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PREFACE

This text is a new and improved edition of Rawlings (1988). It is the out-
growth of several years of teaching an applied regression course to graduate
students in the sciences. Most of the students in these classes had taken
a two-semester introduction to statistical methods that included experi-
mental design and multiple regression at the level provided in texts such
as Steel, Torrie, and Dickey (1997) and Snedecor and Cochran (1989). For
most, the multiple regression had been presented in matrix notation.

The basic purpose of the course and this text is to develop an understand-
ing of least squares and related statistical methods without becoming exces-
sively mathematical. The emphasis is on regression concepts, rather than on
mathematical proofs. Proofs are given only to develop facility with matrix
algebra and comprehension of mathematical relationships. Good students,
even though they may not have strong mathematical backgrounds, quickly
grasp the essential concepts and appreciate the enhanced understanding.
The learning process is reinforced with continuous use of numerical exam-
ples throughout the text and with several case studies. Some numerical
and mathematical exercises are included to whet the appetite of graduate
students.

The first four chapters of the book provide a review of simple regression
in algebraic notation (Chapter 1), an introduction to key matrix operations
and the geometry of vectors (Chapter 2), and a review of ordinary least
squares in matrix notation (Chapters 3 and 4). Chapter 4 also provides
a foundation for the testing of hypotheses and the properties of sums of
squares used in analysis of variance. Chapter 5 is a case study giving a
complete multiple regression analysis using the methods reviewed in the
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first four chapters. Then Chapter 6 gives a brief geometric interpretation
of least squares illustrating the relationships among the data vectors, the
link between the analysis of variance and the lengths of the vectors, and
the role of degrees of freedom. Chapter 7 discusses the methods and crite-
ria for determining which independent variables should be included in the
models. The next two chapters include special classes of multiple regres-
sion models. Chapter 8 introduces polynomial and trigonometric regression
models. This chapter also discusses response curve models that are linear
in the parameters. Class variables and the analysis of variance of designed
experiments (models of less than full rank) are introduced in Chapter 9.

Chapters 10 through 14 address some of the problems that might be
encountered in regression. A general introduction to the various kinds of
problems is given in Chapter 10. This is followed by discussions of regression
diagnostic techniques (Chapter 11), and scaling or transforming variables
to rectify some of the problems (Chapter 12). Analysis of the correlational
structure of the data and biased regression are discussed as techniques
for dealing with the collinearity problem common in observational data
(Chapter 13). Chapter 14 is a case study illustrating the analysis of data
in the presence of collinearity.

Models that are nonlinear in the parameters are presented in Chapter
15. Chapter 16 is another case study using polynomial response models,
nonlinear modeling, transformations to linearize, and analysis of residuals.
Chapter 17 addresses the analysis of unbalanced data. Chapter 18 (new
to this edition) introduces linear models that have more than one random
effect. The ordinary least squares approach to such models is given. This is
followed by the definition of the variance—covariance matrix for such models
and a brief introduction to mixed effects and random coefficient models.
The use of iterative maximum likelihood estimation of both the variance
components and the fixed effects is discussed. The final chapter, Chapter
19, is a case study of the analysis of unbalanced data.

We are grateful for the assistance of many in the development of this
book. Of particular importance have been the dedicated editing of the ear-
lier edition by Gwen Briggs, daughter of John Rawlings, and her many
suggestions for improvement. It is uncertain when the book would have
been finished without her support. A special thanks goes to our former
student, Virginia Lesser, for her many contributions in reading parts of the
manuscript, in data analysis, and in the enlistment of many data sets from
her graduate student friends in the biological sciences. We are indebted to
our friends, both faculty and students, at North Carolina State University
for bringing us many interesting consulting problems over the years that
have stimulated the teaching of this material. We are particularly indebted
to those (acknowledged in the text) who have generously allowed the use of
their data. In this regard, Rick Linthurst warrants special mention for his
stimulating discussions as well as the use of his data. We acknowledge the
encouragement and valuable discussions of colleagues in the Department
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of Statistics at NCSU, and we thank Matthew Sommerville for checking
answers to the exercises. We wish to thank Sharon Sullivan and Dawn
Haines for their help with KTEX. Finally, we want to express appreciation
for the critical reviews and many suggestions provided for the first edi-
tion by the Wadsworth Brooks/Cole reviewers: Mark Conaway, University
of Towa; Franklin Graybill, Colorado State University; Jason Hsu, Ohio
State University; Kenneth Koehler, lowa State University; B. Lindsay, The
Pennsylvania State University; Michael Meridith, Cornell University; M.
B. Rajarshi, University of Poona (India); Muni Srivastava, University of
Toronto; and Patricia Wahl, University of Washington; and for the second
edition by the Springer-Verlag reviewers.

Acknowledgment is given for the use of material in the appendix tables.
Appendix Table A.7 is reproduced in part from Tables 4 and 6 of Durbin
and Watson (1951) with permission of the Biometrika Trustees. Appendix
Table A.8 is reproduced with permission from Shapiro and Francia (1972),
Journal of the American Statistical Association. The remaining appendix
tables have been computer generated by one of the authors. We gratefully
acknowledge permission of other authors and publishers for use of material
from their publications as noted in the text.

Note to the Reader

Most research is aimed at quantifing relationships among variables that
either measure the end result of some process or are likely to affect the
process. The process in question may be any biological, chemical, or phys-
ical process of interest to the scientist. The quantification of the process
may be as simple as determining the degree of association between two
variables or as complicated as estimating the many parameters of a very
detailed nonlinear mathematical model of the system.

Regardless of the degree of sophistication of the model, the most com-
monly used statistical method for estimating the parameters of interest is
the method of least squares. The criterion applied in least squares es-
timation is simple and has great intuitive appeal. The researcher chooses
the model that is believed to be most appropriate for the project at hand.
The parameters for the model are then estimated such that the predictions
from the model and the observed data are in as good agreement as possible
as measured by the least squares criterion, minimization of the sum of
squared differences between the predicted and the observed points.

Least squares estimation is a powerful research tool. Few assumptions
are required and the estimators obtained have several desirable properties.
Inference from research data to the true behavior of a process, however,
can be a difficult and dangerous step due to unrecognized inadequacies
in the data, misspecification of the model, or inappropriate inferences of
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causality. As with any research tool it is important that the least squares
method be thoroughly understood in order to eliminate as much misuse or
misinterpretation of the results as possible. There is a distinct difference
between understanding and pure memorization. Memorization can make a
good technician, but it takes understanding to produce a master. A discus-
sion of the geometric interpretation of least squares is given to enhance
your understanding. You may find your first exposure to the geometry of
least squares somewhat traumatic but the visual perception of least squares
is worth the effort. We encourage you to tackle the topic in the spirit in
which it is included.

The general topic of least squares has been broadened to include statis-
tical techniques associated with model development and testing. The
backbone of least squares is the classical multiple regression analysis using
the linear model to relate several independent variables to a response or
dependent variable. Initially, this classical model is assumed to be appro-
priate. Then methods for detecting inadequacies in this model and possible
remedies are discussed.

The connection between the analysis of variance for designed experiments
and multiple regression is developed to build the foundation for the analy-
sis of unbalanced data. (This also emphasizes the generality of the least
squares method.) Interpretation of unbalanced data is difficult. It is impor-
tant that the application of least squares to the analysis of such data be
understood if the results from computer programs designed for the analysis
of unbalanced data are to be used correctly.

The objective of a research project determines the amount of effort to
be devoted to the development of realistic models. If the intent is one of
prediction only, the degree to which the model might be considered realistic
is immaterial. The only requirement is that the predictions be adequately
precise in the region of interest. On the other hand, realism is of primary
importance if the goal is a thorough understanding of the system. The
simple linear additive model can seldom be regarded as a realistic model.
It is at best an approximation of the true model. Almost without exception,
models developed from the basic principles of a process will be nonlinear in
the parameters. The least squares estimation principle is still applicable but
the mathematical methods become much more difficult. You are introduced
to nonlinear least squares regression methods and some of the more
common nonlinear models.

Least squares estimation is controlled by the correlational structure ob-
served among the independent and dependent variables in the data set.
Observational data, data collected by observing the state of nature ac-
cording to some sampling plan, will frequently cause special problems for
least squares estimation because of strong correlations or, more generally,
near-linear dependencies among the independent variables. The serious-
ness of the problems will depend on the use to be made of the analyses.
Understanding the correlational structure of the data is most helpful in in-
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terpreting regression results and deciding what inferences might be made.
Principal component analysis is introduced as an aid in characterizing the
correlational structure of the data. A graphical procedure, Gabriel’s bi-
plot, is introduced to help visualize the correlational structure. Principal
component analysis also serves as an introduction to biased regression
methods. Biased regression methods are designed to alleviate the delete-
rious effects of near-linear dependencies (among the independent variables)
on ordinary least squares estimation.

Least squares estimation is a powerful research tool and, with modern
low cost computers, is readily available. This ease of access, however, also
facilitates misuse. Proper use of least squares requires an understanding of
the basic method and assumptions on which it is built, and an awareness
of the possible problems and their remedies. In some cases, alternative
methods to least squares estimation might be more appropriate. It is the
intent of this text to convey the basic understanding that will allow you to
use least squares as an effective research tool.

The data sets used in this text are available on the internet at

http://www.stat.ncsu.edu/publications/rawlings/applied least_squares
or through a link at the Springer-Verlag page. The “readme” file explains
the contents of each data set.

Raleigh, North Carolina John O. Rawlings
March 4, 1998 Sastry G. Pantula
David A. Dickey
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1

REVIEW OF SIMPLE
REGRESSION

This chapter reviews the elementary regression results
for a linear model in one variable. The primary purpose
is to establish a common notation and to point out the
need for matrix notation. A light reading should suffice
for most students.

Modeling refers to the development of mathematical expressions that
describe in some sense the behavior of a random variable of interest. This
variable may be the price of wheat in the world market, the number of
deaths from lung cancer, the rate of growth of a particular type of tumor,
or the tensile strength of metal wire. In all cases, this variable is called the
dependent variable and denoted with Y. A subscript on Y identifies the
particular unit from which the observation was taken, the time at which
the price was recorded, the county in which the deaths were recorded, the
experimental unit on which the tumor growth was recorded, and so forth.
Most commonly the modeling is aimed at describing how the mean of the
dependent variable £(Y) changes with changing conditions; the variance
of the dependent variable is assumed to be unaffected by the changing
conditions.

Other variables which are thought to provide information on the behavior
of the dependent variable are incorporated into the model as predictor or
explanatory variables. These variables are called the independent vari-
ables and are denoted by X with subscripts as needed to identify different
independent variables. Additional subscripts denote the observational unit
from which the data were taken. The Xs are assumed to be known con-
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stants. In addition to the Xs, all models involve unknown constants, called
parameters, which control the behavior of the model. These parameters
are denoted by Greek letters and are to be estimated from the data.

The mathematical complexity of the model and the degree to which
it is a realistic model depend on how much is known about the process
being studied and on the purpose of the modeling exercise. In preliminary
studies of a process or in cases where prediction is the primary objective,
the models usually fall into the class of models that are linear in the
parameters. That is, the parameters enter the model as simple coefficients
on the independent variables or functions of the independent variables.
Such models are referred to loosely as linear models. The more realistic
models, on the other hand, are often nonlinear in the parameters. Most
growth models, for example, are nonlinear models. Nonlinear models fall
into two categories: intrinsically linear models, which can be linearized
by an appropriate transformation on the dependent variable, and those
that cannot be so transformed. Most of the discussion is devoted to the
linear class of models and to those nonlinear models that are intrinsically
linear. Nonlinear models are discussed in Section 12.2 and Chapter 15.

1.1 The Linear Model and Assumptions

The simplest linear model involves only one independent variable and states
that the true mean of the dependent variable changes at a constant rate
as the value of the independent variable increases or decreases. Thus, the
functional relationship between the true mean of Y;, denoted by £(Y;), and
X is the equation of a straight line:

E(Y;) = Bo + 1 Xi. (L.1)

Bo is the intercept, the value of £(Y;) when X = 0, and ; is the slope of
the line, the rate of change in £(Y;) per unit change in X.

The observations on the dependent variable Y; are assumed to be random
observations from populations of random variables with the mean of each
population given by £(Y;). The deviation of an observation Y; from its
population mean £(Y;) is taken into account by adding a random error ¢;
to give the statistical model

Y = Bo + (1 X + €. (1.2)

The subscript ¢ indicates the particular observational unit, ¢ = 1,2,...,n.
The X; are the n observations on the independent variable and are assumed
to be measured without error. That is, the observed values of X are assumed
to be a set of known constants. The Y; and X; are paired observations; both
are measured on every observational unit.

Model

Assumptions
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The random errors ¢; have zero mean and are assumed to have common
variance 02 and to be pairwise independent. Since the only random element
in the model is ¢;, these assumptions imply that the Y; also have common
variance o2 and are pairwise independent. For purposes of making tests
of significance, the random errors are assumed to be normally distributed,
which implies that the Y; are also normally distributed. The random error
assumptions are frequently stated as

€ ~ NID(0,0?), (1.3)

where NID stands for “normally and independently distributed.” The quan-
tities in parentheses denote the mean and the variance, respectively, of the
normal distribution.

1.2 Least Squares Estimation

The simple linear model has two parameters Gy and (1, which are to be
estimated from the data. If there were no random error in Y;, any two data
points could be used to solve explicitly for the values of the parameters.
The random variation in Y, however, causes each pair of observed data
points to give different results. (All estimates would be identical only if the
observed data fell exactly on the straight line.) A method is needed that
will combine all the information to give one solution which is “best” by
some criterion.

The least squares estimation procedure uses the criterion that the
solution must give the smallest possible sum of squared deviations of the
observed Y; from the estimates of their true means provided by the solu-
tion. Let By and (1 be numerical estimates of the parameters Gy and (1,
respectively, and let

Y; = Bo + B X, (1.4)

be the estimated mean of Y for each X;, ¢ = 1,...,n. Note that }/}Z is ob-
tained by substituting the estimates for the parameters in the functional
form of the model relating £(Y;) to X;, equation 1.1. The least squares prin-
ciple chooses BO and 31 that minimize the sum of squares of the residuals,

SS(Res):
SS(Res) = Y (Y- T

= > e, (1.5)

where e; = (V; — }A/Z) is the observed residual for the ¢th observation. The
summation indicated by Y is over all observations in the data set as indi-

Least Squares
Criterion
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cated by the index of summation, ¢ = 1 to n. (The index of summation is
omitted when the limits of summation are clear from the context.)

The estimators for 5y and (1 are obtained by using calculus to find the
values that minimize SS(Res). The derivatives of SS(Res) with respect to
BO and 31 in turn are set equal to zero. This gives two equations in two
unknowns called the normal equations:

n(Bo)+ (Y Xbh = YV
O x)Bo+ O X5 > XY (1.6)

Solving the normal equations simultaneously for BO and /73’\1 gives the esti-
mates of §; and [y as

5 = X -X)(vi-Y) _ 2T
S(X; - X)? pEH

Go = Y-BX. (1.7)

Note that z; = (X; — X) and y; = (Y; — Y) denote observations expressed
as deviations from their sample means X and Y, respectively. The more
convenient forms for hand computation of sums of squares and sums of
products are

X;)?
> _ Yoy 2X)
dowl = YoxI-=
X Y;
Sew = YXi- % (1.8)
Thus, the computational formula for the slope is

XY — DIROOND!

-~

1 (1.9)
These estimates of the parameters give the regression equation
Vi = Bo+ B X (1.10)

The computations for the linear regression analysis are illustrated using
treatment mean data from a study conducted by Dr. A. S. Heagle at North
Carolina State University on effects of ozone pollution on soybean yield
(Table 1.1). Four dose levels of ozone and the resulting mean seed yield of
soybeans are given. The dose of ozone is the average concentration (parts
per million, ppm) during the growing season. Yield is reported in grams
per plant.

Example 1.1
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TABLE 1.1. Mean yields of soybean plants (gms per plant) obtained in response
to the indicated levels of ozone exposure over the growing season. (Data courtesy
of Dr. A. S. Heagle, USDA and North Carolina State University.)

X Y

Ozone (ppm) Yield (gm/plt)

.02 242

.07 237

A1 231

15 201

X, = .35 Y= 911
X = .0875 Y = 227.75

S X2 = .0399 S Y2 = 208,495
S XY = 76.99

Assuming a linear relationship between yield and ozone dose, the simple
linear model, described by equation 1.2, is appropriate. The estimates of
0Bo and (7 obtained from equations 1.7 and 1.9 are

- 76.99 — (3201
ﬁl = T (352 —293.531
0399 — (22
Bo = 227.75— (—293.531)(.0875) = 253.434. (1.11)

The least squares regression equation characterizing the effects of ozone
on the mean yield of soybeans in this study, assuming the linear model is
correct, is

~

Y; = 253.434 — 293.531X;. (1.12)

The interpretation of 51 = —294 is that the mean yield is expected to
decrease, since the slope is negative, by 294 grams per plant with each
1 ppm increase in ozone, or 2.94 grams with each .01 ppm increase in
ozone. The observed range of ozone levels in the experiment was .02 ppm
to .15 ppm. Therefore, it would be an unreasonable extrapolation to expect
this rate of decrease in yield to continue if ozone levels were to increase, for
example, to as much as 1 ppm. It is safe to use the results of regression only
within the range of values of the independent variable. The intercept, 8y =
253 grams, is the value of Y where the regression line crosses the Y-axis.
In this case, since the lowest dose is .02 ppm, it would be an extrapolation
to interpret Gy as the estimate of the mean yield when there is no ozone.
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TABLE 1.2. Observed values, estimated values, and residuals for the linear re-
gression of soybean yield on ozone dosage.

Y; Y; e e?

242 247.563 —5.563 30.947
237 232.887 4.113 16.917
231 221.146 9.854 97.101
201  209.404 —8.404 70.627

e =00 Y e2=215592

1.3 Predicted Values and Residuals

The regression equation from Example 1.1 can be evaluated to obtain es-
timates of the mean of the dependent variable Y at chosen levels of the
independent variable. Of course, the validity of such estimates is depen-
dent on the assumed model being correct, or at least a good approximation
to the correct model within the limits of the pollution doses observed in
the study. N

Each quantity computed from the fitted regression line Y; is used as both
(1) the estimate of the population mean of ¥ for that particular value of
X and (2) the prediction of the value of Y one might obtain on some
future observation at that level of X. Hence, the 172 are referred to both
as estimates and as predicted values. On occasion we write Y p,cq;, to
clearly imply the second interpretation.

If the observed values Y; in the data set are compared with their cor-
responding values Y; computed from the regression equation, a measure
of the degree of agreement between the model and the data is obtained.
Remember that the least squares principle makes this agreement as “good
as possible” in the least squares sense. The residuals

e =Y —Y; (1.13)

measure the discrepancy between the data and the fitted model. The results
for Example 1.1 are shown in Table 1.2. Notice that the residuals sum to
zero, as they always will when the model includes the constant term (.
The least squares estimation procedure has minimized the sum of squares
of the e;. That is, there is no other choice of values for the two parameters
Bo and B3; that will provide a smaller 3 2.

A plot of the regression equation and the data from Example 1.1 (Fig-
ure 1.1) provides a visual check on the arithmetic and the adequacy with
which the equation characterizes the data. The regression line crosses the
Y-axis at the value of ﬂo = 253.4. The negative sign on ﬁl is reflected in

Estimates and
Predictions

Residuals

Example 1.2
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FIGURE 1.1. Regression of soybean yield on ozone level.

the negative slope. Inspection of the plot shows that the regression line
decreases to approximately Y = 223 when X = .1. This is a decrease of
30 grams of yield over a .1 ppm increase in ozone, or a rate of change
of —300 grams in Y for each unit increase in X. This is reasonably close
to the computed value of —293.5 grams per ppm. Figure 1.1 shows that
the regression line “passes through” the data as well as could be expected
from a straight-line relationship. The pattern of the deviations from the re-
gression line, however, suggests that the linear model may not adequately
represent the relationship. [ ]

1.4 Analysis of Variation in the Dependent
Variable

The residuals are defined in equation 1.13 as the deviations of the observed
values from the estimated values provided by the regression equation. Al-
ternatively, each observed value of the dependent variable Y; can be written
as the sum of the estimated population mean of Y for the given value of
X and the corresponding residual:

Y; =Y + e (1.14)

Y is the part of the observation Y; “accounted for” by the model, whereas
e; reflects the “unaccounted for” part.

The total uncorrected sum of squares of Y;, SS(Total yncorr) =
ZY?, can be similarly partitioned. Substitute ﬁ + e; for each Y; and

SS(Model)
and SS(RES)



8 1. REVIEW OF SIMPLE REGRESSION

expand the square. Thus,

YV = Y Vite)

= D V) e

= SS(Model) + SS(Res). (1.15)

(The cross-product term }/}iei is zero, as can readily be shown with the
matrix notation of Chapter 3. Also see Exercise 1.22.) The term SS(Model)
is the sum of squares “accounted for” by the model; SS(Res) is the “un-
accounted for” part of the sum of squares. The forms SS(Model) = 3 2-2

and SS(Res) = >~ e? show the origins of these sums of squares. The more
convenient computational forms are
SS(Model) nY” 52y (X - X)?
SS(Res) = SS(Total — SS(Model). (1.16)

uncorr)

The partitioning of the total uncorrected sum of squares can be reexpressed
in terms of the corrected sum of squares by subtracting the sum of
squares due to correction for the mean, the correction factor n?z, from
each side of equation 1.15:

SS(Total —nY = [SS(Model) — n?Q] + SS(Res)

uncorr)

or, using equation 1.16,

Youi o= BY (Gi-X)’+)

= SS(Regr) + SS(Res). (1.17)

Notice that lower case y is the deviation of Y from Y so that > y? is the
corrected total sum of squares. Henceforth, SS(Total) is used to denote
the corrected sum of squares of the dependent variable. Also notice that
SS(Model) denotes the sum of squares attributable to the entire model,
whereas SS(Regr) denotes only that part of SS(Model) that exceeds the
correction factor. The correction factor is the sum of squares for a model
that contains only the constant term [3y. Such a model postulates that the
mean of Y is a constant, or is unaffected by changes in X. Thus, SS(Regr)
measures the additional information provided by the independent variable.

The degrees of freedom associated with each sum of squares is determined
by the sample size n and the number of parameters p’ in the model. [We
use p’ to denote the number of parameters in the model and p (without
the prime) to denote the number of independent variables; p’ = p+ 1 when
the model includes an intercept as in equation 1.2.] The degrees of freedom
associated with SS(Model) is p’ = 2; the degrees of freedom associated with
SS(Regr) is always 1 less to account for subtraction of the correction factor,

Degrees of
Freedom
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TABLE 1.3. Partitions of the degrees of freedom and sums of squares for yield of
soybeans exposed to ozone (courtesy of Dr. A. S. Heagle, N.C. State University).

Source of Degrees of Mean
Variation Freedom Sum of Squares Square
Total yncorr n =4 S YZ=208,495.00

Corr. factor 1 nY” = 207,480.25
Totaleorr Tn—1=3 Syt = T 1,014.75
Due to model p =2 Y2 = 208,279.39

Corr. factor 1 207,480.25
Duetoregr. p' —1=1 S.V2-n¥ = 799.14  799.14
Residual n—p =2 Ye?= 215.61 107.81

TABLE 1.4. Analysis of variance of yield of soybeans exposed to ozone pollution
(courtesy of Dr. A. S. Heagle, N.C. State University).

Source d.f. SS MS
Total 3 1014.75
Due to regr. 1 799.14 799.14
Residual 2 215.61 107.81

which has 1 degree of freedom. SS(Res) will contain the (n — p’) degrees of
freedom not accounted for by SS(Model). The mean squares are found by
dividing each sum of squares by its degrees of freedom.

The partitions of the degrees of freedom and sums of squares for the ozone
data from Example 1.1 are given in Table 1.3. The definitional formulae
for the sums of squares are included. An abbreviated form of Table 1.3,
omitting the total uncorrected sum of squares, the correction factor, and
SS(Model), is usually presented as the analysis of variance table (Table 1.4).

|

One measure of the contribution of the independent variable(s) in the
model is the coefficient of determination, denoted by R?:

_ SS(Regr)
)L/
This is the proportion of the (corrected) sum of squares of Y attributable to

the information obtained from the independent variable(s). The coefficient
of determination ranges from zero to one and is the square of the product

R? (1.18)

Example 1.3

Coefficient of
Determination
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moment correlation between Y; and 172 If there is only one independent
variable, it is also the square of the correlation coefficient between Y; and
X;.

The coefficient of determination for the ozone data from Example 1.1 is

s 799.14

The interpretation of R? is that 79% of the variation in the dependent
variable, yield of soybeans, is “explained” by its linear relationship with
the independent variable, ozone level. Caution must be exercised in the
interpretation given to the phrase “explained by X.” In this example, the
data are from a controlled experiment where the level of ozone was being
controlled in a properly replicated and randomized experiment. It is there-
fore reasonable to infer that any significant association of the variation in
yield with variation in the level of ozone reflects a causal effect of the pol-
lutant. If the data had been observational data, random observations on
nature as it existed at some point in time and space, there would be no
basis for inferring causality. Model-fitting can only reflect associations in
the data. With observational data there are many reasons for associations
among variables, only one of which is causality. [ |

If the model is correct, the residual mean square is an unbiased estimate
of 02, the variance among the random errors. The regression mean square
is an unbiased estimate of 0% + 32(>_?), where Y. 22 = Y (X; — X)2.
These are referred to as the mean square expectations and are denoted
by £[MS(Res)] and E[MS(Regr)]. Notice that MS(Regr) is estimating the
same quantity as MS(Res) plus a positive quantity that depends on the
magnitude of 41 and 3~ 22. Thus, any linear relationship between Y and
X, where 81 # 0, will on the average make MS(Regr) larger than MS(Res).
Comparison of MS(Regr) to MS(Res) provides the basis for judging the
importance of the relationship.

The estimate of o2 is denoted by s?. For the data of Example 1.1,
MS(Res) = s? = 107.81 (Table 1.4). MS(Regr) = 799.14 is much larger
than s2, which suggests that 3; is not zero. Testing of the null hypothesis
that $; = 0 is discussed in Section 1.6. |

Example 1.4

Expected
Mean Squares

Example 1.5
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1.5 Precision of Estimates

Any quantity computed from random variables is itself a random variable.
Thus, Y, }77 e, Bo, and (; are random variables computed from the Y;.
Measures of precision, variances or standard errors of the estimates, provide
a basis for judging the reliability of the estimates.

The computed regression coefficients, the Y;, and the residuals are all
linear functions of the Y;. Their variances can be determined using the
basic definition of the variance of a linear function. Let U = " a,;Y; be
an arbitrary linear function of the random variables Y;, where the a; are
constants. The general formula for the variance of U is

Var(U) = Z a?Var(Y;) + Z Zi;éjaiajCov(Y?;7 Y;), (1.19)

where the double summation is over all n(n — 1) possible pairs of terms
where ¢ and j are not equal. Cov(-,-) denotes the covariance between the
two variables indicated in the parentheses. (Covariance measures the ten-
dency of two variables to increase or decrease together.) When the random
variables are independent, as is assumed in the usual regression model, all
of the covariances are zero and the double summation term disappears. If,
in addition, the variances of the random variables are equal, again as in
the usual regression model where Var(Y;) = o2 for all 4, the variance of the
linear function reduces to

Var(U) = () a?)o”. (1.20)

Variances of linear functions play an extremely important role in every
aspect of statistics. Understanding the derivation of variances of linear
functions will prove valuable; for this reason, we now give several examples.

The variance of the sample mean of n observations is derived. The co-
efficient a; on each Y; in the sample mean is 1/n. If the Y; have common
variance o2 and zero covariances (for example, if they are independent),
equation 1.20 applies. The sum of squares of the coefficients is

2
S = (1) 1
a; =n =
n n
and the variance of the mean becomes
2

Var(Y) = % (1.21)

which is the well-known result for the variance of the sample mean. [ |

Variance of
a Linear
Function

Example 1.6
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In this example, the variance is derived for a linear contrast of three
treatment means,

C=Y,+Ys—2Y3. (1.22)
If each mean is the average of n independent observations from the same
population, the variance of each sample mean is equal to Var(Y;) = o2/n

and all covariances are zero. The coefficients on the Y; are 1, 1, and -2.
Thus,

Var(C) = (1)?Var(Yy) + (1)?Var(Ys) + (—2)*Var(Y3)

= (1+1+4) (O:) =6 (f) . (1.23)

We now turn to deriving the variances of 31, [y, and Y;. To determine
the variance of (3; express

ho- =2 (129

as

o= (%) Yi+ (%) Yot <%> Yo, (1.25)

(See Exercise 1.16 for justification for replacing y; with ¥;.) The coefficient
on each Y; is z;/ Zx]{ which is a constant in the regression model. The
Y, are assumed to be independent and to have common variance o?. Thus,
the variance of (3; is

2 2 2
T1 2 T2 2 Tn 2
(m) ? *(m) ot +<2x$) ?

>} 2 o’
(29012)20 = 2%2 (1.26)

Determining the variance of the intercept

Var(B,)

Bo=Y -} X (1.27)

is a little more involved. The random vgiables in this linear function are
Y and f; the coefficients are 1 and (—X). Equation 1.19 can be used to
obtain the variance of (y:

Var(fy) = Var(Y) + (—X)?Var(B1) + 2(—X)Cov(Y, B1). (1.28)

Example 1.7

Variance
of 3,

Variance
of 3,
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It has been shown that the Var(Y) = o2/n and Var(ﬁl) =02/Y 22, but
Cov(Y ,/81) remains to be determined.

The covariance between two linear functions is only slightly more com-
plicated than the variance of a single linear function. Let U be the linear
function defined earlier with a; as coefficients and let W be a second linear
function of the same random variables using d; as coefficients:

U:Zam and W:de.

The covariance of U and W is given by

Cov(U,W) =D JaidiVar(Yi) + > 7 aid;Cov(¥;,Y;),  (1.29)

where the double summation is again over all n(n — 1) possible combina-
tions of different values of the subscripts. If the Y; are independent, the
covariances are zero and equation 1.29 reduces to

Cov(U, W) = a;d;Var(, (1.30)

Note that products of the corresponding coefficients are being used, whereas
the squares of the coefficients were used in obtaining the variance of a linear
function. R

Returning to the derivation of Var(3y), where U and W are Y and B1, we
note that the corresponding coefficients for each Y; are 1/n and x;/ Y- a3,

respectively. Thus, the covariance between Y and Bl is

> (3) ({ ;3) Var(v)
( > <§f’> =0, (1.31)

since Y x; = 0. Thus, the variance of BO reduces to

Var(By) = Var(Y)+ (X)*Var(53)
0’2 -2 0'2

= — Xi
n TS

- (711 + ZX$2> o’ (1.32)

Recall that Bo is the estimated mean of Y when X = 0, and thus Var(go)
can be thought of as the Var( ) for X = 0. The formula for Var(ﬂo) can

be used to obtain the variance of Y; for any given value of X; by replacing
X with (X; — X). Since

Cov(Y, 1)

Covariances
of Linear
Functions

Valjance
of B, (cont.)

Variance
of Yz
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we have

52
Var(V;) = [1 NG )2() } o2, (1.34)
n > z?

The variance of the fitted value attains its minimum of ¢?/n when the
regression equation is being evaluated at X; = X, and increases as the
value of X at which the equation is being evaluated moves away from X.
Equation 1.34 gives the appropriate variance when Y; is being used as the
estimate of the true mean Gy + (;X; of Y at the specific value X; of X.

Consider the problem of predicting some future observation Yy = ﬂo +
B1 X0 + €90, at a specific value X of X, where ¢q is assumed to be N(O a?),
independent of the current observations. Recall that YO = ﬂo + ﬂlXo is
used as an estimate of the mean By + 31 Xo of Yp. Since the best prediction
for €g is its mean zero, Yy is also used as the predictor of Yy. The variance
for prediction must take into account the fact that the quantity being
predicted is itself a random variable. The success of the prediction will
depend on how small the difference is between Yy and the future observation
Yp. The difference Yy — Yo is called the prediction error. The average
squared difference between Yy and Yy, £(Yy — Yp)?, is called the mean
squared error of prediction. If the model is correct and prediction is for
an individual in the same population from which the data were obtained,
so that £(Yp — Yp) = 0, the mean squared error is also the variance of
prediction. Assuming this to be the case, the variance for prediction
Var( pmdu) is the variance of the difference between Yy and the future
observation Yj:

Var(Vpred,) = Var(Yo - Yp)
Var(Yp) + o2

1 (Xo—X)?] »
= 14—+ ——5— . 1.
+ . + S22 o (1.35)

Comparing equation 1.35 with equation 1.34, where Xy is a particular X;,
we observe that the variance for prediction is the variance for estimation
of the mean plus the variance of the quantity being predicted.

The derived variances are the true variances; they depend on knowl-
edge of 2. Var(-) and ¢? are used to designate true variances. Estimated
variances are obtained by replacing o2 in the variance equations with an
estimate of o2. The residual mean square from the analysis provides an es-
timate of o2 if the correct model has been fitted. As shown later, estimates
of 02 that are not dependent on the correct regression model being used are
available in some cases. The estimated variances obtained by substituting
52 for 02 are denoted by s2(-), with the quantity in parentheses designating
the random variable to which the variance applies.

Variance of
Predictions
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TABLE 1.5. Summary of important formulae in simple regression.

15

Formula Estimate of (or formula for)
Bo=Y - B X Bo
Yi= o+ /1 X; E(Y)
e =Y - Y, €

SS(Total, ,0r,) = V2
SS(Total) = Y Y2 — (3 i)2/n
SS(Model) = n¥” + F2(Y 22)
SS(Regr) = F2(3 22)

SS(Res) = SS(Total) — SS(Regr)
R2 = SS(Regr)/SS(Total)
2(Br) = 82/ Y a?

2(Bo) = [L+ X/ D3] 8

~ 1i(xi-X)?
SQ(Y;') — {W 52

~ 1+ 2 +(Xo-X)?
*(Ypredy) = {Ww 5

Total uncorrected sum of squares
Total corrected sum of squares
Sum of squares due to model
Sum of squares due to X
Residual sum of squares
Coefficient of determination
Variance of 31

Variance of Bo

Variance of estimated mean at X;

Variance of prediction at X
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Table 1.5 provides a summary to this point of the important formulae in
linear regression with one independent variable.

For the ozone data from Example 1.1, s? = 107.81, n = 4, and Y 22 =
[.0399 — (.35)2/4] = .009275. Thus, the estimated variances for the linear
functions are:

s 107.81

26, = - =11, 623.281
s (B) S22 T 000275

_ {1+<~0875>2
T4 .009275
(Y = % (X1 ;.Y)Q 2
{(1 (.02Z .5875?2

St 1 (107.81) = 79.91.
1t 000275 }(078) 799

] (107.81) = 115.942

_|_

Making appropriate changes in the values of X; gives the variances of the
remaining Y;:

$2(Yy) = 30.51,
$2(Ys) = 32.84, and
$(Y)) = 72.35.

Note that }71 may also be used to predict the yield Y} of a future observation
at the ozone level Xg = X1 = .02. The variance for prediction of Yy would
be Var(Y;) increased by the amount o2. Thus, an estimated variance of
prediction for Y is 32(?1) + 52 = 187.72. Similarly, the estimated variance
for predictions of future yields at ozone levels 0.07, 0.11, and 0.15 are 138.32,
140.65, and 180.16, respectively. [ |

1.6 Tests of Significance and Confidence Intervals

The most common hypothesis of interest in simple linear regression is the
hypothesis that the true value of the linear regression coefficient, the slope,
is zero. This says that the dependent variable Y shows neither a linear
increase nor decrease as the independent variable changes. In some cases,
the nature of the problem will suggest other values for the null hypothesis.
The computed regression coefficients, being random variables, will never

Example 1.8

Tests of
Significance
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exactly equal the hypothesized value even when the hypothesis is true.
The role of the test of significance is to protect against being misled by the
random variation in the estimates. Is the difference between the observed
value of the parameter (3; and the hypothesized value of the parameter
greater than can be reasonably attributed to random variation? If so, the
null hypothesis is rejected.

To accommodate the more general case, the null hypothesis is written
as Hy : /1 = m, where m is any constant of interest and of course can be
equal to zero. The alternative hypothesis is H, : 51 # m, H, : /1 > m,
or H, : /1 < m depending on the expected behavior of ; if the null
hypothesis is not true. In the first case, H, : £1 # m is referred to as the
two-tailed alternative hypothesis (interest is in detecting departures of §;
from m in either direction) and leads to a two-tailed test of significance.
The latter two alternative hypotheses, H, : f1 > m and H, : 1 < m, are
one-tailed alternatives and lead to one-tailed tests of significance.

If the random errors in the model, the ¢;, are normally distributed, the
Y; and any linear function of the Y; will be normally distributed [see Searle

(1971)]. Thus, Bl is normally distributed with mean (; (61 is shown to be
unbiased in Chapter 3) and variance Var(ﬁl) If the null hypothesis that
(1 = m is true, then 31 —m is normally distributed with mean zero. Thus,

B —
5(31)

is distributed as Student’s ¢ with degrees of freedom determined by the
degrees of freedom in the estimate of o in the denominator. The com-
puted t-value is compared to the appropriate critical value of Student’s ¢,
(Appendix Table A), determined by the Type I error rate o and whether
the alternative hypothesis is one-tailed or two-tailed. The critical value of
Student’s ¢ for the two-tailed alternative hypothesis places probability a/2
in each tail of the distribution. The critical values for the one-tailed alter-
native hypotheses place probability « in only the upper or lower tail of the
distribution, depending on whether the alternative is 3y > m or 81 < m,
respectively.

t= (1.36)

The estimate of 3 for Heagle’s ozone data from Example 1.1 was 31 =
—293.53 with a standard error of s(81) = v/11,623.281 = 107.81. Thus, the
computed t-value for the test of Hy: 81 =0 is

—293.53
t —_— W —_— _2.72.

The estimate of o2 in this example has only two degrees of freedom. Using
the two-tailed alternative hypothesis and a = .05 gives a critical ¢-value of

Example 1.9
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t(.025,2) = 4.303. Since |t| < 4.303, the conclusion is that the data do not
provide convincing evidence that (; is different from zero.

In this example one might expect the increasing levels of ozone to depress
the yield of soybeans; that is, the slope would be negative if not zero. The
appropriate one-tailed alternative hypothesis would be H, : 81 < 0. For
this one-tailed test, the critical value of ¢ for o = .05 is t(g52) = 2.920.
Although the magnitude of the computed ¢ is close to this critical value,
strict adherence to the a = .05 size of test leads to the conclusion that
there is insufficient evidence in these data to infer a real (linear) effect of
ozone on soybean yield. (From a practical point of view, one would begin
to suspect a real effect of ozone and seek more conclusive data.) ]

In a similar manner, t-tests of hypotheses about 5y and any of the }A’, can
be constructed. In each case, the numerator of the t-statistic is the differ-
ence between the estimated value of the parameter and the hypothesized
value, and the denominator is the standard deviation (or standard error) of
the estimate. The degrees of freedom for Student’s ¢ is always the degrees
of freedom associated with the estimate of 0.

The F-statistic can be used as an alternative to Student’s ¢ for two-tailed
hypotheses about the regression coefficients. It was indicated earlier that
MS(Regr) is an estimate of 024 37 3~ 22 and that MS(Res) is an estimate of
o2, Tf the null hypothesis that 3; = 0 is true, both MS(Regr) and MS(Res)
are estimating 02. As 3 deviates from zero, MS(Regr) will become increas-
ingly larger (on the average) than MS(Res). Therefore, a ratio of MS(Regr)
to MS(Res) appreciably larger than unity would suggest that (1 is not zero.
This ratio of MS(Regr) to MS(Res) follows the F-distribution when the as-
sumption that the residuals are normally distributed is valid and the null
hypothesis is true.

For the ozone data of Example 1.1, the ratio of variances is

Fo MS(Regr)  799.14
~ MS(Res)  107.81

=7.41.

This can be compared to the critical value of the F-distribution with 1
degree of freedom in the numerator and 2 degrees of freedom in the denom-
inator, F( os5,1,2) = 18.51 for a = .05 (Appendix Table A.3), to determine
whether MS(Regr) is sufficiently larger than MS(Res) to rule out chance as
the explanation. Since F' = 7.41 < 18.51, the conclusion is that the data do
not provide conclusive evidence of a linear effect of ozone. The F-ratio with
1 degree of freedom in the numerator is the square of the corresponding
t-statistic. Therefore, the F' and the ¢ are equivalent tests for this two-tailed
alternative hypothesis. |

Example 1.10
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Confidence interval estimates of parameters are more informative
than point estimates because they reflect the precision of the estimates.
The 95% confidence interval estimate of 3; and [y are, respectively,

G+ t(.025,u)5(31) (1.37)

and

BO + t(.02571/)8(/§0)7 (138)

where v is the degrees of freedom associated with s2.

The 95% confidence interval estimate of 3, for Example 1.1 is
—293.53 £+ (4.303)(107.81)

or (=757, 170).

The confidence interval estimate indicates that the true value may fall
anywhere between —757 and 170. This very wide range conveys a high de-
gree of uncertainty (lack of confidence) in the point estimate 3; = —293.53.
Notice that the interval includes zero. This is consistent with the conclu-
sions from the t-test and the F-test that Hy : §;1 = 0 cannot be rejected.

The 95% confidence interval estimate of 3y is

253.43 + (4.303)(10.77)

or (207.1, 299.8). The value of By might reasonably be expected to fall
anywhere between 207 and 300 based on the information provided by this
study. |

In a similar manner, interval estimates of the true mean of Y for various
values of X are computed using Y; and their standard errors. Frequently,
these confidence interval estimates of £(Y;) are plotted with the regression
line and the observed data. Such graphs convey an overall picture of how
well the regression represents the data and the degree of confidence one
might place in the results. Figure 1.2 shows the results for the ozone exam-
ple. The confidence coefficient of .95 applies individually to the confidence
intervals on each estimated mean. Simultaneous confidence intervals are
discussed in Section 4.6.

The failure of the tests of significance to detect an effect of ozone on the
yield of soybeans is, in this case, a reflection of the lack of power in this
small data set. This lack of power is due primarily to the limited degrees of
freedom available for estimating o2. In defense of the research project from
which these data were borrowed, we must point out that only a portion of
the data (the set of treatment means) is being used for this illustration. The
complete data set from this experiment provides for an adequate estimate
of error and shows that the effects of ozone are highly significant. The
complete data are used at a later time.

Confidence
Intervals

Example 1.11
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FIGURE 1.2. The regression of soybean mean yield (grams per plant) on ozone
(ppm) showing the individual confidence interval estimates of the mean response.
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1.7 Regression Through the Origin

In some situations the regression line is expected to pass through the origin.
That is, the true mean of the dependent variable is expected to be zero when
the value of the independent variable is zero. Many growth models, for
example, would pass through the origin. The amount of chemical produced
in a system requiring a catalyst would be zero when there is no catalyst
present. The linear regression model is forced to pass through the origin by
setting 3y equal to zero. The linear model then becomes

}/i = ﬂle + €. (139)

There is now only one parameter to be estimated and application of the
least squares principle gives

KD X7 = XY, (1.40)
as the only normal equation to be solved. The solution is
3 = 2. XY

XXy

Both the numerator and denominator are now uncorrected sums of products
and squares. The regression equation becomes

(1.41)

Y = BiX;, (142)
and the residuals are defined as before,
=Y — Y, (1.43)

Unlike the model with an intercept, in the no-intercept model the sum of
the residuals is not necessarily zero.

The uncorrected sum of squares of Y can still be partitioned into the
two parts

SS(Model) = Y V7 (1.44)

and

SS(Res) = > (V; = V)2 =) el (1.45)

Since only one parameter is involved in determining XA@ SS(Model) has only
1 degree of freedom and cannot be further partitioned into the correction for
the mean and SS(Regr). For the same reason, the residual sum of squares
has (n—1) degrees of freedom. The residual mean square is an estimate of o2
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if the model is correct. The expectation of the MS(Model) is £[MS(Model)]
=02+ B2(3° X?). This is the same form as E[MS(Regr)] for a model with
an intercept except here the sum of squares for X is the uncorrected sum
of squares. N

The variance of 31 is determined using the rules for the variance of a
linear function (see equations 1.25 and 1.26). The coefficients on the Y;
for the no-intercept model are X;/ > X 32 With the same assumptions of

independence of the Y; and common variance o2, the variance of 3; is

Xl ’ X2 ’ Xn ’ 2
S X2 B S X2 +ot sx7) |°

o2

> ij. (1.46)
The divisor on o2, the uncorrected sum of squares for the independent
variable, will always be larger (usually much larger) than the corrected
sum of squares. Therefore, the estimate of /73’\1 in equation 1.41 will be much
more precise than the estimate in equation 1.9 when a no-intercept model
is appropriate. This results because one parameter, (3, is assumed to be
known. N

The variance of Y; is most easily obtained by viewing it as a linear func-
tion of (q:

Var(Bl)

Y, = X,/ (1.47)
Thus, the variance is

~

Var(¥;) = X?Var(3)

X2\ o
- (Z&z) o2 (1.48)

Estimates of the variances are obtained by substitution of s? for o2.

Regression through the origin is illustrated using data on increased risk
incurred by individuals exposed to a toxic agent. Such health risks are often
expressed as relative risk, the ratio of the rate of incidence of the health
problem for those exposed to the rate of incidence for those not exposed
to the toxic agent. A relative risk of 1.0 implies no increased risk of the
disease from exposure to the agent. Table 1.6 gives the relative risk to
individuals exposed to differing levels of dust in their work environments.
Dust exposure is measured as the average number of particles/ft3/year
scaled by dividing by 10°. By definition, the expected relative risk is 1.0
when exposure is zero. Thus, the regression line relating relative risk to

Example 1.12
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TABLE 1.6. Relative risk of exposure to dust for nine groups of individuals. Dust
exposure is reported in particles/ft* /year and scaled by dividing by 10°.

X = Dust Exposure Relative Risk Y = Relative Risk — 1
75 1.10 .10

100 1.05 .05

150 97 —.03

350 1.90 .90

600 1.83 .83

900 2.45 1.45

1,300 3.70 2.70

1,650 3.52 2.52

2,250 4.16 3.16

> X, =1,375 >V, =11.68

> X2 = 10,805,625 S Y2 = 27.2408

S X,Y; = 16,904

exposure should have an intercept of 1.0 or, equivalently, the regression
line relating Y = (relative risk — 1) to exposure should pass through the
origin. The variable Y and key summary statistics on X and Y are included
in Table 1.6.

Assuming a linear relationship and zero intercept, the point estimate of
the slope 3 of the regression line is

5 XY 16,904
YT X2 10,805,625
The estimated increase in relative risk is .00156 for each increase in dust

exposure of 1 million particles per cubic foot per year. The regression equa-
tion is

= .00156.

Y, = .00156X;.

When X; = 0, the value of )/}Z is zero and the regression equation has been
forced to pass through the origin.

The regression partitions each observation Y; into two parts; that ac-
counted for by the regression through the origin Y;, and the residual or
deviation from the regression line e; (Table 1.7). The sum of squares at-
tributable to the model,

SS(Model) = Y V2 = 26.4441,

and the sum of squares of the residuals,

SS(Res) = Z e? = 7967,
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TABLE 1.7. Y;, lA/i, and e; from linear regression through the origin of increase
in relative risk (Y = relative risk — 1) on exposure level.

Y Y €
.10 1173 —.0173
.05 .1564 —.1064

—.03 .2347 —.2647
.90 5475 .3525
.83 .9386 —.1086

1.45 1.4079 .0421

2.70 2.0337 .6663

2.52 2.5812 —.0612

3.16 3.5198 —.3598

SYZ=27.2408 Y V2 =26.4441 Y. €2 = .7967

TABLE 1.8. Summary analysis of variance for regression through the origin of
increase in relative risk on level of exposure to dust particles.

Source d.f. SS MS E(MS)
Totaluncorr n=9 27.2408
Due to model p=1 26.4441 26.4441 o% + 2> X2)
Residual n —p==8 71967 0996 o2

partition the total uncorrected sum of squares,

> VP =27.2408.

In practice, the sum of squares due to the model is more easily computed
as

SS(Model) = B%(fo)
= (.00156437)2(10,805, 625) = 26.4441.

The residual sum of squares is computed by difference. The summary anal-
ysis of variance, including the mean square expectations, is given in Ta-
ble 1.8.

When the no-intercept model is appropriate, MS(Res) is an estimate of
a2. MS(Model) is an estimate of o2 plus a quantity that is positive if 3 is
not zero. The ratio of the two mean squares provides a test of significance
for Hy : 1 = 0. This is an F-test with one and eight degrees of freedom,
if the assumption of normality is valid, and is significant beyond a = .001.
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There is clear evidence that the linear regression relating increased risk to
dust exposure is not zero.
The estimated variance of 3; is

~ 52 09958533

2 —10
- - — 92161 x 10
(B SSX2 10,805,625 *

or
s(B1) = 9.6 x 10~° = .000096.

Since each Y; is obtained by multiplying Bl by the appropriate X;, the
estimated variance of a Yj is

s2(Y;)

X7[s(B1)]
(92.161 x 10719 x?

if Z is being used as an estimate of the true mean of Y for that value of X.
If Y; is to be used for prediction of a future observation with dust exposure
X, then the variance for prediction is

~

P Vpreay = 8 +5°(Y)
= .09958 + (92.161 x 107 %) X 2.

The variances and the standard errors provide measures of precision of
the estimate and are used to construct tests of hypotheses and confidence
interval estimates.

The data and a plot of the fitted regression line are shown in Figure 1.3.
The 95% confidence interval estimates of the mean response £(Y;) are
shown as bands on the regression line in the figure. Notice that with re-
gression through the origin the confidence bands go to zero as the origin is
approached. This is consistent with the model assumption that the mean
of Y is known to be zero when X = 0. Although the fit appears to be
reasonable, there are suggestions that the model might be improved. The
three lowest exposures fall below the regression line and very near zero;
these levels of exposure may not be having as much impact as linear re-
gression through the origin would predict. In addition, the largest residual,
er = .6663, is particularly noticeable. It is nearly twice as large as the
next largest residual and is the source of over half of the residual sum of
squares (see Table 1.7). This large positive residual and the overall pattern
of residuals suggests that a curvilinear relationship without the origin being
forced to be zero would provide a better fit to the data. In practice, such
alternative models would be tested before this linear no-intercept model
would be adopted. We forgo testing the need for a curvilinear relationship
at this time (fitting curvilinear models is discussed in Chapters 3 and 8)
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FIGURE 1.3. Regression of increase in relative risk on exposure to dust particles
with the regression forced through the origin. The bands on the regression line
connect the limits of the 95% confidence interval estimates of the means.
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and continue with this example to illustrate testing the appropriateness of
the no-intercept model assuming the linear relationship is appropriate.
The test of the assumption that [ is zero is made by temporarily adopt-
ing a model that allows a nonzero intercept. The estimate obtained for the
intercept is then used to test the null hypothesis that 3y is zero. Including
an intercept in this example gives ﬂo = .0360 with s(,@o) .1688. (The

residual mean square from the intercept model is s? = = .1131 with seven
degrees of freedom.) The t-test for the null hypothesis that g is zero is
.0360
= —— =.213
1688

and is not significant; ¢ o25,7) = 2.365. There is no indication in these data
that the no-intercept model is inappropriate. (Recall that this test has been
made assuming the linear relationship is appropriate. If the model were
expanded to allow a curvilinear response, the test of the null hypothesis that
Bo = 0 might become significant.) An equivalent test of the null hypothesis
that By = 0 can be made using the difference between the residual sums of
squares from the intercept and no-intercept models. This test is discussed
in Chapter 4. |

1.8 Models with Several Independent Variables

Most models will use more than one independent variable to explain the
behavior of the dependent variable. The linear additive model can be ex-
tended to include any number of independent variables:

Yi = 0o+ B1Xi1 + o Xio + B3 Xiz + -+ + BpXip + €. (1.49)

The subscript notation has been extended to include a number on each X
and J to identify each independent variable and its regression coeflicient.
There are p independent variables and, including 3y, p’ = p+ 1 parameters
to be estimated.

The usual least squares assumptions apply. The ¢; are assumed to be
independent and to have common variance o2. For constructing tests of
significance or confidence interval statements, the random errors are also
assumed to be normally distributed. The independent variables are as-
sumed to be measured without error.

The least squares method of estimation applied to this model requires
that estimates of the p + 1 parameters be found such that

SS(Res) = S (Vi - 1))
= Z(Yz‘ — Bo — Bi X — PaXig — - — @)Xip)2 (1.50)
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is minimized. The ij j=0,1,...,p, are the estimates of the parameters.
The values of Bj that minimize SS(Res) are obtained by setting the deriva-
tive of SS(Res) with respect to each Bj in turn equal to zero. This gives
(p+ 1) normal equations that must be solved simultaneously to obtain the
least squares estimates of the (p + 1) parameters.

It is apparent that the problem is becoming increasingly difficult as the
number of independent variables increases. The algebraic notation becomes
particularly cumbersome. For these reasons, matrix notation and matrix
algebra are used to develop the regression results for the more complicated
models. The next chapter is devoted to a brief review of the key matrix
operations needed for the remainder of the text.

1.9 Violation of Assumptions

In Section 1.1, we assumed that
Y, =060+ 01X + €, i=1,...,n,

where the random errors ¢; are normally distributed independent random
variables with mean zero and constant variance o2, and the X; are n ob-
servations on the independent variable that is measured without error.
Under these assumptions, the least squares estimators of 3y and 31 are the
best (minimum variance) among all possible unbiased estimators. Statis-
tical inference procedures, such as hypothesis testing and confidence and
prediction intervals, considered in the previous section are valid under these
assumptions. Here we briefly indicate the effects of violation of assumptions
on estimation and statistical inference. A more detailed discussion of prob-
lem areas in least squares and possible remedies is presented in Chapters
10 through 14.

Major problem areas in least squares analysis relate to failure of the four
basic assumptions — normality, independence and constant variance of the
errors, and the independent variable being measured without error. When
only the assumption of normality is violated, the least squares estimators
continue to have the smallest variance among all linear (in Y') unbiased
estimators. The assumption of normality is not needed for the partitioning
of total variation or for estimating the variance. However, it is needed for
tests of significance and construction of confidence and prediction inter-
vals. Although normality is a reasonable assumption in many situations,
it is not appropriate for count data and for some time-to-failure data that
tend to have asymmetric distributions. Transformations of the dependent
variable and alternative estimation procedures are used in such situations.
Also, in many situations with large n, statistical inference procedures based
on t- and F'-statistics are approximately valid, even though the normality
assumption is not valid.

Basic
Assumptions

Normality
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When data are collected in a time sequence, the errors associated with
an observation at one point in time will tend to be correlated with the
errors of the immediately adjacent observations. Economic and meteoro-
logical variables measured over time and repeated measurements over time
on the same experimental unit, such as in plant and animal growth stud-
ies, will usually have correlated errors. When the errors are correlated, the
least squares estimators continue to be unbiased, but are no longer the best
estimators. Also, in this case, the variance estimators obtained using equa-
tions 1.26 and 1.32 are seriously biased. Alternative estimation methods
for correlated errors are discussed in Chapter 12.

In some situations, the variability in the errors increases with the inde-
pendent variable or with the mean of the response variable. For example,
in some yield data, the mean and the variance of the yield both increase
with the amount of seeds (or fertilizer) used. Consider the model

Yi = (Bo+ 0iXs)us
Bo + B1Xi + (Bo + B1Xi)(u; — 1)
= Bo+BiX; + €,

where the errors w; are multiplicative and have mean one and constant
variance. Then the variance of ¢; is proportional to (8y + $1X;)?. The
effect of nonconstant (heterogeneous) variances on least squares estimators
is similar to that of correlated errors. The least squares estimators are no
longer efficient and the variance formulae in equations 1.26 and 1.32 are
not valid. Alternative methods are discussed in Chapter 11.

When the independent variable is measured with error or when the model
is misspecified by omitting important independent variables, least squares
estimators will be biased. In such cases, the variance estimators are also
biased. Methods for detecting model misspecification and estimation in
measurement error models are discussed in later chapters. Also, the effect
of overly influential data points and outliers is discussed later.

1.10 Summary

This chapter has reviewed the basic elements of least squares estimation
for the simple linear model containing one independent variable. The more
complicated linear model with several independent variables was introduced
and is pursued using matrix notation in subsequent chapters. The student
should understand these concepts:

e the form and basic assumptions of the linear model;

e the least squares criterion, the estimators of the parameters obtained
using this criterion, and measures of precision of the estimates;

Correlated
Errors

Nonconstant
Variance

Measurement
Error
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e the use of the regression equation to obtain estimates of mean values
and predictions, and appropriate measures of precision for each; and

e the partitioning of the total variability of the response variable into
that explained by the regression equation and the residual or unex-
plained part.

1.11 Exercises
1.1. Use the least squares criterion to derive the normal equations, equa-
tion 1.6, for the simple linear model of equation 1.2.

1.2. Solve the normal equations, equation 1.6, to obtain the estimates of
fBo and (31 given in equation 1.7.

1.3. Use the statistical model
Yi=po+5Xi+e
to show that ¢; ~ NID(0, 02) implies each of the following:
(a) £(Y:) = Bo + b1 Xi,

(b) 02(Y;) = 02, and

(¢) Cov(Y;,Yy)=0,1#4.

For Parts (b) and (c), use the following definitions of variance and
covariance.

() = E{Vi-EM)?}
Cov(Y;, Yi) = E&{[Y; - EW)]Yr — EYi)]}

1.4. The data in the accompanying table relate heart rate at rest Y to
kilograms body weight X.

X Y

90 62

86 45

67 40

89 55

81 64

75 53
STX; = 488 SY, = 319
STX2= 40,092 SYZ2= 17,399

STX,Y; = 26,184
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(a) Graph these data. Does it appear that there is a linear relation-
ship between body weight and heart rate at rest?

(b) Compute ao and Bl and write the regression equation for these
data. Plot the regression line on the graph from Part (a). Inter-
pret the estimated regression coefficients.

(¢) Now examine the data point (67, 40). If this data point were
removed from the data set, what changes would occur in the
estimates of By and 317

(d) Obtain the point estimate of the mean of ¥ when X = 88.
Obtain a 95% confidence interval estimate of the mean of Y
when X = 88. Interpret this interval statement.

(e) Predict the heart rate for a particular subject weighing 88kg
using both a point prediction and a 95% confidence interval.
Compare these predictions to the estimates computed in Part

(d).
(f) Without doing the computations, for which measured X would
the corresponding Y have the smallest variance? Why?

1.5. Use the data and regression equation from Exercise 1.4 and compute
Y; for each value of X. Compute the product moment correlations
between

(a) X; and Y,
(b) Y; and Y;, and

(¢) X; and Y;.

Compare these correlations to each other and to the coefficient of
determination R2. Can you prove algebraically the relationships you
detect?

1.6. Show that

SS(Model) = n¥ + Bf Z:(XZ —X)? (equation 1.16).

1.7. Show that

Swi-v2 =3 -3 (X - X)2

Note that Y y? is being used to denote the corrected sum of squares.
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1.8. Show algebraically that > e, = 0 when the simple linear regression
equation includes the constant term (3y. Show algebraically that this
is not true when the simple linear regression does not include the
intercept.

1.9.

The following data relate biomass production of soybeans to cumu-
lative intercepted solar radiation over an eight-week period following
emergence. Biomass production is the mean dry weight in grams of
independent samples of four plants. (Data courtesy of Virginia Lesser
and Dr. Mike Unsworth, North Carolina State University.)

(a)
(b)
()

X Y
Solar Radiation Plant Biomass

29.7 16.6
68.4 49.1
120.7 121.7
217.2 219.6
313.5 375.5
419.1 570.8
535.9 648.2
641.5 755.6

Compute BO and B\l for the linear regression of plant biomass on
intercepted solar radiation. Write the regression equation.

Place 95% confidence intervals on 81 and (y. Interpret the in-
tervals.

Test Hy : 81 = 1.0 versus H, : 1 # 1.0 using a t-test with
a = .1. Is your result for the t-test consistent with the confidence
interval from Part (b)? Explain.

Use a t-test to test Hy : fg = 0 against H, : By # 0. Interpret
the results. Now fit a regression with 3y = 0. Give the analysis of
variance for the regression through the origin and use an F-test
to test Hp : By # 0. Compare the results of the ¢-test and the
F-test. Do you adopt the model with or without the intercept?

Compute 52(31) for the regression equation without an inter-
cept. Compare the variances of the estimates of the slopes 31
for the two models. Which model provides the greater precision
for the estimate of the slope?

Compute the 95% confidence interval estimates of the mean
biomass production for X = 30 and X = 600 for both the
intercept and the no-intercept models. Explain the differences
in the intervals obtained for the two models.
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1.10. A linear regression was run on a set of data using an intercept and one
independent variable. You are given only the following information:

-~

(1) ¥, =115 - 1.5X,.
(2) The t-test for Hp : 1 = 0 was nonsignificant at the oo = .05

level. A computed ¢ of —4.087 was compared to £( ¢5,2) from
Appendix Table A.1.

(3) The estimate of 02 was s2 = 1.75.
(a) Complete the analysis of variance table using the given results.
(b) Compute and interpret the coefficient of determination R2.
1.11. An experiment has yielded sample means for four treatment regimes,
Y4, Yo, Y3, and Y4. The numbers of observations in the four means

are n; =4, ns = 6, ng = 3, and ny = 9. The pooled estimate of o2 is
2
s = 23.5.

a) Compute the variance of each treatment mean.

(a)
(b) Compute the variance of the mean contrast C' = Y3 +Y 4 —2Y ;.
(c) Compute the variance of (Y1 + Yo +Y3)/3.

(d) Compute the variance of (4Y | + 6Y 5 + 3Y3)/13.

1.12. Obtain the normal equations and the least squares estimates for the
model

Yi=p+ e + €,

where x; = (X; — X). Compare the results to equation 1.6. (The
model expressed in this form is referred to as the “centered” model;
the independent variable has been shifted to have mean zero.)

1.13. Recompute the regression equation and analysis of variance for the
Heagle ozone data (Table 1.1) using the centered model,

Yi=p+ bz + €,

where x; = (X; — X). Compare the results with those in Tables 1.2
to 1.4.

1.14. Derive the normal equation for the no-intercept model, equation 1.40,
and the least squares estimate of the slope, equation 1.41.

1.15. Derive the variance of Bl and }A/l for the no-intercept model.

1.16. Show that

Y X -X)Vi-Y) =) (Xi—X)Yi=) X(¥;-Y).
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1.17. The variance of }Afpredo as given by equation 1.35 is for the prediction
of a single future observation. Derive the variance of a prediction of
the mean of ¢ future observations all having the same value of X.

1.18. An experimenter wants to design an experiment for estimating the
rate of change in a dependent variable Y as an independent variable
X is changed. He is convinced from previous experience that the
relationship is linear in the region of interest, between X = 0 and
X = 11. He has enough resources to obtain 12 observations. Use
a2(31), equation 1.26, to show the researcher the best allocation of the
design points (choices of X-values). Compare o2 (Bl) for this optimum
allocation with an allocation of one observation at each interger value
of X from X =0 and X = 11.

1.19. The data in the table relate seed weight of soybeans, collected for
six successive weeks following the start of the reproductive stage, to
cumulative seasonal solar radiation for two levels of chronic ozone
exposure. Seed weight is mean seed weight (grams per plant) from
independent samples of four plants. (Data courtesy of Virginia Lesser
and Dr. Mike Unsworth.)

Low Ozone High Ozone
Radiation Seed Weight Radiation Seed Weight
118.4 7 109.1 1.3
215.2 2.9 199.6 4.8
283.9 5.6 264.2 6.5
387.9 8.7 358.2 9.4
451.5 12.4 413.2 12.9
515.6 17.4 452.5 12.3

(a) Determine the linear regression of seed weight on radiation sep-
arately for each level of ozone. Determine the similarity of the
two regressions by comparing the confidence interval estimates
of the two intercepts and the two slopes and by visual inspection
of plots of the data and the regressions.

(b) Regardless of your conclusion in Part (a), assume that the two
regressions are the same and estimate the common regression
equation.

1.20. A hotel experienced an outbreak of Pseudomona dermatis among its
guests. Physicians suspected the source of infection to be the hotel
whirlpool-spa. The data in the table give the number of female guests
and the number infected by categories of time (minutes) spent in the
whirlpool.
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Time Number  Number
(Minutes) of Guests Infected
0-10 8 1
11-20 12 3
21-30 9 3
31-40 14 7
41-50 7 4
51-60 4 3
61-70 2 2

(a) Can the incidence of infection (number infected/number ex-
posed) be characterized by a linear regression on time spent
in the whirlpool? Use the midpoint of the time interval as the
independent variable. Estimate the intercept and the slope, and
plot the regression line and the data.

(b) Review each of the basic assumptions of least squares regression
and comment on whether each is satisfied by these data.

1.21. Hospital records were examined to assess the link between smoking
and duration of illness. The data reported in the table are the number
of hospital days (per 1,000 person-years) for several classes of indi-
viduals, the average number of cigarettes smoked per day, and the
number of hospital days for control groups of nonsmokers for each
class. (The control groups consist of individuals matched as nearly as
possible to the smokers for several primary health factors other than

smoking,.)
# Hospital # Cligarettes # Hospital
Days (Smokers) Smoked/Day Days (Nonsmokers)
215 10 201
185 5 180
334 15 297
761 45 235
684 25 520
368 30 210
1275 50 195
3190 45 835
3520 60 435
428 20 312
575 5 590
2280 45 1131

2795 60 225
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(a)

(b)

Plot the logarithm of number of hospital days (for the smokers)
against number of cigarettes. Do you think a linear regression
will adequately represent the relationship?

Plot the logarithm of number of hospital days for smokers minus
the logarithm of number of hospital days for the control group
against number of cigarettes. Do you think a linear regression
will adequately represent the relationship? Has subtraction of
the control group means reduced the dispersion?

Define Y = In(# days for smokers) —In(# days for nonsmokers)
and X = (#cigarettes)?. Fit the linear regression of Y on X.
Make a test of significance to determine if the intercept can
be set to zero. Depending on your results, give the regression
equation, the standard errors of the estimates, and the summary
analysis of variance.

1.22. Use the normal equations in 1.6 to show that

(a)
(b)
()

Y XY = L XY
> Yie; = 0. (Hint: use Exercise 1.8).

1.23 Consider the regression through the origin model in equation 1.39.
Suppose X; > 0. Define 8, = > Y;/ Y. X; and 3; = > X;Y;/ > X2

(a)
(b)

Show that 51 and Bl are unbiased for ;.

Compare the variances of 4, and Bl.



2
INTRODUCTION TO MATRICES

Chapter 1 reviewed simple linear regression in alge-
braic notation and showed that the notation for models
involving several variables is very cumbersome.

This chapter introduces matrix notation and all matrix
operations that are used in this text. Matrix algebra
greatly simplifies the presentation of regression and is
used throughout the text. Sections 2.7 and 2.8 are not
used until later in the text and can be omitted for now.

Matrix algebra is extremely helpful in multiple regression for simplify-
ing notation and algebraic manipulations. You must be familiar with the
basic operations of matrices in order to understand the regression results
presented. A brief introduction to the key matrix operations is given in
this chapter. You are referred to matrix algebra texts, for example, Searle
(1982), Searle and Hausman (1970), or Stewart (1973), for more complete
presentations of matrix algebra.

2.1 Basic Definitions

A matrix is a rectangular array of numbers arranged in orderly rows and
columns. Matrices are denoted with boldface capital letters. The following

Matrix
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are examples.

15
(1 2 }Z
. 19
L 1 2
) 1 6
15 7 -1 0

B__155—210'

The numbers that form a matrix are called the elements of the matrix. A
general matrix could be denoted as

a11 @12 -+ Qln

a21 a2 - Q2n
A =

Am1 Am2 e Amn,

The subscripts on the elements denote the row and column, respectively,
in which the element appears. For example, ao3 is the element found in the
second row and third column. The row number is always given first.

The order of a matrix is its size given by the number of rows and
columns. The first matrix given, Z, is of order (3, 2). That is, Z is a
3 x 2 matrix, since it has three rows and two columns. Matrix A is an
m X n matrix.

The rank of a matrix is defined as the number of linearly independent
columns (or rows) in the matrix. Any subset of columns of a matrix are
linearly independent if no column in the subset can be expressed as a
linear combination of the others in the subset. The matrix

1 2 4
A = 3 0 6
5 3 13

contains a linear dependency among its columns. The first column multi-
plied by two and added to the second column produces the third column.
In fact, any one of the three columns of A can be written as a linear com-
bination of the other two columns. On the other hand, any two columns of
A are linearly independent since one cannot be produced as a multiple of
the other. Thus, the rank of the matrix A, denoted by r(A), is two.

If there are no linear dependencies among the columns of a matrix, the
matrix is said to be of full rank, or nonsingular. If a matrix is not of
full rank it is said to be singular. The number of linearly independent
rows of a matrix will always equal the number of linearly independent
columns. The linear dependency among the rows of A is shown by 9(row1)+
7(row2) = 6(row3). The critical matrices in regression will almost always

Elements

Order

Rank

Full-Rank
Matrices
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have fewer columns than rows and, therefore, rank is more easily visualized
by inspection of the columns.

The collection of all linear combinations of columns of A is called the
column space of A or the space spanned by the columns of A.

2.2 Special Types of Matrices

A vector is a matrix having only one row or one column, and is called a
row or column vector, respectively. Although vectors are often designated
with boldface lowercase letters, this convention is not followed rigorously in
this text. A boldface capital letter is used to designate a data vector and a
boldface Greek letter is used for vectors of parameters. Thus, for example,

3
8 .
v o= 9 is a 4 x 1 column vector.
1
p = (p1 pe p3) isalx3row vector.

We usually define the vectors as column vectors but they need not be. A
single number such as 4, —2.1, or 0 is called a scalar.
A square matrix has an equal number of rows and columns.

D = [2 ﬂ is a 2 X 2 square matrix.

A diagonal matrix is a square matrix in which all elements are zero ex-
cept the elements on the main diagonal, the diagonal of elements, a11, a2,
.+, Qnp, running from the upper left postion to the lower right position.

A = is a 3 x 3 diagonal matrix.

S O Ot
O = O
oL O O

An identity matrix is a diagonal matrix having all the diagonal ele-
ments equal to 1; such a matrix is denoted by I,,. The subscript identifies
the order of the matrix and is omitted when the order is clear from the
context.

I; =

o O =
o = O

0
0| isa 3 x 3 identity matrix.
1

After matrix multiplication is discussed, it can be verified that multiplying
any matrix by the identity matrix will not change the original matrix.

Column Space

Vector

Square
Matrix

Diagonal
Matrix

Identity
Matrix
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A symmetric matrix is a square matrix in which element a;; equals
element a;; for all ¢ and j. The elements form a symmetric pattern around
the diagonal of the matrix.

5 -2 3
A = -2 4 -1 is a 3 x 3 symmetric matrix.
3 -1 8

Note that the first row is identical to the first column, the second row is
identical to the second column, and so on.

2.3 Matrix Operations

The transpose of a matrix A, designated A’, is the matrix obtained by
using the rows of A as the columns of A’. If

1 2
3 8
A4 = 4 1]’
59
the transpose of A is
;|1 3 45
A= {2 8 1 9}'

If a matrix A has order mxn, its transpose A’ has order nxm. A symmetric
matrix is equal to its transpose: A’ = A.

Addition of two matrices is defined if and only if the matrices are of
the same order. Then, addition (or subtraction) consists of adding (or sub-
tracting) the corresponding elements of the two matrices. For example,

1 2 7 —6 _ 8 —4
{3 8}+{8 2} = {11 10]‘
Addition is commutative: A+ B = B + A.

Multiplication of two matrices is defined if and only if the number of
columns in the first matrix equals the number of rows in the second matrix.
If A is of order r x s and B is of order m X n, the matrix product AB exists
only if s = m. The matrix product B A exists only if » = n. Multiplication
is most easily defined by first considering the multiplication of a row vector
times a column vector. Let @’ = (a; az az) and ' = (by by b3).

(Notice that both @ and b are defined as column vectors.) Then, the product
of a’ and b is
by
a'b = ((11 as ag) b2 (21)
bs
ai1by + asbs + azbs.

Symmetric
Matrix

Transpose

Addition

Multiplication
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The result is a scalar equal to the sum of products of the corresponding
elements. Let

a = (3 6 1) and b =(2 4 8).

The matrix product is

[N}

ab = (3 6 1)(4|=6+24+8=38.

co

Matrix multiplication is defined as a sequence of vector multiplications.

Write
/
a a a a
A = 11 a1z a3 as A — 1)
az1 a2 a23 25}
where a} = (@11 a12 ai3) and ab = (@21 ag  ass) are the 1 x 3 row
vectors in A. Similarly, write

bll b12
B = b21 b22 as B = (b1 bg ) s
b31  ba2

where by and by are the 3 x 1 column vectors in B. Then the product of
A and B is the 2 x 2 matrix

AB—-C = |:a’/1b1 aﬁbz}:[cn 012}7 (2.2)

abh; abb Co1  C22
where
3
cn = ahb = Zaubjl = a11bi1 + a12ba1 + ai3b31
j=1
3
c12 = alby= Z a1jbjo = a11b12 + a12b22 + a13bs2
j=1
3
o1 = asjh = Za2jbjl = a21b11 + az2bo1 + azzbs
j=1
3
Co2 = ahby = Z azjbja = az1bia + azbay + as3bss.
j=1

In general, element c;; is obtained from the vector multiplication of the
ith row vector from the first matrix and the jth column vector from the
second matrix. The resulting matrix C' has the number of rows equal to
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the number of rows in A and number of columns equal to the number of
columns in B.

Let

12 .
T = 4 5 and W:( 3).
30

The product WT is not defined since the number of columns in W is not
equal to the number of rows in T'. The product TW, however, is defined:

12
-1
T™W = 4 5
(W(=1) +(2)(3) 5
= | @WED+HE)B) | = 1
B)(=1) +(0)(3) -3

The resulting matrix is of order 3 x 1 with the elements being determined
by multiplication of the corresponding row vector from T with the column
vector in W. n

Matrix multiplication is not commutative; AB does not necessarily equal
B A even if both products exist. As for the matrices W and T in Example
2.1, the matrices are not of the proper order for multiplication to be defined
in both ways. The first step in matrix multiplication is to verify that the
matrices do conform (have the proper order) for multiplication.

The transpose of a product is equal to the product in reverse order of
the transposes of the two matrices. That is,

(AB) = B'A. (2.3)

The transpose of the product of T' and W from Example 2.1 is

(TW)Y =W'T = (-1 3){; g g}
= (5 11 -3).

Scalar multiplication is the multiplication of a matrix by a single
number. Every element in the matrix is multiplied by the scalar. Thus,

J[2 1 7] _ [e 3 2
35 9 — |9 15 27|

The determinant of a matrix is a scalar computed from the elements of

Example 2.1

Determinant
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the matrix according to well-defined rules. Determinants are defined only
for square matrices and are denoted by |A|, where A is a square matrix.
The determinant of a 1 x 1 matrix is the scalar itself. The determinant of
a 2 X 2 matrix,

A= ail a2
as1  ag |’
is defined as
‘A| = a11a22 — 120217 . (24)

For example, if

1 6
A‘{—2 10}’

|A| = (1)(10) — (6)(=2) = 22.

the determinant of A is

The determinants of higher-order matrices are obtained by expanding
the determinants as linear functions of determinants of 2 x 2 submatrices.
First, it is convenient to define the minor and the cofactor of an element
in a matrix. Let A be a square matrix of order n. For any element a,
in A, a square matrix of order (n — 1) is formed by eliminating the row
and column containing the element a,;. Label this matrix A,, with the
subscripts designating the row and column eliminated from A. Then | A, ],
the determinant of A,, is called the minor of the element a,s. The product
0,5 = (=1)"*%| A, is called the cofactor of a,s. Each element in a square
matrix has its own minor and cofactor.

The determinant of a matrix of order n is expressed in terms of the ele-
ments of any row or column and their cofactors. Using row ¢ for illustration,
we can express the determinant of A as

Al = Zazj@ij, (2.5)
=1

where each 6;; contains a determinant of order (n — 1). Thus, the deter-
minant of order n is expanded as a function of determinants of one less
order. Each of these determinants, in turn, is expanded as a linear function
of determinants of order (n — 2). This substitution of determinants of one
less order continues until |A| is expressed in terms of determinants of 2 x 2
submatrices of A.

The first step of the expansion is illustrated for a 3 x 3 matrix A. To
compute the determinant of A, choose any row or column of the matrix.
For each element of the row or column chosen, compute the cofactor of the
element. Then, if the ith row of A is used for the expansion,

|A| = a;16i1 + ai2bi2 + aizb;s. (2.6)
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For illustration, let

A=

T =N

4
2
7

O WD

and use the first row for the expansion of |A|. The cofactors of the elements
in the first row are

0, = (—1)FD i g = (18 = 21) = -3,
0o = (-1)0F2 é g = —(9—15) =6, and
013 = (—1)<1+3>é §:(7—10):—3.

Then, the determinant of A is
|A| =2(—3)+4(6)+6(—3) =0

If the determinant of a matrix is zero, the matrix is singular, or it is
not of full rank. Otherwise, the matrix is nonsingular. Thus, the matrix
A in Example 2.2 is singular. The linear dependency is seen by noting that
row 1 is equal to twice row 2. The determinants of larger matrices rapidly
become difficult to compute and are obtained with the help of a computer.

Division in the usual sense does not exist in matrix algebra. The concept
is replaced by multiplication by the inverse of the matrix. The inverse of
a matrix A, designated by A™!, is defined as the matrix that gives the
identity matrix when multiplied by A. That is,

A'A=AA""=1T. (2.7)

The inverse of a matrix may not exist. A matrix has a unique inverse if
and only if the matrix is square and nonsingular. A matrix is nonsingular
if and only if its determinant is not zero.

The inverse of a 2 x 2 matrix is easily computed. If

a a
A= 11 12 7
a1 a2
then

- 1 a2 —a12
Al = — . 2.
|A| [ —a21 ail (28)

Example 2.2

Inverse of
a Matrix
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Note the rearrangement of the elements and the use of the determinant of
A as the scalar divisor. For example, if

(SN
|
[e[M)

_ |43 -1 _
A = {1 2}, then A" =

(S
UL

That this is the inverse of A is verified by multiplication of A and A~

we = [ LY

The inverse of a matrix is obtained in general by (1) replacing every
element of the matrix with its cofactor, (2) transposing the resulting matrix,
and (3) dividing by the determinant of the original matrix, as illustrated
in the next example.

(S]]
\
il

Tt
(SN

Consider the following matrix, Example 2.3
1 3 2
B = |4 5 6
8 79

The determinant of B is

56 4 6 45
B =7 |=afi oleefi ]
— (45 —42) — 3(36 — 48) + 2(28 — 40)
= 15

The unique inverse of B exists since | B| # 0. The cofactors for the elements
of the first row of B were used in obtaining |B|: 611 = 3, 612 =12, 013 =
—12. The remaining cofactors are:

1 2

921:—‘§ 3‘:—13 922:’8 9’:—7 923_—‘; i‘:n
931:‘2 2‘:8 932:—’31 2’:2 933:'}1 g'——z
Thus, the matrix of cofactors is
3 12 -—12
-13 -7 17

8 2 =7
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and the inverse of B is

1 3 —-13 8
B '= = 12 -7 2
-12 17 -7

Notice that the matrix of cofactors has been transposed and divided by
|B| to obtain B~'. It is left as an exercise to verify that this is the inverse
of B. As with the determinants, computers are used to find the inverses of
larger matrices. ]

Note that if A is a diagonal nonsingular matrix, then A™! is also a  Inverse of

diagonal matrix where the diagonal elements of A~ are the reciprocals of  a Diagonal

the diagonal elements of A. That is, if Matrix
ail 0 0 0
0 agg 0 0
A= 0 0 ass 0 7
0 0 0 - app

where a;; # 0, then

ait 0 0 0
0 ayp O 0
A=| 0 0 a3 0
0 0 0 - ayl

nn

Also, if A and B are two nonsingular matrices, then
A o] ' [Aa' o
0 B] | 0o B!

2.4  Geometric Interpretations of Vectors

The elements of an n x 1 vector can be thought of as the coordinates of a
point in an n-dimensional coordinate system. The vector is represented in
this n-space as the directional line connecting the origin of the coordinate
system to the point specified by the elements. The direction of the vector
is from the origin to the point; an arrowhead at the terminus indicates
direction.
To illustrate, let ' = (3 2). This vector is of order two and is plotted =~ Vector
in two-dimensional space as the line vector going from the origin (0, 0) to  Length
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¥=(32)

FIGURE 2.1. The geometric representation of the vectors ' = (3,2) and
w' = (2, —1) in two-dimensional space.

the point (3, 2) (see Figure 2.1). This can be viewed as the hypotenuse of a
right triangle whose sides are of length 3 and 2, the elements of the vector
x. The length of x is then given by the Pythagorean theorem as the square
root of the sum of squares of the elements of . Thus,

length(x) = /32 + 22 = /13 = 3.61.

This result extends to the length of any vector regardless of its order.
The sum of squares of the elements in a column vector « is given by (the
matrix multiplication) @’a. Thus, the length of any vector x is

length(x) = Va'z. (2.9)

Multiplication of @ by a scalar defines another vector that falls precisely

on the line formed by extending the vector  indefinitely in both directions.

For example,
u=(-1z'=(-3 -2)

falls on the extension of & in the negative direction. Any point on this indef-
inite extension of @ in both directions can be “reached” by multiplication
of & with an appropriate scalar. This set of points constitutes the space
defined by @, or the space spanned by x. It is a one-dimensional subspace
of the two-dimensional space in which the vectors are plotted. A single

Space
Defined by =
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FIGURE 2.2. Geometric representation of the sum of two vectors.

vector of order n defines a one-dimensional subspace of the n-dimensional
space in which the vector falls.

The second vector w’ = (2 1), shown in Figure 2.1 with a dotted
line, defines another one-dimensional subspace. The two subspaces defined
by & and w are disjoint subspaces (except for the common origin). The
two vectors are said to be linearly independent since neither falls in
the subspace defined by the other. This implies that one vector cannot be
obtained by multiplication of the other vector by a scalar.

If the two vectors are considered jointly, any point in the plane can be
“reached” by an appropriate linear combination of the two vectors. For
example, the sum of the two vectors gives the vector y (see Figure 2.2),

y=x'+w=(3 2)+(2 -1)=(5 1).

The two vectors * and w define, or span, the two-dimensional subspace
represented by the plane in Figure 2.2. Any third vector of order 2 in this
two-dimensional space must be a linear combination of & and w. That is,
there must be a linear dependency among any three vectors that fall on
this plane.

Geometrically, the vector x is added to w by moving «, while maintaining
its direction, until the base of @ rests on the terminus of w. The resultant
vector y is the vector from the origin (0, 0) to the new terminus of . The
same result is obtained by moving w along the vector x. This is equivalent

Linear
Independence

Two-
Dimensional
Subspace

Vector
Addition
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to completing the parallelogram using the two original vectors as adjacent
sides. The sum y is the diagonal of the parallelogram running from the
origin to the opposite corner (see Figure 2.2). Subtraction of two vectors,
say w’ — &', is most easily viewed as the addition of w’ and (—a').

Vectors of order 3 are considered briefly to show the more general be-
havior. Each vector of order 3 can be plotted in three-dimensional space;
the elements of the vector define the endpoint of the vector. Each vector
individually defines a one-dimensional subspace of the three-dimensional
space. This subspace is formed by extending the vector indefinitely in both
directions. Any two vectors define a two-dimensional subspace if the two
vectors are linearly independent—that is, as long as the two vectors do
not define the same subspace. The two-dimensional subspace defined by
two vectors is the set of points in the plane defined by the origin and the
endpoints of the two vectors. The two vectors defining the subspace and
any linear combination of them lie in this plane.

A three-dimensional space contains an infinity of two-dimensional sub-
spaces. These can be visualized by rotating the plane around the origin.
Any third vector that does not fall in the original plane will, in conjunction
with either of the first two vectors, define another plane. Any three linearly
independent vectors, or any two planes, completely define, or span, the
three-dimensional space. Any fourth vector in that three-dimensional sub-
space must be a linear function of the first three vectors. That is, any four
vectors in a three-dimensional subspace must contain a linear dependency.

The general results are stated in the box:

1. Any vector of order n can be plotted in n-dimensional space and
defines a one-dimensional subspace of the n-dimensional space.

2. Any p linearly independent vectors of order n, p < n, define a p-
dimensional subspace.

3. Any p + 1 vectors in a p-dimensional subspace must contain a linear
dependency.

Two vectors  and w of the same order are orthogonal vectors if the
vector product

dw = wz=0. (2.10)
If
1 3
0 4
x = 1 and w = I
4 -1

then  and w are orthogonal because

z'w = (1)(3) + (0)(4) + (=1)(=1) + (4)(=1) = 0.

Three-
Dimensional
Subspace

Orthogonal
Vectors
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Geometrically, two orthogonal vectors are perpendicular to each other or
they form a right angle at the origin.

Two linearly dependent vectors form angles of 0 or 180 degrees at the
origin. All other angles reflect vectors that are neither orthogonal nor lin-
early dependent. In general, the cosine of the angle a between two (column)
vectors « and w is

cos(a) = ———. (2.11)

If the elements of each vector have mean zero, the cosine of the angle
formed by two vectors is the product moment correlation between the
two columns of data in the vectors. Thus, orthogonality of two such vectors
corresponds to a zero correlation between the elements in the two vectors. If
two such vectors are linearly dependent, the correlation coefficient between
the elements of the two vectors will be either +1.0 or —1.0 depending on
whether the vectors have the same or opposite directions.

2.5 Linear Equations and Solutions

A set of r linear equations in s unknowns is represented in matrix notation
as Ax = y, where x is a vector of the s unknowns, A is the r X s matrix of
known coefficients on the s unknowns, and y is the r x 1 vector of known
constants on the right-hand side of the equations.

A set of equations may have (1) no solution, (2) a unique solution, or (3)
an infinite number of solutions. In order to have at least one solution, the
equations must be consistent. This means that any linear dependencies
among the rows of A must also exist among the corresponding elements of
y (Searle and Hausman, 1970). For example, the equations

1 2 3 1 6
2 46 i) = 10
3 3 3 3 9

are inconsistent since the second row of A is twice the first row but
the second element of y is not twice the first element. Since they are not
consistent, there is no solution to this set of equations. Note that ' =
(1 1 1) satisfies the first and third equations but not the second. If the
second element of y were 12 instead of 10, the equations would be consistent
and the solution '’ = (1 1 1) would satisfy all three equations.

Linearly
Dependent
Vectors
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One method of determining if a set of equations is consistent is to com-
pare the rank of A to the rank of the augmented matrix [A y]. The equa-
tions are consistent if and only if

r(A) =r([A y]). (2.12)

Rank can be determined by using elementary (row and column) operations
to reduce the elements below the diagonal to zero. Operations such as
addition of two rows, interchanging rows, and obtaining a scalar multiple
of a row are called elementary row operations. (In a rectangular matrix,
the diagonal is defined as the elements a1, aso, ..., aqq, where d is the
lesser of the number of rows and number of columns.) The number of rows
with at least one nonzero element after reduction is the rank of the matrix.

Elementary operations on

1 2 3
A = 2 4 6
3 3 3
give
1 2 3
A" = 0 -3 -6
0 0 O

so that r(A) = 2. [The elementary operations to obtain A* are (1) sub-
tract 2 times row 1 from row 2, (2) subtract 3 times row 1 from row 3,
and (3) interchange rows 2 and 3.] The same elementary operations, plus
interchanging columns 3 and 4, on the augmented matrix

6
0
9

—_

1 2 3
[Ay] = |2 4 6
3 3 3
give
1 2 6 3
[Ay]" = 0 -3 -9 —6
0 0 -2 0

Thus, 7([A y]) = 3. Since r([A y]) # r(A), the equations are not consistent
and, therefore, they have no solution. |

Consistent equations either have a unique solution or an infinity of solu-
tions. If 7(A) equals the number of unknowns, the solution is unique and
is given by

Consistent
Equations

Example 2.4

Unique
Solution
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1. x = A 'y, when A is square; or

2. x = A;ly7 where A is a full rank submatrix of A, when A is
rectangular.

The equations Ax = y with

1 2 6
A = 3 3 and y= 9
5 7 21

are consistent. (Proof of consistency is left as an exercise.) The rank of A
equals the number of unknowns [r(A) = 2], so that the solution is unique.
Any two linearly independent equations in the system of equations can be
used to obtain the solution. Using the first two rows gives the full-rank

equations
1 2 1 o 6
3 3 xe ) \9

with the solution

()
5 ]6)=0):

Notice that the solution &’ = (0 3) satisfies the third equation also. ™

\
w"ﬁl—|
W =

w N

| IS
L

N\
NelNep]
N~

When r(A) in a consistent set of equations is less than the number of
unknowns, there is an infinity of solutions.

Consider the equations Az = y with

1 2 3 6
A = 2 4 6 andy = | 12
3 3 3 9

The rank of A is r(A) = 2 and elementary operations on the augmented
matrix [A y] give

1 2 3 6

[Ay]" = |0 -3 —6 —18
0 0 0 0

Thus, 7([A y]) = 2, which equals r(A), and the equations are consistent.
However, r(A) is less than the number of unknowns so that there is an

Example 2.5

Infinite
Solutions

Example 2.6
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infinity of solutions. This infinity of solutions comes from the fact that one
element of & can be chosen arbitrarily and the remaining two chosen so
as to satisfy the set of equations. For example, if 27 is chosen to be 1, the
solution is @ = (1 1 1), whereas if z; is chosen to be 2, the solution is
' =(2 -1 2). n

A more general method of finding a solution to a set of consistent equa-
tions involves the use of generalized inverses. There are several defini-
tions of generalized inverses [see Searle (1971), Searle and Hausman (1970),
and Rao (1973)]. An adequate definition for our purposes is the following
(Searle and Hausman, 1970).

A generalized inverse of A is any matrix A~ that satisfies the
condition AA™ A = A.

(A~ is used to denote a generalized inverse.) The generalized inverse is not
unique (unless A is square and of full rank, in which case A~ = Ail). A
generalized inverse can be used to express a solution to a set of consistent
equations Ax = y as * = A~ y. This solution is unique only when r(A)
equals the number of unknowns in the set of equations. (The computer is
used to obtain generalized inverses when needed.)

For illustration, consider the set of consistent equations Ax = y where

1 2 6
A = 3 3 and y = 9
5 7 21

It has been shown that r(A) = 2 which equals the number of unknowns so
that the solution is unique. A generalized inverse of A is

- 1[-10 16 —4
A Ts[ 8 —11 5]

and the unique solution is given by

z = A*y:<g>.

It is left as an exercise to verify the matrix multiplication of A”y and that
AATA=A. [ |

For another illustration, consider again the consistent equations Ax = y
from Example 2.6, where

1 2 3 6
A = 2 4 6 andy=| 12
3 3 3 9

Solutions
Using
Generalized
Inverses

Example 2.7

Example 2.8
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This system has been shown to have an infinity of solutions. A generalized
inverse of A is

1 2 4
10 10 9
- _ 1
A- = 0 0o .
1 2 2
10 10 9

which gives the solution
r=Ay=(1 1 1).

This happens to agree with the first solution obtained in Example 2.6.
Again, it is left as an exercise to verify that ® = A"y and AA™ A = A.
A different generalized inverse of A may lead to another solution of the
equations. |

2.6  Orthogonal Transformations and Projections

The linear transformation of vector x to vector y, both of order n, is
written as y = Ax, where A is the n x n matrix of coefficients effecting the
transformation. The transformation is a one-to-one transformation only if
A is nonsingular. Then, the inverse transformation of y to @ is & = A~ 'y.

A linear transformation is an orthogonal transformation if AA" = I.
This condition implies that the row vectors of A are orthogonal and of unit
length. Orthogonal transformations maintain distances and angles between
vectors. That is, the spatial relationships among the vectors are not changed
with orthogonal transformations.

For illustration, let yj = (3 10 20),y5,=(6 14 21), and

1 1 1
A = -1 0 1
-1 2 -1
Then
1 1 1 3 33
ry = Ay, =| -1 0 1 10| = 17
-1 2 -1 20 -3
and

1
®, = Ay,=| -1 0 1 14 | =1 15
2 -1 21 1

Orthogonal
Transformations

Example 2.9
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are linear transformations of y; to 1 and y, to x3. These are not orthog-
onal transformations because

AA =

O O w

00
2 0| £1
0 6

The rows of A are mutually orthogonal (the off-diagonal elements are zero)
but they do not have unit length. This can be made into an orthogonal
transformation by scaling each row vector of A to have unit length by
dividing each vector by its length. Thus,

1 1 1 33
V3 V3 V3 V3
x; = Ay, = —% 0 % Y, = 1775
1 2 _ 1 _3
V6 V6 V6 V6
and
41
V3
z; = Ay, = \1/55
1
V6

are orthogonal transformations. It is left as an exercise to verify that the
orthogonal transformation has maintained the distance between the two
vectors; that is, verify that

* *

(Y1 — ¥2)' (Y1 — ¥2) = (z] — x3) (2] — x3) = 26.

[The squared distance between two vectors u and v is (u — v)'(u —v).| ®

Projection of a vector onto a subspace is a special case of a transforma-
tion. (Projection is a key step in least squares.) The objective of a projec-
tion is to transform g in n-dimensional space to that vector 4 in a subspace
such that g is as close to y as possible. A linear transformation of y to ¥,
y = Py, is a projection if and only if P is idempotent and symmetric
(Rao, 1973), in which case P is referred to as a projection matrix.

An idempotent matrix is a square matrix that remains unchanged when
multiplied by itself. That is, the matrix A is idempotent if AA = A. It can
be verified that the rank of an idempotent matrix is equal to the sum of the
elements on the diagonal (Searle, 1982; Searle and Hausman, 1970). This
sum of elements on the diagonal of a square matrix is called the trace of

Projections

Idempotent
Matrices
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the matrix and is denoted by tr(A). Symmetry is not required for a matrix
to be idempotent. However, all idempotent matrices with which we are
concerned are symmetric.

The subspace of a projection is defined, or spanned, by the columns or
rows of the projection matrix P. If P is a projection matrix, (I — P) is also
a projection matrix. However, since P and (I — P) are orthogonal matrices,
the projection by (I — P) is onto the subspace orthogonal to that defined
by P. The rank of a projection matrix is the dimension of the subspace
onto which it projects and, since the projection matrix is idempotent, the
rank is equal to its trace.

The matrix

1 5 2 -1
A:6 2 2 2
-1 2 5
is idempotent since
1 5 2 —1 1' 5 2 —1
AA=A? 5 2 2 2 5 2 2 2
-1 2 5 | -1 2 5
] 5 2 -1
= ¢ 2 2 2| =A.
-1 2 5

The rank of A is given by
1
r(A) =tr(A) = 6(5 +245)=2.
|

Since A is symmetric, it is also a projection matrix. Thus, the linear
transformation

o521 3 25
§ = Ay, =-| 2 2 2 10 | =] 110
61 1 2 5 20 19.5

is a projection of y; = (3 10 20)" onto the subspace defined by the
columns of A. The vector ¥ is the unique vector in this subspace that
is closest to y;. That is, (y; — ¥)'(y; — ¥) is a minimum. Since A is a
projection matrix, so is

1 0 0 1 5 2 -1 1 1 -2 1
I-A = 01 0| - 5 2 2 2 | = 5 -2 4 -2
0 0 1 -1 2 5 1 -2 1

Example 2.10
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Then,
1 1 -2 1 3 3
e=(I-Ay, = 6 -2 4 =2 10 | = -1
1 -2 1 20 1

is a projection onto the subspace orthogonal to the subspace defined by A.
Note that y'e = 0 and § + e = y,. [ |

2.7 FEigenvalues and Eigenvectors

Eigenvalues and eigenvectors of matrices are needed for some of the meth-
ods to be discussed, including principal component analysis, principal com-
ponent regression, and assessment of the impact of collinearity (see Chap-
ter 13). Determining the eigenvalues and eigenvectors of a matrix is a dif-
ficult computational problem and computers are used for all but the very
simplest cases. However, the reader needs to develop an understanding of
the eigenanalysis of a matrix.

The discussion of eigenanalysis is limited to real, symmetric, nonneg-
ative definite matrices and, then, only key results are given. The reader
is referred to other texts [such as Searle and Hausman (1970)] for more
general discussions. In particular, Searle and Hausman (1970) show sev-
eral important applications of eigenanalysis of asymmetric matrices. Real
matrices do not contain any complex numbers as elements. Symmetric,
nonnegative definite matrices are obtained from products of the type
B’'B and, if used as defining matrices in quadratic forms (see Chapter 4),
yield only zero or positive scalars.

It can be shown that for a real, symmetric matrix A (n x n) there

exists a set of n scalars A;, and n nonzero vectors z;, ¢ = 1,...,n, such
that
Az, = Nz,
or AZZ' — )\izi = 07
oo (A-XNI)z, = 0, i=1,...,n (2.13)

The A; are the n eigenvalues (characteristic roots or latent roots) of the
matrix A and the z; are the corresponding (column) eigenvectors (char-
acteristic vectors or latent vectors).

There are nonzero solutions to equation 2.13 only if the matrix (A —A;I)
is less than full rank—that is, only if the determinant of (A — A\;I) is zero.
The A; are obtained by solving the general determinantal equation

IA- M| = o. (2.14)

Definitions

Solution
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Since A is of order n x n, the determinant of (A — AI) is an nth degree
polynomial in A. Solving this equation gives the n values of A, which are not
necessarily distinct. Each value of A is then used in turn in Equation 2.13
to find the companion eigenvector z;.

When the eigenvalues are distinct, the vector solution to Equation 2.13
is unique except for an arbitrary scale factor and sign. By convention, each
eigenvector is defined to be the solution vector scaled to have unit length;
that is, z}z; = 1. Furthermore, the eigenvectors are mutually orthogonal;
ziz; = 0 when 7 # j. When the eigenvalues are not distinct, there is an
additional degree of arbitrariness in defining the subsets of vectors corre-
sponding to each subset of nondistinct eigenvalues. Nevertheless, the eigen-
vectors for each subset can be chosen so that they are mutually orthogonal
as well as orthogonal to the eigenvectors of all other eigenvalues. Thus, if
Z =(z1 zy -+ zp)isthe matrix of eigenvectors, then Z’'Z = I. This
implies that Z’ is the inverse of Z so that ZZ' = I as well.

Using Z and L, defined as the diagonal matrix of the \;, we can write
the initial equations Az; = \;z; as

AZ = ZL, (2.15)
oo Z'AZ = L, (2.16)
oo A = ZLZ'. (2.17)

Equation 2.17 shows that a real symmetric matrix A can be transformed to
a diagonal matrix by pre- and postmultiplying by Z’' and Z, respectively.
Since L is a diagonal matrix, equation 2.17 shows that A can be expressed
as the sum of matrices:

A = ZLZ =) \(ziz), (2.18)

where the summation is over the n eigenvalues and eigenvectors. Each term
is an n X n matrix of rank 1 so that the sum can be viewed as a decompo-
sition of the matrix A into n matrices that are mutually orthogonal. Some
of these may be zero matrices if the corresponding A; are zero. The rank of
A is revealed by the number of nonzero eigenvalues A;.

For illustration, consider the matrix

10 3
a-[31]

The eigenvalues of A are found by solving the determinantal equation
(equation 2.14),

Y

a-an = |57 2,0

Decomposition
of a Matrix

Example 2.11
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or
(10-X)B8—=XN) -9 = X —18\+T71=0.
The solutions to this quadratic (in A) equation are
A1 =12.16228 and Ay = 5.83772

arbitrarily ordered from largest to smallest. Thus, the matrix of eigenvalues
of Ais
7 [12.16228 0 }
0 5.83772 |

The eigenvector corresponding to A\; = 12.16228 is obtained by solving
equation 2.13 for the elements of zi:

(A —12.162281) (Z“> =0
221

or

—2.162276 3 211 —0
3 —4.162276 Z921 e

Arbitrarily setting z1; = 1 and solving for zs;, using the first equation,
gives zo1 = .720759. Thus, the vector 2z} = (1 .720759) satisfies the first
equation (and it can be verified that it also satisfies the second equation).
Rescaling this vector so it has unit length by dividing by

length(z;) = \/2)z1 = V1.5194935 = 1.232677
gives the first eigenvector
2z = (81124 .58471)".
The elements of zo are found in the same manner to be
29 = (—.58471 .81124)".
Thus, the matrix of eigenvectors for A is

| 81124 —.58471

Z = 58471 81124 |-

Notice that the first column of Z is the first eigenvector, and the second
column is the second eigenvector. |

Continuing with Example 2.11, notice that the matrix A is of rank two
because both eigenvalues are nonzero. The decomposition of A into two

Example 2.12
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orthogonal matrices each of rank one, A = A; + As, equation 2.18, is
given by

.81124
.b8471

8.0042 5.7691
5.7691 4.1581

Ay =\ z12) 12.16228 < ) (81124 .58471)

and

1.9958 —2.7691
A2 = /\QzQZ/Q = |: :| .

—2.7691 3.8419

Since the two columns of A; are multiples of the same vector uq, they are
linearly dependent and, therefore, (A1) = 1. Similarly, r(Az) = 1. Multi-
plication of A; with Ay shows that the two matrices are orthogonal to each
other: A; As = 0, where 0 is a 2 X 2 matrix of zeros. Thus, the eigenanalysis
has decomposed the rank-2 matrix A into two rank-1 matrices. It is left as
an exercise to verify the multiplication and that A; + A = A. [ |

Notice that the sum of the eigenvalues in Example 2.11, A\ + Ay = 18, is
equal to tr(A). This is a general result: the sum of the eigenvalues for any
square symmetric matrix is equal to the trace of the matrix. Furthermore,
the trace of each of the component rank-1 matrices is equal to its eigenvalue:

tl"(Al) = /\1 and tl”(AQ) = /\2.
Note that for A = B’B, we have

!/ /
z; Az = Nz 2,

and
/! / I
\ = z;Az; z;B' Bz,
(. e /.,
ziz; ziz;
/
o C,C;
= Lt
Z,Zi

where ¢; = Bz;. Therefore, if A = B’B for some real matrix B, then the
eigenvalues of A are nonnegative. Symmetric matrices with nonnegative
eigenvalues are called nonnegative definite matrices.

2.8 Singular Value Decomposition

The eigenanalysis, Section 2.7, applies to a square symmetric matrix. In
this section, the eigenanalysis is used to develop a similar decomposition,
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called the singular value decomposition, for a rectangular matrix. The
singular value decomposition is then used to give the principal compo-
nent analysis.

Let X be an n x p matrix with n > p. Then X’X is a square symmetric
matrix of order p x p. From Section 2.7, X’ X can be expressed in terms
of its eigenvalues L and eigenvectors Z as

X'X = ZLZ. (2.19)
Here L is a diagonal matrix consisting of eigenvalues A1, ..., \, of X'X.
From Section 2.7, we know that Aq, ..., A, are nonnegative. Similarly, xXx’

is a square symmetric matrix but of order n x n. The rank of X X’ will
be at most p so there will be at most p nonzero eigenvalues; they are in
fact the same p eigenvalues obtained from X’X. In addition, X X’ will
have at least n — p eigenvalues that are zero. These n — p eigenvalues and
their vectors are dropped in the following. Denote with U the matrix of
eigenvectors of X X’ that correspond to the p eigenvalues common to X' X.
Each eigenvector u; will be of order n x 1. Then,

XX'=ULU'. (2.20)

Equations 2.19 and 2.20 jointly imply that the rectangular matrix X can
be written as

X = UL'Y?Z, (2.21)

where L'/? is the diagonal matrix of the positive square roots of the p
eigenvalues of X’'X. Thus, L'2LY? = L. Equation 2.21 is the singular
value decomposition of the rectangular matrix X . The elements of L'/ 2
)\}/ * are called the singular values and the column vectors in U and Z
are the left and right singular vectors, respectively.

Since L'/? is a diagonal matrix, the singular value decomposition ex-

presses X as a sum of p rank-1 matrices,

X = Y N uz, (2.22)
where summation is over ¢ = 1, ..., p. Furthermore, if the eigenvalues have
been ranked from largest to smallest, the first of these matrices is the
“best” rank-1 approximation to X, the sum of the first two matrices is
the “best” rank-2 approximation of X, and so forth. These are “best”
approximations in the least squares sense; that is, no other matrix (of the
same rank) will give a better agreement with the original matrix X as
measured by the sum of squared differences between the corresponding
elements of X and the approximating matrix (Householder and Young,
1938). The goodness of fit of the approximation in each case is given by
the ratio of the sum of the eigenvalues (squares of the singular values)

Singular Value
Decomposition
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used in the approximation to the sum of all eigenvalues. Thus, the rank-1
approximation has a goodness of fit of A1/ > A;, the rank-2 approximation
has a goodness of fit of (A1 + A2)/ > A;, and so forth.

Recall that there is an arbitrariness of sign for the eigenvectors obtained
from the eigenalysis of X’X and X X’. Thus, care must be exercised in
choice of sign for the eigenvectors in reconstructing X or lower-order ap-
proximations of X when the left and right eigenvectors have been obtained
from eigenanalyses. This is not a problem when U and Z have been ob-
tained directly from the singular value decomposition of X.

Singular value decomposition is illustrated using data on average mini-
mum daily temperature X, average maximum daily temperature X, total
rainfall X3, and total growing degree days X, for six locations. The data
were reported by Saeed and Francis (1984) to relate environmental con-
ditions to cultivar by environment interactions in sorghum and are used
with their kind permission. Each variable has been centered to have zero
mean, and standardized to have unit sum of squares. (The centering and
standardization are not necessary for a singular value decomposition. The
centering removes the mean effect of each variable so that the dispersion
about the mean is being analyzed. The standardization puts all variables
on an equal basis and is desirable in most cases, particularly when the
variables have different units of measure.) The X matrix is

X = (X1 X2 X3 Xy)
178146 —.523245 .059117 —.060996
449895 —.209298 777976 301186
—.147952 300866 —.210455 —.053411
—.057369 .065406 120598 —.057203
—.782003 —.327028 —.210455 —.732264
.359312 .693299 —.536780 .602687

The singular value decomposition of X into ULY2Z’ gives

[ —.113995  .308905 —.810678  .260088
251977 707512 .339701 —.319261
U - 007580 —.303203 277432 568364
—.028067 027767  .326626  .357124
—.735417 —.234888  .065551 —.481125
| 617923 —.506093 —.198632 —.385189
r1.496896 0 0 0
e 0 1.244892 0 0
0 0 454086 0
L0 0 0 .057893

Example 2.13
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.595025  .336131 .383204 .621382
451776 540753  .657957 .265663
.004942  .768694 .639051 .026450
664695 .060922 .108909 .736619

The columns of U and Z are the left and right singular vectors, respectively.
The first column of U, w1, the first column of Z, z1, and the first singular
value, A\; = 1.496896, give the best rank-1 approximation of X,

A1 = )\1/2’11117;/1

—.1140
.2520
.0076

—.0281

—.7354
.6179

—.101535 —.077091 —.000843 —.113423
.224434 .170403 .001864 .250712
.006752 .005126 .000056 .007542

—.024999 —.018981 —.000208 —.027927

—.655029 —.497335 —.005440 —.731725
050378 417877 .004571 .614820

= (1.4969) (5950 4518 .0049 .6647)

The goodness of fit of A; to X is measured by

A (1.4969)2

AN 4
or the sum of squares of the differences between the elements of X and
A, the lack of fit, is 44% of the total sum of squares of the elements in X.
This is not a very good approximation.

The rank-2 approximation to X is obtained by adding to A; the matrix
/2 L
Ay = Ay “ugz). This gives

.56

027725  —.285040 295197 —.089995
520490 —.305880 .678911 .304370
A+ A, — —.120122 209236 —.290091 —.015453
! 2 —.013380 —.037673 026363 —.025821 |’
—.753317 —.339213 —.230214 —.749539

.338605 758568 —.479730 .576438
which has goodness of fit

AL+ Ao (1.4969)% + (1.2449)%

Sa 1 .95.
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In terms of approximating X with the rank-2 matrix A;+ As, the goodness
of fit of .95 means that the sum of squares of the discrepancies between
X and (A; + A3) is 5% of the total sum of squares of all elements in X.
The sum of squares of all elements in X is > A;, the sum of squares of all
elements in (A; + Asz) is (A1 +A2), and the sum of squares of all elements in
[X — (A1 + Az)] is (A3 + A4). In terms of the geometry of the data vectors,
the goodness of fit of .95 means that 95% of the dispersion of the “cloud”
of points in the original four-dimensional space is, in reality, contained in
two dimensions, or the points in four-dimensional space very nearly fall on
a plane. Only 5% of the dispersion is lost if the third and fourth dimensions
are ignored.

Using all four singular values and their singular vectors gives the com-
plete decomposition of X into four orthogonal rank-1 matrices. The sum of
the four matrices equals X, within the limits of rounding error. The anal-
ysis has shown, by the relatively small size of the third and fourth singular
values, that the last two dimensions contain little of the dispersion and can
safely be ignored in interpretation of the data. ]

The singular value decomposition is the first step in principal com-
ponent analysis. Using the result X = ULY2Z’ and the property that
Z'Z = I, one can define the n x p matrix W as

W = XZ=UL"Y> (2.23)

The first column of Z is the first of the right singular vectors of X, or
the first eigenvector of X’ X. Thus, the coefficients in the first eigenvector
define the particular linear function of the columns of X (of the original
variables) that generates the first column of W. The second column of W
is obtained using the second eigenvector of X’X, and so on. Notice that
W’'W = L. Thus, W is an n x p matrix that, unlike X, has the property
that all its columns are orthogonal. (L is a diagonal matrix so that all
off-diagonal elements, the sums of products between columns of W, are
zero.) The sum of squares of the ith column of W' is A;, the ith diagonal
element of L. Thus, if X is an n X p matrix of observations on p variables,
each column of W is a new variable defined as a linear transformation of
the original variables. The ith new variable has sum of squares \; and all
are pairwise orthogonal. This analysis is called the principal component
analysis of X, and the columns of W are the principal components
(sometimes called principal component scores).

Principal component analysis is used where the columns of X correspond
to the observations on different variables. The transformation is to a set
of orthogonal variables such that the first principal component accounts
for the largest possible amount of the total dispersion, measured by A1, the
second principal component accounts for the largest possible amount of the
remaining dispersion Ay, and so forth. The total dispersion is given by the

Principal
Component
Analysis
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sum of all eigenvalues, which is equal to the sum of squares of the original
variables; tr(X'X) = tr(W'W) =Y \,.

For the Saeed and Francis data, Example 2.13, each column of Z contains
the coefficients that define one of the principal components as a linear
function of the original variables. The first vector in Z,

z1 = (.5950 4518 .0049 .6647)",

has similar first, second, and fourth coefficients with the third coefficient
being near zero. Thus, the first principal component is essentially an aver-
age of the three temperature variables X, X5, and X4. The second column
vector in Z,

zo = (.3361 —.5408 .7687 .0609) ,

gives heavy positive weight to X3, heavy negative weight to X5, and mod-
erate positive weight to X;. Thus, the second principal component will be
large for those observations that have high rainfall X3, and small difference
between the maximum and minimum daily temperatures X and X;.

The third and fourth principal components account for only 5% of the to-
tal dispersion. This small amount of dispersion may be due more to random
“noise” than to real patterns in the data. Consequently, the interpretation
of these components may not be very meaningful. The third principal com-
ponent will be large when there is high rainfall and large difference between
the maximum and minimum daily temperatures,

z3=(—.3832 .6580 .6391 —.1089)".

The variable degree days X4 has little involvement in the second and third
principal components; the fourth coefficient is relatively small. The fourth
principal component is determined primarily by the difference between an
average minimum daily temperature and degree days,

z4 = (.6214 2657 —.0265 —.7366)" . [ ]

The principal component vectors are obtained either by the multiplica-
tion W = ULY? or W = X Z. The first is easier since it is the simple

scalar multiplication of each column of U with the appropriate /\i /2,

The principal component vectors for the Saeed and Francis data of Ex-

Example 2.14

Example 2.15



66 2. INTRODUCTION TO MATRICES

ample 2.13 are (with some rounding)

—.1706 3846 —.3681 .0151
3772 .8808 1543 —.0185
0113 —-.3775 .1260 .0329

—.0420 .0346 .1483 .0207

—1.1008 —.2924 0298  —.0279
9250 —.6300 —.0902 —.0223

The sum of squares of the first principal component, the first column of W,
is A = (1.4969)2 = 2.2407. Similarly, the sums of squares for the second,
third, and fourth principal components are

Ao = (1.2449)% = 1.5498
A3 = (.4541)% = .2062
A = (.0579)% = .0034.

These sum to 4.0, the total sum of squares of the original three variables
after they were standardized. The proportion of the total sum of squares
accounted for by the first principal component is A1/ >~ A\; = 2.2407/4 = .56
or 56%. The first two principal components account for (A1 + A2)/4 =
3.79/4 = .95 or 95% of the total sum of squares of the four original variables.

Each of the original data vectors in X was a vector in six-dimensional
space and, together, the four vectors defined a four-dimensional subspace.
These vectors were not orthogonal. The four vectors in W, the principal
component vectors, are linear functions of the original vectors and, as such,
they fall in the same four-dimensional subspace. The principal component
vectors, however, are orthogonal and defined such that the first principal
component vector has the largest possible sum of squares. This means that
the direction of the first principal component axis coincides with the major
axis of the elipsoid of observations, Figure 2.3. Note that the “cloud” of
observations, the data points, does not change; only the axes are being
redefined. The second principal component has the largest possible sum
of squares of all vectors orthogonal to the first, and so on. The fact that
the first two principal components account for 95% of the sum of squares
in this example shows that very little of the dispersion among the data
points occurs in the third and fourth principal component dimensions. In
other words, the variability among these six locations in average minimum
and average maximum temperature, total rainfall, and total growing degree
days, can be adequately described by considering only the two dimensions
(or variables) defined by the first two principal components.

The plot of the first two principal components from the Saeed and Fran-
cis data, Figure 2.3, shows that locations 5 and 6 differ from each other
primarily in the first principal component. This component was noted ear-
lier to be mainly a temperature difference; location 6 is the warmer and has
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FIGURE 2.3. The first two principal components of the Saeed and Francis (1984)
data on average minimum temperature, average maximum temperature, total rain-
fall, and growing degree days for siz locations. The first principal component pri-
marily reflects average temperature. The second principal component is a measure
of rainfall minus the spread between minimum and mazimum temperature.
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the longer growing season. The other four locations differ primarily in the
second principal component which reflects amount of rainfall and the dif-
ference in maximum and minimum temperature. Location 2 has the highest
rainfall and tends to have a large difference in maximum and minimum daily
temperature. Location 6 is also the lowest in the second principal compo-
nent indicating a lower rainfall and small difference between the maximum
and minimum temperature. Thus, location 6 appears to be a relatively hot,
dry environment with somewhat limited diurnal temperature variation. ®

2.9  Summary

This chapter has presented the key matrix operations that are used in
this text. The student must be able to use matrix notation and matrix
operations. Of particular importance are

e the concepts of rank and the transpose of a matrix;

the special types of matrices: square, symmetric, diagonal, identity,
and idempotent;

e the elementary matrix operations of addition and multiplication; and

e the use of the inverse of a square symmetric matrix to solve a set of
equations.

The geometry of vectors and projections is useful in understanding least
squares principles. Eigenanalysis and singular value decomposition are used
later in the text.

2.10 Exercises

2.1. Let

1 0
1 2 -1
A=12 3’3_{03—4]’

-1
cd=(1 2 0), and d=2, a scalar.

Perform the following operations, if possible. If the operation is not
possible, explain why.
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(c) B’ +A
(d) e
(e) A
(

f) (dB’ + A).

2.2. Find the rank of each of the following matrices. Which matrices are
of full rank?

1T 1 0 0 0 1100

1 0100 1 010
A‘10010 B_1001

L1 0 0 0 1 1000

1 1 0 o0

1 0 1 0
C_1001

|1 -1 -1 -1

2.3. Use B in Exercise 2.2 to compute D = B(B’'B)~!B’. Determine
whether D is idempotent. What is the rank of D?

2.4. Find a;; elements to make the following matrix symmetric. Can you
choose a3z to make the matrix idempotent?

1 2 ais 4
2 -1 0 a4
6 0 ass —2
aq1 8 -2 3

2.5. Verify that A and B are inverses of each other.
10 5 2 -1
S ERIE A

2.6. Find b4y such that a and b are orthogonal.

2 6
0 —1
a= 1 b= 3
3 b1

2.7. Plot the following vectors on a two-dimensional coordinate system.

an(1) (1) = ( )

By inspection of the plot, which pairs of vectors appear to be orthog-
onal? Verify numerically that they are orthogonal and that all other
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2.8.

2.9.

2.10.

2.11.

2.12.

2.13.

2. INTRODUCTION TO MATRICES

pairs in this set are mot orthogonal. Explain from the geometry of
the plot how you know there is a linear dependency among the three
vectors.

The three vectors in Exercise 2.7 are linearly dependent. Find the
linear function of v and vy that equals vs. Set the problem up as a
system of linear equations to be solved. Let V' = (v; w3), and let
' = (21 x2) be the vector of unknown coefficients. Then, V& = v;
is the system of equations to be solved for .

(a) Show that the system of equations is consistent.

(b) Show that there is a unique solution.

(c¢) Find the solution.
Expand the set of vectors in Exercise 2.7 to include a fourth vector,
vy = (8 5). Reformulate Exercise 2.8 to include the fourth vector
by including v4 in Vand an additional coefficient in 2. Is this system

of equations consistent? Is the solution unique? Find a solution. If
solutions are not unique, find another solution.

Use the determinant to determine which of the following matrices has
a unique inverse.

1 1 4 -1 6 3
a=liw] B=[s &) e=li 3]
Given the following matrix,

3 V2
A=
KA
(a) find the eigenvalues and eigenvectors of A.
(b) What do your findings tell you about the rank of A?
Given the following eigenvalues with their corresponding eigenvectors,

and knowing that the original matrix was square and symmetric,
reconstruct the original matrix.

0
)\1 = 6 Z1:(1>

1
)\2 = 2 22:<0>.

Find the inverse of the following matrix,

5 0 0
A=|0 10 2
0 2 3
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2.14. Let

242
240
236
230
239
238
231
226

o - N o IR NN
= = R ===l

Il
e e T e T S e

(a) Compute X'X and X'Y. Verify by separate calculations that
the (i,j) = (2,2) element in X’'X is the sum of squares of
column 2 in X. Verify that the (2,3) element is the sum of
products between columns 2 and 3 of X. Identify the elements

in X'Y in terms of sums of squares or products of the columns
of X and Y.

(b) Is X of full column rank? What is the rank of X’ X?

(c) Obtain (X’'X)~!. What is the rank of (X’ X)~1? Verify by ma-
trix multiplication that (X'X)"!X'X =1I.
(d) Compute P = X (X’X)~! X’ and verify by matrix multiplica-

tion that P is idempotent. Compute the trace tr(P). What is
r(P)?

2.15. Use X as defined in Exercise 2.14.
(a) Find the singular value decomposition of X. Explain what the
singular values tell you about the rank of X.

(b) Compute the rank-1 approximation of X; call it A;. Use the
singular values to state the “goodness of fit” of this rank-1 ap-
proximation.

(c) Use A; to compute a rank-1 approximation of X'X; that is,
compute A} A;. Compare tr(A] A1) with \; and tr(X'X).
2.16. Use X’'X as computed in Exercise 2.14.

(a) Compute the eigenanalysis of X'X. What is the relationship
between the singular values of X obtained in Exercise 2.15 and
the eigenvalues obtained for X' X?

(b) Use the results of the eigenanalysis to compute the rank-1 ap-
proximation of X’ X . Compare this result to the approximation
of X' X obtained in Exercise 2.15.

(c) Show algebraically that they should be identical.
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2.17. Verify that

. 3 —13 8
A= | 12 T 2
Sl 12 17 -7

is the inverse of
1 3 2
B=|4 5 6
8 79
2.18. Show that the equations Ax = y are consistent where

1 2 6
A=1|3 3 and y=1[9
5 7

2.19. Verify that

1 2
A=|3 3
5 7
2.20. Verify that
1 _2 4
10 10 9
A = 0o 0 3
1 2 2
10 10 9
is a generalized inverse of
1 2 3
A=12 4 6
3 3 3

2.21. Use the generalized inverse in Exercise 2.20 to obtain a solution to
the equations Ax = y, where A is defined in Exercise 2.20 and y =
(6 12 9)'. Verify that the solution you obtained satisfies Az = y.

2.22. The eigenanalysis of

a=[3 d]

3 8
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2.24.

2.25.

2.26.
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in Section 2.7 gave

8.0042 5.7691
5.7691 4.1581

1.9958 —2.7691

Al:{ —2.7691  3.8419 |-

} and A, = [
Verify the multiplication of the eigenvectors to obtain A; and A,.
Verify that A; + Ay = A, and that A; and A, are orthogonal to
each other.

In Section 2.6, a linear transformation of y; = (3 10 20) to x; =
(33 17 —3) andofy,=(6 14 21) toxy = (41 15 1) was
made using the matrix

1 1 1
A=| -1 0 1
-1 2 1

The vectors of A were then standardized so that A’ A = I to produce
the orthogonal transformation of y; and y, to

xi = (33/V3 17/vV2 —3/V6)

and

@3 = (41/v3 15/V2 1/V6),

respectively. Show that the squared distance between y; and y, is
unchanged when the orthogonal transformation is made but not when
the nonorthogonal transformation is made. That is, show that

* *

(Y1 —¥2) (Y1 — ¥2) = (x] — x3)' (] — =)

but that
(Y1 — 42) (Y1 — y2) # (21 — x2)' (21 — 22).

(a) Let A be an m x n matrix and B be an n x m matrix. Then show
that tr(AB) = tr(BA).

(b) Use (a) to show that tr(ABC') = tr(BC A), where C is an mxm
matrix.

Let a* be an m x 1 vector with a*’a* > 0. Define a = a*/(a*'a*)'/?
and A = aa’. Show that A is a symmetric idempotent matrix of rank

1.

Let a and b be two m x 1 vectors that are orthogonal to each other.
Define A = aa’ and B = bb’. Show that AB = BA = 0, a matrix
of zeros.
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2.27. Gram—Schmidt orthogonalization. An orthogonal basis for a space
spanned by some vectors can be obtained using the Gram—Schmidt
orthogonalization procedure.

(a)

Consider two linearly independent vectors v; and ws. Define
z1 = vy and z2 = vy — vica1, where co1 = (Vjva)/(viv1).
Show that z; and zy are orthogonal. Also, show that z; and z,
span the same space as v and vs.

Consider three linearly independent vectors vy, vo, and vs. De-
fine z; and 29 as in (a) and z3 = v3 — ¢3.121 — C3.222, Where
c3i = (Zlvs)/(z}zi), i = 1, 2. Show that z1, zo, and z3 are
mutually orthogonal and span the same space as v1, vq, and vs.
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MULTIPLE REGRESSION IN
MATRIX NOTATION

We have reviewed linear regression in algebraic nota-
tion and have introduced the matrix notation and op-
erations needed to continue with the more complicated
models.

This chapter presents the model, and develops the nor-
mal equations and solution to the normal equations for
a general linear model involving any number of inde-
pendent variables. The matrix formulation for the vari-
ances of linear functions is used to derive the measures
of precision of the estimates.

Chapter 1 provided an introduction to multiple regression and suggested
that a more convenient notation was needed. Chapter 2 familiarized you
with matrix notation and operations with matrices. This chapter states
multiple regression results in matrix notation. Developments in the chapter
are for full rank models. Less than full rank models that use generalized
inverses are discussed in Chapter 9.

3.1 The Model

The linear additive model for relating a dependent variable to p indepen-
dent variables is

Y; = Bo+ B X + BoXig + -+ BpXip + € (3.1)
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The subscript i denotes the observational unit from which the observations
on Y and the p independent variables were taken. The second subscript
designates the independent variable. The sample size is denoted with n,i =
1,...,n, and p denotes the number of independent variables. There are
(p+ 1) parameters 3,7 = 0,...,p to be estimated when the linear model
includes the intercept . For convenience, we use p’ = (p+1). In this book
we assume that n > p’. Four matrices are needed to express the linear
model in matrix notation:

Y: the n x 1 column vector of observations on the dependent variable Y;;

X: the n x p’ matrix consisting of a column of ones, which is labeled 1,
followed by the p column vectors of the observations on the indepen-
dent variables;

B: the p’ x 1 vector of parameters to be estimated; and
€: the n x 1 vector of random errors.

With these definitions, the linear model can be written as

Y = XB+te (3.2)
or
Vi 1 X1 X X3 - Xy Bo €1
Y, 1 Xo1 Xo Xoz -0 Xgp B1 N €
Y, 1 X1 Xp2 Xiz an ﬂp €n
(nx1) (n x 1) W x1) (nx1)

Each column of X contains the values for a particular independent variable.
The elements of a particular row of X, say row r, are the coefficients on
the corresponding parameters in 3 that give £(Y;.). Notice that g has the
constant multiplier 1 for all observations; hence, the column vector 1 is the
first column of X. Multiplying the first row of X by 3, and adding the
first element of € confirms that the model for the first observation is
Yi = Bo+B8iXu+BeXo+ -+ B Xy +e.

The vectors Y and € are random vectors; the elements of these vectors are
random variables. The matrix X is considered to be a matrix of known
constants. A model for which X is of full column rank is called a full-rank
model.

The vector 3 is a vector of unknown constants to be estimated from the
data. Each element (3; is a partial regression coefficient reflecting the change
in the dependent variable per unit change in the jth independent variable,

Matrix
Definitions

The X Matrix

The 8 Vector
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assuming all other independent variables are held constant. The definition
of each partial regression coefficient is dependent on the set of independent
variables in the model. Whenever clarity demands, the subscript notation
on f; is expanded to identify explicitly both the independent variable to
which the coefficient applies and the other independent variables in the
model. For example, 35 13 would designate the partial regression coefficient
for X5 in a model that contains X;, X5, and X3.

It is common to assume that ¢; are independent and identically dis-
tributed as normal random variables with mean zero and variance o2. Since
¢; are assumed to be independent of each other, the covariance between ¢;
and ¢; is zero for any ¢ # j. The joint probability density function of
€1, €2, ..., € 18

n
H[(Qﬂ)71/2071 efef/2(r2] _ (27’1’)7’“/20'7“ e~ Zi:l e?/Qaz. (33)

i=1

The random vector € is a vector (€1 e -+ €, )/ consisting of random
variables €;.

Since the elements of X and 3 are assumed to be constants, the X3
term in the model is a vector of constants. Thus, Y is a random vector
that is the sum of the constant vector X 3 and the random vector €. Since
€; are assumed to be independent N (0, 0?) random variables, we have that

1. Y; is a normal random variable with mean Gy + 1 X;1 + B2 X0+ -+
BpXip and variance o2;

2. Y; are independent of each other.

The covariance between Y; and Y; is zero for ¢ # j. The joint probability
density function of Y7,...,Y,, is

(27T)_n/20'_n e~ Z[Yi7(ﬂ0+ﬂlxil+‘"+BpXip)]2/2”2 . (34)

The conventional tests of hypotheses and confidence interval estimates
of the parameters are based on the assumption that the estimates are nor-
mally distributed. Thus, the assumption of normality of the ¢; is critical
for these purposes. However, normality is not required for least squares
estimation. Even in the absence of normality, the least squares estimates
are the best linear unbiased estimates (b.l.u.e.). They are best in the sense
of having minimum variance among all linear unbiased estimators. If nor-
mality does hold, the maximum likelihood estimators are derived using the
criterion of finding those values of the parameters that would have max-
imized the probability of obtaining the particular sample, called the like-
lihood function. Maximizing the likelihood function in equation 3.4 with
respect to B = (B G - By ) is equivalent to minimizing the sum
of squares in the exponent, and hence the least squares estimates coincide

The Random
Vector €

The Y Vector

Importance
of Normality
Assumption
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with maximum likelihood estimates. The reader is referred to statistical

theory texts such as Searle (1971), Graybill (1961), and Cramér (1946) for

further discussion of maximum likelihood estimation.

For the ozone data used in Example 1.1 (see Table 1.1 on page 5), Example 3.1

.02 242
.07 237 3= Bo
11 231 A\ A
.15 201

s
I
>-<
I

and e is the vector of four (unobservable) random errors. ]

3.2 The Normal Equations and Their Solution

In matrix notation, the normal equations are written as
X'XB = X'Y. (3.5)

The normal equations are always consistent and hence will always have a
solution of the form

B = (X'X)X'Y. (3.6)

If X'X has an inverse, then the normal equations have a unique solution
given by

B=(X'X) (X'Y). (3.7)

The multiplication X'X generates a p’ x p’ matrix where the diagonal X’X
elements are the sums of squares of each of the independent variables and

the off-diagonal elements are the sums of products between independent
variables. The general form of X'X is

n > Xa DX o Y Xy
X XX Y XaXe o XXXy

Y Xip Y XuXie > X2 e XXy | (3.8)

S X S XaXip Y XXy oo Y XE
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Summation in all cases is over ¢ = 1 to n, the n observations in the data.
When only one independent variable is involved, X’ X consists of only the
upper-left 2 x 2 matrix. Inspection of the normal equations in Chapter
1, equation 1.6, reveals that the elements in this 2 x 2 matrix are the
coefficients on [y and (1.

The elements of the matrix product X'Y are the sums of products be-
tween each independent variable in turn and the dependent variable:

Y
> XaY;

!/

ZszY;

The first element Y Y; is the sum of products between the vector of ones
(the first column of X) and Y. Again, if only one independent variable
is involved, X'Y consists of only the first two elements. The reader can
verify that these are the right-hand sides of the two normal equations,
equation 1.6.

The unique solution to the normal equations exists only if the inverse of
X'X exists. This, in turn, requires that the matrix X be of full column
rank; that is, there can be no linear dependencies among the independent
variables. The practical implication is that there can be no redundancies
in the information contained in X. For example, the amount of nitrogen
in a diet is sometimes converted to the amount of protein by multiplica-
tion by a constant. Because the same information is reported two ways,
a linear dependency occurs if both are included in X. Suppose the inde-
pendent variables in a genetics problem include three variables reporting
the observed sample frequencies of three possible alleles (for a particular
locus). These three variables, and the 1 vector, create a linear dependency
since the sum of the three variables, the sum of the allelic frequencies, must
be 1.0. Only two of the allelic frequencies need be reported; the third is
redundant since it can be computed from the first two and the column of
ones.

It is always possible to rewrite the model such that the redundancies
among the independent variables are eliminated and the corresponding X
matrix is of full rank. In this chapter, X is assumed to be of full column
rank. The case where X is not of full rank is discussed in Chapter 9.

Matrix operations using X and Y from the ozone example, Example 1.1,

A Unique
Solution

Example 3.2
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give

e [ 4 3500 w911
XXx= {.3500 .0399} Xy = <76.99>

and

—9.43396 107.81671

The estimates of the regression coefficients are
253.434 )

(X'X)! = { 1.07547  —9.43396 } .

2 1 —1vwv/v _
A= (XX) XY*<—293.531

3.3 The Y and Residuals Vectors

The vector of estimated means of the dependent variable Y for the values
of the independent variables in the data set is computed as

Y = X3 (3.10)

This is the simplest way to compute Y. It is useful for later results, however,
to express Y as a linear function of Y by substituting [(X'X)~"1X'Y] for
B. Thus,

Y = [X(X'X)'X'|Y
- PY. (3.11)

Equation 3.11 defines the matrix P, an n X n matrix determined entirely
by the Xs. This matrix plays a particularly important role in regression
analysis. It is a symmetric matrix (P’ = P) that is also idempotent (PP =
P), and is therefore a projection matrix (see Section 2.6). Equation 3.11
shows that Y is a linear function of Y with the coefficients given by P. (For
example, the first row of P contains the coefficients for the linear function
of all Y; that gives Y;.)

For the Heagle ozone data used in Example 1.1,

r1 .02
P - 1 .07 1.0755  —9.4340 1 1 1 1
o 1 .11 —9.4340 107.8167 .02 .07 .11 .15

1 .15

741240 377358 .086253 —.204852
377358 283019 .207547 132075
086253 .207547 .304582 401617
| —-204852 .132075 .401617 671159

Y and P

Example 3.3
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Thus, for example,
Yy = .T41Y; + .377Y; + .086Y;3 — .205Y;.

The residuals vector e reflects the lack of agreement between the observed
Y and the estimated Y:
e = Y-Y. (3.12)
As with ?, e can be expressed as a linear function of Y by substituting
PY forY:
e = Y-PY=(I-P)Y. (3.13)
Recall that least squares estimation minimizes the sum of squares of the
residuals; 3 has been chosen so that €’e is a minimum. Like P, (I — P) is
symmetric and idempotent.
__This has partitioned Y into two parts, that accounted for by the model
Y and the residual e. That the two parts are additive is evident from the fact
that e was obtained by difference (equation 3.12), or can be demonstrated
as follows.
IA/ +e =

PY+(I-P)YY=(P+I-P)Y=Y. (3.14)

Continuing with Example 3.3, we obtain

1 .02 247.563
S -~ 1 .07 253.434 232.887
Y=Xj3= 1 .11 (—293.531 ) — | 221.146
1 .15 209.404
The residuals are
—5.563
S 4.113
e=Y-Y~= 9.854
—8.404

The results from the ozone example are summarized in Table 3.1. |

Example 3.4
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TABLE 3.1. Results for the linear regression of soybean yield on levels of ozone.

X; Y; Y; €;

0.02 242 247.563 —5.563
0.07 237 232.887 4.113
0.11 231 221.146 9.854
0.15 201 209.404 —8.404

3.4 Properties of Linear Functions of Random
Vectors

Note that ,@, l/;, and e are random vectors because they are functions of
the random vector Y. In the previous sections, these vectors are expressed
as linear functions AY of Y. The matrix A is

e (X'X)1X' for 3,
e P for f’, and
e (I —P)fore.

Before studying the properties of B, }A’, and e, it is useful to study the
general properties of linear functions of random vectors.

Let Z=(z - 2z )' be a random vector consisting of random vari-
ables z1, 2o, ..., 2,. The mean p, of the random vector Z is defined as an
nx 1 vector with the ith coordinate given by £(z;). The variance-covariance
matrix V', for Z is defined as an n X n symmetric matrix with the diagonal
elements equal to the variances of the random variables (in order) and the
(4, 7)th off-diagonal element equal to the covariance between z; and z;. For
example, if Z is a 3 x 1 vector of random variables z1, z2, and z3, then the
mean vector of Z is the 3 x 1 vector

E(z1) 1
E2Z)=|E(z) | =p.=| k2 (3.15)
E(z3) u3

and the variance—covariance matrix is the 3 x 3 matrix
Var(z1)  Cov(z1,22) Cov(z1,23)
Var(Z) = |Cov(ze,21) Var(za) Cov(za,23)
Cov(zs,z1) Cov(zs,z2) Var(zs)

= V. (3.16)

Random
Vectors Z

Var(Z)
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El(z1 = p)?] E[(z1 = pa)(z2 — p2)] E[(21 — pa)(z3 — p3)]
= | €l(z2 — p2)(z1 — p1)] El(z2 = p2)?] E[(z2 — p2)(z3 — p3)]
El(zs — p3)(z1 — )] E[(z3 — p3)(z2 — p2)] El(23 — p3)?]
= &{Z-&12)Z-&(2)]'}. (3.17)
Let Z be an n x 1 random vector with mean p, and variance-covariance  Linear
matrix V.. Let Functions
aj of Z
A= o
a
be a kxn matrix of constants. Consider the linear transformation U = AZ.
That is, U is a k x 1 vector given by U=AZ
a/1Z Ul
atZ U
uv=| | =|"]. (3.18)
aﬁCZ Uk
Note that

Ew) = E(ajZ)
Elainz1 + ainza + -+ - + Gin2n)]
ailé'(zl) + aigg(ZQ) + -+ amé'(zn)

= ap.,
and hence EWU)
&(ur) arp,
E(us) abp
(‘:[U] _ _ 2z
E(ug) alp,
= Apu,. (3.19)
The k x k variance—covariance matrix for U is given by Var(U)
Var(U) = V,

ElU - EU)[U - £U).
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Substitution of AZ for U and factoring gives
V. = E[AZ - ApJ|[AZ - Ap.)
EAZ —p.)[Z - p.)A
= AfZ —p)lZ - p]JA
= A[Var(Z) A’
AV A (3.20)

The factoring of matrix products must be done carefully; remember that
matrix multiplication is not commutative. Therefore, A is factored both to
the left (from the first quantity in square brackets) and to the right (from
the transpose of the second quantity in square brackets). Remember that
transposing a product reverses the order of multiplication (CD)’ = D'C’.
Since A is a matrix of constants it can be factored outside the expectation
operator. This leaves an inner matrix which by definition is Var(Z).
Note that, if Var(Z) = oI, then

Var(U) = A[o*I|A
AA'0% (3.21)

The ith diagonal element of AA’ is the sum of squares of the coefficients
(aja;) of the ith linear function u; = a}Z. This coeflicient multiplied by
o? gives the variance of the ith linear function. The (,7)th off-diagonal
element is the sum of products of the coefficients (a}a;) of the ith and jth
linear functions and, when multiplied by o2, gives the covariance between
two linear functions u; = a;Z and u; = a}Z .

Note that if A is just a vector a’, then v = a@’Z is a linear function of
Z. The variance of u is expressed in terms of Var(Z) as

o?(u) = da'Var(Z)a. (3.22)
If Var(Z) = Io?, then
o?(u) = d/(Io?)a = ad'ac’ (3.23)

Notice that a’a is the sum of squares of the coefficients of the linear function
>~ a2, which is the result given in Section 1.5.

Two examples illustrate the derivation of variances of linear functions
using the preceding important results.

Matrix notation is used to derive the familiar expectation and variance of

a sample mean. Suppose Y1, Y5, ..., Y, are independent random variables
with mean p and variance 0. Then, for Y = (Y} Yy --- Y,),
I
W
EY)=| . |=p1

W

Example 3.5
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and

Var(Y) = Io*.
The mean of a sample of n observations, Y = " Y;/n, is written in matrix
notation as

V(L 1

)Y. (3.24)

1
n

Thus, Y is a linear function of Y with the vector of coefficients being

a’:(l i .. l),
Then,
EY) = d&(Y)=dlu=yu (3.25)
and
Var(Y) = d'[Var(Y)la =d (Io%)a
T
1
= (+ & )% |
1

= n (1)202 = 0—2. (3.26)

For the second example, consider two linear contrasts on a set of four
treatment means with n observations in each mean. The random vector in
this case is the vector of the four treatment means. If the means have been
computed from random samples from four populations with means pq, ps,
ps, and py and equal variance o2, then the variance of each sample mean
will be 02/n (equation 3.26, and all covariances between the means will be
zero. The mean of the vector of sample means Y = (Y, Y, Y3 Y,)
is o= (pu1 p2 ps pa)’. The variancecovariance matrix for the vector
of means Y is Var(Y') = I(0?/n). Assume that the two linear contrasts of
interest are

c; = ?1 — ?2 and Coy — ?1 - 2?2 +?3

Notice that Y, is not involved in these contrasts. The contrasts can be
written as

C = AY, (3.27)

Example 3.6



86 3. MULTIPLE REGRESSION IN MATRIX NOTATION

where
 (a 1 =10 0
C = <02> and A—{l 9 1 0}.
Then,
E(C) = AE(Y)=Ap=| M~ 3.28
©) = As@)=Au=|, ", 1 (3.29
and

Var(C) = A[Var(?)}A’:A{ (‘f)]A’

(3.29)

Il
b
»
7 N
3|9
N———
Il
| —
w N
D W
N
SERE

Thus, the variance of ¢; is 202/n, the variance of cy is 602/n, and the
covariance between the two contrasts is 302 /n. ]

We now develop the multivariate normal distribution and present some
properties of multivariate normal random vectors. We first define a mul-
tivariate random vector when the elements of the vector are mutually in-
dependent. We then extend the results to normal random vectors with a
nonzero mean and a variance—covariance matrix that is not necessarily di-
agnonal. Finally, we present a result for linear functions of normal random
vectors.

Suppose z1, 23, ...,2, are independent normal random variables with
mean zero and variance o2. Then, the random vector Z = (z; --- 2,)is
said to have a multivariate normal distribution with mean 0 = (0 --- 0)’

and variance—covariance matrix V, = Io2. This is denoted as
Z ~ N(0,1I5%).

The probability density function of Z is given in equation (3.3) and can
also be expressed as

(2m) /2|12 V2 (2T 2], (3.30)

It is a general result that if U is any linear function U = AZ + b, where A
is a k X n matrix of constants and b is a k x 1 vector of constants, then U
is itself normally distributed with mean p,, = b and variance—covariance
matrix Var(U) = V,, = AA'0? (Searle, 1971). The random vector U has
a multivariate normal distribution which is denoted by

U~ N(p,, Vo). (3.31)

Multivariate
Normal
Distribution

Normal
Random
Vectors
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If A is of rank k, then the probability density function of U is given by
(@m)*2 v 12 e~ [U-p] VI U-p]} (3.32)

The preceding result holds for vectors other than Z also. For example,
if U ~ N(p,,V,) and if

Y = BU +eg, (3.33)
where B is a matrix of constants and ¢ is a vector of constants, then
Y ~ N(p,,Vy), (3.34)

where p, = By, + cand V,, = BV ,B’. In Examples 3.5 and 3.6, if the
data are assumed to be from a normal population, then Y in equation 3.24
is N(u,0?/n) and C in equation 3.27 is

H1 — 2 2 3]0
N([M1*2M2+M3}’ [3 6} n>
3.5 Properties of Regression Estimates

The estimated regression coefficients B, the fitted values 17, and the resid-
uals e are all linear functions of the original observations Y. Recall that

Y =X3+e.

Since we have assumed that ¢; are independent random variables with mean

zero and variance o2, we have
E(e)=0
and
Var(e) = Io?
Note that
EY) = E[XB+¢e=E[X0]+E[e
= Xg (3.35)
and
Var(Y) = Var(X3 + €) = Var(e) = Io°. (3.36)

Here, Var(Y') is the same as Var(e) since adding a constant like X3
to a random variable does not change the variance. When € is normally
distributed, Y is also multivariate normally distributed. Thus,

Y ~ N(X83,0%I). (3.37)

The Y Vector
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This result is based on the assumption that the linear model used is the
correct model. If important independent variables have been omitted or
if the functional form of the model is not correct, X3 will not be the
expectation of Y. Assuming that the model is correct, the joint probability
density function of Y is given by

(21) /2| Ig2| /2~ (/HY =X By L")~ (Y -X B)}
(Qﬂ_)777,/20_777,67(1/202)(YfXIB)/(YfX,B). (338)

Expressing BasfB = [(X'X)~1X']Y shows that the estimates of the
regression coefficients are linear funtions of the dependent variable Y, with
the coefficients being given by A = [(X’'X)~1X’]. Since the Xs are con-
stants, the matrix A is also constant. If the model Y = X 3 + € is correct,
the expectation of Y is X3 and the expectation of 3 is

£B) = (X'X)T'XEY)
= [(X'X)"'X'|Xp
= [(X'X)7'X'X]B

B. (3.39)

This shows that ,@ is an unbiased estimator of B if the chosen model is

correct. If the chosen model is not correct, say £(Y) = X3 + Z~ instead

of X3, then [(X'X)"1X'|E(Y) does not necessarily simplify to 3.
Assuming that the model is correct,

Var() = [(X'X)7'X'][Var(Y)][(X'X)"' X"]
(X' X)'X'|I2[(X'X)"1X).
Recalling that the transpose of a product is the product of transposes in

reverse order [i.e., (AB)’ = B'A’], that X’ X is symmetric, and that the
inverse of a transpose is the transpose of the inverse, we obtain

Var() = (X'X)'X'X(X'X) 'o?
(X'X) o2 (3.40)
Thus, the variances and covariances of the estimated regression coefficients
are given by the elements of (X'X)~! multiplied by 2. The diagonal
elements give the variances in the order in which the regression coefficients

are listed in 3 and the off-diagonal elements give their covariances. When e
is normally distributed, 3 is also multivariate normally distributed. Thus,

B~ N(B,(X'X) 0?). (3.41)

In the ozone example, Example 3.3,

B Vector

Example 3.7
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1.0755 —9.4340

Iy —1
(X'X) —9.4340 107.8167

Thus, Var(ﬁo) = 1.075502 and Var(B3;) = 107.816702. The covariance be-
tween ﬁo and 61 is Cov(ﬂo7 51) = —9.434002. [ ]

Recall that the vector of estimated means Y is given by
Y = [X(X'X)"'X']Y = PY.
Therefore, using PX = X, the expectation of Y is
EY)=PEY)=PXB=X}B. (3.42)

Thus, Y is an unbiased estimator of the mean of Y for the particular values
of X in the data set, again if the model is correct. The fact that PX = X
can be verified using the definition of P:

PX = [X(X'X)'X'|Xx
X[(X'Xx)"H(X'X)]
X. (3.43)

The variance—covariance matrix of Y can be derived using either the rela-
tionship Y = X,B or Y = PY. Recall that P = X (X'X)"1X'. Applying
the rules for variances of linear functions to the first relationship gives

Var(Y) = X[Var(B)X’
X(X'X)'X'o?
Po2. (3.44)

The derivation using the second relationship gives

Var(Y) = P[Var(Y)|P'
= PP/s?
Po?, (3.45)

since P is symmetric and idempotent. Therefore, the matrix P multiplied
by o2 gives the variances and covariances for all Y;. P is a large n x n
matrix and at times only a few elements are of interest. The variances of
any subset of the Y; can be determined by using only the rows of X, say
X ., that correspond to the data points of interest and applying the first
derivation. This gives

Var(Y,) = X, [Var(8)] X, = X, (X'X) ' X .02 (3.46)
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When € is normally distributed,
Y ~ N(X8, Po?). (3.47)

Recall that the vector of residuals e is given by (I — P)Y . Therefore,
the expectation of e is

E(e)

(I-P)EY)=(I-P)Xp
(X - PX)3=(X-X)8=0, (3.48)

where 0 is an n x 1 vector of zeros. Thus, the residuals are random variables
with mean zero.
The variance—covariance matrix of the residual vector e is

Var(e) = (I — P)o? (3.49)

again using the result that (I — P) is a symmetric idempotent matrix. If
the vector of regression errors € is normally distributed, then the vector of
regression residuals satisfies

e~ N(0,(I — P)o?). (3.50)

Prediction of a future random observation, Yy = x(3 + ¢ at a given

vector of independent variables ), is given by Yy = (8. It is easy to see
that

Yo ~ N(z)8, 2 (X' X) ' x0?). (3.51)

This result is used to construct confidence intervals for the mean (3.

If the future ¢ is assumed to be a normal random variable with mean
zero and variance o2 , and is independent of the historic errors of €, then
the prediction error YO - YO =xy(B — ,8) + €p satisfies

Yo — Yo ~ N (0,1 + (X' X) Laglo?) . (3.52)

This result is used to construct a confidence interval for an individual Yy
that we call a prediction interval for Y. Recall that the variance of (Yo —Yp)

is denoted by Var( pred, )-

The matrix P = X (X' X)~! X’ was computed for the ozone example in
Example 3.3. Thus, with some rounding of the elements in P,

Var(f/) = Po?
741 377 086 —.205
B 377 283 208 132 |
- 086 208 .305 .402 |7
—.205 .132 .402  .671

e Vector

Prediction lA’O

Example 3.8
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The variance of the estimated mean of Y when the ozone level is .02 ppm
is Var(}/}l) = .74102. For the ozone level of .11 ppm, the variance of the
estimated mean is Var(?g) = .30502. The covariance between the two esti-
mated means is Cov(Y7, Y3) = .08652.

The variance—covariance matrix of the residuals is obtained by Var(e) =
(I — P)o?. Thus,

Var(e;) = (1—.741)0? = 25952
Var(e3) = (1—.305)0? = .69502
Cov(e1,e3) = —Cov(?l,?3):—.08602.

It is important to note that the variances of the least squares residuals are
not equal to o2 and the covariances are not zero. The assumption of equal
variances and zero covariances applies to the ¢;, not the e;. [ |

The variance of any particular Y; and the variance of the corresponding
e; will always add to o2 because

Var(Y) = Var(Y +7¢)
= Var(Y) + Var(é) + Cov(Y,€) + Cov(e,Y)
= Po?+(I—-P)o*+P(I - P)s*>+ (I - P)Po?
= Po’+(I-P)o?
= Io’ (3.53)

Since variances cannot be negative, each diagonal element of P must be
between zero and one: 0 < v;; < 1.0, where v;; is the ith diagonal element
of P. Thus, the variance of any Y; is always less than o2, the variance
of the individual observations. This shows the advantage of fitting a con-
tinuous response model, assuming the model is correct, over simply using
the individual observed data points as estimates of the mean of Y for the
given values of the Xs. The greater precision from fitting a response model
comes from the fact that each Y; uses information from the surrounding
data points. The gain in precision can be quite striking. In Example 3.8, the
precision obtained on the estimates of the means for the two intermediate
levels of ozone using the linear response equation were .28302 and .3050°2.
To attain the same degree of precision without using the response model
would have required more than three observations at each level of ozone.
Equation 3.53 implies that data points having low variance on Y; will
have high variance on e; and vice versa. Belsley, Kuh, and Welsch (1980)
show that the diagonal elements of P, v;; can be interpreted as measures
of distance of the corresponding data points from the center of the X-space
(from X in the case of one independent variable). Points that are far from
the center of the X-space have relatively large v;; and, therefore, relatively

Var(}/}i)
< Var(Y;)

Role by Xs
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high variance on 172 and low variance on e;. The smaller variance of the
residuals for the points far from the “center of the data” indicates that
the fitted regression line or response surface tends to come closer to the
observed values for these points. This aspect of P is used later to detect
the more influential data points.

The variances (and covariances) have been expressed as multiples of o.
The coefficients are determined entirely by the X matrix, a matrix of con-
stants that depends on the model being fit and the levels of the independent
variables in the study. In designed experiments, the levels of the indepen-
dent variables are subject to the control of the researcher. Thus, except for
the magnitude of o2, the precision of the experiment is under the control
of the researcher and can be known before the experiment is run. The effi-
ciencies of alternative experimental designs can be compared by computing
(X’'X)~! and P for each design. The design giving the smallest variances
for the quantities of interest would be preferred.

3.6 Summary of Matrix Formulae

Model: Y=X3+¢€
Normal equations: (X'X)B=X'Y
Parameter estimates: B=(X'X)"'X'Y
Fitted values: Y=X ,/8\

= PY, where P = X(X'X)"'X’

Residuals: e=Y -Y
—(I-P)Y

Variance of 3 : Var(3) = (X' X) Lo2

Variance of Y : Var(l/}) = Po?

Variance of e : Var(e) = (I — P)o?

Controlling
Precision
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3.7 Exercises

3.1

3.2.

3.3.

3.4.

3.5.

The linear model in ordinary least squares is Y = X3 + £. Assume
there are 30 observations and five independent variables (containing
no linear dependencies). Give the order and rank of:

(a
(b (without an intercept in the model).

)Y
) X

(¢) X (with an intercept in the model).

(d) B (without an intercept in the model).
) B
)
)
)

(e (with an intercept in the model).
(f
(g
(

h) P (with an intercept in the model).

€.

X'X) (with an intercept in the model).

For each of the following matrices, indicate whether there will be a
unique solution to the normal equations. Show how you arrived at
yOur answer.

1 2 4 110 1 2 4
1 3 8 110 1 1 2
Xi=11 0 ¢ Xo=11 ¢ o *=|1 3 —¢
1 -1 2 10 1 1 -1 -2

You have a data set with four independent variables and n = 42
observations. If the model is to include an intercept, what would be
the order of X’ X? Of (X'X)~1? Of X'Y? Of P?

A data set with one independent variable and an intercept gave the
following (X'X)~1

31 =3
(x'x)! 7 1T
=3 6
77 177

How many observations were there in the data set? Find Y X2. Find
the corrected sum of squares for the independent variable.

The data in the accompanying table relate grams plant dry weight
Y to percent soil organic matter X, and kilograms of supplemental
soil nitrogen added per 1,000 square meters Xs:
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Y X Xy
78.5 7 2.6

74.3 1 2.9
104.3 11 5.6
8§7.6 11 3.1
95.9 7 5.2
109.2 11 9.5
102.7 3 7.1

Sums: 652.5 51 32.0
Means: 93.21  7.29 4.57

(a) Define Y, X, 3, and € for a model involving both independent

—
o

—
@

variables and an intercept.

) Compute X'X and X'Y.
) (X'X)~1 for this problem is

1.7995972 —.0685472 —.2531648
(X'X)™t = | —.0685472 .0100774 —.0010661
—.2531648 —.0010661 .0570789

Verify that this is the inverse of X’ X. Compute B and write the
regression equation. Interpret each estimated regression coeffi-
cient. What are the units of measure attached to each regression
coefficient?

) Compute Y and e.

) The P matrix in this case is a 7 x 7 matrix. Illustrate the com-

putation of P by computing v11, the first diagonal element, and
v12, the second element in the first row. Use the preceding results
and these two elements of P to give the appropriate coefficient
on o? for each of the following variances.
(i) Var(By)

(i) Var(Y1)
(iii) Var(Ypred,)
(iv) Var(ep).

3.6. Use the data in Exercise 3.5. Center each independent variable by

subtracting the column mean from each observation in the column.
Compute X' X, X'Y, and B3 using the centered data. Were the com-
putations simplified by using centered data? Show that the regression
equation obtained using centered data is equivalent to that obtained
with the original uncentered data. Compute P using the centered
data and compare it to that obtained using the uncentered data.
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The matrix P for the Heagle ozone data is given in Example 3.3. Ver-
ify that P is symmetric and idempotent. What is the linear function
of Y; that gives Y37

Compute (I — P) for the Heagle ozone data. Verify that (I — P) is
idempotent and that P and (I — P) are orthogonal to each other.

What does the orthogonality imply about the vectors Y and e?

This exercise uses the Lesser-Unsworth data in Exercise 1.19, in
which seed weight is related to cumulative solar radiation for two
levels of exposure to ozone. Assume that “low ozone” is an exposure
of .025 ppm and that “high ozone” is an exposure of .07 ppm.

(a) Set up X and 3 for the regression of seed weight on cumulative
solar radiation and ozone level. Center the independent variables
and include an intercept in the model. Estimate the regression
equation and interpret the result.

(b) Extend the model to include an independent variable that is the
product term between centered cumulative solar radiation and
centered ozone level. Estimate the regression equation for this
model and interpret the result. What does the presence of the
product term contribute to the regression equation?

This exercise uses the data from Exercise 1.21 (number of hospital
days for smokers, number of cigarettes smoked, and number of hospi-
tal days for control groups of nonsmokers). Exercise 1.21 used the in-
formation from the nonsmoker control groups by defining the depen-
dent variable as Y = In(number of hospital days for smokers/number
of hospital days for nonsmokers). Another method of taking into ac-
count the experience of the nonsmokers is to use Xo = In(number of
hospital days for nonsmokers) as an independent variable.

(a) Set up X and B for the regression of Y = In(number of hospi-
tal days for smokers) on X; = (number cigarettes)? and X, =
In(number of hospital days for nonsmokers).

(b) Estimate the regression equation and interpret the results. What
value of B3 would correspond to using the nonsmoker experience
as was done in Exercise 1.217

The data in the table relate the annual catch of Gulf Menhaden,
Brevoortia patronus, to fishing pressure for 1964 to 1979 (Nelson and
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Ahrenholz, 1986).

Catch Number Pressure
Year Met. Ton x1073  Vessels Vessel-Ton-Weeks x1073
1964 409.4 76 282.9
1965 463.1 82 335.6
1966 359.1 80 381.3
1967 317.3 76 404.7
1968 373.5 69 382.3
1969 523.7 72 411.0
1970 548.1 73 400.0
1971 728.2 82 472.9
1972 501.7 75 447.5
1973 486.1 65 426.2
1974 578.6 71 485.5
1975 542.6 78 536.9
1976 561.2 81 575.9
1977 447.1 80 532.7
1978 820.0 80 574.3
1979 777.9 77 533.9

Run a linear regression of catch (Y) on fishing pressure (X;) and
number of vessels (X3). Include an intercept in the model. Interpret
the regression equation.

3.12. A simulation model for peak water flow from watersheds was tested by
comparing measured peak flow (cfs) from 10 storms with predictions
of peak flow obtained from the simulation model. @, and @, are the
observed and predicted peak flows, respectively. Four independent
variables were recorded:

X, = area of watershed (mi?),

X, = average slope of watershed (in percent),

X3 = surface absorbency index (0 = complete absorbency, 100
= no absorbency), and

X, = peak intensity of rainfall (in/hr) computed on half-hour
time intervals.
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Qo Q, X1 Xo X5 Xy

28 32 .03 30 70 .6
112 142 03 3.0 80 1.8
398 502 .13 6.5 65 2.0
772 790 1.00 15.0 60 4
2,294 3,075 1.00 15.0 65 2.3
2,484 3,230 3.00 7.0 67 1.0
2,586 3,535 5.00 6.0 62 9
3,024 4,265 7.00 6.5 56 1.1
4,179 6,529 7.00 6.5 56 14
710 935 7.00 6.5 56 .7

(a) Use Y =1n(Q,/Qp) as the dependent variable. The dependent
variable will have the value zero if the observed and predicted
peak flows agree. Set up the regression problem to determine
whether the discrepancy Y is related to any of the four inde-
pendent variables. Use an intercept in the model. Estimate the
regression equation.

(b) Further consideration of the problem suggested that the discrep-
ancy between observed and predicted peak flow Y might go to
zero as the values of the four independent variables approach
zero. Redefine the regression problem to eliminate the intercept
(force By = 0), and estimate the regression equation.

(c¢) Rerun the regression (without the intercept) using only X; and
Xy; that is, omit X5 and X3 from the model. Do the regression
coefficients for X; and X4 change? Explain why they do or do
not change.

(d) Describe the change in the standard errors of the estimated re-
gression coefficients as the intercept was dropped [Part (a) versus
Part (b)] and as X5 and X3 were dropped from the model [Part
(b) versus Part (c)].

3.13. You have fit a linear model using Y = X3 + € where X involves r
independent variables. Now assume that the true model involves an
additional s independent variables contained in Z. That is, the true
model is

Y =XB+Zv+e,

where - is the vector of regression coefficients for the independent
variables contained in Z.

(a) Find £(3) and show that, in general, 8 = (X'X)"!X'Y is a
biased estimate of 3.
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(b) Under what conditions would B be unbiased?

The accompanying table shows the part of the data reported by
Cameron and Pauling (1978) related to the effects of supplemental
ascorbate, vitamin C, in the treatment of colon cancer. The data are
taken from Andrews and Herzberg (1985) and are used with permis-
sion.

Sex Age Days® Control®

F 76 135 18
F 58 50 30
M 49 189 65
M 69 1,267 17
F 70 155 57
F 68 534 16
M 50 502 25
F 74 126 21
M 66 90 17
F 76 365 42
F 56 911 40
M 65 743 14
F 74 366 28
M 58 156 31
F 60 99 28
M 7 20 33
M 38 274 80

%Days = number of days survival after date of untreatability.
bControl = average number of days survival of 10 control patients.

Use Y = In(days) as the dependent variable and X; = sex (coded —1
for males and +1 for females), Xo = age, and X3 = In(control) in a
multiple regression to determine if there is any relationship between
days survival and sex and age. Define X and 3, and estimate the
regression equation. Explain why X3 is in the model if the purpose
is to relate survival to X; and Xos.

Suppose U ~ N(u,,, V). Let

uy M1 Vit Vi
U= RNTIES , and V,= .
(u2> H (Hg) {V21 V22}
Use equation 3.32 to show that w; and us are independent if V15 = 0.

That is, if w is multivariate normal, then w; and ws uncorrelated
implies u; and wug are independent. (The joint density of w; and us
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is the product of the marginal densities of w; and ws, if and only if
u; and us are independent.)
Consider the model Y = X3 + €, where € ~ N(0,02I). Let

o[- [

Find the distribution of U. Show that B and e are independent. (Hint:
Use the result in equation 3.31 and Exercise 3.15.)
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ANALYSIS OF VARIANCE AND
QUADRATIC FORMS

The previous chapter developed the regression results
involving linear functions of the dependent variable, 3,
Y, and e. All were shown to be normally distributed
random variables if Y was normally distributed.

This chapter develops the distributional results for all
quadratic functions of Y. The distribution of quadratic
forms is used to develop tests of hypotheses, confidence
interval estimates, and joint confidence regions for 3.

The estimates of the regression coefficients, the estimated means, and
the residuals have been presented in matrix notation; all were shown to
be linear functions of the original observations Y. In this chapter it is
shown that the model, regression and residual sums of squares, and the
sums of squares used for testing a linear contrast or a collection of linear
hypotheses are all quadratic forms of Y. This means that each sum of
squares can be written as Y’ AY , where A is a matrix of coefficients called
the defining matrix. Y’ AY is referred to as a quadratic form in Y.

The aim of model fitting is to explain as much of the variation in the
dependent variable as possible from information contained in the indepen-
dent variables. The contributions of the independent variables to the model
are measured by partitions of the total sum of squares of Y attributable
to, or “explained” by, the independent variables. Each of these partitions
of the sums of squares is a quadratic form in Y. The degrees of freedom
associated with a particular sum of squares and the orthogonality between
different sums of squares are determined by the defining matrices in the
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quadratic forms. The matrix form for a sum of squares makes the compu-
tations simple if one has access to a computer package for matrix algebra.
Also, the expectations and variances of the sums of squares are easily de-
termined in this form. We give a brief introduction to quadratic forms and
their properties. We also discuss how the properties of quadratic forms are
useful for testing linear hypotheses and for the analysis of variance of the
dependent variable Y.

4.1 Introduction to Quadratic Forms

Consider first a sum of squares with which you are familiar from your
earlier statistical methods courses, the sum of squares attributable to a
linear contrast. Suppose you are interested in the linear contrast

CT = Y1+Yy,—2Y;. (4.1)
The sum of squares due to this contrast is

ss(cy) = @ (4.2)

The divisor of 6 is the sum of squares of the coefficients of the contrast. This
divisor has been chosen to make the coefficient of o2 in the expectation of
the sum of squares equal to 1. If we reexpress C so that the coefficients on
the ¥; include 1/v/6, the sum of squares due to the contrast is the square
of the contrast. Thus, C; = C;/+v/6 can be written in matrix notation as
1 1
Y, 4+
NG
by defining @ = (1/v6 1/v6 —2/v6) and Y = (Y1 Y, Y3). The
sum of squares for C is then
SS(Cy) = C?2=(aY)(a'Y)
= Y'(ad)Y
= Y'AY. (4.4)

2
Cl = ll/Y = Y2 - %YS (43)

Thus, SS(C1) has been written as a quadratic form in Y where A, the
defining matrix, is the 3 x 3 matrix A = aa’. The multiplication aa’ for
this contrast gives

S

I

3

I

Sk S Sk

<
S
$h

Quadratic
Form for One
Contrast

Defining
Matrix
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1 1 _2
6 6 6
_ 1 2
= § 5 % (4.5)
_2 _2 4
6 6 6
Completing the multiplication of the quadratic form gives
11 2
6 6 6 vi
!
YAY:(Y1Y2Y3) é g—% Y,
Ys
_2 _2 4
6 6 6
1
= E[Yl(n + Yo — 2Y3) + Ya(Y1 + Yo — 2Y3)
+Y3(—2Y; — 2Y5 + 4Y3)]
1 1 4 2 4 4
6Y12 + 6Y22 + 6Y32 +gY1Ye = GViYs — (YoYs. (4.6)

This result is verified by expanding the square of CY, equation 4.1, in terms
of Y; and dividing by 6.

Comparison of the elements of A, equation 4.5, with the expansion, equa-
tion 4.6, shows that the diagonal elements of the defining matrix are the co-
efficients on the squared terms and the sums of the symmetric off-diagonal
elements are the coefficients on the product terms. The defining matrix for
a quadratic form is always written in this symmetric form.

Consider a second linear contrast on Y that is orthogonal to C;. Let
Cy = (Y1 —Y2)/vV2 =dY whered = (1/v/2 —1/v/2 0)". The sum of
squares for this contrast is

SS(Cy) = Y'DY, (4.7)

where the defining matrix is

b0
D = dd=|-1 L 0. (4.8)
0 00

Each of these sums of squares has 1 degree of freedom since a single linear
contrast is involved in each case. The degrees of freedom for a quadratic
form are equal to the rank of the defining matrix which, in turn, is equal
to the trace of the defining matrix if the defining matrix is idempotent.
(The defining matrix for a quadratic form does not have to be idempotent.

Degrees of
Freedom
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However, the quadratic forms with which we are concerned have idempotent
defining matrices.) The defining matrices A and D in the two examples
are idempotent. It is left to the reader to verify that AA = A and DD =
D (see Exercise 2.25). A and D would not have been idempotent if, for
example, the 1/v/6 and 1 / v/2 had not been incorporated into the coefficient
vectors. Notice that tr(A) = tr(D) = 1, the degrees of freedom for each
contrast.

The quadratic forms defined by A and D treated each linear function
separately. That is, each quadratic form was a sum of squares with 1 degree
of freedom. The two linear functions can be considered jointly by defining
the coefficient matrix K’ to be a 2 x 3 matrix containing the coefficients
for both contrasts:

L1 2 /vy

K'Y = ove Ve [y ). (4.9)
1 1
vioTva O \E

The defining matrix for quadratic form Y'KK'Y is

2 _1 _1
3 3 3

F = KK'=| -1 2 _1 (4.10)
112
3 3 3

In this example, the defining matrix F' is idempotent and its trace indicates
that there are 2 degrees of freedom for this sum of squares. (The quadratic
form defined in this way is idempotent only because the two original con-
trasts were orthogonal to each other, a’d = 0. The general method of defin-
ing quadratic forms, sums of squares, for specific hypotheses is discussed
in Section 4.5.1.)

Two quadratic forms (of the same vector Y') are orthogonal if the product
of the defining matrices is 0. Orthogonality of the two quadratic forms in
the example is verified by the multiplication of A and D:

1 1 g 11 2
2 2 6 6 6
000
— 1 _
DA = | -1 1o : 0+ =2(=]0 0 0], (411)
000
N

which equals AD since A, D, and DA are all symmetric. Note that
DA = dd'aa’ and will be zero if d'a = 0. Thus, the quadratic forms
associated with two linear functions will be orthogonal if the two vectors of

Quadratic
Form—Joint
Functions

Orthogonal
Quadratic
Forms
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coeflicients are orthogonal—that is, if the sum of products of the coefficient
vectors d'a is zero (see Exercise 2.26). When the two linear functions are
orthogonal, the sum of sums of squares (and degrees of freedom) of the
two contrasts considered individually will equal the sum of squares (and
degrees of freedom) of the two contrasts considered jointly. For this addi-
tivity to hold when more than two linear functions are considered, all must
be pairwise orthogonal. Orthogonality of quadratic forms implies that the
two pieces of information contained in the individual sums of squares are
independent.

The quadratic forms of primary interest in this text are the sums of
squares associated with analyses of variance, regression analyses, and tests
of hypotheses. All have idempotent defining matrices.

The following facts about quadratic forms are important [see
Searle (1971) for more complete discussions on quadratic forms].

1. Any sum of squares can be written as Y’ AY’, where A is
a square symmetric nonnegative definite matrix.
2. The degrees of freedom associated with any quadratic form

equal the rank of the defining matrix, which equals its trace
when the matrix is idempotent.

3. Two quadratic forms are orthogonal if the product of their
defining matrices is the null matrix 0.

For illustration of quadratic forms, let
Y = (355 349 3.67 276 1.195)

be the vector of mean disease scores for a fungus disease on alfalfa. The five
treatments were five equally spaced day/night temperature regimes under
which the plants were growing at the time of inoculation with the fungus.
The total uncorrected sum of squares is

Y'Y =3.55%+349% + ... +1.195% = 47.2971.

The defining matrix for this quadratic form is the identity matrix of order
5. Since I is an idempotent matrix and tr(I)= 5, this sum of squares has
5 degrees of freedom.

The linear function of Y that gives the total disease score over all treat-
ments is given by > V; = a}Y, where

ay=(1 11 1 1).

The sum of squares due to correction for the mean, the correction factor,
is (3Y;)%/5 = 43.0124. This is written as a quadratic form as

Y'(J/5)Y,

Example 4.1
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where J = a1a) is a 5 x 5 matrix of ones. The defining matrix J/5 is an
idempotent matrix with tr(J/5) = 1. Therefore, the sum of squares due to
correction for the mean has 1 degree of freedom.

Based on orthogonal polynomial coefficients for five equally spaced treat-
ments, the linear contrast for temperature effects is given by

C; = alY=(-2 -1 0 1 2)Y.

Incorporating the divisor v/a3 a3 = /10 into the vector of coefficients
gives
_ 2 1 L2y
a = (75 7w ° V% vn)-
The sum of squares due to the linear regression on temperature is given by
the quadratic form
Y'AY =2.9594,

where
4 2 0 -2 -4
2 1 0 -1 -2
A2 = (120/2 = 0 0 0 0 0
-2 =10 1 2
-4 -2 0 2 4

The defining matrix A, is idempotent with tr(As) = 1 and, therefore, the
sum of squares has 1 degree of freedom.

The orthogonal polynomial coefficients for the quadratic term, including
division by the square root of the sum of squares of the coefficients, is

(2 -1 -2 -1 2).

The sum of squares due to quadratic regression is given by the quadratic
form

Y'A3Y = 1.2007,
where

2857 —.1429 —.2857 —.1429 2857
—.1429 .0714 .1429 0714 —.1429
A3 = azay;= | —.2857 1429 2857 1429 —.2857
—.1429 .0714 .1429 0714 —.1429
2857 —.1429 —.2857 —.1429 2857

The defining matrix Az is idempotent and tr(As) = 1 so that this sum of
squares also has 1 degree of freedom.

It is left to the reader to verify that each of the defining matrices J/5,
As, and Aj is idempotent and that they are pairwise orthogonal to each
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other. Since they are orthogonal to each other, these three sums of squares
represent independent pieces of information. However, they are not orthog-
onal to the uncorrected total sum of squares; the defining matrix I is not
orthogonal to J/5, A, or As. In fact, as is known from your previous
experience, the sums of squares defined by J/5, As, and As are part of
the total uncorrected sum of squares.

We could continue the partitioning of the uncorrected total sum of squares
by defining two other mutually orthogonal idempotent matrices, say Ay
and As, that have rank one; are pairwise orthogonal to J/5, Ao, and Asg;
and for which the sum of all five matrices is I. The sums of squares de-
fined by these five matrices would form a complete single degree of freedom
partitioning of the total uncorrected sum of squares Y'Y". ]

4.2 Analysis of Variance

The vector of observations on the dependent variable Y was partitioned
in Chapter 3 into the vector of estimated means of Y, Yand the residuals
vector e. That is,

Y = Y+e (4.12)

This partitioning of Y is used to provide a similar partitioning of the total
sum of squares of the dependent variable.
It has been previously noted that the product

YY = Yy (4.13)

gives the total sum of squares SS(Total) of the elements in the column
vector Y. This is a quadratic form where the defining matrix is the identity
matrix Y'Y = Y'IY . The matrix I is an idempotent matrix and its trace
is equal to its order, indicating that the total (uncorrected) sum of squares
has degrees of freedom equal to the number of elements in the vector. The
identity matrix is the only full rank idempotent matrix.

SinceY =Y +e,

YY = (Y+e)(Y+e)= YY+Yete?l +ee
Substituting ¥ = PY and e = (I — P)Y gives

Y'Y = (PY)(PY)+(PY)[I-P)Y]|+[(I-P)Y](PY)
+[(I - P)Y][(I - P)Y]
= YPPY+YP(I-PY~+Y'(I-P)PY
+Y'(I-P)(I-P)Y. (4.14)

Partitioning
of Y'Y
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Both P and (I — P) are symmetric and idempotent so that P'P = P and
(I —P)(I—-P)= (I— P). The two middle terms in equation 4.14 are
zero since the two quadratic forms are orthogonal to each other:

P(I-P)=P-P=0.
Thus,
Y'Y = YPY+Y(I-P)Y=YY+ee (4.15)

The total uncorrected sum of squares has been partitioned into two
quadratic forms with defining matrices P and (I — P), respectively. Yy
is that part of Y'Y that can be attributed to the model being fit and is
labeled SS(Model). The second term e’e is that part of Y'Y not explained
by the model. It is the residual sum of squares after fitting the model and
is labeled SS(Res).

The orthogonality of the quadratic forms ensures that SS(Model) and
SS(Res) are additive partitions. The degrees of freedom associated with
each will depend on the rank of the defining matrices. The rank of P =
[X(X'X)~1X'] is determined by the rank of X. For full-rank models, the
rank of X is equal to the number of columns in X, which is also the number
of parameters in 3. Thus, the degrees of freedom for SS(Model) is p’ when
the model is of full rank.

The r(P) is also given by tr(P) since P is idempotent. A result from
matrix algebra states that tr(AB) = tr(BA). (See Exercise 2.24.) Note the
rotation of the matrices in the product. Using this property, with A = X
and B = (X'X)"' X’ we have

tr(P) = tr[X(X'X)'X'] =tr[(X'X) ' X'X]
= tr(Iy) =7 (4.16)

The subscript on I indicates the order of the identity matrix. The degrees
of freedom of SS(Res), n — p/, are obtained by noting the additivity of
the two partitions or by observing that the tr(I — P) = tr(I,) — tr(P) =
(n—p'). The order of this identity matrix is n. For each sum of squares, the
corresponding mean square is obtained by dividing the sum of squares
by its degrees of freedom.

The expressions for the quadratic forms, equation 4.15, are the defini-
tional forms; they show the nature of the sums of squares being computed.
There are, however, more convenient computational forms. The computa-

tional form for SS(Model) = Y'Y is
SS(Model) = BX'Y, (4.17)

and is obtained by substituting X 8 for the the first ¥ and X (X'X)"'X'Y
for the second. Thus, the sum of squares due to the model can be computed

Degrees of
Freedom

Computational
Forms
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TABLE 4.1. Analysis of variance summary for regression analysis.

Sum of Squares

Source of Degrees of Definitional Computational
Variation Freedom Formula Formula
Total(uncorr> r(I)=n Y'Y
Due to model r(P)=yp Y'Y =Y'PY XY
Residual rI-P)=m—-p) e =Y'I-PY YY-BXY

without computing the vector of fitted values or the n x n matrix P. The B
vector is much smaller than Y, and X'Y will have already been computed.
Since the two partitions are additive, the simplest computational form for
SS(Res)= €’e is by subtraction:

SS(Res) = Y'Y — SS(Model). (4.18)

The definitional and computational forms for this partitioning of the total
sum of squares are summarized in Table 4.1.

(Continuation of Example 3.8) The partitioning of the sums of squares is
illustrated using the Heagle ozone example (Table 3.1, page 82). The total
uncorrected sum of squares with four degrees of freedom is

242
237
231
201

2422 + 2372 + 2312 + 2012 = 208, 495.

Y'Y (242 237 231 201)

The sum of squares attributable to the model, SS(Model), can be obtained
from the definitional formula, using Y from Table 3.1, as

247.563
232.887
221.146
209.404
247.563% + 232.8872 4 221.146% + 209.4042

208, 279.39.

Y'Y = (247563 232.887 221.146 209.404)

The more convenient computational formula gives

911

~ ’ _ B
BX'Y = (253434 293.531)(76.99

> = 208, 279.39.

Example 4.2
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(See the text following equation 3.12 for B and X Y.
The definitional formula for the residual sum of squares (see Table 3.1
for e) gives

—5.563
o _ 4.113
ee = (—5.563 4.113 9.854 8.404) 9854
—8.404
= 215.61.
The simpler computational formula gives
SS(Res) = Y'Y — SS(Model) = 208,495 — 208, 279.39

215.61.

The total uncorrected sum of squares has been partitioned into that
due to the entire model and a residual sum of squares. Usually, however,
one is interested in explaining the variation of Y about its mean, rather
than about zero, and in how much the information from the independent
variables contributes to this explanation. If no information is available from
independent variables, the best predictor of Y is the best available estimate
of the population mean. When independent variables are available, the
question of interest is how much information the independent variables
contribute to the prediction of Y beyond that provided by the overall mean
of Y.

The measure of the additional information provided by the indepen-
dent variables is the difference between SS(Model) when the independent
variables are included and SS(Model) when no independent variables are
included. The model with no independent variables contains only one pa-
rameter, the overall mean p. When p is the only parameter in the model,
SS(Model) is labeled SS(g). [SS(u) is commonly called the correction
factor.] The additional sum of squares accounted for by the independent
variable(s) is called the regression sum of squares and labeled SS(Regr).
Thus,

SS(Regr) = SS(Model) — SS(u), (4.19)

where SS(Model) is understood to be the sum of squares due to the model
containing the independent variables.

The sum of squares due to p alone, SS(u), is determined using matrix
notation in order to show the development of the defining matrices for the
quadratic forms. The model when p is the only parameter is still written
in the form Y = X3 + €, but now X is only a column vector of ones and

Meaning of
SS(Regr)

SS(n)
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B = u, a single element. The column vector of ones is labeled 1. Then,

B = (1) 1Y = (%) 1y =Y (4.20)
and
ss() = Bav)=(;)avyay)
= Y’(%ll’)Y. (4.21)
Notice that 1'Y = 3" Y; so that SS(u) is (3 ¥;)?/n, the familiar result for
the sum of squares due to correcting for the mean. Multiplication of 11’

gives an n X n matrix of ones. Convention labels this the J matrix. Thus,
the defining matrix for the quadratic form giving the correction factor is

1 1 1 1
) 1 1 11 --- 1 1
~(11' - —fr 1 1 --- 1 = —J. 4.22
n( ) noy.o : n ( )
1 11 --- 1

The matrix (J/n) is idempotent with rank equal to tr(J/n) = 1 and,
hence, the correction factor has 1 degree of freedom.

The additional sum of squares attributable to the independent variable(s)
in a model is then

SS(Regr) SS(Model) — SS(p)
= Y'PY -Y'(J/n)Y
Y (P—-J/n)Y. (4.23)
Thus, the defining matrix for SS(Regr) is (P — J/n). The defining matrix
J /n is orthogonal to (P — J/n) and (I — P) (see exercise 4.15) so that the
total sum of squares is now partitioned into three orthogonal components:

Y'Y

Y/(J/n)Y +Y'(P—J/n)Y +Y'(I - P)Y
= SS(u) + SS(Regr) + SS(Res) (4.24)
with 1, (p' — 1) = p, and (n — p') degrees of freedom, respectively. Usu-

ally SS(u) is subtracted from Y'Y and only the corrected sum of squares
partitioned into SS(Regr) and SS(Res) reported.

For the Heagle ozone example, Example 4.2,

(911)2

SS(w) = —;

= 207, 480.25

Quadratic
form for
SS(Regr)

Example 4.3
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TABLE 4.2. Summary analysis of variance for the regression of soybean yield on
ozone exposure (Data courtesy A. S. Heagle, N. C. State University).

Source of Mean
Variation — d.f. Sum of Squares Squares
Totalumeon 1YY = 208,495.00
Mean 1y —  207,480.25
Totaleor 3 Y'Y -nYS = 101475
Regression 1 BX'Y —nY = 799.14  799.14
Residuals 2 Y'Y -3X'Y 215.61  107.81

so that

SS(Regr) = 208,279.39 — 207, 480.25 = 799.14.

The analysis of variance for this example is summarized in Table 4.2. =

The key points to remember are summarized in the following.

The rank of X is equal to the number of linearly independent columns
in X.

The model is a full rank model if the rank of X equals the number
of columns of X, (n > p’).

The unique ordinary least squares solution exists only if the model is
of full rank.

The defining matrices for the quadratic forms in regression are all
idempotent. Examples are I, P, (I — P), and J/n.

The defining matrices J/n, (P — J/n), and (I — P) are pairwise
orthogonal to each other and sum to I. Consequently, they partition
the total uncorrected sum of squares into orthogonal sums of squares.

The degrees of freedom for a quadratic form are determined by the
rank of the defining matrix which, when it is idempotent, equals its
trace. For a full rank model,

r(I) = n, the only full rank idempotent matrix
r(P) = o
r(J/n) = 1
r(P—J/n) = p
r(I — P) n—p.
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4.3 Expectations of Quadratic Forms

Each of the quadratic forms computed in the analysis of variance of Y is
estimating some function of the parameters of the model. The expectations
of these quadratic forms must be known if proper use is to be made of the
sums of squares and their mean squares. The following results are stated
without proofs. The reader is referred to Searle (1971) for more complete
development.

Let £(Y') = p, a general vector of expectations, and let Var(Y') =V, =
Vo2, a general variance—covariance matrix. Then the general result for the
expectation of the quadratic form Y'AY is

EY'AY) = tr(AV,) +p Ap
o*tr(AV) + p' Ap. (4.25)
Under ordinary least squares assumptions, £(Y) = X3 and Var(Y) = Io?
and the expectation of the quadratic form becomes

EY'AY) = o*tr(A)+B X AX}B. (4.26)

The expectations of the quadratic forms in the analysis of variance are
obtained from this general result by replacing A with the appropriate defin-
ing matrix. When A is idempotent, the coefficient on o2 is the degrees of
freedom for the quadratic form.

The expectation of SS(Model) is

E[SS(Model)] = E(Y'PY) =o*tr(P)+ 3 X'PXp3
po’+ B8 X' X, (4.27)
since tr(P) = p’ and PX = X. Notice that the second term in equa-

tion 4.27 is a quadratic form in 3, including By the intercept.
The expectation for SS(Regr) is

E[SS(Regr)] = E[Y'(P—J/n)Y]
= o*tr(P—J/n)+B' X' (P—-J/n)XpB
= po? +B'X'(I-J/n)XB, (4.28)

since X' P = X'. This quadratic form in 3 differs from that for £[SS(Model)]
in that X'(I—J/n)X is a matrix of corrected sums of squares and products
of the Xj. Since the first column of X is a constant, the sums of squares
and products involving the first column are zero. Thus, the first row and
column of X'(I — J/n)X contain only zeros, which removes 3y from the
quadratic expression (see Exercise 4.16). Only the regression coefficients for
the independent variables are involved in the expectation of the regression
sum of squares.
The expectation for SS(Res) is

General
Results

E[SS(Model)]

E[SS(Regr)]

E[SS(Res)]
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E[SS(Res)] = E[Y'(I - P)Y)

o*tr(I - P)+ B8 X'(I-P)Xp

(n—1)0* + B X' (X - X)B

= (n—p)o (4.29)

The coefficient on o2 in each expectation is the degrees of freedom for the

sum of squares. After division of each expectation by the appropriate de-
grees of freedom to convert sums of squares to mean squares, the coefficient
on o2 will be 1 in each case:

E[MS(Regr)] L8 X/(I—J/n)XB)/p (4.30)
E[MS(Res)] = o2 (4.31)

This shows that the residual mean square MS(Res) is an unbiased esti—
mate of 0. The regression mean square MS(Regr) is an estimate of o2
plus a quadratlc function of all 3; except By. Comparison of MS(Regr) and
MS(Res), therefore, provides the basis for judging the importance of the
regression coefficients or, equivalently, of the independent variables. Since
the second term in E[MS(Regr)] is a quadratic function of B, which cannot
be negative, any contribution from the independent variables to the pre-
dictability of ¥; makes MS(Regr) larger in expectation than MS(Res). The
ratio of the observed MS(Regr) to the observed MS(Res) provides the test
of significance of the composite hypothesis that all 3;, except Gy, are zero.
Tests of significance are discussed more fully in the following sections.

The expectations assume that the model used in the analysis of variance
is the correct model. This is imposed in the preceding derivations when
X 3 is substituted for £(Y"). For example, if £(Y) = XB+ Zv # X3, but
we fit the model £(Y) = X3, then

E[SS(Res)] = o?tr(I — P)+ [XB+ Z~)'(I — P)[XB + Z~]
= o*(n—p)+~+'Z'(I-P)Z~v (4.32)
and
EMS(Res)] = o?+~4'Z'(I—-P)Z~/(n—7p). (4.33)

The second term in equation 4.33 represents a quadratic function of regres-
sion coefficients of important variables that were mistakenly omitted from
the model. From equation 4.33, it can be seen that MS(Res), in such cases,
will be a positively biased estimate of 2.

From Example 4.3 using the ozone data, the estimate of 02 obtained

from MS(Res) is s> = 107.81 (Table 4.2). This is a very poor estimate of

o2 since it has only two degrees of freedom. Nevertheless, this estimate of

o2 is used for now. (A better estimate is obtained in Section 4.7.) u

Expectations
of
Mean Squares

Example 4.4
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In Chapter 3, the variance-covariance matrices for ,@, 1/}, and e were
expressed in terms of the true variance o2. Estimates of the variance—
covariance matrices are obtained by substituting s> = 107.81 for 2 in each
Var(-) formula; s2(-) is used to denote an estimated variance—covariance
matrix. (Note the boldface type to distinguish the matrix of estimates from
individual variances.)

In the ozone example, Example 4.3,

2B) = (X'X)'8
1.0755 —9.4340
—9.4340 107.8167

B 115.94 —1,017.0
= | —1,017.0 11,623 |

} 107.81

Thus,
s2(Be) = (1.0755)(107.81) = 115.94,
s2(B1) = (107.8167)(107.81) = 11,623, and
Cov(Bo, A1) = (—9.4340)(107.81) = —1,017.0.

In each case, the first number in the product is the appropriate coefficient

from the (X’ X)~! matrix; the second number is s2. (It is only coincidence

that the lower right diagonal element of (X’X)™! is almost identical to
2

s%.) [ |

The estimated variance—covariance matrices for Y and e are found sim-
ilarly by replacing o2 with s? in the corresponding variance—covariance
matrices.

4.4 Distribution of Quadratic Forms

The probability distributions of the quadratic forms provide the basis for
parametric tests of significance. It is at this point (and in making confidence
interval statements about the parameters) that the normality assumption
on the ¢; comes into play. The results are summarized assuming that nor-
mality of € and therefore normality of Yare satisfied. When normality is
not satisfied, the parametric tests of significance must be regarded as ap-
proximations.

A general result from statistical theory [see, for example, Searle (1971)]
states:

Estimated
Variances

Example 4.5
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If Y is normally distributed, with £(Y) = p and Var(Y) =
Vo2, where V is a nonsingular matrix (u may be X3 and V
may be I), then

1. a quadratic form Y'(A/0?)Y is distributed as a noncen-
tral chi-square with

(a) degrees of freedom equal to the rank of A, df = r(A),
and

(b) noncentrality parameter Q = (u'Ap) /202,

if AV is idempotent (if V' = I, the condition reduces to
A being idempotent);

2. quadratic forms Y'AY and Y'BY are independent of
each other if AVB = 0 (if V = I, the condition reduces
to AB = 0; that is, A and B are orthogonal to each
other); and

3. aquadratic function Y’ AY is independent of a linear func-
tion BY if BVA = 0. (If V = I, the condition reduces
to BA=0.)

In the normal multiple regression model, the following hold. Application

. . to Regression
1. The sums of squares for model, mean, regression, and residuals all

involve defining matrices that are idempotent. Recall that
SS(Model)/o? = Y'PY /o>

Since P is idempotent, SS(Model)/o? is distributed as a chi-square
random variable with r(P) = p’ degrees of freedom and noncentrality
parameter

QO = BX'PXB/2%=pX'XB/20°.
Similarly:

(a) SS(u)/o? =Y'(J/n)Y /o? is distributed as a chi-square random
variable with r(J/n) = 1 degree of freedom and noncentrality
parameter

Q = B'X'(J/n)XB/20* = (1'XB)?/2n0>.
(b) SS(Regr)/o? =Y'(P—J/n)Y /o? is distributed as a chi-square
random variable with r(P—J/n) = p (see Exercise 4.15) degrees

of freedom and noncentrality parameter

Q = [X'(P-J/n)XpB)/20* =8 X'(I—-J/n)Xp3]/20>.
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(c) SS(Res)/o? = Y'(I — P)Y /o2 is distributed as a chi-square
random variable with r(I — P) = (n — p') degrees of freedom
and noncentrality parameter

Q = /BX'(I-P)XB/20*=0.

That is, SS(Res)/0? has a central chi-square distribution with
degrees of freedom (n — p’). (A central chi-square distribution
has noncentrality parameter equal to zero.)

2. Since (I — P)(P — J/n) = 0 (see Exercise 4.15), SS(Res) = Y'(I —
P)Y and SS(Regr) = Y'(P — J/n)Y are independent. Similarly,
since P(I — P) =0, J/n(P — J/n) = 0, and J/n(I — P) = 0,
we have that SS(Model) and SS(Res) are independent, SS(x) and
SS(Regr) are independent, and SS(x) and SS(Res) are independent,
respectively.

3. Since X'(I—P) = 0, any linear function K'8 = K'(X'X)'1X'Y =
BY is independent of SS(Res)= Y'(I — P)Y. This follows from
noting that B(I — P) = K'(X'X)"'X'(I — P) = 0.

Thus, the normality assumption on € implies that the sums of squares,
divided by o2, are chi-square random variables. The chi-square distribution
and the orthogonality between the quadratic forms provide the basis for the
usual tests of significance. For example, when the null hypothesis is true,
the t-statistic is the ratio of a normal deviate to the square root of a scaled
independent central chi-square random variable. The F-statistic is the ra-
tio of a scaled noncentral chi-square random variable (central chi-square
random variable if the null hypothesis is true) to a scaled independent cen-
tral chi-square random variable. The scaling in each case is division of the
chi-square random variable by its degrees of freedom.

The noncentrality parameter = (u' Ap)/20? is important for two rea-
sons: the condition that makes the noncentrality parameter of the numera-
tor of the F-ratio equal to zero is an explicit statement of the null hypoth-
esis; and the power of the test to detect a false null hypothesis is deter-
mined by the magnitude of the noncentrality parameter. The noncentrality
parameter of the chi-square distribution is the second term of the expecta-
tions of the quadratic forms divided by 2 (see equation 4.25). SS(Res)/o?
is a central chi-square since the second term was zero (equation 4.29). The
noncentrality parameter for SS(Regr)/a? (see equation 4.28) is

 BX'(I-J/n)Xp
Q = 5o : (4.34)

which is a quadratic form involving all 3; except By. Thus, SS(Regr)/o? is
a central chi-square only if Q = 0, which requires (I — J/n)X 3 = 0. Since

Noncentrality
Parameter
and F-Test
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X is assumed to be of full rank, it can be shown that 2 = 0 if and only if

81 = P2 =--- = (3, = 0. Therefore, the F-ratio using
Fo MS(Regr)
~ MS(Res)

is a test of the composite hypothesis that all §;, except (o, equal zero. This
hypothesis is stated as

Hy:8" = 0
Ha:/B* # 0,

where 3" is the p x 1 vector of regression coefficients excluding 3.

An observed F-ratio, equation 4.35, sufficiently greater than 1 suggests
that the noncentrality parameter is not zero. The larger the noncentrality
parameter for the numerator chi-square, the larger will be the F-ratio, on
the average, and the greater will be the probability of detecting a false null
hypothesis. This probability, by definition, is the power of the test. (The
power of an F-test is also increased by increasing the degrees of freedom
for each chi-square, particularly the denominator chi-square.) All of the
quantities except 3 in the noncentrality parameter are known before the
experiment is run (in those cases where the Xs are subject to the control
of the researcher). Therefore, the relative powers of different experimental
designs can be evaluated before the final design is adopted.

In the Heagle ozone example, Example 4.2,

MS(Regr)  799.14

F = =
MS(Res)  107.81

=7.41.

The critical value for a = .05 with 1 and 2 degrees of freedom is F{ ¢5;1,2) =
18.51. The conclusion is that these data do not provide sufficient evidence
to reject the null hypothesis that 8; equals zero. Even though MS(Regr)
is considerably larger than MS(Res), the difference is not sufficient to be
confident that it is not due to random sampling variation from the un-
derlying chi-square distributions. The large critical value of F, 18.51, is a
direct reflection of the very limited degrees of freedom for MS(Res) and,
consequently, large sampling variation in the F-distribution. A later anal-
ysis that uses a more precise estimate of o2 (more degrees of freedom) but
the same MS(Regr) shows that £y clearly is not zero. |

The key points from this section are summarized as follows.

1. The expectations of the quadratic forms are model de-
pendent. If the incorrect model has been used, the expec-
tations are incorrect. This is particularly critical for the

Example 4.6
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MS(Res) since it is used repeatedly as the estimate of 2.
For this reason it is desirable to obtain an estimate of
o2 that is not model dependent. This is discussed in Sec-
tion 4.7.

2. The expectations of the mean squares provide the basis
for choosing the appropriate mean squares for tests of hy-
potheses with the F-test; the numerator and denominator
mean squares must have the same expectations if the null
hypothesis is true and the expectation of the numerator
mean square must be larger if the alternative hypothesis
is true.

3. The assumption of a normal probability distribution for
the residuals is necessary for the conventional tests of sig-
nificance and confidence interval estimates of the parame-
ters to be correct. Although tests of significance appear to
be reasonably robust against nonnormality, they must be
regarded as approximations when the normality assump-
tion is not satisfied.

4.5 General Form for Hypothesis Testing

The ratio of MS(Regr) to MS(Res) provides a test of the null hypothesis
that all 8;, except By, are simultaneously equal to zero. More flexibility is
needed in constructing tests of hypotheses than is allowed by this proce-
dure. This section presents a general method of constructing tests for any
hypothesis involving linear functions of 3. The null hypothesis may involve
a single linear function, a simple hypothesis, or it may involve several
linear functions simultaneously, a composite hypothesis.

4.5.1 The General Linear Hypothesis
The general linear hypothesis is defined as

HQZK/,B = m
H,:K'8 # m, (4.35)

where K’ is a kxp’ matrix of coefficients defining k linear functions of the Bj
to be tested. Each row of K’ contains the coefficients for one linear function;
m is a k X 1 vector of constants, frequently zeros. The k linear equations
in Hp must be linearly independent (but they need not be orthogonal).
Linear independence implies that K’ is of full rank, r(K) = k, and ensures
that the equations in Hy are consistent for every choice of m (see Section
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2.5). The number of linear functions in Hy cannot exceed the number of
parameters in 3; otherwise, K’ would not be of rank k.

Suppose B = (8o Bi1 B2 Bs) and you wish to test the composite null
hypothesis that 81 = (a2, 81 + B2 = 203, and [y = 20 or, equivalently,

Ho: B1— B2 =0
Br+pP2—2083= 0. (4.36)
Bo =20

These three linear functions can be written in the form K’'8 = m by
defining

01 -1 0 0
K = |01 1 -2 and  m=| 0 |. (437
10 0 0 20

The alternative hypothesis is H, : K'3 # m. The null hypothesis is vio-
lated if any one or more of the equalities in Hy is not true. ]

The least squares estimate of K'3 — m is obtained by substituting
the least squares estimate 6 for B to obtain K '6 m. Under the ordi-
nary least squares assumptions, including normahty, K’ [3 m is normally
distributed with mean &(K’ ,8 m) = K'B — m, which is zero if the
null hypothesis is true, and variance—covariance matrix Var (K ',@ —m) =
K'(X'X) 'Ko? = Vo2, say. The variance is obtained by applying the
rules for variances of linear functions (see Section 3.4).

The sum of squares for the linear hypothesis Hy : K'3 = m is computed
by [see Searle (1971)]

Q = (K'B-m)[K'(X'X)"'K]"'(K'B-m). (4.38)
This is a quadratic form in K ’,@ — m with defining matrix
A = K'(X'X)'K|7'=v~L (4.39)
The defining matrix, except for division by o2, is the inverse of the variance—
covariance matrix of the linear functions K'B — m. Thus, tr(AV) =
tr(Iy) = k and the expectation of @ (see equation 4.25) is
EQ) = ko*+(K'B—m)[K'(X'X) ' K| ' (K'B3 —m). (4.40)

With the assumption of normality, Q/o? is distributed as a noncentral chi-
square random variable with k degrees of freedom. This is verified by noting

Example 4.7

Estimator and
Variance

Sum of
Squares
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that AV = I, which is idempotent (see Section 4.4). The degrees of free-
dom are determined from r(A) = r(K) = k. The noncentrality parameter
is
(K'8—m)'[K'(X'X)"'K]"'(K'8 —m)
202 '
which is zero when the null hypothesis is true. Thus, Q/k is an appropriate
numerator mean square for an F-test of the stated hypothesis.
The appropriate denominator of the F-test is any unbiased and indepen-
dent estimate of o2; usually MS(Res) is used. Thus,
Fo— QK (4.41)

52

Q =

is a proper F-test of Hy : K'3—m = 0 with numerator degrees of freedom
equal to r(K) and denominator degrees of freedom equal to the degrees of
freedom in s2. Since K'@ is independent of SS(Res), @ is independent of
MS(Res).

This general formulation provides a convenient method for testing any
hypotheses of interest and is particularly useful when the computations
are being done with a matrix algebra computer program. It is important
to note, however, that all sums of squares for hypotheses are dependent
on the particular model being used. In general, deleting an independent
variable or adding an independent variable to the model will change the
sum of squares for every hypothesis.

4.5.2  Special Cases of the General Form

Three special cases of the general linear hypothesis are of interest.

Case 1. A simple hypothesis.
When a simple hypothesis on 3 is being tested, K’ is a single row vector
so that [K'(X'X)"'K] is a scalar. Tts inverse is 1/[K’(X'X)7'K]. The
sum of squares for the hypothesis can be written as

(K'B —m)?
K (X'X)"'K
and has 1 degree of freedom. The numerator of @ is the square of the linear

function of ,@ and the denominator is its variance, except for 2. Thus, the
F-ratio is

Q (4.42)

 (K'B-m)?
F = K (XX) K (4.43)

The F-test of a simple hypothesis is the square of a two-tailed t-test:

K'B-m
Lo ([K'(X'X)1K]s2}1/2" (4.44)

F-Test
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The denominator is the standard error of the linear function in the numer-
ator.

Case 2. k specific 3; equal zero.

The null hypothesis of interest is that each of k specific regression coeffi-
cients is zero. For this case K’ is a k x p’ matrix consisting of zeros except
for a single one in each row to identify the 3; being tested; m = 0. With
this K, the matrix multiplication [K’ (X’ X)~! K] extracts from (X' X)~!
the k x k submatrix consisting of the coefficients for the variances and co-
variances of the k (3; being tested. Suppose the null hypothesis to be tested
is that (31, (3, and (5 are each equal to zero. The sum of squares ) has the
form

1 ~
L Ci1 €13 Cis B1

Q = (A Bs Bs)|cs 33 35 Bs | (4.45)
C51 €53 Csp Bs

where ¢;; is the element from row (i + 1) and column (j + 1) of (X'X)~1.

The sum of squares for this hypothesis measures the contribution of
this subset of k independent variables to a model that already contains the
other independent variables. This sum of squares is described as the sum of
squares for these k variables adjusted for the other independent variables
in the model.

Case 3. One 3; equals zero; the partial sum of squares.
The third case is a further simplification of the first two. The hypothesis
is that a single 3; is zero; Hy : 3; = 0. For this hypothesis, K' is a row
vector of zeros except for a one in the column corresponding to the f3;
being tested. As described in case 2, the sum of squares for this hypothesis
is the contribution of X; adjusted for all other independent variables in the
model. This sum of squares is called the partial sum of squares for the
jth independent variable.

The matrix multiplication [K'(X'X)"1K] in @ extracts only the (j +
1)st diagonal element c;; from (X’X)~!. This is the coefficient for the
variance of Bj. The sum of squares, with one degree of freedom, is

Q = (4.46)

This provides an easy method of computing the partial sum of squares for
any independent variable. For this case, the two-tailed t-test is

B

t = ‘
(cjs%)!/?

(4.47)

4.5.8 A Numerical Example

For illustration of the use of the general linear hypothesis, data from a

Partial Sum
of Squares

Example 4.8
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physical fitness program at N. C. State University are used. (The data
were provided by A. C. Linnerud and are used with his permission.) Mea-
surements were taken on n = 31 men. In addition to age and weight, oxygen
uptake (Y), run time (X7), heart rate while resting (X3), heart rate while
running (X3), and maximum heart rate (X,) while running 1.5 miles were
recorded for each subject. The data are given in Table 4.3. The results we
discuss are from the regression of oxygen uptake Y on the four variables
Xl, Xg, Xg, and X4.

The model is Y = X3 +¢€, where 3= (fy B1 B2 (3 (1) with the
subscripts matching the identification of the independent variables given
previously. The estimated regression equation is

Y, = 84.26902 — 3.06981X;1 + .00799X ;5 — .11671X ;3 + .08518 X ;4.

The analysis of variance for this model is summarized in Table 4.4. The
residual mean square s = 7.4276 is the estimate of 02 and has 26 degrees
of freedom. The tests of hypotheses on 3 require (X' X)~%:

17.42309 —.159620 .007268 —.014045 —.077966

—.159620 023686 —.001697 —.000985 .000948

(X'xX)"t = .007268 —.001697  .000778 —.000094 —.000085
—.014045 —.000985 —.000094 .000543 —.000356

—.077966 .000948 —.000085 —.000356 .000756

The first example tests the composite null hypothesis that the two re-
gression coefficients Fo and (4 are zero, Hy : f2 = 4 = 0. The alternative
hypothesis is that either one or both are not zero. This null hypothesis is
written in the general form as

Bo
e
’ 00100 0
Kﬂ:{ooooJ gj :<0>'
Ba

Multiplication of the first row vector of K’ with 3 gives 33 = 0; the second
row gives 34 = 0.

There are two degrees of freedom associated with the sum of squares for
this hypothesis, since r(K) = 2. The sum of squares is

Q (K'B-m)[K'(X'X)"'K|"(K'3 —m)
_ <.00799>’ { .0007776 —.0000854 }1 ( .00799>

.08518 —.0000854 .0007560 .08518
= 10.0016.

Notice that the product K'(X'X) 1K extracts the ca2, c24, C42, and cyy
elements from (X' X)~!. The F-test of the null hypothesis is
Q/2  (10.0016)/2

F = = -——F""— = .673.
52 7.4276
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TABLE 4.3. Physical fitness measurements on 31 men involved in a physical
fitness program at North Carolina State University. The variables measured were
age (years), weight (kg), oxygen uptake rate (ml per kg body weight per minute),
time to run 1.5 miles (minutes), heart rate while resting, heart rate while running
(at the same time oxygen uptake was measured), and mazimum heart rate while
running. (Data courtesy A. C. Linnerud, N. C. State University.)

Heart Rate

Age  Weight Oy Uptake Time Resting Running Mazimum

(yrs) _ (kg) _ (mi/kg/min) (min)

44 89.47 44.609 11.37 62 178 182
40 75.07 45.313 10.07 62 185 185
44 85.84 54.297 8.65 45 156 184
42 68.15 59.571 8.17 40 166 172
38 89.02 49.874 9.22 55 178 180
47 77.45 44.811 11.63 58 176 176
40 75.98 45.681 11.95 70 176 180
43 81.19 49.091 10.85 64 162 170
44 81.42 39.442 13.08 63 174 176
38 81.87 60.055 8.63 48 170 186
44 73.03 50.541 10.13 45 168 168
45 87.66 37.388 14.03 56 186 192
45 66.45 44.754 11.12 51 176 176
47 79.15 47.273 10.60 47 162 164
54 83.12 51.855 10.33 50 166 170
49 81.42 49.156 8.95 44 180 185
o1 69.63 40.836 10.95 57 168 172
51 77.91 46.672 10.00 48 162 168
48 91.63 46.774 10.25 48 162 164
49 73.37 50.388 10.08 67 168 168
57 73.37 39.407 12.63 58 174 176
54 79.38 46.080 11.17 62 156 176
52 76.32 45.441 9.63 48 164 166
50 70.87 54.625 8.92 48 146 186
51 67.25 45.118 11.08 48 172 172
54 91.63 39.203 12.88 44 168 172
ol 73.71 45.790 10.47 59 186 188
57 59.08 50.545 9.93 49 148 160
49 76.32 48.673 9.40 56 186 188
48 61.24 47.920 11.50 52 170 176

52 82.78 47.467 10.50 53 170 172
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TABLE 4.4. Summary analysis of variance for the regression of oxygen uptake on
run time, heart rate while resting, heart rate while running, and maximum heart
rate.

Source d.f. SS MS
Totalcorr 30 851.3815
Regression 4 658.2368 164.5659
Residual 26 193.1178  7.4276 = s*

The computed F' is much smaller than the critical value F g5,2,26) = 3.37
and, therefore, there is no reason to reject the null hypothesis that fs and
B4 are both zero.

The second hypothesis illustrates a case where m # 0. Suppose prior
information suggested that the intercept [y for a group of men of this
age and weight should be 90. Then the null hypothesis of interest is 5y =
90 and, for illustration, we construct a composite hypothesis by adding
this constraint to the two conditions in the first null hypothesis. The null
hypothesis is now

Ho : K/ﬂ —-—m = 0,
where
Bo
1 0 0 0O (1 90
KpB-m = 00 1 00 Ba | —| O
00 0 01 03 0
B
For this hypothesis
R 84.26902 — 90 —5.73098
(K'B-m) = .00799 = .00799
.08518 .08518

and

17.423095 0072675 —.0779657 |

[K'(X'X)"'K]™' = 0072675 0007776 —.0000854
—.0779657 —.0000854  .0007560

Notice that (K 'ﬁ — m) causes the hypothesized 3y = 90 to be subtracted

from the estimated By = 84.26902. The sum of squares for this composite
hypothesis is

Q = (K'B-m)[K'(X'X)"'K|""(K'8—m) =11.0187
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and has 3 degrees of freedom. The computed F-statistic is

Q/3 11.0187/3 _

F = =.494
52 7.4276 1,

which, again, is much less than the critical value of F' for a = .05 and 3
and 26 degrees of freedom, F{ g5 326) = 2.98. There is no reason to reject
the null hypothesis that 5y = 90 and Gy = (34 = 0. [ ]

4.5.4  Computing Q from Differences in Sums of Squares

As an alternative to the general formula for @, equation 4.38, the sum of
squares for any hypothesis can be determined from the difference between
the residual sums of squares of two models. The current model, in the
context of which the null hypothesis is to be tested, is called the full model.
This model must include all parameters involved in the null hypothesis and
will usually include additional parameters. The second model is obtained
from the full model by assuming the null hypothesis is true and imposing
its constraints on the full model. The model obtained in this way is called
the reduced model because it will always have fewer parameters than the
full model. For example, the null hypothesis Hy : 32 = ¢, where ¢ is some
known constant, gives a reduced model in which 2 has been replaced with
the constant ¢. Consequently, 3 is no longer a parameter to be estimated.
The reduced model is a special case of the full model and, hence, its
residual sum of squares must always be at least as large as the residual
sum of squares for the full model. It can be shown that, for any general
hypothesis, the sum of squares for the hypothesis can be computed as

Q = SS(RCSreduced)_SS(RCSfull)7 (448)

where “reduced” and “full” identify the two models.

There are (n—p’) degrees of freedom associated with SS(Resg,y). Gener-
ating the reduced model by imposing the k linearly independent constraints
of the null hypothesis on the full model reduces the number of parameters
from p’ to (p' —k). Thus, SS(ReSreduced) has [n—(p' —k)] degrees of freedom.
Therefore, Q will have [(n —p’ + k) — (n — p')] = k degrees of freedom.

Assume X is a full-rank matrix of ordern x 4and 8’ = (8y 1 B2 B3).
Suppose the null hypothesis to be tested is

HO : KIIB = m,

where

Full and
Reduced
Models

Computing Q

Degrees of
Freedom

Illustration
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The full model was
Y; = Bo+/iXi + BoXip + B X3 + €.

If there were n observations, the residual sum of squares from this model
would have (n —4) degrees of freedom. The null hypothesis states that (1)
B1 = P2 and (2) By = 20. The reduced model is generated by imposing on
the full model the conditions stated in the null hypothesis. Since the null
hypothesis states that 5; and (5 are equal, one of these two parameters, say
(2, can be eliminated by substitution of 3y for B5. Similarly, [y is replaced
with the constant 20. These substitutions give the reduced model:

Y = 20+ 51X + 51 Xie + 83Xz + €.

Moving the constant 20 to the left side of the equality and collecting the
two terms that involve (31 gives

Yi—20 = [1(Xa+ X))+ Xiz+6€
or
' = 50X+ 83Xz + e,

where Y* =Y; — 20 and X} = X1 + Xo.
In matrix notation, the reduced model is

Y* = X*ﬂ* + €,
where
Y: — 20
Ys — 20
Y* = .
}/n —20
M (X1 + X12) Xis Xt Xas
; (Xo1 + X22) Xo3 X5 X3
X* = . . = . .
-(an +Xn2) Xn3 X:Ll XnS
and

* ﬁl )
A= <ﬂ3 '
The rank of X™ is 2 so that SS(ReSyeducea) Will have (n — 2) degrees of

freedom. Consequently,

Q = SS(Resreduced) — SS(Respun)
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will have [(n — 2) — (n — 4)] = 2 degrees of freedom. Note that this agrees
with r(K') = 2.
The F-test of the null hypothesis is

Q/2
poQ

with 2 and v degrees of freedom, where v is the degrees of freedom in s.

The denominator of F must be an unbiased estimate of ¢2 and must be
statistically independent of the numerator sum of squares. This condition
is satisfied if o2 is estimated from a model that contains at least all of the
terms in the full model or is estimated from independent information such
as provided by true replication (see Section 4.7).

The oxygen consumption example, Example 4.8, is used to illustrate
computation of @) using the difference between the residual sums of squares
for full and reduced models. The reduced model for the first hypothesis
tested, Hy : (B2 = B4 = 0, is obtained from the full model by setting (o
and (34 equal to zero. This leaves a bivariate model containing only X; and
X3. Fitting this reduced model gives a residual sum of squares of

SS(ReSreduced) = 203.1194

with [n— (p' — k)] = (31 — 3) = 28 degrees of freedom. The residual sum of
squares from the full model was

SS(ReSfull) =193.1178
with (n — p') = 31 — 5 = 26 degrees of freedom. The difference gives

Q = SS(ReSreduced) - SS(ReSfull)
203.1194 — 193.1178 = 10.0016.

with (28 — 26) = 2 degrees of freedom. This agrees, as it should, with the
earlier result for ) obtained in Example 4.8.

The second hypothesis tested in the previous example included the state-
ment that Gy = 90 in addition to B2 = B4 = 0. The reduced model for this
null hypothesis is

Yi =90+ 51 Xi1 + B3 Xi3 + €

or
(Y; —90) = 51 X1 + BsXi3 + €.

The reduced model has a new dependent variable formed by subtracting
90 from every Y;, has only X; and X3 as independent variables, and has
no intercept. The residual sum of squares from this model is

SS(Resreduced) = 204.1365

Example 4.9
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with (31 —2) = 29 degrees of freedom. The SS(Resgn) is the same as before
and the difference gives

@ =204.1365 — 193.1178 = 11.0187

with 3 degrees of freedom. ]

The sum of squares @) for any null hypothesis can always be computed as

a difference in residual sums of squares. For null hypotheses where m = 0,

the same result can be obtained, sometimes more conveniently, by taking
the difference in the model sums of squares; that is,

@ = SS(Modely,;,) — SS(Model

reduced)'

This follows from noting that
SS(Modely,;;) = SS(Total) — SS(Resun)

and
SS(Model,y,ceqa) = SS(Total) — SS(Resreduced)-

If 3y is in the model and not involved in the null hypothesis K’'3 = 0, the
differences in regression sums of squares, SS(Regreun) —SS(Regrreduced ), will
also give Q. The first hypothesis in Example 4.9 involved only (2 and (4 and
had m = 0. The sum of squares due to regression for the reduced model was
SS(Regrreduced) = 648.2622. Comparison of this to SS(Regrg,y) = 658.2638
verifies that the difference again gives @@ = 10.0016.

The difference in regression sums of squares, however, cannot be used to
compute @ in the second example where 3y = 20 is included in the null
hypothesis. In this case, SS(Total) for the reduced model is based on Y;*
and hence it is different from SS(Total) for the full model. Consequently, it
is important to develop the habit of either always using the residual sums of
squares, since that procedure always gives the correct answer, or being very
cautious in the use of differences in regression sums of squares to compute

Q.

4.5.5 The R-Notation to Label Sums of Squares

The sum of squares for the null hypothesis that each of a subset of the
partial regression coefficients is zero is dependent on both the specific subset
of parameters in the null hypothesis and on the set of all parameters in the
model. To clearly specify both in each case, a more convenient notation for
sums of squares is needed. For this purpose, the commonly used R-notation
is introduced.

Let R(Bo B1 B2 ... Bp) = SS(Model) denote the sum of squares due
to the model containing the parameters listed in parentheses. The sum

Caution
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of squares for the hypothesis that a subset of 3; is zero can be obtained
by subtraction of SS(Model) for the reduced model from that for the full
model. Assume the subset of 3; being tested against zero consists of the
last k B;. Then

SS(Modely) = R(Bo Bi -+ Bp—i Bo—it1 «-- Bp)s
SS(MOdelreduced) R(ﬂo ﬂl e ﬁp—k)

and

Q = SS(Modelg, ;) — SS(Model, 4,ceq)
R(Bo B - Bp—t Bp—kt1 - Bp)—R(Bo 1 ... Bp—r).(4.49)

The final R-notation expresses this difference in sums of squares as

R(ﬁp—k:-&-l ﬁp—k+2 cee ﬂp‘ﬂo Bl cee 6p—k)- (450)

The ; appearing before the vertical bar are those specified to be zero by
the null hypothesis, whereas the 3; appearing after the bar are those for
which the former are adjusted. Alternatively, the full model consists of all
parameters in parentheses, whereas the reduced model contains only those
parameters appearing after the bar. In this notation,

SS(Regr) = SS(Model) — SS(u)
— R B ... BB, (451)

To illustrate the R-notation, consider a linear model that contains three
independent variables plus an intercept, given by

Y = BoXio+ B1Xi1 + B2 Xz + B3 Xz + €, (4.52)

where ¢; are NID(0, 02) and X0 = 1. The partial sums of squares for this
model would be

R(B1|Bo B2 Bs),
R(B2|Bo 51 Bs), and
R(33|B0 51 B2).

Each is the additional sum of squares accounted for by the parameter (or
its corresponding variable) appearing before the vertical bar when added
to a model that already contains the parameters appearing after the bar.
Each is the appropriate numerator sum of squares for testing the simple
hypothesis Hy : §; =0, for j =1, 2, and 3, respectively.

Consider the model

Y = BoXio+ 83Xz + B1Xi1 + B Xz + €, (4.53)

Partial
Sums of
Squares
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where we have changed the order of the independent variables in model 4.52.
The partial sums of squares for X3, X, and Xs are

R(B3|Bo B1 B2), R(B1lBo B3 B2), and R(B2]680 B3 B1),

respectively, and are the same as those obtained for model 4.52. That is,
the partial sums of squares for the independent variables of a given model
are independent of the order in which the variables are listed in the model.

The sequential sums of squares measure the contributions of the
variables as they are added to the model in a particular sequence. The se-
quential sum of squares for X is the increase in SS(Regr), or the decrease
in SS(Res), when X is added to the existing model. This sum of squares
measures the contribution of X; adjusted only for those independent vari-
ables that preceded X; in the model-building sequence.

For illustration, suppose a model is to be built by adding variables in
the sequence Xg, X1, X5, and X3 as in model 4.52. The first model to be
fit will contain Xy (the intercept) and X;. SS(Regr) from this model is the
sequential sum of squares for X;. In the R-notation, this sequential sum
of squares is given by R((31|08p). The second model to be fit will contain
Xo, X1, and Xs. The sequential sum of squares for X5 is SS(Regr) for this
model minus SS(Regr) for the first model and, in R-notation, it is given
by R(B32|80 f1). The third model to be fit will contain the intercept and
all three independent variables. The sequential sum of squares for X3 is
SS(Regr) for this three-variable model minus SS(Regr) for the preceding
two-variable model. In R-notation, the sequential sum of squares for X3
is R(Bs|fo 1 B2). Note that because X3 is the last variable added to the
model, the sequential sum of squares for X3 coincides with the partial sum
of squares for X3s.

Consider now equation 4.53 where the model is built in the sequence
Xo, X3, X1, and X5. The sequential sums of squares for X3, X, and
Xo are R(Bs3|00), R(B1|Po Ps), and R(B2|Bo B3 B1). These are different
from the sequential sums of squares obtained in the model 4.52. That is,
the sequential sums of squares are dependent on the order in which the
variables are added to the model. It should be clear from the definition of
the R-notation that the ordering of the parameters after the vertical bar is
immaterial.

The partial sums of squares measure the contributions of the individual
variables with each adjusted for all other independent variables in the
model (see Section 4.5.2) and are appropriate for testing simple hypotheses
of the form Hy : 3; = 0. Each sequential sum of squares is the appropriate
sum of squares for testing the jth partial regression coefficient, Hy : 8; = 0,
for a model that contains X; and only those independent variables that
preceded X in the sequence. For example, the sequential sum of squares,
R($1]5o), for X, is appropriate for testing Hp : 1 = 0 in the model ¥; =
8o+ 81X;1+¢€;. Note that this model assumes that 8, and 33 of model 4.52
are zero. The sequential sum of squares R((32|8y (1) for Xs is appropriate

Sequential
Sums of
Squares

Using Sequen-
tial Sums
of Squares
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for testing HO : 52 = 0 in the model Y; = ﬁ() + ﬂlXil + ﬁQXiQ + €.
This model assumes 3 = 0 in model 4.52. Similarly, the sequential sum of
squares R(fs|8p) (in model 4.53) is appropriate for testing Hy : (3 = 0
in the model Y; = By + 83X;3 + €;. This is, however, not appropriate for
testing Hp : B3 = 0 in the model Y; = By + B3 X3 + f1 X1 + G2 Xio + €.

The partial sums of squares, although useful for testing simple hypotheses
of the form Hy : 3; = 0, are not useful for testing joint hypotheses of
the form Hy : 8; =0, fr = 0or Hy : 8; =0, B, =0, 8, = 0. The
sequential sums of squares can be combined to obtain appropriate sums of
squares for testing certain joint hypotheses. For example, if we wish to test
Hy: (B3 = B3 =0 in model 4.52, we know that the appropriate numerator
sum of squares is

R(B2 Bs]fo B1) = R(Bo B B2 Bs) — R(Bo B1)
= [R(Bo B1 B2 Bs) — R(Bo 51 B2)]
+ [R(Bo 51 B2) — R(Bo B1)]
= R(B3|Bo B1 B2) + R(B2|Bo Br)
= sum of the sequential sums of squares for
X5 and X3 in model 4.52.

Similarly, if we wish to test the hypothesis that Hy : (81 = 2 = 0 in
model 4.53 (or 4.52), the appropriate sum of squares is

R(B1 B2|Bo B3) = R(Bo B3 1 B2) — R(Bo B3)
= [R(Bo B3 1 B2) — R(Bo B3 B1)]
+ [R(Bo B3 B1) — R(Bo B3)]
= R(Ba2|Bo B3 B1) + R(B1|Bo Bs)

sum of the sequential sums of squares for
X5 and X7 in model 4.53.

Note that the sequential sums of squares from model 4.52 cannot be used
for testing Hy : 1 = (B2 = 0. Note that in both models, equations 4.52 and
4.53,

SS(Regr) R(B1 B2 B3]60)

R(51160) + R(B2|6o B1) + R(B3]680 B1 B2)
= R(f3]6o) + R(B11Bo B3) + R(B:1B0 B1 P3).

That is, the sequential sums of squares are an additive partition of SS(Regr)
for the full model.

There are some models (for example, purely nested models and polyno-
mial response models) where there is a logical order in which terms should
be added to the model. In such cases, the sequential sums of squares pro-
vide the appropriate tests for determining which terms are to be retained
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TABLE 4.5. Regression sum of squares, sequential sums of squares, and the resid-
ual sum of squares for the oxygen uptake example.

Sequential Sums of Squares d.f. F
SS(Regr) = R(B1 B3 B2 [4]80)=658.2638 22.16
R(B1]6o) =632.9001  (
(B3]Bo Pr) 15.3621  (
( (
( (

Ba2|Bo f1 Bs) = 4041

B41B0 B1 B3 B2)= 9.5975
=193.1178 26

R
R
R

SS(Error)

in the model. In other cases, prior knowledge of the behavior of the system
will suggest a logical ordering of the variables according to their relative
importance. Use of this prior information and sequential sums of squares
should simplify the process of determining an appropriate model.

4.5.6 FEzample: Sequential and Partial Sums of Squares

The oxygen uptake example, Example 4.8, is used to illustrate the R-
notation and the sequential and partial sums of squares. The sum of squares
due to regression for the full model was

SS(Regr) = R(51 B2 B3 Ba]fo) = 658.2638

with four degrees of freedom (Table 4.4). The sequential sums of squares,
from fitting the model in the order X;, X3, X5, and X4 are shown in
Table 4.5. Each sequential sum of squares measures the stepwise improve-
ment in the model realized from adding one independent variable. The
sequential sums of squares add to the total regression sum of squares,
SS(Regr) = R(fB1 B3 B2 Balfo) = 658.2638; that is, this is an orthogonal
partitioning.

The regression sum of squares, R(51 B3 B2 B4|Bo) is used to test the
composite hypothesis Hg : #1 = 3 = 2 = B4 = 0. This gives F = 22.16
which, with 4 and 26 degrees of freedom is highly significant. That is, there
is evidence to believe that the independent variables need to be included
in the model to account for the variability in oxygen consumption among
runners.

Adjacent sequential sums of squares at the end of the list can be added to
generate the appropriate sum of squares for a composite hypothesis. For ex-
ample, the sequential sums of squares R(B2|60 B1 3) and R(B4|B0 1 B3 P2)
for X5 and Xy, respectively, in Table 4.5, can be added to give the addi-
tional sum of squares one would obtain from adding both X5 and X4 in one
step to the model containing only X; and X3 (and the intercept). Thus,

R(B21680 51 B3) + R(Balfo B1 B3 B2) = .4041 +9.5975

Example 4.10
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TABLE 4.6. Cumulative sequential sums of squares, the null hypothesis being
tested by each cumulative sum of squares, and the F-test of the null hypothesis
for the oxygen uptake example.

Cumulative Sequential
Sums of Squares d.f. Null Hypothesis F

R(31 B3 B2 P4]Bo)=658.2638 4 B1=03=0P2=06,=0 22.16
R(B3 P2 B4lfBo B1)= 25.3637 3 B3 =P2=064=0 .67
R(B2 Bs|Bo B B3)= 10.0026 2 Bo=pBs=0 114
R(B4|Bo 51 B B2)= 9.5975 1 Ba=0 129
SS(Error) =193.1178 26

= 10.0016
= R(B2 B41]Bo b1 Bs)

in the R-notation. This is the appropriate sum of squares for testing the
composite hypothesis that both (3 and (34 are zero. This gives F = .67
which, with 2 and 26 degrees of freedom, does not approach significance.
That is, the run time X; and the heart rate while running X3 are sufficient
to account for oxygen consumption differences among runners.

If this particular ordering of the variables was chosen because it was ex-
pected that X7 (run time) likely would be the most important variable with
the others being of secondary importance, it is logical to test the composite
null hypothesis Hy : f3 = B3 = (4 = 0. The sum of the sequential sums
of squares for X3, X5, and Xy is the appropriate sum of squares and gives
R(Bs B2 PalBo P1) = 25.3637 with 3 degrees of freedom. This gives F' = 1.14
which, with 3 and 26 degrees of freedom, does not approach significance.
This single test supports the contention that X; alone is sufficient to ac-
count for oxygen consumption differences among the runners. (Since the
variables are not orthogonal, this does not rule out the possibility that a
model based on the other three variables might do better.)

The cumulative sequential sums of squares (from bottom to top) and
the corresponding F-statistics and null hypotheses are summarized in Ta-
ble 4.6. The appropriate sum of squares to test the null hypothesis Hy :
B2 = B3 = 0is R(B2 Bs]Bo B1 Pa). This sum of squares cannot be ob-
tained from the sums of squares given in Tables 4.5 and 4.6. The sum of
squares R(fB2 fs|fo B1 B4) may be obtained by adding the sequential sums
of squares for X and X3 from fitting the model in the order X, X1, Xy,
XQ, and X 3.

The partial sums of squares, their null hypotheses, and the F-tests are
shown in Table 4.7. This is not an orthogonal partitioning; the partial
sums of squares will not add to SS(Regr). Each partial sum of squares
reflects the contribution of the particular variable as if it were the last to
be considered for the model. Hence, it is the appropriate sum of squares



4.6 Univariate and Joint Confidence Regions 135

TABLE 4.7. Partial sums of squares, the null hypothesis being tested by each,
and the F-test of the null hypothesis for the oxygen uptake example.

Null
Partial Sum of Squares Hypothesis re
R(B1|Bo, B2, B3, Ba) = 397.8664 B =0 5357
R(ﬂ3|/607 /817 ﬁ?a ﬁ4) = 25.0917 /83 =0 3.38
R(B2|B0, B1, B3, Pa) = .0822 B2 =0 01
R(B4|Bo, P1, B2, B3) = 9.5975 By=0 1.29

%All F-tests were computed using the residual mean square from the full model.

for deciding whether the variable might be omitted. The null hypotheses
in Table 4.7 reflect the adjustment of each partial regression coefficient for
all other independent variables in the model.

The partial sum of squares for Xo, R(B2|80 $1 B3 (1) = .0822 is much
smaller than s? = 7.4276 and provides a clear indication that this variable
does not make a significant contribution to a model that already contains
X1, X3, and Xy. The next logical step in building the model based on tests
of the partial sums of squares would be to omit X5. Even though the tests
for B3 and (4 are also nonsignificant, one must be cautious in omitting more
than one variable at a time on the basis of the partial sums of squares. The
partial sums of squares are dependent on which variables are in the model;
it will almost always be the case that all partial sums of squares will change
when a variable is dropped. (In this case, we know from the sequential sums
of squares that all three variables can be dropped. A complete discussion
on choice of variables is presented in Chapter 7.) |

4.6 Univariate and Joint Confidence Regions

Confidence interval estimates of parameters convey more information to
the reader than do simple point estimates. Univariate confidence inter-
vals for several parameters, however, do not take into account correlations
among the estimators of the parameters. Furthermore, the individual confi-
dence coefficients do not reflect the overall degree of confidence in the joint
statements. Joint confidence regions address these two points. Univariate
confidence interval estimates are discussed briefly before proceeding to a
discussion of joint confidence regions.

4.6.1  Univariate Confidence Intervals

If € ~ N(0,I0?), then B and Y have multivariate normal distributions
(see equation 3.37). With normality, the classical (1 — a)100% confidence

Confidence
Intervals for 3;
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interval estimate of each f; is

Bj + t(a/2,l/)s(3j)7 Jj= 07 sy Py (454)

where t(4/2,,) is the value of the Student’s t-distribution, with v degrees of
freedom, that puts «/2 probability in the upper tail. [In the usual multiple
regression problem, v = (n—p’).] The standard error of Bj is s(fj\j) = 4/c;;s?
where s? is estimated with v degrees of freedom and c;; is the (j + 1)th
diagonal element from (X'X)~1.

Similarly, the (1 — @)100% confidence interval estimate of the mean of
Y for a particular choice of values for the independent variables, say @ =
(1 X01 Xop),is

}/}0 + t(a/2,l/)£(%)7 (455)

where Yy = wg,@; s(Yy) = /a2 (X'X)~1aos2, in general, or s(Yo) = V82
if &, corresponds to the ith row of X; v;; is the ith diagonal element in P;
t(a/2,v) 18 as defined for equation 4.54.

A (1—«)100% prediction interval of Yy = (3 + €, for a particular choice

of values of the independent variables, say (= (1 X¢p1 -+ Xop)is
Yo £ tajpns(Yo-Yo), (4.56)

where Yy = wéﬁ and s(Yy — Yo) = V21 + ) (X' X)) Lag).

The univariate confidence intervals are illustrated with the oxygen uptake
example (see Example 4.8). s? = 7.4276 was estimated with 26 degrees of
freedom. The value of Student’s ¢ for a = .05 and 26 degrees of freedom is
t(.025,26) = 2.056. The point estimates of the parameters and the estimated

variance-covariance matrix of 3 were

B = (842600 —3.0698 .0080 —.1167 .0852)

2(B) = (X'X) s
129.4119 —1.185591 .053980 —.104321 —.579099
—1.185591 175928 —.012602 —.007318 .007043
.053980  —.012602 .005775 —.000694 —.000634
—.104321  —.007318 —.000694 .004032 —.002646
—.579099 .007043 —.000634 —.002646 .005616

The square root of the (j + 1)st diagonal element gives s(ﬁj). If d is
defined as the column vector of s(3;), the univariate 95% confidence interval

Confidence
Interval for
E(Yo)

Prediction
Interval for Yy

Example 4.11
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estimates can be computed as

CL(B) = [B—twpnd B+tns)d
60.880 107.658
—-3.932 —2.207
- —148 164 |,
—.247 .014
—.069 239

where the two columns give the lower and upper limits, respectively, for
the 3; in the same order as listed in 3. ]

4.6.2  Simultaneous Confidence Statements

For the classical univariate confidence intervals, the confidence coefficient
(1 — ) = .95 applies to each confidence statement. The level of confidence
associated with the statement that all five intervals simultaneously contain
their respective parameters is much lower. If the five intervals were sta-
tistically independent, which they are not, the overall or joint confidence
coefficient would be only (1 — )5 = .77.

There are two procedures that keep the joint confidence coefficient for
several simultaneous statements near a prechosen level (1 — «). The oldest
and simplest procedure, commonly called the Bonferroni method, con-
structs the individual confidence intervals as given in equations 4.54 and
4.55, but uses a* = «/k where k is the number of simultaneous intervals
or statements. That is, in equation 4.54, ¢, /2,,) is replaced with (/2 .)-
This procedure ensures that the true joint confidence coefficient for the k
simultaneous statements is at least (1 — «).

The Bonferroni simultaneous confidence intervals for the p’ parameters
in 3 are given by

ﬁj + t(a/Qp@,/)S(ﬂj). (457)

This method is particularly suitable for obtaining simultaneous confidence
intervals for k prespecified (prior to analyzing the data) parameters or lin-
ear combinations of parameters. When k is small, generally speaking, the
Bonferroni simultaneous confidence intervals are not very wide. However, if
k is large, the Bonferroni intervals tend to be wide (conservative) and the
simultaneous coverage may be much larger than the specified confidence
level (1 — ). For example, if we are interested in obtaining simultaneous
confidence intervals of all pairwise differences of p parameters (e.g., treat-
ment means), then & is p(p + 1)/2 which is large even for moderate values
of p. The Bonferroni method is not suitable for obtaining simultaneous
confidence intervals for all linear combinations. In this case, k is infinity
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and the Bonferroni intervals would be the entire space. For example, in a
simple linear regression, if we wish to compute a confidence band on the
entire regression line, then the Bonferroni simultaneous band would be the
entire space.

The second procedure applies the general approach developed by Scheffé
(1953). Scheffé’s method provides simultaneous confidence statements for
all linear combinations of a set of parameters in a d-dimensional subspace of
the p’-dimensional parameter space. The Scheffé joint confidence intervals
for the p’ parameters in 8 and the means of Y, £(Y;), are obtained from
equations 4.54 and 4.55 by replacing (4 2,,) with [p’F(a,p/,,,)]l/z. (If only
a subset of d linearly independent parameters 3; is of interest, t(q /2., is
replaced with [dF(ayd_’,,)]l/?) That is,

Bj + (p/F(a,p’,V))l/2S(Bj) (458)
Yo £ (0 Flapw)?s(Yo). (4.59)

This method provides simultaneous statements for all linear combinations
of the set of parameters. As with the Bonferroni intervals, the joint confi-
dence coefficient for the Scheffé intervals is at least (1 — «). That is, the
confidence coefficient of (1 — «) applies to all confidence statements on the
Bj, the £(Y;), plus all other linear functions of 3; of interest. Thus , equa-
tion 4.59 can be used to establish a confidence band on the entire regression
surface by computing Scheffé confidence intervals for £(Yp) for all values
of the independent variables in the region of interest. The confidence band
for the simple linear regression case was originally developed by Working
and Hotelling (1929) and frequently carries their names.

The reader is referred to Miller (1981) for more complete presentations on
Bonferroni and Scheffé methods. Since the Scheffé method provides simul-
taneous confidence statements on all linear functions of a set of parameters,
the Scheffé intervals will tend to be longer than Bonferroni intervals, partic-
ularly when a small number of simultaneous statements is involved (Miller,
1981). One would choose the method that gave the shorter intervals for the
particular application.

The oxygen uptake model of Example 4.8 has p’ = 5 parameters and
v = 26 degrees of freedom for s2. In order to attain an overall confidence
coefficient no smaller than (1 —«a) = .95 with the Bonferroni method, o* =
.05/5 = .01 would be used, for which t(¢1/2,26) = 2.779. Using this value
of t in equation 4.54 gives the Bonferroni simultaneous confidence intervals

Scheffé’s
Method

Example 4.12
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with an overall confidence coefficient at least as large as (1 — a) = .95:

52.655 115.883
R —4.235  —1.904
CLg(B) = —.203 —.219
—.293 .060
—.123 .293

The Scheffé simultaneous intervals for the p’ = 5 parameters in 3 are

obtained by using [p' F{ o5 5,26)]"/% = [5(2.59)]'/% = 3.599 in place of t(4 /2.,
in equation 4.54. The results are

43.331 125.207

~ —4.579  —1.560
CLs(B) = —.265 281
—345 112

—184 355

The Bonferroni and Scheffé simultaneous confidence intervals will always
be wider than the classical univariate confidence intervals in which the
confidence coefficient applies to each interval. In this example, the Scheffé
intervals are wider than the Bonferroni intervals. |

The 100(1 — «)% simultaneous confidence intervals for 3 obtained us-
ing either Bonferroni or Sheffé methods, provide confidence intervals for
each individual parameter §; in such a way that the p’-dimensional region
formed by the intersection of the p’-simultaneous confidence intervals gives
at least a 100(1 —a)% joint confidence region for all parameters. The shape
of this joint confidence region is rectangular or cubic. Sheffé also derives
an ellipsoidal 100(1 — @)% joint confidence region for all parameters that
is contained in the boxed region obtained by the Sheffé simultaneous confi-
dence intervals. This distinction is illustrated after joint confidence regions
are defined in the next section.

4.6.8 Joint Confidence Regions

A joint confidence region for all p’ parameters in 3 is obtained from the
inequality

B-B)(X'X)B—-B) < P*Flap.)

where F(q . is the value of the F-distribution with p’ and v degrees of
freedom that leaves probability « in the upper tail; v is the degrees of
freedom associated with the 3/2\. The left-hand side of this inequality is a
quadratic form in 3, because 3 and X’'X are known quantities computed
from the data. The right-hand side is also known from the data. Solving

(4.60)
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this quadratic form for the boundary of the inequality establishes a p'-
dimensional ellipsoid which is the 100(1 — a)% joint confidence region for
all the parameters in the model. The slope of the axes and eccentricity of
the ellipsoid show the direction and strength, respectively, of correlations
between the estimates of the parameters.

An ellipsoidal confidence region with more than two or three dimen-
sions is difficult to interpret. Specific choices of B can be checked, with a
computer program, to determine whether they fall inside or outside the
confidence region. The multidimensional region, however, must be viewed
two or at most three dimensions at a time. One approach to visualizing
the joint confidence region is to evaluate the p’-dimensional joint confi-
dence region for specific values of all but two of the parameters. Each set
of specified values produces an ellipse that is a two-dimensional “slice”
of the multidimensional region. To develop a picture of the entire region,
two-dimensional “slices” can be plotted for several choices of values for the
other parameters.

An alternative to using the p’-dimensional joint confidence region for all
parameters is to construct joint confidence regions for two parameters at
a time ignoring the other (p’ — 2) parameters. The quadratic form for the
joint confidence region for a subset of two parameters is obtained from that
for all parameters, equation 4.60, by

1. replacing (,@ — B) with the corresponding vectors involving only the
two parameters of interest;

2. replacing (X'X) with the inverse of the 2 x 2 variance-covariance
matrix for the two parameters; and

3. replacing p’sQF(a’p/7,,) with 2F(, 2., Notice that 52 is not in the sec-
ond quantity since it has been included in the variance-covariance
matrix in step 2.

Thus, if 3; and §; are the two distinct parameters of interest, the joint
confidence region is given by

(3)- () waaor [(5)- ()]
< 2F(a0.)- (4.61)

The confidence coefficient (1 — «) applies to the joint statement on the
two parameters being considered at the time. This procedure takes into
account the joint distribution of 8; and §j but ignores the values of the
other parameters. Since this bivariate joint confidence region ignores the
joint distribution of §; and §j with the other (p’ —2) parameter estimates,
it suffers from the same conceptual problem as the univariate confidence
intervals.

Interpretation
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The oxygen uptake data, given in Example 4.8, are used to illustrate joint
confidence regions, but the model is simplified to include only an intercept
and two independent variables, time to run 1.5 miles (X;) and heart rate
while running (X3). The estimate of 3, X’ X, and the variance-covariance
matrix for B for this reduced model are

~/

(93.0888 —3.14019 —0.073510)

31 328.17 5,259
X'X = 328.17  3531.797  55,806.29
5,259 55,806.29 895,317

and

N 68.04308 —.47166 —.37028
s2(B) = —.47166 13933 —.00591
—.37028 —.00591 .00255

The residual mean square from this model is s = 7.25426 with 28 degrees
of freedom.

The joint confidence region for all three parameters is obtained from
equation 4.60 and is a three-dimensional ellipsoid. The right-hand side of
equation 4.60 is

P’ Flas2s) = 3(7.25426)(2.95)

if @ = .05. This choice of a gives a confidence coefficient of .95 that
applies to the joint statement involving all three parameters. The three-
dimensional ellipsoid is portrayed in Figure 4.1 with three two-dimensional
“slices” (solid lines) from the ellipsoid at fy = 76.59,93.09, and 109.59.
These choices of [y correspond to ﬂo and ﬂo :|:2s(/80) The “slices” indicate
that the ellipsoid is extremely thin in one plane but only slightly elliptical
in the other, much like a slightly oval pancake. This is reflecting the high
correlation between 60 and 33 of —.89 and the more moderate correlations
of —.15 and —.31 between [y and /6'1 and between ﬁl and 53, respectively.
The bivariate joint confidence region for 31 and B3 ignoring 3y, obtained
from equation 4.61, is shown in Figure 4.1 as the ellipse drawn with the
dashed line. The variance-covariance matrix to be inverted in equation 4.61
is the lower-right 2x 2 matrix in s2(3). The right-hand side of the inequality
is 2F(q,2,28) = 2(3.34) if @ = .05. The confidence coefficient of .95 applies
to the joint statement involving only 1 and 33. The negative slope in this
ellipse reflects the moderate negative correlation between (; and (3. For
reference, the Bonferroni confidence intervals for (31 and s, ignoring (o,
using a joint confidence coefficient of .95 are shown by the corners of the
rectangle enclosing the intersection region.
The implications as to what are “acceptable” combinations of values for
the parameters are very different for the two joint confidence regions. The

Example 4.13
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0.08 ignoring f
e 0

-0.16

-0.24

FIGURE 4.1. Two-dimensional “slices” of the joint confidence region for the
regression of oxygen uptake on time to run 1.5 miles (X1), and heart rate while
running (X3) (solid ellipses), and the two-dimensional joint confidence region
for 1 and Bs ignoring Bo (dashed ellipse). The intersection of the Bonferroni
univariate confidence intervals is shown as the corners of the rectangle formed by
the intersection .

joint confidence region for all parameters is much more restrictive than
the bivariate joint confidence region or the univariate confidence intervals
would indicate. Allowable combinations of #; and (33 are very dependent
on choice of . Clearly, univariate confidence intervals and joint confidence
regions that do not involve all parameters can be misleading. |

The idea of obtaining joint confidence regions in equation 4.60 can also
be extended to obtain joint prediction regions. Let X : k x p’ be a
set of k linearly independent vectors of explanatory variables at which we
wish to predict Y. That is, we wish to simultaneously predict

Yo = X008+ €o, (4.62)

where €y is N(0,021}) and is assumed to be independent of Y. The best
linear unbiased predictor of Y is

Yo = XoB, (4.63)
where 3 = (X'X)~'X'Y . Note that the prediction error vector

Xo(B - E) +e€o
N(0,0%[I1, 4+ Xo( X' X)L X)). (4.64)

Y)Y

2
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A joint 100(1 — a)% prediction region is obtained from the inequality
(Yo —Yo) I+ Xo(X'X) 1 X0 7L (Yo — Yo) < ks?Flap,), (4.65)

where v is the degrees of freedom associated with s2. The Bonferroni pre-
diction intervals are given by

(Yo —Yo) * tiajornds, (4.66)

where d is a vector of the diagonal elements of [I), + X o(X'X) "1 X(]. The
corresponding Sheffé prediction intervals are given by

(Yo —Yo) £ [kF(a ] ds. (4.67)

4.7 Estimation of Pure Error

The residual mean square has been used, until now, as the estimate of
o2. One of the problems with this procedure is the dependence of the
residual mean square on the model being fit. Any inadequacies in the model,
important independent variables omitted, or an incorrect form of the model
will cause the residual mean square to overestimate o?. An estimate of o2
is needed that is not as dependent on the choice of model being fit at the
time.

The variance o2 is the variance of the ¢; about zero or, equivalently,
the variance of Y; about their true means £(Y;). The concept of modeling
Y; assumes that £(Y;) is determined by some unknown function of the
relevant independent variables. Let @/ be the row vector of values of all
relevant independent variables for the ith observation. Then, all Y; that
have the same «; also will have the same true mean regardless of whether
the correct model is known. Hence, o2 is by definition the variance among
statistically independent observations that have the same @}. Such repeated
observations are called true replicates. The sample variance of the Y;
among true replicates provides a direct estimate of 0% that is independent
of the choice of model. (It is, however, dependent on having identified
and taken data on all relevant independent variables.) The estimate of
o? obtained from true replication is called pure error. When several sets
of replicate observations are available, the best estimate of o2 is obtained
by pooling all estimates.

True replication is almost always included in the design of controlled
experiments. For example, the estimate of experimental error from the
completely random design or the randomized complete block design when
there is no block-by-treatment interaction is the estimate of pure error.
Observational studies, on the other hand, seldom have true replication
since they impose no control over the independent variables. Then, true
replication occurs only by chance and is very unlikely if several independent

Definition of
Pure Error
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TABLE 4.8. Replicate yield data for soybeans exposed to chronic levels of ozone
and estimates of pure error. (Data courtesy A. S. Heagle, North Carolina State
University. )

Ozone Level (ppm,)

.02 .07 A1 .15
238.3 235.1 236.2 178.7
270.7  228.9  208.0 186.0
210.0 236.2 243.5 206.9
248.7  255.0 233.0 2153
2424 228.9 233.0 219.5

Y, 242.02 236.82 230.74 201.28
s?  476.61 114.83 179.99 325.86

variables are involved. In addition, apparent replicates in the observational
data may not, in fact, be true replicates due to important variables having
been overlooked. Pseudoreplication or near replication is sometimes used
with observational data to estimate o2. These are sets of observations in
which the values of the independent variables fall within a relatively narrow
range.

To illustrate the estimation of pure error, the ozone example used in
Example 1.1 is used. The four observations used in that section were the
means of five replicate experimental units at each level of ozone from a
completely random experimental design. The full data set, the treatment
means, and the estimates of pure error within each ozone level are given in
Table 4.8.

Each s? is estimated from the variance among the five observations for
each ozone level, with 4 degrees of freedom, and is an unbiased estimate of
o2. Since each is the variation of Y;; about Y, for a given level of ozone, the
estimates are in no way affected by the form of the response model that
might be chosen to represent the response of yield to ozone. Figure 4.2
illustrates that the variation among the replicate observations for a given
level of ozone is unaffected by the form of the regression line fit to the data.
The best estimate of o2 is the pooled estimate

2 So(ny—1)s?  4(476.61) + - - 4 4(325.86)
S —1) 16
= 274.32

with 16 degrees of freedom, where n; = 4, i =1, 2, 3, 4.

The analysis of variance for the completely random design is given (Ta-
ble 4.9) to emphasize that s? is the experimental error from that analysis.
The previous regression analysis (Section 1.4, Tables 1.3 and 1.4) used the

Example 4.14
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FIGURE 4.2. Comparison of “pure error” and “deviations from regression” using
the data on soybean response to ozone.

TABLE 4.9. The analysis of variance for the completely random experimental
design for the yield response of soybean to ozone.

Source d.f. SS MS
Total(corr) 19 9366.61
Treatments 3 4977.47 1659.16
Regression 1 3956.31 3956.31
Lack of Fit 2 1021.16  510.58
Pure Error 16 4389.14 274.32
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treatment means (of » = 5 observations). Thus, the sums of squares from
that analysis have to be multiplied by » = 5 to put them on a “per ob-
servation” basis. That analysis of variance, Table 1.4, partitioned the sum
of squares among the four treatment means into 1 degree of freedom for
the linear regression of Y on ozone level and 2 degrees of freedom for lack
of fit of linear regression. The middle three lines of Table 4.9 contain the
results from the original analysis multiplied by r» = 5. The numbers differ
slightly due to rounding the original means to whole numbers. ]

The expectations of the mean squares in the analysis of variance show
what function of the parameters each mean square is estimating. The mean
square expectations for the critical lines in Table 4.9 are

EMS(Regr)] = o”+p7 ) af,
E[MS(Lack of fit)] = o2+ (Model bias)?, (4.68)
E[MS(Pure error)] = o

Recall that Y 7 is used to indicate the corrected sum of squares of the
independent variable.

The square on “model bias” emphasizes that any inadequacies in the
model cause this mean square to be larger, in expectation, than 2. Thus,
the “lack of fit” mean square is an unbiased estimate of o2 only if the linear
model is correct. Otherwise, it is biased upwards. On the other hand, the
“pure error” estimate of o2 obtained from the replication in the experiment
is unbiased regardless of whether the assumed linear relationship is correct.

The mean square expectation of MS(Regr) is shown as if the linear model
relating yield to ozone level is correct. If the model is not correct (for exam-
ple, if the treatment differences are not due solely to ozone differences), the
second term in E[MS(Regr)] will include contributions from all variables
that are correlated with ozone levels. This is the case even if the variables
have not been identified. The advantage of controlled experiments such as
this ozone study is that amount of ozone is, presumably, the only variable
changing consistently over the ozone treatments. Random assignment of
treatments to the experimental units should destroy any correlation be-
tween ozone level and any incidental environmenal variable. Thus, treat-
ment differences in this controlled study can be attributed to the effects of
ozone and E[MS(Regr)] should not be biased by the effects of any uncon-
trolled variables. One should not overlook, however, this potential for bias
in the regression sum of squares, particularly when observational data are
being analyzed.

The independent estimate of pure error, experimental error, provides the
basis for two important tests of significance. The adequacy of the model
can be checked by testing the null hypothesis that “model bias” is zero. Any
inadequacies in the linear model will make this mean square larger than

Adequacy of
the Model
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o2 on the average. Such inadequacies could include omitted independent

variables as well as any curvilinear response to ozone.

In the ozone example, Example 4.14, the test of the adequacy of the
linear model is
MS(Lack of fit)  510.58

F = =
MS(Pure error)  274.32

= 1.86,

which, if the model is correct, is distributed as F' with 2 and 16 degrees of
freedom. Comparison against the critical value F{ o5 2,16) = 3.63 shows this
to be nonsignificant, indicating that there is no evidence in these data that
the linear model is inadequate for representing the response of soybean to
ozone. |

The second hypothesis of interest is Hy : §1 = 0 against the alternative
hypothesis H, : #; # 0. If the fitted model is not adequate, then the
parameter (3; may not have the same interpretation as when the model is
adequate. Therefore, when the model is not adequate, it does not make
sense to test Hy : 31 = 0.

Suppose that the fitted model is adequate and we are interested in testing
Hy : 31 = 0. The ratio of regression mean square to an estimate of o2
provides a test of this hypothesis. The mean square expectations show that
both mean squares estimate o> when the null hypothesis is true and that
the numerator becomes increasingly larger as (; deviates from zero. One
estimate of o2 is, again, the pure error estimate or experimental error.

For the ozone example, a test statistic for testing Hy : 1 = 0 is

MS(Regr)  3,956.31

F = =
MS(Pure error) 274.32

= 14.42.

Comparing this to the critical value for a = .01, F{ 1,1,16) = 8.53, indicates
that the null hypothesis that 8; = 0 should be rejected. This conclusion
differs from that of the analysis in Chapter 1 because o2 is now estimated
with many more degrees of freedom. As a result, the test has more power
for detecting departures from the null hypothesis. [ |

Note that, if the model is truly adequate, then the mean square for lack of
fit is also an estimate of 02. A pooled estimate of o2 is given by the sum of
SS(Lack of fit) and SS(Pure error) divided by the sum of the corresponding
degrees of freedom.

For the ozone example, consider the analysis of variance given in Ta-

Example 4.15

Hy:8,=0

Example 4.16

Example 4.17
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TABLE 4.10. The analysis of variance for the ozone data.

Source d.f. SS MS
Total (corr) 19  9,366.61
Regression 1 3,956.31 3,956.31
Error 18 5,410.30 300.57

Lack of Fit 2 1,021.16 510.58
Pure Error 16 4,389.14 274.32

ble 4.10. Based on the pooled error, a test statistic for testing Hy : S =0

is

MS(Regression)  3,956.31
MS(Error)  300.57

F = = 13.16.

Comparing this to the critical value for a = .01, F{ 1,1,18) = 8.29, indicates
that Hp : 1 = 0 should be rejected. This F-statistic coincides with the
F-statistic given in Chapter 1 for testing Hy : #1 = 0 in the model Y; =
Bo+ S1X; + €; when all of the data in Table 4.8 (instead of only the means,
Table 1.1) are used. This test statistic is more powerful than that based
on the MS(Pure error). However, if the fitted model is inadequate, then
MS(Error) is no longer an unbiased estimate of 02, whereas MS(Pure error)
is even if the fitted model is not adequate.

Finally, a composite test for Hy : 81 = 0 and that the model is adequate
is given by

[SS(Regression) + SS(Lack of fit)]/(1 + 2)
MS(Pure Error)
(3,956.31 +1,021.16)/3  1659.16
274.32 27432

= 6.05.

Comparing this to the critical value for a = .01, F{ ¢1,3,16) = 3.24, indicates
that either the model is not adequate or (31 is not zero. This is equivalent
to testing the null hypothesis of no treatment effects in the analysis of
variance which is discussed in Chapter 9. |

In summary, multiple, statistically independent observations on the de-
pendent variable for given values of all relevant independent variables is
called true replication. True replication provides for an unbiased estimate
of o2 that is not dependent on the model being used. The estimate of pure
error provides a basis for testing the adequacy of the model. True replica-
tion should be designed into all studies where possible and the pure error
estimate of o2, rather than a residual mean square estimate, used for tests
of significance and standard errors.
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4.8 Exercises

4.1. A dependent variable Y (20 x 1) was regressed onto 3 independent
variables plus an intercept (so that X was of dimension 20 x 4). The
following matrices were computed.

0
X'X = 8 XY =
8

20 0 0
0 250 401

1,900.00

970.45
1,674.41
—396.80

0 401 1,013
0 0 0 12

Y'Y = 185.883.

(a)
(b)

()

Compute B and write the regression equation.

Compute the analysis of variance of Y. Partition the sum of
squares due to the model into a part due to the mean and a
part due to regression on the Xs after adjustment for the mean.

Summarize the results, including degrees of freedom and mean

squares, in an analysis of variance table.

Compute the estimate of 02 and the standard error for each

regression_coefficient. Compute the covariance between 31 and
B2, Cov(f1, B2). Compute the covariance between [, and (s,

COV(ﬂl7 ﬂg)

Drop X3 from the model. Reconstruct X’X and X'Y for this
model without X3 and repeat Questions (a) and (b). Put X3
back in the model but drop X5 and repeat (a) and (b).

(i) Which of the two independent variables Xo or X3 made the
greater contribution to Y in the presence of the remaining
Xs; that is, compare R(82|5o, B1, B3) and R(B3|6o, f1, B2)-

(ii) Explain why 31 changed in value when X5 was dropped but
not when X3 was dropped.

(iii) Explain the differences in meaning of ; in the three models.
From inspection of X’ X how can you tell that X;, X5, and X3
were expressed as deviations from their respective means? Would

(X’ X)~! have been easier or harder to obtain if the original Xs
(without subtraction of their means) had been used? Explain.

4.2. A regression analysis led to the following P = X (X’'X)~! X’ matrix
and estimate of 2.

62 18 -6 —-10 6
L1826 24 12 -0
—| -6 24 34 24 —6 |, s2 = .06.
00 10 12 24 26 18

6 —-10 -6 18 62
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(a)
(b)
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How many observations were in the data set?

How many linearly independent columns are in X —that is, what
is the rank of X7 How many degrees of freedom are associated
with the model sum of squares? Assuming the model contained
an intercept, how many degrees of freedom are associated with
the regression sum of squares?

Suppose Y = (82 80 75 67 55)". Compute the estimated
mean 171 of Y corresponding to the first observation. Compute
82(Y1). Find the residual e; for the first observation and com-
pute its variance. For which data point will )A/Z have the smallest
variance? For which data point will e; have the largest variance?

4.3. The following (X'X)~!, B, and residual sum of squares were ob-
tained from the regression of plant dry weight (grams) from n = 7
experimental fields on percent soil organic matter (X;) and kilograms
of supplemental nitrogen per 1000 m? (X3). The regression model in-
cluded an intercept.

(a)

1.7995972 —.0685472 —.2531648
(xX'x)' = —.0685472 .0100774 —.0010661
—.2531648 —.0010661 .0570789

R 51.5697
B = 1.4974 |, SS(Res) = 27.5808.
6.7233

Give the regression equation and interpret each regression coef-
ficient. Give the units of measure of each regression coefficient.

How many degrees of freedom does SS(Res) have? Compute s>
the variance of ,6’1, and the covariance of 51 and ﬂg

Determine the 95% univariate confidence interval estimates of
(1 and (5. Compute the Bonferroni and the Scheffé confidence
intervals for §; and [3; using a joint confidence coefficient of .95.

Suppose previous experience has led you to believe that one
percentage point increase in organic matter is equivalent to .5
kilogram /1,000 m? of supplemental nitrogen in dry matter pro-
duction. Translate this statement into a null hypothesis on the
regression coefficients. Use a t-test to test this null hypothesis
against the alternative hypothesis that supplemental nitrogen is
more effective than this statement would imply.

Define K’ and m for the general linear hypothesis Hy : K'3 —
m = 0 for testing Hy : 20; = (2. Compute @) and complete
the test of significance using the F-test. What is the alternative
hypothesis for this test?
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(f) Give the reduced model you obtain if you impose the null hy-
pothesis in (e) on the model. Suppose this reduced model gave a
SS(Res) = 164.3325. Use this result to complete the test of the
hypothesis.

4.4. The following analysis of variance summarizes the regression of Y on
two independent variables plus an intercept.

Source d.f. SS MS
Total( corr) 26 1,211
Regression 2 1,055 527.5
Residual 24 156 6.5
Variable Sequential SS  Partial SS
X1 263 223
Xo 792 792

(a) Your estimate of 3; is Bl = 2.996. A friend of yours regressed Y’
on X7 and found 3 = 3.24. Explain the difference in these two
estimates.

(b) Label each sequential and partial sum of squares using the R-
notation. Explain what R(31|08y) measures.

(¢) Compute R(f32|0y) and explain what it measures.

(d) What is the regression sum of squares due to X; after adjust-
ment for X5?

(e) Make a test of significance (use a = .05) to determine if X,
should be retained in the model with X5.

(f) The original data contained several sets of observations having
the same values of X; and Xs. The pooled variance from these
replicate observations was s? = 3.8 with eight degrees of free-
dom. With this information, rewrite the analysis of variance to
show the partitions of the “residual” sum of squares into “pure
error” and “lack of fit.” Make a test of significance to determine
whether the model using X; and X5 is adequate.

4.5. The accompanying table presents data on one dependent variable and
five independent variables.
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Y X, Xy X3 X4 X5
6.68 32.6 4.78 1,092 293.09 17.1
6.31 334 4.62 1,279 252.18 14.0
713 332 3.72 511 109.31 12.7
5.81 31.2 3.29 518 131.63 25.7
5.68 31.0 3.25 582 12450 24.3
766 318 7.35 509  95.19 3
730 264 4.92 942 173.25 21.1
6.19 26.2 4.02 952 172.21 26.1
731 26.6 5.47 792 142.34 19.8

(a) Give the linear model in matrix form for regressing Y on the
five independent variables. Completely define each matrix and
give its order and rank.

(b) The following quadratic forms were computed.
Y'PY = 404532 Y'Y = 405.012

Y'I-P)Y = 0480 Y'(I—J/n)Y= 4078
Y'(P-J/n)Y= 3598 Y'(J'/n)Y =400.934.

Use a matrix algebra computer program to reproduce each of
these sums of squares. Use these results to give the complete
analysis of variance summary.

(¢) The partial sums of squares for Xy, Xo, X3, Xy, and X5 are .895,
.238, .270, .337, and .922, respectively. Give the R-notation that
describes the partial sum of squares for X5. Use a matrix algebra
program to verify the partial sum of squares for Xs.

(d) Assume that none of the partial sums of squares for Xo, X3,
and X, is significant and that the partial sums of squares for
X1 and X5 are significant (at o = .05). Indicate whether each
of the following statements is valid based on these results. If it
is not a valid statement, explain why.

(i) Xy and X5 are important causal variables whereas Xo, X3,
and X4 are not.
(i1) Xo, X3, and Xy can be dropped from the model with no
meaningful loss in predictability of Y.
(iii) There is no need for all five independent variables to be
retained in the model.

4.6. This exercise continues with the analysis of the peak water flow data
used in Exercise 3.12. In that exercise, several regressions were run to
relate Y = In(Qo/@)p) to three characteristics of the watersheds and
a measure of storm intensity. Y measures the discrepancy between
peak water flow predicted from a simulation model (Q),) and observed
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peak water flow (Qg). The four independent variables are described
in Exercise 3.12.

(a) The first model used an intercept and all four independent vari-
ables.

(i) Compute SS(Model), SS(Regr), and SS(Res) for this model
and summarize the results in the analysis of variance table.
Show degrees of freedom and mean squares.

(ii) Obtain the partial sum of squares for each independent vari-
able and the sequential sums of squares for the variables
added to the model in the order X;, X4, Xs, X3s.

(iii) Use tests of significance (o = .05) to determine which partial
regression coefficients are different from zero. What do these
tests suggest as to which variables might be dropped from
the model?

(iv) Construct a test of the null hypothesis Hy : o = 0 using
the general linear hypothesis. What do you conclude from
this test?

(b) The second model used the four independent variables but forced
the intercept to be zero.

(i) Compute SS(Model), SS(Res), and the partial and sequen-
tial sums of squares for this model. Summarize the results
in the analysis of variance table.

(ii) Use the difference in SS(Res) between this model with no
intercept and the previous model with an intercept to test
Hy : By = 0. Compare the result with that obtained under
(iv) in Part (a).

(iii) Use tests of significance to determine which partial regres-
sion coefficients in this model are different from zero. What
do these tests tell you in terms of simplifying the model?

(¢) The third model used the zero-intercept model and only X; and
Xy.

(i) Use the results from this model and the zero-intercept model
in Part (b) to test the composite null hypothesis that G2 and
(3 are both zero.

(ii) Use the general linear hypothesis to construct the test of the
composite null hypothesis that #> and (3 in the model in
Part (b) are both zero. Define K’ and m for this hypothesis,
compute @), and complete the test of significance. Compare
these two tests.

4.7. Use the data on annual catch of Gulf Menhaden, number of fishing
vessels, and fishing effort given in Exercise 3.11.
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(a) Complete the analysis of variance for the regression of catch
(Y) on fishing effort (X;) and number of vessels (X5) with an
intercept in the model. Determine the partial sums of squares for
each independent variable. Estimate the standard errors for the
regression coefficients and construct the Bonferroni confidence
intervals for each using a joint confidence coefficient of 95%.
Use the regression equation to predict the “catch” if number of
vessels is limited to X5 = 70 and fishing effort is restricted to
X1 = 400. Compute the variance of this prediction and the 95%
confidence interval estimate of the prediction.

(b) Test the hypothesis that the variable “number of vessels” does
not add significantly to the explanation of variation in “catch”
provided by “fishing effort” alone (use o = .05). Test the hy-
pothesis that “fishing effort” does not add significantly to the
explanation provided by “number of vessels” alone.

(c) On the basis of the tests in Part (b) would you keep both X; and
X5 in the model, or would you eliminate one from the model?
If one should be eliminated, which would it be? Does the re-
maining variable make a significant contribution to explaining
the variation in “catch”?

(d) Suppose consideration is being given to controlling the annual
catch by limiting either the number of fishing vessels or the total
fishing effort. What is your recommendation and why?

4.8. This exercise uses the data in Exercise 3.14 relating Y = In(days survival)
for colon cancer patients receiving supplemental ascorbate to the vari-
ables sex (X7), age of patient (X3), and In(average survival of control

group) (X3).

(a) Complete the analysis of variance for the model using all three
variables plus an intercept. Compute the partial sum of squares
for each independent variable using the formula 5]2- /cj;. Demon-
strate that each is the same as the sum of squares one obtains
by computing @ for the general linear hypothesis that the cor-
responding 3; is zero. Compute the standard error for each re-
gression coefficient and the 95% confidence interval estimates.

(b) Does information on the length of survival time of the control
group (X3) help explain the variation in Y'? Support your answer
with an appropriate test of significance.

(c) Test the null hypothesis that “sex of patient” has no effect on
survival beyond that accounted for by “age” and survival of the
control group. Interpret the results.

(d) Test the null hypothesis that “age of patient” has no effect on
survival beyond that accounted for by “sex” and survival time
of the control group. Intrepret the results.
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(e) Test the composite hypothesis that 8; = 2 = 3 = 0. From
these results, what do you conclude about the effect of sex and
age of patient on the mean survival time of patients in this study
receiving supplemental ascorbate? With the information avail-
able in these data, what would you use as the best estimate of
the mean In(days survival)?

4.9. The Lesser-Unsworth data (Exercise 1.19) was used in Exercise 3.9
to estimate a bivariate regression equation relating seed weight to
cumulative solar radiation and level of ozone pollution. This exercise
continues with the analysis of that model using the centered indepen-
dent variables.

(a) The more complex model used in Exercise 3.9 included the in-
dependent variables cumulative solar radiation, ozone level, and
the product of cumulative solar radiation and ozone level (plus
an intercept).

(i)

(i)

(iii)

Construct the analysis of variance for this model showing
sums of squares, degrees of freedom, and mean squares.
What is the estimate of o2?

Compute the standard errors for each regression coefficient.
Use a joint confidence coefficient of 90% and construct the
Bonferroni confidence intervals for the four regression co-
efficients. Use the confidence intervals to draw conclusions
about which regression coefficients are clearly different from
Zero.

Construct a test of the null hypothesis that the regression
coefficient for the product term is zero (use a = .05). Does
your conclusion from this test agree with your conclusion
based on the Bonferroni confidence intervals? Explain why
they need not agree.

(b) The simpler model in Exercise 3.9 did not use the product term.
Construct the analysis of variance for the model using only the
two independent variables cumulative solar radiation and ozone
level.

(i)

(if)

(iii)

Use the residual sums of squares from the two analyses to
test the null hypothesis that the regression coefficient on the
product term is zero (use a = .05). Does your conclusion
agree with that obtained in Part (a)?

Compute the standard errors of the regression coefficients
for this reduced model. Explain why they differ from those
computed in Part (a).

Compute the estimated mean seed weight for the mean level
of cumulative solar radiation and .025 ppm ozone. Compute
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the estimated mean seed weight for the mean level of radi-
ation and .07 ppm ozone. Use these two results to compute
the estimated mean loss in seed weight if ozone changes
from .025 to .07 ppm. Define a matrix of coefficients K’
such that these three linear functions of 3 can be written as
K'p. Use this matrix form to compute their variances and
covariances.

(iv) Compute and plot the 90% joint confidence region for 5y
and [y ignoring [y. (This joint confidence region will be an
ellipse in the two dimensions 8; and f3.)

4.10. This is a continuation of Exercise 3.10 using the number of hospital
days for smokers from Exercise 1.21. The dependent variable is Y =
In(number of hospital days for smokers). The independent variables

are X; = (number of cigarettes)? and X, = In(number of hospi-
tal days for nonsmokers). Note that X; is the square of number of
cigarettes.

(a) Plot Y against number of cigarettes and against the square of
number of cigarettes. Do the plots provide any indication of why
the square of number of cigarettes was chosen as the independent
variable?

(b) Complete the analysis of variance for the regression of Y on X3
and Xs. Does the information on number of hospital days for
nonsmokers help explain the variation in number of hospital days
for smokers? Make an appropriate test of significance to support
your statement. Is Y, after adjustment for number of hospital
days for nonsmokers, related to X17 Make a test of significance
to support your statement. Are you willing to conclude from
these data that number of cigarettes smoked has a direct effect
on the average number of hospital days?

(c) It is logical in this problem to expect the number of hospital days
for smokers to approach that of nonsmokers as the number of
cigarettes smoked goes to zero. This implies that the intercept in
this model might be expected to be zero. One might also expect
B2 to be equal to one. (Explain why.) Set up the general linear
hypothesis for testing the composite null hypothesis that Gy = 0
and (B2 = 1.0. Complete the test of significance and state your
conclusions.

(d) Construct the reduced model implied by the composite null hy-
pothesis under (c). Compute the regression for this reduced
model, obtain the residual sum of squares, and use the differ-
ence in residual sums of squares for the full and reduced models
to test the composite null hypothesis. Do you obtain the same
result as in (¢)?
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(e) Based on the preceding tests of significance, decide which model
you feel is appropriate. State the regression equation for your
adopted model. Include standard errors on the regression coef-
ficients.

4.11. You are given the following matrices computed for a regression anal-

ysis.
9 136 269 260 45
' _ 136 2114 4176 3583 I~ 648
XX = 269 4176 8257 7104 XY = 1,283
260 3583 7104 12276 1,821
9.610932 .0085878 —.2791475 —.0445217
(X'X)! = .0085878 5099641 —.2588636 .0007765

—.2791475 —.2588636 1395 .0007396
—.0445217 .0007765 .0007396 .0003698

—1.163461
135270
.019950 |’
121954

(X'X)"'X'Y Y'Y = 285.

(a) Use the preceding results to complete the analysis of variance
table.

(b) Give the computed regression equation and the standard errors
of the regression coefficients.

(c) Compare each estimated regression coefficient to its standard
error and use the t-test to test the simple hypothesis that each
regression coefficient is equal to zero. State your conclusions (use
a = .05).

(d) Define the K" and m for the composite hypothesis that 8y = 0,
B1 = 3, and By = 0. Give the rank of K’ and the degrees of
freedom associated with this test.

(e) Give the reduced model for the composite hypothesis in Part

(d).

4.12. You are given the following sequential and partial sums of squares
from a regression analysis.

R(Bs|B) = 56.9669 R(Bs|00 B1 Ba) — 40.2204
R(B1]Bo B3) = 1.0027 R(B1|6o B2 B3) = 0359
R(B2|Bo 1 B3) = 0029 R(B:2[Bo 51 B3) = .0029.
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Each sequential and partial sum of squares can be used for the nu-
merator of an F-test. Clearly state the null hypothesis being tested
in each case.

4.13. A regression analysis using an intercept and one independent variable

gave

Y, = 1.841246 + .10934X;;.

The variance—covariance matrix for 8 was

(a)

sz(ﬁ) _ 1240363 —.002627
| —.002627 .0000909 |-

Compute the 95% confidence interval estimate of Bl. The esti-
mate of o2 used to compute 32(31) was s2 = 1.6360, the residual
mean square from the model using only Xy and X;. The data
had n = 34 observations.

Compute Y for X, = 4. Compute the variance of Y if it is being
used to estimate the mean of ¥ when X; = 4. Compute the
variance of YV if it is being used to predict a future observation
at X1 =4,

4.14. You are given the following matrix of simple (product moment) cor-
relations among a dependent variable Y (first variable) and three
independent variables.

(a)

1.0 —.538 —.543 974
—.538 1.0 983 —.653
—.543 983 1.0 —.656

974 —.653 —.656 1.0

From inspection of the correlation matrix, which independent
variable would account for the greatest variability in Y? What
proportion of the corrected sum of squares in Y would be ac-
counted for by this variable? If Y were regressed on all three
independent variables (plus an intercept), would the coefficient
of determination for the multiple regression be smaller or larger
than this proportion?

Inspection of the three pairwise correlations among the X vari-
ables suggests that at least one of the independent variables will
not be useful for the regression of Y on the Xs. Explain exactly
the basis for this statement and why it has this implication.

4.15. Let X be an n x p’ matrix with rank p’. Suppose the first column of
X is 1, a column of 1s. Then, show that
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(a) P1=1.

(b) (J/n), P—J/n, and (I — P) are idempotent and pairwise or-
thogonal, where P = X (X'X)™' X’ and J/n is given in equa-
tion 4.22.

4.16. Let X be a full rank n X p’ matrix given in equation 3.2. For J given
in equation 4.22,

(a) show that

0 211 w12 ZT1p

0 w21 w22 - Ty
I-J/n)X = |. . . S

0 Tn1 Tp2 - Tpp

where z;; = X;; — X j and X ; =n~' 3" | X;;; and
(b) hence, show that X'(I — J/n)X has zero in each entry of the
first row and first column.
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CASE STUDY: FIVE
INDEPENDENT VARIABLES

The last two chapters completed the presentation of
the basic regression results for linear models with any
number of variables.

This chapter demonstrates the application of least squares
regression to a problem involving five independent vari-
ables. The full model is fit and then the model is sim-
plified to a two-variable model that conveys most of the
information on Y.

The basic steps in ordinary regression analysis have now been covered.
This chapter illustrates the application of these methods. Computations
and interpretations of the regression results are emphasized.

5.1 Spartina Biomass Production in the Cape Fear
Estuary

The data considered are part of a larger study conducted by Dr. Rick
Linthurst (1979) at North Carolina State University as his Ph.D. thesis
research. The purpose of his research was to identify the important soil
characteristics influencing aerial biomass production of the marsh grass
Spartina alterniflora in the Cape Fear Estuary of North Carolina.
One phase of Linthurst’s research consisted of sampling three types of  Design
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Spartina vegetation (revegetated “dead” areas, “short” Spartina areas, and
“tall” Spartina areas) in each of three locations (Oak Island, Smith Island,
and Snows Marsh). Samples of the soil substrate from 5 random sites within
each location—vegetation type (giving 45 total samples) were analyzed for
14 soil physicochemical characteristics each month for several months. In
addition, above-ground biomass at each sample site was measured each
month. The data used in this case study involve only the September sam-
pling and these five substrate measurements:

X, = salinity %% (SALINITY)

X, = acidity as measured in water (pH)

X3 = potassium ppm (K)

X4 = sodium ppm (Na)

X5 = zinc ppm (Zn).

The dependent variable Y is aerial biomass gm~2. The data from the
September sampling for these six variables are given in Table 5.1. The ob-
jective of this phase of the Linthurst research was to identify the substrate
variables showing the stronger relationships to biomass. These variables
would then be used in controlled studies to investigate causal relationships.
The purpose of this case study is to use multiple linear regression to relate
total variability in Spartina biomass production to total variability in the
five substrate variables. For this analysis, total variation among vegetation
types, locations, and samples within vegetation types and locations is be-
ing used. It is left as an exercise for the student to study separately the
relationships shown by the variation among vegetation types and locations
(using the location—vegetation type means) and the relationships shown by
the variation among samples within location—vegetation type combinations.

5.2 Regression Analysis for the Full Model

The initial model assumes that BIOMASS, Y, can be adequately charac-
terized by linear relationships with the five independent variables plus an
intercept. Thus, the linear model

Y = XB+e (5.1)

is completely specified by defining Y, X, and 3 and stating the appropriate
assumptions about distribution of the random errors €. Y is the vector of
BIOMASS measurements

Y = (676 516 --- 1,560)".

Objective

Model
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TABLE 5.1. Aerial biomass (BIO) and five physicochemical properties of the sub-
strate (salinity (SAL), pH, K, Na, and Zn) in the Cape Fear Estuary of North
Carolina. (Data used with permission of Dr. R. A. Linthurst.)

Obs.  Loc. Type BIO SAL pH K Na Zn

1 (0] DVEG 676 33 5.00 1,441.67 35,185.5 16.4524

2 (0] DVEG 516 35 4.75 1,299.19 28,170.4 13.9852

3 (0] DVEG 1,052 32 4.20 1,154.27 26,455.0 15.3276

4 OI DVEG 868 30 4.40 1,045.15 25,0729 17.3128

5 (0] DVEG 1,008 33 5.55 521.62 31,664.2 22.3312

6 Ol SHRT 436 33 5.05 1,273.02 25,491.7 12.2778

7 (0] SHRT 544 36 4.25 1,346.35 20,877.3 17.8225

8 (0]} SHRT 680 30 4.45 1,253.88 25,621.3 14.3516

9 Ol SHRT 640 38 4.75 1,242.65 27,587.3 13.6826
10 Ol SHRT 492 30 4.60 1,281.95 26,511.7 11.7566
11 Ol TALL 984 30 4.10 553.69 7,886.5 9.8820
12 Ol TALL 1,400 37 3.45 494.74  14,596.0 16.6752
13 (0] TALL 1,276 33  3.45 525.97 9,826.8 12.3730
14 (0] TALL 1,736 36 4.10 571.14 11,9784 9.4058
15 (0] TALL 1,004 30 3.50 408.64 10,368.6  14.9302
16 SI DVEG 396 30 3.25 646.65 17,307.4 31.2865
17 SI DVEG 352 27  3.35 514.03 12,822.0 30.1652
18 ST DVEG 328 29  3.20 350.73 8,582.6  28.5901
19 ST DVEG 392 34 3.35 496.29 12,369.5 19.8795
20 ST DVEG 236 36 3.30 580.92 14,731.9 18.5056
21 ST SHRT 392 30 3.25 535.82 15,060.6 22.1344
22 SI SHRT 268 28  3.25 490.34 11,056.3 28.6101
23 SI SHRT 252 31 3.20 552.39 8,118.9 23.1908
24 SI SHRT 236 31 3.20 661.32 13,009.5 24.6917
25 SI SHRT 340 35 3.35 672.15 15,003.7 22.6758
26 SI TALL 2,436 29 7.10 528.65 10,225.0 0.3729
27 SI TALL 2,216 35 7.35 563.13 8,024.2 0.2703
28 SI TALL 2,096 35 745 497.96  10,393.0 0.3205
29 SI TALL 1,660 30 745 458.38 8,711.6 0.2648
30 SI TALL 2,272 30 740 498.25  10,239.6 0.2105
31 SM DVEG 824 26 4.85 936.26  20,436.0 18.9875
32 SM DVEG 1,196 29  4.60 894.79 12,519.9 20.9687
33 SM DVEG 1,960 25  5.20 941.36  18,979.0  23.9841
34 SM DVEG 2,080 26 4.75 1,038.79 22986.1 19.9727
35 SM DVEG 1,764 26 5.20 898.05 11,704.5 21.3864
36 SM SHRT 412 25  4.55 989.87 17,721.0 23.7063
37 SM SHRT 416 26 3.95 951.28 16,485.2 30.5589
38 SM SHRT 504 26 3.70 939.83 17,101.3 26.8415
39 SM SHRT 492 27  3.75 925.42 17,849.0 27.7292
40 SM SHRT 636 27  4.15 954.11 16,949.6  21.5699
41 SM TALL 1,756 24 5.60 720.72  11,344.6 19.6531
42 SM TALL 1,232 27  5.35 782.09 14,752.4  20.3295
43 SM TALL 1,400 26 5.50 773.30 13,649.8 19.5880
44 SM TALL 1,620 28 5.50 829.26 14,533.0 20.1328
45 SM TALL 1,560 28  5.40 856.96 16,892.2  19.2420
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X (45 x 6) consists of the column vector 1, the 45 x 1 column vector of
ones, and the five column vectors of data for the substrate variables X =
SALINITY, X5 = pH, X3 = K, X4 = Na, and X5 = Zn:

X = [1 X; X, X3 X; Xs]
1 33 500 1,441.67 35,184.5 16.4524
1 35 475 1,299.19 28,1704 13.9852

1 28 540 856.96 16,8922 19.2420

The vector of parameters is

B=(Bo B B2 Bs Bs B5). (5.3)

The random errors € are assumed to be normally distributed, € ~ N (07 I 02) .
The assumption that the variance-covariance matrix for € is Io? contains
the two assumptions of independence of the errors and common variance.

5.2.1 The Correlation Matriz

A useful starting point in any multiple regression analysis is to compute the
matrix of correlations among all variables including the dependent variable.
This provides a “first look” at the simple linear relationships among the
variables. The correlation matrix is obtained by

p = SWIT-J/n)W]S, (5.4)

where n = 45, I is an identity matrix (45 x 45), J is a (45 x 45) matrix of
ones, W is the (45 x 6) matrix of BIOMASS (Y') and the five independent
variables, and S is a diagonal matrix of the reciprocals of the square roots
of the corrected sums of squares of each variable. The corrected sums of
squares are given by the diagonal elements of W' (I — J/n)W. For the
Linthurst data,

Y SAL pH K Na Zn
1 —-.103 274 —.205 —.272 —.624

—.103 1 —-.051 —-.021 162 —.421
~ 774 —.051 1 019 —-.038 —.722
p —-.205 —-.021 .019 1 .792 .074

—.272 162 —.038 792 1 17

—.624 —.421 -.722 .074 117 1

The first row of p contains the simple correlations of the dependent variable
with each of the independent variables. The two variables pH and Zn have
reasonably high correlations with BIOMASS. They would “account for”
60% (r? = .774%) and 39%, respectively, of the variation in BIOMASS if
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TABLE 5.2. Results of the regression of BIOMASS on the five independent vari-
ables SALINITY, pH, K, Na, and Zn (Linthurst September data).

Variable B; s(B;) t Partial SS
SAL —-30.285 24.031 —1.26 251,921
pH 305.525  87.879 3.48 1,917,306

K —.2851 3484 —.82 106,211
Na —.0087 0159  —.54 47,011
Zn —20.676  15.055 —1.37 299, 209

Analysis of variance for BIOMASS

Source d.f.  Sum of Squares Mean Square

Total 44 19,170,963
Regression 5 12,984,700 2,596,940 F =16.37
Residual 39 6,186,263 158,622

used separately as the only independent variable in the regressions. Na
and K are about equally correlated with BIOMASS but at a much lower
level than pH and Zn. There appears to be almost no correlation between
SALINITY and BIOMASS.

There are two high correlations among the independent variables, K and
Na with r = .79 and pH and Zn at r = —.72. The impact of these correla-
tions on the regression results is noted as the analysis proceeds. With the
exception of a moderate correlation between SALINITY and Zn, all other
correlations are quite small.

5.2.2  Multiple Regression Results: Full Model

The results of the multiple regression analysis using all five independent
variables are summarized in Table 5.2. There is a strong relationship be-
tween BIOMASS and the independent variables. The coefficient of deter-
mination R? is .677. (See Table 1.5, page 15, for the definition of coefficient
of determination.) Thus, 68% of the sums of squares in BIOMASS can be
associated with the variation in these five independent variables. The test
of the composite hypothesis that all five regression coefficients are zero is
highly significant; F' = 16.37 compared to F{ o1 5 39) = 3.53.

The computations for this analysis were done using a matrix algebra
computer program [SAS/IML (SAS Institute Inc., 1989d)] operating on
the X and Y matrices only. The steps in the language of SAS/IML and
an explanation of each step is given in Table 5.3. The simplicity of matrix
arithmetic can be appreciated only if one attempts to do the analysis with,
say, a hand calculator.

Summary
of Results

Computations
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TABLE 5.3. The matriz algebra steps for the regression analysis as written for
SAS/IML," an interactive matriz programming language. It is assumed that'Y
and X have been properly defined in the matriz program and that X s of full

rank.

SAS/IML Program Step®

Matriz Being Computed

INVX=INV (X *X);

X indicates transpose of X
B=INVX*X'*Y};
CF=SUM(Y)##2/NROW(X);

The “##2” squares SUM(Y)
SST=Y *Y-CF;

Corrected sum of squares

for BIOMASS
SSR=B'*X'*Y-CF;

Notice that P need not be computed
SSE=SST-SSR;

S2=SSE/(NROW (X)-NCOL(X));
The estimate of 02 with degrees
of freedom = n — r(X)
SEB=SQRT(VECDIAG(INVX)*S2);

“VECDIAG” creates a vector

from diagonal elements
T=B/SEB;

“/” indicates elementwise division

of B by SEB
PART=B#+#2/VECDIAG(INVX);
YHAT=X*B;

E=Y-YHAT;

(X' x) 1!

@)

Y'(J/m)Y = (SY)2/n

Y'(I-J/n)Y

Y'(P —J/n)Y = SS(Regr)

Y'(I — P)Y = SS(Res)

52

Standard errors of B

thrH():/Bj:O

Partial sums of squares
17, estimated means for Y’
e, estimated residuals

“Program steps for SAS/IML (1985a), an interactive matrix language program devel-

oped by SAS Institute, Inc., Cary, North Carolina.
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Obtaining (X'X)~! is the most difficult and requires the use of a com-
puter for all but the simplest problems. Most of the other computations
are relatively easy. Notice that the large 45 x 45 P matrix is not computed
and generally is not needed in its entirety. The Y vector is more easily
computed as Y =X ,6, rather than as Y = PY. The only need for P is
for Var(Y) = Po? and Var(e) = (I — P)o?. Even then, the variance of
an individual }/}1 or e; of interest can be computed using only the ith row
of X, rather than the entire X matrix.

The residual mean square, s> = 158,622 with 39 degrees of freedom, is
an unbiased estimate of o2 if this five-variable model is the correct model.
Of course, this is almost certainly not the correct model because (1) im-
portant variables may have been excluded, or (2) the mathematical form
of the model may not be correct. (Including unimportant variables will not
generally bias the estimate of ¢2.) Therefore, s? must be regarded as the
tentative “best” estimate of o2 and is used for tests of significance and for
computing the standard errors of the estimates.

The regression of BIOMASS on these five independent variables is highly
significant. Yet, only one partial regression coefficient (o for pH is signifi-
cantly different from zero, with ¢ = 3.48. Recall that the simple correlation
between BIOMASS and pH showed that pH alone would account for 60%,
or 11.5 million, of the total corrected sum of squares for BIOMASS. When
pH is used in a model with the other four variables, however, its partial
sum of squares, 1,917,306, is only 10% of the total sum of squares and less
than 15% of the regression sum of squares for all five variables. On the
other hand, the partial sum of squares for SALINITY is larger than the
simple correlation between BIOMASS and SALINITY would suggest.

These apparent inconsistencies are typical of regression results when the
independent variables are not orthogonal. They are not inconsistencies if
the meaning of the word “partial” in partial regression coefficients and
partial sums of squares is remembered. “Partial” indicates that the regres-
sion coefficient or the sum of squares is the contribution of that particular
independent variable after taking into account the effects of all other inde-
pendent variables. Only when an independent variable is orthogonal to all
other independent variables are its simple and partial regression coefficients
and its simple and partial sums of squares equal.

5.3  Simplifying the Model

The t-tests of the partial regression coefficients Hy : 3; = 0 would seem
to suggest that four of the five independent variables are unimportant and
could be dropped from the model. The dependence of the partial regres-
sion coeflicients and sums of squares on the other variables in the model,
however, means that one must be cautious in removing more than one vari-

Residual
Mean Square

Inconsistencies
in the Results

Removing
Variables
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able at a time from the regression model. Removing one variable from the
model will cause the regression coefficients and the partial sums of squares
for the remaining variables to change (unless they are orthogonal to the
variable dropped). These results do indicate that not all five independent
variables are needed in the model. It would appear that any one of the four,
SALINITY, pH, Na, or K, could be dropped without causing a significant
decline in predictability of BIOMASS. Tt is not clear at this stage of the
analysis, however, that more than one can be dropped.

There are several approaches for deciding which variables to include in
the final model. These are studied in Chapter 7. For this example, one
variable at a time is eliminated— the one whose elimination will cause
the smallest increase in the residual sum of squares. The process will stop
when the partial sums of squares for all variables remaining in the model
are significant (o = .05). As discussed in Chapter 7, data-driven variable
selection and multiple testing to arrive at the final model alter the true
significance levels; probability levels and confidence intervals should be used
with caution.

The variable Na has the smallest partial sum of squares in the five-
variable model. This means that Na is the least important of the five vari-
ables in accounting for the variability in BIOMASS after the contributions
of the other four variables have been taken into account. As a result, Na is
the logical variable to eliminate first. And, since the partial sum of squares
for Na, R(B4 | 1 B2 B3 Bs Bo) = 47,011 is not significant, there is no rea-
son X, = Na should not be eliminated.

Dropping Na means that X must be redefined to be the 45 x 5 matrix
consisting of 1, X, = SALINITY, X, = pH, X3 = K, and X5 = Zn;
the column vector of Na observations X4 is removed from X . Similarly, 8
must be redefined by removing 4. The regression analysis using these four
variables (Table 5.4) shows the decrease in the regression sum of squares,
now with four degrees of freedom, and the increase in the residual sum
of squares to be exactly equal to the partial sum of squares for Na in the
previous stage. This demonstrates the meaning of “partial sum of squares.”
In the absence of independent information on o2, the residual mean square
from this reduced model is now used (tentatively) as the estimate of o2,
s? = 155,832. (Notice that the increase in the residual sum of squares does
not necessarily imply an increase in the residual mean square.)

The partial sums of squares at the four-variable stage (Table 5.4) show
SALINITY and Zn to be equally unimportant to the model; the partial
sum of squares for Zn is slightly smaller and both are nonsignificant. The
next step in the search for the final model is to eliminate one of these two
variables. Again, it is not safe to assume that both variables can be dropped
since they are not orthogonal.

Since Zn has the slightly smaller partial sum of squares, Zn will be elim-
inated and pH, SALINITY, and K retained as the three-variable model.
One could have used the much higher simple correlation between Zn and

A 4-Variable
Model

A 3-Variable
Model
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TABLE 5.4. Results of the regression of BIOMASS on the four independent vari-
ables SALINITY, pH, K, and Zn (Linthurst data).

Variable Bj s(5;) t Partial SS

Sal  —35.94 2148 —1.67 436,496
pH 2939 845 3.48 1,885,805
K ~0.439 0.202 -2.17 732,606
Zn 2345 14.04 —1.67 434,796

Analysis of variance

Source d.f. Sum of Squares Mean Square
Total 44 19,170,963

Regression 4 12,937,689 3,234,422

Residual 40 6,233,274 155, 832

TABLE 5.5. Results of the regression of BIOMASS on the three independent
variables SALINITY, pH, and K (Linthurst data).

Variable B s(5;) t Partial SS

SAL —-12.06 16.37 —.74 88,239
pH 410.21  48.83 8.40 11,478,835
K —.490 204 —2.40 935,178

Analysis of variance

Source d.f.  Sum of Squares Mean Square
Total 44 19,170,963
Regression 3 12,502,893 4,167,631
Residual 41 6,668, 070 162, 636
BIOMASS, r = —.62 versus r = —.10, to argue that SALINITY is the

variable to eliminate at this stage. This is a somewhat arbitrary choice
with the information at hand, and illustrates one of the problems of this
sequential method of searching for the appropriate model. There is no as-
surance that choosing to eliminate Zn first will lead to the best model by
whatever criterion is used to measure “goodness” of the model.

Again, X and 3 are redefined, so that Zn is eliminated, and the compu-
tations repeated. This analysis gives the results in Table 5.5. The partial
sum of squares for pH increases dramatically when Zn is dropped from the
model, from 1.9 million to 11.5 million. This is due to the strong corre-
lation between pH and Zn (r = —.72). When two independent variables
are highly correlated, either positively or negatively, much of the predic-
tive information contained in either can be usurped by the other. Thus, a
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TABLE 5.6. Results of the regression of BIOMASS on the two independent vari-
ables pH, and K (Linthurst data,).

Variable Bj s(5;) t Partial SS
pH  412.04 4850 850 11,611,782
K —0.487 0.203 —2.40 924, 266

Analysis of variance
Source d.f.  Sum of Squares Mean Square

Total 44 19,170,963
Regression 2 12,414,654 6,207,327
Residual 42 6,756,309 160, 865

very important variable may appear as insignificant if the model contains a
correlated variable and, conversely, an otherwise unimportant variable may
take on false significance.

The contribution of SALINITY in the three-variable model is even smaller
than it was before Zn was dropped and is far from being significant. The
next step is to drop SALINITY from the model. In this particular example,
one would not have been misled by eliminating both SALINITY and Zn
at the previous step. This is not true in general.

The two-variable model containing pH and K gives the results in Ta-
ble 5.6. Since the partial sums of squares for both pH and K are significant,
the simplification of the model will stop with this two-variable model. The
degree to which the linear model consisting of the two variables pH and K
accounts for the variability in BIOMASS is R? = .65, only slightly smaller
than the R? = .68 obtained with the original five-variable model.

5.4 Results of the Final Model

This particular method of searching for an appropriate model led to the
two-variable model consisting of pH and K. The regression equation is

Y; = —507.0+412.0X;5 — 0.4871X;3 (5.5)
or, expressed in terms of the centered variables,
Vi = 1000.8 +412.0(X;2 — 4.60) — .4871(X;3 — 797.62),

where X9 = pH and X3 = K. This equation accounts for 65% of the varia-
tion in the observed values of aerial BIOMASS. That is, the predicted values
computed from Y = X3 account for 65% of the variation of BIOMASS
or, conversely, the sum of squares of the residuals €’e is 35% of the original

A 2-Variable
Model

The Equation
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corrected sum of squares of BIOMASS. The square root of R? is the simple
correlation between BIOMASS and Y':

V.65 = .80.

The estimate of ¢ from this final model is s? = 160,865 with (n —p’) =
42 degrees of freedom. The variance—covariance matrix for the regression
coefficients is

rY,Y) =

s2(8) = (X'X)7's
4865711 —.0663498 —.0001993
= —.0663498 .0146211 —.0000012 | (160, 865)
—.0001993 —.0000012 .00000026
78,272  —10,673 —32.0656
= -10,673  2,352.0 —0.18950
—32.0656 —0.18950 0.04129

The square roots of the diagonal elements give the standard errors of the
estimated regression coefficients in the order in which they are listed in 3.
In this model,

B=(6o B B3).

Thus, the standard errors of the estimated regression coefficients are

Bo) = +/78,272 =280
s(B2) = /2,352.0 =485
Bs) = /04129 = .2032.

The regression coefficients for pH and K are significantly different from
zero as shown by the t-test (Table 5.6). The critical value of Student’s ¢ is
t(.05/2,42) = 2.018. (The intercept Bo = —507.0 is not significantly different
from zero, t = —1.81, and if one had reason to believe that By should be
zero the intercept could be dropped from the model.)

The univariate 95% confidence interval estimates of the regression coef-
ficients (Section 4.6.1),

(5.6)

~

B; =+ t(.05/2742)5(5j)

are
—-1,072 < By < 58

314 < B, <510
—898 < f33 < —.077.

The value of Student’s ¢ for these intervals is ¢( g5/2,42) = 2.018. The confi-
dence coefficient of .95 applies to each interval statement.

s%(B)

Univariate
Confidence
Intervals
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The Bonferroni confidence intervals (Section 4.6.2), using a joint
confidence coefficient of .95, are

—1,206 < [y < 192
291 < By < 533
—.995 < B3 < .021.

The joint confidence of 1 — «v is obtained by using the value of Student’s ¢
for o* = O(/Zp, . t(_05/(2><3)742) = 2.50.

The Bonferroni intervals are necessarily wider than the univariate con-
fidence intervals to allow for the fact that the confidence coefficient of .95
applies to the statement that all three intervals contain their true regres-
sion coefficients. In this example, the Bonferroni interval for (3 overlaps
zero whereas the univariate 95% confidence interval did not.

The 95% joint confidence region for the three regression coefficients is
determined from the quadratic inequality shown in equation 4.60 (Sec-
tion 4.6.3). This three-dimensional 95% confidence ellipsoid is shown in
Figure 5.1 for the Linthurst data. The outer box in Figure 5.1 is the Scheffé
95% confidence region. The inner box in the figure is the Bonferroni confi-
dence region.

The ellipsoid in Figure 5.1 has been constructed using 19 cross-sectional
planes in each of the three dimensions. The cross-sectional slices were cho-
sen equally spaced and such that the most extreme in each direction coin-
cided with a side of the Bonferroni box. These extreme slices and areas of
the ellipsoid that extend beyond have been darkened to clearly show the
portions of the joint confidence ellipsoid that extend beyond the Bonferroni
box. Although the ellipsoid extends beyond the Bonferroni box in several
areas, it is clear that the ellipsoid takes less volume of the parameter space
to ensure 95% confidence in this example.

The sides of the Scheffé box (Figure 5.1) are tangent to the confidence
ellipsoid and, consequently, the Scheffé box completely contains the ellip-
soid. It can be shown in this particular example that the volume of the
Bonferroni box is approximately 63% of the volume of the Scheffé box.

To more clearly show the shape of the joint confidence ellipsoid, the
slices created by two sides of the Bonferroni box and the midplane in one
dimension have been projected onto the floor in Figure 5.2. The slices show
that the ellipsoid is very flattened in one dimension and clearly illustrate
the strong interdependence among the regression coefficients as to what
constitutes “acceptable” values of the parameters. Also inscribed on the
floor is the two-dimensional 95% confidence ellipse calculated from the
2 x 2 variance—covariance matrix of G and (3 ignoring [y. This shows
that the two-dimensional confidence ellipse is not a projection of the three-
dimensional confidence ellipsoid.

The general shape of the confidence region can be seen from the three-
dimensional figure. However, it is very difficult to read the parameter values

Bonferroni
Confidence
Intervals

Joint
Confidence
Region
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919

—-32

—982 St

1T

—1933
0.56

3 659
—1.53 165 52

FIGURE 5.1. Three-dimensional 95% joint confidence region (ellipsoid) for (o,
B2, and Bs. The intersection of the Bonferroni confidence intervals (inner box)
and the intersection of the Scheffé confidence intervals (outer box).

919

—-32

—-982 ]

—1933 1
e ——
63

~1.53 1685 B 659

FIGURE 5.2. Three-dimensional 95% joint confidence region for Bo, (B2, and (s
showing projections of three 2-dimensional slices, corresponding to three values
of Bo, onto the floor. The three values of Bo chosen to define the slices were the
midpoint and the limits of the 95% Bonferroni confidence interval for Bo.
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corresponding to any particular point in the figure. Furthermore, the joint
confidence ellipsoid for more than three parameters cannot be pictured.

A more useful presentation of the joint confidence region is obtained
by plotting two-dimensional “slices” through the ellipsoid for pairs of pa-
rameters of particular interest. This is done by evaluating the joint con-
fidence equation at specific values of the other parameters. Three such
two-dimensional ellipses for 85 and (33 are those shown in Figure 5.2. These
slices help picture the three-dimensional ellipsoid but they are not to be
interpreted individually as joint confidence regions for B2 and [s.

Alternatively, one can determine the two-dimensional 95% joint confi-
dence region for 33 and 33 ignoring By. This region is also shown in Fig-
ure 5.2 as the larger ellipse on the floor of the figure. In this case, 32 and
(3 are only slightly negatively correlated so that the two-dimensional joint
confidence region is only slightly elliptical. The very elliptical slices from
the original joint confidence region show that the choice of 35 and 3 for a
given value of (y are more restricted than the two-dimensional joint con-
fidence region would lead one to believe. This illustrates the information
obscured by confidence intervals or regions that do not take into account
the joint distribution of the full set of parameter estimates.

Two-dimensional slices through the joint confidence region in another
direction, for given values of 35, and the two-dimensional confidence region
for By and 3 ignoring B are shown in Figure 5.3. The strong negative
correlation between 3y and (33 is evident in the two-dimensional joint con-
fidence region and the slices from the three-dimensional region. Again, it
is clear that reasonable combinations of 3y and (3 are dependent on the
assumed value of (5, a result that is not evident from the two-dimensional
joint confidence region ignoring fa.

Y and e for this example are not given. They are easily computed as
shown in Table 5.2. Likewise, s2(Y) = Ps? and s%(e) = (I — P)s? are
not given; each is a 45 x 45 matrix. Computation of 572 and its variance
is illustrated using the first data point. Each Y; is computed using the
corresponding row vector from X, which is designated ). For the first
observation,

y = (1 5.00 1,441.67).
Thus,
}/}1 = :]3/1,5
—506.9774
= (1 5.00 1,441.67) 412.0392 = 850.99.
—.4871

The variance of f’l, used as an estimate of the mean aerial BIOMASS at
this specific level of pH (X32) and K (X3), is s2(Y1) = vi152, where vy is

Y; and s2(Y:)
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FIGURE 5.3. Two-dimensional slices of the joint confidence region for three val-
ues of B2 and the joint confidence region for Bo and B3 ignoring B2 (shown in
dashed line). The arrows indicate the limits of the intersection of the Bonferroni
confidence intervals for Bo and (3.

the first diagonal element from P. The ith diagonal element of P can be
obtained individually as v; = x}(X’'X)~la;. Or, the variance for any one
Y; is obtained as the variance of a linear function of 3. Thus,

s’ (V1) = zy[s*(B)]z
78,272 —10,673 —32.0656 1
= (1 500 1,441.67)| —10,673 2,352.0 —.18950 5.00
—32.0656 —.18950  .04129 1,441.67
= 20,978.78.

Its standard error is

s(Y1) = +/20,978.78 = 144.8.

If ?1 is used as a prediction of a future observation Yy at the specified level
x, then the variance of the prediction error is the variance of Y7 increased
by s? = 160, 865. This accounts for the variability of the random variable
being predicted. This gives

~

(Vprea,) = s°(Yp— Y1)
20,979 + 160, 865 = 181, 843
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or the standard error of prediction is

s(Vprea,) = /181,843 = 426.4.

The residual for the first observation is e; and s%(e;)
e1 = Y;—Yi=676-850.99 = —174.99.

The estimated variance of e; is
s%(e1) = (1—wyp)s™

Since 52(171) = v1152 has already been computed, s2(e;) is easily obtained
as
s%(e1) = s*—s*(Y))

= 160,865 — 20,979 = 139, 886.

The standard error is

s(e1) = /139,886 = 374.0.

These variances are used to compute confidence interval estimates for
each of the corresponding parameters. Student’s ¢ has 42 degrees of free-
dom, the degrees of freedom in the estimate of o2. For illustration, the
95% confidence interval estimate of the mean BIOMASS production when

pH=5.00 and K = 1,441.67 ppm, £(Y7), is Confidence
R N Intervals on
Yi £ teos/242)5(Y1) E(Y;)

or

850.99 + (2.018)(144.8),
which becomes
558.7 < &(Y1) < 1,143.3.

These results indicate that, with 95% confidence, the true mean BIOMASS
for pH=5.00 and K = 1,441.67 is between 559 and 1,143 gm~2.
If we wish to predict the BIOMASS production Yy at €y = 1 (pH=5.00  Prediction
and K= 1,441.67), then a 95% prediction interval for Yy is given by Intervals for Yy

Vi o+ t(.025,42)5(Y0*3/}1)7

which gives
—-9.60 < Yy < 1,711.5.
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Since BIOMASS cannot be negative, this is usually reported as
0<Yy<1,711.5.

This example stops at this point. A complete analysis includes plots of
regression results to verify that the regression equation gives a reasonable
characterization of the observed data and that the residuals are behaving
as they should. Such an extended analysis, however, would get into topics
that are discussed in Chapters 7 and 9.

5.5 General Comments

The original objective of the Linthurst research was to identify important
soil variables that were influencing the amount of BIOMASS production
in the marshes. The wording of this objective implies that the desire is to
establish causal links.

Observational data cannot be used to establish causal relationships. Any
analysis of observational data must build on the observed relationships,
or the correlational structure, in the sample data. There are many reasons
why correlations might exist in any set of data, only one of which is a causal
pathway involving the variables. Some of the correlations observed will be
fortuitous, accidents of the sampling of random variables. This is particu-
larly likely if small numbers of observations are taken or if the sample points
are not random. Some of the correlations will result from accidents of nature
or from the variables being causally related to other unmeasured variables
which, in turn, are causally related to the dependent variable. Even if the
linkage between an independent and dependent variable is causal in origin,
the direction of the causal pathway cannot be established from the observa-
tional data alone. The only way causality can be established is in controlled
experiments where the causal variable is changed and the impact on the
response variable observed.

Thus, it is incorrect in this case study to conclude that pH and K are im-
portant causal variables in BIOMASS production. The least squares anal-
ysis has established only that variation in BIOMASS is associated with
variation in pH and K. The reason for the association is not established.
Furthermore, there is no assurance that this analysis has identified all of
the variables which show significant association with BIOMASS. The rea-
sonably high correlation between pH and Zn, for example, has caused the
regression analysis to eliminate Zn from the model; the partial sum of
squares for Zn is nonsignificant after adjustment for pH. This sequential
method of building the model may have eliminated an important causal
variable.

Another common purpose of least squares is to develop prediction equa-
tions for the behavior of the dependent variable. Observational data are

Cannot Infer
Causality
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frequently the source of information for this purpose. Even here, care must
be used in interpreting the results. The results from this case study predict
that, on the average, BIOMASS production changes by 412 gm~2 for each
unit change in pH and —.5 gm~2 for each ppm change in K. This predic-
tion is appropriate for the population being sampled by this set of data, the
marshes in the Cape Fear Estuary of North Carolina. It is not appropriate
if the population has been changed by some event nor is it appropriate for
points outside the population represented by the sample.

The regression coefficient for pH gives the expected change in BIOMASS
per unit change in pH. This statement treats the other variables in the
system two different ways, depending on whether they are included in the
prediction equation. The predicted change in BIOMASS per unit change in
pH ignores all variables not included in the final prediction equation. This
means that any change in pH, for which a prediction is being made, will
be accompanied by simultaneous changes in these ignored variables. The
nature of these changes will be controlled by the correlational structure of
the data. For example, Zn would be expected to decrease on the average as
pH is increased due to the negative correlation between the two variables.
Thus, this predicted change in BIOMASS is really associated with the
simultaneous increase in pH and decrease in Zn . It is incorrect to think
the prediction is for a situation where, somehow, Zn is not allowed to
change.

On the other hand, the predicted change of 412 gm=2 BIOMASS associ-
ated with a unit change in pH assumes that the other variables included in
the prediction equation, in this case K, are being held constant. Again, this
is unrealistic when the variables in the regression equation are correlated.

The appropriate view of the regression equation obtained from obser-
vational data is as a description of the response surface of the dependent
variable, where the independent variables in the equation are serving as sur-
rogates for the many variables that have been omitted from the equation.
The partial regression coefficients are the slopes of the response surface in
the directions represented by the corresponding independent variables. Any
attempt to ascribe these slopes, or changes, to the particular independent
variables in the model implicitly assumes a causal relationship of the inde-
pendent variable to the dependent variable and that all other variables in
the system, for which the variables in the equation serve as surrogates, are
unimportant in the process.

The response surface equation obtained from observational data can
serve as a useful prediction equation as long as care is taken to ensure
that the points for which predictions are to be made are valid points in the
sampled population. This requires that the values of the independent vari-
ables for the prediction points must be in the sample space. It is easy, for
example, when one variable at a time is being changed, to create prediction
points that are outside the sample space. Predictions for these points can
be very much in error.

Interpreting
the Regression
Equation
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5.6 Exercises

The

data in the accompanying table are simulated data on peak rate of

flow @ (cfs) of water from six watersheds following storm episodes. The
storm episodes have been chosen from a larger data set to give a range of
storm intensities. The independent variables are

X1 = Area of watershed (mi?)

X, = Area impervious to water (mi?)

X3 = Average slope of watershed (percent)

X4 = Longest stream flow in watershed (thousands of feet)

X5 = Surface absorbency index, 0 = complete absorbency, 100 =
no absorbency

X¢ = Estimated soil storage capacity (inches of water)
X7 = Infiltration rate of water into soil (inches/hour)
Xs = Rainfall (inches)

Xo = Time period during which rainfall exceeded i inch/hr.

Computations with this set of data will require a computer.

5.1

5.2.

5.3.

5.4.

. Compute the correlation matrix for all variables including the depen-

dent variable Q. By inspection of the correlations determine which
variables are most likely to contribute significantly to variation in Q).
If you could use only one independent variable in your model, which
would it be?

Compute the correlation matrix using LQ = log(Q) and the loga-
rithms of all independent variables. How does this change the corre-
lations and your conclusions about which variables are most likely to
contribute significantly to variation in LQ?

Use LQ = In(Q) as the dependent variable and the logarithm of
all nine independent variables plus an intercept as the “full” model.
Compute the least squares regression equation and test the compos-
ite null hypothesis that all partial regression coefficients for the in-
dependent variables are zero. Compare the estimated partial regres-
sion coefficients to their standard errors. Which partial regression
coefficients are significantly different from zero? Which independent
variable would you eliminate first to simplify the model?

Eliminate the least important variable from the model in Exercise 5.3
and recompute the regression. Are all partial sums of squares for the
remaining variables significant (o = .05)? If not, continue to eliminate
the least important independent variable at each stage and recompute
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Peak flow data from siz watersheds.

X1 Xo X3 Xy X5 X¢ X7 Xz Xy Q

.03 .006 3.0 1 70 15 .25 1.7 20 46
.03 .006 3.0 1 70 15 .25 225 3.7 28
.03 .006 3.0 1 70 1.5 .25 4.00 4.2 o4
.03 .021 3.0 1 8 1.0 .25 160 1.5 70
.03 .021 3.0 1 8 1.0 .25 310 4.0 47
.03 .021 3.0 1 8 1.0 .25 3.60 24 112
13 .005 6.5 2 65 20 .35 125 .7 398
13 .006 6.5 2 65 20 .35 230 35 98
13 .005 6.5 2 65 20 .35 425 40 191
13 .008 6.5 2 68 5 .15 145 20 171
13 .008 6.5 2 68 5 .15 260 4.0 150
13 .008 6.5 2 68 5 .15 390 3.0 331
1.00 .023 150 10 60 1.0 .20 .75 1.0 772
1.00 .023 150 10 60 1.0 .20 1.75 1.5 1,268
1.00 .023 150 10 60 1.0 .20 3.25 4.0 849
1.00 .023 150 10 65 20 .20 180 1.0 2,294
1.00 .023 150 10 65 20 .20 3.10 20 1,984
1.00 .023 150 10 65 2.0 .20 4.75 6.0 900
3.00 039 70 15 67 5 .50 1.75 2.0 2,181
3.00 039 70 15 67 .5 .50 3.25 4.0 2484
3.00 039 70 15 67 .5 .50 5.00 6.5 2,450
5.00 .109 60 15 62 1.5 .60 150 1.5 1,794
5.00 .109 60 15 62 15 .60 275 3.0 2,067
5.00 .109 6.0 15 62 15 .60 420 5.0 2,586
700 .055 65 19 56 20 .50 1.80 2.0 2410
700 .055 65 19 56 2.0 .50 3.25 4.0 1,808
700 .055 65 19 56 2.0 .50 525 6.0 3,024
700 .063 65 19 56 1.0 .50 1.25 20 710
700 .063 65 19 56 1.0 .50 290 34 3,181
700 .063 65 19 56 1.0 .50 4.76 5.0 4,279
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the regression. Stop when all independent variables in the model are
significant (use @ = .05). What do the results indicate about the
need for the intercept? Does it make sense to have §y = 0 in this
exercise? Summarize the results of your final model in an analysis of
variance table. Discuss in words your conclusions about what factors
are important in peak flow rates.

Determine the 95% univariate confidence interval estimates of the
regression coefficients for your final model. Determine the 95% Bon-
ferroni confidence interval estimates. Determine also the 95% Scheffé
confidence interval estimates.

Construct the 95% joint confidence region for the partial regression
coefficients for Xg and Xg ignoring the parameters for the other vari-
ables in your final model in Exercise 5.4.



6
GEOMETRY OF LEAST SQUARES

Matrix notation has been used to present least squares
regression and the application of least squares has been
demonstrated. This chapter presents the geometry of
least squares. The data vectors are represented by vec-
tors plotted in n-space and the basic concepts of least
squares are illustrated using relationships among the
vectors. The intent of this chapter is to give insight
into the basic principles of least squares. This chapter
is not essential for an understanding of the remaining
topics.

All concepts of ordinary least squares can be visualized by applying a few
principles of geometry. Many find the geometric interpretation more helpful
than the cumbersome algebraic equations in understanding the concepts of
least squares. Partial regression coefficients, sums of squares, degrees of
freedom, and most of the properties and problems of ordinary least squares
have direct visual analogues in the geometry of vectors.

This chapter is presented solely to enhance your understanding. Although
the first exposure to the geometric interpretation may seem somewhat con-
fusing, the geometry usually enhances understanding of the least squares
concepts. You are encouraged to study this chapter in the spirit in which
it is presented. It is not an essential chapter for the use and understanding
of regression. Review of Section 2.4 before reading this chapter may prove
helpful.
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6.1 Linear Model and Solution

In the geometric interpretation of least squares, X is viewed as a collection
of p' column vectors. It is assumed for this discussion that the column
vectors of X are linearly independent (any linear dependencies that might
have existed in X have been eliminated). Each column vector of X can be
plotted as a vector in n-dimensional space (see Section 2.4). That is, the n
elements in each column vector provide the coordinates for identifying the
endpoint of the vector plotted in n-space. The p’ vectors jointly define a p'-
dimensional subspace of the n-dimensional space in which they are plotted
(p' < n). This p’-dimensional subspace consists of the set of points that
can be reached by linear functions of the p’ vectors of X . This subspace is
called the X-space. (When the vectors of X are not linearly independent,
the dimensionality of the X-space is determined by the rank of X.)
The Y vector is also a vector in n-dimensional space. Its expectation

EY) = XB=pl+X1+ - +5X, (6.1)

is a linear function of the column vectors of X with the elements of 3 being
the coefficients. Thus, the linear model

Y =XB+e (6.2)

says that the mean vector £(Y) = X3 falls exactly in the X-space. The
specific point at which £(Y") falls is determined by the true, and unknown,
partial regression coefficients in 3.

The vector of observations on the dependent variable Y will fall some-
where in n-dimensional space around its mean £(Y'), with its exact position
being determined by the random elements in €. The model (equation 6.2)
states that Y is the sum of the two vectors £(Y") and e. Although £(Y) is in
the X-space, € and, consequently, Y are random vectors in n-dimensional
space. Neither € nor Y will fall in the X-space (unless an extremely unlikely
sample has been drawn).

To illustrate these relationships, we must limit ourselves to three-dimen-
sional space. The concepts illustrated in two and three dimensions extend
to n-dimensional geometry. Assume that X consists of two vectors X
and X, each of order 3, so that they can be plotted in three-dimensional
space (Figure 6.1). The plane in Figure 6.1 represents the two-dimensional
subspace defined by X; and X5. The vector £(Y) lies in this plane and
represents the true mean vector of Y, as the linear function of X; and X,
expressed in the model. The dashed lines in Figure 6.1 show the addition
of the vectors $1 X1 and (53X s to give the vector £(Y'). This, of course,
assumes that the model is correct. In practice, £(Y) is not known because
B is not known. One of the purposes of the regression analysis is to find
“best” estimates of 81 and fs. |

X-Space

E(Y') Vector

Y Vector

Example 6.1
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S(Y)= BiX, + B:X,

BiXy

FIGURE 6.1. The geometric interpretation of £(Y ) as a linear function of X1
and X o. The plane represents the space defined by the two independent vectors.
The vector E(Y ) is shown as the sum of /1 X1 and f2X 5.

The position of £(Y) in Figure 6.1 represents a case where both ;
and (2 are positive; the vectors to be added to give £(Y), 51 X1 and
(2 X 2, have the same direction as the original vectors X; and Xs. When
E(Y) falls outside the angle formed by X; and X, one or both of the
regression coefficients must be negative. Multiplication of a vector by a
negative coefficient reverses the direction of the vector. For example, —.1X
defines a vector that is 75 the length of X'y and has opposite direction to
X ;. Figure 6.2 part1t1ons the two-dimensional X-space according to the
signs 31 and [ take when £(Y') falls in the particular region. Figure 6.3
uses the same X-space and £(Y) as Figure 6.1 but includes Y, at some
distance from £(Y) and not in the X-space (because of e) and Y. Since
Y is a linear function of the columns of X, Y = X ﬁ, it must fall in
the X-space. The estimated regression co/efﬁments ﬂl and 52 are shown as
the multiples of X; and X5 that give Y when summed. The estimated
regression coefficients serve the same role in determining Y that the true
regression coefficients 51 and S do in determining £(Y"). Of course, Y will
almost certamly never coincide with 5( ). Flgure 6.3 is drawn so that both
ﬂl and Bg are positive. The signs of ﬂl and ﬁg are determined by the region
of the X-space in which Y falls, as illustrated in Figure 6.2 for 4, and (3.

The short vector connecting Y toY in Figure 6.3 is the vector of resid-
uals e. The least sg\uares prlnc1ple requires that B, and hence Y be chosen
such that >°(V; — Y;)? = €’e is minimized. But €’e is the 5qudred length of
e. Geometrically, it is the squared distance from the end of the Y vector
to the end of the Y vector. Thus, Y must be that unique vector in the
X-space that is closest to Y in n-space. The closest point on the plane to
Y (in Figure 6.3) is the point that would be reached with a perpendicular

The Partial
Regression
Coefficients

The e Vector
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<0
B:>0

< B >0
B <0

FIGURE 6.2. Partitions of the two-dimensional X-space according to the signs
B1 and B2 take when E(Y ) falls in the indicated region.

FIGURE 6.3. The geometric relationship of Y and Yto the X-space. Y is not
in the plane defined by X1 and Xo2. The perpendicular projection from Y to
the plane defines the vector Y, which is in the plane. The estimated regression
coefficients are the proportions of X1 and X2 that, when added, give Y. The
short vector connecting Y to'Y is the vector of residuals e.
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projection from Y to the plane. That is, e must be perpendicular to the
X-space. Y is shown as the shadow on the plane cast by Y with a light
directly “overhead.”

Visualize the floor of a room being the plane defined by the X-space. Let
one corner of the room at the floor be the origin of the three-dimensional
coordinate system, the line running along one baseboard be the X; vector,
and the line running along the adjoining baseboard be the X vector.
Thus, the floor of the room is the X-space. Let the Y vector run from
the origin to some point in the ceiling. It is obvious that the point on
the floor closest to this point in the ceiling is the point directly beneath.
That is, the “projection” of Y onto the X-space must be a perpendicular
projection onto the floor. A line from the end of Y to Y must form a
right angle with the floor. This “vertical” line from Y to Y is the vector
of observed residuals e =Y — Y (plotted at Y instead of at the origin).
The two vectors Y and e clearly add to Y. N

Common sense told us that e must be perpendicular to the plane for Y
to be the closest possible vector to Y. The least squares procedure requires
this to be the case. Note that,

X'e = X'(Y-Y)=X'(Y -XB)
= X'Y-X'X3
= o0, (6.3)

since we know that from the normal equations
X'XB=X'Y.

The statement X'e = 0 shows that e must be orthogonal (or perpendic-
ular) to each of the column vectors in X. (The sum of products of the
elements of e with those of each vector in X is zero.) Hence, e must be
perpendicular to any linear function of these vectors in order for the result
to be a least squares result.

Y may also be written as Y = PY. The matrix P = X(X'X)~1 X’
is the matrix that projects Y onto the p’-dimensional subspace defined by
the columns of X. In other words, premultiplying Y by P gives Y such
that the vector e is perpendicular to the X-space and as short as possible.
P is called a projection matrix; hence its label P.

Consider the model
Y = X3 +¢,

where X = (1 1) and 3 is a scalar. In this case, the X-space is one-
dimensional and given by the straight line Zo = Z;, where Z; and Z5
represent the coordinates of a two-dimensional plane. The £(Y") vector is
given by (8 ), which is a point on the straight line Zy = Z;. Suppose we

P Matrix

Example 6.2
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Y=(2.4)

>33

(-1,1)
7 X=(1,1)

Zy

FIGURE 6.4. Geometric interpretation of the regression in Example 6.2.

observe Y tobe Y = (2 4)’. This is a vector in the two-dimensional plane
(Figure 6.4). Since Y= X, where 8 = (X'X)"'X'Y = (2)716 = 3, we
have Y = (3 3)". Note that Y is a point (vector) in the X-space that
is the closest to the observed vector Y. The line that connects Y and Y
is perpendicular to (orthogonal to) the straight line given by Zo — Z; =
0 which is the X-space. The residual vector is given by e = Y — Y =
(=1 1)". Tt is easy to verify that X'e=(1 1)(—-1 1) =0. ]

The results of this section are summarized as follows.
1. Y is a vector in n-space.
2. Each column vector of X is a vector in n-space.

3. The p’ linearly independent vectors of X define a p’-dimensional sub-
space.

4. The linear model specifies that £(Y) = X3 is in the X-space; the
vector Y is (almost certainly) not in the X-space.

5. The least squares solution Y = X ,@ = PY is that point in the
X-space that is closest to Y.

6. The residuals vector e is orthogonal to the X-space.
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7. The right triangle formed by Y, 1/}, and e expresses Y as the sum of
the other two vectors, Y =Y + e.

6.2 Sums of Squares and Degrees of Freedom

The Pythagorean theorem in two-dimensional space states that the length
of the hypotenuse of a right triangle is the square root of the sum of the
squares of the sides of the triangle. In Section 2.4 it was explained that this
extends into n dimensions—the length of any vector is the square root of
the sum of the squares of all its elements. Thus, Y'Y, the uncorrected sum
of squares of the dependent variable, is the squared length of the vector Y.

The vectors Y, Y, and e form a right triangle with Y being the hy-
potenuse (Figure 6.3). One side of the triangle Y lies in the X-space; the
other side e is perpendicular to the X-space. The Pythagorean theorem
can be used to express the length of Y in terms of the lengths of Y and e:

length(Y) = \/[length(f/)}2 + [length(e)]?.
Squaring both sides yields
Y'Y =YV +ee. (6.4)

Thus, the partitioning of the total sum of squares of Y'Y into SS(Model) =

Y'Y and SS(Res) = €’e corresponds to expressing the squared length of
the vector Y in terms of the squared lengths of the sides of the right
triangle.

In Example 6.2, note that

Y'Y = (2 4)(i>:zo
Y'Y = (3 3)(2 =18
e = (-1 1)<_1>:2
and hence equation 6.4 is satisfied. |

The “room” analogy given in Figure 6.3 can be used to show another
property of least squares regression. The regression of Y on one indepen-
dent variable, say X1, cannot give a smaller residual sum of squares €’e
than the regression on X; and X jointly. The X-space defined by X1

Length of Y

Partitioning
the Total Sum
of Squares

Example 6.3

SS(Res)
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alone is the set of points along the baseboard representing X;. Therefore,
the projection of Y onto the space defined only by X; (as if X1 were the
only variable in the regression) must be to a point along this baseboard.
The subspace defined by X alone is part of the subspace defined jointly
by X; and Xsy. Therefore, no point along this baseboard can be closer
to the end of the Y vector than the closest point on the entire floor (the
X-space defined by X1 and X5 jointly). The two vectors of residuals, that
from the regression of Y on X; alone and that from the regression of Y on
X1 and X jointly, would be the same length only if the projection onto
the floor happened to fall exactly at the baseboard. In this case, f2 must
be zero. This illustrates a general result that the residual sum of squares
from the regression of Y on a subset of independent variables cannot be
smaller than the residual sum of squares from the regression on the full set
of independent variables.

The “degrees of freedom” associated with each sum of squares is the
number of dimensions in which that vector is “free to move.” Y is free to
fall anywhere in n-dimensional space and, hence, has n degrees of freedom.
Y, on the other hand, must fall in the X-space and, hence, has degrees of
freedom equal to the dimension of the X-space—two in Figure 6.3 or p’
in general. The residual vector e can fall anywhere in the subspace of the
n-dimensional space that is orthogonal to the X-space. This subspace has
dimensionality (n — p’) and, hence, e has (n — p’) degrees of freedom. In
Figure 6.3, e has (3 — 2) = 1 degree of freedom. In general, the degrees of
freedom associated with ¥ and e will be (X)) and [n—r(X)], respectively.

Figures 6.1 through 6.3 have been described as if all vectors were of
order 3 so that they could be fully represented in the three-dimensional
figures. This is being more restrictive than needed. Three vectors of any
order define a three-dimensional subspace and, if one forgoes plotting the
individual vectors in n-space, the relationships among the three vectors can
be illustrated in three dimensions as in Figures 6.1 through 6.3.

This example uses the data from Exercise 1.4, which relate heart rate at
rest to kilograms of body weight. The model to be fit includes an intercept
so that the two vectors defining the X-space are 1, the vector of ones, and
X1, the vector of body weights. The Y and X; vectors in the original data
are an order of magnitude longer than 1, so that both Y and X ; have been
scaled by % for purposes of this illustration. The rescaled data are

X' = (450 430 3.35 4.45 4.05 3.75)
Y’ = (310 225 200 275 3.20 2.65).

The X-space is defined by 1 and X;. The lengths of the vectors are
length(1) = V1’1 =+6=2.45
length(X,) = X7X; =+100.23 = 10.01

Degrees of
Freedom

Example 6.4
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length (X;) = 10.01
length (1) = 245
length (Y) = 6.60
length (Y) = 6.54
length (e)

Y e
1 78§ OL9= 241+ 50x, «
1

[ !

52 57 5

FIGURE 6.5. Geometric interpretation of the regression of heart rate at rest (Y')
on kilograms body weight (X1). The plane in the figure is the X -space defined by
1 and X 1. The data are from Exercise 1.4 with both X1 and Y scaled by %.
Angles between vectors are shown in degrees. Y protrudes away from the plane at
an angle of 7.5°. Perpendicular projection of Y onto the plane defines Y which
forms an angle of 5.2° with 1 and .5° with X 1.

and the angle between the two vectors 6(1, X ) is

1'X,
01, X = arccos | ————
(1, %) (\/1’1«/X’1X1>

24.4
= arccos | ———— | =5.7°.
<\/6\/100.23)

The vectors 1 and X are plotted in Figure 6.5 using their relative lengths
and the angle between them. The X-space defined by 1 and X is the plane
represented by the parallelogram.

The Y vector is drawn as protruding above the surfa(ie of the plane at
an angle of (Y, Y) = 7.5°, the angle between Y and Y. [All angles are
computed as illustrated for (1, X1).] The length of Y is

length(Y) = VY'Y = v43.4975 = 6.60.

This is the square root of the uncorrected sum of squares of Y which, since
Y can fall anywhere in six-dimensional space, has six degrees of freedom.
The projection of Y onto the plane defines Y as the sum

Y = (24)1 + (.59)X .
The angles between Y and the two X-vectors are

6(Y, 1) =5.2°
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and N
oY, X,)=.5°

The length of Y is the square root of SS(Model):

length(Y) = VY'Y = v/42.7552 = 6.539.

Since Y must fall in the two-dimensional X-space, SS(Model) has two de-
grees of freedom. The residuals vector e connecting Y to Y is perpendicular
to the plane and its length is the square root of SS(Res):

length(e) = Ve'e = v.7423 = .862.

Since e must be orthogonal to the X-space, SS(Res) has four degrees of
freedom. Thus, the squared lengths of Y, f’, and e and the dimensions in
which each is free to move reflect the analysis of variance of the regression
results. R

In this example, Y falls very close to X1; the angle between the two
vectors is only .5°. This suggests that very nearly the same predictability
of Y would be obtained from the regression of Y on X; alone—that is, if
the model forced the regression line to pass through the origin. If the no-
intercept model is adopted, the X-space becomes the one-dimensional space
defined by Xi. The projection of Y onto this X-space gives Y = .65X.
That is, Y falls on X ;. The length of Y is

length(Y') = V/42.7518 = 6.538,

which is trivially shorter than that obtained with the intercept model,
v/42.7518 versus v/42.7552. The residuals vector is, correspondingly, only
slightly longer:

length(e) = v.7457 = .864.

6.3 Reparameterization

Consider the model
Y=XB+e (6.5)

Let C be a p’ x p’ nonsingular matrix. Then, we can rewrite the model
shown in equation 6.5 also as

Y = XCC !'B+e
= Wa+e, (6.6)
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where W = XC and o = C7'3. Here the model in equation 6.6 is
a reparameterization of the model in equation 6.5. Note that since C' is
nonsingular, the W-space, the p’-dimensional subspace spanned by the p’
columns of W is the same as the X-space. Recall that Y is the point
in the X-space that is closest to Y and is given by ¥ = PY = PxY,
where the X subscript identifies the projection matrix based on X, Px =
X (X'X)71X'. Since the W-space is the same as the X-space, we have
Y = PyY and Py = W(W'W)~'W' = Px. See Exercise 6.9.

In Chapter 8, we consider orthogonal polynomial models that are repa-
rameterizations of polynomial models. We show that they are also repa-
rameterizations of analysis of variance models. Also, the models where the
input variables are centered are reparameterizations of corresponding un-
centered models.

Consider the model

Y = XB+e,
where
10
X=1]0 1
00

Then, the X-space consists of all points of the form (z; 22 0 )/. In terms
of the “room” analogy considered in Figure 6.3, the X-space consists of the
floor. Suppose we observe the Y vector to be Y = (2 4 3)". Then,

B = (X'X)'X'Y=(2 4)

and

Y = XB=(2 4 0).

Figure 6.6 shows the vector Y = (2 4 3)" and its projection Yy =
(2 4 0)"in a plane that forms the “floor” of the plot. We can think
of this “floor” as the plane spanned by the vectors X; = (1 0 0)
and X5 = (0 1 0)". Around the origin, on the floor of the plot, we
have placed for reference circles of radii 1 and 4. The vectors X; and
X o, each of unit length, are shown with the end of each vector touching
the unit circle. The vectors are also extended to 2X; = (2 0 0)" and
4X,=(0 4 0). Their sum 2X; +4X, = (2 4 0) is shown as Y,
the projection of Y onto the two-dimensional X-space.

The plane represented by the “floor” of the plot is also spanned by the
two vectors W1 = (1 1 0) and W3 = (1 2 0)". Thus, the floor of
the plot is the set of all linear combinations of W, and W (as well as
all linear combinations of X; and X5). Note that the linear combination

Example 6.5
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FIGURE 6.6. Projection of Y onto the two-dimensional space spanned by X1
and Xo. Yis equal to the sum of 2X1 and 4X 5. Any two other vectors in the
floor of the plot, say W1 and W2, will be linear combinations of X1 and X

and will define the same space. Y is also obtained as a linear function of W1 and
Wa Y =0W1 4+ 2W,.
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length (X.) = 10.01
length (1) = 245
length (Y) = 6.60
length (Y) = 6.54
length (e) =

Y e

1 7.5° 90" ..
Y=2.861+.59%,

FIGURE 6.7. Geometric interpretation of the regression of heart rate at rest
(Y ) on kilograms body weight using the centered variable (X.). The plane in the
figure is defined by 1 and X . and is identical to the plane defined by 1 and X1
in Figure 6.5. All vectors are the same as in Figure 6.5 except X . replaces X 1.

0W1 + 2W 5 also gives 17; the vector W is extended to Y to illustrate
this. Mathematically, all points on the floor of the plot are of the form

(a b 0) =aX,+bXs=(2a —0)W;+ (b—a)W,

showing explicitly how any point (a b 0) in the floor can be expressed
as a linear combination of X; and X5 or of W and W. In this example
a=2and b=4. |

It is common in least squares regression to express the model in terms
of centered independent variables. That is, each independent variable is
coded to have zero mean by subtracting the mean of the variable from
each observation. The only effect, geometrically, of centering the indepen-
dent variable is to shift the position, in the original X-space, of the vector
representing the independent variable so that it is orthogonal to the vector
1. In general, when more than one independent variable is involved, each
centered variable will be orthogonal to 1. The centering will change the
angles between the vectors of the independent variables but the X-space
remains as defined by the original variables. That is, the model with the
centered independent variable is a reparameterization of the original model.
See Exercise 6.11.

The geometric interpretation of the effect of centering the independent
variable is illustrated in Figure 6.7 for the heart rate/body weight data
from Example 6.2. Let X . be the centered vector. X, is obtained by the

Centered
Independent
Variables

Example 6.6
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subtraction
X.=X;—(4.0667)1,

where 4.0667 is the mean of the elements in X ;. Since X is a linear
function of 1 and X, it is by definition in the space defined by 1 and X;.
Thus, the X-space defined by 1 and X . in Figure 6.7 is identical to the
X-space defined by 1 and X; in Figure 6.5. Centering the independent
variable does not alter the definition of the X-space. The centered vector
X is orthogonal to 1, because 1’ X . = 0, and has length 1.002. Y is the
same as in Figure 6.5 and, because the X-space is the same, the projection
of Y onto the X-space must give the same Y. The regression equation,
however, is now expressed in terms of a linear function of 1 and X . rather
than in terms of 1 and X ;. [ |

6.4 Sequential Regressions

Equation 6.4 gave the partitioning of the total uncorrected sum of squares
for Y. Interest is usually in partitioning the total corrected sum of squares.
The partitioning of the corrected sum of squares is obtained by subtracting
the sum of squares attributable to the mean, or the correction factor, from
both Y'Y and SS(Model):

Y'Y —SS(z) = [SS(Model) — SS(i)] + €'e
= SS(Regr) + €’e. (6.7)

The correction for the mean SS(u) is the sum of squares attributable
to a model that contains only the constant term Fy. Geometrically, this
is equivalent to projecting Y onto the one-dimensional space defined by
1. The least squares estimate of 3y is Y, and the residuals vector from
this projection is the vector of deviations of Y; from Y, y; =Y; — Y. The
squared length of this residuals vector is the corrected sum of squares for
Y. Since the space defined by 1 is a one-dimensional space, this residuals
vector lies in (n — 1)-dimensional space and has (n — 1) degrees of freedom.

SS(Regr) and the partial regression coefficients are the results obtained
when this residuals vector is, in turn, projected onto the p-dimensional
subspace (p = p’ — 1) defined by the independent variables where each in-
dependent variable has also been “corrected for” its mean. Thus, obtaining
SS(Regr) can be viewed as a two-stage process. First, Y and the indepen-
dent variables are each projected onto the space defined by 1. Then, the
residuals vector for Y is projected onto the space defined by the residuals
vectors for the independent variables. The squared length of Y for this
second projection is SS(Regr).

Correction for
the Mean
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The sequential sum of squares for an independent variable is an ex-
tension of this process. Now, however, Y and the independent variable of
current interest are first projected onto the space defined by all indepen-
dent variables that precede the current X in the model, not just 1. Then,
the residuals vector for Y (call it e,) is projected onto the space defined
by the residuals vector for the current X (call it e, ). The sequential sum
of squares for the current independent variable is the squared length of Y
for this projection of e, onto e,. Note that both the dependent variable
and the current independent variable have been “adjusted” for all preced-
ing independent variables. At each step in the sequential analysis, the new
X-space is a one-dimensional space and, therefore, the sequential sum of
squares at each stage has one degree of freedom.

Since the residuals vector in least squares is always orthogonal to the
X-space onto which Y is projected, e, and e, are both orthogonal to all
independent variables previously included in the model. Because of this
orthogonality to the previous X-space, the sequential sums of squares and
degrees of freedom are additive. That is, the sum of the sequential sums of
squares and the sum of the degrees of freedom for each step are equal to
what would have been obtained if a single model containing all independent
variables had been used.

6.5 The Collinearity Problem

The partial regression coefficient and partial sum of squares for any inde-
pendent variable are, in general, dependent on which other independent
variables are in the model. In the case study in Chapter 5, it was observed
that the changes in regression coefficients and sums of squares as other
variables were added to or removed from the model could be large. This
dependence of the regression results for each variable on what other vari-
ables are in the model derives from the independent variables not being
mutually orthogonal. Lack of orthogonality of the independent variables is
to be expected in observational studies, those in which the researcher is
restricted to making observations on nature as it exists. In such studies,
the researcher

. cannot impose on a subject, or withhold from the subject,
a procedure or treatment whose effects he desires to discover,
or cannot assign subjects at random to different procedures.
(Cochran, 1983).

On the other hand, controlled experiments are usually designed to avoid
the collinearity problems.

The extreme case of nonorthogonality, where two or more independent
variables are very nearly linearly dependent, creates severe problems in least

Sequential
Sums of
Squares

Definition of
Collinearity
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squares regression. This is referred to as the collinearity problem. The
regression coefficients become extremely unstable; they are very sensitive to
small random errors in Y and may fluctuate wildly as independent variables
are added to or removed from the model. The instability in the regression
results is reflected in very large standard errors for the partial regression
coefficients. Frequently, none of the individual partial regression coefficients
will be significantly different from zero even though their combined effect
is highly significant.

The impact of collinearity is illustrated geometrically in Figure 6.8. Con-
sider the model and a reparameterization of the model given by

Y X1 Xon 3 €1
Y, = X2 X2 (ﬁ1> + | e
Y3 X3 X3 2 €3
Wi Wa o €1

= Wia Way (a1> + | e

Wiz Was 2 €3

Suppose that X; and X5 are orthogonal to each other, whereas W and
W 4 are not orthogonal. W, and W5 represent two vectors that show some
degree of collinearity. The X-space and W-space are the same since one is
a reparameterization of the other. This two-dimensional space is shown as
the “floor” in the three-dimensional figure, panel (a), and as the plane in
panels (b) and (c) of Figure 6.8. The central 95% of the population of all
possible Y'-vectors is represented in the three-dimensional figure, panel (a),
as the shaded sphere.

Recall that Y is the projection of Y onto the “floor” (= X-space = W-
space). The circular area on the “floor” encloses the collection of all projec-
tions Y of the points Y in the sphere. Two possible projections f’l and f’g
(on opposing edges of the circle), representing two independent Y, are used
to illustrate the relative sensitivity of the partial regression coefficients to
variation in Y in the collinear case compared to the orthogonal case. It is
assumed that the linear model £(Y") is known and that the input variables
are fixed and measured without error. Thus, only the effect of variation in
Y, different samples of €, is being illustrated by the difference between Y,
and Y5 in Figure 6.8.

The partial regression coefficients are the multipliers that get attached to
each of the vectors so that the vector addition gives Y. The vector addition
is illustrated in Figure 6.8 by completion of the parallelogram for each Y.
This is most easily seen in panel (b) for the orthogonal vectors X; and
X5 and in panel (¢) for the nonorthogonal vectors W and Wy. The point
to note is that the change in 1 and 72, the partial regression coefficients
for the nonorthogonal system [panel (c)], as one shifts from Y; to Y,
is much greater than the corresponding change in 3; and (32, the partial
regression coefficients for the orthogonal system [panel (b)]. This illustrates

Geometry of
Collinearity



6.5 The Collinearity Problem 199
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FIGURE 6.8. Illustration of the effect of collinearity on the stability of the partial
regression coefficients. The points in the shaded sphere centered on the plane
[panel (a)] represent 95% of a population of three-dimensional vectors Y. E(Y")
is at the center of the sphere and at the center of the circle of projections of all'Y
onto the two-dimensional plane spanned by either the two orthogonal vectors X 1,
X5 or the two nonorthogonal (somewhat collinear) vectors W1 and W . Points
shown on opposite sides of the circle represent Y and 172, projections from two
independent Y. The parallelograms connecting each Y to the two sets of vectors
show the relative magnitudes of the partial regression coefficients for the pair of
orthogonal vectors [panel (b)] and the pair of nonorthogonal vectors [panel (c)].
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the greater sensitivity of the partial regression coefficients in the presence of
collinearity; comparable changes in Y cause larger changes in the partial
regression coefficients when the vectors are not orthogonal. As the two
vectors approach collinearity (the angle between the vectors approaches 0°
or 180°), the sensitivity of the regression coeflicients to random changes in
Y increases dramatically. In the limit, when the angle is 0° or 180°, the
two vectors are linearly dependent and no longer define a two-dimensional
subspace. In such cases, it is not possible to estimate 3; and (35 separately;
only the joint effect of X1 and X5 on Y is estimable.

Figure 6.8 illustrates the relative impact of variation in € on the partial
regression coeflicients in the orthogonal and nonorthogonal cases. In most
cases, and particularly when the data are observational, the X-vectors are
also subject to random variation in the population being sampled. Con-
sequently, even if the independent variables are measured without error,
repeated samples of the population will yield different X-vectors. Mea-
surement error on the independent variables adds another component of
variation to the X-vectors. Geometrically, this means that the X-space de-
fined by the observed Xs, the plane in Figure 6.8, will vary from sample to
sample; the amount of variation in the plane will depend on the amount of
sampling variation and measurement error in the independent variables.

The impact of sampling variation and measurement error in the indepen-
dent variables is magnified with increasing collinearity of the X-vectors.
Imagine balancing a cardboard (the plane) on two pencils (the vectors). If
the pencils are at right angles, the plane is relatively insensitive to small
movements in the tips of the pencils. On the other hand, if the pencils form
a very small angle with each other (the vectors are nearly collinear), the
plane becomes very unstable and its orientation changes drastically as the
pencils are shifted even slightly. In the limit as the angle goes to 0° (the
two vectors are linearly dependent), the pencils merge into one and in one
direction all support for the plane disappears.

In summary, collinearity causes the partial regression coefficients to be
sensitive to small changes in Y; the solution to the normal equations be-
comes unstable. In addition, sampling variation and measurement error in
the independent variables causes the X-space to be poorly defined, which
magnifies the sensitivity of the partial regression coefficients to collinear-
ity. The instability in the least squares solution due to variation in Y is
reflected in larger standard errors on the partial regression coefficients. The
instability due to sampling variation in the independent variables, however,
is ignored in the usual regression analysis because the independent variables
are assumed to be fixed constants.

Variation in
the X-Vectors
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6.6 Summary

The following regression results are obtained from the geometric interpre-
tation of least squares.

1. The data vectors Y and X; are vectors in n-dimensional
space.

2. The linear model states that the true mean of Y, £(Y),
is in the X-space, a p’-dimensional subspace of the n-
dimensional space.

3. Y is the point in the X-space closest to Y'; e is orthogonal
to the X-space.

4. The partial regression coefficients multiplied by their re-
spective X -VectorsAdeﬁne the set of vectors that must be
added to “reach” Y.

5. The vectors Y and e are the two sides of a right triangle
whose hypotenuse is Y. Thus, Y =Y +e.

6. The squared lengths of the sides of the right triangle give
the partitioning of the sums of squares of Y: Y'Y =
~ ]~
YY +é€e.

7. The correlation structure among the Xs influences the re-

gression results. In general, 31 # 1 2. However if X; and
X, are orthogonal, then 31 = (1 o.

8. Regression of Y on one independent variable, say X1, can-
not give smaller €’e than regression on X; and X5 jointly.
More generally, regression on a subset of independent vari-
ables cannot give a better fit (smaller €’e) than regression
on all variables.

9. If X1 and X, are nearly collinear, small variations in Y
cause large shifts in the partial regression coefficients. The
regression results become unstable.

6.7 Exercises

6.1. Use Figure 6.3 as plotted to approximate the values of Blanc/l\ 52.
Where would Y have to have fallen for 3; to be negative? For 35 to
be negative? For both to be negative?

6.2. Construct a figure similar to Figure 6.3 except draw the projection
of Y onto the space defined by X ;. Similarly, draw the projection of
Y onto the space defined by Xs.
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6.3.

6.4.

6.5.

6.6.

6. GEOMETRY OF LEAST SQUARES

(a) Approximate the values of the simple regression coefficients in
each case and compare them to the partial regression coefficients
in Figure 6.3.

(b) Identify the residuals vector in both cases and in Figure 6.3.

(¢) Convince yourself that the shortest residuals vector is the one
in Figure 6.3.

Construct a diagram similar to Figure 6.3 except make X; and X
orthogonal to each other. Convince yourself that, when the indepen-
dent variables are orthogonal, the simple regression coefficients from
the projection of Y onto X; and X5 separately equal the partial re-
gression coefficients from the projection of Y onto the space defined
by X1 and X5 jointly.

Assume we have two vectors of order 10, X1 and X. Jointly these
two vectors define a plane, a 2-dimensional subspace of the original 10-
dimensional space. Let Z; and Z, be an arbitrary coordinate system
for this 2-dimensional subspace. Represent the vectors X; and X
in this plane by the coordinates of the two vectors Z; = (5 2)" and
Zy = (0 74)/. Suppose the projection of Y onto this plane plots
at (—1 3)" in this coordinate system.

(a) Use your figure to approximate the regression coefficients for the
regression of Y on X; and X5.

(b) From your figure compute the sum of squares due to the regres-
sion of Y on X and X5 jointly. How many degrees of freedom
does this sum of squares have?

(¢) Do you have enough information to compute the residual sum of
squares? How many degrees of freedom would the residual sum
of squares have?

(d) Suppose someone told you that the original vector Y had length
3. Would there be any reason to doubt their statement?

Plot the two vectors X; = (5 0) and Xy = (—4 .25)". Sup-
pose two different samples of Y give projections onto this X-space at
Y, =(4 5) and Yy = (4 —.5). Approximate from the graph
the partial regression coefficients for the two cases. Note the shift
in the partial regression coefficients for the two cases. Compare this
shift to what would have been realized if Xo = (0 4)’, orthogonal
to Xl.

Data from Exercise 1.9 relating plant biomass Y to total accumulated
solar radiation X was used to fit a no-intercept model. Y and e were
determined from the regression equation. The matrix W (8 x 4) was
defined as R

W=[XYY e
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and the following matrix of sums of squares and products was com-
puted.

1,039,943.1 1,255,267.1 1,255,267.1 0

Wiy — | 1:255,267.1 1,523,6289 1,515,174.7 8,454.2
1,255,267.1 1,515,174.7 1,515,174.7 0

0 8,454.2 0 8,454.2

(a) Determine the length of each (column) vector in W.
(b) Compute the angles between all pairs of vectors.

(c) Use the lengths of the vectors and the angles between the vectors
to show graphically the regression results. What is the dimen-
sion of the X-space? Why is the angle between X and Y zero?
Estimate the regression coefficient from the figure you construct.

This exercise uses the data given in Exercise 1.19 relating seed weight
of soybeans Y'to cumulative seasonal solar radiation X for two levels
of ozone exposure. For simplicity in plotting, rescale X by dividing
by 2 and Y by dividing by 100 for this exercise.

(a) Use the “Low Ozone” data to compute the linear regression of
Y on X (with an intercept). Compute Y and e, the lengths of
all vectors, and the angle between each pair of vectors. Use the
vector lengths and angles to display graphically the regression
results (similar to Figure 6.5). Use your figure to “estimate” the
regression coefficients. From the relative positions of the vectors,
what is your judgment as to whether the intercept is needed in
the model?

(b) Repeat Part (a) using the “High Ozone” data.

(¢) Compare the graphical representations of the two regressions.
What is your judgment as to whether the regressions are homo-
geneous—that is, are the same basic relationships—within the
limits of random error, illustrated in both figures.

The angle 6 between the intercept vector 1 and an independent vari-
able vector X depends on the coefficient of variation of the indepen-

dent variable. Use the relationship
1'X
cos(l) = ———
1'1vX'X

to show the relationship to the coefficient of variation. What does
this relationship imply about the effect on the angle of scaling the
X by a constant? What does it imply about the effect of adding a
constant to or subtracting a constant from X7
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6.9. Consider the reparameterization
Y=Wa+e
of the model Y = X3 + €, where W = X C and C is nonsingular.

(a) Show that W-space is the same as the X-space.
(b) Show that PW = Px.

(c) Express @& as a function of B.
6.10 Verify the results of Exercise 6.9 for the data in Example 6.5.
6.11 Consider the simple linear regression model
Yi = fo+ 5 Xi + €.
(a) Let X, = X; — X denote the centered input variable. Show that
Yi=ao+aXei+e

is a reparameterization of the preceding model.
(b) Express ap and «; in terms of Gy and (1 and vice versa.

(c) Are there any advantages in using the centered model?
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MODEL DEVELOPMENT:
VARIABLE SELECTION

The discussion of least squares regression thus far has
presumed that the model was known with respect to
which variables were to be included and the form these
variables should take.

This chapter discusses methods of deciding which vari-
ables should be included in the model. It is still as-
sumed that the variables are in the appropriate form.
The effect of variable selection on least squares, the
use of automated methods of selecting variables, and
criteria for choice of subset model are discussed.

The previous chapters dealt with computation and interpretation of least
squares regression. With the exception of the case study in Chapter 5, it has
been assumed that the independent variables to be used in the model, and
the form in which they would be expressed, were known. The properties of
the least squares estimators were based on the assumption that the model
was correct.

Most regression problems, however, require decisions on which variables
to include in the model, the form the variables should take (for example,
X, X2, 1/X, etc.), and the functional form of the model. This chapter
discusses the choice of variables to include in the model. It is assumed
that there is a set of ¢ candidate variables, which presumably includes all
relevant variables, from which a subset of r variables is to be chosen for the
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regression equation. The candidate variables may include different forms of
the same basic variable, such as X and X?, and the selection process may
include constraints on which variables are to be included. For example, X
may be forced into the model if X? is in the selected subset; this a common
constraint in building polynomial models (see Chapter 8).

These distinct problem areas are related to this general topic:

1. the theoretical effects of variable selection on the least squares regres-
sion results;

2. the computational methods for finding the “best” subset of variables
for each subset size; and

3. the choice of subset size (for the final model), or the “stopping rule.”

An excellent review of these topics is provided by Hocking (1976). This
chapter gives some of the key results on the effects of variable selection,
discusses the conceptual operation of automated variable selection pro-
cedures (without getting involved in the computational algorithms), and
presents several of the commonly used criteria for choice of subset size.

7.1 Uses of the Regression Equation

The purpose of the least squares analysis—how the regression equation is
to be used—will influence the manner in which the model is constructed.
Hocking (1976) relates these potential uses of regression equations given by
Mallows (1973b):

1. providing a good description of the behavior of the response variable;
2. prediction of future responses and estimation of mean responses;

3. extrapolation, or prediction of responses outside the range of the data;
4. estimation of parameters;

5. control of a process by varying levels of input; and

6. developing realistic models of the process.

Each objective has different implications on how much emphasis is placed
on eliminating variables from the model, on how important it is that the
retained variables be causally related to the response variable, and on the
amount of effort devoted to making the model realistic. The concern in this
chapter is the selection of variables. Decisions on causality and realism must
depend on information from outside the specific data set—for example, on
details of how the data were obtained (the experimental design), and on
fundamental knowledge of how the particular system operates.
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When the object is simple description of the behavior of the response
variable in a particular data set, there is little reason to be concerned
about elimination of variables from the model, about causal relationships,
or about the realism of the model. The best description of the response
variable, in terms of minimum residual sum of squares, will be provided
by the full model, and it is unimportant whether the variables are causally
related or the model is realistic.

Elimination of variables becomes more important for the other purposes
of least squares regression. Regression equations with fewer variables have
the appeal of simplicity, as well as an economic advantage in terms of ob-
taining the necessary information to use the equations. In addition, there
is a theoretical advantage of eliminating irrelevant variables and, in some
cases, even variables that contain some predictive information about the
response variable; this is discussed in Section 7.2. The motivation to elimi-
nate variables is tempered by the biases and loss of predictability that are
introduced when relevant variables are eliminated. The objective is to reach
a compromise where the final equation satisfies the purpose of the study.

Of the uses of regression, prediction and estimation of mean responses
are the most tolerant toward eliminating variables. At the same time, it is
relatively unimportant whether the variables are causally related or the
model is realistic. It is tacitly assumed that prediction and estimation are
to be within the X-space of the data and that the system continues to
operate as it did when the data were collected. Thus, any variables that
contain predictive information on the dependent variable, and for which
information can be obtained at a reasonable cost, are useful variables. Of
course, more faith could be placed in predictions and estimates based on
established causal relationships, because of the protection such models pro-
vide against inadvertent extrapolations and unrecognized changes in the
correlational structure of the system.

Extrapolation requires more care in choice of variables. There should
be more concern that all relevant variables are retained so that the behavior
of the system is described as fully as possible. Extrapolations (beyond the
X-space of the data) are always dangerous but can become disastrous if the
equation is not a reasonably correct representation of the true model. Any
extrapolation carries with it the assumption that the correlational structure
observed in the sample continues outside the sample space. Validation and
continual updating are essential for equations that are intended to be used
for extrapolations (such as forecasts).

One should also be conservative in eliminating variables when estima-
tion of parameters is the objective. This is to avoid the bias introduced
when a relevant variable is dropped (see Section 7.2). There is an advantage
in terms of reduced variance of the estimates if variables truly unrelated to
the dependent variable are dropped.

Control of a system also implies that good estimates of the parameters
are needed, but it further implies that the independent variables must have
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a causal effect on the response variable. Otherwise, one cannot intervene in
a system and effect a change by altering the value of independent variables.

The objective of basic research is often related to building realistic
models, usually the most preliminary stages of model building. Under-
standing the process is the ultimate goal. Whether explicitly stated or
not, there will be the desire to identify the variables that are important,
through some causal link, in the expression of the dependent variable. For
this purpose, variable selection procedures based on the observed correla-
tional structure in a particular set of data become relatively unimportant.
At Dbest, they can serve as tools for identifying classes of variables that
warrant further study of the causal relationships, usually in controlled ex-
periments. As the objective of the research becomes more oriented toward
understanding the process, there will be increasing emphasis on develop-
ing models whose functional forms realistically reflect the behavior of the
system.

The purpose of introducing these differing objectives is to emphasize that
the approach to the selection of variables will depend on the objectives of
the analysis. Furthermore, how far a researcher can move in the direction of
establishing the importance of variables or causality depends on the source
and nature of the data. Least squares regression results reflect only the
correlational structure of the data being analyzed. Of itself, least squares
analysis cannot establish causal relationships. Causality can be established
only from controlled experiments in which the value of the suspected causal
variable is changed and the impact on the dependent variable measured.
The results from any variable selection procedure, and particularly those
that are automated, need to be studied carefully to make sure the models
suggested are consistent with the state of knowledge of the process being
modeled. No wvariable selection procedure can substitute for the
insight of the researcher.

7.2 Effects of Variable Selection on Least Squares

The effects of variable selection on the least squares results are explicitly
developed only for the case where selection is not based on information from
the current data. This often is not the case, as in the variable selection
techniques discussed in this chapter, but the theoretical results for this
situation provide motivation for variable selection.

Assume that the correct model involves ¢ independent variables but that
a subset of p variables (chosen randomly or on the basis of external informa-
tion) is used in the regression equation. Let X, and B, denote submatrices

of X and B that relate to the p selected variables. ﬁp denotes the least
squares estimate of (3, obtained from the p-variate subset model. Simi-

~

larly, Y, ?predm.? and MS(Resp) denote the estimated mean for the ith
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observation, the prediction for the ith observation, and the mean squared
residual, respectively, obtained from the p-variate subset model. Hocking
(1976) summarizes the following properties.

1. MS(Res,) is a positively biased estimate of o unless the true re-
gression coefficients for all deleted variables are zero. (See Exercise
7.13.)

2. B\p is a biased estimate of 3, and 171 is a biased estimate of £(Y;)
unless the true regression coefficient for each deleted variable is zero
or, in the case of /Bp, each deleted variable is orthogonal to the p
retained variables. (See Exercise 7.13.)

3. ﬁp, ?pi, and }A/predpi are generally less variable than the correspond-

ing statistics obtained from the ¢-variate model. (See Exercise 7.13.)

4. There are conditions under which the mean squared errors (variance
plus squared bias) of By, Ypi, and Ypredpi are smaller than the vari-

ances of the estimates obtained from the t-variate model.

Thus, a bias penalty is paid whenever relevant variables, those with
B; # 0, are omitted from the model (Statements 1 and 2). On the other
hand, there is an advantage in terms of decreased variance for both estima-
tion and prediction if variables are deleted from the model (Statement 3).
Furthermore, there may be cases in which there is a gain in terms of mean
squared error of estimation and prediction from omitting variables whose
true regression coefficients are not zero (Statement 4).

These results provide motivation for selecting subsets of variables, but
they do not apply directly to the usual case where variable selection is
based on analyses of the current data. The general nature of these effects
may be expected to persist, but selection of variables based on their perfor-
mance in the sample data introduces another class of biases that confound
these results. The process of searching through a large number of potential
subset models for the one that best fits the data capitalizes on the random
variation in the sample to “overfit” the data. That is to say, the chosen
subset model can be expected to show a higher degree of agreement with
the sample data than the true equation would show with the population
data. Another problem of sample-based selection is that relative impor-
tance of variables as manifested in the sample will not necessarily reflect
relative importance in the population. The best subset in the sample, by
whatever criterion, need not be the best subset in the population. Impor-
tant variables in the population may appear unimportant in the sample
and consequently be omitted from the model, and vice versa.

Simulation studies of the effects of subset selection (Berk, 1978) gave
sample mean squared errors that were biased downward as much as 25%
below the population residual variance when the sample size was less than
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50. The bias decreased, as sample size increased, to 2 or 3% when there were
several hundred observations in the sample. The percentage bias tended to
be largest when the number of variables in the subset was relatively small,
% to % of the number of variables in the full model. This bias in the residual
mean squared error translated into bias in the F-ratios for “testing” the
inclusion of a variable. The bias in F' tended to be largest (positive) for
inclusion of the first or second predictor, dropped to near zero before half
the variables were added, and became a negative bias as more variables
were added.

7.3 All Possible Regressions

When the independent variables in the data set are orthogonal, as they
might be in a designed experiment, the least squares results for each vari-
able remain the same regardless of which other variables are in the model.
In these cases, the results from a single least squares analysis can be used to
choose those independent variables to keep in the model. Usually, however,
the independent variables will not be orthogonal. Nonorthogonality is to
be expected with observational data and will frequently occur in designed
experiments due to unforeseen mishaps. Lack of orthogonality among the
independent variables causes the least squares results for each independent
variable to be dependent on which other variables are in the model. The full
subscript notation for the partial regression coefficients and the R-notation
for sums of squares explicitly identify the variables in the model for this
reason.

Conceptually, the only way of ensuring that the best model for each
subset size has been found is to compute all possible subset regressions.
This is feasible when the total number of variables is relatively small, but
rapidly becomes a major computing problem even for moderate numbers of
independent variables. For example, if there are 10 independent variables
from which to choose, there are 2! — 1 = 1,023 possible models to be
evaluated. Much effort has been devoted to finding computing algorithms
that capitalize on the computations already done for previous subsets in
order to reduce the total amount of computing for all possible subsets [e.g.,
Furnival (1971)]. Furnival (1971) also pointed out that much less computing
is required if one is satisfied with obtaining only the residual sum of squares
from each subset model.

More recently, attention has focused on identifying the best subsets
within each subset size without computing all possible subsets. These meth-
ods utilize the basic least squares property that the residual sums of squares
cannot decrease when a variable is dropped from a model. Thus, comparison
of residual sums of squares from different subset models is used to eliminate
the need to compute other subsets. For example, if a two-variable subset
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has already been found that gives a residual sum of squares less than some
three-variable model, then none of the two-variable subsets of the three-
variable model need be computed; they will all give residual sums of squares
larger than that from the three-variable model and, hence, larger than for
the two-variable model already found. The leaps-and-bounds algorithm
of Furnival and Wilson (1974) combines comparisons of residual sums of
squares for different subset models with clever control over the sequence in
which subset regressions are computed. This algorithm guarantees finding
the best m subset regressions within each subset size with considerably less
computing than is required for all possible subsets. The RSQUARE method
in PROC REG (SAS Institute Inc., 1989b) uses the leaps-and-bounds al-
gorithm. These computing advances have made all possible regressions a
viable option in most cases.

The Linthurst data used in the case study in Chapter 5 are used to
illustrate the model selection methods of this chapter. First, the regressions
for all possible models are computed to find the “best” model for this data
set and to serve as references for the stepwise methods to follow. The five
independent variables used in Chapter 5 are also used here as potential
variables for the model. Thus, there are 2> — 1 = 31 possible regression
models: 5 one-variable, 10 two-variable, 10 three-variable, 5 four-variable,
and 1 five-variable model.

The RSQUARE method in PROC REG (SAS Institute, Inc., 1989b) was
used to compute all possible regressions. In Table 7.1,the subset models
are ranked within each subset size (p’) from the best to the worst fitting
model. (Table 7.1 includes the results from six criteria discussed later. For
the present discussion, only the coefficient of determination R? is used.)
The full model p’ = 6 accounts for 100R2 = 67.7% of the variation in the
dependent variable BIOMASS. No subset of the independent variables can
give a larger R2.

Of the univariate subsets, the best, pH, accounted for 59.9% of the vari-
ation in BIOMASS, 8% below the maximum. The second best univariate
subset Zn accounted for only 39% of the variation in Y. The best two-
variable model pH and Na accounted for 65.8%, only 2% below the max-
imum. The second best two-variable subset pH and K is very nearly as
good, with 100R? = 64.8%. Note that the second best single variable is not
contained in either of the two best two-variable subsets.

There are three 3-variable models that are equally effective for all prac-
tical purposes, with 100R? ranging from 65.9% to 66.3%. All three of these
subsets include pH and Na. Thus, it makes little difference which of the
three variables SAL, Zn, or K is added to the best 2-variable subset. The
two best 4-variable subsets are also equally effective; the best in this subset
does not include the best 2-variable or 3-variable subsets.

Example 7.1
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TABLE 7.1. Summary statistics R*, MS(Res), Ridj, and Cp from all possible re-
gressions for Linthurst data using the five independent variables SALINITY, pH,

K, Na, and Zn. All models included an intercept. (Data used with permission.)

P Variables R?  MS(Res) Rgdj ¢, AIC SBC
2 pH .099 178618 090 7.4 546.1 5498
zZn .390 272011 376 32.7 565.1 568.7
Na .074 412835 .053 70.9 583.8 587.5
K .042 427165 .020 74.8 585.4 589.0
SAL .011 441091 —-.012 78.6 586.8 590.4
3 pH, Na .658 155909 642 2.3 541.0 546.4
pH, K .648 160865 631 3.6 542.2 5478
pH, Zn .608 178801 590 8.3 547.1 5525
SAL, pH .603 181030 B85 8.9 547.7 553.1
SAL, Zn .553 204209 531 151 553.1 558.5
Na, Zn 430 260164 403 29.9 564.0 569.4
K, Zn 415 266932 387 31.7 565.2 570.6
SAL, Na .078 421031 034 725 585.7 591.1
K, Na .074 422520 030 72.9 585.8 591.2
SAL, K .053 432069 .008 754 586.8 592.3
4  pH, Na, Zn .663 157833 .638 3.8 542.4 549.7
pH, K, Na .660 158811 .636 4.1 542.7 549.9
SAL, pH, Na .659 159424 634 4.2 5429 550.1
SAL, pH, K .652 162636 .627 5.0 543.8 551.0
pH, K, Zn 652 162677 627 5.1 5438 551.0
SAL, pH, Zn .637 169900 .610 6.9 545.7 553.0
SAL, K, Zn D77 198026 546 14.2  552.6 559.9
SAL, Na, Zn .564 203666 b33 15.6 553.9 561.1
K, Na, Zn 430 266509 388 31.9 566.0 573.2
SAL, K, Na .078 431296 .010 74.5 587.7 594.9
5 SAL, pH, K, Zn 675 155832 642 4.3 5427 5518
SAL, pH, Na, Zn 672 157312 639 4.7 543.2 552.2
pH, K, Na, Zn .664 160955 .631 5.6 544.2 553.2
SAL, pH, K, Na .662 162137 628 5.9 5445 553.6
SAL, K, Na, Zn bTT 202589 535 16.1 554.6 563.6

6 SAL, pH, K, Na, Zn 677 158622 636 6 544.4 b555.2
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A key point to note from the all-possible-regressions analysis is that
more than one model is in contention for nearly every subset size. With
only minor differences in R? for the best two or three subsets in each case,
it is very likely that other considerations, such as behavior of the residuals,
cost of obtaining information, or prior knowledge on the importance of the
variables, could shift the final choice of model away from the “best” subset.

For this example, adding a second independent variable to the model
increased R? by 6%. However, the third, fourth, and fifth variables increased
R? by only .4%, 1.2%, and .2%, respectively. The improvement obtained
from the second variable would appear worthwhile, but the value of adding
the third, fourth, and fifth variables is questionable. Further discussion of
choice of subset size is delayed until the different criteria for the choice of
subset size have been discussed. ]

7.4 Stepwise Regression Methods

Alternative variable selection methods have been developed that identify
good (although not necessarily the best) subset models, with considerably
less computing than is required for all possible regressions. These methods
are referred to as stepwise regression methods. The subset models are
identified sequentially by adding or deleting, depending on the method, the
one variable that has the greatest impact on the residual sum of squares.
These stepwise methods are not guaranteed to find the “best” subset for
each subset size, and the results produced by different methods may not
agree with each other.

Forward stepwise selection of variables chooses the subset models
by adding one variable at a time to the previously chosen subset. Forward
selection starts by choosing as the one-variable subset the independent
variable that accounts for the largest amount of variation in the dependent
variable. This will be the variable having the highest simple correlation
with Y. At each successive step, the variable in the subset of variables
not already in the model that causes the largest decrease in the residual
sum of squares is added to the subset. Without a termination rule, forward
selection continues until all variables are in the model.

Backward elimination of variables chooses the subset models by start-
ing with the full model and then eliminating at each step the one variable
whose deletion will cause the residual sum of squares to increase the least.
This will be the variable in the current subset model that has the smallest
partial sum of squares. Without a termination rule, backward elimination
continues until the subset model contains only one variable.

Neither forward selection nor backward elimination takes into account
the effect that the addition or deletion of a variable can have on the con-
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tributions of other variables to the model. A variable added early to the
model in forward selection can become unimportant after other variables
are added, or variables previously dropped in backward elimination can
become important after other variables are dropped from the model. The
variable selection method commonly labeled stepwise regression is a for-
ward selection process that rechecks at each step the importance of all pre-
viously included variables. If the partial sums of squares for any previously
included variables do not meet a minimum criterion to stay in the model,
the selection procedure changes to backward elimination and variables are
dropped one at a time until all remaining variables meet the minimum
criterion. Then, forward selection resumes.

Stepwise selection of variables requires more computing than forward
or backward selection but has an advantage in terms of the number of
potential subset models checked before the model for each subset size is
decided. It is reasonable to expect stepwise selection to have a greater
chance of choosing the best subsets in the sample data, but selection of the
best subset for each subset size is not guaranteed.

The computer programs for the stepwise selection methods generally
include criteria for terminating the selection process. In forward selection,
the common criterion is the ratio of the reduction in residual sum of squares
caused by the next candidate variable to be considered to the residual
mean square from the model including that variable. This criterion can
be expressed in terms of a critical “F-to-enter” or in terms of a critical
“significance level to enter” (SLE), where F is the “F-test” of the partial
sum of squares of the variable being considered. The forward selection
terminates when no variable outside the model meets the criterion to enter.
This “F-test,” and the ones to follow, should be viewed only as stopping
rules rather than as classical tests of significance. The use of the data to
select the most favorable variables creates biases that invalidate these ratios
as tests of significance (Berk, 1978).

The stopping rule for backward elimination is the “F-test” of the smallest
partial sum of squares of the variables remaining in the model. Again, this
criterion can be stated in terms of an “F-to-stay” or as a “significance
level to stay” (SLS). Backward elimination terminates when all variables
remaining in the model meet the criterion to stay.

The stopping rule for stepwise selection of variables uses both the for-
ward and backward elimination criteria. The variable selection process ter-
minates when all variables in the model meet the criterion to stay and no
variables outside the model meet the criterion to enter (except, perhaps, for
the variable that was just eliminated). The criterion for a variable to enter
the model need not be the same as the criterion for the variable to stay.
There is some advantage in using a more relaxed criterion for entry to force
the selection process to consider a larger number of subsets of variables.

Stopping Rules
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(Continuation of Example 7.1) The FORWARD, BACKWARD, and
STEPWISE methods of variable selection in PROC REG (SAS Institute,
Inc., 1989b) are illustrated with the Linthurst data. In this program, the
termination rules are expressed in terms of significance level to enter, and
significance level to stay. For this example, the criteria were set at SLE =
.50 in forward selection, SLS = .10 in backward elimination, and SLE =
.50 and SLS = .15 in stepwise selection. The values were chosen for forward
and backward selection to allow the procedures to continue through most
of the subset sizes. One can then tell by inspection of the results where the
selection would have terminated with more stringent criteria.

The results from the forward selection method applied to the Linthurst
data are summarized in Table 7.2. The F-ratio given is the ratio of the
partial sum of squares for the variable to the mean square residual for
the model containing all previously admitted variables plus the one being
considered.

The best single variable is pH which gives (100)R? = 59.9% (see Ta-
ble 7.1) and F = 64.3. The corresponding significance level is far beyond
the significance level needed to enter, SLE = .50. The second step of the
forward selection computes the partial sums of squares for each of the re-
maining variables, SALINITY, K, Na, and Zn, in a model that contains
pH plus that particular variable. The partial sum of squares for Na is the
largest and gives F' = 7.26, or Prob > F = .0101, which satisfies the
criterion for entry. Thus, Na is added to the model and the selection pro-
cess goes to Step 3. At the third step, the partial sum of squares for Zn
is the largest and Prob > F = .4888 just meets the criterion for entry.
SALINITY meets the criterion for entry at the fourth step, and K at the
fifth step.

In this case, the choice of SLE = .50 allowed all variables to be included
in the model. The selection would have stopped at the two-variable model
with pH and Na had SLE been chosen anywhere between .4888 and .0101.
Any choice of SLE less than .0101 would have stopped the selection process
with the one-variable model.

Forward selection chose the best subset models for p = 1, 2, and 3,
but the second best model for p = 4 (see Table 7.1). This illustrates the
fact that the stepwise methods are not guaranteed to find the best subset
model for each subset size. In addition, the stepwise methods do not alert
the user to the fact that other subsets at each stage may be as good. For
example, one is not aware from the forward selection results that two other
three-variable subsets [(pH, K, Na) and (SAL, pH, Na)] are essentially
equivalent to the one chosen.

The stepwise regression results using backward elimination are summa-
rized in Table 7.3. Starting with the full model, the procedure eliminates
the variable with the smallest partial sum of squares if its sum of squares
does not meet the criterion to stay in the model. In this example, the signif-
icance level to stay is set at SLS = .10. Na has the smallest partial sum of

Example 7.2
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TABLE 7.2. Summary statistics for forward selection of variables for the Linthurst
data using significance level for variable to enter the model of SLE = .50.

Step Variable Partial SS MS(Res) R? F*  Prob> F?

1. Determine best single variable and test for entry:

Sal 204048 441091 .0106 .46 .5001
pH 11490388 178618 .5994 64.33 .0001
K 802872 427165 .0419  1.88 1775
Na 1419069 412834 .0740 3.44 .0706
Zn 7474474 272011 .3899 27.48 .0001
Best 1-variable model: pH Cp =742

2. Determine best second variable and test for entry:

Sal 77327 181030 .6034 43 5170
K 924266 160865 .6476  5.75 .0211
Na 1132401 155909 .6584  7.26 .0101
Zn 170933 178801 .6083 .96 .3338
Best 2-variable model: pH Na Cp =228

3. Determine best third variable and test for entry:

Sal 11778 159424 .6590 .07 7871
K 36938 158804 .6604 .23 .6322
Zn 77026 157833 .6625 .49 4888
Best 3-variable model: pH Na Zn Cp =3.80

4. Determine best fourth variable and test for entry:

SAL 178674 157312 .6718 1.136 .2929
K 32964 160955 .6642  .205 .6533
Best 4-variable model: pH Na Zn SAL Cp=4.67

5. Test last variable for entry:
K 106211 158622 .6773  .670 4182
Last variable is added with SLE = .50 Cp = 6.00

“F-test of partial sum of squares.
bProb > F assuming the ratio is a valid F-statistic.
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TABLE 7.3. Summary statistics for the backward elimination of variables for the Linthurst
data using significance level for staying of SLS = .10. All models included an intercept.

Step Variable  Partial SS R2e F? Prob > F°
0 Model : Al variables; R? = .6773, C), = 6, s> = 158,616 with 39 d.f.
SAL 251,921 .6642 1.59 2151
pH 1,917,306 5773 12.09 .0013
K 106,211 6718 .67 4182
Na 46,011 .6749 .30 .5893
Zn 299, 209 .6617 1.89 1775
1 Model :  Na removed; R? = .6749, C), = 4.30, s = 155,824 with 40 d.f.
Sal 436,496 .6521 2.80 .1020
pH 1,885, 805 5765 12.10 .0012
K 732,606 .6366 4.70 .0361
Zn 434,796 .6522 2.79 1027
2 Model :  Zn removed; R?* = .6522, C), = 5.04, s* = 162,636 with 41 d.f.
Sal 88,239 .6476 .54 .4656
pH 11,478,835 .0534 70.58 .0001
K 935,178 .6034 5.75 .0211
3 Model :  Sal removed; R? = .6476, Cp = 3.59, 52 = 160, 865 with 42 d.f.

pH 11,611, 782
K 924, 266

.0419
.5994

72.18 .0001
5.75 .0211

STOP. Prob> F for each remaining variable exceeds SLS = .10.
Final model contains pH, K and an intercept.

2R? is for the model with the indicated variable removed.

b F-ratio for the partial sum of squares for the indicated variable.

“Probability of a larger F' assuming it is a valid F-statistic.
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squares and is eliminated from the model since Prob > F' = .5893 is larger
than SLS = .10. This leaves (SAL, pH, K, Zn) as the chosen four-variable
subset. Of these four variables, Zn has the smallest partial sum of squares
(by a very small margin over SALINITY) and Prob > F = .1027, slightly
larger than the criterion to stay SLS = .10. Therefore, Zn is dropped from
the model leaving (SAL, pH, K) as the chosen three-variable model. At
the next step, SAL is dropped, giving (pH, K) as the chosen two-variable
model. Both pH and K meet the criterion to stay (Prob > F' is less than
SLS), and the backward selection process stops with that model.

Backward elimination identifies the best four-variable subset whereas for-
ward selection did not. On the other hand, backward elimination chose the
fourth best three-variable subset and the second best two-variable subset,
whereas forward selection identified the best subset at these stages. If SLS
had been set low enough, say at .02, backward elimination would have gone
one step further and correctly identified pH as the best one-variable subset.

The stepwise method of stepwise variable selection applied to the Lint-
hurst data starts the same as forward selection (Table 7.2). After the second
step when pH and Na are both in the model, the stepwise method rechecks
the contribution of each variable to determine if each should stay in the
model. The partial sums of squares are

R(Bpu|fNa) = 11,203,720
R(BnalBprr) = 1,132,401

The mean square residual for this model is MS(Res) = 155,909 with 42
degrees of freedom. Both give large F-ratios with Prob > F much smaller
than SLS = .15 so that both pH and Na are retained.

The forward selection phase of stepwise selection resumes with the choice
of Zn as the third variable to be added (Table 7.2). Again, the contribution
of each variable in the model is rechecked to determine if each should stay.
The partial sums of squares are

R(Bpr|Bna Bzn) = 4,455,726,
R(BNa|Bprr Bzn) = 1,038,493, and
R(ﬁZn|ﬁpH ﬂNa) == 77,026

The mean square residual for this model is MS(Res) = 157,833 with 41
degrees of freedom. Both pH and Na meet the criterion to stay, but the
F-ratio for Zn is less than 1.0 with Prob > F = .4888, which does not
meet the criterion of SLS = .15. Therefore, Zn, which has just been added,
is immediately dropped from the model.

The stepwise procedure then checks to see if any variables other than
Zn meet the criterion to enter the model. The two remaining variables
to be checked are SALINITY and K. The partial sum of squares for
each, adjusted for pH and Na, is given in Step 3 of the forward selection,
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Table 7.2. The Prob > F for both variables is larger than SLE = .50.
Therefore, no other variables meet the criterion to enter the model and all
variables in the model meet the criterion to stay so the selection terminates
with the two-variable subset (pH, Na).

In general, the rechecking of previous decisions in stepwise selection
should improve the chances of identifying the best subsets at each sub-
set size. In this particular example, the choice of SLS = .15 caused the
stepwise selection to terminate early. If SLS had been chosen equal to SLE
= .50, stepwise regression would have followed the same path as forward
selection until the fifth variable K had been added to the model. Then,
rechecking the variables in the model would have caused Na to be dropped
from the model leaving (SAL, pH, K, Zn) as the selected four-variable
subset. This is the best four-variable subset (Table 7.1), which forward
selection failed to identify. [ ]

Even in the small example just discussed, there are several close con-
tenders within most subset sizes as shown by all possible regressions (Ta-
ble 7.1). Each stepwise regression method reveals only one subset at each
step and, if the stopping criteria are set to select a “best” subset size, only
part of the subset models are identified. (Choice of criteria for this pur-
pose are discussed in Section 7.5.) In general, it is not recommended that
the automated stepwise regression methods be used blindly to identify a
“best” model. It is imperative that any model obtained in this manner be
thoroughly checked for any inadequacies (see Chapter 10) and validated
against an independent data set before being adopted (see Section 7.6).

If stepwise variable selection methods are to be used, they are best used
as screening tools to identify contender models. For this purpose, forward
selection and backward elimination methods alone provide very narrow
views of the possible models. Stepwise selection would be somewhat bet-
ter. An even better option would be the joint use of all three methods.
If forward selection and backward elimination identify the same subsets,
then it is known that they will have identified the best subset in each
subset size (Berk, 1978). One still would not have information on close
contenders within each subset size. For screening purposes, the choice of
the termination criteria should be such as to provide the greatest exposure
to alternative models. For forward selection, this means that SLE should
be large, say SLE = .5 or larger. For backward elimination, SLS should be
small. For the stepwise method of selection, SLE should be large but the
choice of SLS is not so easily specified. It may be worthwhile to try more
than one choice of each.

For the purpose of identifying several contender models, one should not
overlook the possible use of a program that utilizes the “leaps-and-bounds”
algorithm, such as the RSQUARE option in PROC REG (SAS Institute,
Inc., 1989b). This algorithm guarantees that the best m subset models

Warnings on
Using Stepwise
Methods
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within each subset size will be identified. Changing m from 1 to 10 approx-
imately doubles the computing time (Furnival and Wilson, 1974). Although
the computing cost will be higher than for any of the stepwise methods, the
cost may not be excessive and considerably more information is obtained.

7.5 Criteria for Choice of Subset Size

Many criteria for choice of subset size have been proposed. These criteria
are based on the principle of parsimony which suggests selecting a model
with small residual sum of squares with as few parameters as possible.
Hocking (1976) reviews 8 stopping rules, Bendel and Afifi (1977) compare
8 (not all the same as Hocking’s) in forward selection, and the RSQUARE
method in PROC REG (SAS Institute, Inc., 1989b) provides the option
of computing 12. Most of the criteria are monotone functions of the resid-
ual sum of squares for a given subset size and, consequently, give identical
rankings of the subset models within each subset size. However, the choice
of criteria may lead to different choices of subset size, and they may give
different impressions of the magnitude of the differences among subset mod-
els. The latter may be particularly relevant when the purpose is to identify
several competing models for further study.

Six commonly used criteria are discussed briefly. In addition, the choice
of F-to-enter and F-to-stay, or the corresponding “significance levels” SLE
and SLS are reviewed. The six commonly used criteria to be discussed are

o coefficient of determination R2,

o residual mean square MS(Res),

adjusted coefficient of determinationR; dj’

Mallows’ C), statistic, and
e two information criteria AIC and SBC.

The values for these criteria are given in Table 7.1 for all possible subsets
from the Linthurst data.

7.5.1 Coefficient of Determination

The coefficient of determination R? is the proportion of the total (cor-
rected) sum of squares of the dependent variable “explained” by the inde-
pendent variables in the model:

SS(Regr)

Behavior of R?
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FIGURE 7.1. R?, R2,;, and MS(Res) plotted against p' for the best model from

adj
each subset size for the Linthurst data.

The objective is to select a model that accounts for as much of the variation
in Y as is practical. Since R? cannot decrease as independent variables are
added to the model, the model that gives the maximum R? will necessarily
be the model that contains all independent variables. The typical plot of
R? against the number of variables in the model starts as a steeply up-
ward sloping curve, then levels off near the maximum R? once the more
important variables have been included. Thus, the use of the R? criterion
for model building requires a judgment as to whether the increase in R?
from additional variables justifies the increased complexity of the model.
The subset size is chosen near the bend where the curve tends to flatten.

(Continuation of Example 7.1) The best one-variable subset accounted
for 100R? = 59.9% of the variation in BIOMASS, the best two-variable
subset accounted for 100R? = 65.8%, and the best three-variable subset
accounted for 100R? = 66.3% (see Figure 7.1 on page 221). The increase in
R? from two to three variables was small and R? is close to the maximum
of 100R? = 67.7%. Thus, the R? criterion leads to the choice of the two-
variable subset containing pH and Na as the “best.” |

Example 7.3
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7.5.2 Residual Mean Square

The residual mean square MS(Res) is an estimate of 2 if the model con-
tains all relevant independent variables. If relevant independent variables
have been omitted, the residual mean square is biased upward. Including
an unimportant independent variable will have little impact on the residual
mean square. Thus, the expected behavior of the residual mean square, as
variables are added to the model, is for it to decrease toward o2 as impor-
tant independent variables are added to the model and to fluctuate around
o2 once all relevant variables have been included.

The previous paragraph describes the expected behavior of MS(Res)
when the selection of variables is not based on sample data. Berk (1978)
demonstrated with simulation that selection of variables based on the sam-
ple data causes MS(Res) to be biased downward. In his studies, the bias
was as much as 25% when sample sizes were less than 50. The bias tended
to reach its peak in the early stages of forward selection, when one-third to
one-half of the total number of variables had been admitted to the model.
In backward elimination, the bias tended to peak when slightly more than
half of the variables had been eliminated. These results suggest that the
pattern of MS(Res) as variables are added in a variable selection procedure
will be to drop slightly below ¢? in the intermediate stages of the selection
and then return to near o2 as the full model is approached. It is unlikely
that a bias of this magnitude would be detectable in plots of MS(Res)
against number of variables, particularly in small samples where the bias
is most serious.

The pattern of the residual mean squares, as variables are added to the
model, is used to judge when the residual mean square is estimating o2 and,
by inference, when the model contains the important independent variables.
In larger regression problems, with many independent variables and several
times as many observations, a plot of the residual mean square against the
number of parameters in the model will show when the plateau has been
reached. The plateau may not be clearly defined in smaller problems.

For the Linthurst data (Example 7.1), MS(Res) drops from MS(Res)
= 178,618 for the best one-variable subset to MS(Res) = 155,909 for the
best two-variable subset, and then changes little beyond that point (see
Table 7.1 and Figure 7.1). The two-variable subset would be chosen by this
criterion. |

7.5.8  Adjusted Coefficient of Determination

The adjusted R?, which is labeled as R? 4j» 15 a rescaling of R? by degrees
of freedom so that it involves a ratio of mean squares rather than sums of

Expected
Behavior of
MS(Res)

Behavior with
Variable
Selection

Example 7.4

Behavior
of R? ..
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squares:

R 1 MS(Res)
adj MS(Total)
11— % (7.2)
(n—p')
This expression removes the impact of degrees of freedom and gives a quan-
tity that is more comparable than R? over models involving different num-
bers of parameters. Unlike R?, R2 4; heed not always increase as variables
are added to the model. The value of Ridj will tend to stabilize around
some upper limit as variables are added. The simplest model with Ridj
near this upper limit is chosen as the “best” model. R? q; 1s closely related
to MS(Res) (see equation 7.2) and will lead to the same conclusions.

For the Linthurst data, the maximum R? 4; for the one-variable subset is

Ridj = .590 (see Table 7.1 and Figure 7.1). This increases to .642 for the
two-variable subset, and then shows no further increase; R? 4 = 638, .642,

and .636 for p’ = 4, 5, and 6, respectively. |

7.5.4 Mallows’” C,, Statistic

The C), statistic is an estimate of the standardized total mean squared error
of estimation for the current set of data (Hocking, 1976). The C, statistic
and the C), plot were initially described by Mallows [see Mallows (1973a)
for earlier references]. The C), statistic is computed as

SS(Res),,

Cp= s +2p' —n, (7.3)

s
where SS(Res),, is the residual sum of squares from the p-variable subset
model being considered and s? is an estimate of o2, either from independent
information or, more commonly, from the model containing all independent
variables. When the model is correct, the residual sum of squares is an
unbiased estimate of (n — p’)o?; in this case, C), is (approximately) equal
to p’. When important independent variables have been omitted from the
model, the residual sum of squares is an estimate of (n—p’)o? plus a positive
quantity reflecting the contribution of the omitted variables; in this case,
C,, is expected to be greater than p’.

The C), plot presents C), as a function of p’ for the better subset models
and provides a convenient method of selecting the subset size and judging
the competitor subsets. The usual pattern is for the minimum C), statistic
for each subset size Cpmin to be much larger than p’ when p’ is small, to

Example 7.5

Behavior of Cp
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FIGURE 7.2. The C,, plot of the Linthurst data. The dashed line connects Cp min
for each subset size. The two solid lines are the reference lines for subset selection
according to Hocking’s criteria.

decrease toward p’ as the important variables are added to the model, and
then to fall below or fluctuate around p’. When the residual mean square
from the full model has been used as s2, C, will equal p’ for the full model.
A value of C), near p’ indicates little bias in MS(Res) as an estimate of
o?. (This interpretation assumes that s? in the denominator of C), is an
unbiased estimate of ¢2. If s> has been obtained from the full model, s
is an unbiased estimate of o2 only if the full model contains all relevant
variables.)

Different criteria have been advanced for the use of Cp. Mallows (1973a)
suggested that all subset models with small C}, and with C,, close to p’ be
considered for further study. Hocking (1976) defined two criteria depending
on whether the model is intended primarily for prediction or for parameter
estimation. He used the criterion C,, < p’ for prediction. For parameter
estimation, Hocking argued that fewer variables should be eliminated from
the model, to avoid excessive bias in the estimates, and provided the selec-
tion criterion €}, < 2p’ — ¢, where ¢ is the number of variables in the full
model.

The C), plot for the Linthurst example is given in Figure 7.2. Only the
smaller C,, statistics, the dots, are shown for each value of p’, with the C} min
values connected by the dashed line. The figure includes two reference lines
corresponding to Hocking’s two criteria C), = p’ and C}, = 2p’ —t. The C,,

C)p Criterion

Example 7.6
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statistics for all subsets are given in Table 7.1. For the 1-variable subsets,
Cpmin = 7.42, well above p’ = 2. For the 2-variable subsets, Cpmin = 2.28,
just below p’ = 3. The next best 2-variable subset has C,, = 3.59, somewhat
above p’ = 3. Three 3-variable subsets give C}, close to p’ = 4 with Cppin =
3.80. The C), statistics for the 4-variable subsets identify two subsets with
C), < p'. Two other subsets have C), slightly greater than p'.

Mallows’ Cj, criterion (which requires C, small and near p’) identifies
the two-variable subsets (pH, Na) and (pH, K), and possibly the three-
variable subsets (pH, Na, Zn), (pH, K, Na), and (SALINITY , pH, Na).
Preference would be given to (pH, Na) if this model appears to be adequate
when subjected to further study. Hocking’s criterion for selection of the
best subset model for prediction leads to the two-variable model (pH, Na);
Cp = 2.28 is less than p’ = 3. The more restrictive criterion for subset
selection for parameter estimation leads to the best four-variable subset
(SALINITY, pH, K, Zn); C, = 4.30 is less than 2p’ —t = 5. [ ]

7.5.5  Information Criteria: AIC and SBC
The Akaike (1969) Information Criterion (AIC) is computed as

AIC(p') = nIn(SS(Res),) + 2p" — nln(n). (7.4)

(Note that all logarithmic functions in this text use base e.) Since SS(Res),
decreases as the number of independent variables increases, the first term
in AIC decreases with p’. However, the second term in AIC increases with
p’ and serves as a penalty for increasing the number of parameters in the
model. Thus, it trades off precision of fit against the number of parameters
used to obtain that fit. A graph of AIC(p’) against p’ will, in general, show a
minimum value, and the appropriate value of the subset size is determined
by the value of p’ at which AIC(p') attains its minimum value.

The AIC criterion is widely used, although it is known that the criterion
tends to select models with larger subset sizes than the true model. [See
Judge, Griffiths, Hill, and Lee (1980).] Because of this tendency to select
models with larger number of independent variables, a number of alter-
native criteria have been developed. One such criterion is Schwarz (1978)
Bayesian Criterion (SBC) given by

SBC(p') = nIn(SS(Res),) + [In(n)p’ — nln(n). (7.5)

Note that SBC uses the multiplier In(n), (instead of 2 in AIC) for the
number of parameters p’ included in the model. Thus, it more heavily
penalizes models with a larger number of independent variables than does
AIC. The appropriate value of the subset size is determined by the value
of p’ at which SBC(p’) attains its minimum value.

Behavior of
AIC and SBC
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FIGURE 7.3. Minimum AIC and SBC wvalues plotted against p' for each subset
size for the analysis of the Linthurst data.

The values of AIC and SBC for the regression analysis of the Linthurst
data are given in the last two columns of Table 7.1 and the minimum values
for each subset size are plotted in Figure 7.3. The minimum value for both
criteria occurs at p’ = 3 and for the model containing pH and Na as the
independent variables. It should be noted that the AIC and SBC values
for the two-variable containing pH and K are only slightly larger than the
minimum values. u

7.5.6  “Significance Levels” for Choice of Subset Size

F-to-enter and F-to-stay, or the equivalent “significance levels,” in the
stepwise variable selection methods serve as subset size selection criteria
when they are chosen so as to terminate the selection process before all
subset sizes have been considered. Bendel and Afifi (1977) compared several
stopping rules for forward selection and showed that the sequential F-
test based on a constant “significance level” compared very favorably. The
optimum “significance level to enter” varied between SLE = .15 and .25.
Although not the best of the criteria they studied, the sequential F-test
with SLE = .15 allowed one to do “almost best” when n — p < 20. When
n—p > 40, the C, statistic was preferred over the sequential F-test but by
a very slight margin if SLE = .20 were used.

Example 7.7

Use of “Signifi-
cance Levels”
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This is similar to the conclusion reached by Kennedy and Bancroft (1971)
for the sequential F-test but where the order of importance of the variables
was known a priori. They concluded that the significance level should be
.25 for forward selection and .10 for backward elimination. Bendel and Afifi
did not speculate on the choice of “significance level to stay” in backward
elimination. For stepwise selection, they recommended the same levels of
SLE as for forward selection and half that level for SLS.

For the Linthurst data of Example 7.1, the Bendel and Afifi level of
SLE = .15 would have terminated forward selection with the two-variable
subset (pH, Na) (see Table 7.2). The Kennedy and Bancroft suggestion
of using SLS = .10 for backward elimination gives the results shown in
Table 7.3 terminating with the two-variable subset (pH, K). In this case,
the backward elimination barely continued beyond the second step where
the least significant of the four variables had Prob > F = .1027. The
recommended significance levels of SLE = 2(SLS) = .15 for the stepwise
selection method terminates at the same point as forward selection. |

In summary of the choice of subset size, some of the other conclusions of
Bendel and Afifi (1977) regarding stopping rules are of importance. First,
the use of all independent variables is a very poor rule unless n — p’ is
very large. For their studies, the use of all variables was always inferior
to the best stopping rule. This is consistent with the theoretical results
(Section 7.2) that showed larger variances for 8, Y, and Ypred for the

full models. Second, most of the stopping rules do poorly if n — p’ < 10.
The C, statistic does poorly when n —p’ < 10 (but is recommended for
n — p’ > 40). Third, the lack-of-fit test of the (¢ — p’) variables that have
been dropped (an intuitively logical procedure but not discussed in this
text) is generally very poor as a stopping rule regardless of the significance
level used. Finally, an unbiased version of the coefficient of determination
generally did poorly unless n — p’ was large. This suggests that R?, and
perhaps R; dj and MS(Res), may not serve as good stopping rules for subset

size selection.

Mallows’ C), statistic and significance levels appear to be the most fa-
vored criteria for subset size selection. The C), statistic was not the op-
timum choice of Bendel and Afifi in the intermediate-sized data sets and
it did poorly for very small samples. Significance level as a criterion did
slightly better than (), in the intermediate-sized studies. The poor perfor-
mance of Cj, in the small samples should not be taken as an indictment.
First, none of the criteria did well in such studies and, second, no variable
selection routine or model building exercise should be taken seriously when
the sample sizes are as small as n — p’ < 10.

Example 7.8

Conclusions
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7.6 Model Validation

Validation of a fitted regression equation is the demonstration or confir-
mation that the model is sound and effective for the purpose for which it
was intended. This is not equivalent to demonstrating that the fitted equa-
tion agrees well with the data from which it was computed. Validation of
the model requires assessing the effectiveness of the fitted equation against
an independent set of data, and is essential if confidence in the model is to
be expected.

Results from the regression analysis—R2, MS(Res), and so forth—do
not necessarily reflect the degree of agreement one might obtain from fu-
ture applications of the equation. The model-building exercise has searched
through many possible combinations of variables and mathematical forms
for the model. In addition, least squares estimation has given the best pos-
sible agreement of the chosen model with the observed data. As a result,
the fitted equation is expected to fit the data from which it was computed
better than it will an independent set of data. In fact, the fitted equation
quite likely will fit the sample data better than the true model would if it
were known.

A fitted model should be validated for the specific objective for which it
was planned. An equation that is good for predicting Y; in a given region
of the X-space might be a poor predictor in another region of the X-space,
or for estimation of a mean change in Y for a given change in X even in
the same region of the X-space. These criteria are of interest:

1. Does the fitted regression equation provide unbiased predictions of
the quantities of interest?

2. Is the precision of the prediction good enough (the variance small
enough) to accomplish the objective of the study?

Both quantities, bias and variance, are sometimes incorporated into a single
measure called the mean squared error of prediction (MSEP). Mean
square error of prediction is defined as the average squared difference be-
tween independent observations and predictions from the fitted equation for
the corresponding values of the independent variables. The mean squared
error of prediction incorporates both the variance of prediction and the
square of the bias of the prediction.

For illustration, suppose a model has been developed to predict maxi-
mum rate of runoff from watersheds following rain storms. The independent
variables are rate of rainfall (inches per hour), acreage of watershed, average
slope of land in the watershed, soil moisture levels, soil type, amount of ur-
ban development, and amount and type of vegetative cover. The dependent
variable is maximum rate of runoff (ft> sec™!), or peak flow. Assume the
immediate interest in the model is prediction of peak flow for a particular

Importance of
Validation

Mean Squared
Error of
Prediction

Example 7.9
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TABLE 7.4. Observed rate of runoff, predicted rate of runoff, and prediction error
for wvalidation of water runoff model. Results are listed in increasing order of

runoff (ft* sec™t).

Predicted Observed Prediction Error

P Y 6=P-Y
2,320 2,380 —60
3,300 3,190 110
3,290 3,270 20
3,460 3,530 —70
3,770 3,980 —210
4,210 4,390 —180
5,470 5,400 70
5,510 5,770 —260
6,120 6,890 —770
6,780 8,320 —1,540
Mean 4,423 4,712 —289

watershed. The model is to be validated for this watershed by comparing
observed rates of peak flow with the model predictions for 10 episodes of
rain. The observed peak flow, the predicted peak flow, and the error of
prediction are given in Table 7.4 for each episode. The average prediction
bias is 6§ = —289 ft> sec™!; the peak flow in these data is underestimated by
approximately 6%. The variance of the prediction error is s2(6) = 255,477,
or 5(8) = 505 ft* sec=!. The standard error of the estimated mean bias is
5(8) = 505/4/10 = 160. A t-test of the hypothesis that the bias is zero gives
t = —1.81, which, with 9 degrees of freedom and a = .05, is not significant.
The mean squared error of prediction is

!
MSEP — 20 _ 313 450
n
or
_ 2 _
Msgp — (D0 5o
n
9(255, 477)

2
= 0 + (—289)° = 313, 450.
The bias term contributes 27% of MSEP. The square root of MSEP gives
560 ft3 sec™!, an approximate 12% error in prediction.

Even though the average bias is not significantly different from zero, the
very large prediction error on the largest peak flow (Table 7.4) suggests
that the regression equation is not adequate for heavy rainfalls. Review of
the data from which the equation was developed shows very few episodes
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of rainfall as heavy as the last in the validation data set. If the last rain-
fall episode is omitted from the computations, the average bias drops to
§ = —150 ft* sec™! with a standard deviation of s(8) = 265, or a standard
error of the mean of 5(6) = 88.2. Again, the average bias is not significantly
different from zero using these nine episodes. However, the error of predic-
tion on the largest rainfall differs from zero by -1540/265 = -5.8 standard
deviations. This is a clear indication that the regression equation is seri-
ously biased for the more intense rainfalls and must be modified before it

can be used with confidence. |

In Example 7.9, the peak flow model was being validated for a particular
watershed. If the intended use of the model had been prediction of peak
flow from several watersheds over a large geographical area, this sample of
data would have been inadequate for validation of the model. Validation on
one watershed would not have provided assurance that the equation would
function well over a wide range of watersheds. The data to be used for val-
idation of a model must represent the population for which the predictions
are to be made.

It often is impractical to obtain an adequate independent data set with
which to validate a model. If the existing data set is sufficiently large, an
alternative is to use those data for both estimation and validation. One
approach is to divide the data set into two representative halves; one half
is then used to develop the regression model and the other half is used for
validation of the model. Snee (1977) suggests that the total sample size
should be greater than 2p’ + 25 before splitting the sample is considered.
Of course, one could reverse the roles of the two data sets and have double
estimation and validation. Presumably, after the validation, and assuming
satisfactory results, one would prefer to combine the information from the
two halves to obtain one model which would be better than either alone.

Methods have been devised for estimating the mean squared error of
prediction MSEP when it is not practical to obtain new independent data.
The C,, statistic can be considered an estimator of MSEP. Weisberg (1981)
presents a method of allocating C}, to the individual observations which
facilitates detecting inadequacies in the model. Another approach is to
measure the discrepancy between each observation and its prediction but
where that observation was not used in the development of the prediction
equation. The sum of squares of these discrepancies is the PRESS statis-
tic given by Allen (1971b). Let Yprodm) be the prediction of observation

i, where the (i) indicates that the ith observation was not used in the
development of the regression equation. Then,

n

PRESS = "(Yi = Vyped )™ (7.6)

=1 (1)

Choosing the
Data Set for
Validation

Splitting the
Data Set

Estimating
MSEP
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The individual discrepancies are of particular interest for model validation.
Unusually large discrepancies or patterns to the discrepancies can indicate
inadequacies in the model. Bunke and Droge (1984) derive a best unbiased
estimator and a minimum mean squared error estimator of MSEP where
there is replication and all variables are assumed to have a multivariate
normal distribution.

Validation of the model based on an independent sampling of the pop-
ulation is to be preferred to the use of estimates of mean squared error of
prediction based on the original sample data. Part of the error of predic-
tion may arise because the original data do not adequately represent the
original population. Or, the population may have changed in some respects
since the original sample was taken. Estimates of MSEP computed from
the original data cannot detect these sources of inadequacies in the model.

7.7 Exercises
7.1. Show algebraically the relationship between R? and MS(Res).

7.2. Show algebraically the relationship between R? and C,, and between
MS(Res) and C,,.

7.3. Substitute expectations in the numerator and denominator of the
C, statistic and show that C, is approximately an estimate of p’
when the model is correct. (This is approximate because the ratio of
expectations is not the same as the expectation of the ratio.)

7.4. Use the relationship between R? and MS(Res), Exercise 7.1, to show
equality between the two forms of Rg 4 in equation 7.2.

7.5. The following approach was used to determine the effect of acid rain
on agricultural production. U.S. Department of Agriculture statistics
on crop production, fertilizer practices, insect control, fuel costs, land
costs, equipment costs, labor costs, and so forth for each county in the
geographical area of interest were paired with county-level estimates
of average pH of rainfall for the year. A multiple regression analysis
was run in which “production ($)” was used as the dependent vari-
able and all input costs plus pH of rainfall were used as independent
variables. A stepwise regression analysis was used with pH forced to
be in all regressions. The partial regression coefficient on pH from
the model chosen by stepwise regression was taken as the measure of
the impact of acid rain on crop production.

(a) Discuss the validity of these data for establishing a causal rela-
tionship between acid rain and crop production.
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(b) Suppose a causal effect of acid rain on crop production had al-
ready been established from other research. Discuss the use of
the partial regression coefficient for pH from these data to pre-
dict the change in crop production that would result if rain acid-
ity were to be decreased. Do you see any reason the prediction
might not be valid?

(c) Suppose the regression coefficient for pH were significantly neg-
ative (higher pH predicts lower crop production). Do you see
any problem with inferring that stricter government air pollu-
tion standards on industry would result in an increase in crop
production?

(d) Do you see any potential for bias in the estimate of the partial
regression coefficient for pH resulting from the omission of other
variables?

The final model in the Linthurst example in this chapter used pH and
Na content of the marsh substrate as the independent variables for
predicting biomass (in the forward selection and stepwise methods).
The regression equation was

Y; = —476 + 407X, — 0233 X nq.

What inference are you willing to make about the relative importance
of pH and Na versus SALINITY, K, and Zn as biologically important
variables in determining biomass? When all five variables were in the
model, the partial regression coefficient for pH was a nonsignificant
—.009(+£.016). Does this result modify your inference?

Exercises 7.7 through 7.12 use the simulated data
on peak flow of water used in the exercises in Chap-
ter 5. Use LQ = In(Q) as the dependent variable
with the logarithms of the nine independent vari-
ables.

Determine the total number of possible models when there are nine
independent variables, as in the peak water flow problem. Your com-
puting resources may not permit computing all possible regressions.
Use a program such as the METHOD = RSQUARE option in PROC
REG (SAS Institute, Inc., 1989b) to find the n = 6 “best” subsets in
each stage. This will require using the SELECT = n option. Plot the
behavior of the C), statistic and determine the “best” model.

Use a forward selection variable selection method to search for an
acceptable model for the peak flow data. Use SLE = .50 for entry of
a variable into the model. What subset would you select if you used
SLE = .157 Compute and plot the C), statistic for the models from
SLE = .50. What subset model do you select for prediction using C,,?
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Repeat Exercise 7.8 using backward elimination. Use SLS = .10 for
elimination of a variable. What subset model is selected? Compute
and plot the C), statistic for the models used and decide on the “best”
model. Does backward elimination give the same model as forward
selection in Exercise 7.87

Repeat Exercise 7.8 using the stepwise method of variable selection.
Use SLE = .50 and SLS = .20 for elimination of a variable from the
model. What subset model is selected? Plot the C, statistic for the
models used to decide which model to adopt. Do you arrive at the
same model as with forward selection? As with backward elimination?

. Give a complete summary of the results for the model you adopted

from the backward elimination method in Exercise 7.9. Give the anal-
ysis of variance, the partial regression coefficients, their standard er-
rors, and R2.

Your analysis of the peak flow data has been done on In(Q). Reexpress
your final model on the original scale (by taking the antilogarithm
of your equation). Does this equation make sense; that is, are the
variables the ones you would expect to be important and do they
enter the equation the way common sense would suggest? Are there
omitted variables you would have thought important?

Consider the model
Y = X8, + X208, + €,

where X1 : nxp’, and Xo: nx (t—p’) and € ~ N(0, I2). Suppose
we estimate 3; and o2 using the subset model

Y = Xl,Bl + u.
That is, R
o= (X1X0)T XY
and
> =Y'(I-Px,)Y/(n—p).

(a) Show that/\é’(@l) = B4 + (X} X1)71 X} X28,5. Under what con-

ditions is B; unbiased for 3,7
(b) Using the result for quadratic forms £[Y’ AY] = tr(A Var(Y))+

E(YNAE(Y), show that

E°] = o+ ByX5(I — Px,)X2B,/(n—p')
> o2

Under what conditions is 52 unbiased for o2?
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(c) Let X = (X1 Xa2) be of full column rank. Show that
- ~1

XX, X|X,
(x'%)7!

X)X, X)X,

(X/X,) '+AQ A" —AQ!

_Q—lAl Qfl

where A = (X} X)) 1 XX and Q = X5(I — Px,)Xo.

(d) Using (c), show that the least squares estimators of the elements
in (1, based on the subset model in (a), have smaller variance
than the corresponding estimators of the full model.



8
POLYNOMIAL REGRESSION

To this point we have assumed that the relationship be-
tween the dependent variable Y and any independent
variable X can be represented with a straight line. This
clearly is inadequate in many cases. This chapter intro-
duces the extensively used polynomial and trigonomet-
ric regression response models to characterize curvilin-
ear relationships. Such models are linear in the param-
eters and linear least squares is appropriate for estima-
tion of the parameters. Models that are nonlinear in
the parameters are introduced in Chapter 15.

Most models previously considered have (1) specified a linear relationship
between the dependent variable and each independent variable and (2) have
been linear in the parameters. The linear relationship results from each
independent variable appearing only to the first degree and in only one
term of the model; no terms are included that contain powers or products
of independent variables. This restriction forces the rate of change in the
mean of the dependent variable with respect to an independent variable to
be constant over all values of that and every other independent variable
in the model. Linearity in the parameters means that each (additive) term
in the model contains only one parameter and only as a multiplicative
constant on the independent variable. This restriction excludes many useful
mathematical forms including nearly all models developed from principles
of behavior of the system. These simple models are very restrictive and
should be viewed as first-order approximations to true relationships.
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In this chapter, the class of models is extended to allow greater flexibil-
ity and realism by introducing the higher-degree polynomial models and
trigonometric models. These models still are to be regarded as approxima-
tions to the true models for most situations. Even more realistic models
that are nonlinear in the parameters are introduced in Chapter 15. Al-
though this chapter does not dwell on the behavior of the residuals, it is
important that the assumptions of least squares be continually checked.
Growth data, for example, often will not satisfy the homogeneous variance
assumption, and will contain correlated errors if the data are collected
as repeated measurements over time on the same experimental units. For
discussion on experimental designs for fitting response surfaces and for es-
timating the values (settings) of the independent variables that optimize
the response, the reader is referred to design texts such as Box, Hunter,
and Hunter (1978).

8.1 Polynomials in One Variable

An assumed linear relationship between a dependent (response) variable
and an independent (input) variable implies a constant rate of change and
may not represent the true relationship adequately. For example, the con-
centration of a drug in the blood stream may not be linear over time.
Many economic time series such as the inflation index and the gross do-
mestic product exhibit trends over time that may not be linear. Although
the time to bake a cake may decrease as the temperature of the oven in-
creases, it may not decrease linearly. In all of these examples, the rate of
change in the mean of the dependent variable (Y') is not constant with
respect to the independent variable (X).

The simplest extension of the straight-line model involving one indepen-
dent variable is the second-order polynomial (quadratic) model,

EY) = Bo+ i X + X (8.1)

The quadratic model includes the term X? in addition to X. Note that
this model is a special case of the multiple regression model where X; = X
and X, = X2. Hence, the estimation methods considered in Chapter 4 are
appropriate. Higher-order polynomials of the form

E(Y) = 60 + ﬂlX + ﬁ2X2 + ﬁ3X3 4+ ﬁpo (82)

allow increasing flexibility of the response relationship and are also special
cases of the multiple regression models where X; = X?,i = 1,...,p. The
model in equation 8.2 is called a pth degree polynomial model.

An important aspect of the polynomial model that distinguishes it from
other multiple regression models is that the mean of the dependent variable

Quadratic
Model

Polynomial
Model
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TABLE 8.1. Algae density measures over time.

Day Repl Rep2| Day Repl Rep?2

1 530 184 8 4.059 3.892
1.183  .664 9 4.349 4.367
1.603 1.553 10 4.699 4.551
1.994 1.910 11 4.983 4.656
2.708 2.585 12 5100 4.754
3.006 3.009 13 5.288 4.842
3.867 3.403 | 14 5.3714 4.969

N O U W N

is a function of a single independent variable. Even though the independent
variables in a general multiple regression model may be related to each
other, typically they are not assumed to be functions of one another. The
fact that the “independent” variables in a simple polynomial model are
functions of a single independent variable affects the interpretation of the
parameters. Consider, for example, the model

E(Y) = Bo + b1 X1 + P2 Xo. (8.3)

In this model, (3 is interpreted as the change in the mean of the dependent
variable per unit change in X; at any fixed value of X5. (Likewise, (32 is the
change in the mean of the dependent variable per unit change in X» at any
fixed value of X;.) However, if X; = X%, then changing X; by a unit will
also change the value of X5 . In the second-degree model, equation 8.1, the
rate of change in the mean of the dependent variable as a function of X is
called the slope at X or the derivative at X. From calculus, the derivative
for equation 8.1 with respect to X is

% =01+ 20X (8.4)
That is, the slope of £(Y) depends on the value of the independent variable.
The parameter (3; is the slope only at X = 0. The parameter s is half the
velocity of change in £(Y) or, equivalently, it is half the rate of change in
the slope of £(Y).

Note that any polynomial model in one variable can be represented by
a curvilinear plot on a two-dimensional graph, rather than a surface in
higher-dimensional space, since the dependent variable is considered as a
function of a single independent variable.

The data in Table 8.1 are from a growth experiment with blue-green al-
gae Spirulina platensis conducted by Linda Shurtleff, North Carolina State
University (data used with permission). The complete data are presented in

Example 8.1
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FIGURE 8.1. Algae density versus days of study.

Exercise 8.8. The data in Table 8.1 are for the treatment where CO5 is bub-
bled through the culture. There were two replicates for this treatment, each
consisting of 14 independent solutions. The 14 solutions in each replicate
were randomly assigned for measurement to one of each of 14 successive
days of study. The dependent variable reported is a log-scale measurement
of the increased absorbance of light by the solution. This is interpreted as a
measure of algae density. The plot of the algae density measurement versus
days (Figure 8.1) clearly shows a curvilinear relationship. [ ]

Since polynomial response models are a special subset of multiple regres-
sion models, fitting polynomial models with least squares does not intro-
duce any new conceptual problems. As long as the usual assumptions on
the errors are appropriate, ordinary least squares can be used. The higher-
degree terms are included in the model by augmenting X with columns of
new variables defined as the appropriate powers of the independent vari-
ables. Testing procedures discussed for the multiple regression model are
also appropriate for testing relevant hypotheses.

Consider the data for the first replicate given in Example 8.1. We consider
a cubic polynomial model given by

Yii = Bo + (1.X; + B X7 + B X2 + €, (8.5)

Fitting
Polynomials

Example 8.2
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where X; = i represents the day and Y;; represents the response variable
for the first replicate on day 7. Note that the model in equation 8.5 can be
expressed as a multiple regression model given by

530 11 1 1 €
1.183 1 2 4 8 Bo €
1603 [ — |1 3 9 2r | [B) e | (36
: : : : : P :
5.374 1 14 196 2,744 €14
or
Y =Xg3+e.

The ordinary least squares fit of the model is given by

Y, = .00948 + .53074X; + 0.00595X2 — .00119X? (8.7)
(.16761) (.09343)  (.01422)  (.00062),

where the standard errors of the estimates are given in parentheses.

Assuming that a cubic model is adequate, we can test the hypotheses
Hy : B3 = 0 and Hy : B2 = B3 = 0. Given a cubic polynomial model,
Hy : B3 = 0 tests the hypothesis that a quadratic polynomial model is
adequate whereas Hy : 32 = (33 = 0 tests the hypothesis that a linear trend
model is adequate. The t-statistic for testing 83 = 0 is

00119

=—1.91.
.00062 )

Comparing |t| = 1.91 with t( g25,10) = 2.228, we fail to reject Hp : 83 = 0.
To test Hy : B2 = B3 = 0, we fit the reduced model

Yi=05+6Xite
and compute the F-statistic

[SS(ReSreduced) - SS(RGSqu)]/Q
SS(Resfun)/IO
[1.45812 — .13658]/2
.01366

F =

= 48.37.

Since F( 05;2,10) = 4.10, we reject Hy : B2 = 33 = 0. That is, we conclude
that a linear trend model is not adequate. |

It is interesting to note that the t-statistic for testing Hg : B2 = 0 in
Example 8.2 is t = .418 and we would fail to reject Hy : B2 = 0. That is, we
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fail to reject the individual null hypotheses Hy : B2 = 0 and Hg : B3 = 0,
but we reject the joint null hypothesis Hy : 2 = (B3 = 0. This is due to
the fact that X3 = X3 is highly correlated with the linear and quadratic
variables. When the columns of an X matrix are nearly linearly dependent
on each other, the matrix X 'X is nearly singular and, hence, the matrix
Var(83) = (X' X)~10? tends to have large elements. That is, the standard
errors of the least squares estimators will be large and the corresponding
t-statistics will be small. This problem is known as the multicollinearity
problem. This and other related problems are discussed in Chapter 10.

Since polynomial models are special cases of multiple linear regression,
diagnostics based on the residuals can be used to check the adequacy of
the model. Another approach is to fit a higher-order polynomial that is
deemed adequate and use statistical tests to obtain a low-order polynomial
that is adequate. For example, in Example 8.2, we assume that a cubic
polynomial model is adequate and test sequentially whether a quadratic
polynomial model or a linear trend model is adequate. When one measure-
ment is observed at each of k distinct values of the input variable, then it
is possible to fit a polynomial of degree (k — 1). However, in this case, the
(k — 1)th degree polynomial will fit the k observations perfectly and the
residual sum of squares will be zero. Therefore, in testing the adequacy of
a polynomial model, it is important to choose a high, but not too high,
order polynomial model.

When replicate measurements are observed at at least one of the values
of the independent variable, an alternative test for the adequacy of the
model can be used. Suppose we have n; replicate measuements at X;, for
1 = 1,...,k. Assume that the X;s are distinct, n; > 1, and at least one
of the n; is strictly greater than 1. In this case, we can fit a (k — 1)th
degree polynomial and the error sum of squares will have Y n; — k degrees
of freedom. Using the (k — 1)th degree polynomial as the full model, we
can test the adequacy of a low-order polynomial model. Let Y;; denote the
jth replicate value of the response variable at the ith value (X;) of the
independent variable. We wish to test the adequacy of the degree ¢(< k)
polynomial model

Yij = Bo+ B1X; 4+ B2 X7 + -+ B X + €. (8.8)
We first fit the full model
Yij = Bo+bBiXi+BoXP 4o+ By X]
+ B X 4+ B X ey (8.9)

and then fit the reduced model in equation 8.8. We use the F-statistic for
testing Ho : Bg4+1 = -+ = Br—1 = 0 to test the adequacy of the model in
equation 8.8. That is, we use the F-statistic

[SS(ReSreduced) - SS(ReSfull)]/(k —-1- q)

o= SS(Resean) /(3 i — k) (8.10)

Testing
Model
Adequacy

Lack of Fit
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_ [Lack-of-Fit Sum of Squares]/(k —1—q) (8.11)
~ [Pure Error Sum of Squares]/(>.n; — k)’ '

We show in Chapter 9 that

Pure Error Sum of Squares = SS(Resguy)

k  n;
o> (Y —Yi)h

i=1j=1

The adequacy of the model in equation 8.8 is rejected if F' is larger than
F(oz;kflftbz ni—k)’

In Example 8.1, we have two replicates each day. That is, we have k = 14
andn; = 2fori =1,...,14. To test the adequacy of a quadratic polynomial
model, we fit the model

Yij = Bo+ B Xi + B2 X7 + €ij (8.12)
to obtain
SS(ReSreduced) = .7984.

The pure-error sum of squares is

14 2
Pure-Error Sum of Squares = Z Z(Yij — ?Z-_)Q

i=1j=1
= .6344
and hence the lack-of-fit sum of squares is
Lack-of-Fit Sum of Squares = .7984 — .6344
.1640.

The value of the F-statistic for testing the adequacy of the quadratic poly-
nomial model (equation 8.12) is

_1640/(14 — 1 -2)

= .329.
6344/(28 — 14)

Since F{os5;11,14) = 2.57, we fail to reject the null hypothesis that the
quadratic model (equation 8.12) is adequate. Also, from Figure 8.2, we
observe that the quadratic polynomial model fits the data reasonably well.
Figure 8.2 also shows the fit from the full model (a 13th degree polynomial).
Even though the full model has smaller residual sum of squares, we observe
that the fitted curve has a considerable number of wild oscillations. These

Example 8.3
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FIGURE 8.2. Algae density data with the fitted quadratic model (solid line) and
fitted 13th degree polynomial model.

fits also indicate that care must be used when interpolating or extrapolat-
ing based on high-order polynomial models. Issues related to extrapolation
are discussed further in Section 8.3.2. |

In Example 8.2, we have observed that the “natural” polynomials X;
X2, and X} are nearly linearly dependent on each other. Such relationships
among the columns of the X matrix lead to multicollinearity problems.
The collinearity problems and diagnostics are discussed in Sections 10.3
and 11.3. When columns are not orthogonal to each other, the sequential
and partial sums of squares of the coefficients will be different. On the other
hand, if the columns are orthogonal, the sequential sums of squares equal
the partial sums of squares.

Consider the cubic polynomial model in equation 8.5 given by

Y = B0+ B Xi + BoXP + B XP + e, i =1,...,14, (8.13)

where X; = i. In this case, the sequential sums of squares R(81|0p) and
R(B2|61 Bo) based on the “natural” polynomials are different from the

partial sums of squares R(01|8y B2 B3) and R(B2|By 1 B3). Define a set of
orthogonal polynomials

Opi = 1,
Oy = 2X;—15,

Orthogonal
Polynomials
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O = 5X2-175X;+20, and (8.14)

5 .
O3; §X§ —37.5X7 + %xi — 340.

Note that Oy;, Og;, and Og; are linear combinations of the “natural” poly-
nomials X;, X2, and X?. Arranging the values of the orthogonal polyno-

mials (i = 1,...,14) from equation 8.14 in a (14 x 4) matrix gives
O = (0Op O, 02 O3)
[1 —13 13 —143 |
1 —11 7T —11
1 -9 2 66
1 -7 =2 98
1 -5 =5 95
1 -3 -7 67
ol EE T (8.15)
1 3 -7 —67
1 5 =5 =95
1 7T -2 =98
1 9 2 —66
1 11 7 11
1 13 13 143

Note that the columns Og, O1, Oz, and O3 in the matrix O are mutually
orthogonal. When the values of X; are equally spaced, orthogonal polyno-
mials may be obtained from tables given in Steel, Torrie, and Dickey (1997).
Regardless of whether X;s are equally spaced, the orthogonal polynomials
can be obtained using the Gram—Schmidt orthogonalization procedure (see
Exercise 2.27) or by a computing program such as the ORPOL function in
PROC IML of SAS (SAS Institute Inc., 1989d).

Given X;, X2, and X3, we can obtain Oy;, Og;, and O3, as linear functions
of X;, X2, and X} (equation 8.14). Also, given Oy;, Og;, and Os;, we can
get back to X;, X2, and X3, using

X, = 75+ .5017;,
X? = 725+7501;+20, and (8.16)
X2 = 78754 98.901; 4 450q; + .6 O3;.

Note that, from equations 8.13 and 8.16, we get

Yi1 Bo —|—ﬁ1(75—|—5 017) +/62(725+75011+2021)
4 B5(7875 498901 + 450 + 603:) + e (8.17)

Yo + 71 O1i + v2 O2i + 73 O3; + €41,
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where
Yo = o+ 7.501+ 72505+ 787.5 03,
o= 5 ﬁl —+ 7552 —|—989537
Y2 = 2(2+450;, and (8.18)
v3 = .60

That is, the model in equation 8.17 is a reparameterization of the model
in equation 8.13. Similarly, using equations 8.14 and 8.17, or by solving
equation 8.18 for the (s, we get

Bo = v0—15v1 +20v — 3403,
698.5
B = 21— 757+ V35
B = .57y —37.573, and (8.19)
5
By = § V3.

That is, the model using X's, equation 8.13, is equivalent to the model using
the orthogonal polynomials, equation 8.17. One of the advantages of work-
ing with orthogonal polynomials is that the columns corresponding to Oq;,
O5;, and Os; are mutually orthogonal and hence avoid numerical problems
associated with the near-singularity. Also, the sequential and partial sums
of squares coincide for the model in equation 8.17. Note also that #3 = 0
if and only if 3 = 0 and (B2 = 3 = 0 if and only if 2 = 73 = 0. Hence,
testing Hp : B3 = 0 and Hy : §3 = (33 = 0 in equation 8.13 is equivalent to
testing Hy : v3 = 0 and Hy : 2 = 3 = 0, respectively, in equation 8.17.

For the data in Example 8.2, we get

Yii = 3.48164 + .19198 O1; — .04179 O; — .00072 Os;
(.03123) (.00387)  (.00433)  (.00037).

Note that the t-statistic for testing Hp : y3 = 0 in equation 8.17 is

_—.00072
T .00037

This is the same as the t-statistic for testing Hy : §3 = 0 in equation 8.13
(Example 8.2). Similarly, the F-statistic for testing Hyp : 72 = 3 = 0 in
equation 8.13 is the same as the F-statistic we have computed for testing
Hy : B2 = B3 = 0 in Example 8.2. However, the t-statistic (—9.649) for
testing Hp : 72 = 0 is not the same as the t-statistic (.418) for testing
Hy : B3 = 0. Using equation 8.18, a test of Hy : 792 = 0 would be the same
as a test of Hy : 203 + 45065 = 0. |

—1.91.

Example 8.4
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TABLE 8.2. Quarterly U. S. beer production from the first quarter of 1975 to the
fourth quarter of 1982 (millions of barrels).

Quarter

Year 1 17 117 v

1975 36.14 44.60 44.15 35.72
1976 36.19 44.63 46.95 36.90
1977 39.66 49.72 44.49 36.54
1978 41.44 49.07 48.98 39.59
1979 44.29 50.09 48.42 41.39
1980 46.11 53.44 53.00 42.52
1981 44.61 55.18 52.24 41.66
1982 47.84 54.27 52.31 42.03

8.2 Trigonometric Regression Models

Measurements on a response variable (Y;) collected over time (t), as in
Example 8.3, are called time series data. Although not present in Example
8.3, such data often display periodic behavior that repeats itself every s
time periods. For example, the average monthly temperatures in Raleigh
may exhibit a periodic behavior that is expected to repeat itself over the
years. That is, the average temperature value for January in one year is
expected to be similar to January values in other years, the February value
in one year is expected to be similar to February values in other years,
and so forth for each month. Economic time series often exhibit periodic
behavior that reflects business cycles. For example, total monthly sales of
greeting cards is expected to be periodic over the years as are total monthly
retail sales and housing starts. Trigonometric functions such as sin(wt) and
cos(wt) are periodic over time with a period of 27 /w. That is, sin(wt) is
the same as sin[w(t + (27 /w)j)] for j = 1,2,.... Hence, time series with
periodic behavior may be modeled parsimoniously using trigonometric
regression models.

Consider, for example, quarterly U. S. beer production from the first
quarter of 1975 to the fourth quarter of 1982 (Table 8.2 and Figure 8.3).
We see that the behavior of the production is periodic and it is repeated
over the years. Production tends to be highest in the second quarter and
lowest in the fourth quarter of each year. A trigonometric regression model
that may be appropriate for these data is given by

Y: = Bo+ B1cos(2nt/4) + PBosin(2nt/4) + B3 cos(mt) + €. (8.20)

The cosine and sine terms appear in pairs. The term sin(7t) is not included
since it is identically zero in this case. The intercept column may also be
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FIGURE 8.3. Quarterly U.S. beer production versus time.

thought of as the cos(0t) term. Note that

cos(2mt/4) = cos(2n(t+ 4j5)/4) = cos(2nt/4 + 2m))

and

sin(2rt/4) = sin(2rw(t +45)/4) = sin(27t/4 + 277)

for any integer j. That is, cos(2wt/4) and sin(27t/4) are periodic with a
period of 4. They take the same value every 4 quarters. On the other hand,

cos(mt) = cos(m(t + 25)) = cos(2nt/2 + 27j)

for any integer j and, hence, it has a period of 2. That is, it takes the same
value, 1 or —1, every 2 quarters. Note that this model (equation 8.20) is
a special case of the multiple regression model with X;; = cos(27t/4),
X2 = sin(2wt/4), and X3 = cos(mwt).
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The X-matrix for this model (equation 8.20) is given by

1 0 1 -1
1 -1 0 1
1 0 -1 —1
1 1 0 1
1 0 1 -1
1 -1 0 1

x=|1 0 -1 -1 (8.21)
1 1 0 1
1 0 1 -1
1 -1 0 1
1 0 -1 -1
11 0 1|

Note that the columns of X in equation 8.21 are mutually orthogonal and
the X’ X matrix is given by

32 0 0 0
'e | 016 0 0
XX=1 9 016 o

0 0 0 32

In addition to the periodic behavior, Figure 8.3 shows an increasing trend
in beer production over time. A more appropriate model would account for
a time trend by including the term 6t in the trigonometric model, equa-
tion 8.20, where ¢ is the linear regression coefficient for the average change
in beer production per year. In this case, X’X is no longer a diagonal
matrix.

For monthly data like the average temperatures or average river flow
measures that exhibit periodic behavior every 12 months, a model of the
form

5

Yi=a0+ Z [a; cos(2mjt/12) + b; sin(2mjt/12)] + ag cos(nt) + € (8.22)
j=1

may be appropriate. The trigonometric functions
cos(2mjt/12) and sin(2mjt/12), j=1,...,6,

are periodic with a period of 12/j. That is, they have the same value every
12/j months. As in the beer production example, the cosine and sine terms
appear as pairs at each frequency. An interpretation of the coefficients a;
and b; in terms of the phase angle of the trend and the period is given in
Anderson (1971).
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The trigonometric regression model in equation 8.22 is also a special
case of the multiple linear regression model. Suppose we have data on
the average monthly temperatures for the period January 1987 through
December 1996. Then the X’'X matrix for the model in equation 8.22
is a 12 x 12 diagonal matrix with diagonal elements 120, 60, 60,..., 60,
120. That is, the columns of the X-matrix are mutually orthogonal. This
orthogonality stems from the fact that the data cover complete cycles of the
anticipated periodicity. If our data had included the averages for January
1997 through May 1997, a partial cycle, the columns of the X-matrix would
no longer be orthogonal. Orthogonality of the columns of the X-matrix
makes it simple to obtain the least squares estimators of the parameters.
For this model (equation 8.22), with 10 years of data, the least squares
estimators of a; and b; are given by

1 120
aO = Tan th = 75
120
t=1
120
a; = — cos(2mjt/12)Y;, j=1,...,5,
60
t=1
. 1 120
b, = @;sin(mt/lz)n j=1,...,5 and (8.23)
1 120
g = — ()Y
ag 120;005(7{1) f

The residual mean square error for this model (equation 8.22) is

L, Y2 - 12088 — 60 [ijl(af +3§)] 1202
7= 120 — 12 ’ (8.24)

where > Y,? — 120a% = > Y2 — nY” is seen to be the corrected total sum
of squares.

As in the case of multiple regression models, ¢- and F-statistics can be
used to test hypotheses regarding the significance of certain parameters.
For example, to test the hypothesis Hy : ag = 0, we use the t-statistic

p= 96 (8.25)
/62 /120
and reject Hy : ag = 0if [t| > (4 /2;108). Similarly, to test the null hypothesis
Hy : a5 = by = 0 (that is, no periodic component of period 12/5 months),
we use the F-statistic

60 [52 +3§] /2

F= = (8.26)
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and reject Ho : a5 = bs = 0 if F' > F{4,2,108)- In trigonometric regression
models, it is appropriate to test a; = b; = 0 simultaneously, since, as a
pair, they correspond to a periodic component of period 12/j months.

The assumption that the errors €; in equation 8.22 are independent over
time may not be realistic for time series data. For example, the tempera-
tures in different months may be correlated with each other. If the errors are
correlated, the ordinary least squares estimators may not be efficient. Also,
the standard errors and the test statistics constructed under the assump-
tion of independent errors may not be valid when the errors are correlated.
We discuss in Chapter 10 appropriate methods when the assumptions are
violated.

8.3 Response Curve Modeling

8.3.1 Considerations in Specifying the Functional Form

The degree of realism that needs to be incorporated into a model will
depend on the purpose of the regression analysis. The least demanding
purpose is the simple use of a regression model to summarize the observed
relationships in a particular set of data. There is no interest in the func-
tional form of the model per se or in predictions to other sets of data or
situations. The most demanding is the more esoteric development of math-
ematical models to describe the physical, chemical, and biological processes
in the system. The goal of the latter is to make the model as realistic as
the state of knowledge will permit.

The use of regression models simply to summarize observed relationships
places no priority on realism because no inference, even to other samples,
is intended. The overriding concern is that the model adequately portray
the observed relationships. In practice, however, readers will often attach
a predictive inference to the presentation of regression results, even if the
intent of the author is simply to summarize the data.

When the regression equation is to be used for prediction, it is bene-
ficial to incorporate into the model prior information on the behavior of
the system. This serves certain goals. First, other things being equal, the
more realistic model would be expected to provide better predictions for
unobserved points in the X-space, either interpolations or extrapolations.
Although extrapolations are always dangerous and are to be avoided, it is
not always easy, particularly with observational data, to identify points out-
side the sample space. Realistic models will tend to provide more protection
against large errors in unintentional extrapolations than purely approxi-
mating models. Second, incorporating current beliefs about the behavior
of the system into the model provides an opportunity to test and update
these theories.

Regression to
Summarize
Data

Regression for
Prediction
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The prior information used in the model may be nothing more than
recognizing the general shape the response curve should take. For example,
it may be that the response variable should not take negative values, or
the response should approach an asymptote for high or low values of an
independent variable. Recognizing such constraints on the behavior of the
system will often lead to the use of nonlinear models. In some cases, these
(presumably) more realistic models will also be simpler models in terms of
the number of parameters to be estimated. A response with a plateau, for
example, may require several terms of a polynomial model to fit the plateau,
but might be characterized very well with a two-parameter exponential
model. Polynomial models should not a priori be considered the simpler
and nonlinear models the more complex. Models that are nonlinear in the
parameters are discussed in Chapter 15.

At the other extreme, prior information on the behavior of a system may
include minute details on the physical and chemical interactions in each of
several different components of the system and on how these components
interact to produce the final product. Such models can become extremely
complex and most likely cannot be written as a single functional relation-
ship between £(Y) and the independent variables. Numerical integration
may be required to evaluate and combine the effects of the different com-
ponents. The detailed crop growth models that predict crop yields based
on daily, or even hourly, data on the environmental and cultural conditions
during the growing season are examples of such models. The development
of such models is not pursued in this text. They are mentioned here as
an indication of the natural progression of the use of prior information in
model building.

8.3.2  Polynomial Response Models

The models previously considered have been first-degree polynomial mod-
els, models in which each term contains only one independent variable to
the first power. The first-degree polynomial model in two variables is

Yi= 0o+ 61X + B2 Xio + €. (8.27)

A second-degree polynomial model includes terms, in addition to the first-
degree terms, that contain squares or products of the independent variables.
The full second-degree polynomial model in two variables is

Y; = Bo+ b1 X + BoXio + P11 XE + BraXii Xjo + Boa X5 + €. (8.28)

The degree (or order) of an individual term in a polynomial is defined
as the sum of the powers of the independent variables in the term. The
degree of the entire polynomial is defined as the degree of the highest-
degree term. All polynomial models, regardless of their degree, are linear
in the parameters. For the higher-degree polynomial models, the subscript

Use of Prior
Information

Degree of a
Polynomial
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FIGURE 8.4. A first-degree bivariate polynomial response surface.

notation on the s is expanded to reflect the degree of the polynomial
term. In general, the number of 1s and the number of 2s in the subscript
identify the powers of X; and Xa, respectively, in the polynomial term.
For example, the two 1s identify (11 as the regression coefficient for the
second-degree term in X;.

The higher-degree polynomial models provide greatly increased flexibil-
ity in the response surface. Although it is unlikely that any complex process
will be truly polynomial in form, the flexibility of the higher-degree poly-
nomials allows any true model to be approximated to any desired degree
of precision.

The increased flexibility of the higher-degree polynomial models is illus-
trated with a sequence of polynomial models containing two independent
variables. The first-degree polynomial model, equation 8.1, uses a plane to
represent £(Y;). This surface is a “table top” tilted to give the slopes 31 in
the X, direction and Bg in the X, direction (Figure 8.4).

The properties of any response equation can be determined by observing
how £(Y) changes as the values of the independent variables change. For
the first-degree polynomial, equation 8.27, the rate of change in £(Y) as
X is changed is the constant (3, regardless of the values of X; and Xs.
Similarly, the rate of change in £(Y) as X5 changes is determined solely
by (2. The changes in £(Y') as the independent variables change are given
by the partial derivatives of £(Y") with respect to each of the independent
variables. For the first-degree polynomial, the partial derivatives are the

First-Degree
Polynomial
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constants 41 and [o:

AE(Y)

X, f1, and
oY) _
. = (8.29)

The partial derivative with respect to X; gives the slope of the surface, or
the rate of change in £(Y’), in the X direction.

The polynomial model is expanded to allow the rate of change in £(Y)
with respect to one independent variable to be dependent on the value of
that variable by including a term that contains the square of the variable.
For example, adding a second-degree term in X; to equation 8.27 gives

Yi = Bo+ b1 X + BuX{ + B Xz + €. (8.30)

The partial derivatives for this model are

85)((};) = Bi1+28uXa
GE(Y)
o, = B (8.31)

Now the rate of change in £(Y) with respect to X; is a linear function
of X7, increasing or decreasing according to the sign of 11. The rate of
change in £(Y) with respect to X, remains a constant (5. Notice that
the meaning of 31 is not the same in equation 8.30 as it was in the first-
degree polynomial, equation 8.27. Here (; is the slope of the surface in the
X direction only where X7 = 0. The nature of this response surface is
illustrated in Figure 8.5.

The rate of change in £(Y) with respect to one independent variable
can be made dependent on another independent variable by including the
product of the two variables as a term in the model:

Y = Bo + f1Xi1 + foXio + P12 X Xio + €. (8.32)

The product term (312 X;1 X2 is referred to as an interaction term. It
allows one independent variable to influence the impact of another. The
derivatives are

0E(Y

&;(1) = (1 + P12Xi2, and

0E(Y

a§(2) = ﬂ2 + ﬂlQXil. (833)

The rate of change in £(Y) with respect to X; is now dependent on Xo
but not on X7, and vice versa. Notice the symmetry of the interaction effect;

Second-Degree
Polynomial

Interaction
Term
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Slope at X, = x,

X

FIGURE 8.5. A polynomial response surface that is of second degree in X1 and
first degree in Xs.

both partial derivatives are influenced in the same manner by changes in
the other variable. This particular type of interaction term is referred to as
the linear-by-linear interaction, because the linear slope in one variable
is changed linearly (at a constant rate) by changes in the other variable
and vice versa. This response function gives a “twisted plane” where the
response in E(Y) to changes in either variable is always linear but the
slope is dependent on the value of the other variable. This linear-by-linear
interaction is illustrated in Figure 8.6 with the three-dimensional figure
in part (a) and a two-dimensional representation showing the relationship
between Y and X; for given values of Xs. The interaction is shown by the
failure of the three lines in (b) to be parallel.

The full second-degree bivariate model includes all possible second-degree
terms as shown in equation 8.28. The derivatives with respect to each
independent variable are now functions of both independent variables:

AE(Y)
X,
AE(Y
an

= (1 +2B811Xi1 + B12X42, and

~

B2 + 2622 Xi2 + P12 X (8.34)

The squared terms allow for a curved response in each variable. The product
term allows for the surface to be “twisted” (Figure 8.7). 81 and (35 are the
slopes of the response surface in the X; and X5 directions, respectively, only
at the point X; = 0 and Xy = 0. A quadratic response surface will have a
maximum, a minimum, or a saddle point, depending on the coefficients in

Full Second-
Degree Bivari-
ate Model
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FIGURE 8.6. Bivariate response surface (a) with interaction and (b) a

two-dimensional representation of the surface.
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FIGURE 8.7. A bivariate quadratic response surface with a maximum.



8.3 Response Curve Modeling 255

/

X;
FIGURE 8.8. A polynomial response surface with a third-degree term in Xi.

the regression equation. The reader is referred to Box and Draper (1987) for
a discussion of the analyis of the properties of quadratic response surfaces.
The computer program PROC RSREG (SAS Institute Inc., 1989b) fits
a full quadratic model to a set of data and provides an analysis of the
properties of the response surface.

The flexibility of the polynomial models is demonstrated by showing the
effects of a third-degree term for one of the variables. For example, consider
the model

Y = Bo + S1Xi1 + BoXiz + Bui XA + Binn X + €. (8.35)

The partial derivative with respect to X; is now a quadratic function of
X 1:

AE(Y)

T-Xl =061+ 2611 Xi1 + 3ﬂ111XZ-21. (8.36)

The derivative with respect to X5 is still #5. An example of this response
surface is shown in Figure 8.8. The full third-degree model in two variables
would include all combinations of X; and X5 with sums of the exponents
equal to 3 or less.

Increasingly higher-degree terms can be added to the polynomial re-
sponse model to give an arbitrary degree of flexibility. Any continuous
response function can be approximated to any level of precision desired by
a polynomial of appropriate degree. Thus, an excellent fit of a polynomial
model (or, for that matter, any model) cannot be interpreted as an indica-
tion that it is in fact the true model. Due to this extreme flexibility, some
caution is needed in the use of polynomial models; it is easy to “overfit”

Third-Degree
Polynomial

Flexibility of
Polynomials
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a set of data with polynomial models. Nevertheless, polynomial response
models have proven to be extremely useful for summarizing relationships.

Polynomial models can be extended to include any number of indepen-
dent variables. Presenting a multivariate response surface so it can be visu-
alized, however, becomes increasingly difficult. Key features of the response
surface (maxima, minima, inflection points) can be determined with the
help of calculus. Two- or three-dimensional plots of “slices” of the multi-
variate surface can be obtained by evaluating the response surface equation
at specific values for all independent variables other than the ones of inter-
est.

Extrapolation is particularly dangerous when higher-degree polynomial
models are being used. The highest degree term in each independent vari-
able eventually dominates the response in that dimension and the surface
will “shoot off” in either the positive or negative direction, depending on
the sign of the regression coefficient on that term. Thus, minor extrapola-
tions can have serious errors. See Figure 8.2 for an example.

Fitting polynomial response models with least squares introduces no new
conceptual problems. The model is still linear in the parameters and, as
long as the usual assumptions on € are appropriate, ordinary least squares
can be used. The higher-degree terms are included in the model by aug-
menting X with columns of new variables defined as the appropriate pow-
ers and products of the independent variables and by augmenting 3 with
the respective parameters. The computational problems associated with
collinearity are aggravated by the presence of the higher-degree terms be-
cause X, X2, X3, and so on are often highly collinear. To help alleviate
this problem, orthogonal polynomials as discussed in Section 8.1 can be
used (Steel, Torrie, and Dickey, 1997) or each independent variable can be
centered before the higher-degree terms are included in X. For example,
the quadratic model

Y; = Bo + Bi1Xi1 + BoXio + Br1 X3 + BoaXp + P12 X Xio + € (8.37)
becomes

Y, = v+mXa—X1)+72Xie - X2)+71(Xa —Xa)?
+ Y22( X2 — X 2)? + 712(Xi1 — X 1)(Xiz — X 2) + €. (8.38)

Centering the independent variables changes the definition of the regression
coefficients for all but the highest-degree terms. For example, v; and 5 are
the rates of change in £(Y) in the X; and X5 directions, respectively, at
X, = X1 and Xy = X, whereas 5; and (3 are the rates of change
at X7 = Xy = 0. The relationship between the two sets of regression
coefficients is obtained by expanding the square and product terms in the
centered model, equation 8.38, and comparing the coefficients for similar
polynomial terms with those in the original model, equation 8.37. Thus,

. — 2 2 [
Bo = vo-—nXi1—Xaot X +7202X,+712X1X 0,
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B = m—2mX1—72Xo,
Ba = y2—2722X2— 72X 1, (8.39)
Bt = M1, B22 = Vo2, and P12 = Y12

When the sample X-space does not include the origin, the parameters for
the centered model are more meaningful because they relate more directly
to the behavior of the surface in the region of interest.

The polynomial model is built sequentially, starting either with a first-
degree polynomial and adding progressively higher-order terms as needed,
or with a high-degree polynomial and eliminating the unneeded higher-
degree terms. The lowest-degree polynomial that accomplishes the degree
of approximation needed or warranted by the data is adopted. The error
term for the tests of significance at each stage must be an appropriate
independent estimate of error, preferably estimated from true replication if
available. Otherwise, the residual mean square from a model that contains
at least all the terms in the more complex model being considered is used
as the estimate of error.

It is common practice to retain in the model all lower-degree terms,
regardless of their significance, that are contained in, or are subsets of, any
significant term. For example, if a second-degree term is significant, the
first-degree term in the same variable would be retained even if its partial
regression coefficient is not significantly different from zero. If the X2X2
term is significant, the X7, Xo, X2X,, X7 X2, and X;X» terms would be
retained even if nonsignificant.

The argument for retaining lower-order terms even if not significant is
based on these points. First, the meanings and values of the regression
coefficients on all except the highest-degree terms change with a simple
shift in origin of the independent variables. Recall that reexpressing the
independent variables as deviations from their means in a quadratic model
changed the meaning of the coefficient for each first-degree term. Thus,
the significance or nonsignificance of a lower-order term will depend on the
choice of origin for the independent variable during the analysis. A lower-
order term that might have been eliminated from a regression equation
because it was nonsignificant could “reappear,” as a function of the higher-
order regression coefficients, when the regression equation was reexpressed
with different origins for the independent variables.

Second, eliminating lower-order terms from a polynomial tends to give
biased interpretations of the nature of the response surface when the result-
ing regression equation is studied. For example, eliminating the first-degree
term from a second-degree polynomial forces the critical point (maximum,
minimum, or saddle point) of the fitted response surface to occur precisely
at X = 0. (The critical point on a quadratic response surface is found by
setting the partial derivatives equal to zero and solving for the values of the
independent variable.) For the second-degree polynomial in one variable,
the critical point is X = —f1/(2611), which is forced to be zero if the first-
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degree term has been dropped from the model (8; = 0). Even though £,
may not be significantly different from zero, it would be more informative
to investigate the nature of the response surface before such constraints are
imposed. The position of the critical point could then be estimated with
its standard error and appropriate inferences made.

These arguments for retaining all lower-degree polynomial terms apply
when the polynomial model is being used as an approximation of some
unknown model. They are not meant to apply to the case where there is
a meaningful basis for a model that contains a higher-order term but not
the lower-order terms. The development of a prediction equation for the
volume of timber from information on diameter and height of the trees
provides an illustration. Geometry would suggest that volume should be
nearly proportional to the product of (diameter)? and height. Consequently,
a model without the lower-order terms, diameter and diameter x height,
would be realistic and appropriate.

A study of the effects of salinity, temperature, and dissolved oxygen on
the resistance of young coho salmon to pentachlorophenate is used to illus-
trate the use of polynomial models [Alderdice (1963) used with permission].
The study used a 3-factor composite design in two stages to estimate the
response surface for median survival time (V") following exposure to 3 mg/1
of sodium pentachlorophenate. The treatment variables were water salinity,
temperature, and dissolved oxygen content. The first 15 trials (2 replicates)
used a 2% design of the 3 factors plus the six axial points and the center
point (Table 8.3). The last 10 trials were a second-stage study to improve
the definition of the center of the response surface. The basic levels of the
3 factors were 9, 5, and 1% salinity; 13, 10, and 7°C temperature; and 7.5,
5.5, and 3.5 mg/1 dissolved oxygen. The independent variables were coded
as follows.

X; = (salinity — 5%)/4,
Xo = (temperature — 10°C)/3, and
X3 = (dissolved oxygen — 5.5mg/1)/2.

The dependent variable, median lethal time, was computed on samples of
10 individuals per experimental unit. The treatment combinations and the
observed responses are given in Table 8.3.

It was verified by Alderdice (1963), using the first 15 trials for which there
was replication, that a quadratic polynomial response model in the three
independent variables was adequate for characterizing the response surface.
The replication provided an unbiased estimate of experimental error, which
was used to test the lack of fit of the quadratic polynomial. Alderdice then
fit the full quadratic or second-degree polynomial model to all the data and
presented interpretations of the trivariate response surface equation.

Example 8.5
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TABLE 8.3. Treatment combinations of salinity (X1), temperature (X2), and
dissolved ozygen (X3), and median lethal time for exposure to 3 mg/l of sodium
pentachlorophenate. [Data from Alderdice (1963), and used with permission.]

Salinity  Temperature Oxygen  Median Lethal Time

Trial X, X5 X3 Rep 1 Rep 2
1 -1 -1 -1 53 50
2 -1 —1 1 54 42
3 —1 1 —1 40 31
4 -1 1 1 37 28
5 1 -1 -1 84 57
6 1 -1 1 76 78
7 1 1 -1 40 49
8 1 1 1 50 54
9 0 0 0 50 50

10 1.215 0 0 61 76
11 —1.215 0 0 54 45
12 0 1.215 0 39 33
13 0 —1.215 0 67 54
14 0 0 1.215 44 45
15 0 0 —1.215 61 38
16 —1.2500 —1.8867 —.6350 46
17 .8600 —2.2200 —.4250 66
18 1.0000 —2.2400 —.3100 68
19 2.1165 —2.4167 —.1450 75
20 2.5825 —2.4900 —.0800 75
21 3.2475 —2.6667 .0800 68
22 1.1760 —1.3333 0 78
23 1.4700 —1.6667 0 93
24 1.7640 —2.0000 0 96
25 2.0580 —2.3333 0 66
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TABLE 8.4. Partial regression coefficients for the full second-degree poly-
nomial model in three variables for the Alderdice (1963) data.

Term Bj s(6;) Student’s t*
X3 9.127 1.772 5.151
Xs —9.852 1.855 —5.312
X3 .263 1.862 141
X? —1.260 1.464 —.861
X3 —6.498 2.014 —3.225
X3 —2.985 2.952 —1.011
X1Xo —.934 1.510 —.618
X1X3 2.242 2.150 1.042
X9 X5 —.139 2.138 —.065
%The estimate of o2 from this model was s2 = 76.533 with 28 degrees of
freedom.

For this example, the full set of data is used to develop the simplest
polynomial response surface model that adequately represents the data.
Since the full quadratic model appears to be more than adequate, that
model is used as the starting point and higher-degree terms are eliminated
if nonsignificant. In addition to the polynomial terms, the model must
include a class variable “REP” to account for the differences between the
two replications in the first stage and between the first and second stages.
Thus, the full quadratic model is

Yij = p+pi+ BiXij1 + B2 Xijo + B3 Xijs + Bri X[ + P22 Xy + B33 Xs
+ P12 Xij1 X2 + B13Xij1 Xij3 + B2z Xije Xijs + €, (8.40)

where p; is the effect of the ith “rep,” i = 1,2 labels the two replications
in stage one, i = 3 labels the trials in the second stage, and j designates
the observation within the replication. This model allows each rep to have
its own level of performance but requires the shape of the response surface
to be the same over replications. The presence of the replication effects
creates a singularity in X and methods of handling this are discussed in
Chapter 9. For this example, we avoid the singularity by letting p; = p +
pi,t = 1,2,3. Thus, X for the full-rank model consists of three columns
of indicator variables, 0 or 1, identifying to which of the three replications
the observation belongs, followed by nine columns of X7, X5, X3, and their
squares and products. The partial regression coefficients, their standard
errors, and the t-statistics for this full model are given in Table 8.4.
Several of the partial regression coefficients do not approach significance,
t(.05/2,28) = 2.048; at least some terms can be eliminated from the model.
It is not a safe practice, however, to delete all nonsignificant terms in one
step unless the columns of the X matrix are orthogonal. The common

Quadratic
Model
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FIGURE 8.9. Bivariate response surface relating survival time of coho salmon
exposed to 3 mg/l of sodium pentachlorophenate to water temperature and water
salinity. There was no significant effect of dissolved ozygen (Xs). [Data from
Alderdice (1963); used with permission].

practice with polynomial models is to eliminate the least important of the
highest-degree terms at each step. In this example, the X5 X3 term would
be dropped first. Notice that X3 is retained in the model at this stage, even
though it has the smallest t-value, because there are higher-order terms in
the model that contain Xj.

The subsequent steps consist of dropping X Xo, X1 X3, X12,X§7 and, fi-
nally, X3 in turn. The final polynomial model is

Yi; = i + 1 Xij1 + BoXijo + /622X7;2jg + €. (8.41)

The residual mean square for this model is 69.09 with 34 degrees of free-
dom. (The estimate of experimental error from the replicated data is 62.84
with 14 degrees of freedom.) The regression equation, using the weighted
average, 59.92, of the estimates of y; is

Y = 59.92+9.21X; — 9.82X, — 6.896 X3 (8.42)
(2.85) (1.72)  (1.76)  (1.56).

The standard errors of the estimates are shown in parentheses. Thus, within
the limits of the observed values of the independent variables, survival time
of coho salmon with exposure to sodium pentachlorophenate is well repre-
sented by a linear response to salinity, and a quadratic response to tem-
perature (Figure 8.9, page 261). There is no significant effect of dissolved
oxygen on survival time and there appear to be no interactions among the

Final Model



262 8. POLYNOMIAL REGRESSION

three environmental factors. The linear effect of salinity is to increase sur-
vival time 9.2 minutes per coded unit of salinity, or 9.2/4 = 2.3 minutes per
percent increase in salinity. The quadratic response to temperature has a
maximum at Xo = —f5/(2022) = —.71, which is 7.9°C on the original tem-
perature scale. (The variance of the estimated maximum point is obtained
by using the linear approximation of the ratio of two random variables.
This is discussed in Chapter 15, for the more general case of any nonlinear
function with nonlinear models.)

The maximum survival times with respect to temperature for given val-
ues of salinity are shown with the line on the surface connecting the open
circles at Xy = —.71. The investigated region appears to contain the maxi-
mum with respect to temperature, but the results suggest even higher salin-
ities will produce greater survival. The linear response to salinity cannot
continue without limit. Using the original full quadratic model to inves-
tigate the critical points on the response surface, Alderdice (1963) found
a maximum at X; = 3.2 (salinity = 17.8%), X3 = —1.7 (temperature =
4.9°C), and X3 = 1.1 (dissolved oxygen = 7.7 mg/1). These critical points
are near the limits of the sample X-space and should be used with caution.
Tests of significance indicate that the data are not adequate to support a
statement on curvature with respect to salinity or on even a linear response
with respect to dissolved oxygen. |

8.4 Exercises

8.1. The critical point (maximum or minimum) on a quadratic response
curve is that point where the tangent to the curve has slope zero.
Plot the equation

Y =10+25X — .5X2

and find the value of X where the tangent to the curve has slope zero.
Is the point on the response curve a maximum or a minimum? The
derivative of Y with respect to X is dY/dX = 2.5 — 1.0X. Solve for
the value of X that makes the derivative equal to zero. How does this
point relate to the value of X where the tangent was zero?

8.2. Change the quadratic equation in Exercise 8.1 to
Y =104 25X + .5X2.

Again, plot the equation and find the value of X where the tangent
to the curve has slope zero. Is this point a maximum or minimum?
What characteristic in the quadratic equation determines whether
the critical point is a maximum or a minimum?
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The critical point on a bivariate quadratic response surface is a max-
imum, minimum, or saddle point. Plot the bivariate polynomial

Y =10 — X; +4X, + .25X7 — .5X3

over the region 0 < X; < 5 and 2 < X3 < 6. Visually locate the
critical point where the slopes of the tangent lines in the X; direction
and the X5 direction are zero. Is this point a maximum, a minimum,
or a saddle point? Now use the partial derivatives to find this critical
point.

Assume you have fit the following cubic polynomial to a set of growth
data where X ranged from 6 to 20.

Y =50 — 20X +2.5X2 — .0667X°>.

Plot the response equation over the interval of the data. Does it ap-
pear to have a reasonable “growth” form? Demonstrate the sensitiv-
ity of the polynomial model to extrapolation by plotting the equation
over the interval X =0 to X = 30.

You have obtained the regression equation Y = 40 — .5X? over the
interval —5 < X < 5, where X = ( temperature in °F—95). Assume
the partial regression coefficient for the linear term was not signifi-
cant and was dropped from the model. Reexpress the regression equa-
tion in degrees centigrade, °C = 5(°F—32)/9. Find the conversion of
X = (°F—-95) to °C and convert the regression equation. What is
the linear regression coefficient in the converted equation? What do
you conclude about this linear regression coefficient being different
from zero if the coefficient on X2, the .5, in the original equation is
significantly different from zero?

The first four columns of the following data give the average pre-
cipitation (inches averaged over 30 years) in April and May for five
western U. S. cities and five eastern U. S. cities. (Source: 1993 Al-
manac and Book of Facts. Pharos Books, Scripps Howard Company,
New York.) The last three columns include numbers we use later in
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the exercise.

Coast  City April  May Sg Xg Xw
East  Albany, N. Y. 29 33 1 29 0
East  Washington, D.C. 3.1 36 1 31 0
East  Jacksonville, Fla. 3.3 49 1 3.3 0
East  Raleigh, N.C. 2.9 3.7 1 29 0
East  Burlington, Vt. 28 3.0 1 2.8 0
West  Los Angeles, Ca. 1.2 2 0 0 1.2
West ~ Seattle, Wash. 24 1.6 0 0 2.4
West  Portland, Ore. 2.3 21 0 0 2.3
West  San Diego, Ca. 26 1.5 0 0 26
West  Fresno, Ca. 1.2 3 0 0 1.2

(a)

(b)

Plot May precipitation versus April using E and W as plot sym-
bols to represent the coasts. What do you conclude from the
plot? Is it appropriate to fit a single straight line for both coasts?

Regress the May precipitation on the April precipitation for each
region. Add together the error sums of squares and refer to this
as the full model residual sum of squares where the full model
allows two different slopes and two different intercepts. Compute
the difference in the two slopes and in the two intercepts.

Now, regress the May precipitation on the April precipitation
using all n = 10 points. The error sum of squares here is the re-
duced model residual sum of squares. The reduced model forces
the same intercept and slope for the two groups. Compare the
full to the reduced model using an F-test. What degrees of free-
dom did you use?

Run a multiple regression of May precipitation on columns Sg,
Xg, and Xy. What do the coefficients on Xg and Xy repre-
sent? Have you seen these numbers before? How about the error
sum of squares and the coefficient on Sg? Write out the X ma-
trix for this regression. What would happen to the rank of X if
we appended the column of 10 April precipitation numbers to
it?

Finally run a multiple regression of May precipitation on April
precipitation, Sg, and Xpg. Write out the X matrix for this
regression. Compute the F-test for the hypothesis that Sg and
Xpg can be omitted from this model. Have you seen this test
before? The coefficient on Xg in this regression estimates the
difference of the two slopes in (b) and thus can be used to test
the hypothesis of parallel lines. Test the hypothesis that the lines
have equal slopes. Omission of Sg from this model produces
two lines emanating from the same origin. Test the hypothesis
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that both lines have the same intercept (with possibly different
slopes).

8.7 You are given the accompanying response data on concentration of a
chemical as a function of time. The six sets of observations Y7 to Y
represent different environmental conditions.

Time ( h ) Yl }/2 YE; Y4 Y5 YG

6 .38 .20 .34 43 .10 .26
12 .74 .34 .69 .82 .16 48
24 .84 b1 .74 .87 18 b1
48 .70 41 .62 .69 19 44
72 43 .29 43 .60 15 33

(a) Use cubic polynomial models to relate Y = concentration to

(c)

8.8 The

X = time, where each environment is allowed to have its own
intercept and response curve. Is the cubic term significant for any
of the environments? [For the purposes of testing homogeneity

in Part (c), retain the minimum-degree polynomial model that
describes all responses.|

Your knowledge of the process tells you that Y must be zero
when X = 0. Test the composite null hypothesis that the six
intercepts are zero using the model in Part (a) as the full model.
What model do you adopt based on this test?

Use the model determined from the test in Part (b) and test the

homogeneity of the six response curves. State the conclusion of
the test and give the model you have adopted at this stage.

data in the table are from a growth experiment with blue-green

algae Spirulina platensis conducted by Linda Shurtleff, North Car-
olina State University (data used with permission). These treatments
were determined by the amount of “aeration” of the cultures:

. no shaking and no CO5 aeration;
. COs bubbled through the culture;

continuous shaking of the culture but no COs; and

CO3 bubbled through the culture and continuous shaking of the
culture.

There were two replicates for each treatment, each consisting of 14 in-
dependent solutions. The 14 solutions in each replicate and treatment

were

randomly assigned for measurement to 1 of each of the 14 days

of study. The dependent variable reported is a log-scale measurement
of the increased absorbance of light by the solution, which is inter-
preted as a measure of algae density. The readings for DAY S = 0
are a constant zero and are to be omitted from the analyses.
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Growth experiment with blue-green algae.

Treatment

Time Control COy

(days) Rep I Rep 2 Rep 1 Rep 2
0 0 0 0 0
1 .220 482 .530 .184
2 .555 .801 1.183 .664
3 1.246 1.483 1.603 1.553
4 1.456 1.717 1.994 1.910
5 1.878 2.128 2.708 2.585
6 2.153 2.194 3.006 3.009
7 2.245  2.639 3.867 3.403
8 2.542  2.960 4.059 3.892
9 2.748  3.203 4.349 4.367
10 2.937 3.390 4.699 4.551
11 3.132  3.626 4.983 4.656
12 3.283  4.003 5.100 4.754
13 3.397 4.167 5.288 4.842
14 3.456  4.243 5.374 4.969

Treatment

Time Shaking COy + Shaking

(days) Rep 1 Rep 2 Rep 1 Rep 2
0 0 0 0 0
1 .536 531 .740 .638
2 974 .926 1.251 1.143
3 1.707 1.758 2.432 2.058
4 2.032 2.021 3.054 2.451
5 2.395 2.374 3.545 2.836
6 2.706  2.933 4.213 3.296
7 3.009 3.094 4.570 3.594
8 3.268  3.402 4.833 3.790
9 3.485 3.564 5.074 3.898
10 3.620 3.695 5.268 4.028
11 3.873 3.852 5.391 4.150
12 4.042 3.960 5.427 4.253
13 4.149 4.054 5.549 4.314
14 4.149 4.168 5.594 4.446
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(a) Use quadratic polynomials to represent the response over time.
Fit a model that allows each treatment to have its own intercept
and quadratic response. Then fit a model that allows each treat-
ment to have its own intercept but forces all to have the same
quadratic response. Use the results to test the homogeneity of
the responses for the four treatments. (Note: Use the residual
mean square from the analysis of variance as your estimate of
02.) Use the quadratic model you have adopted at this point
and define a reduced model that will test the null hypothesis
that all intercepts are zero. Complete the test and state your
conclusions.

(b) The test of zero intercepts in Part (a) used quadratic polynomi-
als. Repeat the test of zero intercepts using cubic polynomials
for each treatment. Summarize the results.

8.9 Assigning a visual volume score to vegetation is a nondestructive
method of obtaining measures of biomass. The volume score is the
volume of space occupied by the plant computed according to an ex-
tensive set of rules involving different geometric shapes. The accom-
panying data on volume scores and biomass dry weights for grasses
were obtained for the purpose of developing a prediction equation for
dry weight biomass based on the nondestructive volume score. (Data
were provided by Steve Byrne, North Carolina State University, and
are used with permission.)

Volume Dry Wt. Volume Dry Wt.
5 0.8 1,753 3.4

1,201 2.2 70, 300 107.6
108,936 87.5 62,000 42.3
105,000 94.4 369 1.0
1,060 4.2 4,100 6.9
1,036 0.5 177,500 205.5
33,907 67.7 91,000 120.9
48,500 72.4 2,025 5.5
314 0.6 80 1.3
1,400 3.9 54,800 110.3
46,200 87.7 51,000 26.0
76,800 86.8 55 3.4
24,000 57.6 1,605 3.4
1,575 0.5 15,262 32.1
9,788 20.7 1,362 1.5
5,650 15.1 57,176 85.1
17,731 26.5 25,000 50.5

38,059 9.3
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Use a polynomial response model to develop a prediction equation
for Y = (dry Weight)l/2 on X = In(volume + 1). What degree poly-
nomial do you need? Would it make sense in this case to force the
origin to be zero? Will your fit to the data still be satisfactory if you
do?
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CLASS VARIABLES IN
REGRESSION

In all previous discussions, the independent variables
were continuous or quantitative variables. There are
many situations in which this is too restrictive.

This chapter introduces the use of categorical or class
variables in regression models. The use of class vari-
ables broadens the scope of regression to include the
classical analysis of variance models and models con-
taining both continuous and class variables, such as
analysis of covariance models and models to test ho-
mogeneity of regressions over groups.

To this point, only quantitative variables have been used as independent
variables in the models. This chapter extends the models to include qual-
itative (or categorical) variables. Quantitative variables are the result of
some measurement such as length, weight, temperature, area, or volume.
There is always a logical ordering attached to the measurements of such
variables. Qualitative variables, on the other hand, identify the state, cat-
egory, or class to which the observation belongs, such as hair color, sex,
breed, or country of origin. There may or may not be a logical ordering to
the classes. Such variables are called class variables.

Class variables greatly increase the flexibility of regression models. This
chapter shows how class variables are included in regression models with
the use of indicator variables or dummy variables. The classical anal-
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yses of variance for the standard experimental designs are then shown to be
special cases of ordinary least squares regression using class variables. This
forms the basis for the more general linear model analysis of unbalanced
data where conventional analyses of variance are no longer valid (Chap-
ter 17). Then class variables and continuous variables are used jointly to
discuss the test of homogeneity of regressions (Section 9.6) and the analysis
of covariance (Section 9.7).

Some of the material in the analysis of variance sections of this chapter
(Sections 9.2 through 9.5) is not used again until Chapter 17. This material
is placed here, rather than immediately preceding Chapter 17, in order to
provide the reader with an early appreciation of the generality of regression
analyses, and to provide the tools for tests of homogeneity that are used
from time to time throughout the text.

9.1 Description of Class Variables

A class variable identifies, by an appropriate code, the distinct classes
or levels of the variable. For example, a code that identifies the different
genetic lines, or cultivars, in a field experiment is a class variable. The
classes or levels of the variable are the code names or numbers that have
been assigned to represent the cultivars. The variation in the dependent
variable attributable to this class variable is the total variation among the
cultivar classes. It usually does not make sense to think of a continuous
response curve relating a dependent variable to a class variable. There
frequently is no logical ordering of the class variable or, if there is a logical
ordering, the relative spacing of the classes on a quantitative scale is often
not well defined.

There are situations in which a quantitative variable is treated (tem-
porarily) as a class variable. That is, the quantitative information con-
tained in the variable is ignored and only the distinct categories or classes
are considered. For example, assume the treatments in an experiment are
the amounts of fertilizer applied to each experimental unit. The indepen-
dent variable “amount of fertilizer” is, of course, quantitative. However, as
part of the total analysis of the effects of the fertilizer, the total variation
among the treatment categories is of interest. The sum of squares “among
levels of fertilizer” is the treatment sum of squares and is obtained by using
the variable “amount of fertilizer” as a class variable. For this purpose, the
quantitative information contained in the variable “amount of fertilizer” is
ignored; the variable is used only to identify the grouping or class identifi-
cation of the observations. Subsequent analyses to determine the nature of
the response curve would use the quantitative information in the variable.

The completely random and the randomized complete block experimen-
tal designs are used to illustrate the use of class variables in the least squares

Class
Variables

Quantitative
Variables as
Class Variables
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regression model. Then, a class variable is introduced to test homogeneity
of regression coefficients (for a continuous variable) over the levels of the
class variable. Finally, continuous and class variables are combined to give
the analysis of covariance in the regression context.

9.2 The Model for One-Way Structured Data

The model for one-way structured data, of which the completely random
design (CRD) is the most common example, can be written either as

Yij = pite or
Y, = W+ T + €y, (9.1)

where p; = p + 7; is the mean of the sth group or treatment and e;; is
the random error associated with the jth observation in the ith group,
j=1,...,7r. The group mean p; in the first form is expressed in the second
form in terms of an overall constant p and the effect of the ith group or
treatment 7;, i = 1,...,t. The first form is called the means model; the
second is the classical effects model (equation 9.1).

The model assumes that the members of each group are randomly se-
lected from the population of individuals in that group or, in the case of
the completely random experimental design, that each treatment has been
randomly assigned to r experimental units. (The number of observations
in each group or treatment need not be constant but is assumed to be
constant for this discussion.)

The data set consists of two columns of information, one containing the
response for the dependent variable Y;; and one designating the group or
treatment from which the observation came. The code used to designate
the group is the class variable. In the case of the CRD, the class variable is
the treatment code. For convenience, the class variable is called treatment
and i = 1,2,...,t designates the level of the class variable.

It is easier to see the transition of this model to matrix form if the
observations are listed:

Yii = p+1+en
Yio = p+1ter
Yi, = p+7+ern
Yor = p+ 1+ e (9.2)

Yo, = p+m+e

Class Variable
Defined

Model in
Matrix
Notation
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Yo = p+7+ 6

The observations here are ordered so that the first r observations are from
the first treatment, the second r observations are from the second treat-
ment, and so forth. The total number of observations is n = rt so that the
vector of observations on the dependent variable Y is of order n x 1. The
total number of parameters is ¢t + 1:  and ¢ 7s. The vector of parameters
is written

= n n - 7). (9.3)

In order to express the algebraic model (equation 9.1) in matrix form, we
must define X such that the product X3 associates p with every observa-
tion but each 7; with only the observations from the ith group. Including
i with every observation is the same as including the common intercept
in the usual regression equation. Therefore, the first column of X is 1,
a column of ones. The remaining columns of X assign the treatment ef-
fects to the appropriate observations. This is done by defining a series of
indicator variables or dummy variables, variables that take only the
values zero or one. A dummy variable is defined for each level of the class
variable. The ith dummy variable is an n x 1 column vector with ones in
the rows corresponding to the observations receiving the ith treatment and
zeros elsewhere. Thus, X is of order n x (¢ + 1).

To illustrate the pattern, assume there are 4 treatments (¢ = 4) with 2
replications per treatment (r = 2). Then Y is an 8 X 1 vector, X isan 8 x5
matrix, and 3 is 5 x 1:

Yy, 11000
Yis 11000
Yo, 10100 7‘_‘1
Yao 1010 0

Y= 2 X=11 94,0/ B=|rm (9.4)
Va0 10010 &
Y 1000 1 4
Yio 100 0 1]

The second column of X is the dummy variable identifying the observations
from treatment 1, the third column identifies the observations from treat-
ment 2, and so on. For this reason, the dummy variables are sometimes
called indicator variables and X the indicator matrix. The reader
should verify that multiplication of X by (3 generates the same pattern of
model effects shown in equation 9.2. ]

With these definitions of Y, X, and 8, the model for the completely

Dummy
Variables

Example 9.1

X is Singular
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random design can be written as
Y=XB+e¢e, (9.5)

which is the usual matrix form of the least squares model. The difference
now is that X is not a full-rank matrix; (X)) is less than the number of
columns of X . The singularity in X is evident from the fact that the sum of
the last four columns is equal to the first column. This singularity indicates
that the model as defined has too many parameters; it is overparameterized.

Since X is not of full rank, the unique (X’'X)~! does not exist. There-
fore, there is no unique solution to the normal equations as there is with
the full-rank models. The absence of a unique solution indicates that at
least some of the parameters in the model cannot be estimated; they are
said to be nonestimable. (Estimability is discussed more fully later.)

Recall that the degrees of freedom associated with the model sum of
squares is determined by the rank of X. In full-rank models, r(X) always
equals the number of columns of X. Here, however, there is one linear
dependency among the columns of X, so the rank of X is ¢ rather than
t 4+ 1. There will be only ¢ degrees of freedom associated with SS(Model).
Adjusting the sum of squares for p uses 1 degree of freedom, leaving (¢ —
1) degrees of freedom for SS(Regr). This SS(Regr) is the partial sum of
squares for the ¢ dummy variables defined from the class variable. For
convenience, we refer to SS(Regr) more simply as the sum of squares for
the class variable. This sum of squares, with (t — 1) degrees of freedom, is
the treatment sum of squares in the analysis of variance for the completely
random experimental design.

Approaches to handling linear models that are not of full rank include:

1. redefine, or reparameterize, the model so that it is a full-rank model;
or

2. use one of the nonunique solutions to the normal equations to obtain
the regression results.

Reparameterization of the model was the standard approach before com-
puters and is still used in many instances. Understanding reparameteriza-
tion is helpful in understanding the results of the second approach, which is
used in most computer programs for the analysis of general linear models.

9.3 Reparameterizing to Remove Singularities

The purpose of reparameterization is to redefine the model so that it is
of full rank. This is accomplished by imposing linear constraints on the
parameters so as to reduce the number of unspecified parameters to equal
the rank of X. Then, with X™ of full rank, ordinary least squares can be

SS(Regr)

Approaches
When X Is
Singular

Purpose
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used to obtain a solution. If there is one singularity in X, one constraint
must be imposed, or the number of parameters must be reduced by 1. Two
singularities require the number of parameters to be reduced by 2, and so
on. There are several alternative reparameterizations for each case. Three
common ones are illustrated, each of which gives a full-rank model.

Each reparameterization carries with it a redefinition of the parameters
remaining in the model and corresponding modifications in X. To distin-
guish the reparameterized model from the original model, an asterisk is
appended to 3 and X, and to the individual parameters when the same
symbols are used for both sets. Thus, the reparameterized models are writ-
ten as Y = X*B" + € with X™ and 3" appropriately defined.

9.3.1 Reparameterizing with the Means Model

The means model, letting p; = p + 7;, is presented here as a reparameter-
ization of the classical effects model. The (¢ + 1) parameters in the effects
model are replaced with the ¢ parameters ;. The model becomes

Yij = Wi + €5 (9.6)

(This redefinition of the model is equivalent to imposing the constraint that
1 = 0in the original model, leaving 71 to 7 to be estimated. Because of the
obvious link of the new parameters to the group means, the usual notation
for a population mean p is used in place of 7.)

Although the means model is used here as a reparameterization of the
effects model, it is a valid model in its own right and is often proposed
as the more direct approach to the analysis of data (Hocking, 1985). The
essential difference between the two models is that the algebraic form of
the classical effects model conveys the structure of the data, which in turn
generates logical hypotheses and sums of squares in the analysis. The means
model, on the other hand, conveys the structure of the data in constraints
imposed on the p; and in hypotheses specified by the analyst. This text
emphasizes the use of the classical effects model. The reader is referred to
Hocking (1985) for discussions on the use of the means model.

The reparameterized model is written as

Y = X*63" +¢€,
where (for the case t = 4)
[1 0 0 0]
1000
01 00 13
«_ [0 1 00 « | pe
0010 14
0 0 01
|0 0 0 1|
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The columns of X ™ are the dummy variables defined for the original matrix,
equation 9.4. Since the first column 1 of X is the sum of the columns of X ™,
the space spanned by the columns of X is the same as that spanned by the
columns of X ™. Thus, the model in equation 9.7 is a reparameterization of
the model given by equation 9.2. For the general case, X ™ will be a matrix
of order (n x t), where n = rt is the total number of observations. In this
form, X™ is of full rank and ordinary least squares regression can be used
to estimate the parameters 3.

The form of X* in this reparameterization makes the least squares arith-
metic particularly simple. X" X*isa diagonal matrix of order (¢ x t) with
the diagonal elements being the number of replications r of each treat-
ment. Thus, (X* X*)~! is diagonal with diagonal elements 1/r. X*'Y is
the vector of treatment sums. The least squares solution is

~x'

=(Yy Yo -+ Y.), (9.8)

which is the vector of treatment means. (A dot in a subscript indicates that
the observations have been summed over that subscript; thus, Y;. is the ith
treatment sum and Y is the ith treatment mean.)

Since this is the least squares solution to a full-rank model, B* is the
best linear unbiased estimator of 3%, but not of 3. (The parameters 8 in
the original model are not estimable.) It is helpful in understanding the
results of the reparameterized model to know what function of the original
parameters is being estimated by ﬁ*. This is determined by finding the
expectation of ,3* in terms of the expectation of Y from the original model,
EY)=Xpg:

~k

&)

(X X)XV E(Y)
(X X)X X)8. (9.9)

Notice that the last X is the original matrix. Evaluating this expectation
for the current reparameterization (again using t = 4) gives

11000 ; !
~ |10 1 00 R
EB)=11001 0 P e | (9.10)
10001 3 W+ Ta
T4

Thus, each element of 5*, fi; = Y, is an estimate of y + 7;. This is the
expectation of the ith group mean under the original model.

Unbiased estimators of other estimable functions of the original parame-
ters are obtained by using appropriate linear functions of B* For example,
(11 — 72) is estimated unbiasedly by ji; — iz = Y1, — Y. Notice, however,

Solution

Meaning of ,@*

Estimable
Functions of 3
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that there is no linear function of ﬁ* that provides an unbiased estimator
of i, or of one of the 7;. These are nonestimable functions of the original
parameters, and no reparameterization of the model will provide unbiased
estimators of such nonestimable quantities. (In a general linear model, a
linear combination A’'B of parameters is said to be estimable if there is a
linear function @'Y that is unbiased for A’B. If no such linear combination
exists, then it is said to be nonestimable.)

The sum of squares due to this model is the uncorrected treatment sum
of squares

SS(Model) = B X*Y
t

>

i=1

Jr (9.11)

because the elements of ,5* are the treatment means and the elements of
X*Y are the treatment sums. The residual sum of squares is the pooled
sum of squares from among the replicate observations within each group

SS(Res) = Y'Y — SS(Model)
_ ZZY YR
1] r
i=1 j=1
t r
= > > (¥, -V’ (9.12)
i=1 j=1

and has (n — t) degrees of freedom.

SS(Model) measures the squared deviations of the treatment means from
zero. Comparisons among the treatment means are of greater interest. Sums
of squares for these comparisons are generated using the general linear
hypothesis (discussed in Section 4.5). For example, the sum of squares for
the null hypothesis that all z; are equal is obtained by constructing a K’
matrix of rank (¢ — 1) to account for all differences among the ¢ treatment
parameters. One such K’ (for t = 4) is

1 -1 0 0
K=[0 1 -1 0 (9.13)
0o 0 1 -1

This matrix defines the three nonorthogonal but linearly independent con-
trasts of treatment 1 versus treatment 2, treatment 2 versus treatment 3,
and treatment 3 versus treatment 4. (A linear combination ) a;u; is said
to be a contrast of the treatment means if > a; = 0). Any set of three
linearly independent contrasts would produce the sum of squares for the
hypothesis that the ¢ = 4 u; are equal. The sum of squares for this hypothe-
sis is the treatment sum of squares for the ¢ = 4 treatments. In general, the

SS(Model) and
SS(Res)

Treatment
Sum of Squares
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TABLE 9.1. Relationship between the conventional analysis of variance and ordi-
nary least squares regression computations for the completely random experimen-
tal design.

Source of Traditional Regression
Variation d.f. AOV SS SS
TOtalunCOI‘r rt Z Z Y;j EIY
Model t S(Yi)?r B8X'Y
C.F. 1 nY’ nY’
Treatments ¢ — 1 S(Yi)?r — ny” BXY —nY’
Residual tr—1) Y3 V2 -3 (Vi)?/r Y'Y —SS(Model)

treatment sum of squares can be obtained by defining a matrix of contrasts
K’ with r(K') = (t - 1).

Alternatively, the treatment sum of squares can be obtained by using
the difference in sums of squares between full and reduced models. The
reduced model for the null hypothesis that all u; are equal contains only
one parameter, a constant mean p. The sum of squares for such a model
is SS(u) = n?_?, or the sum of squares due to correction for the mean,
commonly called the correction factor (C.F.). Thus, the treatment sum
of squares for the completely random experimental design can be obtained
as SS(Model) — SS(p). The relationship between the conventional analysis
of variance and the regression analysis for the completely random design is
summarized in Table 9.1.

9.3.2  Reparameterization Motivated by > 1; = 0

The original model defined the 7; as deviations from p. If p is thought of as
the overall true mean @ of the ¢ treatments and 7; as y; — ., it is reasonable
to impose the condition that the sum of the treatment deviations about
the true mean is zero; that is, > 7; = 0. This implies that one 7; can
be expressed as the negative of the sum of the other 7;,. The number of
parameters to be estimated is thus reduced by 1.

The constraint > 7; = 0 is used to express the last treatment effect 7y in
terms of the first (¢ — 1) treatment effects. Thus,

T=—(T1+Tt+ 7o)
is substituted for 7; everywhere in the original model. In the example with
t =4, 74 = —(71 + 72 + 73) so that the model for each observation in the

fourth group changes from

Yoy =p+ 7+ ey

Redefining
the Model
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to
Yij = p+ (=71 — 72 — 73) + €45.

This substitution eliminates 74, reducing the number of parameters from 5
to 4 or, in general, from (¢ + 1) to ¢. The vector of redefined parameters is

g = o T (9.14)

The design matrix X for this reparameterization is obtained from the
original X as follows assuming ¢t = 4. The dummy variable for treatment 4,
the last column of X, equation 9.4, identifies the observations that contain
74 in the model. For each such observation, the substitution of —(r; + 72 +
73) for 74 is accomplished by replacing the “0” coefficients on 71, 72, and
T3 with “—~1,” and dropping the dummy variable for 74. Thus, X* for this
reparameterization is

(9.15)

e e e
|
|
——_0 O == OO
|
el e i e R e R e R an)

|
—_—_0 OO0 O

It is not difficult to show that the space spanned by the columns of X*
in equation 9.15 is the same as that spanned by X in equation 9.4. See
Exercise 9.7.

Again, the reparameterized model is of full rank and ordinary least
squares gives an unbiased estimate of the new parameters defined in 3*.
The expectation of ,é\* in terms of the parameters in the original model
and the means model is found from equation 9.9 using X* from the cur-
rent reparameterization. This gives

r 1 1 1 1
3z 3 1 1 K
. o 3 -1 -1 _1l|m
£B) = 0 _i 3 _1 _i 72
1 1 "1 "1 -

0 -1 _1 3 _1
L 1 1 1 1 T4

n+T .
S A I e (9.16)
Ty —T p2 — T,
T3 —T 3 — .

where T is the average of the four 7;. Note that the expectation of B* is
expressed in terms of the parameters of the original model with no con-
straints. The constraint > 7; = 0 was used only to generate a full rank
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reparameterization of the original model. Thus, z* is an estimator of u+7,

77 is an estimator of (71 —7), and so forth. Note that an unbiased estimator
of 7y — 7 is given by

== +7 +73). (9.17)

Other estimable functions of the original parameters are obtained from

appropriate linear functions of 3*. For example, the least squares estimator

of the ith treatment mean (u + 7;) is given by (&* + 7;°). The estimator
of the difference between two treatment effects, say (7o — 73), is given by

The analysis of variance for the completely random design is obtained
from this reparameterization in much the same way as with the means
reparameterization. The sum of squares for treatments is obtained as the
sum of squares for the null hypothesis

H,: 17 =0, fori=1,2,3

or as

SS(Model) — SS(u).

In terms of the original parameters, this null hypothesis is satisfied only if
all 7; are equal.

9.8.8 Reparameterization Motivated by 7, = 0

Another method of reducing the number of parameters in an overparam-
eterized model is to arbitrarily set the required number of nonestimable
parameters equal to zero. In the model for the completely random experi-
mental design, one constraint is needed so that one parameter—usually the
last 7,—is set equal to zero. In the example with four treatments, setting
74 = 0 gives
B =(p 1 o)

and an X that contains only the first four columns of the original X.
Since the last column of X is the difference between the first column and
the sum of the last three columns of X, the space spanned by columns of
X™ is the same as that spanned by the columns of X. As with the other
reparameterizations, this model is of full rank and ordinary least squares
can be used to obtain the solution B*

The expectation of ﬁ* in terms of the parameters in the original model
from equation 9.9) using the current X* is
g

1000 1 f
- 01 0 0 -1 1
€B) = 1001 0 -1 2
000 1 —1 IE
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U it Ha

_ T1L— T4 _ H1 — M4 ) (9.18)
To — T4 M2 — 4
T3 — T4 M3 — 4

With this parameterization, * is an estimator of the mean of the fourth
treatment p + 74, and each 7;° estimates the difference between the true
means of the ith treatment and the fourth treatment. Hence, this reparam-
eterization is also called the reference cell model. The ith treatment mean
i+ 7; is estimated by fi* + 7. The difference between two means (7; — 74/)
is estimated by (7 — 7}}).

The treatment sum of squares for this parameterization is given as the
sum of squares for the composite null hypothesis

Hy:77=0 fori=1,2,3

or as

SS(Model) — SS(u).

In terms of the original parameters, this hypothesis implies that the first
three 7; are each equal to 74 (equation 9.18), or that 7 = 75 = 73 = 74.

Each of the three reparameterizations introduced in this section has pro-
vided estimates of the meaningful functions of the original parameters, the
true means of the treatments, and all contrasts among the true treatment
means. These are estimable functions of the original parameters. As a gen-
eral result, if a function of the original parameters is estimable, it can
be estimated from 3* obtained from any reparameterization. Furthermore,
the same numerical estimate for any estimable function of the original pa-
rameters will be obtained from every reparameterization. Estimability is
discussed more fully in Chapter 17 and the reader is referred to Searle
(1971) for the theoretical developments.

9.3.4  Reparameterization: A Numerical Example

A small numerical example illustrates the three reparameterizations. An
artificial data set was generated to simulate an experiment with ¢t = 4
and r = 2. The conventional one-way model was used with the parameters
chosen to be p = 12, 14 = =3, 72 = 0, 73 = 2, and 74 = 4. A random
observation from a normal distribution with mean zero and unit variance
was added to each expectation to simulate random error. (The 7; are chosen
so they do not add to zero for this illustration.) The vector of observations

Treatment
Sum of
Squares

Estimable
Functions

Example 9.2
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TABLE 9.2. Estimates obtained from simulated data for three reparameterizations
of the one-way model, t = 4 and r = 2. Expectations of the estimators are in terms
of the parameters of the original singular model.

Reparameterization:
Means Model >1i=0 T =0

£3

B &@) B &) B &)
8.830 pu+m 12.731 pu+7 16.680 p+ 74

11.925 p+ 1o -3901 ™ —T7T —7.850 T —Ta
13.490 p+ 73 —.806 T —T —4.755 15—y
16.680 p+ 74 759 T3 —T -3.190 13—y

“The solution obtained from the general linear models solution in PROC
GLM corresponds to that for 74 = 0.

generated in this manner was

i Yll i i /,L—|—T1 + €11 1 i 8.90 i
Yia w4711+ €12 8.76
YQl ,U,-l—TQ +€21 11.78
Y22 12 + T2 + €22 12.07

Y= Y31 o u+ T3 + €31 - 14.50 |~ (919)

Y32 W+ T3 + €32 12.48
Y W+ T4 + €41 16.79

L Yio ] L M + T4 + €49 ] L 16.57 ]

The parameter estimates from these data for each of the three reparame-
terizations and their expectations in terms of the original parameters are
shown in Table 9.2. Most notable are the numerical differences in ,@* for the
different parameterizations. All convey the same information but in very
different packages. The results from the means model are the most directly
useful; each regression coefficient estimates the corresponding group mean.
Contrasts among the 7; are estimated by the same contrasts among the
estimated regression coefficients. For example,

1y — ps = 8.8300 — 11.9250 = —3.0950

is an estimate of (13 — 73), which is known to be —3 from the simulation
model.

The reparameterization motivated by the “sum” constraint gives p* =
12.73125, which is an estimate of the overall mean plus the average of
the treatment effects. [From the simulation model, (¢ + 7) is known to
be 12.75.] Each of the other computed regression coefficients is estimating
the deviation of a 7; from 7. The estimate of (74 — 7) is obtained from
equation 9.17. This gives

7F = —(—3.90125 — .80625 + .75875) = 3.94875.



282 9. CLASS VARIABLES IN REGRESSION

The sum of the first two estimates,
ut+ 77 =12.73125 4+ (—3.90125) = 8.8300,

is an estimate of (u + 71). This estimate is identical to that obtained for
(1t + 1) from the means model. Similarly, the estimate of (74 — 72),

7 — 7 = —3.90125 — (—.80625) = —3.095,

is the same as that obtained from the means model.

The third reparameterization motivated by 74 = 0 gives u* = 16.6800,
which is an estimate of (u + 74), the true mean of the fourth group. The
sum of the first two regression coefficients again estimates (u + 71) as

fi* + 77 = 16.6800 + (—7.8500) = 8.8300.

Each 77 in this reparameterization estimates the difference in effects be-
tween the ith group and the fourth group. The numerical values obtained
for these estimates are identical to those obtained from the other models.

|

The results from these three reparameterizations illustrate general re-
sults. Least squares estimates of 3* obtained from different reparameter-
izations estimate different functions of the original parameters. The rela-
tionship of the redefined parameters to those in the original model must
be known in order to properly interpret these estimates. Even though the
solution appears to change with the different reparameterizations, all give
identical numerical estimates of every estimable function of the original
parameters. This includes Y =X *B* ande=Y —Y. Furthermore, sums
of squares associated with any estimable contrast on 3 are identical, which
implies that all parameterizations give the same analysis of variance. In
Example 9.2, all models gave

SS(Regr) = 64.076238 and SS(Res) = 2.116250.

9.4 Generalized Inverse Approach

When X is not of full rank there is no unique solution to the normal
equations (X'X)B = X'Y. A general approach to models of less than full
rank is to use one of the nonunique solutions to the normal equations. This
is accomplished by using a generalized inverse of X’ X . (The generalized
inverse of a matrix A is denoted by A™.) There are many different kinds of
generalized inverses which, to some extent, have different properties. The
reader is referred to Searle (1971) for complete discussions on generalized

Unique Results
from Reparam-
eterizations
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inverses. It is sufficient for now to know that a generalized inverse provides
one of the infinity of solutions that satisfies the normal equations. Such a
solution is denoted with BO to emphasize the fact that it is not a unique
solution. 3 is reserved as the label for the unique least squares solution
when it exists. Thus,

B'=(X'X)"X'Y. (9.20)

Computers are used to obtain the generalized inverse solutions.

Since B° is not unique, its elements per se are meaningless. Another gen-
eralized inverse would give another set of numbers from the same data.
However, many of the regression results obtained from using a nonunique
solution are unique; the same numerical results are obtained regardless of
which solution is used. It was observed in Section 9.3 that all reparame-
terizations gave identical estimates of estimable functions of the parame-
ters. This important result applies to all generalized inverse solutions to
the normal equations. Any estimable function of the original parameters
is uniquely estimated by the same linear function of one of the nonunique
solutions B°. That is, if K’ is estimable, then K’3° is the least squares
estimate of K’B and the estimate is unique with respect to choice of solu-
tion. Such estimates of estimable linear functions of the original parameters
have all the desirable properties of least squares estimators.

Results concerning other unique quantities follow from this statement.
For example, X3 is an estimable function of 8 and, hence, Y = X 3% is
the unique unbiased estimate of X 3. Then, e = Y — Y must be unique.
Since SS(Model) = Y'Y and SS(Res) = €’e, these sums of squares are also
unique with respect to choice of solution. The uniqueness extends to the
partitions of the sums of squares, as long as the sums of squares relate to
hypotheses that are estimable linear functions of the parameters.

Thus, the generalized inverse approach to models of less than full rank
provides all the results of interest. The only quantities not estimated unique-
ly are those quantities for which the data contain no information—the non-
estimable functions of 3.

The generalized inverse approach is used for the least squares analysis
of models of less than full rank by many computer programs, including
PROC GLM (SAS Institute Inc., 1989b). In their procedure, any variable
in the model that is to be regarded as a class variable must be identified in
a CLASS statement in the program. Each class variable will generate one
or more singularities that make the model less than full rank. (Singulari-
ties can also result from linear dependencies among continuous variables,
but this chapter is concerned with the use of class variables in regression
models.) Since the estimates of the regression coefficients in the singular
model are not unique, PROC GLM does not print the solution 8° unless
it is specifically requested. The unique results from the analysis are ob-
tained by requesting estimation of specific estimable functions and tests of

Estimable
Functions

Unique Results

PROC GLM
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testable hypotheses. (A testable hypothesis is one in which the linear
functions of parameters in the null hypothesis are estimable functions.)

When a class variable is specified, PROC GLM creates 8 and the set of
dummy variables for the X matrix as was done in Section 9.2. No repa-
rameterization is done so that X remains singular. The particular general-
ized inverse used by PROC GLM gives the same solution as that obtained
with reparameterization using the constraint 7, = 0. The solution vector
in PROC GLM contains an estimate for every parameter including 7;".
But, because each 7 is estimating 7; — 7¢, the numerical value of 7} is
always zero. Thus, the PROC GLM solution for the simulated data from
the completely random design is the same as that given in the last column
of Table 9.2, except the vector of estimates includes 7 in the fifth position.
The estimates obtained for all estimable functions and sums of squares are
identical to those obtained from the reparameterizations.

9.5 The Model for Two-Way Classified Data

The conventional model for two-way classified data, of which the random-
ized complete block design (RCB) is the most common example, is

Y;‘j :lL+’Yi+7'j+6ij, (921)

where (1 is an overall mean, ; is the effect of the ith block, 7; is the effect of
the jth treatment, and ¢;; is the random error. In this model there are two
class variables—“block” and “treatment”—which identify the particular
block and treatment associated with the ijth experimental unit. There are
b levels (i =1,...,b) of the block class variable and ¢ levels (j = 1,...,¢)
of the treatment class variable.

Defining the X matrix for this model requires b dummy variables for
blocks and ¢ dummy variables for treatments. The vector of observations is
assumed to be ordered with all of the treatments occurring in order for the
first block followed by the treatments in order for the second block, and so
forth. The parameter vector 3 is defined with the block effects v; occurring
before the treatment effects 7;. For illustration, assume that b = 2 and
t = 4 for a total of bt = 8 observations. Then,

7
72
1 . (9.22)
T2
T3
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The second and third columns of X are the dummy variables for blocks;
the last four columns are the dummy variables for treatments.

There are two linear dependencies in X. The sum of the block dummy
variables (columns 2 and 3) and the sum of the treatment dummy variables
(the last four columns) both equal column 1. Thus, the rank of X is r(X) =
7—2 = 5, which is the degrees of freedom for SS(Model). In the conventional
RCB analysis of variance these degrees of freedom are partitioned into 1
for the correction factor, (b — 1) = 1 for SS(Blocks), and (¢t — 1) = 3 for
SS(Treatments).

Reparameterizing this model to make it full rank requires two con-
straints. The effective number of parameters must be reduced to 5, the
rank of X . The simplest constraints to obtain a full rank reparameteriza-
tion would be to use 72 = 0 and 74 = 0. These constraints have the effect
of eliminating v and 74 from B and columns 3 and 7 from X. Thus, X*
would be an 8 x 5 matrix consisting of columns 1, 2, 4, 5, and 6 from X
and 3% would be

’

B =" o o7 (9-23)
The constraints requiring the sum of the effects to be zero would be
> v = 0 and > 7; = 0. These constraints are imposed by substituting

—~1 for 49 and —(7; + 72 + 73) for 74 in the original model. This reduces
the number of parameters by two and gives

1 1 1 0 0
1 1 0 1 0
1 1 0 0 1
L1 1 -1 -1 -1
X=17 1 1 o o (9.24)
1 -1 0 1 0
1 -1 0 0 1
1 -1 -1 -1 -1

Either of these reparameterizations will generate the conventional analy-
sis of variance of two-way classified data when the least squares regression
concepts are applied. The full model consists of p*, the v, and the 7.
The residual mean square from this model estimates o2. The general lin-
ear hypothesis can be used to generate the sum of squares for testing the
null hypothesis that ] is zero. In the more general case, this would be a
composite hypothesis that all 7 are zero. The sum of squares (), generated
for this hypothesis, will have 1 degree of freedom [or, in general, (b — 1)
degrees of freedom] and is algebraically identical to SS(Blocks) in the con-
ventional analysis of variance. Similarly, the sum of squares associated with
the composite hypothesis that all 77 are zero is identical to SS(Treatments)
in the conventional analysis of variance. These sums of squares can also be
computed from the procedure based on [SS(Res cduced) — SS(Resgun)]-
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The model could also be made full rank by using the means model repa-
rameterization. Each cell of the two-way table would be assigned its own
mean. Thus,

Yij = pij + €ij, (9.25)

where p;; = ¢t +7; + 75 in terms of the parameters of the original model.
This model is different from the original, however. The original model spec-
ified a column (or treatment) effect and a row (or block) effect that added
to give the “cell” effect; the same column effect was imposed on all rows
and the same row effects applied to all columns. Deviations from the sum
of the block and treatment effects were assumed to be random error. The
means model as given, on the other hand, imposes no restrictions on the
relationships among the p;;. The means model is made analogous to the
classical RCB effects model by imposing constraints on the yi;; so as to sat-
isfy the conditions of no interaction in every 2 x 2 subtable of the b x t table
of p;j. The reader is referred to Hocking (1985) for complete discussions
on analyses using means models.

The generalized inverse approach also can be used for two-way classi-
fied data. The two class variables would be used to generate the singular
X (equation 9.22) and a generalized inverse would be used to obtain a
(nonunique) solution. SS(Res) from that analysis would be the interaction
sum of squares for the two-way table, which in the RCB design is the es-
timate of experimental error. Appropriate hypotheses on the subsets of
parameters generate the usual analysis of variance for two-way data.

A more general model for two-way classified data includes interaction
effects in the model. Suppose the v; and 7; are the effects of two treatment
factors, A and B, with a levels of factor A and b levels of factor B. Let the
interaction effects between the two factors be represented by (y7);; and

assume there are r observations in each cell, k = 1,...,r. The linear model
is

Yijk =+ + 75+ (V7)ij + €ijik, (9.26)
where i =1,...,a and j = 1,...,b. In matrix notation, 3 contains (1+a+

b+ ab) = (a+ 1)(b+ 1) parameters and X contains an equal number of
columns. The number of rows of X will equal the number of observations,
n = abr. The r observations from the same treatment combination have
the same expectation (equation 9.26), so that there will be ab distinct rows
in X with r repeats of each.

For illustration, assume a = 2 and b = 4. Then X contains 15 columns
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and 8 distinct rows. Each of the 8 rows will be repeated r times. Then,

11 0100O01O0O0O0O0O0O00©O0
11 00100O01O0O0O0O0O0°0©O0
11 00010O0O01O0O0O0O00©O0
1 1000O010O0O01O0O0O0O0
X = 101 100O0O0O0O0O0T1IO0GO0O0]|’ (9.27)
101 0100O0O0O0O0OO0OT1TO00®O0
101 0010O0O0O0O0O0OO0OT1TO0
11 01 00010O0O0O0O0O0O0 1]

where only the 8 distinct rows of X are shown.

The first 7 columns of X are as defined in equation 9.22. The last 8
columns are the dummy variables for the interaction effects. The dummy
variable for (77);; takes the value 1 if the observation is from the ijth treat-
ment combination, and 0 otherwise. The dummy variable for (y7);; can also
be obtained as the element-by-element product of the dummy variables for
the corresponding y; and 7; effects. (This is a general result that extends to
higher-order interaction effects.) Although X contains 15 columns, its rank
is only 8. (The rank of X cannot be greater than the number of linearly
independent rows.) Thus, there must be 7 linear dependencies among the
columns of X . These dependencies would have to be identified if the model
were to be reparameterized. Note that each of the first 7 columns can be
obtained as a linear combination of the last 8 columns. The generalized
inverse approach, however, uses X as defined. |

The size of X increases very rapidly as additional factors and particularly
their interactions are added to the model. The number of columns of X
required for each set of interaction effects is the product of the number of
levels of all the factors in the interaction. The total number of parameters
in a model with class variables and their interactions is the product of the
number of levels plus 1 of all class variables in the model; for example,
(24 1)(44 1) = 15 in Example 9.3. It is not uncommon for the full X
matrix of a reasonably sized experiment to have more than 100 columns.
The computational load of finding the generalized inverse and operating on
this very large X matrix would be exorbitant without modern computers.

On the other hand, the conventional analysis of variance formulas, which
result from the least squares analysis of balanced data, are computation-
ally very efficient. Very large models can be easily analyzed. The more
general approach has been introduced to demonstrate the link between
least squares regression analysis and the conventional analyses of variance,
and to set the stage for the analysis of unbalanced data (Chapter 17).

Computing
Load
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9.6 Class Variables To Test Homogeneity of
Regressions

Consider the situation where two or more subsets of data are available, each
of which provides information on the dependent variable of interest and the
potential predictor variables. The subsets of data originate from different
levels of one or more class variables. For example, data relating yield in
corn to levels of nitrogen and phosphorous fertilization may be available for
several corn hybrids grown in several environments. Yield is the dependent
variable, amount of nitrogen fertilizer and amount of phosphorous fertilizer
are independent variables, and “hybrid” and “environment” are two class
variables.

The objective is to model the response of yield to changing rates of
nitrogen and phosphorous fertilization. The question is whether a single
regression equation will adequately describe the relationship for all hybrids
and environments or will different regressions be required for each hybrid—
environment combination. The most complete description of the response
(the best fit to the data) would be obtained by allowing each combination
to have its own regression equation. This would be inefficient, however, if
the responses were similar over all groups; the researcher would be estimat-
ing more parameters than necessary. On the other hand, a single regression
equation to represent the response for all groups will not characterize any
one group as well and could be very misleading if the relationships dif-
fered among groups. The simplicity of the single regression equation is to
be preferred if it can be justified. Intermediate models may allow a com-
mon regression for some independent variables but require others to have
different regression coefficients for different subsets of data.

The decision to use a regression coefficient for each subset or a common
regression coefficient for all subsets is based on the test of homogeneity of
regression coefficients over levels of the class variable. The test of homo-
geneity is illustrated assuming a linear relationship between a dependent
variable and an independent variable. The general method extends to any
number of independent variables and any functional relationship.

Suppose the data consist of ¢ groups with n; observations in each group.
There will be Y n; = n data points, each consisting of an observation
on the Y, X, and the class variable identifying the group from which the
observations came. The most general model for this situation allows each
group to have its own intercept and slope coefficient. The separate models
can be written as

Group 1: Yi; = o+ B Xy +eiy
Group 2: Ys; = a0+ B21Xaj + €5

(9.28)

Illustration

Defining the
Model
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Group t: Yy, Bro + B Xy + €.

If the subscript i designates the group code, or the level of the class variable,
the models can be written as

Yi; = Bio + B Xij + €, (9.29)

where i =1,...,t and j = 1,...,n;. This model contains 2¢ parameters: ¢
Bo-parameters and ¢ B;-parameters. The random errors ¢;; for all groups
are assumed to be normally and independently distributed with zero mean
and common variance o2.

The model encompassing all ¢ groups is written in matrix notation by

using ¢t dummy variables to identify the levels of the class variable “group.”

Let
W _ 1 if the observation is from group 1
Lig = 0 otherwise
W . 1 if the observation is from group 2
% 0 otherwise
{ 1 if the observation is from group ¢
Wy = .
i 0 otherwise.
Then
Yi; = Wi, (Bio+ BuiXy;) + Wa,, (B20 + B21X25)
+o Wy (Bro + B Xis) + €35
= [ioWi, + Bri(Wi, X15) + BaoWa,; + f21(Wa,, Xoj)
+ -+ ﬁt()Wtij + Bu1 (Wtij th) + €5 (9.30)
or
Y = XB +e, (9.31)
where
1T X1 O 0 0 0 T
1 X4, 0 0 -~ 0 0 [ o ]
0 0 1 Xy -~ 0 0 P
: : : : : : B0
x_ | : : : : : 5 Boy
0 0 1 Xop, - 0 0 | ,
: : : : : : Bio
0 0 0 0 - 1 X | Ba |
Lo 0 0 0 1 Xen, |

Model in
Matrix
Notation
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The odd-numbered columns of X are the dummy variables and provide
for the tfys in the model. The even-numbered columns are the elementwise
products of the dummy variables and the independent variable. These bring
in the level of the X variable times the appropriate (3;; only when the
observations are from the ith group. We assume that Z?i:l(Xij -X;)? >0,
for ¢ = 1,...,t. That is, within each group, the X variable takes at least
two distinct values. This is a full-rank model; r(X) = 2¢ and there are 2t
parameters to be estimated.

The two columns associated with any particular group are orthogonal to
all other columns. Therefore, the results of the least squares regression using
this large model to encompass all groups are identical to the results that
would be obtained if each group were analyzed separately. The SS(Model)
will have 2t degrees of freedom and will be the sum of the SS(Model)
quantities from the separate analyses. The residual mean square from this
full analysis will be identical to the pooled residual mean squares from the
separate analyses. The pooled residual mean square is the best estimate of
o2 unless a pure error estimate is available.

There are several tests of homogeneity of interest. The test of homogene-
ity of slopes of regression lines is most common in the context of allowing
the intercepts to be different. Thus, the different groups are allowed to have
different mean levels of Y but are required to have the same response to
changes in the independent variable. The null hypothesis is the composite
hypothesis

Hy:fp11 =0 == pu. (9-32)

The difference in SS(Res) for full and reduced models is used to test this hy-
pothesis of common #;. The reduced model is obtained from equation 9.30
by replacing the ¢ different slopes (3;; with a common slope (:

Yij = BroWiij + BaoWasj + -+ + BroWeij + B1.Xsj + €55. (9.33)

The independent variable is no longer multiplied by the dummy variables
W;. The X matrix for the reduced model consists of ¢ columns for the
dummy variables plus one column of the observations on the independent
variable; the X;; are no longer separated by groups. The rank of X in the
reduced model is ¢ + 1, ¢t degrees of freedom for estimating the ¢ intercepts
and 1 degree of freedom for estimating the common slope.

The difference between the residual sum of squares for the full model
and the residual sum of squares for the reduced model,

Q = SS(RCSreduced) - SS(RCSfull) (934)

has (t — 1) degrees of freedom, (> .n; —t — 1) — (3_n; — 2t). This is the
appropriate sum of squares for testing the composite null hypothesis given
in equation 9.32. The test statistic is an F-ratio with Q/(t — 1) as the

Testing
Homogeneity
of Slopes
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numerator and the residual mean square from the full model as the denom-
inator. A nonsignificant F-ratio leads to the conclusion that the regressions
of Y on X for the several groups are adequately represented by a series of
parallel lines. The differences in the “heights” of the lines reflect differences
of the intercepts among the groups.

The same general procedure can be used to test other hypotheses. The
composite null hypothesis of common intercepts (3;9 in the presence of het-
erogeneous slopes is not a meaningful hypothesis unless there is some logic
in expecting the regressions for all groups to converge to a common value
of Y at X = 0. (The intercept is usually defined as the value of Y at X =0
or, if the Xs are centered, the value of Y at X = X. The origin of the
independent variable can be shifted by adding a constant to or subtracting
a constant from each value of X so that it is possible to test convergence
of the regression lines at any chosen value of X.) It is quite common, how-
ever, to test homogeneity of intercepts after having decided that the groups
have common slope. For this test, the reduced model with ¢ (;o-parameters
and common (; (equation 9.33) becomes the full model. The new reduced
model for Hy : B19 = P20 = - -+ = Pio is the simple regression model

)/ij == ﬁo + ﬂlXij + Eij. (935)

The X matrix for this reduced model has only two columns, the column of
ones for the intercept and the column of X;;. The difference in residual sums
of squares for this model and the full model will have t—1 degrees of freedom
and is appropriate for testing the null hypothesis of equal intercepts in the
presence of equal slopes.

A numerical example showing the tests of homogeneity of regression co-
efficients is presented in Section 9.8.

In the model in equation 9.29, we have assumed that the variance of ¢;;
is the same for all ¢ groups. Bartlett (1937) proposed a general test for
testing the equality of variances of + normal populations. Let s2,...,s? be
the sample variances with vq, ..., 1, degrees of freedom, respectively, from
t normal populations. Bartlett’s test statistic is given by

B = é |:V log(MSE) — 2:21 v; 10g(s?)j| ) (9.36)

where
1 -1 —1
C = 1+3(t_1)|:2=:l/2 — Vv :|, and
1
MSE = = i 52
u;l/ 52

and v = Y v;. In the model in equation 9.29, s? represents the residual
mean square error from the simple linear regression for the ith group so

Testing Homo-
geneity of In-
tercepts

Testing
Equality of
Variances
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TABLE 9.3. Pre-test and post-test scores from the listening—reading skills study
at the Governor Morehead School. The test scores came from the Gilmore Oral
Reading Test. (Used with permission of Dr. Larry Nelson.)

Treatments Pre-Test Score (X) Post-Test Score (V)
T1 89 87
82 86
88 94
94 96
T2 89 84
90 94
91 97
92 93
T3 89 96
99 97
84 100
87 98

that v; = n; — 2. MSE is the residual mean square error from the full model
with v = Zle(ni — 2) degrees of freedom. We reject the null hypothesis
that the variances of ¢;; are equal among groups if the test statistic B is
larger than X%tq;a)-

A study was conducted at the Governor Morehead School in Raleigh,
North Carolina to evaluate some techniques intended to improve “listening—
reading” skills of subjects who were visually impaired. The listening—reading
treatments were: (1) instruction in listening techniques plus practice listen-
ing to selected readings; (2) the same as (1) but with copies of the selected
readings in Braille; and (3) the same as (1) but with copies of selected
readings in ink print. The number of individuals per group was four. The
response data are measures of reading accuracy as measured by the Gilmore
Oral Reading Test. Both pre- and post-test data were taken. The pre-test
scores are intended to serve as a covariable to adjust for differences in
the abilities of the subjects before the study. The data are summarized in
Table 9.3.

The ultimate intent of the study was to test for differences among treat-
ments as measured by the post-test scores after taking into account differ-
ences in ability levels of the individuals as measured by the pre-test scores.
However, we use this study to illustrate the test of homogeneity of regres-
sions over the three treatment groups. First, we test the homogeneity of the
slope coefficients from the regression of post-test scores on pre-test scores.
We fit the full model in equation 9.29 allowing each treatment group to

Example 9.4
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have its own slope and intercept. The residual sum of squares from this
model is observed to be SS(Res)= 86.0842 with 6 degrees of freedom. To
test the hypothesis in equation 9.32 that the slopes are equal, we fit the
reduced model in equation 9.33 and compute

[SS(Resreduced) — SS(Resgun )]/ (8 — 6)
SS(RCSqu)/6
(164.2775 — 86.0842) /2
86.0842/6

F

= 2.73.

Comparing this value to F{ o5,2,6) = 14.54, we fail to reject the null hypoth-
esis of common slopes among the three treatment groups. Now assuming
that the model in equation 9.33 is the full model, we test the hypothesis
that the three intercepts are equal. The F-statistic is given by

(269.9488 — 164.2775) /2

F =
164.2775/8

= 2.57,

where 269.9488 is the residual sum of squares of the reduced model given
in equation 9.35. Comparing F' = 2.57 with F( o528y = 11.044, we fail to
reject the null hypothesis that the intercepts are the same for all three
treatment groups, assuming that they have common slopes.

A joint test of the hypothesis that the intercepts and the slopes are
constant among the groups is given by

269.9488 — 86.0842) /4
o (209.9488 — 86.0842)/4
86.0842/6

Comparing this value with F(g5.46) = 12.04, we fail to reject the null
hypothesis that a single line is adequate for all three treatment groups. In
fact, in this particular example, it is observed that neither the treatment
nor the pre-test score have a significant effect on the post-treatment score.
Given the small number of degrees of freedom for error, the test statistics
may not be powerful enough to detect differences among the treatment
groups and the significance of the pre-test score. ]

The tests of significance in Example 9.4 assume that the variance of the
errors in the model is the same for all three groups. Estimating the simple
linear regression for the three groups separately, we obtain the residual
mean squares s3 = 15.63, s3 = 24.5, and s = 2.91 each with two degrees
of freedom. Bartlett’s test statistic in equation 9.36 is 1.596, which is not
significant since X%,05;2) = 10.06. Therefore, there is not enough evidence
to conclude that the variances are different among the three groups.

These examples provide a good illustration of the importance of sample
size in experimentation. The lack of significance of the tests in Example

Example 9.5



294 9. CLASS VARIABLES IN REGRESSION

9.4, and even more so in the test of variances in Example 9.5, is as likely
to be due to lack of power of the tests (due to small sample size) as to the
absence of true differences. In particular, an estimate of variance with only
two degrees of freedom is essentially meaningless. ]

9.7 Analysis of Covariance

The classical purpose of the analysis of covariance is to improve the preci-
sion of the experiment by statistical control of variation among experimen-
tal units. A useful covariate identifies variation among the experimental
units that is also associated with variation in the dependent variable. For
example, variation in density of plants in the experimental units causes
variation in yield of most plant species, or variation in age or body weight
of animals often causes variation in rate of gain in feeding trials. The covari-
ance analysis removes this source of variation from experimental error and
adjusts the treatment means for differences attributable to the covariate.
For this purpose, the covariate should not be affected by the treatments.
Otherwise, adjustment for the covariate will bias the estimates of treatment
effects and possibly lead to incorrect inferences.

As an illustration, consider a study to measure the effects of nutrient
levels on the growth rate of a species of bacteria. It is well known that
temperature has an effect on growth rate. Therefore, any differences in
temperature of the experimental units can be expected to cause differences
in growth rates even if the experimental units receive the same nutrient
treatment. Such differences will inflate experimental error and, to the extent
the nutrient groups differ in mean temperature, cause biases in the observed
treatment effects. Suppose the available resources do not permit sufficient
control of temperature to rule out these effects. Covariance analysis, with
the measured temperature of each experimental unit as the covariate, could
be used to adjust the observed growth rates to a common temperature.

A second use of the analysis of covariance is as an aid in the interpreta-
tion of treatment effects on a primary response variable. In this case, the
covariate is another response variable that may be involved in the response
of the primary response variable. The questions to be addressed by the co-
variance analysis are whether the treatment effects on the primary response
variable are essentially independent of those on the secondary variable (the
covariate) and, if not, how much of the effect on the primary response
variable might be attributed to the indirect effects of the treatments on
the covariate. For this purpose, it is quite likely that the covariate will be
affected by the treatments. (In cases such as this, a multivariate analy-
sis of variance of the two response variables would be a more appropriate
analysis.)

Covariance
to Improve
Precision

Covariance
to Interpret
Treatment
Effects
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Analysis of covariance is a special case of regression analysis where both
continuous and class variables are used. The class variables take into ac-
count the experimental design features as discussed earlier in this chapter.
The covariate will (almost) always be a continuous variable for which the
experimental results are to be “adjusted.”

The usual linear model for the analysis of covariance for a randomized
complete block design is

Yij = p+mi+y+B8Xy—-X)+e; (9.37)
fori=1,...,a treatments and j = 1,...,b blocks,

where the term (3(X;; — X..) has been added to the RCB model, equa-
tion 9.21, to incorporate the effect of the covariate X;; on the dependent
variable. The covariate is expressed in terms of the deviations about its
sample mean X . This emphasizes that it is the variation in the covariate
that is of interest, and simplifies the subsequent adjustment of the treat-
ment means. Equation 9.37 is the simplest form in which a covariate effect
can be included in a model—one covariate acting in a linear manner. The
covariate model can be extended to include more than one covariate and
more complicated relationships.

The covariance model is written in matrix form by augmenting the design
matrix X and parameter vector 3 for the appropriate experimental design.
X is expanded to include a column vector of (X;; — X ). B is expanded
to include the regression coefficient for the covariate (3. The ordering of
the observations for the covariate must be identical to the ordering of ob-
servations in Y. The numerical example in Section 9.8 illustrates X and
B.
The covariance model is of less than full rank, because the design matrix
to which the covariate vector was appended is singular. None of the singu-
larities, however, involves the covariate vector. Reparameterization or the
generalized inverse approach is used to obtain the relevant sums of squares
and to estimate the estimable functions of the parameters. The quantities
of primary interest are:

1. partial sums of squares attributable to the covariate and to differences
among the treatments,

2. estimate of experimental error after removal of the variation attributable

to the covariate, and

3. estimated treatment means and mean contrasts after adjustment to
a common level of the covariate.

The covariance analysis is first discussed as if the purpose of the analysis
were to increase precision of the experiment. Then, the key changes in
interpretation are noted for the case when covariance analysis is being used
to help interpret the treatment effects.

Two-Way
Model with
Covariate

Model in
Matrix
Notation

Quantities
of Interest
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TABLE 9.4. Partial sums of squares and mean squares from the analysis of co-
variance for a randomized complete block design with b blocks and t treatments.

Source d.f. Partial SS* MS
Total bt —1 Y'Y -C.F.
Blocks b—1 R('|T" B )
Treatments ¢ —1 R(T'|Y B )
Covariate 1 R(BIY T )
/

Residual b-1)¢t-1)—-1 YY-RH 7 8u s°

%y" and 7/ designate the row vectors of effects for the class variables “blocks”
and “treatments,” respectively.

The partial sums of squares for the class variables, “blocks” and “treat-
ments” in the RCB, and the covariate are shown in Table 9.4. These are
not additive partitions of the total sum of squares even when the data
are balanced. The covariate destroys the orthogonality that might have
been present in the basic experimental design. The error variance is esti-
mated from the residual mean square, the “block by treatment” interaction
mean square after adjustment for the covariate. The degrees of freedom for
residual reflect the loss of one degree of freedom for estimating 3 for the
covariate.

This model and analysis assume that the basic datum is one observation
on the ijth experimental unit, so that the residual mean square from the
regression analysis is also the error variance. If the data involve multiple
samples from each experimental unit, the residual mean square in Table 9.4
will contain both experimental error and sampling error.

A simple way to approach analysis of covariance in the presence of sam-
pling is to do the analysis of covariance based on the experimental unit
means. The errors associated with the experimental unit means are inde-
pendent and identically distributed with constant variance. Another proce-
dure would be to use a more general model that recognizes the correlated
error structure introduced by the multiple sampling on the same experi-
mental unit. (See Chapter 18 for mixed models.)

The presence of the covariate reduces the residual sum of squares by
the amount R(S|Yy' 7' ), the partial sum of squares attributable to the
covariate. This reflects the direct impact of the covariate on the magnitude
of 02 and, hence, on the precision of the experiment. The null hypothesis
that the covariate has no effect, Hy : 8 = 0, is tested with

_ RBNW' 7w

= 2 ;
which has 1 and [(b—1)(t—1) —1] degrees of freedom. If F' is not significant
at the chosen «, it is concluded that the covariate is not important in con-
trolling precision and the covariance analysis is abandoned. Interpretations

F (9.38)
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are based on the conventional analysis of variance. If the null hypothesis is
rejected, it is concluded that the covariate is effective in increasing precision
and the covariance analysis is continued to obtain estimates of treatment
means and contrasts adjusted for the effects of the covariate. The residual
mean square is the estimate of o2 for all subsequent computations.

The appropriate sum of squares for testing the composite null hypothesis
that all effects for a class variable are zero is the partial sum of squares
for that class variable R(7/|y' G u) or R(y'|7' 5 1). As always, these sums
of squares can be computed either by defining an appropriate K’ for the
general linear hypothesis or by the difference between residual sums of
squares for full and reduced models. The partial sum of squares for a class
variable adjusted for the covariate measures the variability among the levels
of the class variable as if all observations had occurred at the mean level
of the covariate. The null hypothesis that all treatment effects are zero is
tested by

_ R(W B/t~ 1)

52

F . (9.39)

The conventional, unadjusted treatment means are computed as simple
averages of the observations in each treatment. The vector of unadjusted
treatment means can be written as

Y=TY, (9.40)

where T is defined as the matrix of the ¢ treatment dummy variables with
each divided by the number of observations in the treatment. Thus, T is

1 0 0
10 0
1 0
Tﬁl S : 041
Tl 01 0 (9.41)
00 1
L0 0 -+ 1]

when there are b observations per treatment. The expectation of Y is
EY)=TXp. (9.42)

If the model includes a covariate, the expectation of the ith mean contains

the term 3(X;, — X ) in addition to the appropriate linear function of the

Testing Treat-
ment Effects
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other model effects. Because of this term, comparisons among the treatment
means include differences due to the covariate unless 3 = 0 or X, is the
same for all treatments being compared.

The adjusted treatment means are designed to remove this confound-
ing. Adjustment is accomplished either by estimating directly from 3° the
linear function of the parameters of interest, or by subtracting an estimate
of the bias term from each unadjusted treatment mean. The linear func-
tions of the parameters that need to be estimated are appropriately defined
by equation 9.42 if X is redefined by replacing the column of covariate val-
ues with a column of zeros. If this redefined X is labeled X, the linear
functions to be estimated by the adjusted treatment means are

E(Yaq;) = T'X.B, (9.43)

where ?adj denotes the vector of adjusted treatment means. The least
squares estimate of the adjusted treatment means is given by the same
linear function of the least squares solution ﬁo,

Yoaqj = T'XB" (9.44)

The adjusted treatment means are estimates of the treatment means for the
case where all treatments have the mean level of the covariate, X; = X .
for all i. The adjustment can be made to any level of the covariate, say C,
by defining X . to be the matrix with the column vector of covariate values
replaced with (C' — X ) rather than with zeros.

Alternatively, each adjusted treatment mean can be obtained by remov-
ing the bias 3(X; — X ) from the corresponding unadjusted treatment
mean. This leads to the more traditional method of computing the ad-
justed treatment means:

Yaqj, =Y — B(Xi - X.). (9.45)

The covariance adjustment is illustrated in Figure 9.1. The diagonal line
passing through the point (X ,Y ) is the regression line with slope 3
relating the dependent variable to the covariate. The original observations
are represented with xs. The adjustment can be viewed as moving each
observation along a path parallel to the fitted regression line from the
observed value of the covariate X = X;; to the common value X = X .The
dots on the vertical line at X = X represent the adjusted observations.
The amount each Yj; is adjusted during this shift is determined by the
slope of the regression line and the change in X,

Yadjlj =Y, - B(X;; — X ).
Averaging the adjusted observations within each treatment gives the ad-
justed treatment means, equation 9.45.

Adjusted
Treatment
Means
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FIGURE 9.1. Lllustration of the adjustment of the response variable Y for differ-
ences in the covariate X .
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The variance—covariance matrix of the adjusted treatment means follows
directly from the matrix equation for the variance of a linear function.
Thus,

Var(Y i) = (T'X)(X'X) (T'X,) o> (9.46)

The variances of the adjusted treatment means, the diagonal elements of
equation 9.46, simplify to the classical formula for the variance:
1 (X —X)?] »

UQ(Yadjl.) = E + T g, (947)

where F,, is the residual sum of squares from the RCB analysis of variance
of the covariate. That is, Eyp = Y 1, Z?:1[Xij -X; - X, +X %

When the covariance analysis is being used to aid interpretation of the
treatment effects, the primary interest is in comparison of the treatment
means and sums of squares before and after adjustment for the covariate.
The adjustment of the means and sums of squares is not viewed as a method
of obtaining unbiased estimates of treatment effects. Rather, the changes in
the means and sums of squares provide some indication of the proportion
of the treatment effects that can be viewed as direct effects on Y versus
possible indirect effects on Y through X, or through some other variable
that in turn affects both X and Y. For example, highly significant treatment
effects that remain about the same after adjustment for X would suggest
that most of the treatment effects on Y are essentially independent of
any treatment effects on X. On the other hand, dramatic changes in the
treatment effects with adjustment would suggest that X and Y are closely
linked in the system being studied so that the responses of both variables
to the treatments are highly correlated.

The test of the null hypothesis Hy : § = 0 is a test of the hypothesis
that the correlation between the residuals for X and the residuals for Y is
zero, after both have been adjusted for block and treatment effects. If the
covariate was chosen because it was expected to have a direct impact on
Y, then 8 would be expected to be nonzero and this test would serve only
as a confirmation of some link between the two variables. A nonsignificant
test would suggest that the link between the two variables is very weak, or
the power of the test is not adequate to detect the link. In either case, any
effort devoted to interpretation of the adjusted treatment means and sums
of squares would not be very productive.

9.8 Numerical Examples

Two examples are used. The first example combines several concepts cov-
ered in this chapter:

Variances of
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1. analysis of variance as a regression problem including reparameteri-
zation;

2. use of dummy variables to test homogeneity of regressions; and

3. analysis of covariance to aid in the interpretation of treatment effects.

The covariable in the first example can be viewed as another response vari-
able and is expected to be affected by the treatments. A multivariate anal-
ysis of variance of the two response variables would be a more appropriate
analysis.

The second example illustrates the more classical use of covariance and
uses a generalized inverse solution to the normal equations.

The purpose of this study was to compare ascorbic acid content in cab-
bage from two genetic lines (cultivars) planted on three different dates
(Table 9.5). The experimental design was a completely random design with
r = 10 experimental units for each combination of planting date and ge-
netic line, for a total of 60 observations. It was anticipated that ascorbic
acid content might be dependent on the size of the cabbage head; hence,
head weight was recorded for possible use as a covariate. (The data are
from the files of the late Dr. Gertrude M. Cox.)

Ascorbic acid content is the dependent variable of interest and head
weight is used as a covariate. The variables “date” and “line” are treated as
class variables. The first analysis is the conventional analysis of variance for
the factorial experiment. Then, in anticipation of the analysis of covariance,
the homogeneity of regression coeflicients, relating ascorbic acid content to
head size, over the six date-line treatment combinations is tested. Finally,
the analysis of covariance is run.

The purpose of the covariance analysis in this example is as an aid in
interpreting the effects of planting date and genetic line on ascorbic acid
content, rather than for control of random variation among the experimen-
tal units. It is expected that the covariable head weight will be affected
by the date and line treatment factors. Hence, adjustment of ascorbic acid
content to a common head weight would redefine treatment effects. When
the response variable and the covariate are affected by the treatment, a
multivariate approach that studies the treatment effects is preferred.

9.8.1 Analysis of Variance

The conventional model for a factorial set of treatments in a completely
random design is

Yij = p+7v + 7+ (07)ij + €ijr, (9.48)

Example 9.6
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TABLE 9.5. Head weight and ascorbic acid content for two cabbage varieties on
three planting dates.

Planting Date
16 20 21
Line Head Ascorbic Head Ascorbic Head Ascorbic
Number Wt.  Content Wt.  Content Wt.  Content

39 2.5 51 3.0 65 2.2 54
2.2 55 2.8 52 1.8 59
3.1 45 2.8 41 1.6 66
4.3 42 2.7 o1 2.1 54
2.5 53 2.6 41 3.3 45
4.3 50 2.8 45 3.8 49
3.8 50 2.6 51 3.2 49
4.3 52 2.6 45 3.6 55
1.7 56 2.6 61 4.2 49
3.1 49 3.5 42 1.6 68
52 2.0 58 4.0 52 1.5 78
24 55 2.8 70 14 75
1.9 67 3.1 57 1.7 70
2.8 61 4.2 58 1.3 84
1.7 67 3.7 47 1.7 71
3.2 68 3.0 56 1.6 72
2.0 58 2.2 72 1.4 62
2.2 63 2.3 63 1.0 68
2.2 56 3.8 54 1.5 66

2.2 72 2.0 60 1.6 72
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where ~y; are the “date” effects (i = 1,2,3), 7; are the “line” effects (j =
1,2), and (y7);; are the “date by line” interaction effects. This model con-
tains 12 parameters to define only 6 group means. Thus, there are 6 linear
dependencies in the model and a full rank reparameterization requires 6
constraints. There must be 1 constraint on the v;, 1 on the 74, and 4 on
the (y7)i;.

For this illustration, the means model is used as the reparameterized
model and then the general linear hypothesis is used to partition the varia-
tion among the six treatments into “date,” “line,” and “date by line” sums
of squares. Thus, the (full-rank) model for the analysis of variance is

Yijk = pij + €ijks (9.49)

where p;; is the true mean of the ijth date-line group. In this model X
is of order (60 x 6) where each column is a dummy variable showing the
incidence of the observations for one of the date-line groups. That is, the
ijth dummy variable takes the value one if the observation is from the ijth
date-line group; otherwise the dummy variable takes the value zero. It is
assumed that the elements of 3" are in the order

5*/:(M11 H12 o1 o2 HM31 ©32) -

The least squares analysis using this model gives SS(Model) = 205,041.9
with 6 degrees of freedom and SS(Residual) = 2,491.1 with 54 degrees of
freedom. The least squares estimates of y;; are the group means:

~x!
B =(50.3 625 49.4 58.9 548 71.8).

Each fi;; is estimating p + 7; + 7; + (77);;, the mean of the treatment
group in terms of the original parameters. These are the estimated group
means for ascorbic acid ignoring any differences in head weight since the
model does not include the covariate.

The partitions of SS(Model) are obtained by appropriate definition of K’
for general linear hypotheses on the p;;. For this purpose, it is helpful to
view the u;; as a 3 x 2 “date by line” table of means. The marginal means
for this table fi; and [z ; represent the “date” means and the “line” means,
respectively. For each sum of squares to be computed, the appropriate null
hypothesis is stated in terms of the p;;, the appropriate K " is defined for
the null hypothesis, and the sum of squares ) computed using the general
linear hypothesis, equation 4.38, is given. In all hypotheses m = 0 and Q
is computed as

Q=(K'B)K(X'X")'K|"\K'B).

1. Correction factor: The sum of squares due to the correction for the
mean, the correction factor, measures the deviation of the overall
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mean 1z from zero. The overall mean is zero only if the sum of the
ti; is zero. Therefore,

Hy : =0 or » > ;=0

K, = (1 1111 1), (9.50)
r(Ki1) = 1and
@1 = 201,492.1 with 1 degree of freedom.

. Sum of squares for “dates”: The hypothesis of no date effects is equiv-

alent to the hypothesis that the three marginal means f; are equal.
The equality of the three means can be expressed in terms of two
linearly independent differences being zero:

Ho : 1y, = fip, = T3,

or

Hy : (p11 + p12) — (p21 + pi22) = 0 and
(11 + pa2) + (po1 + po2) — 2(ps1 + p32) =0,
1 1 -1 -1 0 0

! p—
Ko =111 1 1 2 2 (9:51)
r(K2) = 2,and
Q2 = 909.3 with 2 degrees of freedom.

. Sum of squares for “lines”: The hypothesis of no “line” effects is

equivalent to the hypothesis that the two marginal means for “lines”
1t ; are equal or that the difference is zero:

Hy: Bq— o

or
Hy : pi1 + por + pg1 — iz — poz — ps2 =0,
Ky = (1 -1 1 -1 1 —-1), (9.52)
r(K3) = 1,and
Qs = 2,496.15 with 1 degree of freedom.

. Sum of squares for “dates by lines”: The null hypothesis of no interac-

tion effects between “dates” and “lines” is equivalent to the hypoth-
esis that the difference between lines is the same for all dates, or that
the differences among dates are the same for all lines. The former is
easier to visualize because there are only two lines and one difference
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TABLE 9.6. Factorial analysis of variance of ascorbic acid content of cabbage.

Source d.f.  Sum of Squares  Mean Square

Totalyncorr 60 207,533.0

Model 6 205,041.9

C.F. 1 201,492.1
Dates 2 909.3 454.7
Lines 1 2,496.2 2,496.2
Dates x Lines 2 144.3 72.2
Residual 54 2,491.1 46.1

between lines for each date. There are three such differences which,
again, require two linearly independent statements:

Hy : 11 — 12 = f21 — M22 = [131 — [432

or

Hy : (11 — p12) — (p21 — po2) =0 and
(11 — pa2) + (po1 — p22) — 2(ps1 — p32) =0,
1 -1 -1 1 0 0

/ —
Ky = 1 -1 1 -1 -2 2|’ (9.53)
r(K4) = 2,and
Q4 = 144.25 with 2 degrees of freedom.

The K’ matrix appropriate for the hypothesis of no interaction is the
more difficult matrix to define. The statements were generated using the
fact that interaction measures the failure of the simple effects to be consis-
tent over all levels of the other factor. It should be observed, however, that
K, is easily generated as the elementwise product of each row vector in K7
with the row vector in Kj. Interaction contrasts can always be generated
in this manner.

This analysis of variance is summarized in Table 9.6. The results are iden-
tical to those from the conventional analysis of variance for a two-factor
factorial in a completely random experimental design. The residual mean
square serves as the denominator for F-tests of the treatment effects (if
treatment effects are fixed effects). There are significant differences among
the planting dates and between the two genetic lines for ascorbic acid con-
tent. The interaction between dates and lines is not significant, indicating
that the difference between the lines is reasonably constant over all planting
dates.
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9.8.2  Test of Homogeneity of Regression Coefficients

The analysis of covariance assumes that all treatments have the same rela-
tionship between the dependent variable and the covariate. In preparation
for the covariance analysis of the cabbage data (Section 9.8.3), this section
gives the test of homogeneity of the regression coefficients.

The full model for the test of homogeneity allows each treatment group
to have its own regression coefficient relating ascorbic acid content to head
size. The means model used in the analysis of variance (equation 9.49 is
expanded to give

Yijk = pij + Bij(Xijk — X ) + €ijis (9.54)

where the ij subscripts on 3 allow for a different regression coefficient
for each of the six treatment groups. There are now 12 parameters and X*
must be of order (60x12). Each of the additional six columns in X * consists
of the covariate values for one of the treatment groups. The elements in the
column for the ijth group take the values (X;;5 — X ) if the observation
is from that group and zero otherwise. These six columns can be generated
by elementwise multiplication of the dummy variable for each treatment
by the original vector of (X;jx — X ). The X* matrix has the form

10 000 0 x=; O 0 0 0 0
01 0 0 0 0 O =2 O 0 0 0

x* 0 01 0 0 0 O 0 x» O 0 0
0 001 O0O0 O 0 0 =z O 0 ’
0 00 01 0 O 0 0 0 =z O
0 00 0 O 1 O 0 0 0 0 x32

where each symbol in X™* is a column vector of order 10 x 1; a;; is the 10x 1
column vector of the deviations of head weight from the overall mean head
weight for the ijth treatment group. The least squares analysis using this
model gives SS(Resg,y )= 1847.2 with 60 — 12 = 48 degrees of freedom.

The reduced model for the null hypothesis of homogeneity of regression
coefficients, Hy : 3;; = 3 for all 4j combinations, is

Yijk = pij + B(Xijr — X)) + €iji. (9.55)

There are seven parameters in this reduced model—the six p;; plus the
common f. (This is the covariance model that is used in the next section.)
The least squares analysis of this reduced model gives SS(ReSyeduced)=
1,975.1 with 53 degrees of freedom.

The difference in residual sums of squares for the full and reduced models
is:

Q = SS(RCSreduced) - SS(RCSfull)
1,975.1 — 1,847.2 =127.9
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with 53 — 48 = 5 degrees of freedom. This is the appropriate numerator
sum of squares for the F-test of the null hypothesis. The appropriate de-
nominator for the F-test is the residual mean square from the full model,

,  1,847.24
§ = -

= 38.48.
48
Thus,
127.9/5
F=—"—""—=,66
38.48

which is nonsignificant. A common regression coefficient for all treatments
is sufficient for describing the relationship between ascorbic acid content
and the head weight of cabbage in these data.

If the regression coefficients are heterogeneous, the covariance analysis
for whatever purpose must be used with caution. The meaning of “adjusted
treatment means” is not clear when the responses to the covariate differ.
The choice of the common level of the covariate to which adjustment is
made becomes critical. The treatment differences and even the ranking of
the treatments can depend on this choice.

9.8.8  Analysis of Covariance

The analysis of covariance is used on the ascorbic acid content of cabbage as
an aid in interpreting the treatment effects. The differences among adjusted
treatment means are not to be interpreted as treatment effects. The changes
in the sums of squares and treatment means as they are adjusted provide
insight into the degree of relationship between the treatment effects on the
two response variables, ascorbic acid content and head weight.

The model for the analysis of covariance, using the means parameteriza-
tion and a common regression of ascorbic acid on head size for all groups,
was given as the reduced model in the test of homogeneity, equation 9.55.
The least squares analysis of this model gives the analysis of covariance.
The X* matrix from the analysis of variance is augmented with the col-
umn of observations on the covariate, expressed as deviations from the
mean of the covariate. The vector of parameters is expanded to include 3,
the regression coefficient for the covariate.

Least squares analysis for this model gives SS(Model) = 205,557.9 with 7
degrees of freedom and SS(Residual) = 1,975.1 with 53 degrees of freedom.
The decrease in the residual sum of squares from the analysis of variance
model to the covariance model is due to the linear regression on the co-
variate. This difference in SS(Res) for the two models is the partial sum
of squares for 3, R(B|p') = 2,491.1 — 1,975.1 = 516.0 with 1 degree of
freedom, and is the appropriate numerator sum of squares for the F-test
of the null hypothesis Hp : # = 0. The denominator is the residual mean
square from the covariance model, s? = 1,975.1/53 = 37.3.
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TABLE 9.7. Partial sums of squares for the analysis of covariance of ascorbic
acid content for the cabbage data. The covariate is head weight.

Source d.f.  Sum of Squares  Mean Square
Totalynecorr 60 207,533.0
Model 7 205, 557.9
C.F. 1 201, 492.1
Dates 2 239.8 119.9
Lines 1 1,237.3 1,237.3
Dates x Lines 2 30.7 15.4
Covariate 1 516.0 516.0
Residual 53 1,975.1 37.3

The F-test of Hy: 3 =01is

with 1 and 53 degrees of freedom, which is significant beyond a = .001.
This confirms that there is a significant correlation between the variation in
ascorbic acid content and head size after both have been adjusted for other
effects in the model. This can be interpreted as a test of the hypothesis that
the correlation between the random plot-to-plot errors of the two traits is
zero.

General linear hypotheses are used to compute the partial sum of squares
attributable to each of the original class variables. These sums of squares
will differ from the analysis of variance sums of squares because they will
now be adjusted for the covariate. The K’ matrices defined in the analysis
of variance, equations 9.50 through 9.53, need to be augmented on the right

with a column of zeros as coefficients for 5 so that K’ and ,3* conform for
multiplication. These sums of squares are no longer additive partitions of
the model sum of squares because the adjustment for the covariate has
destroyed the orthogonality. An additional K’ could be defined for the
hypothesis that 3 = 0, but the appropriate F-test based on the difference
in residual sums of squares has already been performed in the previous
paragraph. The analysis of variance summary for the covariance model is
given in Table 9.7.

A comparison of Tables 9.6 and 9.7 shows major decreases in the sums
of squares for “dates” and “lines” after adjustment for differences in head
weight. The test for “date by line” effects is nonsignificant both before and
after adjustment. The sum of squares for “dates” was reduced from a highly
significant 909 to a just-significant 240 (« = .05). The sum of squares for
“lines” was reduced by half but is still highly significant. These results
suggest that a significant part of the variation in ascorbic acid content
among dates of planting and between lines is associated with variation in
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TABLE 9.8. Adjustment of treatment means for ascorbic acid content in cabbage
for differences in the covariable head weight.

Mean Mean Mean

Head Ascorbic Acid Adjustment Ascorbic Acid
Group Weight (Unadjusted) —B(Yij‘ -X.) (Adjusted)
11 3.18 50.3 2.64 52.94 (2.06)°
12 2.26 62.5 ~1.50 61.00 (1.97)
21 2.80 49.4 .93 50.33 (1.95)
22 3.11 58.9 2.33 61.23 (2.03)
31 2.74 54.8 66 55.46 (1.94)
32 1.47 71.8 —5.06 66.74 (2.36)
Mean 2.593 57.95 .00 57.95

“Standard errors of adjusted treatment means are shown in parentheses. The standard error
on each unadjusted treatment mean is 2.15.

head size. However, not all of the variation in ascorbic acid content can be
explained by variation in head size.
The estimate of the parameters is:

~x/
B =(5294 61.00 50.33 61.23 55.46 66.74 —4.503).

The [i;; from the means reparameterization are estimates of the treatment
means for ascorbic acid content, which are now adjusted for differences
in head weight. (The estimate of the parameters contains the adjusted
treatment means only because the means reparameterization was used and
the covariate was centered. Otherwise, linear functions of the parameter
estimates would have to be used to compute the adjusted means.) The
estimate of the regression coefficient for the covariate is B\ = —4.50265.
Each increase of 1 unit in head weight is associated with a decrease in
ascorbic acid content of 4.5 units on the average.

The adjustments to mean ascorbic acid content for differences in mean
head weight are shown in Table 9.8. The biggest adjustment is for the
third planting date for line 2, which had a very small head weight and
high ascorbic acid content. Adjustment for head size reduced the average
difference in ascorbic acid content between the two lines from about 12 units
to 10 units. The first two planting dates differ very little for either line, but
the third planting date gives appreciably higher ascorbic acid content even
after adjustment for smaller head size on that planting date.

The analysis shows that there is considerable genetic and environmental
correlation between ascorbic acid content and head size in cabbage. Some
of the higher ascorbic acid content in line 2 on the third planting date
may be attributable to the smaller head size produced by that treatment
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TABLE 9.9. Average dry forage yields (lbs/A) from a study of sources and rates
of phosphorus fertilization. The experimental design was a randomized complete
block design with seven sources of phosphorus, each applied at two rates (lbs/A).
The phosphorus content of the soil (ppm of P2Os) at the beginning of the study
was recorded for use as a possible covariate. (Data are from the files of the late
Dr. Gertrude M. Coz.)

Treatment Block I Block 11 Block IIT
Source Rate Phos.  Forage Phos.  Forage Phos.  Forage
SUPER 40 32.0 2,475 43.2 3,400 51.2 3,436
SUPER 80 44.8 3,926 56.0 4,145 75.2 3,706
TSUPER 40 43.2 2,937 52.8 2,826 27.2 3,288
TSUPER 80 41.6 3,979 64.0 4,065 36.8 4,344
BSLAG 40 49.6 3,411 62.4 3,418 46.4 2,915
BSLAG 80 51.2 4,420 62.4 4,141 48.0 4,297
FROCK 40 48.0 3,122 75.2 3,372 224 1,576
FROCK 80 48.0 4,420 76.8 3,926 24.0 1,666
RROCK 40 54.4 2,334 60.8 2,530 49.6 1,275
RROCK 80 60.8 3,197 59.2 3,444 46.4 2,414
COLOID 40 72.0 3,045 59.2 2,206 19.2 540
COLOID 80 76.8 3,333 32.0 410 70.4 4,294
CAMETA 40 64.0 3,594 62.4 3,787 44.8 3,312
CAMETA 80 62.4 3,611 76.8 4,211 48.0 4,379
combination. This does not mean, however, that this adjusted mean is a
better estimate of the ascorbic acid content of line 2 when planted late.
The smaller head size may be an innate trait of line 2 when grown under
the environmental conditions of the late planting. If so, the adjustment to
a common head size underestimates the ascorbic acid content for line 2
grown under those conditions. ]
The next example illustrates the classical use of covariance to control
experimental error.
The data for the example are from a study to compare seven sources  Example 9.7

of phosphorus each applied at two rates (40 and 80 lbs/A). The exper-
imental design is a randomized complete block experimental design with
b = 3 blocks. The dependent variable is 3-year dry weight forage production
(Ibs/A). The covariate is soil phosphorus content (ppm P>O5) measured at
the beginning of the study. The data are given in Table 9.9. (The data are
from the files of the late Dr. Gertrude M. Cox.)
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The linear model for a factorial set of treatments in a randomized com-
plete block design is

Yije = p+pi+v + 7+ (07 i + €ijis (9.56)
where
pi = effect of ith block (i =1,2,3)
v; = effect of jth source of phosphorus (j =1,...,7)
7, = effect of kth rate of application (k =1,2)
(y7);r = interaction effect of jth source and kth rate.

The covariate is included in the model by adding the term 3(X;j1 — X.)
to equation 9.56. In this example, the covariate was measured before the
treatments were applied to the experimental units, so there is no chance
the covariate could have been affected by the treatments.

The analysis of variance model contains 27 parameters but the rank of
X is (X)) = 17; reparameterization would therefore require 10 constraints.
Analysis of these data uses the generalized inverse approach, rather than
reparameterization, to obtain the solution to the normal equations. PROC
ANOVA and PROC GLM, the general linear models procedure, (SAS In-
stitute Inc., 1989a, 1989b) are used for the analyses.

The analysis of variance is obtained from PROC ANOVA using the state-
ments:

PROC ANOVA; CLASS BLOCK SOURCE RATE; MODEL
FORAGE = BLOCK SOURCE RATE SOURCE*RATE;

The CLASS statement identifies the variables that are to be regarded as
class variables. Whenever a class variable is encountered in the MODEL
statement, the program constructs a dummy variable for each level of the
class variable. Thus, X will contain 3 dummy variables for BLOCK, 7
dummy variables for SOURCE, and 2 dummy variables for RATE. An in-
teraction between two (or more) class variables in the MODEL statement
instructs the program to construct a dummy variable for each unique joint
level of the two factors; there will be 14 dummy variables for SOURCE*RATE.

The summary of the analysis of variance for the experiment is given in
Table 9.10. There are significant differences among the sources of phos-
phorus (a = .05) and highly significant differences between the rates of
application (o = .01). Block effects and source-by-rate interaction effects
are not significant. The residual mean square is s> = 735,933 and the
coefficient of variation is 26.7%.

The purpose of the covariance analysis is to use the information on soil
phosphorus content to “standardize” the experimental results to a common
level of soil phosphorus and, thereby, improve the precision of the compar-
isons. The analysis of covariance is obtained from PROC GLM (PROC
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TABLE 9.10. Analysis of variance of dry forage from the phosphorus fertilization
data.

Sum of Mean
Source d.f. Squares Square F  Prob>F
Corrected total 41 41,719,241
BLOCK 2 1,520,897 760,449 1.03 .3700
SOURCE 6 13,312,957 2,218,826 3.01 .0226
RATE 1 7,315,853 7,315,853 9.94 .0040
SOURCE*RATE 6 435,267 72,544 .10 .9959
Error 26 19,134,266 735,933

ANOVA cannot handle a continuous variable) by expanding the model
statement to include the covariate PHOSDEV as follows.

MODEL FORAGE=BLOCK SOURCE RATE SOURCE*RATE
PHOSDEV /SOLUTION;

The variable PHOSDEYV has been previously defined in the program as the
centered covariate. The “/SOLUTION” portion of the statement requests
PROC GLM to print a solution to the normal equations.

The analysis of covariance is summarized in Table 9.11. The lower two
sections of Table 9.11 present the sequential sums of squares (TYPE I
in SAS) and the partial sums of squares (TYPE III in SAS). Since the
covariate was placed last in the model statement and the experimental
design was balanced, the first four lines of the sequential sums of squares
reproduce the analysis of variance sums of squares (Table 9.10).

The first question to ask of the analysis is whether the covariate has
improved the precision of the comparisons. The residual mean square after
adjustment for the covariate is s> = 384, 776. This is a reduction of 48%
from s2 = 735,933 in the analysis of variance (Table 9.10). The coefficient
of variation has been reduced from 26.7% to 19.3%. The reduction in the
residual sum of squares is the partial sum of squares for the covariate and
provides a test of the hypothesis Hy : f = 0, where 3 is the regression
coefficient on PHOSDEV. This test gives F' = 24.73 with 1 and 25 degrees
of freedom, which is significant beyond a = .0001. [ = 39.7801 with
S(B) = 7.9996]. The use of the covariate, initial soil phosphorus content,
has greatly improved the precision of the experiment.

Adjustment of the treatment effects for differences in the covariate changed
the treatment sums of squares (compare the sequential and partial sums
of squares in Table 9.11) but did not change any of the conclusions from
the F-tests of the treatment effects. Sources of phosphorus and rates of ap-
plication remain significant, both beyond o = .01, and the source-by-rate
interaction remains nonsignificant. The absence of any interaction between
sources and rates of fertilization means that differences in forage produc-
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TABLE 9.11. Covariance analysis for dry forage yield from a randomized complete
block design with seven sources of phosphorus applied at two rates. The covariate
is amount of soil phosphorus in the plot at the beginning of the three-year study.

Sum of Mean

Source d.f. Squares Square F Prob > F
Model 16 32,099,838 2,006,240 5.21 .0001
Error 25 9,619,403 384,776
Corrected Total 41 41,719,241
Sequential Sums of Squares:

Source d.f. SS MS F Prob > F
BLOCK 2 1,520,897 760,449  1.98 .1596
SOURCE 6 13,312,957 2,218,826 5.77 .0007
RATE 1 7,315,853 7,315,853 19.01 .0002
SOURCE*RATE 6 435,267 72,544 .19 9773
PHOSDEV 1 9,514,863 9,514,863 24.73  .0001
Partial Sums of Squares:

Source d.f. SS MS F Prob > F
BLOCK 2 1,173,100 586,550  1.52 .2373
SOURCE 6 15,417,193 2,569,532 6.68  .0003
RATE 1 3,623,100 3,623,100 9.42 .0051
SOURCE*RATE 6 999, 892 166649 .43 .8497
PHOSDEV 1 9,514,863 9,514,863 24.73 .0001
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tion among the 14 phosphorus fertilization treatments can be summarized
in the marginal means for the two treatment factors, sources and rates.
However, both sets of means need to be adjusted to remove biases due to
differences in initial levels of soil phosphorus.

The adjusted SOURCE marginal means are obtained as

adj =Y, -BX,; -X_),

g

=l

where X j. is the marginal mean for the covariate for those experimental
plots receiving the jth source of phosphorus, and X is the overall mean
for the covariate, 8 = 39.7801. This adjusts the SOURCE means to the

common level of initial soil phosphorus X . = 52.4 ppm. Similarly, the
adjusted RATE marginal means are obtained as

Y =Y. —BX x-X.)

adj .

The unadjusted marginal means and the steps in the adjustment to obtain
the adjusted means are shown in Table 9.12. The standard errors of the
adjusted treatment means are also shown. The standard errors on the un-
adjusted treatment means were s(Y ;) = 350.2 and s(Y ;) = 229.3. The
differences between standard errors for the unadjusted and adjusted means
show a marked increase in precision from the use of the covariate.

PROC GLM computes the adjusted means as linear functions of the
solution ,80. The appropriate linear functions to be estimated for each mean
are determined by the expectations of means in balanced data with the
covariate set equal to X . For example, the expectation of the marginal
mean for the first source, BSLAG, is

EV1)=p+ p1+ p2+p3 +n+ T+ T2 n (y7)11 + (’YT)12.
3 2 2

The expectation contains, in addition to u + -1, the average of the block
effects p;, the average of the rate effects 7, and the average of the inter-
action effects in which source 1 is involved. The covariate is not involved
in this expectation because adjusting to the mean level of the covariate is
equivalent to adjusting to PHOSDEV = 0 when the centered covariate is
used. This is the particular linear function of 3 that is to be estimated
as the marginal FORAGE mean for SOURCE = BSLAG. The estimate is
obtained by computing the same linear function of 3°. The adjusted means
are obtained from PROC GLM with the statement

LSMEANS SOURCE RATE/STDERR;

The “/STDERR?” asks for the standard errors on the adjusted means to
be printed.

Interpretations of the treatment effects are based on the adjusted treat-
ment means. In this example, adjustment for differences in the covariate
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TABLE 9.12. Unadjusted and adjusted treatment means for “Source” and “Rate”
of phosphorus fertilization. There was no “Rate by Source” interaction so that
the experimental results are summarized in terms of the marginal means.

Forage Phosphorus Forage

Mean Mean Covariance Mean Std.
Treatment  (Unadj)®  Deviation®  Adjustment®  (Adj.)  Error
SOURCE means:

BSLAG 3,767.0 0.914 —-36.4 3,730.6 253.3
CAMETA 3,815.7 7.314 —291.0 3,524.7 259.9
COLOID 2,304.7 2.514 —100.1 2,204.6  254.0
FROCK 3,013.7 —3.352 133.3 3,147.0 254.7
RROCK 2,532.3 2.781 —110.6 2,421.7 254.2
SUPER 3,514.7 —2.019 80.3 3,595.0 253.8
TSUPER 3,573.2 —8.152 324.3 3,897.5 261.5
RATE means:
40 2,800.0 —2.895 115.2 2,915.1 137.3
80 3,634.7 2.895 —115.2 3,519.5 137.3

2The standard errors for the unadjusted treatment means are s(Y ;.) = 350.2 for the
SOURCE means and s(Y 1) = 229.3 for the RATE means.

b“Phosphorus mean deviation” is (X ;. — X ...) for SOURCE means and (X ; — X...)
for RATE means.

¢“Covariance adjustment” is 7//8\(Phosphorus mean deviation) where ,/B\: 39.7801.
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changed the ranking of the four best sources of phosphorus, which did not
differ significantly, and decreased the difference between the two rates of
application. The adjusted means suggest an average rate of change in for-
age of 151bs/A for each Ib/A of phosphorus compared to 211bs/A suggested
by the unadjusted means. |

9.9

9.1.

9.2.

9.3

9.4.

Exercises

Use matrix multiplication to verify that the linear model in equa-
tion 9.5, where X and (3 are as defined in equation 9.4, generates the
combinations of effects shown in equation 9.2.

Determine the number of rows and columns in X before reparame-
terization for one-way structured data with ¢ groups (or treatments)
and n observations in each group. How does the order of X change
if there are n; observations in each group?

Suppose you have one-way structured data with ¢ = 3 groups. Define
the linear model such that p is the mean of the first group and the
second and third groups are measured as deviations from the first. Is
X for this model of full rank? Does this form of the model relate to
any of the three reparameterizations?

The accompanying table gives survival data for tropical corn borer
under field conditions in Thailand (1974). Researchers inoculated 30
experimental plots with egg masses of the corn borer on the same date
by placing egg masses on each corn plant in the plot. After each of 3,
6, 9, 12, and 21 days, the plants in 6 random plots were dissected and
the surviving larvae were counted. This gives a completely random
experimental design with the treatments being “days after inocula-
tion.” (Data are used with permission of Dr. L. A. Nelson, North
Carolina State University.)

Days After Numbers of Larvae
Inoculation Surviving in 6 Plots
3 17 22 26 20 11 14
6 37 26 24 11 11 16
9 8§ 5 12 3 5 4
12 14 8 4 6 3 3
21 10 13 5 7 3 4

(a) Do the classical analysis of variance by hand for the completely
random design. Include in your analysis a partitioning of the



9.5.

9.6.

9.7.

9.9 Exercises 317

sum of squares for treatments to show the linear regression on
“number of days” and deviations from linearity.

(b) Regard “days after inoculation” as a class variable. Define Y,
X, and B so that the model for the completely random design
Yj = p+ 7 + €;; can be represented in matrix form. Show
enough of each matrix to make evident the order in which the
observations are listed. Identify the singularity that makes X
not of full rank.

(¢) Show the form of X and (3 for each of the three reparameteriza-
tions—the means model, the Y 7; = 0 constraint, and the 75 = 0
constraint.

(d) Choose one of the reparameterizations to compute R(7'|u) and
SS(Res). Summarize the results in an analysis of variance table
and compare with the analysis of variance obtained under (a).

(e) Use SAS PROC GLM, or a similar program for the analysis of
less than full-rank models, to compute the analysis of variance.
Ask for the solution to the normal equations so that “estimates”
of B are obtained. Compare these sums of squares and estimates
of B with the results from your reparameterization in Part (d).
Show that the unbiased estimates of p + 71 and 73 — 75 are the
same from both analyses.

(f) Now regard X as a quantitative variable and redefine X and
B so that Y = X3 + € expresses Y as a linear function of
“number of days.” Compute SS(Regr) and compare the result
with that under Part (a). Test the null hypothesis that the linear
regression coefficient is zero. Test the null hypothesis that the
linear function adequately represents the relationship.

(g) Do you believe the assumptions for least squares are valid in this
example? Justify.

Use X and B as defined for the completely random design, equa-
tion 9.4. Define K’ for the null hypothesis Hy : 71 = 73. Define K’
for the null hypothesis Hy : 73 = 74. Define K’ for the composite null
hypothesis Hy : 71 = 75 and 73 = 74 and 71 + 72 = 73 + 74. Is each
of these hypotheses testable? How does the sum of squares generated
by the composite hypothesis relate to the analysis of variance?

Show that the means model reparameterization for the completely
random design is equivalent to imposing the constraint that p = 0.

Express the columns of X in equation 9.4 as linear combinations of
columns of X™ in equation 9.15. Also, express the columns of X in
equation 9.15 as linear combinations of columns of X . Thus, the space

spanned by columns of X is the same as that spanned by columns of
X
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Use the means model reparameterization on a randomized complete
block design with b = 2 and ¢ = 4. As discussed in the text, this
reparameterization leaves zero degrees of freedom for the estimate of
error. However, experimental error can be estimated as the block-
by-treatment interaction sum of squares. Define K’ for the means
reparameterization so that the sum of squares obtained from @ is the
error sum of squares.

Show X* and B for the model for the randomized complete block
design (equation 9.21) with b = 2 and ¢ = 4 using the constraint
v2 = 0 and p; = p+ 7;. Determine the expectation of ,@* in terms of
the original parameters.

Use matrix multiplication of X and 3 in equation 9.22 to verify that
the linear model in equation 9.21 is obtained.

Determine the general result for the number of columns in X for two-
way classified data when there are b levels of one factor and ¢ levels
of the other factor if the model does not contain interaction effects.
How many additional columns are needed if the model does contain
interaction effects?

A randomized complete block experimental design was used to de-
termine the joint effects of temperature and concentration of herbi-
cide on absorption of 2 herbicides on a commercial charcoal material.
There were 2 blocks and a total of 20 treatment combinations—2
temperatures by 5 concentrations by 2 herbicides. (The data are used
with permission of Dr. J. B. Weber, North Carolina State University.)

Temp. Concentration x10°
Block °C Herb. 20 40 60 80 100

1 10 A 280 .380 444 480 .510
B 353 485 530 .564 .620

95 A 266 332 400 .436 .450

B 352 474 556 590 .625

2 10 A 278 392 440 470 .500
B 360 484 530 .566 .611

55 A 208 .334 390 436 .446

B 358 490 .560 .570 .600

The usual linear model for a randomized complete block experiment,
Yi; = p+: + 7 + €5, where +; is the effect of the ith block and 7; is
the effect of the jth treatment, can be expanded to include the main
and interaction effects of the three factors:

Yijw = p+v+Tj+He+C+ (TH)ju + (TC)
+ (HC)y + (THC) ji + €ijl
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where T}, Hy, and Cj refer to the effects of temperature, herbicide,
and concentration, respectively. The combinations of letters refer to
the corresponding interaction effects.

(a) Show the form of X and 3 for the usual RCB model, the model
containing 7; and 7;. Assume the data in Yare listed in the
order that would be obtained if successive rows of data in the
table were appended into one vector. What is the order of X
and how many singularities does it have? Use 75 = 0 and 799 = 0
to reparameterize the model and compute the sums of squares
for blocks and treatments.

(b) Define K’ for the singular model in Part (a) for the composite
null hypothesis that there is no temperature effect at any of the
combinations of herbicide and concentration. (Note: 7 is the ef-
fect for the treatment having temperature 10°, herbicide A, and
concentration 20 x 107°. 747 is the effect for the similar treat-
ment except with 55° temperature. The null hypothesis states
that these two effects must be equal, or their difference must be
zero, and similarly for all other combinations of herbicide and
concentration.) How many degrees of freedom does this sum of
squares have? Relate these degrees of freedom to degrees of free-
dom in the conventional factorial analysis of variance. Define K’
for the null hypothesis that the average effect of temperature is
zero. How many degrees of freedom does this sum of squares
have and how does it relate to the analysis of variance?

(c¢) Show the form of X and @3 if the factorial model with only the
main effects T, Hy, and C; is used. How many singularities
does this X matrix contain? Show the form of X™ if the “sum”
constraints are used. Use this reparameterized form to compute
the sums of squares due to temperature, due to herbicides, and
due to concentration.

(d) Demonstrate how X in Part (c) is augmented to include the
(TH);, effects. How many columns are added to X ? How many
additional singularities does this introduce? How many columns
would be added to X to accommodate the (T'C);; effects? The
(HC)y effects? The (THC)jp effects? How many singularities
does each introduce?

(e) Use PROC ANOVA in SAS, or a similar computer package, to
compute the full factorial analysis of variance. Regard blocks,
temperature, herbicide, and concentration as class variables.

9.13. The effect of supplemental ascorbate, vitamin C, on survival time of
terminal cancer patients was studied. [Data are from Cameron and
Pauling (1978) as reported in Andrews and Herzberg (1985).] The
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Effect of supplemental ascorbate on survival time of cancer patients.

Stomach Cancer Bronchus Cancer Colon Cancer
Age Days Cont. | Age Days Cont.| Age Days Cont.
Females: Females: Females:
61 124 38 48 87 13 76 135 18
62 19 36 64 115 49 58 50 30
66 45 12 | Males: 70 155 57
69 876 19 74 74 33 68 534 16
59 359 55 74 423 18 74 126 21
Males: 66 16 20 76 365 42
69 12 18 52 450 58 56 911 40
63 257 64 70 50 38 74 366 28
79 23 20 77 50 24 60 99 28
76 128 13 71 113 18 | Males:
54 46 51 70 857 18 49 189 65
62 90 10 39 38 34 69 1,267 17
46 123 52 70 156 20 50 502 25
57 310 28 70 27 27 66 90 17
55 218 32 65 743 14
74 138 27 58 156 31
69 39 39 77 20 33
73 231 65 38 274 80

survival time (Days) of each treated patient was compared to the
mean survival time of a control group (Cont.) of 10 similar patients.
Age of patient was also recorded. For this exercise, the results are
used from three cancer types—stomach, bronchus, and colon. There
were 13, 17, and 17 patients in the three groups, respectively. For this
question use the logarithm of the ratio of days survival of the treated
patient to the mean days survival of his or her control group as the
dependent variable.

(a) Use the means model reparameterization to compute the analy-
sis of variance for In(survival ratio). Determine X*' X*, X*'Y,
,@*, SS(Model), SS(Res), and s2. What is the least squares es-
timate of the mean In(survival ratio) for each cancer group and
what is the standard error of each mean? Two different kinds of
hypotheses are of interest: does the treatment increase survival
time; that is, is In(survival ratio) significantly greater than zero
for each type cancer; and are there significant differences among
the cancer types in the effect of the treatment? Use a t-test to
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test the null hypothesis that the true mean In(survival ratio)
for each group is zero. Use an F-test to test the significance of
differences among cancer types.

(b) The ages of the patients in the study varied from 38 to 79;
the mean age was 64.3191 years. Augment the X* matrix in
Part (a) with the vector of centered ages. Compute the residual
sum of squares and the estimate of o2 for this model. Compute
the standard error of each estimated regression coefficient. Use
a t-test to test the null hypothesis that the partial regression
coefficient for the regression of In(survival ratio) on age is zero.
Use the difference in residual sums of squares between this model
and the previous model to test the same null hypothesis. How
are these two tests related? What is your conclusion about the
importance of adjusting for age differences?

(¢c) Since the means model was used in Part (b) and ages were ex-
pressed as deviations from the mean age, the first three regres-
sion coefficients in 3 are the estimates of the cancer group means
adjusted to the mean age of 64.3191. Construct K’ for the hy-
pothesis that the true means, adjusted for age differences, of
the stomach and bronchus cancer groups, the first and second
groups, are the same as for colon cancer, the third group. Com-
plete the test and state your conclusion.

(d) Describe how X would be defined to adjust all observations to
age 60 for all patients. Show the form of T' for averaging the
adjusted observations to obtain the adjusted group means. The
adjusted group means are obtained as T" X 23*7 equation 9.44.
Compute T' X} and s%(Y 44;) for this example.

(e) Even though the average regression on age did not appear im-
portant, it was decided that each cancer group should be allowed
to have its own regression on age to verify that age was not im-
portant in any of the three groups. Illustrate how X* would be
expanded to accomodate this model and complete the test of
the null hypothesis that the regressions on age are the same for
all three cancer groups. State your conclusion.

9.14. The means reparameterization was used on the cabbage data ex-

9.15.

ample (Example 9.5) in the text. Define 8 and X ™ for this model
(equation 9.48 using the reparameterization constraints v3 = 7o =
(y7)31 = (v7)32 = (77)12 = (y7)22 = 0. Define K’ for the reparame-
terized model so as to obtain the sum of squares for “dates-by-lines”
interaction.

Equation 9.55 defines the reduced model for Hy : 3;; = 8 for all 7j.
Define the reduced model for the test of homogeneity of regressions
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within lines:

Hy: f11 = B21 = B31 and B2 = Bz = fBaa.

Find SS(Res) for this reduced model and complete the test of homo-
geneity.

The means model was used in the cabbage data example (equa-
tion 9.49) and K’ was defined to partition the sums of squares. De-
velop a reduced model that reflects Hy : [1; = fiy. = fi5. Use the full
and reduced models to obtain the sum of squares for this hypothesis
and verify that this is equivalent to that using K’ (equation 9.51) in
the text.

The covariance analysis of the phosphorus study in Section 9.8.3 as-
sumed a common regression of forage yield on soil phosphorus. Use
a general linear analysis program (such as PROC GLM in SAS) to
test the homogeneity of regressions over the 14 treatment groups.

The Linthurst data used in Chapters 5 and 7 came from nine sites
classified according to location (LOC) and type of vegetation (TYPE).
(The data are given in Table 5.1.) Do the analysis of variance on
BIOMASS partitioning the sum of squares into that due to LOC,
TYPE, and LOC-by-TYPE interaction. The regression models in
Chapter 7 indicated that pH and Na were important variables in ac-
counting for the variation in BIOMASS. Add these two variables to
your analysis of variance model as covariates (center each) and com-
pute the analysis of covariance. Obtain the adjusted LOC, TYPE,
and LOC-by-TYPE treatment means. Interpret the results of the
covariance analysis. For what purpose is the analysis of covariance
being used in this case?

Consider the analysis of covariance model given by
)/ij :/'I’+T’L+B(X’LJ7Y)+EZ]7 izla"'7a; .7: 17"~aT7

where €;;s are independent normal random variables with mean zero

and variance o2.

(a) Show that all of the following models are reparameterizations of
the prededing model.

(i) Yy = pi + B(Xi; — X)) + €5
(i) Yij = pi + B(Xij — Xi.) + €.
(iil) Y = p* + 77 + BXij + €ij.

Interpret the parameters p; and p.
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(b) Use the reparameterization (ii) in (a) to derive

SSEfq1 = Z Z(Yij ~-Yi)? - 7 Z Z(Xij - X;)?

i=1 j=1 i=1 j=1
and

RB\T, - omy) = B2 D (Xiy — X,)%,

i=1 j=1

where

- Dicy 2y (X — Xi)Yy
i g (X — X))
(c) To test the hypothesis that there is “no treatment effect,” con-

sider the reduced model

Yij =1+ B(Xij; — X.) + €.

Show that
SSE(Reduced) = i i(yij Y. )2 -p za: i:(Xij - X )32
i=1 j=1 i=1 j=1
where
g: ZZ(XLJ X )Yij /ZZ(XZJ -X )2
i=1 j=1 i=1 j=1

[Note that we can now obtain R(7|5) as SS(Resreduced) — SS(Resgun )]
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PROBLEM AREAS IN LEAST
SQUARES

All discussions to this point have assumed that the least
squares assumptions of normality, common variance,
and independence are valid, and that the data are cor-
rect and representative of the intended populations.

In reality, the least squares assumptions hold only ap-
proximately and one can expect the data to contain ei-
ther errors or observations that are somewhat unusual
compared to the rest of the data. This chapter presents
a synopsis of the problem areas that commonly arise in
least squares analysis.

The least squares regression method discussed in the previous chapters
was based on the assumptions that the errors are additive (to the fixed-
effects part of the model) and are normally distributed independent ran-
dom variables with common variance o2. Least squares estimation based
on these assumptions is referred to as ordinary least squares. When the
assumptions of independence and common variance hold, least squares es-
timators have the desirable property of being the best (minimum variance)
among all possible linear unbiased estimators. When the normality assump-
tion is satisfied, the least squares estimators are also maximum likelihood
estimators.

Three of the major problem areas in least squares analysis relate to fail-
ures of the basic assumptions: normality, common variance, and indepen-
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dence of the errors. Other problem areas are overly influential data points,
outliers, inadequate specification of the functional form of the model, near-
linear dependencies among the independent variables (collinearity), and
independent variables being subject to error. This chapter is a synopsis
of these problem areas with brief discussions on how they might be de-
tected, their impact on least squares, and what might be done to remedy
or at least reduce the problem. Subsequent chapters discuss in greater de-
tail techniques for detecting the problems, transformations of variables as a
means of alleviating some of the problems, and analysis of the correlational
structure of the data to understand the nature of the collinearity problem.
This process of checking the validity of the assumptions, the behavior of
the data, and the adequacy of the model is an important step in every
regression analysis. It should not, however, be regarded as a substitute for
a proper validation of the regression equation against an independent set
of data.

The emphasis here is on making the user aware of problem areas in the
data or the model and insofar as possible removing the problems. An alter-
native to least squares regression when the assumptions are not satisfied is
robust regression. Robust regression refers to a general class of statistical
procedures designed to reduce the sensitivity of the estimates to failures in
the assumptions of the parametric model. For example, the least squares
approach is known to be sensitive to gross errors, or outliers, in the data
because the solution minimizes the squared deviations. A robust regression
procedure would reduce the impact of such errors by reducing the weight
given to large residuals. This can be done by minimizing the sum of abso-
lute residuals, for example, rather than the sum of squared residuals. In the
general sense, procedures for detecting outliers and influential observations
can be considered part of robust regression. Except for this connection,
robust regression is not discussed in this text. The reader is referred to
Huber (1981) and Hampel, Ronchetti, Rousseeuw, and Stahel(1986) for
discussions on robust statistics.

10.1 Nonnormality

The assumption that the residuals € are normally distributed is not neces-
sary for estimation of the regression parameters and partitioning of the total
variation. Normality is needed only for tests of significance and construc-
tion of confidence interval estimates of the parameters. The t-test, F-test,
and chi-square test require the underlying random variables to be nor-
mally distributed. Likewise, the conventional confidence interval estimates
depend on the normal distribution, either directly or through Student’s
t-distribution.

Importance of
Normality
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Experience has shown that normality is a reasonable assumption in many
cases. However, in some situations it is not appropriate to assume nor-
mality. Count data will frequently behave more like Poisson-distributed
random variables. The proportion of subjects that show a response to the
agent in toxicity studies is a binomially distributed random variable if the
responses are independent. Time to failure in reliability studies and time
to death in toxicity studies will tend to have asymmetric distributions and,
hence, not be normally distributed.

The impact of nonnormality on least squares depends on the degree of
departure from normality and the specific application. Nonnormality does
not affect the estimation of the parameters; the least squares estimates are
still the best linear unbiased estimates if the other assumptions are met.
The tests of significance and confidence intervals, however, are affected by
nonnormality. In general, the probability levels associated with the tests of
significance or the confidence coefficients will not be correct. The F-test is
generally regarded as being reasonably robust against nonnormality.

Confidence interval estimates can be more seriously affected by nonnor-
mality, particularly when the underlying distribution is highly skewed or
has fixed boundaries. The two-tailed symmetric confidence interval esti-
mates based on normality will not, in fact, be allocating equal probability
to each tail if the distribution is asymmetric and may even violate natural
boundaries for the parameter. The confidence interval estimate for propor-
tion of affected individuals in a toxicity study, for example, may be less
than zero or greater than one if the estimates ignore the nonnormality in
the problem.

Plots of the observed residuals e and skewness and kurtosis coefficients
are helpful in detecting nonnormality. The skewness coefficient measures
the asymmetry of the distribution whereas kurtosis measures the tendency
of the distribution to be too flat or too peaked. The skewness coefficient for
the normal distribution is 0; the kurtosis coefficient is 3.0. Some statistical
computing packages provide these coeflicients in the univariate statistics
analysis. (Often, the kurtosis coefficient is expressed as a deviation from
the value for the normal distribution.) When the sample size is sufficiently
large, a frequency distribution of the residuals can be used to judge symme-
try and kurtosis. A full-normal or half-normal plot, which gives a straight
line under normality, is probably easier to use. These plots compare the
ordered residuals from the data to the expected values of ordered observa-
tions from a normal distribution (with mean zero and unit variance). The
full-normal plot uses the signed residuals; the half-normal plot uses the
absolute values of the residuals. Different shapes of the normal plots reveal
different kinds of departure from normality. More details on these plots are
given in Section 11.1.

Transformation of the dependent variable to a form that is more nearly
normally distributed is the usual recourse to nonnormality. Statistical the-
ory says that such a transformation exists if the distribution of the original

“Nonnormal”
Data

Effect on
Confidence
Intervals

Detecting
Nonnormality

Improving
Normality
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dependent variable is known. Many of the common transformations (such
as the arcsin, the square root, the logarithmic, and the logistic transfor-
mations) were developed for situations in which the random variables were
expected a priori to have specific nonnormal distributions.

In many cases, the sample data provide the only information available for
determining the appropriate normalizing transformation. The plots of the
residuals may suggest transformations, or several transformations might be
tried and the one adopted that most nearly satisfies the normality criteria.
Alternatively, an empirical method of estimating the appropriate power
transformation might be used (Box and Cox, 1964). Chapter 12 is devoted
to transformations of variables.

10.2 Heterogeneous Variances

The assumption of common variance plays a key role in ordinary least
squares. The assumption implies that every observation on the dependent
variable contains the same amount of information. Consequently, all ob-
servations in ordinary least squares receive the same weight. On the other
hand, heterogeneous variances imply that some observations contain more
information than others. Rational use of the data would require that more
weight be given to those that contain the most information.

The minimum variance property of ordinary least squares estimators is
directly dependent on this assumption. Equal weighting, as in ordinary
least squares, does not give the minimum variance estimates of the pa-
rameters if the variances are not equal. Therefore, the direct impact of
heterogeneous variances in ordinary least squares is a loss of precision in
the estimates compared to the precision that would have been realized if
the heterogeneous variances had been taken into account.

Heterogeneous variance, as with nonnormality, is expected a priori with
certain kinds of data. The same situations that give nonnormal distribu-
tions will usually give heterogeneous variances since the variance in most
nonnormal distributions is related to the mean of the distribution. Even in
situations where the underlying distributions are normal within groups, the
variances of the underlying distributions may change from group to group.
Most commonly, larger variances will be associated with groups having the
larger means. Various plots of the residuals are useful for revealing hetero-
geneous variances.

Two approaches to handling heterogeneous variances are transformation
of the dependent variable and use of weighted least squares; the former
is probably the more common. The transformation is chosen to make the
variance homogeneous (or more nearly so) on the transformed scale. Prior
information on the probability distribution of the dependent variable or

Importance of
Homogeneous
Variance

Data Having
Heterogeneous
Variances

Decreasing
Heterogeneity
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empirical information on the relationship of the variance to the mean may
suggest a transformation. For example, the arcsin transformation is de-
signed to stabilize the variance when the dependent variable is binomially
distributed. Weighted least squares uses the original metric of the depen-
dent variable but gives each observation weight according to the relative
amount of information it contains. Weighted least squares is discussed in
Section 12.5.1.

10.3 Correlated Errors

Correlations among the residuals may arise from many sources. It is com-
mon for data collected in a time sequence to have correlated errors; the error
associated with an observation at one point in time will tend to be corre-
lated with the errors of the immediately adjacent observations. Almost any
physical process that is continuous over time will show serial correlations.
Hourly measurements on the pollutant emissions from a coal smokestack,
for example, have very high serial correlations. Biological studies in which
repeated measurements are made over time on the same individuals, such
as plant and animal growth studies or clinical trials, will usually have cor-
related errors.

Many of the experimental designs, including the randomized complete
block design and the split-plot design, allow us to capitalize on the corre-
lated errors among the observations within a block or within a whole plot to
improve the precision of certain comparisons. The observations among sam-
ples within experimental units will have correlated errors, and the conven-
tional analyses take these correlations into account. In some cases, however,
correlations may be introduced inadvertently by the way the experiment
is managed. For example, the grouping of experimental units for conve-
nience in exposing them to a treatment, applying nutrient solution, taking
measurements, and so forth, will tend to introduce positively correlated
errors among the observations within the groups. These correlations are
frequently overlooked and are not taken into account in the conventional
analyses.

The impact of correlated errors on the ordinary least squares results is
loss in precision in the estimates, similar to the effect of heterogeneous
variances. Correlated errors that are not recognized appropriately in the
analysis will seriously bias the estimates of variances with the direction and
magnitude of the bias depending on the nature of the correlations. This,
in turn, causes all measures of precision of the estimates to be biased and
invalidates tests of significance.

The nature of the data frequently suggest the presence of correlated er-
rors. Any data set collected in a time sequence should be considered suspect
and treated as time series data unless the correlation can be shown to be

Impact of Cor-
related Errors

Detecting Cor-
related Errors
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negligible. There are many texts devoted to the analysis of time series data
(Fuller, 1996; Bloomfield, 1976). A clear understanding of the design and
conduct of the experiment will reveal many potential sources of correlated
errors. The more troublesome to detect are the inadvertent correlated er-
rors arising from inadequate randomization of the experiment or failure to
adhere to the randomization plan. In such cases, inordinately small error
variances may provide the clue. In other cases, plotting of the residuals ac-
cording to the order in which the data were collected or the grouping used
in the laboratory may reveal patterns of residuals that suggest correlated
erTors.

The remedy to the correlated errors problem is to utilize a model that
takes into account the correlation structure in the data. Various time series
models and analyses have been constructed to accomodate specific corre-
lated error structures. Generalized least squares is a general approach
to the analysis of data having correlated errors. This is an extension of
weighted least squares where the entire variance—covariance matrix of the
residuals is used. The difficulty with generalized least squares is that the co-
variances are usually not known and must be estimated from the data. This
is a difficult estimation problem, unless the correlation structure is simple,
and poor estimation of the correlation matrix can cause a loss in precision,
rather than a gain, compared to ordinary least squares. Generalized least
squares is discussed in Section 12.5.2.

10.4 Influential Data Points and Outliers

The method of ordinary least squares gives equal weight to every observa-
tion. However, every observation does not have equal impact on the various
least squares results. For example, the slope in a simple linear regression
problem is influenced most by the observations having values of the inde-
pendent variable farthest from the mean. A single point far removed from
the other data points can have almost as much influence on the regression
results as all other points combined. Such observations are called influen-
tial points or high leverage points.

The potential influence of a data point on the least squares results is
determined by its position in the X-space relative to the other points. In
general, the more “distant” the point is from the center of the data points
in the X-space, the greater is its potential for influencing the regression
results.

The term outlier refers to an observation which in some sense is inconsis-
tent with the rest of the observations in the data set. An observation can be
an outlier due to the dependent variable or any one or more of the indepen-
dent variables having values outside expected limits. In this book the term
outlier is restricted to a data point for which the value of the dependent
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variable is inconsistent with the rest of the sample. The phrase outlier in
the residuals refers to a data point for which the observed residual is larger
than might reasonably be expected from random variation alone. The term
potentially influential observation is used to refer to an observation that
is an outlier in one or more of the independent variables. The context of
the usage makes clear whether outlier refers to the value of the dependent
variable or of the residual.

A data point may be an outlier or a potentially influential point because
of errors in the conduct of the study (machine malfunction; recording, cod-
ing, or data entry errors; failure to follow the experimental protocol) or
because the data point is from a different population. The latter could re-
sult, for example, from management changes that take the system out of
the realm of interest or the occurrence of atypical environmental condi-
tions. A valid data point may appear to be an outlier, have an outlier in
the residual, because the model being used is not adequately representing
the process. On the other hand, a data point that is truly an outlier may
not have an outlier residual, and almost certainly will not if it happens
also to be an influential point. The influential data points tend to force the
regression so that such points have small residuals.

Influential points and outliers need to be identified. Little confidence
can be placed in regression results that have been dominated by a few
observations, regardless of the total size of the study. The first concern
should be to verify that these data points are correct. Clearly identifiable
errors should be corrected if possible or else eliminated from the data set.
Data points that are not clearly identified as errors or that are found to be
correct should be studied carefully for the information they might contain
about the system being studied. Do they reflect inadequacies in the model
or inadequacies in the design of the study? Outliers and overly influential
data points should not be discarded indiscriminately. The outlier might be
the most informative observation in the study.

Detection of the potentially more influential points is by inspection of
the diagonal elements of P the projection matrix. The diagonal elements of
P are measures of the Euclidean distances between the corresponding sam-
ple points and the centroid of the sample X-space. Whether a potentially
influential point has, in fact, been influential is determined by measuring
directly the impact of each data point on various regression results. Appro-
priate influence statistics are discussed in Section 11.2.

Outliers are detected by analysis of the observed residuals and related
statistics. It is usually recommended that the residuals first be standardized
to have a common variance. Some suggest the use of recursive residuals
(Hedayat and Robson, 1970). A residual that is several standard deviations
from zero identifies a data point that needs careful review. Plots of residuals
for detecting nonnormality and heterogeneous variances are also effective
in identifying outliers. The detection of outliers is discussed in Section 11.1.
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10.5 Model Inadequacies

The ordinary least squares estimators are unbiased if the model is correct.
They will not be unbiased if the model is incorrect in any of several dif-
ferent ways. If, for example, an important independent variable has been
omitted from the model, the residual mean square is a (positively) biased
estimate of 02 and the regression coefficients for all independent variables
are biased (unless the omitted variable is orthogonal to all variables in the
model). The common linear model that uses only the first power of the in-
dependent variables assumes that the relationship of Y to each of the inde-
pendent variables is linear and that the effect of each independent variable
is independent of the other variables. Omitting any important higher-order
polynomial terms, including product terms, has the same effect as omitting
an independent variable.

One does not expect a complicated physical, chemical, or biological pro-
cess to be linear in the parameters. In this sense, the ordinary linear least
squares model (including higher-degree polynomial terms) must be consid-
ered an approximation of the true process. The rationale for using a linear
model, in cases where the true relationship is almost certainly nonlinear,
is that any nonlinear function can be approximated to any degree of accu-
racy desired with an appropiate number of terms of a linear function. Thus,
the linear model is used to provide what is believed to be a satisfactory
approximation in some limited region of interest. To the extent that the
approximation is not adequate, the least squares results will contain biases
similar to those created by omitting a variable.

Detection of model inadequacies will depend on the nature of the prob-
lem and the amount of information available on the system. Bias in the
residual mean square and, hence, indication of an omitted term, can be
detected if an independent estimate of o2 is available as would be the case
in most designed experiments. In other cases, previous experience might
provide some idea of the size of 0% from which a judgment can be made
as to the presence of bias in the residual mean square. Overlooked higher-
order polynomial terms are usually easily detected by appropriate residuals
plots. Independent variables that are missing altogether are more difficult
to detect. Unusual patterns of behavior in the residuals may provide clues.

More realistic nonlinear models might be formulated as alternatives to
the linear approximations. Some nonlinear models will be such that they
can be linearized by an appropriate transformation of the dependent vari-
able. These are called intrinsically linear models. Ordinary least squares
can be used on linearized models if the assumptions on the errors are sat-
isfied after the transformation is made. The intrinsically nonlinear models
require the use of nonlinear least squares for the estimation of the pa-
rameters. The nonlinear form of even the intrinsically linear models might
be preferred if it is believed the least squares assumptions are more nearly
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satisfied in that form. Nonlinear models and nonlinear least squares are
discussed in Chapter 15.

10.6 The Collinearity Problem

Singularity of X results when some linear function of the columns of X
is exactly equal to the zero vector. Such cases become obvious when the
least squares analysis is attempted because the unique (X’ X)~! does not
exist. A more troublesome situation arises when the matrix is only close to
being singular; a linear function of the vectors is nearly zero. Redundant
independent variables—the same information expressed in different forms—
will cause X to be nearly singular. Interdependent variables that are closely
linked in the system being studied can cause near-singularities in X.

A unique solution to the normal equations exists in these nearly singular
cases but the solution is very unstable. Small changes (random noise) in
the variables Y or X can cause drastic changes in the estimates of the re-
gression coefficients. The variances of the regression coefficients, for the in-
dependent variables involved in the near-singularity, become very large. In
effect, the variables involved in the near-singularity can serve as surrogates
for each other so that widely different combinations of the independent
variables can be used to give nearly the same value of Y. The difficulties
that arise from X being nearly singular are referred to collectively as the
collinearity problem. The collinearity problem was defined geometrically
in Section 6.5.

The impact of collinearity on least squares is very serious if primary in-
terest is in the regression coefficients per se or if the purpose is to identify
“important” variables in the process. The estimates of the regression coef-
ficients can differ greatly from the parameters they are estimating, even to
the point of having incorrect sign. The collinearity will allow “important”
variables to be replaced in the model with incidental variables that are in-
volved in the near-singularity. Hence, the regression analysis provides little
indication of the relative importance of the independent variables.

The use of the regression equation for prediction is not seriously affected
by collinearity as long as the correlational structure observed in the sample
persists in the prediction population and prediction is carefully restricted to
the sample X-space. However, prediction to a system where the observed
correlation structure is not maintained or for points outside the sample
space can be very misleading. The sample X-space in the presence of near-
collinearities becomes very narrow in certain dimensions so that it is easy
to choose prediction points that fall outside the sample space and, at the
same time, difficult to detect when this has been done. Points well within
the limits of each independent variable may be far outside the sample space.

Most regression computer programs are not designed to warn the user au-
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tomatically of the presence of near-collinearities. Certain clues are present,
however: unreasonable values for regression coefficients, large standard er-
rors, nonsignificant partial regression coefficients when the model provides
a reasonable fit, and known important variables appearing as unimportant
(or with an opposite sign from what the theory would suggest) in the re-
gression results. High correlations between independent variables will iden-
tify near-collinearities involving two variables but may miss those involving
more than two variables. A more direct approach to detecting the presence
of collinearity is with a singular value decomposition of X or an eigenanal-
ysis of X’'X. These were discussed in Sections 2.7 and 2.8. Their use and
other collinearity diagnostics are discussed in Section 11.3.

The remedies for the collinearity problem depend on the objective of
the model-fitting exercise. If the objective is prediction, collinearity causes
no serious problem within the sample X-space. The limitations discussed
previously must be understood, however. When primary interest is in esti-
mation of the regression coefficients, one of the biased regression methods
may be useful (Chapter 13). A better solution, when possible, is to obtain
new data or additional data such that the sample X-space is expanded to
remove the near-singularity. It is not likely that this will be possible when
the near-singularity is the result of internal constraints of the system be-
ing studied. When the primary interest of the research is to identify the
“important” variables in a system or to model the system, the regression
results in the presence of severe collinearity will not be very helpful and
can be misleading. It is more productive for this purpose to concentrate
on understanding the correlational structure of the variables and how the
dependent variable fits into this structure. Principal component analysis,
Gabriel’s (1971) biplot, and principal component regression can be helpful
in understanding this structure. These topics are discussed in Chapter 13.

10.7 Errors in the Independent Variables

The original model assumed that the independent variables were measured
without error; they were considered to be constants in the regression model.
With the errors-in-variables model, the true values of the independent vari-
ables are masked by measurement errors. Thus, the observed Xj; is

X, =27Z;+ U, (10.1)

where Z; is the unobserved true value of X; and U; is the measurement
error. The error U; is assumed to have zero mean and variance 012]. For
example, in an experiment to study the effect of temperature in an oven
on baking time, the observed temperature may be different from the actual
temperature in the oven. Fuller (1987) gives several examples where the
independent variable is measured with error. In an experiment to study
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the relationship between dry weight of the plant and available nitrogen in
the leaves, the independent variable is measured with error. Typically, the
true nitrogen content (Z;) in the leaves is unknown and is estimated (X;)
from a small sample of leaves. See also Carroll, Ruppert, and Stefanski
(1995) for some examples.

The regression model assumes that Y; is a function of the true value Z;:

Y; :,U‘FﬂZZ + v, (102)

where v; are assumed to be independent mean zero and variance o2 random
variables, and are independent of Z; and U;. However, we estimate the
parameters p and § using the model

The ordinary least squares estimator of (3, based on the model in equa-
tion 10.3, is
Bo= Y v a? (10.4)

4y ] e
Qe e il e

where z;, z;, and u; represent the centered values of X;, Z;, and U;, respec-
tively. Note that, if there is no measurement error (U; = 0), the first term
reduces to (8 and, since the second term has zero expectation, B is unbiased
for 8. However, if measurement error is present, then the first term shows
the bias in 8. If we assume that the Z; are independently and identically
distributed N(0,02), the U; are independent and identically distributed
N(0,0%) and that the {Z;} and {U;} are independent, then Fuller (1987)
shows that

(10.5)

~ o2 1
E(B) = Z = . 10.6
0 =i5%7] = el oo

Also, if the true independent variable values Z; are considered fixed, then
the expectation of (§ is

~ . 1
o5 |t e (oD
The denominators of equations 10.6 and 10.7 are always greater than one
whenever there is measurement error, 02U > 0. Thus, § is biased toward
zero. The bias is small if o% is small relative to o2 or Y 22 /n. That is, the
bias is small if the measurement errors in the independent variable are small
relative to the variation in the true values of the independent variable.
There have been numerous proposals for estimating 5 under these condi-

tions. Some of the procedures assume that additional information is avail-
able.

Bias in [§
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Known Reliability Ratio: 0%/(c% + o). If we assume that Z; ~
NID(0,0%),U; ~ NID(0,0%), and that {Z;} and {U;} are indepen-
dent, then

~ o2 +02 ~

Br = {72 § U} 8 (10.8)
0z

is an unbiased estimator of 8. Fuller (1987) gives examples from psy-

chology, sociology, and survey sampling where the reliability ratio

0% /(0% + o?) is known.

Known Measurement Error Variance: 0121. In some situations,
the scientist may have a good knowledge of the measurement error
variance 012]. For example, it may be possible to obtain a large number
of repeated measurements to determine o7. Madansky (1959) and
Fuller (1987) consider the estimator

By = > Tili
v Yoa?—(n—1)of

which adjusts the denominator for the measurement error variance.

(10.9)

Known Ratio of Error Variances: § = 02/07,. Under the nor-
mality assumptions on Z;, U;, and v;, Fuller (1987) shows that the
maximum likelihood estimator of 3 is

5 TR bN (0 =8 T e+ 46 Sy
°- 23 @iy

where § = 02/0%. It can be shown that fs is also the “orthogonal
regression” estimator of § obtained by minimizing the distance

S Yi-pu—BZ)+6Y (Xi— Zi) (10.11)

with respect to u, 8, Z1,...,Z,. When 6 = 1, equation 10.11 is the
sum of the Euclidean distances between the observed vector (Y; X, )
and the point (u+ 8Z; Z;) on the line that generated it. [Carroll,
Ruppert, and Stefanski (1995) prefer to restrict the use of the term
“orthogonal regression” to the case where § = 1.]

,(10.10)

Riggs, Guarnieri, and Addelman (1978) used computer simulation to
study the behavior of a large number of published estimators and several
additional ones they developed. Fuller (1987) and Carroll, Ruppert, and
Stefanski (1995) also discuss the behavior of these estimators. To summa-

rize:

(i)

[u behaves erratically whenever measurement error variances are
large;

Comparison of
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(ii) 5 r is unbiased. However, when ¢% and 0'2U are replaced by their esti-
mates, the sampling distribution of Gg is highly skewed;

iii 55 tends to give highly unreliable estimates when ¢ is large and n
U
is small.

The reader is referred to the original references for more discussion of the
problems and the summary of their comparisons.

Several alternative approaches for estimating are also available. We dis-
cuss two such approaches. One approach to the errors-in-variables problem
is to use information from other variables that are correlated with Z;, but
not with Uj;, to obtain consistent estimators of 3. Such variables are called
instrumental variables . (A consistent estimator converges to the true
value as the sample size gets large.) For example, the true nitrogen in the
leaves Z; may be correlated with the amount of nitrogen fertilizer W; ap-
plied to the experimental plot. In this case, it may be reasonable to assume
that W; is not correlated with the measurement error U;. An instrumental
variable estimator of 3 is given by

=5 sz‘Y;
Bw = S,
>owiX;

where w; is the centered value of W;. The reader is referred to Feldstein
(1974), Carter and Fuller (1980), and Fuller (1987) for more discussion on
the use of instrumental variables.

We have seen that, in the errors-in-variables model, the ordinary least
squares estimator 3 of 3 is biased and its expectation is given by 30% /(0% +
0%). The effect of measurement error on the ordinary least squares esti-
mator can also be determined experimentally via simulations. The Simu-
lation Extrapolation (SIMEX) method of Cook and Stefanski (1995)
determines this effect using simulations at various known levels of the mea-
surement error and extrapolates the results to the no-measurement error
case to obtain the SIMEX estimator of (.

Assume that o2 is known. Consider m data sets with independent vari-
ables XZ.(A) = X;+A\Y2Uz, i = 1,...,n, where U} ~ NID(0, 02, and \ takes
known values 0 = A\; < Ay < -+ < A,,. Note that the measurement error
variance in XZ-(A) is (14 A)o? and we are considering (m — 1) new data sets

(10.12)

with increasing measurement errors. The least squares estimate E \ from the
regression of Y; on Xi(’\> consistently estimates 8\ = B0%/[0% + (1 +A)oF].
That is, as n tends to infinity, the estimator () converges to (. Note

that, at A = —1, B\ estimates 3 consistently. The SIMEX method uses
Brys- -0, tofit a model for By as a function of A and uses this function
to extrapolate back to the no-measurement error case, A = —1. This extrap-

olated value is called the SIMEX estimate of 3. The process is described
schematically in Figure 10.1.
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FIGURE 10.1. A generic plot of the effect of measurement error of size (1+\)oF
on the slope estimates. The ordinary least squares estimate occurs at A = 0 and
the SIMEX estimate is an extrapolation to A = —1.

Cook and Stefanski (1995) recommend generating several data sets at
each value of A and use the average of the estimates of 3 to obtain B)\.
For example, at A\ = .5, generate 10 sets of Xi('s); compute 35 for each
of the 10 data sets and compute the average of these 10 estimates to get

3'5. Similarly, obtain 3 » for several values of A. Use these 3 \S to obtain
the SIMEX estimate of 3. See Carroll, Ruppert, and Stefanski (1995) for
properties and extensions of the SIMEX estimates.

There are serious problems associated with estimation of other parame-
ters and variances in the errors-in-variables model. The reader is referred
to Fuller (1987) and Carroll, Ruppert, and Stefanski (1995) for more com-
plete discussions. These authors also considered extensions to multiple and
nonlinear regression models with measurement errors in the independent
variables.

The errors-in-variables issue greatly complicates the regression problem.
There appears to be no one solution that does well in all situations and
it is best to avoid the problem whenever possible. The bias from ordinary
least squares is dependent on the ratio of 0[2] to a% orto > 212 /n. Thus, the
problem can be minimized by designing the research so that the dispersion
in X is large relative to any measurement errors. In such cases, ordinary
least squares should be satisfactory.

Control with
Design
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10.8  Summary

This chapter is a synopsis of the common problems in least squares regres-
sion emphasizing their importance and encouraging the user to be critical
of his or her own results. Because least squares is a powerful and widely
used tool, it is important that the user be aware of its pitfalls. Some of the
diagnostic techniques (such as the analysis of residuals) are useful for detec-
tion of several different problems. Similarly, some of the remedial methods
(such as transformations) attack more than one kind of problem. The fol-
lowing three chapters are devoted to discussions of the tools for detecting
the problems and some of the remedies.

10.9 Exercises

10.1. Several levels of a drug were used to assess its toxic effects on a
particular animal species. Twenty-four animals were used and each
was administered a particular dose of the drug. After a fixed time
interval, each animal was scored as 0 if it showed no ill effects and as
1 if a toxic effect was observed. That is, the dependent variable takes
the value of 0 or 1 depending on the absence or presence of a toxic
reaction.

(a) Which assumptions of ordinary least squares would you expect
not to be satisfied with this dependent variable?

(b) The dependent variable was used in a linear regression on dose.
The resulting regression equation was Y = —.214 +.159X. Plot
this regression line for X = 1 to X = 8. Superimpose on the
plot what you might expect the observed data to look like if
24 approximately equally spaced dose levels were used. What
problems do you see now?

(¢) The researcher anticipated using Y to estimate the proportion
of affected individuals at the given dose. What is the estimated
proportion of individuals that will be affected by a dose of X = 2
units? Use the conventional method to compute the 95% con-
fidence interval estimate of the mean at X = 2 if s = .1284
with 22 degrees of freedom, X = 4.5, and > (X; — X)? = 126.
Comment on the nature of this interval estimate.

(d) Suppose each observation consisted of the proportion of mosqui-
toes in a cage of 50 that showed response to the drug rather than
the response of a single animal. Would this have helped satisfy
some of the least squares assumptions? Which?
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10.2.

10.3.

10.4.

10.5.

10.6.

10.7.
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Identify an independent variable in your area of research that you
would not expect to be normally distributed. How is this variable
usually handled in the analysis of experimental results?

Suppose there are three independent observations that are to be av-
eraged. The known variances of the three observations are 4, 9, and
16. Two different averages are proposed, the simple arithmetic aver-
age and the weighted average where each observation is weighted by
the reciprocal of its variance. Use variances of linear functions, equa-
tion 3.21 and following, to demonstrate that the weighted average has
the smaller variance. Can you find any other weighting that will give
an even smaller variance?

Find a data set from your area of research in which you do not ex-
pect the variances to be homogeneous. Explain how you expect the
variances to behave. How are these data usually handled in analysis?

A plant physiologist was studying the relationship between inter-
cepted solar radiation and plant biomass produced over the growing
season. Several experimental plots under different growing conditions
were monitored for radiation. Several times during the growing season
biomass samples were taken from the plots to measure growth. The
resulting data for each experimental plot showed cumulative solar
radiation and biomass for the several times the biomass was mea-
sured during the season. Would you expect the dependent variable,
biomass, to have constant variance over the growing season? Would
you expect the several measurements of biomass on each plot to be
statistically independent? Would you expect the measurements from
different random experimental units to be statistically independent?

The relatively greater influence of observations farther from the center
of the X-space can be illustrated using simple linear regression. Ex-
press the slope of the regression line as 81 = Y (X; — X)Y;/ S (X; —
X)2. In this form it is clear that a perturbation of the amount 6 on
any Yy changes 3, by the amount §(Xy — X)/ > (X; — X)2. (Sub-
stitute Y;r + 6 for Yjs to get a new 31 and subtract out the original
(1.) Assume a perturbation of § = 1 on each Y; in turn. Compute
the amount Bl would change if the values of X are 0, 1, 2, and 9.
Compute P = X (X'X)~'X’ for this example. Which observation
has the largest diagonal element of P?

Find an example in your field for which you might expect collinearity
to be a problem. Explain why you expect there to be collinearity.
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REGRESSION DIAGNOSTICS

Chapter 10 summarized the problems that are encoun-
tered in least squares regression and the impact of these
problems on the least squares results.

This chapter presents methods for detecting problem
areas. Included are graphical methods for detecting
failures in the assumptions, unusual observations, and
inadequacies in the model, statistics to flag observa-
tions that are dominating the regression, and meth-
ods of detecting situations in which strong relationships
among the independent variables are affecting the re-
sults.

Regression diagnostics refers to the general class of techniques for detect-
ing problems in regression—problems with either the model or the data set.
This is an active field of research with many recent publications. It is not
clear which of the proposed techniques will eventually prove most useful.
Some of the simpler techniques that appear to be gaining favor are pre-
sented in this chapter. Belsley, Kuh, and Welsch (1980) and Cook and
Weisberg (1982) are recommended for a more thorough coverage of the
theory and methods of diagnostic techniques.
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11.1 Residuals Analysis

Analysis of the regression residuals, or some transformation of the residu-
als, is very useful for detecting inadequacies in the model or problems in
the data. The true errors in the regression model are assumed to be nor-
mally and independently distributed random variables with zero mean and
common variance € ~ N(0, Io2). The observed residuals, however, are not
independent and do not have common variance, even when the Io? assump-
tion is valid. Under the usual least squares assumptions, e = (I — P)Y has
a multivariate normal distribution with £(e) = 0 and Var(e) = (I — P)o?.
The diagonal elements of Var(e) are not equal, so the observed residuals
do not have common variance; the off-diagonal elements are not zero, so
they are not independent.

The heterogeneous variances in the observed residuals are easily corrected
by standardizing each residual. The variances of the residuals are estimated
by the diagonal elements of (I—P)s2. Dividing each residual by its standard
deviation gives a standardized residual, denoted with r;,

P B— (11.1)
S (1 - ’U“')

where v;; is the ith diagonal element of P. All standardized residuals (with
o in place of s in the denominator) have unit variance. The standardized
residuals behave much like a Student’s ¢ random variable except for the

fact that the numerator and denominator of r; are not independent.
Belsley, Kuh, and Welsch (1980) suggest standardizing each residual with
an estimate of its standard deviation that is independent of the residual.
This is accomplished by using, as the estimate of o2 for the ith residual,
the residual mean square from an analysis where that observation has been
omitted. This variance is labeled S%Z-), where the subscript in parentheses

indicates that the ith observation has been omitted for the estimate of 0.
The result is the Studentized residual, denoted 7},
€

sV = v

Each Studentized residual is distributed as Student’s ¢ with (n —p’ — 1)
degrees of freedom when normality of € holds. As with e; and r;, the r}
are not independent of each other. Belsley, Kuh, and Welsch show that the
sy and Studentized residuals can be obtained from the ordinary residuals
without rerunning the regression with the observation omitted.

The standardized residuals r; are called Studentized residuals in many
references [e.g., Cook and Weisberg (1982); Pierce and Gray (1982); Cook
and Prescott (1981); and SAS Institute, Inc. (1989b)]. Cook and Weis-
berg refer to r; as the Studentized residual with internal Studentization

in contrast to external Studentization for r;. The r} are called the cross-
validatory or jackknife residuals by Atkinson (1983) and RSTUDENT by

rt = (11.2)
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Belsley, Kuh, and Welsch (1980) and SAS Institute, Inc. (1989b). The terms
standardized and Studentized are used in this text as labels to distinguish
between r; and r}.

The observed residuals and the scaled versions of the observed residuals
have been used extensively to study validity of the regression model and its
assumptions. The heterogeneous variances of the observed residuals and the
lack of independence among all three types of residuals complicate interpre-
tation of their behavior. In addition, there is a tendency for inadequacies
in the data to be spread over several residuals. For example, an outlier will
have the effect of inflating residuals on several other observations and may
itself have a relatively small residual. Furthermore, the residuals from least
squares regression will tend to be “supernormal.” That is, when the nor-
mality assumption is not met, the observed residuals from a least squares
analysis will fit the normal distribution more closely than would the origi-
nal ¢; (Huang and Bolch, 1974; Quesenberry and Quesenberry, 1982; Cook
and Weisberg, 1982). As a result, there will be a tendency for failures in the
model to go undetected when residuals are used for judging goodness-of-fit
of the model.

In spite of the problems associated with their use, the observed, stan-
dardized, and Studentized residuals have proven useful for detecting model
inadequacies and outliers. For most cases, the three types of residuals give
very similar patterns and lead to similar conclusions. The heterogeneous
variances of e¢; can confound the comparisons somewhat, and for that rea-
son use of one of the standardized residuals r; or r; is to be preferred
if they are readily available. The primary advantage of the Studentized
residuals over the standardized residuals is their closer connection to the
t-distribution. This allows the use of Student’s ¢ as a convenient criterion
for judging whether the residuals are inordinately large.

Exact tests of the behavior of the observed residuals are not available;
approximations and subjective judgments must be used. The use of the
standardized or Studentized residuals as a check for an outlier is a multiple
testing procedure, since the residual to be tested will be the largest out
of the sample of n, and appropriate allowances on « must be made. The
first-order Bonferroni bound on the probability would suggest using the
critical value of ¢ for & = a*/n, as was done for the Bonferroni confidence
intervals in Chapter 4. (o* is the desired overall significance level.) Cook
and Prescott (1981), in a study assessing the accuracy of the Bonferroni
significance levels for detecting outliers in linear models, conclude that the
bounds can be expected to be reasonably accurate if the correlations among
the residuals are not excessively large. Cook and Weisberg (1982) suggest
using a = vya* /p’ for testing the ith Studentized residual. This choice of
« maintains the overall significance level but gives greater power to cases
with large v;;.

Another class of residuals, recursive residuals, are constructed so that
they are independent and identically distributed when the model is correct

Using
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and are recommended by some for residuals analysis (Hedayat and Rob-
son, 1970; Brown, Durbin, and Evans, 1975; Galpin and Hawkins, 1984;
Quesenberry, 1986). Recursive residuals are computed from a sequence of
regressions starting with a base of p’ observations (p’ = number of pa-
rameters to be estimated) and adding one observation at each step. The
regression equation computed at each step is used to compute the residual
for the next observation to be added. This sequence continues until the last
residual has been computed. There will be (n — p’) recursive residuals; the
residuals from the first p’ observations will be zero.

Assume a particular ordering of the data has been adopted for the pur-
pose of computing the recursive residuals. Let y, and z/. be the rth rows
from Y and X, respectively. Let X, be the first r rows of X and ET be the
least squares solution using the first r observations in the chosen ordering.
Then the recursive residual is defined as

Yr — m{r’arfl
w. — 11.3
- a(X X ) 2, (113)
for r = p’ +1,...,n. The original proposal defined the recursive residuals

for time sequence data. Galpin and Hawkins (1984) contend, however, that
they are useful for all data sets, but particularly so when there are natural
orderings to the data.

Recursive residuals are independent and have common variance o2. Each
is explicitly associated with a particular observation and, consequently, re-
cursive residuals seem to avoid some of the “spreading” of model defects
that occurs with ordinary residuals. Since the recursive residuals are inde-
pendently and identically distributed, exact tests for normality and outliers
can be used. The major criticisms of recursive residuals are the greater
computational effort required, no residuals are associated with the first p’
observations used as the base, and the residuals are not unique since the
data can be ordered in different ways. Appropriate computer programs can
remove the first problem. The last two are partially overcome by computing
recursive residuals for different orderings of the data.

Graphical techniques are very effective for detecting abnormal behav-
ior of residuals. If the model is correct and the assumptions are satisfied,
the residuals should appear in any plot as random variation about zero.
Any convincing pattern to the residuals would suggest some inadequacy
in the model or the assumptions. To emphasize the importance of plot-
ting, Anscombe (1973) presents four (artificial) data sets that give identi-
cal least squares regression results [same ﬁ, f’, SS(Total), SS(Regression),
SS(Residual), and R2], but are strikingly different when plotted. The fitted
model appears equally good in all cases if one looks only at the quantita-
tive results. The plots of Y versus X, however, show obvious differences
[Figure 11.1; adapted from Anscombe (1973)].
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FIGURE 11.1. Four data sets that give the same quantitative results for the linear
regression of Y on X. [Adapted from Anscombe (1973).]
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The first data set, Figure 11.1(a), shows a typical linear relationship
between Y and X with apparent random scatter of the data points above
and below the regression line. This is the expected pattern if the model is
adequate and the ordinary least squares assumptions hold.

The data in Figure 11.1(b) show a distinct quadratic relationship and
a very patterned set of residuals. It is clear from the plot that the linear
model is inadequate and that the fit would be almost perfect if the model
were expanded to include a quadratic term.

Figure 11.1(c) illustrates a case where there is a strict linear relationship
between Y and X except for one aberrant data point. Removal of this one
point would cause the residual sum of squares to go to zero. The residuals
pattern is a clear indication of a problem with the data or the model. If
this is a valid data point, the model must be inadequate. It may be that
an important independent variable has been omitted.

The data in Figure 11.1(d) represent a case where the entire regression
relationship is determined by one observation. This observation is a partic-
ularly influential point because it is so far removed (on the X-scale) from
the other data points. Even if this is a valid data point, one could place
little faith in estimates of regression parameters so heavily dependent on a
single observation.

The Anscombe plots emphasize the power of simple graphical techniques
for detecting inadequacies in the model. There are several informative plots
one might use. No single plot can be expected to detect all types of prob-
lems. The following plots are presented as if the ordinary residuals e; are
being used. In all cases, the standardized, Studentized, or recursive resid-
uals could be used.

11.1.1 Plot of e Versus Y

The plot of the residuals against the fitted values of the dependent variable
is particularly useful. A random scattering of the points above and below
the line e = 0 with nearly all the data points being within the band defined
by e = £2s (Figure 11.2) is expected if the assumptions are satisfied. (Yis
used rather than Y because e is orthogonal to Y but not to Y. A plot of
e versus Y will show a pattern due to this lack of orthogonality.)

Any pattern in the magnitude of the dispersion about zero associated
with changing Y; suggests heterogeneous variances of ¢;. The fan-shaped
pattern in Figure 11.3 is the typical pattern when the variance increases
with the mean of the dependent variable. This is the pattern to be expected
if the dependent variable has a Poisson or a log-normal distribution, for
example, or if the errors are multiplicative rather than additive. Binomially
distributed data would show greater dispersion when the proportion of
“successes” is in the intermediate range.

Expected
Behavior
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FIGURE 11.2. Typical pattern expected for a plot of e versus Y when assumptions
are met.
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FIGURE 11.3. Plot of e versus Y showing increasing dispersion (larger variance)
with larger Y.
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+

FIGURE 11.4. An asymmetric (curved) pattern of residuals plotted against Y
suggests that the model is missing an important independent variable, perhaps a
quadratic term.

Any asymmetry of the distribution of the residuals about zero suggests a
problem with the model or the basic assumptions. A majority of relatively
small negative residuals and fewer but larger positive residuals would sug-
gest a positively skewed distribution of residuals rather than the assumed
symmetric normal distribution. (A skewed distribution would be more evi-
dent in either a frequency plot or a normal plot of the residuals.) A prepon-
derance of negative residuals for some regions of Y and positive residuals
in other regions, such as the curved pattern of residuals in Figure 11.4,
suggests a systematic error in the data or an important variable missing
from the model. The obvious candidate in this illustration would be the
square of one of the present independent variables. A missing independent
variable can cause unusual patterns of residuals depending on the scatter
of the data with respect to that variable.

An outlier residual would appear in any of the plots of e as a point well
outside the band containing most of the residuals. However, an outlier in
Y will not necessarily have an outlier residual.

The Lesser—-Unsworth data in Exercise 1.19 related seed weight of soy-
beans to cumulative solar radiation for plants exposed to two different
levels of ozone. The Studentized residuals from the regression of Y; =
(seed Weight)l/ ? on solar radiation and ozone level are plotted against Y; in
Figure 10.5. The residuals for the low and high levels of ozone are shown as
dots and xs, respectively. One observation from the high ozone treatment
seems to stand out from the others. Is this residual the result of an error
in the data, an incorrect model, or simply random variation in the data?

The value of this Studentized residual is r} = 2.8369. This is distributed
as Student’s ¢ with (n —p’ — 1) = 8 degrees of freedom. The probability of

Detecting
Model
Inadequacies

Outlier
Residuals

Example 11.1



11.1 Residuals Analysis 349

44 e : Low ozone
x : High ozone

-2

—4

FIGURE 11.5. Plot of r; versus Y for the Lesser—Unsworth data (Ezercise 1.19)
relating seed weight of soybeans to cumulative solar radiation for two levels of
ozone exposure. The model included linear regression of (seed weight)1/2 on ozone
level and solar radiation.

[t| > 2.8369 is slightly less than .02. Allowing for the fact that this is the
most extreme residual out of a sample of 12, this does not appear to be
unusually large. Overall, the remaining residuals tend to show an upward
trend suggesting that this observation is pulling the regression line down.
Inspection of the residuals by treatment, however, shows that the high
ozone treatment, the xs, have a slight downward slope. Perhaps the large
residual results from an incorrect model that forces both ozone treatments
to have a common regression on solar radiation. |

The standardized residuals from the regression of oxygen uptake on time
to run a fixed course, resting heart rate, heart rate while running, and
maximum heart rate while running, Table 4.3, are plotted against Y; in
Figure 11.6. Although the pattern is not definitive, there is some semblance
of the fan-shaped pattern of residuals suggesting heterogeneous variance.
The larger dispersion for the higher levels of oxygen consumption could also
result from the model being inadequate in this region. Perhaps the faster
runners, who tended to use more oxygen, differed in ways not measured by
the four variables. ]

Example 11.2
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FIGURE 11.6. Plot of r; versus Y for the regression of oxygen uptake on time,
resting heart rate, running heart rate, and mazximum heart rate. The original data
are given in Table 4.3.

11.1.2 Plots of e Versus X;

Plots of the residuals against the independent variables have interpreta-
tions similar to plots against Y. Differences in magnitude of dispersion
about zero suggest heterogeneous variances. A missing higher-degree poly-
nomial term for the independent variable should be evident in these plots.
However, inadequacies in the model associated with one variable, such as a
missing higher-degree polynomial term, can be obscured by the effects and
distribution of other independent variables. The partial regression lever-
age plots (discussed in Section 11.1.6) may be more revealing when several
independent variables are involved.

Outlier residuals will be evident. Observations that appear as isolated
points at the extremes of the X; scale are potentially influential because of
their extreme values for that particular independent variable. Such points
will tend to have small residuals because of their high leverage. However,
data points can be far outside the sample X-space without being outside
the limits of any one independent variable by having unlikely combinations
of values for two or more variables. Such points are potentially influential
but will not be easily detected by any univariate plots.

(Continuation of Example 11.1) The plot of the Studentized residuals
against radiation from the regression of seed weight on ozone exposure and
cumulative solar radiation (Lesser—Unsworth data) is given in Figure 11.7.
[Seed weight is being used as the dependent variable rather than (seed
weight)!/? as in Figure 11.5.] One residual (not the same as in Figure 11.5)
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FIGURE 11.7. Plot of the Studentized residual versus radiation (X) for the
Lesser—Unsworth data. The residuals are from the regression of seed weight on
ozone level and cumulative solar radiation.

stands out as a possible outlier. In this case, r§ = 4.1565 and is very close to
being significant, a* = .05. It is evident from the general negative slope of
the other residuals that this point has had a major effect on the regression
coefficient. ]

11.1.3 Plots of e Versus Time

Data collected over time on individual observational units will often have
serially correlated residuals. That is, the residual at one point in time de-
pends to some degree on the previous residuals. Classical time series data,
such as the data generated by the continuous monitoring of some process,
are readily recognized as such and are expected to have correlated residuals.
Time series models and analyses take into account these serial correlations
and should be used in such cases (Fuller, 1996; Bloomfield, 1976).

There are many opportunities, however, for time effects to creep into
data that normally may not be thought of as time series data. For example,
resource limitations may force the researcher to run the experiment over
some period of time to obtain even one observation on each treatment. This
is common in industrial experiments where an entire production process
may be utilized to produce an observation. The time of day or time of
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Residuals
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FIGURE 11.8. Plot of r; versus year of catch for the regression of yearly Men-
haden catch on year. [Data are from Nelson and Ahrenholz (1986).]

week can have effects on the experimental results even though the process
is thought to be well controlled.

Even in biological experiments, where it is usual for all experimental
units to be under observation at the same time, some phases of the study
may require extended periods of time to complete. For example, autopsies
on test animals to determine the incidence of precancerous cell changes may
require several days. The simple recording of data in a field experiment may
take several days. All such situations provide the opportunity for “time”
to have an impact on the differences among the experimental observations.

A plot of the residuals against time may reveal effects not previously
thought to be important and, consequently, not taken into account in the
design of the study. Serial correlations will appear as a tendency of neigh-
boring residuals to be similar in value.

The standardized residuals from a regression adjusting yearly Menhaden
catch from 1964 to 1979 for a linear time trend are shown in Figure 11.8.
[Data are taken from Nelson and Ahrenholz (1986) and are given in Exercise
3.11.] The serial correlation is relatively weak in the case; the lag-one serial
correlation is .114. (The lag-one serial correlation is the correlation between
residuals one time unit apart.) Even though the serial correlation is weak,
the residuals show the typical pattern of the positive and negative residuals
occurring in runs. |

Changes in the production process, drifting of monitoring equipment,
time-of-day effects, time-of-week effects, and so forth, will show up as shifts

Example 11.4
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in the residuals plot. “Time” in this context can be the sequence in which
the treatments are imposed, in which measurements are taken, or in which
experimental units are tended. Alternatively, “time” could represent the
spatial relationship of the experimental units during the course of the trial.
In this case, plots of e versus “time” might detect environmental gradients
within the space of the experiment.

The runs test is frequently used to detect serial correlations. The test
consists of counting the number of runs, or sequences of positive and neg-
ative residuals, and comparing this result to the expected number of runs
under the null hypothesis of independence. (The lack of statistical indepen-
dence among the observed residuals will confound the runs test to some
degree. This effect can probably be ignored as long as a reasonable pro-
portion of the total degrees of freedom are devoted to the residual sum of
squares.)

(Continuation of Example 11.4) The data of annual catch of Menhaden
for 1964 to 1979 show the following sequence of positive and negative resid-
uals when regressed against time (see Figure 11.8):

There are v = 5 runs in a sample consisting of ny = 7 positives and ny =9
negatives. The cumulative probabilities for number of runs u in sample sizes
of (n1,n2) are given by Swed and Eisenhart (1943) for ny +n2 < 20. In this
example with (n1,n2) = (7,9), the probability of v < 5 is .035, indicating
significant departure from independence. Appendix Tables A.9 and A.10
give the critical number of runs to attain 5% and 1% significance levels for
the runs test for n; + ny < 20. These were generated using the Swed and
Eisenhart formulae. The critical 5% value for this example is v < 5. (It
would take u < 3 to be significant at the 1% level.) The low number of
runs in this example suggests the presence of a positive serial correlation.
|

If ny and ng are greater than 10, a normal approximation for the distri-
bution of runs can be used, where

2n1ng
p= 2 (11.4)
and
2 _ 2n1n2(2n1ng — Ny — n2). (11.5)
(n1 4+ n2)?(n1 +n2 — 1)
Then
S (11.6)

g

Runs Test
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FIGURE 11.9. Typical plot of e; versus e;—1 showing a positive serial correlation
among successive residuals.

is the standardized normal deviate, where the % is the correction for con-
tinuity.

(Continuation of Example 11.5) Applying the normal approximation to
the Menhaden catch data of Example 10.5, even though n; and ns are less
than 10, gives p = 8.875 and o2 = 3.60944, which yields z = —1.776. The
probability of z being less than —1.776 is .0384, very close to the probability
of .035 taken from Swed and Eisenhart. [ |

11.1.4 Plots of e; Versus e;_1

A serial correlation in time series data is more clearly revealed with a plot of
each residual against the immediately preceding residual. A positive serial
correlation would produce a scatter of points with a clear positive slope as
in Figure 11.9.

The plot of r; versus r;_1 for the Menhaden data is shown in Figure 11.10.
The extreme point in the upper left-hand quadrant is the plot of the second
largest positive residual (1978) against the largest negative residual (1977).
This sudden shift in catch from 1977 to 1978 is largely responsible for
the serial correlation being as small as it is. Even so, the positive serial
correlation is evident. |

The presence of a serial correlation in the residuals is also detected by
the Durbin-Watson test for independence (Durbin and Watson, 1951). The
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FIGURE 11.10. Plot of r; versus r;—1 for the Menhaden catch data. The residuals
are from the regression of annual catch on year of catch.

Durbin—Watson test statistic is

n 2
i=2\€i — €j— ~
d = MQQ(]-_IO)? (11.7)

D1 €

where p is the sample correlation between e; and e;_1. The Durbin—Watson
statistic d gets smaller as the serial correlation increases. The one-tailed
Durbin—Watson test of the null hypothesis of independence Hy : p = 0,
against the alternative hypothesis H, : p > 0, uses two critical values
dy and dy which depend on n, p, and the choice of «. Critical values for
the Durbin—Watson test statistic are given in Appendix Table A.7. The
test procedure rejects the null hypothesis if d < dy, does not reject the
null hypothesis if d > dy, and is inconclusive if d;, < d < dy. Tests of
significance for the alternative hypothesis H, : p < 0 use the same critical
values dyy and dy,, but the test statistic is first subtracted from 4.

Some statistical computing packages routinely provide the Durbin—Wat-
son test for serial correlation of the residuals. In PROC GLM (SAS In-
stitute, Inc., 1989b), for example, the Durbin—Watson statistic is reported
as part of the standard results whenever the residuals are requested, even
though the data may not be time series data. The statistic is computed on
the residuals in the order in which the data are listed in the data set. Care
must be taken to ensure that the test is appropriate and that the ordering
of the data is meaningful before the Durbin—Watson test is used. Also, note
that the Durbin—-Watson test is computed for the unstandardized residuals
€;.
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11.1.5 Normal Probability Plots

The normal probability plot is designed to detect nonnormality. It is the
plot of the ordered residuals against the normal order statistics for the
appropriate sample size. The normal order statistics are the expected values
of ordered observations from the normal distribution with zero mean and
unit variance.

Let 21, 29, ..., 2z, be the observations from a random sample of size n. The
n observations ordered (and relabeled) so that z(1) < z) < -+ < 2y, give
the sample order statistics. The average for each z(;) over repeated sam-
plings gives the ith order statistic for the probability distribution being
sampled. These are the normal order statistics if the probability distribu-
tion being sampled is the normal distribution with zero mean and unit
variance. For example, the normal order statistics for a sample of size five
are —1.163, —.495, .0, .495, and 1.163. The expected value of the smallest
observation in a sample of size five from an N(0,1) distribution is —1.163,
the second smallest has expectation —.495, and so forth.

The normal order statistics were tabled for sample sizes to n = 204 by
Pearson and Hartley (1966), Biometrika Tables for Statisticians, and have
been reproduced in many references [e.g., Weisberg (1985), Table D, or
Rohlf and Sokal (1981), Table 27]. In some references the indexing of the
normal order statistics is in the reverse order so that the first order statistic
refers to the largest. The order statistics are easily approximated by any
computer program that provides the inverse function of the cumulative
normal distribution. Thus, z(;) ~ ®~1(p), where p is chosen as a function
of the ranks of the residuals. Several choices of p have been suggested.
Blom’s (1958) suggestion of using

, (11.8)

where R; is the rank and n is the sample size, provides an excellent ap-
proximation if n > 5. Plotting the ordered observed residuals against their
normal order statistics provides the normal plot.

The expected result from a normal plot when the residuals are a sam-
ple from a normal distribution is a straight line passing through zero with
the slope of the line determined by the standard deviation of the residu-
als. There will be random deviations from a straight line due to sampling
variation of the sample order statistics. Some practice is needed to develop
judgment for the amount of departure one should allow before concluding
that nonnormality is a problem. Daniel and Wood (1980) give illustrations
of the amount of variation in normal probability plots of samples from nor-
mal distributions. The normal probability plots for small samples will not
be very informative, because of sampling variation, unless departures from
normality are large.
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FIGURE 11.11. Normal plot of residuals from the analysis of variance of final
plant heights in a study of blue mold infection on tobacco. (Data courtesy of M.
Moss and C. C. Main, North Carolina State University.)

Figure 11.11 shows a well-behaved normal plot of the residuals from an
analysis of variance of final plant heights in a study of blue mold infection
in tobacco. (Data provided courtesy of M. Moss and C. C. Main, North
Carolina State University.) There are a total of 80 observations and the
residual sum of squares has 36 degrees of freedom. The amount of depen-
dence among the residuals will be related to the proportion of degrees of
freedom used by the model, % in this case. This relatively high degree
of dependence among the residuals and the “supernormal” tendencies of
least squares residuals mentioned earlier may be contributing to the very

normal-appearing behavior of this plot. |

The pattern of the departure from the expected straight line suggests
the nature of the nonnormality. A skewed distribution will show a curved
normal plot with the direction of the curve determined by the direction
of the skewness. An S-shaped curve suggests heavy-tailed or light-tailed
distributions (Figure 11.12), depending on the direction of the S. (Heavy-
tailed distributions have a relatively higher frequency of extreme observa-
tions than the normal distribution; light-tailed distributions have relatively
fewer.) Other model defects can mimic the effects of nonnormality. For ex-
ample, heterogeneous variances or outlier residuals will give the appearance
of a heavy-tailed distribution. The ordinary least squares residuals are con-
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FIGURE 11.12. A normal probability plot with a pattern typical of a heavy-tailed
distribution. In this case, the S-shape resulted from heterogeneous variances in
the data.

strained to have zero mean if the model includes the intercept term, and
the plot of the residuals should pass through the origin. (The recursive
residuals, on the other hand, are not so constrained and, thus, the nor-
mal plot of recursive residuals need not pass through the origin even if the
model is correct.) Failure to pass through the origin can be interpreted as
an indication of an outlier in the base set of observations or as a model
misfit such as an omitted variable (Galpin and Hawkins, 1984).

There are many tests for nonnormality under independence. However,
these tests must be used with caution when applied to regression residu-
als, since the residuals are not independent. The limiting distributions of
the test statistics show that they are appropriate for regression residuals if
the sample size is infinite (Pierce and Kopecky, 1979). For finite samples,
however, all are approximations and the question 