
Forms Authentication, Authorization, User
Accounts, and Roles :: Security Basics and
ASP.NET Support

Introduction
What is the one thing forums, eCommerce sites, online email websites, portal

websites, and social network sites all have in common? They all offer user accounts.

Sites that offer user accounts must provide a number of services. At a minimum,

new visitors need to be able to create an account and returning visitors must be able

to log in. Such web applications can make decisions based on the logged in user:

some pages or actions might be restricted to only logged in users, or to a certain

subset of users; other pages might show information specific to the logged in user,

or might show more or less information, depending on what user is viewing the

page.

This is the first tutorial in a series of tutorials that will explore techniques for

authenticating visitors through a web form, authorizing access to particular pages

and functionality, and managing user accounts in an ASP.NET application. Over the

course of these tutorials we will examine how to:

 Identify and log users in to a website

 Use ASP.NET’s Membership framework to manage user accounts

 Create, update, and delete user accounts

 Limit access to a web page, directory, or specific functionality based on the

logged in user

 Use ASP.NET’s Roles framework to associate user accounts with roles

 Manage user roles

 Limit access to a web page, directory, or specific functionality based on the

logged in user’s role

 Customize and extend ASP.NET’s security Web controls

These tutorials are geared to be concise and provide step-by-step instructions with

plenty of screen shots to walk you through the process visually. Each tutorial is

available in C# and Visual Basic versions and includes a download of the complete

code used. (This first tutorial focuses on security concepts from a high-level

viewpoint and therefore does not contain any associated code.)

In this tutorial we will discuss important security concepts and what facilities are

available in ASP.NET to assist in implementing forms authentication, authorization,

user accounts, and roles. Let’s get started!

Note: Security is an important aspect of any application that spans physical,

technological, and policy decisions and requires a high degree of planning and

domain knowledge. This tutorial series is not intended as a guide for

developing secure web applications. Rather, it focuses specifically on forms

authentication, authorization, user accounts, and roles. While some security

concepts revolving around these issues are discussed in this series, others are

left unexplored.

Authentication, Authorization, User
Accounts, and Roles
Authentication, authorization, user accounts, and roles are four terms that will be

used very often throughout this tutorial series, so I’d like to take a quick moment to

define these terms within the context of web security. In a client-server model, such

as the Internet, there are many scenarios in which the server needs to identify the

client making the request. Authentication is the process of ascertaining the client’s

identity. A client who has been successfully identified is said to be authenticated. An

unidentified client is said to be unauthenticated or anonymous.

Secure authentication systems involve at least one of the following three facets:

something you know, something you have, or something you are. Most web

applications rely on something the client knows, such as a password or a PIN. The

information used to identify a user – her username and password, for example – are

referred to as credentials. This tutorial series focuses on forms authentication, which

is an authentication model where users log in to the site by providing their

credentials in a web page form. We have all experienced this type of authentication

before. Go to any eCommerce site. When you are ready to check out you are asked

to log in by entering your username and password into textboxes on a web page.

In addition to identifying clients, a server may need to limit what resources or

functionalities are accessible depending on the client making the request.

Authorization is the process of determining whether a particular user has the

authority to access a specific resource or functionality.

A user account is a store for persisting information about a particular user. User

accounts must minimally include information that uniquely identifies the user, such

as the user’s login name and password. Along with this essential information, user

accounts may include things like: the user’s email address; the date and time the

account was created; the date and time they last logged in; first and last name;

phone number; and mailing address. When using forms authentication, user account

information is typically stored in a relational database like Microsoft SQL Server.

Web applications that support user accounts may optionally group users into roles. A

role is simply a label that is applied to a user and provides an abstraction for defining

authorization rules and page-level functionality. For example, a website might

http://www.cs.cornell.edu/Courses/cs513/2005fa/NNLauthPeople.html

include an “Administrator” role with authorization rules that prohibit anyone but an

Administrator to access a particular set of web pages. Moreover, a variety of pages

that are accessible to all users (including non-Administrators) might display

additional data or offer extra functionality when visited by users in the

Administrators role. Using roles, we can define these authorization rules on a role-

by-role basis rather than user-by-user.

Authenticating Users in an ASP.NET
Application
When a user enters a URL into their browser’s address window or clicks on a link, the

browser makes a Hypertext Transfer Protocol (HTTP) request to the web server for

the specified content, be it an ASP.NET page, an image, a JavaScript file, or any

other type of content. The web server is tasked with returning the requested

content. In doing so, it must determine a number of things about the request,

including who made the request and whether the identity is authorized to retrieve

the requested content.

By default, browsers send HTTP requests that lack any sort of identification

information. But if the browser does include authentication information then the web

server starts the authentication workflow, which attempts to identify the client

making the request. The steps of the authentication workflow depend on the type of

authentication being used by the web application. ASP.NET supports three types of

authentication: Windows, Passport, and forms. This tutorial series focuses on forms

authentication, but let’s take a minute to compare and contrast Windows

authentication user stores and workflow.

Authentication via Windows
Authentication
The Windows authentication workflow uses one of the following authentication

techniques:

 Basic authentication

 Digest authentication

 Windows Integrated Authentication

All three techniques work in roughly the same way: when an unauthorized,

anonymous request arrives, the web server sends back an HTTP response that

indicates that authorization is required to continue. The browser then displays a

modal dialog box that prompts the user for their username and password (see Figure

1). This information is then sent back to the web server via an HTTP header.

http://en.wikipedia.org/wiki/HTTP

Figure 1: A Modal Dialog Box Prompts the User for His Credentials

The supplied credentials are validated against the web server’s Windows User Store.

This means that each authenticated user in your web application must have a

Windows account in your organization. This is commonplace in intranet scenarios. In

fact, when using Windows Integrated Authentication in an intranet setting, the

browser automatically provides the web server with the credentials used to log on to

the network, thereby suppressing the dialog box shown in Figure 1. While Windows

authentication is great for intranet applications, it is usually unfeasible for Internet

applications since you do not want to create Windows accounts for each and every

user who signs up at your site.

Authentication via Forms Authentication
Forms authentication, on the other hand, is ideal for Internet web applications. Recall

that forms authentication identifies the user by prompting them to enter their

credentials through a web form. Consequently, when a user attempts to access an

unauthorized resource, they are automatically redirected to the login page where

they can enter their credentials. The submitted credentials are then validated against

a custom user store - usually a database.

After verifying the submitted credentials, a forms authentication ticket is created for

the user. This ticket indicates that the user has been authenticated and includes

identifying information, such as the username. The forms authentication ticket is

(typically) stored as a cookie on the client computer. Therefore, subsequent visits to

the website include the forms authentication ticket in the HTTP request, thereby

enabling the web application to identify the user once they have logged in.

Figure 2 illustrates the forms authentication workflow from a high-level vantage

point. Notice how the authentication and authorization pieces in ASP.NET act as two

separate entities. The forms authentication system identifies the user (or reports

that they are anonymous). The authorization system is what determines whether the

user has access to the requested resource. If the user is unauthorized (as they are in

Figure 2 when attempting to anonymously visit ProtectedPage.aspx), the

authorization system reports that the user is denied, causing the forms

authentication system to automatically redirect the user to the login page.

Once the user has successfully logged in, subsequent HTTP requests include the

forms authentication ticket. The forms authentication system merely identifies the

user - it is the authorization system that determines whether the user can access the

requested resource.

Figure 2: The Forms Authentication Workflow

We will dig into forms authentication in much greater detail in the next two tutorials,

An Overview of Forms Authentication and Forms Authentication Configuration and

Advanced Topics. For more on ASP.NET’s authentication options, see ASP.NET

Authentication.

Limiting Access to Web Pages, Directories,
and Page Functionality
ASP.NET includes two ways to determine whether a particular user has authority to

access a specific file or directory:

http://msdn2.microsoft.com/en-us/library/eeyk640h.aspx
http://msdn2.microsoft.com/en-us/library/eeyk640h.aspx
http://msdn2.microsoft.com/en-us/library/eeyk640h.aspx

 File authorization – since ASP.NET pages and web services are

implemented as files that reside on the web server’s file system, access to

these files can be specified through Access Control Lists (ACLs). File

authorization is most commonly used with Windows authentication because

ACLs are permissions that apply to Windows accounts. When using forms

authentication, all operating system- and file system-level requests are

executed by the same Windows account, regardless of the user visiting the

site.

 URL authorization – with URL authorization, the page developer specifies

authorization rules in Web.config. These authorization rules specify what

users or roles are allowed to access or are denied from accessing certain

pages or directories in the application.

File authorization and URL authorization define authorization rules for accessing a

particular ASP.NET page or for all ASP.NET pages in a particular directory. Using

these techniques we can instruct ASP.NET to deny requests to a particular page for a

particular user, or allow access to a set of users and deny access to everyone else.

What about scenarios where all of the users can access the page, but the page’s

functionality depends on the user? For example, many sites that support user

accounts have pages that display different content or data for authenticated users

versus anonymous users. An anonymous user might see a link to log in to the site,

whereas an authenticated user would instead see a message like, “Welcome back,

Username” along with a link to log out. Another example: when viewing an item at

an auction site you see different information depending on whether you are a bidder

or the one auctioning the item.

Such page-level adjustments can be accomplished declaratively or programmatically.

To show different content for anonymous than authenticated users, simply drag a

LoginView control onto your page and enter the appropriate content into its

AnonymousTemplate and LoggedInTemplate templates. Alternatively, you can

programmatically determine whether the current request is authenticated, who the

user is, and what roles they belong to (if any). You can use this information to then

show or hide columns in a grid or Panels on the page.

This series includes three tutorials that focus on authorization. User-Based

Authorization examines how to limit access to a page or pages in a directory for

specific user accounts; Role-Based Authorization looks at supplying authorization

rules at the role level; lastly, the Displaying Content Based on the Currently Logged

In User tutorial explores modifying a particular page’s content and functionality

based on the user visiting the page. For more on ASP.NET’s authorization options,

see ASP.NET Authorization.

User Accounts and Roles
ASP.NET’s forms authentication provides an infrastructure for users to log in to a site

and have their authenticated state remembered across page visits. And URL

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.loginview.aspx
http://msdn2.microsoft.com/en-us/library/wce3kxhd.aspx

authorization offers a framework for limiting access to specific files or folders in an

ASP.NET application. Neither feature, however, supplies a means for storing user

account information or managing roles.

Prior to ASP.NET 2.0, developers were responsible for creating their own user and

role stores. They were also on the hook for designing the user interfaces and writing

the code for essential user account-related pages like the login page and the page to

create a new account, among others. Without any built-in user account framework in

ASP.NET, each developer implementing user accounts had to arrive at his own design

decisions on questions like, “How do I store passwords or other sensitive

information?” and “What guidelines should I impose regarding password length and

strength?”

Today, implementing user accounts in an ASP.NET application is much simpler

thanks to the Membership framework and the built-in Login Web controls. The

Membership framework is a handful of classes in the System.Web.Security

namespace that provide functionality for performing essential user account-related

tasks. The key class in the Membership framework is the Membership class, which

has methods like:

 CreateUser

 DeleteUser

 GetAllUsers

 GetUser

 UpdateUser

 ValidateUser

The Membership framework uses the provider model, which cleanly separates the

Membership framework’s API from its implementation. This enables developers to

use a common API, but empowers them to use an implementation that meets their

application’s custom needs. In short, the Membership class defines the essential

functionality of the framework (the methods, properties, and events), but does not

actually supply any implementation details. Instead, the methods of the Membership

class invoke the configured provider, which is what performs the actual work. For

example, when the Membership class’s CreateUser method is invoked, the

Membership class doesn’t know the details of the user store. It doesn’t know if users

are being maintained in a database or in an XML file or in some other store. The

Membership class examines the web application’s configuration to determine what

provider to delegate the call to, and that provider class is responsible for actually

creating the new user account in the appropriate user store. This interaction is

illustrated in Figure 3.

Microsoft ships two Membership provider classes in the .NET Framework:

http://msdn2.microsoft.com/en-us/library/system.web.security.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.membership.aspx
http://aspnet.4guysfromrolla.com/articles/101905-1.aspx

 ActiveDirectoryMembershipProvider – implements the Membership API in

Active Directory and Active Directory Application Mode (ADAM) servers.

 SqlMembershipProvider – implements the Membership API in a SQL Server

database.

This tutorial series focuses exclusively on the SqlMembershipProvider.

Figure 3: The Provider Model Enables Different Implementations to be
Seamlessly Plugged Into the Framework

The benefit of the provider model is that alternative implementations can be

developed by Microsoft, third-party vendors, or individual developers and seamlessly

plugged into the Membership framework. For example, Microsoft has released a

Membership provider for Microsoft Access databases. For more information on the

Membership providers, refer to the Provider Toolkit, which includes a walkthrough of

http://msdn2.microsoft.com/en-us/library/system.web.security.activedirectorymembershipprovider.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.sqlmembershipprovider.aspx
http://download.microsoft.com/download/5/5/b/55bc291f-4316-4fd7-9269-dbf9edbaada8/sampleaccessproviders.vsi
http://download.microsoft.com/download/5/5/b/55bc291f-4316-4fd7-9269-dbf9edbaada8/sampleaccessproviders.vsi
http://download.microsoft.com/download/5/5/b/55bc291f-4316-4fd7-9269-dbf9edbaada8/sampleaccessproviders.vsi
http://msdn2.microsoft.com/en-us/asp.net/aa336558.aspx

the Membership providers, sample custom providers, over 100 pages of

documentation on the provider model, and the complete source code for the built-in

Membership providers (namely, ActiveDirectoryMembershipProvider and

SqlMembershipProvider).

ASP.NET 2.0 also introduced the Roles framework. Like the Membership framework,

the Roles framework is built atop the provider model. Its API is exposed via the

Roles class and the .NET Framework ships with three provider classes:

 AuthorizationStoreRoleProvider – manages role information in an

authorization-manager policy store, such as Active Directory or ADAM.

 SqlRoleProvider – implements roles in a SQL Server database.

 WindowsTokenRoleProvider – associates role information based on the

visitor’s Windows group. This method is typically used with Windows

authentication.

This tutorial series focuses exclusively on the SqlRoleProvider.

Since the provider model includes a single forward-facing API (the Membership and

Roles classes), it is possible to build functionality around that API without having to

worry about the implementation details – those are handled by the providers

selected by the page developer. This unified API allows for Microsoft and third-party

vendors to build Web controls that interface with the Membership and Roles

frameworks. ASP.NET ships with a number of Login Web controls for implementing

common user account user interfaces. For example, the Login control prompts a user

for their credentials, validates them, and then logs them in via forms authentication.

The LoginView control offers templates for displaying different markup to anonymous

users versus authenticated users, or different markup based on the user’s role. And

the CreateUserWizard control provides a step-by-step user interface for creating a

new user account.

Underneath the covers the various Login controls interact with the Membership and

Roles frameworks. Most Login controls can be implemented without having to write a

single line of code. We will examine these controls in greater detail in future

tutorials, including techniques for extending and customizing their functionality.

Summary
All web applications that support user accounts require similar features, such as: the

ability for users to log in and have their log in status remembered across page visits;

a web page for new visitors to create an account; and the ability to the page

developer to specify what resource, data, and functionality are available to what

users or roles. The tasks of authenticating and authorizing users and of managing

user accounts and roles is remarkably easy to accomplish in ASP.NET applications

http://msdn2.microsoft.com/en-us/library/system.web.security.roles.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.authorizationstoreroleprovider.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.sqlroleprovider.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.windowstokenroleprovider.aspx
http://msdn2.microsoft.com/en-us/library/ms178329.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.loginview.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.createuserwizard.aspx

thanks to forms authentication, URL authorization, and the Membership and Roles

frameworks.

Over the course of the next several tutorials we will examine these aspects by

building a working web application from the ground up in a step-by-step fashion. In

the next two tutorial we will explore forms authentication in detail. We will see the

forms authentication workflow in action, dissect the forms authentication ticket,

discuss security concerns, and see how to configure the forms authentication system

- all while building a web application that allows visitors to log in and log out.

Happy Programming!

Further Reading
For more information on the topics discussed in this tutorial, refer to the following

resources:

 ASP.NET 2.0 Membership, Roles, Forms Authentication, and Security

Resources

 ASP.NET 2.0 Security Guidelines

 ASP.NET Authentication

 ASP.NET Authorization

 ASP.NET Login Controls Overview

 Examining ASP.NET 2.0’s Membership, Roles, and Profile

 How Do I: Secure My Site Using Membership and Roles? (Video)

 Introduction to Membership

 MSDN Security Developer Center

 Professional ASP.NET 2.0 Security, Membership, and Role Management

(ISBN: 978-0-7645-9698-8)

 Provider Toolkit

 Securing Your Web Site with Membership and Login Controls (Video)

About the Author
Scott Mitchell, author of multiple ASP/ASP.NET books and founder of

4GuysFromRolla.com, has been working with Microsoft Web technologies since 1998.

Scott works as an independent consultant, trainer, and writer. His latest book is

Sams Teach Yourself ASP.NET 2.0 in 24 Hours. Scott can be reached at

mitchell@4guysfromrolla.com or via his blog at http://ScottOnWriting.NET.

http://weblogs.asp.net/scottgu/archive/2006/02/24/ASP.NET-2.0-Membership_2C00_-Roles_2C00_-Forms-Authentication_2C00_-and-Security-Resources-.aspx
http://weblogs.asp.net/scottgu/archive/2006/02/24/ASP.NET-2.0-Membership_2C00_-Roles_2C00_-Forms-Authentication_2C00_-and-Security-Resources-.aspx
http://msdn2.microsoft.com/en-us/library/ms998258.aspx
http://msdn2.microsoft.com/en-us/library/eeyk640h.aspx
http://msdn2.microsoft.com/en-us/library/wce3kxhd.aspx
http://msdn2.microsoft.com/en-us/library/ms178329.aspx
http://aspnet.4guysfromrolla.com/articles/120705-1.aspx
http://asp.net/learn/videos/video-45.aspx
http://msdn2.microsoft.com/en-us/library/yh26yfzy.aspx
http://msdn2.microsoft.com/en-us/security/default.aspx
http://www.wrox.com/WileyCDA/WroxTitle/productCd-0764596985.html
http://msdn2.microsoft.com/en-us/asp.net/aa336558.aspx
http://asp.net/learn/videos/video-06.aspx
http://www.amazon.com/exec/obidos/ASIN/0672327384/4guysfromrollaco
mailto:mitchell@4guysfromrolla.com
http://scottonwriting.net/

Special Thanks To…
This tutorial series was reviewed by many helpful reviewers. Lead reviewer for this

tutorial was Alicja Maziarz. Interested in reviewing my upcoming MSDN articles? If

so, drop me a line at mitchell@4GuysFromRolla.com.

mitchell@4GuysFromRolla.com

