
2.1 (a)

k = 8.617 × 10−5 eV/K

ni(T = 300 K) = 1.66 × 1015(300 K)3/2exp

[

−
0.66 eV

2 (8.617× 10−5 eV/K) (300 K)

]

cm−3

= 2.465× 1013 cm−3

ni(T = 600 K) = 1.66 × 1015(600 K)3/2exp

[

−
0.66 eV

2 (8.617× 10−5 eV/K) (600 K)

]

cm−3

= 4.124× 1016 cm−3

Compared to the values obtained in Example 2.1, we can see that the intrinsic carrier concentration

in Ge at T = 300 K is 2.465×1013

1.08×1010 = 2282 times higher than the intrinsic carrier concentration in

Si at T = 300 K. Similarly, at T = 600 K, the intrinsic carrier concentration in Ge is 4.124×1016

1.54×1015 =
26.8 times higher than that in Si.

(b) Since phosphorus is a Group V element, it is a donor, meaning ND = 5 × 1016 cm−3. For an
n-type material, we have:

n = ND = 5 × 1016 cm−3

p(T = 300 K) =
[ni(T = 300 K)]

2

n
= 1.215 × 1010 cm−3

p(T = 600 K) =
[ni(T = 600 K)]2

n
= 3.401 × 1016 cm−3





2.3 (a) Since the doping is uniform, we have no diffusion current. Thus, the total current is due only to
the drift component.

Itot = Idrift

= q(nµn + pµp)AE

n = 1017 cm−3

p = n2
i /n = (1.08 × 1010)2/1017 = 1.17 × 103 cm−3

µn = 1350 cm2/V · s

µp = 480 cm2/V · s

E = V/d =
1 V

0.1 µm

= 105 V/cm

A = 0.05 µm × 0.05 µm

= 2.5 × 10−11 cm2

Since nµn ≫ pµp, we can write

Itot ≈ qnµnAE

= 54.1 µA

(b) All of the parameters are the same except ni, which means we must re-calculate p.

ni(T = 400 K) = 3.657× 1012 cm−3

p = n2
i /n = 1.337× 108 cm−3

Since nµn ≫ pµp still holds (note that n is 9 orders of magnitude larger than p), the hole
concentration once again drops out of the equation and we have

Itot ≈ qnµnAE

= 54.1 µA



2.4 (a) From Problem 1, we can calculate ni for Ge.

ni(T = 300 K) = 2.465× 1013 cm−3

Itot = q(nµn + pµp)AE

n = 1017 cm−3

p = n2
i /n = 6.076× 109 cm−3

µn = 3900 cm2/V · s

µp = 1900 cm2/V · s

E = V/d =
1 V

0.1 µm

= 105 V/cm

A = 0.05 µm × 0.05 µm

= 2.5 × 10−11 cm2

Since nµn ≫ pµp, we can write

Itot ≈ qnµnAE

= 156 µA

(b) All of the parameters are the same except ni, which means we must re-calculate p.

ni(T = 400 K) = 9.230 × 1014 cm−3

p = n2
i /n = 8.520 × 1012 cm−3

Since nµn ≫ pµp still holds (note that n is 5 orders of magnitude larger than p), the hole
concentration once again drops out of the equation and we have

Itot ≈ qnµnAE

= 156 µA



2.5 Since there’s no electric field, the current is due entirely to diffusion. If we define the current as positive
when flowing in the positive x direction, we can write

Itot = Idiff = AJdiff = Aq

[

Dn
dn

dx
− Dp

dp

dx

]

A = 1 µm × 1 µm = 10−8 cm2

Dn = 34 cm2/s

Dp = 12 cm2/s

dn

dx
= −

5 × 1016 cm−3

2 × 10−4 cm
= −2.5 × 1020 cm−4

dp

dx
=

2 × 1016 cm−3

2 × 10−4 cm
= 1020 cm−4

Itot =
(

10−8 cm2
) (

1.602 × 10−19 C
) [(

34 cm2/s
) (

−2.5 × 1020 cm−4
)

−

(

12 cm2/s
) (

1020 cm−4
)]

= −15.54 µA







2.8 Assume the diffusion lengths Ln and Lp are associated with the electrons and holes, respectively, in this
material and that Ln, Lp ≪ 2 µm. We can express the electron and hole concentrations as functions
of x as follows:

n(x) = Ne−x/Ln

p(x) = Pe(x−2)/Lp

# of electrons =

∫ 2

0

an(x)dx

=

∫ 2

0

aNe−x/Lndx

= −aNLn

(

e−x/Ln

)
∣

∣

∣

2

0

= −aNLn

(

e−2/Ln
− 1

)

# of holes =

∫ 2

0

ap(x)dx

=

∫ 2

0

aPe(x−2)/Lpdx

= aPLp

(

e(x−2)/Lp

)
∣

∣

∣

2

0

= aPLp

(

1 − e−2/Lp

)

Due to our assumption that Ln, Lp ≪ 2 µm, we can write

e−2/Ln
≈ 0

e−2/Lp
≈ 0

# of electrons ≈ aNLn

# of holes ≈ aPLp





2.10 (a)

nn = ND = 5 × 1017 cm−3

pn = n2
i /nn = 233 cm−3

pp = NA = 4 × 1016 cm−3

np = n2
i /pp = 2916 cm−3

(b) We can express the formula for V0 in its full form, showing its temperature dependence:

V0(T ) =
kT

q
ln

[

NAND

(5.2 × 1015)2 T 3e−Eg/kT

]

V0(T = 250 K) = 906 mV

V0(T = 300 K) = 849 mV

V0(T = 350 K) = 789 mV

Looking at the expression for V0(T ), we can expand it as follows:

V0(T ) =
kT

q

[

ln(NA) + ln(ND) − 2 ln
(

5.2 × 1015
)

− 3 ln(T ) + Eg/kT
]

Let’s take the derivative of this expression to get a better idea of how V0 varies with temperature.

dV0(T )

dT
=

k

q

[

ln(NA) + ln(ND) − 2 ln
(

5.2 × 1015
)

− 3 ln(T ) − 3
]

From this expression, we can see that if ln(NA) + ln(ND) < 2 ln
(

5.2 × 1015
)

+ 3 ln(T ) + 3, or

equivalently, if ln(NAND) < ln
[

(

5.2 × 1015
)2

T 3
]

− 3, then V0 will decrease with temperature,

which we observe in this case. In order for this not to be true (i.e., in order for V0 to increase with
temperature), we must have either very high doping concentrations or very low temperatures.



2.11 Since the p-type side of the junction is undoped, its electron and hole concentrations are equal to the
intrinsic carrier concentration.

nn = ND = 3 × 1016 cm−3

pp = ni = 1.08 × 1010 cm−3

V0 = VT ln

(

NDni

n2
i

)

= (26 mV) ln

(

ND

ni

)

= 386 mV



2.12 (a)

Cj0 =

√

qǫSi

2

NAND

NA + ND

1

V0

Cj =
Cj0

√

1 − VR/V0

NA = 2 × 1015 cm−3

ND = 3 × 1016 cm−3

VR = −1.6 V

V0 = VT ln

(

NAND

n2
i

)

= 701 mV

Cj0 = 14.9 nF/cm2

Cj = 8.22 nF/cm2

= 0.082 fF/cm2

(b) Let’s write an equation for C′

j in terms of Cj assuming that C′

j has an acceptor doping of N ′

A.

C′

j = 2Cj
√

qǫSi

2

N ′

AND

N ′

A + ND

1

VT ln(N ′

AND/n2
i ) − VR

= 2Cj

qǫSi

2

N ′

AND

N ′

A + ND

1

VT ln(N ′

AND/n2
i ) − VR

= 4C2
j

qǫSiN
′

AND = 8C2
j (N ′

A + ND)(VT ln(N ′

AND/n2
i ) − VR)

N ′

A

[

qǫSiND − 8C2
j (VT ln(N ′

AND/n2
i ) − VR)

]

= 8C2
j ND(VT ln(N ′

AND/n2
i ) − VR)

N ′

A =
8C2

j ND(VT ln(N ′

AND/n2
i ) − VR)

qǫSiND − 8C2
j (VT ln(N ′

AND/n2
i ) − VR)

We can solve this by iteration (you could use a numerical solver if you have one available). Starting
with an initial guess of N ′

A = 2 × 1015 cm−3, we plug this into the right hand side and solve to
find a new value of N ′

A = 9.9976× 1015 cm−3. Iterating twice more, the solution converges to

N ′

A = 1.025× 1016 cm−3. Thus, we must increase the NA by a factor of N ′

A/NA = 5.125 ≈ 5 .











2.16 (a) The following figure shows the series diodes.

ID

D1

D2−

VD

+

Let VD1 be the voltage drop across D1 and VD2 be the voltage drop across D2. Let IS1 = IS2 = IS ,
since the diodes are identical.

VD = VD1 + VD2

= VT ln

(

ID

IS

)

+ VT ln

(

ID

IS

)

= 2VT ln

(

ID

IS

)

ID = ISeVD/2VT

Thus, the diodes in series act like a single device with an exponential characteristic described by
ID = ISeVD/2VT .

(b) Let VD be the amount of voltage required to get a current ID and V ′

D the amount of voltage
required to get a current 10ID.

VD = 2VT ln

(

ID

IS

)

V ′

D = 2VT ln

(

10ID

IS

)

V ′

D − VD = 2VT

[

ln

(

10ID

IS

)

− ln

(

ID

IS

)]

= 2VT ln (10)

= 120 mV







2.19

VX = IXR1 + VD1

= IXR1 + VT ln

(

IX

IS

)

IX =
VX

R1
−

VT

R1
ln

(

IX

IS

)

For each value of VX , we can solve this equation for IX by iteration. Doing so, we find

IX(VX = 0.5 V) = 0.435 µA

IX(VX = 0.8 V) = 82.3 µA

IX(VX = 1 V) = 173 µA

IX(VX = 1.2 V) = 267 µA

Once we have IX , we can compute VD via the equation VD = VT ln(IX/IS). Doing so, we find

VD(VX = 0.5 V) = 499 mV

VD(VX = 0.8 V) = 635 mV

VD(VX = 1 V) = 655 mV

VD(VX = 1.2 V) = 666 mV

As expected, VD varies very little despite rather large changes in ID (in particular, as ID experiences
an increase by a factor of over 3, VD changes by about 5 %). This is due to the exponential behavior
of the diode. As a result, a diode can allow very large currents to flow once it turns on, up until it
begins to overheat.









2.22

VX/2 = IXR1 = VD1 = VT ln(IX/IS)

IX =
VT

R1
ln(IX/IS)

IX = 367 µA (using iteration)

VX = 2IXR1

= 1.47 V






























