.00 54.55
B 2 0.32 0.21
A×B 1 2.18 2.18

The absence of γ23 in this list should be interpreted as the coefficient on
γ23 always being zero. Note that the linear function for γ13 is the same as
that for β3 (Table 17.3) which implies that these two parameters always
have the same coefficient in any estimable function of the parameters. Thus,
no estimable function can separate β3 and γ13.
The differences between the Type I and Type III sums of squares are Estimable

Functions
for SS

illustrated by the estimable function(s) being considered in each case (Ta-
ble 17.5). The estimable functions for the A sum of squares show (1) that
the Type I sum of squares involves βj effects whereas the Type III sum of
squares involves only contrasts on the αi and γij , and (2) the coefficients
on the γij for the Type I sum of squares are functions of the nij whereas
those for Type III are not.
The Type I SS(A) is inappropriate for testing hypotheses about αi; it is SS(A)
confounded with the βj effects. The Type III sum of squares for A is based
on an estimable function similar in form to that in the balanced case. It
differs from the balanced case in that there is no information on γ23.
The estimable functions for SS(B) sums of squares are shown in the
middle portion of Table 17.5. There are two degrees of freedom for SS(B),
there are two “free” coefficients in the general form, so that two linear
contrasts are required. The Type I sum of squares for B does not involve αi
effects, whereas the Type I sum of squares for A does involve βj effects. This
results from B occurring after A in the model and reflects the sequential
nature of the Type I sums of squares. The Type I and Type III sums of
squares still differ in their coefficients on the γij effects with those for Type
I being functions of the nij .
Only one estimable function exists for SS(AB) and it is the same for SS(AB)
both Type I and Type III. The contrast is shown in the lower portion of
Table 17.5. This contrast involves only the effects in the 2× 2 part of the
table that does not involve the missing cell. The orthogonality criterion
of the Type III sums of squares can be verified by computing the sum of
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TABLE 17.5. Estimable functions for the Type I and Type III sums of squares
from the 2 × 3 factorial with cell (2, 3) missing.

Type Parameter
SS µ α1 α2 β1 β2 β3 γ11 γ12 γ13 γ21 γ22 γ23

SS(A)
I 0 1 −1 0 − 1

6
1
6

3
6

2
6

1
6 − 1

2 − 1
2 0

III 0 1 −1 0 0 0 1
2

1
2 0 − 1

2 − 1
2 0

SS(B)
I 0 0 0 1 0 −1 9

11
2
11 −1 2

11 − 2
11 0

0 0 0 0 1 −1 3
11

8
11 −1 − 3

11
3
11 0

III 0 0 0 1 0 −1 3
4

1
4 −1 1

4 − 1
4 0

0 0 0 0 1 −1 1
4

3
4 −1 − 1

4
1
4 0

SS(AB)
I & III 0 0 0 0 0 0 1 −1 0 −1 1 0

products of the coefficients for the A and B Type III contrasts with the
A×B Type III contrast (Table 17.5).
This discussion and Example 17.1 have centered on the factorial model.
Models with nested effects or both nested and cross-classified effects follow
much the same rules. The general form of the estimable functions for any
specific case can be determined from the unique rows of theX matrix before
reparameterization [see SAS User’s Guide, SAS Institute Inc., 1989a] and
can be requested as the E option in the model statement in PROC GLM
(SAS Institute Inc., 1989b).

17.4.3 Least Squares Means
The marginal means in an unbalanced set of data do not in general pro- Definition
vide meaningful comparisons. The least squares solution to the normal
equations, however, can be used to obtain estimates of the same linear
functions of effects as provided by the corresponding means in balanced
data if these functions are estimable. These estimates can be thought of
as adjusted means, adjusted to remove the unwanted confounding effects.
They are called the least squares means and are designated with “LS”
in front of the usual mean notation.
The particular linear functions of β that must be estimated to obtain
the least squares means are defined by the expectations of the correspond-
ing means for balanced data. These expectations are called population
marginal means (Searle, Speed, and Milliken, 1980). The population
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marginal means are obtained by averaging the fixed effects in the model in
the manner specified by the particular mean being considered. Thus, the
expectation of the mean is completely defined by the subscript–dot nota-
tion used to define the mean. The rules for writing the expectation for a
particular mean when the data are balanced are given in the box.

Rules for Obtaining Population Marginal Means

1. Specify the desired mean using the dot notation.

2. Include in its expectation a term for each class of fixed
effects in the model. Drop all random effects. (See Chapter
18.)

3. On each fixed effects term, replace each subscript in the
model with the specific number or dot consistent with the
notation for the particular mean of interest.

4. Any fixed effect that contains a dot in its subscript is an
average of effects as indicated by the dot notation. Place
a “bar” over the effect to denote a mean.

5. Any covariable (continuous variable) in the expectation is
replaced with its mean value.

To illustrate, consider the expectation of the marginal means for an A×B Illustration
with 2 × 3
Factorial

balanced factorial with interaction effects in the model. The model is

Yijk = µ+ αi + βj + γij + εijk.

Assume there are two levels of factor A and three levels of factor B. To
obtain E(Y 1..), drop the random effects term εijk, replace the subscript i
on αi and γij with 1 and the subscript j on βj and γij with “.”, and place
a bar over all terms with a dot. Thus,

E(Y 1..) = µ+ α1 + β. + γ1. = EB(Y 1..). (17.19)

Similarly,

E(Y 2..) = µ+ α2 + β. + γ2. = EB(Y 2..),
E(Y .1.) = µ+ α. + β1 + γ.1 = EB(Y .1.),
E(Y .2.) = µ+ α. + β2 + γ.2 = EB(Y .2.), and (17.20)
E(Y .3.) = µ+ α. + β3 + γ.3 = EB(Y .3.).

These parametric functions obtained from balanced data, called the mar-
ginal population means, are usually the functions of interest even in the
unbalanced case. However, their estimators in the unbalanced case in gen-
eral will not be the simple marginal means of the data, and when at least
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one cell is empty, not all of the populational marginal means are estimable.
We use the notation EB(Y i..) and EB(Y .j.) to denote the marginal popula-
tion means for the balanced case.
The least squares marginal treatment means for this model, LSY i.. and Marginal

MeansLSY .j., are defined as the best linear unbiased estimates of the corre-
sponding linear functions of the parameters in EB(Y i..) and EB(Y .j.), equa-
tion 17.20. All are estimable if there are no empty cells. When cell (2, 3) is
empty, as in Example 17.1, there is no information on γ23 and, therefore,
any expectation involving γ23 must be a nonestimable function. Thus, it
is not possible in Example 17.1 to compute LSY 2.. and LSY .3. since the
functions they are supposed to be estimating involve γ23. Although the
concept of estimability applies to linear functions of the parameters, for
convenience the terms “estimable” and “nonestimable” are attached to the
least squares means according to whether the corresponding population
marginal means are estimable or nonestimable. [SAS Institute Inc. (1989b)
defines the expectation to be estimated by the least squares means as the
average of the expectations over only the cells that contain data.]
If a population marginal mean is estimable, its expectation can be ob- Estimability

of Population
Marginal
Means

tained from the general form of estimable functions for that specific case
with proper choice of coefficients.

This is illustrated with the 2×3 factorial with cell (2, 3) empty (Example Example 17.2
17.1). The particular linear function of the parameters contained in the
expectation of Y 1.., equation 17.19, is obtained from the general form by
setting L1 = L2 = 1 and L4 = L5 = L7 = 1

3 . [Combine equation 17.18
with Table 17.3 to obtain the general linear form for the case with cell (2,
3) empty.] Therefore, LSY 1.. is an estimable least squares mean in this
example. EB(Y .1.) is obtained by setting L1 = L4 = 1, L2 = L7 = 1

2 , and
L5 = 0 and, therefore, LSY .1. is estimable. On the other hand, EB(Y 2..)
cannot be obtained by any choice of coefficients, and therefore LSY 2.. is
nonestimable. (PROC GLM informs the user when least squares means are
nonestimable.) The population means for the individual cells of the table
have expectations

E(LSY ij.) = µ+ αi + βj + γij

which can be obtained from the general form for all (i, j) except (i = 2, j =
3). Therefore, all LSY ij. except LSY 23. are estimable.

The estimability of the population marginal means for a particular set of Estimability
Dependent
on the Model

data is dependent on the model being used. This is illustrated in the 2× 3
example by noting that all marginal means become estimable if the model
does not contain interaction effects γij even though cell (2,3) is empty. The
general form of estimable functions is as before but with the γij coefficients
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TABLE 17.6. The GLM solution to the 2× 3 factorial with cell (2, 3) empty and
the expectations of the corresponding estimators.

GLM Results
Parameter Estimate Expectation of the Estimator
Intercept 9.0 Ba µ+ α2 + β3 − γ12 + γ13 + γ22
A 1 −4.0 B α1 − α2 + γ12 − γ22

2 0 B 0
B 1 1.0 B β1 − β3 + γ12 − γ13 + γ21 − γ22

2 0 B β2 − β3 + γ12 − γ13
3 0 B 0

AB 11 −2.0 B γ11 − γ12 − γ21 + γ22
12 0 B 0
13 0 B 0
21 0 B 0
22 0 B 0

aThe “B” is part of the SAS output to remind the user that the estimators are biased
for the corresponding parameter.

dropped. EB(Y .3.) = µ + α. + β3 is estimable and is obtained from the
general linear form by setting L1 = 1, L2 = 1

2 , and L4 = L5 = 0. Note also
that the population cell mean EB(Y 23.) = µ+ α2 + β3 for the missing cell
(2,3) is estimable and is obtained by setting L1 = 1 and L2 = L4 = L5 = 0.
The least squares means are computed as linear functions of one of the Computation
nonunique solutions β0 to the normal equations. The least squares estimate
β0 is biased, E(β0) �= β, sinceX is not of full rank. However, the best linear
unbiased estimate of any estimable function of β is given by the same linear
function of the least squares solution.
The vector of parameters in Example 17.1 is Example 17.3

β′ = (µ α1 α2 β1 β2 β3 γ11 γ12 γ13 γ21 γ22 —) .

Notice that γ23 is missing since cell (2,3) is empty. A dash has been inserted
in its place so that it is not forgotten. The estimates β0 computed by
PROC GLM and their expectations are given in Table 17.6. Note that the
first expectation in Table 17.6 is obtained by setting L1 = 1, L2 = L4 =
L5 = L7 = 0 in the general form for estimable functions (Table 17.3 and
equation 17.18; the second by setting L2 = 1, L1 = L4 = L5 = L7 = 0;
the fourth by setting L4 = 1, L1 = L2 = L5 = L7 = 0; the fifth by setting
L5 = 1, L1 = L2 = L4 = L7 = 0; and the seventh by setting L7 = 1,
L1 = L2 = L4 = L5 = 0. The E(LSY 1..) in equation 17.20 is written in
vector notation, E(LSY 1..) =K ′

1β, where K
′
1 is

K ′
1 = ( 1 1 0

1
3

1
3

1
3

1
3

1
3

1
3 0 0 0 ) .



568 17. ANALYSIS OF UNBALANCED DATA

Thus, the least squares mean for the first level of factor A is computed
from Table 17.6 as

LSY 1.. = K ′
1β

0

= 9 + (−4) + (1
3
) + (−2

3
) = 4.667.

LSY 2.. would be computed as K ′
2β

0 where

K ′
2 = ( 1 0 1

1
3

1
3

1
3 0 0 0 1

3
1
3

1
3 )

except for the fact that the last element in K ′
2 is the coefficient on the

missing γ23. Therefore, LSY 2.. cannot be computed, or LSY 2.. is nones-
timable. Any least squares mean that has a nonzero coefficient on γ23 is
nonestimable in this example.
The variances for the least squares means that are estimable are ob- Variances of

LS Meanstained by applying the rule for variances of linear functions. For example,
Var(LSY 1..) =K ′

1(X
′X)−K1σ

2. The estimate of the variance is obtained
by substituting s2 for σ2. The standard deviations of the least squares
means are available on request as one of the options in PROC GLM. They
are invariant to which generalized variance of X ′X is used.

(Continuation of Example 17.1) Table 17.7 gives the estimates of the Example 17.4
estimable least squares means, their standard errors, and the linear func-
tions of the parameters being estimated. The least squares means for the
individual cells of the table, the A × B means, are the same as the unad-
justed means and their variances are σ2/nij . This will always be the case
for the smallest subdivision of a factorial table.

Section 17.4 has been a general introduction to the analysis of unbal- Summary
anced data and has concentrated on the results obtained from PROC GLM.
Freund, Littell, and Spector (1986) and Searle and Henderson (1979) are
recommended reading for other applications and more detailed discussions
of the use of PROC GLM. There are other computer programs that treat
the analysis of unbalanced data, for f , BMDP (Dixon, 1981) and SPSS
(Norusis, 1985). It is not always clear what sums of squares are being com-
puted by the various programs and, therefore, what hypotheses are being
tested. It is important that the user understand the program and its out-
put in order to avoid misinterpretation of the results. Other references are
Myers (1990) and Searle (1986).

17.5 Exercises

17.1 Unequal numbers of observations may be designed into an exper-
iment. Discuss a situation in which it might be desirable to have
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TABLE 17.7. Least Squares means, their standard errors, and expectations for
the 2 × 3 factorial example with cell (2,3) empty.

LSMEAN Std. Error Expectations
LSMEANS for A factor:
A 1 4.67 1.029 µ+ α1 + β. + γ1.
2 Nonest. —

LSMEANS for B factor:
B 1 7.00 1.041 µ+ α. + β1 + γ.1
2 7.00 1.140 µ+ α. + β2 + γ.2
3 Nonest. —

LSMEANS for A×B factor:
A B
1 1 4.00 1.317 µ+ α1 + β1 + γ11
1 2 5.00 1.612 µ+ α1 + β2 + γ12
1 3 5.00 2.280 µ+ α1 + β3 + γ13
2 1 10.00 1.612 µ+ α2 + β1 + γ21
2 2 9.00 1.612 µ+ α2 + β2 + γ22

unequal numbers of observations. Give the outline of the analysis—
model, sources of variation, and degrees of freedom—and discuss
whether Type I or Type III hypotheses would be more meaningful.

17.2 Table 17.1 gives the expectations of the cell means for a 2× 3 facto-
rial in a completely random experimental design. Construct a similar
A × B table but for a randomized complete block design with bal-
anced data. Assume the block effects are fixed effects. Include A×B
interactions but do not include interactions with blocks. Demonstrate
that the expectation of any contrast on treatment means, cell means,
or marginal means does not involve block effects.

17.3 Reconstruct the table developed in Exercise 17.2 assuming there are
three blocks but that treatment (2,3) is missing in Block 3. Identify
the contrasts on cell treatment means and on marginal treatment
means that are free of block effects. Would the analysis of cell means
be appropriate for these data? Show why or why not.

17.4 Exercise 9.13 used data on survival time of patients with different
types of cancer (Cameron and Pauling, 1978). The data are cross-
classified with unequal numbers if both sex of patient and cancer
type are considered. Use the logarithm of the ratio of days survival
of the treated patient to the mean days survival of his or her control
group as the dependent variable. (In the following analyses, include
interaction effects between sex of patient and type of cancer in your
models, but ignore differences in age.)
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(a) Do an unweighted analysis of cell means to investigate the ef-
fects of sex, cancer type, and their interaction. Compute the
within-cell variance and the harmonic mean of the numbers of
observations, and summarize the results in an analysis of vari-
ance table. Note that Type I and Type III sums of squares are
equal and that the ordinary means are equal to the least squares
means. Can you explain why?

(b) Do a weighted analysis of cell means, weighted by nij , using
PROC GLM or a similar program. Do any of the sums of squares
agree with those obtained from the unweighted analysis of cell
means? Do the ordinary means or the least squares means agree
with those from the unweighted analysis?

(c) Use the general linear models approach (PROC GLM or simi-
lar program) to analyze the data. Compare this analysis with
the weighted analysis of cell means. Compare the least squares
means with those from the unweighted and weighted analysis of
cell means.

17.5. Repeat Exercise 17.4 with the “Type × Sex” interactions omitted
from all models. Compare the sums of squares, the ordinary means,
and the least squares means with those obtained with interaction
effects in the models.

17.6. In the weighted analysis of cell means, weighting was determined by
the nij . This resulted from the assumption of constant variance for
the εijk; that is, Var(ε) = Iσ2. (See equation 17.9.) Suppose the
variances for the observations as well as the numbers of observations
differed from cell to cell. Let the variance of cell (i, j) be σ2

ij . What
would be an appropriate weighting for the weighted analysis of cell
means? How would you determine numerical values for the weights?

17.7. Construct the general form of estimable functions L′β for the nested
model

Yijk = µ+ αi + βij + εijk,

where i = 1, 2 and j = 1, 2. Assume all effects are fixed effects and

β′ = (µ α1 α2 β11 β12 β21 β22 ) .

(You need to define X for this model, eliminate any nonunique rows,
and then use row operations to reduceX to the “near identity” form.)
You should obtain

L′ = (L1, L2, (L1−L2), L4, (L2−L4), L6, (L1−L2−L6)) .

17.8. Use the general form of estimable functions in Exercise 17.7 to deter-
mine if each of the following is an estimable function. Give the choice
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of coefficients that generates the linear function if it is an estimable
function.

(a) µ+ α1 + β11

(b) β11 − β12

(c) β11 + β12

(d) α1 − α2

(e) β11 + β21 − β12 − β22

(f) µ+ α1 + 1
2 (β11 + β12)

(g) α1 − α2 + 1
2 (β11 + β12 − β21 − β22)

17.9. Use the model and the general form of estimable functions in Exercise
17.7 to answer each of the following. In each case, explain how you
arrived at your answer. (Note: In the nested model, the nested effects
βij “contain” the αi effects.)

(a) How many degrees of freedom are there for SS(A)?
(b) How many degrees of freedom are there for SS(B(A))?
(c) Which coefficients will be zero for the Type I sum of squares
SS(A)? For the Type III SS(A)?

(d) Which coefficients will be zero for the Type I sum of squares
SS(B(A))? For the Type III SS(B(A))?

17.10. Construct the expectations of the least squares means for A and B(A)
for the nested model in Exercise 17.8. Are they all estimable if there
are no empty cells?

17.11. Construct an artificial set of data for the nested model in Exercise
17.7 with n11 = 2, n12 = 3, n21 = 1, and n22 = 2 and use PROC
GLM or a similar program to obtain the general linear form and
the specific estimable functions for the sums of squares. Request the
LSMEANS for A and B(A). Compare the results with your answers
to Exercises 17.8 through 17.10. (It does not matter what you use
for the values of the dependent variable since the estimable functions
depend only on X.) Use PROC GLM to determine how SAS defines
the least squares mean for the first level of factor A when cell (1,2)
is empty.

17.12. The 1983 soybean data from Heagle (Table 16.8, page 531), contain
one missing observation. Do the analysis of variance, using the general
linear models approach (PROC GLM). Include block, ozone, mois-
ture, and ozone × moisture interaction effects in the model. (Use
the ozone treatment codes and ignore the slight differences in real-
ized ozone levels.) Use the Type III sums of squares to interpret the
results. Are all relevant least squares means estimable?
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17.13. Do Exercise 17.12 using the 1984 soybean data from Heagle (Ta-
ble 16.8).

17.14. Use the corn borer data in Exercise 9.4. Make the data unbalanced
by assuming the first two observations in Days = 3 (the 17 and 22)
and in Days = 6 (the 37 and 26) are missing. Analyze the data us-
ing (a) unweighted analysis of cell means, (b) weighted analysis of
cell means, and (c) a general linear models procedure such as PROC
GLM. Obtain the simple treatment means and the least squares treat-
ment means. Do they differ? Why or why not?

17.15. The Weber data, Exercise 9.7, is a 2 × 2 × 5 factorial in a randomized
complete block design with r = 2 blocks. Make the data unbalanced
by assuming that the two highest concentrations (80 and 100) of her-
bicide B could not be used at the high temperature (55◦ C). (Call all
treatment factors class variables.) Include block effects, treatment
main effects, and treatment interaction effects in the model. Use
PROC GLM to analyze the data and obtain the simple and least
squares treatment means.

(a) Which sums of squares will you use for testing hypotheses about
the treatment effects? Explain why you choose the particular set
you do.

(b) Which least squares means are nonestimable? Explain why these
particular means are nonestimable. Do the results of the anal-
ysis let you simplify the model so that all relevant means are
estimable?

(c) Summarize the results with tables of relevant least squares means
and their standard errors.



18
MIXED EFFECTS MODELS

The models considered in all of the previous chapters
contain only one random element, the random error.
Many situations call for models in which there is more
than one random term. This chapter introduces mixed
models that contain both fixed effects and several ran-
dom effects. Analysis of variance models for random-
ized block designs and split-plot experiments and mod-
els for repeated measurement data are special cases
of mixed effects models. Hypothesis testing based on
generalized least squares (GLS), maximum likelihood
(ML), and restricted maximum likelihood (REML) are
discussed.

The classical least squares model contains only one random element, the Fixed Models
random error; all other effects are assumed to be fixed constants. For this
class of models, the assumption of independence of the εi implies indepen-
dence of the Yi. That is, if Var(ε) = Iσ2, then Var(Y ) = Iσ2 also. Such
models are called fixed effects models or more simply, fixed models.
Many situations call for models in which there is more than one random Random

Modelsterm. The classical variance components problems, in which the pur-
pose is to estimate components of variance rather than specific treatment
effects, is one example. In these cases, the “treatment effects” are assumed
to be a random sample from a population of such effects and the goal of
the study is to estimate the variance among these effects in the population.
The individual effects that happen to be observed in the study are not
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of any particular interest except for the information they provide on the
variance component. Models in which all effects are assumed to be random
effects are called random models. Observational studies often involve a
hierarchy of nested effects that represent “levels” of random sampling of
some population, such as random homes in random counties in random
states.
The sampling of environments in which controlled experiments are con-
ducted, locations and years, often are regarded as a random sampling of
environmental conditions. The purpose is to infer behavior of the fixed
treatments over some population of environments, rather than just to the
particular set of environments encountered in the experiments. In such
cases, the treatment effects may be fixed and the environments assumed to
be random. Models that contain both fixed and random effects are called Mixed Models
mixed models. The appropriate model for the commonly used split-plot
experimental design specifies two random terms in the model, the whole-
plot error and the subplot error, and hence is a mixed model if treatment
effects are assumed fixed.
The net effect of more than one random term in the model is that
Var(Y ) �= Iσ2 even if Var(ε) = Iσ2. The random elements shared by
observations introduce nonzero covariances among all observations having
common “levels” of the random effects.
As discussed in Chapter 12, if Var(Y ) �= Iσ2, the ordinary least squares
estimator of the fixed effects may be inefficient and the standard errors
computed using Var(β̂) = (X ′X)−1σ2 are inappropriate. In mixed ef-
fects models, Var(Y ) is modeled as a function of some unknown variance–
covariance parameters. Estimation and hypothesis testing regarding the
variance–covariance parameters are also of interest in practice. Estimates
of the variance–covariance parameters are used to obtain the estimated
generalized least squares estimates of the fixed effects. First, we present
examples and traditional analysis of variance methods for balanced mixed
effects models. Then, we present the analyses based on maximum likelihood
and restricted maximum likelihood estimation methods for general mixed
linear models.

18.1 Random Effects Models

As an example, suppose you want to investigate the magnitude of genetic
variability for a particular characteristic present in a collection of soybean
cultivars in the genetic seed bank. (One enitity in the collection of genetic
material is called a cultivar.) The total collection contains thousands of
cultivars of which a researcher will test a random sample in a completely
randomized design with n replicate plots of each of a cultivars. The par-
ticular characteristic of interest, say seed yield, is measured for each plot.
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Let Yij denote the yield for the ith variety from the jth plot. Here, the
researcher is more interested in studying the variability among the culti-
vars in the entire collection, or population, than in the effects of the few
cultivars selected by chance to be included in the study. The cultivar effects
are considered to be random and the quantity of interest is the estimate of
variance among cultivars.
An appropriate model in this case is the one-way analysis of variance One-Way

ANOVAModel(ANOVA) model:

Yij = µ+ αi + εij , i = 1, . . . , a : cultivars,
j = 1, . . . , n : plots,

(18.1)

where the αi are assumed to be independent N(0, σ2
α), the εij are assumed

to be independent N(0, σ2), and {αi} and {εij} are independent.
Scheffé (1959) gives a motivation for the model in equation 18.1. Consider
the model

Ylj =Ml + εlj , (18.2)

where Ml is the mean yield of the lth cultivar in the population. The vari-
ability around its mean Ml for the lth cultivar in the population is mea-
sured by the variance σ2. Assume that the population is large. Let µ and
σ2
α denote the mean and the variance of Ml in the population. Then, from
equation 18.2,

Ylj = µ+Al + εlj ,

where Al =Ml−µ has mean zero and variance σ2
α. Since a random sample

of cultivars is selected from the population, the αi in equation 18.1 may
be viewed as a random sample from the population of Al. That is, the αi
can be assumed to be independent random variables with mean zero and
variance σ2

α.
The model in equation 18.1 contains two random components {αi} and Variance

Components{εij}. Note that
Var(Yij) = σ2

α + σ
2 (18.3)

and, hence, σ2
α and σ

2 are called the components of variance or vari-
ance components. Also, note that

Cov(Yij , Yst) =
{
σ2
α, i = s, j �= t
0, i �= s. (18.4)

Therefore, for the model in equation 18.1, Var(Y ) �= Iσ2. In this model it
is of primary interest to estimate σ2

α and σ
2 and, secondarily, to test the

hypothesis that σ2
α = 0 (i.e., no variability among the cultivars). Analysis of

Variance
Approach

The conventional least squares approach, sometimes called the analysis
of variance approach, to estimate the variance components in random



576 18. MIXED EFFECTS MODELS

TABLE 18.1. One-way analysis of variance and mean square expectations for a
random effects model.

E(Mean F for testing
Source d.f. Sum of Squares Square) H0 : σ2

α = 0

Cultivars a− 1 n
∑a
i=1(Y i. − Y ..)2 σ2 + nσ2

α
MS(Cultivars)
MS(Res)

Error a(n− 1) ∑a
i=1

∑n
j=1(Yij − Y i.)2 σ2

effects models is to calculate sums of squares as though all effects, other
than the unique error assigned to each observation, were fixed effects. These
sums of squares and their expectations under the random model are then
used to estimate the variance components.
Consider the analysis of variance in Table 18.1 for the model in equa-
tion 18.1 where αi are considered “fixed.” Note that

E [MS(Cultivars)] = E
[
n

a∑
i=1

(
Y i. − Y ..

)2
/(a− 1)

]

= nE
[
a∑
i=1

(
Zi − Z

)2
/(a− 1)

]
= nσ2

Z , (18.5)

where Zi = αi + εi. are independent random variables with mean zero and
variance σ2

Z = σ
2
α+σ

2/n. Therefore, the expectation of the cultivar effects
mean square is σ2 + nσ2

α. Similarly, the expectation of the residual mean
square is

E [MS(Res)] = E
 a∑
i=1

n∑
j=1

(Yij − Y i.)2/[a(n− 1)]


=
1
a

a∑
i=1

E
 n∑
j=1

(εij − εi.)2 /(n− 1)
 = σ2. (18.6)

The analysis of variance estimators of σ2
α and σ

2 are given by equating the
mean squares to their expectations and solving the set of equations. Thus,

σ̂2
α = [MS(Cultivars)−MS(Res)] /n
σ̂2 = MS(Res). (18.7)

From equations 18.5 and 18.6, it is clear that the estimators σ̂2
α and σ̂

2 in
equation 18.7 are unbiased for σ2

α and σ
2, respectively. In some samples, it

is possible that σ̂2
α will be negative. This analysis of variance method is an

example of the “method of moments” estimation.
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Since Cov(εi., εij − εi.) = 0, it follows that under the normality assump-
tion, {αi + εi.} are independent of {εij − εi.}. Hence, we have

(a− 1)MS(Cultivars)
σ2 + nσ2

α

∼ χ2
a−1

a(n− 1)MS(Res)
σ2 ∼ χ2

a(n−1) (18.8)

and MS(Cultivars) and MS(Res) are independent of each other. The vari-
ances of the estimators of σ2

α and σ
2 (equation 18.7) are computed as the Variances of

Estimatorsvariance of linear functions of mean squares. Since Var(χ2
ν) = 2ν , we have

Var(σ̂2) =
2σ4

a(n− 1) (18.9)

and

Var(σ̂2
α) =

2
(
σ2 + nσ2

α

)2

(a− 1)n2 +
2σ4

a(n− 1)n2 . (18.10)

Since the scaled mean squares have chi-square distributions, equation 18.8, Testing σ2
α = 0

and are mutually independent, the variance ratio

F =
MS(Cultivars)
MS(Res)

(18.11)

has an F distribution with numerator degrees of freedom (a − 1) and de-
nominator degrees of freedom a(n − 1) if H0 : σ2

α = 0 is true. Thus, an
α-level test criterion for testing that there is no cultivar effect is a test
that σ2

α = 0. The test rejects the null hypothesis if F > F(α;a−1,a(n−1)).
Note that this is the same test criterion that would have been used had the
cultivar (or treatment) effects been considered fixed. Other approaches for
estimation and hypothesis testing are discussed in Section 18.4.
Consider a randomized complete block design for the previous investi- Randomized

Block Designgation of the genetic variance among cultivars in the soybean seed bank.
Suppose a random sample of locations (used as blocks) is selected and
within each location a plots are used, one for each of the a selected culti-
vars. Let Yij denote the yield from the ith cultivar in the jth location. A
model that may be appropriate in this case is

Yij = µ+ αi + βj + εij , i = 1, . . . , a : cultivars,
j = 1, . . . , n : locations,

(18.12)

where the cultivar effects {αi} are independent N(0, σ2
α), the location ef-

fects {βj} are independent N(0, σ2
β); {εij} are independent N(0, σ2), and

{αi}, {βj}, and {εij} are mutually independent. Note that
Var(Yij) = σ2

α + σ
2
β + σ

2.
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TABLE 18.2. Two-way analysis of variance for a random effects model.

E(Mean
Source d.f. Sum of Squares Square)

Cultivars a− 1 n
∑a
i=1(Y i. − Y ..)2 σ2 + nσ2

α

Locations n− 1 a
∑n
j=1(Y .j − Y ..)2 σ2 + aσ2

β

Error (a− 1)(n− 1) ∑a
i=1

∑n
j=1(Yij − Y i. σ2

− Y .j + Y ..)2

Also, note that

Cov(Yij , Yst) =


σ2
α + σ

2
β + σ

2 , i = s, j = t
σ2
α , i = s, j �= t
σ2
β , i �= s, j = t
0 , otherwise

and, hence, Var(Y ) �= Iσ2.
The analysis of variance table, including expected mean squares, is given
in Table 18.2. Equating the mean squares to their expectations gives the
analysis of variance estimators of σ2

α, σ
2
β , and σ

2:

σ̂2
α =

MS(Cultivars)−MS(Res)
n

σ̂2
β =

MS(Locations)−MS(Res)
a

, and (18.13)

σ̂2 = MS(Res),

where

MS(Res) =
a∑
i=1

n∑
j=1

(
Yij − Y i. − Y .j + Y ..

)2
/[(a− 1)(n− 1)],

MS(Cultivars) = n

a∑
i=1

(
Y i. − Y ..

)2
/(a− 1), and

MS(Locations) = a

n∑
j=1

(
Y .j − Y ..

)2
/(n− 1).

As in the case of the completely randomized design, it can be shown that
these three mean squares are mutually independent and, when properly
normalized, are distributed as chi-square random variables. Variances of
estimators in equation 18.13 can be obtained as in equations 18.9 and 18.10.
Hypotheses H0 : σ2

α = 0 (no variance among cultivars) and H0 : σ2
β = 0
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(no variance among locations) can be tested using the F statistics that are
used in the case of fixed effects models:

H0 : σ2
α = 0 F = MS(Cultivars)MS(Res)

H0 : σ2
β = 0 F = MS(Locations)MS(Res) .

In general, however, the appropriate F -tests will not be the same for the
fixed and random models. For example, in the model

Yijk = µ+ αi + βj + (αβ)ij + εijk

with all effects but µ random, a similar analysis shows that the appropriate
denominator mean square for the F -tests for the null hypotheses σ2

α = 0
and σ2

β = 0 is MS(Cultivar × Location). In the fixed model, MS(Residual)
is the appropriate denominator mean square in both tests.

18.2 Fixed and Random Effects

In many situations, some of the effects are fixed and some others are ran-
dom effects. For example, consider a randomized block experiment where
the treatments (or varieties) are fixed but block effects are random. An
appropriate model for this experiment is

Yij = µ+ αi + βj + εij , i = 1, . . . , a : treatments
j = 1, . . . , n : blocks,

(18.14)

where the αi are fixed effects, βj ∼ NID(0, σ2
β), εij ∼ NID(0, σ2), and

{βj} and {εij} are independent. Such models, where some effects are fixed Mixed Effects
Modelsand others are random are called mixed effects models. The degrees of

freedom and sums of squares presented in Table 18.2 are also appropriate
for the mixed effects model, equation 18.14, but the expectation of the
mean square for treatments (cultivars) will be σ2 + n

∑
(αi −α.)2/(a− 1).

Another example of a mixed effects model is that for the split-plot experi- Split-Plot
Experimentment where a whole-plot treatments are each applied to n whole-plot units.

Within each whole-plot, b split-plot treatments are applied in a completely
random fashion to b subunits. An appropriate model for the response Yijk,
from the subunit receiving the kth split-plot treatment in the jth whole-
plot receiving the ith whole-plot treatment is

Yijk = µ+ αi + δij + βk + γik + εijk, i = 1, . . . , a;
j = 1, . . . , n;
k = 1, . . . , b,

(18.15)
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TABLE 18.3. Degrees of freedom and expected mean squares for the split-plot
analysis of variance.

Sourcea d.f. E(Mean squares)
Treatment A a− 1 σ2 + bσ2

δ +
nb

(a−1)

∑a
i=1(αi − α.)2

Error (a) a(n− 1) σ2 + bσ2
δ

Treatment B b− 1 σ2 + na
(b−1)

∑b
k=1(βk + γ.k − β. − γ..)2

Interaction (a− 1)(b− 1) σ2 + n
(a−1)(b−1)

∑a
i=1

∑b
k=1(γik − γi.
− γ.k + γ..)2

Error (b) a(n− 1)(b− 1) σ2

aTreatment A and Treatment B are the whole-plot and subplot treatments, respec-
tively.

where

αi is the effect of the ith whole-plot treatment,
δij is the whole-plot error,
βk is the effect of the kth subplot treatment,
γik is the interaction effect due to the ith and kth levels of the

treatments, and
εijk is the subplot error.

The treatment effects {αi} , {βk}, and {γik} are assumed fixed; the errors
{δij} and {εijk} are considered random. It is assumed that δij ∼ NID(0, σ2

δ ),
εijk ∼ NID(0, σ2), and {δij} and {εijk} are independent. The analysis of
variance approach for estimation and hypothesis testing are summarized in
Table 18.3.
The different sums of squares in Table 18.3 are mutually independent
and, when properly normalized, are distributed as chi-square random vari-
ables. From Table 18.3 we note that the appropriate denominator sum of
squares for testing null hypothesis of no whole-plot treatment effect is the
Error(a) sum of squares, whereas for testing the null hypothesis of no sub-
plot treatment effects the Error(b) sum of squares is appropriate.
With balanced data, the method of moments estimation (equation 18.7) Limitations

of Analysis
of Variance
Approach

generates the conventional analysis of variance for the design and, with the
appropriate adjustment of the mean square expectations for the random
effects, gives the same results as would be obtained with a full generalized
least squares analysis. The generalized least squares analysis is not obtained
by this method, however, when the data are not balanced. Nevertheless, the
analysis of variance approach has traditionally been used for unbalanced
data with the variance component estimates obtained by equating observed
mean squares to their expectations.
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All computations in the classical approach to the analysis of mixed mod-
els begin as though the model were fixed—having only one random element.
As already noted, the estimates of β and all linear functions of β obtained
by this approach will not be the best linear unbiased estimates since the
true variance–covariance structure is not being taken into account. The esti-
mates are unbiased but there will be some loss in precision. In addition and
perhaps more critically, if no adjustments are made for random effects, the
tests of significance and the computed measures of precision s(β0), s(Ŷ ),
and standard errors of the least squares means will be incorrect. That is,
it is incorrect to compute measures of precision as if Iσ2 were the true
variance–covariance matrix of Y rather than the more general Var(Y ). If
ordinary least squares is to be used for the analysis of models with more
than one random component, adjustments to the tests of significance and
the estimates of the standard errors must be considered.
Adjustments to tests of significance are made by “constructing” an error Expectations

of Mean
Squares

mean square that has the proper expectation with respect to the random
elements. This requires the expectations of the mean squares under the
random model. For balanced data the mean square expectations are eas-
ily obtained and are reported in many places [e.g., Searle (1971, 1986),
and Steel, Torrie, and Dickey (1997)]. For unbalanced data, computer pro-
grams provide the expectations. The “RANDOM” statement in PROC
GLM prompts the program to provide the mean square expectations under
a mixed model in which the random effects are specified in the “RAN-
DOM” statement. (The “MODEL” statement in GLM specifies all classes
of effects, fixed and random, except for the unique random element asso-
ciated with each observation.) The expectations are given for any of four
types of sums of squares available in PROC GLM and all contrasts used in
the analysis. The expectations are expressed in terms of linear functions of
the variance components for the random effects plus general symbols rep-
resenting the fixed effects involved in the quadratic functions. The specific
quadratic functions of the fixed effects can also be obtained, if needed.
To illustrate the use of the results provided by the “RANDOM” state- Example 18.1
ment, the mean square expectations are given here for the Type III sums of
squares for the whole plot treatment factor and the whole plot error for the
unbalanced data analyzed in Chapter 19. The experiment is a split-plot
experiment with the whole-plot treatments [a factorial set of treatments
involving two factors, tillage (TILL) and herbicide (HERB)] arranged in
a randomized complete block experimental design. The estimate of the
whole-plot error, Error (a), was computed from the pooled “Block × TILL
× HERB,” “Block × TILL,” and “Block × HERB” interaction sums of
squares. (You are referred to Chapter 19 for the details of the experiment.)
The expectations for the Type III mean squares for treatment factor TILL
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and Error (a) are as follows.

Source Type III Expected Mean Square
TILL σ2 + 1.0909σ2

δ +Q(TILL, TILL×HERB)
Error (a) σ2 + 1.9048σ2

δ

The expectation of the residual mean square is σ2. The Q(.) function
indicates that the mean square expectation is a quadratic function of
the “TILL” and “TILL × HERB” treatment effects. For simplicity, let
Ea = MS(Error (a)) and Eb = MS(Res) denote the Error (a) and Error (b)
mean squares.
If these data had been balanced, the coefficient on σ2

δ would have been
2 in each case, the number of levels of the subplot treatment factor, and
Ea would have been the appropriate error for testing the null hypothesis
that Q(TILL, TILL ×HERB) = 0. With the imbalance, the coefficients
on σ2

δ differ and, consequently, Ea is not the appropriate error for the test.
An approximate test is obtained by constructing a mean square that has
the correct expectation. The test for H0 : Q(TILL, TILL ×HERB) = 0
requires a denominator mean square whose expectation is σ2 + 1.0909σ2

δ .
Such a mean square is constructed as a linear function of Ea and Eb as
follows.

E′ =
(
1.0909
1.9048

)
Ea +

(
1− 1.0909
1.9048

)
Eb. (18.16)

The approximate test of H0 : Q(TILL, TILL×HERB) is then
F ′ = MS(TILL)/E′.

The constructed variance ratio F ′ in Example 18.1 is only approximately Distribution
of F ′distributed as an F -statistic for the following reasons. First, a linear func-

tion of mean squares does not behave quite like a chi-square random vari-
able as is required for the F -test. The degrees of freedom f ′ for E′ are
determined so as to minimize this problem (Satterthwaite, 1946). Second,
the Type III sums of squares, in general, are not orthogonal partitions of
the model sum of squares and, hence, the numerator and denominator mean
squares in F ′ are not independent. This lack of independence is ignored in
the test of significance.
The Satterthwaite (1946) approximation for the degrees of freedom for
a linear function of mean squares

∑
aiMSi is

f ′ =
(
∑
i aiMSi)

2∑
i

(
a2
i
MS2

i

fi

) , (18.17)
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where fi is the degrees of freedom of MSi. This approximation for the
degrees of freedom is obtained by equating the mean and the variance of∑
aiMSi to that of a constant multiple of a chi-square random variable.

See Exercise 18.9. For E′ in equation 18.16, a1 = (1.0909)/(1.9048), a2 =
1−(1.0909)/(1.9048), and f1 and f2 are the degrees of freedom for Error (a)
and Error (b), respectively.
A word of warning is needed on the use of the mean square expectations. Differences

in Defining
Interaction
Effects

There are differences of opinion on how interaction effects between a fixed
and a random factor are to be handled in deriving mean square expecta-
tions. Some argue that if one of the factors involved in the interaction is
a random factor, the interaction effects should be treated as completely
random variables with no constraints imposed on their behavior. In such
cases, the interaction component of variance is present in the expectations
of the interaction mean square and both main effects mean squares. SAS
uses this procedure in deriving expectations in the “RANDOM” statement
in PROC GLM (SAS Institute Inc., 1989b).
The classical approach to handling interaction effects is to impose the
constraint that the interaction effects sum to zero over the levels of the
fixed factor; that is, the effects sum to zero in the fixed direction of the
two-way table of effects. This causes the interaction component of vari-
ance to “drop out” of the mean square expectation for the random main
effect. These expectations are the logical extension of those derived under
a two-dimensional finite sampling model in which the samples of effects for
factor A and factor B are assumed to have resulted from taking random
samples from the two finite populations of effects. Let Na and Nb be the
two population sizes and na and nb be the respective sample sizes, na ≤ Na
and nb ≤ Nb. The mean square expectations for the mixed model are then
obtained from this finite model by letting the population size go to infinity
for the random factor and letting the number of levels sampled equal the
number of population levels for the fixed factor. The covariances among
the effects due to the finiteness of the population cause the interaction ef-
fects to drop out of the mean square expectation for the random factor.
See Exercises 18.5 and 18.6.
These differences in philosophy do not enter into the present split-plot
example since all treatment factors are assumed to be fixed. The differences
will affect the choice of error in many cases and the reader needs to be aware
of the problem. The reader is referred to Speed and Hocking (1976) for more
discussion on this point.
Two methods of adjusting the measures of precision obtained from the Adjusting

Measures of
Precision

standard least squares analysis might be used. If the generalized inverse
of X ′X is available from the computer program, the correct variance–
covariance matrix for any linear function of β0 can be computed using a
matrix program such as IML (SAS Institute Inc., 1989d). Let the rows of
L′β0 be k linear functions of β0 of interest and let s(Y ) be an estimate of
Var(Y ), the variance–covariance matrix of Y . The true variance of L′β0,
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when β0 is the least squares estimator (X ′X)−X ′Y , computed under the
incorrect assumption that Var(Y ) = Iσ2, is

Var(L′β0) = L′(X ′X)−X ′[Var(Y )]X[(X ′X)−]′L (18.18)

and is estimated by substituting s2(Y ) for Var(Y ). This gives s2(β0) if L′

is the identity matrix, s2(Ŷ ) if L′ isX, and s2(LSMEANS) if L′ consists
of row vectors of the estimable functions for the least squares means.
As an alternative to computing the exact variances, expectations of the
mean squares can be used to make approximate adjustments to standard
errors of the least squares means. The expectation for the random elements
of a particular mean square provides an average variance for the class of
means involved in that mean square. As with the tests of significance, a
mean square can be constructed that has this expectation. Multiplication
of the standard errors reported for any particular class of means by

Ratio =
[
Constructed MS
MS(Residual)

]1/2

provides reasonable approximations of the standard errors. (A comparison
of the two methods is given for the case study in Chapter 19.)

18.3 Random Coefficient Regression Models

In biological, medical, agricultural, and clinical studies several measure-
ments are often taken on the same experimental unit over time or under
different experimental conditions with the objective of fitting a response
curve to the data. Random coefficient regression models have been
used to analyze such data. Consider, for example, a study where n individ-
uals are selected from a population. For each individual different doses of
pain relief medication are given on different days. The response time, time
until the individual felt pain relief, is recorded. Let Xij and Yij denote
the dosage and the response times of the ith indivdual on the jth day. An
appropriate model for such data is

Yij = αi + βiXij + εij , i = 1, . . . , n : individuals,
j = 1, . . . , r : days,

(18.19)

where αi and βi are the intercept and the slope of the ith individual. That
is, we think that the relationship between the response time and the dosage
is of the same form for all individuals, but the parameters (coefficients) of
the relationship may differ among individuals. Since individuals are as-
sumed to be a random sample from a population, it is common to assume
that (

αi
βi

)
∼ NID

((
α
β

)
,Σ =

[
σ2
α σαβ
σαβ σ2

β

])
,
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εij ∼ NID(0, σ2),

and {(αi, βi )′} and {εij} are independent. (Note that an analysis of covari-
ance model with random treatment effects is a special case of the model in
equation 18.19 with σ2

β = 0.)
The model in equation 18.19 can also be written as

Yij = [α+ βXij ] + [(αi − α) + (βi − β)Xij + εij ] , (18.20)

where α and β correspond to the fixed population average response and
(αi−α), (βi−β), and εij are the random deviations of individual responses
from the average population response. Here

Var(Yij) = σ2
α + 2σαβXij + σ

2
βX

2
ij + σ

2

and for j �= l
Cov(Yij , Yil) = σ2

α + σ
2
βXijXil.

That is, Var(Y ) �= Iσ2 in this case either.
A simple extension of the analysis of variance estimation is to estimate
the individual coefficients αi and βi using least squares and then use the
individual estimates to estimate α, β, σ2

α, σαβ , σ
2
β , and σ

2.
Gumpertz and Pantula (1989) consider a general random coefficient
model for the case where t observations are measured on each of the n
experimental units, given by

Y i =Xiβi + εi, i = 1, . . . , n, (18.21)

where Y i = (Yi1 · · · Yit )
′ is a t× 1 vector of responses for the ith indi-

vidual, Xi is a t× k matrix of observations on k explanatory variables, βi
is k×1 vector of coefficients unique to the ith experimental unit, and εi is a
t×1 vector of errors. It is assumed that βi ∼ NID(β,Σ), εi ∼ NID(0, Iσ2),
and {βi} and {εi} are independent. It is of interest to estimate, β and Σ
and test hypotheses regarding these parameters. Assuming that X ′

iXi is
nonsingular, we can obtain least squares estimates β̂i of βi for each indi-
vidual. That is,

β̂i = (X
′
iXi)−1X ′

iY i. (18.22)

It is easy to see that

Var(Y i) =XiΣX ′
i + Iσ

2 (18.23)

and
Cov(Y i,Y l) = 0, for i �= l.

Note that

β̂i ∼ NID(β, (X ′
iXi)−1σ2 +Σ). (18.24)
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Gumpertz and Pantula (1989) consider the simple estimator

β̂ =
1
n

n∑
i=1

β̂i

for β and suggest test criteria for testing hypotheses regarding β. They
also show that

Σ̂ = (n− 1)−1
n∑
i=1

(β̂i − β̂)(β̂i − β̂)′ − σ̂2 n−1
n∑
i=1

(X ′
iXi)−1

and

σ̂2 = [n(t− k)]−1
n∑
i=1

[Y ′
iY i − β̂

′
iX

′
iY i]

are unbiased for Σ and σ2.
As in the case of random and mixed effects models, the simple approaches
are reasonable for balanced data. When the data are not balanced or have
missing values, such approaches may be infeasible and/or may lead to ineffi-
cient estimates. In the next section, the maximum likelihood and restricted
maximum likelihood methods that are more appropriate for mixed effects
models are discussed.

18.4 General Mixed Linear Models

The models considered in Sections 18.1 through 18.3 are special cases of
the general mixed linear model given by

Y =Xβ +Zν + ε, (18.25)

where X is an N × p matrix of known constants, β is a p × 1 vector of
fixed parameters (“effects”), Z is a N × q matrix of known constants, ν
is a q × 1 vector of unknown random effects, and ε is the N × 1 vector of
random errors. Assume that[

ν
ε

]
∼ N

((
0
0

)
,

[
G 0
0 R

])
, (18.26)

where G and R are matrices of known form, but depend on some unknown
parameters θ. Note that Var(Y ) = ZGZ ′ +R.
Before discussing estimation and hypothesis testing methods, we show
that the models in the previous sections are special cases of this model.
The least squares fixed effects model does not have the random component
ν (G = 0) and R = Iσ2. The random effects model, equation 18.12, is a
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special case of the general model, equation 18.25, with X being a column
of 1s, β being µ, ν = (α1 · · · αa β1 · · · βn )

′,

Z =


1 0 · · · 0 I
0 1 · · · 0 I
...
...

...
...

0 0 · · · 1 I

 , G =
[
Iaσ

2
α 0
0 Inσ

2
β

]
,

and R = Ianσ
2. (Note that model 18.1 is a special case of model 18.12

where the terms involving βj are not included.) On the other hand, model 18.14
is a special case of model 18.25 with

X =


1 1 · · · 0
1 0 · · · 0
...
...

...
1 0 · · · 1

 , β =


µ
α1
...
αa

 ,

Z =


I
I
...
I

 , ν =


β1
β2
...
βn

 ,
G = Inσ

2
β and R = Ianσ

2.

Similarly, the split-plot model in equation 18.15 is a special case of model 18.25.
Now, consider the random coefficient model

Y i = Xiβi + εi
= Xiβ +Xi(βi − β) + εi. (18.27)

Note that model 18.27 is a special case of model 18.25 where

X =


X1
X2
...

Xn

 , Z =


X1 0 · · · 0
0 X2 · · · 0
...

...
...

0 0 · · · Xn

 ,

ν =


β1 − β
β2 − β
...

βn − β

 , G =


Σ 0 · · · 0
0 Σ · · · 0
...
...

...
0 0 · · · Σ


and R = Iσ2. In some cases, where measurements are observed over time
on the same experimental unit, it may not be reasonable to assume that
εi1, . . . , εit are uncorrelated. Time series correlation functions considered
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in Chapter 12 may be more appropriate. For example, Pantula and Pollock Autocorrelated
Errors(1985) consider the first order autoregressive model for the errors with

R =
σ2

1− ρ2


1 ρ ρ2 · · · ρt−1

ρ 1 ρ · · · ρt−2

...
...

...
...

ρt−1 ρt−2 ρt−3 · · · 1

 . (18.28)

Estimation of general mixed linear models involves not only the mean pa-
rameters β, but also the variance parameters θ. Also, one may be interested
in testing hypotheses not only about β, but also about θ. For example, in
equation 18.12, one may wish to test H0;σ2

β = 0, or in the model containing
R in equation 18.28 it may be of interest to test H0 : ρ = 0.
In model 18.26, Var(Y ) = ZGZ ′ +R = V Y . Because V Y is not Iσ2, Estimation
ordinary least squares does not necessarily yield the best estimates of β.
The generalized least squares approach that minimizes

(Y −Xβ)′V −1
Y (Y −Xβ) (18.29)

is more appropriate. However, V Y is not known because it depends on un-
known parameters θ. One approach is to find a reasonable estimate θ̂ of θ,
then use V̂ Y , obtained by replacing θ by θ̂ in V Y , to minimize 18.29. This
is called the estimated generalized least squares estimate of β. Two
methods of estimation that are commonly used are maximum likelihood
and restricted maximum likelihood estimation.
As discussed in Chapter 12, maximum likelihood estimators are obtained
by maximizing the likelihood function with respect to the parameters. For
model 18.26, with the assumption of normal errors, the maximum likelihood
estimator θ̂ML of θ is obtained by minimizing

− 2 log λ(θ) = log |V Y |+N log(ε̂′V −1
Y ε̂), (18.30)

where λ(θ) is the likelihood function, and

ε̂ = Y −X(X ′V −1
Y X)−X ′V −1

Y Y . (18.31)

The maximum likelihood estimator β̂ML of β is the same as the estimated
generalized least squares estimator of β where V̂ Y is computed at θ =
θ̂ML. In most situations, no closed forms exist for θ̂ML and β̂ML. Iterative
methods are used to compute these estimates. For example, PROC MIXED
in SAS (SAS Institute Inc., 1997; Littell et al., 1996) uses the Newton–
Raphson method to obtain these estimates.
Maximum likelihood estimators of θ, although efficient, generally are Restricted

Maximum
Likelihood
Estimation

biased. A less biased estimator of θ is obtained by minimizing the function

− 2 log λR(θ)=log |V Y |+log |X ′V −1
Y X|+(N−r) log(ε̂′V −1

Y ε̂). (18.32)
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This estimate is called the restricted maximum likelihood estimate
(REML) θ̂REML of the vector θ. Here r = rank(X) and ε̂ is defined in
equation 18.31. Note that equation 18.32 differs from equation 18.30 in two
respects: N is replaced with (N − r) in the last term; and there is an addi-
tional term log |X ′V −1

Y X|. Here λR(θ) is the likelihood function of (N−r)
residual variables that have a distribution free of β. As with the maximum
likelihood estimation, estimates of β are obtained by minimizing 18.29 with
V Y replaced by Ṽ Y = V Y (θ̂REML). Numerical optimization methods are
required to obtain θ̂REML.
Hypotheses of the form H0 : K ′β = m may be tested using the test Hypothesis

Testingstatistic

T = (K ′β̂ML −m)′
[
K ′V̂ar(β̂ML)K

]−1
(K ′β̂ML −m). (18.33)

Under H0, T is approximately distributed as a chi-square with degrees of
freedom rank(K ′). Similarly, one can compute T using β̂REML in place
of β̂ML. Iterative algorithms provide an estimate of the variance of the
estimators. PROC MIXED prints an estimate of Var(β̂ML).
If the hypothesis H0 :K ′β =m can be used to obtain a reduced model
with fewer parameters, then likelihood ratio tests may be used to test
H0 :K ′β =m. Let θ̂

FULL

ML and θ̂
RED

ML be estimates of the parameters under
the full and reduced model, respectively. Under some regularity conditions
on the model, it can be shown that

[− 2 log λ(θ̂REDML )]− [−2 log λ(θ̂
FULL

ML )] ∼ χ2
r(K)

, (18.34)

approximately. Similarly, θ̂ML and θ̂REML can be used to test hypotheses
regarding θ. PROC MIXED reports the values of λ(θ̂ML) and λ(θ̂REML),
that can be used to test the relevant hypothesis. It is not appropriate to use
equation 18.34 with θ̂REML if the hypothesis of interest involves β. PROC
MIXED procedure also provides the AIC and SBC criteria discussed in
Chapter 11. These criteria can be used to compare different models. An
example of analysis using PROC MIXED is presented in the next chapter.

18.5 Exercises

18.1. In the split-plot example in Section 18.2 it was stated the σ2(Yijk) =
σ2 + σ2

δ . Derive this result using the definition of variance

σ2(Yijk) = E{[Yijk − E(Yijk)]2}
and the split-plot model given in the text. Derive the covariance of
Yijk and Yijk′ using the definition

Cov(Yijk, Yijk′) = E{[Yijk − E(Yijk)][Yijk′ − E(Yijk′)]}.
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18.2. You have a completely random experimental design with t treatments
and r experimental units per treatment. The response of each exper-
imental unit was determined by measuring the response variable on
each of s random samples. This gives the model

Yijk = µ+ τi + γij + εijk,

where τi are fixed treatment effects and γij and εijk are random
experimental unit and sampling unit effects with zero means and
variances σ2

γ and σ
2, respectively.

(a) What is σ2(Yijk)? What is Cov(Yijk, Yijk′)? Show the form of
the variance–covariance matrix Var(Y ).

(b) What is the form of Var(Y ) if the mean of all samples within
each experimental unit is used as the response variable?

(c) If the Y ijk are used in the analysis using PROC GLM in SAS,
how are the standard errors of the treatment means given by
GLM computed? Are they correct? If not, how can they be cor-
rected?

(d) If the experimental unit means are used in the analysis, how are
the standard errors of the treatment means computed in PROC
GLM? Are they correct? What if the numbers of samples per
experimental unit are not constant?

(e) Explain the differences in assumptions between doing the anal-
ysis with a general linear models program such as PROC GLM
and with a program such as PROC MIXED.

18.3. Consider a two-level nested model given by

Yijk = µ+ αi + γij + εijk, i = 1, . . . , a; j = 1, . . . , n;
k = 1, . . . , r,

where αi ∼ NID(0, σ2
α), γij ∼ NID(0, σ2

γ), εijk ∼ NID(0, σ2), and
{αi}, {γij}, and {εijk} are independent.
(a) Give the ANOVA table and compute the expected mean squares.
(b) Use the expected mean squares to derive unbiased estimators of
the variance components.

(c) Derive the standard errors of the unbiased estimators in (b).

18.4. Consider a two-way cross-classified model given by

Yij = µ+ αi + βj + εij , i = 1, . . . , a;
j = 1, . . . , n,

where αi ∼ NID(0, σ2
α), βj ∼ NID(0, σ2

β), εij ∼ NID(0, σ2), and {αi},
{βj}, and {εij} are mutually independent.
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(a) Give the ANOVA table and compute the expected mean squares.

(b) Show that the mean squares in the ANOVA table are inde-
pendent of each other and, when properly normalized, are dis-
tributed as chi-square random variables.

(c) Derive the standard errors of unbiased estimators of σ2
α, σ

2
β , and

σ2 given in equation 18.13.

18.5. Consider a two-way cross-classified model given by

Yijk = µ+ αi + βj + γij + εijk, i = 1, . . . , a;
j = 1, . . . , n;
k = 1, . . . , r,

where αi are fixed, βj ∼ NID(0, σ2
β), γij ∼ NID(0, σ2

γ), εij ∼ NID(0, σ2),
and {βj}, {γk}, and {εijk} are mutually independent.
(a) Give the ANOVA table and compute the expected mean squares.

(b) Use the expected mean squares to derive the unbiased estimators
of the variance components.

(c) Derive the standard errors of the unbiased estimators in (b).

(d) Give the test statistics for testing H0 : α1 = · · · = αa and
H0 : σ2

β = 0.

18.6. Consider a two-way cross-classified model given by

Yijk = µ+ αi + βj + δij + εijk,

where δij = γij − γ.j and {αi}, {βj}, {γk}, and {εijk} are as defined
in Exercise 18.5. That is, here we are assuming that the interaction
effects sum to zero (

∑a
i=1 δij = 0) over the index for the fixed effects.

Do Parts (a) through (d) in Exercise 18.5.

18.7. Consider a split-plot ANOVA model given by

Yijk = µ+ αi + ρj + δij + βk + γik + εijk, i = 1, . . . , a;
j = 1, . . . , n;
k = 1, . . . , b,

where ρj ∼ NID(0, σ2
ρ), δij ∼ NID(0, σ2

δ ), εijk ∼ NID(0, σ2), and
{αi}, {βk}, and {γik} are fixed and {ρj}, {δij}, and {εijk} are mu-
tually independent.

(a) Give the ANOVA table and the expected mean squares.

(b) Use the expected mean squares to derive unbiased estimators of
the variance components.
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(c) Derive the standard errors of the unbiased estimators in (b).

18.8. Consider a one-way analysis of covariance model given by

Yij = µ+ βXij + αi + εij , i = 1, . . . , a;
j = 1, . . . , n,

where αi ∼ NID(0, σ2
α), εij ∼ NID(0, σ2), and {αi}, and {εij} are

independent.

(a) Show that this model is a special case of the general mixed linear
model in equation 18.25.

(b) Give the “analysis of variance” type estimators of µ, β, σ2
α, and

σ2.

(c) Give test statistics for testing H0 : β = 0 and H0 : σ2
α = 0.

18.9. Consider the linear combination Z2 =
∑
i ciZ

2
i , where Z

2
i are in-

dependent chi-square random variables with degrees of freedom fi.
Satterthwaite (1946) approximates the distribution of Z2 by that of
cχ2
f .

(a) Show that E(Z2) =
∑
cifi and Var(Z2) = 2

∑
c2i fi.

(b) Show that E [cχ2
f ] = cf and Var(cχ

2
f ) = 2c

2f .

(c) Equate the mean and variance of Z2 with that of cχ2
f to obtain

c =
∑
c2i fi∑
cifi

and f =
(
∑
cifi)2∑
c2i fi

.

These results can be related to Satterthwaite’s approximation in
equation 18.17 by appropriate definitions of ci and substitution of
observed mean squares for unknown variances.



19
CASE STUDY: ANALYSIS OF
UNBALANCED DATA

Chapters 17 and 18 discussed the analysis of unbal-
anced data and introduced mixed models—models with
more than one random effect.

This case study illustrates the analysis of unbalanced
data where the model contains more than one random
effect. First, the classical analysis of variance approach
with a less-than-full-rank effects model is presented.
This is followed with an analysis using a program de-
signed to handle mixed models.

The data for this example are from a study of several management sys-
tems for corn production (courtesy of Dr. Gar House, North Carolina State
University). The set of treatments was intended to be the 2 × 2 × 2 fac-
torial from the 3 factors method of tillage (TILL), herbicide application
(HERB), and additional removal of weeds by hand (CULT ). The levels of
the treatment factors were conventional tillage (CT ) and no tillage (NT )
for the factor TILL, a recommended level of herbicide (H ) and no herbicide
(NOH ) for the factor HERB, and hand weeding (C ) and no hand weeding
(NOC ) for the factor CULT. The experimental design was a split-plot de-
sign with whole plots in a randomized complete block design with 4 blocks.
The whole-plot treatments were the 4 TILL–HERB treatment combina-
tions; the subplot treatments were the 2 levels of CULT. There are a total
of 23 × 4 = 32 experimental units.
The data are unbalanced because the hand weeding (C ) was not done on Cause of

Imbalancethe no-tillage plots (NT ) and, hence, the C level became an NOC treatment
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TABLE 19.1. Yield in bushels per acre for the unbalanced 2×2×2 factorial study
of cultural practices on corn yield. (Data courtesy of Dr. Gar House, N.C. State
University; used with permission.)

Treatment BLOCKa

TILL HERB CULT 1 2 3 4
CT H C 75.38 92.11 79.59 94.22
CT H NOC − 39.80 51.54 51.05
CT NOH C 16.59 61.88 68.06 94.50
CT NOH NOC 5.34 25.88 8.57 39.24
NT H NOC 51.47 71.16 45.84 77.06
NT H NOC 55.13 55.13 63.84 74.40
NT NOH NOC .00 7.31 .00 58.22
NT NOH NOC .00 .00 .00 31.78

aThe zeros represent zero yield and not missing values.

for those plots. In addition, the NOC–H –CT observation in block 1 is
missing. (This observation was dropped for this case study to introduce
more imbalance.) The number of observations per treatment are as follows.

TILL CT NT
HERB H NOH H NOH

CULT C 4 4 0 0
NOC 3 4 8 8

The missing observation in the lower left-hand cell is from Block 1. Other-
wise all treatments were equally represented in each block. The data, yield
of corn in bushels per acre, are given in Table 19.1.
The linear effects model for the full 2 × 2 × 2 factorial in a split-plot
arrangement is

Yijkl = µ+Bi + Tj +Hk + THjk + δijk + Cl + TCjl +HCkl
+ THCjkl + εijkl, (19.1)

where Bi, Tj , Hk, and Cl are block, tillage, herbicide, and cultivation ef-
fects, respectively, and products designate the respective interaction ef-
fects; i = 1, 2, 3, 4; j = k = l = 1, 2. In this study, however, the ab-
sence of the C level of the cultivation treatment factor when the tillage
treatment is NT makes it impossible to estimate any TILL×CULT or
TILL×HERB ×CULT interactions. Therefore, the TCjl and THCjkl terms
are dropped from the model, which is equivalent to imposing the constraints
that these effects are zero. These constraints are reflected in the analysis.
In this case, the full 2 × 2 × 2 factorial model gives somewhat larger par-
tial (Type III) SS(HERB) than the simpler model, and most of the least
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squares means are nonestimable, because the required two- and three-factor
interaction effects are nonestimable.
The Tj , Hk, and Cl effects and any interaction involving only these ef- Fixed Effects
fects are regarded as fixed effects in all analyses. On the other hand, there
is room for discussion as to whether the block effects Bj should be treated
as random with variance σ2

B or as fixed effects. Clearly, from an inferential
point of view, it is desirable to be able to infer that the observed treatment
effects apply to a population of block effects that presumably have been
sampled by this study. The disadvantage of treating block effects as random
is that the variances of treatment means then will take into account the
added uncertainty due to sampling blocks and will include a fraction of the
component of variance due to blocks σ2

B . This is appropriate if we regard
a treatment mean as an estimate of the performance of the treatment over
repeated sampling of blocks. Almost always, however, our interest is in esti-
mating differences among the treatment means, not in the absolute level of
performance of any one treatment. The differencing of the means removes
from the variance of the mean difference the covariance between two treat-
ment means that arises from the block component of variance σ2

B . Thus,
the standard errors of mean differences cannot be safely approximated from
the standard errors of treatment means as we are used to doing in the con-
ventional analyses. On the other hand, treating block effects as fixed in
the analysis gives estimated variances of treatment means such that the
sum of two variances closely approximates the variance of the difference
between the two treatment means. This is simply an expedient to obtain
quick estimates of variances of treatment differences. We illustrate this in
the mixed model analysis, Section 19.4.
The random error associated with subplots is designated by εijkl and the Random

Errorswhole-plot error is designated by δijk. Both are assumed to be normally
distributed with variances σ2 and σ2

δ , respectively. The presence of several
zero yields in the NT–NOH treatment (five out of the eight are zero) raises
the possibility that assumptions of normality and common variance over
all treatments may not be satisfied. The large readings for the fourth block,
however, show that the variation for these two treatments is comparable to
that for the others. It is likely that, with the wide range in yields observed
in this study, the variance will be associated with the mean yield level. For
the purpose of demonstrating the analysis of unbalanced data, common
variance and normality are assumed. It is left as an exercise for the student
to investigate the need for a transformation to stabilize the variance.
Due to the empty cells, the treatments are more appropriately described Logical

Comparisonsas the 2× 2 factorial for HERB and CULT conducted at TILL = CT, and
the 2× 2 factorial for TILL and HERB conducted at CULT = NOC, with
two treatments being common to the two sets. From this perspective, it is
clear that the HERB effect, CULT effect, and HERB × CULT interaction
effect can be estimated from the two-way table for TILL = CT, and the
TILL effect, HERB effect, and TILL × HERB interaction effect can be
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estimated at the NOC level of the factor CULT. Notice that the HERB
effect is estimated in both tables. These are logical contrasts one might
generate if the analysis were approached from the cell means model point
of view (Hocking, 1985). This case study emphasizes the analysis using the
effects model.
In the first analysis, the general linear model analysis for fixed models, Outline of

the Analysisassuming for the moment that the δijk are fixed effects, is used to partition
the sums of squares and obtain the least squares means. [This ignores the
covariance structure that exists among the Yijkl due to observations having
common δijk (and common Bi if block effects are also random).] Then,
the expectations of the mean squares are determined with δijk and εijkl
assumed to be random variables. The mean square expectations are used
to determine appropriate (approximate) tests of significance and to obtain
better approximations of the standard errors of the least squares means.
PROC GLM (SAS Institute Inc., 1989b) is used for the analysis with the
RANDOM option providing the expectations of the Type III (partial) sums
of squares. An interactive matrix language program, [IML (SAS Institute
Inc., 1989d)] is used to determine the correct variances of the least squares
means.
In the second analysis, estimation of the fixed effects and the variance
components for the random effects are considered jointly in an iterative
manner. First the fixed effects are estimated with an assumption of a sim-
ple variance–covariance structure and then the variance components are
estimated from information contained in the residuals. The estimated vari-
ance components are used to construct the estimated variance–covariance
matrix. In the second iteration, the fixed effects are reestimated using the
updated variance–covariance matrix and the variance components are rees-
timated from the residuals. This iteration process continues until some
measure of convergence is met.

19.1 The Analysis Of Variance

The class and model statements for PROC GLM are

PROC GLM;CLASS BLOCK TILL HERB CULT;
MODEL Y =BLOCK TILL HERB TILL*HERB

BLOCK*TILL*HERB CULT HERB*CULT / E E1 E3;

The sum of squares for the whole plot error is computed as the three-
factor interaction BLOCK × TILL × HERB. The sum of squares for the
subplot error appears as the residual sum of squares (labeled ERROR in
PROC GLM). The options E, E1, and E3 request the general form of
the estimable functions and the specific form of the estimable functions
for each of the sequential and partial sums of squares, respectively. (These
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TABLE 19.2. Analysis of variance from the cultural practices study on yield, from
PROC GLM, SAS.

SOURCE d.f. Sum of Squares Mean Square
Model 17 27, 760.81 1, 632.99
Error 13 1, 554.23 119.56

Sum of Squares
SOURCE d.f. Sequential Partial
BLOCK 3 5, 213.91 4, 830.67
TILL 1 1, 890.70 109.35
HERB 1 1, 1621.47 7, 431.66
TILL × HERB 1 961.45 692.73
BLOCK × TILL × HERB 9 2, 249.50 1, 677.09
CULT 1 5, 823.38 5, 718.07
HERB × CULT 1 0.39 0.39

options generate several pages of results and should not be requested unless
needed for understanding the analysis.) The default option in PROC GLM
produces the sequential (Type I) and partial (Type III) sums of squares.
The results of this analysis are summarized in Table 19.2. The sum of Analysis

of Variancesquares denoted “MODEL” in PROC REG and PROCGLM (SAS Institute
Inc., 1989b) is SS(Regr) in the notation of this text. The sum of squares
labeled “ERROR” is the residual sum of squares which in the split-plot
analysis is an estimate of the subplot error. The bottom portion of Ta-
ble 19.2 gives the sequential and partial sums of squares for each class of
effects in the model. The discussion in Chapter 17 noted that partial (Type
III) sums of squares tested the most reasonable hypotheses in most cases
of unbalanced data.
The degrees of freedom for BLOCK × TILL × HERB and Error sources Estimating

Whole-Plot
Error

of variation need explanation. Usually, an interaction sum of squares has
degrees of freedom equal to the corresponding product of the degrees of
freedom of the component main effects which, in this case, would be three
for the BLOCK × TILL × HERB interaction. However, the two-factor
interactions BLOCK × TILL and BLOCK × HERB are not specified in the
model and both are contained in the three-factor interaction. Consequently,
the degrees of freedom and sums of squares for these two-factor interactions
are absorbed by the three-factor interaction. The interactions of the whole-
plot treatments with blocks in the split-plot model are estimates of whole-
plot error and this specification of the model is a convenient technique of
pooling these sums of squares.
The residual sum of squares in the conventional split-plot design would Degrees of

Freedom for
Subplot Error

have degrees of freedom determined by the pooling of the sums of squares
for the interactions between block effects and subplot treatment and in-
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teraction effects. This would give 12 degrees of freedom if the data were
balanced. In this case, the residual sum of squares is the pooling of CULT
× BLOCK, with 3 degrees of freedom, HERB × CULT × BLOCK, with 3
degrees of freedom, and differences between duplicate plots of the NT -NC
treatment in each level of HERB in each of the four blocks, 8 degrees of
freedom, minus 1 degree of freedom for the missing plot.
It is evident from the sums of squares that the data are not balanced since Comparison

of Sums of
Squares

the sequential and partial sums of squares differ. The largest adjustments
in the sums of squares are for SS(TILL) and for SS(HERB). The difference
between the simple averages of all plots receiving the CT treatment and
all plots receiving the NT treatment is reflecting primarily the confounded
cultivation effect, C versus NOC. Recall that none of the NT treated plots
received the C cultivation treatment.
The estimable functions explicitly define the differences in the types of General Form

of Estimable
Functions

sums of squares. The general form for estimable functions for this model and
this set of data is given in Table 19.3. The specific forms for the estimable
functions for the sequential (Type I) and partial (Type III) sums of squares
are given for each source of variation in Tables 19.4 through 19.9.
The number of free coefficients in the general form of estimable functions,
Table 19.3, for any particular class of effects shows the number of linearly
independent contrasts for that class and the number of degrees of freedom
for its sum of squares. The free coefficients for any class of effects are
those coefficients in that class that are not involved in any other classes
of effects except those that “contain” the effects in question. Thus, there
are three “free” coefficients for the BLOCK effects, L2, L3, and L4; the
other coefficient in that set, L1, is involved in the Intercept and, therefore,
is not a free coefficient. L2, L3, and L4 are involved in the BLOCK ×
TILL × HERB interaction but this is a class of effects that contains the
BLOCK effects. There are nine free coefficients for the BLOCK × TILL ×
HERB effects, L14 to L24 excluding L17 and L21, and, hence, nine linearly
independent contrasts and nine degrees of freedom for its sums of squares.
The remaining coefficients in the BLOCK × TILL × HERB effects must
be set equal to zero to remove all other effects. There are no other classes
of effects that contain this class of effects.
The specific estimable functions in Tables 19.4 through 19.9 are deter- Specific

Estimable
Functions
for SS

mined from this general form. For example, the sequential (Type I) es-
timable function for BLOCK sum of squares, Table 19.4, is obtained by

1. setting L1 = 0 (to remove the intercept);
2. leaving L2, L3, and L4 general as the free coefficients; and
3. setting all other coefficients to multiples of L2, L3, and L4;
L6 = L8 = −.0714L2, L10 = −.1071L2, L14 = .1429L2,
and so forth. These nonzero coefficients are functions of the
numbers of observations and result from the computations
adjusting the BLOCK sum of squares for µ. It is important
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TABLE 19.3. The general form of estimable functions for the unbalanced split-plot
study.

Effect Coefficients
Intercept L1
BLOCK 1 L2

2 L3
3 L4
4 L5 = L1 − L2 − L3 − L4

TILL CT L6
NT L7 = L1 − L6

HERB H L8
NOH L9 = L1 − L8

TILL×HERB CT H L10
CT NOH L11 = L6 − L10
NT H L12 = L8 − L10
NT NOH L13 = L1 − L6 − L8 + L10

BLOCK× TILL 1 CT H L14
× HERB 1 CT NOH L15

1 NT H L16
1 NT NOH L17 = L2 − L14 − L15 − L16
2 CT H L18
2 CT NOH L19
2 NT H L20
2 NT NOH L21 = L3 − L18 − L19 − L20
3 CT H L22
3 CT NOH L23
3 NT H L24
3 NT NOH L25 = L4 − L22 − L23 − L24
4 CT H L26 = L10 − L14 − L18 − L22
4 CT NOH L27 = L6 − L10 − L15 − L19 − L23
4 NT H L28 = L8 − L10 − L16 − L20 − L24
4 NT HOH L29 = L1 − L2 − L3 − L4 − L6 − L8

+ L10 + L14 + L15 + L16 + L18
+ L19 + L20 + L22 + L23 + L24

CULT C L30
NOC L31 = L1 − L30

HERB× CULT H C L32
H NOC L33 = L8 − L32
NOH C L34 = L30 − L32
NOH NOC L35 = L1 − L8 − L30 + L32
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TABLE 19.4. The estimable functions for BLOCK sums of squares.

Coefficients
Effect Sequential Partial

Intercept 0 0

BLOCK 1 L2 L2
2 L3 L3
3 L4 L4
4 −L2 − L3 − L4 −L2 − L3 − L4

TILL CT −.0714L2 0
NT .0714L2 0

HERB H −.0714L2 0
NOH .0714L2 0

TILL CT H −.1071L2 0
× HERB CT NOH .0357L2 0

NT H .0357L2 0
NT NOH .0357L2 0

BLOCK 1 CT H .1429L2 .25L2
× HERB 1 CT NOH .2857L2 .25L2
× TILL 1 NT H .2857L2 .25L2

1 NT NOH .2857L2 .25L2
2 CT H .25L3 .25L3
2 CT NOH .25L3 .25L3
2 NT H .25L3 .25L3
2 NT NOH .25L3 .25L3
3 CT H .25L4 .25L4
3 CT NOH .25L4 .25L4
3 NT H .25L4 .25L4
3 NT NOH .25L4 .25L4
4 CT H −.25(L2 + L3 + L4) −.25(L2 + L3 + L4)
4 CT NOH −.25(L2 + L3 + L4) −.25(L2 + L3 + L4)
4 NT H −.25(L2 + L3 + L4) −.25(L2 + L3 + L4)
4 NT HOH −.25(L2 + L3 + L4) −.25(L2 + L3 + L4)

CULT C .0375L2 0
NOC −.0375L2 0

HERB H C .0179L2 0
× CULT H NOC −.0893L2 0

NOH C .0179L2 0
NOH NOC .0536L2 0
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TABLE 19.5. The estimable functions for TILL sums of squares.

Coefficients
Effect Sequential Partial

Intercept 0 0

BLOCK 1 0 0
2 0 0
3 0 0
4 0 0

TILL CT L6 L6
NT −L6 −L6

HERB H −.037L6 0
NOH .037L6 0

TILL×HERB CT H .463L6 .5L6
CT NOH .537L6 .5L6
NT H −.5L6 −.5L6
NT NOH −.5L6 −.5L6

BLOCK× TILL 1CT H .0741L6 .125L6
× HERB 1CT NOH .1481L6 .125L6

1NT H −.1111L6 −.125L6
1NT NOH −.1111L6 −.125L6
2CT H .1296L6 .125L6
2CT NOH .1296L6 .125L6
2NT H −.1296L6 −.125L6
2NT NOH −.1296L6 −.125L6
3CT H .1296L6 .125L6
3CT NOH .1296L6 .125L6
3NT H −.1296L6 −.125L6
3NT NOH −.1296L6 −.125L6
4CT H .1296L6 .125L6
4CT NOH .1296L6 .125L6
4NT H −.1296L6 −.125L6
4NT HOH −.1296L6 −.125L6

CULT C .537L6 0
NOC −.537L6 0

HERB× CULT H C .2685L6 0
H NOC −.3056L6 0
NOH C .2685L6 0
NOH NOC −.2315L6 0
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TABLE 19.6. The estimable functions for HERB sums of squares.

Coefficients
Effect Sequential Partial

Intercept 0 0

BLOCK 1 0 0
2 0 0
3 0 0
4 0 0

TILL CT 0 0
NT 0 0

HERB H L8 L8
NOH −L8 −L8

TILL×HERB CT H .4808L8 .5L8
CT NOH −.4808L8 −.5L8
NT H .5192L8 .5L8
NT NOH −.5192L8 −.5L8

BLOCK× TILL 1CT H .0769L8 .125L8
× HERB 1CT NOH −.1058L8 −.125L8

1NT H .1442L8 .125L8
1NT NOH −.1154L8 −.125L8
2CT H .1346L8 .125L8
2CT NOH −.125L8 −.125L8
2NT H .125L8 .125L8
2NT NOH −.1346L8 −.125L8
3CT H .1346L8 .125L8
3CT NOH −.125L8 −.125L8
3NT H .125L8 .125L8
3NT NOH −.1346L8 −.125L8
4CT H .1346L8 .125L8
4CT NOH −.125L8 −.125L8
4NT H .125L8 .125L8
4NT HOH −.1346L8 −.125L8

CULT C .0385L8 0
NOC −.0385L8 0

HERB× CULT H C .2788L8 .5L8
H NOC .7212L8 .5L8
NOH C −.2404L8 −.5L8
NOH NOC −.7596L8 −.5L8
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TABLE 19.7. The estimable functions for TILL*HERB sums of squares.

Coefficients
Effect Sequential Partial

Intercept 0 0

BLOCK 1 0 0
2 0 0
3 0 0
4 0 0

TILL CT 0 0
NT 0 0

HERB H 0 0
NOH 0 0

TILL×HERB CT H L10 L10
CT NOH −L10 −L10
NT H −L10 −L10
NT NOH L10 L10

BLOCK× TILL 1CT H .16L10 .25L10
× HERB 1CT NOH −.22L10 −.25L10

1NT H −.22L10 −.25L10
1NT NOH .28L10 .25L10
2CT H .28L10 .25L10
2CT NOH −.26L10 −.25L10
2NT H −.26L10 −.25L10
2NT NOH .24L10 .25L10
3CT H .28L10 .25L10
3CT NOH −.26L10 −.25L10
3NT H −.26L10 −.25L10
3NT NOH .24L10 .25L10
4CT H .28L10 .25L10
4CT NOH −.26L10 −.25L10
4NT H −.26L10 −.25L10
4NT HOH .24L10 .25L10

CULT C .08L10 0
NOC −.08L10 0

HERB× CULT H C .58L10 0
H NOC −.58L10 0
NOH C −.5L10 0
NOH NOC .5L10 0
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TABLE 19.8. The estimable functions for BLOCK*TILL*HERB sums of
squares.

Coefficients
Effect Sequential Partial

Intercept 0 0

BLOCK 1 0 0
2 0 0
3 0 0
4 0 0

TILL CT 0 0
NT 0 0

HERB H 0 0
NOH 0 0

TILL CT H 0 0
× HERB CT NOH 0 0

NT H 0 0
NT NOH 0 0

BLOCK 1CT H L14 L14
× TILL 1CT NOH L15 L15
× HERB 1NT H L16 L16

1NT NOH −L14 − L15 − L16 −L14 − L15 − L16
2CT H L18 L18
2CT NOH L19 L19
2NT H L20 L20
2NT NOH −L18 − L19 − L20 −L18 − L19 − L20
3CT H L22 L22
3CT NOH L23 L23
3NT H L24 L24
3NT NOH −L22 − L23 − L24 −L22 − L23 − L24
4CT H −L14 − L18 − L22 −L14 − L18 − L22
4CT NOH −L15 − L19 − L23 −L15 − L19 − L23
4NT H −L16 − L20 − L24 −L16 − L20 − L24
4NT NOH L14 + L15 + L16 L14 + L15 + L16

+ L18 + L19 + L20 + L18 + L19 + L20
+ L22 + L23 + L24 + L22 + L23 + L24

CULT C .5L14 0
NOC −.5L14 0

HERB H C .5L14 0
× CULT H NOC −.5L14 0

NOH C 0 0
NOH NOC 0 0
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TABLE 19.9. The estimable functions for CULT sums of squares.

Coefficients
Effect Sequential Partial

Intercept 0 0

BLOCK 1 0 0
2 0 0
3 0 0
4 0 0

TILL CT 0 0
NT 0 0

HERB H 0 0
NOH 0 0

TILL×HERB CT H 0 0
CT NOH 0 0
NT H 0 0
NT NOH 0 0

BLOCK× TILL 1CT H 0 0
× HERB 1CT NOH 0 0

1NT H 0 0
1NT NOH 0 0
2CT H 0 0
2CT NOH 0 0
2NT H 0 0
2NT NOH 0 0
3CT H 0 0
3CT NOH 0 0
3NT H 0 0
3NT NOH 0 0
4CT H 0 0
4CT NOH 0 0
4NT H 0 0
4NT NOH 0 0

CULT C L30 L30
NOC −L30 −L30

HERB × CULT H C .4286L30 .5L30
H NOC −.4286L30 −.5L30
NOH C .5714L30 .5L30
NOH NOC −.5714L30 −.5L30
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to note which coefficients are nonzero and that they are
functions of the numbers of observations.

The partial (Type III) estimable functions for the BLOCK sum of squares
are obtained by

1. setting L1 = L6 = L8 = L10 = L30 = L32 = 0 (to remove
all other effects that do not contain BLOCK effects);

2. leaving L2, L3, and L4 general; and

3. setting all other coefficients, L14 to L24, to multiples of
L2, L3, and L4. The multiples for the partial (Type III)
estimable functions are chosen to satisfy the orthogonality
property.

Nonzero coefficients for TILL, HERB, TILL × HERB, CULT, and HERB
× CULT effects in the estimable function for the sequential (Type I) sum of
squares for BLOCK (Table 19.4) result from the fact that they are sequen-
tial. The sequential sums of squares for a particular effect are adjusted only
for effects that precede it in the model. Consequently, the BLOCK sum of
squares, being first in the model statement, is adjusted only for µ. Clearly,
the sequential BLOCK sum of squares is confounded with all other effects
in the model. On the other hand, the partial (Type III) BLOCK sum of
squares has been adjusted for all effects that do not contain the BLOCK
effects by setting L6, L8, L10, L30, and L32 equal to zero. The multiples
of L2, L3, and L4 are chosen to satisfy the orthogonality property for the
higher-order interaction effects that contain BLOCK effects.
Each of Tables 19.4 through 19.9 contains the estimable functions for
the sequential and partial sums of squares for one source of variation. The
sequence of the tables corresponds to the order in which the class variables
were entered into the model statement. Thus, comparison of the sequen-
tial estimable functions from table to table shows the sequential nature of
these sums of squares. The sequential estimable function for BLOCK sum
of squares, Table 19.4, contains nonzero coefficients for all effects other
than the intercept; it is confounded with all other effects. The sequential
estimable function for TILL, Table 19.5, has zero coefficients for BLOCK
effects but nonzero coefficients for all succeeding classes of effects; this sum
of squares is adjusted for BLOCK effects but is confounded with all classes
of effects that follow TILL in the model statement. Inspection of the re-
maining tables shows that this pattern continues for successive terms in
the model. The estimable function for the last term in the model, HERB
× CULT, is the same for all types of sums of squares and is not given in a
separate table. Being the last term in the model, the sequential HERB ×
CULT estimable function has zero coefficients for all other effects.
In summary, the sequential (Type I) estimable function for each class Summary
of effects is adjusted only for other classes of effects that precede it in the
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model statement and, consequently, is confounded with all classes of effects
that follow it in the model; the coefficients on the effects for which it is
not adjusted are dependent on the cell numbers and the coefficients do not
have the orthogonality property. This confounding of different classes of ef-
fects and the dependence of the coefficients on the numbers of observations
makes the sequential sums of squares inappropriate for testing hypothe-
ses in this example. In contrast, the partial (Type III) hypotheses have
nonzero coefficients only on higher-order interaction effects that “contain”
the effects being tested and possess the orthogonality property. These hy-
potheses are the same as those being tested by the analysis of variance
sums of squares in balanced data. Thus, the partial sums of squares are
appropriate in this example for testing hypotheses that various classes of
effects are zero.

19.2 Mean Square Expectations and Choice of
Errors

Before turning to interpretation of the analysis of variance, the analysis
based on a fixed effects model must be reconciled with the fact that the
correct model contains two random effects, the whole-plot effect δijk and
the subplot effect εijkl. With balanced data, the whole-plot error is esti-
mated with the interaction mean square between blocks and the whole-plot
treatments, in this case, the BLOCK × TILL × HERB mean square. With
unbalanced data, the expectations of the mean squares must be used to de-
termine proper error terms. The RANDOM statement in PROC GLM was
used to obtain these expectations. The expectations of the partial (Type
III) mean squares in the analysis are given in Table 19.10. Also, these expec- Variance

Component
Estimates

tations may be obtained using the formulae for expectations of quadratic
forms. The residual mean square always has expectation σ2 where σ2 is the
true variance of the unique random element in the model, εijkl in this case.
Thus, s2 = 119.56 with 13 degrees of freedom is the estimate of the subplot
error variance (Table 19.2). Equating the expectations of ERROR A and
ERROR B to their partial (Type III) sums of squares (Table 19.2) gives
two equations with which the components of variance can be estimated.
These equations give σ̂2 = 119.56 and σ̂2

δ = 35.06.
The only random component in the expectations of CULT and HERB × Expectations

Involving
Only σ2

CULT mean squares is σ2. This confirms that the subplot error, ERROR
B, is the appropriate error term for testing hypotheses about CULT and
HERB × CULT effects, the subplot treatment comparisons, as is the case
with balanced data.
The variance ratio for HERB × CULT interaction is less than unity Tests Using

Error Bindicating that the herbicide effects and the cultivation effects are additive.
The variance ratio for CULT effects is F = 5, 718.07/119.56 = 47.8, which
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TABLE 19.10. Expectations of partial (Type III) mean squares for the split-plot
experiment using the RANDOM option in PROC GLM.

Mean Square Expectation of Mean Squarea

BLOCK σ2 + 1.8667σ2
δ +Q(BLOCK)

TILL σ2 + 1.0909σ2
δ +Q(T,T×H)

HERB σ2 + 1.3333σ2
δ +Q(H,T×H,H× C)

TILL×HERB σ2 + 1.0909σ2
δ +Q(T×H)

ERROR Ab σ2 + 1.9048σ2
δ

CULT σ2 +Q(C,H× C)
HERB× CULT σ2 +Q(H× C)
ERROR B σ2

aQ(·) is a quadratic function of the effects in parentheses. T = Till, H =
HERB, and C = CULT.

bERROR A = MS(BLOCK × TILL × HERB).

is highly significant; that is, the average difference in yield between the
CULT treatments is too large to be explained by random variation. The
absence of an HERB × CULT interaction indicates that this effect of hand
weeding is consistent over both herbicide levels. Recall that the information
on the HERB × CULT interaction effects and the CULT effects comes only
from data on conventional tillage, TILL = CT. These conclusions can be
extended to the TILL = NT treatment only if there is no interaction of
these effects with TILL. This was implicitly assumed when the TILL ×
CULT and TILL × CULT × HERB interaction effects were dropped from
the model, but these assumptions cannot be tested with these data.
The random components in the expectations of the remaining mean Expectations

Involving Both
σ2 and σ2

δ

squares are not the same as in balanced data. If the data were balanced, the
expectation of the mean square for the whole-plot error (ERROR A) would
contain σ2 + kσ2

δ , where k is the number of subplots per whole-plot. The
expectations of all whole-plot treatment mean squares also would contain
σ2+kσ2

δ , plus a quadratic function of fixed effects, so that ERROR A would
be the appropriate error mean square for all tests of whole-plot treatment
effects. With this unbalanced example, the coefficients on σ2

δ for TILL,
HERB, and TILL × HERB differ from that for ERROR A (Table 19.10).
Thus, ERROR A is not the appropriate error for tests of significance. (If
the coefficients were very similar, one might be content to use ERROR A
in approximate tests of hypotheses about whole-plot treatment effects. In
this case, the coefficients are quite different, 1.0909 versus 1.9048, so that
tests using ERROR A could be seriously biased unless σ2

δ were close to
zero.)
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When the coefficients are more than trivially different, it is better to con- Constructed
Error Mean
Squares

struct for each F -test an error mean square that has the same expectation
for the random elements as the numerator mean square. The constructed er-
ror mean square for testing TILL and TILL × HERB is that linear function
of ERROR A (Ea) and ERROR B (Eb) that has expectation σ2+1.0909σ2

δ .
Thus,

E′ =
1.0909
1.9048

Ea +
(
1− 1.0909
1.9048

)
Eb = 157.81.

The degrees of freedom for this estimate of error are approximated with
Satterthwaite’s approximation as

f ′ =
(
∑
aiMSi)

2∑
(a2iMS

2
i /fi)

=
(157.8080)2( 1.0909

1.9048

)2 (186.34)2
9 +

(
1− 1.0909

1.9048

)2 (119.56)2
13

= 16.98 or 17 degrees of freedom,

where ai is the coefficient of MSi and fi is the degrees of freedom for MSi.
With this constructed error term, the variance ratio for TILL × HERB is

F ′ = 4.39 which just misses being significant at α = .05, F(.05;1,17) = 4.45.
If one adheres strictly to the chosen α, the interaction effect between TILL
and HERB would be declared unimportant. However, one would probably
report the herbicide effects at each tillage level and then point out that the
differences were not quite significant (at α = .05). The variance ratio for
the test of TILL effects averaged over the levels of HERB is F ′ = .69 which
is not significant. This does not imply that the tillage effects are negligible
within each herbicide treatment.
The constructed error term for testing HERB effects is E′ = 166.31 with
approximate degrees of freedom f ′ = 14. The variance ratio for this test is
F ′ = 44.68, far exceeding the critical level for α = .01. Unlike the TILL and
CULT main effects, information on the HERB effect comes from both two-
way tables. This average herbicide effect, averaged over TILL and CULT
treatments, is significantly different from zero but the (nearly) significant
TILL × HERB interaction suggests that the herbicide effect may not be
the same for the two tillage levels.
To summarize the results of the analysis of variance, the near signifi- Summary

of Analysis
of Variance

cance of the interaction between TILL and HERB suggests that the yield
response to herbicide depends on whether conventional tillage or no tillage
is used. The average herbicide effect is significant but is somewhat difficult
to interpret since it is an average from the 2 two-way factorials, one of
which shows an interaction. The average cultivation effect is different from
zero and its effects are relatively constant over levels of HERB as observed
under the TILL = CT treatment. These results suggest that the effects of
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the treatments can be summarized in the two-way table of TILL × HERB
means and the marginal means for CULT.

19.3 Least Squares Means and Standard Errors

The least squares means are estimated as the linear functions of β0 that
have the same expectations as the corresponding means in balanced data,
the population marginal means. In the tillage–herbicide–cultivation study,
there are no empty cells for any of the effects defined in the model, so that
all least squares means are estimable. (It was recognized at the beginning
of the case study that there was no information in the data on two of the
interactions, and their effects were dropped from the model. If these effects
had been retained in the model, many of the least squares means would
not have been estimable.)
The expectations of the least squares marginal means for the herbicide Expectations

of Least
Squares Means

treatments HERB and the cultivation treatments CULT are given in Ta-
ble 19.11. (For comparison, the expectation of the unadjusted mean for the
C level of CULT is also given. The differences in coefficients between the
last column and the third column show the nature of the confounding in
this unadjusted mean. The coefficient of 1.0 on the CT effect of the TILL
factor shows that the unadjusted C mean is completely confounded with
the CT effect.) The estimable functions for the two-way table of TILL ×
HERB means are given in Table 19.12. The coefficients in each column
of Tables 19.11 and 19.12 define the linear functions of β0 that must be
computed to obtain the least squares mean.
The least squares marginal means for all three treatment factors and the Estimates of

Means and
Interpretations

two-way TILL × HERB treatment means are given in the first column of
data in Table 19.13. The unadjusted treatment means are given in the last
column of the table for comparison only. All interpretations should be based
on the least squares means. The tests of significance have indicated that
the CT and the NT means for tillage are not different. (The unadjusted
tillage means, on the other hand, were very different — 53.58 versus 36.96.
The adjustment is primarily on the NT treatment mean and is reflecting
its total confounding with the NOC treatment. The NT treatment did not
involve any plots on which there was additional hand weeding.)
The difference between the herbicide treatment means is significant; the
presence of herbicide more than doubled yield in this experiment. Simi-
larly, additional hand weeding C doubled yield. It must not be overlooked,
however, that there was no measure of the interaction between CULT and
TILL since hand weeding C was done only on the no-tillage NT plots.
Thus, it would be an extrapolation to imply that hand weeding would have
this same effect on the conventional-tillage plots.
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TABLE 19.11. The estimable functions for the least squares means for levels of
herbicide (HERB) and cultivation (CULT). The unadjusted C mean is given for
comparison.

CULT HERB Unadj.
Effect C NOC H NOH C Mean

Intercept 1 1 1 1 1
BLOCK 1 1

4
1
4

1
4

1
4

1
4

2 1
4

1
4

1
4

1
4

1
4

3 1
4

1
4

1
4

1
4

1
4

4 1
4

1
4

1
4

1
4

1
4

TILL CT 1
2

1
2

1
2

1
2 1

NT 1
2

1
2

1
2

1
2 0

HERB H 1
2

1
2 1 0 1

2
NOH 1

2
1
2 0 1 1

2
TILL×HERB CT H 1

4
1
4

1
2 0 1

2
CT NOH 1

4
1
4 0 1

2
1
2

NT H 1
4

1
4

1
2 0 0

NT NOH 1
4

1
4 0 1

2 0
BLOCK× TILL 1CT H 1

16
1
16

1
8 0 1

8
× HERB 1CT NOH 1

16
1
16 0 1

8
1
8

1NT H 1
16

1
16

1
8 0 0

1NT NOH 1
16

1
16 0 1

8 0
2CT H 1

16
1
16

1
8 0 1

8
2CT NOH 1

16
1
16 0 1

8
1
8

2NT H 1
16

1
16

1
8 0 0

2NT NOH 1
16

1
16 0 1

8 0
3CT H 1

16
1
16

1
8 0 1

8
3CT NOH 1

16
1
16 0 1

8
1
8

3NT H 1
16

1
16

1
8 0 0

3NT NOH 1
16

1
16 0 1

8 0
4CT H 1

16
1
16

1
8 0 1

8
4CT NOH 1

16
1
16 0 1

8
1
8

4NT H 1
16

1
16

1
8 0 0

4NT HOH 1
16

1
16 0 1

8 0
CULT C 1 0 1

2
1
2 1

NOC 0 1 1
2

1
2 0

HERB× CULT H C 1
2 0 1

2 0 1
2

H NOC 0 1
2

1
2 0 0

NOH C 1
2 0 0 1

2
1
2

NOH NOC 0 1
2 0 1

2 0
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TABLE 19.12. The estimable functions for the two-way table of least squares
means for levels of tillage (TILL) and herbicide (HERB).

CT CT NT NT
Effect H NOH H NOH

Intercept 1 1 1 1
BLOCK 1 1

4
1
4

1
4

1
4

2 1
4

1
4

1
4

1
4

3 1
4

1
4

1
4

1
4

4 1
4

1
4

1
4

1
4

TILL CT 1 1 0 0
NT 0 0 1 1

HERB H 1 0 1 0
NOH 0 1 0 1

TILL×HERB CT H 1 0 0 0
CT NOH 0 1 0 0
NT H 0 0 1 0
NT NOH 0 0 0 1

BLOCK× TILL 1CT H 1
4 0 0 0

× HERB 1CT NOH 0 1
4 0 0

1NT H 0 0 1
4 0

1NT NOH 0 0 0 1
4

2CT H 1
4 0 0 0

2CT NOH 0 1
4 0 0

2NT H 0 0 1
4 0

2NT NOH 0 0 0 1
4

3CT H 1
4 0 0 0

3CT NOH 0 1
4 0 0

3NT H 0 0 1
4 0

3NT NOH 0 0 0 1
4

4CT H 1
4 0 0 0

4CT NOH 0 1
4 0 0

4NT H 0 0 1
4 0

4NT NOH 0 0 0 1
4

CULT C 1
2

1
2

1
2

1
2

NOC 1
2

1
2

1
2

1
2

HERB× CULT H C 1
2 0 1

2 0
H NOC 1

2 0 1
2 0

NOH C 0 1
2 0 1

2
NOH NOC 0 1

2 0 1
2
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TABLE 19.13. Least squares means, standard errors of least squares means as
given by GLM, GLM standard errors adjusted for the mean square expectations,
“exact” standard errors of least squares means, standard errors of mean differ-
ences, and unadjusted treatment means.

Least S.E.
Squares Standard Errors Mean Unadj.

Treatment Means GLM GLM ADJ EXACT Diff.a Means
TILL:
CT 52.37 2.95 3.39 3.62 53.58
NT 57.38 4.02 4.62 4.54 6.01 36.96

HERB:
H 73.54 3.35 3.95 3.95 65.18
NOH 36.21 3.35 3.95 3.95 5.58 26.09

CULT:
C 75.29 4.67 4.67 4.89 72.79
NOC 34.46 2.62 2.62 3.01 5.91 35.34

TILL*HERB:
CT H 64.74 4.46 5.12 5.35 69.10
CT NOH 40.01 3.87 4.47 4.87 7.23 40.01
NT H 82.34 5.91 6.79 6.62 61.75
NT NOH 32.41 5.47 6.29 6.22 9.07 12.16
aStandard errors of differences between adjacent pairs of treatment means using the

EXACT computations.
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The two-way TILL × HERB means are given because the interaction
was close to significance at α = .05. The pattern of the means in this two-
way table suggests that no tillage NT is better than conventional tillage
CT when herbicide is being used but is slightly worse if no herbicide is
used. The herbicide effect is positive under both types of tillage but the
difference is much larger in the NT treatment. It appears from this study
that it is better to use herbicide and, if herbicide is to be used, to also use
the no-tillage method.
Columns 3 through 5 in Table 19.13 give standard errors of the least Standard

Errorssquares means computed according to different rules. The first column of
standard errors, labeled “GLM,” are as given by PROC GLM. The GLM
standard errors are computed as if Var(Y ) = Iσ2 and the residual mean
square, ERROR B = 119.56, is used as the estimate of σ2.
The second column of standard errors, labeled “GLM ADJ,” has been Adjusted

Standard
Errors

computed from the “GLM” standard errors by multiplying each by the
square root of the ratio of the constructed error mean square to ERROR
B. This approach still assumes Var(Y ) = Iσ2 but replaces σ2 with an
average variance of the means in that class of means; the average is taken
from the expectations of the partial (Type III) mean squares given by
the RANDOM option. The estimates of the error components of variance
are computed from the PROC GLM partial (Type III) sums of squares.
For example, the GLM standard errors for the TILL means have been
multiplied by

√
157.8/119.6 = 1.149 to obtain GLM ADJ. The 157.8 is

the error mean square constructed as the appropriate denominator for the
F -test of tillage effects.
The third column of standard errors, labeled “EXACT,” uses the es- “Exact”

Standard
Errors

timated variance–covariance matrix for Y , which takes into account the
covariances of observations due to the presence of more than one random
element, and the PROC GLM algebra to compute correct estimated stan-
dard errors of the least squares means (see equation 18.18, page 584). The
estimates of the variance components used to obtain s2(Y ) were computed
from GLM partial (Type III) sums of squares.
The standard errors reported by PROC GLM will not in general be cor-
rect when the model involves more than one random element (Table 19.13).
(This is true whether or not the data are balanced.) In this case study,
the GLM standard errors for the whole-plot treatment means (TILL and
HERB) varied from 81 to 89% of the “EXACT” standard errors. The stan-
dard errors for the subplot treatment means (CULT ), which contain only
the one variance component, varied from 87 to 96 % of the “EXACT” stan-
dard errors. The GLM ADJ standard errors provide better agreement with
the “EXACT” for the whole-plot treatment means. This adjustment has
no effect on the standard errors for the subplot treatment means.
The need for correcting the GLM standard errors will depend on the
relative magnitudes of the components of variance in the model. Multiply-
ing by the square root of the ratio of the appropriate error mean squares
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GLM ADJ is a simple adjustment and is recommended in all cases where
computation of the “EXACT” standard errors does not seem practical.
Adjustments to the standard errors are necessary even when the data are
balanced. In the balanced case, the “GLM ADJ” procedure gives the “EX-
ACT” result.
The standard errors of the mean differences, column 6 of Table 19.13, Standard

Errors
of Mean
Differences

are given to emphasize that, with unbalanced data, variances of differences
cannot in general be computed simply as the sum of the variances; the
least squares means are not independent. The standard errors of the mean
differences given in Table 19.13 are computed using the exact method that
takes the covariances into account. The mean difference between the CULT
treatments, 40.83, has a standard error of 5.91 if computed with the exact
method but 5.74 if computed by summing the GLM variances as if the
means were independent. Of the marginal treatment means, only the H and
NOH treatment means for the HERB treatment factor are independent.
The variance of the difference between the H and NOH means is equal to
the sum of the two variances. Within the two-way table of TILL × HERB
means, all means are independent except the CT–H mean and the NT–H
mean.
All least squares means were estimable in this case because it was rec-
ognized in advance that the data contained no information on interactions
between CULT and TILL and these interaction effects were left out of the
model. Had this not been done, any least squares means involving the non-
estimable higher-order interactions in their expectations would not have
been estimable. Nonestimability of least squares means is a common prob-
lem in the analysis of unbalanced data when the model includes higher-
order interactions. In such cases, it is sometimes necessary to simplify the
model by dropping interaction effects to make the means estimable. If the
interactions are significant, this creates problems with interpretation.

19.4 Mixed Model Analysis

The analysis in the previous sections, Sections 19.1 through 19.3, ignored
the fact that the δijk (and possibly the Bi) were random effects and used
least squares estimation to produce an analysis of variance and adjusted
treatment means. Only then was the randomness of the δijk taken into
account to construct tests of significance and appropriate measures of pre-
cision. Relatively recent developments in computing power and software
have made it practical to attack the analysis of mixed models as described
in Chapter 18. This section presents the results of the analysis of these data
using the SAS program PROC MIXED (SAS Institute Inc., 1997).
The mixed model for these data is as presented in equation 19.1 where
all effects are fixed effects except the δijk and εijkl. The latter are assumed
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to be normally distributed random effects with zero mean and variances
σ2
δ and σ

2, respectively. For illustration, we also present results for the
analysis where the Bi (BLOCK effects) also are considered to be normally
distributed random effects with variance σ2

B . Initial mixed model analyses
showed the HERB × CULT effects to be trivial (which is in the analysis of
variance results). Consequently, these interaction effects have been dropped
from the model for the mixed model analysis results presented.
The PROC MIXED program statements (with BLOCK effects fixed)
that generated the results presented are as follows.

PROC MIXED DATA= filename;
CLASS BLOCK TILL HERB CULT;
MODEL YIELD = BLOCK TILL HERB TILL*HERB CULT /
ddfm=SATTERTHWAITE;
RANDOM BLOCK*TILL*HERB;
LSMEANS TILL HERB CULT TILL*HERB;
ESTIMATE ’TILL CT-NT’ TILL 1 -1 / CL;
ESTIMATE ’HERB H-NOH’ HERB 1 -1 / CL;
ESTIMATE ’CULT C-NOC’ CULT 1 -1 / CL;
RUN;

The MODEL statement contains only the fixed effects; the random ef-
fects are listed in the RANDOM statement. Note that the residuals εijkl
are always assumed to be random effects. The three-way interaction in
the RANDOM statement identifies the δijk effects. Only the MODEL and
RANDOM statements need to be changed in order to treat BLOCK effects
as random:

MODEL YIELD = TILL HERB TILL*HERB CULT;
RANDOM BLOCK BLOCK*TILL*HERB;

The REML (Restricted Estimated Maximum Likelihood) method of es-
timation was used. Convergence to a solution is usually quick. In this case,
the convergence criterion was met in two iterations when BLOCK effects
were fixed and in three iterations when BLOCK effects were random. The
estimates of the variance components and the F -tests of the fixed effects
are shown in Table 19.14. The “ddfm=SATTERTHWAITE” option in the
model statement specifies that the Satterthwaite approximation is to be
used for the denominator degrees of freedom for any F -tests. Both models
(BLOCK fixed and random) give very similar results with respect to es-
timates of the variance components σ2

δ and σ
2. Recall that the estimates

of the variance components obtained from the partial (Type III) sums of
squares in the analysis of variance were σ̂2

δ = 35.06 and σ̂
2 = 119.56. These

estimates came from the model with the HERB × CULT interaction effects
included. The analysis of variance estimates with these interaction effects
dropped from the model are σ̂2

δ = 39.69 and σ̂
2 = 111.04, much closer to
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TABLE 19.14. Estimates of variance components and F -tests of fixed effects from
mixed model analysis using REML estimation.

Variance BLOCK Effects Fixed BLOCK Effects Random
Component Estimate Estimate
σ2
B(= BLOCK) — 201.16
σ2
δ 41.14 42.01
σ2 109.67 109.24

Fixed Effect Type III F Pr > F Type III F Pr > F
BLOCK 9.09 .0042 — —
TILL .92 .3532 .85 .3709
HERB 55.05 .0001 54.99 .0001
TILL × HERB 6.54 .0304 6.39 .0319
CULT 56.58 .0001 56.30 .0001

the mixed model analysis results. Also, the tests of significance of the fixed
effects are only trivially different between the two mixed models. (In these
tests of significance, the Type III or partial sum of squares for the partic-
ular fixed effect is used for the numerator and an appropriate error mean
square is computed for the denominator.) In the mixed model analyses, the
TILL × HERB interaction is significant. It was approaching significance
in the analysis of variance approach.
As with the analysis of variance approach, the treatment means can be
adequately summarized with the marginal means for the factor CULT and
the two-way table of TILL × HERB means, in all cases adjusted for the
imbalance in the data. These least squares means and their standard errors
are given in Table 19.15.
The least squares means are trivially different between the two models,

BLOCK effects fixed or random. The striking difference in the two mod-
els is in the much larger standard errors of the treatment means when
BLOCK effects are random. This is the direct contribution of σ2

B to the
variance of the treatment means, and is appropriate if the means are to be
viewed as estimates of the treatment means averaged over repeated sam-
plings of blocks. However, these standard errors are much too large if one
were to (mistakenly) compute the variance of a difference between two of
the treatment means by adding the squares of these standard errors. To
illustrate this, the estimates of the differences between the two levels of
each of the three factors and the appropriate standard errors for the mean
differences are given in the bottom portion of Table 19.15. As expected,
the mean contrasts are trivially different between the two models but now
the standard errors of the mean differences are also almost identical. Fur-
thermore, they are similar to the results one would obtain if they were
to be approximated using the standard errors of the means and assuming
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TABLE 19.15. Least squares means and standard errors estimated from the mixed
model analyses with BLOCK effects fixed and random.

Block Effects Fixed Block Effects Random
Factor Level Mean Std. Err. Mean Std. Err.
TILL CT 52.09 3.56 52.19 7.94

NT 57.66 4.42 57.56 8.36
HERB H 73.32 3.73 73.37 8.02

NOH 36.43 3.73 36.38 8.02
CULT C 75.57 4.71 75.47 8.51

NOC 34.18 2.90 34.28 7.66
TILL CT H 64.18 5.18 64.38 8.79
×HERB CT NOH 40.01 4.90 40.01 8.63

NT H 82.45 5.62 82.35 9.05
NT NOH 32.86 5.50 32.76 9.05

CONTRAST:
TILL CT−NT −5.56 5.81 −5.36 5.82
HERB H−NOH 36.88 4.97 36.98 4.99
CULT C−NOC 41.39 5.50 41.20 5.49

independence between the two means. For example, for the TILL contrast
one obtains

√
3.562 + 4.422 = 5.67 using the standard errors for the two

TILL treatments versus the correct standard error of 5.81.
The differences between the PROC MIXED and PROC GLM results are
small in this example, as they usually will be when the imbalance in the
data is limited. The advantage of the PROC MIXED procedure is that the
variance–covariance information is being utilized. This will produce more
precise estimates and more powerful tests of significance if the information
on the components of variance is reliable.

19.5 Exercises

19.1. Investigate whether a transformation of the data in this case study
might be desirable. Use the Box–Cox transformation on yield for
several values of λ. You will need to add a small constant to avoid
problems with the zero yields. Run PROC GLM (or a similar pro-
gram) for each transformed yield variable and plot the residual sums
of squares against λ. Construct the confidence interval on λ. What
transformation is suggested?

19.2. The partial (Type III) sums of squares from the analysis of vari-
ance, Table 19.2, and the mean square expectations, Table 19.10,
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have been used to estimate the two components of variance σ2 and
σ2
δ . Compute standard errors for each. (Assume each mean square is
distributed as a chi-squared random variable scaled by E(MS)/d.f .
so that its variance is 2[E(MS)]2/d.f and that the two mean squares
are independent. The estimate of the variance of a chi-squared ran-
dom variable is obtained by substituting the observed mean square
for its expectation.) Compare these estimated standard errors with
those given for the PROC MIXED solution, Section 19.4.

19.3. Verify that the constructed error mean square for testing HERB ef-
fects in the analysis of variance approach is E′ = 166.31 and that its
approximate degrees of freedom are f ′ = 14.

19.4. Determine the estimable functions for the population marginal means
for a 2 × 3 factorial set of treatments in a randomized complete block
design with r = 4 blocks. Include A× B interactions in your model.
Give the estimable functions for the six treatment means and for
the marginal treatment means for each treatment factor. How do the
estimable functions change if there are no interactions in the model?
Suppose cell (1, 2) is empty. Which means become nonestimable if
there are interactions in the model? If there are no interactions in the
model?

19.5 In Exercise 17.2 fixed block effects were assumed. Show how the ex-
pectations change if block effects are assumed to be random variables
with zero mean and variance σ2

b . Show how this changes your conclu-
sions when the numbers are unequal as in Exercise 17.3.
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TABLE A.1. Upper-tail probabilities for the t distribution.

Probability t > table entry
d.f. .25 .2 .15 .1 .05 .025 .01 .005 .0005
1 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657 636.619
2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 31.599
3 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 12.924
4 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 8.610
5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 6.869
6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.959
7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 5.408
8 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 5.041
9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.781
10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.587
11 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.437
12 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 4.318
13 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 4.221
14 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 4.140
15 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 4.073
16 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 4.015
17 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.965
18 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.922
19 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.883
20 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.850
21 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.819
22 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.792
23 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.768
24 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.745
25 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.725
26 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.707
27 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.690
28 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.674
29 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.659
30 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.646
40 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.551
60 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 3.460
120 0.677 0.845 1.041 1.289 1.658 1.980 2.358 2.617 3.373
∞ 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.291
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TABLE A.2. Percentage points for the F -distribution—Upper 10% points.

ν1 = Numerator Degrees of Freedom
ν2

a 1 2 3 4 5 6 7 8 9 10
1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19
2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39
3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23
4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92
5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30
6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94
7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70
8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54
9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42
10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32
11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19
13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10
15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06
16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03
17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00
18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98
19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96
20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94
21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92
22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90
23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89
24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88
25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87
26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86
27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85
28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84
29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83
30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82
40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76
60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71
120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65
∞ 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60

aDenominator degrees of freedom.
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TABLE A.2. (Continued).

ν1 = Numerator Degrees of Freedom
ν2

a 12 15 20 24 30 40 60 120 ∞
1 60.71 61.22 61.74 62.00 62.26 62.53 62.79 63.06 63.33
2 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49
3 5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.14 5.13
4 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76
5 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.11
6 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.72
7 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49 2.47
8 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.29
9 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.16
10 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08 2.06
11 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.97
12 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.90
13 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.85
14 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83 1.80
15 2.02 1.97 1.92 1.90 1.87 1.85 1.82 1.79 1.76
16 1.99 1.94 1.89 1.87 1.84 1.81 1.78 1.75 1.72
17 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72 1.69
18 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69 1.66
19 1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67 1.63
20 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64 1.61
21 1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62 1.59
22 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57
23 1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59 1.55
24 1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.57 1.53
25 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56 1.52
26 1.81 1.76 1.71 1.68 1.65 1.61 1.58 1.54 1.50
27 1.80 1.75 1.70 1.67 1.64 1.60 1.57 1.53 1.49
28 1.79 1.74 1.69 1.66 1.63 1.59 1.56 1.52 1.48
29 1.78 1.73 1.68 1.65 1.62 1.58 1.55 1.51 1.47
30 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50 1.46
40 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.38
60 1.66 1.60 1.54 1.51 1.48 1.44 1.40 1.35 1.29
120 1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.26 1.19
∞ 1.55 1.49 1.42 1.38 1.34 1.30 1.24 1.17 1.00
aDenominator degrees of freedom.
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TABLE A.3. Percentage points for the F -distribution—Upper 5% points.

ν1 = Numerator Degrees of Freedom
ν2

a 1 2 3 4 5 6 7 8 9 10
1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99
120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83

aDenominator degrees of freedom.
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TABLE A.3. (Continued).

ν1 = Numerator Degrees of Freedom
ν2

a 12 15 20 24 30 40 60 120 ∞
1 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3
2 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50
3 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53
4 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63
5 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.37
6 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67
7 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23
8 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93
9 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71
10 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54
11 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40
12 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30
13 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21
14 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13
15 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07
16 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01
17 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96
18 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92
19 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88
20 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84
21 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81
22 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78
23 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76
24 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73
25 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71
26 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69
27 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67
28 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65
29 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64
30 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62
40 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51
60 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39
120 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25
∞ 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00
aDenominator degrees of freedom.



Appendix A. APPENDIX TABLES 627

TABLE A.4. Percentage points for the F -distribution—Upper 1% points.

ν1 = Numerator Degrees of Freedom
ν2

a 1 2 3 4 5 6 7 8 9 10
1 4052 5000 5403 5625 5764 5859 5928 5981 6022 6056
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26
10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63
120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47
∞ 6.64 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32

aDenominator degrees of freedom.
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TABLE A.4. (Continued).

ν1 = Numerator Degrees of Freedom
ν2

a 12 15 20 24 30 40 60 120 ∞
1 6106 6157 6209 6235 6261 6287 6313 6339 6366
2 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50
3 27.05 26.87 26.69 26.60 26.50 26.41 26.32 26.22 26.13
4 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46
5 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02
6 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88
7 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65
8 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86
9 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31
10 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91
11 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60
12 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36
13 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17
14 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00
15 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87
16 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75
17 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65
18 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57
19 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49
20 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42
21 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36
22 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31
23 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26
24 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21
25 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17
26 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13
27 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10
28 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06
29 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03
30 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01
40 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80
60 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60
120 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38
∞ 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00
aDenominator degrees of freedom.
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TABLE A.5. Bonferroni critical values (t(α/2p;ν), α = .05).

ν Number of tests (p)
d.f. 2 3 4 5 6 7 8 9 10
1 25.452 38.188 50.923 63.657 76.390 89.123 101.856 114.589 127.321
2 6.205 7.649 8.860 9.925 10.886 11.769 12.590 13.360 14.089
3 4.177 4.857 5.392 5.841 6.232 6.580 6.895 7.185 7.453
4 3.495 3.961 4.315 4.604 4.851 5.068 5.261 5.437 5.598
5 3.163 3.534 3.810 4.032 4.219 4.382 4.526 4.655 4.773
6 2.969 3.287 3.521 3.707 3.863 3.997 4.115 4.221 4.317
7 2.841 3.128 3.335 3.499 3.636 3.753 3.855 3.947 4.029
8 2.752 3.016 3.206 3.355 3.479 3.584 3.677 3.759 3.833
9 2.685 2.933 3.111 3.250 3.364 3.462 3.547 3.622 3.690
10 2.634 2.870 3.038 3.169 3.277 3.368 3.448 3.518 3.581
11 2.593 2.820 2.981 3.106 3.208 3.295 3.370 3.437 3.497
12 2.560 2.779 2.934 3.055 3.153 3.236 3.308 3.371 3.428
13 2.533 2.746 2.896 3.012 3.107 3.187 3.256 3.318 3.372
14 2.510 2.718 2.864 2.977 3.069 3.146 3.214 3.273 3.326
15 2.490 2.694 2.837 2.947 3.036 3.112 3.177 3.235 3.286
16 2.473 2.673 2.813 2.921 3.008 3.082 3.146 3.202 3.252
17 2.458 2.655 2.793 2.898 2.984 3.056 3.119 3.173 3.222
18 2.445 2.639 2.775 2.878 2.963 3.034 3.095 3.149 3.197
19 2.433 2.625 2.759 2.861 2.944 3.014 3.074 3.127 3.174
20 2.423 2.613 2.744 2.845 2.927 2.996 3.055 3.107 3.153
21 2.414 2.601 2.732 2.831 2.912 2.980 3.038 3.090 3.135
22 2.405 2.591 2.720 2.819 2.899 2.965 3.023 3.074 3.119
23 2.398 2.582 2.710 2.807 2.886 2.952 3.009 3.059 3.104
24 2.391 2.574 2.700 2.797 2.875 2.941 2.997 3.046 3.091
25 2.385 2.566 2.692 2.787 2.865 2.930 2.986 3.035 3.078
26 2.379 2.559 2.684 2.779 2.856 2.920 2.975 3.024 3.067
27 2.373 2.552 2.676 2.771 2.847 2.911 2.966 3.014 3.057
28 2.368 2.546 2.669 2.763 2.839 2.902 2.957 3.004 3.047
29 2.364 2.541 2.663 2.756 2.832 2.894 2.949 2.996 3.038
30 2.360 2.536 2.657 2.750 2.825 2.887 2.941 2.988 3.030
40 2.329 2.499 2.616 2.704 2.776 2.836 2.887 2.931 2.971
60 2.299 2.463 2.575 2.660 2.729 2.785 2.834 2.877 2.915
120 2.270 2.428 2.536 2.617 2.683 2.737 2.783 2.824 2.860
∞ 2.241 2.394 2.498 2.576 2.638 2.690 2.734 2.773 2.807
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TABLE A.6. Bonferroni critical values (t(α/2p;ν), α = .01).

ν Number of tests (p)
d.f. 2 3 4 5 6 7 8 9 10
1 127.321 190.984 254.647 318.309 381.971 445.633 509.295 572.957 636.619
2 14.089 17.277 19.962 22.327 24.464 26.429 28.258 29.975 31.599
3 7.453 8.575 9.465 10.215 10.869 11.453 11.984 12.471 12.924
4 5.598 6.254 6.758 7.173 7.529 7.841 8.122 8.376 8.610
5 4.773 5.247 5.604 5.893 6.138 6.352 6.541 6.713 6.869
6 4.317 4.698 4.981 5.208 5.398 5.563 5.709 5.840 5.959
7 4.029 4.355 4.595 4.785 4.944 5.082 5.202 5.310 5.408
8 3.833 4.122 4.334 4.501 4.640 4.759 4.864 4.957 5.041
9 3.690 3.954 4.146 4.297 4.422 4.529 4.622 4.706 4.781
10 3.581 3.827 4.005 4.144 4.259 4.357 4.442 4.518 4.587
11 3.497 3.728 3.895 4.025 4.132 4.223 4.303 4.373 4.437
12 3.428 3.649 3.807 3.930 4.031 4.117 4.192 4.258 4.318
13 3.372 3.584 3.735 3.852 3.948 4.030 4.101 4.164 4.221
14 3.326 3.530 3.675 3.787 3.880 3.958 4.026 4.086 4.140
15 3.286 3.484 3.624 3.733 3.822 3.897 3.963 4.021 4.073
16 3.252 3.444 3.581 3.686 3.773 3.846 3.909 3.965 4.015
17 3.222 3.410 3.543 3.646 3.730 3.801 3.862 3.917 3.965
18 3.197 3.380 3.510 3.610 3.692 3.762 3.822 3.874 3.922
19 3.174 3.354 3.481 3.579 3.660 3.727 3.786 3.837 3.883
20 3.153 3.331 3.455 3.552 3.630 3.697 3.754 3.804 3.850
21 3.135 3.310 3.432 3.527 3.604 3.669 3.726 3.775 3.819
22 3.119 3.291 3.412 3.505 3.581 3.645 3.700 3.749 3.792
23 3.104 3.274 3.393 3.485 3.560 3.623 3.677 3.725 3.768
24 3.091 3.258 3.376 3.467 3.540 3.603 3.656 3.703 3.745
25 3.078 3.244 3.361 3.450 3.523 3.584 3.637 3.684 3.725
26 3.067 3.231 3.346 3.435 3.507 3.567 3.620 3.666 3.707
27 3.057 3.219 3.333 3.421 3.492 3.552 3.604 3.649 3.690
28 3.047 3.208 3.321 3.408 3.479 3.538 3.589 3.634 3.674
29 3.038 3.198 3.310 3.396 3.466 3.525 3.575 3.620 3.659
30 3.030 3.189 3.300 3.385 3.454 3.513 3.563 3.607 3.646
40 2.971 3.122 3.227 3.307 3.372 3.426 3.473 3.514 3.551
60 2.915 3.057 3.156 3.232 3.293 3.344 3.388 3.426 3.460
120 2.860 2.995 3.088 3.160 3.217 3.265 3.306 3.342 3.373
∞ 2.807 2.935 3.023 3.090 3.144 3.189 3.227 3.261 3.291
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TABLE A.7. Significance points of the dL and dU for the Durbin–Watson test for correla-
tion.

5%a

p = 1 p = 2 p = 3 p = 4 p = 5
n dL dU dL dU dL dU dL dU dL dU

15 1.08 1.36 .95 1.54 .82 1.75 .69 1.97 .56 2.21
16 1.10 1.37 .98 1.54 .86 1.73 .74 1.93 .62 2.15
17 1.13 1.38 1.02 1.54 .90 1.71 .78 1.90 .67 2.10
18 1.16 1.39 1.05 1.53 .93 1.69 .82 1.87 .71 2.06
19 1.18 1.40 1.08 1.53 .97 1.68 .86 1.85 .75 2.02
20 1.20 1.41 1.10 1.54 1.00 1.68 .90 1.83 .79 1.99
21 1.22 1.42 1.13 1.54 1.03 1.67 .93 1.81 .83 1.96
22 1.24 1.43 1.15 1.54 1.05 1.66 .96 1.80 .86 1.94
23 1.26 1.44 1.17 1.54 1.08 1.66 .99 1.79 .90 1.92
24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 .93 1.90
25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 .95 1.89
26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 .98 1.88
27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.01 1.86
28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85
29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84
30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83
31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83
32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82
33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81
34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.15 1.81
35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80
36 1.41 1.52 1.35 1.59 1.29 1.65 1.24 1.73 1.18 1.80
37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80
38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.21 1.79
39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79
40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79
45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78
50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77
55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.38 1.77
60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77
65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77
70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77
75 1.60 1.65 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77
80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77
85 1.62 1.67 1.60 1.70 1.57 1.72 1.55 1.75 1.52 1.77
90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78
95 1.64 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78
100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78

aReproduced in part from Tables 4 and 6 of Durbin and Watson (1951) with permission of the
Biometrika Trustees.
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TABLE A.7. (Continued).

1%
p = 1 p = 2 p = 3 p = 4 p = 5

n dL dU dL dU dL dU dL dU dL dU

15 .81 1.07 .70 1.25 .59 1.46 .49 1.70 .30 1.96
16 .84 1.09 .74 1.25 .63 1.44 .53 1.66 .44 1.90
17 .87 1.10 .77 1.25 .67 1.43 .57 1.63 .48 1.85
18 .90 1.12 .80 1.26 .71 1.42 .61 1.60 .52 1.80
19 .93 1.13 .83 1.26 .74 1.41 .65 1.58 .56 1.77
20 .95 1.15 .86 1.27 .77 1.41 .68 1.57 .60 1.74
21 .97 1.16 .89 1.27 .80 1.41 .72 1.55 .63 1.71
22 1.00 1.17 .91 1.28 .83 1.40 .75 1.54 .66 1.69
23 1.02 1.19 .94 1.29 .86 1.40 .77 1.53 .70 1.67
24 1.04 1.20 .96 1.30 .88 1.41 .80 1.53 .72 1.66
25 1.05 1.21 .98 1.30 .90 1.41 .83 1.52 .75 1.65
26 1.07 1.22 1.00 1.31 .93 1.41 .85 1.52 .78 1.64
27 1.09 1.23 1.02 1.32 .95 1.41 .88 1.51 .81 1.63
28 1.10 1.24 1.04 1.32 .97 1.41 .90 1.51 .83 1.62
29 1.12 1.25 1.05 1.33 .99 1.42 .92 1.51 .85 1.61
30 1.13 1.26 1.07 1.34 1.01 1.42 .94 1.51 .88 1.61
31 1.15 1.27 1.08 1.34 1.02 1.42 .96 1.51 .90 1.60
32 1.16 1.28 1.10 1.35 1.04 1.43 .98 1.51 .92 1.60
33 1.17 1.29 1.11 1.36 1.05 1.43 1.00 1.51 .94 1.59
34 1.18 1.30 1.13 1.36 1.07 1.43 1.01 1.51 .95 1.59
35 1.19 1.31 1.14 1.37 1.08 1.44 1.03 1.51 .97 1.59
36 1.21 1.32 1.15 1.38 1.10 1.44 1.04 1.51 .99 1.59
37 1.22 1.32 1.16 1.38 1.11 1.45 1.06 1.51 1.00 1.59
38 1.23 1.33 1.18 1.39 1.12 1.45 1.07 1.52 1.02 1.58
39 1.24 1.34 1.19 1.39 1.14 1.45 1.09 1.52 1.03 1.58
40 1.25 1.34 1.20 1.40 1.15 1.46 1.10 1.52 1.05 1.58
45 1.29 1.38 1.24 1.42 1.20 1.48 1.16 1.53 1.11 1.58
50 1.32 1.40 1.28 1.45 1.24 1.49 1.20 1.54 1.16 1.59
55 1.36 1.43 1.32 1.47 1.28 1.51 1.25 1.55 1.21 1.59
60 1.38 1.45 1.35 1.48 1.32 1.52 1.28 1.56 1.25 1.60
65 1.41 1.47 1.38 1.50 1.35 1.53 1.31 1.57 1.28 1.61
70 1.43 1.49 1.40 1.52 1.37 1.55 1.34 1.58 1.31 1.61
75 1.45 1.50 1.42 1.53 1.39 1.56 1.37 1.59 1.34 1.62
80 1.47 1.52 1.44 1.54 1.42 1.57 1.39 1.60 1.36 1.62
85 1.48 1.53 1.46 1.55 1.43 1.58 1.41 1.60 1.39 1.63
90 1.50 1.54 1.47 1.56 1.45 1.59 1.43 1.61 1.41 1.64
95 1.51 1.55 1.49 1.57 1.47 1.60 1.45 1.62 1.42 1.64
100 1.52 1.56 1.50 1.58 1.48 1.60 1.46 1.63 1.44 1.65
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TABLE A.8. Empirical percentage points of the approximate W ′ test.

P a

n .01 .05 .10 .15 .20 .50 .80 .85 .90 .95 .99
35 .919 .943 .952 .956 .964 .976 .982 .985 .987 .989 .992
50 .935 .953 .963 .968 .971 .981 .987 .988 .990 .991 .994
51 .935 .954 .964 .968 .971 .981 .988 .989 .990 .992 .994
53 .938 .957 .964 .969 .972 .982 .988 .989 .990 .992 .994
55 .940 .958 .965 .971 .973 .983 .988 .990 .991 .992 .994
57 .944 .961 .966 .971 .974 .983 .989 .990 .991 .992 .994
59 .945 .962 .967 .972 .975 .983 .989 .990 .991 .992 .994
61 .947 .963 .968 .973 .975 .984 .990 .990 .991 .992 .994
63 .947 .964 .970 .973 .976 .984 .990 .991 .992 .993 .994
65 .948 .965 .971 .974 .976 .985 .990 .991 .992 .993 .995
67 .950 .966 .971 .974 .977 .985 .990 .991 .992 .993 .995
69 .951 .966 .972 .976 .978 .986 .990 .991 .992 .993 .995
71 .953 .967 .972 .976 .978 .986 .990 .991 .992 .994 .995
73 .956 .968 .973 .976 .979 .986 .991 .992 .993 .994 .995
75 .956 .969 .973 .976 .979 .986 .991 .992 .993 .994 .995
77 .957 .969 .974 .977 .980 .987 .991 .992 .993 .994 .996
79 .957 .970 .975 .978 .980 .987 .991 .992 .993 .994 .996
81 .958 .970 .975 .979 .981 .987 .992 .992 .993 .994 .996
83 .960 .971 .976 .979 .981 .988 .992 .992 .993 .994 .996
85 .961 .972 .977 .980 .981 .988 .992 .992 .993 .994 .996
87 .961 .972 .977 .980 .982 .988 .992 .993 .994 .994 .996
89 .961 .972 .977 .981 .982 .988 .992 .993 .994 .995 .996
91 .962 .973 .978 .981 .983 .989 .992 .993 .994 .995 .996
93 .963 .973 .979 .981 .983 .989 .992 .993 .994 .995 .996
95 .965 .974 .979 .981 .983 .989 .993 .993 .994 .995 .996
97 .965 .975 .979 .982 .984 .989 .993 .993 .994 .995 .996
99 .967 .976 .980 .982 .984 .989 .993 .994 .994 .995 .996

aReproduced with permission from Shapiro and Francia (1972).
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TABLE A.9. Runs test—critical number of runs in a sample of
n for a 5% significance level. The null hypothesis is rejected if
the observed number of runs is less than or equal to the tabled
value.

na = number in smaller category
na 2 3 4 5 6 7 8 9 10
8 ∗b 2 2
9 ∗ 2 2
10 2 2 2 3
11 2 2 3 3
12 2 2 3 3 3
13 2 2 3 3 3
14 2 3 3 4 4 4
15 2 3 3 4 4 4
16 2 3 3 4 4 5 5
17 2 3 4 4 5 5 5
18 2 3 4 4 5 5 5 5
19 2 3 4 4 5 5 6 6
20 2 3 4 5 5 6 6 6 6

a5% significance cannot be achieved if n < 8.
bNot even as few as 2 runs is significant.

TABLE A.10. Runs test—critical number of runs in a sample
of n for a 1% significance level. The null hypothesis is rejected
if the observed number of runs is less than or equal to the tabled
value.

na = number in smaller category
na 2 3 4 5 6 7 8 9 10
10 ∗b ∗ 2 2
11 ∗ ∗ 2 2
12 ∗ 2 2 2 2
13 ∗ 2 2 2 3
14 ∗ 2 2 3 3 3
15 ∗ 2 2 3 3 3
16 ∗ 2 3 3 3 3 3
17 ∗ 2 3 3 3 4 4
18 ∗ 2 3 3 4 4 4 4
19 ∗ 2 3 3 4 4 4 5
20 ∗ 2 3 4 4 4 5 5 5

a1% significance cannot be achieved if n < 10.
bNot even as few as 2 runs is significant.
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[127] H. Scheffé. The Analysis of Variance. Wiley, New York, 1959.

[128] H. Schneeweiss. Consistent estimation of a regression with errors in
the variables. Metrika, 23:101–116, 1976.



644 REFERENCES

[129] G. Schwarz. Estimating the dimension of a model. Annals of Statis-
tics, 6:461–464, 1978.

[130] S. R. Searle. Linear Models. Wiley, New York, 1971.

[131] S. R. Searle. Matrix Algebra Useful for Statistics. Wiley, New York,
1982.

[132] S. R. Searle. Linear Models for Unbalanced Data. Wiley, New York,
1986.

[133] S. R. Searle and W. H. Hausman. Matrix Algebra for Business and
Economics. Wiley, New York, 1970.

[134] S. R. Searle and H. V. Henderson. Annotated computer output for
analyses of unbalanced data: SAS GLM. Technical Report BU-641-
M, Biometrics Unit, Cornell University, 1979.

[135] S. R. Searle, F. M. Speed, and G. A. Milliken. Population marginal
means in the linear model: An alternative to least squares means.
The American Statistician, 34:216–221, 1980.

[136] S. S. Shapiro and R. S. Francia. An approximate analysis of variance
test for normality. Journal of the American Statistical Association,
67:215–216, 1972.

[137] S. S. Shapiro and M. B. Wilk. An analysis of variance test for nor-
mality (complete samples). Biometrika, 52:591–611, 1965.

[138] J. S. Shy-Modjeska, J. S. Riviere, and J. O. Rawlings. Application
of biplot methods to the multivariate analysis of toxicological and
pharmacokinetic data. Toxicology and Applied Pharmacology, 72:91–
101, 1984.

[139] G. Smith and F. Campbell. A critique of some ridge regression meth-
ods. Journal of the American Statistical Association, 75:74–81, 1980.

[140] G. W. Snedecor and W. G. Cochran. Statistical Methods. Iowa State
University Press, Ames, Iowa, 8th edition, 1989.

[141] R. D. Snee. Validation of regression models: Methods and examples.
Technometrics, 19:415–428, 1977.

[142] R. D. Snee and D. W. Marquardt. Comment: Collinearity diagnostics
depend on the domain of prediction, the model, and the data. The
American Statistician, 38:83–87, 1984.

[143] F. M. Speed and R. R. Hocking. The use of the R(·)-notation with
unbalanced data. The American Statistician, 30:30–33, 1976.



REFERENCES 645

[144] F. M. Speed, R. R. Hocking, and O. P. Hackney. Methods of analysis
of linear models with unbalanced data. Journal of the American
Statistical Association, 73:105–112, 1978.

[145] R. G. D. Steel, J. H. Torrie, and D. A. Dickey. Principles and Pro-
cedures of Statistics: A Biometrical Approach. McGraw-Hill, New
York, 3rd edition, 1997.

[146] C. M. Stein. Multiple regression. In Contributions to Probability and
Statistics, Essays in Honor of Harold Hotelling. Stanford University
Press, Stanford, California, 1960.

[147] G. W. Stewart. Introduction to Matrix Computations. Academic
Press, New York, 1973.

[148] F. S. Swed and C. Eisenhart. Tables for testing randomness of group-
ing in a sequence of alternatives. Annals of Mathematical Statistics,
14:66–87, 1943.

[149] H. Theil. Principles of Econometrics. Wiley, New York, 1971.

[150] R. A. Thisted. Comment: A critique of some ridge regression meth-
ods. Journal of the American Statistical Association, 75:81–86, 1980.

[151] J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, Reading,
Massachusetts, 1977.

[152] J. C. van Houwelingen. Use and abuse of variance models in regres-
sion. Biometrics, 44:1073–1081, 1988.

[153] A. Wald. The fitting of straight lines if both variables are subject to
error. Annals of Mathematical Statistics, 11:284–300, 1940.

[154] J. T. Webster, R. F. Gunst, and R. L. Mason. Latent root regression
analysis. Technometrics, 16:513–522, 1974.

[155] S Weisberg. An empirical comparison of the percentage points of W
and W′. Biometrika, 61:644–646, 1974.

[156] S. Weisberg. Comment on White and MacDonald (1980). Journal of
the American Statistical Association, 75:28–31, 1980.

[157] S. Weisberg. A statistic for allocating Cp to individual cases. Tech-
nometrics, 23:27–31, 1981.

[158] S. Weisberg. Applied Linear Regression. Wiley, New York, 2nd edi-
tion, 1985.

[159] H. White and G. M. MacDonald. Some large-sample tests for nonnor-
mality in the linear regression model (with comment by S. Weisberg).
Journal of the American Statistical Association, 75:16–31, 1980.



646 REFERENCES

[160] F. S. Wood. Comment: Effect of centering on collinearity and in-
terpretation of the constant. The American Statistician, 38:88–90,
1984.

[161] H. Working and H. Hotelling. Application of the theory of error
to the interpretation of trends. Journal of the American Statistical
Association, Supplement (Proceedings), 24:73–85, 1929.



AUTHOR INDEX

Addelman, S., 336
Afifi, A. A., 220, 226, 227
Agresti, Alan, 510
Ahrenholz, D. W., 96, 352, 360
Akaike, H., 225
Alderdice, D. F., 258–262
Allen, D. M., 230
Anderson, R. L., 494
Anderson, T. W., 247
Andrews, D. F., 98, 319, 395, 460
Anscombe, F. J. , 344, 345
Atkinson, A. C., 342, 363
Baldwin, K. F., 446, 461
Bancroft, T. A., 227
Bartlett, M. S., 291, 398, 404,

407, 409
Basson, R. P., 546
Belsley, D. A., 91, 341–343, 361,

363, 364, 370, 371, 373
Bendel, R. B., 220, 226, 227
Berk, K. N., 209, 219, 222, 373
Biggar, J. W., 395
Blom, G., 356
Bloomfield, P., 330, 351
Bolch, B. W., 343

Box, G. E. P., 236, 255, 328, 400,
404, 409–411

Bradu, D., 439
Brown, R. L., 344
Bunke, O., 231
Cameron, E., 98, 319, 569
Campbell, F., 446
Carroll, R. J., 335, 336, 338, 509
Carter, R. L., 337
Clarke, G. P. Y., 501
Cochran, W. G., vii, 197
Cook, J., 337, 338
Cook, R. D., 341–343, 358, 362,

370, 410
Corsten, L. C. A., 439
Cox, D. R., 328, 404, 409, 411
Cramér, H., 78
Cure, W. W., 492
Daniel, C., 356
Dickey, D. A., vii, 243, 256, 581
Dixon, W. J., 416, 568
Drake, S., 514
Draper, N. R., 255, 497
Droge, B., 231
Durbin, J., 344, 354, 631



648 AUTHOR INDEX

Eisenhart, C., 353
Erh, E. T., 395
Evans, J. M., 344
Feldstein, M., 337
Francia, R. S., 359, 633
Francis, C. A., 62, 65–67
Freund, R. J., 546, 561, 568
Fuller, W. A., 330, 334–338, 351,

419, 421, 494
Furnival, G. M., 210, 211, 220
Gabriel, K. R., 334, 436, 439,

473
Gallant, A. R., 494, 497–501,

507–509, 538
Galpin, J. S., 344, 358
Gray, R. J., 342, 358
Graybill, F. A., 78
Griffiths, W. E., 225
Guarnieri, J. A., 336
Gumpertz, M. L., 585, 586
Gunst, R. F., 370, 445, 457
Hackney, O. P., 546, 552, 554,

559
Hampel, F. R., 326
Hartley, H. O., 356, 497
Hausman, W. H., 37, 50, 53, 55,

57
Hawkins, D. M., 344, 358, 445
Heck, W. W., 492
Hedayat, A., 331, 344
Henderson, H. V., 546, 562, 563,

568
Hernandez, F., 409, 410
Herzberg, A. M., 98, 319, 395,

460
Hill, R. C., 225
Hocking, R. R., 206, 209, 220,

223, 224, 274, 286, 445,
546, 552, 554, 559, 583,
596

Hoerl, A. E., 445, 446, 461, 473
Hotelling, H., 138
Householder, A. S., 61
Huang, C. J., 343
Huber, P. J., 326

Hunter, J. S. , 236, 410
Hunter, W. G. , 236, 410
Jennrich, R. I., 497
Johnson, R. A., 409, 410
Judge, G. G., 225
Kennard, R. W., 445, 446, 461,

473
Kennedy, W. J., 227
Kopecky, K. J., 358
Kuh, E., 91, 341–343, 361, 363,

364, 370, 371, 373
Lee, T., 225
Linthurst, R. A., 161
Littell, R. C., 546, 561, 568
Lott, W. F., 445
Lynn, M. J., 445
MacDonald, G. M., 358
Madansky, A., 336
Mallows, C. L., 206, 223, 224
Marquardt, D. W., 370, 373,

377, 445, 446, 497
Mason, R. L., 445, 457
Miller, Jr., R. G., 138
Milliken, G. A., 564
Mombiela, R. A., 489
Mosteller, R., 399
Myers, R. H., 568
Nelder, J. A., 490
Nelson, L. A., 489, 494
Nelson, W. R., 95, 352, 360
Nielsen, D. R., 395
Norusis, M. J., 568
Pantula, S. G., 585, 586, 588
Park, S. H., 446
Pauling, L., 98, 319, 569
Pearson, E. S., 356
Pennypacker, S. P., 492
Pharos Books, 263
Pierce, D. A., 342, 358
Pollock, K. H., 588
Prescott, P., 342, 343
Quesenberry, C. P., 343, 344
Ralston, M. L., 497
Rao, C. R., 53, 55
Rawlings, J. O., 440, 492



AUTHOR INDEX 649

Riggs, D. S., 336
Riviere, J. S., 440
Robson, D. S., 331, 344
Rohlf, F. J., 356
Ronchetti, E. M., 326
Rousseeuw, P. J., 326
Ruppert. D., 335, 336, 338, 509
Saeed, M., 62, 65–67
SAS Institute, Inc., 165, 211,

215, 219, 220, 232, 243,
255, 283, 311, 342, 343,
379, 391, 417, 424, 467,
502, 510, 520, 525, 536,
546, 553, 559, 564, 566,
583, 588, 596, 597, 615

Satterthwaite, F. E., 582, 592
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Orthogonal polynomials, 242
Orthogonal quadratic forms, 104
Orthogonal transformations, 54
Orthogonality property, 558,

559, 561
Outlier, 326, 330, 348
Outlier in the residuals, 331
Over-defined model, 503
Overparameterized, 273

Parameter, 2
Parameter effects curvature, 501
Partial hypotheses, 554, 559
Partial regression coefficient, 76
Partial regression leverage plots,

359, 400
Partial sum of squares, 122, 130,

131, 134, 560
Polynomial models, 132, 235,

236, 250, 400, 485, 515,
520

cubic, 239
degree of, 250

first degree, 250, 251
higher order, 236, 251
interaction term, 252
order of, 250
risk of over fitting, 256
second degree, 252, 253, 520
second-order, 236
third degree, 255

Population marginal means, 564,
566, 610

Potentially influential, 331
Power family of transformations,

399, 408
Power of a test, 118
Precision
measures of, 11

Predicted values, 6
Prediction, 6, 90, 175, 176, 206,

207, 249
Prediction error, 14
Prediction interval, 136, 176
PRESS statistic, 230
Principal component, 436, 438,

447, 471, 473, 475, 476
Principal component analysis,

61, 64, 433, 447, 455,
463, 466, 471, 479, 482,
483

Principal component regression,
433, 445, 446, 450, 455,
463, 466, 476, 479, 483

Principal component regression
estimates, 451

Principal component scores, 64
Principal components, 64
Principle of parsimony, 220
Prior information, 250
Probability density function, 77,

86, 87
Probability distribution, 115
Probit analysis, 492
Probit transformation, 404
Problem areas
collinearity, 326
influential data points, 326
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misspecified model, 326
near-linear dependencies,
326

outliers, 326
PROC GLM, 283, 581
PROC MIXED, 588, 589
PROC REG, 211
Product moment correlation, 50
Projection, 55, 186, 187, 437
Pure error, 143, 146, 241
Pure error sum of squares, 241
Pythagorean theorem, 47, 189

Q, hypothesis sum of squares,
120, 126

Quadratic forms, 101, 102
distribution of, 115
expectations of, 113

Quadratic model, 236
Quantitative variables
as class variables, 270

R-notation, 129
RANDOM statement, 581, 583,

607
Random vectors, 77, 82, 86
linear functions of, 82
linear transformation, 83

Randomized complete block
design, 577, 579, 593

Recursive residuals, 343, 344
Reduced model, 126
Reference cell model, 280
Regression
through the origin, 21

Regression coefficients
properties of, 87

Regression diagnostics, 341
Regression sum of squares, 110
Relative efficiency, 420
REML, 589
Reparameterize, 192, 198, 244,

273
Residual, 3, 6, 7
Residual mean square, 220, 222

Residuals vector, 81, 187
Response curve modeling, 249
Restricted maximum likelihood,

573, 574, 589, 616
Ridge regression, 445, 446, 461
Robust regression, 326
Row marker, 438, 442
RSQUARE method, 211
RSTUDENT, 342
Runs test, 353
normal approximation, 353

Sample-based selection, 209
Satterthwaite approximation,

582, 592, 609, 616
Satterthwaite option, 616
SBC criterion, 220, 225, 589
Scalar, 39
Scalar multiplication, 42
Scaled independent variables,

434, 435, 447, 471
Scheffé joint prediction intervals,

143
Scheffé method, 138, 172, 507
Second-degree polynomial

model, 250
Sequential hypotheses, 554, 559
Sequential sum of squares, 131,

132, 197, 559
Shapiro–Francia test for

normality, 359
Significance level to enter, 214
Significance level to stay, 214
SIMEX estimator, 337
Simultaneous confidence

statements, 137
Singular value decomposition,

61, 435, 437, 447, 471
Singular values, 61
Singular vectors, 61, 63
Skewness coefficient, 327
Slope, 2
Space, 184
Space, n-dimensional, 184
Spatial relationship, 54



SUBJECT INDEX 657

Split-plot design, 579, 593
SS(Model), 108
SS(Regr), 110, 451
SS(Res), 108
Standardized residual, 342
Steepest descent method, 497
Stein shrinkage, 445
Stepwise regression methods,

213, 467
warnings, 219

Stepwise selection, 214, 215, 218,
468

Stopping rules, 206, 214, 220
Studentized residual, 342
Subset, 213
Subset model, 205, 209
Subset size
criteria for choice of, 220

Subspace, 48, 49, 184, 187
Sum of squares
corrected, 8
model, 21, 108
of a linear contrast, 102
residual, 21, 108
uncorrected, 7

Symmetry, 56

t-statistic, 117
t-test, 17
Testable hypothesis, 284, 546,

553, 559
Testing equality of variances, 291
Transformation, 397
arcsin, 404, 408
Box–Cox, 409, 428
Box–Tidwell, 400
ladder of, 399
logarithmic, 411
logit, 404
one-bend, 399
power family, 398, 399, 400,
409, 509

probit, 404
to improve normality, 327,
409

to simplify relationships,
398, 399

to stabilize variance, 328,
407, 409

two-bend, 398, 404
Trigonometric models, 235, 245,

485
Trigonometric regression, 245
Two-way classified data, 284
Type I hypotheses, 553
Type III hypotheses, 554

Unbalanced data, 545, 593
Uniquely estimated, 283
Univariate confidence intervals,

135, 171, 176
Uses of regression, 206

Validation, 230
Validity of assumptions, 326
Variable
dependent, 1
independent, 1

Variable selection, 205, 206
effects of, 208
error bias, 209

Variance
heterogeneous, 29, 328, 398
of linear functions, 11, 22

Variance component problems,
573

Variance components, 575
Variance decomposition

proportions, 373
for linear functions, 376

Variance inflation factor, VIF,
372, 473

Variance of
adjusted treatment means,
300

contrasts, 86
estimates, 12, 13
mean, 85
predictions, 14

Variance–covariance
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of linear transformation, 83
of regression coefficients, 88
of residuals, 90

Variances, heterogeneous, 398
Vector, 39
addition, 48
geometric interpretation, 46
length of, 47
space defined by, 47

Vectors
linearly independent, 48–50
orthogonal, 49, 54, 435

VIF, Variance inflation factor,
473

Wald methodology, 500, 514
Wald statistic, 500
Weber, J. B., 318, 572
Weibull probability distribution,

492, 524
Weighted least squares, 328, 397,

413–415, 507, 552

X-space, 184
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