CHAPTER

VECTOR MECHANICS FOR ENGINEERS: DYNAMICS

Ferdinand P. Beer
E. Russell Johnston, Jr.

Kinematics of Rigid Bodies in Three Dimensions
Lecture Notes:
J. Walt Oler

Texas Tech University

Vector Mechanics for Engineers: Dynamics

Contents

Introduction

Rigid Body Angular Momentum in
Three Dimensions
Principle of Impulse and Momentum
Kinetic Energy
Sample Problem 18.1
Sample Problem 18.2
Motion of a Rigid Body in Three
Dimensions
Euler's Equations of Motion and D'Alembert's Principle

Motion About a Fixed Point or a Fixed Axis
Sample Problem 18.3
Motion of a Gyroscope. Eulerian Angles
Steady Precession of a Gyroscope
Motion of an Axisymmetrical Body Under No Force

Vector Mechanics for Engineers: Dynamics

-The fundamental relations developed for the plane motion of rigid bodies may also be applied to the general motion of three dimensional bodies.
-The relation $\quad \vec{H}_{G}=\bar{I} \vec{\omega}$
which was used to determine the angular momentum of a rigid slab is not valid for general three dimensional bodies and motion.
-The current chapter is concerned with evaluation of the angular momentum and its rate of change for three dimensional motion and application to effective forces, the impulse-momentum and the work-energy principles.

Vector Mechanics for Engineers: Dynamics

Rigid Body Angular Momentum in Three Dimensions

- Angular momentum of a body about its mass center,

$$
\vec{H}_{G}=\sum_{i=1}^{n}\left(\vec{r}_{i}^{\prime} \times \vec{v}_{i} \Delta m_{i}\right)=\sum_{i=1}^{n}\left[\vec{r}_{i}^{\prime} \times\left(\vec{\omega} \times \vec{r}_{i}^{\prime}\right) \Delta m_{i}\right]
$$

- The x component of the angular momentum,

$$
\begin{aligned}
& \begin{aligned}
H_{x} & =\sum_{i=1}^{n}\left[y_{i}\left(\vec{\omega} \times \vec{r}_{i}\right)_{z}-z_{i}\left(\vec{\omega} \times \vec{r}_{i}\right)_{y}\right] \Delta m_{i} \\
& =\sum_{i=1}^{n}\left[y_{i}\left(\omega_{x} y_{i}-\omega_{y} x_{i}\right)-z_{i}\left(\omega_{z} x_{i}-\omega_{x} z_{i}\right)\right] \Delta m_{i} \\
& =\omega_{x} \sum_{i=1}^{n}\left(y_{i}^{2}+z_{i}^{2}\right) \Delta m_{i}-\omega_{y} \sum_{i=1}^{n} x_{i} y_{i} \Delta m_{i}-\omega_{z} \sum_{i=1}^{n} z_{i} x_{i} \Delta m_{i}
\end{aligned} \\
& H_{x}=\omega_{x} \int\left(y^{2}+z^{2}\right) d m-\omega_{y} \int x y d m-\omega_{z} \int z x d m \\
& \quad=+\bar{I}_{x} \omega_{x}-\bar{I}_{x y} \omega_{y}-\bar{I}_{x z} \omega_{z}
\end{aligned} \begin{aligned}
H_{y} & =-\bar{I}_{y x} \omega_{x}+\bar{I}_{y} \omega_{y}-\bar{I}_{y z} \omega_{z} \\
H_{z} & =-\bar{I}_{z x} \omega_{x}-\bar{I}_{z y} \omega_{y}+\bar{I}_{z} \omega_{z}
\end{aligned}
$$

Vector Mechanics for Engineers: Dynamics

Rigid Body Angular Momentum in Three Dimensions

$H_{x}=+\bar{I}_{x} \omega_{x}-\bar{I}_{x y} \omega_{y}-\bar{I}_{x z} \omega_{z}$
$H_{y}=-\bar{I}_{y x} \omega_{x}+\bar{I}_{y} \omega_{y}-\bar{I}_{y z} \omega_{z}$
$H_{z}=-\bar{I}_{z x} \omega_{x}-\bar{I}_{z y} \omega_{y}+\bar{I}_{z} \omega_{z}$

- Transformation of $\vec{\omega}$ into \vec{H} is characterized by the inertia tensor for the body,

$$
\left(\begin{array}{ccc}
+\bar{I}_{x} & -\bar{I}_{x y} & -\bar{I}_{x z} \\
-\bar{I}_{y x} & +\bar{I}_{y} & -\bar{I}_{y z} \\
-\bar{I}_{z x} & -\bar{I}_{z y} & +\bar{I}_{z}
\end{array}\right)
$$

- With respect to the principal axes of inertia,

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\bar{I}_{x^{\prime}} & 0 & 0 \\
0 & \bar{I}_{y^{\prime}} & 0 \\
0 & 0 & \bar{I}_{z^{\prime}}
\end{array}\right) \\
& H_{x^{\prime}}=\bar{I}_{x^{\prime}} \omega_{x^{\prime}} \quad H_{y^{\prime}}=\bar{I}_{y^{\prime}} \omega_{y^{\prime}} \quad H_{z^{\prime}}=\bar{I}_{z^{\prime}} \omega_{z^{\prime}}
\end{aligned}
$$

- The angular momentum \vec{H} of a rigid body and its angular velocity have the same direction if, and only if, is directed ationg a principal axis of inertia.

Vector Mechanics for Engineers: Dynamics

Rigid Body Angular Momentum in Three Dimensions

- The momenta of the particles of a rigid body can be reduced to:

$$
\begin{aligned}
\vec{L} & =\text { linear momentum } \\
& =m \overrightarrow{\vec{v}}
\end{aligned}
$$

$$
\vec{H}_{G}=\text { angular momentum about } G
$$

$$
\begin{aligned}
& H_{x}=+\bar{I}_{x} \omega_{x}-\bar{I}_{x y} \omega_{y}-\bar{I}_{x z} \omega_{z} \\
& H_{y}=-\bar{I}_{y x} \omega_{x}+\bar{I}_{y} \omega_{y}-\bar{I}_{y z} \omega_{z} \\
& H_{z}=-\bar{I}_{z x} \omega_{x}-\bar{I}_{z y} \omega_{y}+\bar{I}_{z} \omega_{z}
\end{aligned}
$$

- The angular momentum about any other given point O is

$$
\vec{H}_{O}=\overrightarrow{\vec{r}} \times m \overrightarrow{\vec{v}}+\vec{H}_{G}
$$

Vector Mechanics for Engineers: Dynamics

Rigid Body Angular Momentum in Three Dimensions

- The angular momentum of a body constrained to rotate about a fixed point may be calculated from

$$
\vec{H}_{O}=\vec{r} \times m \vec{v}+\vec{H}_{G}
$$

- Or, the angular momentum may be computed directly from the moments and products of inertia with respect to the $O x y z$ frame.

$$
\begin{aligned}
\vec{H}_{O} & =\sum_{i=1}^{n}\left(\vec{r}_{i} \times \vec{v}_{i} \Delta m\right) \\
& =\sum_{i=1}^{n}\left[\vec{r}_{i} \times\left(\vec{\omega} \times \vec{r}_{i}\right) \Delta m_{i}\right] \\
H_{x} & =+I_{x} \omega_{x}-I_{x y} \omega_{y}-I_{x z} \omega_{z} \\
H_{y} & =-I_{y x} \omega_{x}+I_{y} \omega_{y}-I_{y z} \omega_{z} \\
H_{z} & =-I_{z x} \omega_{x}-I_{z y} \omega_{y}+I_{z} \omega_{z}
\end{aligned}
$$

Vector Mechanics for Engineers: Dynamics

Principle of Impulse and Momentum

- The principle of impulse and momentum can be applied directly to the threedimensional motion of a rigid body,

$$
\text { Syst Momenta }+ \text { Syst Ext } \text { Imp }_{1-2}=\text { Syst Momenta }{ }_{2}
$$

- The free-body diagram equation is used to develop component and moment equations.
- For bodies rotating about a fixed point, eliminate the impulse of the reactions at O by writing equation for moments of momenta and impulses about O.

Vector Mechanics for Engineers: Dynamics

Kinetic Energy

- Kinetic energy of particles forming rigid body,

$$
\begin{aligned}
& T= \frac{1}{2} m \bar{v}^{2}+\frac{1}{2} \sum_{i=1}^{n} \Delta m_{i}{\bar{v}_{i}^{\prime 2}}^{2} \\
&=\frac{1}{2} m \bar{v}^{2}+\frac{1}{2} \sum_{i=1}^{n}\left|\vec{\omega} \times{\vec{r}_{i}^{\prime}}^{\prime}\right|^{2} \Delta m_{i} \\
&= \frac{1}{2} m \bar{v}^{2}+\frac{1}{2}\left(\bar{I}_{x} \omega_{x}^{2}+\bar{I}_{y} \omega_{y}^{2}+\bar{I}_{z} \omega_{z}^{2}-2 \bar{I}_{x y} \omega_{x} \omega_{y}\right. \\
&\left.\quad-2 \bar{I}_{y z} \omega_{y} \omega_{z}-2 \bar{I}_{z x} \omega_{z} \omega_{x}\right)
\end{aligned}
$$

- If the axes correspond instantaneously with the principle axes,

$$
T=\frac{1}{2} m \bar{v}^{2}+\frac{1}{2}\left(\bar{I}_{x^{\prime}} \omega_{x^{\prime}}^{2}+\bar{I}_{y^{\prime}} \omega_{y^{\prime}}^{2}+\bar{I}_{z^{\prime}} \omega_{z^{\prime}}^{2}\right)
$$

- With these results, the principles of work and energy and conservation of energy may be applied to the threedimensional motion of a rigid body.

Vector Mechanics for Engineers: Dynamics

Kinetic Energy

- Kinetic energy of a rigid body with a fixed point,

$$
\begin{aligned}
& T=\frac{1}{2}\left(I_{x} \omega_{x}^{2}+I_{y} \omega_{y}^{2}+I_{z} \omega_{z}^{2}-2 I_{x y} \omega_{x} \omega_{y}\right. \\
& \left.-2 I_{y z} \omega_{y} \omega_{z}-2 I_{z x} \omega_{z} \omega_{x}\right)
\end{aligned}
$$

- If the axes $O x y z$ correspond instantaneously with the principle axes $O x^{\prime} y^{\prime} z^{\prime}$,

$$
T=\frac{1}{2}\left(I_{x^{\prime}} \omega_{x^{\prime}}^{2}+I_{y^{\prime}} \omega_{y^{\prime}}^{2}+I_{z^{\prime}} \omega_{z^{\prime}}^{2}\right)
$$

Vector Mechanics for Engineers: Dynamics

Sample Problem 18.1

Rectangular plate of mass m that is suspended from two wires is hit at D in a direction perpendicular to the plate.

Immediately after the impact, determine a) the velocity of the mass center G, and b) the angular velocity of the plate.

SOLUTION:

- Apply the principle of impulse and momentum. Since the initial momenta is zero, the system of impulses must be equivalent to the final system of momenta.
- Assume that the supporting cables remain taut such that the vertical velocity and the rotation about an axis normal to the plate is zero.
- Principle of impulse and momentum yields to two equations for linear momentum and two equations for angular momentum.
- Solve for the two horizontal components of the linear and angular velocity vectors.

Vector Mechanics for Engineers: Dynamics

Sample Problem 18.1

SOLUTION:

- Apply the principle of impulse and momentum. Since the initial momenta is zero, the system of impulses must be equivalent to the final system of momenta.
- Assume that the supporting cables remain taut such that the vertical velocity and the rotation about an axis normal to the plate is zero.

$$
\overrightarrow{\vec{v}}=\bar{v}_{x} \vec{i}+v_{z} \vec{k} \quad \vec{\omega}=\omega_{x} \vec{i}+\omega_{y} \vec{j}
$$

Since the x, y, and z axes are principal axes of inertia,

$$
\vec{H}_{G}=\bar{I}_{x} \omega_{x} \vec{i}+\bar{I}_{y} \omega_{y} \vec{j}=\frac{1}{12} m b^{2} \omega_{x} \vec{i}+\frac{1}{12} m a^{2} \omega_{y} \vec{j}
$$

Vector Mechanics for Engineers: Dynamics
 Sample Problem 18.1

- Principle of impulse and momentum yields two equations for linear momentum and two equations for angular momentum.
- Solve for the two horizontal components of the linear and angular velocity vectors.

$$
\begin{array}{rlrl}
0=m v_{x}-F \Delta t & =m \bar{v}_{z} & \frac{1}{2} b F \Delta t & =H_{x} \\
v_{x}=0 & \bar{v}_{z}=-F \Delta t / m & -\frac{1}{2} a F \Delta t & =H_{y} \\
\overrightarrow{\vec{v}}=-(F \Delta t / m) \vec{k} & =\frac{1}{12} m b^{2} \omega_{x} & \\
\omega_{x} & =6 F \Delta t / m b & \omega_{y} & =-(6 F \Delta t / m a) \\
& \vec{\omega}=\frac{6 F \Delta t}{m a b}(a \vec{i}+b \vec{j})
\end{array}
$$

Vector Mechanics for Engineers: Dynamics

Sample Problem 18.1

$$
\overrightarrow{\vec{v}}-(F \Delta t / m) \vec{k}
$$

$$
\begin{aligned}
& \vec{\omega}=\frac{6 F \Delta t}{m a b}(a \vec{i}+b \vec{j}) \\
& \vec{H}_{G}=\frac{1}{12} m b^{2} \omega_{x} \vec{i}+\frac{1}{12} m a^{2} \omega_{y} \vec{j}
\end{aligned}
$$

Vector Mechanics for Engineers: Dynamics

Sample Problem 18.2

A homogeneous disk of mass m is mounted on an axle $O G$ of negligible mass. The disk rotates counter-clockwise at the rate ω_{1} about $O G$.

Determine: a) the angular velocity of the disk, b) its angular momentum about O, c) its kinetic energy, and d) the vector and couple at G equivalent to the momenta of the particles of the disk.

SOLUTION:

- The disk rotates about the vertical axis through O as well as about $O G$. Combine the rotation components for the angular velocity of the disk.
- Compute the angular momentum of the disk using principle axes of inertia and noting that O is a fixed point.
- The kinetic energy is computed from the angular velocity and moments of inertia.
- The vector and couple at G are also computed from the angular velocity and moments of inertia.

Vector Mechanics for Engineers: Dynamics

Sample Problem 18.2

SOLUTION:

- The disk rotates about the vertical axis through O as well as about $O G$. Combine the rotation components for the angular velocity of the disk.

$$
\vec{\omega}=\omega_{1} \vec{i}+\omega_{2} \vec{j}
$$

Noting that the velocity at C is zero,

$$
\begin{aligned}
\vec{v}_{C} & =\vec{\omega} \times \vec{r}_{C}=0 \\
0 & =\left(\omega_{1} \vec{i}+\omega_{2} \vec{j}\right) \times(L \vec{i}-r \vec{j}) \\
& =\left(L \omega_{2}-r \omega_{1}\right) \vec{k} \\
\omega_{2} & =r \omega_{1} / L
\end{aligned}
$$

$$
\vec{\omega}=\omega_{1} \vec{i}-\left(r \omega_{1} / L\right) \vec{j}
$$

Vector Mechanics for Engineers: Dynamics

Sample Problem 18.2

- Compute the angular momentum of the disk using principle axes of inertia and noting that O is a fixed point.

$$
\begin{aligned}
\vec{H}_{O} & =I_{x} \omega_{x} \vec{i}+I_{y} \omega_{y} \vec{j}+I_{z} \omega_{z} \vec{k} \\
H_{x} & =I_{x} \omega_{x}=\left(\frac{1}{2} m r^{2}\right) \omega_{1} \\
H_{y} & =I_{y} \omega_{y}=\left(m L^{2}+\frac{1}{4} m r^{2}\right)\left(-r \omega_{1} / L\right) \\
H_{z} & =I_{z} \omega_{z}=\left(m L^{2}+\frac{1}{4} m r^{2}\right) 0=0
\end{aligned}
$$

$$
\vec{H}_{O}=\frac{1}{2} m r^{2} \omega_{1} \vec{i}-m\left(L^{2}+\frac{1}{4} r^{2}\right)\left(r \omega_{1} / L\right) \vec{j}
$$

- The kinetic energy is computed from the angular velocity and moments of inertia.

$$
\begin{aligned}
T & =\frac{1}{2}\left(I_{x} \omega_{x}^{2}+I_{y} \omega_{y}^{2}+I_{z} \omega_{z}^{2}\right) \\
& =\frac{1}{2}\left[m r^{2} \omega_{1}^{2}+m\left(L^{2}+\frac{1}{4} r^{2}\right)\left(-r \omega_{1} / L\right)^{2}\right] \\
& T=\frac{1}{8} m r^{2}\left(6+\frac{r^{2}}{L^{2}}\right) \omega_{1}^{2}
\end{aligned}
$$

Vector Mechanics for Engineers: Dynamics

Sample Problem 18.2

$$
\vec{\omega}=\omega_{1} \vec{i}-\left(r \omega_{1} / L\right) \vec{j}
$$

- The vector and couple at G are also computed from the angular velocity and moments of inertia.

$$
m \overrightarrow{\vec{v}}=m r \omega_{1} \vec{k}
$$

$$
\begin{aligned}
\vec{H}_{G} & =\bar{I}_{x} \omega_{x} \vec{i}+\bar{I}_{y} \omega_{y} \vec{j}+\bar{I}_{z^{\prime}} \omega_{z} \vec{k} \\
& =\frac{1}{2} m r^{2} \omega_{1} \vec{i}+\frac{1}{4} m r^{2}(-r \omega / L) \vec{j}
\end{aligned}
$$

$$
\vec{H}_{G}=\frac{1}{2} m r^{2} \omega_{1}\left(\vec{i}-\frac{r}{2 L} \vec{j}\right)
$$

Vector Mechanics for Engineers: Dynamics

Motion of a Rigid Body in Three Dimensions

$$
\begin{aligned}
& \sum \vec{F}=m \vec{a} \\
& \sum \vec{M}=\dot{\vec{H}}_{G}
\end{aligned}
$$

- Angular momentum and its rate of change are taken with respect to centroidal axes $G X^{\prime} Y^{\prime} Z^{\prime}$ of fixed orientation.
- Transformation of $\vec{\omega}$ into \vec{H} js independent of the system of coordinate axes.
- Convenient to use body fixed axes $G x y z$ where moments and products of inertia are not time dependent.
- Define rate of change of change of \vec{H} with respect to the rotating frame,

$$
\left(\dot{\vec{H}}_{G}\right)_{G x y z}=\dot{H}_{x} \vec{i}+\dot{H}_{y} \vec{j}+\dot{H}_{z} \vec{k}
$$

Then,

$$
\dot{\vec{H}}_{G}=\left(\dot{\vec{H}}_{G}\right)_{G x y z}+\vec{\Omega} \times \vec{H}_{G} \quad \vec{\Omega}=\vec{\omega}
$$

Vector Mechanics for Engineers: Dynamics

Euler's Eqs of Motion \& D'Alembert's Principle

- With $\vec{\Omega}=\vec{\omega}$ and $G x y z$ chosen to correspond to the principal axes of inertia,

$$
\sum \vec{M}_{G}=\left(\dot{\vec{H}}_{G}\right)_{G x y z}+\vec{\Omega} \times \vec{H}_{G}
$$

Euler's Equations:

$$
\begin{aligned}
& \sum M_{x}=\bar{I}_{x} \dot{\omega}_{x}-\left(\bar{I}_{y}-\bar{I}_{z}\right) \omega_{y} \omega_{z} \\
& \sum M_{y}=\bar{I}_{y} \dot{\omega}_{y}-\left(\bar{I}_{z}-\bar{I}_{x}\right) \omega_{z} \omega_{x} \\
& \sum M_{z}=\bar{I}_{z} \dot{\omega}_{z}-\left(\bar{I}_{x}-\bar{I}_{y}\right) \omega_{x} \omega_{y}
\end{aligned}
$$

- System of external forces and effective forces are equivalent for general three dimensional motion.
- System of external forces are equịvalent to the vector and couple, $\quad m \vec{a}$ and \vec{H}_{G}.

Vector Mechanics for Engineers: Dynamics

Motion About a Fixed Point or a Fixed Axis

- For a rigid body rotation around a fixed point,

$$
\begin{aligned}
\sum \vec{M}_{O} & =\vec{H}_{O} \\
& =\left(\dot{\vec{H}}_{O}\right)_{O x y z}+\vec{\Omega} \times \vec{H}_{O}
\end{aligned}
$$

- For a rigid body rotation around a fixed axis,

$$
\begin{aligned}
& H_{x}=-I_{x z} \omega \quad H_{y}=-I_{y z} \omega \quad H_{z}=-I_{z} \omega \\
& \sum \vec{M}_{O}=\left(\dot{\vec{H}}_{O}\right)_{O x y z}+\vec{\omega} \times \vec{H}_{O} \\
& =\left(-I_{x z} \vec{i}-I_{y z} \vec{j}+I_{z} \vec{k}\right) \dot{\omega} \\
& \quad+\omega \vec{k} \times\left(-I_{x z} \vec{i}-I_{y z} \vec{j}+I_{z} \vec{k}\right) \omega \\
& =\left(-I_{x z} \vec{i}-I_{y z} \vec{j}+I_{z} \vec{k}\right) \alpha+\left(-I_{x z} \vec{j}+I_{y z} \vec{i}\right) \omega^{2} \\
& \sum M_{x}=-I_{x z} \alpha+I_{y z} \omega^{2} \\
& \sum M_{y}=-I_{y z} \alpha+I_{x z} \omega^{2} \\
& \sum M_{z}=I_{z} \alpha
\end{aligned}
$$

Vector Mechanics for Engineers: Dynamics

Rotation About a Fixed Axis

- For a rigid body rotation around a fixed axis,

$$
\begin{aligned}
& \sum M_{x}=-I_{x z} \alpha+I_{y z} \omega^{2} \\
& \sum M_{y}=-I_{y z} \alpha+I_{x z} \omega^{2} \\
& \sum M_{z}=I_{z} \alpha
\end{aligned}
$$

- If symmetrical with respect to the xy plane,

$$
\sum M_{x}=0 \quad \sum M_{y}=0 \quad \sum M_{z}=I_{z} \alpha
$$

- If not symmetrical, the sum of external moments will not be zero, even if $\alpha=0$,

$$
\sum M_{x}=I_{y z} \omega^{2} \quad \sum M_{y}=I_{x z} \omega^{2} \quad \sum M_{z}=0
$$

- A rotating shaft requires both static $\quad(\omega=0)$ nd dynamic $(\omega \neq 0)$ balancing to avoid excessive vibration and bearing reactions.

Vector Mechanics for Engineers: Dynamics

Sample Problem 18.3

$\operatorname{Rod} A B$ with weight $W=20 \mathrm{~kg}$ is pinned at A to a vertical axle which rotates with constant angular velocity ω $=15 \mathrm{rad} / \mathrm{s}$. The rod position is maintained by a horizontal wire $B C$.

Determine the tension in the wire and the reaction at A.

SOLUTION:

- Evaluate the system of effective forces by reducing them to a vector athaçhed at G and couple \vec{H}_{G}.
- Expressing that the system of external forces is equivalent to the system of effective forces, write vector expressions for the sum of moments about A and the summation of forces.
- Solve for the wire tension and the reactions at A.

Vector Mechanics for Engineers: Dynamics

Sample Problem 18.3

SOLUTION:

- Evaluate the system of effective forces by reducing them to a vector attaçiched at G and couple $\quad \vec{H}_{G}$.

$$
\begin{aligned}
\overrightarrow{\vec{a}} & =\vec{a}_{n}=-r \omega^{2} \vec{I}=-\left(\frac{1}{2} L \cos \beta\right) \omega^{2} \vec{I} \\
& =-\left(135 \mathrm{~m} / \mathrm{s}^{2}\right) \vec{I} \\
m \overrightarrow{\vec{a}}= & (20 \mathrm{~kg})\left(-135 \mathrm{~m} / \mathrm{s}^{2}\right)=-(2700 \mathrm{~N}) \vec{I} \\
\vec{H}_{G}= & \bar{I}_{x} \omega_{x} \vec{i}+\bar{I}_{y} \omega_{y} \vec{j}+\bar{I}_{z} \omega_{z} \vec{k} \\
& \bar{I}_{x}=\frac{1}{2} m L^{2} \quad \bar{I}_{y}=0 \quad \bar{I}_{z}=\frac{1}{2} m L^{2} \\
& \omega_{x}=-\omega \cos \beta \quad \omega_{y}=\omega \sin \beta \quad \omega_{z}=0 \\
\vec{H}_{G}= & -\frac{1}{12} m L^{2} \omega \cos \beta \vec{i} \\
\dot{\vec{H}}_{G} & =\left(\dot{\vec{H}}_{G}\right)_{G x y z}+\vec{\omega} \times \vec{H}_{G} \\
& =0+(-\omega \cos \beta \vec{i}+\omega \sin \beta \vec{j}) \times\left(\frac{1}{12} m L^{2} \omega \cos \beta \vec{i}\right) \\
& =\frac{1}{12} m L^{2} \omega^{2} \sin \beta \cos \beta \vec{k}=(935 \mathrm{~N} \cdot \mathrm{~m}) \vec{k}
\end{aligned}
$$

Vector Mechanics for Engineers: Dynamics

Sample Problem 18.3

- Expressing that the system of external forces is equivalent to the system of effective forces, write vector expressions for the sum of moments about A and the summation of forces.

$$
\begin{aligned}
& \sum \vec{M}_{A}=\sum\left(\vec{M}_{A}\right)_{\text {eff }} \\
& 2.08 \vec{J} \times(-T \vec{I})+0.6 \vec{I} \times(-196 \vec{J})=1.04 \vec{J} \times(-2700 \vec{I})+935 \vec{K} \\
&(2.08 T-118) \vec{K}=(2808+935) \vec{K}
\end{aligned}
$$

$$
T=1856 \mathrm{~N}
$$

$$
\sum \vec{F}=\sum(\vec{F})_{e f f}
$$

$$
A_{X} \vec{I}+A_{Y} \vec{J}+A_{Z} \vec{K}-1856 \vec{I}-196 \vec{J}=-2700 \vec{I}
$$

$$
\vec{A}=-(844 \mathrm{~N}) \vec{I}+(196 \mathrm{~N}) \vec{J}
$$

Vector Mechanics for Engineers: Dynamics

Motion of a Gyroscope. Eulerian Angles

- A gyroscope consists of a rotor with its mass center fixed in space but which can spin freely about its geometric axis and assume any orientation.
- From a reference position with gimbals and a reference diameter of the rotor aligned, the gyroscope may be brought to any orientation through a succession of three steps:

1) rotation of outer gimbal through φ about $A A^{\prime}$,
2) rotation of inner gimbal through θ about $B B^{\prime}$,
3) rotation of the rotor through ψ about $C C^{\prime}$.

- φ, θ, and ψ are called the Eulerian Angles and
$\dot{\phi}=$ rate of precession
$\dot{\theta}=$ rate of nutation
$\dot{\Psi}=$ rate of spin

Vector Mechanics for Engineers: Dynamics

Motion of a Gyroscope. Eulerian Angles

- The angular velocity of the gyroscope,

$$
\begin{aligned}
& \vec{\omega}=\dot{\phi} \vec{K}+\dot{\theta} \vec{j}+\dot{\Psi} \vec{k} \\
& \text { with } \vec{K}=-\sin \theta \vec{i}+\cos \theta \vec{j} \\
& \vec{\omega}=-\dot{\phi} \sin \theta \vec{i}+\dot{\theta} \vec{j}+(\dot{\Psi}+\dot{\phi} \cos \theta) \vec{k}
\end{aligned}
$$

- Equation of motion,

$$
\begin{aligned}
\sum \vec{M}_{O}= & \left(\dot{\vec{H}}_{O}\right)_{O x y z}+\vec{\Omega} \times \vec{H}_{O} \\
\vec{H}_{O} & =-I^{\prime} \dot{\phi} \sin \theta \vec{i}+I^{\prime} \dot{\theta} \vec{j}+I(\dot{\Psi}+\dot{\phi} \cos \theta) \vec{k} \\
\vec{\Omega} & =\dot{\phi} \vec{K}+\dot{\theta} \vec{j} \\
\sum M_{x} & =-I^{\prime}(\ddot{\phi} \sin \theta+2 \dot{\theta} \dot{\phi} \cos \theta)+I \dot{\theta}(\dot{\Psi}+\dot{\phi} \cos \theta) \\
\sum M_{y} & =I^{\prime}\left(\ddot{\theta}-\dot{\phi}^{2} \sin \theta \cos \theta\right)+I \dot{\phi} \sin \theta(\dot{\Psi}+\dot{\phi} \cos \theta) \\
\sum M_{z} & =I \frac{d}{d t}(\dot{\Psi}+\dot{\phi} \cos \theta)
\end{aligned}
$$

Vector Mechanics for Engineers: Dynamics

Steady Precession of a Gyroscope

Steady precession,
$\theta, \dot{\phi}, \dot{\psi}$ are constant
$\vec{\omega}=-\dot{\phi} \sin \theta \vec{i}+\omega_{z} \vec{k}$
$\vec{H}_{O}=-I^{\prime} \dot{\phi} \sin \theta \vec{i}+I \omega_{z} \vec{k}$
$\vec{\Omega}=-\dot{\phi} \sin \theta \vec{i}+\dot{\phi} \cos \theta \vec{k}$

$$
\begin{aligned}
\sum \vec{M}_{O} & =\vec{\Omega} \times \vec{H}_{O} \\
& =\left(I \omega_{z}-I^{\prime} \dot{\phi} \cos \theta\right) \dot{\phi} \sin \theta \vec{j}
\end{aligned}
$$

Couple is applied about an axis perpendicular to the precession and spin axes

When the precession and spin axis are at a right angle,

$$
\theta=90^{\circ}
$$

$$
\sum \vec{M}_{O}=I \dot{\Psi} \dot{\phi} \dot{j}
$$

Gyroscope will precess about an axis perpendicular to both the spin axis and couple axis.

Vector Mechanics for Engineers: Dynamics

Motion of an Axisymmetrical Body Under No Force

- Consider motion about its mass center of an axisymmetrical body under no force but its own weight, e.g., projectiles, satellites, and space craft.

$$
\dot{\vec{H}}_{G}=0 \quad \vec{H}_{G}=\mathrm{constant}
$$

- Define the Z axis to be aligned with $\vec{H} \not \underset{\text { frd }}{ } z$ in a rotating axes system along the axis of symmetry. The x axis is chosen to lie in the $Z z$ plane.

$$
\begin{array}{ll}
H_{x}=-H_{G} \sin \theta=I^{\prime} \omega_{x} & \omega_{x}=-\frac{H_{G} \sin \theta}{I^{\prime}} \\
H_{y}=0=I^{\prime} \omega_{y} & \omega_{y}=0 \\
H_{z}=H_{G} \cos \theta=I \omega_{z} & \omega_{z}=\frac{H_{G} \cos \theta}{I}
\end{array}
$$

- $\theta=$ constant and body is in steady precession.
- Note: $-\frac{\omega_{x}}{\omega_{z}}=\tan \gamma=\frac{I}{I^{\prime}} \tan \theta$

Vector Mechanics for Engineers: Dynamics
 Motion of an Axisymmetrical Body Under No Force

Two cases of motion of an axisymmetrical body which
 under no force which involve no precession:

- Body set to spin about its axis of symmetry,

$$
\begin{aligned}
& \omega_{x}=H_{x}=0 \\
& \vec{\omega} \text { and } \vec{H}_{G} \text { are aligned }
\end{aligned}
$$

and body keeps spinning about its axis of symmetry.

- Body is set to spin about its transverse axis,

$$
\begin{aligned}
& \omega_{z}=H_{z}=0 \\
& \vec{\omega} \text { and } \vec{H}_{G} \text { are aligned }
\end{aligned}
$$

and body keeps spinning about the given transverse axis.

Vector Mechanics for Engineers: Dynamics

Motion of an Axisymmetrical Body Under No Force

The motion of a body about a fixed point (or its mass center) can be represented by the motion of a body cone rolling on a space cone. In the case of steady precession the two cones are circular.

- $I<I$ '. Case of an elongated body. $\gamma<\theta$ and the vector ω lies inside the angle $Z G z$. The space cone and body cone are tangent externally; the spin and precession are both counterclockwise from the positive z axis. The precession is said to be direct.
- $I>I$ '. Case of a flattened body. $\gamma>\theta$ and the vector ω lies outside the angle $Z G z$. The space cone is inside the body cone; the spin and precession have opposite senses. The precession is said to be retrograde.

