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Preface

The Annual Iranian Mathematics Conference (AIMC) has been held since 1970. It is
the oldest Iranian scientific gathering which takes place regularly each year at one of
Iranian universities. The 36th annual Iranian mathematics conference was held at Yazd
University and now we are pleased to organize the 46th conference. The 46th AIMC will
be held at Yazd University in Yazd (the most beautiful and historical city of Iran) from
August 25 until August 28, 2015. The Iranian Mathematical Society and Yazd University
have jointly sponsored the 46th AIMC. This conference is an international conference and
includes Keynote speakers, Invited speakers, Presentations of contributed research papers,
and Poster presentations.

It is our pleasure to publish the Proceedings of the 46th AIMC. More than 700 math-
ematicians from our country and abroad have taken part in the conference. By kind
cooperation of contributors, more than 1100 papers were received. The scientific com-
mittee put a considerable effort on referral process in order to arrange a conference of
excellent scientific quality. We have 15 plenary speakers from universities of Iran, as well
as from Australia, South Korea, Canada, China, Czech Republic, India, Serbia and Spain.
Moreover, our invited speakers are about 12.

The Scientific Committee of
46th Annual Iranian Mathematics Conference
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A prefilter generated by a set in EQ-algebras

Neda Mohtashamniya∗

Departement of Mathematics, Science and Research Branch, Islamic Azad university, Kerman, Iran

Lida Torkzadeh

Departement of Mathematics, Kerman Branch, Islamic Azad university, Kerman,Iran

Abstract

In this paper we introduce the notion of a prefilter generated by a nonempty
subset of an EQ-algebra E and we investigate some properties of it. After that by
some theorems we characterize a generated prefilter.Then by constituting the set of
all prefilters of an EQ-algebra E denoted by PF (E), we show that it s an algebric
lattice. Finally, we prove that, the set of all principle prefilters of an `EQ-algebra E
is a sublattice of PF (E).

Keywords: (Good, separated) EQ-algebra, `EQ-algebra.

Mathematics Subject Classification [2010]: 03G1, 03G05

1 Introduction

V. Novák and B. De Baets introduced a spacial algebra called EQ-algebra in [5]. An EQ-
algebras have three binary (meet, multiplication and a fuzzy equality) and a top element
and also a binary operation implicatin is drived from fuzzy equality. Its implication and
multiplication are no more closely tied by the adjunction and so, this algebra generalizes
commutative residuated lattice. These algebras intended to develop an algebric structure
of truth values for fuzzy type theory. EQ-algebras are interesting and important algebra
for studing and researching and also residuated lattices [3] and BL-algebras [1, 4, 7] are
particular casses of EQ-algebras.

Definition 1.1. [2] An algebra (E,∧,⊗,∼, 1) of type (2, 2, 2, 0) is called an EQ-algebra
where for all a, b, c, d ∈ E :

(E1) (E,∧, 1) is a ∧-semilattice with top element 1. We set a ≤ b iff a ∧ b = a,
(E2) (E,⊗, 1) is a monoid and ⊗ is isotone in both arguments w.r.t. a ≤ b,
(E3) a ∼ a = 1, (reflexivity axiom)
(E4) (a ∧ b) ∼ c)⊗ (d ∼ a) ≤ c ∼ (d ∧ b), (substitution axiom)
(E5) (a ∼ b)⊗ (c ∼ d) ≤ (a ∼ c) ∼ (b ∼ d), (congruence axiom)
(E6) (a ∧ b ∧ c) ∼ a ≤ (a ∧ b) ∼ a, (monotonicity axiom)
(E7) a⊗ b ≤ a ∼ b,
for all a, b, c ∈ E.
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The binary operations ∧, ⊗ and ∼ are called meet, multiplication and fuzzy equality,
respectively.

Clear, (E,≤) is a partial order. We will also put, for a, b ∈ E
ã = a ∼ 1 and a→ b = (a ∧ b) ∼ a

The binary operation → will be called implication.
If E is a nonempty set with three binary operations ∧,⊗,∼ such that (E,∧, 1) is a

∧-semilattice, (E,⊗, 1) is a monoid and ⊗ is isotone with respect to ≤, then (E,⊗,∧,∼, 1)
is an EQ-algebra, where a ∼ b = 1, for all a, b ∈ E.

Lemma 1.2. [2] Let (E,∧,⊗,∼, 1) be an EQ-algebra. Then the following properties hold
for all a, b, c, d ∈ E:

(e1) a ∼ b = b ∼ a,
(e2) (a ∼ b)⊗ (b ∼ c) ≤ (a ∼ c),
(e3) (a→ b)⊗ (b→ c) ≤ (a→ c) and (b→ c)⊗ (a→ b) ≤ (a→ c),
(e4) a ∼ d ≤ (a ∧ b) ∼ (d ∧ b),
(e5) (a ∼ d)⊗ ((a ∧ b) ∼ c) ≤ (d ∧ b) ∼ c,
(e6) (a ∧ b) ∼ a ≤ (a ∧ b ∧ c) ∼ (a ∧ c),
(e7) a⊗ b ≤ a ∧ b ≤ a, b ,
(e8) b ≤ b̃ ≤ a→ b,
(e9) If a ≤ b, then a→ b = 1, b→ a = a ∼ b, ã ≤ b̃, c→ a ≤ c→ b and

b→ c ≤ a→ c,
(e10) If a ≤ b ≤ c, then a ∼ c ≤ a ∼ b and a ∼ c ≤ b ∼ c,
(e11) a⊗ (a ∼ b) ≤ b̃,
(e12) (a ∧ b)→ c)⊗ (d→ a) ≤ (d ∧ b)→ c.

Throughout this paper, E will be denoted an EQ-algebra unless otherwise stated.

Definition 1.3. [6] Let E be an EQ-algebra. We say that it is
(i) good, if for all a ∈ E, ã = a,
(ii) separated, if for all a, b ∈ E, a ∼ b = 1 implies a = b,
(iii) semi-separated, if for all a ∈ E, a ∼ 1 = 1 implies a = 1,
iv) an `EQ-algebra, if it has a lattice reduct and for all a, b, c, d ∈ E, ((a∨b) ∼ c)⊗(d ∼

a) ≤ c ∼ (d ∨ b).
Definition 1.4. [5] A nonempty subset F ⊆ E is called

A prefilter of E, if for all a, b ∈ E, the following conditions hold
(PF1) 1 ∈ F ,
(PF2) a, a→ b ∈ F , then b ∈ F .

A filter of E, if F is a prefilter of E and for all a, b, c ∈ E,
(F3) a→ b ∈ F implies (a⊗ c)→ (b⊗ c) ∈ F .

A positive implication prefilter of E, if F is a prefilter of E and for all a, b, c ∈ E,
(IPF4) a→ (b→ c) ∈ F and a→ b ∈ F imply a→ c ∈ F .

The set of all (filters)prefilters of E is denoted by (F (E)) PF (E).
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2 A generated prefilter in EQ-algebras

For a nonempty subset X ⊆ E, the smallest prefilter of E which contains X, i.e.
⋂{F ∈

PF (E) : X ⊆ F}, is said to be a prefilter of E generated by X and will be denoted by
< X >.

If a ∈ E and X = {a}, we denote by < a > the prefilter generated by {a} ( < a > is
called principal).

For F ∈ PF (E) and a ∈ E, we denote by F (a) =< F ∪ {a} >. It is clear that a ∈ F
implies F (a) = F .

Theorem 2.1. Let ∅ 6= X ⊆ E. Then

< X >= {a ∈ E : x1 → (x2 → (x3 → ...(xn → a)...)) = 1, for some xi ∈ X and n ≥ 1}.
ω is the set of nonegative integers. For a, z ∈ E and n ∈ ω we define a →0 z = z,

a→n+1 z = a→ (a→n z). If a = 1, a→n+1 z denoted by z̃n+1.

Theorem 2.2. In every EQ-algebra E, for ∅ 6= X ⊆ E we have

< X >⊆ {a ∈ E : (x1 ⊗ ...⊗ xn)→ ãk = 1, for some xi ∈ X, n ≥ 1 and k ∈ ω}.
Moreover in any good EQ-algebra

< X >⊆ {a ∈ E : (x1 ⊗ ...,⊗xn)→ a = 1, for some xi ∈ X and n ≥ 1}.
Theorem 2.3. Let E be an EQ-alebra and a, b ∈ E. Then for all a, b in E the following
are satisfay:

(i) a ≤ b implies < b >⊆< a >,
(ii) a2 = a implies < a >= {z ∈ E : a→ z̃k = 1, for some k ∈ ω},
(iii) If E is a good EQ-algebra and a2 = a, for a ∈ E, then < a >= {z ∈ E : a ≤ z},
(iv) Let F be a prefilter of an `EQ-algebra E. Then a∨b ∈ F implies F (a)∩F (b) = F ,
(v) In an `EQ-algebra E, we have < a ∨ b >=< a > ∩ < b >,
(vi) < a ∧ b >=< a > ∨ < b >,

Theorem 2.4. (i) Let F be a prefilter of an EQ-algebra E. Then

F (a) = {z ∈ E : f → (a→n z) = 1, for some f ∈ F and n ∈ ω}.
(ii) Let F be a positive implication prefilter of E. Then

F (a) = {z ∈ E : a→ z ∈ F}.
Let F and G be two prefilters of E. We denote F ∨G :=< F ∪G >.

Theorem 2.5. Let F and {Fi}i∈I be prefilters of an `EQ- algebra E. Then F ∧(∨i∈IFi) =
∨i∈I(F ∧ Fi).

A lattice L is called Brouwerian if a ∧ (∨i∈Ibi) = ∨i∈I(a ∧ bi), whenever the arbitrary
unions exists. Let E be a complete lattice and let a be an element of E. Then a is called
compact if a ≤ ∨X for some X ⊆ E implies that a ≤ ∨X1 for some X1 ⊆ X. A complete
lattice is called algebric if every element is the join of compact elements.
By Theorems 2.3 and 2.5 we have the following theorem.

Theorem 2.6. Let E be an `EQ-algebra. Then
(1) The lattice (PF (E),⊆) is a complete Brouwerian lattice.
(2) If we denote by PFp(E) the family of all principal prefilter of E, then PFp(E) is

a bounded sublattice of PF (E).
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A Simple Method For Hashing To Elliptic Curves

Amir Mehdi Yazdani Kashani∗

University of Kashan

Hassan Daghigh

University of Kashan

Abstract

In cryptography, it has been an important problem to transform a random value
in Fq into a random point on an elliptic curve in a deterministic and efficient method.
In this paper we propose a simpler form of Shallue-Woestijne-Ulas algorithm in order
to hash an element of finite field to a point of an elliptic curves. This subject can be
used in cryptosystems based on elliptic curves.

Keywords: Elliptic curves, Quadratic residue, Hash

Mathematics Subject Classification [2010]: 14H52, 11T71

1 Introduction

For a number of elliptic curve cryptosystems it is necessary to hash into an elliptic curve.
For instance Boneh-franklin identity based scheme [1]. Before 2006 the usual method was
to take x ∈ Fq and check whether this value corresponds to a valid abscissa of a point on
the elliptic curve. If not, try another abscissa until one of them works. One defect of this
algorithm is that the number of operation is not constant. namely the number of steps
depends on the input x.
The first algorithm for generating elliptic curve points in deterministic polynomial time
was published in ANTS 2006 by Shallue and Woestijne [5] .
The algorithm is based on the skalba equality which says that there exist four maps
X1(t), X2(t), X3(t), X4(t) such that

g(X1(t))g(X2(t))g(X3(t)) = (X4(t))
2

where g(x) = x3+ax+b. Then in a finite field for a fixed parameter t, there exists 1 ≤ j ≤ 3
such that g(Xj(t)) is a quadratic residue, which implies that this (Xj(t),

√
Xj(t)) is a point

on the elliptic curve y2 = g(x).
The maps were simplified and generalized to hyperelliptic curves by Ulas in 2007 [4]. We
recall these maps in the following result.

Lemma 1.1. Let

X1(t, u) = u X2(t, u) =
−b

a
(1 +

1

t4g(u)2 + t2g(u)
)

X3(t, u) = t2g(u)X2(t, u) U(t, u) = t3g(u)2g(X2(t, u))
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Then

U(t, u)2 = g(X1(t, u)).g(X2(t, u)).g(X3(t, u))

Brier et al [6] propose a further simplification of the Shallue-Woestijne-Ulas algorithm
for elliptic curves over finite field Fq with q ≡ 3(mod 4).
In this paper we propose a simpler form of the shallue-woestijne-ulas (SWU) algorithm
over Fq for q ≡ 2(mod 3).

2 Main result

In this section we suppose Fq is a finite field where q ≡ 2(mod 3). In this case, the function

x −→ x3

is a bijection with the inverse function

x −→ x1/3 = x2q−1/3

.

Lemma 2.1. Let g(x) = x3 + ax + b. If u is a quadratic non-residue such that for some
x ∈ Fq we have

g(u.x) = ug(x) (1)

then either x or u.x is the abscissa of a point on the y2 = g(x). Moreover for each u the
value

x = 3

√
b

u(u + 1)
(2)

satisfies (1).

Proof. Since u is not a quadratic residue, if x satisfies (1) then either g(u.x) or g(x) must
be a square in Fq. Therefor either x or u.x must be abscissa of a point on the curve
y2 = g(x). Moreover we have:

g(ux) = ug(x)⇐⇒ (ux)3 + a(ux) + b = u(x3 + ax + b)

⇐⇒ u3x3 + b = ux3 + ub

⇐⇒ x =
3

√
b(u− 1)

u3 − u
= 3

√
b

u(u + 1)

Theorem 2.2. Let

X2(t) = 3

√
b

−3t2(−3t2 + 1)
X3(t) = −3t2X2(t) U(t) = tg(X2(t)) (3)

Then

(U(t))2 =
−1

3
g(X2(t))g(X3(t))
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Proof. since q ≡ 2(mod 3), −3 is a quadratic non-residue and we can take u = −3t2 in
previous lemma. Therefore X2(t) = x and X3(t) = ux and we have

g(X2(t))g(X3(t)) = g(x)g(u.x) = ug(x)2 = −3t2g(x)2 = −3(tg(x))2 = −3(U(t))2

2.0.1 Simplified SWU Algorithm

Input: Fq such that q ≡ 2(mod 3), parameters a, b and t ∈ Fq

Output: (x, y) ∈ Ea,b(Fq) where Ea,b : y2 = x3 + ax + b
1. u←− −3t2

2. X2 ←− 3

√
b

u2 + u
3. X3 ←− u.X2

4. g2 ←− X3
2 + aX + b; g3 = X3

3 + aX3 + b
5. If g2 is a square, return (X2,

√
g2), otherwise return (X3,

√
g3)

Remark 2.3. In the final step of the previous algorithm we need to compute a square
root. Although no deterministic algorithm is known for computing square roots, since
in our case q ≡ 2(mod 3) and hence −3 is a non-quadratic residue, the Tonelli-Shanks
algorithm can compute the square root deterministicly in polynomial time. (see [2])

Remark 2.4. In order to compute the pre-images of a point P = (XP , YP ) we should
solve the equations X2(t) = XP and X3(t) = XP . Since degX2(t) = 4 and degX3(t) = 4
each equation has at most 4 solutions. Hence a point has at most 8 pre-images.
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A Zariski topology on the primary-like spectrum of

ν-multiplication modules

Fatemeh Rashedi∗

University of Birjand

Mohsen Hasani Pardoon

Islamic Azad University Birjand Branch

Abstract

LetR be a commutative ring with identity andM be a unitaryR-module. Primary-
like spectrum of M is the set of all primary-like submodules Q of M where M/Q is a
primeful module. In this paper, we introduce a base for the Zariski topology on the
primary-like spectrum of a ν-multiplication R-module M .

Keywords: Primary-like submodule, ν-Multiplication module, Zariski topology.

Mathematics Subject Classification [2010]: 13C13, 13C99

1 Introduction

Throughout this paper, all rings are commutative with identity and all modules are unital.
For a submodule N of an R-module M , (N : M) denotes the ideal {r ∈ R | rM ⊆ N}
and annihilator of M , denoted by Ann(M), is the ideal (0 : M). A submodule P of an
R-module M is said to be prime (resp. p-prime) if P 6= M and whenever rm ∈ P (where
r ∈ R and m ∈ M), then m ∈ P or r ∈ p = (P : M) [6]. The prime spectrum of M ,
denoted by Spec(M) (resp. Specp(M)), is the set of all prime (resp. p-prime) submodules
of M . If N is a submodule of M , then V (N) = {P ∈ Spec(M);N ⊆ P} and the radical
of N , denoted by rad(N), is the intersection of all elements of V (N) [5]. An R-module M
is called a top module if {V (N);N ≤M} induces a topology over Spec(M) [4].

A submodule Q of M is said to be primary-like if Q 6= M and whenever rm ∈ Q
(where r ∈ R and m ∈M) implies that r ∈ (Q : M) or m ∈ rad(Q) [2]. An R-module M
is said to be primeful if either M = (0) or M 6= (0) and the map

ψ : Spec(M)→ Spec(R/Ann(M))

defined by ψ(P ) = (P : M)/Ann(M) is surjective [3]. If M/N is a primeful module over
R, then

√
(N : M) = (rad(N) : M) [3, Proposition 5.3]. The primary-like spectrum of M

denoted by X is defined to be the set of all primary-like submodules Q of M where M/Q
is a primeful module [2].

Recently, modules whose spectrums having various types of Zariski topologies have
been received a good deal of attention (see for example [4]). In [2], we study the algebraic
properties of a new class of modules which are equipped with a new Zariski topology
defined as follows. Let N be a submodule of an R-module M . We set
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ν(N) = {Q ∈ X ;N ⊆ rad(Q)}.

Some elementary facts about ν have been collected in the following lemma.

Lemma 1.1. Let M be an R-module. Let N , N ′ and {Ni : i ∈ I} be submodules of M .
Then the following statements hold.

(1) ν(M) = ∅.

(2) ν(0) = X .

(3) ∩i∈Iν(Ni) = ν(
∑

i∈I Ni).

(4) ν(N) ∪ ν(N ′) ⊆ ν(N ∩N ′).

(5) ν(N) = ν(rad(N)).

(6) ν(N) = ν((N : M)M).

Put η(M) = {ν(N) | N is a submodule of M}. From (1), (2), (3) and (4) in Lmma 1.1,
we can see easily that there exists a topology, T say, on X having η(M) as the collection
of all closed sets if and only if η(M) is closed under finite union. An R-module M is called
a top-like module if η(M) induces the topology T over X [2]. Let M be an R-module.
Then M is called ν-multiplication if for every submodule N of M there exists an ideal I
of R such that ν(N) = ν(IM). It is easy to see that every ν-multiplication R-module is
a top-like module. In this paper we show that if M is a ν-multiplication R-module, then
(X , T ) has a base (Theorem 2.8).

2 Main results

Definition 2.1. An R-module M is called a multiplication module if for every submodule
N of M , there exits an ideal I of R such that N = IM [1].

Note that, if N is a submodule of a multiplication R-module M , then I ⊆ (N : M) =
{r ∈ R | rM ⊆ N} and hence N = IM ⊆ (N : M)M ⊆ N so that N = (N : M)M .

Lemma 2.2. Any multiplication R-module is a ν-multiplication R-module.

By an easy verication we have the following lemma.

Lemma 2.3. Let M be a ν-multiplication R-module. Then any homomorphic image of
M is a ν-multiplication R-module.

Lemma 2.4. An R-module M is a ν-multiplication module if and only if for each m ∈M
there exists an ideal I of R such that ν(Rm) = ν(IM).

By Lemma 2.2, [4, Proposition 3.2] and [6, Theorem 3.5] and the fact that, if M is
a finitely generated R-module, then the topological space over Spec(M) is a topological
subspace of (X , T ) we have the following.

Theorem 2.5. Let M be a finitely generated R-module. Then the following statements
are equivalent.
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(1) M is multiplication;

(2) M is ν-multiplication;

(3) M is top-like;

(4) M is top;

(5) |Specp(M)| ≤ 1 for every p ∈ Spec(R);

(6) If V (P ) = V (P ′) for P, P ′ ∈ Spec(M), then P = P ′;

(7) The natural map ψ is injective;

(8) For every submodule N of M there exists an ideal I of R such that V (N) = V (IM);

(9) Mp is a top Rp-module for every prime ideal p of R;

(10) M/mM is cyclic for every maximal ideal m of R.

In [4, Proposition 4.3], it has been proved that {Xr; r ∈ R} forms a base for the
topology τ on Spec(M), where Xr = Spec(M)\V (rM). In this paper, we introduce a
base for the topology T on X when M is a ν-multiplication module. For each r ∈ R, we
define Xr = X\ν(rM). Now, we have the following.

Proposition 2.6. Let M be an R-module. If r is a unit element of R, then Xr = X . The
converse is true, if M is a faithful primeful module.

By [1, Corollary 2.11] and [3, Proposition 4.5] we have the following.

Proposition 2.7. Let M be a multiplication R-module and r ∈ R. Consider the following
statements.

(1) rM ⊆ rad(0).

(2) Xr = ∅.

(3) Xr = ∅.

(4) rM ⊆ ⋂Q∈X rad(Q).

Then (1) ⇔ (2) ⇒ (3) ⇔ (4). Moreover, if M is primeful, then the above conditions are
all equivalent.

Theorem 2.8. Let M be a ν-multiplication R-module. Then the set B = {Xr; r ∈ R}
forms a base for the Zariski topology on X .

Proof. If X = ∅, then B = ∅ and the proposition is trivially true. Hence we assume
that X 6= ∅ and let U be any open set in X . Hence U = X\ν(IM) for some ideal I of
R. Note that ν(IM) = ν(

∑
ai∈I aiM) = ν(

∑
ai∈I(aiM : M)M) = ∩ai∈Iν(aiM). Hence

U = X\ ∩ai∈I ν(aiM) = ∪ai∈IXai . This proves that B is a base for the Zariski topology
on X .
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Abstract

In this paper, we introduce and investigate (amply) Rad-supplemented lattices. If
L is a Rad-supplemented lattice and a ∈ L, then 1/a is Rad-supplemented. It is shown
that an algebraic lattice L is amply Rad-supplemented iff L is a Rad-supplemented.
If a/0 and 1/a are Rad-supplemented and a has a Rad-supplement b in d/0 for every
sublattice d/0 with a ≤ d, then L is Rad-supplemented.

Keywords: Rad-Supplement, ample Rad-Supplement, Rad-Supplemented Lattice,
amply Rad-Supplemented Lattice
Mathematics Subject Classification [2010]: 06CXX, 16D10

1 Introduction

Throughout this paper, we assume that L is a complete modular lattice with smallest
element 0 and greatest element 1. An element a of a lattice L is called small in L (notation
a� L), if a ∨ b 6= 1 for every b 6= 1.

Let a and b be elements of a lattice L. a is called a supplement of b in L if a is minimal
with respect to 1 = a∨ b. a is a supplement of b in L iff 1 = a∨ b and a∧ b� a/0 (see [3]).
A lattice L is called supplemented if every element of L has a supplement in L. L is called
amply supplemented if for any two elements a and b of L with 1 = a ∨ b, b/0 contains a
supplement of a. A subset D of L is called upper directed if each finite subset of D has
an upper bound in D. A lattice L is called upper continuous if a∧ (

∨
D) =

∨
d∈D(a∧ d))

holds for every a ∈ L and upper directed subset D ⊆ L. An element a ∈ L is called
compact if for every subset X of L and a ≤ ∨X there is a finite subset F ⊆ X such that
a ≤ ∨F and L is said to be compact if 1 is compact. A lattice L is called algebraic if
each of its elements is a join of compact elements. An element e ∈ L is called essential
in L if e ∧ a = 0 holds for each element a ∈ L, a 6= 0. A lattice L is called coatomic if
every proper element of L is contained in a maximal element of L. Rad(L) will indicate
radical of L (the intersection of all the maximal elements 6= 1 in L). We have the following
properties of Rad(L) in a lattice L.

Lemma 1.1. [3, Lemma 7.8 and Proposition 12.2] Let a be an element in a lattice L.
(1) a ∨R(L) ≤ R(1/a);
(2) If a ≤ R(L) then R(1/a) = R(L);
(3) If L is algebraic, then R(a/0) = a ∧R(L).
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All definitions and related properties on lattices not given here, can be found in [2]
and [3].

2 Main results

Let L be a lattice. If a, b ∈ L and 1 = a ∨ b then b is a Rad-supplement of a in case
a ∧ b ≤ Rad(b/0). L is called Rad-supplemented lattice in case every element of L has
a Rad-supplement in L. An element a of a lattice L has ample Rad-supplements in L
if for every element b of L with a ∨ b = 1, b/0 contains a Rad-supplement of a in L.
L is called amply Rad-supplemented lattice in case every element of L has an ample
Rad-supplement in L. Clearly each supplemented and amply Rad-supplemented lattice
is Rad-supplemented. Recall that a lattice L is called radical if has no maximal element,
that is, 1 = Rad(L). a ∈ L is called radical if a = Rad(a/0).

We start with the following.

Lemma 2.1. Let L be a radical lattice. Then L is Rad-supplemented.

By P (L), which is the largest radical element of a lattice L, we will indicate the join
of all radical elements of L.

Since P (L) is a radical element of a lattice L, we have the following corollary.

Corollary 2.2. For every lattice L, P (L)/0 is Rad-supplemented.

Proposition 2.3. Let L be a Rad-supplemented lattice and b an element of L with b ∧
Rad(L) = 0. Then b/0 is complemented. In particular, a Rad-supplemented lattice L with
Rad(L) = 0 is complemented.

Proposition 2.4. Let L be an amply Rad-supplemented lattice and l a direct summand
of L. Then l/0 is amply Rad-supplemented.

Proposition 2.5. Let L be an upper continuous lattice. If L is Rad-supplemented, then
1 = x ∨ y for some complemented x/0 and some y/0 with essential radical.

Proposition 2.6. Let a1, b ∈ L and a1/0 be Rad-supplemented. If a1 ∨ b has a Rad-
supplement in L, then so does b.

Proposition 2.7. If L is a Rad-supplemented lattice, Then
(1) For every a ∈ L, 1/a is Rad-supplemented;
(2) 1/Rad(L) is complemented.

Lemma 2.8. Let x, y and z be elements of a lattice L such that 1 = x ∨ y ∨ z. If x is a
Rad-supplement of y ∨ z in L and y is a Rad-supplement of x ∨ z in L, then x ∨ y is a
Rad-supplement of z in L.

Proposition 2.9. Let L be a lattice and 1 = x1∨x2. If x1, x2 have ample Rad-supplements
in L, then x1 ∧ x2 also has ample Rad-supplements in L.

Lemma 2.10. Let a, b be elements of L and b a Rad-supplement of a in L. If a is a
maximal element of L, then a ∧ b = Rad(b/0) is a unique maximal element of b/0.
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Proposition 2.11. Let L be a lattice such that Rad(L) � L. If every element of L has
a Rad-supplement, then L is coatomic.

Proposition 2.12. Let L be a lattice. If every element of L is a Rad-supplemented
sublattice, then L is an amply Rad-supplemented lattice.

Theorem 2.13. Let L be an algebraic lattice. Then the following assertions are equivalent.
(1) L is an amply Rad-supplemented lattice;
(2) L is a Rad-supplemented lattice.

Theorem 2.14. Let L be a lattice and a ∈ L. If a/0 and 1/a are Rad-supplemented
and a has a Rad-supplement b in d/0 for every sublattice d/0 with a ≤ d, then L is
Rad-supplemented.

Lemma 2.15. Let L be a lattice which contains a radical element a. Then a has a Rad-
supplement b in d/0 for every sublattice d/0 of L with a ≤ d.

Since P (L)/0 is Rad-supplemented, then by combining last lemma and Theorem 2.14,
we get the following result.

Corollary 2.16. If 1/P (L) is Rad-supplemented, then L is a Rad-supplemented lattice.

Proposition 2.17. The following three statements are equivalent for a lattice L which
contains a radical element a.

(1) L is Rad-supplemented;
(2) 1/a is Rad-supplemented;
(3) Every element of L containing a has a Rad-supplement in L.

References

[1] R. Alizade and S. E. Toksoy, Cofinitely supplemented modular lattices, Arab J Sci Eng,
2011, pp. 919–923.

[2] R. Alizade and S. E. Toksoy, Cofinitely weak supplemented lattices, Indian J, Pure
Appl. Math, Vol. 40(5), 2009,pp. 337–346.
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Abstract

We give a necessary and sufficient condition for a locally inverse semigroup to be
embeddable into a Rees matrix semigroup over a generalized inverse semigroup.

Keywords: Inverse semigroup, Rees matrix semigroup

Mathematics Subject Classification [2010]: 20M10, 20M17

1 Introduction

For the standard notions and notation in semigroup theory the reader is referred to [1].
In particular the set of idempotents of a semigroup S will be denoted by E(S), the set of
inverses of an element s ∈ S by V (s). For nonempty subsets H,K ⊆ S, HK denotes the
usual product of subsets.

Definition 1.1. A regular semigroup is called locally inverse if the submonoid eSe is an
inverse subsemigroup of S, for all e ∈ E(S). If in addition E(S) is a subsemigroup of S,
then S is called a generalized inverse semigroup. In this case E(S) is a normal band, i.e.
an idempotent semigroup satisfying the equation xyzx = xzyx.

Definition 1.2. On a regular semigroup S, a partial order relation ≤ is defined by s ≤ t,
if s = et = tf , for some e, f ∈ E(S). It is called the natural partial order. A regular
semigroup is locally inverse, if and only if the natural partial order is compatible with the
multiplication.

Definition 1.3. An order ideal H of a regular semigroup S, is a nonempty subset H of
S, such that x ≤ h implies x ∈ H, for all h ∈ H. For s ∈ S we shall use the notation
[s] = {x ∈ S : x ≤ s}. In any locally inverse semigroup S the equality [s][t] = [st] holds,
for all s, t ∈ S.
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Structure: Let T be a regular semigroup, and let I, Λ be sets. Let P be a Λ × I
matrix over T . Then the set of all triples (i, t, λ) ∈ I × T × Λ is a semigroup under the
multiplication (i, t, λ)(j, u, µ) = (i, tpλju, µ), denoted by M(T ; I, Λ; P ). M(T ; I, Λ;P ) is
called a Rees matrix semigroup over T . In general M(T ; I, Λ; P ) is not regular, however
the set of regular elements forms a subsemigroup (see [2]). Moreover if T is a regular
monoid with subgroup of units U , and if all entries of P belong to U , then obviously
M(T ; I, Λ; P ) is regular.

Let S be a semigroup, and let I × Λ be a rectangular band. S is termed a rectangular
band I × Λ of semigroups Siλ, if S is the disjoint union of the Siλ, (i, λ) ∈ I × Λ, such
that SiλSjµ ⊆ Siµ, for all (i, λ), (j, µ) ∈ I × Λ.

2 Main results

In what follows let S be a locally inverse semigroup satisfying the following condition (E):

(E1) S is a rectangular band I × Λ of semigroups Siλ;

(E2) for all (i, λ) ∈ I × Λ, e, f ∈ Siλ ∩ E(S), s, t ∈ S, the equality seft = sfet holds.

Let S be a locally inverse semigroup satisfying condition (E). For (i, λ) ∈ I × Λ, let
Eiλ denote the subset of idempotents of Siλ. Let further denote Si =

∪
λ∈Λ Siλ, where

i ∈ I, and Sλ =
∪

i∈I Siλ, where λ ∈ Λ.

Lemma 2.1. The sets Ei =
∪

λ∈Λ Eiλ, where i ∈ I, and Eλ =
∪

i∈I Eiλ, where λ ∈ Λ, are
normal subbands of S.

The following concept was developed in [4].

Definition 2.2. A subset H of S is called permissible, if

(i) H is an order ideal of S;

(ii) there exists an order ideal H ′ of S and (i, λ), (j, µ) ∈ I × Λ, such that HH ′H = H,
H ′HH ′ = H ′, HH ′ ⊆ Eiλ, and H ′H ⊆ Ejµ.

Note that if H is permissible, then H ′, mentioned in the above definition, is permissible
too.

Lemma 2.3. Let H and H ′ be permissible subsets of S, and let a ∈ H. Then there exists
a′ ∈ V (a) ∩ H ′.

Lemma 2.4. Let H ⊆ Siµ be a permissible subset of S, such that H2 = H. Then H ⊆ Eiµ.

Lemma 2.5. Let H ⊆ Siµ be a permissible subset of S. Then for all j ∈ I, λ ∈ Λ, c ∈ S,
we have {c}EiλH ⊆ {c}H, and HEjµ{c} ⊆ H{c}.

Lemma 2.6. The set A(S) of permissible subsets of S forms a regular semigroup under
the usual multiplication of subsets.
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Lemma 2.7. Let A ⊆ Siλ, B ⊆ Sjµ be permissible subsets of S. Then AEjλB = AB.

The following construction appeared already in [3] in disguised form.
Let C(I × Λ) be the set of all finite sequences of elements of the rectangular band I ×
Λ, satisfying the property that no two adjacent pairs coincide in their first or second
component. For gi1λn , gj1µm ∈ C(I × Λ), where gi1λn = ((i1, λ1), (i2, λ2), ..., (in, λn)), and
gj1µm = ((j1, µ1), (j2, µ2), ..., (jm, µm)), we define the product gi1λngj1µm ∈ C(I × λ) to be
the sequence which arises from ((i1, λ1), (i2, λ2), ..., (in, λn), (j1, µ1), (j2, µ2), ..., (jm, µm))
by a successive application of the following cancellation rule (C): Each two adjacent pairs
(k1, κ1), (k2, κ2) (in that order) shall be replaced by (k2, κ2) if k1 = k2, and by (k1, κ1) if
κ1 = κ2, respectively. Obviously gi1λngj1λm is a well defined element of C(I×Λ). Moreover
we obtain:

Lemma 2.8. C(I × Λ) is a completely simple semigroup under the multiplication defined
above. In particular C(I × Λ) is a rectangular band I × Λ of groups Giλ = {giλ ∈ C(I ×
Λ) : giλ = ((i1, λ1, ), (i2, λ2), ..., (in, λn)), i = i1, λn = λ}. The group identity 1iλ of Giλ

is ((i, λ)), and the group inverse g−1
iλ of giλ = ((i1, λ1, ), (i2, λ2), ..., (in, λn)), i = i1, λn =

λ, in Giλ is the element of C(I × Λ) arising from ((i, λ), (in, λn−1), ..., (i2, λ1), (i, λ)) by
applying (C), if necessary.

For Giλ ∈ C(I×Λ) with Giλ = {giλ ∈ C(I×Λ) : giλ = ((i1, λ1, ), (i2, λ2), ..., (in, λn)), i =
i1, λn = λ}, let < giλ >= Eiλ1Ei2λ2 ...Einλ. By Lemma 2.6, < giλ > belongs to A(S).

Lemma 2.9. Let giλ, gjµ ∈ C(I × Λ). Then < giλ >< gjµ > ⊆ < giλgjµ >.

Lemma 2.10. Let giλ = ((i1, λ1, ), (i2, λ2), ..., (in, λn)) ∈ C(I × Λ), i = i1, λn = λ, and
let

g′
iλ =

{
((in, λn−1), (in−1, λn−2), ..., (i2, λ1)), if n ≥ 2
((i, λ)), if n = 1.

Then < giλ >=< giλ >< g′
iλ >< giλ >.

Lemma 2.11. Let C =
∪{Giλ : i ∈ I, λ ∈ Λ} be a completely simple semigroup. For

(i, λ) ∈ I×Λ let 1iλ denote the identity of the maximal subgroup Giλ. We may assume that
0 ∈ I ∩ Λ. Let gkλ ∈ Gkλ, gkµ ∈ Gkµ, glλ ∈ Glλ, and let glµ ∈ Glµ. Let further g′

kλ, g′
kµ,

g′
lλ, and g′

lµ be inverses of gkλ, gkµ, glλ and glµ, such that one of the following equalities
hold: gkλ = gkµg′

lµglλ, gkµ = gkλg′
lλglµ, glλ = glµg′

kµgkλ, glµ = glλg′
kλgkµ. Then there are

gk0 ∈ Gk0, gl0 ∈ Gl0, g0λ ∈ G0λ, and g0µ ∈ G0µ, such that gkλ = gk0g0λ, gkµ = gk0g0µ,
glλ = gl0g0λ, and glµ = gl0g0µ.

On the other hand, let gk0 ∈ Gk0, gl0 ∈ Gl0, g0λ ∈ G0λ, and let g0µ ∈ G0µ. Then
the equalities of the first part of the assumption hold for gkλ = gk0g0λ, gkµ = gk0g0µ,
glλ = gl0g0λ, and glµ = gl0g0µ, and for arbitrary inverses g′

kλ, g′
kµ, g′

lλ, g′
lµ of gkλ, gkµ, glλ,

and glµ.

Lemma 2.12. Let gkλ, gkµ, glλ, glµ ∈ C(I × Λ) be as in Lemma 2.11. Let further
B ∈ A(S), where B =< BglλB >. Then < gkλBglµ >⊆< gkµ >.

Lemma 2.13. Let gkλ, gkµ, glλ, glµ ∈ C(I × Λ) be as in Lemma 2.11. Let further
A,B, C ∈ A(S), where < BglλB >= B. Then < AgkλBglµC >⊆< AgkµC >.
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Lemma 2.14. Let T be a regular semigroup which satisfies the equality abca = acba, for
all a, b, c ∈ E(T ). Then T is a generalized inverse semigroup.

Theorem 2.15. Let 0 ∈ I∩Λ and let T =
∪

λ∈Λ G0λ×A(S)×∪
i∈I Gi0, where Gi0 are max-

imal subgroups of C(I×Λ). On T let a multiplication be defined by (g0λ, H, gi0)(g0µ, K, gj0) =
(g0λ, < HgiµK >, gj0), where giµ = gi0g0µ. Then T is a generalized inverse semigroup.

Theorem 2.16. Let S be a locally inverse semigroup. Then the following statements are
equivalent:

(i) S satisfies condition (E);

(ii) S is embeddable into a Rees matrix semigroup M(T ; I, Λ; P ) over a generalized in-
verse semigroup T ;

(iii) S is embeddable into a Rees matrix semigroup M(T ′; I, Λ; Q) over an orthodox
monoid T ′ with group of units U , where T = T ′ \U is a generalized inverse subsemi-
group of T ′, all entries of Q belong to U , and the image of S under the embedding
is contained in I × T × Λ.
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Abstract

Let R be a commutative ring with 1 6= 0 and M be a unitary R-module. Let
S(M) be the set of all submodules of M . In this paper, we extend the concept of 2-
absorbing primary submodules to the context of φ-2-absorbing primary submodules.
Let φ : S(M) −→ S(M) ∪ ∅ be a function. A proper submodule N of M is said to
be a φ-2-absorbing primary submodule of M if whenever a, b ∈ R and x ∈ M with
abx ∈ N \ φ(N) implies ab ∈ (N : M) or ax ∈ rad(N) or bx ∈ rad(N). Anumber of
results concerning φ-2-absorbing primary submodules are given.

Keywords: primary submodule, 2-absorbing submodule, 2-absorbing primary sub-
module, φ-primary submodule, φ-2-absorbing primeary submodule.

Mathematics Subject Classification [2010]: 13A15,13F05, 13G05

1 Introduction

Throughout this paper R denotes a commutative ring with 1 6= 0 and M denotes a unitry
R-module and the set of all submodules of M is denoted by S(M). A submodule N of
M is said to be proper if N 6= M . Let N be a submodule of M . Then (N : M) = {r ∈
R|rM ⊆ N} is an ideal of R.

One of the natural generalisations of prime ideals which have attracted the interest of
several authors in the last two decades is the notion of prime submodules, (see for example
[1],[3-6]).Generalizations of prime submodules to the context of φ-prime submodules are
studied extensively in [2], [7], [8]. Recall that a proper submodule N of M is called a
2-absorbing submodule of M as in [2] if whenever abx ∈ N for some a, b ∈ R and x ∈M ,
then ab ∈ (N :M) or ax ∈ N or bx ∈ N . A proper submodule N of M is called a weakly
prime submodule of M as in [7] if whenever 0 6= ax ∈ N for some a ∈ R and x ∈M , then
a ∈ (N : M) or x ∈ N . We say that a proper submodule N of M is a weakly primary
submodule of M if whenever 0 6= ax ∈ N for some a ∈ R and x ∈ M , then a ∈ (N : M)
or x ∈ rad(N).

Also, we say that a proper submodule N of M is a 2-absorbing primary submodule of
M if whenever a, b ∈ R and x ∈ M with abx ∈ N , then ab ∈ (N : M) or ax ∈ rad(N) or
bx ∈ rad(N). A proper submodule N of M is a weakly 2-absorbing primary submodule
of M if whenever a, b ∈ R and x ∈ M with 0 6= abx ∈ N implies ab ∈ (N : M) or
ax ∈ rad(N) or bx ∈ rad(N). Recall that a proper submodule N of M is called a φ-2-
absorbing submodule of M as in [2] if whenever a, b ∈ R and x ∈M with abx ∈ N \ φ(N)
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implies ab ∈ (N : M) or ax ∈ N or bx ∈ N . We say that a proper submodule N of M is
a φ-primary submodule of M if whenever a ∈ R and x ∈ M with ax ∈ N \ φ(N) implies
a ∈ (N : M) or x ∈ rad(N). We show that φ-2-absorbing primary submodules enjoy
analogs of many of the properties of (weakly) 2-absorbing primary submodules.

Let φ : S(M) −→ S(M) ∪ ∅ be a function. A proper submodule N of M is said
to be a φ-2-absorbing primary submodule of M if whenever a, b ∈ R and x ∈ M with
abx ∈ N \ φ(N) implies ab ∈ (N :M) or ax ∈ rad(N) or bx ∈ rad(N).

Let N be a proper submodule of M and suppose that N is a φ-2-absorbing primary
submodule of M . Then

(i) If φ(P ) = ∅ for every P ∈ S(M), then we say that φ = φ∅ and N is called a φ∅-2-
absorbing primary submodule of M , and hence N is a 2-absorbing primary submodule of
M .

(ii) If φ(P ) = 0 for every P ∈ S(M), then we say that φ = φ0 and N is called a
φ0-2-absorbing primary submodule of M , and thus N is a weakly 2-absorbing primary
submodule of M .

(iii) If φ(P ) = P for every P ∈ S(M), then we say that φ = φ1 and N is called a
φ1-2-absorbing primary submodule of M .

(iv) If n ≥ 2 and φ(P ) = (P : M)n−1P for every P ∈ S(M), then we say that φ = φn
and N is called a φn-2-absorbing primary submodule of M . In particular, if n = 2 and
φ(P ) = (P : M)P for every P ∈ S(M), then we say that N is an almost-2-absorbing
primary submodule of M .

(v) If φ(N) = ∩∞n=1(P : M)n−1P for every P ∈ S(M), then we say that φ = φω and
N is called a φω-2-absorbing primary submodule of M .

Since N \ φ(N) = N \ (N ∩ φ(N)), without loss of generality, we may assume that
φ(N) ⊆ N . Given two functions ψ1, ψ2 : S(M) −→ S(M) ∪ ∅. we say ψ1 ≤ ψ2 if
ψ1(P ) ⊆ ψ2(P ) for each P ∈ S(M). Hence it can be easily seen that φ∅ ≤ φ0 ≤ φω ≤ ... ≤
φn+1 ≤ φn ≤ ... ≤ φ2 ≤ φ1.

2 Main results

Lemma 2.1. Let N be a proper Submodule of M and ψ1, ψ2 : S(M) −→ S(M) ∪ ∅ are
functions with ψ1 ≤ ψ2. If N is a ψ1-2-absorbing primary submodule of M , then N is a
ψ2-2-absorbing primary submodule of M .

Theorem 2.2. Let N be a proper submodule of M . Then
(i) N is a 2-absorbing primary submodule of M =⇒ N is a weakly 2-absorbing primary

submodule of M =⇒ N is a φω-2-absorbing primary submodule of M =⇒ N is a φn+1-
2-absorbing primary submodule of M for every n ≥ 2 =⇒ N is a φn-2-absorbing primary
submodule of M for every n ≥ 2 =⇒ N is an almost 2-absorbing primary submodule of
M .

(ii) N is an idempotent submodule of M (i.e. N = (N : M)N) =⇒ N is a φω-2-
absorbing primary submodule of M and N is a φn-2-absorbing submodule of M for every
n ≥ 1.

(iii) If N is a radical submodule of M (i.e. rad(N) = N), then N is a φn- 2-absorbing
primary submodule of M if and only if N is a φn-2-absorbing submodule of M .
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(iv) N is a φn-2-absorbing primary submodule of M , for all n ≥ 2 if and only if N is
a φω-2-absorbing primary submodule of M .

Theorem 2.3. Let φ : S(M) −→ S(M) ∪ ∅ be a function. Set M
∅ = M , and let N be a

proper submodule of M . Then
(i) N is a φ-2-absorbing primary submodule of M if and only if N

φ(N) is a weakly

2-absorbing primary submodule of M
φ(N) .

(ii) N is a φ-prime submodule of M if and only if N
φ(N) is a weakly prime submodule

of M
φ(N) .

(iii) N is a φ-primary submodule of M if and only if N
φ(N) is a weakly primary sub-

module of M
φ(N) .

Definition 2.4. Let N be a φ-2-absorbing primary submodule of M and suppose that
abx ∈ φ(N) for some a, b ∈ R and x ∈ M such that ab 6∈ (N : M), ax 6∈ rad(N) and
bx 6∈ rad(N), then we say (a, b, x) is a φ-triple-zero of N .

Remark 2.5. Note that a proper submodule N of an R-module M is a φ-2-absorbing
primary submodule of M that is not a 2-absorbing primary submodule of M if and only
if N has a φ- triple-zero (a, b, x) for some a, b ∈ R and x ∈M .

Theorem 2.6. Let N be a φ-2-absorbing primary submodule of M for some function φ
and suppose that (a, b, x) is a φ-triple-zero of N for some a, b ∈ R and x ∈ M (hence N
is not a 2-absorbing primary submodule of M). Then

(i) abN, (N :M)ax, (N :M)bx ⊆ φ(N).
(ii) a(N :M)N, b(N :M)N, (N :M)2x ⊆ φ(N).
(iii) (N :M)2N ⊆ φ(N).

Corollary 2.7. Let N be a φ-2-absorbing primary submodule of M such that (N :
M)2N 6⊆ φ(N). Then N is a 2-absorbing primary submodule of M .

Corollary 2.8. If N is a φ-2-absorbing primary submodule of M that is not a 2-absorbing
primary submodule of M , then rad(N) = rad(φ(N))

Corollary 2.9. Let φ be a function and let N be a proper submodule of M such that φ(N)
is a prime submodule of M . Then N is a φ-2-absorbing primary submodule of M if and
only if N is a 2-absorbing primary submodule of M .

Corollary 2.10. Let N be a proper φ-2-absorbing primary submodule of M such that
φ ≤ φ4. Then

(i) N is a φn-2-absorbing primary submodule of M for every n ≥ 3.
(ii) N is a φω-2-absorbing primary submodule of M .

Theorem 2.11. Let M be an R-module and a be an element of R such that aM 6= M .
Suppose that (0 :M a) ⊆ rad(aM). Then aM is a φ-2-absorbing primary submodule of M ,
for some φ with φ ≤ φ3 if and only if it is a 2-absorbing primary submodule of M .

Definition 2.12. Let N be a φ-2-absorbing primary submodule of M for some function
φ. Suppose that I1I2L ⊆ N but I1I2L 6⊆ φ(N), for some ideals I1, I2 of R, and submodule
L of M . We say that N is a free-φ-triple-zero with respect to I1I2L if (a, b, x) is not a
φ-triple-zero of N for every a ∈ I1, b ∈ I2, and x ∈ L.
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Theorem 2.13. Let N be a φ-2-absorbing primary submodule of M for some function φ.
Suppose that I1I2L ⊆ N but I1I2L 6⊆ φ(N), for some ideals I1, I2 of R, and submodule L
of M such that N is a free-φ-triple-zero with respect to I1I2L. Then I1I2 ⊆ (N : M) or
I1L ⊆ rad(N) or I2L ⊆ rad(N).

Theorem 2.14. Let R1, R2 be quasi-local commutative rings that are not fields with max-
imal ideals

√
0R1 ,
√
0R2, respectively and Mi be a finitely generated Ri-module, for i = 1, 2.

Let R = R1×R2 and M =M1×M2 as an R-module. Then every proper submodule of M
is a 2-absorbing primary submodule of M . In particular, if φ : S(M) −→ S(M) ∪ ∅ is a
function, then every proper submodule of M is a φ-2-absorbing primary submodule of M .

Theorem 2.15. Let R = R1×R2, where R1, R2 are commutative rings and M =M1×M2

as an R-module, where Mi is a finitely generated Ri-module, for i = 1, 2. The following
statements are equivalent.

(i) Every proper submodule of M is a 2-absorbing primary submodule of M .
(ii) Every proper submodule of M1 is a primary submodule of M1 and every proper

submodule of M2 is a primary submodule of M2.
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Improving the results of I. M. Isaacs on derived subgroups

and centers of capable groups∗

Farangis Johari†

Ferdowsi University of Mashhad

Abstract

Some results on derived subgroups and centers of capable groups are given by I. M.
Isaacs. The goal of this talk is to improve these results under the weaker hypothesises.
Moreover, we show that there exists an upper bound for the index of the center of
2-generated finite p-groups with cyclic derived subgroup in terms of the order of its
derived subgroup.

Keywords: Capable group, Derived subgroup, Center factor.

Mathematics Subject Classification [2010]: 20D99.

1 Introduction

A group G is called capable if there exists a group H such that G ∼= H/Z(H). Capability
plays an important role in P. Hall’s classification scheme for p-groups up to isoclinism [2].
It is really very interesting to find the relation between the concept of capability and ” the
Schur’s theorem”. Schur [4] proved that the finiteness of G/Z(G) implies the finiteness of
γ2(G). A natural question which arises here is when the converse of the theorem of Schur
does hold? Infinite extra special groups show that the converse of the Schur’s theorem
does not hold in general. I. M. Isaacs finded the relationship between the capable groups
and the converse the Schur’s theorem. Isaacs in [3] proved :

Theorem 1.1. Let G be a capable group and |γ2(G)| = n then |G : Z(G)| is bounded
above by some function f of n.

In fact he showed that the converse of the Schur’s theorem holds for the capable groups.
We focus our attention on results of Isaacs in [3]. We state the same results under new
hypothesises and other results as follows.

2 Main results

First, we recall the following lemmas from [3].

∗Will be presented in English
†Speaker
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Lemma 2.1 (See [3]). Let A ⊆ G, where A is abelian, and suppose that |G : A| = m < ∞
and |γ2(G)| = n < ∞. Then

|G : Z(G)| 6 m1+log2(n).

Every group with trivial center is clearly capable and next result gives the bound of
the order of such groups.

Lemma 2.2 (See [3]). There is a function F (n) defined on the natural numbers such that
if Z(G) = 1 and |γ2(G)| = n < ∞, then |G| < F (n).

The following corollary is an immediate consequence from Lemmas 2.1 and 2.2.

Corollary 2.3. Let G be a group and suppose that |G : CG(γ2(G))| = m < ∞ and
|γ2(G)| = n < ∞. If Z(G) = 1, then

|G| 6 m1+log2(n).

Now, a generalization of Lemma 2.2 and Corollary 2.3 are as follow.

Lemma 2.4. There is a function F (n) defined on the natural numbers such that if Z(G)∩
γ2(G) = 1 and |γ2(G)| = n < ∞, then |G/Z(G)| < F (n).

Corollary 2.5. Let G be a group and suppose that |G : CG(γ2(G))| = m < ∞ and
|γ2(G)| = n < ∞. If Z(G) ∩ γ2(G) = 1, then

|G/Z(G)| 6 m1+log2(n).

By using the following lemma [3], we deal with the capability of finite groups with
cyclic dervied subgroup of the order of power prime.

Lemma 2.6 (See [3]). Let G be a finite and assume that γ2(G) is a cyclic p-group for
some prime p. If Z(G) ∩ γ2(G) 6= 1, then G has a normal p−complement.

Proposition 2.7. Let G be a finite and assume that γ2(G) is a cyclic p-group for some
prime p. If Z(G) ∩ γ2(G) 6= 1, then G = P × H such that (|H|, p) = 1 and P ∈ Sylp(G).
In particular, G is capable if and only if P and H are so.

Now, we are going to find the normal Π′−complement M of finite group with cyclic
derived subgroup in the following theorem.

Theorem 2.8 (See [3]). Let G be finite and assume that γ2(G) is cyclic. Let Π be the set
of prime divisors of |Z(G) ∩ γ2(G)| and let b be the Π′−part of |γ2(G)|. Then

(a) G has a normal Π′−complement M and G/M is nilpotent.

(b) |M : M ∩ Z(G)| divides bϕ(b), where ϕ is Euler’s function.

(c) |G/Z(G)| divides bϕ(b)|G : V |, where V/M = Z(G/M).

Next we introduce the normal Π′−complement M of finite group with cyclic derived
subgroup Theorem 2.9.
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Theorem 2.9 (See [3]). Let G be a non-nilpotent finite group and assume that γ2(G) is
cyclic. Let Π be the set of prime divisors of |Z(G) ∩ γ2(G)| and let b be the Π′−part of
|γ2(G)| and denote by M the smallest term of the lower central series of G. Then

(a) M is a normal Π′−complement M and G/M is nilpotent.

(b) M ∩ Z(G) = 1 and b = |M | = q, where q is prime.

(c) |G/Z(G)| divides b2|G : V |, where V/M = Z(G/M).

Finally, we obtain the following equality is always holding for the 2-generated finite
p-groups with cyclic derived.

Theorem 2.10. Let G be finite and capable, and suppose that γ2(G) is cyclic and that all
elements of order 4 in γ2(G) are central in G. Then

|G/Z(G)| 6 |γ2(G)|2

and the equality holds if G is nilpotent.

Lemma 2.11. Let G be a 2-generated finite p-groups with cyclic derived and p > 2. Then

|G/Z(G)| = |γ2(G)|2.
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J-Armendariz Rings Relative to a Monoid

Khadijeh Khalilnezhad∗
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Abstract

For a monoid M , we introduce J-M-Armendariz rings, which is a common general-
ization of J-Armendariz and weak M-Armendariz rings, and investigate their proper-
ties. We show that every NI-ring is J-M-Armendariz, for any unique product monoid
M . Also, we provide various examples and classify how the J-M-Armendariz rings
behave under various ring extensions. It is shown that if R is semicommutative ring
and M-Armendariz then R is J-(M×N)-Armendariz, where N is a unique product
monoid.

Keywords: J-M-Armendariz ring; Semicommutative ring; Jacobson radical; u.p.-
monoid.

Mathematics Subject Classification [2010]: 16N20, 16N40.

1 Introduction

Throughout this paper every ring is an associative ring with identity unless otherwise
stated. For a ring R, we denote by nil(R) the set of all nilpotent elements of R and by
J(R) the Jacobson radical of R. The n-by-n full (resp. upper triagular) matrix ring over
R is denoted by Matn(R) (resp. Tn(R)), and Eij

,s denote the matrix units. Z and C
denote the ring of integers and the field of complex numbers. The polynomial ring with
an indeterminate x over R is denoted by R[x]. A ring R is said to be Armendariz if the
product of two polynomials in R[x] is zero if and only if the product of their coefficients
is zero. This definition was coined by Rege and Chhawchharia in [1] in recognition of
Armendariz, s proof in [2] that reduced rings (i.e., rings without nonzero nilpotent ele-
ments) satisfy this condition. Recently, several types of generalizations of Armendariz
rings have been introduced (see, e.g., [3, 4, 5]). Liu and Zhao [4], studied the structure of
the set of nilpotent elements in Armendariz rings and introduced weak Armendariz rings
as a generalization. A ring R is said to be weak Armendariz ring if the product of two
polynomials in R[x] is zero, then the product of their coefficients is nilpotent. C. Zhang
and J. Chen [5], studied a generalization of weak Armendariz rings, which is called weak
M-Armendariz rings. A ring is called weak M-Armendariz ( weak Armendariz relative to
M) if whenever α = a1g1 + · · · + angn, β = b1h1 + · · · + bmhm ∈ R[M ], with gi, hj ∈ M
∗Speaker
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satisfy αβ = 0, then aibj ∈ nil(R) for each i, j. The Jacobson radical is an important
tool for studying the structure of noncommutative rings. Motivated by the above re-
sults, Sanaei et al. in [6], studied the structure of the Jacobson radical in Armendariz
rings and introduced J-Armendariz rings as a generalization of weak Armendariz rings. A
ring R is said to be J-Armendariz ring if the product of two polynomials in R[x] is zero,
then the product of their coefficients in Jacobson radical. In this paper we continue to
study J-Armendariz rings. We generalize and unify the above concepts by introducing the
notion of J-M-Armendariz rings. For a monoid M we introduce J-M-Armendariz rings
(J-Armendariz rings relative to a monoid M) which are a common generalization of weak
M-Armendariz rings and J-Armendariz rings.

2 Main results

Definition 2.1. Let R be a ring and M a monoid. A ring R is said to be J-M-Armendariz
ring (J-Armendariz ring relative to a monoid M), if whenever elements α = a1g1 + · · ·+
angn, β = b1h1 + · · ·+ bmhm ∈ R[M ] satisfy αβ = 0, then aibj ∈ J(R) for each i, j.

Clearly, (weak) M-Armendariz rings are J-M-Armendariz, but the following example
shows that J-M-Armendariz rings are not necessary (weak) M-Armendariz rings.

Example 2.2. Let A be the 3 by 3 full matrix ring over the power series ring F [[t]] over
a field F . Let

B = {M = (mij) ∈ A|mij ∈ tF [[t]] for 1 ≤ i, j ≤ 2 and mij = 0 for i = 3 or j = 3}

C = {M = (mij) ∈ A|mij ∈ F and mij = 0 for i 6= j}.

Let R be the subring of A generated by B and C. Let F = Z2. Note that element of R is
of the form



a+ f1 f2 0
f3 a+ f4 0
0 0 a


 for some a ∈ F and fi ∈ tF [[t]] (i = 1, 2, 3, 4)

Let N be a monoid with |N | ≥ 2. We can show that R is J-N-Armendariz, but R is not
(weak) N-Armendariz.

Recall that a monoid M is called a u.p.-monoid (unique product monoid) if for any
two nonempty finite subsets A,B ⊆M , there exists an element g ∈M uniquely presented
in the form ab where a ∈ A and b ∈ B.

Theorem 2.3. For any u.p.-monoid M , every NI-ring is weak M-Armendariz.

Corollary 2.4. For any u.p.-monoid M , every NI-ring is J-M-Armendariz.

The following example shows that the condition “M is a u.p.-monoid” in Corollary 2.4
is not superfluous.
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Example 2.5. Let M = {I, E11, E12, E21, E22, 0}, where Eij is a units matrix of Mat2(Z),
for each 1 ≤ i, j ≤ 2. Then M is a monoid, but not u.p.-monoid. Let α = 1.E11, β =
1.E21 − 1.E22 ∈ Z[M ]. Then αβ = 1.0 − 1.0 = 0.0, but 1.1 = 1 /∈ J(Z). Hence Z is not
J-M-Armendariz.

Proposition 2.6. Let M be a strictly totally ordered monoid and I an ideal of R such
that R/I is J-M-Armendariz. If I ⊆ J(R), then R is J-M-Armendariz.

Corollary 2.7. Let M be a strictly totally ordered monoid and R be a local ring. Then
R is J-M-Armendariz.

Theorem 2.8. A ring R is J-M-Armendariz, if and only if R[[x]] is J-M-Armendariz.

The following example shows that subrings of J-M-Armendariz rings need not inherit
the property.

Example 2.9. Let M be a monoid with |M | ≥ 2, F be a field, R = Mat2(F ) and
R1 = R[[t]]. Consider the ring

S = {∑∞i=0 ait
i ∈ R1 | a0 ∈ kI for k ∈ F},

where I is the identity matrix. Since S is local and so is J-M-Armendariz by Corollary
2.7, So S[[x]] is J-M-Armendariz by Theorem 2.8, Take e 6= g ∈ M . Now for α =
E11txe−E12txg, β = E21txe+E11txg ∈ (S[x])[M ], we have αβ = 0, but (E11tx)2 /∈ J(R),
and so S[x] is not J-M-Armendariz.

Theorem 2.10. Let Rk be a ring, for each 1 ≤ k ≤ n. Then any direct product of rings
R =

∏n
k=1Rk, is J-M-Armendariz if and only if any Rk is J-M-Armendariz.

Theorem 2.11. Let M be a monoid with |M | ≥ 2. Then the following conditions are
equivalent:

1. R is J-M-Armendariz.

2. Tn(R) is J-M-Armendariz.

Proposition 2.12. Let R1 and R2 be rings and M is an (R1, R2)-bimodule. Then R =(
R1 M
0 R2

)
is J-M-Armendariz if and only if R1, R2 are J-M-Armendariz.

The Morita invariance of a property of R can be checked by testing if it passes to
matrix rings Matn(R) and corner rings eRe, with e2 = e a full idempotent (ReR = R).
It turns out that the J-M-Armendariz property is badly behaved with regards to Morita
invariance.

Example 2.13. Let M be a monoid with |M | ≥ 2, R1 be any ring and R = Mat2(R1)
for any n ≥ 2. Let

α =

(
0 1
0 0

)
e+

(
1 0
0 0

)
g, β =

(
1 1
0 0

)
e+

(
0 0
−1 −1

)
g

be two elements in R[M ], where e 6= g ∈M . Then αβ = 0. But
(

1 0
0 0

)(
1 1
0 0

)
=

(
1 1
0 0

)
/∈ J(R).

Thus R is not J-M-Armendariz.
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Let T (G) be the set of elements of finite order in an Abelian group G. G is said to be
torsion-free if T (G) = {e}.
Theorem 2.14. Let G be a finitely generated Abelian group. Then the following conditions
on G are equivalent:

1. G is torsion-free.

2. There exists a ring R with |R| ≥ 2 such that R is J-G-Armendariz.

Proposition 2.15. If M is a finite monoid, then C is not J-M-Armendariz.

A ring R is called right Ore if given a, b ∈ R with b regular (elements that are neither
left nor right zero-divisors), there exist a1, b1 ∈ R with b1 regular such that ab1 = ba1.

Theorem 2.16. Let M be monoid and let R be a right Ore ring with classical right
quotient ring Q. Then R is J-M-Armendariz if and only if Q is J-M-Armendariz.

Proposition 2.17. Let M be a monoid and N a u.p.-monoid. If R is a semicommutative
and M-Armendariz ring, then R[M ] is J-N-Armendariz.

Theorem 2.18. Let M be a monoid and N a u.p.-monoid. If R is a semicommutative
and M-Armendariz ring, then R[N ] is J-M-Armendariz.

Theorem 2.19. Let M be a monoid and N a u.p.-monoid. If R is a semicommutative
and M-Armendariz ring, then R is J-(M×N)-Armendariz.

Let Mi, i ∈ I, be u.p.-monoids. Denote
⊔
i∈IMi = {(gi)i∈I | there exist only finite i,

s such that gi 6= ei, the identity of Mi}. Then
⊔
i∈IMi is a monoid with the operation

(gi)i∈I(g
′
i)i∈I = (gig

′
i)i∈I .

Corollary 2.20. Let Mi, i ∈ I, be u.p.-monoids and R a semicommutative ring. If R is
Mi0-Armendariz for some i0 ∈ I, then R is J-

⊔
i∈IMi-Armendariz.
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Number of proper nilpotent subgroups for direct products
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Abstract

For a group G we denote by η(G) the number of proper nilpotent subgroups of
G. In this paper we give η(G) for G = H ×K such that H and K are nilpotent or
nonnilpotent.

Keywords: nilpotent subgroup; soluble group; simple group

Mathematics Subject Classification [2010]: 20D99, 20E07

1 Introduction and results

In group theory, it is well-known that the quantitative properties of some special sub-
groups (such as, maximal subgroups, normalizer subgroups, centralizer subgroup, solvable
subgroups, and derived subgroups) play an important part in characterizing the solubility
of groups. For example, Pazderski in[2], showed that a group with less than 21 maximal
subgroups is solvable and also showed that a group is solvable if it has at most 2 conjugacy
classes of maximal subgroups. Also Zarrin in [6] showed that every finite group with at
most 20 normalisers is solvable (see also [7, 8, 9, 10]).

Further problems of a similar nature, with slightly different aspects, have been studied
by many people ( [1, 3, 4, 5]).

In this paper, we investigate groups with finite number of proper nilpotent subgroups.
It is easy to see that if a group has a finite number of nilpotent subgroups if and only
if it is a finite group. Therefore in considering such groups we need only consider finite
cases. For a group H we denote by η(H) the number of proper nilpotent subgroups of
H. In theis paper we gives η(G) for G = H × K such that H and K are nilpotent or
nonnilpotent.

2 Main results

Theorem 2.1. Let G be any group and H ≤ G. Then

1. η(H) ≤ η(G);

2. η(G/K) ≤ η(G), where K is a normal subgroup of G with K ≤ Z∗(G) and Z∗(G)
is the hypercenter of G.
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Proof. The proof is straightforward.

Theorem 2.2. Let G = H ×K and (|H|, |K|) = 1.

1. If H,K are nonnilpotent, then η(G) = η(H)η(K);

2. If H is nilpotent and K is nonnilpotent, then η(G) = (η(H) + 1)η(K);

3. If H,K are nilpotent, then η(G) = (η(H) + 1)(η(K) + 1)− 1.

Proof. (1). It is easy to see that if T and L are two nilpotent subgroups of H and K,
respectively, then T × L is a nilpotent subgroup of G. It follows that η(H)η(K) ≤ η(G).
Let π be the set of primes dividing the order of H. Then H is a normal Hall π-subgroup
of G and K is a normal Hall π

′
-subgroup of G. Now let A be any subgroup of G. Then

A ∩ H is a normal Hall π-subgroup of A and B ∩ H is a normal Hall π
′
-subgroup of A.

Therefore we have A = (A∩H)× (A∩K). From which it follows that η(H)η(K) ≥ η(G).
Hence η(H)η(K) = η(G), as wanted.
(2). It is enough to note that H × 〈e〉 is a proper nilpotent subgroup of G, where e is the
trivial element of K.
(3). In this case it is enough to note that H×〈e〉 and 〈e〉×K are proper nilpotent subgroups
of G.

Corollary 2.3. If G = H ×K, then η(H)η(K) ≤ η(G).

Proof. By the proof of Lemma 2.2, is clear.

Now we introduce two questions for researchers, because answer to bellow questions is
very important for classification of nilpotent and solvable groups by the number of proper
nilpotent subgroups .

Question 2.4. Let n be a positive integer number and G is a group such that η(G) = n,
for which of n the group G is nilpotent?

Question 2.5. Let n be a positive integer number and G is a group such that η(G) = n,
for which of n the group G is soluble?
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Obstinate prefilters in EQ-algebras
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In this paper, we introduce the notions of obstinate prefilters (filters) in an EQ-algebra.

We establish properties of obstinate prefilters in an EQ-algebra. We prove some relation-

ships between obstinate prefilters and the other types of prefilters an EQ-algebra .

Keywords: EQ-algebra, (obstinate, prime, implicative and positive implicative) pre-

filter.

Mathematics Subject Classification [2010]: 03G1, 03G05.

1 Introduction and Preliminaries

A special algebra called EQ-algebra has been recently introduced by Vilém Novák and

B. De Baets [2]. Its original motivation comes from fuzzy type theory, in which the main

connective is fuzzy equality. An EQ-algebras have three binary (meet, multiplication and

a fuzzy equality) and a top element and also a binary operation implicatin is drived from

fuzzy equality. Its implication and multiplication are no more closely tied by the adjunction

and so, this algebra generalizes commutative residuated lattice. These algebras intended

to develop an algebric structure of truth values for fuzzy type theory. EQ-algebras are

interesting and important algebra for studing and researching and also residuated lattices

and BL-algebras are particular cases of EQ-algebras.

In this section, we present some definitions and results about EQ-algebras that will be

used in the sequel.

Definition 1.1. [1] An EQ-algebra is an algebra (E,∧,⊗,∼, 1) of type (2, 2, 2, 0) satisfies

the following :

(E1) (E,∧, 1) is a ∧-semilattice with top element 1. We set a ≤ b if and only if a ∧ b = a,

(E2) (E,⊗, 1) is a monoid and ⊗ is isotone in arguments w.r.t a ≤ b ,

(E3) a ∼ a = 1,
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(E4) ((a ∧ b) ∼ c)⊗ (d ∼ a) ≤ (c ∼ (d ∧ b)),
(E5) (a ∼ b)⊗ (c ∼ d) ≤ (a ∼ c) ∼ (b ∼ d),

(E6) (a ∧ b ∧ c) ∼ a ≤ (a ∧ b) ∼ a,

(E7) a⊗ b ≤ a ∼ b,
for all a, b, c ∈ E.

We denote ã := a ∼ 1 and a→ b := (a ∧ b) ∼ a , for all a, b ∈ E .

Theorem 1.2. [1, 2] Let E be an EQ-algebra. For all a, b, c ∈ E we have

(e1) a ∼ b = b ∼ a, (e2) (a ∼ b)⊗ (b ∼ c) ≤ (a ∼ c),
(e3) a ∼ d ≤ (a ∧ b) ∼ (d ∧ b), (e4) a⊗ b ≤ a ∧ b ≤ a, b,
(e5) b ≤ b̃ ≤ a→ b, (e6) a ∼ b ≤ (a→ b) ∧ (b→ a).

Definition 1.3. [2] Let E be an EQ-algebra. We say that it is

(i) spanned, if it contains a bottom element 0 and 0̃ = 0,

(ii) separated, if for all a, b ∈ E, a ∼ b = 1 implies a = b,

(iii) semi-separated, if for all a ∈ E, a ∼ 1 = 1 implies a = 1.

Definition 1.4. [1] A nonempty subset F of an EQ-algebra E is called a prefilter of E,

whenever for all a, b, c ∈ E:

(F1) 1 ∈ F ,

(F2) a, a→ b ∈ F implies b ∈ F .

A prefilter F of E is called a filter, if it satisfies the following :

(F3) a, a→ b ∈ F implies a⊗ c→ b⊗ c ∈ F , for any a, b, c ∈ E .

A prefilter (filter) F of an EQ-algebra E is called proper, whenever F 6= E.

Theorem 1.5. [1] Let F be a prefilter of an EQ-algebra E. The following hold, for all

x, y, z, s, t ∈ E :

(i) If x ∈ F and x ≤ y, then y ∈ F ,

(ii) If x, x ∼ y ∈ F , then y ∈ F ,

(iii) If x ∼ y ∈ F and y ∼ z ∈ F , then x ∼ z ∈ F ,

(iv) If x→ y ∈ F and y → z ∈ F , then x→ z ∈ F ,

(v) If x ∼ y ∈ F ,s ∼ t ∈ F , then (x ∧ s) ∼ (y ∧ t) ∈ F , (x ∼ s) ∼ (y ∼ t) ∈ F and

(x→ s) ∼ (y → t) ∈ F .

We denote a ⇔ b := (a → b) ∧ (b → a) and a ⇔◦ b := (a → b) ⊗ (b → a), for all

a, b, c ∈ E.

Definition 1.6. [1] A prefilter F of an EQ-algebra E is said to be a prime prefilter if for

all a, b ∈ E, a→ b ∈ F or b→ a ∈ F .

Definition 1.7. [3] A prefilter F of an EQ-algebra E is called a positive implicative

prefilter if it satisfies for any x, y, z ∈ E:

(F4) x→ (y → z) ∈ F and x→ y ∈ F imply x→ z ∈ F .
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Definition 1.8. [3]A nonempty subset F of E is called an implicative prefilter if it satisfies

(F1) and

(F5) z → ((x→ y)→ x) ∈ F and z ∈ F imply x ∈ F , for any x, y, z ∈ E.

2 Obstinate prefilter (filters) in EQ-algebras

Definition 2.1. A prefilter F of E is called an obstinate prefilter of an EQ-algebra E if

for all x, y ∈ E,

(F6) x, y 6∈ F implies x→ y ∈ F and y → x ∈ F .

If F is a filter and satisfies (F6), then F is called an obstinate filter.

Example 2.2. Let E = {0, a, b, c, d, 1} such that 0 < a < b < d < 1, 0 < a < c < d < 1

. The following binary operations ” ⊗ ” and ” ∼ ” define an EQ-algebra[2]. Also the

implication of E is given as follow:

⊗ 0 a b c d 1

0 0 0 0 0 0 0

a 0 0 0 0 0 a

b 0 0 a a a b

c 0 0 a 0 a c

d 0 0 a a a d

1 0 a b c d 1

∼ 0 a b c d 1

0 1 0 0 0 0 0

a 0 1 d d d d

b 0 d 1 d d d

c 0 d d 1 d d

d 0 d d d 1 1

1 0 d d d 1 1

→ 0 a b c d 1

0 1 1 1 1 1 1

a 0 1 1 1 1 1

b 0 d 1 d 1 1

c 0 d d 1 1 1

d 0 d d d 1 1

1 0 d d d 1 1

Then {a, b, c, d, 1} is an obstinate prefilter of E while {1, d} is not an obstinate prefilter,

because 0, b 6∈ {1, d} and b→ 0 = {0} 6∈ {1, d}.

Theorem 2.3. {1} is a prefilter of an EQ-algebra E if and only if E is a semi-separated

EQ-algebra.

Lemma 2.4. Let E be a separated EQ-algebra. Then {1} is an obstinate prefilter of E if

and only if E has at most 2 elements.

Lemma 2.5. Let F be a prefilter of an EQ-algebra E. Then F is an obstinate prefilter

of E if and only if x, y 6∈ F implies x ∼ y ∈ F .
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Theorem 2.6. Let F be a filter of an EQ-algebra E. Then F is an obstinate filter of E

if and only if a⇔◦ b ∈ F , for all a, b ∈ E − F .

Theorem 2.7. Let bottom element 0 ∈ E and F be a proper prefilter of an EQ-algebra E

. Then F is an obstinate prefilter of E if and only if x 6∈ F implies ¬x ∈ F , for all x ∈ E.

Theorem 2.8. If a→ 0 = 0, for all a ∈ E − {0}, then F = E − {0} is the only obstinate

proper prefilter of an EQ-algebra E.

Theorem 2.9. (Extension property) Let F be an obstinate prefilter of an EQ-algebra E

and F ⊆ G. Then G is also an obstiante prefilter of E.

Theorem 2.10. Let F be an obstinate filter of an EQ-algebra E. Then E/F is a chain.

Proposition 2.11. Let F be a prefilter of an EQ-algebra E. If a, b ∈ F then a→ b, b→
a, a ∼ b, a ∧ b ∈ F .

Lemma 2.12. Every an obstinate prefilter of an EQ-algebra E is an implicative prefilter.

Theorem 2.13. Every an obstinate prefilter F of an EQ-algebra E is a prime prefilter.
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Abstract

For a regular semigroup S, the set RP (S) of regularity-preserving elements of S
is, if non-empty, a completely simple subsemigroup of S. In this paper, we develop
some of the properties of Rees matrix semigroups S = M(T ; I,Λ;P ), where T is a
regular monoid, and the entries of the matrix P lie in the group of units of T . We
show that, if the matrix P is uniform, then S is isomorphic to the direct product of
a rectangular band and a regular monoid. Also, we generalize two results that are
known for completely simple semigroups.

Keywords: Regular semigroup, Completely simple semigroup, Rees matrix semi-
group
Mathematics Subject Classification [2010]: 20M17, 20M10

1 Introduction

We refer the reader to [3] for basic definitions and terminology relating to semigroups and
monoids. Let S be a semigroup and a ∈ S. By a pre-inverse of a, we mean an element
b ∈ S such that aba = a. We denote the set of pre-inverses of a by Pre(a).

Lemma 1.1. ([2]) Let T be a regular monoid, with group of units G. Then, for x ∈ T
and g ∈ G, we have x ≤ g ⇔ g1 ∈ Pre(x).

We recall that, a mididentity, in a semigroup S, is an element u ∈ S, such that
xuy = xy for all x, y ∈ S. The binary operation ◦ defined on the set S by x ◦ y = xay
is associative, the resulting semigroup is denoted by (S, a), and is called a variant of S.
For an arbitrary semigroup S, it is clear that every element that is regular in a variant
(S, a), must also be regular in S, but the converse is not true. If a, x are elements of S, we
say that a preserves the regularity of x, if x is regular in the variant (S, a). If a preserves
the regularity of every regular element of S, then we say that a is a regularity-preserving
element, and the set of such elements in S is denoted by RP (S).

Definition 1.2. Let S be a regular semigroup with RP (S) 6= φ. We shall say that the
(Hartwig-Nambooripad) order on S is RP -compliant, if the condition

(∀x, y ∈ S)(∀g, h ∈ RP (S)) x ≤ g, y ≤ h⇒ xy ≤ gh

holds in S.
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We note that the order on a completely simple semigroup is RP -compliant, since here
RP (S) = S, and the order on S is equality.

Theorem 1.3. Let S be a regular monoid. Then the order on S is RP -compliant if and
only if S is orthodox.

Let S be a monoid with group of units G. We recall that S, is said to be unit regular
(uniquely unit regular), if every element of S, has at least one (precisely one) pre-inverse
lying in G. For a regular semigroup S with RP (S) 6= φ, we say that S is RP -dominated
(uniquely RP -dominated), if for every element x ∈ S, there exists gx ∈ RP (S) (a unique
gx ∈ RP (S)), with x ≤ gx. It is immediate that a completely simple semigroup S is
uniquely RP -dominated, since here S = RP (S) and the order relation reduces to equality.
We note also that a regular monoid is (uniquely) RP -dominated, if and only if it is
(uniquely) unit regular.

2 Main Result

Throughout this section, we assume that I and Λ are sets, and T is a regular monoid
with group of units G, and identity element 1. Let P = (pλi) be a Λ × I matrix, and
S = M(T ; I,Λ;P ) be a Rees matrix semigroup over T , where the entries of P lie in G.

Lemma 2.1. Let (j, b, µ), (k, c, ν) ∈ S. Then:

(i) (k, c, ν) ∈ Pre((j, b, µ)) in S ⇔ c ∈ p−1µKPre(b)p−1νj in T ;

(ii) (j, b, µ) ∈ E(S)⇔ b ≤ pµj in T .

Proof. (i): It follows from the fact that (j, b, µ)(k, c, ν)(j, b, µ) = (j, b, µ) in S ⇔ bpµkcpνjb =
b in T .

(ii): (j, b, µ) ∈ E(S) ⇔ bpµjb = b ⇔ pµj ∈ Pre(b) in T . Hence b ≤ p−1µj in T , by
Lemma1.1, as required.

The following result is well-known [3], and is also a consequence of Lemma 2.1(i).

Theorem 2.2. If S is as above, then S is regular.

The subset {(i, g, λ) ∈ S : g ∈ G, i ∈ I, λ ∈ Λ} is a subsemigroup of S, and may in an
obvious way, be identified with the Rees matrix semigroup M(G; I,Λ;P ). We then have
that M(G; I,Λ;P ) is a completely simple subsemigroup of S.

Definition 2.3. For g ∈ G, k ∈ I and ν ∈ Λ, we write P (k, g, ν) for the Λ × I, matrix
P̂ = (p̂λj), where (p̂λj) = pλkgpνj .

We have the following description of those variants of S, that are determined by ele-
ments of M(G; I,Λ;P ).

Lemma 2.4. Let (k, g, ν) ∈M(G; I,Λ;P ). Then (S, (k, g, ν)) = M(T ; I,Λ;P(k,g,ν)).

Theorem 2.5. RP (S) = M(G; I,Λ;P ).
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Proof. First we show that RP (S) ⊆ M(G; I,Λ;P ). Let x = (i, a, λ) be an element of
RP (S). Then x preserves the regularity of eiλ = (i, p−1λi , λ). Thus eiλ = eiλxwxeiλ for some
w ∈ S. Since eiλx = x = xeiλ, this gives eiλ = xwx. Let w = (j, b, µ). Then (i, p−1λi , λ) =
(i, a, λ)(j, b, µ)(i, a, λ), so p−1λi = apλjbpµia. Thus a(pλjbpµiapλi) = 1 = (pλiapλjbpµi)a, and
hence a ∈ G. It follows that x ∈M(G; I,Λ;P ) and so RP (S) ⊆M(G; I,Λ;P ).

Conversely, let (k, g, ν) ∈ M(G; I,Λ;P ). Then g ∈ G. We consider the variant
(S, (k, g, ν)) of S. By Lemma 2.4, we have that (S, (k, g, ν)) = M(T ; I,Λ;P(k,g,ν)). Since
all the entries of P(k,g,ν), lie in G, (S, (k, g, ν)) is regular by Lemma 2.2, and it follows
that (k, g, ν) ∈ RP (S). We thus have that M(G; I,Λ;P ) ⊆ RP (S), as required.

Theorem 2.6. For (i, a, λ), (j, b, µ) ∈ S, (i, a, λ) ≤ (j, b, µ) in S ⇔ i = j, λ = µ and
a ≤ b in T .

Theorem 2.7. The order on S is RP -compliant if, and only if, the order on T is RP -
compliant.

Proof. Suppose that the order on S is RP -compliant, and let the elements a, b ∈ T , g, h ∈
G be such that a ≤ g and b ≤ h. Choose i ∈ I and λ ∈ Λ and consider (i, a, λ), (i, b, λ),
and (i, p−2λi , λ) in S. Using Theorem 2.6, we have that (i, a, λ) ≤ (i, g, λ), (i, p−2λi , λ) ≤
(i, p−2λi , λ), (i, b, λ) ≤ (i, h, λ), and so, (i, a, λ)(i, p−2λi , λ)(i, b, λ) ≤ (i, g, λ)(i, p−2λi , λ)(i, h, λ),
that is, (i, ab, λ) ≤ (i, gh, λ). Thus, by Theorem 2.6, ab ≤ gh. It follows that the order on
T is RP -compliant.

Conversely, suppose that the order on T is RP -compliant, and let (i, a, λ), (j, b, µ)
∈ S, and x, y ∈ RP (S), be such that (i, a, λ) ≤ x, (j, b, µ) ≤ y. Then, by Theorems 2.5
and 2.6, x = (i, g, λ), y = (j, h, µ) for some g, h ∈ G with a ≤ g, b ≤ h. We now have
a ≤ g, pλj ≤ pλj , b ≤ h in T , and pλj ∈ G, so apλjb ≤ gpλjh, since the order on T is
RP -compliant. This gives that (i, a, λ)(j, b, µ) ≤ (i, g, λ)(j, h, µ), and so the order on S is
RP -compliant, as required.

Corollary 2.8. The order on S is RP -compliant if, and only if, T is orthodox.

Theorem 2.9. S is (uniquely) RP -dominated if, and only if, T is (uniquely) unit regular.

A standard refinement of the Rees Theorem says that, for a completely simple semi-
group M(G; I,Λ;P ), we may, up to isomorphism, take the matrix P to be normal. The
argument used to prove this, with minor adjustments, will show that this result may be
generalised to our semigroup S = M(T ; I,Λ;P ). So let i 7→ ui, λ 7→ vλ be mappings from
I into G and Λ into G, respectively, and with P as before, let the Λ× I matrix P = (pλi)
be defined by pλi = vλpλiui . We note that the entries of P all lie in G.

We recall that, P is row-uniform (column-uniform), if the rows (columns), of P are
pairwise left-proportional (right-proportional).

Lemma 2.10. The following are equivalent for a Λ× I matrix P :

(i) P is row-uniform;

(ii) P is column-uniform;

(iii) (∀λ, µ ∈ Λ)(∀i, j ∈ I)qij = 1.
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Lemma 2.11. Let P be a Λ× I matrix over the group G. Then P is uniform if, and only
if, P = P(k,g,ν) for some g ∈ G, k ∈ I and ν ∈ Λ.

Theorem 2.12. Let the Λ× I matrix P be defined as above. Then:

(i) S = M(T ; I,Λ;P ) is isomorphic to S = M(T ; I,Λ;P ).

(ii) If P is uniform, then P is uniform.

(iii) The mappings i 7→ ui, λ 7→ vλ, may be chosen so that P is normal.

Lemma 2.13. If P is uniform, then S = M(T ; I,Λ;P ) is isomorphic to the direct product
of the rectangular band I × Λ and the regular monoid T .

Theorem 2.14. If S = M(T ; I,Λ;P ) is orthodox, then T is orthodox and S is isomorphic
to the direct product of the rectangular band I × Λ and T .

Theorem 2.15. S = M(T ; I,Λ;P ) is orthodox if, and only if, T is orthodox and P is
uniform.

Theorem 2.16. Let S = M(T ; I,Λ;P ). Then every variant (S, a), where a ∈ RP (S), is
isomorphic to the direct product of the rectangular band I × Λ and the regular monoid T .

Proof. Let a ∈ RP (S). By Theorem 2.5 we have that a = (k, g, ) for some g ∈ G, k ∈ I
and ν ∈ Λ. Then (S, a) = M(T ; I,Λ;P(k,g,ν)), by Lemma 2.4. But the matrix P(k,g,ν) is
uniform by Lemma 2.11, so the result follows by Lemma 2.13.

We note that a mididentity in a semigroup is necessarily regularity-preserving.

Corollary 2.17. If S = M(T ; I,Λ;P ) has a mididentity then it is isomorphic to the direct
product of the rectangular band I × Λ and the regular monoid T .

The last two results are generalisations of the corresponding ones for completely simple
semigroups [1, Lemma 3.4 and Corollary 3.5].
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Abstract

A regular semigroup S is V -regular if V (ab) ⊆ V (b)V (a), for all a, b ∈ S. A char-
acterization of a V -regular semigroup is given. Congruences on V -regular semigroups
are described in terms of certain congruence pairs.
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1 Introduction

A regular semigroup S is called V -regular, if V (ab) ⊆ V (b)V (a) for all a, b ∈ S. This
concept was introduced by Onstad [4]. This class of semigroups is dual to orthodox
semigroups, namely, regular semigroups satisfy that V (b)V (a) ⊆ V (ab) for all elements
a, b ∈ S. Properties of V -regular semigroups were given by Nambooripad and Pastijn in
[3]. Congruences on regular semigroups have been explored extensively. The kernel-trace
approach is an effective tool for handling congruences on regular semigroups, which had
been investigated by many authors. The purpose of this paper is to give a characterization
of a V -regular semigroup, and to describe congruences on V -regular semigroups in terms of
certain congruence pairs. We refer the reader to [2] for basic definitions and terminology
relating to semigroups and monoids. If S is a regular semigroup, a ∈ S, then V (a)
denotes the set of inverses of a in S. The set of idempotents of S is denoted by E(S).
On E(S), we define the natural partial order ω given by eωf ⇔ ef = fe = e. For
e, f ∈ E(S), S(e, f) = fV (ef)e, is the sandwich set of e and f . The following simple
statements will be applied without further mention: for e, f ∈ E(S),

eLf ⇒ S (e, f ) = f ,

eRf ⇒ S (e, f ) = e.

If ρ is a congruence on S and h ∈ S(e, f), then hρ ∈ S(eρ, fρ). Let τ be a relation on S.
The congruence generated by τ is denoted by τ∗. If γ is an equivalence on S, then γ0 is
the greatest congruence on S contained in γ. C(S) is the lattice of congruences on S.

Lemma 1.1 (3). A regular semigroup S is V -regular if and only if the partial band
(E(S), ◦) determined by S satisfies the following:
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(1) ωL = Lω;

(2) ωR = Rω;

(3) for all e, f ∈ E(S), h ∈ S(e, f), there exist e1, f2 ∈ E(S) such that e1Le, f2Rf , and
h = f2e1.

Lemma 1.2 (2). Let S is a regular semigroup, ρ ∈ C(S). If aρ ∈ E(S/ρ), then there
exists e ∈ E(S) such that aρ = eρ.

Lemma 1.3. Let S be a V -regular semigroup, ρ ∈ C(S), aρ ∈ E(S/ρ), xρ ∈ S/ρ. If
(aρ)R(xρ) in S/ρ, then there exists e ∈ E(S) such that aρ = eρ, and eRx.

Proof. By Lemma 1.2, there exists f ∈ E(S), such that aρ = fρ. Let g ∈ E(S) be such
that gRx . Then (gρ)R(xρ). Since aρ = fρ, and (aρ)R(xρ), we have (fρ)R(gρ). Let
h ∈ S(f, g). Then hρ ∈ S(fρ, gρ), and so hρ = fρ. Notice that hρ ∈ E(S), hR(hg)ωg , it
follows from Lemma 1.1 that there exists e ∈ E(S), such that hωeRg . Since gRx , eRx .
Now (hρ)ω(eρ)R(gρ), implies that (fρ)ω(eρ)R(f ρ). Hence aρ = fρ = fρeρ = eρ.

Corollary 1.4. Let S be a V -regular semigroup, ρ ∈ C(S), e, f ∈ E(S). If (eρ)R(f ρ),
then there exist g, h ∈ E(S), such that gRf , hRe, gρ = eρ and hρ = fρ.

Remark The dual results of Lemma 1.3 and Corollary 1.4 hold.

2 Main Results

The theorem below give a characterization of a V -regular semigroup.

Theorem 2.1. A regular semigroup S is V -regular if, and only if, for all a, b ∈ S, (ab) ∈
V (ab), there exist e1, e2, f1, f2 ∈ E(S), such that b(ab)′a = f2e1, e1LaR e2, f1LbRf2 ,
ab(ab)′ωe2, and (ab)′abωf1.

Proof. Since S is V -regular, for all a, b ∈ S, (ab)′ ∈ V (ab) there exist a′ ∈ V (a), b′ ∈ V (b)
such that (ab)′ = b′a′. Let e1 = a′a, f1 = b′b, e2 = aa′, f2 = bb′. Then e1, e2, f1, f2 ∈ E(S),
and

b(ab)′a = bb′a′a = f2e1, e1 = a′aLaRaa ′ = e2 , f1 = b′bLbRbb ′ = f2 .

Now
(ab)(ab)′e2 = (ab)(ab)′aa′ = (ab)(b′a′aa′) = (ab)b′a′ = (ab)(ab)′,

and
e2(ab)(ab)

′ = (aa′)(ab)(ab)′ = (aa′a)b(ab)′ = (ab)(ab)′.

It follows that (ab)(ab)′ωe2. Similarly, (ab)′abωf1.
Conversely, let a, b satisfy the above condition. Now e1LaRe2 , f1LbRf2 , imply that

there exist a′ ∈ V (a) ∩ (Le2 ∩ Re1 ), b′ ∈ V (b) ∩ (Lf2 ∩ Rf1 ), such that a′a = e1, aa
′ =

e2, b
′b = f1, bb

′ = f2. Since b(ab)′a = f2e1, we have that b′a′ = (b′f2)(e1a′) = b′(f2e1)a′ =
b′b(ab)′aa′. Thus

(b′a′)(ab)(b′a′) = (b′b(ab)′aa′)(ab)(b′b(ab)′aa′) =

b′b(ab)′ab(ab)′aa′ = b′b(ab)′aa′ = b′a′,
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and
(ab)(b′a′)(ab) = ab(b′b(ab)′aa′)ab = ab(ab)′ab = ab.

That is, b′a′ ∈ V (ab). Also,

(b′a′)(ab) = (b′b(ab)′aa′)ab = bb(ab)′ab = f1(ab)′ab = (ab)′ab,

since (ab)′abωf1, and (ab)(b′a′) = (ab)(b′b(ab)′aa′) = ab(ab)′aa′ = (ab)(ab)′e2 = (ab)(ab)′,
since (ab)(ab)′ωe2. It follows that (ab)′ = (ab)′(ab)(ab)′ = (b′a′)(ab) (ab)′ = (b′a′)(ab)(b′a′) =
b′a′. Therefore, S is V -regular, as required.

Theorem 2.2. Let S be a V -regular semigroup, ρ ∈ C(S), a, b ∈ S. If aρb, then for any
a ∈ V (a), there exists b ∈ V (b) such that aρb.

Proof. Let a′ ∈ V (a). Then a′ρ ∈ V (aρ). Since aρb, we have that a′ρ ∈ V (aρ) = V (bρ).
Let fρ = bρa′ρ, f ′ρ = a′ρbρ. Then (fρ)R(bρ), (f ′ρ)L(bρ), f ρ, f ′ρ ∈ E(S/ρ). By Lemma
1.3 and its dual, there exist e, e′ ∈ E(S) such that eRbLe ′, f ρ = eρ, and f ′ρ = e′ρ.
Take b′ ∈ V (b) ∩ Le ∩ Re ′. Then b′ρ ∈ Leρ ∩ Re ′ρ. Hence b′ρ = e′ρb′ρeρ = f ′ρb′ρfρ =
a′ρbρb′ρbρaρ = a′ρbρb′ρbρa′ρ = a′ρbρa′ρ = a′ρaρa′ρ = a′ρ, that is, a′ρb′.

To provide a characterization of congruences on V -regular semigroups in terms of
certain congruence pairs, we need the following results.

Lemma 2.3. Let S be a V -regular semigroup, ρ ∈ C(S) with τ = trρ.

(1) (eρ)R(f ρ) in S/ρ⇔ e(τR)f in S ⇔ e(Rτ)f in S(e, f), e, f ∈ E(S);

(2) RτRτR = RτR.

An equivalence τ on the set E(S) of idempotents of a regular semigroup S, is normal
if τ = trτ∗ [5]. It follows from [5, Lemma 2.3], that an equivalence τ on E(S) is normal if,
and only if, τ is the trace of a congruence on S. Let K be a subset of a regular semigroup
S. A congruence ρ on S saturates K, if a ∈ K implies aρ ⊆ K. The greatest congruence
on S which saturates K is denoted by πK . Recall from [5, 1.5], that for a, b ∈ S, aπKb, if
and only if, xay ∈ K ⇔ xby ∈ K(x, y ∈ S1), and πK = θ0k, , where the equivalence relation
θK on S is defined by aθKb ⇔ a, b ∈ K or a, b ∈ S \K. We recall from [5] that a subset
K of a regular semigroup S is normal, if K = kerπK , and a subset K of S is normal, if
and only if K is the kernel of a congruence on S. The pair (K, τ), is a congruence pair for
a regular semigroup S if,

• (i) K is a normal subset of S;

• (ii) τ is a normal equivalence on E(S);

• (iii) K ⊆ ker(LτLτL ∩ RτRτR)0 ,

• (vi) τ ⊆ trπK .

In such a case ρ(K, τ) is defined by ρ(K, τ) = πK ∩ (LτLτL ∩ RτRτR)0 . Note that
ρ(K, τ) = (LτLτL ∩ θK ∩RτRτR)0 . When S is a V -regular semigroup it follows from [1,
Lemma 2.3], and its dual result that ρ(K, τ) = (LτL ∩ θK ∩ RτR)0 .

Theorem 2.4. If (K, τ) is a congruence pair for a V -regular semigroup S, then ρ(K, τ) is
the unique congruence on S such that kerρ(K, τ) = K, and trρ(K, τ) = τ . Conversely, if
ρ is a congruence on S, then (kerρ, trρ) is a congruence pair for S and ρ = ρ(kerρ, trρ).
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On generalization of derivation on MV -algebras
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Abstract

In this paper, we extend the notion of derivation on MV -algebras. Moreover, we
introduce four types of f -derivation on MV -algebras as a generalization of derivation
and obtain some related results. Also, some connections among different types of
f -derivation is studied.
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1 Introduction

The notion of derivation, introduced from the analytic theory is helpful to the research
of structure and property in algebraic systems. Jun and Xin [4] applied the notion of
derivation to BCI-algebras, which is defined in a way similar to the notion in ring theory,
and investigated some properties related to this concept. In [8] and [5], authors introduced
the notion of f -derivation and (f, g)-derivation in BCI-algebras, respectively. In [7], Szász
introduced the concept of derivation on lattices and investigated some of its properties.
Then, f -derivation on lattices were defined and studied in [2].

In [1], Alshehri applied the notion of derivation to MV -algebras and investigated some
of its properties. After in [3, 6], the notion of derivation and generalization of it on
MV -algebras is studied.

In this paper, we review some notions related to MV -algebras. Also, we recall and
introduce some of types of f -derivation on MV -algebras as a generalization of derivation.
Then, we obtain some related results.

Definition 1.1. An MV -algebra is a structure (M, ⊕, ∗, 0) where M is a non-empty set,
“ ⊕ ” is a binary operation, “ ∗ ” is a unary operation, and “0” is a constant such that the
following axioms are satisfied for any a, b ∈ M ,

(MV 1) (M, ⊕, 0) is a commutative monoid;

(MV 2) (a∗)∗ = a;

(MV 3) 0∗ ⊕ a = 0∗;

(MV 4) (a∗ ⊕ b)∗ ⊕ b = (b∗ ⊕ a)∗ ⊕ a.
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We define the constant 1 = 0∗ and the auxiliary operations ⊙, ∨ and ∧ by

a ⊙ b = (a∗ ⊕ b∗)∗, a ⊖ b = a ⊙ b∗, a ∨ b = a ⊕ (b ⊙ a∗), a ∧ b = a ⊙ (b ⊕ a∗).

Let (M, ⊕, ∗, 0) be an MV -algebra. The partial ordering “ ≤ ” on M is defined by

a ≤ b ⇐⇒ a ∧ b = a, for all a, b ∈ M.

a∧ b = a is equivalent to a∨ b = b. The structure (M, ∨,∧, , 0, 1) is a bounded distributive
lattice. If the order relation ≤, defined over M , is total, then we say that M is linearly
ordered. Also, the structure (M, ⊖, 0) is a bounded BCI \ BCK-algebra.

Let M and N be two MV -algebra. The function f : M −→ N is called a homomor-
phism if it satisfies the following conditions:

(1) f(0M ) = 0N ;

(2) f(x ⊕M y) = f(x) ⊕N f(y);

(3) f(x∗) = f(x)∗.

If f is a homomorphism, then f(1M ) = 1N and f(x ⊙M y) = f(x) ⊙N f(y).
The function f : M −→ M is called isotone, if x ≤ y implies that f(x) ≤ f(y), for all

x, y ∈ M .
Let B(M) = {x ∈ M | x ⊕ x = x} = {x ∈ M | x ⊙ x = x}. Then, (B(M), ⊕, ∗, 0) is

both a largest subalgebra of M and a Boolean algebra.

2 Main results

Let M be an MV -algebra and f : M −→ M be a homomorphism. A function D : M −→
M is called

(1) an f-derivation of type 1, if D(x⊙y) = (D(x)⊙f(y))⊕(f(x)⊙D(y)), for all x, y ∈ M
[6];

(2) an f-derivation of type 2, if D(x∧y) = (D(x)∧f(y))∨(f(x)∧D(y)), for all x, y ∈ M
[6];

(3) an f-derivation of type 3, if D(x⊖y) = (D(x)⊖f(y))∧(f(x)⊖D(y)), for all x, y ∈ M
[6];

(4) an f-derivation of type 4, if D(x ⊖ y) = (D(x) ⊖ f(y)) ⊙ (f(x) ⊖ D(y)), for all
x, y ∈ M .

In the above definition, if we choose the function f as the identity function, then the
f -derivation of type 1 (2, 3 and 4, respectively) is ordinary derivation of type 1 (2, 3 and
4, respectively).

Let M be an MV -algebra and f be arbitrary homomorphism on M . The function
D : M −→ M , defined by D(x) = 0, for all x ∈ M , is an f -derivation of type 1, 2, 3 and
4 on M .
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If MV -algebra M is a Boolean algebra, then for all x, y ∈ M , x ⊕ y = x ∨ y and
x⊙ y = x∧ y. So, in this case, every derivation of type 1 on M is coincide with derivation
of type 2 on M .

Let (M, ⊕, ∗, 0) be an MV -algebra. Then, the definition of derivation of type 2 on
(M, ⊕, ∗, 0) is coincide with the definition of derivation on lattice (M, ∧, ∨, 0, 1). Also, the
definition of derivation of type 3 on (M, ⊕, ∗, 0) is coincide with the definition of derivation
on bounded BCI \ BCK-algebra (M, ⊖, 0).

The following theorem shows the relation between the f -derivation of type 1 and the
f -derivation of type 2.

Theorem 2.1. Let D : M −→ M be a function on a linearly ordered MV -algebra. Then,
D is an isotone f -derivation of type 1 if and only if D is an isotone f -derivation of type
2 and D(M) ⊆ B(M).

The properties of f -derivation of type 2 (3, respectively) on MV -algebras is similar to
the properties of f -derivation on lattices (BCI \ BCK-algebras, respectively). Also, the
properties of f -derivation of type 1 on MV -algebras is studied in [6].

In the following, we consider some properties of f -derivation of type 4.

Lemma 2.2. Let D be a f -derivation of type 4 on an MV -algebra M . Then, for all
x ∈ M , the following conditions hold:

(1) D(0) = 0;

(2) D(x) = D(x) ⊙ f(x);

(3) D(x) ≤ f(x);

(4) D(x∗) ≤ (D(x))∗;

(5) if x ≤ y, then D(x) ≤ D(y);

(6) D(x) ≤ D(1).

Lemma 2.3. Let D be a f-derivation on MV -algebra M . Then, D(x) = D(1) ⊙ f(x),
for all x ∈ B(M).

Proposition 2.4. Let D be a map on an MV -algebra M such that D(x) = a ⊙ f(x), for
all x ∈ M , where a ∈ M is a fixed element. If D(M) ⊆ B(M), then D is an f-derivation
of type 4.

Now, we give our main result in the following theorem which shows the relation between
the f -derivation of type 1 and the f -derivation of type 4.

Theorem 2.5. (1) If D is an isotone f-derivation of type 1 on MV -algebra M , then
D is an f -derivation of type 4.

(2) If D is an f-derivation of type 4 on a boolean algebra M , then D is an f-derivation
of type 1.
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ON GENERALIZATIONS OF PRIMARY SUBMODULES

(II)
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Abstract

Assume that R be is a commutative ring, M is a unitary R-module and S(M) is
the set of all submodules ofM . Let φ : S(M) −→ S(M)∪∅ be a function. We say that
a proper submodule N of M is a φ-2-absorbing primary submodule of M if whenever
a, b ∈ R and x ∈ M with abx ∈ N \ φ(N) implies ab ∈ (N : M) or ax ∈ rad(N) or
bx ∈ rad(N). In this paper we show that φ-2-absorbing primary submodules enjoy
analogs of many of the properties of 2-absorbing primary submodules.

Keywords: 2-absorbing primary submodule, φ-primary submodule, φ-2-absorbing
primeary submodule.

Mathematics Subject Classification [2010]: 13A15, 13F05, 13G05

1 Introduction

We assume throughout that R is a commutative ring with 1 6= 0 and M is a unitry R-
module. We denote the set of all submodules of M by S(M). Let N be a submodule of
M . It is clear that (N :M) = {r ∈ R|rM ⊆ N} is an ideal of R.

A proper submodule P of M is called prime if r ∈ R and x ∈M , with rx ∈ P implies
that r ∈ (P :R M) or x ∈ P (see [1-9]). These have led to more information on the
structure of the R-module M .

Recall that a proper submodule N of M is called a 2-absorbing submodule of M as in
[2] if whenever abx ∈ N for some a, b ∈ R and x ∈ M , then ab ∈ (N : M) or ax ∈ N or
bx ∈ N . We say that a proper submodule N of M is a weakly primary submodule of M
if whenever 0 6= ax ∈ N for some a ∈ R and x ∈ M , then a ∈ (N : M) or x ∈ rad(N).
Also, we say that a proper submodule N of M is a 2-absorbing primary submodule of M
if whenever a, b ∈ R and x ∈ M with abx ∈ N , then ab ∈ (N : M) or ax ∈ rad(N) or
bx ∈ rad(N). A proper submodule N of M is a weakly 2-absorbing primary submodule
of M if whenever a, b ∈ R and x ∈ M with 0 6= abx ∈ N implies ab ∈ (N : M) or
ax ∈ rad(N) or bx ∈ rad(N). Recall that a proper submodule N of M is called a φ-2-
absorbing submodule of M as in [2] if whenever a, b ∈ R and x ∈M with abx ∈ N \ φ(N)
implies ab ∈ (N : M) or ax ∈ N or bx ∈ N . We say that a proper submodule N of M is
a φ-primary submodule of M if whenever a ∈ R and x ∈ M with ax ∈ N \ φ(N) implies
a ∈ (N :M) or x ∈ rad(N).
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Let φ : S(M) −→ S(M) ∪ ∅ be a function. A proper submodule N of M is said
to be a φ-2-absorbing primary submodule of M if whenever a, b ∈ R and x ∈ M with
abx ∈ N \ φ(N) implies ab ∈ (N :M) or ax ∈ rad(N) or bx ∈ rad(N).

Let P be a submodule of M . Since P\φ(P ) = P\(P ∩φ(P )), so without loss of gener-
ality, throughout this paper we will consider φ(P )P . We hence forth make the assumption
that given two functions ψ1, ψ2 : S(M)S(M)∪{∅}, then ψ1 ≤ ψ2 if ψ1(N)ψ2(N), for each
N ∈ S(M). Suppose that φα : S(M)S(M)∪{∅} be one of the following functions we have
the corresponding φα-2-absorbing primary submodules.

φ∅ φ(N) = ∅ 2-absorbing primary submodule
φ0 φ(N) = 0 weakly 2-absorbing primary submodule
φ1 φ(N) = N any module
φ2 φ(N) = (N :M)N φ2-2-absorbing primary submodule
φn(n ≥ 2) φ(N) = (N :M)n−1N φn-2 absorbing primary submodule
φω φ(N) =

⋂∞
i=1(N :M)iN ω-2-absorbing primary submodule

Observe that φφ ≤ φ0 ≤ φω ≤ · · · ≤ φn+1 ≤ φn ≤ · · · ≤ φ2 ≤ φ1. Then it is clear that
φ∅-2 absorbing primary and φ0-2-absorbing primary submodules are 2-absorbing primary
and weakly 2-absorbing primary submodules respectively.

In this paper we show that φ-2-absorbing primary submodules enjoy analogs of many
of the properties of 2-absorbing primary submodules and a number of results concerning
φ-2-absorbing primary submodules are given.

2 Main results

Theorem 2.1. Let N1, N2 be proper submodules of M such that N1 ⊆ N2, and let n ≥ 2.
If N2 is a φn-2-absorbing primary submodule of M , then N2

N1
is a φn-2-absorbing primary

submodule of M
N1

.

Theorem 2.2. Let N1, N2 be proper submodules of M such that N1 ⊆ N2. If N2 is a φω-
2-absorbing primary submodule of M , then N2

N1
is a φω-2-absorbing primary submodule of

M
N1

.

Definition 2.3. Let φ : S(M) −→ S(M) ∪ ∅ be a function. We remind the reader that
we always assume that φ(N) ⊆ N . Let N be a proper submodule of M and S be a
multiplicatively closed subset of R. Then

(i) A proper submodule L
N of M

N (as R
(N :M) -module), where L is a proper submodule

of M such that N ⊆ L, is called a φN -2-absorbing primary submodule of M
N if whenever

a, b ∈ R
(N :M) , x ∈ M

N with abx ∈ L
N \

φ(L)+N
N implies ab ∈ ( LN : M

N ) or ax ∈ rad( LN ) or

bx ∈ rad( LN ).
(ii) A proper submodule LS of MS , where L is a proper submodule of M such that

(L : M) ∩ S = ∅, is called a φS-2-absorbing primary submodule of MS if whenever
a, b ∈ RS and x ∈ MS with abx ∈ LS \ φ(L)S implies ab ∈ (LS : MS) or ax ∈ rad(LS) or
bx ∈ rad(LS).

Theorem 2.4. Let φ : S(M) −→ S(M) ∪ ∅ be a function, P be a proper submodule of
M and let N be a submodule of M such that N ⊆ P . If P is a φ-2-absorbing primary
submodule of M , then P

N is a φN -2-absorbing primary submodule of M
N .
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Theorem 2.5. Let φ : S(M) −→ S(M)∪∅ be a function and let P, I be proper submodules
of M such that N ⊆ φ(P ). The following statements are equivalent.

(i) P is a φ-2-absorbing primary submodule of M .
(ii) P

N is a φN -2-absorbing primary submodule of M
N .

(iii) P
(N :M)n−1N

is a φ(N :M)n−1N -2-absorbing primary submoduleof M
(N :M)n−1N

for every
n ≥ 1.

Corollary 2.6. Let φ : S(M) −→ S(M)∪∅ be a function and let P be a proper submodule
of M that is not a weakly 2-absorbing primary submodule of M . The following statements
are equivalent.

(i) P is a φ-2-absorbing primary submodule of M .
(ii) P

(P :M)2P
is a φ(P :M)2P -2-absorbing primary submodule of M

(P :M)2P
.

(iii) P
(P :M)n−1P

is a φ(P :M)n−1P -2-absorbing primary submodule of M
(P :M)n−1P

for every
n ≥ 3.

For a commutative ring R with 1 6= 0, Let Z(R) be the set of all zero-divisors of R.

Theorem 2.7. Let φ : S(M) −→ S(M)∪∅ be a function. Let P be a proper submodule of
M and S be a multiplicatively closed subset of R such that S ∩ Z(R) = S ∩ (P : M) = ∅.
The following statements are equivalent.

(i) P is a φ-2-absorbing primary submodule of M .
(ii) PS is a φS-2-absorbing primary submodule of MS.

Lemma 2.8. Let φ : S(M) −→ S(M) ∪ ∅ be a function. Set M
∅ = M , and let N be a

proper submodule of M . Then
(i) N is a 2-absorbing primary submodule of M if and only if N

φ(N) is a 2-absorbing

primary submodule of M
φ(M) .

(ii) N is a prime submodule of M if and only if N
φ(N) is a prime submodule of M

φ(M) .

(iii) N is a primary submodule of M if and only if N
φ(N) is a primary submodule of

M
φ(M) .

Theorem 2.9. Let R1 and R2 be commutative rings with 1 6= 0 and Mi be an Ri-module,
for n = 1, 2 and consider M = M1 ×M2 as R = R1 × R2-module. Let N1 be a proper
submodule of M1 and ψi : S(Mi) −→ S(Mi)∪ ∅(i = 1, 2) be functions such that ψ2(M2) 6=
M2, and let φ = ψ1 × ψ2. Then the following statements are equivalent.

(i) N1 ×M2 is a φ-2-absorbing primary submodule of M .
(ii) N1 ×M2 is a 2-absorbing primary submodule of M .
(iii) N1 is a 2-absorbing primary submodule of M1.

Theorem 2.10. Let R1, R2 be commutative rings with 1 6= 0 and Mi be an Ri-module,
for n = 1, 2 and consider M = M1 ×M2 as R = R1 × R2-module. Let N1 be a proper
submodule of M1 and ψi : S(Mi) −→ S(Mi)∪∅(i = 1, 2) be functions and let φ = ψ1×ψ2.
Then the following statements are equivalent.

(i) N1 × M2 is a φ-2-absorbing primary submodule of M that is not a 2-absorbing
primary submodule of M .

(ii) φ(N1 ×M2) 6= ∅, ψ2(M2) = M2, and N1 is a ψ1-2-absorbing primary submodule
of M1 that is not a 2-absorbing primary submodule of M1.
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Theorem 2.11. Let Ri be a commutative ring, Mi be an Ri-module, for i = 1, 2 and
consider M = M1 ×M2 as R = R1 × R2-module. Let N1, N2 be non-zero submodules of
M1 and M2, respectively. Let ψi : S(Mi) → S(Mi) ∪ ∅ (i = 1, 2) be functions such that
ψ1(N1) 6= N1 and ψ2(N2) 6= N2. Let φ = ψ1 × ψ2. If N1 × N2 is a proper submodule of
M , then the following statements are equivalent.

(i) N1 ×N2 is a φ-2-absorbing primary submodule of M .
(ii) N1 =M1 and N2 is a 2-absorbing primary submodule of M2 or N2 =M2 and N1

is a 2-absorbing primary submodule of M1 or N1, N2 are primary submodules of M1,M2,
respectively.

(iii) N1 ×N2 is a 2-absorbing primary submodule of M .
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On Generalized Fibonacci Length Of Polygroups
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Abstract

In this paper, we introduce generalized Fibonacci length of polygroups as a gen-
eralization of Fibonacci length of groups. We mention a connection between the
fundemental group obtain from polygroup an the class of Fibonacci group.
Keywords: Fibonacci lenght, Fibonacci orbit, Polygroups.
MSC(2010): 20N20.

1 Introduction

The concept of a hypergroup which is based on the notion of hyperoperation was in-
troduced by marty in [7] and studied extensively by many mathematicians. Hypergroup
theory extends some well-known results in group theory and introduces new topics leading
to a wide variety of applications, as well as to broadening of the fields of investigation.
Surveys of the theory can be found in the books of Corsini [3], Davvaz and Leoreanu-Fotea
[5] Corsini and Leoreanu [4]. Polygroups which form an important subclass of hypergroups
were studied by Comer [2]. Quasicanonical hypergroups were introduced for the first time
in [1], as a generalization of canonical hypergroups, introduced in [8]. In 1960 D. D. Wall
investigated the length of the period of the Fibonacci numbers modulo a given positive
integer n, see [9]. In this paper we generalized the notion of Fibonacci length for the class
of polygroups and investigate some properties of this notion.

Definition 1.1. A set H endowed with a mapping ∗ : H × H −→ P ∗(H), named hyper-
operation, is called a hypergroupoid with a carrier H or briefly a hypergroupoid.

Remark 1.2. A hyperoperation ∗ : H × H −→ P ∗(H) yields an operation
⊗ : P ∗(H)×P ∗(H) −→ P ∗(H), defined by A⊗B =

∪
a∈A,b∈B

a∗b. Conversely an operation

on P ∗(H) yields a hyperoperation on H, defined by x ∗ y = {x} ⊗ {y}.

Definition 1.3. (i) A semihypergroup is a hypergroupoid (H, ∗) such that for all a, b and
c in H we have (a ∗ b) ∗ c = a ∗ (b ∗ c),
(ii) A quasihypergroup is a hypergroupoid (H, ∗) which satisfies the reproductive law, i.e.,
for all a ∈ H, H ∗ a = a ∗ H = H,
(iii) A hypergroup is a semihypergroup which is also a quasihypergroup.

Definition 1.4. Let (H, ◦) be a hypergroup and R be an equivalence on H. If A and B
are non-empty subsets of H, then
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(1) A
−
R B means that ∀a ∈ A, ∃b ∈ B such that aRb and

∀b′ ∈ B, ∃a′ ∈ A such that aRb,

(2) A
=
R B means that ∀a ∈ A, ∀b ∈ B we have aRb.

Definition 1.5. The equivalence relation R is called

(1) regular on the right (on the left ) if for all x of H, from aRb, it follows that (a ◦ x)
−
R

(b ◦ x) ((x ◦ a)
−
R (x ◦ b)respectively),

(2) strongly regular on the right (on the left ) if for all x of H, from aRb, it follows that

(a ◦ x)
=
R (b ◦ x) ((x ◦ a)

=
R (x ◦ b)respectively),

(3) R is called regular (strongly legular) if it is regular (strongly legular) on the right
and on the left.

Theorem 1.6. Let R be a strongly regular equivalence on a semi-hypergroup H, then

(1)
H

R
is a semigroup,

(2) if H is a hypergroup,
H

R
is a group.

Definition 1.7. For all n > 1, we define the relation βn on a semihypergroup H, as
follows:

aβnb ⇔ ∃(x1, . . . , xn) ∈ Hn : {a, b} ⊆
n∏

i=1

xi,

and β =
∪

n≥1
βn, where β1 = {(x, x) |x ∈ H} is the diagonal relation on H. Clearly, the

relation β is reflexive and symmetric. Denote by β∗ the transitive closure of β.

Theorem 1.8. β∗ is the smallest strongly regular relation on H.

Theorem 1.9. If H is a hypergroup, then β∗ = β.

Definition 1.10. A polygroup is a system ℘ = ⟨P, ·, e, −1⟩, where e ∈ P, −1 is a unitary
operation on P , · maps P × P into the non-empty subsets of P , and the following axioms
hold for all x, y, z in P :

(P1) (x · y) · z = x · (y · z),

(P2) e · x = x · e = x,

(P3) x ∈ y · z implies y ∈ x · z−1 and z ∈ y−1 · x.

Let X be a non-empty subset of a polygroup ⟨P, ·, e, −1⟩. Let {Ai| i ∈ J} be the family
of all subpolygroups of P in which contain X. Then,

∩
i∈J

Ai is called the subpolygroup

generated by X. This subpolygroup is denoted by < X > and we have
< X >= ∪{xε1

1 · . . . · xεk
k | xi ∈ X, k ∈ N, εi ∈ {−1, 1}}. If X = {x1, x2, . . . , xn}. Then, the

subpolygroup < X > is denoted < x1, x2, . . . , xn >.
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Definition 1.11. Let ⟨P, ·, e, −1⟩ be a polygroup that generated by A = {a1, a2, . . . , an}.
Then the Fibonacci orbit of P with respect to the (generating) set A, where A is written
as the ordered n-tuple (a1, a2, . . . , an), denoted by GFA(P ), is the sequence FA

0 = a1,

FA
1 = a2, . . . , F

A
n−1 = an and FA

n+i =
n∏

j=1
Fi+j−1, i ≥ 0. Moreover we define the generalized

Fibonacci length of P , as follows:

m = min{k | ai ∈ FA
k+i, 1 ≤ i ≤ n},

and denoted by GLENA(P ).

Remark 1.12. If P be is a group, Fibonacci length of P denoted by LEN(P ).

Example 1.13. Let P = {e, a, b, c, d, f, g}. We consider the proper non-commutative
polygroup ⟨P, ·, e, −1⟩, where · is defined on P as follows:

· e a b c d f g
e e a b c d f g
a a e b c d f g
b b b {e, a} g f d c
c c c f {e, a} g b d
d d d g f {e, a} c b
f f f c d b g {e, a}
g g g d b c {e, a} f

It is easy to see that GLEN⟨b,c⟩(P ) = 6.

Proposition 1.14. Let ⟨P, ·, e, −1⟩ be a polygroup generated by A = {a1, . . . , an}. Then

GLENA(P ) ≥ LENÃ(
P

β∗ ), where Ã = {β∗(a1), . . . , β
∗(an)}.

Theorem 1.15. Let G be group with generating set A = {a1, . . . , an} and let LENA(G) =
m for finite m. Then G is a epimorphic image of F (n, m).

Proposition 1.16. Let ⟨P, ·, e, −1⟩ be a polygroup generating set A = {a1, . . . , an} and

let GLENA(P ) = ℓ. Then
P

β∗ is a epimorphic image of F (n, ℓ′), where LEN(
P

β∗ ) = ℓ′.
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On Induced Closed Subobjects by certain morphism classes∗
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Abstract

In this article, we start with a collection M of morphisms of a small category X ,
that satisfies certain conditions and we construct an universal closure operation by
general method. Next describe closed subobjects relative to this universal closure by
a different view point.

Keywords: closed subobject, Lawvere-Tierney topology, morphism class, sieve.
Mathematics Subject Classification [2010]: 18F10, 18F20

1 Introduction

Throughout this article we let X be a small category andM be a set of morphisms of X .
The collection, X1/x, of all the X -morphisms with codomain x is a preordered class by the
relation f ≤ g if there exists a morphism h such that f = g ◦ h. The equivalence relation
generated by this preorder is f ∼ g if f ≤ g and g ≤ f . For a class M of X -morphisms,
we write f ∼M whenever f ∼ m for some m ∈M. We sayM is saturated provided that
f ∈M whenever f ∼M.

Denoting the domain and codomain of a morphism f by d0f and d1f respectively,
recall that a sieve in X , [6], generated by one morphism f is called a principal sieve and is
denoted by 〈f〉 and for a sieve S on x and a morphism f with d1f = x, S·f = {g : f◦g ∈ S}.
We say sieve S is an k-sieve provided that minimum number of morphisms generates S is
equal to k.

For a class S ⊆ X1/x, and a morphism f with codomain x, the class of all the maximal
elements w in X1/d0f satisfying f ◦w ≤ s for some s ∈ S is denoted by (f ⇒ S). Obviously
for a sieve S on x, see [6], (f ⇒ S) is just the class of maximal elements of S · f .

We sayM has X -pullbacks if the pullback, f−1(m), of each m ∈M along each f ∈ X
exists and belongs to M.

Definition 1.1. A class M of X−morphisms is said to satisfy the principality property,
if for each x, f ∈ X1/x and m ∈M/x, (f ⇒ 〈m〉) ⊆M/d0f, card((f ⇒ 〈m〉)) = 1.

If X1 satisfies the principality property, the mapping Pn : X op → Set with Pn(x) =
{〈f1, f2, ..., fn〉|for all 1 ≤ i ≤ n, fi ∈ X1/x} and for f : y → x, Pn(f) : Pn(x) → Pn(y)
the function taking 〈g1, g2, ..., gn〉 to 〈g1, g2, ..., gn〉 · f , is a functor. Also the mapping P :
X op → Set with P (x) = {S ∈ Ω(x) | S is finitely generated sieve on x} and for f : y → x,
P (f) : P (x)→ P (y) the function taking S to S · f , is a functor.

∗Will be presented in English
†Speaker
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2 Main results

According to the construction stated in [3], each classM with principality property which
is satisfy in certain conditions, see [3], introduce a Lawvere-Tierney topology, [6]. We
use this method and get the Lawvere-Tierney topologies and universal closure operations
which are corresponding to each other, see [6]. Know we find a description of closed
subobjects with respect to these closures.

Suppose that X1 satisfies the principality property. Every set M of morphisms of X
which satisfies the principality property yields a subobject Mn : X op → Set of Pn where
Mn(x) = {〈m1,m2, · · · ,mn〉 | for all 1 ≤ i ≤ n,mi ∈M/x}.

know subobjects i : Mn � Ω in SetX
op

are in one to one correspondence with the
morphisms jn : Ω→ Ω via the following pullback square, see [6],

Mn

p.b.

��

i
��

!Mn // 1��

t
��

Ω
jn
// Ω

(I)

Note that for a given Mn, jn is defined by the maps jx that take each sieve S on
x to {f ∈ M/x | S · f ∈ Mn(d0(f))}; and for a given jn, Mn is defined by Mn(x) =
{S : jnx(S) = Tx}. With Mn and jn corresponding to each other, we obviously have,
jnx(S) = Tx if and only if S ∈Mn(x).

It is known that, in any topos, the Lawvere-Tierney topologies correspond to universal
closure operations, see [6].

This correspondence also holds between arrows jn :Ω
. // Ω and universal operations

“−n”. Here is how this correspondence works. For a given jn : Ω // Ω, for each X,

−n : Sub(X) // Sub(X)is defined by the following pullbacks:

A

p.b.

��

α
��

!A // 1��

t
��

X
α̂
// Ω

(II)

Ā

p.b.

��

ᾱ
��

!Ā // 1��

t
��

X
jn◦α̂

// Ω

(III)

where α̂c(x) = {f : a→ c ∈ X1 | X(f)(x) ∈ αa(A(a))} and we have ˆ̄α = jn ◦ α̂.
Conversely given a universal operation “−n”, the morphism jn :Ω

. // Ω is obtained
by the following pullback.

1̄

p.b.

��

t̄
��

!1̄ // 1��

t
��

Ω
jn
// Ω

(IV )

We call Ā the closure of A� X and we say that it is closed when Ā = A.
If we start with collectionM of morphisms of X and next induces subobject Mn : X op →
Sets and so induces universal closure operation −n as the above construction stated before.
This means subobject α : A � X is closed iff A and Ā have the same classifying maps,
i.e., α̂ = ˆ̄α and this equivalent to jn ◦ α̂ = α̂.

Theorem 2.1. Let α : A� X be subobject of X and α̂ be its classifying map.
α is a closed subobject w.r.t. −n if and only if α̂x(S) ∈ Mn(x) ⇐⇒ α̂x(S) = Tx for all x

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

On induced closed subobjects by certain morphism classes pp.: 2–4

60



in X and S in X(x).

Proof. We apply definition of map jnx (S) and the fact that jn◦α̂ = α̂ as stated above and so
by extending the definitions of classifying maps with some calculations result follows.

Definition 2.2. [8] Let M be a set of X -morphisms. M is said to have:

(a) enough retractions, if for all objects x in X , M/x has a retraction.

(b) almost enough retractions, if for all objects x in X , M/x = ∅ or M/x has a retrac-
tion.

(c) the n-identity property if for all objects x in X and for all sieves S on x whenever
MS = {f ∈ X1/x|(f ⇒ S) ⊆ M/d0f, card((f ⇒ S)) ≤ n} has at the most n
maximal elements which are in M/x, then 1x ∈MS .

(d) the n-maximal property if for all objects x in X and for all sieves S on x, whenever
S ∩M/x 6= ∅, then S has at the most n maximal elements which are in M/x.

(e) the n-quasi meet property if for all objects x in X and m1, ...,mk ∈ M/x and
n1, ..., nl ∈ M/x such that k, l ≤ n, there exists maximum element hi ∈ (mi ⇒
〈n1, ..., nl〉) such that mi ◦ hi ∼M/x for i = 1, ..., k.

Proposition 2.3. [8] Let M be a class of X -morphisms that satisfies the principality
property. The induced map jn : Ω→ Ω (j : Ω→ Ω) is a Lawvere-Tierney topology if and
only if M satisfies (a), (c), (d) and (e) of Definition 2.2.

suppose that Lawvere-Tierny topology jn induced from the collection M which is
having the conditions of proposition 2.3. Therefore we may have the following result for
each n:

Corollary 2.4. If −n universal closure operation induced from a Lawvere-Tierney topology
jn, then subobject α : A � X is closed if and only if AS has at the most n maximal
elements which are in M/x, then 1x ∈ AS.
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Abstract

In this paper, we study the planarity, outerplanarity, and end-regularity of the
zero-divisor graph of the ring of all real valued continuous functions C(X), which is
denoted by Γ(C(X)). Also, by using the ring properties of C(X), the graph properties
of Γ(C(X)), and the topological properties of X, we investigate the end-regularity of
the graph Γ(C(X)).

Keywords: Zero divisor graph, The ring of continuous functions, Planar graph, Out-
erplanar graph, End-regular graph
Mathematics Subject Classification [2010]: 05C10, 46E25

1 Introduction

The idea of a zero-divisor graph of a commutative ring was first introduced by I. Beck [2]
in 1988, where he was mainly interested in coloring. This investigation of colorings of a
commutative ring was then continued by D. D. Anderson and M. Naseer. Their definition
was slightly different than ours; they let all elements of ring be vertices and distinct
vertices x and y are adjacent if and only if xy = 0. Anderson and Livingston introduced
and studied the zero-divisor graph whose vertices are the non-zero zero-divisors.

Let C(X) be the ring of all real valued continuous functions on a completely regular
Hausdorff space X. By the zero divisor graph Γ(C(X)) of C(X) we mean the graph with
vertices consists of all nonzero zero-divisors of C(X) such that there is an edge between
distinct vertices f and g if and only if fg = 0.

In this paper, we determine the planarity, outerplanarity, and end-regularity of Γ(C(X))
by using the ring properties of C(X), the graph properties of Γ(C(X)), and the topological
properties of X. Also, we show that, in some cases, the graph Γ(C(X)) is not end-regular.

2 Main results

In this section, we first state some preliminaries from the ring C(X), topology and graph
theory which are expected to be useful in this paper. We use the standard terminology
from [3] and [4].

∗Speaker
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In this paper X is a completely regular Hausdorff space. Let C(X) denote the set of
all continuous, real valued functions defined on the space X.

C(X) is provided with a ring structure through addition and multiplication defined
by:

(f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x).

It is obvious that both of the above operations are associative and commutative, and the
distributive law holds. Thus C(X) is a commutative ring. Let Z(C(X)) denote the set of
the zero-divisors of C(X).

We associate a simple graph Γ(C(X)) to C(X) with vertex-set Z(C(X))∗ = Z(C(X))\
{0}, and for distinct f, g ∈ Z(C(X))∗, the vertices f and g are adjacent if and only if
fg = 0.
If |X| = 1, then C(X) is a field. In fact, in this case, C(X) is isomorphic to the field of
real numbers and Γ(C(X)) is an empty graph. Hence in the rest of the paper, we assume
that |X| ≥ 2.

Recall that a subset S of X is said to be a zeroset if there exists f ∈ C(X) such that
S = f−1(0). The zeroset f−1(0) is denoted by Z(f).

The following lemma which is from [1], determine the vertices of the zero-divisor graph
Γ(C(X)), and it is very useful in the rest of the paper.

Lemma 2.1. f is a vertex in Γ(C(X)) if and only if intZ(f) ̸= ∅ and Z(f) ̸= X.

A graph is said to be planar if it can be drawn in the plane, so that its edges intersect
only at their ends. A subdivision of a graph is any graph that can be obtained from the
original graph by replacing edges by paths. A remarkable characterization of the planar
graphs was given by Kuratowski in 1930. Kuratowski ’s Theorem says that a graph is
planar if and only if it contains no subdivision of K5 or K3,3.

In the following theorem, we study the planarity of Γ(C(X)).

Theorem 2.2. If X is finite, then Γ(C(X)) is not planar.

An undirected graph is outerplanar if it can be drawn in the plane without crossing in
such away that all of the vertices belong to the unbounded face of the drawing. There is
a characterization for outerplanar graphs that says a graph is outerplanar if and only if it
does not contain a subdivision of K4 orK2,3.

Let G be a graph with n vertices and q edges. We recall that a chord is any edge of
G joining two nonadjacent vertices in a cycle of G. Let C be a cycle of G. We say C is
a primitive cycle if it has no chords. Also, a graph G has the primitive cycle property
(PCP ) if any two primitive cycles intersect in at most one edge. The number frank(G) is
called the free rank of G and it is the number of primitive cycles of G. Also, the number
rank(G) = q − n + r is called the cycle rank of G, where r is the number of connected
components of G. A graph G is called a ring graph if it satisfies one of the following
equivalent conditions:
(i) rank(G) =frank(G),
(ii) G satisfies the PCP and G does not contain a subdivision of K4 as a subgraph.

Theorem 2.3. Let X be a finite space. Then Γ(C(X)) is niether ring graph nor outer-
planar.
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Let G and H be graphs. A homomorphism f from G to H is a map from V (G) to
V (H) such that for any a, b ∈ V (G), a is adjacent to b implies that f(a) is adjacent to
f(b). Moreover, if f is bijective and its inverse mapping is also a homomorphism, then
we call f an isomorphism from G to H, and in this case we say G is isomorphic to H,
denoted by G ∼= H. A homomorphism (resp, an isomorphism) from G to itself is called an
endomorphism (resp, automorphism) of G. An endomorphism f is said to be half-strong
if f(a) is adjacent to f(b) implies that there exist c ∈ f−1(f(a)) and d ∈ f−1(f(b)) such
that c is adjacent to d. By End(G), we denote the set af all the endomorphisms of G. It
is well-known that End(G) is a monoid with respect to the composition of mappings. Let
S be a semigroup. An element a in S is called regular if a = aba for some b ∈ B and S
is called regular if every element in S is regular. Also, a graph G is called end-regular if
End(G) is regular.

Now, we recall the following Lemma from [5].

Lemma 2.4. Let G be a graph. If there are pairwise distinct vertices a, b, c in G satisfying
N(c) ⫋ N(a) ⊆ N(b), then G is not end-regular.

We end this section with the following theorem which is about the end-regularity of
the graph Γ(C(X)).

Theorem 2.5. Let X be a finite space. Then Γ(C(X)) is not end-regular.
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Abstract

Let Λ be a row-finite k-graph with no sources and R be a unital commutative ring.
In this note, we investigate conditions for Λ and R, which under these, KPR(Λ) is a
prime ring. Then by applying this result, we characterize basic graded prime ideals of
KPR(Λ).

Keywords: Kumjian-Pask algebra, prime ideal, basic graded ideal
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1 Introduction

Higher rank graphs and their associated C∗-algebras were introduced by Kumjian and
Pask in 2000. These C∗-algebras are natural generalizations of directed graph C∗-algebras.
The motivation of these definitions was to provide graphical forms for higher rank Cuntz-
Krieger algebras.

For a unital commutative ring R and k-graph Λ, Kumjian-Pask algebra KPR(Λ) is
the algebraic analogue of the C∗-algebra C∗(Λ), that introduced in [5] as higher rank
analogues of the Leavitt path algebras. Some important results such as Graded and
Cuntz-Krieger uniqueness theorems were proved for these algebras and also analysed their
ideal structure. Studing of k-graph algebras has been interested for many authors. One of
the reasons, is that they give examples for complicated mathematical concepts (See [1],[2]).

In this note, first, we explain some definitions and preliminaries which we need to
prove the main result. Then, in Section 2, we characterize prime Kumjian-Pask algebras
KPR(Λ) by giving some equivalent conditions for R and the underlting higher rank graphs
Λ. Also, in Corollary 2.2, we determine basic graded prime ideals in KPR(Λ).

Definition 1.1. For a positive integer k, we view the additive semi group Nk ( N is
the set of natural numbers including zero) as a category with one object. A k-graph
(or higher rank graph), is a countable category Λ = (Λ◦,Λ, r, s) eqquiped with a functor
d : Λ → Nk,called the degree map, satisfying the factorization property: for every λ ∈ Λ
and m,n ∈ Nk, if d(λ) = m + n, there exist unique elements µ, ν ∈ Λ such that λ = µν

∗Maryam Kashoul Rajabzadeh
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and d(µ) = m, d(ν) = n.

In k-gragh Λ , for each λ ∈ Λ 6=◦, we introduce ghost pathλ∗. for v ∈ Λ◦, we define
v∗ := v. We define r, s and d on ghost paths by: d(λ∗) = −d(λ) , r(λ∗) = s(λ) , s(λ∗) =
r(λ); Let v, w ∈ Λ◦, we define vΛw = {λ ∈ Λ : s(λ) = w, r(λ) = v} and also for n ∈ Nk
we define Λn = {λ ∈ Λ : d(λ) = n}. A k-graph Λ is called row-finite if for each v ∈ Λ◦

and n ∈ Nk, the set vΛn = {µ ∈ Λn : r(µ) = v} is finite. Also we say Λ has no sources if
vΛn 6= ∅ for every v ∈ Λ◦ and n ∈ Nk.

Example 1.2. Let E = (E◦, E1, rE , sE) be a directed graph. Then, the path category
is a 1-graph. In this 1-graph, Λ◦ is the set of vertices E◦. The set of morphisms in this
1-graph are finite paths E∗ = ∪∞n=1E

n. Also, the degree map d : E∗ → N is defined by
d(µ) =| µ |.

Definition 1.3. Let Λ be a row-finite k-graph with no sources and R be a unital commuta-
tive ring. A Kumjian-Pask Λ-family in an R-algebra A, is a set {pv, sλ, sλ? : v ∈ Λ◦, λ ∈ Λ}
such that the following conditions are satisfied:

1) {pv : v ∈ Λ◦} is a family of mutually orthogonal idempotents.

2) sλsµ = sλµ, sµ?sλ? = s(λµ)? , pr(λ)sλ = sλps(λ) = sλ, ps(λ)sλ? = sλ?pr(λ) = sλ? for all

λ, µ ∈ Λ6=0 with r(µ) = s(λ).

3) sλ?sµ = δλ,µps(λ) for all µ, λ ∈ Λ 6=0 with d(λ) = d(µ).

4) pv =
∑

λ∈vΛn sλsλ? for all v ∈ Λ◦ and n ∈ Nk \ {0}.

The Kumjian-Pask algebra of Λ with coefficients in R, denoted by KPR(Λ), is the
universal R-algebra generated by Kumjian-Pask Λ-family. We write {pv, sλ, sλ∗} for the
universal Kumjian-Pask Λ-family in KPR(Λ). The universal property of KPR(Λ) means
that if A is a R-algebra and {qv, tλ, tλ? : v ∈ Λ◦, λ ∈ Λ} is a Kumjian-Pask Λ-family in A,
then there exists an R-algebra homomorphism πq,t : KPR(Λ)→ A such that πq,t(pv) = qv
, πq,t(sλ) = tλ , πq,t(sλ?) = tλ? . The existence of such universal KPR(Λ) was shown in [2,
Theorem 3.4].

Definition 1.4. A ring R is called Zk-graded (or, more concisely, graded) if there is a
collection of additive subgroups {Rn}n∈Zk of R such that

1) R =
⊕

n∈Zk Rn,

2) RjRn ⊆ Rj+n for all j, n ∈ Zk.

The subgroup Rn is said the homogeneous component of R of degree n. If R is graded, an
ideal I of R is called graded if I =

⊕
n∈Zk(I ∩Rn).

By [2, Theorem 3.4], there is a Zk-grading on KPR(Λ) satisfying

KPR(Λ)n = spanR{sαsβ∗ : α, β ∈ Λ, d(α)− d(β) = n}.

The hereditary and saturated subsets of Λ◦ play important roles in the ideal structure
of Kumjian-Pask algebras. A subset H of Λ◦ is hereditary if λ ∈ Λ and r(λ) ∈ H imply
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s(λ) ∈ H. A subset H is saturated if v ∈ Λ◦, n ∈ Nk and s(vΛn) ⊆ H imply v ∈ H.
For a saturated hereditary subset H, we write IH for the ideal of KPR(Λ) generated by
{pv : v ∈ H}. Recall from [2, Lemma 5.1], IH is a basic and graded ideal in KPR(Λ).
Also,for an ideal I of KPR(Λ), we define HI = {v ∈ Λ◦ : pv ∈ I}. By [2, Lemma 5.2], HI

is a saturated hereditary subset of Λ◦.

Lemma 1.5. Let Λ be a row-finite k-graph without sources and R be a unital commutative
ring. Let I be a nonzero graded ideal of KPR(Λ). Then there exists rpv ∈ I for some
v ∈ Λ◦ and r ∈ R \ {◦}. Therefore every graded basic ideal I of KPR(Λ) contains a vertex
idempotent pv.

Proof. Suppose that I is a graded ideal in KPR(Λ). So, I = ⊕n∈ZkIn. Take an element
x ∈ In = I ∩KPR(Λ)n. Since x ∈ KPR(Λ)n, we can write x =

∑m
i=1 risαisβi∗ such that

d(αi)− d(βi) = n. Hence x =
∑m

i=1 ripvisγi which γi = αiβi
∗ and vi = r(αi), also γi 6= γj

for every i 6= j. So we have, sγj∗x =
∑m

i=1 risγj∗pvisγi = rjps(γj) ∈ I.

2 The Main results

Recall that an ideal I is called basic, if rpv ∈ I implies pv ∈ I for v ∈ Λ◦ and r ∈ R\{◦}.
An ideal I of a ring R is prime if for every pair of ideals I1 and I2 of R with I1I2 ⊆ I
at least one of I1 and I2 is contained in I. A ring R is prime if the zero ideal of R is
prime. In the graded algebras, a graded ideal I is prime if and only if for any two graded
ideals I1, I2 with I1I2 ⊆ I, we have I1 ⊆ I or I2 ⊆ I. We will use this fact in the proof of
proposition 2.1. A nonempty subset γ of Λ◦ is said to be satisfy Condition MT (3) if for
every v1, v2 ∈ γ there exists w ∈ γ such that v1Λw 6= ∅ and v2Λw 6= ∅.

First, we give some equivalent conditions for the primness of Kumjian-Pask algebras.

Proposition 2.1. Let Λ be a row-finite k-graph without sources and R be a unital com-
mutative ring. Then the following are equivalent:

1) KPR(Λ) is a prime ring.

2) R is an ID (Integral Domain) and Λ satisfies Condition MT (3).

3) R is an ID and HI ∩ HJ 6= ∅ for every nonzero graded basic ideals I and J of
KPR(Λ).

Proof. 1⇒ 2 : Suppose thatKPR(Λ) is a prime ring. Let v, w ∈ Λ◦. ThenKPR(Λ)pvKPR(Λ)
and KPR(Λ)pwKPR(Λ) are two nonzero ideals. So KPR(Λ)pwKPR(Λ)pvKPR(Λ) and
pwKPR(Λ)pv are nonzero. This implies, there are α, β ∈ Λ such that pwsαsβ∗pv 6= ◦ and
s(α) = s(β) = z. So α ∈ wΛz and β ∈ vΛz and this means that Λ satisfies Condition
MT (3). Now we show that R is an ID. By contradiction, if there exist nonzero elements
r, s ∈ R such that r.s = 0, then rKPR(Λ) and sKPR(Λ) are nonzero ideals in KPR(Λ).
But rKPR(Λ).sKPR(Λ) = rsKPR(Λ) = {◦}. This is contradiction, because KPR(Λ) is a
prime ring.
2 ⇒ 3 : Recall from 1.5 that every nonzero graded basic ideals of KPR(Λ) contains a
vertex idempotent pv. Let I, J be two nonzero graded basic ideals of KPR(Λ). So, there
are v, w ∈ Λ◦ such that pv ∈ I and pw ∈ J . Now by Condition MT (3), there is z ∈ Λ◦
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such that vΛz 6= ∅ and wΛz 6= ∅. So pz ∈ I ∩ J and HI ∩HJ 6= ∅.
3 ⇒ 1 : Let R be an ID and HI ∩HJ 6= ∅ for every nonzero basic graded ideals I, J of
KPR(Λ). We show that the zero ideal of KPR(Λ) is prime. Since the zero ideal is graded,
it is sufficient to show IJ 6= {◦} for every nonzero graded ideals I, J of KPR(Λ). If I, J
are two nonzero graded ideals, by 1.5 there are v1, v2 ∈ Λ◦ and r1, r2 ∈ R \ {◦} such that
r1pv1 ∈ I and r2pv2 ∈ J . Put Hi = {z ∈ Λ◦ : viΛz 6= ∅} for i ∈ {1, 2}. It is clear that
Hi are two hereditary subsets of Λ◦. Let I1 = IH1

and J1 = JH2
. Then pv1 ∈ I1 and

pv2 ∈ J1. Also we have, r1I1 ⊆ I and r2J1 ⊆ J . Since I1 and J1 are basic, graded ideals
of KPR(Λ), by the hypothesis (3), we get H1 ∩H2 6= ∅. Thus, there is z ∈ H1 ∩H2 such
that r1r2pz ∈ IJ . Furtheremore, since R is an ID, we have r1r2 6= ◦. So ◦ 6= r1r2pz ∈ IJ
and IJ 6= {◦}.

For a saturated hereditary subset H of Λ◦, we define a k-graph Λ \ H as bellow:
(Λ \H)◦ := Λ◦ \H , Λ \H := {µ ∈ Λ : s(µ) ∈ Λ◦ \H} such that r, s and d are defined

as in k-graph Λ. By [2, Proposition 5.5], there is an isomorphism between
KPR(Λ)

IH
and

KP (Λ \H).
Now, we may characterize prime graded basic ideals in the Kumjian-Pask algebras.

Corollary 2.2. Let Λ be a row-finite k-graph without sources and R be a unital commu-
tative ring. For a saturated, hereditary subset H of Λ◦, IH is a prime ideal of KPR(Λ), if
and only if R is an ID and Λ◦ \H satisfies Condition MT (3).

Proof. Let IH be a prime ideal. Since
KPR(Λ)

IH
∼= KPR(Λ\H), KPR(Λ\H) is a prime ring.

Therefore, Proposition 2.1 implies that R is an ID and Λ◦ \H satisfies Condition MT (3).
Conversely, let Λ◦ \H satisfy Condition MT (3) and R be an ID. So by Proposition 2.1,

KPR(Λ \ H) is a prime ring. Since
KPR(Λ)

IH
∼= KPR(Λ \ H), we conclude that IH is a

prime ideal of KPR(Λ).
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Abstract

In this paper, the concept of semi homomorphism of lattice implication algebras is
introduced and some properties investigated. The relation between prime filters and
semi homomorphisms of lattice implication algebras is obtained. Finally, a condition
is obtained which a semi homomorphism is a homomorphism.

Keywords: Lattice implication algebras, Semi implication homomorphism, Prime
filter.

Mathematics Subject Classification [2010]: 03G25, 06D99.

1 Introduction

Lattice implication algebras were first investigate by Y.Xu [3] in 1992. He proposed the
concept of lattice and implication algebra to research the logical system whose proposi-
tional value is given in a lattice from the semantic view point. Many researchers have
investigated this important logic. The properties of lattice implication algebras were stud-
ied in [4], [5]. The notion of homomorphism play an important role in study algebraic
structure, such as lattices, Hilbert algebras and BCK-algebras [1], [2]. We introduce the
notion of a semi implication homomorphism as a generalization of a homomorphism on
lattice implication algebras and obtain some results about it.

Definition 1.1. A lattice implication algebra is a structure L = (L,∨,∧,→,′ , 0, 1) of
type (2, 2, 2, 1, 0, 0) such that:[5]
(L1) L = (L,∨,∧,→,′ , 0, 1) is a bounded lattice with an order reversing involution ′, 1
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and 0 the greatest and the smallest element of L respectively,
(L2) x→ (y → z) = y → (x→ z),
(L3) x→ x = 1,
(L4) x→ y = y′ → x′,
(L5) x→ y = y → x = 1 implies x = y,
(L6) (x→ y)→ y = (y → x)→ x,
(L7) (x ∨ y)→ z = (x→ z) ∧ (y → z),
(L8) (x ∧ y)→ z = (x→ z) ∨ (y → z),
for all x, y, z ∈ L.

In the sequel, we will also refer to lattice implication algebra L = (L,∨,∧,→,′ , 0, 1) by
its universe L. A lattice implication algebra L is called a lattice H implication algebra, if
(x ∨ y ∨ ((x ∧ y)→ z) = 1, for all x, y, z ∈ L [3].

Definition 1.2. Let J be a subset of a lattice implication algebra L. Then J is called a
filter of L, if it satisfies the following conditions:
(1) 1 ∈ L,
(2) if x ∈ J and x→ y ∈ J, then y ∈ J,
for all x, y ∈ L.
The set of all filters of a lattice implication algebra L denoted by F (L) [5].

Definition 1.3. Let F be a non-empty subset of a lattice implication algebra L. Then F
is called a dual ideal of L, if it satisfies the following conditions:[4]
(1) if x ∈ F, y ∈ L, x ≤ y then y ∈ F,
(2) if x, y ∈ F then x ∧ y ∈ F.

Definition 1.4. A proper filter P of a lattice implication algebra is called a prime filter
if a ∨ b ∈ P implies a ∈ P or b ∈ P for all a, b ∈ L.
The set of all prime filters of a lattice implication algebra L denoted by PF(L) [5].

Definition 1.5. Let L1 and L2 be two lattice implication algebras. Then a mapping f
from L1 to L2 is called an implication homomorphism, if f(x → y) = f(x) → f(y), hold
for all x, y ∈ L1 [5].

Proposition 1.6. Let L1 and L2 be two lattice implication algebras and f be an implication
homomorphism from L1 to L2. Then [3]
(1) f(x ∨ y) = f(x) ∨ f(y), for all x, y ∈ L1,
(2) f(1) = 1.

2 Semi Implication Homomorphism

Definition 2.1. Let L1 and L2 be two lattice implication algebras. A mapping f from
L1 to L2 is called a semi implication homomorphism if it satisfies:
(1) f(1) = 1,
(2) f(x→ y) ≤ f(x)→ f(y), for all x, y ∈ L1.
It is clear that every implication homomorphism of lattice implication algebras is a semi
implication homomorphism but the converse may not be true in general. See the following
example.
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Example 2.2. Let L1 = {0, a, b, 1} with 0 ≤ a, b ≤ 1 where a, b are incomparable and let
L2 = {0, c, d, e, 1} with 0 ≤ c ≤ d ≤ e ≤ 1. In L1, we define ′ as 0′ = 1, a′ = b, b′ = a and
1′ = 0 and in L2, we define ′ as 0′ = 1, c′ = e, d′ = d, e′ = c and 1′ = 0. Define implication
operator→ for L1 as Table 1(a) and implication operator→ for L2 as Table 1(b). Then L1

and L2 are lattice implication algebras. Define f : L1 → L2 by f(0) = 0, f(a) = f(b) = c
and f(1) = 1. Then f is a semi implication homomorphism but it is not an implication
homomorphism, because c = f(a→ b) = f(b) ≤ f(a)→ f(b) = 1.

→ 0 a b 1

0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

(a) L1

→ 0 c d e 1

0 1 1 1 1 1
c e 1 1 1 1
d d d 1 1 1
e c d d 1 1
1 0 c d e 1

(b) L2

Table 1: Table for implication operator.

Definition 2.3. Let L be a lattice implication algebra and x0 ∈ L. Define θl, θr : L→ L
as follows: for any x ∈ L :

θl(x) = x0 → x, θr(x) = x→ x0,

θl is called left-mapping and θr is called right-mapping.

Proposition 2.4. Let L be a lattice implication algebra and x0 ∈ L. Then θr is a semi
implication homomorphism.

Remark 2.5. In general θl is not a semi implication homomorphism. Suppose L = L2

and x0 = c in Example 2.2. Then θl(d → 0) = c → (d → 0) = c → d = 1, but
θl(d) → θl(0) = (c → d) → (c → 0) = 1 → e = e. Hence θl is not a semi implication
homomorphism.

In the following theorem, we will obtain the conditions that θl is a semi implication
homomorphism.

Theorem 2.6. Let L be a lattice implication algebra and x0 ∈ L. Then the following
conditions are equivalent:
(1) L is a lattice H implication algebra,
(2) θl is a semi implication homomorphism,
(3) θl is an implication homomorphism.

Proposition 2.7. Let f : L1 → L2 be a semi implication homomorphism of lattice impli-
cation algebras. Then for all x, y ∈ L1:
(1) if x ≤ y, then f(x) ≤ f(y),
(2) if f(0) = 0, then f(x′) ≤ (f(x))′,
(3) f(x ∧ y) ≤ f(x) ∧ f(y),
(4) f(x) ∨ f(y) ≤ f(x ∨ y).
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Remark 2.8. In the Proposition 2.7 may not establish equality for parts 2, 3 and 4 in
general. Consider Example 2.2. We have
c = f(a′) � (f(a))′ = d,
0 = f(a ∧ b) � f(a) ∧ f(b) = c,
c = f(a) ∨ f(b) � f(a ∨ b) = 1.

Proposition 2.9. Let L1 and L2 be two lattice implication algebras. If f : L1 → L2 is a
semi implication homomorphism, then ker(f) = {x ∈ L1|f(x) = 1} is a filter of L1.

Proposition 2.10. Let L1 and L2 be two lattice implication algebras and f : L1 → L2 be
a semi implication homomorphism. If f is one to one, then ker(f) = {1}.

Remark 2.11. The converse of Proposition 2.10 may not be true in general. In Example
2.2, we have ker(f) = {1} but f is not one to one, because a 6= b but f(a) = f(b) = c.

Theorem 2.12. Let L1 and L2 be two lattice implication algebras and f : L1 → L2 be a
map. Then the following conditions are equivalent:
(1) f is a semi implication homomorphism,
(2) f−1(Y ) ∈ F(L1), for all Y ∈ F(L2).

Proposition 2.13. Let L1 and L2 be two lattice implication algebras and f : L1 → L2

be a implication homomorphism. Define {f(L1/X)} ↓= {y ∈ L2|f(x) ≥ y, for some
x ∈ L1/X}, for any X ∈ PF(L1). Then {f(L1/X)} ↓ is a lattice ideal of L2.

Theorem 2.14. Let L1 and L2 be two lattice implication algebras and f : L1 → L2 be a
semi implication homomorphism. Then the following conditions are equivalent:
(1) f is an implication homomorphism,
(2) IfX ∈ PF(L1) and Y ∈ PF(L2) such that f−1(Y ) ⊆ X, then there exists Z ∈ PF(L2)
such that Y ⊆ Z and f−1(Z) = X.
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Abstract

In this paper, we introduce the notion of the radical of ·-ideal of PMV -algebras. We
have also presented several different characterizations and many important properties
of the radical of a ·-ideal in a PMV -algebra. This leads us to introduce the notion of
semi-maximal ·-ideal. Finally, we show that I is a semi-maximal ·-ideal of A if and
only if A/I has no nilpotent elements of A.

Keywords: PMV -algebra, ·-ideal, radical
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1 Introduction

A. Dvurecenskij and A. Di Nola in [3] introduced the notion of PMV -algebras, that is
MV -algebras whose product operation (·) is defined on the whole MV -algebra. This op-
eration is associative and left/right distributive with respect to partially defined addition.
They showed that the category of product MV -algebras is categorically equivalent to the
category of associative unital l-rings. In addition, they introduced and studied MV F -
algebras [3]. They also introduced ·-ideals in PMV -algebras. Then they showed that:
Any MV F -algebra is a subdirect product of subdirectly irreducible MV F -algebras [3,
Corollary 5.6]. Thus they concluded that a product MV -algebra is an MV F -ring if and
only if it is a subdirect product of linearly ordered product MV -algebras [3, Theorem 5.8].

In this paper, we introduce the notion of the radical of a ·-ideal in PMV -algebras.
Several characterizations of this radical is given. We define the notion of a semimaximal
·-ideal in a PMV -algebra. Finally we show that A/I has no nilpotent elements if and only
if I is a semi-maximal ·-ideal of A.

2 Preliminaries

In this section, we summarize properties of the basic notions in MV -algebras and PMV -
algebras. For more details about these concepts, we refer the readers to [1, 3, 2].

Definition 2.1. [1] An MV -algebra is a structure (M , ⊕, *, 0), where ⊕ is a binary
operation, * is a unary operation, and 0 is a constant satisfying the following conditions,
for any a, b ∈M :
(MV 1) (M,⊕,0) is an abelian monoid, (MV 2) (a∗)∗ = a, (MV 3) 0∗ ⊕ a = 0∗, (MV 4)
(a∗ ⊕ b)∗ ⊕ b = (b∗ ⊕ a)∗ ⊕ a.
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Definition 2.2. [1] An ideal of an MV -algebra A is a nonempty subset I of A if it satisfies
the following conditions:
(I1) If x ∈ I, y ∈ A and y ≤ x, then y ∈ I, (I2) If x, y ∈ I, then x⊕ y ∈ I. We denote the
set of all ideals of an MV -algebra A by Id(A).

Definition 2.3. [5] Let I be a proper ideal of A. The intersection of all maximal ideals
of A which contain I is called the radical of I and it is denoted by Rad(I).

Theorem 2.4. [5] Let I be a proper ideal of A. Then Rad(I) = {a ∈ A : na � a ∈
I, for all n ∈ N}.

The categorical equivalence between MV -algebras and lu-groups leads also to the
problem of defining a product operation on MV -algebras, in order to obtain structures
corresponding to l-rings. We recall that an l-ring [?] is a structure (R,+, ·, 0,≤), where
(R,+, 0,≤) is an l-group such that, for any x, y ∈ R x ≥ 0 and y ≥ 0 implies x · y ≥ 0.

Definition 2.5. [3] A product MV -algebra (or PMV -algebra, for short) is a structure
(A, ⊕, *, ·, 0), where (A, ⊕, *, 0) is an MV -algebra and · is a binary associative operation
on A such that the following property is satisfied:if x+ y is defined, then x · z + y · z and
z ·x+ z · y are defined and (x+ y) · z = x · z+ y · z, z · (x+ y) = z ·x+ z · y, where + is a
partial addition on A, as follows: for any x, y ∈ A, x+y is defined if and only if x ≤ y∗
and in this case, x+ y := x⊕ y. If A is a PMV -algebra, then a unity for the product is an
element e ∈ A such that e · x = x · e = x for any x ∈ A. A PMV -algebra that has unity
for the product is called unital.A ·-ideal of a PMV -algebra A is an ideal I of MV -algebra
A such that if a ∈ I and b ∈ A entail a · b ∈ I and b · a ∈ I. We denote by Idp(A) the set
of ·-ideals of a PMV -algebra A.

In the sequel, an lu-ring will be a pair (R, u) where (R,⊕, ·,≤) is an l-ring and u
is a strong unit of R such that u · u ≤ u. The last conditions imply that the interval
[0, u] of an lu-ring (R, u) is closed under the product of R. Thus, if we consider the
restriction of · to [0, u] × [0, u], then the interval [0, u] has a canonical PMV -algebra
structure: x ⊕ y := (x + y) ∧ u, x∗ := u − x, x · y := x · y, for any 0 ≤ x, y ≤ u. We
shall denote this structure [0, u]R.

If UR is the category of lu-rings, whose objects are pairs (R, u) as above and whose
morphisms are l-rings homomorphisms which preserve the strong unit, then we get a
functor Γ : UR → PMV, Γ(R, u) := [0, u]R, for any lu-ring (R, u), Γ(h) := h |[0,u]
for any lu-rings homomorphism h. In [3] is proved that Γ establishes a categorical equiv-

alence between UR and PMV.

Definition 2.6. [4] Let P be a ·-ideal of A. P is called a ·-prime if (i) P 6= A, (ii) for
every a, b ∈ A, if a · b ∈ P , then a ∈ P or b ∈ P .

Definition 2.7. [2] An element a in MV -algebra A is said to be infinitesimal if and only
if a 6= 0 and na ≤ a∗ for each integer n ≥ 0. The set of all infinitesimals in A will be
denoted by Inf(A).

3 Main results

From now on (A,⊕, ∗, 0) (or simply A) is a PMV -algebra.
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Definition 3.1. Let I be a proper ·-ideal of A. The intersection of all ·-prime ideals of
A which contain I is called the radical of I and it is denoted by Rad(I). If there are not
·-prime ideals of A containing I, then Rad(I) = A.

Example 3.2. Let Ω = {1, 2} and A = P(Ω). Which is a PMV -algebra with ⊕ = ∪ and
� = · = ∩. Obviously, P1 = {∅, {1}} and P2 = {∅, {2}} are ·-prime ideals of A. Hence
Rad(P1) = P1 and Rad{∅, {2}} = P2 and Rad{∅} = {∅, {1}} ∩ {∅, {2}} = {∅}.

Example 3.3. Let M2(R) be the ring of square matrices of order 2 with real elements
and 0 be the matrix with all element 0. If we define the order relation on components

A = (aij)i,j=1,2 ≥ 0 iff aij ≥ 0 for any i, j, such that v =

(
1/2 1/2
1/2 1/2

)
, then A =

Γ(M2(R), v) = [0, v] is a PMV -algebra. Obviously, Id(A) = {{0}, A}. Hence we show
that P = {0} is not a ·-prime ideal of A [4]. Thus Rad{0} = A.

Lemma 3.4. Let I be ·-ideal of A. Then Rad(I) = {a ∈ A : an = a · a · . . . · a ∈
I, for some n ∈ N}.

We recall that x ∈ I → J if and only if (x] ∩ I ⊆ J , for ideals I and J of A [2].

Theorem 3.5. Let I and J be proper ·-ideals of A and a, b ∈ A. Then the following
condition hold:
(1) If x ∈ B(A), for any x ∈ A, then a⊕ b ∈ I, (2) If I ⊆ J , then Rad(I) ⊆ Rad(J), (3)
If A is a unital PMV -algebra, then Rad(I) = A iff I = A, (4) Rad(Rad(I)) = Rad(I),
(5) Rad(I) ∪ Rad(J) ⊆ Rad(I ∪ J ], (6) Rad(I) → Rad(J) ⊆ I → Rad(J), (7) Rad(I →
J) ⊆ Rad(I → Rad(J)), (8) If for every a ∈ I there exists k ∈ N such that ka ∈ J , then
Rad(I) ⊆ Rad(J).

Theorem 3.6. Let {Ii}i∈I be a family of proper ·-ideals of A. Then Rad(∩i∈IIi) =
∩i∈IRad(Ii).

Proposition 3.7. Let f : A → B be a PMV -homomorphism. Then Rad(Ker(f)) =
f−1(Rad({0})).

Definition 3.8. The set of nilpotent elements of a PMV -algebra A is Nil(A) = {x ∈ A :
xn = x · · . . . · x = 0, for some n ≥ 1}.

Theorem 3.9. Let I be a ·-ideal of a PMV -algebra A. Then Nil(A) ⊆ Rad(I).

Remark 3.10. If I is a ·-ideal of A, then a ∈ Rad(I) if and only if a/I ∈ Nil(A/I).

Definition 3.11. Let I be a proper ideal of A. If Rad(I) = I, then I is called a semi-
maximal ·-ideal of A. By Theorem 3.4, a ·-ideal I of A is a semi-maximal if and only if
I = {a ∈ A : an ∈ I for some n ∈ N}.

Example 3.12. In Example 3.2, we have Rad(P1) = P1, hence P1 is a semi-maximal
·-ideal.

Proposition 3.13. Let A,B be PMV -algebras and f : A→ B be a PMV -homomorphism.
Then the following statements hold: (a) If I is a semi-maximal ·-ideal of B, then f−1(I)
is a semi-maximal ·-ideal of A, (b) If f is onto, I is a semi-maximal ·-ideal of A and
Ker(f) ⊆ I, then f(I) is a semi-maximal ·-ideal of B.
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Theorem 3.14. Let I be a ·-ideal of A. Then the following statements hold: (1) Rad(I)
is the smallest semi-maximal ·-ideal of A such that I ⊆ Rad(I), (2) Rad(I)/I is a semi-
maximal ·-ideal of A/I.

Corollary 3.15. Let {Ii}i∈I be a family of semi-maximal ·-ideals of A. Then
⋂

i∈I
Ii a

semi-maximal ·-ideal of A.

Theorem 3.16. If A is a PMV -algebra and I is a ·-ideal of A, then A/I has no nilpotent
elements if and only if I is a semi-maximal ·-ideal of A.
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Abstract

In this paper R is a commutative ring with identity. We prove that if the lattice of
ideals R is a principal lattice, then the prime spectrum of R is a sequential Noetherian
topological space.
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1 Introduction

Throughout this paper L will denote a K-lattice whose maximal element is compact and
M will be an L-module which is also a K-lattice. A subset A of a topological space X is
called sequentially closed if it has the following property: if a sequence in A converges in X
to a point x, then x ∈ A. A subset E of a topological space X is called sequentially open
if X\E is sequentially closed. A topological space (X, τ) is called s-compact if (X, τs) is
compact, or equivalently, every sequentially open cover of X has a finite subcover. By a
multiplicative lattice, we mean a complete lattice L, with least element 0 = 0L and compact
greatest element R, on which there is defined a commutative, associative, completely join
distributive product for which R is a multiplicative identity. Multiplicative lattices have
been studied extensively by E. W. Johnson and C. Jayaram (see [3] and [4]). In this article,
relationships among the multiplicative lattices with ACC on radical elements, s-compact,
and sequential Noetherian topological space are considered. Also, we suppose that R is
a commutative ring with identity and L(R) is the lattice of ideals R. It is proved that if
L(R) is a principal lattice, then the prime spectrum Spec(R) is a sequential Noetherian
topological space.

2 Sequential Noetherian topological space and Radical ele-
ments

A left lattice module over L, or simply an L-module, is a complete lattice M, together
with a multiplication L×M −→M satisfying the following for a, b ∈ L, {aλ|λ ∈ Λ} ⊆ M,
A ∈M , {Bγ|γ ∈ Γ} ⊆ M:
(i) (ab)A = a(bA);
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(ii) (
∨
λ aλ)(

∨
γ Bγ) =

∧
λ,γ aλBγ ;

(iii) RA = A;
(iv) 0LA = 0M, where 0M is the smallest of M.

An element A ∈ M is said to be compact if whenever A ≤ ∨{Bλ|λ ∈ Λ} for some
family {Bλ|λ ∈ Λ} of members of M, then there is a finite subset Γ ⊆ Λ such that
A ≤ ∨{Bλ|λ ∈ Γ}. If each element of M the join of a family of compact elements of M,
then M is said to be compactly generated or a CG-module. An L-module M is called a
K-lattice if it is a CG-module and AH is compact for each compact element A ∈ L and
each compact element H ∈M.

We follow the terminology of [8], [1]. We say that L is a CG-lattice or K-lattice re-
spectively if this holds when L is considered as an L-module. In this paper, will deal with
various applications of lattice concepts to general topology-i.e., to the general theory of
topological spaces. The ideas of general topology can be most simply introduced through
the concept of a metric space. For results on rings with ACC on radical ideals see ([9],
[10], [6]). Let Spec(L) denote the set of prime elements of L, which we give the Zariski
topology. That is, the closed sets are the sets of the from V (A) = {P ∈ Spec(L) |A ≤ P}
with A ∈ L. If P ⊆ Spec(L), we always give P the relative topology induced from the
Zariski topology on Spec(L). Recall that a topological space P is said to be Noetherian if
P satisfies the descending chain condition on closed sets. If A ∈ L, we define the P-radical
of A to be P-rad(A) = ∧{P ∈ P |A ≤ P}, and call A a P-radical element if A = P-rad(A).
If P =Spec(L), we will omit the P. It follows that a subset P of Spec (L) is Noetherian
if and only if L has ACC on the P-radical elements of L. If P ⊆ Spec(L), we say that
an element A of L is P-radically finite if there exists a compact element F ≤ A such that
P-rad(F ) = P-rad(A). If P =Spec(L) we say radically finite for P-radically finite.

Theorem 2.1. If P ⊆ Spec(L), then each A ∈ L is P-radically finite if and only if P is
a Noetherian topological space.

Proof. (⇐=) Suppose there exists an H ∈ L that is not P-radically finite. Let h1 ≤ H
be compact. Then H � P-rad(h1). Let h2 ≤ H be compact with h2 � rad(h1). We have
P−rad(h1) < P-rad(h1 ∨ h2) and H � P−rad(h1 ∨ h2), and so on, a contradiction to P
being Noetherian.

(=⇒) To show that P is Noetherian, letH1 ≤ H2 ≤ . . . be a chain of P-radical elements.
Let H = ∨∞i=1Hi. Since H is P-radically finite, there exists a compact element h≤ H such
that P-rad(H) = P-rad(h). Then h≤ Hj for some j and P-rad(h) ≤ Hj ≤ P-rad(H) =
P-rad(h). Therefore Hj = Hk for all k ≥ j.

Definition 2.2. The maximal irreducible subsets of X are called the irreducible compo-
nents of X.

Example. The irreducible components of the topological space with the trivial topol-
ogy is X itself. The irreducible components of the topological space X with the discrete
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topology are the points of X. The topological space X with the finite complement topol-
ogy is irreducible exactly whenX consists of infinitely many points, or consists of one point.

The following theorem is one of the main results on principal element of a lattice.
Dilworth overcame this in [2], with a new notion of a principal element. Basically, an
element E of a multiplicative lattice L, is said to be meet-(join-)principal if (A ∧ (B :
E))E = (AE) ∧ B (if (BE ∨ A) : E = B ∨ (A : E)) for all A and B in L. A principal
element is an element that is both meet-principal and join-principal or A∧E = (A : E)E
and AE : E = A ∨ (0 : E), for all A ∈ L. A lattice L, is called a principal lattice, when
each of its elements is principal. Here, the residual quotient of two elements A and B is
denoted by A : B, so A : B = ∨{X ∈ L |XB ≤ A}. Now, we can prove the following
theorem.

Theorem 2.3. Let R be a commutative ring with identity. If L(R) is a principal lattice,
then the prime spectrum Spec(R) is a sequential Noetherian topological space.

Proof. We know, if L(R) is a principal lattice, then R is Noetherian multiplication ring
and Spec(R) is Noetherian topological space (see [7] and [5]) . Also, let X be a Noetherian
topological space in which every irreducible closed subset F has a generic point. Then
the space(X) is sequential if and only if h(X) ≤ ω1. By using Theorem 2.2, Spec(R) is a
sequential Noetherian topological space.
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Abstract

we prove that the non-abelian tensor product G ⊗ H is locally nilpotent or locally
solvable if such information is given in terms of DH(G), the derivative subgroup of G
afforded by the action of H on G. This derivative subgroup reduce to the commutator
subgroup G′ of G if G = H and the actions are conjugation. Also we present a
survey of results into the tensor analogues of 3-Engel groups. Finally, we present
some results about subgroup which is generalization of the tensor analogue of right
2-Engel elements of a group.

Keywords: Nonabelian tensor product, Engel elements of a group, locally nilpotent.
Mathematics Subject Classification [2010]: 20F19, 20J99, 20F45.

1 Introduction

For any group G, the the nonabelian tensor square is a group generated by the symbols
g ⊗ h, subject to the relations,

gg′ ⊗ h = (gg′ ⊗ hg′
)(g′ ⊗ h) and g ⊗ hh′ = (g ⊗ h′)(gh′ ⊗ hh′

)

where g, g′, h, h′ ∈ G and gh = h−1gh.
The nonabelian tensor square is a special case of the nonabelian tensor product which
has its origins in homotopy theory. It was introduced by Brown and Loday in [3] and [4],
extending ideas of Whitehead in [10]. In [2], Brown, Johnson, and Robertson start the
investigation of nonabelian tensor squares as group theoretical objects. If G = H and all
actions are given by conjugation, then G⊗G is called the non-abelian tensor square. One
notes that the non-abelian tensor square of a given group always exists.

Definition 1.1. Let G and H be groups with H acting on G. Then the subgroup

DH(G) = ⟨g−1gh | g ∈ G, h ∈ H⟩
of G is the derivative of G by H. The derivative H by G, DG(H), is defined as similar.
Taking G = H, and all actions to be conjugation, the derivative subgroup reduce to the
commutator subgroup G′ of G.
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Visscher [9] showed that if DH(G) is nilpotent(or solvable), then G ⊗ H is nilpotent
(or solvable). We prove this result for locally nilpotent (or solvable) groups. Recall
set of right n-Engel elements of a group G is defined by Rn(G) = {a ∈ G : [a,n x] =
1, ∀x ∈ G}. (Here [a, x] denotes a−1x−1ax, and [a,n x] denotes the left-normed commutator
[[...[a, x], ...], x].) Tensor analogues of Rn(G) can be easily defined as

R⊗
n (G) = {a ∈ G : [a,n−1 x] ⊗ x = 1⊗ ∀x ∈ G},

is called the set of right n⊗-Engel elements of a group G. Biddle and Kappe in [1] studied
the tensor analogues of the centralizers and introduced the tensor analogues of right 2-
Engel elements in groups. They proved that R⊗

2 (G) is a characteristic subgroup of G
containing Z(G) and being contained in R2(G). The properties of the set of all these
elements R⊗

2 (G) = {a ∈ G : [a, x] ⊗ x = 1⊗, ∀x ∈ G} have been studied by Moravec [7].
Moreover he described the structure of 2⊗-Engel groups, i.e. groups satisfying the identity
[x, y] ⊗ y = 1⊗. Kappe and Kappe [6] proved that a group G is a 3-Engel group if and
only if the normal closure of every element in G is 2-Engel group. In [8] Nasrabadi and
the second auther proved tensor analogue of this result.
Let β be group-theoretic property. A group G is said to have a finite covering by β-
subgroups if G be union of finite family of β-subgroups. Moravec [7] proved that a group
G has a finite covering by 2⊗-Engel groups if and only if |G : R⊗

2 (G)| is finite. Another
result of [5] in this direction is that G has a finite covering by 2-Engel normal subgroups
if and only if G is a 3-Engel group and |G : R2(G)| < ∞. In [8] Nasrabadi and the second
auther proved the situation similar in the context of 3⊗-Engel groups.

2 Main results

Lemma 2.1. ([4]) (i) There exist homomorphisms λ : G ⊗ H → G,µ : G ⊗ H → H such
that λ(g ⊗ h) = g−1gh, µ(g ⊗ h) = h−gh.
(ii) kerλ and kerµ are central subgroups of G ⊗ H.

Lemma 2.2. ([9]) Let G and H be groups which act on each other in a compatible way.
If t1, t2, ..., tn ∈ G ⊗ H, then

[t1, t2, ..., tn] = [λ(t1), λ(t2), ..., λ(tn−1)] ⊗ µ(tn).

Visscher [9] showed that if DH(G) is nilpotent(or solvable), then G ⊗ H is nilpotent
(or solvable). We prove this result for locally nilpotent (or solvable) groups.

Theorem 2.3. Let G and H be groups which act on each other in a compatible way.
(i) If DH(G) is locally nilpotent, then so is G ⊗ H.
(ii) If DH(G) is locally solvable, then so is G ⊗ H.

The following corollary follows from the above theorem.

Corollary 2.4. If G′ is locally nilpotent (or solvable), then so is G ⊗ G.

Kappe and Kappe [6] proved that a group G is a 3-Engel group if and only if the
normal closure of every element in G is a 2-Engel group. The following Theorem is a
tensor analogue of this result.
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Theorem 2.5. A group G is a 3⊗-Engel group if and only if the normal closure of every
element in G is a 2⊗-Engel group.

Kappe [5] proved a group G is a 3-Engel group if and only if ⟨xG⟩R2(G) is a 2-Engel
group for all x ∈ G. Now we have

Theorem 2.6. A group G is a 3⊗-Engel group if and only if ⟨xG⟩R2
⊗(G) is a 2⊗-Engel

group for all x ∈ G.

Also Kappe [5] proved that a group has a finite covering by 2-Engel normal subgroups
if and only if |G : R2(G)| < ∞ and G is a 3-Engel group. Now we have

Theorem 2.7. A group G has a finite covering by 2⊗-Engel normal subgroups if and only
if G is a 3⊗-Engel group and |G : R⊗

2 (G)| < ∞ .

Now we introduce a subgroup of G that is generalization of R2
⊗(G).

Definition 2.8. Let G be a group. We define

B⊗(G) = {a ∈ G|[a, g, x] ⊗ g = 1⊗ ∀g, x ∈ G}.

Theorem 2.9. Let G be a group. Then we have
i) B⊗(G) is a subgroup of G.
ii) R⊗

2 (G) ⊆ B⊗(G).
iii) [a, g, x, h] ⊗ g = 1⊗, for a ∈ B⊗(G) and g, x, h ∈ G.
iv) ([a, g, x, b, c] ⊗ h) = 1⊗, for a ∈ B⊗(G) and g, x, h ∈ G.

Theorem 2.10. Every group G of the variety with the law

[x, g, y] ⊗ g = 1⊗,

for all x, g, y ∈ G is nilpotent of class at most 3.
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Abstract

In this paper, we introduce β3 near - rings and give some examples. By some
examples and theorems, we find relations between β3 near - rings, β1 near - rings and
strong B1 near - rings. Finally, we show that every β3 near - ring N is isomorphic to
a subdirect product of subdirectly irreducible β3 near - rings.

Keywords: β1 near - ring, β3 near - ring, strong B1 near - ring, mate function

Mathematics Subject Classification [2010]: 16Y30

1 Introduction and preliminaries

near - rings were introduce by Dickson in 1905 and we proved some theorems. Then
B1 near - rings and strong B1 near - ring were defined by S.Silviya, and etal [4]. After
that U.Sugantha and R.Balakrishnan defined β1 near - rings and investigated the relation
between these notions and (strong) B1 near - rings [5].
In this paper, we defined β3 near - rings and find some relations between β3 near - rings,
β1 near - rings and strong B1 near - rings.
At first we recall the definition a near - ring.

Definition 1.1. [3] A near - ring is a non - empty set N together with two binary oper-
ations “+” and “.” such that
(a) ( N , + ) is a group (not necessarily ablian),
(b) (N , . ) is a semigroup,
(c) ∀n1,n2 n3 ∈ N : (n1 +n2)n3 = n1n3 + n2n3 (“ right distributive law ”)
Obviously 0n = 0 for all n ∈ N . If, in addition, n0 = 0 for all n ∈ N , we say that N is
zero symmetric.
In a near - ring N, and φ 6= S ⊆ N , we denote:

L = {a ∈ N | ∃n ∈ N s.t an = 0}
E = {a ∈ N | a2 = a}

C(S) = {n ∈ N | nx = xn;∀x ∈ N}
∗Speaker
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Example 1.2. [4] Consider (Z4 , + , . ) where (Z4 , + ) is the group of integers modulo
“4” and “.” defined as follows

. 0 1 2 3

0 0 0 0 0
1 0 0 1 0
2 0 0 3 0
3 0 0 2 0

Then (Z4 , + , .) is a near - ring.
In the sequal, a near - ring is denoted by N.

Definition 1.3. [3] (i) A subgroup (M , + ) of ( N , + ) is called a subnear - ring of N
if MM ⊆M ,
(ii) A subgroup (M , + ) of ( N , + ) is called a N - subgroup of N if NM ⊆ M and an
invariant N -subgroup of N if MN ⊆M .

Definition 1.4. [3] A normal subgroup I of ( N , + ) is called an ideal of N (I EN) if
(a) IN ⊆ I,
(b) ∀ n, n

′ ∈ N , ∀ i ∈ I: n(n
′
+ i)− nn′ ∈ I.

Definition 1.5. [1, 4, 5] A near - ring N is called:
(i) a β1 near - ring if aNb = Nab, for all a, b ∈ N ,
(ii) a β2 near - ring, if aNb = abN, for all a, b ∈ N ,
(iii) a strong B1 near - ring, if Nab = Nba for all a, b ∈ N ,
(iv) an integral, if N has no non - zero zerodivisors.

Definition 1.6. [1]A map f:N → N is called a mate function for N, if x = xf(x)x for all
x ∈ N .

Definition 1.7. [3] An element a ∈ N is said to be nilpotent if for some positive integer
k, ak = 0. N is called nil if every element of N is nilpotent.

Theorem 1.8. [3] Let N be zero symmetric. Then the following statement are equivalent:
(i) N has no non - zero nilpotent elements,
(ii) N is a subdirect product of integral near - rings.

Definition 1.9. [3] A near - ring N is said to fulfill the insertion of factors - property
(brively: IFP) provided that, ∀ a,b, n ∈ N : ab = 0 ⇒ anb = 0.

Definition 1.10. [3] If N has IFP and for all x, y ∈ N , xy = 0 implyes yx = 0, then we
say that N has (* , IFP).

Lemma 1.11. [1] Let N be a zero symmetric near - ring with a mate function “ m ”.
Then N has ( * , IFP ) if and only if L ={0}

Definition 1.12. [3] An ideal I of N is called a completely semiprime ideal if for a ∈ N ,
a2 ∈ I ⇒ a ∈ I

Theorem 1.13. [3]A near - ring N hasno non-zero nilpotent element if and only if for all
x ∈ N, x2 = 0 implies x = 0 .
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Lemma 1.14. [5] Let “ f ” be a mate function for N. Then for every x ∈ N,
xf(x), f(x)x ∈ E and Nx = N f(x)x, xN = xf(x)N.

Definition 1.15. [3] A near - ring N is said to be regular if for every a ∈ N there exists
b ∈ N such that a = aba.

2 β3 near - ring

Definition 2.1. We say that N is a β3 near - ring, if aNb = Nba, for all a, b ∈ N .

Example 2.2. [3] Consider the near - ring ( N , + , . ), where ( N , + ) is the kleins,

four group {0, a, b, c} and “ . ” defined as follows:

. 0 a b c

0 0 0 0 0
a 0 0 a a
b 0 a c b
c 0 a b c

Then (N, + , . ) is a β3 near - ring.
(b)In the example (a), we define “.” as follows:

. 0 a b c

0 0 0 0 0
a 0 a b c
b 0 0 0 0
c 0 a b c

Then (N, + , . ) is a β1 near - ring, while it is not a β3 near - ring.

Proposition 2.3. Let N be a strong B1 near - ring. Then N is a β1 near - ring if and
only if N is a β3 near - ring.

Proposition 2.4. Let N be a β3 near - ring. If N has identity 1, then N is a zero
symmetric.

Theorem 2.5. Any homomorphic image of a β3 near - ring is a β3 near - ring.

Theorem 2.6. Let N be a strong B1 near - ring. If N is a β3 near - ring, then
Nax ⊆ Na ∩Nx, for all x, a ∈ N .

Lemma 2.7. Let N be a β3 near - ring with identity 1 . Then every N - subgroup of N
is invariant .

Proposition 2.8. Let N be a β3 near - ring. Then N admits a mate function if and only
if x ∈ Nx2 for all x ∈ N

Lemma 2.9. Let N be a β3 near - ring. Then for all a, b, c ∈ N , there exists n ∈ N , such
that abc = nca.
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Example 2.10. Consider the near - ring ( N , + , . ) where ( N , + ) is the kleins, four
group {0, a, b, c} and “ . ” defined as following:

. 0 a b c

0 0 0 0 0
a 0 a b 0
b 0 0 b 0
c 0 0 0 c

Then for all a, b, c ∈ N , there exists n ∈ N , such that abc = nca. While N is not a β3
near - ring.

Theorem 2.11. Let N be a zero - symmetric β3 near - ring with a mate function “f”.
Then:
(i) L = {0} ,
(ii) N has ( * , IFP ) ,
(iii) E ⊆ C(N) ,
(iv) N is a subdirect product of integral near - rings .

Theorem 2.12. Let N be a zero symmetric strong B1 near - ring with a mate function
“f ”.Then L ={0} and E ⊆ C(N) iff N is β3 near - ring.

Theorem 2.13. Every β3 near - ring N is isomorphic to a subdirect product of subdirectly
irreducible β3 near - ring.
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Abstract

The aim of this paper is to determine weakly spatial frames. The concept of
weakly spatiality is actually weaker than spatiality and they are equivalent in the
case of regular frames. For compact conjunctive frames, the notion of spatiality, weak
spatiality and dual atomicity coincide.

Keywords: Frame, Weakly spatial frame, Regular frame, spatial frame, Ring of real-
valued continuous functions on a frame

Mathematics Subject Classification [2010]: 06D22

1 Introduction

Throughout, L denotes a frame, ΣL denotes the set of prime elemets of L, and RL denotes
the ring of real-valued continuous functions on L.

In the theroy of frames (or “pointfree topology”), several authors have tried to find a
suitable form of separation axioms. In [6], T2- frames are describe also authors investigate
almost compact frames and H-closed extensions of T2- frames. All unexplained facts
concerning separation axioms can be found in [6] or in [7].

The concept of a weakly spatial frame is introduced and the main results of the note
are given in Section 2. The weakly spatial frames play an important role in this note. For
conjunvtive frames, they are equivalent with spatial frames. There are many examples of
frames which are weakly spatial but they are not spatial (Remark 2.3). Using the Axiom
of Choice, compact frames are weakly spatial (Proposition 2.4).

Let L be a weakly spatial frame. In Proposition 2.8, it is proved that if α ∈ RL and
Σcoz(α) = ∅, then coz(α) = ⊥, i.e., α = 0. Also for every α ∈ RL, Z(α) = ∅ if and only if
coz(α) = >, i.e., α is a unit of RL(Proposition 2.10). Finally, in the last proposition, it is
shown that ΣL is a compact space if and only if L is a compact frame.

Here, we recall some definitions and results from the literature on frames and the
pointfree version of the ring of continuous real valued functions. For more details see the
appropriate references given in [1, 5, 7].

A frame is a complete lattice M in which the distributive law x∧∨S =
∨{x∧s : s ∈ S}

holds for all x ∈ L and S ⊆M . We denote the top element and the bottom element of M
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by > and ⊥ respectively. The frame of open subsets of a topological spase X is denoted
by OX.

A frame homomorphism (or frame map) is a map between frames which preserves
finite meets, including the top element, and arbitrary joins, including the bottom element.

An element a of a frame L is said to be rather below an element b, written a ≺ b, in
case there is an element s, called a separating element, such that a∧ s = ⊥ and s∨ b = >.
On the other hand, a is completely below b, written a ≺≺ b, if there are elements (cq)
indexed by the rational numbers Q∩ [0, 1] such that c0 = a, c1 = b, and cp ≺ cq for p < q.
A frame L is said to be regular if a =

∨{x ∈ L | x ≺ a} for each a ∈ L, and completely
regular if a =

∨{x ∈ L | x ≺≺ a} for each a ∈ L.
An element a ∈ L is said to be compact if a =

∨
S, S ⊆ L, implies a =

∨
T for

some finite subset T ⊆ S. A frame L is said to be compact whenever its top element > is
compact. An element p ∈ L is said to be prime if p < > and a ∧ b ≤ p implies a ≤ p or
b ≤ p. An element m ∈ L is said to be maximal (or dual atom) if m < > and m ≤ x ≤ >
implies m = x or x = >. As it is well known, every maximal element is prime.

Recall the contravariant functor Σ from Frm to the category Top of topological spaces
which assigns to each frame L its spectrum ΣL of prime elements with Σa = {p ∈ ΣL|a 6≤
p} (a ∈ L) as its open sets. Also, for a frame map h : L → M , Σh : ΣM → ΣL takes
p ∈ ΣM to h∗(p) ∈ ΣL, where h∗ : M → L is the right adjoint of h characterized by the
condition h(a) ≤ b if and only if a ≤ h∗(b) for all a ∈ L and b ∈M . Note that h∗ preserves
primes and arbitrary meets. For more details about functor Σ and its properties which
are used in this note see [7].

Recall [1] that the frame L(R) of reals is obtained by taking the ordered pairs (p, q)
of rational numbers as generators. The set RL of all frame homomorphisms from L(R)
to L has been studied as an f -ring in [1]. Corresponding to every continuous operation
� : Q2 → Q (in particular +, .,∧,∨) we have an operation on RL, denoted by the same
symbol �, defined by:

α � β(p, q) =
∨
{α(r, s) ∧ β(u,w) : (r, s) � (u,w) ≤ (p, q)},

where (r, s) � (u,w) ≤ (p, q) means that for each r < x < s and u < y < w we have
p < x � y < q. For every r ∈ R, define the constant frame map r ∈ RL by r(p, q) = >,
whenever p < r < q, and otherwise r(p, q) = ⊥.

The cozero map is the map coz : RL→ L, defined by

coz(α) =
∨
{α(p, 0) ∨ α(0, q) : p, q ∈ Q} = α((−, 0) ∨ (0,−))

where
(0,−) =

∨
{(0, q)) : q ∈ Q, q > 0}

and
(−, 0) =

∨
{(p, 0)) : p ∈ Q, p < 0}.

For A ⊆ RL, let Coz(A) = {coz(α) : α ∈ A} with the cozero part of a frame L, Coz(RL),
called CozL by previous authors. For more details about cozero map and its properties
which are used in this note see [1].
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2 Main results

Weakly spatial frames play a key role the present argument. The weakly spatiality is
indeed weaker than spatiality. A frame L is said to be spatial if there is a topological
space X such that L ∼= OX, as frames. Also, it is known that a frame L is spatial if and
only if for each a, b ∈ L with a 6≤ b there exists a prime element p of L such that a 6≤ p,
b ≤ p.
Definition 2.1. A frame L is said to be weakly spatial if a < > implies Σa 6= Σ>.

A condition equivalent to the weakly spatiality based on the prime elements of L is
provided as follows:

Lemma 2.2. A frame L is weakly spatial if and only if there is a prime element p ∈ L
such that a ≤ p < >, for every a < >.

Remark 2.3. It is clear that if L is spatial, then L is weakly spatial. The inverse is clearly
not true. In fact the spatiality and the weakly spatiality are very much different. As an
example, let L be a nonspatial frame and M = L ∪ {>M}, where the order of M is the
same as in L for the elements of L and for every x ∈ L, x < >M . The top element >L of
L is a prime element of M , so M is weakly spatial for all L. Now since ΣM = ΣL∪{>L},
M is nonspatial.

The following proposition explains that compact frames are weakly spatial.

Proposition 2.4. Every compact frame is weakly spatial.

Recall that a frame L is conjunctive if for any a, b ∈ L with a 6≤ b there is an element
c ∈ L such that a ∨ c = >, b ∨ c 6= >. For more details about conjunctive frames and
separation Axioms, see [6, 7].

Proposition 2.5. Let L be a conjunctive. Then the following statements are equivalent:

1. L is a spatial frame.

2. L is a weakly spatial frame.

It is clear that any regular frame is a conjunctive frame [6]. So, by the previous
proposition we have:

Corollary 2.6. For regular frames, the notion of spatiality and weak spatiality coincide.

Recall that a frame L is dually atomic if for any > 6= a ∈ L, there is a maximal element
m ∈ L such that a ≤ m [6]. This show that m 6∈ Σa. So any dually atomic frame is a
weakly spatial frame. Also, a compact frame L is dually atomic. Because if > 6= a ∈ L,
then there exists a maximal element m ∈ L such that a ≤ m. Therefore we have:

Remark 2.7. For compact frames, the notion of dual atomicity and weak spatiality
coincide.

Notice that by Proposition 2.5 and Remark 2.7 we can conclude that for compact
conjunctive frames, the notion of spatiality, weak spatiality and dual atomicity coincide.

We now turn our attention to describing open set Σcoz(α) for α ∈ RL. It is clear that
if α = 0, i.e., coz(α) = ⊥, then Σcoz(α) = ∅. It’s reverse holds when L is weakly spatial.
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Proposition 2.8. Let L be weakly spatial and α ∈ RL. If Σcoz(α) = ∅, then coz(α) = ⊥.

Using this proposition, we deduce from Proposition 2.4 the following corollary.

Corollary 2.9. Let L be a compact frame and α ∈ RL. If Σcoz(α) = ∅, then coz(α) = ⊥.

Regarding the linear map p̃ : RL −→ R, we use the notation of [2]. In [3, 4] we
associated with each α ∈ RL the zero set Z(α) in L defined by

Z(α) = {p ∈ ΣL : α[p] = p̃(α) = 0}.
It is shown in [4] that:

1. Z(α) = {p ∈ ΣL : coz(α) ≤ p}, i.e., Z(α) = ΣL− Σcoz(α).

2. If α is a unit of RL, then Z(α) = ∅.
We show below that for every weakly spatial frame L, the reverse (2) always holds.

Proposition 2.10. Let L be a weakly spatial frame and α ∈ RL. If Z(α) = ∅, then α is
a unit of RL.

Proposition 2.11. Let L be a weakly spatial frame. Then L is a compact frame if and
only if ΣL is a compact space.
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Abstract

We present a Feng Qi type inequality for the generalized Sugeno integral and a
much wider class of functions than the comonotone functions. There are considered
two cases of the real semiring with pseudo-operations: one, when pseudo-operations
are dened by monotone and continuous function g, the second semiring ([a, b], sup,⊙),
where ⊙ is generated and the third semiring where both pseudo-operations are idem-
potent, i.e., ⊕ = sup and⊙ = inf.

Keywords: Hlders inequality Feng Qi inequality, Semiring, Pseudo-addition, Pseudo-
multiplication, Pseudo-integral

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Pseudo-analysis is a generalization of the classical analysis, where instead of the eld of real
numbers a semiring is dened on a real interval [a, b] ⊂ [−1, 1] with pseudo-addition ⊕ and
with pseudo-multiplication ⊙, see [7, 9]. Based on this structure there were developed the
concepts of ⊕-measure (pseudo-additive measure), pseudo-integral, pseudo-convolution,
pseudo-Laplace transform, etc. The advantages of the pseudo-analysis are that there are
covered with one theory, and so with unied methods, problems (usually nonlinear and
under uncertainty) from many different elds (system theory, optimization, decision mak-
ing, control theory, differential equations, difference equations, etc.). Pseudo-analysis uses
many mathematical tools from different elds as functional equations, variational calculus,
measure theory, functional analysis, optimization theory, semiring theory, etc.
The integral inequalities are good mathematical tools both in theory and application.
Different integral inequalities including Chebyshev, Jensen, Holder and Minkowski in-
equalities are widely used in various fields of mathematics, such as probability theory,
differential equations, decision-making under risk and information sciences.
The In this paper, we use Pseudo-analysis for the generalization of the classical anal-
ysis, where instead of the field of the numbers a semiring is defined on a real interval
[a, b] → [1, 1] with pseudo-addition ⊕ and with pseudo-multiplication ⊙. Thus it would
be an interesting topic to generalize an inequality from the classical analysis as special
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cases. We prove generalizations of the Feng Qi type inequality for pseudo-integrals. The
classical Feng Qi [8] is a very interesting integral inequality. More precisely,

Theorem 1.1. Let n be a positive integer. Suppose f(x) has continuous derivative of the
n-th order on the interval [a, b] such that f (i)(a) > 0, for 0 6 i 6 n− 1, and f (n)(x) > n!,
then ∫ b

a
[f(x)](n+2) dx >

(∫ b

a
f(x)dx

)(n+1)

.

In [1] the Feng Qi type inequality for Sugeno integral is presented with several exam-
ples given to illustrate the validity of this inequalities.

Theorem 1.2. Let µ be the Lebesgue measure on R and let f : [0, 1] → [0,∞) be a real
valued function such that (S)

∫ 1
0 fdµ = p. If f is a continuous and strictly decreasing

function, such that f
(
pn+1

)
> p(

n+1
n+2) , then the inequality:

(S)

∫ 1

0
fn+2dµ >

(
(S)

∫ 1

0
fdµ

)n+1

holds for all n > 0.

Definition 1.3. Let Σ be a σ-algebra of subsets of X and let µ : Σ → [0,∞) be a
non-negative, extended real-valued set function, we say that µ is a fuzzy measure iff:

(FM1) µ(∅) = 0;
(FM2) E,F ∈∑ and E ⊆ F imply µ(E) ≤ µ(F ) (monotonicity);

(FM3) En ⊆ ∑
, E1 ⊆ E2 ⊆ . . . imply limµ(En) = µ(

∞∪
i=1

En) (continuity from

below);

(FM4) En ⊆∑, E1 ⊇ E2 ⊇ . . . , µ(E1) < ∞ imply limµ(En) = µ(
∞∩
i=1

En) (continuity

from above).

If f is a non-negative real-valued function on X, we will denote Fα = {x ∈ X | f(x) ≥
α} = {f ≥ α}, the α − level of f , for α > 0. F0 = {x ∈ X | f(x) > 0} = supp(f) is the
support of f . We know that: α ≤ β ⇒ {f ≥ β} ⊆ {f ≥ α}.

If µ is a fuzzy measure on X , we define the following:

Fµ(X) = {f : X → [0,∞)| f is µ− measurable}.

Definition 1.4. Let µ be a fuzzy measure on (X,Σ). If f ∈ Fµ(X) and A ∈ Σ, then
the Sugeno integral (or fuzzy integral) of f on A, with respect to the fuzzy measure µ, is
defined [10] as

−
∫

A
fdµ =

∨

α≥0

(α ∧ µ(A ∩ Fα)).

Where ∨, ∧ denotes the operation sup and inf on [0,∞) respectively. In particular, if
A = X then:

−
∫

X
fdµ = −

∫
fdµ =

∨

α≥0

(α ∧ µ(Fα)).
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Definition 1.5. Let [a, b] be a closed (in some cases can be considered semiclosed) subin-
terval of [−∞,∞]. The full order on [a, b] will be denoted by ≼. The operation ⊕ (pseudo-
addition) is a function ⊕ : [a, b]× [a, b] → [a, b] which is for x, y, z,0 (zero element) ∈ [a, b]
it satisfies the following requirements:
(i) x⊕ y = y ⊕ x;
(ii) (x⊕ y) ⊕ z = x⊕ (y ⊕ z);
(iii) x ≼ y ⇒ x⊕ z ≼ y ⊕ z;
(iv) 0 ⊕ x = x;
Let [a, b]+ = {x|x ∈ [a, b],0 ≼ x}.

Definition 1.6. A binary operation function ⊙ : [a, b] × [a, b] → [a, b] is called a pseudo-
multipication, for x, y, z,1 (unit element) ∈ [a, b] it satisfies the following requirements:
(i) x⊙ y = y ⊙ x;
(ii) (x⊙ y) ⊕ z = x⊙ (y ⊙ z);
(iii) x ≼ y ⇒ x⊙ z ≼ y ⊙ z for all z ∈ [a, b]+;
(iv) (x⊕ y) ⊙ z = (x⊙ z) ⊕ (x⊙ y);
(v) 1 ⊕ x = x;
(vi) limn→∞ xn and limn→∞ yn exist and finit then limn→∞(xn ⊙ yn) = limn→∞ xn ⊙
limn→∞ yn.

Let X be a non-empty set. Let A be a σ-algebra of subsets of a set X.
We shall consider the semiring ([a, b],⊕,⊙), when pseudo-operations are generated by

a monotone and continuous function g : [a, b] → [0,∞], i.e., pseudo-operations are given
with

x⊕ y = g−1(g(x) + g(y)), x⊙ y = g−1(g(x)g(y)).

For x ∈ [a, b]+ and p ∈]0,∞[, we will introduce the pseudo-power x
(p)
⊙ as follows: if p = n

is a natural number then
xn

⊙ = x⊙ x⊙ ...⊙ x︸ ︷︷ ︸
n

Let m be a ⊕- measure, where ⊕ has a monotone and cotinuous generator g, then gom
is a σ-addetive measure in the following two important case of integral based on semiring
([a, b],⊕,⊗) are discussed. thus, the psudo-integral of function f : X → [a, b] is defined by

∫ ⊕

X
f ⊙ dm = g−1

(∫

X
(gof)d(gom)

)
.

where the integral applied on the right side is the standard Lebesgue integral. In fact, let
m = g−1oµ, µ is the standard Lebesgue measure on X, then we obtain

∫ ⊕

X
f(x)dx = g−1

(∫

X
g (f(x)) dx

)
.

More on this structure as well as corresponding measures and integrals can be found in [2].
The second class is when x⊕y = max(x, y) and x⊙y = g−1(g(x)g(y)), the pseudo-integral
for a function f : R → [a, b] is given by

∫ ⊕

R
f ⊙ dm = sup

(
f(x) ⊙ ψ(x)

)
,
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where function ψ defines sup-measure m. Any sup-measure generated as essential supre-
mum of a continuouse denisty can be obtained as a limit of pseudo-additive measures with
respect to generated pseudo-additive [6]. For any continuouse function f : [0,∞] → [0,∞]
the integral

∫ ⊕
f ⊙ dm can be obtained as a limit of g-integrals, [6].

2 Main results

The aim of this section is to show Feng Qi type inequality derived from [1] for the Pseudo-
integral.

Now we peresent generalation of two above theorem for pseudo-integral

Theorem 2.1. For a given measurable space (X,A) let f : [0, 1] → [0, 1] be a real valued
function such that (S)

∫ 1
0 fdµ = p. If f is a continuous and strictly decreasing function,

such that f
(
pn+1

)
> p(

n+1
n+2) and let a generator g : [0, 1] → [0,∞) of Pseudo-addition ⊕

and Psudo-multipication ⊙ be decreasing function. then the inequality:

∫ ⊕

[0,1]
fn+2

⊙ ⊙ dm >
(∫ ⊕

[0,1]
f⊙ ⊙ dm

)n+1

⊙
holds for all n > 0 and σ − ⊕-measure m.
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Abstract

The aim of this paper is to establish general solutions and Hyeres-Ulam-Rassias
stability of the following function equation

f(x + 4y) + 4f(x − y) = f(x − 4y) + 4f(x + y). (1)

on Banach spaces. It will be shown that this equation is equivalent to the so-called
quadratic functional equation.

Keywords: Hyers–Ulam–Rassias stability; Quadratic equation.
Mathematics Subject Classification [2010]: Primary 39B05; Secondary 39B82,
39B62

1 Introduction

In 1940, S.M. Ulam raised the following question concerning the stability of homomor-
phisms:
Let G1 be a group and let G2 be a metric group with the metric d(., .). Given ϵ > 0,
does there exist a δ > 0 such that if a function h : G1 −→ G2 satisfies the inequality
d(h(xy), h(x)h(y)) < δ, for all x, y ∈ G1, then there exists a homomorphism H : G1 −→ G2

with d(h(x),H(x)) < ϵ for all x ∈ G1.
A more general problem which imposed by Gruber [4] is:
Suppose a mathematical object satisfies a certain property approximately. Is it the possi-
ble to approximate the objects by objects satisfying the property exactly?
This problem is of particular interest in probability theory and in the case of functional
equations of different types. Ulam s question for approximately additive mappings was
first solved by D.H. Hyers [5] in a special case and then it generalized by Th.M. Rassias
[9].

The following functional equation

f(x + y) + f(x − y) = 2f(x) + 2f(y) (2)

is called the quadratic functional equation. Solutions and the stability of varus kinds of
quadratic functionals also studied by many other authors in different cases (see for exam-
ple [1, 2], [3], [6]- [8], [10]-[11]).

∗Speaker

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

An additive-quadratic equation, its solutions and generalize Hyers-Ulam- . . . pp.: 1–4

99



In this paper, we investigate the general solutions and the stability of the following
quadratic functional equation

f(x + 4y) + 4f(x − y) = f(x − 4y) + 4f(x + y) (3)

in the class of functions between real vector spaces. Solutions and the Hyers-Ulam-Rassias
stability of the following functional equation

f(x + 2y) + 2f(x − y) = f(x − 2y) + 2f(x + y)

was also studied in [7].

2 Solutions of (3)

In this section we present the general solution of (3). Throughout this section let both X
and Y be real vector spaces.

Theorem 2.1. A function f : X −→ Y satisfies the functional equation (3) if and only
if there exist functions B : X × X −→ Y , A : X −→ Y and a constant c in Y such
that f(x) = B(x, x) + A(x) + c for all x ∈ X, where B is symmetric biadditive and A is
additive.

3 HYERS-ULAM-RASSIAS STABILITY OF THE EQUA-
TION (3)

We now investigate the Hyers-Ulam stability problem for the equation (3). Thus we find
the condition that there exists a true solution near a approximate solution for (3). From
now on, let X be a real vector space and Y be a real Banach space.

Theorem 3.1. Let ϕ : X2 −→ R+ be a function such that the series

Φ(x, y) :=
∞∑

i=0

ϕ(22i+1x, 22i+1y)

42i+1
(4)

converges, for all x, y ∈ X. Suppose that an even function f : X −→ Y satisfies

∥f(x + 4y) + 4f(x − y) − f(x − 4y) − 4f(x + y)∥ ≤ ϕ(x, y), (5)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X −→ Y which satisfies
the equation (3) and the inequality

∥f(x) − f(0) − Q(x)∥ ≤ 1

4
Φ(x,

x

4
) + Φ(

x

4
,
x

4
) (6)

for all x ∈ X. The function Q is given by

Q(x) = lim
n→∞

f(2nx)

4n
(7)

for all x ∈ X. If furthermore either f is measurable or for each fixed x ∈ X the mapping
t 7−→ f(tx) from R to Y is continuous, then Q(rx) = r2Q(x), for all r ∈ R.
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Proof. If we replace y by x in (5), we have

∥f(5x) + 4f(0) − f(3x) − 4f(2x)∥ ≤ ϕ(x, x) (8)

Substituting y by y
4 in (5), and then replacing y by x in the resulting inequality, one

obtains that

∥f(2x) + 4f(
3x

4
) − f(0) − 4f(

5x

4
)∥ ≤ ϕ(x,

x

4
) (9)

Substituting x by x
4 in (8),and then multiplying in 4 in the resulting inequality, one obtains

that

∥4f(
5x

4
) + 16f(0) − 16f(

x

2
) − 4f(

3x

4
)∥ ≤ 4ϕ(

x

4
,
x

4
). (10)

(9) and (10), imply that

∥16f(0) − 16f(
x

2
) + f(2x) − f(0)∥ ≤ ϕ(x,

x

4
) + 4ϕ(

x

4
,
x

4
) (11)

Thus with 2x instead of x in the last inequality, we get

∥f(4x) − f(0)

16
− [f(x) − f(0)]∥ ≤ ϕ(2x, x

2 ) + 4ϕ(x
2 , x

2 )

16
, (12)

for all x ∈ X. Using induction on m, we may show that

∥f(4mx) − f(0)

42m
− [f(x) − f(0)]∥ ≤

m−1∑

i=0

ϕ(22i+1x, 22i−1x) + 4ϕ(22i−1x, 22i−1x)

42i+2
. (13)

Hence

∥f(2nx) − f(0)

4n
− [f(x) − f(0)]∥ ≤

n
2

−1∑

i=0

ϕ(22i+1x, 22i−1x) + 4ϕ(22i−1x, 22i−1x)

42i+2
, (14)

for all x ∈ X. Note that the right hand side of (14) is a convergent series by assumption.
The rest of the proof is similar to Theorem 3.1 in [7].
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An Invers probleme of Lyapunov type inequality for Sugeno

integral

Amir SHafiloo∗

Ph. D Student of the Department of Mathematics, University of Maragheh, Maragheh, Iran.

Abstract

Integral inequalities play important roles in classical probability and measure the-
ory. Sugenos integral is a useful tool in several theoretical and applied statistics which
has been built on non-additive measure. Lyapunov type inequalities for the Sugeno
integral on abstract spaces are studied in a rather general form, thus closing the series
of papers on the topic dealing with special cases restricted to the(pseudo-)additive
operation. Moreover, a strengthened version of Lyapunov type inequality for Sugeno
integrals on a real interval based on a binary operation ? is presented.

Keywords: Lyapunov inequality, Semiring, Fuzzy integral inequality; Nonadditive.
Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Some integral inequalities, such as Lyapunov inequality, Jensen type inequality, Holders
inequality and Minkowski inequality, play important roles in classic measure space. A
natural thought is whether these integral inequalities still hold in fuzzy measure space
under the condition of non-additive measure. The study of inequalities for Sugeno integral
was developed by Mesiar, Pap [7, 6] and so on. All of them enrich the fuzzy measure
theory. We focus on the inequalities for Sugeno integral on abstract space. There are
hardly any papers concern about inequalities for Sugenio ntegral. Hun Hong [5] has
done this work, but the Lyapunov type inequality for Sugeno integral on abstract space
are obviously uncorrect. Its easy to nd errors in the procedure of the proof and to give
counterexamples. Thus the conditions under what the Lyapunov integral are discussed. In
[4], a fuzzy Chebyshev inequality for a special case was obtained which has been generalized
by Ouyang et al. [8]. Furthermore, Chebyshev type inequalities for fuzzy integral were
proved in a rather general form by Mesiar and Ouyang [7]. They obtained the following
result:

Theorem 1.1. Let f, g ∈ F+(X) and µ be an arbitrary fuzzy measure such tath both
(S)

∫
A fdµ and (S)

∫
A gdµ are finite. and Let ? : [o,∞)2 → [0,∞) be continuous and non-

decreasing in both arguments and bounded from above by minimum. if f, g are comonotone,
then the inequality

(S)

∫

A
f ? gdµ >

(
(S)

∫

A
fdµ

)
?

(
(S)

∫

A
gdµ

)
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holds.
It is known that

(S)

∫

A
f ? gdµ 6

(
(S)

∫

A
fdµ

)
?

(
(S)

∫

A
gdµ

)

where f, g are comonotone functions whenever ? ≥ max (for a similar result, see [16]), it
is of great interest to determine the operator ? such that

(S)

∫

A
f ? gdµ =

(
(S)

∫

A
fdµ

)
?

(
(S)

∫

A
gdµ

)
(1)

holds for any comonotone functions f, g, and for any fuzzy measure ? and any measurable
set A.

Ouyang, Mesiar and Li [9, 10] proved that there are only 18 operators such that (1.1)
holds, including the four well-known operators: minimum, maximum, PF(called the first
projection, PF for short, if x?y = x for each pair (x, y)) and PL(called the last projection,
PL for short, if x ? y = y for each pair (x, y)).

The following inequality is a classical Lyapunov type inequality [3]:

(∫

A
(f)sdµ

)r−t
≤
(∫

A
(f)tdµ

)r−s(∫

A
(f)rdµ

)s−t
(2)

where 0 < t < s < r, f : [0, 1]→ [0,∞) is an integrable function.
Dug Hun Hong have proved Lyapunov type inequality for fuzzy integrals in [5]. In this

context, the purpose of this work is to study the Lyapunov inequality and its connections
with some fundamental properties of the Sugeno integrals on abstract spaces. Now, we
recall some basic definitions and properties of the fuzzy measure and integral . For details
we refer the readers to Refs [2, 7, 11].

Let R+ denote [0,+∞]. Throughout this paper, we fix the measurable space (X,F),
and all considered subsets are supposed to belong to F .

Definition 1.2. Let Σ be a σ-algebra of subsets of X and let µ : Σ → [0,∞] be a
non-negative, extended real-valued set function, we say that µ is a fuzzy measure iff:

(FM1) µ(∅) = 0;
(FM2) E,F ∈∑ and E ⊆ F imply µ(E) ≤ µ(F ) (monotonicity);

(FM3) (En) ⊆ ∑, E1 ⊆ E2 ⊆ . . . imply limµ(En) = µ(
∞⋃
i=1

En) (continuity from

below);

(FM4) (En) ⊆ ∑, E1 ⊇ E2 ⊇ . . . , µ(E1) < ∞ imply limµ(En) = µ(
∞⋂
i=1

En) (conti-

nuity from above).

If f is a non-negative real-valued function on X, we will denote Fα = {x ∈ X | f(x) ≥
α} = {f ≥ α}, the α − level of f , for α > 0. F0 = {x ∈ X | f(x) > 0} = supp(f) is the
support of f . We know that: α ≤ β ⇒ {f ≥ β} ⊆ {f ≥ α}.

If µ is a fuzzy measure on X , we define the following:

Fµ(X) = {f : X → [0,∞)| f is non− negative and µ−measurable}.
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Definition 1.3. Let µ be a fuzzy measure on (X,Σ). If f ∈ Fµ(X) and A ∈ Σ, then
the Sugeno integral (or fuzzy integral) of f on A, with respect to the fuzzy measure µ, is
defined [?] as

−
∫

A
fdµ =

∨

α≥0
(α ∧ µ(A ∩ Fα)).

Where ∨, ∧ denotes the operation sup and inf on [0,∞) respectively. In particular, if
A = X then:

−
∫

X
fdµ = −

∫
fdµ =

∨

α≥0
(α ∧ µ(Fα)).

The following proposition gives most elementary properties of the fuzzy integral and
can be found in [?].

Remark 1.4. Let F (α) = µ(A ∩ Fα), from parts (5) and (6) of the above Proposition, it
very important to note that

F (α) = α⇒ −
∫

A
fdµ = α.

Thus, from a numerical point of view, the Sugeno integral can be calculated by solving
the equation F (α) = α.

Notice that in our results the transformation theorem for Sugeno integrals(see [?]),
plays a fundamental role.

Lemma 1.5. Let (S)
∫
A fdµ = p. Then

∀r ≥ p, (S)

∫

A
fdµ = (S)

∫ r

0
µ(A ∩ Fα)dm.

where m is the Lebesgue measure.

In this contribution, we will prove general Liapunov type inequality for the Sugeno
integral of comonotone functions. Recall that two functions
f, g : X → R are said to be comonotone if for all

(x, y) ∈ X2, (f(x)− f(y))(g(x)− g(y)) ≥ 0

. Clearly, if f and g are comonotone, then for all non-negative real numbers p, q either
Fp ⊂ Gq or Gq ⊂ Fp. Indeed, if this assertion does not hold, then there are x ∈ Fp \ Gq
and y ∈ Gq \ Fp. That is,

f(x) ≥ p, g(x) ≤ q and f(y) < p, g(y) ≥ q,

and hence (f(x) − f(y))(g(x) − g(y)) < 0, contradicts with the comonotonicity of f and
g. Notice that comonotone functions can be defined on any abstract space.
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2 Main results

The aim of this section is to show Feng Qi type inequality derived from [?] for the Pseudo-
integral.

Theorem 2.1. Let f ∈ F+(X) and µ be an arbitrary fuzzy measure such that (S)
∫
A(f)dµ

and is finit. Let ? : [0.∞)2 → [0,∞) be continuous and nondecreasing in both arguments
and bounded from above by manimum. If f t, f r are comonotone, then the inequality

(
(S)

∫

A
(f)sdµ

)r−t
≥
(

(S)

∫

A
(f)tdµ

)r−s
?

(
(S)

∫

A
(f)rdµ

)s−t
(3)

hold where 0 < t < s < r <∞.
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Aproximate Fixed Point Theorem For Asymptotically

Nonexpansive Mappings

S. A. M. Mohsenailhosseini∗

Yazd University

Abstract

In this paper, we obtain the existence of approximate fixed points theorems for
asymptotically nonexpansive mapping in a Banach space. Also we prove the set AF (T )
of approximate fixed points of T is closed and convex.

Keywords: Approximate fixed points, Asymptotically nonexpansive mappings, Uni-
formly convex Banach space.

Mathematics Subject Classification [2010]: 46A32, 46M05, 41A17

1 Introduction

Nowadays, fixed point and aproximate fixed point play an important role in different areas
of mathematics, and its applications, particularly in mathematics, differential equation and
dynamic programming. Also,There are plenty of problems in applied mathematics which
can be solved by means of fixed point theory. Still, practice proves that in many real
situations an approximate solution is more than sufficient, so the existence of fixed points
is not strictly required, but that of nearly fixed points. Another type of practical situations
that lead to this approximation is when the conditions that have to be imposed in order
to guarantee the existence of fixed points are far too strong for the real problem one has
to solve.

In 1965, F. E. Browder [1] proved that every nonexpansive self-mapping of a closed
convex and bounded subset of a uniformly convex Banach space has a fixed point. Also,
This result was also obtained by W. A. Kirk [3].

In 1972 Goebel et al [2] extended Browder’s result to a more general class of trans-
formations which it shall call ”asymptotically nonexpansive” mappings, and we give some
approximate fixed points of such mappings.

Definition 1.1. [5] Let (X, ∥.∥) be a completely norm space and T : X → X be a map.
Then x0 ∈ X is ϵ−fixed point for T if ∥Tx0 − x0∥ < ϵ.
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Remark 1.2. [5] In this paper we will denote the set of all ϵ− fixed points of T , for a
given ϵ, by :

AF (T ) = {x ∈ X | x is an ϵ − fixed point of T}.

Theorem 1.3. [5] Let (X, ∥.∥) be a completely norm space and T : X → X be a map also
for all x, y ∈ X,

∥Tx − Ty∥ ≤ c ∥x − y∥ : 0 < c < 1

then T has an ϵ− fixed point in completely norm space. Moreover, if x, y ∈ X are ϵ− fixed
points of T, then ∥x − y∥ ≤ 2ϵ

1−c .

2 Main results

We begin by recalling some needed definitions and results. In 1936, Clarkson (see [4])
defined uniformly convex for Banach spaces.

Definition 2.1. [4] A Banach space X is called uniformly convex if for each ϵ > 0 there
is a δ(ϵ) > 0 such that if ∥x∥ = ∥y∥ = 1 then ∥(x + y)/2∥ ≤ 1 − δ(ϵ).

Remark 2.2. [4] In such a space, it is easily seen that the inequalities ∥x∥ ≤ d, ∥y∥ ≤ d,
∥x−y∥ ≥ ϵ imply ∥(x+y)/2∥ ≤ (1− δ(ϵ/d)d). Furthermore, the function δ : (0, 2] → (0, 1]
may be assumed to be increasing.

Definition 2.3. [2] Let U be a subset of a Banach space X. A mapping T : U → U is
said to be uniformly L-Lipschitzian if there exists L > 0 such that for any x, y ∈ U,

d(T ix, T iy) ≤ Ld(x, y), ∀i ≥ 1.

Definition 2.4. [2] Let U be a subset of a Banach space X. A mapping T : U → U is
said to be nonexpansive if for any x, y ∈ U,

d(Tx, Ty) ≤ d(x, y).

Definition 2.5. [2] Let U be a bounded, closed and convex subset Banach space X. A
mapping T : U → U is said to be asymptotically nonexpensive if for any x, y ∈ U,

d(T ix, T iy) ≤ uid(x, y), ∀i ≥ 1.

where {ui} is a sequence of real numbers such that limi→∞ui = 1.

Theorem 2.6. Let U be a bounded, closed and convex subset of a uniformly convex Banach
space X, and let T : U → U be asymptotically nonexpansive, x0 ∈ X and ϵ > 0. Then T
has an ϵ− fixed point.
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Theorem 2.7. Let U be a bounded, closed and convex subset of a uniformly convex Banach
space X, and let T : U → U be asymptotically nonexpansive, x0 ∈ X and ϵ > 0. the set
AF (T ) of ϵ− fixed points of T is closed and convex.

Theorem 2.8. Let (X, ∥.∥) be a uniformly convex Banach space, and T : X → X be a
map also if there exists 0 < c < 1 such that for any x, y ∈ X,

∥Tx − Ty∥ ≤ c ∥x − y∥.

The set AFT of ϵ− fixed points of T is closed and convex.

Theorem 2.9. Let U be a nonempty, bounded, closed and convex subset of a uniformly
convex Banach space X, and let T : U → U be an arbitrary (even noncontinuous) trans-
formation such that for some integer n,

d(T ix, T iy) ≤ uid(x, y), ∀i ≥ n,

where limi→∞ui = 1. Then T has an ϵ− fixed point.

3 Aknowledgements

The authors are extremely grateful to the referees for their helpful suggestions for the
improvement of the paper.

References

[1] F. E. Browder, “Nonexpansive nonlinear operators in a Banach space,” Proc. Nat.
Acad. Sei. U.S.A. 54 (1965), 1041-1044.

[2] K. Goebel and W. A. Kirk,“A Fixed Point Theorem For Asymptotically Nonexpan-
sive Mappings,” Proceedings of the american mathmatical society, Volume 35, No. 1.
September 1972.

[3] W. A. Kirk, “A fixed point theorem for mappings which do not increase distances,”
Amer. Math. Monthly 72 (1965), 1004-1006.

[4] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.

[5] S. A. M. Mohsenalhosseini, H. Mazaheri, Fixed Point for Completely Norm Space and
Map Tα, Mathematica Moravica Vol. 16-2 (2012), 25-35.

Email: amah@vru.ac.ir; mohsenialhosseini@gmail.com; mohsenhosseini@yazd.ac.ir

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Approximate fixed point theorem for asymptotically nonexpansive mappings pp.: 3–3

109



Combinatorically view to integral majorization

Mina Jamshidi∗

Kerman Graduate University of Advanced Technology

Abstract

In this paper we look a little combinatorically to integral majorization. Integral
majorization is a majorization relation on vectors with integer entries. We define for
each path in a grid a vector, called vector grid, and then relate gird vectors to integral
vectors and majorization. Then we propose some properties of these concepts and
their relations.

Keywords: Integral vector, Grid, Majorization
Mathematics Subject Classification [2010]: 05A17, 15A39

1 Introduction

Relations between combinatorics and linear algebra is very interesting and there are a
lot of research in this area. Recently there are some researches on majorizations and
combinatorics. For vectors x, a ∈ Rn, we say that xis majoroized by a and denoted by
x ≺ a, provided that

k∑

j=1

x[j] ≤
k∑

j=1

a[j], for k = 1, 2, . . . , n− 1,

and

n∑

j=1

x[j] =

n∑

j=1

a[j],

where by x[j] we mean the jth largest element of a vector x[3].
Let M(a) be a polytope of all vectors majorized by a given vector a ∈ Rn. A vector x

is said integral vector if all of its elements are integer. For an integral vector a let MI(a) be
the set of all integral vectors that are majorized by a. In [1] Dahl proposed an algorithm
for computing combinatorically the cardinality of MI(a). Also Dahl propose a relation
between p(n), the number of different partitions of a natural number n, and majorization.
p(n) has been related to majorization [1]. Consider (n, 0, 0, . . . , 0) in Rn. There are p(n)
nonincreasing nonnegative integral vectors in Rn that are majorized by (n, 0, 0, . . . , 0). In
this paper we look more precisely to MI((n, 0, ..., 0)) and MI((n,m, 0, ..., 0)) and find some
relations between MI(a) and grid paths.
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2 Vector grid paths

Consider the following n×m grid, A

A

B

R

U

R R

R

U

R R

U

U

Figure 1

A shortest way on edges from A to B is called a path from A to B. We know each
path has m right moves and n up moves. It is easy to show that the number of all

paths is ρ(An×m) =

(
n+m
n

)
[2]. We show each path by a sequence of its moves. For

example the path shown in figure 1 is denoted by RRRUURURRU . We will assign to
each sequence an integral vector in the following way. Let our sequence be like above. The
assigned vector would be (3, 2, 1, 1, 2, 1, 0, 0, 0, 0). It means we have 3 R’s first, then 2 of
the other letter, and etc. We add zeros to the end of the vector so that its dimension is
the length of the sequence. We add zeros to the end of the vector so that the number of
its components is the length of the sequence. We use the notation ”vector grid of A” for
an integer vector related to a path in A.

Lemma 2.1. If x is a vector grid of Al×n−l, k 6= l and n− k 6= l, then x is not a vector
grid of Ak×n−k.

Proof. If x is a vector grid of Ak×n−k, then
∑
x2i+1 = k or

∑
x2i = k, but here it is equal

to l or n− l (because it is a vector grid of Al×n−l).

Definition 2.2. A nonnegative integral vector is said to be nonvanish at the first if xi 6= 0
there is no j ≤ i with xj = 0.

Each grid vector is nonvanish at the first.

3 Majorization and grid paths

Lemma 3.1. a) Let A be an n×m grid and the vector x be a nonnegative integral vector
in Rn+m. If x is a grid vector of A, then x is majorized by (n,m, 0, . . . , 0).
b)If x x is a nonnegative integral vector in Rn+m that is nonvanish at the first,

∑
x2i+1 = n

and
∑
x2i = m or

∑
x2i+1 = m and

∑
x2i = n, then x is a grid vector of An×m or Am×n.
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Proof. a) If x = (x1, . . . , xn+m) is a grid vector of A, then x[1] means the number of

right steps at the first of the path, hence x[1] ≤ max{m,n}. Also
∑d

i=1 xi ≤ n + m and
n+m∑

i=1

xi = n+m. Consequently x ≺ (m,n, 0, . . . , 0).

b) We construct the path by x1 steps to the right then x2 steps to the up and etc.
Because of the mentioned condition path never go out the grid and the end point of the
path is in the top-right point of the grid.

Theorem 3.2. Let x ∈ Rn be a vector that is nonvanish at first and n be a natural number.
x is majorized by (n, 0, ..., 0) if and only if there is k such that x is an integral vector of
the grid Ak×n−k.

Proof. If x ≺ (n, 0, ..., 0), then
∑
xi = n. Considering k =

∑
x2i+1, by the part (a) of the

above lemma we have x is an integral vector of the grid Ak×n−k. Conversely since x is an
integral vector of the grid Ak×n−k, hence

∑
xi = n that means x ≺ (n, 0, ..., 0).

Corollary 3.3. Let n be a natural number and (n, 0, ..., 0), (k, n − k, 0..., 0) ∈ Rn. Then
MI((n, 0, ..., 0)) =

⋃n
k=1MI((k, n− k, 0..., 0))

⋃{(n, 0, ..., 0)}

Proof. If x ≺ (n, 0, ..., 0), and x 6= (n, 0, ..., 0), then x ≺ (x1, n − x1, 0, ..., 0) and conse-
quently x ∈ MI((x1, n − x1, 0, ....0)). Obviously if x ∈ ⋃n

k=1MI((k, n − k, 0..., 0))
⋃{a},

then x ∈MI((n, 0, ..., 0)).
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Continuous and Exact-Continuous Frame for Hilbert Spaces

Mezban Habibi∗ Ali Reza Sharifi

Abstract

In this paper we remaind some property for the continuous frame for the Hilbert
space and show that the continuous frame and exact-continuous frame are equal under
some conditions.

Keywords: Hilbert space, Continuous frame, Exact-Continuous frame, Bases, Mea-
sure space.

Mathematics Subject Classification [2010]: 57R25, 42C20

1 Introduction

Let H be a complex Hilbert space and M be a measure space with a positive measure µ.
A continuous frame is a family {ψk}k∈M for which the following hold:
(c1) For all h ∈ H, the mapping

Φ :M→ C,Φ(k) =< h,ψk >

is a measurable function on M.
(c2) There exist constants A,B > 0 such that

A‖h‖2 ≤
∫

M
|< h,ψk >|2 dµ(k) ≤ B‖h‖2,∀h ∈ H

If A = B then the continuous frame is called continuous tight frame and if A = B = 1
then the continuous frame is called normalized continuous tight frame.

For the sake of simplicity we assume that the mapping x 7−→< f, ψk > is weakly
continuous for all k ∈M. Note that ifM be a countable set and µ the counting measure
then we obtain the usual definition of a (discrete) frame. By Cauchy-Schwartz inequality

∫

M
< f, ψk >< ψk, g > dµ(k)

is well defined for all f, g ∈ H.

∗Speaker

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Continuous and exact-continuous frame for Hilbert spaces pp.: 1–3

113



2 Main Results

For a fixed f ∈ H, the mapping Φ : H → C defined by

Φ(g) =

∫

M
< f,ψk >< ψk, g > dµ(k)

is conjugated linear, and bounded because

|
∫

M
< f,ψk >< ψk, g > dµ(k) |2≤ B2. ‖ f ‖2 . ‖ g ‖2 .

So for all g ∈ H

<

∫

M
< f,ψk > .ψkdµ(k), g >=

∫

M
< f,ψk >< ψk, g > dµ(k)

By this S : H → H defined by

Sf =

∫

M
< f,ψk > .ψkdµ(k).

is a linear mapping and
‖ S ‖= Sup‖g‖=1 |< Sf, g >|

The operator S is called frame operator and S is invertible and has the norm at most B,
Thus, if f ∈ H then f can represents by

f = S−1Sf =

∫

M
< f,ψk > S−1ψkdµ(k)

f = SS−1f =

∫

M
< f,S−1ψk > ψkdµ(k).

Representations have to be interpreted in the weak sense. The discrete frames {ψk}k=1 are
actually a special case of the continuous frames, corresponding to the case whereM = N ,
equipped with the counting measure.

A continuous frame {ψk}k∈M for complex Hilbert space H that ceases to be a frame
when an arbitrary element is removed, is called an Exact-Continuous frame. Because
{ψk}k∈M being a continuous frame or not depends on the measure space, it would be
more exact to speak about a continuous frame for H with respect to the measure space
(M, µ).

Theorem 2.1. Let H be a complex Hilbert space andM be a measure space with a positive
measure µ, also let {ψk}k∈M be an continuous frame for H. The removal of a vector ψj
from {ψk}k∈M leaves either a continuous frame or an incomplete set. Also the fo1lowing
holds:

(i) If < ψj ,S−1ψj >6= 1, then {ψk}k∈M,k 6=j is an exact continuous frame for H.

(ii) If < ψj ,S−1ψj >= 1, then {ψk}k∈M,k 6=j is incomplete.
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Proof. For arbitrary j as a natural number, take

ψj =

∫

M
< ψj ,S−1ψk > ψkdµ(k)

So ψj =
∫
M λkψkdµ(k) when λj =< ψj ,S−1ψk > . Also

ψj =

∫

M
σj,kψkdµ(k)

That is

1 =
∫
M | σj,k |2 dµ(K)

=
∫
M | λk |2 dµ(K) +

∫
M | λk − σj,k |2 dµ(K)

=| λj |2 +
∫
M |λk|2dµ(k)+ | λj − 1 |2 +

∫
X\M |λk|2dµ(k)

If λj 6= 1 then we can find

ψj = (1− λj)−1
∫

M
< ψj ,S−1ψk > ψkdµ(k)

That is {ψk}k∈M,j 6=k is an exact continuous frame for H with respect to the measure space
(M, µ).

Now if λj = 1 then
∫
X\M |λk|2dµ(k) = 0 in this case

λj =< ψj ,S−1ψk >= 0 ∀k 6= j

But we have
λj =< ψj ,S−1ψj >= 1, S−1ψj 6= 0, ∀j

Indeed we find a non-zero element S−1ψk that is orthogonal to sequence {ψj}j 6=k and this
means that {ψj}j 6=k is incomplete sequence, that is {ψk}k∈M,j 6=k is an exact continuous
frame for H with respect to the measure space (M, µ).
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Abstract

Continuous resolution of the identity (CRI) was introduced, a new family of CRI
was constructed, and Moreover, a new operator was then defined for two Bessel con-
tinuous fusion sequences and accordingly, a number of reconstruction formulas and a
family of CRI were obtained.
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1 Introduction

Frames for Hilbert space were formally defined by Duffin and Schaeffer [4] in 1952 for
studying some problems in non-harmonic Fourier series. Continuous frames were proposed
by G. Kaiser [8] and independently by Ali, Antoine, and Gazeau [2] to a family indexed by
some locally compact space endowed by a Radon measure. Abdollahpour and Faroughi
[1] introduced the concept of continuous g-frames as a generalization of discrete g-frames.
Throughout this paper, (Ω, µ) is a measure space, H and K are two Hilbert spaces, and
{Kω}ω∈Ω is a sequence of closed Hilbert subspaces of K. For each ω ∈ Ω, B (H, Kω) is
the collection of all bounded linear operators from H to Kω. We also denote

⊕

ω∈Ω

Kω =

{
{gω}ω∈Ω : gω ∈ Kω and

∫

Ω
∥gω∥2dµ(ω) < ∞

}

Definition 1.1. A sequence Λ := {Λω ∈ B(H,Kω) : ω ∈ Ω} is called a continuous g-frame
for H with respect to {Kω}ω∈Ω, if

1. for each f ∈ H, {Λωf}ω∈Ω is strongly measurable,

2. there are two constants 0 < A ≤ B < ∞ such that

A∥f∥2 ≤
∫

Ω
∥Λωf∥2dµ(ω) ≤ B∥f∥2; (f ∈ H). (1)

∗Speaker

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Continuous fusion frame and continuous resolution of the identity pp.: 1–4

116



Definition 1.2. Let {Kω}ω∈Ω be a family of closed subspaces of a Hilbert space H and
(Ω, µ) be a measure space with positive measure µ and m : Ω −→ R+. Then K =
{(Kω , m(ω))}ω∈Ω is called a continuous fusion frame with respect to (Ω , µ) and m, if

1. for each f ∈ H, {ΠKωf}ω∈Ω is strongly measurable and m is measurable function
from Ω to R+;

2. there are two constants 0 < C ≤ D < ∞ such that

C∥f∥2 ≤
∫

Ω
m2(ω)∥ΠKωf∥2dµ(ω) ≤ D∥f∥2 (f ∈ H), (2)

where ΠKω is the orthogonal projection onto the subspace Kω.

Definition 1.3. Let K = {(Kω , m(ω))}ω∈Ω be a continuous fusion frame and SK be
the continuous fusion frame operator. Also, G = {(Gω , n(ω))}ω∈Ω is a Bessel continuous
fusion sequence. G is an alternate dual of K if:

⟨f, g⟩ =

∫

Ω
m(ω)n(ω)⟨f, ΠGωS−1

K ΠKωg⟩dµ(ω) (3)

for all f, g ∈ H.

In this paper, continuous resolution of identity (simply CRI) was introduced. More-
over, a new operator was then defined for two Bessel continuous fusion sequences and
accordingly, a number of reconstruction formulas and a family of CRI were obtained.

2 Main results

Definition 2.1. A sequence {Tj ∈ B(H) : j ∈ J} is a resolution of identity on H if, for
each f ∈ H:

f =
∑

j∈J

Tjf,

where the series converges unconditionally for all f ∈ H.

This definition leads us to introduce the following definition:

Definition 2.2. A sequence {Tω ∈ B(H) : ω ∈ Ω} is a continuous resolution of identity
(simply CRI) on H if, for each f , g ∈ H:

1. ω 7−→ ⟨f, T ∗
ωg⟩ is a measurable functional on Ω.

2. ⟨f, g⟩ =
∫
Ω⟨f, T ∗

ωg⟩ dµ(ω).

Below, two Bessel continuous fusion sequences are considered:
K = {(Kω , m(ω))}ω∈Ω with Bessel bound DK and G = {(Gω , n(ω))}ω∈Ω with Bessel
bound DG . The operator

⟨SKGf, g⟩ =

∫

Ω
m(ω)n(ω)⟨f, ΠKωΠGωg⟩dµ(ω), (f, g ∈ H), (4)
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is introduced. By Cauchy-Schwartz inequality SKG is a bounded operator and

∥SKG∥ ≤
√

DK
√

DG .

So

∥SKGf∥ ≤
√

DG

(∫

Ω
m2(ω)∥ΠKωf∥2dµ(ω)

) 1
2

(5)

and also S∗
KG = SGK .

For this operator, the following result can be obtained.

Proposition 2.3. Let K = {(Kω , m(ω))}ω∈Ω be a continuous fusion frame with continu-
ous fusion frame bounds C and D and continuous fusion frame operator SK for a Hilbert
space H. Let G = {(Gω ,n(ω))}ω∈Ω be an alternate dual continuous fusion frame for K
with required positivity. Then we have

CIH ≤ SGK ≤ DIH

and also SGK is invertible.

Proof. Let f be an arbitrary element of H. Then we have

∥f∥2 = ⟨f, f⟩ =

∫

Ω
m(ω)n(ω)⟨f, ΠGωS−1

K ΠKωf⟩dµ(ω)

≤ 1

C

∫

Ω
m(ω)n(ω)⟨f, ΠGωΠKωf⟩dµ(ω)

=
1

C
⟨SGKf, f⟩.

Similarly, ⟨SGKf, f⟩ ≤ D∥f∥2, hence CIH ≤ SGK ≤ DIH . By the same argument as in
the proof of Proposition 2.9 in [7], SGK is invertible and 1

D ≤ ∥S−1
GK∥ ≤ 1

C .

Remark 2.4. By this Proposition we have the following reconstruction formulas:

1. ⟨f, g⟩ = ⟨SKGf, S−1
GKg⟩ =

∫
Ω m(ω)n(ω)⟨f, ΠKωΠGωS−1

GKg⟩dµ(ω)

2. ⟨f, g⟩ = ⟨SKGS−1
KGf, g⟩ =

∫
Ω m(ω)n(ω)⟨f, S−1

KGΠKωΠGωg⟩dµ(ω)

3. ⟨f, g⟩ = ⟨SGKf, S−1
KGg⟩ =

∫
Ω m(ω)n(ω)⟨f, ΠGωΠKωS−1

KGg⟩dµ(ω)

4. ⟨f, g⟩ = ⟨SGKS−1
GKf, g⟩ =

∫
Ω m(ω)n(ω)⟨f, S−1

GKΠGωΠKωg⟩dµ(ω)

Theorem 2.5. The following are equivalent:

1. SKG is bounded below;

2. There exist U ∈ L(H) such that {Tω}ω∈Ω is a CRI, where

Tω = m(ω)n(ω)UΠGωΠKω , (ω ∈ Ω).
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If one of conditions holds, then G is a continuous fusion frame.

Proof. (1) ⇒ (2) If SKG is bounded below, then there exists U ∈ L(H) such that USKG =
IH . It follows

⟨f, g⟩ =

∫

Ω
m(ω)n(ω)⟨f, ΠKωΠGωU∗g⟩dµ(ω)

=

∫

Ω
m(ω)n(ω)⟨f, (UΠGωΠKω)∗g⟩dµ(ω).

(2) ⇒ (1) If (2) holds, then for f, g ∈ H we have

⟨USKGf, g⟩ = ⟨SKGf, U∗g⟩ =

∫

Ω
m(ω)n(ω)⟨f, (UΠGωΠKω)∗g⟩dµ(ω) = ⟨f, g⟩,

hence USKG = IH . It follows that SKG is bounded below.
If SKG is bounded below, from (5) it follows that G is a continuous fusion frame.

Corollary 2.6. The following are equivalent:

1. SKG is invertible;

2. There exist invertible operator U ∈ L(H) such that {Tω}ω∈Ω is a CRI, where

Tω = m(ω)n(ω)UΠGωΠKω , (ω ∈ Ω).

If one of conditions holds, then K and G are continuous fusion frames.
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Abstract

In this paper, we present some coupled fixed point results for (ψ,φ)-weakly con-
tractive mappings in the setup of partially ordered GP -metric spaces. Our results
extend, generalize and modify several comparable results in the literature.
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1 Introduction

The concepts of mixed monotone mapping and coupled fixed point have been introduced
in [1] by Bhaskar and Lakshmikantham. Also, they established some coupled fixed point
theorems for a mixed monotone mapping in partially ordered metric spaces.

Definition 1.1. [1] Let (X,⪯) be a partially ordered set and F : X × X → X be a
mapping. F has the mixed monotone property if for all x1, x2 ∈ X, x1 ⪯ x2 implies
F (x1, y) ⪯ F (x2, y) for any y ∈ X, and for all y1, y2 ∈ X, y1 ⪯ y2 implies F (x, y1) ⪰
F (x, y2) for any x ∈ X.

Definition 1.2. [1] An element (x, y) ∈ X ×X is called a coupled fixed point of mapping
F : X ×X → X if x = F (x, y) and y = F (y, x).

Definition 1.3. [2] The function ψ : [0,∞) → [0,∞) is called an altering distance func-
tion, if the following properties are satisfied:

1. ψ is continuous and nondecreasing.
2. ψ(t) = 0 if and only if t = 0.

The concept of a partial metric space has been given by Matthews (see [3, 4]) as follows:
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Definition 1.4. Let X be a nonempty set and let p : X ×X → R+ satisfies:
(P1) x = y ⇐⇒ p(x, x) = p(y, y) = p(x, y), for all x, y ∈ X;
(P2) p(x, x) ≤ p(x, y), for all x, y ∈ X;
(P3) p(x, y) = p(y, x), for all x, y ∈ X;
(P4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z), for all x, y, z ∈ X.
Then, the pair (X, p) is called a partial metric space and p is called a partial metric

on X.

The concept of a generalized metric space, or a G-metric space, was introduced by
Mustafa and Sims [5].

Definition 1.5. [5] Let X be a nonempty set and let G : X ×X ×X → R+ be a function
satisfying the following properties:

(G1) G(x, y, z) = 0 iff x = y = z;
(G2) 0 < G(x, x, y) for all x, y ∈ X with x ̸= y;
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y ̸= z;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , (symmetry in all three variables);
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).
Then, the function G is called a G-metric on X and the pair (X,G) is called a G-metric

space.

Recently, Zand and Nezhad [6] introduced a new generalized metric space, (GP−metric
space), as a generalization of both partial metric spaces and G-metric spaces.

Definition 1.6. [6] Let X be a nonempty set. Suppose that a mapping Gp : X×X×X →
R+ satisfies:

(GP1) x = y = z if Gp(x, y, z) = Gp(z, z, z) = Gp(y, y, y) = Gp(x, x, x);
(GP2) Gp(x, x, x) ≤ Gp(x, x, y) ≤ Gp(x, y, z) for all x, y, z ∈ X;
(GP3) Gp(x, y, z) = Gp(p{x, y, z}), where p is a permutation of x, y, z (symmetry);
(GP4) Gp(x, y, z) ≤ Gp(x, a, a)+Gp(a, y, z)−Gp(a, a, a) for all x, y, z, a ∈ X (rectangle

inequality).
Then Gp is called a GP−metric and the pair (X,Gp) is called a GP−metric space.

Definition 1.7. Let (X,Gp) be a GP−metric space. Let {xn} be a sequence of points of
X.

1. A point x ∈ X is said to be the limit of the sequence {xn} or xn → x if
lim

n,m→∞
Gp(x, xn, xm) = Gp(x, x, x).

2. {xn} is said to be a GP−Cauchy sequence, if lim
n,m→∞

Gp(xn, xm, xm) exists (and is

finite).
3. (X,Gp) is said to be GP-complete if and only if every GP-Cauchy sequence in X is

GP-convergent to an x ∈ X such that Gp(x, x, x) = lim
n,m→∞

Gp(xn, xm, xm).

Lemma 1.8. If Gp be a GP-metric on X, then mappings dGp , d
′
Gp

: X ×X → R+ given
by

dGp(x, y) = Gp(x, y, y) +Gp(y, x, x) −Gp(x, x, x) −Gp(y, y, y)

and
d′

Gp
(x, y) = max{Gp(x, y, y) −Gp(x, x, x), Gp(y, x, x) −Gp(y, y, y)}

define equivalent metrics on X.
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Lemma 1.9. (1) A sequence {xn} is a GP-Cauchy sequence in a GP-metric space (X,Gp)
if and only if it is a Cauchy sequence in the metric space (X, dGp).

(2) A partial metric space (X,Gp) is GP-complete if and only if the metric space
(X, dGp) is complete. Moreover, lim

n→∞
dGp(x, xn) = 0 if and only if

lim
n→∞

Gp(x, xn, xn) = lim
n→∞

Gp(xn, x, x) = lim
n,m→∞

Gp(xn, xn, xm)

= lim
n,m→∞

Gp(xn, xm, xm) = Gp(x, x, x).

2 Main results

Theorem 2.1. Let (X,⪯) be a partially ordered set and Gp be a GP−metric on X such
that (X,Gp) is a complete GP−metric space. Let F : X×X → X be a mapping such that

ψ
(
max{Gp(F (x, y), F (u, v), F (s, t)), Gp(F (y, x), F (v, u), F (t, s))}

)

≤ ψ
(
max{Gp(x, u, s), Gp(y, v, t)}

)
− φ

(
max{Gp(x, u, s), Gp(y, v, t)}

)
,

(1)

for every pairs (x, y), (u, v), (s, t) ∈ X×X such that x ⪯ u ⪯ s and y ⪰ v ⪰ t, or s ⪯ u ⪯ x
and t ⪰ v ⪰ y, where ψ,φ : [0,∞) → [0,∞) are altering distance functions. Also, suppose
that F has the mixed monotone property and F is continuous. If there exist x0, y0 ∈ X
such that x0 ⪯ F (x0, y0) and y0 ⪰ F (y0, x0), then F has a coupled fixed point in X.

In the following theorem we omit the continuity assumption of F .

Theorem 2.2. Let (X,⪯, Gp) be a partially ordered complete GP-metric space and let
F : X2 → X be such that F has the mixed monotone property and satisfies 1 for every
x, y, u, v, s, t ∈ X with x ⪯ u ⪯ s and y ⪰ v ⪰ t. Also, suppose that:

(i) If {xn} is a nondecreasing sequence and x ∈ X with lim
n,m→∞

Gp(xn, xm, x) =

Gp(x, x, x) = 0, then xn ⪯ x, for all n ∈ N.
(ii) If {xn} is a nonincreasing sequence and x ∈ X with lim

n,m→∞
Gp(xn, xm, x) =

Gp(x, x, x) = 0, then xn ⪰ x, for all n ∈ N.
If there exist x0, y0 ∈ X such that x0 ⪯ F (x0, y0) and y0 ⪰ F (y0, x0), then F has a

coupled fixed point in X.

Theorem 2.3. Under the hypotheses of Theorem 2.2, suppose that x0 and y0 are compa-
rable. Then, it follows that x = F (x, y) = F (y, x) = y, that is, F has a coupled fixed point
of the form (x, x).

The following corollary can be deduced from our previous obtained results.

Corollary 2.4. Let (X,⪯, Gp) be a partially ordered complete GP-metric space and let
F : X2 → X be a mapping having the mixed monotone property. Assume that

ψ(max{Gp(F (x, y), F (u, v), F (s, t)), Gp(F (y, x), F (v, u), F (t, s))})

≤ ψ(
Gp(x,u,s)+Gp(y,v,t)

2 ) − φ(max{Gp(x, u, s), Gp(y, v, t)}),
(2)

for every x, y, u, v, s, t ∈ X with x ⪯ u ⪯ s and y ⪰ v ⪰ t, where ψ,φ : [0,∞) → [0,∞)
are altering distance functions.
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Also, suppose that F is continuous, or, X has the following properties:
(i) If {xn} is a nondecreasing sequence and x ∈ X with lim

n,m→∞
Gp(xn, xm, x) =

Gp(x, x, x) = 0, then xn ⪯ x, for all n ∈ N.
(ii) If {xn} is a nonincreasing sequence and x ∈ X with lim

n,m→∞
Gp(xn, xm, x) =

Gp(x, x, x) = 0, then xn ⪰ x, for all n ∈ N.
If there exist x0, y0 ∈ X such that x0 ⪯ F (x0, y0) and y0 ⪰ F (y0, x0), then F has a

coupled fixed point in X.

In the following theorem, we give a sufficient condition for the uniqueness of the coupled
fixed point.

Theorem 2.5. In addition to the hypotheses of Theorems 2.1 suppose that for every (x, y)
and (x∗, y∗) ∈ X2, there exists (u, v) ∈ X2 which is comparable with (x, y) and (x∗, y∗).
Then, F has a unique coupled fixed point.

Theorem 2.6. Under the hypotheses of Theorem 2.2, suppose in addition that for every
(x, y) and (x∗, y∗) in X2, there exists (u, v) ∈ X2 which is comparable with (x, y) and
(x∗, y∗). Then F has a unique coupled fixed point of the form (x, x).
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Abstract

In this paper, using the technique of measure of nono compactness and Darbo fixed
point theorem we prove some theorems on coupled fixed point theorems for a class of
functions

Keywords: Keywords: Measure of noncompactness,Banach space, Coupled fixed
point
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1 Introduction

Bhaskar and Lakshmikantham [5] introduced the concept of a coupled fixed point for a
operator and obtained some coupled fixed point existence theorems for a class of opera-
tors. In this paper, using the technique of measure of noncompactness, we prove some the
existence theorems of coupled fixed point for a class of operators. Measure of noncom-
pactness have been successfully applied in theories of differential and integral equations(
see [7]) . This concept was first introduced by Kuratowski. In some Banach spaces, there
are known formulas of measure of noncompactness (see [2]).

Throughout this paper we assume that E is a Banach space. For a subset X of E, the
closure and closed convex hull of X in E are denoted by X, co(X), respectively. Also let

Bris the closed ball in E centered at zero and with radius r and we write B(x0, r) to denote
the closed ball centered at x0 with radius r. Moreover, we symbolize by ME the family of
nonempty bounded subsets of E and by NE subfamily consisting of all relatively compact
subsets of E. In addition to, The norm ‖.‖ in E×E is defined by ‖(x, y)‖ = ‖x‖+ ‖y‖ for
any x, y ∈ E × E.

The following definitions will be needed in the sequel.
Definition 1.1. ([3]) A mapping µ : ME −→ [0,∞) is said to be a measure of

noncompactness in E if it satisfies the following conditions;
(B1) The family Kerµ = {X ∈ME : µ(X) = 0} is nonempty and Kerµ ⊆ NE .
(B2) If X ⊆ Y ⇒ µ(X) ≤ µ(Y ).
(B3) µ(X) = µ(X).
(B4) µ(CoX) = µ(X).
(B5) µ(λX + (1−λ)Y ) ≤ λµ(X) + (1−λ)µ(Y ) for λ ∈ [0, 1). (B6) If (Xn) is a sequence

of closed sets from ME such that Xn+1 ⊆ Xn, (n ≥ 1) and if limn→∞ µ(Xn) = 0, then the inter-
section set X∞ =

⋂∞
n=1Xn is nonempty.
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The family Kerµ described in (B1) said to be the kernel of the measure of noncompactness µ.
Observe that the intersection set X∞ from (B6) is a member of the family Kerµ. In fact, since
µ(X∞) ≤ µ(Xn) for any n, we infer that µ(X∞) = 0. This yields that X∞ ∈ Kerµ.
The following theorems and examples are basic to all the results of this work.

Definition 1.2. ([6]) An element (x, y) ∈ X ×X is called a coupled fixed point of a mapping
G : X ×X → X if G(x, y) = x and G(y, x) = y.

The following theorems and examples are basic to all the results of this work.
Theorem 1.1. ([4]) Suppose µ1, µ2, ..., µn be the measures in E1, E2, ..., En respectively. More-

over assume that the function F : [0,∞)n → [0,∞) is convex and F (x1, x2, ..., xn) = 0 if and only
if xi = 0 for i = 1, 3, ..., n. Then

µ(X) = F (µ1(X1), µ2(X2), ..., µn(Xn))

defines the measure of noncompactness in E1 × E2 × ... × En where Xi denotes the natural
projection of X into Ei for i = 1, 2, ..., n.

Now, as results from Theorem 1.1, we present the following examples.
Example 1.1 Let µ be a measure of noncompactness, considering F (x, y) = {x, y} for any

(x, y) ∈ [0,∞)2, then the conditions of Theorem 1.1 are satisfied. Therefore, µ̃(X) = max{µ1(X1), µ2(X2)}
is a measure of noncompactness in the space E ×E where Xi denotes the natural projection of X
into E. for i = 1, 2.

Example 1.2 Let µ be a measure of noncompactness. We define F (x, y) = x+y for any (x, y) ∈
[0,∞)2. Then F has the properties mentioned in Theorem 1.1.Hence µ̃(X) = µ(X1) + µ(X2)} is a
measure of noncompactness in the space E×E where Xi denotes the natural projection of X into
E for i = 1, 2.

Theorem 1.2. ( Darbo [3]) Let Ω be a nonempty, bounded, closed, and convex subset of
a Banach space E and let G : Ω −→ Ω be a continuous mapping. Assume that there exists a
constant k ∈ [0, 1) such that

µ(G(X)) ≤ kµ(X) (1)

for any X ⊂ Ω.Then G has a fixed point.
Theorem 1.3. (Schauder [1] ) Let Ω be a closed, convex subset of a normed linear space E.

Then every compact, continuous map G : Ω→ Ω has at least one fixed point.

2 Main results

Before starting the main results, we always suppose that Ω is a nonempty, bounded, closed, and
convex subset of E, moreover

Λ =
{
δ : [0,∞)→ [0,∞) : δ is increasing map and lim

n→∞
δn(t) = 0

}
.

Theorem 2.1. Let G : Ω× Ω −→ Ω be a continuous function such that

µ(G(X1 ×X2) ≤ kmax{µ(X1), µ(X2)} (2)

for any X1, X2 ⊂ Ω, where µ is an arbitrary measure of noncompactness and k is a constant with
0 ≤ k < 1. Then G has at least a coupled fixed point.

Corollary 2.1. Let G : Ω× Ω −→ Ω be a continuous function such that

‖G(x, y)−G(u, v)‖ ≤ kmax{‖x− y‖ , ‖u− v‖}
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for any (x, y), (u, v) ∈ Ω × Ω. Moreover, 0 ≤ k < 1 be a constant. Then G has a coupled fixed
point.

Lemma 2.1. Let δ ∈ Λ and G : Ω −→ Ω be a continuous function satisfying

µ(G(X)) ≤ δ(µ(X)) (3)

for each X ⊂ Ω, where µ is an arbitrary measure of noncompactness. Then G has at least one
fixed point.

Theorem 2.2. Let µ be an arbitrary measure of noncompactness and δ ∈ Λ. Suppose that
the mapping G : Ω× Ω −→ Ω be a continuous function satisfying

µ(G(X1 ×X2)) ≤ δ(µ(X1) + µ(X2)

2
) (4)

for all X1, X2 ⊂ Ω. Then G has at least a coupled fixed point.
Proof: We define a mapping G̃ : Ω× Ω −→ Ω× Ω by

G̃(x, y) = (G(x, y), G(y, x)).

It is obvious that G̃ is continuous. On other hand, from Example 1.2, we have

µ̃(X) = µ(X1) + µ(X2)

is a measure of noncompactness in E ×E. Now let X ⊂ Ω×Ω be any nonempty subset. Then by
(B2) and (7) we obtain

µ̃(G̃(X)) ≤ µ̃(G(X1 ×X2), G(X2 ×X1))

= µ(G(X1 ×X2)) + µ(G(X2 ×X1)))

≤ δ(
µ(X1) + µ(X2)

2
) + δ(

µ(X2) + µ(X1)

2
)

= 2δ(
µ(X1) + µ(X2)

2
)

= 2δ(
µ̃(X)

2
).

Hence

1

2
µ̃(G̃(X)) ≤ δ(1

2
µ̃(X)).

Taking µ̃
′

= 1
2 µ̃, we get

µ̃
′
(G̃(X)) ≤ δ(µ̃′

(X)).

Since, µ̃
′

is measure of noncompactness, therefore, all the conditions of Lemma 2.1 are satisfied.
Hence G has a coupled fixed point.

Now, we will show that many results can be deduced from previous obtained results.
Let, 0 ≤ k < 1 be a constant and δ(t) = kt for each t ∈ [0,∞). Then, Theorem 2.2 reduces to

the following corollary.
Corollary 2.2. Assume that G : Ω× Ω −→ Ω be a continuous function such that

µ(G(X1 ×X2)) ≤ k

2
(µ(X1) + µ(X2)) (5)

for each X1, X2 ⊂ Ω where 0 ≤ k < 1 is a constant. Then G has a coupled fixed point.
Corollary 2.3. Let G : Ω× Ω −→ Ω be a continuous function. In addition, suppose that
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‖G(x, y)−G(u, v)‖ ≤ δ(‖x− y‖+ ‖u− v)‖
2

)

for any (x, y), (u, v) ∈ Ω× Ω where δ ∈ Λ. Then G has a coupled fixed point.
Proof: It is clear that the function µ : ME −→ [0,∞) defined by µ(X) = diam(X) is a

measure of noncompactness. Now, let X1, X2 ⊂ Ω and (x, y), (u, v) ∈ X1 ×X2. Then

‖G(x, y)−G(u, v)‖ ≤ δ(
‖x− y‖+ ‖u− v)‖

2
)

≤ δ(
diam(X1) + diam(X2)

2
).

This yields

diam(G(X)) ≤ δ(diam(X1) + diam(X2)

2
)

Therefore, Theorem 2.2 show that G has a coupled fixed point.

Corollary 2.4. Let G : Ω × Ω −→ Ω be a continuous function. Assume that, there exists a
k ∈ [0, 1) with

‖G(x, y)−G(u, v)‖ ≤ k

2
(‖x− y‖+ ‖u− v)‖)

for any (x, y), (u, v|) ∈ Ω× Ω. Then G has a coupled fixed point.
Proof: Taking δ(t) = k

2 in Corollary 2.3, we obtain Corollary 2.4.

References

[1] R. Agarwal, M. Meehan, D. O,regan, Fixed point theory and applications, Cambridge Uni-
versity Press 2004.

[2] R. R. AkhmeroY. M.I. KamenskiI, A.S. Potapov, A.E. Rodkina and B.N Sadovskii, Measures
of noncompactness and condensing operators, Birkhäuser Verlag, Basel’Boston.Berlin 1992.
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normed spaces
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Abstract

In this paper, we define a fuzzy normed space and study the concept of p-best ap-
proximation in fuzzy normed spaces. We also define a p-proximal set and p-Chebyshev
set and prove some interesting results in this newsetup.

Keywords: Fuzzy Normed Spaces; p-Best Approximation; p-Proximal Set; p-Chebyshev
Set.

Mathematics Subject Classification [2010]: 03Bxx, 90C59

1 Introduction

In this section we recall some notations and basic definitions used in this paper. A function
f : R → R+

0 = [0, 1] is called a distribution function if it is non-decreasing and left
continuous with inft∈R f(t) = 0 and supt∈Rf(t) = 1. By D+, we denote the set of all
distribution functions such that f(0) = 0. If a ∈ R+

0 , then Ha ∈ D+, where

Ha (t) =





1 t > a,

0 t ≤ a.

A t-norm is a continuous mapping ∗ : [0, 1]× [0, 1]→ [0, 1] such that ([0, 1] , ∗) is an abelian
monoid with unit one and a ∗ b ≤ c ∗ d if a ≤ c and b ≤ d for all a, b, c ∈ [0, 1].

Definition 1.1. Let X be a linear space of a dimension greater than one, ∗ a t-norm
continuous, and let N be a mapping from X × R into D+. The following conditions are
satisfied for all x, y ∈ X and t, s > 0,
(i) N(x; t) = H0(t) if and only if x = θ (θ is the null vector in X),
(ii) N(αx; t) = N(x; t

|α|) for all t in R+ ,

(iii) N(x+ y; t+ s) ≥ N(x; t) ∗N(y; s).
Triple (X,N, ∗) is called a fuzzy normed space. If in addition, t > 0, (x) → N(x; t) is a
continuous map on X, then (X,N, ∗) is called a strong fuzzy normed space.
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Example 1.2. Let (X, ‖.‖) be a normed space and a ∗ b = ab for a, b ∈ [0, 1]. For all
x ∈ X and t > 0, consider

Ns (x; t) =





t
t+‖x‖ t > 0,

0 t ≤ 0 .

and
N(x; t) = H0(t− ‖x‖).

Then (X,Ns, ∗) and (X,N, ∗) are fuzzy normed spaces.

Definition 1.3. Let (X,N, ∗) be a fuzzy normed space. Then we define the open ball
Bx (r, t) and the closed ball Bx [r, t] with center x ∈ X, radius t > 0, 0 < r < 1 as follows

Bx(r, t) = {y ∈ X : N(x− y; t) > 1− r}.
Bx[r, t] = {y ∈ X : N(x− y; t) ≥ 1− r}.

2 p-best approximation

Definition 2.1. Let A be a nonempty subset of a fuzzy normed space (X,N, ∗). For
x ∈ Xand t > 0, let

N(x−A; t) = sup{N(x− y; t) : y ∈ A}.

An element y0 ∈ A is said to be a p-best approximation to x from A if

N(x− y0; t) = N(x−A; t).

By P tA(x), we denote the set of elements of p-best approximation of x by elements of the
set A, i.e.,

P tA(x) = {y ∈ A : N(x−A; t) = N(x− y; t)}.

Definition 2.2. Let A be a nonempty subset of a fuzzy normed space (X,N, ∗). Then
A is said to be a p-proximal set if P tA(x) is a nonvoid for every x ∈ X. A is called a
p-Chebyshev set if P tA(x) contains exactly one element for every x ∈ X.

Theorem 2.3. Let A be a subspace of a fuzzy normed space (X,N, ∗) and t > 0.
(i) If x ∈ A then P tA(x) = {x}.
(ii) If x ∈ cl(A) \A then P tA(x) = {0} (cl(A) is the clouser of A).

Example 2.4. Let X = R2. For a, b ∈ [0, 1], let a ∗ b = ab. Define N : R2 → D+ by

N(x; t) =





(exp

√
x21+x

2
2

t )−1 t > 0

0 t ≤ 0

Then (X,N, ∗) is a fuzzy normed space. Let

A = {(x1, x2) ∈ R2| − 1 ≤ x1 ≤ 1, 0 ≤ x2 ≤ x21}
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and x = (0, 3). Then for every t > 0,

N((−1, 1)− (0, 3); t) = N((1, 1)− (0, 3); t) = (exp

√
5

t
)−1.

On the other hand,

N(A− (0, 3); t) = sup{N((x1, x2)− (0, 3); t)| − 1 ≤ x1 ≤ 1, 0 ≤ x2 ≤ x21}

= (exp

√
5

t
)−1.

So, for every t > 0, y0 = (−1, 1) and y1 = (1, 1) are p-best approximations of (0, 3)
from A. Therefore y0 = (−1, 1) and y1 = (1, 1) are p-best approximations of x = (0, 3)
from A. Therefore A is a p-proximal set and is not a p-Chebyshev set.

Theorem 2.5. (p-proximal sets are closed.) Let A be a p-proximal subset of a fuzzy
normed linear space X. Then A is closed.

Lemma 2.6. Let (X, ‖.‖) be a normed space and

Ns (x; t) =





t
t+‖x‖ t > 0

0 t ≤ 0

Then y0 ∈ A is a best approximation to x ∈ X in the normed space if and only if y0 is a
p-best approximation to x in the fuzzy normed space (X,N, ∗) for each t > 0.

3 Exist and Uniqueness of p-Best Approximation

Definition 3.1. For a subset A of X, t > 0 and x ∈ X. Put

_

A
t

= {x ∈ X : N (x; t) = N (x−A; t)} =
(
P tA
)−1

({0}) .

Lemma 3.2. Let X be a fuzzy normed linear space and A a subspace of X, t > 0 and
x ∈ X. Then

(i) y0 ∈ P tA (x) if and only if x− y0 ∈
_

A
t
.

(ii) 0 ∈ P tA (x) if and only if x ∈
_

A
t
.

Theorem 3.3. Let A be a subspace of fuzzy normed linear space X, t > 0 and x ∈ X.

Then A is p-proximal set if and only if X = A+
_

A
t
.

Proof. If A is p-proximal set, let x ∈ X and y0 ∈ P tA(x) Then by Lemma (3.2), X = A+
_

A
t
.

Conversely, Let X = A +
_

A
t
, and let x ∈ X Then x = y0 +

_
y for some y0 ∈ A and some

_
y ∈

_

A
t
. Then by Lemma (3.2), P tA(

_
y) = P tA(x − y0), this implies that 0 ∈ P tA(x − y0),

then for all y ∈ A,
N (x− y0 − 0; t) ≥ N (x− y0 − y; t) .

This means that y0 ∈ P tA(x). Therefore A is p-proximal.
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Theorem 3.4. Let A be linear subspace of fuzzy normed linear space X, t > 0 and x ∈ X.

Then A is p-Chebyshev subspace of X if and only if X = A⊕
_

A
t
.

Proof. Suppose that A is p-Chebyshev subspaces of a fuzzy normed linear space X. Let

x ∈ X, Then by Theorem(3.3), X = A +
_

A
t
. Now, let x = y1 +

_
y1 = y2 +

_
y2, where

y1, y2 ∈ A and
_
y1,

_
y2 ∈

_

A
t

show y1 = y2 and
_
y1 =

_
y2. Therefore X = A⊕

_

A
t
.

Conversely, letX = A ⊕
_

A
t
, and x ∈ X, suppose that y1, y2 ∈ P tA(x) show y1 = y2,

Therefore A is p-Chebyshev.
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Abstract

we prove the existence of at least three weak solutions for one-dimensional fourth-
order equations via two three critical points theorems.

Keywords: Dirichlet boundary condition, Variational methods, Critical points.
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1 Introduction

In this note, we consider the following fourth-order boundary value problem

{
u′′′′h(x, u′)− u′′ = [λf(x, u) + g(u)]h(x, u′), in (0, 1),
u(0) = u(1) = 0 = u′′(0) = u′′(1),

(1)

where λ is a positive parameter, f : [0, 1] × R → R is an L1-Carathéodory function,
g : R→ R is a Lipschitz continuous function with the Lipschitz constant L > 0, i.e.,

|g(t1)− g(t2)| ≤ L|t1 − t2|

for every t1, t2 ∈ R, with g(0) = 0, and h : [0, 1]×R→ [0,+∞) is a bounded and continuous
function with m := inf(x,t)∈[0,1]×R h(x, t) > 0. Due to the importance of fourth-order
two-point boundary value problems in describing a large class of elastic deflection, many
researchers have studied the existence and multiplicity of solutions for such a problem,
we refer the reader to [1, 4, 5] and references therein. In the present paper, employing
two three critical points theorems, we establish the existence three weak solutions for the
problem (1). We say that a function u ∈ H2([0, 1]) ∩ H1

0 ([0, 1]) is a weak solution of
problem (1) if

∫ 1

0
u′′(x)v′′(x) dx+

∫ 1

0

(∫ u′(x)

0

1

h(x, τ)
dτ

)
v′(x) dx− λ

∫ 1

0
f(x, u(x))v(x) dx

−
∫ 1

0
g(u(x))v(x) dx = 0

holds for all v ∈ H2([0, 1]) ∩H1
0 ([0, 1]).
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2 Main results

Put

A :=
π4 − L

2π4
, B :=

π2 +m(π4 + L)

2mπ4
,

and suppose that B ≤ 4Aπ2. We formulate our main results as follows.

Theorem 2.1. Assume that there exist two positive constants c, d, with c < 32
3
√

3π
d, such

that

(A1) F (x, t) ≥ 0 for all (x, t) ∈
(
[0, 3

8 ] ∪ [5
8 , 1]

)
× [0, d];

(A2) ∫ 1

0
max
|t|≤c

F (x, t) dx

c2
<

27

4096

∫ 5/8

3/8
F (x, d) dx

d2
;

(A3)

lim sup
|ξ|→+∞

supx∈[0,1] F (x, ξ)

ξ2
≤ π4A

B

∫ 1

0
max
|t|≤c

F (x, t) dx

c2
.

Then, for every λ in

Λ :=


 4096Bd2

27
∫ 5/8

3/8 F (x, d) dx
,

Bc2

∫ 1
0 max|t|≤c F (x, t) dx


 ,

problem (1) has at least three distinct weak solutions.

Proof. For every u ∈ X := H2([0, 1])∩H1
0 ([0, 1]), we introduce the functionals Φ,Ψ : X →

R by setting

Φ(u) :=
1

2
‖u‖2 +

∫ 1

0
H(x, u′(x)) dx+

∫ 1

0
G(u(x)) dx,

Ψ(u) :=

∫ 1

0
F (x, u(x)) dx,

and put
Iλ(u) := Φ(u)− λΨ(u) ∀ u ∈ X.

Note that the weak solutions of (1) are exactly the critical points of Iλ. The functionals
Φ,Ψ satisfy the regularity assumptions of Theorem 3.6 in [3]. We prove, for each

λ ∈ Λ ⊆
]Φ(w)

Ψ(w)
,

r

supΦ(u)≤r Ψ(u)

[
,

the functional Iλ has at least three distinct critical points in X, which are the weak
solutions of the problem (1). This completes the proof.
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Lemma 2.2. Assume that f(x, t) ≥ 0 for all (x, t) ∈ [0, 1]×R. If u is a weak solution of
(1), then u(x) ≥ 0 for all x ∈ [0, 1].

Proof. Arguing by contradiction, if we assume that u is negative at a point of [0, 1], the
set

Ω := {x ∈ [0, 1] : u(x) < 0},
is non-empty and open. Moreover, let us consider v̄ := min{u, 0}, one has, v̄ ∈ X. So,
taking into account that u is a weak solution and by choosing v = v̄, from our assumptions,
one has

0 ≥ λ

∫

Ω
f(x, u(x))u(x) dx

=

∫

Ω
|u′′(x)|2 dx+

∫

Ω

(∫ u′(x)

0

1

h(x, τ)
dτ

)
u′(x) dx−

∫

Ω
g(u(x))u(x) dx

≥ π4 − L
π4

‖u‖2H2(Ω)∩H1
0 (Ω).

Therefore, ‖u‖H2(Ω)∩H1
0 (Ω) = 0 which is absurd. Hence, the conclusion is achieved.

Our other main result is as follows.

Theorem 2.3. Assume that there exist three positive constants c1, c2, d, with 3
√

3π
16
√

2
c1 <

d < 3
√

3
64
√

2
c2, such that

(B1) f(x, t) ≥ 0 for all (x, t) ∈ [0, 1]× [0, c2];

(B2)
∫ 1

0
F (x, c1) dx

c2
1

<
9

2048

∫ 5/8

3/8
F (x, d) dx

d2
;

(B3)
∫ 1

0
F (x, c2) dx

c2
2

<
9

4096

∫ 5/8

3/8
F (x, d) dx

d2
.

Let

Λ′ :=


2048

9

Bd2

∫ 5/8
3/8 F (x, d) dx

,B min

{
c2

1∫ 1
0 F (x, c1) dx

,
c2

2

2
∫ 1

0 F (x, c2) dx

}
 .

Then, for every λ ∈ Λ′ the problem (1) has at least three weak solutions ui, i = 1, 2, 3,
such that 0 < ‖ui‖∞ ≤ c2.

Proof. Without loss of generality, we can assume f(x, t) ≥ 0 for all (x, t) ∈ [0, 1]×R. Fix
λ as in the conclusion and take X,Φ and Ψ as in the proof of Theorem 2.1. Put

w(x) =





−64d
9 (x2 − 3

4x), x ∈ [0, 3
8 [,

d, x ∈ [3
8 ,

5
8 ],

−64d
9 (x2 − 5

4x+ 1
4), x ∈]5

8 , 1],
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r1 = Bc2
1 and r2 = Bc2

2. Therefore, one has 2r1 < Φ(w) < r2
2 and we have

1

r1
sup

Φ(u)<r1

Ψ(u) ≤ 1

Bc2
1

∫ 1

0
F (x, c1) dx <

1

λ

<
9

2048

∫ 5/8

3/8
F (x, d) dx

Bd2
≤ 2

3

Ψ(w)

Φ(w)
,

and

2

r2
sup

Φ(u)<r2

Ψ(u) ≤ 2

Bc2
2

∫ 1

0
F (x, c2) dx <

1

λ

<
9

2048

∫ 5/8

3/8
F (x, d) dx

Bd2
≤ 2

3

Ψ(w)

Φ(w)
.

So, conditions (j) and (jj) of Corollary 3.1 in [2] are satisfied. Finally, let u1 and u2 be two
local minima for Φ−λΨ. Then, u1 and u2 are critical points for Φ−λΨ, and so, they are
weak solutions for the problem (1). Hence, owing to Lemma 2.2, we obtain u1(x) ≥ 0 and
u2(x) ≥ 0 for all x ∈ [0, 1]. So, one has Ψ(su1 + (1− s)u2) ≥ 0 for all s ∈ [0, 1]. From [2]
the functional Φ− λΨ has at least three distinct critical points which are weak solutions
of (1). This complete the proof.
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Abstract

In this paper we define the F-contraction type mapping and prove the existence of
fixed point theorem for F-contractive mappings defined on 0-complete partial metric
spaces.

Keywords: Partial metric space, F- Contraction, Fixed point

Mathematics Subject Classification [2010]: 47H10, 54H25

1 Introduction

The notion of partial metric space has been introduced by Matthews [2] in 1994 as a
part of the study of denotational semantics of dataflow network. In partial metric space,
the usual distance was replaced by partial metric, with an interesting porperty nonzero
self-distance of points.

Recently, Wardowski [4] introduced a new concept of F-contraction and proved a fixed
point theorem which generalizes the Banach contraction principle in a different way than
the known results of the literature on complete metric space.

Definition 1.1. [1] A partial metric on a nonempty set X is a function p : X × X −→
[0,∞) such that for all x, y, z ∈ X,

(P1) x = y iff p(x, x) = p(x, y) = p(y, y),
(P2) p(x, x) ≤ p(x, y),
(P3) p(x, y) = p(y, x),
(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).
A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial

metric on X.
Suppose that p is a partial metric on X, then it can be shown that the function
ps : X ×X −→ [0,∞) is given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a metric on X.

∗Speaker
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Definition 1.2. [2]
(a) A sequence {xn} in (X, p) converges to a point x ∈ X if and only if

limn→∞p(xn, x) = p(x, x).

(b) A sequence {xn} in (X, p) is called a Cauchy sequence if limn→∞ p(xn, xm) exists
and finite.

(c) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges to a
point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).

Lemma 1.3. [3] Let (X, p) be a partial metric space. Then
(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the

metric space (X, ps).
(b) A partial metric space (X, p) is complete if and only if the metric space (X, ps) is

complete. Furthermore, limn→∞ ps(xn, x) = 0 if and only if

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

Definition 1.4. Let F : [0,∞] −→ R be a mapping satisfying:
(i) F is strictly increasing, i.e. for all α, β ∈ [0,∞] such that α < β, F (α) < F (β),
(ii) For each sequence {αn}n∈N of positive numbers limn→∞ αn = 0 if and only if

limn→∞ F (αn) = −∞,
(iii) There exists k ∈ (0, 1) such that limα→0+ α

kF (α) = 0.

Suppose that (X, p) is a partial metric space. A mapping T : X → X is said to be an
F -contraction if there exists τ > 0 such that for all x, y ∈ X

if p(Tx, Ty) > 0 then τ + F (p(Tx, Ty)) ≤ F (p(x, y)). (1)

When we consider in (1) the different types of the mapping F then we obtain the variety
of contractions.

Following is an example of an F-cotraction.

Example 1.5. Let F : [0,∞] → R defined by F (α) = lnα. It is clear that F satisfyies
in (i),(ii) and (iii), for any k ∈ (0, 1). Each mapping T : X → X satisfying (1) is an
F -contraction such that

p(Tx, Ty) ≤ e−τp(x, y),

for all x, y ∈ X,Tx 6= Ty.
It is clear that for x, y ∈ X with Tx = Ty, the inequality p(Tx, Ty) ≤ e−τP (x, y) also

hold, i.e., T is a Banach contraction.

By using Definition 1.4, one can see that:

Proposition 1.6. Every F -contraction T is a contractive mapping, i.e.

p(Tx, Ty) < P (x, y),

for all x, y ∈ X with Tx 6= Ty.
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Let F1 and F2 be two mappings satisfying (i)-(iii). If F1(α) ≤ F2(α) for all α > 0 and
a mapping G = F2 − F1 is nondecreasing, then every F1-contraction T is F2-contraction.
Indeed, we have G(p(Tx, Ty)) ≤ G(p(x, y)) for all x, y ∈ XwithTx 6= Ty. Thus, for all
x, y ∈ X,Tx 6= Ty we obtain that

τ + F2(p(Tx, Ty)) ≤ F1(p(x, y)) +G(p(x, y)) = F2(p(x, y)).

2 Main results

Definition 2.1. A sequence {xn}n∈N in partial metric space (X, p) is called 0-Cauchy if
limn,m→∞ p(xn, xm) = 0. We say that (X, p) is 0-complete if every 0-Cauchy sequence in
X converges, with respect to τp, to a point x ∈ X such that p(x, x) = 0.

Note that every 0-Cauchy sequence in (X, p) is Cauchy in (X, ps), and that every
complete partial metric space is 0-complete.

Theorem 2.2. Let (X, p) be a 0- complete partial metric space and T : X → X be F -
cotraction. Then T has a unique fixed point u ∈ X and for every u0 ∈ X a sequence
{Tnuo}n∈N is convergent to u.

To prove theorem suppose that T has two fixed point, say u1 6= u2 ∈ X. So Tu1 =
u1, Tu2 = u2. Then we get

τ ≤ F (p(u1, u2))− F (p(Tu1, Tu2)) = 0

and so τ ≤ 0, which is a contradiction.
Now let u0 be an arbitrary point in X and {un} be a sequence in X such that Tun =

un+1, n = 0, 1, 2, .... Denote βn = p(un+1, un), n = 0, 1, ....
If there exists n0 ∈ N for which un0+1 = un0 then Tun0 = un0 and the proof is

complete. So suppose that un+1 6= un for every n ∈ N . Thus by using of definition 1.4
it can be shown that {un}n∈N is a Cauchy sequence in (X, p) and also it is a 0-Cauchy.
Then by continuity of T, we have p(u, Tu) = p(Tu, Tu) = 0. This means that Tu = u.

By the following theorems we can find the unique common fixed point of two mappings.

Theorem 2.3. Let (X, p) be a partial metric space and f, g : X → X be mappings. Let
F : [0,∞] −→ R be such that satisfies condition (i)-(iii) of definition 1.4 and suppose that
τ > 0 and for all x, y ∈ X and p(fx, gy) > 0, be such that

τ + F (p(fx, gy)) ≤ F (p(x, y)).

If f has a fixed point u ∈ X, then u is a unique common fixed point of f and g, and
p(u, u) = 0.

Theorem 2.4. Let (X, p) be a 0-complete partial metric space and f, g : X → X be
mappings. Suppose that there exists F : [0,∞] −→ R such that satisfies condition (i)-(iii)
of definition 1.4 and suppose that for τ > 0 and x, y ∈ X, with p(fx, gy) > 0, we have

τ + F (p(fx, gy)) ≤ F (p(x, y)).

If (i)f or g is continuous
or
(ii) F is continuous,
then f and g have a unique common fixed point u ∈ X, and p(u, u) = 0.
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Fixed point and the stability of ∗-derivations on C∗-ternary

algebras

A.Hemmatzadeh∗

Department of Pure Mathematics, Azarbijan Shahid Madani University,Tabriz, Iran.

Abstract

By using the fixed point method, we prove the Hyers-Ulam stability of ∗-derivations
associated with the following additive mapping on C∗-ternary algebras:

n∑

k=2

k∑

i1=2

k+1∑

i2=i1+1

...

n∑

in−k+1=in−k+1

f

(
n∑

i=1,i ̸=i1,...,in−k+1

xi −
n−k+1∑

r=1

xir

)

+f

(
n∑

i=1

xi

)
= 2n−1f(x1) (1)

for a fixed positive integer n with n ≥ 2.

Keywords: C∗-ternary algebra, ∗-Derivation, Fixed point method, Hyers-Ulam sta-
bility
Mathematics Subject Classification [2010]: 39A30, 58J20

1 Introduction

The first stability problem waz raised in 1940 and it is solved in 1941. By using fixed
point methods, the stability problems of several functional equations have been extensively
investigated by a number of authors.

Suppose that A be a complex banach space and (x, y, z) → [x, y, z] on A3 to A be a
ternary multiplier. A with this ternary multiplier is called a C∗-ternary algebra

Definition 1.1. Let A be a C∗-ternary algebra. A C-linear mapping δ : A → A is called a
derivation on A, if for all a, b, c ∈ A we have: δ([a, b, c ]) =[ δ(a), b, c ]+[ a, δ(b), c ]+[ a, b, δ(c) ] .

If A is a C∗-ternary algebra, then for given mapping f : A → A we define the difference
operator Dµf : An → A by

Dµf(x1, ..., xn) :=

n∑

k=2

k∑

i1=2

k+1∑

i2=i1+1

...

n∑

in−k+1=in−k+1

f

(
n∑

i=1,i̸=i1,...,in−k+1

µxi −
n−k+1∑

r=1

µxir

)
+ f

(
n∑

i=1

µxi

)
− 2n−1µf(x1) (2)

∗A.Hemmatzadeh
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for all µ ∈ T 1 := { λ ∈ C : |λ| = 1} and all xi ∈ A (i = 1, 2, ..., n).
We will use the following lemmas in this paper.

Lemma 1.2. (see [2] ) Let V and W be linear spaces and let f : V → W be an additive
mapping such that f(µx) = µf(x) for all x ∈ V and all µ ∈ T 1. Then the mapping f is
C-linear.

Lemma 1.3. (see [3] ) A function f : X → Y with f(0) = 0 satisfies the functional
equation (1) if and only if f : X → Y is additive.

2 Main results

Assume that A be a C∗-ternary algebra, f(0) = 0 for given mapping f : A → A we define
for all a, b, c ∈ A

Cf (a, b, c) := f([a, b, c]) − [f(a), b, c] − [a, f(b), c] − [a, b, f(c)] . (3)

Theorem 2.1. Let f : A → A be a mapping for which exist functions φ : An → [0,∞)
and ψ : A3 → [0,∞) such that

lim
m→∞

2mφ
( x1

2m
,
x2

2m
, ...,

xn

2m

)
= 0 , (4)

lim
m→∞

8mψ
( a

2m
,
b

2m
,
c

2m

)
= 0 , (5)

∥Dµf(x1, ..., xn)∥ ≤ φ(x1, x2, ..., xn) , (6)

∥Cf (a, b, c)∥ ≤ ψ(a, b, c), (7)

f(
a∗

2m
) − f(

a

2m
)∗ ≤ φ(

a

2m
, ...,

a

2m
) (8)

for all a, b, c, x1, x2, ..., xn ∈ A , µ ∈ T 1 . If there exists a constant 0 < L < 1 such that

φ(x1, x2, ..., xn) ≤ α

2
Lφ(2x1, 2x2, ..., 2xn) , (9)

for all x1, x2, ..., xn ∈ A, where α = 2n−1, then there exists a unique C-linear mapping
d : A → A which is a ∗-derivation and for all x ∈ A we have:

∥f(x) − d(x)∥ ≤ L

1 − L
φ(x, x, 0, .., 0), (10)

∥f(x) − d(x)∥ ≤ L

1 − L
φ(
x

2
,
x

2
, 0, .., 0). (11)
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Proof. Let µ = 1. We use the following relation

1 +

n−1∑

k=1

(
n− 1

k

)
=

n−1∑

k=0

(
n− 1

k

)
= 2n−1 (12)

for all n > k. Put µ = 1, x1 = x2 = x and x3 = ... = xn = 0 in (6). Then we obtain

∥2f(
1

2
x) − f(x)∥ ≤ 2

α
φ(
x

2
,
x

2
, 0, ..., 0) ≤ Lφ(x, x, 0, ..., 0) (13)

for all x ∈ A. Let F := {u : A → A}. We introduce the generalized complete metric
dφ(u, v) := inf{c ∈ [0,∞] : ∥u(x) − v(x)∥ ≤ cφ(x, x, 0, ..., 0)} on F for all x ∈ A.

Now we consider the mapping (Λu)(x) := 2u(x
2 ) for all u ∈ F and all x ∈ A. Let

u, v ∈ F and let c ∈ [0,∞] be an arbitrary constant with dφ(u, v) ≤ c. We have

∥(Λu)(x) − (Λv)(x)∥ = 2∥u(x
2
) − v(

x

2
)∥ ≤ 2c φ(

x

2
,
x

2
, 0, ..., 0) ≤ αcL φ(x, x, 0, ..., 0)

for all x ∈ A. So dφ(Λf, f) ≤ L. Therefore according to the fixed point alternative
theorem (see [1] ), the sequence {Λmf} converges to a fixed point d of Λ, i.e.,

d : A → A, d(x) = lim
m→∞

(Λmf) = lim
m→∞

2mf(
x

2m
).

Also d is the unique fixed point of Λ in the set Fφ = {u ∈ F : dφ(u, v) < ∞} which that

dφ(d, f) ≤ 1

1 − L
dφ(Λf, f) ≤ L

1 − L
.

So d satisfies in (1) and is additive by Lemma 2.2 . Since α = |α| = 2n−1 we have

∥αf(µx) − µαf(x)∥ = ∥2n−1f(µx) − 2n−1µf(x)∥

for all x ∈ A, µ ∈ T 1. By the relations (12) and (2) and setting x1 = x and x2 = x3 =
.... = xn = 0 in (6) we get

d(µx) = lim
m→∞

2mf(
µx

2m
) = lim

m→∞
2mµf(

x

2m
) = µd(x)

for all x ∈ A and all µ ∈ T 1. Hence by Lemma 2.1, the mapping d : A → A is C-linear.
Moreover we have

d(x∗) = d(x)∗

for all x ∈ A. By the relations (5) and (7) for all a, b, c ∈ A we get

8m

∥∥∥∥Cf (
a

2m
,
b

2m
,
c

2m
)

∥∥∥∥ ≤ 8mψ(
a

2m
,
b

2m
,
c

2m
)

Since the right hand side tends to zero as m → ∞ and d is C-linear, we have:

d([a, b, c]) = [d(a), b, c] + [a, d(b), c] + [a, b, d(c)]
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Corollary 2.2. Let θ2, θ1, q, p be non-negative real numbers with p, q > 1. Suppose that
f : A → A be a mapping such that

∥Dµf(x1, x2, ..., xn)∥ ≤ θ1

n∑

i=1

∥xi∥p , ∥Cf (a, b, c)∥ ≤ θ2 (∥a∥q + ∥b∥q + ∥c∥q),

f(
a∗

2m
) − f(

a

2m
)∗ ≤ θ1 + θ2

2mp
(m = 0, 1, 2, ...)

for all a, b, c, x1, x2, ..., xn ∈ A, µ ∈ T 1. Then exists a unique C-linear ∗-derivation d : A →
A such that

∥f(x) − d(x)∥ ≤ 2θ1
2p−1 − 1

∥x∥p

Proof. The proof follows from Theorem 2.3 for all a, b, c, x1, x2, ..., xn ∈ A by choosing L =

21−p, φ(x1, x2, ..., xn) := θ1
∑n

i=1 ∥xi∥p and taking ψ(a, b, c) := θ2

(
∥a∥q +∥b∥q +∥c∥q

)

Corollary 2.3. Let θ2, θ1, q, p be non-negative real numbers with p, q ∈ (0, 1). Suppose
that f : A → A be a mapping such that

∥Dµf(x1, x2, ..., xn)∥ ≤ θ1 + θ2

n∑

i=1

∥xi∥p , ∥Cf (a, b, c)∥ ≤ θ1 + θ2 (∥a∥q + ∥b∥q + ∥c∥q),

f(2ma∗) − f(2ma)∗ ≤ (θ1 + θ2)2
mp (m = 0, 1, 2, ...),

Then exists a unique C-linear ∗-derivation d : A → A such that

∥f(x) − d(x)∥ ≤ θ1
21−p − 1

+
θ2

1 − 2p−1
∥x∥p

Proof. The proof follows from Theorem 2.3 for all b, c, x1, x2, ..., xn ∈ A a by choosing

L = 2p−1 and taking φ(x1, x2, ..., xn) := θ1+θ2
∑n

i=1 ∥xi∥p and ψ(a, b, c) := θ1+θ2

(
∥a∥q +

∥b∥q + ∥c∥q

)
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FIXED POINT FOR COMPATIBLE MAPPINGS OF

TYPE (γ) IN COMPLETE FUZZY METRIC SPACES

Aghil Gilani∗

Department of Mathematics, Kordkuy Center, Islamic Azad University, Kordkuy, Iran

Abstract

In this work, we prove common fixed point theorems satisfying some conditions
in fuzzy metric spaces in the sense of Sedghi, Turkoglu and Shobe [16]. Our main
theorems extend, generalize and improvement some known results in fuzzy metric
spaces, in particular produce a general style for prove common fixed point theorems.

Keywords: Compatible map of type (γ) , Complete fuzzy metric space, .

Mathematics Subject Classification [2010]: 48H10

1 Introduction and Preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [10] in 1965. Since then, to use
this concept in topology and analysis many authors have expansively developed the theory
of fuzzy sets and application. George and Veeramani [3] and Kramosil and Michalek [5]
have introduced the concept of fuzzy topological spaces induced by fuzzy metric which
have very important applications in quantum particle physics particularly in connections
with both string and ε∞ theory which were given and studied by El Naschie [ 2]. Many
authors have proved fixed point theorem in fuzzy (probabilistic) metric spaces.

Definition 1.1. A binary operation ∗ : [0, 1]× [0, 1] −→ [0, 1] is a continuous t-norm if it
satisfies the following conditions

1. ∗ is associative and commutative,

2. ∗ is continuous,

3. a ∗ 1 = a for all a ∈ [0, 1],

4. a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0, 1].

Definition 1.2. A 3-tuple (X,M, ∗) is called a fuzzy metric space if X (non − empty)
set, ∗ is a continuous t-norm and M is a fuzzy set on X2 × (0,∞) satisfying the following
conditions: for all x, y, z ∈ X and t, s > 0,

1. M(x, y, t) > 0,

∗Speaker

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Fixed point for compatible mappings of type (γ) in complete fuzzy metric . . . pp.: 1–4

144



2. M(x, y, t) = 1 if and only if x = y,

3. M(x, y, t) = M(y, x, t),

4. M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),

5. M(x, y, .) : (0,∞)→ [0, 1] is continuous.

6. limt→∞M(x, y, t) = 1.

2 Compatible Maps of Type (γ)

In this section, we give the concept of compatible maps of type (γ) in fuzzy metric spaces
and some properties of these maps.

Definition 2.1. Let A and S be mappings from a fuzzy metric space (X,M, ∗) into itself.
Then the mappings are said to be compatible maps of type (γ) if satisfying:

1. A and S are compatible, that is

limn→∞M(ASxn, SAxn, t) = 1, ∀t > 0

whenever {xn} is a sequence in X such that

limn→∞Axn = limn→∞Sxn = x ∈ X,

2. They are continuous at x.

On the other hand we have,

A(x) = A(limn→∞Axn) = A(limn→∞Sxn) = limn→∞ASxn
= limn→∞SAxn = S(limn→∞Axn) = S(x)

Lemma 2.2. Let (X,M, ∗) be a fuzzy metric space.
(i) If we define Eλ,M : X2 → R+

⋃{0} by

Eλ,M (x, y) = inf{t > 0 : M(x, y, t) > 1− λ}
for each µ ∈ (0, 1) there exists λ ∈ (0, 1) and x, y ∈ X such that

Eµ,M (x1, xn) ≤ Eλ,M (x1, x2) + Eλ,M (x2, x3) + ...+ Eλ,M (xn−1, xn)

for any x1, x2, ..., xn ∈ X.
(ii) The sequence {xn}n∈N is convergent in fuzzy metric space (X,M, ∗) if and only if

Eλ,M (xn, x) → 0. Also, the sequence {xn}n∈N is a Cauchy sequence if and only if it is a
Cauchy sequence with Eλ,M .

Lemma 2.3. Let (X,M, ∗) be fuzzy metric space. If a sequence {xn} in X is such that,
for any n ∈ N,

M(xn, xn+1, t) ≥M(x0, x1, k
nt)

for all k > 1, then sequence {xn} is a cauchy sequence.

Lemma 2.4. If for all x, y ∈ X, t > 0 and for a number k ∈ (0, 1)

M(x, y, kt) ≥M(x, y, t)

then x = y.
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3 Main Results

In this section, we prove some common fixed point theorems for compatible mappings of
type (γ) under satisfying some conditions in fuzzy metric spaces.

Theorem 3.1. Let (X,M, ∗) be a complete fuzzy metric space with t ∗ t = t for all
t ∈ [0, 1]. Let P1, P2, ..., P2m and Q0, Q1 be self-mappings continuous of a complete fuzzy
metric space, such that:

(i) Q0(X) ⊆ P1P3...P2m−1(X), Q1(X) ⊆ P2P4...P2m(X),
(ii) there exists a constant k ∈ (0, 1) such that

M(Q0x,Q1y, kt) ≥M(P1P3...P2m−1x,Q0x, t)

∗M(P2P4...P2my,Q1y, t)

∗M(P2P4...P2my,Q0x, αt)

∗M(P1P3...P2m−1x,Q1y, (2− α)t)

∗M(P1P3...P2m−1x, P2P4...P2my, t)

for all x, y ∈ X, α ∈ (0, 2) and t > 0,
(iii) the pairs (Q0, P1P3...P2m−1) and (Q1, P2P4...P2m) are weak compatible of type (γ),
(iv) for all 1 ≤ i = 2n− 1 ≤ 2m and 2 ≤ j = 2n ≤ 2m such that

PiQ0 = Q0Pi,
PiP1P3...P2m−1 = P1P3...P2m−1Pi,
PjQ1 = Q1Pj,
PjP2P4...P2m = P2P4...P2mPj.

Then P1, P2, ..., P2m and Q0, Q1 have a unique common fixed point in X.

Corollary 3.2. Let {Qµ}µ∈A, {Qν}ν∈B and {Pk}2mk=1 be the set of all self-mappings a
complete fuzzy metric spaces (X,M, ∗) with t ∗ t = t for all t ∈ [0, 1], such that:

(i) Qµ(X) ⊆ P1, P2, ..., P2m(X) and Qν(X) ⊆ P1, P3, ..., P2m−1(X) for all µ ∈ A, ν ∈
B,

(ii) there exists a constant k ∈ (0, 1) such that

M(Qµx,Qνy, kt) ≥M(P1P3...P2m−1x,Qµx, t)

∗M(P2P4...P2my,Qνy, t)

∗M(P2P4...P2my,Qµx, αt)

∗M(P1P3...P2m−1x,Qνy, (2− α)t)

∗M(P1P3...P2m−1x, P2P4...P2my, t)

for all x, y ∈ X, α ∈ (0, 2), µ ∈ A, ν ∈ B and t > 0,
(iii) there exists µ0 ∈ A, such that pairs (Qµ0 , P1P3...P2m−1) and (Qν , P2P4...P2m) are

weak compatible of type (γ),
(iv) for all µ ∈ A, ν ∈ B, 1 ≤ i = 2n− 1 ≤ 2m and 2 ≤ j = 2n ≤ 2m such that

PiQµ = QµPi,
PiP1P3...P2m−1 = P1P3...P2m−1Pi,
PjQν = QνPj,
PjP2P4...P2m = P2P4...P2mPj.

Then all Pk and {Qµ}µ∈A, {Qν}ν∈B have a unique common fixed point in X.
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Fixed Point Theorems for G-Nonexpansive Mappings in
Ultrametric Spaces and non-Archimedean Normed Spaces

Endowed with a Graph

Hamid Mamghaderi∗
K. N. Toosi University of Technology

Hashem Parvaneh Masiha
K. N. Toosi University of Technology

Abstract

The purpose of this article is to present some new fixed point results for G-
nonexpansive mappings defined on an ultrametric space and non-Archimedean normed
space which are endowed with a graph. In particular, we investigate the relationship
between weak connectivity and the existence of fixed points for these mappings.

Keywords: Fixed point; ultrametric space; spherically complete ultrametric spaces;
non-Archimedean space: nonexpansive mapping.
Mathematics Subject Classification [2010]: 47H10, 32P05

1 Introduction

Let (X, d) be a metric space. (X, d) is called an ultrametric space if the metric d satisfies
the strong triangle inequality, i.e., for all x, y, z ∈ X:

d(x, y) ≤ max{d(x, z), d(y, z)},

in this case d is said to be ultrametric [4].
We denote by B(x, r), the closed ball B(x, r) = {y ∈ X : d(x, y) ≤ r}, where x ∈ X

and r ≥ 0 (B(x, 0) = {x}). A known characteristic property of ultrametric spaces is the
following:

If x, y ∈ X, 0 ≤ r ≤ s and B(x, r) ∩ B(y, s) ̸= ∅, then B(x, r) ⊂ B(y, s).

An ultrametric space (X, d) is said to be spherically complete if every shrinking collection
of balls in X has a nonempty intersection [4]. [4] Let K be a non-Archimedean valued
field. A norm on a vector space X over K is a map ∥ · ∥ from X into [0, ∞) with the
following properties:

1) ∥x∥ ̸= 0 if x ∈ E \ {0};

2) ∥x + y∥ ≤ max{∥x∥, ∥y∥} (x, y ∈ X);

3) ∥αx∥ = |α|∥x∥ (α ∈ K, x ∈ X).

In 1993, Petalas and Vidalis [3] proved the following theorem:

Theorem 1.1 ([3]). Let X be a non-Archimedean spherically complete normed space. If
T : X −→ X is a nonexpansive mapping, i.e., d(Tx, Ty) ≤ d(x, y) x, y ∈ X, Then either
T has at least one fixed point or there exists a T -invariant closed ball B with radius r > 0
such that ∥b − Tb∥ = r for all b ∈ B.
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In 2012, Kirk and Shahzad [1] proved the following theorem in a constructive way.

Theorem 1.2 ([1]). Suppose that (X, d) is a spherically complete ultrametric space and
T : X −→ X is a nonexpansive mapping. Then every closed ball of the form

B(x, d(x, Tx)) (x ∈ X),

contains either a fixed point of T or a minimal T -invariant closed ball.
Where a ball B(x, r) is called T -invariant if T (B(x, r)) ⊂ B(x, r) and is called minimal
T -invariant if B(x, r) is T -invariant and d(u, Tu) = r for all u ∈ B(x, r).

In this paper, motivated by the works of Petalas and Vidalis [3], Kirk and Shazad
[1] and Jachymski [2], we introduce two new conditions for nonexpansive mappings on
complete ultrametric spaces ( non-Archimedean spaces) and, using these conditions, obtain
some fixed point theorems.

2 The Main Theorem

Let G = (V (G), E(G)) be a directed graph. By G̃ we denote the undirected graph obtained
from G by ignoring the direction of edges. If x and y are two vertices in a graph G, then a
path in G from x to y of length n is a sequence (xi)

n
i=0 of n + 1 vertices such that x0 = x,

xn = y and (xi−1, xi) ∈ E(G) for i = 1, . . . , n, we always suppose that paths are of the
shortest length. A graph G is called connected if there is a path between any two vertices
and is called weakly connected if G̃ is connected.
Subsequently, in this paper X is a complete ultrametric space or non-Archimedean normed
space with ultrametric d, ∆ is the diagonal of the cartesian product X × X and G is a
directed graph such that the set V (G) of its vertices coincides with X, the set E(G)
of its edges contains ∆ and G has no parallel edges. Moreover, we may treat G as a
weighted graph by assigning to each edge the distance between its vertices. We give our
first two results with constructive proofs. In fact, we generalize Kirk and Shahzad’s result
on nonexpansive mappings on ultrametric spaces and non-Archimedean normed spaces
endowed with a graph.

Definition 2.1. Let (X, d) be a metric space endowed with a graph G. We say that a
mapping T : X −→ X is is G-nonexpansive if

1) T preserves the edges of G, i.e., (x, y) ∈ E(G) implies (Tx, Ty) ∈ E(G) for all
x, y ∈ X;

2) d(Tx, Ty) ≤ d(x, y) for all x, y ∈ X with (x, y) ∈ E(G).

Definition 2.2. Suppose that (X, d) is an ultrametric space endowed with a graph G and
T : X −→ X a mapping. We would say that a ball B(x, r) is graphically T -invariant if for

any u ∈ B(x, r) that there exists a path between u and x in G̃ with vertices in B(x, r),
we have

Tu ∈ B(x, r).

Also, a ball B(x, r) is graphically minimal T -invariant if Tu ∈ B(x, r) and d(u, Tu) = r

for any u ∈ B(x, r) that there exists a path between u and x in G̃ with vertices in B(x, r).

Theorem 2.3. Let (X, d) be an ultrametric space endowed with a graph G. If G-nonexpansive
mapping T : X −→ X satisfies the following conditions

(A) There exists an x0 ∈ X such that d(x0, Tx0) < 1;

(B) If d(x, Tx) < 1, then there exists a path in G̃ between x and Tx with vertices in
B(x, d(x, Tx));
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(C) If {B(xn, d(xn, Txn))} is a nonincreasing sequence of closed balls in X and for each

n ≥ 1, there exists a path in G̃ between xn and xn+1 with vertices in B(xn, d(xn, Txn),
then there exists a subsequence {xnk

}∞
k=1 of {xn}∞

n=1 and a z ∈ ∩∞
k=1 B(xnk

, rnk
)

such that for each k ≥ 1, there exists a path in G̃ between xnk
and z with vertices in

B(xnk
, d(xnk

, Txnk
)),

Then for each x ∈ X) with d(z, Tz) < 1, the closed ball B(x, d(x, Tx)) contains a fixed
point of T or a graphically minimal T -invariant ball.

Corollary 2.4. Suppose that (X, d, ⪯) is a partially ordered ultrametric space, G =
(V (G), E(G)) is a directed graph with V (G) = X and E(G) = {(x, y) ∈ X × X : x ⪯ y}
and T : X −→ X is a G-nonexpansive mapping such that (A), (B) and (C) in Theorem
2.3 hold. Then for every x ∈ X with d(x, Tx) < 1, the closed ball B

(
x, d(x, Tx)) contains

a fixed point of T or a graphically minimal T -invariant ball.

Corollary 2.5. Suppose that (X, ∥ · ∥) is a non-Archimedean vector space over a non-
Archimedean valued field K that X endowed with a partial ordering ⪯, G = (V (G), E(G))
is a graph with V (G) = X and E(G) = {(x, y) ∈ X × X : x ⪯ y} and T : X −→ X is a
G-nonexpansive mapping such that (A), (B) and (C) in Theorem 2.3 hold. Then for every
x ∈ X with ∥x − Tx∥ < 1, the closed ball B

(
x, ∥x − Tx∥

)
contains a fixed point of T or a

graphically minimal T -invariant ball.

In the previous theorem, we obtained some results on the closed balls
B(x, d(x, Tx)) with d(x, Tx) < 1. In the following Theorem we obtain these results on
every weakly connected ball of the form B(x, d(x, Tx)) by adding weak connectivity.

Theorem 2.6. Let (X, d) be a spherically complete ultrametric space endowed with graph
G and T : X −→ X be a G-nonexpansive mapping. Let for each x ∈ X the ball
B(x, d(x, Tx)) is weakly connected. Then for each z ∈ X the closed ball B(z, d(z, Tz))
contains either a fixed point of T or a minimal T -invariant ball.

Remark 2.7. In the same way, in this case the corollaries (1), (2) and (3) hold, too.

3 Examples

In this section, we will give some examples to support our Theorems. We also compare
the hypotheses of Theorems 2.3 and 2.6 in Examples 2 and 3. In the first example, we
present a spherically complete ultrametric space endowed with a weakly connected graph
to support Theorem 2.6.

Example 3.1. Let X be the space c0 over a non-Archimedean valued field K with the
valuation of K discrete and pick a π ∈ K with 0 < |π| < 1. Define graph G := (V (G), E(G))
by V (G) = X and

E(G) = {(x, y) ∈ X × X : either x = y or there exists just one i ∈ N such that xi = yi}.

Let B(x, r) be an arbitrary closed ball in X. B(x, r) is weakly connected. It is well known
when K is discrete (X, d) is spherically complete. So, all conditions of Theorem 2.6 hold.
On the other hand, if there exists x0 ∈ X such that d(x0, Tx0) < 1 for G-nonexpansive
mapping T : c0 −→ c0 then, since (X, d) is weakly connected, for each x ∈ X there exists
a path between x and Tx. Thus, in this case, hypothesis (B) of the Theorem 2.3 also hold.

In the following example we showe conditions of Theorem 2.3 are independent of con-
ditions of Theorems 2.6.
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Example 3.2. Let X be the space c0 over a non-Archimedean valued field K with the
valuation of field K discrete and π ∈ K with 1 < |π|. Suppose w ∈ B(0, 1) has just one
zero coordinate. Define graph G′, with V (G′) = X, and

E(G′) = {(x, y) ∈ X × X : x = y or (x, y) ∈ E(G), (x,w) ∈ E(G) and (y, w) ∈ E(G)}.

G′ isn’t weakly connected because if x ∈ X is such that (x,w) isn’t an edg of G, then there
is no paths between x and w in G′. Indeed, if (x = x0, x1, x2, ..., xN = w) is a path between
x and w in G′, then (x, x1) ∈ E(G′), therefore (x, w) ∈ E(G), which is a contradiction.
So, G′ isn’t weakly connected. Therefore conditions of Theorems 2.6 do not hold. Now,
define T : X −→ X by

T (x) =

{
(x1, x2, x3, ...), (x,w) ∈ E(G)
(1 + x1, 2x2, 2x3, ...), o.w

T is a G′-nonexpansive mapping. Clearly, hypothesis (A) of Theorem 2.3 holds. If
d(x, Tx) < 1, then (x,w) ∈ E(G). Therefore, (x, Tx) is a path between x and Tx in

G̃′. This means that hypothesis (B) of Theorem 2.3 holds. If {B(xn, d(xn, Txn))} is a
family of decreasing balls, such that for each n ∈ N, there exists a path between xn and
xn+1 in G̃′, then for each n ∈ N, (xn, w) ∈ E(G), so d(xn, Txn) = 0. Hence there ex-
ists z ∈ X such that B(xn, d(xn, Txn)) = {z} for each n ∈ N. Therefore, conditions of
Theorem 2.3 hold, althought, conditions of Theorem 2.6 don’t hold.

The last example shows that the hypotheses of Theorem 2.6 are independent of the
hypotheses of Theorem 2.3.

Example 3.3. Let X be the space c0 over a non-Archimedean valued field K with the
valuation of K discrete. We endow X with the graph G defined in Example 3.1. Let e ∈ K
with |e| > 1. As we have shown in Example 3.1, for every G-nonexpansive mapping T the
hypotheses of Theorem 2.6 hold. Define T : X −→ X by

T (x1, x2, . . .) = (e, x1, x2, . . .)

For each x ∈ X. We have

d(x, Tx) = sup{|x1 − e|, |x2 − x1|, |x3 − x2|, ...},

so |x1 − e| ≤ d(x, Tx). Since |x1 − e| = max{|x1|, |e|} and |e| ≥ 1, we infere d(x, Tx) ≥ 1
for all x ∈ X. Hence for each x ∈ X, d(x, Tx) ≥ 1 and the hypotheses of Theorem 2.3 do
not hold.
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Hyers-Ulam-Rassias stability of functional equations on

quasi-normed liner spaces
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Abstract

In this paper, we use the definition of quasi-normed spaces and the behaviors of
solutions of the additive functional equation are described. The Hyers-Ulam stability
problem of this equation is discussed and theorems concerning the Hyers-Ulam-Rassias
stability of the equation are proved on quasi-normed linear space.
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1 Introduction

Defining, in some way, the class of approximate solutions of the given functional equation
one can ask whether each mapping from this class can be somehow approximated by an
exact solution of the considered equation. Such a problem was formulated by Ulam in
1940 (cf. [4]) and solved in the next year for the Cauchy functional equation by Hyers [2].
In 1950, Aoki [1] and in 1978, Rassias [3] proved a generalization of Hyers theorem for
additive and linear mappings, respectively:
The result of Rassias has influenced the development of what is now called the Hyers-
Ulam-Rassias stability theory for functional equations.

2 Main results

Definition 2.1. Let X is a vector space over F and k ≥ 1. Furthermore, let ∥.∥k : X −→
[0, ∞) be a function such that for all x, y ∈ X and c ∈ F :
(i) ∥cx∥k = |c|∥x∥k,
(ii) ∥x + y∥k ≤ k(∥x∥k + ∥y∥k),
(iii) ∥x∥k = 0 if and only if x = 0.

Theorem 2.2. Let f : X −→ Y be a function between complete quasi-normed linear
spaces such that

∥f(x + y) − f(x) − f(y)∥k ≤ δ, for all x, y ∈ X,
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for some 0 < δ. Then the limit

A(x) = lim
n→∞

2−nf(2nx)

exists for each x ∈ X and A : X −→ Y is the unique additive function such that

∥A(x) − f(x)∥k ≤ δ, for all x ∈ X. (1)

Moreover, if f(tx) is continuous in t for each fixed x ∈ X then A is linear.

Proof. Let x ∈ X. We have

∥2−nf(2nx) − 2−mf(2mx)∥k ≤ (2−m − 2−n)δ, for all m < n.

Thus {2−nf(2nx)} is a Cauchy sequence for each x ∈ X. Hence the limit

A(x) = lim
n→∞

2−nf(2nx)

exists for each x ∈ X.
Let x, y ∈ X. We have

∥2−nf(2nx + 2ny) − 2−nf(2nx) − 2−nf(2ny)∥k ≤ 2−nδ, for all n ∈ N.

As n −→ ∞, we obtain that A is additive function. Now we have

∥2−nf(2nx) − f(x)∥k ≤ (1 − 2−n)δ, for all n ∈ N.

As n −→ ∞, we get ∥A(x) − f(x)∥k ≤ δ, for all x ∈ X.
Let A′ : X −→ Y be another additive function satisfying in (1) and A(y) ̸= A′(y) for
some y ∈ X. Then there exists n ∈ N such that n > 2kδ/∥A(y) − A′(y)∥k. Hence
2kδ < ∥A(ny) − A′(ny)∥. On the other hand we have

∥A(ny) − A′(ny)∥k ≤ k(∥A(ny) − f(ny)∥k + ∥f(ny) − A′(ny)∥k) ≤ 2kδ,

this is a contradiction. Hence, A is the unique additive function satisfying the inequality
(1).
Assume that f is continuous at y ∈ X. If A is not continuous at y, then there exist an
integer ϵ > 0 and a sequence {xn} in X converging to zero such that ∥A(xn)∥k > ϵ, for all
n ∈ N. Let m be an integer greater than 3k2δ/ϵ. Then

∥A(mxn + y) − A(y)∥k = ∥A(mxn)∥k ≥ mϵ > 3k2δ.

We have

∥A(mxn + y) − A(y)∥k ≤ k(∥A(mxn + y) − f(mxn + y)∥k +

k(∥f(mxn + y) − f(y)∥k + ∥A(y) − f(y)∥k)) ≤ 3k2δ,

for sufficiently large n. This is a contradiction. So A is continuous at y. Let f(tx) be
continuous in t. Then A(tx) is continuous in t, hence A is linear.
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Theorem 2.3. Let (X, ∥.∥k and (Y, ∥.∥k) be complete quasi-normed linear spaces and
N ∈ N. Also let f : X −→ Y be a function such that

∥f(
N∑

i=1

xi) −
N∑

i=1

f(xi)∥k ≤ θ
N∑

i=1

∥xi∥p
k, for all xi ∈ X, and 1 ≤ i ≤ N,

for some 0 < θ, p ∈ [0, 1) and 1 ≤ k < N1−p. Then there exists a unique additive function
A : X −→ Y such that

∥A(x) − f(x)∥k ≤ Nkθ∥x∥p
k/(N − kNp), for all x ∈ X. (2)

Moreover, if f is continuous for some x ∈ X then A is linear.

Proof. We have ∥f(Nx) − Nf(x)∥k ≤ Nθ∥x∥p
k, for all x ∈ X. Hence

∥N−1f(Nx) − f(x)∥k ≤ θ∥x∥p
k, for all x ∈ X.

By induction on n, we prove that

∥N−nf(Nnx) − f(x)∥k ≤ θ∥x∥p
k

n−1∑

i=0

k(i+1)N i(p−1), for all x ∈ X.

Now we have

∥N−n−1f(Nn+1x) − f(x)∥k ≤ k(∥N−1f(Nx) − f(x)∥k +

∥N−n−1f(Nn+1x) − N−1f(Nx)∥k)

≤ k(N−1θ∥Nx∥p
k

n−1∑

i=0

k(i+1)N i(p−1) +

θ∥x∥p
k)

= θ∥x∥p
k

n−1∑

i=0

k(i+2)N (i+1)(p−1) + kθ∥x∥p
k

= θ∥x∥p
k

n∑

i=0

k(i+1)N i(p−1),

for all x ∈ X. Since 1 ≤ k < N1−p,
∑n−1

i=0 k(i+1)N i(p−1) converges. Thus {N−nf(Nnx)}
is a Cauchy sequence for each x ∈ X. Hence the limit A(x) = limn→∞ N−nf(Nnx) exists
for each x ∈ X. Now we have

∥N−nf(Nnx) − f(x)∥k ≤ θ∥x∥p
k

n−1∑

i=0

k(i+1)N i(p−1),

for all x ∈ X and all n ∈ N. As n −→ ∞, we obtain that

∥A(x) − f(x)∥k ≤ kθ∥x∥p
k/(1 − kNp−1) = Nkθ∥x∥p

k/(N − kNp),

for all x ∈ X. We have

∥N−nf(Nnx + Nny) − N−nf(Nnx) − N−nf(Nny)∥k ≤

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Hyers-Ulam-Rassias stability of functional equations on quasi-normed liner . . . pp.: 3–4

154



Nn(p−1)θ(∥x∥p
k + ∥y∥p

k),

for all x, y ∈ X. As n −→ ∞, we see that A is additive function.
Let A′ : X −→ Y be another additive function satisfying in (2). We have

∥A(x) − A′(x)∥k = (1/n)∥A(nx) − A′(nx)∥k

≤ k/n(∥A(nx) − f(nx)∥k + ∥f(nx) − A′(nx)∥k)

≤ k/n(2Nkθ∥nx∥p
k/(N − kNp))

= 2Nk2np−1θ∥x∥p
k/(N − kNp),

for all x ∈ X and all n ∈ N. As n −→ ∞, we obtain that A(x) = A′(x), for all x ∈ X.
Assume that f is continuous at x0 ∈ X. Since

∥A(x) − f(x)∥k ≤ Nkθ∥x∥p
k/(N − kNp), for all x ∈ X,

A is continuous at x0 ∈ X. We have A is additive, Hence A is continuous on X and
A(qx) = qA(x) for all q ∈ Q. Thus A(ax) = aA(x), for any a ∈ R. Therefore A is a linear
function.
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Mohsen Alimohammady
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Abstract

The purpose of this paper is the study of hemivariational inequalities with Neu-
mann boundary condition. Our approach is based on nonsmooth critical point Theo-
rem.

Keywords: hemivariational inequality, Nonsmooth critical point theory, p-Laplacian

Mathematics Subject Classification [2010]: 35J87, 49J40, 49J52

1 Introduction

The applications to nonsmooth variational problems have been seen in (cf. [2]), Bonanno
and Candito studied a class of variational-hemivariational inequalities; In (cf. [1]), Alimo-
hammady studied variational-hemivariational inequality on bounded domains.

The aim of this paper is to study the following boundary value problem, depending on
the parameters λ, µ with non-smooth Neumann boundary condition:

{
−∆pu+ a|u|p−2u = 0 in Ω

−|∇u|p−2 ∂u∂ν ∈ −λ∂F (x, u)− µ∂G(x, u) on ∂Ω
(1)

We assume that it is given a functional χ : X → R∪{+∞} which is convex, lower semicon-
tinuous, proper whose effective domain dom(χ) = {x ∈ X : χ(x) < +∞} is a (nonempty,
closed, convex) cone in X.
Our aim is to study the following hemivariational inequalities problem:
Find u ∈ dom(χ) which is called a weak solution of problem (1), i.e; if for all v ∈ dom(χ),

∫

Ω
|∇u|p−2∇u∇(v − u)dx+

∫

Ω
a|u|p−2u(v − u)dx

−λ

∫

∂Ω
F 0(x, u, v − u)dσ − µ

∫

∂Ω
G0(x, u, v − u)dσ ≥ 0. (2)
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Denote X = W 1,p(Ω) be endowed with the norm

‖u‖ = {
∫

Ω
[|∇u|p + a|u|p]dx}.

Let

K = sup
u∈X\{0}

maxx∈Ω̄ |u(x)|p
‖u‖p , (3)

since p > N, X are compactly embedded in C0(Ω̄), and hence K < ∞.
Let X be a Banach space and X? its topological dual. By ‖ · ‖ we will denote the norm
in X and by < ·, · > the duality brackets for the pair (X,X?). A function f : X → R is
said to be locally Lipschitz, if for every x ∈ X there exists a neighbourhood U of x and a
constant K > 0 depending on U such that |h(y)− h(z)| ≤ K‖y − z‖ for all y, z ∈ U.
For a locally Lipschitz function h : X → R we define the generalized directional derivative
of h at u ∈ X in the direction γ ∈ X by

h0(u; γ) = lim sup
w→u,t→0+

h(w + tγ)− h(w)

t
.

The generalized gradient of h at u ∈ X is defined by

∂h(u) = {x? ∈ X? : < x?, γ >X≤ h0(u; γ), ∀γ ∈ X},

which is a non-empty, convex and w?−compact subset of X?, where < ·, · >X is the duality
pairing between X? and X.

The generalized Lebesgue-Sobolev space WL,p(x)(Ω) for L = 1, 2, ... is defined as

WL,p(·)(Ω) = {u ∈ Lp(·)(Ω) : Dαu ∈ Lp(·)(Ω), |α| ≤ L},

where Dαu = ∂|α|
∂α1x1···∂αnxn

with α = (α1, α2, · · ·, αN ) is a multi-index and |α| = ΣNi=1αi.

In this paper, we denote by X = W 1,p(x)(Ω) and X? the dual space.
For a locally Lipschitz function h : X → R we define the generalized directional derivative
of h at u ∈ X in the direction γ ∈ X by

h0(u; γ) = lim sup
w→u,t→0+

h(w + tγ)− h(w)

t
.

The generalized gradient of h at u ∈ X is defined by

∂h(u) = {x? ∈ X? : < x?, γ >X≤ h0(u; γ), ∀γ ∈ X},

which is a nonempty, convex and w?−compact subset of X?, where < ·, · >X is the duality
pairing between X? and X.

We have the following Definitions from (cf. [?]).
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Definition 1.1. Let X be a Banach space, I : X → (−∞,+∞] is called a Motreanu-
Panagiotopoulos-type functional, if I = h + χ, where h : X → R is locally Lipschitz and
χ : X → (−∞,+∞] is convex, proper and lower semicontinuous.

Definition 1.2. An element u ∈ X is said to be a critical point of I = h+ χ if

h0(u; v − u) + χ(v)− χ(u) ≥ 0, ∀v ∈ X.

We introduce the functionals φ,F ,G : X → R, defined as follows

φ(u) =
1

p
‖u‖, ∀u ∈ W 1,p(Ω),

F(u) =

∫

∂Ω
F (x, u)dσ, ∀u ∈ W 1,p(Ω),

G(u) =
∫

∂Ω
G(x, u)dσ, ∀u ∈ W 1,p(Ω).

Theorem 1.3. (cf. [?]) Let X be a separable and reflexive Banach space, Λ be a real
interval, B a nonempty, closed, convex subset of X. φ ∈ C1(X,R) a sequentially weakly
l.s.c. functional, bounded on any bounded subset of X, such that φ′ is of type (S)+,
F : X → R a locally Lipschitz functional with compact gradient. Assume that:
(i) lim‖u‖→+∞[φ− λF ] = +∞, ∀λ ∈ Λ,
(ii)There exists ρ0 ∈ R such that

sup
λ∈Λ

inf
u∈X

[φ+ λ(ρ0 −F(u))] < inf
u∈X

sup
λ∈Λ

[φ+ λ(ρ0 −F(u))].

Then, there exist λ1, λ2 ∈ Λ (λ1 < λ2) and σ > 0 such that, for every λ ∈ [λ1, λ2] and
every locally Lipschitz functional G : X → R with with compact gradient, there exists
µ1 > 0 such that for every µ ∈]0, µ1[ the functional φ− λF + µG has at least three critical
points whose norms are less than σ.

2 Main results

Theorem 2.1. Assume that
(i1) α < Kβ

cp ,
(i2) F (x, t) ≥ 0 for every (x, t) ∈ ∂Ω× R.
(i3) φ

−1(]−∞, r[) ∩D(χ) 6= ∅, ∀r > infX φ.
Then, for each λ ∈ (λ1, λ2), where

λ1 =
1

pKβ
,

and

λ2 =
1

pcpα
,

for every arbitrary Carathéodory function G : ∂Ω×R → R satisfying G is a non-negative
function satisfying the condition

G∞ = lim
ω→+∞

∫
∂Ωmax|t|≤ω G(x, t)dσ

|ω|p < +∞, (4)
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and for every µ ∈ [0, µG,λ), where

µG,λ =
1

pKG∞
(1− pKλα),

the problem (1) has a sequence of weak solutions for every µ ∈ [0, µG,λ) in X such that

1

p
‖u‖ → +∞.
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Lie Ternary (σ, τ, ξ)-Derivations on Banach Ternary Algebras

Razieh Farokhzad∗

Gonbad-Kavous University

Abstract

Let A be a Banach ternary algebra over a scalar field R or C and X be a Banach
ternary A-module. Let σ, τ and ξ be linear mappings on A. We define a Lie ternary
(σ, τ, ξ)-derivation. Moreover, we prove the generalized Hyers-Ulam-Rassias stability
of lie ternary (σ, τ, ξ)-derivations on Banach ternary algebras.

Keywords: Banach ternary A-module, Lie ternary (σ, τ, ξ)-derivation, Hyers–Ulam–
Rassias stability.

1 Introduction

Let A be a Banach ternary algebra and X be a Banach space. Then X is called a
ternary Banach A-module, if module operations A× A×X → X, A×X × A → X, and
X ×A×A→ X are C-linear in every variable. Moreover satisfy:

max{‖[xab]X‖, ‖[axb]X‖, ‖[abx]X‖} ≤ ‖a‖‖b‖‖x‖
for all x ∈ X and all a, b ∈ A.

The stability of functional equations was started in 1940 with a problem raised by S.
M. Ulam [6]. In 1941 Hyers affirmatively solved the problem of S. M. Ulam in the context
of Banach spaces. In 1950 T.Aoki [2] extended the Hyers’ theorem. in 1978, Th. M.
Rassias [5] formulated and proved the following Theorem:
Assume that E1 and E2 are real normed spaces with E2 complete, f : E1 → E2 is a
mapping such that for each fixed x ∈ E1 the mapping t→ f(tx) is continuous on R, and
let there exist ε ≥ 0 and p ∈ [0, 1) such that ‖f(x + y) − f(x) − f(y)‖ ≤ ε(‖x‖p + ‖y‖p)
for all x, y ∈ E1. Then there exists a unique linear mapping T : E1 ∈ E2 such that
‖f(x)− T (x)‖ ≤ ε ‖x‖p(1−2p) for all x ∈ E1.

The equality ‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) has provided extensive influence
in the development of of what we now call Hyers-Ulam-Rassias stability of functional
equations [3]. In 1994, a generalization of Rassias’ theorem was obtained by Gavruta [4],
in which he replaced the bound ε(‖x‖p + ‖y‖p) by a general control function.
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2 Lie ternary (σ, τ, ξ)-derivations on Banach ternary alge-
bras

In this section, We define a Lie ternary (σ, τ, ξ)-derivation on an A-bimodule X.

If A is a normed algebra, σ and τ two mappings on A and X is an A-bimodule. A
linear mapping L : A→ X is called a Lie (σ, τ)-derivation, if

L([a, b]) = [L(a), b]σ,τ − [L(b), a]σ,τ

for all a, b ∈ A, where [a, b]σ,τ is aτ(b) − σ(b)a and [a, b] is the commutator ab − ba of
elements a, b.
Throughout this section, Let (A, [ ]A) be a Banach ternary algebra over a scalar field R or
C and (X, [ ]X) be a ternary Banach A-module. Let σ, τ and ξ be linear mappings on A.

Definition 2.1. A linear mapping D : (A, [ ]A)→ (X, [ ]X) is called a Lie ternary (σ, τ, ξ)-
derivation, if

D([a, b, c]) = [[D(a)bc]X ](σ,τ,ξ) − [[D(c)ba]X ](σ,τ,ξ) (1.1)

for all a, b, c ∈ A, where [abc](σ,τ,ξ) = aτ(b)ξ(c)− σ(c)τ(b)a and [a, b, c] is the commutator
[abc]A − [cba]A of elements a, b, c.

Let A be a unital Banach ternary algebra and X be a ternary Banach A-module. If
D : A → X is a Lie ternary (σ, τ, ξ)-derivation such that σ, τ and ξ are linear mappings
on A, additionally, τ(e) = e, then it is easy to prove that D is a Lie (σ, ξ)-derivation.

Theorem 2.2. Suppose f : A → X is a mapping with f(0) = 0 for which there exist
mappings g, h, k : A→ A with g(0) = h(0) = k(0) = 0 and a function ϕ : A×A×A×A×
A→ [0,∞] such that

ϕ̃(x, y, u, v, w) =
1

2

∞∑

n=0

ϕ(2nx, 2ny, 2nu, 2nv, 2nw) <∞ (2.2)

‖f(λx+ λy + [u, v, w])− λf(x)− λf(y)− [[f(u)vw]X ](g,h,k) + [[f(w)vu]X ](g,h,k)‖
≤ ϕ(x, y, u, v, w) (2.3)

‖g(λx+ λy)− λg(x)− λg(y)‖ ≤ ϕ(x, y, 0, 0, 0)

‖h(λx+ λy)− λh(x)− λh(y)‖ ≤ ϕ(x, y, 0, 0, 0)

‖k(λx+ λy)− λk(x)− λk(y)‖ ≤ ϕ(x, y, 0, 0, 0)

for all λ ∈ T1(:= {λ ∈ C ; |λ| = 1}) and for all x, y, u, v, w ∈ A.
Then there exist unique linear mappings σ, τ and ξ from A to A satisfying

‖g(x)− σ(x)‖ ≤ ϕ̃(x, x, 0, 0, 0) (2.4)
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‖h(x)− τ(x)‖ ≤ ϕ̃(x, x, 0, 0, 0) (2.5)

and
‖k(x)− ξ(x)‖ ≤ ϕ̃(x, x, 0, 0, 0) (2.6)

and there exist a unique Lie ternary (σ, τ, ξ)-derivation on D : A→ X such that

‖f(x)−D(x)‖ ≤ ϕ̃(x, x, 0, 0, 0) (2.7)

for all x ∈ A.

3 stability of C∗-Lie ternary (σ, τ, ξ)-derivations in C∗-ternary
algebras

A C∗-ternary algebra is a complex Banach space A, equipped with a ternary product
(x, y, z) → [xyz] of A3 into A, which is C-linear in the outer variables,conjugate C-linear
in the middle variable, and associative in the sense that [xy[zwv]] = [x[wzy]v] = [[xyz]wv],
and satisfies ‖[xyz]‖ ≤ ‖x‖.‖y‖.‖z‖ and ‖[xxx]‖ = ‖x‖3 (see [1]). Every left Hilbert C∗-
module is a C∗-ternary algebra via the ternary product [xyz] := 〈x, y〉z.

A Lie (σ, τ, ξ)-ternary derivation L : A → A on a C∗-ternary algebra A is called a
C∗-Lie ternary (σ, τ, ξ)-derivation.

Throughout this section, assume that A is a C∗-ternary with norm ‖.‖A. Let q be a
positive rational number. For a given mapping f : A → A and a given µ ∈ C, we define
Dµf : An → A by

Dµf(x1, ..., xn) :=

n∑

i=1

f(

n∑

j=1

qµ(xi − xj)) + nf(

n∑

i=1

qµxi)− nqµ
n∑

i=1

f(xi)

for all x1, ..., xn ∈ A.
In this section our aim is to establish the Hyers-Ulam stability of C∗-Lie ternary (σ, τ, ξ)-
derivations in C∗-ternary algebras for the Euler-Lagrange type additive mapping.

Theorem 3.1. Assume that r > 3 if nq > 1 and that 0 < r < 1 if nq < 1. Let θ be a
positive real number, and let f : A→ A be an odd mapping for which there exist mappings
g, h, k : A→ A with g(0) = h(0) = k(0) = 0 satisfying

‖Dµf(x1, ..., xn)‖ ≤ θ
n∑

j=1

‖xj‖r (3.1)

‖g(qµx1 + ...+ qµxn)− qµg(x1)− ...− qµg(xn)‖ ≤ θ(‖x1‖r + ...+ ‖xn‖r) (3.2)

‖h(qµx1 + ...+ qµxn)− qµh(x1)− ...− qµh(xn)‖ ≤ θ(‖x1‖r + ...+ ‖xn‖r) (3.3)

‖k(qµx1 + ...+ qµxn)− qµk(x1)− ...− qµk(xn)‖ ≤ θ(‖x1‖r + ...+ ‖xn‖r) (3.4)
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such that

‖f([x, y, z])− [f(x)yz](g,h,k) + [f(z)yx](g,h,k)‖ ≤ θ(‖x‖r + ‖y‖r + ‖z‖r) (3.5)

for all x, y, z ∈ A. Then there exist unique linear mappings σ, τ, and ξ from A to A and
a unique C∗-Lie ternary (σ, τ, ξ)-derivation L : A→ A satisfying

‖g(x)− σ(x)‖ ≤ nθ

(nq)r − nq‖x‖
r (3.6)

‖h(x)− τ(x)‖ ≤ nθ

(nq)r − nq‖x‖
r (3.7)

‖k(x)− ξ(x)‖ ≤ nθ

(nq)r − nq‖x‖
r (3.8)

such that

‖f(x)− L(x)‖ ≤ θ

(nq)r − nq‖x‖
r (3.9)
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Linear preservers rlt-majorization on R2
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Abstract

A 1 × n matrix x is said to be rlt-majorized by a 1 × n matrix y, and write
x ≺rlt y, if there exists an lower triangular row stochastic matrix R such that x = yR.
We characterize the structure of all linear functions T : R2 → R2 preserving (resp.
strongly preserving) rlt-majorization.

Keywords: Row stochastic matrix, Rlt-majorization, (Strongly) linear preserver.

Mathematics Subject Classification [2010]: 34B15, 76A10

1 Introduction

Majorization is a topic of much interest in various areas of mathematics and statistics. In
recent years, this concept has been attended specially and many papers in this topic have
been published. For example, one can see [1]-[12].
The following notation will be fixed throughout the paper: Mn the set of all n × n
real matrices; Rn for the set of all 1 × n (row) real vectors; Rlt

n for the collection of
all n × n row stochastic lower triangular matrices; {ϵ1, . . . , ϵn} for the standard basis of
Rn; tr(x) =

∑n
i=1 xi, where x = (x1, . . . , xn) ∈ Rn; G the n × n matrix with all of the

entries of the first column equal to one and the other entries equal to zero; H the n × n
matrix with 1ith entries equal to (−1)i+1, for all i(1 6 i 6 n), and the other entries
equal to zero; At for the transpose of a given matrix A; Nk for the set {1, . . . , k} ⊂ N;
Co(A) := {∑m

i=1 λiai | m ∈ N, λi ≥ 0,
∑m

i=1 λi = 1, ai ∈ A, i ∈ Nm},
for a subset A ⊂ Rn; [T ] for the matrix representation of a linear function T : Rn → Rn

with respect to the standard basis.
Let ∼ be a relation on Rn. A linear function T : Rn → Rn is said to be a linear preserver
(or strong linear preserver) of ∼, if Tx ∼ Ty whenever x ∼ y (or Tx ∼ Ty if and only if
x ∼ y).

1.1 Row stochastic and rlt-majorization

Here we introduce the relation ≺rlt on Rn and we study some properties of rlt-majorization
on R2.
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Definition 1.1. A matrix R ∈ Mn with nonnegative entries is called row stochastic if the
sum of entries of each row of R is equal to one.

The collection of all n × n row stochastic lower triangular matrices is denoted by Rlt
n .

Now we pay attention to the row stochastic lower triangular matrices and introduce a new
type of majorization on Rn.

Definition 1.2. For x, y ∈ Rn, it is said that x is rlt-majorized by y, and write as x ≺rlt y,
if there exists R ∈ Rlt

n such that x = yR.

In this paper, we investigate this relation on R2. The following proposition gives an
equivalent condition for rlt-majorization on R2.

Proposition 1.3. Let x = (x1, x2), y = (y1, y2) ∈ R2. Then x ≺rlt y if and only if
x2 ∈ Co{y2, 0} and tr(x) = tr(y).

Proof. First let x ≺rlt y. Then there exists R ∈ Rlt
n such that x = yR. Thus R =

[
1 0

r21 r22

]
,

r21 + r22 = 1, r21, r22 > 0, x2 = r22y2, and x1 = r21y2 + y1. Therefore, x2 ∈ Co{y2, 0} and
tr(x) = tr(y).
Now suppose that x2 ∈ Co{y2, 0} and tr(x) = tr(y). Hence there exists 0 6 r22 6 1 such
that x2 = r22y2. So x1 = r21y2 + y1 in which r21 = 1 − r22. Set r12 = 0, r11 = 1, and put
R = (rij). It is clear that R ∈ Rlt

2 and x = yR. Therefore, x ≺rlt y.

Some properties of ≺rlt on R2 are stated in the following proposition.

Proposition 1.4. Let x = (x1, x2), y = (y1, y2) ∈ R2. Then

(a) x ≺rlt y ; y ≺rlt x.

(b) x ≺rlt y and y ≺rlt x ⇒ x = y.

(c) x ≺rlt y and y ≺rlt z ⇒ x ≺rlt z.

Proof. Proof, which is easy, is omitted for the sake of brevity.

2 Main results

In this section the structure of all (strong) linear preservers of ≺rlt on R2 will be charac-
terized. Before that, some results are needed. The proof of the Theorem 2.4 is divided
into a sequence of lemmas.

Lemma 2.1. Let T : R2 → R2 be a linear preserver of ≺rlt. Then there exist α, β, γ ∈ R
such that [T ] = α(I + βH) + γG.

Proof. Since ϵ1 ≺rlt ϵ2, this follows that Tϵ1 ≺rlt Tϵ2. Thus there exists 0 6 β 6 1 such
that a12 = βa22 and a11 = (1 − β)a22 + a21. So [T ] = a22(I + βH) + a21G. Put α = a22

and γ = a21.

Lemma 2.2. Let T : R2 → R2 be a linear function such that [T ] = α(I + βH) + γG, for
some α, β, γ ∈ R. Then if β = 0 or 1 or α = 0, then T preserves ≺rlt.
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Proof. We see [T ] =
[

γ + α(1 − β) αβ
γ α

]
. Let x = (x1, x2) ≺rlt y = (y1, y2) ∈ R2. Then there

exists 0 6 ω 6 1 such that x2 = ωy2 and tr(x) = tr(y). First assume that β = 0. It follows
that Tx = ((α+γ)x1+γx2, αx2) and Ty = ((α+γ)y1+γy2, αy2). It is seen that Tx ≺rlt Ty.
Now consider the case β = 1. So Tx = (γtr(x), αtr(x)) and Tx = (γtr(y), αtr(y)). Since
tr(x) = tr(y), this shows that Tx ≺rlt Ty. Therefore, T preserves ≺rlt. If α = 0; Then
Tx = (γtr(x), 0) and Ty = (γtr(y), 0). We see that Tx ≺rlt Ty.

Lemma 2.3. Let T : R2 → R2 be a linear function such that [T ] = α(I + βH) + γG, for
some α, β, γ ∈ R. Then if β ̸∈ {0, 1} and α ̸= 0, then T does not preserve ≺rlt.

Proof. The proof is divided into five steps. Fix y = (−1
β , 1).

Step (I)- 0 < β < 1: Consider x = (1 − 1
β − β, β).

Step (II)- β > 1: Choose x = (1 − 2
β , 1

β ).

Step (III)- −1 < β < 0: Consider x = (1 − 1
β + β,−β).

Step (IV)- β < −1: Put x = (1, −1
β ).

Step (IV)- β = −1: Set x = (−3β
2 , −β).

In each case x ≺rlt y and Tx ̸≺rlt Ty. It means that T does not preserve ≺rlt.

The following theorem characterizes all the linear preservers of ≺rlt on R2.

Theorem 2.4. Let T : R2 → R2 be a linear function. Then T preserves ≺rlt if and only
if [T ] = α(I + H) + γG or [T ] = αI + γG, or [T ] = γG for some α, γ ∈ R.

We need the following lemma to prove the last result of this section.

Lemma 2.5. Let T : R2 → R2 be a linear function which strongly preserves ≺rlt. Then
T is invertible.

Proof. Let x ∈ R2 and let Tx = 0. Since Tx = T0 and T strongly preserves ≺rlt, it shows
that x ≺rlt 0. So x = 0 and hence T is invertible.

The following theorem characterizes all the linear functions T : R2 → R2 which strongly
preserves rlt-majorization.

Theorem 2.6. A linear function T : R2 → R2 strongly preserves ≺rlt if and only if
[T ] = αI + γG, for some α, γ ∈ R such that α(α + γ) ̸= 0.

Proof. First assume that T strongly preserves ≺rlt. By Theorem 2.4 and Lemma 2.5, there
exist α, γ ∈ R such that [T ] = αI + γG and α(α + γ) ̸= 0.
Next we prove the sufficiency of the condition. By Theorem 2.4, T preserves ≺rlt. So it
is enough to show that Tx ≺rlt Ty implies that x ≺rlt y. Since [T ] = αI + γG, and α,
α + γ ̸= 0, we have T is invertible. Let x, y ∈ R2 such that Tx ≺rlt Ty. So there exists
R ∈ Rlt

2 such that Tx = TyR, and hence x = T−1TyR. Thus x = yR. Therefore, T
strongly preserves ≺rlt.
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Numerical Range of Self-Inverse Matrices
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Abstract

For an n×n matrix A , let M(A) be the smallest possible constant in the inquality
Dp(A) ≤ M(A)Rp(A). Here P is a point on the smooth portion of the boundary
∂W (A) of the numerical range A. Rp(A) is the radius of curvature of ∂W (A) at this
point, and Dp(A) is the distance from P to the spectrum ofA. In this paper we compute
the M(A) for matrix A is self-invers. 200 Mathematics Subject Classification. Primary
47A12; Secondary 15A42, 14H50.

Keywords: Numerical range, Matrices, Self-inverse

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

LetA be an n×n matrix with complex entries: Cn×n . The numerical range of A is defined
as

W (A) = {⟨Ax, x⟩ : x ∈ Cn×n, ∥x = 1}.

where ⟨., .⟩ and |.| are the standard scalar product and norm on Cn×n , respectively. Thus
the numerical range of an operator, like spectrum, is a subset of the complex plane whose
geometrical properties should say something about the operator.

2. Preliminaries and Auxiliary Results
One of the most fundamental properties of the numerical range is its convexity, stated

by the famous Toepliz-Hausdorff Theorem. Other important property of W (A) is that its
closure contains the spectrum of the operator. W (A) is a connected set with a piecewise
analytic boundary ∂W (A) . for details see [2] Hence, for all but finitely many point
P ∈ ∂W (A) the radius of curvature Rp(A) of∂W (A) at P is well defined. By convention,
Rp(A) = 0 if P is a corner point of W (A) and Rp(A) = ∞ if P lies inside a flat portion of
∂W (A). Let Dp(A) denote the distance from P to we define M(A) the smallest constant
such that

Dp(A) ≤ M(A)Rp(A). (1)

for all P ∈ ∂W (A) , where Rp(A) is defined. By Donoghes theorem Dp(A) = 0 whenever
Rp(A) = 0. Therefor, M(A) = 0 for all convexoid element A. Recall that convexoid element
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is an element such that its numerical range coincides with the convex hull of its spectrum.
For non-convexoid A,

M(A) = sup
Dp(A)

Rp(A)
(2)

where the supremum in the right-hand side is taken along all points P ∈ ∂W (A) with
finite non-zero curvature. Computation of M(A) for arbitrary A is an interesting problem.
Computation of M(A) for arbitrary n × n matrix A is also an interesting open problem.
For we n > 3 , do not have an exact value of Mn = sup{M(A) : A ∈ Cn×n} the question
whether there exists a universal constant M = supn Mn, posed by Mathias [4]. In [1] the
authors have proved that

n

2
sin(

Π

n
) ≤ Mn ≤ n

2
(3)

In [5] the author find a sequence of n × n Toeplitz nilpotent matrices An with M(An)
algorowing asymptotically as log n. Hence, the ansewer to Mathias question is negative
However, the lower bound in (3) is still of some interest, at least for small values of The
question of the exact rate of growth of Mn ( is it log n or n or something in between)
remains open.

2 Main results

Let the operator A be self-inverse, i.e., A2 = I but A ̸= ±I ,so σ(A) = {±1}. Also ∂W (A) is

an ellipse with foci at ±1 and major/minor axis ∥A± 1

∥A∥∥ [3]. If ∂W (A) = a cos θ+b sin θ

with a2 = b2 + 1 then M(A) = max{
√

a2−1
a , a

a+1}. Then we have following main Theorem:

Let the operator be non trivial self-inverse, then M(A) = max{∥A∥2 − 1

∥A∥2 + 1
,

∥A∥2 + 1

(∥A∥ + 1)2
}.
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On Fuglede–Putnam Theorem

S. M. S. Nabavi Sales∗
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Abstract

For operators A and B, let Com(A,B) stand for the set of operators X such
that AX = XB. A pair (A,B) is said to have the (FP)-property if Com(A,B) ⊆
Com(A∗, B∗). Let C̃ denote the Aluthge transform of a bounded linear operator C,
(i) if A and B are invertible operators and (A,B) has the (FP)-property, then so is
(Ã, B̃); (ii) if A and B are invertible and U ± iI and V ± iI are all invertible and
(Ã, B̃) has the (FP)-property, then so is (A,B); (iii) if U2|A|U has the (FP)-property
and A3 = I, then A is a unitary operator.

Keywords: Fuglede–Putnam theorem; Aluthge transform; polar decomposition.

Mathematics Subject Classification [2010]: 47B20; 47B15

1 Introduction

Let B(H) be the algebra of all bounded linear operators on (separable) complex Hilbert
spaces H, and let I ∈ B(H) be the identity operator. A subspace K ⊆ H is said to reduce
A ∈ B(H) if AK ⊆ K and A∗K ⊆ K. Let K(H) denote the two-sided ideal of all compact
operators on H. For p > 0, an operator A is called p-hyponormal if (A∗A)p ≥ (AA∗)p. If A
is an invertible operator satisfying log(A∗A) ≥ log(AA∗), then it is called log-hyponormal.
If p = 1, then A is said to be hyponormal. If A is invertible and p-hyponormal then A is
called log-hyponormal.

Let A = U |A| be the polar decomposition of A. It is known that if A is invertible
then U is unitary and |A| is also invertible. The Aluthge transform Ã of A is defined

by Ã := |A| 12U |A| 12 . This notion was first introduced by Aluthge [1] and is a powerful
tool in the operator theory. An interesting application of Aluthge transform deals with
an generalizing the Fuglede–Putnam theorem [3]. Let A,B ∈ B(H) and . For such pair
(A,B), denote by Com(A,B) the set of operators X ∈ B(H) such that AX = XB. A
pair (A,B) is said to have the (FP)-property if Com(A,B) ⊆ Com(A∗, B∗). The Fuglede–
Putnam theorem is well-known in the operator theory. It asserts that for any normal
operators A and B, the pair (A,B) has the (FP)-property. First Fuglede proved it in
the case when A = B and then Putnam proved it in a general case; see [4]. There exist
many generalizations of this theorem which most of them go into relaxing the normality
of A and B; see [4] and references therein. The two next Theorems are concerned the
Fuglede–Putnam theorem.
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Theorem 1.1. [5] Let A,B ∈ B(H) . Then the following assertions are equivalent
(i) The pair (A,B) has the (FP)-property.
(ii) If X ∈ Com(A,B), then R(X) reduces A, (kerX)⊥ reduces B, and A|

R(X)
,

B|(kerX)⊥ are unitarily equivalent normal operators.

Theorem 1.2. [3] Let A,B∗ ∈ B(H) be either log-hyponormal or p-hyponormal operators.
Then the pair (A,B) has the (FP)-property.

2 Main results

In this section we assume that A,B ∈ B(H) are invertible operators with the polar de-
compositions A = U |A| and B = V |B|, where U and V are unitary operators.

Lemma 2.1.
(i) X ∈ Com(A,B) ⇐⇒ |A|X|B|−1 = U∗XV
(ii) X ∈ Com(A,B)

⋂
Com(A∗, B∗) ⇐⇒ |A|X|B|−1 = U∗XV = X

Lemma 2.2.
(i) X ∈ Com(A,B) ⇐⇒ |A| 12X|B|−1

2 ∈ Com(Ã, B̃).

(ii)X ∈ Com(A∗, B∗) ⇐⇒ |A|−1
2 X|B| 12 ∈ Com((Ã)∗, (B̃)∗)

Lemma 2.3. The pair (Ã, B̃) has the (FP)-property, that is Com(Ã, B̃) ⊆ Com((Ã)∗, (B̃)∗)
if and only if U2X = XV 2 for any X ∈ Com(A,B).

Theorem 2.4. If (A,B) has the (FP)-property, then so is (Ã, B̃).

The iterated Aluthge transforms of A are the operators ∆n(A) defined inductively by
∆1(A) := Ã and ∆n(A) := ∆1(∆n−1(A)) for n > 1.

Corollary 2.5. If (A,B) has the (FP)-property, then so is (∆n(A),∆n(B)) for any pos-
itive integer n.

Theorem 2.6. If both U ± iI and V ± iI are all invertible, then the (FP)-property for
(A,B) is equivalent to the (FP)-property for (Ã, B̃).

Proposition 2.7. [4] Let A = U |A| be the polar decomposition of A and A2 = I then
U2 = I.

In [4] the authors show that the Proposition 2.7 is not valid when the power 2 is

replaced by 3. For example if A =

(
0 1
−1 −1

)
, then A3 = I, but U3 6= I.

An interesting problem is that under what condition or conditions on operator A the
Proposition is still valid for the power 3. The following proposition is about this problem.

Proposition 2.8. Let A ∈ B(H) and A = U |A| be the polar decomposition and U2|A|U
has the (FP)-property and A3 = I. Then A is a unitary operator.
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On re Generalized Weighted Bergman Spaces

R. Rahmani∗

Yazd University

Abstract

In this paper is generalized the weighted Bergman space Bw,ω and define

Bwp,ω(U) = {f ∈ H(U) | ||f ||PBwp,ω
=

∫

U

wp(|f(z)|)ω(z)dm(z) < +∞},

on the unit disk U, and we study the composition operator Cϕ on the Bwp,ω. A coun-
terexample for Lemma 1 in [3]. On Generalized Weighted Bergman Spaces, Complex
Variables, 49 (2), 109-124] is provided and a corrected version of the Lemma and
corrections on some other results are presented.

Keywords: Modulus function, Composition operator, Compact operator, General-
ized weighted Bergman space

Mathematics Subject Classification [2010]: 47B33;46E10

1 Introduction and Preliminaries

In [3], the weighted Bergman space is extended by Stevic and the continuity and compres-
sion of the composition operator Cϕ is studied on the extended weighted Bergman space.
All the theorems proved in the above-mentioned paper are based on Lemma 1 in that
paper. This is while the inequality claimed in the lemma, as well as its proof, is incorrect,
thus leading to the incorrectness of some other theorems in the paper, such as Theorem
8. The following result, which is Lemma 1 in [3], was proved by Stevic.

Lemma S. Let w be a modulus function such that w(|f |) is subharmonic for all f ∈ Bw,ω,
then

w(|f(z)|) ≤ 1

2G(1− |z|)

∫

U
w(|f(ζ)|)ω(ζ)dm(ζ) (1.1)

for all z ∈ U , where G(r) =
∫ r
0 ω(ρ)ρdρ. Unfortunately, Lemma S is not true in general.

In this paper, we first re-extend the extended weighted Bergman space Bw,ω to Bwp,ω,
and then present and prove Lemma S in a manner similar to [3]. Next, we show that the
theorems presented throughout [3] also hold in the extended space Bwp,ω. In other words,
it can be said that we study the composition operator Cϕ on Bwp,ω.
Let U be the unit disc in the complex plane C, dm(z) = rdr(dθ/π) the normalized Lebesgue
area measure on U , and H(U) the space of all analytic functions in U . Further, suppose
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ω : [0, 1)→ (0,∞) is a continuous function and ω(r), 0 ≤ r < 1, is a weight function which
is positive and integrable on (0, 1). We extend ω on U by setting ω(z) = ω(|z|). Our
weights are assumed to be normalized so that

∫
U ω(z)dm(z) = 1.

A weight ω is said to be almost classical if it satisfies the following condition:
For each continuous function δ : [0, 1] → (0, 1) there is a positive constant Cω = C(δ, ω)

such that sup ω(r)
ω(r+δ(r)(1−r)) ≤ Cω, for, 0 ≤ r < 1.

We study the composition operator Cϕ on the space Bwp,ω.
We end this section with an example to which Lemma S fails.

Example 1.2. Let U = {z ∈ C : |z − 1
2 | < 1

2}, z = r, ζ = ρeiθ, w(z) = 2z2 and
w(|f |) = 1.

2 The Space Bwp,ω(U)

Lemma 2.1. Let w be a modulus function such that w(|f |) is subharmonic for all f ∈
Bwp,ω then

wp(|f(z)|) ≤ CR
2G(R)

∫

U
wp(|f(ξ)|)ω(ξ)dm(ξ) (1)

for all z ∈ U , where G(R) =
∫ R
0 ω(ρ)ρd(ρ), and R < 1− |z|

Theorem 2.2. Let w be a modulus function such that w(|f |) is subharmonic for all f ∈
Bwp,ω. Then Bwp,ω is a complete metrizable topological vector space.

Theorem 2.3. Let w be a modulus function such that w(|f |) is subharmonic for all f ∈
Bwp,ω. Then the polynomials are dense in Bwp,ω.

Theorem 2.4. Let w be a modulus function such that w(xy) ≤ w(x) + w(y) and w(|f |)
is subharmonic for all f ∈ Bwp,ω. Then every bounded subset A of Bwp,ω is relatively
compact.

3 Composition Operator on Bwp,ω

3.1 Continuity

Theorem 3.1. Let φ : U → U be analytic and nonconstant, ω(z) be an almost classical
weight and w be a modulus function. Then the composition operator Cφ(f) = foφ on
Bwp,ω(U) satisfies:

||Cφ(f)||Bwp,ω
≤ C||f ||Bwp,ω

for some C independent of f .

Theorem 3.2. Let ϕ : U → U be a nonconstant analytic function of bounded valence such
that l = infz∈U |ϕ′(z)| > 0 and ω be a weight function such that M = supz∈U ω(z)/ω(|ϕ(z)|) <
∞. Then the composition operator Cϕ(f) = foϕ is continuous on Bwp,ω(U).
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Theorem 3.3. Let ϕ : U → U be a nonconstant analytic function and ω be a weight
function such that

M = sup
z∈U

ω(z)/ω(|ϕ(z)|) <∞.

Then the composition operator Cϕ(f) = foϕ is continuous on Bwp,ω(U).

3.2 Compact operators

Theorem 3.4. If ϕ : U → U is a nonconstant analytic function and w(|f |) is subharmonic
for all f ∈ Bwp,ω and there is 0 < r0 < 1 such that

∫

U

ω(z)Cr0(1−|ϕ(z)|)
G(r0(1− |ϕ(z)|))dm(z) <∞. (2)

then Cϕ is a metrically compact operator on Bwp,ω, where G(r) is as in Lemma 2.1 and
Cr0(1−|ϕ(z)|) is calculated as follows: Since ω is continuous and nonzero, it attains its

extremum on closed ball B(ϕ(z), r0(1− |ϕ(z)|)). Thus, there exist constants d1 and C1

such that ω(ρ) < d1, C1 < ω(ϕ(z) + ρeiθ). Then it is sufficient to set Cr0(1−|ϕ(z)|) = d1
C1

.
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Abstract

Using variational methods, we study the existence of positive solution for a class
of Nonlocal eliptic systems with multiple parameters. The proofs rely essentially on
sub and supersoloutions method.

Keywords: Nonlocal ellliptic systems, positive solutions, sub and supersolutions
method, Variational methods
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1 Introduction

In this paper we study the existence of positive solutions to the following nonlocal elliptic
systems





−M1

(∫
Ω |∇u|p dx

)
div
(
h1(|∇u|p) |∇u|p−2 ∇u

)
= α1a(x)f1(v) + β1b(x)g1(u) x ∈ Ω,

−M2

(∫
Ω |∇v|q dx

)
div
(
h2(|∇v|q) |∇v|q−2 ∇v

)
= α2c(x)f2(u) + β2d(x)g2(v) x ∈ Ω,

u = v = 0. x ∈ ∂Ω,

(1)
where Ω is a bounded domain in RN with smooth boundary ∂Ω, 1 < p, q < N ,
Mi : R+

0 → R. i = 1, 2, are continuous and nondecreasing functions,where R+
0 = [0,+∞),

a, b, c, d ∈ C(Ω), and αi, βi, i = 1, 2, are positive parameters
We assume throughout this paper the following hypotheses

(H1) a, b, c, d ∈ C(Ω) and a(x) ≥ a0 > 0, b(x) ≥ b0 > 0, c(x) ≥ c0 > 0, d(x) ≥ d0 > 0
for all x ∈ Ω.,

(H2) Mi : R+
0 → R+, i = 1, 2, are two continnous and increasing functions and

0 < mi ≤ Mi(t) ≤ mi,∞ for all t ∈ R+
0 .m
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(H3) fi, gi ∈ C1(0,∞) ∩ [0,∞), i = 1, 2, are monotone functions such that limt→∞ fi(t) =
limt→∞ gi(t) = ∞.,

(H4) limt→∞ f1

(
L[f2(t)]

1
q−1

)
⧸tp−1 = 0 for every L > 0,

(H5) limt→∞ g1(t)⧸tp−1 = limt→∞ g2(t)⧸tq−1 = 0.,

(H6) hi : [0,+∞) → R, i = 1, 2 are continuous and there exist άi, β́i > 0, such that

άi ≤ hi(t) ≤ β́i for all t > 0.

Let W 1,r
0 (Ω) (1 ≤ r < ∞) be the completion of C∞

0 (Ω), with respect to the norm

||u||r =

(∫

Ω
|∇u|r dx

) 1
r

.

Definition 1.1. A pair of functions(ψ1, ψ2) is said to be subsolution of problem (1) if it
is in W 1,p

0 (Ω) ×W 1,q
0 (Ω) such that

M1

(∫

Ω
|∇ψ1|p dx

) ∫

Ω
h1(|∇ψ1|p) |∇ψ1|p−2 ∇ψ1 ∇w dx

≤ α1

∫

Ω
a(x)f1(ψ2)w dx+ β1

∫

Ω
b(x)g1(ψ1)w dx ∀w ∈ W

and

M2

(∫

Ω
|∇ψ2|q dx

) ∫

Ω
h2(|∇ψ2|q) |∇ψ2|q−2 ∇ψ2 ∇w dx

≤ α1

∫

Ω
c(x)f2(ψ1)w dx+ β1

∫

Ω
d(x)g2(ψ2)w dx ∀w ∈ W

where W := {w ∈ C∞
0 (Ω) : w ≥ 0 inΩ}. A pair of functions (z1, z2) ∈ W 1,p

0 (Ω) ×W 1,q
0 (Ω)

is said to be a supersolution if

M1

(∫

Ω
|∇z1|p dx

) ∫

Ω
h1(|∇z1|p) |∇z1|p−2 ∇z1 ∇w dx

≥ α1

∫

Ω
a(x)f1(z2)w dx+ β1

∫

Ω
b(x)g1(z1)w dx ∀w ∈ W

and

M2

(∫

Ω
|∇z2|q dx

) ∫

Ω
h2(|∇z2|q) |∇z2|q−2 ∇z2 ∇w dx

≥ α1

∫

Ω
c(x)f2(z1)w dx+ β1

∫

Ω
d(x)g2(z2)w dx ∀w ∈ W
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Our paper extends or complements the previous results eventually in the case hi ≡ 1,
i = 1, 2 (see [5]).
Our main result in this paper is given by the following theorem.

Theorem 1.2. Assume that the conditions (H1)-(H6) are satisfied. Then system (1) has
a positive weak solution provided a0α1 + b0β1 and c0α2 + d0β2 are large.

2 Main results

Let K0 > 0 such that fi(t) ≥ −K0 and gi(t) ≥ −K0 for all t ≥ 0, i = 1, 2. We now
construct our positive subsolution. We shall verify that (ψ1, ψ2) is a subsolution of (1) for
a0α1 + b0β1 and c0α2 + d0β2 large, where

ψ1 =

[
k0(a0α1 + b0β1)

mm1β́1

] 1
p−1
(
p− 1

p

)
ϕ

p
p−1

1,p .

ψ2 =

[
k0(a0α1 + b0β1)

mm2β́2

] 1
q−1
(
q − 1

q

)
ϕ

q
q−1

1,q .

Let the test function w ∈ W := {w ∈ C∞
0 (Ω) : w ≥ 0 inΩ}. We have

∫

Ω
h1(|∇ψ1|p)|∇ψ1|p−2∇ψ1 ∇w dx ≤ k0(a0α1 + b0β1)

mm1

∫

Ω
[λ1,pϕ

p
1,p − |∇ϕ1,p|p]w dx

Similary, we have

∫

Ω
h2(|∇ψ2|q)|∇ψ2|q−2∇ψ2 ∇w dx ≤ k0(c0α2 + d0β2)

mm2

∫

Ω
[λ1,qϕ

q
1,q − |∇ϕ1,q|q]w dx

Now by (3), we have in Ωη, λ1,pϕ
p
1,p − |∇ϕ1,p|p ≤ −m and λ1,qϕ

q
1,q − |∇ϕ1,q|q ≤ −m. it

follows that in Ωη,

M1

(∫

Ω
|∇ψ1|pdx

)∫

Ω
h1(|∇ψ1|p)|∇ψ1|p−2∇ψ1 ∇w dx ≤ α1

∫

Ω
a(x)f1(ψ2)wdx+β1

∫

Ω
b(x)g1(ψ1)dx

(2)
and

M2

(∫

Ω
|∇ψ2|qdx

)∫

Ω
h2(|∇ψ2|q)|∇ψ2|q−2∇ψ2 ∇w dx ≤ α1

∫

Ω
c(x)f2(ψ1)wdx+β1

∫

Ω
d(x)g2(ψ2)dx

(3)
for all x ∈ Ω. From (5)-(6), it follows that (ψ1, ψ2) is a subsolution of system (1).

Next, we construct a supersolution (z1, z2) of system (1). Let

z1 =
C

ά1

1
p−1

ep, z2 =

( ||c||∞α2 + ||d||∞β2

m2ά2

) 1
q−1

(
f2(

C

ά1

1
p−1

)

) 1
q−1

eq
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where ep, eq are given by (4) and C > 0 is large and to be chosen later. we shall verify
that (z1, z2) is a supersolutions of system(1).

M1

(∫

Ω
|∇z1|pdx

)∫

Ω
h1(|∇z1|p)|∇z1|p−2∇z1 ∇w dx ≥ M1

(∫

Ω
|∇z1|pdx

)
ά1
Cp−1

ά1

∫

Ω
|∇ep|p−2∇ep ∇w dx

≥ m1C
p−1

∫

Ω
w dx

By (H4) and (H5), we can chose C large enough so that

m1C
p−1 ≥α1||a||∞f1

[( ||c||∞α2 + ||d||∞β2

m2

) 1
q−1

(f2(C||ep||∞))
1

q−1 ||eq||∞
]

+ β1||b||∞g1(C||ep||∞)

≥ α1a(x)f1(z2) + β1b(x)g1(z1).

for all x ∈ Ω. Hence

M1

(∫

Ω
|∇z1|pdx

)∫

Ω
h1(|∇z1|p)|∇z1|p−2∇z1 ∇w dx ≥ α1

∫

Ω
a(x)f1(z2)w dx+β1

∫

Ω
b(x)g1(z1)w dx

Also

M2

(∫

Ω
|∇z2|qdx

)∫

Ω
h2(|∇z2|q)|∇z2|q−2∇z2.∇w dx ≥ α2

∫

Ω
c(x)f2(z1)w dx+β2

∫

Ω
d(x)g2(z2)w dx

and thus(z1, z2)is a supersolution of system(1).

Obviously, we have ψi(x) ≤ zi(x) in Ω with large C for i = 1, 2. Thus, by the
comparison principle, there exist a solution (u, v) of (1) with ψ1 ≤ u ≤ z1 and ψ2 ≤ v ≤ z2.
This completes the proof of theorem 1.2
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Abstract

In this paper we state some properties of subspace-hypercyclic vectors. We show
that if X be an F -space and M be a closed subspace of X, then for an operator T ,
the set HC(T, M) ∩ M is empty or dense in M .

Keywords: Hypercyclic vectors, Hypercyclic operators, Subspace-hypercyclic opera-
tors
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1 Introduction

Let X be a Banach space. An operator T on X is hypercyclic, if there exists a vector
x ∈ X whose orbit under T , orb(T, x) = {x, Tx, T 2x, ...}, is dense in X. Such a vector x
is called a hypercyclic vector for T .

Hypercyclic operators have been actively studied for more than twenty years. One can
refer to [1] and [2] for more information about the subject.

Recently, B. F. Madore and R. A. Martinez-Avendano in [4] introduced the concept of
subspace-hypercyclicity. One can see [3],[5] and [6] to find more results about subspace-
hypercyclic operators.
Let us recall some preliminaries from [4].

Definition 1.1. Let T ∈ B(X) and let M be a closed nonzero subspace of X. We say
T is M -hypercyclic, if there exists x ∈ X such that orb(T, x) ∩ M is dense in M . Such a
vector x is called an M -hypercyclic vector for T .

We show the set of M -hypercyclic vectors of T by HC(T, M).

Definition 1.2. Let T ∈ B(X). We say T is M -transitive, if for any non-empty open
sets U ⊆ M and V ⊆ M , both relatively open, there exists n ∈ N0 such that T−n(U) ∩ V
contains a relatively open non-empty subset of M .

The following lemma states two equivalent conditions for subspace-transitivity.

Lemma 1.3. Let T ∈ B(X). The following conditions are equivalent:

∗Speaker

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

On subspace-hypercyclic vectors pp.: 1–3

180



(i) T is subspace-transitive with respect to M .

(ii) for any non-empty open sets U ⊆ M and V ⊆ M , there exists n ∈ N0 such that
T−n(U) ∩ V is a relatively open non-empty subset of M .

(iii) for any non-empty sets U ⊆ M and V ⊆ M both relatively open, there exists n ∈ N0

such that T−n(U) ∩ V is non-empty and Tn(M) ⊆ M .

Theorem 1.4. Let T ∈ B(X). If T is subspace-transitive with respect to M , then T is
subspace-hypercyclic with respect to M .

Madore and Martinez-Avendano showed in [4] that the converse of the above theorem
is not true. They also showed in [4] that subspace-hypercyclicity, like hypercyclicity, is a
purely infinite-dimensional concept.

Theorem 1.5. ([4])Let X be finite-dimensional. If T ∈ B(X), then T is not subspace-
hypercyclic for any nonzero closed subspace M .

Theorem 1.6. ([4])Let T ∈ B(X). If T is subspace-hypercyclic for a nonzero closed
subspace M , then M is not finite dimensional.

2 Main results

In what follows X always is an F -space, a complex and complete metrizable topological
vector space. B(X) is the space of bounded linear operators on X. M always is a
closed nonempty subspace of X. We also assume that M is separable, since subspace-
hypercyclicity can only occur with respect to separable and infinite dimensional subspaces.

Lemma 2.1. ([4]) Let T ∈ B(X) be M -transitive. Then

HC(T, M) ∩ M = (

∞∩

j=1

∞∪

n=1

T−n(Bj)) ∩ M

is a dense subset of M , where HC(T, M) is the set of M -hypercyclic vectors for T and
{Bj} is a countable open basis for the relative topology of M as a subspace of X.

Theorem 2.2. ([7])Let T ∈ B(X) be M -hypercyclic. If x is an M -hypercyclic vector for
T , and M has no isolated point, then for every n ∈ N , Tn(x) is a M -hypercyclic vector
for T .

Remark 2.3. We know that if X is an F -space, it has no isolated points. If M is a closed
subspace of X, it is also an F -space and hence has no isolated points.

Theorem 2.4. Let X be an F -space and T ∈ B(X). Then HC(T, M) ∩ M is empty or
dense in M .

Proof. Let x ∈ HC(T, M) ∩ M . Then orb(T, x) ∩ M is dense in M . But each member of
orb(T, x) ∩ M is an M -hypercyclic vector for T , by Theorem2.2. So if HC(T, M) ∩ M is
nonempty, it is dense in M .
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So once there is one subspace-hypercyclic vector for an operator T , there is a dense set of
them.

Corollary 2.5. Let T ∈ B(X) be M -hypercyclic. Then HC(T, M) ∩ M is dense in M .

Lemma 2.6. Let T ∈ B(X) be an invertible and M -hypercyclic operator. Then for any
n ∈ N , T−n(x) is an M -hypercyclic vector for T .

Proof. First note that

orb(T, T−n(x)) = {T−n(x), T−n+1(x), ..., x, Tx, ..., Tn(x), ...}.

So orb(T, T−n(x)) ∩ M contains orb(T, x) ∩ M and it is a subset of M . Therefore the
closure of orb(T, T−n(x)) ∩ M is equal to M . Hence T−n(x) is a M -hypercyclic vector for
T .
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Abstract

In this paper we first establish the structure of C∗-algebra-valued 2-metric space
and then we give some fixed point theorems for self-maps with contractive or expansive
conditions on such spaces.
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1 Introduction

The notion of C∗-algebra-valued metric spaces has been investigated by Z. Ma, L. Jiang
and H. Sun [4]. They presented some fixed point theorems for self-maps with contractive
or expansive conditions on such spaces. Very recently, the authors [1, 3] proved some
fixed point theorems by introducing the notion of 2-metric spaces. Using the concepts of
2-metric spaces and C∗-algebra-valued metric spaces, we define a new type of extended
metric spaces. Then, we prove some fixed point theorems in this structure.

We provide some notations, definitions and auxiliary facts which will be used later in
this paper.
Let A be a unital algebra with unit I. An involution on A is a conjugate-linear map a 7→ a∗

on A, such that a∗∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A. An assign to each ∗-algebra is
(A, ∗). A Banach ∗-algebra is a ∗-algebra A together with a complete submultiplicative
norm such that ∥a∗∥ = ∥a∥ for all a ∈ A. A C∗-algebra is a Banach ∗-algebra such that
∥a∗a∥ = ∥a∥2 (a ∈ A). For more details we refer the reader to [2].
Throughout this manuscript, A stands for a unital C∗-algebra with unit I. We say an
element x ∈ A a positive element, denote it by x ≽ θ, if x = x∗ and σ(x) ⊆ R+ = [0,∞),
where θ means the zero element in A and σ(x) is the spectrum of x. Using positive
elements, one can define a partial ordering ≼ as follows: x ≼ y if and only if y − x ≽ θ
(x, y ∈ A). From now on, by A+ we denote the set {x ∈ A : x ≽ θ} and |x| = (x∗x)

1
2 .

Definition 1.1. ([4]) Let X be a nonempty set. Suppose the mapping d : X × X → A
satisfies:
1) θ ≼ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
2) d(x, y) = d(y, x) for all x, y ∈ X;
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3) d(x, y) ≼ d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a C∗-algebra-valued metric on X and (X, A, d) is called a C∗-algebra-
valued metric space.

2 Main results

Definition 2.1. Let X be a nonempty set, A be a C∗-algebra and d : X × X × X → A
be a map satisfying the following conditions:
(M1) for every pair of distinct elements x, y ∈ X, there exists z ∈ X such that d(x, y, z) ̸=
θ;
(M2) if at least two of three elements x, y, z are the same, then d(x, y, z) = θ;
(M3) the symmetry: d(x, y, z) = d(x, z, y) = d(y, x, z) = d(y, z, x) = d(z, x, y) = d(z, y, x)
for all x, y, z ∈ X;
(M4) the rectangle inequality: d(x, y, z) ≼ d(t, x, y)+d(t, y, z)+d(t, x, z) for all x, y, z, t ∈
X.
Then d is called a C∗-algebra-valued 2-metric on X and (X, A, d) is called a C∗-algebra-
valued 2-metric space.

Remark 2.2. Using condition (M1) it readily verified that if for all a ∈ X, d(x, y, a) = θ,
then x = y.

Example 2.3. Let X be a set with the cardinal card(X) ≥ 4. Suppose that X = X1 ∪X2

is a partition of X such that card(X1) ≥ 3 and A is a unital C∗-algebra. Let θ ≼ A ≼ 3
2I.

It is easy to verify that d : X × X × X → A defined by

d(x, y, z) =





θ, if at least two of three elements x, y, z are the same,
A, x, y, z ∈ X1,
I, otherewise,

is a C∗-algebra-valued 2-metric on X.

Definition 2.4. Let {xn} be a sequence in a C∗-algebra-valued 2-metric space (X, A, d).
1. {xn} is said to be a 2-convergent to x ∈ X with respect to A, written as lim

n→∞
xn = x,

if for all a ∈ X, lim
n→∞

∥d(xn, x, a)∥ = 0.

2. {xn} is said to be a 2-Cauchy sequence with respect to A in X, if for all a ∈ X,
lim

n,m→∞
∥d(xn, xm, a)∥ = 0.

3. (X, A, d) is a complete C∗-algebra-valued 2-metric space if every 2-Cauchy sequence
with respect to A is convergent.

Definition 2.5. Suppose that (X, A, d) is a C∗-algebra-valued 2-metric space. We call a
mapping T : X → X is a C∗-algebra-valued 2-contractive on X, if there exists an A ∈ A
with ∥A∥ < 1 such that fulfills the following condition:

d(Tx, Ty, a) ≼ A∗d(x, y, a)A for all x, y, a ∈ X.

Theorem 2.6. Assume that (X, A, d) is a complete C∗-algebra-valued 2-metric space and
T : X → X is a C∗-algebra-valued 2-contractive mapping, then T has a unique fixed point
in X.
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Proof. First suppose that A = θ, then T maps X into a single point and so it has a unique
fixed point. Thus without loss of generality, one can suppose that A ̸= θ. Choose x0 ∈ X
and set xn = Txn−1 = Tnx0, n = 1, 2, ... . Let a be an arbitrary and fixed element of
X. For convenience, by Ba we denote the element d(x1, x0, a) in A. We are going to show
that {xn} is a 2-Cauchy sequence with respect to A. For, by the contraction of T we get

d(xn+1, xn, a) = d(Txn, Txn−1, a) ≼ A∗d(xn, xn−1, a)A

= A∗d(Txn−1, Txn−2, a)A

≼ (A∗)2d(xn−1, xn−2, a)A2

...

≼ (A∗)nd(x1, x0, a)An

= (A∗)nBaA
n.

Using this fact one observes that {xn} is a 2-Cauchy sequence with respect to A. By the
completeness of (X, A, d), there exists an x ∈ X such that lim

n→∞
xn = x. Since

θ ≼ d(Tx, x, a) ≼ d(Txn, Tx, x) + d(Txn, x, a) + d(Txn, Tx, a)

≼ d(xn+1, Tx, x) + d(xn+1, x, a) + A∗d(xn, x, a)A → θ (as n → ∞),

hence Tx = x ,i.e., x is a fixed point of T .
We will show that T has a unique fixed point, suppose that y(̸= x) is another fixed point
of T , it yields that

θ ≼ d(x, y, a) = d(Tx, Ty, a) ≼ A∗d(x, y, a)A.

Consequently, one observes that

0 ≤ ∥d(x, y, a)∥ = ∥d(Tx, Ty, a)∥
≤ ∥A∗∥∥d(x, y, a)∥∥A∥
= ∥A∥2∥d(x, y, a)∥
< ∥d(x, y, a)∥,

it is impossible, so x = y.

Corollary 2.7. Suppose (X, A, d) is a C∗-algebra-valued 2-metric space and T : X → X
is a mapping which TN is a C∗-algebra-valued 2-contractive on X for some positive integer
N . Then T has a unique fixed point.

Definition 2.8. Let (X, A, d) be a C∗-algebra-valued 2-metric space. We call a mapping
T : X → X is a C∗-algebra-valued 2-expansion mapping on X, if it satisfies the following
conditions:
(E1) T (X) = X;
(E2) d(Tx, Ty, a) ≽ A∗d(x, y, a)A , for each x, y, a ∈ X,
where A is an invertible element in A such that ∥A−1∥ < 1.

Theorem 2.9. Let (X, A, d) be a complete C∗-algebra-valued 2-metric space, T : X → X
be a C∗-algebra-valued 2-expansion mapping on X. Then T has a unique fixed point in X.
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Proof. We first show that T is injective. If there exist x, y ∈ X such that Tx = Ty, then
for each a ∈ X we have

θ = d(Tx, Ty, a) ≽ A∗d(x, y, a)A.

Since A∗d(x, y, a)A ∈ A+, thus A∗d(x, y, a)A = θ. Now invertibility of A implies that
d(x, y, a) = θ for each a ∈ X. Applying Remark 2.2, we have x = y. Therefore T is
injective and so by (E1) it is invertible.
Next, we will show T has a unique fixed point in X. Substitute x, y with T−1x, T−1y,
respectively in (E2), then

d(x, y, a) ≽ A∗d(T−1x, T−1y, a)A.

This means
(A∗)−1d(x, y, a)A−1 ≽ d(T−1x, T−1y, a),

and thus
(A−1)∗d(x, y, a)A−1 ≽ d(T−1x, T−1y, a).

Then T−1 is a C∗-algebra-valued 2-contractive mapping and according to Theorem 2.7, it
has a unique fixed point x. On the other hand, the equality T−1x = x gives us Tx = x,
and so x is a unique fixed point of T .

Theorem 2.10. Let (X, A, d) be a complete C∗-algebra-valued 2-metric space. Suppose
the mapping T : X → X satisfies the following conditions for all x, y, a ∈ A

d(Tx, Ty, a) ≼ A[d(Tx, x, a) + d(Ty, y, a)], )

d(Tx, Ty, a) ≼ A[d(Tx, y, a) + d(Ty, x, a)],

where A ∈ A′
+ and ∥A∥ < 1

2 . Then T has a unique fixed point in X.
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Abstract

We study properties of starlike and convexity for the hypergeometric function
F(a, b; c; z) defined by Ruscheweyh derivative through putting conditions on a, b,
c, to ensure that zF(a, b; c; z) will be in various subclasses of starlike and convex
functions.

Keywords: Starlike, Convex , Ruscheweyh Derivative, Hypergeometric functions.
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1 Introduction

let S denote the class of all functions f of the form

f(z) = z +

∞∑

n=0

anzn (1)

that are analytic and univalent in the open unit disk ∆ = {z ∈ C :| z |< 1}.

Definition 1.1. A function f ∈ S is said to be starlike of order β(0 ≤ β < 1) if and only

if Re
(

zf ′(z)
f(z)

)
> β.

Denote the class of all starlike functions of order β in ∆ by S⋆(β).

Definition 1.2. A function f ∈ S is said to be convex of order β(0 ≤ β < 1) if and only

if Re
(

1+zf ′′(z)
f ′(z)

)
> β.

Denote the class of all convex functions of order β in ∆ by C(β).

Let (a,n) denote symbol for the generalized factorial ,

(a, 0) = 1 for a ̸= 0, (a, n) = a(a + 1)(a + 2)...(a + n − 1) for n ∈ N .

and the Gaussian hypergeometric function given by the analyti function ,

∗Will be presented in English
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2F1(a, b; c; z) =
∑∞

n=0
(a,n)(b,n)
(c,n)n! zn, z∈∆.

let T be the subclass of functions f in S of the form

f(z) = z −
∞∑

n=2

anzn, (an ≥ 0). (2)

that are analytic and univalent in the open unit disk ∆.
This paper deals with the generalization of starlike and convexity properties for hyperge-
ometric functions defined by Ruscheweyh derivative.H. Silverman [3] has studied starlike
and cinvexity properties for hypergeometric function.Also E. S. Aqlan [1] has studied the
generalization of starlike and convexity properties for hypergeometric functions.

Definition 1.3. [2],[4] The Ruscheweyh derivative of order λ is denoted by Dλf and is
defined as following:
If f(z) = z +

∑∞
n=2 anzn then

Dλf(z) =
z

(1 − z)λ+1
⋆f(z) = z +

∞∑

n=2

Bn(λ)anzn, (λ > −1, z ∈ ∆) (3)

where

Bn(λ) =
(λ + 1)(λ + 2)...(λ + n − 1)

(n − 1)!
(4)

Definition 1.4. Let S⋆(α, β, ε, λ) be a class of starlike functions of order α and type β
defined by Ruscheweyh derivative that satisfies

∣∣∣∣∣

z
(
Dλf(z)

)′

Dλf(z)
− 1

2ε
[ z

(
Dλf(z)

)′

Dλf(z)
− α

]
− [

z
(
Dλf(z)

)′

Dλf(z)
− 1]

∣∣∣∣∣ < β (5)

where 0 ≤ β < 1, 1
2 ≤ ε ≤ 1, 0 ≤ α < 1

2ε , λ > −1, z ∈ ∆ .

Definition 1.5. Let C(α, β, ε, λ) be a class of convex functions of order α and type β
defined by Ruscheweyh derivative that satisfies

∣∣∣∣∣

z
(
Dλf(z)

)′′

(Dλf(z))′

2ε
[
1 +

z
(
Dλf(z)

)′′

(Dλf(z))′ − α
]
− z

(
Dλf(z)

)′′

(Dλf(z))′

∣∣∣∣∣ < β (6)

where 0 ≤ β < 1, 1
2 ≤ ε ≤ 1, 0 ≤ α < 1

2ε , λ > −1, z ∈ ∆ .

2 Main results

Theorem 2.1. Let f(z) be defined by (2), then

(i) f(z) is in the class S⋆(α, β, ε, λ) if and if
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∑∞
n=2

[
(n − 1)(1 − β) + 2εβ(n − α)

]
Bn(λ)an ≤ 2εβ(1 − α),

where 0 ≤ β < 1, 1
2 ≤ ε ≤ 1, 0 ≤ α < 1

2ε , λ > −1, n ∈ N, n ≥ 2.

(ii) f(z) is in the class C(α, β, ε, λ) if and if

∑∞
n=2 n

[
(n − 1)(1 − β + 2εβ) + 2εβ(1 − α)

]
Bn(λ)an ≤ 2εβ(1 − α),

where 0 ≤ β < 1, 1
2 ≤ ε ≤ 1, 0 ≤ α < 1

2ε , λ > −1, n ∈ N, n ≥ 2.

Theorem 2.2. Let f(z) be defined by (1),

(i) then a sufficient condition for f(z) to be in the class S⋆(α, β, ε, λ) is that

∑∞
n=2

[
(n − 1) − β(n − 1 + 2αε − 2nε)

]
Bn(λ)an ≤ 2εβ(1 − α),

where 0 ≤ β < 1, 1
2 ≤ ε ≤ 1, 0 ≤ α < 1

2ε , λ > −1, n ∈ N, n ≥ 2.

(ii) then a sufficient condition for f(z) to be in the class C(α, β, ε, λ) is that

∑∞
n=2

[
n(n − 1)(1 − β + 2εβ) + 2εβ(1 − α)

]
Bn(λ)an ≤ 2εβ(1 − α),

where 0 ≤ β < 1, 1
2 ≤ ε ≤ 1, 0 ≤ α < 1

2ε , λ > −1, n ∈ N, n ≥ 2.

Theorem 2.3. (i) Let a,b,c and α, β, ε, λ satisfy the following condition such that

T1(a, b, c, α, β, ε, λ) ≤ 2εβ(1 − α). a, b > 0, c > a + b + 1, β ∈ (0, 1], 0 ≤ α < 1
2ε ,

1
2 ≤

ε ≤ 1, λ > −1 and

T1(a, b, c, α, β, ε, λ) =
∑∞

n=2

[
(n − 1)(1 − β + 2εβ) + 2εβ(1 − α)

]
Bn(λ) (a)n−1(b)n−1

(c)n−1(1)n−1

where

Γ(c)
Γ(λ)Γ(a)Γ(b)

∑∞
n=2

[
(n−1)(1−β+2εβ)

2εβ(1−α) + 1
]

Γ(λ+n)Γ(a+n−1)Γ(b+n−1)
Γ(c+n−1)[(n−1)!]2

≤ 1.

(ii) Let a,b,c and α, β, ε, λ satisfy the following condition such that

T2(a, b, c, α, β, ε, λ) ≤ 2| c
ab |εβ(1 − α). a, b > −1, c > 0, ab < 0, β ∈ (0, 1], 0 ≤ α <

1
2ε ,

1
2 ≤ ε ≤ 1, λ > −1 and

T2(a, b, c, α, β, ε, λ) =
∑∞

n=2

[
(n − 1)(1 − β + 2εβ) + 2εβ(1 − α)

]
Bn(λ) (a+1)n−2(b+1)n−2

(c+1)n−2(1)n−1

where
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|ab
c | Γ(c+1)

Γ(λ)Γ(a+1)Γ(b+1)

∑∞
n=2

[
(n−1)(1−β+2εβ)

2εβ(1−α) + 1
]

Γ(λ+n)Γ(a+n−1)Γ(b+n−1)
Γ(c+n−1)[(n−1)!]2

≤ 1.

then zF (a, b; c; z) ∈ S⋆(α, β, ε, λ).

Theorem 2.4. (i) Let a,b,c and α, β, ε, λ satisfy the following condition such that

T3(a, b, c, α, β, ε, λ) ≤ 2εβ(1 − α). a, b > 0, c > a + b + 1, β ∈ (0, 1], 0 ≤ α < 1
2ε ,

1
2 ≤

ε ≤ 1, λ > −1 and

T3(a, b, c, α, β, ε, λ) =
∑∞

n=2

[
(n − 1)2(1 − β + 2εβ) + (n − 1)

(
1 − β + 2εβ(2 − α)

)
+

2εβ(1 − α)
]
Bn(λ) (a)n−1(b)n−1

(c)n−1(1)n−1

where

Γ(c)
Γ(λ)Γ(a)Γ(b)

∑∞
n=2

[
(n−1)2(1−β+2εβ)+(n−1)(1−β+2εβ(2−α))

2εβ(1−α) +1
]

Γ(λ+n)Γ(a+n−1)Γ(b+n−1)
Γ(c+n−1)[(n−1)!]2

≤ 1,

(ii) Let a,b,c and α, β, ε, λ satisfy the following condition such that

T4(a, b, c, α, β, ε, λ) ≤ 2 c
abεβ(1 − α). a, b > −1, c > 0, ab < 0, β ∈ (0, 1], 0 ≤ α <

1
2ε ,

1
2 ≤ ε ≤ 1, λ > −1 and

T4(a, b, c, α, β, ε, λ) =
∑∞

n=2

[
(n − 1)2(1 − β + 2εβ) + (n − 1)(1 − β + 2εβ(2 − α)) ×

2ε(1 − α)
]
Bn(λ) (a+1)n−2(b+1)n−2

(c+1)n−2(1)n−1

where

|ab|
c

Γ(c+1)
Γ(λ)Γ(a+1)Γ(b+1)

∑∞
n=2

[
(n−1)2(1−β+2εβ)+(n−1)(1−β+2εβ(2−α))

2εβ(2−α) + 1
]

×Γ(λ+n)Γ(a+n−1)Γ(b+n−1)
Γ(c+n−1)[(n−1)!]2

≤ 1,

then zF (a, b; c; z) ∈ C(α, β, ε, λ).
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Redundancy of Dual Frames
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Abstract

In this manuscript we investigate the ralationship between the redundancies of
frames and their duals.

Keywords: Frame, Dual frame, Redundancy

Mathematics Subject Classification [2010]: Primary 42C40; Secondary 41A58,
47A58.

1 Introduction

Frames for Hilbert spaces have been introduced in 1952 by Duffin and Schaeffer in their
fundamental paper [6] and have been studied in the last two decades as a powerful frame-
work for robust and stable representation of signals by introducing redundancy. The
customary definition of redundancy was improved by Bodmann, Casazza and Kutyniok
in [2] by providing a quantitative measure, which coined upper and lower redundancies.
Redundancy is applied in areas such as: filter bank theory [3] , sigma-delta quantization
[1], and signal and image processing [4]. Dual frames play an important role in study-
ing frames and their applications, specially in the reconstruction formula. Therefore it is
natural to study and consider their redundancy and its relationship with redundancy of
original frame. In this paper, we will show that the ratio between redundancies of frames
and dual frames is bounded from below and above by some significant numbers. First, we
will review the definitions of frames and redundancy function for finite frames .

Definition 1.1. [5] Let H be a Hilbert space and I be a countable index set. The family
φ = {ϕi}i∈I in H is called a frame for H if there exist constants 0 < A ≤ B < ∞ such
that

A‖x‖2 ≤
∑

i∈I
|〈x, ϕi〉|2 ≤ B‖x‖2 ∀x ∈ H.

The frame φ is called a tight frame, if A = B and it is a Parseval frame if, A = B = 1.
Reader can see [5] for the definitions of synthesis, analysis and frame operators.

For a frame the dual frame ( canonical dual frame) defined as follows;
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Definition 1.2. [5] Let φ = {ϕi}i∈I be a frame for H. Then a frame ψ = {ψi}i∈I is called
a dual frame for ϕ = {ϕi}i∈I , if

x =
∑

i∈I
〈x, ϕi〉ψi for all x ∈ H.

The frame {S−1φ ϕi}i∈I is the canonical dual frame, where Sφ is the frame operator for
φ = {ϕi}i∈I . Dual frames which do not coincide with the canonical dual frame, are often
coined alternate dualframe.

Now, we present a lemma that we need in the sequel.

Lemma 1.3. [5] Let φ = {ϕi}i∈I be a frame for H. Then the following are equivalent.

1. φ = {ϕi}i∈I is tight;

2. φ = {ϕi}i∈I has a dual of the form ψ = {ψi}i∈I = {Cϕi}i∈I for some constant
C > 0.

The redundancy function is defined from the unit sphere S = {x ∈ H : ‖x‖ = 1} to
the set of positive real numbers R+, [2].

Definition 1.4. [2] Let φ = {ϕi}Ni=1 be a frame for a finite dimensional Hilbert space Hn.
For each x ∈ S, the redundancy function

Rφ : S→ R+

is defined by

Rφ(x) =
N∑

i=1

‖P〈ϕi〉(x)‖2,

where 〈ϕi〉 denotes the span of ϕi ∈ H and P〈ϕi〉 denotes the orthogonal projection onto
〈ϕi〉. The upper redundancy of φ is defined by

R+
φ = maxx∈SRφ(x),

and the lower redundancy of φ by

R−φ = minx∈SRφ(x).

2 Main results

In this section, we present main results.

Theorem 2.1. Let φ = {ϕi}Ni=1 be a frame for Hn and ψ = Sφ
−1φ be the canonical dual

of φ. Then
R±φ (k(Sφ))−2 ≤ R±

Sφ
−1φ
≤ R±φ (k(Sφ))2,

where k(Sφ) = ‖Sφ‖‖S−1φ ‖ denotes the condition number of the frame operator Sφ.
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It is known that the redundancy is invariant under scaling. So, using the lemma 1.3,
we have:

Proposition 2.2. Let φ = {ϕi}Ni=1 be a tight frame for Hn, and ψ = {ψi}Ni=1 be its
canonical dual frame. Then

Rφ(x) = Rψ(x).

For general frames (not necessary tight frames) and their alternate duals, we have a
relationship between their redundancies in a particular case. First, we will state a lemma
from [5].

Lemma 2.3. [5] Let φ = {ϕi}Ni=1 be a frame for Hn with canonical dual Sφ
−1φ. If ψ =

{ψi}Ni=1 is the alternate dual of φ, then

‖(〈x, Sφ−1ϕi〉)Ni=1‖2 ≤ ‖(〈x, ψi〉)Ni=1‖2.
In particular, suppose that Sφ

−1φ and ψ = {ψi}Ni=1 in the previous lemma are equal
norm frames, i.e., ‖Sφ−1ϕi‖ = c and ‖ψi‖ = d for some c, d > 0 and i = 1, ..., N . Then

RSφ−1(x) =
N∑

i=1

‖Sφ−1ϕi‖−2|〈x, Sφ−1ϕi〉|2 = c−2
N∑

i=1

|〈x, Sφ−1ϕi〉|2

and

Rψ(x) =

N∑

i=1

‖ψi‖−2|〈x, ψi〉|2 = d−2
N∑

i=1

|〈x, ψi〉|2

so

RSφ−1(x) ≤ (
d

c
)2Rψ(x).
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Abstract

In present paper, results of the Daugavet property for Banach spaces. Also express
several examples that show in general the Daugavet property is not transmitted from
space into subspace and vice-versa.

Keywords: The Daugavet property ,Banach space, Almost narrow and narrow
operators

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

In this section we state several results and examples for Banach spaces with the Daugavet
property.
Definition 1.1 Banach space X has the Daugavet property if every rank−1 operator
T ∈ L(X) satisfies (1).
Definition 2.1. Let T : X → E be an operator between Banach spaces.
(a) T is called almost narrow (or strong Daugavet operator) if for every two elements
x, y ∈ SX and every ε > 0 there is some z ∈ BX such that ‖T (y − z)‖ ≤ ε and ‖x+ z‖ ≥
2− ε.
(b) T is called narrow if for every functional x∗ ∈ X∗ the operator T ⊕ x∗ : X → E ⊕1 R
defined by

(T ⊕ x∗)(x) = (T (x), x∗(x))

is almost narrow.
definition 3.1. A subspace Y of a Banach space X is called rich (respect. almost rich)
if the quotient map from X onto X/Y is narrow (respect. almost narrow).
We say that a subspace Y of a Banach space X with the DP is wealthy if Y and every
subspace of X containing Y have the DP .

2 Main results

Clearly, every narrow operator is almost narrow. By [1] if X has the DP , then the narrow
and weakly compact operators on X are equivalent. The following example shows that for
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every Banach space this condition is not held.
Example 1.2. Put X = C([0, 1])∗. The following illustrates operator T on X,

T : X → X

T (µ) = −µ({0})δ0.
According to [1] X does not have the DP . We now claim that T is weakly compact, but
it is not narrow. Clearly, rank(T ) = 1. So T is compact, then by [2, Theorem 4.18] T is
weakly compact. Suppose T be narrow, thus it is almost narrow. By [1] T satisfies (1).
It is well known that ‖Id + T‖ < 2 and ‖T‖ = 1, therefore T does not satisfy (1). It is
a contradiction. Let K be the Cantor set on [0, 1] and G : C([0, 1]) → C(K) is defined
by G(f) = f |K. By [9. Example 1] G is a narrow operator. Since C([0, 1]) has the DP ,
according to [1] G is a weakly compact operator.
Corollary 1.2. If every weakly compact operator on the Banach space X is narrow, then
X has the DP .
Proof. Let T : X → X be with rank(T ) = 1. By [2, Theorem 4.18] T is compact and,
then, it is weakly compact. According to our assumption T is narrow. By [1, Lemma 4.3]
T satisfies (1). Therefore X has the DP .
Also if every weakly compact operator on the Banach space X satisfies (1), then X has
the DP .
In [19] proved for l1−sum and l∞−sum ( in finite state ) maintine the Daugavet property.
In this paper with restrict metre show that l1−sum and l∞−sum in infinity state preserv
the Daugavet property.
Theorem 1.2. If {Xi}i∈I has the Daugavet property and d be disceret metre on R , then
X =

⊕
1{Xi}i∈I and X =

⊕
∞{Xi}i∈I have the Daugavet property.

Proof. Let ε > 0, x∗ ∈ SX∗ and S = S(x0, ε) be a slice of BX∗ . Assume x∗ =
(x∗1, x

∗
2, .........) so that 1 = ||x∗||∞ = sup{||x∗1||, ||x∗2||, .......} ⊂ R, Since d is disceret metre

so there is a i ∈ I so that ‖x∗i ‖ = 1, therefore x∗i ∈ SX∗i . Set Si = S(
xi0
‖xi0‖

, ε), it is clear

that Si ⊆ BX∗i . Since Xi has the Daugavet property for i ∈ I, so there is y∗i ∈ Si so that

‖x∗i + y∗i ‖ ≥ 2− ε.
Put y∗ = (y∗1, y

∗
2, ....). Clearly y∗ ∈ BX∗ and

x0(y
∗) = (x10, x

2
0, .....)(y

∗
1, y
∗
2, ....) = x10(y

∗
1) + x20(y

∗
2) + .... ≥ 1− ε.

In result y∗ ∈ S and ‖x∗ + y∗‖ ≥ 2− ε.
A similar way, shows that X =

⊕
∞{Xi}i∈I has the DP.

Theorem 2.2. If X1
⊕
∞X2 has the Daugavet property, then X1 and X2 have the

Daugavet property.
Proof Let T : X1 → X1 be with rank(T ) = 1 and ||T || = 1. Define

S : X1

⊕

∞
X2 → X1

⊕

∞
X2

S(x1, x2) = (T (x1), 0).

It is obvious that , ||S|| = 1 and rank(S) = 1. Now since X1
⊕
∞X2 has the Daugavet

property therefore, ||Id+ S|| = 2 . So for ε > 0,

||Id+ S|| = sup||(x1,x2)||∞≤1||Id(x1, x2) + S(x1, x2)||∞ ≥ 2− ε.
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In result there is x1 ∈ SX1 and x2 ∈ SX2 so that ||(x1 + T (x1), x2)||∞ ≥ 2 − ε. Since
‖x2‖ ≤ 2 − ε, therefore ||Id + T || ≥ 2 − ε. In similar way, we can show X2 has the
Daugavet property.
Corollary 2.2. If X1 and X2 have the Daugavet property, then X1

⊕
c0
X2 has the

Daugavet property.
Proof. Let ε > 0, (x1, x2) ∈ SX1

⊕
c0
X2

and S = S((x∗1, x
∗
2), ε) be a slice of BX1

⊕
c0
X2

.

Clearly, x1 ∈ SX1 and S1 = S(
x∗1
‖x∗1‖

, ε) ⊂ BX1 . Since X1 has the Daugavet property there is

y1 ∈ S1 so that ||x1 +y1|| ≥ 2−ε. In similar way there is y2 ∈ S2 so that ||x2 +y2|| ≥ 2−ε.
In result there is (y1, y2) ∈ X1

⊕
c0
X2 so that (x∗1, x

∗
2)(y1, y2) = x∗1(y1) + x∗2(y2) ≥ 1 − ε

and

||(x1, x2)+(y1, y2)||∞ = ||(x1+y1, x2+y2)||∞ = max{||(x1+y1)||, ||(x2+y2)||} ≥ ||x1+y1|| ≥ 2−ε.

With attention to [1, Lemmas 2.2 and 2.4] if X∗∗ has the DP , then X has the DP . An
example shows that its reverse does not hold essentially.
Example 2.2. Put X = C([0, 1]). According to [1] Banach space X has the DP . We
claim that X∗∗ does not has the DP . Suppose X∗∗ has the DP , then X∗ has the DP .
But, by [1] X∗ has no the DP . It is a contradiction. If X has the DP , then X∗ contains
an isometric copy of l1(N) (see [5, Corollary 2.13]). In following example we shows that
the reversed result are not true in general.
Example 3.2. Set Y = L2(µ) (µ is the Counting measure on N). It is clear that
L2(µ)∗ = L2(µ) and L2(µ) = l2(N), therefore, l1(N) ⊆ Y ∗. Since Y is reflexive, by [1,
Corollary 3.2.] it does not has the DP .
Let (Ω,Σ, µ) be a positive measure space. A E set is called a atom for µ whenever
µ(E) > 0 and for every measurable set A ⊂ E, µ(A) = 0 or µ(Ac) = 0 and µ measure
is called nonatomic if has no atomic. We now present two examples that shows generally
the DP from space into subspace is not transmitted and vice-versa.
Example 4.2. Put X = N. Let µ be the Counting measure on X. Apparently, L1(µ) ⊆
L2(µ) and L1(µ) has the DP . Since L2(µ) is reflexive, by [1, Corollary 2.5] it does not
has the DP .
Example 5.2. Let X = [0, 1] and let µ be the Lebesgue measure on X. Obviously,
L2(µ) ⊆ L1(µ) and L1(µ) has the DP . Since L2(µ) is reflexive, according to [1, Corollary
2.5] it has no the DP .
A slice of the unit ball of X is a set given by

S(x∗, α) = {x ∈ BX : x∗(x) ≥ 1− α}
for some functional x∗ ∈ X∗ of norm 1 and some α > 0. If Banach space X has the DP ,
then every slice of its unit ball has the diameter 2 (see[ 1, Corollary 2.5]). An example
shows that its reverse is not true in general.
Example 6.2. Put X = C([0, 1]) ([0, 1] is considered with discrete metre ). By [1] Banach
space X does not has the DP . Consider a slice S = S(x∗, ε) of BX . Clearly,

W = {x ∈ BX : x∗(x) > 1− ε} ⊆ S ⊆ BX .
It is well known that W is a weakly open relative subset of BX . By [8, Corollary 2.4]
diameter (W ) = 2. Moreover, diameter (BX) ≤ 2 and hence diameter(S) = 2.
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Abstract

Let µ be a positive finite measure on a σ−algebra A. In this paper, we introduce
the concept of µ-fixed point for mappings f : A → A and obtain conditions for
the existence of common µ-fixed points of such mappings. We show that for any
µ−complete measure space if there exist m ∈ N and 0 ≤ k < 1 such that for every
A ∈ A, µ(fm(A)) ≤ k µ(A), then all {fn}n∈N have a unique common µ−fixed point.

Keywords: fixed point theorem, contraction mapping, measure

Mathematics Subject Classification [2010]: 47H10, 47H09

1 Introduction

Schauder fixed point theorem states that any compact map from a nonempty, closed,
convex, bounded subset E of a Banach space into itself has a fixed point in E [3]. Darbo
[4] extended Schauder’s fixed point theorem to the setting of noncompact operators by
using the concept of α−k−set contraction, where 0 ≤ k < 1 and α denotes the Kuratowski
measure of noncompactness [6]. In fact, he proved the following theorem.

Theorem 1.1. Let X be a nonempty, closed, bounded and convex subset of a Banach
space and f : X → X be a bounded continuous map with

α(f(B)) ≤ k α(B)

for all bounded subsetes B of X, where 0 ≤ k < 1. Then f has a fixed point.

Sadovski [7] proved that above theorem is true for a bounded continuous map f such
that

α(f(B)) ≤ α(B)

for all bounded subsets B of X with α(B) > 0. Banas [2] proved a fixed point result
using the concept of β − k−set contraction, where 0 ≤ k < 1 and β denotes the De
Blasi measure of weak noncompactness [5]. Amini-Harandi, Fakhar and Zafarani [1] have
introduced a type of generalized set contraction in topological spaces with respect to a
measure of noncompactness and proved a fixed point theorem which are either generalized
set contraction or condensing ones.
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These findings motivate us to define the concept of µ-fixed point for mapping f : A →
A, where µ is a positive finite measure on a σ−algebra A, and obtain conditions for the
existence of common µ-fixed points of such mappings. We show that if (X,A, µ) is a
µ-complete measure space and f : A → A is a µ−continuous mapping such that for every
A 6= ∅, f(A) 6= ∅ and µ(fm(A)) ≤ k µ(A) for some m ∈ N and 0 ≤ k < 1, then all
{fn}n∈N have a unique common µ−fixed point.

2 Main results

Throughout the paper, A denotes a σ-algebra in a non-empty set X; that is, a collection
of subsets of X with the following properties.

(i) X ∈ A.
(ii) if A ∈ A, then the complement of A relative to X is an element of A.
(iii) if A =

⋃∞
n=1An and An ∈ A for n ∈ N, then A ∈ A.

Let also µ denote a positive finite measure on σ-algebra A; that is, a countably additive
function from A into [0,∞) and which is . Now, let us give some new definitions which
are needed in the following.

Definition 2.1. Let {An} be a sequence in a measure space (X,A, µ). Then
(i) the sequence {An} is called µ-converges to A ∈ A, if the sequence {µ(An)} converges

to µ(A).
(ii) the sequence {An} is called µ-Cauchy if the sequence {µ(An)} is a Cauchy sequence

in R.
(iii) the measure space (X,A, µ) is called µ-complete if every µ-Cauchy sequence in

A \ {∅}, µ-converges to a non-empty element of A.

Definition 2.2. Let (X,A, µ) be a measure space. A mapping f from A into A is called
µ-continuous at A ∈ A if for every sequence {An} of elements of A, µ-convergent to A,
the sequence {f(An)}, µ-converges to f(A).

Definition 2.3. A non-empty element A in a measure space (X,A, µ) is said to be a
µ-fixed point of a mapping f : A → A if f(A) = A almost every where with respect to µ.
Furthermore, f has unique µ-fixed point if A and B are µ-fixed points of f , then A = B
almost every where with respect to µ.

The following lemma is needed to prove our results.

Lemma 2.4. Let (X,A, µ) be a measure space and f : A → A be a mapping. Then the
following statements hold.

(i) A ∈ A is a µ−fixed point of f if and only if µ(f(A)) = µ(A).
(ii) f has a unique µ−fixed point if and only if µ(A) = µ(B) whenever A and B are

µ−fixed points of f .

The main result of the paper is the following.

Theorem 2.5. Let (X,A, µ) be a µ-complete measure space and let f : A → A be a
µ-continuous mapping with f(A) 6= ∅ for all A 6= ∅. If there exist m ∈ N and 0 ≤ k < 1
such that for every A ∈ A

µ(fm(A)) ≤ k µ(A).

Then all {fn}n∈N have a unique common µ-fixed point.
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In the next result, we give a corollary for case k = 1 in Theorem 2.5.

Proposition 2.6. Let (X,A, µ) be a complete measure space and f : A → A be a
µ−continuous mapping with f(A) 6= ∅ for all A 6= ∅. If there exists m ∈ N such that

µ(fm(A)) ≤ µ(A)

for all A ∈ A, then fm has a µ-fixed point.

Corollary 2.7. Let (X,A, µ) be a complete measure space and f : A → A be a µ−continuous
mapping with f(A) 6= ∅ for all A 6= ∅. If there exists m ∈ N such that

fm(A) ⊆ A

for all A ∈ A, then fm has a µ-fixed point.

Theorem 2.8. Let (X,A, µ) be a µ-complete measure space, ψ : A → A be a mapping
and f : A → A be a µ-continuous mapping with f(A) 6= ∅ for all A 6= ∅. If there exist
m, j0 ∈ N such that for every A ∈ A

µ(fm(A)) ≤ µ(ψ(A))− µ(ψ(f j0(A))).

Then all {fn}n∈N have a common µ-fixed point.

As a consequence of this theorem, we have the following result.

Corollary 2.9. Let (X,A, µ) be a µ-complete measure space and f : A → A be a µ-
continuous mapping with f(A) 6= ∅ for all A 6= ∅. Let also there exist m, j2 ∈ N and
j1 ∈ Z such that j2 > j1 and for every A ∈ A

µ(fm(A)) ≤ µ(f j1(A))− µ(f j2(A)).

Then all {fn}n∈N have a unique common µ-fixed point.

As an immediate consequence of this corollary, we present the following result.

Corollary 2.10. Let (X,A, µ) be a µ-complete measure space and f : A → A be a µ-
continuous mapping with f(A) 6= ∅ for all A 6= ∅. Let also there exist m, j0 ∈ N such that
for every A ∈ A

µ(fm(A)) ≤ µ(A)− µ(f j0(A)).

Then all {fn}n∈N have a unique common µ-fixed point.
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Some Fixed Point Theorems For Mappings on a G-Metric
Space Endowed with a Graph

Nahid Sadat Mohseni∗
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Abstract

In this paper, we discuss the existence of fixed points for Banach and Kannan
contractions defined on G-metric spaces, which were introduced by Mustafa and Sims,
endowed with a graph. Our results generalize and unify some recent results by Jachym-
ski, Bojor and Mustafa and those contained therein. Moreover, we provide some ex-
amples to show that our results are substantial improvement of some known results
in literature.

Keywords: Fixed point, G-metric spaces, Banach contraction, Kannan contraction.
Mathematics Subject Classification [2010]: 47H10, 47H09.

1 Introduction

Investigation of the existence and uniqueness of fixed points of certain mappings in the
framework of metric spaces is one of the centers of interests in nonlinear functional analysis.
Fixed point theory has a wide application in almost all fields of quantitative sciences
such as economics, biology, physics, chemistry, computer science and many branches of
engineering. It is quite natural to consider various generalizations of metric spaces in
order to address the needs of these quantitative sciences. Different mathematicians tried
to generalize the usual notion of metric space (X, d). In the 1960s, Gähler [4] tried to
generalize the notion of metric and introduced the concept of 2-metric spaces inspired
by the mapping that associated the area of a triangle to its three vertices. But different
authors proved that there is no relation between these two functions [5]. Then, Dhage
[3] in his Ph. D. thesis introduce a new class of generalized metric space called D-metric
spaces. Unfortunately, both kinds of metrics appear not to have as good properties as
their authors announced ([5] ,[8]). To overcome these drawbacks, in 2003 Mustafa and
Sims [7] showed that most of the results claimed concerning of such spaces are invalid.
Then they introduced a generalization of metric spaces (X, d), which are called G-metric
spaces ([8], [9]). The G-metric space is defined as follows:

Definition 1.1 ([9]). Let X be a nonempty set, and G : X × X × X → [0, +∞) be a
function satisfying:

(G1) G(x, y, z) = 0 if x = y = z,
(G2) 0 < G(x, x, y); for all x, y ∈ X, with x ̸= y,
(G3) G(x, x, y) ≤ G(x, y, z); for all x, y, z ∈ X with z ̸= y,
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ..., (symmetry in all three variables),
(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z), for all x, y, z, a ∈ X, (rectangle inequality).

Then the function G is called a generalized metric, or, more specifically a G-metric on X,
and the pair (X, G) is a G-metric spaces.

A G-metric space (X, G) is called symmetric G-metric space if G(x, x, y) = G(x, y, y);
for all x, y ∈ X.
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Example 1.2 ([9]). Let (X, d) be a metric space. The function G : X×X×X → [0, +∞),
defined as

G(x, y, z) = max{d(x, y), d(y, z), d(z, x)}, (1)or
G(x, y, z) = d(x, y) + d(y, z) + d(z, x), (2)

for all x, y, z ∈ X, is a G-metric on X.

Definition 1.3 ([9]). Let (X, G) be a G-metric space, then a sequence {xn} is said to be
G-Cauchy sequence if for every ϵ > 0, there exists N ∈ N such that G(xn, xm, xl) < ϵ for
all n,m, l ≥ N.

Proposition 1.4 ([9]). Let (X, G) be a G-metric space. the following are equivalent:
1) The sequence {xn} is G-Cauchy,
2) for every ϵ > 0, there exists N ∈ N such that G(xn, xm, xm) < ϵ, for all n,m ≥ N.

Definition 1.5 ([9]). Let (X, G) be a G-metric space, and {xn} be a sequence of points
of X. we say that {xn} is G-convergent to x ∈ X if for every ϵ > 0, there exists N ∈ N
such that G(x, xn, xm) < ϵ, for all n,m ≥ N.

Proposition 1.6 ([9]). Let (X, G) be a G-metric space. the following statements are
equivalent:

1) {xn} is G-convergent to x,
2) G(xn, x, x) → 0 as n → +∞,
3) G(xn, xn, x) → 0 as n → +∞,
4) G(xn, xm, x) → 0 as n,m → +∞.

Definition 1.7 ([9]). Let (X, G) be a G-metric space. A mapping f : X → X is said
to be G-continuous if {f(xn)} is G-convergent to f(x) where {xn} is any G-convergent
sequence converging to x.

Definition 1.8 ([9]). A G-metric space (X, G) is said to be G-complete if every G-Cauchy
sequence in (X,G) is G-convergent in (X,G).

Theorem 1.9 ([8]). Let (X, G) be a complete G-metric space and T : X → X be a
mapping satisfying the following condition for all x, y, z ∈ X:

G(Tx, Ty, Tz) ≤ kG(x, y, z),

where k ∈ [0, 1). Then T has a unique fixed point.

Theorem 1.10 ([10]). Let (X,G) be a complete G-metric space and T : X → X be a
mapping satisfying the following condition for all x, y, z ∈ X:

G(Tx, Ty, Tz) ≤ k{G(x, Tx, Tx) + G(y, Ty, Ty) + G(z, Tz, Tz)},
where k ∈ [0, 1/3). Then T has a unique fixed point.

We next review some notions in graph theory. All of them can be found in, e.g., [1].
Let X be a G-metric space. Consider a directed graph H with V (H) = X and

E(H) ⊇ {(x, x) : x ∈ X}, i.e., E(H) contains all loops. Suppose further that H has no
parallel edges. With these assumptions, we may denote H by the pair (V (H), E(H)). In

this way, the G-metric space X is endowed with the graph H. The notation H̃ is used to
denote the undirected graph obtained from H by deleting the directions of the edges of
H. Thus,

V (H̃) = X E(H̃) =
{
(x, y) ∈ X × X : (x, y) ∈ E(H) ∨ (y, x) ∈ E(H)

}
.

By a path in H from a vertex x to a vertex y, it is meant a finite sequence (xs)
N
s=0 of

vertices of H such that x0 = x, xN = y, and (xs−1, xs) ∈ E(H) for s = 1, . . . , N . A graph
H is called connected if there is a path between any two vertices and is called weakly
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connected if H̃ is connected, i.e., there exists an undirected path in H between its each
two vertices.
If H is such that E(H) is symmetric, then for x ∈ V (H), the symbol [x]H denotes the
equivalence class of the relation R defined on V (H) by the rule:

yRz if there is a path in H from y to z.

Recall that if T : X → X is an operator, then by FixT = {x ∈ X : T (x) = x} we denote
the set of all fixed points of T . Denote also XT = {x ∈ X : (x, Tx) ∈ E(H)}. Moreover,
we may treat H as a G-weighted graph by assigning to each three vertices x, y and z in
X the G-distance G(x, y, z).

2 Main Results

The aim of this paper is to study the existence of fixed points for Banach and Kannan
H-contractions in G-metric spaces endowed with a graph H by introducing the concept
of Banach and Kannan H-contractions according to the articles of Jakhymski and Bojor
[6, 2].

Definition 2.1. Let (X, G) be a G-metric space with a graph H and T : X → X
be a mapping. We call T a Banach H-contraction if T preserves edges of H,( i.e.,
∀x, y ∈ X, (x, y) ∈ E(H) ⇒ (Tx, Ty) ∈ E(H)), and there exists k ∈ [0, 1) such that
G(Tx, Ty, Tz) ≤ kG(x, y, z) for all x, y and z that are on a path to length at most 2 in H.

Proposition 2.2. Let X be a G-metric space with a graph H. If a mapping T from X

into itself is a Banach H-contraction, then T is also a Banach H̃-contraction.

Example 2.3. Let ⪯ be a partial order on a G-metric space X and consider a graph H1

by V (H1) = X and E(H1) =
{
(x, y) ∈ X × X : x ⪯ y

}
. Then Banach H1-contractions

are precisely the nondecreasing ordered H-contractions.

Theorem 2.4. Let X be a complete G-metric space endowed with a graph H and the
triple (X, G,H) have the following property:

(∗) if {xn} → x is a sequence in X whose consecutive terms are adjacent, then there ex-
ists a subsequence {xnk

}k∈N of {xn}such that whose consecutive terms are adjacent
and every term’s is adjacent to x.

Then a Banach H̃-contraction T : X → X has a fixed point if and only if XT ̸= ∅.
Example 2.5. Take the complete G-metric space X = [0, +∞) with the G-distance
G(x, y, z) = d(x, y)+ d(x, z)+ d(y, z), where d is Euclidean metric on X, and consider the
graph H with V (H) = X and

(x, y) ∈ E(H) ⇔
{

x, y ∈ [0, 1], x ≤ y,
or
x, y ∈ (n, n + 1], for some n = 1, 2, . . . , x ≤ y.

Let T be defined as

T (x) =





1
2x, x ∈ [0, 1],
(n − 1) + 1

2(x − n), x ∈ (n, n + 1], n even,
n − 1

2(x − n), x ∈ (n, n + 1], n odd,

T is not a Banach G-contraction because T is not continuous, but T is a Banach H-
contraction with a constant k = 1

2 .

Definition 2.6. Let (X, G) be a G-metric space with a graph H and T : X → X be a
mapping. We call T a Kannan H-contraction if
K1) T preserves edges of H;
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K2) there exists k ∈ [0, 1
3) such that

G(Tx, Ty, Tz) ≤ k{G(x, Tx, Tx) + G(y, Ty, Ty) + G(z, Tz, Tz)}

for all x, y and z that are on a path to length at most 2 in H.
Theorem 2.7. Let X be a complete G-metric space endowed with a graph H and the

triple (X, G, H) have Property (∗). Then a Kannan H̃-contraction T : X → X has a fixed
point if and only if XT ̸= ∅.
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based on the Richardson and Chebyshev methods and investigate the convergence
and optimality of them.
Keywords: Hilbert space, g-frame, operator equation, iterative method, Chebyshev
polynomials.
MSC(2010): Primary: 47J25; Secondary: 46C05.

1 Introduction and preliminaries

G-frames are natural generalization of frames and provide more choices on analyzing func-
tions from frame expansion coefficients. Let J be a countable index set and {Λj}j∈J be a
set of operators from a separable Hilbert space H to another separable Hilbert space Vj
for j ∈ J . The sequence {Λj}j∈J is called a g − frame for H with respect to {Vj}j∈J if
there are two positive A and B such that

A‖f‖2 ≤
∑

j∈J
‖Λjf‖2 ≤ B‖f‖2, ∀f ∈ H.

A and B is called the lower and upper frame bound, respectively. If A = B then {Λj}j∈J is
called a tight g-frame. The g-frame operator S for a g-frame {Λj}j∈J , for H with respect
to {Vj}j∈J , is defined by

Sf =
∑

j∈J
Λ∗jΛjf, ∀f ∈ H,

where Λ∗j is the adjoint operator of Λj .
It is easy to check that S is a bounded, invertible and self-adjoint operator and

AI ≤ S ≤ BI ,
1

B
I ≤ S−1 ≤ 1

A
I.

Writing Λ̃j = ΛjS
−1, then for any f ∈ H we have

f =
∑

j∈J
Λ∗j Λ̃jf =

∑

j∈J
Λ̃∗jΛjf.
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It is prove that the sequence ΛjS
−1 is also a g-frame (called canonical dual g-frame) for

H with respect to {Vj}j∈J . For more details we refer to [5].
In this work we present two iterative methods in order to approximate the solution of

the operator equation

Lu = f, (1)

where L : H → H is bounded invertible and symmetric operator on a separable Hilbert
space H. In [1, 3, 4] you can see some developments of numerical methods for solving this
problem by using frames.

2 Using g-frames in Richardson iterative method

In this chapter by using Richardson iterative method and g-frames, we wish to solve the
operator equation (1). First of all we give and exact solution by using a g-frame.

Theorem 2.1. Let L : H → H be a bounded and invertible operator and {Λj}j∈J be a
g-frame for H. Then {ΛjL}j∈J is also a g-frame for H.

The most straight forward approach to an iterative solution of a linear system is to
rewrite the equation (1) as a linear fixed-point iteration. One way to do this is the
Richardson iteration. The abstract method reads as follows:
write Lu = f as

u = (I − L)u+ f.

For given u0 ∈ H, define for k ≥ 0,

uk+1 = (I − L)uk + f. (2)

Since Lu− f = 0,

uk+1 − u = (I − L)uk + f − u− (f − Lu) = (I − L)uk − u+ Lu

= (I − L)(uk − u).

Hence
‖uk+1 − u‖H ≤ ‖I − L‖H→H‖uk − u‖H ,

so that (2) converges if
‖I − L‖H→H < 1.

It is sometimes possible to precondition (1) by multiplying both sides by a matrix B,

BLu = Bf,

so that convergence of iterative methods is improved. This is very effective technique
for solving differential equations, integral equations, and related problems. The following
theorem designs an iterative method based on Richardson iterative method and knowledge
of g-frames.

Theorem 2.2. Let {Λj}j∈J be a g-frame with g-frame operator S, and A and B be the
bounds of the g-frame {ΛjL}j∈J .
Put u0 = 0 and for k ≥ 1, uk = uk−1 + 2

A+BLS(f − Luk−1), Then

‖u− uk‖ ≤ (
B −A
B +A

)k‖u‖.
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3 Chebyshev method by using g-frames

Before introducing our next method, we wish to state without proof some basic facts about
Chebyshev polynomials. These polynomial are defined by

cn(x) =

{
cos(ncos−1(x)), |x| ≤ 1

cosh(n cosh−1(x)) = 1
2

(
(x+

√
x2 − 1)n + (x+

√
x2 − 1)−n

)
, |x| ≥ 1

and satisfy the recurrence relation

c0(x) = 1, c1(x) = x, cn(x) = 2xcn−1(x)− cn−2(x), ∀n ≥ 2.

The following lemma holds.[2].

Lemma 3.1. Given a ≤ b ≤ 1, set Pn(x) =
cn(

2x−a−b
b−a

)

cn(
2−a−b
b−a

)
, then

max
a≤x≤b

| Pn(x) |≤ max
a≤x≤b

| Qn(x) |

for all polynomial Qn of degree n satisfying Qn(1) = 1. Furthermore

max
a≤x≤b

| Pn(x) |= 1

cn(2−a−bb−a )
.

Now let hn =
∑n

k=1 ank
uk such that

∑n
k=1 ank

= 1, where uk is the approximated
solutions induced by the iterative method represented in the Theorem 2.2.
The condition

∑n
k=1 ank

= 1 guaranteed if u1 = u2 = ... = un = u, then hn =∑n
k=1 ank

uk = u
∑n

k=1 ank
= u.

In this case, by Theorem 2.2

u− hn =
n∑

k=1

ank
u−

n∑

k=1

ank
uk =

n∑

k=1

ank
(u− uk) =

n∑

k=1

ank
(I − 2

A+B
LSL)k(u− u0).

Writing R = I − 2
A+BLSL and Qn(x) =

∑n
k=1 ank

xk, we obtain

u− hn =

n∑

k=1

ank
Rk(u− u0) = Qn(R)(u− u0),

that means the error is a polynomial in R applied to the initial error u− u0.
Also we note that the spectrum of R is obtained in [−ρ, ρ] where ρ = B−A

B+A , and since LSL
is a positive definite operator, the spectral theorem yields

‖u− hn‖ ≤ ‖Qn(R)‖‖u− u0‖ ≤ max
|x|≤ρ

| Qn(x) | ‖u− u0‖.

In order to minimize this error we try to find

min
Qn(1)=1

max
|x|≤ρ

| Qn(x) |, (3)

where the min is taken over all polynomials of degree less than or equal to n, with
Qn(1) =

∑1
k=1 ank

= 1. By Lemma 3.1 the answer can be given in terms of the Chebyshev
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polynomials.
First we note that, replacing a = −B−A

B+A and b = B−A
B+A in Lemma 3.1 gives

Pn(x) =
cn(

2x+B−A
B+A

−B−A
B+A

B−A
B+A

+B−A
B+A

)

cn(
2+B−A

B+A
−B−A

B+A
B−A
B+A

+B−A
B+A

)
=
cn(xρ )

cn(1ρ)
.

This polynomials solve (3). Now, based on the above argument we can organize the
following algorithm in order to induce an approximated solution to the equation (1). Let
{Λj}j∈J be a g-frame for H with frame operator S and let A and B be the bounds of the
g-frame {ΛjL}j∈J .

Algorithm [A,B, ε]→ uε

(i) put ρ = B−A
B+A , σ =

√
B+
√
A√

B−
√
A

set h0 = 0 , h1 = 2
A+BLSf , β1 = 2 , n = 1

(ii) while 2σn

1+σ2n
‖f‖
m > ε

(1) n = n+ 1

(2) βn = (1− ρ2

4 βn−1)
−1

(3) hn = 2
ρβn(hn−1 + 2

A+BLS(f − Lhn−1)) + (1− βn)hn−2

(iii) uε := hn.

The following theorem verifies the convergence of this algorithm.

Theorem 3.2. If u is the exact solution of the equation (1) then, the approximated solution

hn satisfies ‖u− hn‖ ≤ 2σn

1+σ2n
‖f‖
m . Consequently the output uε in the Algorithm [A,B, ε]

satisfies
‖u− uε‖ < ε.

Remark 3.3. It is obvious that for every n > 1, 2σn

1+σ2n
≤ ρn. Therefore this algorithm

present an iterative method that is convergence is faster than the Richardson iterative
method that is presented in Theorem 2.2.
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The purpose of this paper is to give a fixed point theorem and a convergence
theorem for fundamentally affine nonexpansive self-mappings in a complete CAT(0)
space. Specially, we show that the fixed points set of such mappings defined on a
nonempty bounded closed convex subset of a a complete CAT(0) space is always
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1 Introduction and preliminares

Let K be a nonempty subset of a metric space (X, d), and let T : K → K be a mapping.
We denote by F (T ) the set of fixed points of T , i.e., F (T ) = {x ∈ K : Tx = x}. The
mapping T is said to be
(i) nonexpansive if

d(Tx, Ty) ≤ d(x, y) for all x, y ∈ K;

(ii) fundamentally nonexpansive if

d(T 2x, Ty) ≤ d(Tx, y) for all x, y ∈ K;

(iii) quasi-nonexpansive if F (T ) is nonempty and

d(Tx, u) ≤ d(x, u) for all x ∈ K and u ∈ F (T ).

It is evident that fundamental nonexpansiveness is weaker than nonexpansiveness and
stronger than quasi-nonexpansiveness.

Fixed point theory in a CAT(0) space was first studied by Kirk (see [6] and [7]). He
showed that every nonexpansive mapping defined on a nonempty bounded closed convex
subset of a a complete CAT(0) space always has a fixed point. Since then the fixed point
theory for single-valued and multivalued mappings in CAT(0) spaces has been rapidly
developed and many papers have been appeared. The aim of this paper is to present
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a fixed point theorem and a convergence theorem for fundamentally affine nonexpansive
mappings defined on a nonempty bounded closed convex subset of a complete CAT(0)
space.

We now review the needed definitions and lemmas. Let (X, d) be a metric space. A
geodesic path joining x ∈ X and y ∈ X (d(x, y) = l) is a map c from closed interval [0, l]
to X such that c(0) = x, c(l) = y and d(c(s), c(t)) = |s− t| for all s, t ∈ [0, l]. In particular,
c is an isometry. The image of c is called a geodesic segment joining x and y. When it is
unique this geodesic denoted by [x, y]. The metric space (X, d) is said to be geodesic space
if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if
there is exactly one geodesic joining x and y for all x, y ∈ X. A subset K of X is said to
be convex if it includes every geodesic segment joining any two of its points.

A geodesic triangle △(x1, x2, x3) in a geodesic space (X, d) consists of three points
x1, x2, x3 in X (the vertices of △) and a geodesic segment between pair of vertices (the
edges of △). A comparison triangle for geodesic triangle △(x1, x2, x3) in (X, d) is a triangle
△(x1, x2, x3) = △(x̄1, x̄2, x̄3) in the Euclidean plane R2 such that dR2(x̄i, x̄j) = d(xi, xj)
for all i, j ∈ {1, 2, 3}.

A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the
following comparison axiom.

CAT(0): Let △ be a geodesic triangle in X, and △ be a comparison triangle for △.
Then △ is said to satisfy the CAT(0) inequality if for all x, y ∈ △ and all comparison
points x̄1, x̄2 ∈ △, d(x, y) ≤ dR2(x̄1, x̄2).

Every CAT(0) space is uniquely geodesic (see [1]).
Let {xn} be a bounded sequence in a CAT(0) space X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is defined by

r({xn}) = inf{r(x, {xn}) : x ∈ X},

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

Definition 1.1. (see [8, 9]) A sequence {xn} in a CAT(0) space X is said to △-converge
to x ∈ X if x is the unique asymptotic center of {un} for every subsequence {un} of {xn}.
In this case, we write △ − limn xn = x and call x the △ − lim of {xn}.

We now collect some lemmas which will be used to prove our main results.

Lemma 1.2. (see [3]) Let {xn} be a bounded sequence in a CAT(0) space X, then A({xn})
consists of exactly one point.

Lemma 1.3. (see [8]) Every bounded sequence in a complete CAT(0) space always has a
△-convergent subsequence.

Lemma 1.4. (see [2]) If K be a nonempty closed convex subset of a complete CAT(0)
space and if {xn} is a bounded sequence in K, then the asymptotic center of {xn} is in K.
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Lemma 1.5. (see [4]) Let (X, d) be a CAT(0) space. Then the following statements hold:
(i) For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that

d(x, z) = td(x, y) and d(z, y) = (1 − t)d(x, y). (1)

It is used the notation (1 − t)x ⊕ ty for the unique point z satisfying (1).
(ii) For all x, y, z ∈ X and t ∈ [0, 1], we have

d((1 − t)x ⊕ ty, z) ≤ (1 − t)d(x, z) + td(y, z).

Lemma 1.6. (see [5]) Let {xn} and {yn} be bounded sequences in a CAT(0) space X
and t ∈ (0, 1). Suppose that xn+1 = tyn ⊕ (1 − t)xn and d(yn+1, yn) ≤ d(xn+1, xn) for all
n ∈ N. Then lim

n→∞
d(xn, yn) = 0.

Definition 1.7. Let K a nonempty convex subset of a CAT(0) space X. A mapping
T : K → K is called affine if

T ((1 − t)x ⊕ ty) = (1 − t)Tx ⊕ tTy

for all x, y ∈ K and t ∈ [0, 1].

2 Main results

The following lemmas play a basic role to prove our main results.

Lemma 2.1. Let K be a nonempty subset of a metric space (X, d), and let T : K → K
be a fundamentally nonexpansive mapping. Then for all x, y ∈ K, we have

d(x, Ty) ≤ 3d(x, Tx) + d(x, y) .

In addition, if K is closed, then F (T ) is also closed.

Lemma 2.2. Let K be a nonempty bounded convex subset of a CAT(0) space X, and
T : K → K be a fundamentally affine nonexpansive mapping. Then the sequence {xn}
defined by x1 ∈ K and

xn+1 = (1 − t)xn ⊕ tTxn (2)

for all n ∈ N, where t ∈ (0, 1), is an approximating fixed point sequence(in short AFPS)
for T , i.e., lim

n→∞
d(xn, Txn) = 0.

Proof. Using Lemma 1.6, the proof is finished.

Lemma 2.3. Let K be a nonempty convex subset of a CAT(0) space X, and T : K → K
be a fundamentally nonexpansive mapping with F (T ) ̸= ∅. Consider sequence (2), then
the sequence {d(xn, u)} is convergent for all u ∈ F (T ).

Proposition 2.4. Let K be a nonempty bounded closed convex subset of a complete
CAT(0) space X, and T : K → K be a fundamentally nonexpansive mapping. If {xn} is
an AFPS for T and △-limn xn = x for some x ∈ X. Then x is a fixed point of T .

Proof. By Lemma 1.4, we have x ∈ K. Applying Lemmas 1.2 and 2.1, the proof is
completed.
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Theorem 2.5. Let K be a nonempty bounded closed convex subset of a complete CAT(0)
space X, and T : K → K be a fundamentally nonexpansive mapping. If T is affine, then
F (T ) is nonempty and closed.

Proof. Consider sequence (2) in Lemma 2.2. Now by using Lemmas 1.3, 2.1 and 2.2 along
with Proposition 2.4, the proof will be completed.

Theorem 2.6. Let K be a nonempty bounded compact convex subset of a complete CAT(0)
space X, and T : K → K be a fundamentally nonexpansive mapping. If T is affine, then
sequence (2) in Lemma 2.2 converges strongly to a fixed point of T .
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Some properties of nonnegative integral majorization
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Abstract

A majorization permutahedron M(a) is polytope defined by M(a) = {x ∈ Rn :
x � a}. In this paper we look more precisely to M+

I (a), all positive integer vectors
that are majorized by a, and we discuss about its cardinality.

Keywords: integral vector, majorization, permutahedron

Mathematics Subject Classification [2010]: 15A39, 15B36

1 Introduction

Inequalities in matrix theory and specially majorization is one of the interesting areas that
has been researched on it in several ways.

For a vector x ∈ Rn we say x = (x1, . . . , xn) ∈ Rn is nonincreasing if

x1 ≥ x2 ≥ ... ≥ xn.

For a vector x = (x1, . . . , xn) ∈ Rn we use the notation x↓ = (x↓1, x
↓
2, . . . , x

↓
n) for the

nonincreasing vector consisting elements of x.

Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. We say x is majorized by y, x ≺ y, if

k∑

i=1

x↓i ≤
k∑

i=1

y↓i , 1 ≤ k ≤ n

with the equality when k = n[3].
A majorization permutahedron is defined by M(a) = {x ∈ Rn : x � a}. Actually this

is a special polytope associated with a majorization in Rn, the set of all vectors majorized
by a. . In [1] there are some works on the properties of majorization permutahedrons and
their cardinality. In this paper we are interested in the set of nonnegative integer vectors
majorized by a and discussing about its cardinality. We use the notation Rn+ for the set
of all nonnegative vectors in Rn.
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2 Some properties of M+
I (a)

In this section our focus is on integral vectors. An integral vector is a vector that all of its
entries are integer. We first state some theorems that are proved on MI(a), the set of all
integer vectors in M(a). For subsets S and T of Rn, we define S+T = {s+t : s ∈ S, t ∈ T}.
The following theorems are proved in [2, 1] about integral majorization permutahedrons
and their cardinalities.

Theorem 2.1. Let a, b ∈ Rn are monotone vectors. Then:
i) M(a+ b) = M(a) +M(b)
ii) MI(a+ b) = MI(a) +MI(b)

Using the notation υ(a) for the cardinality of MI(a), we have the following theorem:

Theorem 2.2. Let a, b ∈ Rn be integral vectors. Then the following hold:
i) If a � b, then υ(a) ≤ υ(b).
ii) If a is a constant vector, then υ(a+ b) = υ(b).
iii) υ(a+ b) ≤ υ(a)υ(b) and equality holds if and only if a or b is a constant vector.
iv) υ(ka) ≤ υk(a) for every positive integer k.

Now let a be a nonnegative integarl vector. We will discuss how the above theorems
are true about nonnegative integral majorization permutahedrons. We use the notation
M+
I (a) for the set of all nonnegative integar vectors majorized by a and the notation υ+(a)

for the cardinality of M+
I (a) .

Lemma 2.3. Let a = (a1, · · · , an) ∈ Rn+, x = (x1, · · · , xn) ∈ Rn \ Rn+ and k be the first
indice that xk is negative. If a 6= 0 and x � a, then there is k0 ∈ N such that:

k−1∑

j=k0+1

xj <

n∑

j=k

|xj | ≤
k−1∑

j=k0

xj (1)

Proof. We have x � a, hence
∑n

i=1 ai =
∑n

i=1 xi. Since a 6= 0 is a nonnegative vector, we

have
∑n

i=1 xi > 0. Consequently
∑n

i=k |xi| <
∑k−1

i=1 xi. Hence we can choose k0 that the
implies the relation1.

Theorem 2.4. Let a, b ∈ Rn+ are monotone vectors. Then:
i) M+(a+ b) = M+(a) +M+(b)
ii) M+

I (a+ b) = M+
I (a) +M+

I (b)

Proof. i) It is obvious that M+(a) + M+(b) ⊆ M+(a + b). To show the converse let
z ∈ M+(a + b). Since M+(a + b) ⊆ M(a + b), by theorem ?? we know there are
x ∈ M(a) and y ∈ M(b) such that z = x + y. If x and y are nonnegative vectors,
then z + y ∈ M+(a) + M+(b), else we construct nonnegative vectors x′ and y′ such that
z = x′ + y′, x′ � a and y′ � b in the following way. With out loss of generality we may
consider x = (x1, · · · , xn) and y = (y1, · · · , yn) are nonincreasing vectors, that means

x1 ≥ x2 ≥ · · · ≥ xn
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y1 ≥ y2 ≥ · · · ≥ yn

Let k and l be respectively the first indices that xk and yl are negative and suppose
k ≤ l. Put x′ = (x′1, · · · , x′n) in which

x′i =





xi if 1 ≤ i ≤ k0 − 1∑k−1
j=k0

xj −
∑n

j=k|xj | if i = k0
0 if i ≥ k0 + 1

,

where k0 is introduced in lemma2.3 that
∑k−1

j=k0+1 xj <
∑n

j=k|xj | ≤
∑k−1

j=k0
xj . Obvi-

ously x′ is a nonnegative vector. To show x′ � a, if d ≤ k0 − 1, then:

d∑

j=1

x′j =
d∑

j=1

xj ≤
d∑

j=1

aj

if d ≥ k0, considering the positivity of vector a we have:

d∑

j=1

x′j =

k0−1∑

j=1

xj+
k∑

j=k0

xj−
n∑

j=k+1

|xj | =
k0∑

j=1

xj−(
n∑

j=k+1

|xj |−
k∑

j=k0+1

xj) ≤
k0∑

j=1

xj ≤
k0∑

j=1

aj ≤
d∑

j=1

aj

and finally for d = n we have:

n∑

j=1

x′j =

k0−1∑

j=1

xj +
k−1∑

j=k0

xj −
n∑

j=k

|xj | =
k−1∑

j=1

xj −
n∑

j=k

|xj | =
k−1∑

j=1

xj +
n∑

j=k

xj =
n∑

j=1

aj

Hence x′ � a. Now we must show that y′ = z − x′ is nonnegative and is majorized by b.
Precisely enteries of y are as below:

y′i =





yi if 1 ≤ i ≤ k0 − 1

yk0 − (
∑k−1

j=k0+1 xj −
∑n

j=k|xj |) if i = k0
yi + xi if i ≥ k0 + 1

We know k0 < k ≤ l, hence for i ≤ k0 − 1, y′i ≥ 0. For i = k0, we have y′k0 = yk0 −
(
∑k−1

j=k0+1 xj−
∑n

j=k|xj |) and by the above lemma we know (
∑k−1

j=k0+1 xj−
∑n

j=k|xj |) ≤ 0,
hence considering positivity of yk0 , we conclude y′k0 is positive. For i ≥ k0 + 1, we have
y′i = zi that is positive. Hence we have y′ is positive. Now we show that y′ � b. If

d ≤ k0 − 1, then
∑d

j=1 y
′
j =

∑d
j=1 yj ≤

∑d
j=1 bj . If d = k0, then

∑d
j=1 y

′
i =

∑k0
j=1 yj −

(
∑k−1

j=k0+1 xj −
∑n

j=k|xj |) ≤
∑k0

j=1 bj , where the last inequality results from the fact that

(
∑k−1

j=k0+1 xj −
∑n

j=k|xj |) ≤ 0. If d > k0, then:

d∑

j=1

y′j =

k0∑

j=1

yj−(
k−1∑

j=k0+1

xj−
n∑

j=k

|xj |)+
d∑

j=k0+1

yj+xj =
d∑

j=1

yj−
k−1∑

j=k0+1

xj+
n∑

j=k

|xj |+
d∑

j=k0+1

xj
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=
d∑

j=1

yj + xj −
k−1∑

j=1

xj +
n∑

j=k

|xj | =
d∑

j=1

yj + xj −
n∑

j=1

aj ≤
d∑

j=1

bj

Finally for d = n, from the above relation we have:

n∑

j=1

y′j =

n∑

j=1

yj + xj −
n∑

j=1

aj =

n∑

j=1

bj

Hence y′ � b and the proof is complete.

Theorem 2.5. Let a, b ∈ Rn+ be integral vectors. Then the following hold:
i) If a � b, then υ+(a) ≤ υ+(b).
ii) If a is a constant vector, then υ+(a+ b) = υ+(b).
iii) υ+(a+ b) ≤ υ+(a)υ+(b) and equality holds if and only if a or b is a constant vector.
iv) υ+(ka) ≤ υk+(a) for every positive integer k.

Proof. Parts (i) and (ii) follows from theorem 2.2. The proof of part (iii) is like the proof
of part (iii) of theorem 2.2 mentioned in [2], with some changes as follows. We know
a+ b � a↓ + b↓, hence υ+(a+ b) = |M+

I (a+ b)| ≤ |M+
I (a↓ + b↓)| = |M+

I (a↓) +M+
I (b↓)| ≤

υ+(a)υ+(b), where the second inequality is by theorem 2.4. We show that if a and b
are not constant then the strict inequality holds. Since they are not constants, there are
permutations a′ and b′ of a and b such that a′ = (α, β, · · · ) with α > β and b′ = (p, q, · · · )
with p < q. Consider vectors ã= (α − 1, β + 1, · · · ) and b̃= (p + 1, q − 1, · · · ) with other
components equal to a′ and b′ respectively. Since α > β ≥ 0, we have α− 1 ≥ 0 and hence
ã is a nonnegative vector. The same is also true for b̃. Hence we have ã� a and b̃� b, also
ã 6= a′ and b̃6= b, but a′ + b′ =ã+b̃. Part (iv) follows from part (iii).

References

[1] G. Dahl, Majorization permutahedra and (0, 1)-matrices, Linear Algebra Appl. 432,
2010, pp. 3265-3271.

[2] G. Dahl, F. Zhang, Integral majorization polytopes, Discrete Mathematics, Algorithms
and Applications, 2013.

[3] A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and
Its Applications, Springer, 2011.

Email: m.jamshidi@kgut.ac.ir

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Some properties of nonnegative integral majorization pp.: 4–4

217



Some results on 2-modular spaces

Fatemeh Lael∗

Department of Mathematics, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran

Abstract

In this talk, first we review and discuss the concepts of 2-norm and 2-modular.
Then, we prove that every 2-modular induces a 2-F-norm. In particular, we show that
a β-homogeneous 2-modular induces a 2-F-norm with a special form.

Keywords: 2-modular, 2-modular spaces, 2-norm
Mathematics Subject Classification [2010]: 46A80

1 Introduction

A real valued function ρ(·, ·) on X2 which X is a linear space, is said to be a 2-modular
on X if it satisfies the following properties:

1. ρ(x, y) = 0 if and only if x, y are linearly dependent,

2. ρ(x, y) = ρ(y, x),

3. ρ(−x, y) = ρ(x, y),

4. ρ(x, αy+βz) ≤ ρ(x, y)+ρ(x, z), for any nonnegative real numbers α, β with α+β = 1.

The spaces equipped with two-modulars introduced by J. Musielak and A. Waszak [5]
and generalized by K. Nourouzi and S. Shabanian [4]. In [1] and [2], Gahler developed the
notion of a normed space to 2-normed spaces.

This work is devoted to study the relation between two-modular spaces and two-norm
spaces.

Example 1.1. Let X = R2. Then

ρ(x1, x2) =

{
1 x1, x2 are linearly independent,
0 x1, x2 are linearly dependent,

is a 2-modular on X.

Definition 1.2. The set defined by

Xρ = {x ∈ X : for each y ∈ X, ρ(λx, y)→ 0 as λ→ 0}

is called a 2-modular space.
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Evidently Xρ is a linear subspace of X. Also, we obtain for x, y ∈ Xρ, ρ(λx, λy) → 0
as λ→ 0.

Definition 1.3. [3] Let X be a real linear space and ‖·, ·‖ : X2 → R a function. A linear
2-F-norm space, denoted (X, ‖·, ·‖), is defined by:

1. ‖x, y‖ = 0 ⇔ x and y are linearly dependent,

2. ‖x, y‖ = ‖y, x‖,

3. ‖ − x, y‖ = ‖x, y‖,

4. ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖,

5. ‖αkxk − αx, y‖ → 0, if αk → α and ‖xk − x, y‖ → 0 for any αk ∈ R and x, y, z ∈ X.
The function ‖·, ·‖ is called a 2-F-norm on X.

For a positive number β ≤ 1, a 2-F-norm is said to be β-homogeneous if it satisfies the
condition

6. ‖tx, y‖ = |t|β‖x, y‖ for every x, y ∈ X and every t ∈ R.
If β = 1, we obtain a 2-norm.

It can easily checked that every 2-norm is 2-F-norm. Every 2-F-norm ‖·, ·‖ such that
‖αx, y‖ is a nondecreasing function of α > 0 for every x, y ∈ X is a 2-modular on X.

Note that every 2-modular on X is a non-negative real functional and the function
α→ ρ(αx, y) is nondecreasing for every x, y ∈ X.

Definition 1.4. A 2-modular ρ is said to satisfy the β-homogeneous if there exists β > 0
such that ρ(tx, y) = tβρ(x, y) for every 0 ≤ t and each x, y ∈ Xρ.

Example 1.5. Suppose that (X, ‖·, ·‖) is a 2-normed space. Then X is 2-modular with
the following 2-modular:

ρ(x, y) = ‖x, y‖k,
where k ∈ N. Then ρ is a 2-modular on X and satisfies the k-homogeneous.

2 Main results

We show in next theorem that every 2-modular induces a 2-F-norm.

Theorem 2.1. If ρ is a 2-modular on X, then

‖x, y‖ρ = inf{u > 0 : ρ(
x

u
,
y

u
) ≤ u}

is a 2-F-norm on Xρ.

Corollary 2.2. If ρ is a 2-modular with β-homogeneity on a linear space X, then

‖x, y‖ρ = ρ
1

2β+1 (x, y)

for any x, y ∈ Xρ.
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Proof. The result is trivial of ρ(x, y) = 0. Suppose that ρ(x, y) > 0. Since ρ(tx, ty) =
t2βρ(x, y), ρ(tx, ty) is continuous with respect to t in (0,+∞). We can easily show that
‖x, y‖ is a unique solution of the equation

t = ρ(
x

t
,
y

t
).

Therefore, ‖x, y‖ρ satisfies the equation t = ρ(x,y)
t2β

, that is,

‖x, y‖ρ = ρ
1

1+2β (x, y)

for every x, y ∈ Xρ.

References

[1] S. Gahler, Lineare 2-normierte Raume, Math. Nachr. 28, 1964.

[2] S. Gahler, Untersuchungen uber verallgemeinerte m-metrische Raume, I, Math. Nachr.
40, 1969.

[3] F. Lael, and K. Nourouzi, Compact operators defined on 2-normed and 2-probabilistic
normed spaces, Mathematical Problems in Engineering, 2009 (2009), pp. 1–17.

[4] K. Nourouzi, and S. Shabanian, Operators defined on n-modular spaces, Mediterranean
Journal of Mathematics, 6 (2009), pp. 431–446.

[5] J. Musielak and A. Waszak, Linear continuous functionals over some two-modular
spaces, Functions, series, operators, vol. I, II (Budapest, 1980), 877890, Colloq. Math.
Soc. Janos Bolyai, 35, North-Holland, Amsterdam, 1983.

Email: fatemehlael@yahoo.com

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Some results on 2-modular spaces pp.: 3–3

220



some starlike and convex properties for Hypergeometric

functions ∗

Roya ghasemkhani†
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Abstract

In this paper, we finding conditions on the triplet (a, b, c) so that the function
zF (a, b; c; z) is starlike in ∆, where F (a, b; c; z) denotes the hypergeometric function.
Also the geometric problem of starlikeness and close to convexity of zF (a, b; c; z) is
studied.

Keywords: Starlike, Convex , univalent, Hypergeometric functions.
Mathematics Subject Classification [2010]: 30C45, 30C55

1 Introduction

let S denote the class of all functions f of the form

f(z) = z +

∞∑

n=0

anzn (1)

that are analytic and univalent in the open unit disk ∆ = {z ∈ C :| z |< 1}.

Definition 1.1. A function f ∈ S is said to be starlike of order β(0 ≤ β < 1) if and only

if Re
(

zf ′(z)
f(z)

)
> β.

Denote the class of all starlike functions of order β in ∆ by S⋆(β).

Definition 1.2. A function f ∈ S is said to be convex of order β(0 ≤ β < 1) if and only

if Re
(

1+zf ′′(z)
f ′(z)

)
> β.

Denote the class of all convex functions of order β in ∆ by C(β).

Definition 1.3. A function f ∈ S is said to be close-to-convex if there is a convex function

g(z) such that Re
(

f ′(z)
g′(z)

)
> 0.

We note that f(z) is not required to be univalent, and g(z) need not be a function
belonging to the class S. It is readily observed that every close-to-convex function is
univalent [4]. Merkes and Scott [3] proved an interesting result characterizing starlike
hypergeometric functions, and Carlson and Shaffer [5] studied various interesting classes
of starlike and convex hypergeometric functions.
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let a, b, c be complex numbers with c ̸= 0, −1, −2, ... .Then the Gaussian
hypergeometric function given by the analytic function ,

F (a, b; c; z) =2 F1(a, b; c; z) =
∑∞

n=0
(a,n)(b,n)
(c,n)n! zn (z∈∆),

Where (a,n) denote symbol for the generalized factorial ,

(a, 0) = 1 for a ̸= 0, (a, n) = a(a + 1)(a + 2)...(a + n − 1) for n ∈ N .

If Re(c − a − b) > 0 then F (a, b; c; 1) =
∑∞

n=0
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) . For more details we refer

to [1, 6 ,9].

The convolution or Hadamard product of f given by (1) and g ∈ S given by

g(z) = z +
∑∞

n=0 bnzn is defined as:

(f ∗ g)(z) = z +
∞∑

n=0

anbnzn (2)

that are analytic and unevalent in the open unit disk ∆.

Integral operater of the hypergeometric function F (a, b; c; z) we have the operator [3]

Va,c;z(f)(z) := zF (a, b; c; z) ∗ f(z) =

∫ 1

0
λ(t)

f(tz)

t
dt, (3)

where Rea > 0, Reb > 0, Re(c + 1) > Re(a + b) and

λ(t) =
Γ(c)

Γ(a)Γ(b)Γ(c − a − b + 1)
tb−1(1 − t)c−a−bF

(
c − a, 1 − a; c − a − b + 1; 1 − t

)
. (4)

In particular, the CarlsonSchaffer operator Gb,c(f)(z) defined as Gb,c(f)(z) := V1,b;c(f)(z)
is given by

Gb,c(f)(z) =

∫ 1

0
λ(t)

f(tz)

t
dt, λ(t) =

Γ(c)

Γ(b)Γ(c − b)
tb−1(1 − t)c−b−1, (5)

for Rec > Reb > 0, f ∈ S. Several basic geometric properties of this operator are known
in the literature, for example see [2, 7, 8]. Thus, the convolution zF (a, b; c; z) ∗ f(z) can
be regarded as an extension of the study of integral operators of functions f in suitable
subclasses S, a classical topic in geometric function theory. An interesting observation
is that the Bernardi transform is related to zero-balanced hypergeometric function with
functions in S.

2 Main results

Theorem 2.1. Let the hypergeometric function F (a, b; c; z) satisfy the condition

∣∣∣F ′(a, b; c; z) − ab

c

∣∣∣
1−α∣∣∣zF ′′(a, b; c; z)

F ′(a, b; c; z)

∣∣∣
α

< (
ab

c
)1−α(

1

2
)α, α ≥ 0, abc > 0 (6)
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Then F (a, b; c; z) is univalent in ∆.

Theorem 2.2. Let the hypergeometric function F (a, b; c; z) satisfy the condition

∣∣∣zF ′(a, b; c; z)

F (a, b; c; z)

∣∣∣ < 1 (7)

Then zF (a, b; c; z) ∈ S∗ .

Theorem 2.3. Let a, b and c be nonzero real numbers such that F (a, b; c; z) has no zeros
in ∆. Then zF (a, b; c; z) is a starlike of order β ∈ [0, 1) if

(1) c ≥ 1 + a + b − ab
1−β ,

(2) (1 − β)
(
c − (a + b)

)
+ ab ≥ 2(1 − β)

(
(1 − β) − (a + b)

)
,

(3) (1 − β)(3 − 2β)
(
(1 − β)

(
c − a − b − 1

)
+ ab

)
+ (1 − β)2(c − a − b − 1)(a + b + c).

Theorem 2.4. Let b and c be nonzero real numbers such that F (2, b; c; z) has no zeros in
∆. Also, suppose that c ≥ max{3 − b, 3b} . then

(1) V1,b,c(S
∗) ⊂ S∗

and

(2) V1,b,c(C) ⊂ (C) .

Theorem 2.5. Let a, b and c be real numbers and suppose that

(1) c ≥ |ab + a + b + 2| − 1,

(2) c ≥ |a + b − ab| + 1.

If F (a, b; c; z) ̸= 0 in ∆, Then zF (a, b; c; z) is a starlike of order 1.

Theorem 2.6. Let the hypergeometric function F (a, b; c; z) satisfy the condition (6). then
F (a + 1, b + 1; c + 1; 1) ≤ 1, provided further that c > a + b.
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Abstract

In this paper the concept of set-valued p-cyclic contraction map is introduced. The
existence of best proximity point for such mappings on a metric space with the WUC
property is presented.

Keywords: Best proximity point; Property WUC; Set-valued p-cyclic contraction
map.
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1 Introduction

In 2003, Kirk et al. [6] established the following fixed point theorem.

Theorem 1.1. [6] Let A and B be nonempty closed subsets of a complete metric space
(X, d), and suppose f : A ∪B → A ∪B satisfies in the following condition:

(i) f(A) ⊂ B and f(B) ⊂ A.

(ii) d(f(x), f(y)) ≤ kd(x, y), ∀x ∈ A , y ∈ B,where k ∈ (0, 1).

Then f has a unique fixed point in A ∩B.

Each map which satisfying in the assumption (i) of the above theorem is called cyclic
map. Later on, Eldred and Veeramani [2] extended the contraction condition (ii) of the
above theorem for cyclic maps as follows:

d(f(x), f(y)) ≤ kd(x, y) + (1− k)d(A,B), ∀x ∈ A y ∈ B, k ∈ (0, 1). (1)

Every map which satisfying in (1) is said to be a cyclic contraction map. If f is a cyclic map
on A∪B, then a point x ∈ A∪B is called a best proximity point if d(x, f(x)) = d(A,B),
where

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.
Eldred and Veeramani [2] studied cyclic contraction maps and obtained the existence of
a best proximity point for cyclic contraction maps in metric spaces and uniformly convex
Banach spaces.Then, in [7] the property UC occurs in a large collection of pairs of subsets
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of uniformly convex Banach spaces. Next, in [3] the property WUC is introduced and
then an existence, uniqueness and convergence theorem is proved for cyclic mappings with
property WUC. In the recent years many authors studied the existence of a best proximity
point for single valued maps under some suitable contraction conditions, for more details;
see [1, 3, 4, 7, 9, 8] and references therein.

Our goal in this paper is to extend the concept of p-cyclic contraction for single valued
maps to set-valued maps and obtain the existence of a best proximity point for such maps
in metric spaces with the property WUC.

2 Main results

In this section, we prove the existence of a best proximity point for set-valued p-cyclic
contraction maps.
Let us first review definitions and propositions that we need in following.

Let (X, d) be a metric space, CB(X) and K(X) denote the family of all nonempty
closed and bounded subsets of X and the family of all nonempty compact subsets of X,
respectively. Then, the Pompeiu-Hausdorff metric on CB(X) is given by

H(C,D) = max{e(C,D), e(D,C)},
where e(C,D) = supa∈C d(a,D) and d(a,D) = infb∈D d(a, b). It is well known that if (X, d)
is a complete metric space, then (K(X), H) is a complete metric space.

Definition 2.1. ([3]) Let A and B be nonempty subsets of a metric space (X, d). Then
pair (A,B) is said to satisfy the WUC property if for any {xn} ⊂ A such that for every
ε > 0 there exists y ∈ B satisfying that d(xn, y) ≤ d(A,B) + ε for n ≥ n0, then it is the
case that {xn}is convergent.

Proposition 2.2. Let (X, d) be a metric space and A and B be nonempty subsets of X
such that the pair (A,B) satisfies the property WUC. Then, the pair (K(A),K(B)) also
satisfies the property WUC in (CB(X), H).

Now, we introduce the notion of set-valued cyclic contraction mappings.

Definition 2.3. Let (X, d) be a metric space, let A and B be nonempty subsets of X.
Then a set-valued map T : A ∪B ( A ∪B is called a set-valued cyclic contraction if the
following are satisfied:

(i) T (A) ⊂ B and T (B) ⊂ A.
(ii) There exists k ∈ (0, 1) such that

H(T (x), T (y)) ≤ kd(x, y) + (1− k)d(A,B)

for all x ∈ A and y ∈ B.
Theorem 2.4. Let (X, d) be a metric space and A and B be nonempty subsets of X such
that (A,B) satisfies the property WUC. Assume that A is complete and T : A∪B ( A∪B
is a set-valued cyclic contraction such that T (D) is compact for any D ∈ K(A) ∪ K(B).
Then T has a best proximity point x in A, i.e., d(x, T (x)) = d(A,B). Furthermore, if
y ∈ T (x) and d(x, y) = d(A,B), then y is a best proximity point in B and x is a fixed
point of T 2.
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Now we define p-cyclic contraction set-valued map and we give sufficient conditions for
the existence best proximity point for such map. Also, we show that, the obtained best
proximity point is a fixed point of T p. Moreover, if xi ∈ Ai is a best proximity point in Ai,
then each point yi+j ∈ T j(xi) ⊂ Ai+j such that d(yi+j , xi) = d(A1, Ap) is a best proximity
point in Ai+j for j = 1, . . . , p− 1.

Definition 2.5. Let A1, . . . , Ap be nonempty subsets of a metric space X Then a mapping
f : ∪pi=1Ai → ∪

p
i=1Ai is said p-cyclic contraction if the following are satisfied:

(i) f(Ai) ⊂ Ai+1 for i = 1, . . . , p, where Ap+1 = A1.

(ii) There exists k ∈ (0, 1) such that

d(f(x), f(y)) ≤ kd(x, y) + (1− k)d(Ai, Ai+1)

for all x ∈ Ai, y ∈ Ai+1, for i = 1, . . . , p

Theorem 2.6. Let (X, d) be a complete metric space and A1, . . . , Ap be nonempty sub-
sets of X such that (Ai, Ai+1) satisfies the property WUC for i = 1, . . . , p. Suppose
f : ∪pi=1Ai → ∪

p
i=1Ai is p-cyclic contraction, then there exists a unique point zi ∈ Ai such

that d(zi, f(zi)) = d(Ai, Ai+1) and zi is a fixed point of fp in Ai. Also fpn(x) converges to
zi for every x ∈ A and T j(zi) is a best proximity point in Ai+j for j = 1, 2, . . . , p− 1.

Definition 2.7. Let A1, . . . , Ap be nonempty subsets of a metric space X. Then, T :
∪pi=1Ai ( ∪pi=1Ai is called a p-cyclic set-valued mapping if

T (Ai) ⊂ Ai+1 for i = 1, . . . , p, where Ap+1 = A1. (2)

A point x ∈ Ai is said to be a best proximity point in Ai if d(x, T (x)) = d(Ai, Ai+1).

Definition 2.8. Let A1, . . . , Ap be nonempty subsets of a metric space X, and T :
∪pi=1Ai ( ∪pi=1Ai be a p-cyclic set-valued mapping. T is called p-cyclic nonexpansive
set-valued mapping if

H(T (x), T (y)) ≤ d(x, y) ∀x ∈ Ai, y ∈ Ai+1, 1 ≤ i ≤ p. (3)

It is an interesting fact to note that the distances between the adjacent sets are equal
under the p-cyclic nonexpansive mapping.

Lemma 2.9. Let X,A1, . . . , Ap, T be as in Definition 2.8. Then d(Ai, Ai+1) = d(Ai+1, Ai+2) =
d(A1, A2) for all i = 1, . . . , p.

Now, we introduce the following new class of set-valued p-cyclic contraction maps.

Definition 2.10. Let A1, . . . , Ap be nonempty subsets of a metric space X and T :
∪pi=1Ai ( ∪pi=1Ai be a p-cyclic set-valued mapping. T is called p-cyclic contraction if
There exists k ∈ (0, 1) such that

H(T (x), T (y)) ≤ kd(x, y) + (1− k)d(Ai, Ai+1)

for all x ∈ Ai, y ∈ Ai+1, for i = 1, . . . , p.
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Theorem 2.11. Let (X, d) be a complete metric space and A1, . . . , Ap be nonempty subsets
of a metric space X such that (Ai, Ai+1) satisfies the property WUC for i = 1, . . . , p.
Suppose that a compact valued map T : ∪pi=1Ai ( ∪pi=1Ai is cyclic contraction. Then T
has a best proximity point xi in Ai. i.e. d(x, T (x)) = d(Ai, Ai+1) and xi is a fixed point
of T p. Also, there is point yi+j ∈ T j(xi) ⊂ Ai+j that is a best proximity point in Ai+j for
j = 1, . . . , p− 1.

Corollary 2.12. Let (X, d) be a complete metric space and A1, . . . , Ap be nonempty sub-
sets of a metric space X such that (Ai, Ai+1) satisfies the property WUC for i = 1, . . . , p
and ∩pi=1Ai is nonempty. Suppose that a compact valued map T : ∪pi=1Ai ( ∪pi=1Ai is
contraction. Then T has a fixed point x ∈ ∩pi=1Ai.
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The metric space of H-varieties and it’s convex structure
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Abstract

It has shown that, the set of all varieties of banach algebras L is a metric space and
the set of all H-varieties of Banach algebras LH is also a metric space as a subspace
of L. In this article convexity of LH has investigated and the convex structure on this
space has introduced. In addition, some convex subsets of LH has been mentioned.

Keywords: H-variety, Covex space and convex structure

1 Introduction

Definition 1.1. For each Banach algebra A. and δ ≥ 0, we define

∥p∥A,δ = sup{∥p(x1, ..., xn)∥ : xi ∈ A, ∥xi∥ ≤ δ, 1 ≤ i ≤ n}

We shall denote ∥p∥A,1 = ∥p∥A, where p = p(X1, ..., Xn) is a polynomial.
Throughout this paper a polynomial is a non-commuting polynomial without constant
term.

Definition 1.2. A non-empty class V of Banach algebras is said to be a variety if there
exists a non-negative real-valued function, p → f(p) on the set of all polynomials, such
that V is precisely a class of Banach algebras A for which, ∥p∥A ≤ f(p) for each p =
p(X1, ..., Xn).

Theorem 1.3. (Dixon [2]) For each non-empty class v of Banach algebras, the followings
are equivalent,
(i) V is closed under taking closed subalgebras, quotient algebras, products(direct sums)
and images under isometric isomorphisms.
(ii) V is a variety.

As a law, we mean a formal expression ∥p∥ ≤ K, where K ∈ R and p is a polynomial.
We say that A satisfies the above law, if ∥p∥A ≤ K and ∥p∥ ≤ K is homogeneous if p is a
homogeneous polynomial.

Definition 1.4. For each n ∈ N such that n ̸= 1, the variety determined by the law
∥X1...Xn∥ = 0, is called Nn. .
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We denote the variety of all Banach algebras by 1, this variety is the largest variety of
Banach algebras. Also, the smallest variety of Banach algebras is shown by N2.

Definition 1.5. Let V to be a variety of Banach algebras and p a polynomial then, we
define

|p|V = sup{∥p∥A : A ∈ V }.

Definition 1.6. Let C be a class of Banach algebras and V (C) be the intersection of all
varieties containing C. Then, V (C) is a variety called the variety generated by C. If C
consists of a single Banach algebra A, then V (C) is written as V (A) and is said to be
singly generated.

Theorem 1.7. [3] For each variety V , there exists a A ∈ V such that for all polynomial
p, we have

|p|V = ∥p∥A.

that this supremum is always obtaind.

Corollary 1.8. [3] Each variety of Banach algebras is singly generated.

Corollary 1.9. [3] Let V1 and V2 be two varietirs. Then, V1 ⊆ V2 if and only if for all
polynomials p, we have

|p|V1 ≤ |p|V2 .

By Theorem1.7, the supremum in Definition1.5 is always obtain and Corollary1.9 con-
cluded that, there exists a worthy property for varieties saying that they can be compared
by their laws.

Definition 1.10. Let P be the set of all polynomials, and PH be the set of all homogeneous
polynomials. We define

P1 = {p ∈ P : |p|1 < 1}
PH1 = {p ∈ PH : |p|1 < 1}

Definition 1.11. If V ∈ L, then we define ϕV : P1 → C as follows

ϕV (p) = |p|V .

It is easy to show that the mapping Φ : L → L∞(P1, C) with Φ(V ) = ϕV is one to one.
So, L∞(P1, C) induces a metric on L as below

dL(V, W ) = d(ϕV , ϕW ) = ∥ϕV − ϕW ∥∞

= sup
p∈P1

|ϕV (p) − ϕW (p)|

= sup
p∈P1

∣∣|p|V − |p|W
∣∣.

Therefore, (L, dL) is a metric space. Similarly, (LH , dH) is also a metric space with the
following norm

dH(V, W ) = sup
p∈PH1

∣∣|p|V − |p|W
∣∣.

Definition 1.12. If x ∈ R and V ̸= N2 be a variety, then Vx is the variety that determined
by following lows

∥p∥ ≤ |x||p|V
where p is a homogeneous polynomial with deg(p) > 1.
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2 Main results

In this section we try to show that, LH is a convex mrtric space and we will discuss about
fixed points of this space.

Definition 2.1. Define
LR = {Vx : x ∈ R, V ∈ L}

and
LHR = {Vx : x ∈ R, V ∈ LH}

Lemma 2.2. If LR and LHR are defined as above then we have L = LR and LH = LHR.

Proof. It is obvious.

Definition 2.3. Let (X, d) be a metric space. A continuous mapping W : X×X×[0, 1] −→
X is said to be convex structure on X, if for all x, y ∈ R and λ ∈ [0, 1] the following
condition is satisfied:

d
(
u,W (x, y; λ)

)
≤ λd(x, y) + (1 − λ)d(x, y).

A metric space X with convex structure is called a convex metric space.

Also, a subset C of a convexmetric space X with covex structure W on it, is said to
be convex if W (x, y; λ) ∈ C, for all x, y ∈ C and λ ∈ [0, 1].

Theorem 2.4. The metric space X = (LH , dH) is a convex metric space.

Proof. Define W : X × X × [0, 1] −→ X such that for all x, y ∈ R and λ ∈ [0, 1],
W (Vx, Vy; λ) = Vλx+(1−λ)y. Obviously W is continuous. For each Vu ∈ X and Vx, Vy ∈
X, λ ∈ [0, 1] we will have,

dH(Vu, W (Vx, Vy; λ)) = dH(Vu, Vλx+(1−λ)y)

= sup
p∈PH1

|u − (λx + (1 − λ)y)||p|V

≤ λ sup
p∈PH1

|u − x||p|V + (1 − λ) sup
p∈PH1

|u − y||p|V

= λdH(Vu, Vx) + (1 − λ)dH(Vu, Vy)
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Abstract

In this talk, we study 2-norm spaces, and 2-modular spaces. In particular, no
inverting 2-modular spaces are studied, and then given a corollary about the relation
between two 2-modulars which one of them has β-homogeneity and the other one has
some special properties.
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1 Introduction

A linear 2-norm space, denoted (X, ‖·, ·‖), which ‖·, ·‖ : X2 → R is a function, is defined
by:

1. ‖x, y‖ = 0 ⇔ x and y are linearly dependent,

2. ‖x, y‖ = ‖y, x‖,

3. ‖ − x, y‖ = ‖x, y‖,

4. ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖,

5. ‖tx, y‖ = |t|‖x, y‖ for every x, y ∈ X and every t ∈ R.

The function ‖·, ·‖ is called a 2–norm on X.

The theory of 2-norm on a linear space was investigated by Gahler in [1].

Definition 1.1. Let X be a real vector space of dimension more than two. A real valued
function ρ(·, ·) on X2 satisfying the following properties is called a 2-modular on X:

1. ρ(x, y) = 0 if and only if x, y are linearly dependent,

2. ρ(x, y) = ρ(y, x),

3. ρ(−x, y) = ρ(x, y),
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4. ρ(x, αy+βz) ≤ ρ(x, y)+ρ(x, z), for any nonnegative real numbers α, β with α+β = 1.

Example 1.2. A 2-modular ρ(the absolute value of determinant) on X = R2 can be
defined by

ρ(x1, x2) = abs

∣∣∣∣∣∣

x11 x12

x21 x22

∣∣∣∣∣∣
,

where xi = (xi1, xi2) , for each i = 1, 2.

Note that every 2-modular on X is a non-negative real functional and the function
α→ ρ(αx, y) is nondecreasing for every x, y ∈ X and every 2-norm ‖·, ·‖ such that ‖αx, y‖
is a nondecreasing function of α > 0 for every x, y ∈ X is a 2-modular on X.

Definition 1.3. The set defined by

Xρ = {x ∈ X : for each y ∈ X, ρ(λx, y)→ 0 as λ→ 0},

is called a 2-modular space.

Definition 1.4. A 2-modular ρ is said to satisfy the β-homogeneous if there exists β > 0
such that ρ(tx, y) = tβρ(x, y) for every 0 ≤ t and each x, y ∈ Xρ.

Example 1.5. [2] Suppose that (X, ‖·, ·‖) is a 2-normed space. Then X is 2-modular with
the following 2-modular:

ρ(x, y) = ‖x, y‖2.
Then ρ is a 2-modular on X and satisfies the 2-homogeneous.

2 Main Results

In the following, after defining inverting 2-modular, we prove our main results.
Let ‖·, ·‖ be a 2-norm of a linear space X. If there exists a 2-modular ρ on X such

that Xρ = X and that ‖·, ·‖ is equal to

‖x, y‖ρ = inf{u > 0 : ρ(
x

u
,
y

u
) ≤ u},

we say that the 2-norm ‖·, ·‖ can be inverted, and ρ is called an inverting 2-modular of
‖·, ·‖.
Theorem 2.1. For any 2-normed space (X, ‖·, ·‖), there is no inverting 2-modular with the
property that ρ(tx, ty) is continuous with respect to t in (0,∞) for any linearly independent
vectors x, y ∈ X.

Corollary 2.2. Let σ(x, y) be a 2-modular with β-homogeneity on a linear space X and
ρ(x, y) a 2-modular defined on X that satisfies

(1) (1− ε)σ(x, y) ≤ ρ(x, y) ≤ (1 + ε)σ(x, y)

for some ε with 0 < ε < 1. Then ‖x, y‖ρ and the (β/(1 + 2β))-norm σ1/(1+2β)(x, y) satisfy
the relation

(2) (1− ε)
1

1+2β σ
1

1+2β (x, y) ≤ ‖x, y‖ρ ≤ (1 + ε)
1

1+2β σ
1

1+2β (x, y)
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A 2-modular ρ(·, ·) on a linear space X is said to be equivalent to a 2-modular σ(·, ·)
on X if there are positive numbers a and b such that

aσ(x, y) ≤ ρ(x, y) ≤ bσ(x, y),

for all x, y ∈ X. Note that the above inequality implies

b−1ρ(x, y) ≤ σ(x, y) ≤ a−1ρ(x, y),

for every x, y ∈ X, so that equivalence of 2-modulars is a symmetric relation on the set
of all 2-modulars on X. In fact, it easy to check that equivalence of 2-modulars is an
equivalence relation on the set of all 2-modulars on X. If σ and ρ are 2-modulars defined
as in Corollary 2.2 and they satisfy the relation (1), that is, ρ is equivalent to σ.
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Abstract

In this talk, we give some sufficient conditions for mappings defined on vector
ultrametric spaces to be modular locally constant.

Keywords: Modular Locally Constant; Vector Ultrametric Spaces; Spherically com-
plete.

Mathematics Subject Classification [2010]: 26E30

1 Introduction

A metric space (X, d) in which the triangle inequality is replaced by

d(x, y) ≤ max{d(x, z), d(z, y)}, (x, y, z ∈ X),

is called an ultrametric space.
In [6], the notion of a metric locally constant function on an ultrametric space was given

in order to investigate certain groups of isometries and describe various Galois groups over
local fields. Locally constant functions also appear in contexts such as higher ramification
groups of finite extensions of Qp, and the Fontaine ring B+

dR. Also, metric locally constant
functions were studied in [2]. On the other hand, vector ultrametric spaces are given in [1]
as vectorial generalizations of ultra metrics. Hence, locally constant functions, in modular
sense, can play the same role in vector ultrametric spaces as they do in usual ultrametric
spaces. In this note, we introduce modular locally constant mappings in vector ultrametric
spaces. Some sufficient conditions are given for mappings defined on vector ultrametric
spaces to be modular locally constant. A modular on a real linear space A is a real valued
functional ρ on A satisfying the conditions:

1. ρ(x) = 0 if and only if x = 0,

2. ρ(x) = ρ(−x),

3. ρ(αx + βy) ≤ ρ(x) + ρ(y), for all x, y ∈ A and α, β ≥ 0, α + β = 1.
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Then, the linear subspace

Aρ = {x ∈ A : ρ(αx) → 0 as α → 0}

of A is called a modular space.

A sequence (xn)∞
n=1 in Aρ is called ρ-convergent (briefly, convergent) to x ∈ Aρ if

ρ(xn − x) → 0 as n → ∞, and is called Cauchy sequence if ρ(xm − xn) → 0 as m,n → ∞.
By a ρ-closed (briefly, closed) set in Aρ we mean a set which contains the limit of each of
its convergent sequences. Then, Aρ is a complete modular space if every Cauchy sequence
in Aρ is convergent to a point of Aρ. We refer to [3, 4, 5, 6] for more details.

A cone P in a complete modular space Aρ is a nonempty set such that:

1. P is ρ-closed, and P ̸= {0};

2. a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax + by ∈ P;

3. P ∩ (−P) = {0}, where −P = {−x : x ∈ P}.

Let ⪯ be the partial order on Aρ induced by the cone P, i.e., x ⪯ y whenever y−x ∈ P.
The cone P is called normal if

0 ⪯ x ⪯ y ⇒ ρ(x) ≤ ρ(y), (x, y ∈ Aρ).

The cone P is said to be unital if there exists a vector e ∈ P with modular 1 such that

x ⪯ ρ(x)e (x ∈ P).

Throughout this note, we suppose that P is a cone in complete modular space Aρ, and ⪯
is the partial order induced by P.

Definition 1.1. A vector ultrametric on a nonempty set X is a mapping d : X ×X → Aρ

satisfying the conditions:

(CUM1) d(x, y) ⪰ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(CUM2) d(x, y) = d(y, x) for all x, y ∈ X ;

(CUM3) If d(x, z) ⪯ p and d(y, z) ⪯ p, then d(x, y) ⪯ p, for any x, y, z ∈ X , and p ∈ P.

Then the triple (X , d, P) is called a vector ultrametric space. If P is unital and normal,
then (X , d, P) is called a unital-normal vector ultrametric space.

For unital-normal vector ultrametric space (X , d, P), since

d(x, y) ⪯ ρ(d(x, y))e and d(y, z) ⪯ ρ(d(y, z))e,

from (CUM3) we get
d(x, z) ⪯ max{ρ(d(x, y)), ρ(d(y, z))}e,

and therefore
ρ(d(x, z)) ≤ max{ρ(d(x, y)), ρ(d(y, z))}.
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Let (X , d, P) be a unital-normal vector ultrametric space. If x ∈ X and p ∈ P \ {0}, the
ball B(x, p) centered at x with radius p is defined as

B(x, p) := {y ∈ X : ρ(d(x, y)) ≤ ρ(p)}.

The unital-normal vector ultrametric space (X , d, P) is called spherically complete if every
chain of balls (with respect to inclusion) has a nonempty intersection.

The following lemma may be easily obtained.

Lemma 1.2. Let (X , d, P) be a unital-normal vector ultrametric space.

1. If a, b ∈ X , 0 ⪯ p and b ∈ B(a, p), then B(a, p) = B(b, p).

2. If a, b ∈ X , 0 ≺ p ⪯ q, then either B(a, p)
∩

B(b, q) = ∅ or B(a, p) ⊆ B(b, q).

2 Main results

Definition 2.1. Let (X , d, P) be a unital-normal vector ultrametric space. A mapping
f : X → P \ {0} is said to be modular locally constant provided that for any x ∈ X and
any y ∈ B(x, f(x)) one has ρ(f(x)) = ρ(f(y)).

Theorem 2.2. [1] Let (X , d, P) be a spherically complete unital-normal vector ultrametric
space and T : X → X be a mapping such that for every x, y ∈ X , x ̸= y, either

ρ(d(Tx, Ty)) < max{ρ(d(x, Tx)), ρ(d(y, Ty))} (1)

or
ρ(d(Tx, Ty)) ≤ ρ(d(x, y)). (2)

Then there exists a subset B of X such that T : B → B and the mapping

f(x) = d(x, Tx), (x ∈ B) (3)

is modular locally constant.

In the following, we assume that (X , d, P) is a spherically complete unital-normal vector
ultrametric space.

Corollary 2.3. [1] Let T : X → X be a mapping such that for all x, y ∈ X , x ̸= y,

ρ(d(Tx, Ty)) < max{ρ(d(y, Tx)), ρ(d(x, Ty))}. (4)

Then there exists a subset B of X such that T : B → B and the mapping f defined in (3)
is modular locally constant.

Corollary 2.4. [1] Let T : X → X be a mapping such that for all x, y ∈ X , x ̸= y,

ρ(d(Tx, Ty)) < ρ(d(x, y)). (5)

Then there exists a subset B of X such that T : B → B and the mapping f defined in (3)
is modular locally constant.

Acknowledgements: The authors are thankful to the Payame Noor University for
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A classification of Ramanujan complements of unitary Cayley

graphs

Reza Safakish∗

University of Buali sina
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Abstract

The unitary Cayley graph on n vertices, Xn, has vertex set Zn, and two vertices
a and b are connected by an edge if and only if they differ by a multiplicative unit
modulo n, i.e. gcd(ab, n) = 1. A k-regular graph X is Ramanujan if and only if
λ(X) ≤ 2

√
k − 1 where λ(X) is the second largest absolute value of the eigenvalues

of the adjacency matrix of X. We obtain a complete characterization of the cases in
which the complements of unitary Cayley graph X̄n is a Ramanujan graph.

Keywords: Graph, Cayley Graph, Ramanujan Graph

1 Introduction

We define the Cayley graph X = Cay(G,S) to be the graph whose vertex set is G, and
in which two vertices v and u in G are connected by an edge if and only if vu−1 is in S.

The unitary Cayley graph on n vertices, Xn, is defined to be the undirected graph
whose vertex set is Zn, and in which two vertices a and b are connected by an edge if and
only if gcd(a − b, n) = 1. This can also be stated as Xn = Cay(Zn, Un), where Zn is the
additive group of integers modulo n and Un = Z∗

n is the set of multiplicative units modulo
n. Xn is a simple, φ(n)-regular graph, where φ is the Euler totient function. Here φ(n)
is defined by φ(1) = 1, and for an integer n > 1 with distinct prime power factorization
pα1
1 pα2

2 · · · pαk
k for distinct primes p1, . . . , pk and nonnegative integers α1, . . . , αk, with k >

0, φ(n) = pα1−1
1 pα1−1

2 · · · pαk−1
k (p1 −1)(p2 −1) · · · (pk −1). When discussing Xn, we always

assume n > 3

Lemma 1.1. The eigenvalues of any adjacency matrix of Xn are

λm(n) = µ

(
n

(n,m)

)
φ(n)

φ
(

n
(n,m)

) (1)

Proof. see [3, Klotz, W. and Sander, T. (2007)]

When n
(n,m) is square-free,

|λm(n)| =
φ(n)

φ
(

n
(n,m)

) (2)
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Corollary 1.2.

Spec(Xpα) =

(
pα − pα−1 −pα−1 0

1 p − 1 pα − 1

)
(3)

The complement X̄ of a graph X is the graph with the same vertex set as X such that
two vertices are adjacent in X̄ if and only if they are not adjacent in X.

2 Ramanujan unitary Cayley graphs

Recall that the adjacency matrix of any r-regular graph X has eigenvalues between k and
k, and k is an eigenvalue with multiplicity precisely equal to the number of connected
components of X. Furthermore, if λ(X) denotes the largest absolute value of the eigenval-
ues of the adjacency matrix of X, smaller than k, then the graph X is called Ramanujan
if and only if

λ(X) ≤ 2
√

k − 1 (4)

Note that λ(X) is only defined for regular graphs X with 3 or more vertices. Writing
n in the form pα1

1 pα2
2 · · · pαk

k for some distinct primes p1 < p2 < · · · < pk, and positive
integers α1, . . . , αk, we can determine λ(Xn) as follows. Since Xn is φ(n)-regular, we
find the maximum absolute value of an eigenvalue λm(n) of the adjacency matrix of Xn,
smaller than φ(n). This can be accomplished by looking at 1. Indeed, we see that if
n = 2α then the eigenvalues have absolute value of either 0 or φ(n) (since the only values
of m, 0 ≤ m ≤ n − 1, which make n

(n,m) square-free are m = 0 and m = 2α−1, resulting

in eigenvalues φ(n) and −φ(n). Thus λ(X2α) = 0 and so X2α satisfies 2 and thus is
Ramanujan. It is known [1] that the graph Xn is Ramanujan if and only if n satisfies one
of the following conditions for some distinct odd primes p < q and natural α.

1. n = 2α, α ≥ 2.

2. n = p.

3. n = 2αp with α ≥ 1, p > 2α−3 + 1.

4. n = p2, 2p2, 4p2.

5. n = p, 2pq with p < q ≤ 4p − 5.

6. n = 4pq with p < q ≤ 2p − 3.

3 Ramanujan complements of unitary Cayley graphs

Lemma 3.1 ([2]). Let pα1
1 pα2

2 · · · pαk
k , be the canonical factorization of an integer n into

prime powers, where p1 < p2 < · · · < pk are primes and each αi ≥ 1. If k ≥ 3 or k = 2
and p1 > 2, then 2k−1φ(n) > n.

Theorem 3.2. Let n ≥ 2 be a intager. Then X̄n is Ramanujan if and only if n is one of
the following forms:
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1. n = pa with p a prime and a ≥ 1

2. n = paqb with p = 2, q = 3 and 1 ≤ a ≤ 3 , b = 1, or a = 1, 1 ≤ b ≤ 2.

3. n = pq with p and q are primes and 3 ≤ p ≤ 5, 5 ≤ q ≤ 7.

4. n = 2 · 5, 2 · 3 · 5

Proof. By (??), X̄pa is Ramanujan.
Case 1: p1 = 2 and k ≥ 2. In this case λ(X̄n) = φ(n) − 1 and X̄n is Ramanujan if and
only if

φ(n) − 1 ≤ 2
√

n − φ(n) − 2 (5)

This condition is satisfied io only φ(n)2 < 4n. In particular, if k ≥ 4, then by Lemma 3.1,
φ(n)2 > 4n and so X̄n is not Ramanujan. Assume k ≤ 3.
Case 1.1: k = 3 and n = 2apbqc. Since (p − 1)2 = p(p − 2) + 1 > p(p − 2), If a ≥ 3, then

φ(n)2

n
= 2a−2pb−1qc−1 (p − 1)2

p

(q − 1)2

q
> 2(p − 2)(q − 2) > 4

and so X̄n is not Ramanujan. It is easy to see that if b ≥ 2 or c ≥ 2, then φ(n)2 > 4n,
and so X̄n is not Ramanujan. It remains to consider the case where n = 2pq or 4pq. If
n = 2pq, then

φ(n)2

n
=

(p − 1)2(q − 1)2

2pq
>

(p − 2)(q − 2)

2

If p ̸= 3 or p = 3 and q ≥ 7, then φ(n)2 > 4n, and so X̄n is not Ramanujan. It is easy to
see that n = 2 ·3 ·5, then X̄n is Ramanujan, whilst if n = 2 ·3 ·7, X̄n is not Ramanujan. If
n = 4pq, similar to earlier state if p ̸= 3, or p = 3 and q ̸= 5, then X̄n is not Ramanujan.
For n = 4 · 3 · 5, the condition (5) is not established and so X̄n is not Ramanujan.
Case 1.2: k = 2 and n = 2apb. In this case

φ(n)2

n
=

2a−1pb−1

2p
(p − 1)

As case 1.1, If a ≥ 4, p ≥ 7 or b ≥ 3, then φ(n)2 ≥ 4n and so X̄n is not Ramanujan. It is
easy to see that n = 2 · 3, 2 · 32, 2 · 5, 22 · 3, 23 · 3, then X̄n is Ramanujan.
Case 2: p1 ≥ 3. . In this case λ(X̄n) = φ(n)

p1−1) − 1 and so X̄n is Ramanujan if and only if

φ(n)

p1 − 1)
− 1 ≤ 2

√
n − φ(n) − 2 (6)

this inequality is equivalent to

φ(n)

p1 − 1)
≤ −(2p − 3) +

√
4n − 9 + (2p − 3)2 (7)

and this condition is not satisfied unless

φ(n)2/n < 4(p − 1)2 (8)
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If k ≥ 4, then by Lemma 3.1, φ(n)2/n > φ(n)/2k−1 > 4(p−1) and so X̄n is not Ramanujan.
Assume k ≤ 3 and n = paqbrc.
Case 2.1: k = 3. In this case we have

φ(n)2

n
= pa−1qb−1rc−1 (p − 1)2(q − 1)2(r − 1)2

pqr
≥ pa−1

p
(p − 1)2(q − 2)(r − 2)

Therefore, if a ≥ 3, then φ(n)2/n ≥ 4(p − 1)2 and so X̄n is not Ramanujan. Similarly, if
b ≥ 2, c ≥ 2 or p ≥ 7, or n = 9pq, 25pq, then X̄n is not Ramanujan. It is easy to see that
n = 3 · 5 · 7, then (7) is violated and again X̄n is not Ramanujan. Moreover, If n = 3pq,
whit p ̸= 3 and q ̸= 7, then then

φ(n)2

n
=

4(p − 1)2(q − 1)2

3pq
> (p − 2)(q − 2) ≥ 16 = 4(3 − 1)2

and so X̄n is not Ramanujan.
Case 2.2: k = 2 and n = paqb. In this case by Lemma 3.1,

φ(n)

n
>

1

2
⇒ φ(n)2

n
>

φ(n)

2
=

pa−1qb−1(p − 1)(q − 1)

2
>

pa−1qb−1(p − 1)2

2

and so if a ≥ 3, b ≥ 2 or a = b = 2, then (8) is violated and X̄n is not Ramanujan. If
n = pq, then from (7), we have (q − 2)2 ≤ 4p and so if q > 7, then X̄n is not Ramanujan.
It is easy to see that n = 3 · 5, 3 · 7, 5 · 7, then X̄n is not Ramanujan. If n = pq2, then

φ(n)2

n
=

(p − 1)2(q − 1)2

p
> 4(p − 1)2

and so X̄n is not Ramanujan. As in previous cases, if n = p2q, then X̄n is not Ramanujan.
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Edge group choosability of planar graphs with maximum

degree at least 11

Amir Khamseh∗

Department of mathematics, Kharazmi University

Abstract

A graph G is edge-k-group choosable if its line graph is k-group choosable. In this
paper, we present an edge-group choosability version of Vizing’s conjecture and we
shall show that it is true for graphs with maximum degree less than 4 and for planar
graphs with maximum degree at least 11.

Keywords: List coloring, Group choosability, Edge-group choosability

Mathematics Subject Classification [2010]: 05C15, 05C20

1 Introduction

We consider only simple graphs. For a graph G, we denote its vertex set, edge set, min-
imum degree, maximum degree, and line graph by V (G), E(G), δ(G), ∆(G), and `(G),
respectively. Let dG(x), or simply d(x), denote the degree of a vertex x in G. A plane
graph is a particular drawing of a planar graph in the Euclidean plane. A k-coloring of a
graph G is a mapping φ from V (G) to the set of colors {1, 2, . . . , k} such that φ(x) 6= φ(y)
for every edge xy. A graph G is k-colorable if it has a k-coloring. The chromatic number
χ(G) is the smallest integer k such that G is k-colorable. A mapping L is said to be a
list assignment for G if it supplies a list L(v) of possible colors to each vertex v. A k-list
assignment of G is a list assignment L with |L(v)| = k for each vertex v ∈ V (G). If G has
some k-coloring φ such that φ(v) ∈ L(v) for each vertex v, then G is L-colorable or φ is an
L-coloring of G. We say that G is k-choosable if it is L-colorable for every k-list assignment
L. The choice number or list chromatic number χl(G) is the smallest k such that G is
k-choosable. By considering colorings for E(G), we can define analogous notions such as
edge-k-colorability, edge-k-choosability, the chromatic index χ′(G), the choice index χ′l(G),
etc. Clearly, we have χ′(G) = χ(`(G)) and χ′l(G) = χl(`(G)). The notion of list coloring of
graphs has been introduced by Erdős, Rubin, and Taylor [5] and Vizing [13]. The following
conjecture, which first appeared in [1], is well-known as the List Edge Coloring Conjecture.

Conjecture 1. If G is a multi-graph, then χ′l(G) = χ′(G).

Although Conjecture 1 has been proved for a few special cases such as bipartite multi-
graphs [6], complete graphs of odd order [7], multicircuits [15], graphs with ∆(G) ≥ 12 that

∗This is part of a joint work with G.R. Omidi.
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can be embedded in a surface of non-negative characteristic [2], and outerplanar graphs
[14], it is regarded as very difficult. Vizing proposed the following weaker conjecture (see
[9]).

Conjecture 2. Every graph G is edge-(∆(G) + 1)-choosable.

Assume A is an Abelian group and F (G,A) denotes the set of all functions f : E(G)→
A. Consider an arbitrary orientation of G. The graph G is A-colorable if for every
f ∈ F (G,A), there is a vertex coloring c : V (G) → A such that c(x) − c(y) 6= f(xy) for
each directed edge from x to y. The group chromatic number of G, χg(G), is the minimum
k such that G is A-colorable for any Abelian group A of order at least k. The notion of
group coloring of graphs was first introduced by Jaeger et al. [8].

The concept of group choosability was introduced by Král and Nejedlý in [11] and
some first results in this area was obtained in [3, 4, 12]. Let A be an Abelian group of
order at least k and L : V (G) → 2A be a list assignment of G. For f ∈ F (G,A), an
(A,L, f)-coloring under an orientation D of G is an L-coloring c : V (G) → A such that
c(x)−c(y) 6= f(xy) for every edge e = xy, e is directed from x to y. If for each f ∈ F (G,A)
there exists an (A,L, f)-coloring for G, then we say that G is (A,L)-colorable. The graph
G is k-group choosable if G is (A,L)-colorable for each Abelian group A of order at least
k and any k-list assignment L : V (G) →

(
A
k

)
. The minimum k for which G is k-group

choosable is called the group choice number of G and is denoted by χgl(G). It is clear that
the concept of group choosability is independent of the orientation on G.

Graph G is called edge-k-group choosable if its line graph is k-group choosable. The
group-choice index of G, χ′gl(G), is the smallest k such that G is edge-k-group choosable,
i.e. χ′gl(G) = χgl(`(G)). It is easily seen that an even cycle is not edge-2-group choosable.
This example shows that χ′gl(G) is not generally equal to χ′(G). But we can extend the
Vizing Conjecture as follows.

Conjecture 3. If G is a multi-graph, then χ′gl(G) ≤ ∆(G) + 1.

Since ∆(G) ≤ χ′(G) ≤ ∆(G)+1, as a sufficient condition, we have the following weaker
conjecture.

Conjecture 4. If G is a multi-graph, then χ′gl(G) ≤ χ′(G) + 1.

In the next section, we prove that Conjecture 3 and consequently Conjecture 4 holds
for graphs with ∆(G) ≤ 3 and for planar graphs with ∆(G) ≥ 11.

2 Main results

Theorem 2.1. Let l be a natural number, v be a vertex of degree at most 2 of G and e be
an edge adjacent to v. If χ′gl(G− e) ≤ ∆(G) + l, then χ′gl(G) ≤ ∆(G) + l.

Proof. Let ∆ = ∆(G), D be an orientation of `(G), A be an Abelian group of order
at least ∆ + l, L : V (`(G)) →

(
A

∆+l

)
be a (∆ + l)-list assignment and f ∈ F (`(G), A).

Suppose that G′ = G−e. Then `(G′) = `(G)−e and since χ′gl(G
′) ≤ ∆+ l, there exists an
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(A,L, f)-coloring c : V (`(G′)) → A. For each e′ ∈ N`(G)(e) we can consider, without loss
of generality, ee′ to be directed from e to e′. Then, since |L(e)| = ∆ + l and d`(G)(e) ≤ ∆,
|L(e)−{c(e′) + f(ee′) : e′ ∈ N`(G)(e)}| ≥ 1 and so there is now at least one color available
for e. Thus we can color all edges of G. This completes the proof of lemma.

An argument similar to the proof of Theorem 2.1 gives the following.

Theorem 2.2. Let G be a graph with χ′gl(G − e) < χ′gl(G) for each e ∈ E(G). Then
δ(`(G)) ≥ χ′gl(G)− 1.

Lemma 2.3. [3] Let Pn and Cn denote a path and a cycle of length n, respectively. Then

(1) χgl(Pn) = 2 and χgl(Cn) = 3,

(2) For any connected simple graph G, we have χgl(G) ≤ ∆(G) + 1, with equality holds
iff G is either a cycle or a complete graph.

Immediately from Lemma 2.3, we have the following corollary.

Corollary 2.4. χ′gl(Pn) = ∆(Pn) = 2 and χ′gl(Cn) = ∆(Cn) + 1 = 3.

Theorem 2.5. Let G be a graph with maximum degree ∆(G). If ∆(G) ≤ 3, then χ′gl(G) ≤
∆(G) + 1 and if ∆(G) = 4, then χ′gl(G) ≤ 6.

Proof. Clearly we can assume that G is connected. If ∆(G) = 1, then G = P2 and this
theorem trivially holds. If ∆(G) = 2, then G = Pn or G = Cn and the assertion holds by
Corollary 2.4. It is clear that ∆(`(G)) ≤ 4 if ∆(G) ≤ 3 and ∆(`(G)) ≤ 6 if ∆(G) ≤ 4.
The proof is completed by Lemma 2.3.

We now turn our attention to planar graphs with maximum degree at least 11.

Lemma 2.6. [10] For every planar graph G with minimum degree at least 3 there is an
edge e = uv with d(u) + d(v) ≤ 13.

Theorem 2.7. If G is a planar graph with maximum degree ∆, then

χ′gl(G) ≤ max{∆ + 1, 12}.

Proof. Let G be a minimal counterexample to Theorem 2.7. By Theorem 2.1 and Lemma
2.6, there exists e ∈ V (`(G)) with d`(G)(e) ≤ 11, which is a contradiction by Theorem
2.2.

The truth of Conjecture 3 for planar graphs with maximum degree at least 11 imme-
diately follows from Theorem 2.7. In fact we have the following.

Corollary 2.8. Let G be a planar graph with maximum degree ∆.

(1) If ∆ ≥ 11, then χ′gl(G) ≤ ∆ + 1,

(2) If ∆ ≥ 10, then χ′gl(G) ≤ ∆ + 2.
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Abstract

A set S ⊆ V (G) is independent if no two vertices from S are adjacent. The
cardinality of any biggest independent set in V (G) is called the independence number
of G and denoted by α(G). In this paper, we compute independence number of infinite
classes of fullerene graphs.

Keywords: Independent set, Independent number, Fullerene

Mathematics Subject Classification [2010]: 05C69

1 Introduction

We talk about one of the graph invariants. An independent set in a graph G is a set of
vertices of G that are pairwise non-adjacent, and the independence number, α(G), is the
order of the maximum independent set of G. Finding such a set is an NP-hard problem.
In next section we discuss about independent number of special graph.
One of most important nano structures are Fullerenes. The discovery of the fullerene
C60 by Kroto et al. in 1985. [7]. They are a trivalent plane graph with r -gon or s-gon
faces. Values of r can be 3,4,5 and for s can be 6 so we named them as [r, s]-Fullerenes.
The familiar of them are (5,6), (4,6) and (3,6) Fullerenes. It follows from Eulers formula
that such graphs made up entirely of n vertices and having 12 pentagonal and n

2 − 10
hexagonal rings. These graph theoretic fullerenes are simulated to model large carbon
molecules, each vertex represents a carbon atom and the edges represent chemical bonds.
Since a carbon atom has chemical valence 4, one edge at each of the graphs must represent
a double chemical bond.
In [5] P.W. Fowler and et al. survey the independence numbers of fullerenes from C20

to C120, a range that includes over 10 million isomers, Contrary to a literature proposal,
stability and minimal independence number of fullerenes are poorly correlated.
In [2] T. Doslic present both upper and lower bound for independent number of fullerene
graph. In this paper, we discuss independent number of (3,6)-fullerene graph with 4n and
8n vertices.
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2 Initial discussion

In this section we see some of previous work on independent number of fullerene. At
first there are some upper bounds on the independence number of a fullerene in [5].Then
showing some of lower bounds on the independence number of a fullerene stated in [5].

Corollary 2.1. [5] If G be a general cubic (= trivalent) polyhedral graph, then there is
an obvious upper bound on the independence number of α(G) ≤ n

2 , with equality only for
bipartite G.

Fullerenes have cycles of odd size, hence are non-bipartite.There was Conjecture of
Graffiti [3] and is proved by a simple counting argument.

Corollary 2.2. [3] If G be a general fullerene, the independence number has an upper
bound of α(G) ≤ n

2 − 2.

Corollary 2.3. [5] If G be an isolated-pentagon fullerene, then the independence number
has an upper bound of α(G) ≤ n

2 −4. This upper bound is not sharp for the smaller values
of n at which isolated-pentagon fullerenes exist.

Now Lower bounds of independence number of fullerenes has been stated. From Brooks
theorem [1] Fowler found a lower bound [5]. This theorem states that the vertices of a
connected graph G with maximum degree ∆(G) can be coloured with χ(G) ≤ ∆(G) + 1
colours, with equality only when G is either an odd cycle (∆(G) = 2) or the complete graph
on ∆(G) + 1 vertices. Fullerenes can therefore be coloured with three colours. Taking the
largest colour class, an independent set of order at least n

3 is found. This bound hes been
improved by W. Staton[8].

Corollary 2.4. [8] If G be a triangle-free cubic graph, then: α(G) ≥ 5n
14

For triangle-free, planar, cubic graphs, a class that includes the fullerenes, a stronger
result has recently been proved: α(G) ≥ 3n

8 [6]. Fullerenes C20, C24, C28 and C30 all have
isomers with α(G) = ⌈3n

8 ⌉.

Figure 1: A maximum independent set of C60
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3 Main results

In this section, we discuss about independent number of (3,6)-fullerene with 4n and 8n
vertices.

Corollary 3.1. [2] For any fullerene graph G on n vertices we have:

3

2
n ≤ α(G) ≤ n

2
− 2 (1)

Let n be positive integer number. We compute independent number of (3,6)-fullerene
with 4n and 8n vertices with newgraph software and survey them:

Table 1: Independent number of C8n

n number of vertices α(G)

2 16 6
3 24 10
4 32 14
5 40 18
6 48 22
7 56 26

Proposition 3.2. If G be fullerene graph with 8n vertices then:

α(G) = 4n − 2 (2)

Table 2: Independent number of C4n

n number of vertices α(G)

4 16 7
5 20 9
6 24 11
7 28 13
8 32 15
9 36 17

Proposition 3.3. If G be fullerene graph with 4n vertices then:

α(G) = 2n − 1 (3)
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Abstract

The concept of majority domination in graphs has been defined in at least two different
ways: As a function and as a set. In this work we extend the latter concept to digraphs,
while we extended the former in another paper. Given a digraph D = (V,A), a set
S ⊆ V is a majority out-dominating set (MODS) of D if |N+[S]| ≥ n

2 . The minimum
cardinality of a majority out-dominating set in D is the set majority out-domination
number γ+

m(D) of D. In this work we introduce these concepts and prove some results
about them, among which the characterization of minimal MODSs.

Keywords: Majority dominating set, majority out-dominating set.

Mathematics Subject Classification [2010]: 05C20, 05C69.

1 Introduction

This concept has interesting applications, specially related to democracy: The main idea
of democracy is that of a representative group which is accepted by a majority of the
population. In some way, this corresponds to majority dominating sets in undirected
graphs. However, it is important to notice that the relation is actually directed: The
representative group must be accepted by at least half of the population, but if the group
itself accepts or not a particular sector of such population has no influence at all in the
scope of simple democracy. Of course, more complex systems exist, with the aim that
every important minority has some acceptance from the representative group, and those
systems are better fit for large populations, like that of a country. Nevertheless, simple
democracy is still the best option for small groups, like the members of a club or those
of a small company. In the context of simple democracy, the concept of majority out-
dominating set in digraphs works more accurately than that of majority dominating set
in undirected graphs.
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2 Majority out-dominating sets

Observation 1. If H is a spanning subdigraph of a digraph D, then γ+
m(D) ≤ γ+

m(H).

Observation 2. For the directed path Pn with n ≥ 1 vertices, γ+(Pn) = ⌈n
2 ⌉ and for the

directed cycle Cn with n ≥ 3 vertices, γ+(Cn) = ⌈n
2 ⌉.

Observation 3. For the directed path Pn with n ≥ 1 vertices, γ+
m(Pn) = ⌈n

4 ⌉ and for the
directed cycle Cn with n ≥ 3 vertices, γ+

m(Cn) = ⌈n
4 ⌉.

Observation 4. For any digraph D which has a hamiltonian circuit, γ+
m(D) ≤ ⌈n

4 ⌉.

Proposition 2.1. Let l(D) denote the length of a longest directed path in D. Then

γ+
m(D) ≤ ⌈2n−l(D)−1

4 ⌉, and the bound is sharp.

Proposition 2.2. Let c(D) denote the length of a longest directed cycle in D. Then

γ+
m(D) ≤ ⌈2n−c(D)

4 ⌉, and the bound is sharp.

Theorem 2.3. For any digraph D, γ+
m(D) = γ+(D) if, and only if, ∆+(D) = n − 1.

Theorem 2.4. For any digraph D, γ+
m(D) ≤ ⌈γ+(D)

2 ⌉.

Observation 5. Let D be a digraph of order n ≥ 1, then γ+
m(D) = 1 if, and only if, there

exists one vertex v ∈ D such that d+(v) ≥ ⌈n
2 ⌉ − 1.

Theorem 2.5. For any digraph D,

(i) ⌈ n
2(∆+(D)+1)

⌉ ≤ γ+
m(D).

(ii) Either γ+
m(D) = 1 or γ+

m(D) ≤ ⌈n
2 ⌉ − ∆+(D).

Corollary 2.6. For every digraph D, γ+
m(D) ≤ n−∆+(D)+1

2 .

Proposition 2.7. Let D be a digraph which is not a totally disconnected digraph of odd
order. If S is a minimal MODS of D, then V \ S is a MODS of D.

Theorem 2.8. Let S be a MODS of a digraph D = (V, A). Then S is minimal if, and
only if, one of the following conditions hold:

(i) |N+[S]| >
⌈

n
2

⌉
and ∀ v ∈ S, |pn+[v, S]| > |N+[S]| −

⌈
n
2

⌉
.

(ii) |N+[S]| =
⌈

n
2

⌉
and ∀ v ∈ S, either v is an isolate in D[S] or pn+(v, S) ̸= ∅.

We now consider the effect on γ+
m(D) of the removal of a vertex or an arc from D.

Theorem 2.9. Let D be any digraph with γ+
m(D) = k. Let v ∈ V (D) and e ∈ A(D). Then

(i) k ≤ γ+
m(D − e) ≤ k + 1,

(ii) k − 1 ≤ γ+
m(D − v) ≤ max{k, k − 1 + d+(v)}.

Now we consider the effect on γ+
m(D) of adding an arc to D.
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Proposition 2.10. Let D be any digraph with γ+
m(D) = k, e ∈ A(D). Then γ+

m(D) − 1 ≤
γ+

m(D + e) ≤ γ+
m(D).

Proposition 2.11. Let D be a digraph, and let D′ be the digraph obtained by reversing
the direction of a single arc of D. Then |γ+

m(D) − γ+
m(D′)| ≤ 1.

Definition 2.12. Let D = (V, A) be any digraph. An arc e ∈ A(D) is γ+
m-critical if

γ+
m(D − e) = γ+

m(D) + 1.

Theorem 2.13. An arc e = uv of a digraph D is γ+
m-critical if, and only if, for every

γ+
m(D)-set S we have that u ∈ S, v ∈ pn+(u, S), and |N+[S]| = ⌈n

2 ⌉.

3 Oriented graphs

Definition 3.1. Let G be a graph. The lower orientable set majority domination number
of G is dom+

m(G) = min{γ+
m(D) : D is an orientation of G}, and the upper orientable set

majority domination number of G is DOM+
m(G) = max{γ+

m(D) : D is an orientation of G}.

These concepts are inspired in the notions of lower orientable domination number dom(G)
and upper orientable domination number DOM(G), introduced by Chartrand et al. in
[5].

Theorem 3.2. For every graph G, dom+
m(G) = γm(G).

We now proceed to determine the upper and lower orientable set majority domination
numbers for several classes of graphs:

Proposition 3.3. (i) For n ≥ 1, we have DOM+
m(Kn) = dom+

m(Kn) = 1.

(ii) For n ≥ 1, dom+
m(Pn) =

⌈
n
6

⌉
.

1. For n ≥ 3, dom+
m(Cn) =

⌈
n
6

⌉
.

(iii) For any two integers r, s with r ≤ s, dom+
m(Kr,s) = 1.

Theorem 3.4. [5] For every integer n ≥ 3, DOM(Pn) = DOM(Cn) =
⌈

n
2

⌉
.

Proposition 3.5. For every integer n ≥ 3, DOM+
m(Pn) = DOM+

m(Cn) =
⌈

n
4

⌉
.

Proposition 3.6. For n ≥ 3, DOM+
m(K1,n−1) = ⌊n−1

2 ⌋.

Theorem 3.7. For every double star G, dom+
m(G) = 1. Moreover, if n ≥ 5 then DOM+

m(G) =
2 + max{0, ⌈n−8

2 ⌉}.

Observation 6.For every graph G = (V, E) with n ≤ 4 and such that E ̸= ∅, DOM+
m(G) =

1.

Proposition 3.8. Take two positive integers r, s with r ≤ s, then DOM+
m(Kr,s) = 1 if,

and only if, r + s ≤ 4 or
(i) r = 2, s = 3
(ii) r = 2, s = 4
(iii) r = s = 3
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In general, it seems difficult to find DOM+
m(Kr,s). However, we have the following conjec-

ture:
Conjecture. Let Kr,s be a complete bipartite graph with r ≤ s, and such that DOM+

m(Kr,s) ̸=
1. Then:

DOM+
m(Kr,s) =

{
2 if r ≤ s ≤ r + 2,

⌈ s−r
2 ⌉ otherwise.

Theorem 3.9. For n ≥ 4, dom+
m(Wn) = 1 and DOM+

m(Wn) = ⌈n−2
4 ⌉.

Finally, we note that an ”Intermediate Value Theorem” for orientable majority out-
domination holds:

Theorem 3.10. For every graph G and every integer c with dom+
m(G) ≤ c ≤ DOM+

m(G),
there exists an orientation D of G such that γ+

m(D) = c.
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Abstract

In this talk, we study total coloring (not necessarily proper) of graphs in which
adjacent vertices are distinguished by their sets of colors. Zhang et al. in 2009 posed
a conjecture regarding the upper bound for the minimum number of colors needed for
such coloring of a graph in terms of maximum degree. We prove among some results
that this conjecture is true for graphs with maximum degree 3.

Keywords: Graph, Total coloring, Incidence adjacent vertex-distinguishing total col-
oring, Incidence adjacent vertex-distinguishing total chromatic number.
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1 Introduction

All of the graphs considered in this paper are simple, finite and undirected graphs. We
denote by V (G) and E(G) the set of vertices and edges of a graph G, respectively.

Definition 1.1. A semi total coloring c is a mapping from V (G) ∪ E(G) to N such that
any two adjacent vertices and two adjacent edges receive distinct colors.

For any vertex x of G, let S(x) denote the set of the colors of all edges incident to x
together with the color assigend to x.

Definition 1.2. A semi total coloring is said to be an incidence adjacent vertex distin-
guishing total coloring if for every adjacent vertices x and y, S(x) ̸= S(y). The minimum
number of colors required for an incidence adjacent vertex-distinguishing total coloring of
G denote by χi

at(G) and is called the incidence adjacent vertex-distinguishing chromatic
number of G.

Since an incidence adjacent vertex-distinguishing total coloring is a proper edge col-
oring, every graph satisfies χi

at(G) ≥ ∆(G). Moreover every graph G with two adjacent
vertices of degree ∆(G) satisfies χi

at(G) ≥ ∆(G) + 1.
After Burris and Schelp [3], Bazgan [2] and Balister et al. [1] discussed vertex-distinguishing
proper edge coloring, Zhang et al. [5] presented the concept of adjacent vertex-distinguishing
proper edge coloring of graphs.
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Then Zhang et al. [4] proposed the new concept of incidence adjacent vertex-distinguis-
hing total coloring of graphs. They completely determined the incidence adjacent vertex
distinguishing chromatic number of paths, cycles, trees, completely graphs and complete
bipartite graphs. They especially presented a meaningful conjecture.

Conjecture 1.3. For a simple graph G, then χi
at(G) ≤ ∆(G) + 2.

2 Main results

In this section we prove among some results, that Conjecture 1.3 is true for graphs with
maximum degree 3.

Lemma 2.1. Let G be a graph with χi
at(G) ≤ ∆(G)+ 2. Also let H be the graph obtained

from G by adding some new leaves. Then χi
at(H) ≤ ∆(H) + 2.

Lemma 2.2. Let G be a graph with χi
at(G) ≤ ∆(G)+ 2. Also let H be the graph obtained

from G by subdivision of some edges of G. Then χi
at(H) ≤ ∆(H) + 2.

Lemma 2.3. Let G1 be a graph with χi
at(G1) ≤ ∆(G1) + 2 and G2 be a graph with

χi
at(G2) ≤ ∆(G2) + 2. Also let H be the graph obtained from G1 and G2 by adding a

bridge with them. Then χi
at(H) ≤ ∆(H) + 2.

Lemma 2.4. If G is a 3-regular hamiltonian graph, then χi
at(G) ≤ 5.

Theorem 2.5. If G is a 3-regular graph containing a 1-factor, then χi
at(G) ≤ 5.

Theorem 2.6. If G is a graph with maximum degree 3, then χi
at(G) ≤ 5.
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On symmetric hypergraphs
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Abstract

A hypergraph Γ is said to be symmetric if its automorphism group acts transitively
on the set of its 1-arcs. In this paper we study some properties of the symmetric
hypergraphs and then we connect the notions of symmetric hypergraphs with locally
symmetric graphs. Besides, given a symmetric hypergraph, we prove that there are
infinitely many symmetric hypergraphs that cover the given one.

KeyWords: Symmetric hypergraph, s-arc transitive, locally s-arc transitive.
Mathematics Subject Classification [2000]: 05C10, 05C25.

1 Introduction

For s ≥ 0, an s-arc in a graph H is an (s + 1)-tuple (v0, v1, ..., vs) of vertices such that
each vi is adjacent to vi+1 while vi 6= vi+2. Let G be a subgroup of Aut(H). We say that
H is (G, s)-arc transitive, or just s-arc transitive, if G acts transitively on the set of s-arcs
of H. H is said to be symmetric if G acts transitively on the set of 1-arcs of H.

Given G≤ Aut(H), we say that H is locally (G, s)-arc transitive, or just locally s-arc
transitive, if for each vertex α, the stabilizer Gα acts transitively on the set of s-arcs
starting at α. We say that H is locally symmetric, if it is locally 1-arc transitive. The
study of s-arc transitive graphs and locally s-arc transitive graphs goes back to Tutte
[6]. In this paper we consider a natural extension of symmetric graphs to the symmetric
hypergraphs.

For s ≥ 0, an s-arc in a hypergraph Γ=(V,E) is an alternate sequence of vertices and
edges,

(v0, e1, v1, e2, v2, ..., vs−1, es, vs)
where each edge ei is incident to the vertices vi−1, vi, 1 ≤ i ≤ s and two consecutive vertices
or edges are distinct. The hypergraph Γ is s-arc transitive if it has an automorphism group
which acts transitively on the set of s-arc. Γ is said to be symmetric if its automorphism
group acts transitively on the set of 1-arcs.
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2 Main results

We give the following results about symmetric hypergraphs:

Proposition 2.1. Let Γ=(V,E) be a symmetric hypergraph such that |e| ≥ 2 for every
e ∈ E. Then,

1. Γ is vertex transitive,

2. Γ is uniform,

3. Γ is edge transitive.

To generalize simple graphs, we say that a hypergraph Γ=(V,E) is linear if it is simple
and for every pair e, e′ ∈ E, |e ∩ e′| ≤ 1. It was shown in [5, Proposition 4] that 2-arc
transitive hypergraphs, are linear. However, symmetric hypergraphs are not linear in
general. Consider the following (counter)example.

Example 2.2. Let Γ=(V,E) be a hypergraph, where V ={0, 1, 2, 3} and
E ={{0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}}.

It is not difficult to see that this hypergraph is symmetric but not linear.

By using the notion of dual of a hypergraph we have,

Proposition 2.3. Let Γ be a 2-regular and r-uniform symmetric hypergraph with r ≥ 3.
Then its dual Γ∗ is a vertex transitive graph.

The incidence graph of a hypergraph Γ=(V,E) is a bipartite graph IG(Γ) with a vertex
set S = V ∪ E, and where x ∈ V and e ∈ E are adjacent if and only if x ∈ e. The next
proposition connects the notions of symmetric hypergraphs with locally symmetric graphs.

Theorem 2.4. Let Γ=(V,E) be a d-regular and r-uniform hypergraph with d, r ≥ 3 and
Γ′ := IG(Γ) its incidence graph. If Γ is symmetric, then Γ′ is locally symmetric.

We say that the hypergraph Γ1 is a cover of the hypergraph Γ2, with covering map f, if
there is a positive integer h such that f is a h-to-one surjective hypergraph homomorphism
of Γ1 onto Γ2, and f is locally bijective. We bring the following theorem from [5].

Proposition 2.5. Let Γ be an s-arc transitive, d-regular and r-uniform hypergraph with
d, r ≥ 3 and s ≥ 1. There are infinitely many s-arc transitive hypergraphs which cover Γ.

Corollary 2.6. Let Γ be a symmetric hypergraph, d-regular and r-uniform with d, r ≥ 3.
There are infinitely many symmetric hypergraphs which cover Γ.
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Abstract

For given bipartite graphs G1, G2, ..., Gt, the multicolor bipartite Ramsey number
BR(G1, G2, ..., Gt) is the smallest positive integer b such that if the edges of the
complete bipartite graph Kb,b are partitioned into t disjoint color classes giving t
graphs H1,H2, ..., Ht then at least one Hi, 1 ≤ i ≤ t has a subgraph isomorphic to
Gi. In this paper, the exact value of the bipartite Ramsey number BR(C6, C6, mK2)
is provided for m ≥ 5.

Keywords: Bipartite Ramsey number, Bipartite graphs, Cycles, Stripes

Mathematics Subject Classification [2010]: 05C55, 05D10

1 Introduction

In this paper, we only concerned with undirected simple finite graphs and we follow [1]
for terminology and notations not defined here. For a given graph G, we denote its vertex
set, edge set, maximum degree and minimum degree by V (G), E(G), ∆(G) and δ(G),
respectively, and for a vertex v ∈ V (G), we use degG (v) (or simply deg (v)) and NG(u)
to denote the degree and neighbors of v in G, respectively. As usual, a cycle and a path
on m vertices are denoted by Cm and Pm, respectively. Also the complete bipartite graph
with partite set (X,Y ), |X| = m and |Y | = n denoted by Km,n. We use [X, Y ] to denote
the set of edges between partite sets X and Y . Also by a stripe mK2 we mean a graph
on 2m vertices and m independent edges. The complement of a graph G, denoted by G,
is a graph with same vertices as G and contains those edges which are not in G. The
neighborhood of a vertex v ∈ V (G) are denoted by N(v) = {u ∈ V (G)|uv ∈ E(G)} and
let d(v) = |N(v)|

Since the 1970’s, Ramsey theory has grown into one of the most active areas of research
within combinatorics, overlapping variously with graph theory, number theory, geometry
and logic. Let G1, G2, . . . , Gt be bipartite graphs. The the multicolor bipartite Ramsey
number BR(G1, G2, ..., Gt) is the smallest positive integer b such that if the edges of the
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complete bipartite graph Kb,b are partitioned into t disjoint color classes giving t graphs
H1,H2, ..., Ht then at least one Hi, 1 ≤ i ≤ t has a subgraph isomorphic to Gi. The
existence of such a positive integer is guaranteed by a result of Erdős and Rado [2]. The
bipartite Ramsey numbers has been studied extensively. The exact value of the bipartite
Ramsey number of paths, BR(Pn, Pm), follows from a special case of some results of
Faudree and Schelp [3] and Gyárfás and Lehel [4]. Also the bipartite Ramsey number
BR(K1,n, Pm) was determined by Hatting and Henning in [5]. In addition, in [6] the
author study the multicolor bipartite Ramsey number bR(G1, G2, . . . , Gt), in the case
that G1, G2, . . . , Gt being either stars and stripes or stars and a path. The aim of this
paper is to provide the exact value of the bipartite Ramsey number BR(C6, C6, mK2) for
every m ≥ 5.

2 Main Result

In this section we prove that BR(C6, C6,mK2) = m + 4, for every m ≥ 5. We start with
the following lemma.

Lemma 2.1. For every m ≥ 1, BR(C6, C6, mK2) ≥ m + 4.

Proof. Consider Km+3,m+3 with partite sets X, Y , X = {x1, x2, . . . , xm+3}, and decompose
edges of Km+3,m+3 into graphs G1, G2, G3, where G1 is a complete 2 by m + 3 bipartite
graph, G2 is a complete 2 by m + 3 bipartite graph and G3 is a complete m − 1 by m + 3
bipartite graph. In fact,

V (G1) = X1 ∪ Y, X1 = {x1, x2},

V (G2) = X2 ∪ Y, X2 = {x3, x4},

V (G3) = X3 ∪ Y, X3 = {xi : 5 ≤ i ≤ m + 3}.

Clearly E(Km+3,m+3) = E(G1) ∪ E(G2) ∪ E(G3) and C6 ⊈ G1, C6 ⊈ G2, and mK2 ⊈ G3

which means that BR(C6, C6,mK2) ≥ m + 4.

Theorem 2.2. ([7]) For the cycle of length 6 we have BR(C6, C6) = 6.

Lemma 2.3. For every m ≥ 5, BR(C6, C6, mK2) ≤ m + 4.

Proof. Let edges of Km+4,m+4 are arbitrary colored red, blue and green and Gr, Gb and
Gg denote the subgraphs of Km+4,m+4 include by the edges of colors red, blue and green,
respectively. We suppose that mK2 ⊈ Gg and we prove that C6 ⊆ Gr, C6 ⊆ Gb.

Let M be the Maximum matching in Gg. Then by the assumption, E(M) ≤ m − 1.
Now, we have the following claim.

Claim 1: Either K6,6 ⊆ G
g

or K5,9 ⊆ G
g
.

By the claim 1, we have K6,6 ⊆ G
g

or K5,9 ⊆ G
g
. If K6,6 ⊆ G

g
then by Theorem 2.2

we have C6 ⊆ Gr or C6 ⊆ Gb, which means that BR(C6, C6,mK2) ≤ m+4. Thus suppose
that K5,9 ⊆ G

g
i.e. K5,9 ⊆ Gr ∪ Gb . In this case we have the following claim.
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Claim 2: In any red-blue coloring of the edges of K5,9, either C6 ⊆ Gr or C6 ⊆ Gb.

Proof of the Claim. Let X = {x1, x2, ..., x5} and Y = {y1, y2, ..., y9} be the partite
sets of K5,9. By the Pigeonhole Principle there exist at least five vertices in Y , say
Z = {y1, y2, . . . , y5}, such that for each z ∈ Z, either degGr(z) ≥ 3 or degGb(z) ≥ 3.
Without loss of generality, we may assume that for each z ∈ Z, degGr(z) ≥ 3. Since
|X| = 5 then |N(z) ∩ N(z′)| ≥ 1 for every z, z′ ∈ Z. Now, we consider the following cases.

Case 1: For some yi1 , yi2 ∈ Z, |N(yi1) ∩ N(yi2)| ≥ 3.

Let N = N(yi1) ∩ N(yi2) and W.l.g, N = {x1, x2, x3}. If there exists a vertex z ∈
Z \ {yi1 , yi2} such that |N(z) ∩ N | ≥ 2, then we have C6 ⊆ G. Thus suppose that for all
z ∈ Z \{yi1 , yi2}, |N(z)∩N | = 1. Hence for all z ∈ Z \{yi1 , yi2} we have {x4, x5} ⊆ N(z).
If there exist vertices z, z′ ∈ Z \ {yi1 , yi2} such that these vertices have distinct neighbors
in {x1, x2, x3} then obviously we have C6 ⊆ Gr. Otherwise it can be easily that C6 ⊂ Gb.

Case 2: For some yi1 , yi2 ∈ Z, |N(yi1) ∩ N(yi2)| = 2.

Let N = N(yi1)∩N(yi2) and W.l.g, we may assume that N = {x1, x2} and x3 ∈ N(yi1),
x4 ∈ N(yi2). For each z ∈ Z \ {yi1 , yi2}, |N(z) ∩ (Z \ {x5})| ≥ 2. If there exist a vertex
z ∈ Z \{yi1 , yi2} such that |N(z)∩(Z \{x5})| ̸= {x1, x2}, then obviously we have C6 ⊆ Gr.
So let for each z ∈ Z \ {yi1 , yi2} we have {x1, x2, x5} = |N(z) ∩ (Z \ {x5})|. Now, for any
z, z′ ∈ Z \ {yi1 , yi2} the set {yi1 , z, z′, x1, x2, x5} form a copy of C6 ⊆ Gr.

Case 3: For some yi1 , yi2 ∈ Z, |N(yi1) ∩ N(yi2)| = 1.

W.l.g, we may assume that N(yi1) = {x1, x2, x3} and N(yi2) = {x3, x4, x5}. so, for
every z ∈ Z \ {yi1 , yi2} we have |N(z) ∩ N(yi1)| ≥ 2 or |N(z) ∩ N(yi2)| ≥ 2. Therefore by
Case 2, we have C6 ⊆ Gr which completes the proof of the claim 2.

Since K5,9 ⊆ Gr ∪ Gb, by Claim 2, either C6 ⊆ Gr or C6 ⊆ Gb which shows that
BR(C6, C6,mK2) ≤ m + 4.

Now, Combining Lemmas 2.1 and 2.4, we have the following theorem which determine
the exact value of the bipartite Ramsey number BR(C6, C6,mK2)|

Theorem 2.4. For every m ≥ 5, BR(C6, C6,mK2) = m + 4.
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Abstract

The rainbow connection number rc(G) of a connected graph G is the minimum
number of colors needed to color its edges, so that every pair of its vertices is connected
by at least one path in which no two edges are colored the same. In this paper, we
study the rainbow connection number of some specific graphs. We apply our results
to obtain the rainbow connection number of some graphs which are important in
chemistry and nanoscience.

Keywords: Rainbow connection number, Dendrimer, Graph
Mathematics Subject Classification [2010]: 05C76 05C40

1 Introduction

A simple graph G = (V, E) is a finite nonempty set V of objects called vertices together
with a (possibly empty) set E of unordered pairs of distinct vertices of G called edges. In
chemical graphs, the vertices of the graph correspond to the atoms of the molecule, and
the edges represent the chemical bonds.

Edge coloring of a graph is a function from its edge set to the set of natural numbers
(called colours). A path in an edge colored graph with no two edges sharing the same
color is called a rainbow path. An edge colored graph is said to be rainbow connected if
every pair of vertices is connected by at least one rainbow path. Such a coloring is called a
rainbow coloring of the graph. The minimum number of colors required to rainbow color a
connected graph is called its rainbow connection number, denoted by rc(G). For example,
the rainbow connection number of a complete graph Kn is 1, that of a path Pn is its length
n − 1, that of an even cycle C2n is its diameter, that of an odd cycle of length at least 5
is one more than its diameter, and that of a tree is its number of edges. Topics related to

rainbow problems were first introduced in a classical paper of Erdős et al. in 1975 [6] as a
counterpart to Ramsey problems. Since then the development went in different directions.
For the latest survey see [7]. Probably the latest such rainbow problem was introduced by
Chartrand et al. in [4] and it is about “rainbow connection”.

It was shown in [3] that computing the rainbow connection number of an arbitrary
graph is NP-Hard. To rainbow color a graph, it is enough to ensure that every edge of
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some spanning tree in the graph gets a distinct color. Hence, the order of the graph minus
one is an upper bound for rainbow connection number. There are some papers which find
better upper bounds for the same in terms of other graph parameters such as connectivity,
minimum degree, etc.

In this paper, we study the rainbow connection number of some specific graphs and
obtain the rainbow connection number of some graphs which are important in chemistry
and nanoscience.

2 Main results

Figure 1: Graph G obtained by point-attaching from G1, ..., Gk.

Let G be a connected graph constructed from pairwise disjoint connected graphs
G1, ..., Gk as follows. Select a vertex of G1, a vertex of G2, and identify these two vertices.
Then continue in this manner inductively. Note that the graph G constructed in this way
has a tree-like structure, the Gi’s being its building stones (see Figure 1). Usually say that
G is obtained by point-attaching from G1, ..., Gk and that Gi’s are the primary subgraphs
of G. A particular case of this construction is the decomposition of a connected graph into
blocks (see [5]). We obtain a formula for the rainbow connection number of this graph G.

As an example consider the graph Q(m, n) constructed in the following manner: de-
noting by Kq the complete graph with q vertices, consider the graph Km and m copies of
Kn (see [5]). By definition, the graph Q(m, n) is obtained by identifying each vertex of
Km with a vertex of a unique Kn. The graph Q(6, 4) is shown in Figure 2.

Using our result for the point-attaching graph, we have the following result:

Theorem 2.1. The rainbow connection number of Q(m,n) is rc(Q(m, n)) = m + 1.

Here we consider a special cases of point attaching of k graphs. Let G1, G2, ..., Gk be a
finite sequence of pairwise disjoint connected graphs and let xi, yi ∈ V (Gi). By definition
in [5], the chain G of the graphs {Gi}k

i=1 with respect to the vertices {xi, yi}k
i=1 is obtained

by identifying the vertex yi with the vertex xi+1 for i ∈ {1, 2, ..., k − 1} (see Figure 3 for
k = 4). We have the following result for the rainbow connection number of the chain of
graphs:
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Figure 2: The graph Q(6, 4).

Figure 3: The chain and link graph of four graphs, respectively.

Theorem 2.2. The rainbow connection number of the chain G of the graphs {Gi}k
i=1 is

rc(G) =
( ∑k

i=1 rc(Gi)
)

− 1

Here we consider another kind of graphs. Let G1, G2, ..., Gk be a finite sequence of
pairwise disjoint connected graphs and let xi, yi ∈ V (Gi). By definition in [5], the link
G of the graphs {Gi}k

i=1 with respect to the vertices {xi, yi}k
i=1 is obtained by adding an

edge which connect the vertex yi of Gi with the vertex xi+1 of Gi+1 for all i = 1, 2, ..., k−1
(see Figure 3 for k = 4) ([5]). We obtain the rainbow connection number of the link of
graphs.

Using our results we shall obtain the rainbow connection number of families of graphs
which are important in chemistry. For example we compute the rainbow connection num-
ber of Spiro-chains ([5]), cactus chains ([2]), Polyphenylenes, and some dendrimer nanos-
tars ([1, 5]).
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Abstract

for a positive integer k, a restrained k-rainbow dominating function (RkRDF) of
a graph G is a function f from the vertex set V (G) to the set of all subsets of the
set {1, 2, . . . , k} such that for any vertex v ∈ V (G) with f(v) = ∅ the conditions∪

u∈N(v) f(u) = {1, 2, . . . , k} and |N(v) ∩ {u ∈ V (G) | f(u) = ∅}| ≥ 1 are fulfilled,

where N(v) is the open neighborhood of v. The weight of an RkRDF f is the value
ω(f) =

∑
v∈V (G) |f(v)|. The restrained k-rainbow domination number of a graph G,

denoted by γrrk(G), is the minimum weight of an RkRDF of G. The restrained k-
rainbow reinforcement number rrrk(G) of a graph G is the minimum number of edges
that must be added to G in order to decrease the restrained k-rainbow domination
number. In this paper, we initiate the study of restrained k-rainbow reinforcement
number in graphs and we present some sharp bounds on rrrk(G). In particular, we
determine the restrained 2-rainbow reinforcement number of some classes of graphs.

Keywords: Retrained k-rainbow domination number, restrained k-rainbow reinforce-
ment number.

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

In this paper, G is a simple graph with vertex set V = V (G) and edge set E = E(G). The
order |V | of G is denoted by n = n(G). For every vertex v ∈ V (G), the open neighborhood
NG(v) = N(v) is the set {u ∈ V (G) | uv ∈ E(G)} and the closed neighborhood of v is the
set NG[v] = N [v] = N(v)∪{v}. The degree of a vertex v ∈ V is degG(v) = deg(v) = |N(v)|.
The minimum and maximum degree of a graph G are denoted by δ = δ(G) and ∆ = ∆(G),
respectively. We write Kn,m for the complete bipartite graph of order n+m, Cn for a cycle
of length n and Pn for a path of order n.

A subset S of vertices of G is a dominating set if N [S] = V . The domination number
γ(G) is the minimum cardinality of a dominating set of G. A dominating set of minimum
cardinality of G is called a γ(G)-set. The reinforcement number r(G) of a graph G is the
minimum number of edges that must be added to G in order to decrease the domination
number [13]. The reinforcement number is defined to be 0 when γ(G) = 1.

For a positive integer k, a restrained k-rainbow dominating function(RkRDF) of a graph
G is a function f from the vertex set V (G) to the set of all subsets of the set {1, 2, . . . , k}
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such that for any vertex v ∈ V (G) with f(v) = ∅ the condition
∪

u∈N(v) f(u) = {1, 2, . . . , k}
and |N(v) ∩ {u ∈ V (G) | f(u) = ∅}| ≥ 1 are fulfilled. The weight of a RkRDF f is the
value ω(f) =

∑
v∈V |f(v)|. The restrained k-rainbow domination number of a graph G,

denoted by γrrk(G), is the minimum weight of a RkRDF of G. A γrrk(G)-function is a
restrained k-rainbow dominating function of G with weight γrrk(G). Note that γrr1(G)
is the classical restrained domination number γr(G). The k-rainbow domination number
was introduced by Brešar, Henning, and Rall [4] and has been studied by several authors
(see for example [5, 6, 11]).

Our purpose in this paper is to initiate the study of restrained k-rainbow reinforce-
ment number in graphs. We determine exact values of restrained 2-rainbow reinforcement
number of some classes of graphs.

2 Main result

We will use the following results.

Proposition 2.1. If E is a rrrk(G)-set, then

γrrk(G) − 2 ≤ γrrk(G + E) ≤ γrrk(G) − 1.

Proposition 2.2. max{γrk(G), γr(G)} ≤ γrrk(G) ≤ kγr(G).

Proposition 2.3. [1] For n ≥ 4, γrr2(Pn) =
⌈

2n+1
3

⌉
+ 1 and γrr2(Pn) = n, otherwise.

Proposition 2.4. [1] For n ≥ 6,

γrr2(Cn) =

{
2⌈n

3 ⌉ + 1 n ≡ 2 (mod 3)
2⌈n

3 ⌉ otheriwise.

Proposition 2.5. [2] For 1 ≤ n ≤ m,

γrr2(Kn,m) =

{
m + 1 n = 1
4 n ≥ 2.

Theorem 2.6. For n ≥ 3, rrr2(Pn) = 1

Proof. Let Pn := v1v2 . . . vn. If 3 ≤ n ≤ 6, then it is not hard to see that rrr2(Pn) = 1. So
suppose that n ≥ 7. We consider three cases.
Case 1. n ≡ 1 (mod 3).

Define f : V (Pn) → P({1, 2}) by f(vi) = {1, 2} for i ≡ 1 (mod 3) and f(x) = ∅
otherwise. Clearly f is a γrr2(Pn)-function of weight

⌈
2n+1

3

⌉
+ 1. Then the function

g = (V f
0 , vn, ∅, V f

1,2 − vn) is an R2RDF on Pn + v1vn−1 that implies rrr2(Pn) = 1.
Case 2. n ≡ 2 (mod 3).

Define f : V (Pn) → P({1, 2}) by f(vi) = {1, 2} for i ≡ 1 (mod 3), f(vn) = {1} and
f(x) = ∅ otherwise. Clearly f is a γrr2(Pn)-function of weight

⌈
2n+1

3

⌉
+ 1. Then the

function g = (V f
0 ∪ vn, ∅, ∅, V f

1,2) is an R2RDF on Pn + v2vn that implies rrr2(Pn) = 1.
Case 3. n ≡ 0 (mod 3).

Define f : V (Pn) → P({1, 2}) by f(vi) = {1, 2} for i ≡ 1 (mod 3), f(vn) = f(vn−1) =
{1} and f(x) = ∅ otherwise. Clearly f is a γrr2(Pn)-function of weight

⌈
2n+1

3

⌉
+ 1. Then

the function g = (V f
0 ∪ {vn−1, vn} , V f

1 − {vn−1, vn} , ∅, V f
1,2) is an R2RDF on Pn + v1vn

that implies rrr2(Pn) = 1.
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Theorem 2.7. For n ≥ 6,

rrr2(Cn) =

{
2 n ≡ 0 (mod 3)
1 otheriwise.

Proof. Let Cn := (v1, v2, . . . , vn). We consider three cases.
Case 1. n ≡ 0 (mod 3).

Define f : V (Cn) → P({1, 2}) by f(vi) = {1, 2} for i ≡ 1 (mod 3) and f(x) = ∅
otherwise. Clearly f is a γrr2(Cn)-function of weight frac2n3. Then the function g =

(V f
0 , vn−2, ∅, V f

1,2−vn−2) is an R2RDF on Cn+{v1vn−1, v1vn−3}, that implies rrr2(Cn) ≤ 2.
It is not hard to see that for any γrr2(Cn)-function g, we have |V g

1,2| = n
3 and |V g

1 ∪V g
2 | = ∅.

Thus each vertex of V g
1,2 has exactly two private neighbors. This implies that rrr2(Cn) ≥ 2.

Therefore rrr2(Cn) = 2 in this case.
Case 2. n ≡ 1 (mod 3).

Define f : V (Cn) → P({1, 2}) by f(vi) = {1, 2} for i ≡ 1 (mod 3) and f(x) =
∅ otherwise. Clearly f is a γrr2(Cn)-function of weight 2⌈n

3 ⌉. Then the function g =

(V f
0 , ∅, ∅, V f

1,2 − vn) is an R2RDF on Cn + v1vn−1, that implies rrr2(Cn) = 1 in this case.
Case 3. n ≡ 2 (mod 3).

Define f : V (Cn) → P({1, 2}) by f(vi) = {1, 2} for i ≡ 1 (mod 3), f(vn) = {1} and
f(x) = ∅ otherwise. Clearly f is a γrr2(Cn)-function of weight 2⌈n

3 ⌉+1. Then the function

g = (V f
0 ∪ {vn}, ∅, ∅, V f

1,2) is an R2RDF on Cn + vn−2vn, that implies rrr2(Cn) = 1.

Theorem 2.8. For 1 ≤ n ≤ m,

rrr2(Kn,m) =

{
1 n = 1, 2,m ≥ 2
n − 2 n ≥ 3.

Proof. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym} be the partite sets of Kn,m. We
consider three cases.
Case 1. n = 1,m ≥ 2.

Define function f : V (Kn,m) → P({1, 2}) by f(yi) = {1} for 1 ≤ i ≤ m and f(x1) =
{2}. Clearly f is a γrr2(Kn,m)-function of weight m+1. Let G = Kn,m+{y1y2} and define
g : V (G) → P({1, 2}) by g(x1) = {1, 2}, g(y1) = g(y2) = ∅ and g(x) = {1} otherwise.
Obviously g is an R2RDF on G of weight m. Thus rrr2(K1,m) = 1 in this case.
Case 2. n = 2.

Define f : V (Kn,m) → P({1, 2}) by f(x1) = f(y1) = {1, 2} and f(x) = ∅ otherwise.
Then f is a γrr2(Kn,m)-function of weight 4. Join x1 to x2 and define g : V (Kn,m +
{x1x2}) → P({1, 2}) by g(x1) = {1, 2} and g(x) = ∅ otherwise. Obviously g is an R2RDF
on Kn,m + {x1x2} of weight 2. Therefore rrr2(K2,m) = 1.
Case 3. n ≥ 3. Define f : V (Kn,m) → P({1, 2}) by f(x1) = f(y1) = {1, 2} and f(x) = ∅
otherwise. Let G = Kn,m + {x1x2, x1x3, . . . , x1xn−1}. Define g : V (G) → P({1, 2}) by
g(x1) = {1, 2}, g(xn) = {1} and g(x) = ∅ otherwise. Obviously g is an R2RDF on G of
weight 3. So rrr2(Kn,m) ≤ n − 2. Now let γrr2(Km,n + E) = 3. Clearly, for an arbitrary

graph G of order p, γrr2(G) = 3 if and only if either |V f
1,2| = 1 and ∆(G) = p − 2 or

|V f
1,2| = 0 and ∆(G) ≥ p − 3. Thus either |E| ≥ n − 2 or |E| ≥ n − 3. If |E| ≥ n − 2, we

are done. Suppose that γrr2(Km,n + E) = 3 and |E| ≥ n − 3. But in this case, by adding
any n − 3 edges to Kn,m we have γrr2(Km,n + E) = 4. So rrr2(Kn,m) = n − 2. The proof
is complete.
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[4] B. Brešar, M. A. Henning, and D. F. Rall, Rainbow domination in graphs, Taiwanese
J. Math. 12 (2008), 213–225.
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Abstract

In this paper, the concept of vague fuzzy sets is applied to the concept lattice
theory. The notion of vague formal context is introduced and some related properties
are investigated. The theory of vague concept lattice is useful in view of the complexity
and fuzziness of information in real world.

Keywords: Formal Context, Formal Concept, Vague, Lattice.
Mathematics Subject Classification [2010]: 03G10, 03B52

1 Introduction

Rudolf Wille [4] introduced Formal Concept Analysis (FCA) in 1982. Formal Concept
Analysis is a method for data analysis and knowledge representation that provides visual-
izations in the form of mathematical lattice diagrams for data stored in formal contexts.
Formal Concept Analysis applied in many quite different realms like computer sciences,
data mining, knowledge management, semantic web, mathematics and engineering.
A concept lattice is an ordered hierarchical structure of formal concepts that are defined
by a binary relation between a set of objects and a set of attributes.
In recent years, many new achievements on these topics have been achieved on theories
such as construction of concept lattice and acquisition of rules (see [1], [3]).
The notion of vague set theory introduced by W. L. Gau and D. J. Buehrer, as a gener-
alizations of Zadeh’s fuzzy set theory [2].

Definition 1.1. [1] A triplet (X,Y, I) is called formal context where X is a nonempty
finite set of objects called universe of discourse, Y is a nonempty finite set of attributes
and I is a binary relation between X and Y .
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For a formal context (X,Y, I) a pair of dual operators for A ⊆ X and B ⊆ Y is defined
as follows:

A↑ = {y ∈ Y |(x, y) ∈ I for all x ∈ A},
B↓ = {x ∈ X|(x, y) ∈ I for all y ∈ B}.

Definition 1.2. [1] Let (X,Y, I) be a formal context. A pair (A,B) is called formal
concept, if A↑ = B and B↓ = A.

Theorem 1.3. [3] The set of all formal concept is a complete lattice.

Definition 1.4. [5] A fuzzy set A = {(u, µ(u))|u ∈ U} in the universe of discourse U is a
characterized by a membership function µ as µ : U −→ [0, 1].

Definition 1.5. [2] A vague set A in the universe of discourse U is characterized by a
true membership function tA and a false membership function fA, as follows:

tA : U −→ [0, 1] and fA : U −→ [0, 1] such that 0 ≤ tA(u) + fA(u) ≤ 1

where tA(u) is a lower bound on the grade of membership of u derived by from the evidence
for u, and fA(u) is lower bound on the grade of membership of the negation of U derived
from the evidence against it. The vague set A is written as

A = {(u, [tA(u), 1− fA(u)])|u ∈ U}

where the interval [tA(u), 1 − fA(u)] is called the vague value of u in A and denoted by
A(u). The set of all vague set in U is denoted by V F (U) = {A|A is a vague set in U}.

Definition 1.6. [2] (1) A vague set A is contained in vague set B, written as A ⊆ B if
and only if tA(u) ≤ tB(u) and fA(u) ≥ fB(u) for all u ∈ U .
(2) The union of two vague set A and B is a vague set C, written as C = A ∪B where
tC(u) = max(tA(u), tB(u)) and fC(u) = min(fA(u), fB(u)) for all u ∈ U .
(3) The intersection of two vague set A and B is a vague set C, written as C = A ∩ B
where tC(u) = min(tA(u), tB(u)) and fC(u) = max(fA(u), fB(u)) for all u ∈ U .

2 Vague Formal Concept Lattice

Definition 2.1. A vague formal context is a triplet (X,Y, I), where X = {x1, x2, ..., xn}
is a nonempty finite set of objects called universe of discourse, Y = {y1, y2, ..., ym} is a
nonempty finite set of attributes and I is a vague set in X × Y , where

I = {((x, y), [tI((x, y)), 1− fI((x, y))])|(x, y) ∈ X × Y }.

A vague formal context can be represent by cross table such that rows is objects and
columns is attributes and in row i and column j write [tI(xi, yj), 1− fI(xi, yj)].

Example 2.2. Let X = {x1, x2, x3} be universe of discourse and Y = {y1, y2, y3} be the
set of attributes where x1= ”Peter”, x2= ”Robert”, x3= ”Felix” and y1= ”Idealistic”,
y2= ”Pessimist”, y3= ”Rational” and I represented in Table 1. Then (X,Y, I) is a vague
formal context.
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Table 1: A vague formal context

I y1 y2 y3
x1 [0.0, 0.5] [0.2, 0.3] [0.1, 0.4]
x2 [0.7, 0.9] [0.0, 1.0] [0.8, 0.9]
x3 [0.4, 0.5] [0.3, 0.4] [0.1, 0.8]

Definition 2.3. Let (X,Y, I) be a vague formal context. Define two operators
↓: V F (Y ) −→ 2X and ↑: 2X −→ V F (Y ) byB↓ = {x ∈ X|I(x, y) ≥ B(y) for all y ∈ Y } and
A↑ = {(y, [tA↑(y), 1− fA↑(y)])|y ∈ Y } where tA↑(y) = ∧a∈AtI(a, y), fA↑(y) = ∨a∈AfI(a, y)
and ∅↑ = {(y, [1, 1])|y ∈ Y } for all B ∈ V F (Y ) and A ∈ 2X .

Example 2.4. Consider B={(y1, [0.4, 0.5]), (y2, [0.0, 0.4]), (y3, [0.1, 0.8])} ∈ V F (Y ) and
A={x1, x2} ∈ 2X in Example 2.2. Then we get thatB↓ = {x2, x3} andA↑ = {(y1, [0.0, 0.5]),
(y2, [0.0, 0.3]), (y3, [0.1, 0.4])} by Definition 2.3.

Proposition 2.5. Let (X,Y, I) be a vague formal context and A, A1, A2 ⊆ X and
B,B1, B2 ∈ V F (Y ). Then
(1) if A1 ⊆ A2 then A2

↑ ⊆ A1
↑,

(2) if B1 ⊆ B2 then B2
↓ ⊆ B1

↓,
(3) A ⊆ A↑↓ and B ⊆ B↓↑,
(4) A↑↓↑ = A↑ and B↓↑↓ = B↓,
(5) A⊆ B↓ if and only if B ⊆ A↑,
(6) (A1 ∪A2)

↑ = A1
↑ ∩A2

↑ and (A1 ∩A2)
↑ ⊇ A1

↑ ∪A2
↑,

(7) (B1 ∪B2)
↓ = B1

↓ ∩B2
↓ and (B1 ∩B2)

↓ ⊇ B1
↓ ∪B2

↓.

Corollary 2.6. Let (X,Y, I) be a vague formal context. Then ↑↓ is a closure operator on
the set X and fix(↑↓) = {A ⊆ X|A↑↓ = A} is a closure system on the set X.

Definition 2.7. Let (X,Y, I) be a vague formal context. A pair (A,B) is called a vague
formal concept, for short, a vague concept if A↑ = B and B↓ = A. A is called the extension
of the concept (A,B) and B is called the intension of the concept (A,B).

Example 2.8. The pair ({x1, x3}, {(y1, [0.0, 0.5]), (y2, [0.2, 0.3]), (y3, [0.1, 0.4])}) is a vague
formal concept but the pair ({x1}, {(y1, [0.0, 0.5]), (y2, [0.2, 0.3]), (y3, [0.1, 0.4])}) is not a
vague formal concept in Example 2.2.

Proposition 2.9. Let (A1, B1) and (A2, B2) be two vague formal concepts of a vague
formal context (X,Y, I). Then (A1∩A2, (B1 ∪B2)

↓↑) and ((A1 ∪A2)
↑↓, B1∩B2) are also

vague concept.

Theorem 2.10. Let (X,Y, I) be a vague formal context and L(X,Y, I) = {(A,B) ∈
2X × V F (Y )|A↑ = B,B↓ = A}. Then
(1) (L(X,Y, I),≤) is a partially order set where (A1, B1) ≤ (A2, B2) iff A1 ⊆ A2 iff
B2 ⊆ B1 for all (A1, B1), (A2, B2) ∈ L(X,Y, I).
(2) (L(X,Y, I),∧,∨) is complete lattice where

∧i(Ai, Bi) = (∩iAi, (∪iBi)↓↑) and ∨i(Ai, Bi) = ((∪iAi)↑↓,∩iBi).
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Definition 2.11. Let (X,Y, I) be a vague formal context. Then (L(X,Y, I),≤) is called
a vague concept lattice.

Example 2.12. Consider Example 2.2. We have L(X, Y, I)={C1, C2, ..., C6} where
C1 = (∅, {(y1, [1.0, 1.0]), (y2, [1.0, 1.0]), (y3, [1.0, 1.0])}),
C2 = ({x2}, {(y1, [0.7, 0.9]), (y2, [0.0, 1.0]), (y3, [0.8, 0.9])}),
C3 = ({x3}, {(y1, [0.4, 0.5]), (y2, [0.3, 0.4]), (y3, [0.1, 0.8])}),
C4 = ({x1, x3}, {(y1, [0.0, 0.5]), (y2, [0.2, 0.3]), (y3, [0.1, 0.4])}),
C5 = ({x2, x3}, {(y1, [0.4, 0.5]), (y2, [0.0, 0.4]), (y3, [0.1, 0.8])}),
C6 = ({x1, x2, x3}, {(y1, [0.0, 0.5]), (y2, [0.0, 0.3]), (y3, [0.1, 0.4])}.
Then the vague concept lattice is

C2

C1

C3

C5C4

C6

Figure 1: Concept lattice of example 2.2

Theorem 2.13. Let (X,Y, I) be a vague formal context.
(1) (L(X,Y, I),≤) is isomorphic to (Ext(X,Y, I),⊆) where

Ext(X,Y, I) = {A ∈ 2X |(A,B) ∈ L(X,Y, I) for some B ∈ V F (Y )}.
(2) (L(X,Y, I),≤) is dual isomorphic to (Int(X,Y, I),⊆) where

Int(X,Y, I) = {B ∈ V F (Y )|(A,B) ∈ L(X,Y, I) for some A ∈ 2X}.
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We develop a perturbation theory for matrix NLS equation. The formalism is based
on using the Riemann-Hilbert problem and provides the means to analytically calculate
evolution of the soliton parameters. Treating a small deviation from the integrability
condition as a perturbation, we describe the rank-one soliton dynamics in the adiabatic
approximation.
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1 Introduction

The matrix NLS equation, observed experimentally, are expected to be important for var-
ious applications in atom optics, including atom interferometry, atom lasers, and coherent
atom transport. Recent experimental and theoretical advances in matrix NLS soliton dy-
namics are reviewed in Ref.[3].
Integrable models provide a very useful proving ground for testing new analytical and
numerical approaches to study such a complicated system as the matrix NLS equation.
As a step in this direction, in the present paper we develop a perturbation theory for
the integrable the matrix NLS equation. Evidently, small disturbance of the integrability
condition can be considered as a perturbation of the integrable model. Our formalism is
based on the Riemann-Hilbert problem associated with the matrix NLS equation [1][2].

2 Model

We consider the integrable matrix NLS equation

i∂tQ + ∂2
xQ + 2QQ†Q = 0, (1)

where

Q =

(
ϕ+ ϕ0

ϕ0 ϕ−

)
. (2)
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The matrix NLS equation (1) appears as a compatibility condition of the system of linear
equations ,

∂xψ = ik[λ, ψ] + Q̂ψ, (3)

∂tψ = 2ik2[λ, ψ] + V ψ, (4)

where λ = diag(−1,−1, 1, 1),

Q̂ =

(
0 Q

−Q† 0

)
, V = 2kQ̂ + i

( QQ† Qx

Q†
x −Q†Q

)
, (5)

and k is a spectral parameter.

3 Rank-one Soliton Matrix NLS

To obtain the rank-one soliton solution of the matrix NLS equation (1), we consider the
single pair k1 and k∗

1 of zeros and the eigenvector |1⟩. The eigenvector takes the form

|1⟩ = (e−ik1x−2ik2
1tn1, e

−ik1x−2ik2
1tn2, e

ik1x+2ik2
1tn3, e

ik1x+2ik2
1tn4)

T , (6)

where na, a = 1, .., 4 are complex numbers. We set k1 = µ + iν and find the solution of
the RH problem.
Indeed, the rank-one soliton (1) can be represented as

Q = 2ν

(
e−iχ cos2 θ cos θ sin θ
cos θ sin θ eiχ sin2 θ

)
eiφ sech z, (7)

where

cos θ =
|n1|√

(|n1|2 + |n2|2)
=

|n3|√
(|n3|2 + |n4|2)

, χ = arg(n3) − arg(n4), (8)

φ = −2µx− 4(µ2 − ν2)t+ φ0, φ = arg(n1) − arg(n4) = arg(n2) − arg(n3), (9)

z = 2ν(x+ 4µt) + ρ, e2ρ =
|n1|2 + |n2|2
|n3|2 + |n4|2

, (10)

The soliton amplitude is determined by the parameter ν, and its velocity is equal to 4µ
. The parameters ρ and φ0 give the initial position of the soliton center and its initial
phase, respectively. The angle θ determines the normalized population of atoms in different
spin states, while the phase factor eiχ is responsible for the relative phases between the
components ϕ± and ϕ0.

4 Perturbation Theory for the matrix NLS

In this section we perform a general analysis of the perturbed spinor BEC equations

i
δQ̂
δt

= ϵR̂, R̂ =

(
0 R

R† 0

)
, R =

(
R+ R0

R0 R−

)
. (11)
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We can write

∂tn1 = −ϵ(X11n1 +X12n2), ∂tn2 = −ϵ(X21n1 +X22n2),

∂tn3 = −ϵ(X31n1 +X32n2), ∂tn4 = −ϵ(X41n1 +X42n2), (12)

where for simplicity we use the notation Xab = Υ
(reg)
+ab (k1), a, b = 1, 2, and Xab =

Υ
(reg)
+ab (k1)e

−8i
∫

dtk3
1 for a = 3, 4 and b = 1, 2. Here Υ

(reg)
+ab is the regular part of Υ+ in the

point k1,

Υ
(reg)
+ (k1) =

∫
dxE−1{R̂(1 − p(1)) + p(1)R̂p(1) + 2νx[Λ, p(1)R̂(1 − p(1))]}E(k1). (13)

Now we can derive the evolution equation for the parameters θ and χ entering the polar-
ization matrix of the soliton solution . Indeed, these parameters are defined in terms of
na which in turn obey Eqs. 12. Simple calculation gives

∂t cos θ =
iϵ

2
[eρ+iφ0(X31e

−iχ cos θ +X41 sin θ) − eρ−iφ0(X∗
31e

iχ cos θ +X∗
41 sin θ)], (14)

∂tχ =
ϵ

2
{eρ+iφ0 [X31e

−iχ −X42e
iχ + (tan θ − cot θ)X41]

−eρ−iφ0 [X∗
31e

iχ −X∗
42e

−iχ + (tan θ − cot θ)X∗
41]}. (15)

Just in the same way we obtain evolution equations for the parameters φ0 and ρ which
are also expressed in terms of ni,

∂tφ0 =
ϵ

2
[X11 +X∗

11 + (X12e
−iχ +X∗

12e
iχ) tan θ

−eρ+iφ0(X41 cot θ +X42e
iχ) − eρ−iφ0(X∗

41 cot θ +X∗
42e

−iχ), (16)

∂tρ =
iϵ

2
{(X11 −X∗

11) cos2 θ + (X22 −X∗
22) sin2 θ + [(X12 −X∗

21)e
iχ

−(X∗
12 −X21)e

−iχ] sin θ cos θ + eρ+iφ0(X31e
−iχ cos2 θ

+2X41 sin θ cos θ +X42e
iχ sin2 θ) − eρ−iφ0(X∗

31e
iχ cos2 θ

+2X∗
41 sin θ cos θ +X∗

42e
−iχ sin2 θ)}, (17)

5 Adiabatic Approximation

As an important example, we consider a perturbation caused by a small disturbance of
the integrability condition. In this case, while the functional form of the perturbations R
has the form

R±,0 = (|ϕ+|2 + 2|ϕ0|2 + |ϕ−|2)ϕ±,0. (18)

Matrix elements of Υ+ which are the main ingredients of the evolution equations for
the soliton parameters are found from Eq. (13) , and the projector p(1) is calculated by
means of the simple formula

p(1) =
|1⟩⟨1|
⟨1|1⟩ , ⟨1| = |1⟩†, (19)
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Figure 1: Comparison of the analytically predicted frequency shift with numerically

Calculation due to Eq. (13) gives

X11 = X12 = X21 = X22 = 0,

X31 = (2ν2)exp(−ρ− iφ0 + iχ) cos2 θ,

X42 = (2ν2)exp(−ρ− iφ0 − iχ) sin2 θ,

X41 = X32 = (2ν2)exp(−ρ− iφ0) sin θ cos θ.

Substituting these functions into Eqs. 14-17, we obtain

θ = const, χ = const, ρ(t) = const, φ0(t) = φ0(0) − 4ϵαν2t (20)

As a result, within the adiabatic approximation, the only manifestation of the perturbation
caused by a small deviation from the consists in a small shift of the soliton frequency
equal to 4ϵν2. Hence, a ferromagnetic soliton is a pretty robust object against a small
disturbance of the integrability condition.
It is seen from the Fig.1 that there is a good agreement of the predicted linear dependence
of the frequency shift on ϵ with that obtained numerically.
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Almost one-to-one factor maps on Smale spaces

Sarah Saeidi Gholikandi ∗

Tarbiat Modares university

Abstract

Almost one-to-one maps between Smale spaces are factor maps whose the degrees
are one. Putnam shows that any almost one-to-one factor map between Samle spaces
can be decomposed as a composition of two resolving maps. In this paper, we in-
vestigate this subject and we show that two resolving maps are almost one-to-one,
too.

Keywords: Almost one-to-one maps, Factor maps, Smale spaces
Mathematics Subject Classification [2010]: 37B10, 37D99

1 Introduction

Definition 1.1. [2, 3] Suppose that (X, f) is a compact metric space and f is a home-
omorphism of X. Then (X, f) is called a Smale space if there exist constants εX and
0 < λ < 1 and a continuous map from

△εX = {(x, y) ∈ X × X | d(x, y) ≤ εX }
to X (denoted with [, ]) such that:

B 1 [x, x] = x,
B 2 [x, [y, z]] = [x, z],
B 3 [[x, y], z] = [x, z],
B 4 [f(x), f(y)] = [x, y],
C 1 d(f(x), f(y)) ≤ λ d(x, y), whenever [x, y] = y,
C 2 d(f−1(x), f−1(y) ≤ λ d(x, y), whenever [x, y] = x, whenever both sides of an

equation are defined.

Definition 1.2. [2] Two points x and y in X are stably (or unstably) equivalent if

lim
n→+∞

d(fn(x), fn(y)) = 0 (or lim
n→−∞

d(fn(x), fn(y)) = 0, resp.).

Let Xs(x) and Xu(x) denote the stable and unstable equivalence classes of x, respectively.

We recall that a factor map between two Smale spaces (Y, g) and (X, f) is a continuous
function π : Y → X such that π ◦ g = f ◦ π. Of particular importance in this paper are
factor maps which are s-bijective: that is, for each y in Y , the restriction of π to Y s(y) is
a bijection to Xs(π(y)). There is obviously an analogous definition of a u-bijective factor
map.[2]
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2 Main results

Suppose (X, f) and (Y, g) be irreducible Smale spaces and π : (X, f) → (Y, g) be an almost
one to one map, that is, there exists point y ∈ Y such that ♯π−1(y) = 1. In [1], the author
proves such map π can be decomposed as a composition of two resolving maps. In fact,
he shows there exist irreducible Smale spaces (X̃, f̃), (Ỹ , g̃) and factor maps α, β, π̃ such
that the diagram below is commutative.

(X̃, f̃)
π̃−→ (Ỹ , g̃)

α ↓ ↓ β

(X, f)
π−→ (Y, g)

Moreover, maps α, β are u-bijective and map π̃ is s-bijective.

In the following, we show that all maps α, β, π̃ are almost one to one.
To prove, we mention all notations, definitions, etc from [1] that we will briefly mention
some of them below.
i) y0 ∈ Y such that y0 is periodic point, ♯π−1(y0) = 1 and x0 ∈ X with π(x0) = y0.
ii) W = ∪∞

n=0V
u(fn(x0)) and π(W ) = ∪∞

n=0V
u(gn(y0)) that V u(t) denotes the unsta-

ble equivalence class of point t in the related space. We note that these unions are
finite, because x0 and y0 are periodic points. iii)Let y1, y2 be in π(W ) with y2 in
V s(y1, εY /2). A compatibility map from y1 to y2 is a map υ : π−1(y1) → π−1(y2) such that
ν(x) ∈ V s(x, εX/2) for all x in π−1(y1). iv)Two points y1, y2 in π(W ) are compatible,
if y2 in V s(y1, εY /2) and there are compatibility map from y1 to y2 and from y2 to y1

v)Metrics δX (δ0
X , δk

X) and δY (δ0
Y , δk

Y ) defined on W and π(W ), respectively. Spaces X̃,
Ỹ that are the completion of W and π(W ) with respect to δX and δY , respectively and
0 < r < (1 − λ) in definitions of δX and δY .

Definition 2.1. [1] For each positive integer k and y1, y2 ∈ π(W ),

δk
Y (y1, y2) = rkδ0

Y (g−k(y1), g
−k(y2)) and δY (y1, y2) =

∑∞
k=0 δk

Y (y1, y2).

Lemma 2.2. [1] 1) For all y1, y2 ∈ Y , δ0
Y (y1, y2) ≥ dY (y1, y2).

2)If y2 ∈ V u(y1, εY /2), then δ0
Y (y1, y2) = dY (y1, y2).

3) If y2 ∈ V u(y1, εY /2) and y1 and y2 are ρ-compatible, then δ0
Y (y1, y2) = dY (y1, y2).

4) If y2 ∈ V u(y1, εY /2), then δY (y1, y2) ≤ (1 − rλ)−1dY (y1, y2).

Lemma 2.3. [1] Let x1, x2 ∈ W . 1) If x2 ∈ V u(x1, ρX), then δ0
X(x1, x2) = dX(x1, x2).

2) If x2 ∈ V s(x1, ρX) and π(x1) and π(x2) are ρ-compatible, then δ0
X(x1, x2) = dX(x1, x2).

3) If x2 ∈ V u(x1, ρX), then δX(x1, x2) ≤ (1 − rλ)−1dX(x1, x2).

Lemma 2.4. [1] If yn is a sequence in π(W ) ∩ V s(y0, εy/2) converging to y0 with respect
to dY , then there is N ≥ 1 such that, for all n ≥ N , yn and y0 are ρ-compatible.

The proof of above lemma shows that y0 can be replaced by any point y ∈ π(W ) with
π−1(y) = 1 while we have still its result. Also we can obtain more result with these
conditions. In other words, we have:

Lemma 2.5. If y ∈ π(W ) with π−1(y) = 1 and yn is a sequence in π(W ) ∩ V s(y, εy/2)
converging to y with respect to dY , than yn convers to y with respect to δY .
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Proof. For a given 0 < ε < εY/2, we find Nε ∈ N such that for all n ≥ Nε, δY (yn, y) ≤ ε.
Suppose D is the diameter of metric space (Y, dY ). Since 0 < r < 1, therefore there is
Kε ∈ N such that

∞∑

k=Kε

rk ≤ ε

4
D. (1)

For k = 0, ..., Kε, there is 0 < δ ≤ ε such that for all y1, y2 ∈ Y :

dY (y1, y2) < δ ⇒
g−k[y1, y2] = [g−k(y1), g

−k(y2)] and dY (g−k(y1), g
−k(y2)) ≤ ε

4(Kε + 1)
. (2)

Let N ′ ∈ N such that for all n ≥ N ′, dY (yn, y) ≤ δ. Thererfore (2) implies for all
k = 0, ..., Kε and n ≥ N ′:

dY (g−k(yn), g−k(y)) ≤ ε

4(Kε + 1)
(3)

and

g−k(yn) = g−k[y, yn] = [g−k(y1), g
−k(y2)]. (4)

The first statement follows from yn ∈ V s(y, εY /2). But (4) means for all k = 0, ...,Kε

and n ≥ N ′: g−k(yn) ∈ V s(g−k(y), εY /2). Applying lemma (2.4) for each k = 0, ...,Kε,
we get Nk ≥ N ′ such that for all n ≥ Nk, g−k(yn) and g−1(y) are ρ-compatible. if
Nε = max{Nk : k = 0, ..., Kε}, then for all k = 0, ...,Kε and n ≥ Nε, g−k(yn) ∈
V s(g−k(y), εY /2) and g−k(yn) and g−k(y) are ρ-compatible. Therefore

δk
Y (yn, y) = rkδ0

Y (g−k(yn), g−k(y)) = rk dY (g−k(yn), g−k(y))

for all k = 0, ..., Kε and n ≥ Nε by the third part of lemma (2.2).
Finally (1), (3) and the definition of δY imply for all n ≥ Nε

δY (yn, y) =

∞∑

k=0

δk
Y (yn, y) =

Kε∑

k=0

δk
Y (yn, y) +

∞∑

k=Kε+1

δk
Y (yn, y)

=

Kε∑

k=0

rkδ0
Y (g−1(yn), g−1(y)) +

ε

4
≤

Kε∑

k=0

ε

4(Kε + 1)
+

ε

4
< ε.

Corollary 2.6. If y ∈ Y with π−1(y) = x, xn is a sequence in W ∩ V s(x, ρX) converging
to x with respect to dX , than there is N ≥ 1 such that, for all n ≥ N , π(xn) and π(x) are
ρ-compatible.

Corollary 2.7. If y ∈ π(W ) with π−1(y) = x, xn is a sequence in W ∩ V s(x, ρX) con-
verging to x with respect to dX , than xn convers to x with respect to δX .

Lemma 2.8. If y ∈ π(W ) with π−1(y) = 1 and ỹ ∈ Ỹ with β(ỹ) = y, then ỹ = y.
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Proof. We claim that for any ε > 0, δY (ỹ, y) < ε and this implies ỹ = y.

For simpility, we let
δY−→ and

dY−→ denote convergence in X̃ and X with respect to δY and
dY , respectivly. Since ỹ ∈ X̃ and X̃ is the completion of π(W ) with respect to δY , hence

we can choose yn ∈ π(W ) such that yn
δY−→ ỹ. Since [ỹ, yn]

δY−→ ỹ and [ỹ, yn] and yn have
the same convergence point, therefore we can find N1 ∈ N such that for all n ≥ N1

δY (ỹ, [ỹ, yn]) ≤ ε/6, δY ([ỹ, yn], yn) ≤ ε/6. (5)

On the other hand, according to the definition of β, y = β(ỹ) = β(lim yn) = lim yn, that

is, yn
dY−→ y that this implies [y, yn]

dY−→ y. Therefore by lemma 2.5, [y, yn]
δY−→ y. Let

N2 ∈ N such that for all n ≥ N2,

δY ([y, yn], y) ≤ ε/6 (6)

Also since both sequences {yn} and {[y, yn]} have the same convergence point in the space
(Y, g), we can choose N3 such that for all n ≥ N3, dY (yn, ([y, yn]) ≤ ((1 − rλ)ε)/6 and
yn ∈ V u([y, yn], εY /2). Therefore by the fourth part of lemma 2.2 for all n ≥ N3,

δY (yn, ([y, yn]) ≤ (1 − rλ)−1dY (yn, ([y, yn]) ≤ ε/6. (7)

Putting all (5), (6), (7), we see that for all n ≥ N = max{N1, N2, N3},

δY (ỹ, y) ≤
δY (ỹ, [ỹ, yn]) + δY ([ỹ, yn], yn) + δY (yn, [y, yn]) + δY ([y, yn], y)

≤ ε

6
+

ε

6
+

ε

6
+

ε

6
+

ε

6
< ε.

By the similar proof and corollaries 2.6 and 2.9, we can get the same result about α.

Lemma 2.9. If y ∈ π(W ) with π−1(y) = x, x̃ ∈ X̃ with α(x̃) = x, then x̃ = x.

So far, our results shows that if y ∈ Y with π−1(y) = x, then ♯β−1(y) = ♯α−1(π−1(y)) =
1. But these imply that ♯π̃−1(β−1(y)) = 1, because if π̃(x̃) = π̃(x̃′) = β−1(y), then

β◦π̃(x̃) = β ◦ π̃(x̃′) = y ⇒ π ◦ α(x̃) = π ◦ α(x̃′) ⇒
x̃, x̃′ ∈ α−1 ◦ π−1(y) = α−1(x) ⇒ x̃ = x̃′.

Finally these computations show that maps π ◦ α and β ◦ π̃ are almost one to one, too.
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Application of coupled fixed point theorems in partially

ordered sets to a boundary value problem of fractional order

Hossein Fazli,

Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran

Ebrahim Zamani∗

Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran

Abstract

In this paper, we discuss the existence and uniqueness of solutions for nonlinear
boundary value problem of differential equations of fractional order. Our analysis
relies on the coupled fixed point theorems in partially ordered metric spaces.

Keywords: Partially coupled fixed point, Caputo fractional differential equation,
Existence, Uniqueness.

Mathematics Subject Classification [2010]: 26A33, 34A08, 34A12.

1 Introduction

Fractional differential equations have attracted huge attention in the past few years be-
cause of their unique physical properties and their potential in the modeling of many
physical phenomena and also in various field of science and engineering [3, 2, 5]. During
last years, the study of such kind of problems have received much attention from both
theoretical and applied point of view. We will mention the following recent works on this
topic [3, 2, 5, 6, 7].

In this paper, we study the following boundary value problems (BVP) for fractional
differential equations involving the Caputo derivative

{
(Dα

∗ y)(x) = f(x, y(x)), (0 < α < 1, x ∈ [0, T ]),
ay(0) + by(T ) = c,

(1)

where Dα
∗ is the Caputo fractional derivative of order α, f : [0, T ] × R → R is a given

function satisfying some assumptions that will be specified later and a, b, c ∈ R are real
constants with a + b ̸= 0.

The existence of solutions for this kind of BVP has been studied by several authors,
see [2, 4]. We will present the new existence and uniqueness results for the fractional
BVP (1) using partially couple fixed point theorems. The advantage and importance of
this method arises from the fact that it is a constructive method that yields monotone
sequences that converge to the unique solution of BVP (1).
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2 Preliminaries

In this section we state some definitions and lemmas which are essential in our analysis.

Definition 2.1. ([2]). The Riemann-Liouville fractional integral of order α > 0 of a
function y : [0, T ] → R is defined by

Iαy(x) =
1

Γ(α)

∫ x

0
(x − t)α−1y(t)dt,

provided the right-hand side is defined for x ∈ [0, T ].

Definition 2.2. ([2]). The Caputo fractional derivative Dα
∗ y of order 0 < α ≤ 1 is defined

by

Dα
∗ y(x) = I1−αy′(x) =

1

Γ(1 − α)

∫ x

0
(x − t)−αy′(t)dt,

provided the right-hand side is defined for x ∈ [0, T ].

Now, we present the fixed point theorems which will be used later.
Bhaskar and Lakshmikantham [1] introduced the following notions of mixed monotone

mappings and coupled fixed points.

Definition 2.3. ([1]). Let (X, ≼) be a partially ordered set and F : X × X → X. The
mapping F is said to have the mixed monotone property if F (x, y) is monotone non-
decreasing in x and monotone non-increasing in y.

Definition 2.4. ([1]). An element (x, y) ∈ X × X is called a coupled fixed point of the
mapping F : X × X → X if

F (x, y) = x, and F (y, x) = y.

The main results of Bhaskar and Lakshmikantham in [1] are the following two coupled
fixed point theorems.

Theorem 2.5. ([1]). Let (X, ≼) be a partially ordered set and suppose there exists a
metric d on X such that (X, d) is a complete metric space. Let F : X × X → X be a
mapping having the mixed monotone property on X. Assume that there exists a k ∈ [0, 1)
with

d(F (x, y), F (u, v)) ≤ k

2
[d(x, u) + d(y, v)], for each x ≽ u and y ≼ v.

Suppose either F is continuous or X has the following property:
(i) if a non-decreasing sequence {xn} → x, then xn ≼ x for all n,
(ii) if a non-increasing sequence {yn} → y, then y ≼ yn for all n.
If there exist x0, y0 ∈ X such that

x0 ≼ F (x0, y0) and y0 ≽ F (y0, x0)

then F has a coupled fixed point in X.
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We define the following partial order on the product space X × X:

(x, y), (x̃, ỹ) ∈ X × X, (x, y) ≼ (x̃, ỹ) ⇔ x ≼ x̃, ỹ ≼ y.

Theorem 2.6. ([1]). In addition to the hypothesis of Theorem 2.5, suppose that for every
(x, y), (z, t) ∈ X × X, there exists an element (u, v) ∈ X × X that is comparable to (x, y)
and (z, t), then F has a unique coupled fixed point.

Theorem 2.7. ([1]). In addition to the hypothesis of Theorem 2.5, suppose that every
pair of elements of X has an upper bound or a lower bound in X. Then x = y.

3 Existence and Uniqueness

In this section, we will prove our main results.

Lemma 3.1. ([2]). The function y ∈ C[0, T ] is a solution of the BVP (1) if and only if
it is a solution of the nonlinear mixed Fredholm-Volterra integral equation

y(t) =
c

a + b
+

1

Γ(α)

∫ t

0

f(τ, y(τ))

(t − τ)1−α
dτ − 1

Γ(α)

b

a + b

∫ T

0

f(τ, y(τ))

(T − τ)1−α
dτ. (2)

Definition 3.2. An element (y, y) ∈ C[0, T ]×C[0, T ] is called a coupled lower and upper
solution of (1) if

y(t) ≤ c

a + b
+

1

Γ(α)

∫ t

0

f(τ, y(τ))

(t − τ)1−α
dτ − 1

Γ(α)

b

a + b

∫ T

0

f(τ, y(τ))

(T − τ)1−α
dτ,

and

y(t) ≥ c

a + b
+

1

Γ(α)

∫ t

0

f(τ, y(τ))

(t − τ)1−α
dτ − 1

Γ(α)

b

a + b

∫ T

0

f(τ, y(τ))

(T − τ)1−α
dτ,

for all t ∈ [0, T ].

Theorem 3.3. Assume that f : [0, T ]×R → R be a function such that f(t, y(t)) ∈ C[0, T ]
for every y ∈ C[0, T ] and there exists λ > 0 such that 0 ≤ f(t, y(t)) − f(t, ỹ(t)) ≤
λ(y(t) − ỹ(t)) for all y(t) ≥ ỹ(t) on [0, T ]. Then the existence of a coupled lower and
upper solution of (1) provides the existence unique solution of (1).

Proof. We choose 0 < δ < T such that the inequality λδα

Γ(α+1) < 1
2 holds. Now we define

F : C[0, δ] × C[0, δ] → C[0, δ] by

F (x, y)(t) =
c

a + b
+

1

Γ(α)

∫ t

0

f(τ, x(τ))

(t − τ)1−α
dτ − 1

Γ(α)

b

a + b

∫ T

0

f(τ, y(τ))

(T − τ)1−α
dτ.

First, we know from [2, Theorem 6.1 in §6.1] if (x, y) ∈ C[0, δ] × C[0, δ], then F (x, y) ∈
C[0, δ]. We now show that all the conditions of Theorem 2.5 are satisfied. For every
x, x̃ ∈ C[0, δ], we define x ≼ x̃ if and only if x(t) ≤ x̃(t) for all t ∈ [0, δ]. Furthermore, we
now (C[0, δ], d) is a complete metric space with d(x, x̃) = ∥x−x̃∥ = supt∈[0,δ] |x(t)−x̃(t)|. It
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is easy to see that F is mixed monotone map. Now, for x, y, x̃, ỹ ∈ C[0, δ] with x ≽ x̃, y ≼ ỹ,
we have

∥F (x, y) − F (x̃, ỹ)∥ =

∥∥∥∥
1

Γ(α)

∫ t

0

f(τ, x(τ)) − f(τ, x̃(τ))

(t − τ)1−α
dτ

+
1

Γ(α)

b

a + b

∫ T

0

f(τ, ỹ(τ)) − f(τ, y(τ))

(T − τ)1−α
dτ.

∥∥∥∥

≤ λδα

Γ(α + 1)
∥x − x̃∥ +

λδα

Γ(α + 1)

|b|
|a + b|∥y − ỹ∥

≤ λδα

Γ(α + 1)
(∥x − x̃∥ + ∥y − ỹ∥)

This proves that F satisfies the corresponding hypothesis in Theorem 2.5. The uniqueness
of solution comes from the application of Theorems 2.6 and 2.7.
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Solution of Volterra-Fredholm Equations
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Abstract

In this article, the chebyshev collocation method is presented for the solutions
of Volterra-Fredholm integral equations. This method is based on approximating
unknown function with shifted Chebyshev polynomials. The method is using a simple
computations manner to obtain a quite acceptable approximate solution. We also get
an upper bound for the error of this algorithm. Finally, one example is presented to
show the applicability of our method with compare to the four well known algorithms
in the literature

Keywords: shifted Chebyshev polynomials, Volterra-Fredholm integral equations,
Numerical method

Mathematics Subject Classification [2010]: 45GXX, 65M12, 45BXX, 45DXX,
65RXX

1 Introduction

In recent years, many different basic functions have used to estimate the solution of linear
and nonlinear Volterrae-Fredholm integral equations. Our aim in this article is to pro-
pose a method to approximate solution of a class of Volterra-Fredholm integral equations
on the interval [0, 1] by using the shifted Chebyshev polynomials. The problems under
consideration are nonlinear Volterra-Fredholm integral equations defined as follows:

m∑

j=0

(Aj (x) y (x) + Bj (x) y (h (x))) =f (x)

+ λ1

∫ x

0
k1 (x, t) y (t) dt

+ λ2

∫ 1

0
k2 (x, t) y (h (t)) dt, (1)

wherek1 (x, t) and k2 (x, t) are known kernel functions on the interval [0, 1] × [0, 1] also
u(x) and f(x) are known functions defined on the interval [0, 1] and 0 ≤ h (x) < ∞. y (x).
is unknown function and λ1, λ2 are real constants such that λ1

2 +λ2
2 ̸= 0.. When h(x) is
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a first-order polynomial, Eq. (1) is a functional integral equation with proportional delay.
Recently, numerical methods such as Taylor collocation method [1], Taylor polynomial
method [2], Lagrange collocation method [3] and Legendre collocation method [4] for solv-
ing differential, integral and integro differential equations have attracted much attention.
In this article, we will apply an elegant way named the shifted Chebyshev collocation
method to approximate solution of this equation. Our presented method is based on the
discretization of the integral equations (1) and then using the shifted Chebyshev colloca-
tion. Also an upper bound in order to show the error incurred by using this method will
be given. The obtained upper bound confirmed the convergence of this algorithm. Finally,
we apply this method to an example to show the e fficiency of this algorithm.

2 The Chebyshev approximation and Basic concepts

In this section, we will introduce the shifted Chebyshev collocation method and explain
some required Definitions, Theorems and Lemmas.

Definition 2.1 (5). The Chebyshev polynomials of the first kind with orthogonality
property in interval [−1, 1] are defined as follows

Tn+1 (x) = 2xTn (x) − Tn−1(x), n = 1, 2, 3, . . . , (2)

where, T0 (x) = 1 and T1 (x) = x.

The orthogonality property of this polynomials is given as

∫ 1

−1
Tn (x) Tm (x)w (x) dx =





0 if n ̸= m,
π if n = m = 0,
π
2 if n = m ̸= 0,

where, w (x) = 1√
1−x2

is the weight function.

In order to express the whole analysis in the interval [0, 1], we first replace x by
2x − 1 in the Chebyshev polynomial recurrence relation as defined in Eq. (2) and then,
the so-called shifted Chebyshev polynomials of degree n will be defined as

Cn+1 (x) = Tn+1(2x − 1), 0 ≤ x ≤ 1,

where, Cn(x) are the shifted Chebyshev orthonormal polynomials in the interval [0,
1]. The orthogonality property of shifted Chebyshev polynomials is given by

∫ 1

0
Ci (x) Cj (x) w (x) =

{
0 if i ̸= j,
1 if i = j.

A function y(x) ∈ L2[0, 1], may be expressed in terms of shifted Chebyshev polynomials
as

y (x) = lim
i→∞

∞∑

i=0

aiCi(x), (3)

where, ai = ⟨y, Ci⟩w and ⟨ , ⟩w is the standard inner product on L2 [0, 1] with respect to
the weight function w (x) = 1√

1−(2x−1)2
. Cj(x) denotes the shifted Chebyshev polynomials

of the first kind, ai are unknown shifted Chebyshev coefficients and n is any chosen positive
integer.
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3 Description of the method

In this section, we approximate solution of this equation by using the shifted Chebyshev
polynomials. Besides the convergence analysis of the presented method will also be dis-
cussed. To approximate y(x) in Eq. (1), substituting y(h(x)) instead of h(x) in this
equation, the integral equation (1) can be written as

m∑

j=0

(Aj (x)
n∑

i=0

aiCi (x) + Bj (x)
n∑

i=0

aiCi (h(x))) = f (x)

+ λ1

∫ x

0
k1 (x, t) (

n∑

i=0

aiCi (x))dt

+ λ2

∫ 1

0
k1 (x, t) (

n∑

i=0

aiCi (h(x)))dt. (4)

Replacing x with n + 1 roots of the shifted Chebyshev polynomial Cn+1(x), the unknown
coefficients ai can be computed.

Theorem 3.1. Suppose that Hk(0, 1) is a Sobolev space and y(x) ∈ Hk(0, 1). Let yn (x) =
n∑

i=0
aiCi (x) be the best approximation polynomial of y(x) in L2

w-norm and y′
n(x) =

∑n
i=0 a′

iCi (x)

be an approximate solution obtained by the proposed method, then one obtaion

∥y(x) − y′
n(x)∥ ≤ r1n

−k∥y(x)∥ + r2(n + 1)
1
2 n−(k−1), (5)

where r1 and r2 are positive constants. Also r2 is independent of n and r1 is dependent
on the selected norm and independent from y(x) and n.

Example 3.2. Consider the Volterra-Fredholm integral equation

x2y (x) + exy (2x) = f (x) +

∫ 2x

0
ex+ty(t)dt −

∫ 1

0
ex−2ty (2t) dt,

where

f (x) = −ex

4
− e−2+x

4
cos2 +

e3x

2
cos2x − e−2+x

4
sin2 + x2sinx + exsin2x − e3x

2
sin2x.

The exact solution is y(x) = sin x. Numerical results for this example are displayed
in Tables 2 and Figure 3. In Table 2, numerical results for value of ρn in methods 1, 2, 3
and 4 with n = 2, 5, 8 and 9 have been recorded.

Table 2: Comparison of errors for Example 2.

n Method 1 Method 2 Method 3 Method 4 Method 5

2 1.23 × 10−2 1.46 × 10−2 7.87 × 10−2 3.41 × 10−2 7.87 × 10−2

5 2.64 × 10−5 2.93 × 10−5 6.23 × 10−5 3.68 × 10−4 6.23 × 10−5

8 1.78 × 10−8 3.94 × 10−8 1.89 × 10−8 1.24 × 10−5 1.77 × 10−7

9 1.32 × 10−9 2.29 × 10−9 2.35 × 10−8 3.46 × 10−7 7.21 × 10−6
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(a) Plot of e2 (x) (b) Plot of e4 (x)

Figure 1: Plot of en (x) with n = 2 and 9 for Example 3.2.

4 Conclusion

In this paper, The shifted Chebyshev collocation method as a reliable algorithm was
presented for solved a special class of Volterra-Fredholm integral equations. In this method
we approximate unknown function with shifted Chebyshev polynomials. It was found that
the proposed method had very satisfactory stability properties, as n increases, the error
reduces initially and then finally stabilizes. The comparison results with other well known
methods showed that the presented method was a powerful tool for finding numerical
solutions of such equations. The convergence analysis of this algorithm was discussed and
numerical examples supported our claims.
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Abstract

In this paper a heavy water reactor system has been studied by using dynamical
techniques and numerical continuation algorithms. First, we obtain equilibrium point
of the system and then we determine codim 1 and codim 2 bifurcation points and
their corresponding critical normal form coefficients by using numerical techniques
implemented in Matlab software Matcont. We also compute several bifurcation curves
including a curve of hopf points and limit cycles.

Keywords: bifurcations of equilibrium points, limit cycles, normal form

Mathematics Subject Classification [2010]: 34C23, 34K18

1 Introduction

We consider a heavy water reactor system, which is given by a planer system of differential
equation [?]

Y :





dx1

dt
= −x1(t) + x2(t) + avx4(t) + afx3(t)x1(t) + avx4(t)x1(t)

dx2

dt
= b(x1(t) − x2(t))

dx3

dt
= p(x1(t) − x3(t))

dx4

dt
= qx3(t)

(1)

where x1, x2, x3 and x4 variable are the fluctuations in neutron density, delayed neutron
precursor density, average fuel temperature and coolant void fraction respectively around
their steady state values. Non-dimensional time in the model is represented by t. The af

and av are linearly proportional to the fuel temperature coefficient of reactivity and void
coefficient reactivity respectively while b, p and q represents the combination of neutron
generation time, delayed neutron fraction, heat capacities, coolant temperature. We study
this system based on the theory of bifurcations and computing bifurcation diagram and
computing curve of different codim 1 bifurcations. We show that for some parameters an
equilibrium point undergoes to a limit point bifurcation and a hopf bifurcation. We study
complicated behaviors of the system such as codim 1 bifurcation points and curve limit
cycles by MATCONT[?].
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Definition 1.1. Consider a general autonomous vector field

x
′
= f(x, α) (2)

x ∈ ℜn and α ∈ ℜm An equilibrium solution of (??) is a point x
′ ∈ ℜn such that f(x

′
) =

0. The appearance of a topologically nonequivalent phase portrait under variation of
parameters is called a bifurcation. The Hopf bifurcation occur when the pair of conjugate
eigenvalues crosses the imaginary axis transversally. The Hopf point is the point at which
the system losses its stability via Hopf bifurcation.[?]

2 Main results

To reveal more complicated behaviors of the system we use numerical approach based on
numerical continuation method by fixing all the parameters, except one which is called
bifurcation parameter. First we fix the parameters p = 0.0522, q = 0.039, v = −218.83,
b = 0.0055 and consider f = −7.211 as bifurcation parameter and consider the equilibrium
E0 = (0, 0, 0, 0). Now we use the software MATCONT [?], to compute a curve of equilibria
by starting from E0. This curve along with two codim 1 bifurcations are depicted in Fig.1.
The numerical results are given as:

label = H , x = ( 0.000000 0.000000 0.000000 0.000000 -7.211729 )

First Lyapunov coefficient = 3.420757e-007

The first lyapunov coefficient at the hopf point is positive which indicates that the hopf
point is supercritical. This means that the limit cycles bifurcating from the hopf point is
stable.
In Fig.2 two orbits of the system are depicted. One convergent to E0 (red color) and other
one (blue color) diverge from E0.
We choose the hopf point as initial point and consider f and b as free parameters and
compute a curve of hopf point is presented in Fig.3.

label = GH, x = ( 0.000000 0.000000 -0.000000 0.000000 -7.211701 0.005498 0.423149 )

l2=1.130002e-001

label = ZH, x = ( -0.000000 0.000000 -0.000000 0.000000 -7.110994 0.000000 0.423394 )

Degenerate Zero-Hopf

Zero-Neutral Saddle

label = HH, x = ( 0.000000 0.000000 0.000000 -0.000000 -8.110977 -1.052200 0.926567 )

We detected some codim 2 bifurcations on the hopf curve along with computation of
their normal forms. A generalized hopf bifurcation and a zero hopf bifurcation and hopf-
hopf bifurcation abserved in the hopf curve. The generalized hopf point represents the
transition point from subcritical to supercritical hopf bifurcation.
We also compute a curve of limit cycle by straining for the hopf point. The numerical
results are given as fallows and the curve of limit cycle is depicted in Fig.4.

Limit point cycle (period = 9.659212e+000, parameter = -7.211729e+000)

Normal form coefficient = 4.274562e-005

Neimark-Sacker (period = 1.073440e+001, parameter = -7.370698e+000)
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We detected a Neimark-Sacker bifurcation along the curve of limit cycles. This bifur-
cation occurs when one pair of complex multiplier crosses the unit circle.

Figure 1: A equilibrium curve

Figure 2: orbit curve

Figure 3: A Hopf curve
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Figure 4: A limit cycle
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Abstract

In this work, the new (F/G)-expansion method is proposed for obtaining traveling
wave solutions of non linear evolution equations. This method is more powerful than
the method (G

′
/G)-expansion method. The efficiency of the method is demonstrated

on a variety of nonlinear PDEs such as, Zoomeron equation. As a result, more travel-
ing wave solutions are obtained including not only all the known solutions but also the
computation burden is greatly decreased compared with the existing method. Abun-
dant exact traveling wave solutions of these equations are expressed by the hyperbolic
functions the trigonometric functions.

Keywords: (F/G)-expansion method, Traveling wave solutions,Zoomeron equation,
Exact solutions.

Mathematics Subject Classification [2010]: 35A09, 35A25,

1 Introduction

Nonlinear partial differential equations (NLPDEs) have been widely applied in many
branches of applied sciences such as fluids dynamics, bio-mechanics and chemical physics
etc.The solutions of nonlinear equations play a crucial role in applied mathematics and
physics, because; solutions of nonlinear partial differential equations provide a very sig-
nificant contribution to people about the exact solutions of nonlinear evolution equations
have been established and developed, such as the sub-ODE method [1],the homogeneous
balance method [2] and so on.

Recently, Wang et al. [3] interoduced a new direct method called the (G
′
/G)-expansion

method. Motivated by work in [3], the main purpose of this paper is to introduce a
new technique called (F/G)-expansion method is that the traveling wave solutions of a
nonlinear evolution equation can be expressed by a polynomial in (F/G), where G = G(ξ)
and F = F (ξ) satisfy the first order linear ordinary differential system (FLODS) as
follows: F

′
(ξ) = λG(ξ), G

′
(ξ) = µF (ξ), where µ, λ are constants. This new method will

play an important role in expressing the traveling wave solutions for Zoomeron equation.
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2 Description of the (F/G)-expansion method

Suppose that a nonlinear equation is given by

p(u, ut, ux, utt, uxx, uxt, . . .) = 0, (1)

where u = u(x, t) is an unknown function and p is a polynomial in u(x, t) and its partial
derivatives, in which the highest order derivatives and nonlinear terms are involved. In
the following we give the main steps of the (F/G)-expansion method.
Step 1. Combining the independent variables x and t into one variable ξ = x − wt, we
suppose that

u(x, t) = u(ξ), ξ = x − wt, (2)

where w is a nonzero constant. The traveling wave variable ξ permits us to reducing Eq.
(1) to an ODE for u = u(ξ),

p(u, u
′
, u

′′
, u

′′′
, . . .) = 0. (3)

Step 2. Suppose that the solution of ODE Eq. (3) can be expressed by a polynomial in
(F/G) as follows:

u(ξ) =
m∑

i=0

ai(
F

G
)i, (4)

where G = G(ξ) and F = F (ξ) satisfy the FLODS in the form

F
′
(ξ) = λG(ξ), G

′
(ξ) = µF (ξ). (5)

a0, a1, · · · , am, λ and µ are constants to be determined later, am ̸= 0. The positive integer
m can be determined by considering the homogeneous balance between the highest order
derivatives and nonlinear terms appearing in ODE equation (3).
with the aid of (5), we can find the following solutions F (ξ) and G(ξ), which are listed as
follows:

Case 1. If λ > 0 and µ > 0, then equation (5) has the following hyperbolic function
solutions:





F (ξ) = C1 cosh(
√

λ
√

µξ) + C2

√
λ√
µ

sinh(
√

λ
√

µξ),

G(ξ) = C1

√
µ√
λ

sinh(
√

λ
√

µξ) + C2 cosh(
√

λ
√

µξ).

(6)

Case 2. If λ < 0 and µ < 0, then (5) has the following hyperbolic function solutions:





F (ξ) = C1 cosh(
√

−λ
√−µξ) − C2

√
−λ√−µ

sinh(
√

−λ
√−µξ),

G(ξ) = −C1

√−µ√
−λ

sinh(
√

−λ
√−µξ) + C2 cosh(

√
−λ

√−µξ).

(7)

Case 3. If λ > 0 and µ < 0, then Eq. (5) has the following trigonometric function
solutions:
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F (ξ) = C1 cos(
√

λ
√−µξ) + C2

√
λ√−µ

sin(
√

λ
√−µξ),

G(ξ) = −C1

√−µ√
λ

sin(
√

λ
√−µξ) + C2 cos(

√
λ
√−µξ).

(8)

Case 4. If λ < 0 and µ > 0, then Eq. (5) has the following trigonometric function
solutions:





F (ξ) = C1 cos(
√

−λ
√

µξ) − C2

√
−λ√
µ

sin(
√

−λ
√

µξ),

G(ξ) = C1

√
µ√

−λ
sin(

√
−λ

√
µξ) + C2 cos(

√
−λ

√
µξ).

(9)

Step 3. Substituting (4) and (5) into equation (3) separately yields a set of algebraic
equations for (F/G)i(i = 1, 2, . . . ,m). Setting the coefficients of (F/G)i to zero yields a
set of nonlinear algebraic equations in ai(i = 0, 1, . . . , m) and w. Solving the nonlinear al-
gebraic equations by Maple and Mathematica, we obtain many exact solutions of equation
(1) according to equation (2) to (9).

3 Application to the Zoomeron equation

In this section, we will apply the (F/G)-expansion method to construct the traveling
solutions for Zoomeron equation

(
uxy

u
)tt − (

uxy

u
)xx + 2(u2)xt = 0, (10)

where u(x, y, t) is the amplitude of the relevant wave mode. We know that this equation
was introduced by Calogero and Degasperis [4]. The travelig wave variable below,

u(x, y, t) = u(ξ), ξ = x − cy − wt, (11)

permits us to convert (10) into an ODE for u(x, y, t) = u(ξ) in the form

c(1 − w2)u
′′ − 2wu3 − Ru = 0, (12)

where R is a constant of integration and w ̸= {0, 1}.
By balancing between u

′′
with u3 in equation (12),we get m = 1. Consequently, we get

u(ξ) = a0 + a1(
F

G
) a1 ̸= 0, (13)

where a0, a1 are constants to be determined later.

By substituting (13) into (12), collecting the coefficients of each power of (
F

G
), and

solve the system of algebraic equations using Maple, we obtain the set of solution:

a0 = 0, a1 =

√
c(1 − w2)

w
, R = 2cw2µλ − 2cλµ. (14)
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Substituting (14) into (15) we can obtain four types of traveling wave solutions of the
Zoomeron equation (10) as follows:
When λ > 0 and µ > 0, we obtain the hyperbolic function solutions

u1(x, y, t) =

√
c(1 − w2)

w




C1 cosh(
√

λ
√

µξ) + C2

√
λ√
µ

sinh(
√

λ
√

µξ)

C1

√
µ√
λ

sinh(
√

λ
√

µξ) + C2 cosh(
√

λ
√

µξ)


 , (15)

where ξ = x − cy − wt, C1 and C2 are arbitrary constants.
Other cases of λ and µ are calculate based on equations (7) to (9).

4 conclusion

In this paper, (F/G) -expansion method is used to obtain more general exact solution of the
Zoomeron equation. The advantages of the (F/G) -expansion method is that it is possible
to obtain mor travelling wave solutions with distinct physical structures. Form our results,
some results previousl known as traveling wave solutions and soliton-like solutions can be
recovered. Moreover, the proposed method is capable of greatly can be minimizing the size
of computational work compared to the existing technique. Finally, it is worth to mention
that the implementation of this proposed method is very simple and straightforward.
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Existence and uniqueness of positive solutions for a class of

singular nonlinear fractional differential equations with

integral boundary value conditions

Sayyedeh Zahra Nazemi∗

Azarbaidjan Shahid Madani University

Abstract

In this paper, we prove the existence and uniqueness of positive solutions for the
following singular nonlinear fractional boundary value problem

cDαu(t) + f(t, u(t), u(t), u(t)) = 0, 0 < t < 1,

u(0) = u′′(0) = u′′′(0) = 0, u′(0) + u′(1) = λ

∫ 1

0

u(s)ds,

where 3 < α ≤ 4, 0 < λ < 4, cDα is the Caputo fractional derivative and f :
(0, 1] × [0,∞) × [0,∞) × [0,∞) → [0,∞) is continuous, limt→0+ f(t, ., ., .) = +∞ (
i.e. f is singular at t = 0). Our analysis is based on a tripled fixed point theorem
in partially ordered metric spaces. An example is presented to illustrate the main
results.

Keywords: Caputo fractional derivative, Positive solutions, Singular fractional equa-
tions, Fixed point
Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Fractional calculus is an extended concept of integral ones and fractional differential equa-
tions are widely used in various fields of sciences. There are some papers dealing with the
existence of positive solutions for nonlinear fractional differential equations, see ([1], [2],
[3], [4], [5]).

In this paper, we investigate the existence and uniqueness of positive solutions for the
following singular nonlinear fractional boundary value problem





cDαu(t) + f(t, u(t), u(t), u(t)) = 0, 0 < t < 1,

u(0) = u′′(0) = u′′′(0) = 0, u′(0) + u′(1) = λ

∫ 1

0
u(s)ds,

(1)

where 3 < α ≤ 4, 0 < λ < 4, cDα is the Caputo fractional derivative and f : (0, 1] ×
[0,∞) × [0,∞) × [0,∞) → [0,∞) is continuous, limt→0+ f(t, ., ., .) = +∞ ( i.e. f is
singular at t = 0).

Our analysis is based on a new tripled fixed point theorem in partially ordered metric
spaces.
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2 Preliminaries

In this section we introduce preliminary facts and some basic results, which are used
throughout this paper.

Lemma 2.1. Let 3 < α ≤ 4 and λ ̸= 4 and y ∈ C(0, 1], then the unique solution of the
problem 




cDαu(t) + y(t) = 0, 0 < t < 1,

u(0) = u′′(0) = u′′′(0) = 0, u′(0) + u′(1) = λ

∫ 1

0
u(s)ds

is u(t) =

∫ 1

0
G(t, s)y(s)ds, where G(t, s) is the Green’s function defined as

G(t, s) =





2t[α(α−1)(1−s)α−2−λ(1−s)α]−α(4−λ)(t−s)α−1

Γ(α+1)(4−λ) , 0 ≤ s ≤ t ≤ 1,

2t[α(α−1)(1−s)α−2−λ(1−s)α]
Γ(α+1)(4−λ) , 0 ≤ t ≤ s ≤ 1.

Lemma 2.2. By assumption that λ ∈ [0, 4), the function G(t, s) defined in Lemma 2.1 is
a continuous function and G(t, s) ≥ 0, for all t, s ∈ [0, 1].

Definition 2.3. ([5]) Let X be a nonempty set and F : X ×X ×X → X be a map. An
element (x, y, z) ∈ X ×X ×X is called a tripled fixed point of F if

F (x, y, z) = x, F (y, z, x) = y, F (z, x, y) = z.

Theorem 2.4. ([6]) Let (X,≤) be a partially ordered set and d be a metric on X such
that (X, d) is a complete metric space. Assume there exist nondecreasing functions ψi :
[0,∞) → [0,∞), i = 1, 2, 3 such that ψ = ψ1 + ψ2 + ψ3 is convex, ψ(0) = 0 and
limn→∞ ψn(t) = 0 for each t > 0. Let F : X × X × X → X be a mapping which is
nondecreasing in each of its variables and satisfying

d(F (x, y, z), F (u, v, w)) ≤ ψ1(d(x, u)) + ψ2(d(y, v)) + ψ3(d(z, w)),

for each x ≥ u, y ≥ v, z ≥ w.
Suppose either
(a) F is continuous;

Or
(b) if a nondecreasing sequence (xn, yn, zn) → (x, y, z), then (xn, yn, zn) ⪯ (x, y, z), for

all n ∈ N.
If there exist x0, y0, z0 ∈ X with

x0 ≤ F (x0, y0, z0), y0 ≤ F (y0, z0, x0) and z0 ≤ F (z0, x0, y0),

then there exist x̄, ȳ, z̄ ∈ X such that F (x̄, ȳ, z̄) = x̄, F (ȳ, z̄, x̄) = ȳ, F (z̄, x̄, ȳ) = z̄.
Furthermore,

if for each (x, y, z), (r, s, t) ∈ X ×X ×X, there exists (u, v, w) ∈ X ×X ×X that is
comparable to (x, y, z) and (r, s, t), then the tripled fixed point (x̄, ȳ, z̄) of F is unique and
x̄ = ȳ = z̄.
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3 Main results

In this section, we establish the existence and uniqueness of positive solutions for the
singular nonlinear fractional boundar value problem (1).

Lemma 3.1. Let 0 < σ < 1, 3 < α ≤ 4 and F : (0, 1] → R is continuous function
with limt→0+ F (t) = ∞. Suppose that tσF (t) is a continuous function on [0, 1]. Then the
function defined by

H(t) =

∫ 1

0
G(t, s)F (s)ds

is continuous on [0, 1], where G(t, s) is the Green function appearing in Lemma 2.1.

Definition 3.2. We say that (α, β, γ) ∈ C([0, 1]) × C([0, 1]) × C([0, 1]) is a tripled lower
solution of the problem (1) if

α(t) ≤
∫ 1

0
G(t, s)f(s, α(s), β(s), γ(s))ds, ∀t ∈ [0, 1],

β(t) ≤
∫ 1

0
G(t, s)f(s, β(s), γ(s), α(s))ds, ∀t ∈ [0, 1],

γ(t) ≤
∫ 1

0
G(t, s)f(s, γ(s), α(s), β(s))ds, ∀t ∈ [0, 1].

Theorem 3.3. Let 0 < σ < 1, 3 < α ≤ 4, f : (0, 1] × [0,∞) × [0,∞) × [0,∞) → [0,∞)
is continuous, limt→0+ f(t, ., ., .) = ∞ and tσf(t, x, y, z) is continuous on [0, 1] × [0,∞) ×
[0,∞) × [0,∞). Assume that there exists 0 < η ≤ Γ(α−σ+2)(4−λ)

2[(α−σ+1)(α−σ)−λ]Γ(1−σ) such that for all

x, y, z, u, v, w ∈ [0,∞) with x ≥ u, y ≥ v, z ≥ w and all t ∈ [0, 1], we have

0 ≤ tσ
(
f(t, x, y, z) − f(t, u, v, w)

)
≤ η[ψ1(x− u) + ψ2(y − v) + ψ3(z − w)],

where ψi : [0,∞) → [0,∞), i = 1, 2, 3 are nondecreasing functions such that ψ =
ψ1 +ψ2 +ψ3 is convex, ψ(0) = 0 and limn→∞ ψn(t) = 0 for each t > 0. Then the existence
of a tripled lower solution for the problem (1) provides the existence of a unique positive
solution for the problem (1) in C[0, 1].

4 Example

Example 4.1. Consider the following singular fractional boundary value problem.




cD
7
2u(t) +

(t− 1
2
)2e−t

√
t(9+et)

[
cos2 t√
1+t2

+ αu(t) + β u(t)
1+u(t) + γ(u(t) − ln(1 + u(t)))

]
= 0,

u(0) = u′′(0) = u′′′(0) = 0, u′(0) + u′(1) = 8 cos(1)
e2+1

∫ 1

0
u(s)ds,

(2)

where α, β, γ > 0 and α+ β + γ < 1.

In this case, f(t, x, y, z) =
(t− 1

2
)2e−t

√
t(9+et)

[
cos2 t√
1+t2

+αx+β y
1+y +γ(z− ln(1+z))

]
, for (t, x, y, z) ∈

(0, 1] × [0,∞) × [0,∞) × [0,∞). Note that f is continuous on (0, 1] × [0,∞) × [0,∞) ×
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[0,∞) and limt→0+ f(t, ., ., .) = +∞. Moreover, σ = 1
2 , α = 7

2 and λ = 8 cos(1)
e2+1

. For all
x, y, z, u, v, w ∈ [0,∞) with x ≥ u, y ≥ v, z ≥ w and t ∈ [0, 1], we have

0 ≤ t
1
2

(
f(t, x, y, z) − f(t, u, v, w)

)

=
(t− 1

2)2e−t

9 + et

[
α(x− u) + β(

y

1 + y
− v

1 + v
) + γ

(
(z − w) − (ln(1 + z) − ln(1 + w))

)]

≤ 1

40

[
α(x− u) + β(y − v) + γ

(
(z − w) − ln(1 +

z − w

1 + w
)

)]

≤ 1

40

[
α(x− u) + β(y − v) + γ(z − w)

]
= η

[
ψ1(x− u) + ψ2(y − v) + ψ3(z − w)

]
,

where, η = 1
40 . It is easily to checked that ψi (i = 1, 2, 3) is nondecreasing and ψ =

ψ1 + ψ2 + ψ3 is convex, ψ(0) = 0 and limn→∞ ψn(t) = 0, for each t > 0. Note that
(α = 0, β = 0, γ = 0) is a tripled lower solution of the problem (2) and

η =
1

40
<

Γ(α− σ + 2)(4 − λ)

2[(α− σ + 1)(α− σ) − λ]Γ(1 − σ)
≃ 1.6547.

Finally, by Theorem 3.3, problem (2) has a unique positive solution.
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Existence of nontrivial solutions for a nonlocal elliptic system

of p-Kirchhoff type with nonlinear boundary conditions

Seyyed.Hashem. Rasouli

University of Technology, Babol

Atefe. Goli ∗

University of Technology, Babol

Abstract

This paper is concerned with the existence of nontrivial solutions to a class of
p-Kirchhoff type systems under nonlinear boundary conditions. By Mountain Pass
Lemma, we establish conditions ensuring the existence of solutions for the system.

Keywords: p-Kirchhoff type system; Mountain Pass lemma; Nonlinear boundary
conditions.
Mathematics Subject Classification [2010]: 35J60; 35J20; 35J25

1 Introduction

In this paper we deal with the nonlocal elliptic system of the p-Kirchhoff type given by





−M
( ∫

Ω |∇u|pdx
)

∆pu = f1(x)|u|q−2u+ α
α+β |u|α−2u|v|β, x ∈ Ω,

−M
( ∫

Ω |∇v|pdx
)

∆pv = f2(x)|v|q−2v + β
α+β |u|α|v|β−2v, x ∈ Ω,

|∇u|p−2 ∂u
∂n = g(x, u), x ∈ ∂Ω,

|∇v|p−2 ∂v
∂n = h(x, v), x ∈ ∂Ω,

(1)

where M : R+ → R, is continuous function defined by M(s) = a + bsk, a, b > 0, k > 0,
∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator, α > 1, β > 1, 1 < p < q < α + β <

p∗ = Np
N−p and f1, f2 ∈ C(Ω̄) and g, h are Carathéodory functions.

Recently in [2], The authors studied the following system





−M
( ∫

Ω |∇u|pdx
)

∆pu = g(x)|u|q−2u+ α
α+β |u|α−2u|v|β, x ∈ Ω,

−M
( ∫

Ω |∇v|pdx
)

∆pv = h(x)|v|q−2v + β
α+β |u|α|v|β−2v, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(2)
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The goal of our study is to extend their results to nonlinear boundary conditions.
We make the following assumptions to state our main result:

(H1) There exist C > 0, such that

Φ(u, v) ≤ 1

r

∂

∂t
Φ(tu, tv)|t=1 ≤ C(ur + vr)

where p < r < p∗ for all x ∈ ∂Ω and u, v ∈ R+.

(H2) there exist δ > 0, such that for 0 ≤ t ≤ δ, we have G(x, t) ≤ 0, H(x, t) ≤ 0.

(H3) there exist t0 ≥ 0, such that G(x, t0) > 0, H(x, t0) > 0.

(H4)lim|t|→∞
G(x,t)
|t|p = 0, uniformly for any x.

(H5)lim|t|→∞
H(x,t)
|t|p = 0, uniformly for any x.

Definition 1.1. Let X be a Banach space and I ∈ C1(X,R). We say that I satis-
fies the (PS)θ-condition if any sequence {un, vn} ⊂ X that {I(un, vn)} be bounded and
{I ′(un, vn)} −→ 0 as n −→∞, possesses a convergent subsequence.

Definition 1.2. A pair of functions (ϕ1, ϕ2) ∈ X is said to be a weak solutions of problem
(1) if for all (u, v) ∈ X

M
(∫

Ω
|∇u|pdx

)∫

Ω
|∇u|p−2∇u∇ϕ1dx+M

(∫

Ω
|∇v|pdx

)∫

Ω
|∇v|p−2∇v∇ϕ2dx

−
∫

Ω

(
g(x)|u|q−2uϕ1 + h(x)|v|q−2vϕ2

)
dx− α

α+ β

∫

Ω
|u|α−2u|v|βϕ1dx−

β

α+ β

∫

Ω
|u|α|v|β−2vϕ2dx

−
∫

∂Ω

(
g(x, u)ϕ1 + h(x, v)ϕ2

)
dx = 0,

Seeking a weak solution of problem (1) is equivalent to finding a critical point of the C1

functional

I(u, v) =
1

p
M̂
(∫

Ω
|∇u|pdx

)
+

1

p
M̂
(∫

Ω
|∇v|pdx

)
− 1

α+ β

∫

Ω
|u|α|v|βdx

− 1

q

∫

Ω

(
g(x)|u|q + h(x)|v|qdx

)
− Φ(u, v),

where

Φ(u, v) =

∫

∂Ω

(
G(x, u) +H(x, v)

)
dx,
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and M̂(t) =
∫ t

0 M(s)ds = at + b
k+1 t

k+1, G(x, u) =
∫ u

0 g(x, t)dt and H(x, v) =
∫ v

0 h(x, t).
Then

〈I ′(u, v), (ϕ1, ϕ2)〉

= M
( ∫

Ω
|∇u|pdx

) ∫

Ω
|∇u|p−2∇u∇ϕ1dx+M

( ∫

Ω
|∇v|pdx

) ∫

Ω
|∇v|p−2∇v∇ϕ2dx

− α

α+ β

∫

Ω
|u|α−2u|v|βϕ1dx−

∫

Ω
(g(x)|u|q−2uϕ1 + h(x)|v|q−2vϕ2)dx

− β

α+ β

∫

Ω
|u|α|v|β−2vϕ2dx−

∫

∂Ω

(
g(x, u)ϕ1 + h(x, v)ϕ2

)
dx.

As I is not bounded below on X, we consider the behaviors of I on the Nehari manifold

N = {(u, v) ∈ X 〈I ′(u, v), (u, v)〉 = 0}.

Theorem 1.3. (Mountain Pass Lemma). Let X be a real Banach space and I ∈ C1(X,R1)
satisfying (PS)θ-condition. Suppose

(L1) there are constants a, r > 0 such that for any (u, v) ∈ X that ‖(u, v)‖ = r, we have

I(u, v) ≥ a > 0;

(L2) there exists (u, v) ∈ X \ {(0, 0)} such that ‖(u, v)‖ > r and I(u, v) < 0;

Then I possesses a critical value as

C = inf
g∈Γ

max
t∈[0,1]

I(g(t)),

where
Γ = {g ∈ C([0, 1], X) : g(0) = 0, g(1) = e}.

Lemma 1.4. The Euler functional I is bounded from below on N.

Lemma 1.5. There are ρ, r0 > 0 such that I(u, v) ≥ r0 for ‖(u, v)‖ = ρ.

Lemma 1.6. There exists (u, v) ∈ X \ {(0, 0)} such that ‖(u, v)‖ > ρ and I((u, v)) < 0.

Lemma 1.7. There exists a (PS)θ-sequence {(un, vn)} ⊂ N for I.

Lemma 1.8. I satisfies the (PS)θ-condition in X.

Theorem 1.9. Let (H1) − (H4) hold. Then the problem (1) has at least one nontrivial
solution in X.
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2 Main results

Let X = W 1,p(Ω)×W 1,p(Ω) be the Sobolev space endowed with the norm

‖(u, v)‖ =
(∫

Ω
(|∇u|p + |∇v|p)dx

) 1
p

and |u|r denotes the norm in Lr(Ω), i.e.

|u|r =
(∫

Ω
|u|rdx

) 1
r
.

Following we consider the well-known inequality

(∫

Ω
|u|p∗dx

) 1
p∗ ≤ 1

S1/p

(∫

Ω
|∇u|pdx

) 1
p
, ∀u ∈W 1,p

0 ,

where, S is the best constant in the Sobolov embedding W 1,p(Ω) ↪→ Lp
∗
(Ω).

The base of our work is finding critical points by using the Mountain Pass Lemma ( see
[1] ).
By using the lemma1-4, we have that I is bounded from below on the Nehari manifold
N,and we define

θ = inf
(u,v)∈N

I(u, v).

Now, we complete the proof of Theorem 1.9. By proof of Lemmas 1.5-1.8 the conditions
of Mountain Pass Lemma are satisfied. Therefore, I has a nontrivial critical point as

C = inf
g∈Γ

max
t∈[0,1]

I(g(t)),

that
Γ = {g ∈ C([0, 1], X); g(0) = 0, g(1) = (t0u, t0v)}.

Then the problem (1) has a nontrivial solution and also lemma 1.5 implies that C is
positive.
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Mittag-Leffler identity for half-Hermite transform
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Abstract

In this paper in view of the Fourier series of a periodic function on interval (0,∞),
we obtain a Mittag-Leffler type identity for the half-Hermite transform of order n.

Keywords: Mittag-Leffler identity, Fourier series, Half-Hermite transform
Mathematics Subject Classification [2010]: 42A16, 44A.

1 Introduction and Preliminaries

We consider the periodic function f(x) and approximate it by a Fourier series with period
2T

f(x) =
a0
2

+
∞∑

n=1

[an cos(
2nπx

T
) + bn sin(

2nπx

T
)], (1)

where an and bn are the Fourier coefficients as follows

an =
1

T

∫ 2T

0
f(x) cos(

2nπx

T
)dx, n = 0, 1, 2, · · · , (2)

bn =
1

T

∫ 2T

0
f(x) sin(

2nπx

T
)dx, n = 1, 2, · · · . (3)

Related to the theory of integral transforms, by applying the suitable integral transform
on relation (1), the Mittag-Leffler identity can be written. For example, using the Laplace
transform this identity is obtained as [4]

a0
2s

+ T

∞∑

n=1

sTan + 2πnbn
s2T 2 + 4π2n2

=
1

1− e−sT
∫ T

0
e−suf(u), (4)

and using the Meijer transform, we get [3]

a0π

4s
+

∞∑

n=1

[
πTan

2
√
n2π2 + s2T 2

+
Tbn√

n2π2 + s2T 2
ln

(
nπ

Ts
+

√
n2π2

T 2s2
+ 1

)
] =

∫ T

0
f(x)[K0(sx) +

∫ ∞

0

1√
t2 + s2

e−xt

eTt − 1
dt]dx, (5)

where K0 is the modified Bessel function of second kind.

∗Speaker

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Mittag-Leffler identity for half-Hermite transform pp.: 1–3

312



2 Mittag-Leffler Identity

Now, in view of the Hermite function of order m

Hm(x) = (−1)ne−x
2 dm

dxm
(e−x

2
), (6)

and the half-Hermite Transform of order m [1]

He(f(x); s) =

∫ ∞

0
e−x

2
f(x)Hm(x)dx, (7)

we intend to get the associated Mittag-Leffler identity. For this purpose, first we as-
sume that f(x) satisfy the Dirichlet conditions with period T and apply the half-Hermite
transform on the function f(x), therefore we get

∫ ∞

0
e−x

2
Hm(x)f(x)dx =

∞∑

n=0

∫ (n+1)T

nT
e−x

2
Hm(x)f(x+ nT )dx

=

∫ T

0

∞∑

n=0

e−(u+nT )
2
Hm(u+ nT )f(u)du. (8)

At this point, by using the following integral representation for the Hermite function
Hm(x) [2, page 998]

Hm(u+ nT ) = 2−
m
2

m∑

k=0

(
m

k

)
Hm−k(u

√
2)Hk(nT

√
2), (9)

the relation (7) is changed to

∫ T

0

∞∑

n=0

e−(u
2+n2T 2+2unT )Hm(u+ nT )f(u)du =

∫ T

0

∞∑

n=0

e−(u
2+n2T 2+2unT )2−

m
2

m∑

k=0

(
m

k

)
Hm−k(u

√
2)Hk(nT

√
2) =

∫ T

0

∞∑

n=0

m∑

k=0

2−
m
2 e−u

2−n2T 2−2unT
(
m

k

)
Hm−k(u

√
2)Hk(nT

√
2)du. (10)

Also, by applying the half-Hermite transform on the left hand side of Fourier series (1),
we have (with period T )

He(f(x); s) =
∞∑

n=1

(
(−1)m2m−1π

1
2 (

nπ√
2T

)2me
− 1

2
( nπ√

2T
)2
an+(−1)m2m−

1
2π

1
2 (

nπ√
2T

)2m+1e
− 1

2
( nπ√

2T
)2
bn

)
,

(11)
where we used the following facts for the Hermite function [2, page 996]

∫ ∞

0
e−x

2
H2m+1(x) sin(

√
2αx)dx = (−1)m2m−

1
2π

1
2α2m+1e−

1
2
α2
, α > 0, (12)
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∫ ∞

0
e−x

2
H2m+1(x) cos(

√
2αx)dx = 0, α > 0, (13)

∫ ∞

0
e−x

2
H2m(x) cos(

√
2βx)dx = (−1)m2m−1π

1
2β2me−

1
2
β2
, β ≥ 0, (14)

∫ ∞

0
e−x

2
H2m(x) sin(

√
2βx)dx = 0, β ≥ 0. (15)

Finally, after evaluations the relation (11) and (10), we obtain the Mittag-Leffler identity
for the half-Hermite transform as follows

∞∑

n=1

(
(−1)m2m−1π

1
2 (

nπ√
2T

)2me
− 1

2
( nπ√

2T
)2
an + (−1)m2m−

1
2π

1
2 (

nπ√
2T

)2m+1e
− 1

2
( nπ√

2T
)2
bn

)
=

∫ T

0

∞∑

n=0

m∑

k=0

2−
m
2 e−u

2−n2T 2−2unT
(
m

k

)
Hm−k(u

√
2)Hk(nT

√
2)du. (16)
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Multisoliton Perturbation Theory for the Manakov Equation

Sajjad Eskandar∗

Vali-e-Asr University of Rafsanjan

Seyed Mohammad Hosseini

Vali-e-Asr University of Rafsanjan

Fatemeh Ahmadi zeidabadi

Vali-e-Asr University of Rafsanjan

Abstract

he effect of small perturbations on the collision of vector solitons in the Manakov
equations is studied in this paper. The evolution equations for the soliton parame-
ters (amplitude, velocity, polarization, position, and phases) throughout collision are
derived. The method is based on the completeness of the bounded eigenstates of the
associated linear operator in L2 space and a multiple-scale perturbation technique.

Keywords: Manakov equation, Soliton solution, IST method, Soliton perturbation
theory
Mathematics Subject Classification [2010]: 42.65.Tg, 41.20.Jb

1 Introduction

Nonlinear pulse propagation in optical fibers has been studied over 30 years. The idea
of using optical solitons as information bits in high-speed telecommunication systems was
first proposed in 1973, and then demonstrated experimentally in 1980.
In an ideal fiber, optical solitons can be modeled approximately by the nonlinear
Schrödinger (NLS) equation, whose solution behaviors are completely known. But in
reality, optical fibers are birefringent. Pulses travel at slightly different speeds along the
two orthogonal polarization axes. If the birefringence randomly varies along the fiber due
to bending, twisting, and the environmental perturbations, the pulses evolve according to
the Manakov equations with corrections caused by polarization mode dispersion.
The collision of vector solitons is critical in many optical switching devices and nonlinear
optical telecommunication networks. A rigorous analytical theory describing the collision
process has still been lacking. In this paper, we present such an analytical theory. We
study the collision of two vector solitons, based on the perturbed
Manakov equations:

iAt +Axx + (|A|2 + |B|2)A = εM(A,B, ∂x, ∂t), (1)

iBt +Bxx + (|A|2 + |B|2)B = εN(A,B, ∂x, ∂t). (2)

Here A and B are complex functions, and ε ≪ 1. When ε = 0 Eqs. (??-??) are the
integrable Manakov equations. Vector solitons collide with each other elastically, except
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that their polarizations may change after collision. If the incoming vector solitons have the
same or orthogonal polarizations, such change will not occur. When ε ≪ 1, Eqs. (??-??)
are the perturbed Manakov equations. Generally, all the soliton parameters will change
after collision.
In the present paper, we study the soliton collision in the perturbed Manakov equations.
Our mthod is based on the closure of the bounded eigenstates of the associated linear
operator and a direct perturbation technique. We first construct the exact two-soliton
solution of the Manakov equations by the Hirota method. Then, we employ this per-
turbation technique to the colliding vector solitons under perturbations, and derive the
evolution equations for the amplitudes, velocities, polarizations, positions, and phases of
the two colliding solitons. Integration of these evolution equations will give these soliton
parameters through out the collision. Such information is valuable for understanding the
collision process of vector solitons in the presence of perturbations.

2 Exact soliton solution for Manakov equation

When ε is zero, Eqs. (??-??) are the Manakov equations, which allow exact N-soliton
solutions. The one-soliton solution of the Manakov equations is given by

[
A
B

]
=

[
cos(θ)eiδ

sin(θ)e−iδ

]
eη

1 + eη+η∗ (3)

where

η = ax+ ia2t+ η0, (4)

a = r + iv, η0 = ξ0 + iζ0, (5)

and r, v, θ, δ, ξ0, and ζ0 are real constants. This soliton can be rewritten as
[
A
B

]
=

[
cos(θ)eiδ

sin(θ)e−iδ

] √
2rei{vx+(r2−v2)t+ζ0}sech{r(x− 2vt) + ξ0} (6)

We can see that it has amplitude
√

2r, velocity 2v, polarization θ, initial central position
−ξ0/r, in-phase constant ζ0, and opposite phase constant δ.

3 Colliding vector solitons under perturbation

When ε ≪ 1, the colliding soliton solution can be expanded into a perturbation series,

A = Ah(rk, vk, ξk, ζk, θk, δk, k = 1, 2) + εA1 + ε2A2 + · · · , (7)

B = Bh(rk, vk, ξk, ζk, θk, δk, k = 1, 2) + εB1 + ε2B2 + · · · (8)

where

ξk =

∫ t

0
rkvkdt+ ξk0, (9)

ζk =

∫ t

0
(r2k − v2

k)dt+ ζk0. (10)
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Due to the small perturbations, the soliton parameters rk, vk, ξk0, ζk0, θk, and δk will be
forced to vary. In the following, we derive the evolution equations for the soliton param-
eters throughout collision. The method we will use is based on the completeness of the
bounded eigenstates of the associated linear operator and a multiple-scale perturbation
procedure.
When Eqs. (??-??) are substituted into Eqs. (??-??), the zerothorder equations are triv-
ially satisfied since Ah and Bh are the exact soliton solutions of the Manakov equations.
At order ε, we get

LΦ = R−W, (11)

where

L = i∂t +

(
σ3

σ3

)
H, (12)

H =




2|Ah|2 + |Bh|2 A2
h AhB

∗
h AhBh

A∗2

h 2|Ah|2 + |Bh|2 A∗
hB

∗
h A∗

hBh

A∗
hBh AhBh 2|Ah|2 + |Bh|2 B2

h

A∗
hB

∗
h AhB

∗
h B∗2

h 2|Ah|2 + |Bh|2


H, (13)

which is a Hermitian matrix,

Φ = (A1, A
∗
1, B1, B

∗
1)T , (14)

R = (M,−M∗, N,−N∗)T , (15)

W =

2∑

k=1

{Ψrk
rkT + Ψvk

vkT + Ψξk
ξk0T + Ψθk

θkT + Ψδk
δkT }, (16)

Ψ = (Ah, A
∗
h, Bh, B

∗
h)T , (17)

Here, σ3 = diag(1,−1) is the third Pauli spin matrix, the subscript T is the derivative with
respect to the slow time εt, and the superscript T represents the transpose of a matrix.
Even though the linear operator L in Eq. (??) is a partial differential operator with
variable coefficients, Eq. (??) can still be solved. Here the key idea is to establish the
completeness of the bounded eigenstates of L in L2 space, and define an appropriate inner
product. We first study the null space of L. Recall that the soliton solution has 12 free
parameters. The derivatives of Ψ with respect to each of these parameters, i.e.,

{Ψ̃rk
, Ψ̃vk

,Ψξk
,Ψζk

,Ψθk
,Ψδk

, k = 1, 2} (18)

span the discrete subspace of this null space. Here,

Ψ̃rk
= Ψrk

− 2t(vkΨξk
− rkΨζk

), (19)

Ψ̃vk
= Ψvk

− 2t(rkΨξk
+ vkΨζk

). (20)

The continuous subspace consists of eigenfunctions Φc(x, t, λ), which are oscillatory at
infinity. Here the parameter λ is the wave number of the function at infinity, which
characterizes the continuous eigenfunction.
The above discrete and continuous eigenfunctions form a complete set. We define the
inner product as

(ψ1, ψ2) =

∫ ∞

−∞
ψ∗T

1

(
σ3

σ3

)
ψ2dx. (21)
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With respect to this inner product, we can easily find inner product between discrete and
continuous eigen-functions of L. we can show that the discrete and continuous eigenfunc-
tions in the null space of L are orthogonal to each other. Furthermore, the nonzero inner
products of the discrete eigenfunctions can be easily find.
Notice that the basis Ψ̃rk

and Ψ̃vk
have a secular term proportional to t. To avoid such

an undesirable behavior, we use instead the equivalent set

{Ψrk
,Ψvk

,Ψξk
,Ψζk

,Ψθk
,Ψδk

, k = 1, 2} (22)

which also spans the discrete subspace.
Now, we are ready to solve the linear equation (??) by expanding the solution Φ and the
forcing term R−W into this complete set of Ls eigen-functions:

Φ =
2∑

k=1

{c1kΨrk
+ c2kΨvk

+ c3kΨξk
+ c4kΨζk

+ c5kΨθk
+ c6kΨδk

}

+

∫
CλΦc(x, t, λ)dλ (23)

R−W =
2∑

k=1

{d1kΨrk
+ d2kΨvk

+ d3kΨξk
+ d4kΨζk

+ d5kΨθk
+ d6kΨδk

}

+

∫
DλΦc(x, t, λ)dλ (24)

Finally we can find evolution equations of soliton parameters as

rkt =
ε

4
(R,Ψζk

) (25)

vkt =
ε

4
(R,Ψξk

) (26)

ξkt = −2rkvk − ε

4
(R,Ψvk

) (27)

ζkt = r2k − v2
k − cos2θkδkt − ε

4
(R,Ψrk

) (28)

θkt =
4cosθkrkt − ε(R,Ψδk

)

8rksin2θk
, (29)

δkt =
ε(R,Ψθk

)

8rksin2θk
. (30)
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Abstract

In this paper we drive a uniform rational approximation for the Mittag-Leffler
function using the Chebyshev polynomials and asymptotic series. Next, we use this
approximation to find the solution of the fractional diffusion equation.

Keywords: Mittag-Leffler function, global rational approximation, Time- Fractional
Diffusion Equation

Mathematics Subject Classification [2010]: 26A33,33E12

1 Introduction and Preliminaries

The Mittag-Leffler functions arise naturally as the solution of fractional differential and

integral equations. The Mittag-Leffler function of order α is stated as the following series

[3]

Eα(x) =
∞∑

k=0

xk

Γ(1 + αk)
, (1)

where α is an arbitrary real number. For computational works, one have to truncate

the above series which yields truncated error cost in computation. So it is important to

substitute a good approximation instead of the Mittag-Leffler function expansion (1). The

Pade approximations for the Mittag-Leffler function are discussed in [4]. Atkinson et. al.

used both Taylor and asymptotic series to find good approximations for the Mittag-Leffler

function [1]. In this paper we introduce a new method based on [1] to approximate the

Mittag-Leffler function. In this method we substitute the Chebyshev polynomial expansion

instead of (1) to obtain a better approximation for Eα(−x) in two cases.

Case 1. Expanding Eα(−x) by the Chebyshev polynomials of the first kind. In this case we

have

Γ(1 − α)xEα(−x) = Γ(1 − α)x

m−2∑

k=0

akTk(x − 1) + O(xm) ≡ a(x) + O(xm), x ∈ [0, a].

(2)
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Also the Mittag-Leffler function admits the following asymptotic series:

Γ(1 − α)xEα(−x) = −Γ(1 − α)x
n∑

k=1

(−x)k

Γ(1 − αk)
+ O(x−n)

≡ b(x−1) + O(x−n), x −→ ∞. (3)

Now we want to find a rational approximation of the form

Γ(1 − α)xEα(−x) ≈ p(x)

q(x)
≡ p0 + p1x + · · · + pνx

ν

q0 + q1x + · · · + qνxν
. (4)

The problem is to determine the coefficients pi and qi such that (4) has the correct

expansions at the interval [0, a] and x = ∞. According to (4), the leading term of

fraction at x = ∞ is pν

qν
, therefore we can set pν = qν = 1. The unknown coefficients

pi and qi can be found from the system of linear equations

p(x) − q(x)a(x) = O(xm) at [0, a], (5)

p(x)

xν
− q(x)

xν
b(x−1) = O(x−n) at x = ∞. (6)

Now we work out the case ν = 2, m = 3, n = 2.

a(x) = Γ(1 − α)x((a0 − a1) + a1x),

b(x−1) = 1 − Γ(1 − α)

Γ(1 − 2α)x
.

Collecting equal powers of x via O(xm) and O(x−n), respectively, yields a system of

four equations with four unknowns as follows:

p0 = 0, p1 = − (a0 − a1)(Γ(1 − α)2a0 − Γ(1 − α)2a1 − Γ(1 − 2α))

(Γ(1 − 2α)(Γ(1 − α)a2
0 − 2Γ(1 − α)a0a1 + Γ(1 − α)a2

1 + a1)
,

q0 = − Γ(1 − α)2a0 − Γ(1 − α)2a1 − Γ(1 − 2α)

Γ(1 − 2α)Γ(1 − α)(Γ(1 − α)a2
0 − 2Γ(1 − α)a0a1 + Γ(1 − α)a2

1 + a1)
,

q1 =
Γ(1 − α)a1 + Γ(1 − 2α)a0 − Γ(1 − 2α)a1

(Γ(1 − 2α)(Γ(1 − α)a2
0 − 2Γ(1 − α)a0a1 + Γ(1 − α)a2

1 + a1)
.

Case 2. Using the Chebyshev polynomials of the second kind for the series expansion instead

of (1). Similar to Case 1, we have

p0 = 0, p1 = − (c0 − 2c1)(Γ(1 − α)2c0 − 2Γ(1 − α)2c1 − Γ(1 − 2α))

Γ(1 − 2α)(Γ(1 − α)c2
0 − 4Γ(1 − α)c0c1 + 4Γ(1 − α)c2

1 + 2c1)
,

q0 = − Γ(1 − α)2c0 − 2Γ(1 − α)2c1 − Γ(1 − 2α)

Γ(1 − 2α)Γ(1 − α)(Γ(1 − α)c2
0 − 4Γ(1 − α)c0c1 + 4Γ(1 − α)c2

1 + 2c1)
,

q1 =
2Γ(1 − α)c1 + Γ(1 − 2α)c0 − 2Γ(1 − 2α)c1

Γ(1 − 2α)(Γ(1 − α)c2
0 − 4Γ(1 − α)c0c1 + 4Γ(1 − α)c2

1 + 2c1)
.
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Figure 1: The Mittag-Leffler function and approximation by Chebyshev polynomials.

2 Rational solutions of the time-fractional diffusion equa-
tion

To obtain a rational approximation for the solution of the time-fractional diffusion equa-

tion,

∂α

∂tα
pα

t (x) =
1

2

∂2

∂x2
pα

t (x), (7)

we apply the rational approximation for the Mittag-Leffler function the integral represen-

tation of the solution of the time-fractional diffusion [1].

pα
t (x) =

1

2π

√
2

tα

∫

ℜ
Eα(−p2)e

−ip
√

2
tα

x
dp. (8)

To apply the rational approximation to the function Eα(−p2) and compute the integral,

first split the approximation as follows:

Eα(−x) ≈ 1

Γ(1 − α)

p1 + x

q0 + q1x + x2
=

1

Γ(1 − α)

p1 + x

(x + Q1)(x + Q2)

=

Q1−p1

Q1−Q2

Γ(1 − α)

1

x + Q1
+

p1−Q2

Q1−Q2

Γ(1 − α)

1

x + Q2
, (9)

where Q1 and Q2 are the roots of the equation q0 + q1x + x2 = 0. By substituting into

the formula we obtain

pα
t (x) =

1√
2tαπ

1

(Q1 − Q2)Γ(1 − α)
[(Q1 − p1)

∫

ℜ

e
−ip

√
2

tα
x

p2 + Q1
dp − (Q2 − p1)

∫

ℜ

e
−ip

√
2

tα
x

p2 + Q2
dp].

The integrals inside the brackets are solved using the following fact of the Fourier trans-

forms. Finally we have

pα
t (x) =

1√
2tα

1

(Q1 − Q2)Γ(1 − α)
[
Q1 − p1√

Q1
e−

√
2Q1
tα

|x| − Q2 − p1√
Q2

e−
√

2Q2
tα

|x|]. (10)
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Figure 2: The approximate solution pα
t (x) of the time-fractional diffusion equation plotted

against x.where t = 1 fixed and α = 0.75 fixed.

3 Bounds for the approximation error

The rational approximation p(x)
Γ(1−α)xq(x) is shown by Rα(x) discussed above. use [2],for the

Chebyshev polynomials of the first kind:

|Eα(−p2) − Rα(p2)| =
1

2n(n + 1)!
|E(n+1)

α (x)| ≤ 1

2n
, (11)

for the Chebyshev polynomials of the second kind:

|Eα(−p2) − Rα(p2)| =
n + 2

2n+1(n + 1)!
|E(n+1)

α (x)| ≤ n + 2

2n+1
. (12)

So approximation of the time-fractional can be made arbitrarily accurate.
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Abstract

In this paper, Our effort is studying nonwandering flows, Planar flows, and their
properties. We have shown that the set of periodic (noncritical) points is open. When
S is connected, such a flow has a simple characterization; namely, it is nonwandering.
We have given conditions on some spaces by their flows that proves when a space is
disconnected.

Keywords: Wandering,Flow, Connected Space
Mathematics Subject Classification [2010]: 37Axx , 28D99

1 Introduction

The theory of prolongation, introduced by T. Ura [1], has proven to be a rather useful
apparatus in studying the structure of dynamical systems. In [2], the first author studied
planar flows in which the positive prolongation of each point coincided with the closure
of the positive semitrajectory through the point. Such flows were referred to as flows of
characteristic 0+. Such flows were subsequently studied over more general phase spaces
in [3], [4], [5], [6], and [7]. Knight [8] carried on a similar study for planar flows of
characteristic 0; these are flows where the prolongation of each point coincides with the
closure of the trajectory through the point. The structure of these flows turned out to
be surprisingly simple. In this paper, we study nonwandering flows, planar flows and
their properties. An interesting characterization, which is somewhat surprising, is that
if the phase space is Hausdorff then the flow is nonwandering if and only if the positive
prolongation of each point coincides with its negative prolongation.We have shown that
the set of periodic (noncritical) points is open. When S is connected, such a flow has a
simple characterization; namely, it is nonwandering if and only if every point of R2 − S
lies on a cycle surrounding S ; then we prove that if S is unbounded and the flow is
nonwandering, S is disconnected.

Definition 1.1. Dynamic System(Continues Flow)Let X be a topological space and
let R denote the additive group of real num- bers with the usual topology. The pair
(X,π) is called a dynamical system or a continuous flow if π : X ×R→ X is a continuous
mapping such that for each x ∈ X and s, t ∈ R , π(x, 0) = x and π(π(x, s), t) = π(x, s+t).

∗Speaker

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Nonwandering flows of some spaces pp.: 1–4

323



For convenience we shall denote π(x, t) by x.t. For each x ∈ X, we let C+(x)(C−(x))(C(x))
denote the positive trajectory (negative trajectory) (trajectory) through x. We letK+(x) =
C+(x), K−(x) = C−(x), and K(x) = C(x). The positive limit set (negative limit set)
(limit set) of x is denoted by L+(x)(L−(x))(L(x)) . We denote the positive prolongation
(negative prolongation) (prolongation) of mathrmx by D+(x)(D−(x))(D(x)) . Similarly,
the positive prolongational limit set (negative prolongational limit set) (prolongational
limit set) of x shall be denoted by J+(x)(J−(x))(J(x)) .

Definition 1.2. positively stable subset For a point x of X (a subset M of X) we let
η(x)(η(M)) denote the neighborhood filter of x (of M). A subset M of X is said to be
positively stable if to each U ∈ η(M) corresponds V ∈ η(M) such that C+(V ) ⊂ U . The
negative and bilateral versions are defined similarly.

Definition 1.3. Poisson stable point A point x of X is said to be Poisson stable
(positively Poisson stable) (negatively Poisson stable) if x ∈ L+(x)∩L−(x)(x ∈ L+(x))(x ∈
L−(x)) . A point x of X is said to be nonwandering if x ∈ J+(x) . A flow (X,π) is said
to be nonwandering if each of its points is nonwandering.

We let int(M) denote the interior of a subset M of X,M the closure of M , and ∂M
the boundary of M . In particular, if x is a cyclic (i.e. periodic but not critical) point of a
planar flow, then int (C(x))(ext(C(x))) shall denote the bounded (unbounded) component
of the complement of the Jordan curve C(x) . The trajectory of a cyclic point is called a
cycle. Throughout this paper the phase space X of any dynamical system will be assumed
to be Hausdorff.

2 Nonwandering and Plana flows

Lemma 2.1. For any flow (X,π) , the following two conditions are equivalent:
(a) D+(x) ⊂ D−(x) for all x ∈ X ;
(b) D+(x) = D−(x) for all x ∈ X.

Theorem 2.2. For any flow (X,π) , the following statements are mutually equivalent:
(i) for each x ∈ X, D+(x) = D−(x) ;
(ii) the flow is nonwandering;
(iii) the set of nonwandering points is dense in X.

Theorem 2.3. If the phase space ofa nonwandering dynamical system is metric and either
locally compact or complete, then the set of Poisson stable points is dense in X.

we assume a given planar flow (R2, π) . The set of critical points of this flow shall be
denoted by S, and that of cyclic points by P . For a point x ∈ P , we shall let Mx = C(x)∪
int (C(x)) , so that Mx = int(C(x)). We say that a cyclic trajectory C(x) surrounds a
set F if F ⊂ int (C(x)). We further assume that R2 6= S. We note that periodic points
are necessarily nonwandering. In planar flows a point is Poisson stable if and only if it
belongs to P ∪ S.

Theorem 2.4. The planar flow (R2, π) is nonwandering if and only if the set P ∪ S is
dense in R2 .
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Lemma 2.5. For each x ∈ R2 , L±(x) is a cycle if and only if x ∈ P .

Lemma 2.6. For each x0 ∈ P , there exists an invariant neighborhood U of Mx0 such
that for each x ∈ U −Mx0 , C(x) is a cycle surrounding Mx0 with int (C(x)) ∩ S = int
(C(x0)) ∩ S.

Lemma 2.7. For any x0 ∈ P , there exists an invariant neighborhood W of C(x0) such
that for each x ∈W∩ int (C(x0)) , C(x) is a cycle with int (C(x)) ∩ S = int (C(x0)) ∩ S
Theorem 2.8. For any x0 ∈ P , there exists an invariant neighborhood V of C(X0) such
that for each x ∈ V , C(x) is a cycle with int (C(x)) ∩ S = int (C(x0)) ∩ S.

We note that The set P is open.

Lemma 2.9. Let S0 be the set of critical points surrounded by the cycle C(x0) . Then all
other points within C(x0) are cyclic provided every cycle within C(x0) surrounds S0 .

3 Main results

Definition 3.1. A nonempty subset S0 of S0 is said to be a central set if it has a neigh-
borhood N such that for each x ∈ N − S0, C(x) is a cycle surrounding S0 . Further, S0
is called global if we can have N = R2 ; otherwise, it is called local.

Theorem 3.2. Let x ∈ P . If Sx = int (C(x))∩S has only a finite number of components,
then at least one of them is a central set.

Theorem 3.3. If S has only a finite number of components, then at least one of them is
a central set.

Notation: If S is finite, then some point of S is a Poincare center.
Our effort is proving the following theorem.

Theorem 3.4. Let (R2, π) be a planar flow in which the set S, S 6= R2, of critical points
is connected. Then (R2, π) is nonwandering if and only if S is a global central set which
is a simply connected continuum, and P ∪ S = R2 .

Proof. Suppose that (R2, π) is nonwandering. Then it follows from notation that S is a
central set. In order to show that S is a global center it suffices to show that P ∪S = R2.
We note that S ⊂ int (C(x)) for every x ∈ P , as S is connected and int (C(x)) ∩ S 6= ∅.
It follows from Lemma 2.9 that for each x ∈ P , int (C(x)) − S ⊂ P . Set A = P ∪ S.
Then, A is open since A = ∪ int (C(x))|x ∈ P and P is open by previous notations.
Next, we wish to show that ∂A = ∅ . Assume ∂A 6= ∅, and let x0 ∈ ∂A. Since A is
open, ∂A does not contain any cyclic or critical points. Furthermore, L(x0) ⊂ ∂A , as
∂A is invariant and closed. Therefore, we must have L(x0) = ∅ (see [6, p.184]). But this
implies that C(x0) separates the plane into two open invariant regions V1 and V2 (see
e.g. [8, 1.7]). Assume, without loss of generality, that S ⊂ V1 . By Theorem 2.4, the
nonempty open set V2 contains a point z̃ ∈ P . But then int(C(z̃) ) ∩S 6= ∅ implies that
int(C(z̃))∩V1 6= ∅ 6= int(C(z̃)) ∩V2 . Further, int(C(z̃)) ∩∂A = ∅ , as int(C(z̃) ) ⊂ P ∪S.
Therefore, int(C(z̃)) ⊂ V1 ∪ V2 , contradicting the fact that int(C(z̃)) is connected. The
fact that S is a simply connected continuum is clear, since S = ∩{int(C(x))|x ∈ P . The
converse implication is obvious from Theorem 2.4.
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Notation: Let (R2, π) be a planar flow with one critical point s0 . Then (R2, π) is
nonwandering if and only if s0 is a global Poincare center.

Result: If S is unbounded and the flow is nonwandering, S is disconnected.
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Numerical solution of fractional Fokker-Planck equation by
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Abstract

In this paper, we propose a numerical method which is coupled of the radial basis
functions (RBFs) and finite difference scheme for solving time fractional Fokker-Planck
equation defined by Caputo sense for (0 < α < 1). It uses the collocation method and
approximates the solution using thin plate splines (TPS) RBFs.

Keywords: Fractional differential equation, Fokker-Planck equation, Radial Basis
Functions(RBFs), Collocation method
Mathematics Subject Classification [2010]: 35Q84, 35K28

1 Introduction

The Fokker-Planck equation (FPE) was first introduced by Fokker and Planck to describe
the Brownian motion of particles. Phenomena such as anomalous diffusion, continuous
random walk, wave propagation and etc. are modeled by space and time fractional FPE
(see [4] and references therein.).

Consider the following time fractional FPE of order α (0 < α < 1) with the initial and
boundary conditions:

Dα
t u − uxx + p(x)ux + p′(x)u = f, 0 < x < L, 0 < t ≤ T, (1)

u(x, 0) = g(x), 0 ≤ x ≤ L, (2)

u(0, t) = h1(t), u(L, t) = h2(t), 0 < t ≤ T. (3)

where Dα
t is the Caputo fractional derivative operator of order α ≥ 0, which is defined as

Dα
t u(x, t) =

1

Γ(k − α)

∫ t

0
(t− s)k−α−1∂

ku(x, s)

∂sk
ds, k − 1 < α < k. (4)

The fractional FPE has been solved in several ways including (high–order) finite difference
methods [1, 5] and finite element method [2].

Considering a finite set of interpolation points χ = {x1, x2, . . . , xN} ⊂ Rd and a func-
tion u : χ → R, the interpolant of u using radial basis functions (RBFs) is constructed
as

u(x) '
N∑

i=1

λiφ(‖x− xi‖) +

N+∑̀

j=N+1

λjqj(x), x ∈ Rd, ` =

(
m+ d− 1

d

)
(5)
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where ‖.‖ is the Euclidean norm and φ(‖.‖) is a radial function. In addition to the N
equations resulting from collocating (5) at the N points, an extra ` equations are required.
This is insured by the ` conditions for (5),

N∑

i=1

λiqj(xi) = 0, for all qj ∈ Πd
m−1. (6)

where Πd
m−1 denotes the space of all polynomials on Rd of total degree at most m−1. We

will use the generalized thin plate splines (TPS) as RBF in the following form:

φ(‖x− xi‖) = φ(ri) = r2mi ln(ri), i = 1, 2, 3, . . . , m = 1, 2, 3, . . . , (7)

where ri = ‖x − xi‖. We note that φ in Eq. (7) is C2m−1 continuous. So higher order
TPSs must be used for higher order partial differential operators. For the FPE, m = 3 is
used for TPS in numerical computations. In a similar representation as (5), for any linear
differential operator L, Lu can be approximated by

Lu(x) =
N∑

i=1

λiLφ(‖x− xi‖) +
N+∑̀

j=N+1

λjLqj(x), x ∈ Rd. (8)

2 Description of the method

Consider the fractional FPE (1)-(3) with 0 < α < 1. In order to discretize the problem in
the time direction, we substitute tn+1 into Eq. (4), then the integral can be partitioned
as

Dα
t u(x, tn+1) =

1

Γ(1− α)

n∑

k=0

∫ tk+1

tk
(tn+1 − s)−α∂u(x, s)

∂s
ds, 0 < α < 1. (9)

where tn+1 = tn + δt, n = 0, 1, 2, . . . ,M . Now, we approximate the first order derivative
with the forward finite difference formulae

∂u(x, σ)

∂t
=
u(x, tn+1)− u(x, tn)

δt
+ o(δt), (10)

where σ ∈ [tn, tn+1] . Replacement of Eq. (10) into Eq. (9), gives

Dα
t u

n+1 =
1

Γ(1− α)

n∑

k=0

uk+1 − uk
δt

∫ tk+1

tk
(tn+1 − s)−αds, (11)

where uk = u(x, tk). The right-hand side integral is easily obtained as

∫ tk+1

tk
(tn+1 − s)−αds =

1

1− αδt
1−α[(n− k + 1)1−α − (n− k)1−α

]
. (12)

Rearrangement of Eq. (11) and assumption bk = (k + 1)1−α − (k)1−α lead to

Dα
t u

n+1 =
δt−α

Γ(2− α)

n∑

k=0

bk(u
n−k+1−un−k) = a0

{
un+1−un+

n∑

k=1

bk(u
n−k+1−un−k)

}
(13)
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where a0 = δt−α/Γ(2−α) and n = 0, 1, 2, . . . ,M . By discretize the Eq. (1) with the finite
difference method

Dα
t u−∇2un+1 + p(x)∇un+1 + p′(x)un+1 = fn+1, (14)

and substitute Eq. (13) into Eq. (14), we obtain

{a0 −∇2 + p(x)∇+ p′(x)}u1 = a0u
0 + f1, (15)

and

{a0 −∇2 + p(x)∇+ p′(x)}un+1 = a0u
n − a0

n∑

k=1

bk(u
n−k+1 − un−k) + fn+1, (16)

at n = 0 and n ≥ 1, respectively. Now we approximate un(xi) by the RBFs on the N
collocation points as follows:

uni = un(xi) '
N∑

j=1

λnj φ(rij) + λnN+1xi + λnN+2, i = 1, 2, . . . , N. (17)

where rij = ‖xi − xj‖. The additional conditions can be described as

N∑

j=1

λn+1
j =

N∑

j=1

λn+1
j xj = 0. (18)

By considering Eq. (17) together with Eq. (18) in a matrix form, we obtain

[u]n+1 = A[λ]n+1, (19)

where [u]n+1 = [un+1
1 un+1

2 . . . un+1
N 0 0]T and [λ]n+1 = [λn+1

1 λn+1
2 . . . λn+1

N+2]
T and A is

A =

[
Φ P
P T 0

]

(N+2)×(N+2)

, Φ = [φij ]N×N , P =



x1 1
...

...
xN 1



N×2

(20)

Reconstruction of Eq. (15) in the matrix form can be illustrated as follows:

[c]1 = B[λ]1, (21)

in which

B =

[
LΦ LP
P T 0

]

(N+2)×(N+2)

(22)

where L is an operator defined by Eq. (15) as

L(∗) =

{
(a0 −∇2 + p(xi)∇+ p′(xi))(∗), 1 < i < N
(∗), i = 1 or i = N

, (23)

and [c]1 = [c11, c
1
2, · · · , c1N , 0, 0]T , where c11 = h11, c

1
N = h12 and

c1i = a0u
0
i + f1i , i = 2, 3, . . . , N − 1.
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Also, for n ≥ 1,
[c]n+1 = B[λ]n+1, (24)

where [c]n+1 = [cn+1
1 , cn+1

2 , · · · , cn+1
N , 0, 0]T are obtained by Eq. (16) as

cn+1
i = a0u

n
i − a0

n∑

k=1

bk(u
n−k+1
i − un−ki ) + fn+1

i , i = 2, 3, . . . , N − 1

and finally considering boundary conditions cn+1
1 = hn+1

1 and cn+1
N = hn+1

2 .

3 Numerical results

Example 3.1. Consider the following problem from [3]

Dα
t u− uxx − e(x−0.5)

2
ux − 2(x− 0.5)e(x−0.5)

2
u = f(x, t), 0 < x < 1, 0 < t ≤ 1, (25)

with exact solution u = t2sin(πx). The initial and boundary functions g, h1, h2 and right-
hand side function f can be obtained from the exact solution. The L∞, L2 and RMS of
errors are obtained in Table 1 for different α. The numerical results demonstrate the good
accuracy of this scheme.

Table 1: L∞,L2 and RMS errors, with n = 100, N = 100

α L∞ − error L2 − error RMS

0.2 3.9104× 10−6 2.6019× 10−5 2.6019× 10−6

0.5 4.2431× 10−5 2.9644× 10−4 2.9644× 10−5

0.8 2.9348× 10−4 2.1000× 10−3 2.0604× 10−4
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Abstract

The main aim of this study is to obtain numerical solution of functional nonlinear
Fredholm integral equations using meshless Radial Basis Function (RBF) interpolation
which is based on linear combinations of terms. Applying RBF in functional integral
equation, a linear system ΨC = G will be obtain which by defining coefficients vector
C, target function will be approximiated. Finally, validity of the method is illustrated
by some examples.

Keywords: Functional nonlinear Fredholm integral equations, Radial basis functions,
Multi quadric functiones, Meshless method

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

RBFs are computationally means to approximate functions which are complicated or have
many variables, by other simpler functions which are easier to understand and readily eval-
uated. One of the outstanding advantages of interpolation by RBF, unlike multivariable
polynomial interpolation or splines [1], is applicability in scattered data aspect of existence
and uniqueness results since there is little restrictions on dimension and also high accu-
racy or fast convergence to the target function. As another advantage of RBF there are
not required to triangulations of the data points, while other numerical methods such as
finite element or multivariate spline methods need triangulations [1, 2]. This requirement
computationally cost, especially in more than two dimensions. In this paper, we consider
functional nonlinear integral equations of Fredholm type with unknown function y(x). To
approximate the target function, we employ RBF interpolation in distinct grids from a
definite domain. To this purpose, consider N distinct points as (x1, x2, . . . , xN ) ∈ Rd,
in an d dimensional Euclidean space at which the function to be approximated is known
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and real scalars (g(x1), g(x2), . . . , g(xN )) and a continuous function s : Rd → R is consid-
ered to construct so that s(xj) = gj for j = 1, 2, . . . , N. Radial basis function method is
based on choosing a continuous function such as ϕ : R+ → R+ and a norm ∥ . ∥ in Rd,
then s can be such as s(x) =

∑N
j=1 cjϕ(∥ x − xj ∥), where cj ’s are unknown scalars for

j = 0, 1, . . . , N which should be defined. Gaussian (GA) ϕ(r) = exp(−βr2), Multiquadric
(MQ) ϕ(r) =

√
(r2 + β2) and Inverse quadric (IQ) ϕ(r) = (r2+σ2)−1 are some well-known

functions that generate RBF which is infinitely globally supported differentiable, and de-
pend on a free parameter β which is a real constant known as the shape parameter or
width of the RBF that must be specied by the user and r = ∥x−xi∥. In this study, shape
parameter is considered β = 1. In the next Section, the application of RBF to functional
integral equations to approximate the solution of functional nonlinear Fredholm integral
equations will be described and efficiency of the method is shown by two examples.

2 Main results

Consider the general functional nonlinear integral equation of Fredholm type:

y(x) + A(x)y(h(x)) + λ

∫ b

a
k(x, t, y(t))dt = g(x), a ≤ x ≤ b. (1)

where λ is a real number, the kernel k(x, t) is a continuous function in [a, b] × [a, b] and
A(x), h(x) and g(x) are analytical known functions. By applying RBF interpolation to
approximate y(x) as the solution of (1), linear combination of functions ϕj is replased in
y(x) as the following form:

y(x) ≈
N∑

i=0

ciϕi(x), y(h(x)) ≈
N∑

i=0

ciϕi(h(x)), (2)

∫ b

a
k(x, t, y(t))dt ≈

∫ b

a
k

(
x, t,

N∑

i=0

ciϕi(t)

)
dt. (3)

Replacing Eqs. (2) and (3) into Eq. (1) and considering x = xj , the following equivalence
will yeild for j = 1, . . . N :

g(xj) = A(xj)
N∑

i=0

ciϕi(h(xj)) +
N∑

i=0

ciϕi(xj) + λ

∫ b

a
k

(
xj , t,

N∑

i=0

ciϕi(t)

)
dt (4)

According to interpolation conditions a nonlinear system will be defined as ΨC = G,
where Ψ = ϕi(xj) is called a distance matrix, and given by Ψij = ϕ(∥ xi − xj ∥) and also
C = (c1, . . . , cN )T and G = (g1, . . . , gN )T . To solve this nonlinear system, Newton method
is used which is briefly described here [3, 4]: Let we have Fj(c1, c2, . . . , cN ) = 0, where F =
ΨC−G. The aim is definig unknown vector of parameters C by appliying Newton method.

Given Cn = (c
(n)
1 , c

(n)
2 , . . . , c

(n)
N ) we want to find Cn+1 = (c

(n+1)
1 , c

(n+1)
2 , . . . , c

(n+1)
N ) as the

following:

C(n+1) = C(n) + H(n). (5)
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H(n) would be obtained, by solving the linear equations Γ(n)H(n) = B(n), where Γ(n) = γ
(n)
jl

is a N × N matrix and B(n) = b
(n)
j is a N × 1 matrix in which:

γ
(n)
jl =

∂

∂cl
Fj(C

(n)), b
(k)
j = −Fj(C

(n)) (6)

Let E = C(n+1) −C(n), we consider ∥E∥ ≤ ϵ as stop condition for a defined ϵ. To illustrate
the efficiency of the proposed technique, we consider two examples in which the error is

calculated from ERMS =

√∑N
i=1(y(xi) − s(xi))

2

N
.

Example 2.1. Consider the following functional nonlinear integral equation:

y(x) + e−xy(
x2

2
) +

∫ 1

−1
t(y(t))2dt = ex − 2e2x + e

−x+
x2

2

where the analytical solution is y(x) = ex. Gaussian function, ϕ(r) = exp(−r2) is used in
RBF interpolation in which N = 20 and ϵ = 10−5. The error is ERMS = 1.66533 × 10−15.
The solution of analytical and the proposed methods are analytical and proposed method
and also accuracy of the method are shown in Figure 1.

,

Figure 1: (a) Plot of both analytical solution and RBF solution, (b) error estimation of proposed
method for functional integral equatin of Example 1.

Example 2.2. Consider the following functional nonlinear integral equation:

y(x) + 2x sin(π
x2

2
) − 1

5

∫ 1

0
exy(t)dt = sin(πx) − 0.2ex sin(πx) + 2x sin(π

x2

2
)

where the analytical solution is y(x) = sin(πx). Gaussian function, ϕ(r) = exp(−r2)
is used in RBF interpolation in which N = 20 and ε = 10−5. The error is ERMS =
2.7526 × 10−7
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,

Figure 2: (a) Plot of both analytical solution and RBF solution, (b) error estimation of proposed
method for functional integral equatin of Example 2.
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Abstract

In this paper a random variable on a probability space which is a fuzzy set is
introduced and the entropy of the fuzzy set with respect to a finite partition is defined.
As follow a discrete dynamical system on a fuzzy set is presented and its entropy has
been defined.

Keywords: Dynamical system, Random variable, fuzzy set, Entropy
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1 Introduction

One of the most important characterizations can attach to a random variable and to a
stochastic process is its entropy. The notion of entropy for discrete random variables
as well as absuloutly continuous random variables is well defined. The discrete random
variable is a random variable with at most countable image. Absoultly continuous random
variable is a random variable with uncountable image that has a non- negative density
function[1, 4]. A stochastic process is a mathematical model for the occurrence of random
phenomena as time goes on. This is the case, for example, when a random experiment is
repeated over and over again [1].
In this paper, we consider a probability space, Ω, which is fuzzy set with function m :
Ω −→ [0, 1][2].
In the next section, we define the entropy of the random variable Xα, which α is a finite
partition on Ω.
We introduce random variables on the fuzzy set with respect to a discrete dynamical
system on Ω and define the entropy of the dynamical system in the last section.

2 Entropy of a fuzzy set

Let Ω be a probability measure space with σ− algebra β and probability measure µ. Also
consider (Ω,m) be a fuzzy set (m : Ω −→ [0, 1]) and α = {A1, A2, ..., A|α|} be a finite
partition on Ω.
Define χα

0 : Ω −→ {1, 2, ..., |α|} , χα
0 (ω) = i where ω ∈ Ai.

Consider the random variable Xα : Ω −→ {1, 2, ..., |α|}×[0, 1] which Xα(ω) = (χα
0 (ω),m(ω)),

so two different cases will be happened:
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Case 1) Im m is at most countable, so the image of Xα is at most countable. Hence by
the following process, the entropy of the fuzzy set can be computed.
χα

0 and m are discrete random variables and the joint probability function defined by [1, 3]

p(x, y) = µ{ω ∈ Ω : χα
0 (ω) = x,m(ω) = y} (1)

the joint entropy of χα
0 and m is defined as follow

H(χα
0 ,m) = −

∑

i∈S1

∑

j∈S2

p(x, y)logp(x, y) (2)

where S1 = {1, 2, ..., |α|} and S2 = Im m.

Remark 2.1. If m(x) = k on Ω for k ∈ [0, 1] then the entropy of the random variable
(χα

0 , m) is equal to the Shannon entropy.

p(i, k) = µ{ω ∈ Ω : χα
0 (ω) = i,m(ω) = k} = µ{ω ∈ Ω : χα

0 (ω) = i} = µ(Ai). (3)

and for y ̸= k
p(i, y) = µ{ω ∈ Ω : χα

0 (ω) = i,m(ω) = y} = 0. (4)

Therefore
H(χα

0 , m) = −
∑

i

µ(Ai)logµ(Ai) = H(χα
0 ). (5)

Case 2) Im m is uncountable, in this case we assume that m is absoulotly continuous,
so Xα is joint of a discrete and absoultly continous random variables.
In these conditions, we compute the entropy of the fuzzy set. We denote the random
variable Xα with Xα = (χα

0 , m), we call Xα a mixed- pair random variable if χα
0 is a

discrete random variable and m is an absoultly continouos random variable.
Observe that Xα = (χα

0 ,m) induces measures {µ1, µ2, ..., µα} that are absoulutely contin-
nous with respect to the lebesgue measure on [0, 1] where µi(A) = prob(χα

0 = i,m ∈ A)
for any A ∈ B[0, 1], (B[0, 1] borel σ−algebra) [3].
Hence µi : B[0, 1] −→ [0, 1] is lebesgue measure on [0, 1] where µi(A) = µ(m−1(A)

∩
Ai) .

µi is absoultly continuous with respect to lebesgue measure, so there are gi : [0, 1] −→ R
such that

∫
A gi(x)dx = µi(A), (gi is called a probability density function with respect µi’s)

that satisfy
∑

i

∫
R gi(y)dy = 1.

Definition 2.2. The entropy of the random variable Xα is defined by

H(Xα) = −
∑

i

∫

R
gi(y)loggi(y)dy (6)

Example 2.3. Let ([0, 1], β, µ) be a probability measure space and α = {A1, A2, ..., A|α|} ⊆
β be a finite partition on [0, 1]. Consider µ(Ai) = pi and m is an independent continuous
random variable distributed uniformely on the interval [0, 1]. We have gi(y) = pi for every
y ∈ [0, 1]. Therefore

H(Xα) = −
∑

i

∫

R
gi(y)loggi(y)dy = −

∑

i

∫

R
pilogpidy = −

∑

i

pilogpi = H(χα
0 ) < ∞. (7)
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3 Entropy of a dynamical system on a fuzzy set

Let Ω be a probability space with σ− algebra β and probability measure µ. Consider
a measure- perserving transformation f : Ω −→ Ω which induces a discrete dynamical
system on Ω. Also we assume that (Ω,m) is a fuzzy set.
Let α = {A1, A2, ..., A|α|} be a finite partition on Ω where Ai ∈ β. Define the random
variable

χα
n : Ω −→ {1, 2, ..., |α|}

χα
n(ω) = i

where fn(ω) ∈ Ai.

Definition 3.1. The random variable of a discrete dynamical system on the fuzzy set
(Ω,m) with respect to the finite partition α on Ω is defined as follow

Xα
n : Ω −→ {1, 2, ..., |α|} × [0, 1]

Xα
n (ω) = (χα

n(ω),mn(ω)) where mn(ω) = m(fn(ω)). And Xα = {Xα
n }∞

n=0 is a stochastic
process.

Consider Im mn be at most countable, so χα
n and mn are discrete random variables.

The joint probability function defined by

p(x, y) = µ{ω ∈ Ω : χα
n(ω) = x,mn(ω) = y} (8)

and the joint entropy of χα
n and mn is as follow

H(Xα
n ) = H(χα

n,mn) = −
∑

i∈S1

∑

j∈S2

p(x, y)logp(x, y) (9)

where S1 = {1, 2, ..., |α|} and S2 = Im mn.

Theorem 3.2. Let χα
n and mn be discrete random variables. Then H(χα

n,mn) = H(χα
n)+

H(mn|χα
n).

Moreover, if χα
n and mn are independent, therefore

H(Xα
n ) = H(χα

n) + H(mn).

Corollary 3.3. H(Xα
0 , Xα

1 , ..., Xα
n−1) = H(χα

0 , χα
1 , ..., χα

n−1) + H(m0,m1, ..., mn−1).

Definition 3.4. Entropy of the stochastic process Xα is defined by

hα(f, m) := H(Xα) = limn→∞
1

n
H(Xα

0 , Xα
1 , ..., Xα

n−1).

Definition 3.5. Entropy of the fuzzy set (X,m) with respect to the discrete dynamical
system f is

h(f, m) = supαhα(f, m)

where α is a finite partition on ω.
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Example 3.6. Let f : [0, 1] −→ [0, 1] be a measure preserving function (i.e.µ(f−1(A)) =
µ(A)) and α = {[ k

2m , k+1
2m ) : k = 0, 1, ..., 2m − 1} be a finite partition on [0, 1]. Consider

χα
n(ω) = i where fn(ω) ∈ [ i−1

2m , i
2m ) and mn(ω) = k

2m where fn(ω) ∈ [ k
2m , k+1

2m ).

p(i, j
2m ) = µ{ω : χα

n(ω) = i,mn(ω) = j
2m } = µ{ω : i−1

2m ⩽ fn(ω) < i
2m , j

2m ⩽ fn(ω) <
j+1
2m } = µ(f−n([ i−1

2m , i
2m )

∩
[ j
2m , j+1

2m ))).

If i = j, so p(i, i
2m ) = µ([ i−1

2m , i
2m ) = 1

2m . If i ̸= j then p(i, j
2m ) = 0.

Therefore
H(Xα

n ) = H(χα
n,mn) = −∑

i p(i, i
2m )logp(i, i

2m ) = −∑2m

i=1
1

2m log 1
2m =

∑2m

i=1
m
2m log2 =

mlog2.
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In this talk, we present that every expanding transitive group (or semigroup) action
of C1+α conformal diffeomorphisms of a compact manifold is robustly ergodic with
respect to the Lebesgue measure.
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1 Introduction

Ergodic theory is one of the parts of theory of dynamical systems. The theory deals with
measure preserving actions of measurable maps on a measure space. A measure-preserving
map is called ergodic if the measure of every invariant measurable set be either 0 or 1. For
ergodicity of group (or semigroup) actions, the notion of measure-preserving map can be
extended to quasi-invariant group (or semigroup) action. A group (or semigroup) action
is quasi-invariant with respect to a measure µ if the puch-forward of µ, by the generators
of action, be absolutely continuous with respect to µ.

Authors in [1] showed that every expanding minimal semigroup action of C1+α confor-
mal diffeomorphisms of a compact manifold is robustly ergodic with respect to Lebesgue
measure. They used the tools of Lebesgue density point and Lebesgue number. We obtian
the ergodicity of group (or semigroup) actions by weaker assumptions. We show that every
expanding transitive group (or semigroup) action of C1+α conformal diffeomorphisms of a
compact manifold is robustly ergodic with respect to Lebesgue measure. We also present
an example for showing different our work from [1]

Minimality and so transitivity, in general, does not imply ergodicity. See [2, 3].

1.1 Notations and definitions

Consider a collection of diffeomorphisms {f1, f2, · · · , fk} on a compact manifold M. Let
us denote by F (or F+) the group (or semigroup) action generated by f1, · · · , fk.

Consider the group (or semigroup) action F (or F+). Let
∑

k (or
∑+

k ) be the space
of two-sided (or one-sided) infinite sequences of elements of the set {1, · · · , k}. For ω =

∗Speaker

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Robust ergodicity of expanding transitive actions pp.: 1–4

339



(ω0 ω1 · · · ) ∈ ∑+
k we introduce the notation, f0

ω = id, fn
ω = fωn−1 ◦ · · · ◦ fω0 and for

ω = (· · ·ω−1 ; ω0 ω1 · · · ) ∈ ∑
k

fn
ω =





fωn−1 ◦ · · · ◦ fω0 if n ≥ 1
id if n = 0

f−1
ωn

◦ · · · ◦ f−1
ω−1

if n ≤ −1.

A set A ⊂ M is invariant for F (or F+) if g(A) = A (or g(A) ⊂ A) for all g ∈ F (or
g ∈ F+).

Let us denote both group action F and semigroup action F+ by G. A probability
measure µ is quasi-invariant for an action G if g∗µ ≪ µ for all g ∈ G, where g∗µ is the
puch-forward of µ. We consider the Lebesgue measure m which is quasi-invariant for C1

diffeomorphisms.
An action G is ergodic with respect to a quasi-invariant probability measure µ if µ(A) =

0 or µ(A) = 1, for all G-invariant set A ⊂ M .
Let m(T ) be the co-norm of a linear transformation T , i.e., m(T ) =∥ T−1 ∥−1.

Definition 1.1. An action G, generated by C1 diffeomorphisms f1, f2, · · · , fk , is expand-
ing if for every x ∈ M there is g ∈ G such that

m(Dg−1(x)) > 1.

A diffeomorphism f is confomal if the derivative expands or contracts distances by the
same amount in all directions. In other word, there exists a map α : M → R such that
Df(x) = α(x)Ism(x), for all x ∈ M , where Ism(x) denotes an isometry of TxM . So, for
every x ∈ M ,

∥ Df(x) ∥= m(Df(x)) = α(x).

For x ∈ M , we write the orbit of x as OG(x) = {f(x) : f ∈ G}. A branch orbit
of x corresponding to ω ∈ ∑

k (or
∑+

k ) is the sequence of Oω(x) = {fn
ω (x)}∞

n=−∞ (or
O+

ω (x) = {fn
ω (x)}∞

n=0).

Definition 1.2. The action of G is transitive if there exists a dense orbit OG(x) ⊂ M , for
some x ∈ M .

A property is said to be Cr-robust for G if it hold for the action G̃, for which generators
are Cr-perturbations of generators of G. Our main result is as follows.

Theorem 1.3. Every expanding transitive group (or semigroup) action generated by C1+α

conformal diffeomorphisms of a compact manifold is robustly ergodic with respect to the
Lebesgue measure.

2 Main results

The following lemma is obtained straightforward from the compactnees of M .

Lemma 2.1. The action of G is expanding if and only if there are maps g1, · · · , gk ∈ G,
open balls B1, · · · , Bk in M and a constant η > 1 such that M = B1 ∪ · · · ∪ Bk and

m(Dg−1
i (x)) > η for all x ∈ Bi.
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As a consequence of the lemma we have:

Remark 2.2. The set of expanding actions of C1-diffeomorphisms of a compact manifold
is open. Indeed, expanding property of an action is robust under perturbation of the
generators.

Theorem 2.3. Every expanding transitive action G generated by C1-diffeomorphisms of
a compact manifold is C1-robustly transitive.

Proof. Consider an expanding transitive action G of C1-diffeomorphisms of a compact
manifold M . So G has a dense orbit of x, for some x ∈ M . By lemma 2.1 there exsit a
constant η > 1, an open cover {B1, · · · , Bk} of M and maps g1, · · · , gk ∈ G such that

d(gi(x), gi(y)) < η−1d(x, y) for all x, y ∈ g−1
i (Bi).

Let L be the Lebesgue number of cover {B1, · · · , Bk}. We consider a sufficiently small
C1-perturbation of the generators of G such that we have

• a finite open cover {Bi} with Lebesgue number greater than L/2,

• maps {gi} in the perturbed action G̃ such gi restricted to g−1
i (Bi) is a contraction

of rate η−1,

• the ε-density of the orbit of x with ε ≤ L/2.

M is compact and so locally connected. We also consider ε small enough so that every
open ball of radius r ≤ ε is a connected set.

Let z ∈ Bi and r ≤ η−1ε such that B(z, r) ⊂ Bi. Therefore B(g−1
i (z), η r) is connected.

On the other hand, the restriction of gi to g−1
i (Bi) is a contraction of rate η−1. Hence

gi(B(g−1
i (z), η r)) ⊂ B(z, r). (1)

Now we show that the orbit of x is dense under action G̃. We have η−1ε < L/2 and
so for any z ∈ M , B(z, η−1ε) ⊂ Bi for some i. By the ε-density of the orbit of x, there is
g ∈ G̃ such that

g(x) ∈ B(g−1
i (z), ε).

By (2.1)
gi ◦ g(x) ∈ B(z, η−1ε).

Since z is arbitrary, this shows That the orbit of x is η−1ε-dense. By induction, the orbit
of x is η−nε-dense for every n ∈ N and so is dense.

Let A and C be sets in M . We write C
◦⊂ A and say C is contained (mod 0) in A if

m(C \ A) = 0.
The following proposition is the main tool to proof of Theorem 1.3.

Proposition 2.4. Consider an expanding group (resp. semigroup) action G generated by
C1+α conformal diffeomorphisms of a compact manifold M . Then, there exists r > 0 such
that for every invariant set A ⊂ M with positive Lebesgue measure (resp. Ac has positive
Lebesgue measure) there exsit an open ball B of radios r > 0 such that
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B
◦⊂ A (resp. B

◦⊂ Ac).

Proof. See [1], proposition 4.7.

proof of theorem 1.3. Consider an expanding transitive action G generated by C1+α con-
formal diffeomorphisms of a compact manifold M . Let A ⊂ M be a G-invariant measurable
set. By contradiction, Assume that 0 < m(A) < 1. As a consequence, Ac is invariant and
0 < m(Ac) < 1. By proposition 2.4 there are the balls B1 and B2 such that m(B1 \A) = 0
and m(B2 \ Ac) = 0. By transitivity of F (or F+), there exist ω ∈ ∑

k (or
∑+

k ) such that

m(fn
ω (B1) ∩ B2) > 0 for some n ∈ N.

Hence

m(fn
ω (B1) ∩ Ac) > 0.

On the other hands, since A is invariant we have

m(fn
ω (B1) \ A) = m(fn

ω (B1 \ A)) = 0.

The last equality holds because fn
ω is a diffeomorphism. This gives a contradiction and so

G is ergodic. The robustness is concluded by theorem 3.2 and remark 2.2.

The following example show that every expanding transitive action is not necessarily
an expanding minimal action.

Example 2.5. Consider the action of G = (M ; f1, f2) where M is a compact manifold, f1

an expanding transitive C1+α conformal diffeomorphism which is not minimal and f2 an
identity map. then G is an expanding transitive action and so is robustly ergodic. Note
that G is not minimal.
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Abstract

In this paper we study shadowing property for sequences of mappings on com-
pact metric spaces, i.e. nonautonomous discrete dynamical systems. We investigate
the relations of expansivity and weak expansivity with shadowing and h-shadowing
property.

Keywords: Nonautonomous, weak expansivity, shadowing, locally expanding
Mathematics Subject Classification [2010]: 37B99, 54H20

1 Introduction

Let (X, d) be a compact metric space, and f be a continuous map on X. We consider the
associated autonomous difference equation of the following form:

xi+1 = f(xi) (1)

A finite or infinite sequence {x0, x1, ...} of points in X is called a δ-pseudo-orbit (δ > 0)
of (1.1) if d(f(xi−1), xi) < δ for all i ≥ 1. We say that equation (1.1), (or f) has usual
shadowing property if for every ε > 0, there exists δ > 0 such that for every δ-pseudo-orbit
{x0, x1, ...}, there exists y ∈ X with d(f i(y), xi) < ε for all i ≥ 0. The notion of pseudo-
orbits appeared in several branches of dynamical systems theory, and various types of the
shadowing property were presented and investigated extensively, see [1,7].
In this paper we study shadowing property of nonautonomous discrete systems. We con-
sider the compact metric space X and a sequence f1,∞ = {fi}∞

i=1 in which each fi : X → X
is continuous. We call the pair (X, f1,∞) a nonautonomous discrete system (on X). For
further simplicity we use only f1,∞ in the sequel. The associated nonautonomous difference
equation has the following form:

xi+1 = fi(xi) (2)

For every n ≥ i ≥ 1, we write fn
i = fn ◦ fn−1 ◦ ... ◦ fi.

Orbit of a nonautonomous system f1,∞ in a point x is the following sequence:

O(x) = {x, f1(x), f2 ◦ f1(x), ..., fn ◦ ... ◦ f1(x), ...}

On the other hand a pseudo-orbit of the system is as follows:
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Definition 1.1. A finite or infinite sequence {x0, x1, ...} of points in X is called a δ-
pseudo-orbit (δ > 0) of (1.2), if d(fi(xi−1), xi) < δ for all i ≥ 1.

In the nonautonomous case the standard definition of shadowing has the following
form, see [4, 6]:

Definition 1.2. We say that f1,∞ has shadowing property if, for every ε > 0, there exists
δ > 0 such that for every δ-pseudo-orbit {x0, x1, ...}, there exists y ∈ X with d(y, x0) < ε
and d(f i

1(y), xi) < ε, for all i ≥ 1.

2 Shadowing and expansivity

First we prove the following simple lemma.

Lemma 2.1. The sequence f1,∞ has shadowing property if and only if for every ε > 0
there exists δ > 0 such that every finite δ-pseudo-orbit is ε-shadowed.

Proof. Let ε > 0 and δ > 0 be such that every finite δ-pseudo-orbit, ε
2 -shadowed. Let

{xi}∞
i=1 be a δ-pseudo-orbit. For every n ≥ 1, {x0, x1, ..., xn}, ε

2 -shadowed by ynϵX and
there is a subsequence {ynk

}k≥0 and a point yϵX such that ynk
→ y as k → ∞. Now for

each i ≥ 1, there is a nk > i such that d(f i
1(ynk

), f i
1(y)) < ε

2 . Therefore

d(f i
1(y), xi) ≤ d(f i

1(y), f i
1(ynk

)) + d(f i
1(ynk

), xi) < ε

and hence f1,∞ has the shadowing property.

There are several variants of shadowing property, we define a stronger form which is
called h-shadowing, see [1, 3, 4].

Definition 2.2. The sequence f1,∞ has h-shadowing property if for every ε > 0 there
exists δ > 0 such that for every δ-pseudo-orbit {x0, x1, ..., xn} ⊆ X there is y ∈ X with
d(y, x0) < ε and,

d(f i
1(y), xi) < ε for all 1 ≤ i < n and fn

1 (y) = xn.

In the case of an autonomous difference equation various notions of expansivity such
as positively expansive, locally expanding,... have been introduced and their properties
studied extensively, see [2, 5, 7]. We consider a nonautonomous form of expansivity and
a modified form of equicontinuouity.

Definition 2.3. We say that the sequence f1,∞ is positively expansive, with expansive
constant e > 0, if x ̸= y, then for every N ∈ N there is n ≥ N such that d(fn

N (x), fn
N (y)) >

e.

Theorem 2.4. Suppose that the sequence f1,∞ is positively expansive and has shadowing
property then it has h-shadowing property.

Definition 2.5. The sequence f1,∞ called inverse equicontinuous if for every x ∈ X and
for every ε > 0 there exists δ(x) > 0 such that:

Bδ(x)(fi(x)) ⊆ fi(Bε(x)) for all i
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Remark 2.6. Suppose that fi : X → X is one to one and surjective, for all i. Then the
sequence f1,∞ is inverse equicontinuous if and only if the sequence {f−1

i }∞
i=1 is equicon-

tinuous.

Definition 2.7. We say that f1,∞ is weakly expanding small distances if there exists
γ > 0 such that for every x, y ∈ X and every i,

d(x, y) < γ =⇒ d(fi(x), fi(y)) > d(x, y).

Definition 2.8. We say that f1,∞ is locally expanding if there exists λ > 1 such that for
every x ∈ X, i ≥ 1 and ε > 0, Bλε(fi(x)) ⊆ fi(Bε(x))

Definition 2.9. We say that f1,∞ is weakly locally expanding if there exists γ > 0 such
that for every x ∈ X, i ≥ 1 and ε < γ , Bε(fi(x)) ⊆ fi(Bε(x)).

Lemma 2.10. Suppose that the sequence f1,∞ is inverse equicontinuous and weakly ex-
panding small distance then it has weakly locally expanding property.

Definition 2.11. We say that f1,∞ is uniformly expanding if there exist λ > 1 and γ > 0
such that for every x, y ∈ X and i ≥ 1:

d(fi(x), fi(y)) < γ ⇒ d(fi(x), fi(y)) > λd(x, y)

Definition 2.12. We say that f1,∞ is weakly uniformly expanding if there exists γ > 0
such that for every x, y ∈ X and i ≥ 1:

d(fi(x), fi(y)) < γ ⇒ d(fi(x), fi(y)) > d(x, y)

Remark 2.13. If f1,∞ is weakly uniformly expanding and for all i ≥ 1, fi is surjective,
then f1,∞ is weakly locally expanding.

Proof. Let γ > 0 be as in the weakly uniformly expanding definition. It is enough to
prove that for each ϵ < γ, Bε(fi(x)) ⊆ fi(Bε(x)). If z ∈ Bε(fi(x)) then there is y ∈ X
such that fi(y) = z. Since d(fi(x), fi(y)) < ϵ, we obtain d(x, y) < d(fi(x), fi(y)) < ϵ . So
z ∈ fi(Bε(x)).

Now we investigate the relation of h-shadowing and the expansivity notions mentioned
above.

Theorem 2.14. Suppose that there is a continuous map f such that fi → f pointwise. If
the sequence f1,∞ is inverse equicontinuous and weakly expanding small distances, and f
is weakly expanding small distances then it has h-shadowing property.

As a consequence, in the case of a single map we have the following result.

Corollary 2.15. Suppose that f : X → X is a continuous and an open map. If f is
weakly expanding small distances then f has h-shadowing property.

Theorem 2.16. The following conditions hold:

(1) If the sequence f1,∞ is locally expanding, then it has h-shadowing property.

(2) If the sequence f1,∞ is uniformly expanding, and for all i ≥ 1, fi is surjective, then
f1,∞ has h-shadowing property.
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Theorem 2.17. Suppose there is a continuous map f such that fi → f pointwise. If both
f1,∞ and f are weakly uniformly expanding, and for all i ≥ 1, fi is surjective then f1,∞
has h-shadowing property.
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The infinite product representation of solutions of indefinite

Sturm-Liouville problems with three turning points.
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Abstract

We study the infinite product representation of solutions of second order differential
equation of Sturm-Liouville type on a finite interval having three turning points under
the assumption that the turning points are types IV, II, III , respectively. Such
representations are useful in the associated studies of inverse spectral problems for
such equations.

Keywords: Turning point; Sturm-Liouville, Nondefinite problem; Infinite products,
Hadamard Factorization Theorem; Spectral theory

Mathematics Subject Classification [2010]: 34E20, 34E05

1 Introduction

The main purpose of the paper is to consider the infinite product representation of solutions
of second order differential equation of Sturm-Liouville type on a finite interval of the form

y′′ + (λφ2(x)− q(x))y = 0, 0 ≤ x ≤ 1, (1)

The functions φ2(x) and q(x) are referred to as the coefficients of the problem, the func-
tion φ2(x) as the weight; they are real valued on the interval (0, 1). The zeros of φ2(x)
(assumed to be a discrete set) are called the turning points or transition points (TP) of
((2)). The parameter λ is real.
The nature of the solutions of such Sturm-Liouville equation in the neighborhood of the
turning points have been the object of humerous investigations. Readers interested in
a historical survey on linear turning point theory are referred to the survey article of
MCHUGH [13] .The results of Doronidcyn [2], McKelvey [7], Langer [5], Dyachenko [3],
and Tumanov [11] bring important innovations to the asymptotic approximation of solu-
tions of Sturm-Liouville equations with two turning points.

The representation of solutions of Sturm-Liouville equations by means of an infinite
product is a direct consequence of the fact that any solution y(x, λ) defined by a fixed
set of initial conditions (as we have seen above) is necessarily an entire function of λ
for each fixed x ∈ [−1, 1], whose order does not exceed 1/2 (see [1]). It follows from the
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classical Hadamard Factorization Theorem that such solutions are expressible as an infinite
product, and so this gives an alternate description that has not been used as of yet for
approximation purposes in the various applications. Such infinite product representations
have been used effectively by Trubowitz [10] . In theoretical considerations revolving
around the inverse spectral problem associated with ((2)) in definite cases that is, cases
where the coefficient of the parameter λ in ((2)) is of a fixed sign in [−1, 1], as opposed to
indefinite cases as considered here where clearly this is not the case.
In a previous article [14] we considered the real second order differential

y′′ + (λφ2(x)− q(x))y = 0, 0 ≤ x ≤ 1, (2)

where λ is a real parameter and the functions q(x) and φ2(x) satisfy:

(i) φ2(x) is real and has two zeros xν , ν = 1, 2 in I ≡ [0, 1], where the xν are of order
`ν , where `1 is odd and `2 is even. In the terminology of [4], x1 is of Type IV while x2 is
of Type II.

(ii) The function φ0 : I → R − {0} defined by setting φ0(x) = φ2(x)
∏2
ν=1(x− xν)−`ν

is twice continuously differentiable.
(iii) q(x) is bounded and integrable in I.
We obtained the following results:

Theorem 1.1. Let U(x, λ) be the solution of ( (2)) satisfying the initial conditions U(0, λ) =
0, ∂U∂x (0, λ) = 1. Then for 0 < x < x1,

U(x, λ) = R−(x) | φ(x)φ(0) |− 1
2

∏

m≥1

λ− λm(x)

z2m

where zm = mπ
R−(x) ,R−(x) =

∫ x
0

√
max{0,−φ2(t)}dt, the sequence λm(x),m ≥ 1, represents

the sequence of negative eigenvalues on the Dirichlet problem associated with ( (2)) on [0, x].

Theorem 1.2. For, x1 < x < x2,

U(x, λ) =
π

8
csc

πµ1
2
R

1/2
+ (x)R

1/2
− (x) | φ(x)φ(0) |− 1

2

∏

k≥1

(λ− r1k(x))R2
−(x)

j̃2k

∏

k≥1

R2
+(x)(u1k(x)− λ)

j̃2k
,

where R+(x) =
∫ x
0

√
max{0, φ2(t)}dt, R−(x) =

∫ x
0

√
max{0,−φ2(t)}dt, the sequence

{u1k(x)} represents the sequence of positive eigenvalues and {r1k(x)} the sequence of neg-
ative eigenvalues of the Dirichlet problem associated with ( (2)) on [0,x].

Theorem 1.3. For x = x1,

U(x1, λ) =
| φ(0) |− 1

2

2µ1
ψ(x1)R−(x1)

1
2
+µ1

∏

n≥1

(λ− λn(x1))R
2
−(x1)

j2n
.

Where R−(x) =
∫ x
0

√
max{0,−φ2(t)}dt, jn, n = 1, 2, . . . is the sequence of positive zeros

of the Bessel functions of order µ1, the sequence λn(x1) represents the sequence of neg-
ative eigenvalues of the Dirichlet problem associated with ( (2)) on [0, x1] and ψ(x1) =

limx→x1 φ
− 1

2 (x){
∫ x
x1
φ(t)dt} 1

2
−µ1 .
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Theorem 1.4. For x2 < x ≤ 1,

U(x, λ) =
π

8
(csc

πµ1

2
)(cscπµ2)R

1/2
+ (x)R

1/2
− (x) | φ(x)φ(0) |− 1

2

∏

k≥1

(λ− r2k(x))R2
−(x)

j̃2k

∏

k≥1

R2
+(x)(u2k(x)− λ)

j̃2k
,

where R+(x) =
∫ x
0

√
max{0, φ2(t)}dt, R−(x) =

∫ x
0

√
max{0,−φ2(t)}dt, the sequence

{u2k(x)} represents the sequence of positive eigenvalues and {r2k(x)} the sequence of neg-
ative eigenvalues of the Dirichlet problem associated with ( (2)) on [0,x].

Theorem 1.5. For x = x2,

U(x2, λ) =

√
πΓ(µ2) | φ(0) |− 1

2

4Γ(µ2 + 1
2)

ψ(x2) csc
πµ1

2
Rµ2+ (x2)R

1
2
−(x1)

∏

k≥1

(λ− r2k(x))R2
−(x)

j̃2k

∏

m≥1

(um2(x2)− λ)R2
+(x2)

r̃2m
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The solution of two-dimensional inverse heat conduction

problems by using two methods: Finite difference method

and Duhamel Integral method
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Abstract

In this paper we present a new simple method consists the matrix form of Duhamel’s
principle for solving two-dimensional IHCP using temperature data containing significant noise
and comparative this method with the numerical algorithm based on finite-difference method
and the least-squares scheme for solving the inverse problem. The measurements ensure that
the inverse problem has a unique solution, but both of these methods solution is unstable
hence the problem is ill-posed. This instability is overcome using the Tikhonov regularization
method with the gcv criterion for the choice of the regularization parameter.

Keywords: Two-dimensional inverse heat conduction problem, Duhamel’s theorem, Tikhonov
regularization method, SVD method

Mathematics Subject Classification [2010]: 65M32, 35K05

1 Introduction

Inverse heat conduction problems (IHCPs) have been extensively studied over the last 60 years.
They have numerous applications in many branches of science and technology. The problem
consists in determining the temperature and flux heat at inaccessible parts of the boundary of a
2 or 3-dimensional body from corresponding data on accessible parts of the boundary. It is well-
known that IHCPs are severely ill-posed which means that small perturbations in the data may
cause extremely large errors in the solution.

The inverse problem is to find one part of the boundary conditions in two-dimensional body
while the temperature measurements at the other part are given.

For Q = {(x, y, t) : x ∈ (0, 1), y ∈ (0, 1), t ∈ (0, tM )}, the dimensionless mathematical formula-
tion of two-dimensional IHCP may be expressed as follows:
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Ut(x, y, t) = Uxx(x, y, t) + Uyy(x, y, t), in Q, (1a)

U(0, y, t) = q(y, t), 0 ≤ y ≤ 1, 0 ≤ t ≤ tM , (1b)

U(1, y, t) = µ(y, t), 0 ≤ y ≤ 1, 0 ≤ t ≤ tM , (1c)

U(x, 0, t) = ψ(x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ tM , (1d)

U(x, 1, t) = p(x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ tM , (1e)

U(x, y, 0) = h(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (1f)

where µ(y, t), ψ(x, t), p(x, t) an d h(x, y) are known functions and tM represents the final time of
interest for the time evolution of the problem while q(y, t) is unknown.

2 Main results

2.1 Description of Duhamel’s Method

First, for a fixed point (x1, y1) where 0 < x1 < 1 and 0 < y1 < 1,we suppose the overspecified
condition

U(x1, y1, t) = g(x1, y1, t), 0 ≤ t ≤ tM , (2)

The solution of the problem (1) can can be written as follows

U(x, y, t) =

5∑

i=1

Ui(x, y, t),

where Ui(x, y, t), for i = 1, 2, 3, 4, 5, satisfy the following problem:

∂Ti

∂t
=
∂2Ti

∂x2
+
∂2Ti

∂y2
, in Q, (3a)

Ui(0, y, t) =

{
q(y, t), i = 1
0, otherwise

0 ≤ y ≤ 1, 0 ≤ t ≤ tM , (3b)

Ui(1, y, t) =

{
µ(y, t), i = 2
0, otherwise

0 ≤ y ≤ 1, 0 ≤ t ≤ tM , (3c)

Ui(x, 0, t) =

{
ψ(x, t), i = 3
0, otherwise

0 ≤ x ≤ 1, 0 ≤ t ≤ tM , (3d)

Ui(x, 1, t) =

{
p(x, t), i = 4
0, otherwise

0 ≤ x ≤ 1, 0 ≤ t ≤ tM , (3e)

Ui(x, y, 0) =

{
h(x, y), i = 5
0, otherwise

0 ≤ x ≤ 1, 0 ≤ y ≤ 1. (3f)

In a linear problem a linear dependence exists between the input (in this case q(y, t)) and the
response (at x = 1). This dependence can be expressed analytically by the Duhamel integral

U1(x, y, t) =

∫ t

0

q(s)
∂ϕ

∂t
(x, y, t− s)ds+ U1(x, y, 0), (4)

where ϕ(x, y, t) represents the temperature response at location (x, y) for a unit step change (of
flux) in the input, and T1(x, y, 0) is the initial condition for problem (3) for i = 1 (in this case it
is 0). Considering that the objective in the inverse problem (3), for i = 1, is the estimate of q(y, t)
in a discrete form equation (4) can be approximated at time tM as

(U1)M =

M∑

n=1

qn∆ϕM−n, (5)
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where subscripts denote the time instant considered. Note that ∆ϕ represents the temperature
response to a unit pulse in the input so that ∆ϕk = ϕk+1 − ϕk for k = 1, ...,M . As it is evident
that ∆ϕk−j = ∂U1k

∂qj
, consequently it represents the sensitivity coefficient measured at time tk with

respect to component qj . Obviously, the sensitivity coefficients will be zero when k < j.
Considering the expression (5), for M = 1, 2, . . . , we obtain the following matrix equation

U1 = Xq (6)

where q = [q1, . . . , qM ]T , qk = q(tk) and

X =




∆ϕ0 0 . . . 0 0 0
∆ϕ1 ∆ϕ0 0 . . . 0 0

...
...

...
...

...
...

∆ϕM−2 ∆ϕM−3 . . . ∆ϕ1 ∆ϕ0 0
∆ϕM−1 ∆ϕM−2 ∆ϕM−3 . . . ∆ϕ1 ∆ϕ0



.

If the time history covers a large period of time, this matrix and the corresponding vector can be
of a considerable dimensional.

By solving the direct problem (3), for i = 2, 3, 4, 5, and using the overspecified condition (2)
and the equation (1), we have

U∗(x1, y1, t) = g(x1, y1, t) −
5∑

i=2

Ui(x1, y1, t) = U1(x1, y1, t). (7)

Considering the Duhamel’theorem, for M = 1, 2, . . ., we obtain the following equation

U∗ = Xq, (8)

where U∗ = [U∗
1 , . . . , U

∗
M ]U , U∗

k = U∗(x1, y1, tk).
In this study we consider a possible method in order to get a stable algorithm, so that the

Tikhonov regularization method must be used to control this measurement errors.

2.2 Overview of finite difference Method

We start by dividing the domain [0, 1]
2 × [0, T ] into an M2 × N mesh with spatial step size

∆h = 1/M in both x-and y-directions and the time-step size ∆t = T/N , respectively. The grid
points (x, y, t) are given by:

xi = i∆h, i = 0, 1, 2, ...,M, yj = j∆h, j = 0, 1, 2, ...,M, tn = n∆t, n = 0, 1, 2, ..., N,
(9)

where M and N are integers. Note that ui,j,n used to denote the finite difference approximation of
u(i∆h, j∆h, n∆t). We assume that:

∆x = xi+1 − xi, ∆y = yj+1 − yj , sx =
∆t

∆x2
, sy =

∆t

∆y2
. (10)

In this work, the spatial step size is ∆x and the time step size is ∆t. The process of stepping from
time tn, to tn+1 is carried out in two stages.

In the first half-time interval of this ADI procedure, with each i = 1, 2, ..., (M − 1), and for
eachj = 1, 2, ..., (M − 1),we have

−sxUi−1,j,n+1/2 + 2(1 + sx)Ui,j,n+1/2 − sxUi+1,j,n+1/2 =

syUi,j−1,n + 2(1 − sy)Ui,j,n + syUi,j+1,n, (11)
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where the notation Ui,j,n+1/2 refers to values of Ui,j,n computed at the intermediate stage.
In the second half-time interval, the following formula is used with i = 1, 2, ..., (M − 1), and for

eachj = 1, 2, ..., (M − 1):

−syUi,j−1,n+1 + 2(1 + sy)Ui,j,n+1 − syUi,j+1,n+1 =

sxUi−1,j,n+1/2 + 2(1 − sx)Ui,j,n+1/2 + sxUi+1,j,n+1/2. (12)

In the case ∆x = ∆y = ∆h, we have sx = sy = r , and the formulae to be used in the two
half-time steps of a time-split procedure are

−rUi−1,j,n+1/2 + 2(1 + r)Ui,j,n+1/2 − rUi+1,j,n+1/2 =

rUi,j−1,n + 2(1 − r)Ui,j,n + rUi,j+1,n. (13)

The equation (13) for i = 1, 2, ..., (M − 1), can be written as

AX1 = D1, (14)

and
−rUi,j−1,n+1 + 2(1 + r)Ui,j,n+1 − rUi,j+1,n+1 =

rUi−1,j,n + 2(1 − r)Ui,j,n + rUi+1,j,n. (15)

The equation (15) for j = 1, 2, ..., (M − 1), can be written as

AX2 = D2, (16)

Remark 2.1. In this work the polynomial form proposed for the unknown function q(y, t) before
performing the calculation. Therefore q(y, t) approximated as

q(y, t) =

γ∑

i=0

ι∑

j=0

ai,jy
itj , (17)

where ai,j are constants which remain to be determined simultaneously for each interval.
Substitution the q(y, t) into (13), therefore the solution of this equation is

Ui,j,n; i, j = 1, 2, . . . , (M − 1), n = 1, . . . , N.

Note that, the unknown function q(y, t) is difficult to be approximated by a polynomial function
for the whole time domain considered. Therefore the time domain 0 ≤ t ≤ T will be divided
into W subintervals where W is integer . Each of the subintervals is assumed to be µ∆t.(µ is
integer,µ ≤ N).
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Abstract

The stability of ecological and biological modeling has special important. In this
paper a predator-prey model with disease infection in both populations is proposed.
By using local analysis of various equilibria, we obtained several threshold parameters
which determine the stability of the existing equilibria. We also considered disease in-
fection in both populations, and so the model yields more complex dynamics. Finally,
we analyzed the locally and globally stability.

Keywords: Ecological threshold parameter; Basic reproduction number; Stability.

Mathematics Subject Classification [2010]: 92D40,92D30,93D05.

1 Introduction

Infectious diseases have been known to be an important regulating factor for human and
animal population sizes. In particular, for predator-prey ecosystems, infectious diseases
coupled with predator-prey interaction to produce a complex combined effect as regulators
of predator and prey sizes. Most of these previous studies focussed mainly on parasite in-
fection and in prey only, although some studies did consider infection of predator through
eating prey [1, 2]. In this present work, we begin by describing a predator-prey system
with infection, based on the work C.F. McQuaid and N.F. Britton. We briefly discuss the
disease-free model and analysis of the full model will be given[5].

2 Main Results

We propose a general theoretical model for a trophically transmitted parasite, where the
parasite requires both an intermediate (prey) host and a definitive (predator) host, and
there is no intraspecies infection. The parasite is transmitted from prey to predator by
consumption of infected prey species, and from predator to prey environmentally through
routes such as faecal contamination. Infected individuals immediately become infectious,
and remain so for life. Here, we describe a model where Y represents the population of
the prey species, and P the predator. The presence of a pathogen leads to infected classes
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y and p of prey and predator species, respectively.

dY

dt
= (Y + y)(b − dY ) − τyY p − γY (P + p)

H + hγY + νhγy
,

dP

dt
=

εγ(P + p)Y

H + hγY + νhγy
− δP +

ενγ(P + p − τpP )y

H + hγY + νhγy
,

dy

dt
= τyY p − d(Y + y)y − ωyy − νγ(P + p)y

H + hγY + νhγy
,

dp

dt
=

τpενγyP

H + hγY + νhγy
− (ωp + δ)p.

(1)

2.1 The Disease-Free Case

We first consider the disease-free case. That is, we consider system (1) where
y = p = 0 which is given as follows:

dY

dt
= Y (b − dY ) − γY P

H + hγY

dP

dt
=

εγPY

H + hγY
− δP.

(2)

Analytical results for this system are described below. We assume the local stability of
each equilibrium. The Jacobian matrix of the system (2) is given by

J(Y, P ) =




∂f1

∂Y
(Y, P )

∂f1

∂P
(Y, P )

∂f2

∂Y
(Y, P )

∂f2

∂P
(Y, P )




The equilibrias of the system are discussed below:

(1) Trivial Equilibrium: E0 = (0, 0). Since the multiply of eigenvalues of the Jaco-
bian matrix at E0 is negative, it is a saddle point.

(2) Boundary Equilibrium: EB = (
b

d
, 0). It is easy to show that if we let

R1 =
εγ

b

d

δ(H + hγ
b

d
)

, then EB is locally asymptotically stable if and only if R1 < 1.

(3) Interior Equilibrium: E∗ = (Y ∗, P ∗),

where (Y ∗, P ∗) = (
Hδ

γ(ε − δh)
,
1

γ
(H +

hHδ

ε − δh
)(b − dHδ

γ(ε − δh)
)).

We have the following global result regarding the stability of these equilibrias.

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

The stability of Predator-Prey model with disease infection pp.: 2–4

356



Lemma 2.1. (i) If R1 < 1, then EB is globally asymptotically stable for system(2).
(ii) If R1 > 1, then EB is unstable for system(2) and the positive equilibrium E∗ exists.
(iii) If R1 = 1, EB is globally asymptotically stable for system(2).

Lemma 2.2. (i) If 1 < R1 <
hγb

(bγh − dH)
, then E∗ is locally asymptotically stable for

system(2). (ii) If R1 >
hγb

(bγh − dH)
, then E∗ is unstable for system(2).

(iii) If R1 =
hγb

(bγh − dH)
, then E∗ may be either a centre or a spiral point for system(2).

We now give two theorems pertaining to the global stability of the positive interior
equilibrium E∗.

Theorem 2.3. If 1 < R1 <
hγb

(bγh − dH)
, then E∗ is globally asymptotically stable for

system(2).

Theorem 2.4. If R1 >
hγb

(bγh − dH)
, then E∗ is unstable for system(2) and this system

has a unique limit cycle which is globally orbitally stable.

2.2 The Model With Disease

We now proceed to consider the full 4D model in system (1), which has as many as five
equilibrias, depending on the parameter values. We can divide these five equilibrias into
three types: trivial, boundary and positive interior equilibria. First, we consider the local
stability of the trivial equilibrium and the boundary equilibria. Note that all equilibrias
in the 4D system are boldfaced to distinguish them from the equilibrias of 2D disease-free
model. From the Jacobian matrix of system(1) we have the following results on the equi-
librias:

(1) Trivial Equilibrium: E0 = (0, 0, 0, 0). It is easy to show that E0 = (0, 0, 0, 0)
always exists but is unstable for system(1).

(2) Three Boundary Equilibria. Subcase (i) EB = (K, 0, 0, 0) is the axial equilib-
rium on Y -axis with healthy prey only, which always exists.
Subcase (ii) EB = (Y, y, 0, 0) is the boundary equilibrium on Y y -plane with endemic prey
population only.
Subcase (iii) E∗

B = (Y ∗, 0, P ∗, 0) is the boundary equilibrium on Y P -plane with disease-
free coexistence of predators and prey.

(3) Positive Interior Equilibrium Ẽ = (Ỹ , ỹ, P̃ , p̃) with endemic coexistence.

Lemma 2.5. Let R0 =
−kd

wy
,

(i) If R0 < 1 and R1 < 1, then EB is locally asymptotically stable for system(1).
(ii) If R0 > 1 or R1 > 1, then EB is unstable for system(1).
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Lemma 2.6. Let R∗
0 =

−dY ∗

νγp∗

H + hγY ∗

,

(i) If R∗
0 < 1 and 1 < R1 <

hγb

(hγb − dH)
, then E∗

B is locally asymptotically stable for

system(1).

(ii) If R∗
0 > 1 or R1 >

hγb

(hγb − dH)
, then E∗

B is unstable for system(1).

3 Conclusion

We obtained that R0 and R∗
0 are disease basic reproduction numbers which determine the

local stability of the two disease-free equilibrias EB and E∗
B, while R1, R̄1 and R̃1 are

the average numbers of prey converted to predator biomass in a course of the predators

life span. Note that if we define a function R1(Y ), then it follows that R1 = R1(
b

d
),

R̄1 = R1(Ȳ ) and R̃1 = R1(Ỹ ), which are the respective threshold parameters or eco-
logical basic reproduction numbers for the predator prey system at EB, ĒB and Ẽ that
determine the coexistence of prey and predators at these equilibrias. One of the condition
always determine the coexistence of the predator-prey system, the other condition dictates
whether the disease will be eradicated. This phenomenon of dual threshold parameters
has previously been observed in [3, 4].
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Abstract

Food chains in the environment can be modeled by systems of differential equations,
that approximate species with functional responses. In this paper, an ecological model
with Holling type-II functional response in order to describe the dynamical behavior
of a three-species food chain is investigated. The local stability and the existence of
Hopf bifurcations are established. Finally, numerical simulations are carried out to
illustrate the theoretical results.

Keywords: Stability, Bifurcation, Food chain.

Mathematics Subject Classification [2010]: 34D20, 34C23

1 Introduction

Food chains in the environment are very important systems in many different fields such
ecological science, applied mathematics, and etc. Food chains can be modeled by systems
of differential equations which approximate species with different functional responses. In
the history of population ecology, both mathematicians and ecologists have a great interest
in the Holling type predator-prey models including Holling types I-III. The Hastings-
Powells food chain was analyzed in two different ways [2]. First, the asymptotic states
were obtained by direct numerical integration of the dynamical system, varying a key
parameter. Second, some relevant features of the whole system were identified by using
the delay coordinate embedding from a time series [5].

2 Main Results

We will describe three species Hastings-Powells food chain model revisited given by,

dx

dt
= x(1 − x) − a1x

1 + b1x
y

dy

dt
=

a1x

1 + b1x
y − a2y

1 + b2y
z − d1y

dz

dt
=

a2y

1 + b2y
z − d2z.

(1)
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Where x, y and z are the dimensionless population variables; t is the dimensionless time
variable; a1, a2, b2, d1, d2, b1 = K0

B1
, are dimensionless parameters [2].

2.1 Analysis of The Model

We study the existence and local stability of the positive equilibrium point of system (1)
and investigate the conditions which Hopf bifurcation occur’s. There exist four equilibrium
points E0 = (0, 0, 0), E1 = (1, 0, 0), E2 = (x̃, ỹ, 0) and E3 = (x∗, y∗, z∗) where x̃ and ỹ are
given as follows:

x̃ = d1
a1−b1d1 , ỹ = b1x̄2+(1−b1)x̄−1

a1
.

The interior equilibrium point is E3 = (x∗, y∗, z∗) = ( −p
2b1
, d2q ,

r
b1(2−b1)q ) where

p = 1 − b1

√
(1 + b1)2 − 4a1b1d1

a2−b2d2 , q = a2 − b2d2,

r = b1d1(p− 2) − a1p.

In order to study the behavior of solution near the equilibrium points, we need to compute
the Jacubian matrix of the system (1) .

J =



J11 J12 J13

J21 J22 J23

J31 J32 J33




J11 = 1 − 2x0 + a1b1x0y0
(1+b1x0)2

− a1y0

1 + b1x0
, J12 = − a1x0

1+b1x0
, J13 = 0,

J21 = a1y0
(1+b1x0)2

, J22 = −d1 + a1x0
1+b1x0

− a2z0
(1+b2y0)2

, J23 = − a2y0
1+b2y0

,

J31 = 0, J32 = a2z0
(1+b2y0)2

, J33 = −d2 + a2y0
1+b2y0

.

The equilibrium point E0 = (0, 0, 0) has eigen values 1,−d1,−d2, Thus E0 is a saddle
point [4].
The roots of the characteristic equation p2(λ) = 0 of matrix J at point E1 = (1, 0, 0)
satisfy as follows:

λ1 + λ2 = a1
(1+b1) − d1, λ1λ2 =

a2
1

(1+b1)3
and λ3 = −d3.

It is stable in xy−plane, since z-direction λ3 = −d2 is negative.
The equilibrium point (x̃, ỹ, 0) is stable if the conditions d2 >

a2ỹ
(1+b2y)2

and d1 >
a2x̃

(1+b2x)
are true.

The Jacubian matrix at equilibrium point E3 is given by,

J∗ =




(p−2)2q(p+b1)−4a1b1d2
q(p−2)2b1

a1p
2b1(1− p

2
)

0
4a1d2
q(p−2)2

−b2d2r
a2b1(p−2) −d2

0 −qr
a2b1(p−2) 0
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By using the Routh-Hurwitz criterion, we see that E3(x
∗, y∗, z∗) is locally asymptotically

stable provided the following conditions A1 > 0, A3 > 0, A1A2 > A3.

λ3 +A1λ
2 +A2λ+A3 = 0.

Where A1 = −(a11 + a22), A2 = a11a22 − a23a32 − a12a21, A3 = a11a23a32.
We show that, A1 > 0 iff the following condition is satisfied,

(p− 2)2q(p+ b1) − 4a1b1d2

q(p− 2)2b1
<

rb2d2

(p− 2)a2b1
. (2)

Also A1A2 −A3 = (a11 + a22)(a12a21 − a11a22) + a22a23a32.
By substituting the E3 = (x∗, y∗, z∗) we get

A1A2 −A3 = 1
α5β4 (M1M2 − α4(−d2αβ5+a1x∗β5−a2z∗αβ3)(−a2

2y
∗z∗αβ2)

β ).

α = 1 + b1x
∗, β = 1 + b2y

∗,

M1 = α2β2 − 2x∗α2β2 + a1b1x
∗y∗β2 − d1α

2β2 + a1x
∗αβ2 − a2z

∗α2,

M2 = −a2
1β

2 − (α3β2 − 2x∗α3β2 + a1b1αβ
2x∗y∗ − ayα

2β)(−d1α
3β2 + a1α

3β2 − a2α
3z∗).

The necessary and sufficient condition for A1A2 −A3 > 0 is

d2 <
M1M2β + a1a

2
2x

∗y∗z∗α5β7 − a3
2α

6β5y∗z2

α6β7a2
2y

∗Z∗ . (3)

Theorem 2.1. Suppose that the positive equilibrium point E3 = (x∗, y∗, z∗) of system (1)
exists. Then equilibrium point E3 is locally asymptotically stable if and only if conditions
(2) and (3) hold.

In order to investigate the Hopf bifurcation of the system (1), we follow the technique
given by Liu [3]. The simple Hopf bifurcation at µ = µ∗ can occur provided A1(µ), A3(µ)
and ψ(µ) = A1(µ)A2(µ) − A3(µ) are smooth functions of µ in an open interval which
includes µ∗ ∈ R such that,

A1(µ∗) > 0, A3(µ∗) > 0, ψ(µ∗) = A1(µ∗)A2(µ∗) −A3(µ∗) = 0 and Dψ(µ)
Dµ |µ=µ∗ ̸= 0.

Now, let the decay rate of the top predator d2 be the bifurcation parameter

d∗ =
M1M2β + a1a

2
2x

∗y∗z∗α5β7 − a3
2α

6β5y∗z2

α6β7a2
2y

∗Z∗ (4)

Then A1(d∗) > 0 , A3(d∗) > 0 and ψ(d∗) = A1(d∗)A2(d∗) −A3(d∗) = 0.
Furthermore, it is easy to verify that,

Dψ(d)

Dd
|d=d∗= a2

2β
2y∗z∗ ̸= 0.

Theorem 2.2. Under the conditions (2) and (4) there is a simple Hopf bifurcation of the
positive equilibrium point E3 = (x∗, y∗, z∗) for the system (1) at some critical value of the
parameter d2 given by (4).
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2.2 Numerical Results

We get the time series corresponding to the variables of system (1).

a1 = 5, a2 = 0.1, b2 = 2, d1 = 0.4, d2 = 0.01, b1 = 2.75.

Starting with small d2, the population sizes move towards a stable equilibrium point; as
d2 increases, a Hopf bifurcation occurs; and, as d2 increases further, the limit cycles to
period doubles, and the system undergoes to a sequence of period-doubling bifurcations.

Figure 1: Attractor in the xyz space corresponding to d2 = 0.01.

3 Conclusion

As regording to figure 1, the period-doubling phenomenon leading to chaos is a well known
feature of a range of nonlinear systems of biological populations. Having used the set of
parameters HP [2], we are able to show that the model could exhibit chaotic dynamics.
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Upper bound for the number of limit cycles in a Lienard
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Abstract

Lienard system forms one of the important class of differential equations which is
considered widely in recent years. An interesting problem studied about this equations
is to obtain an upper bound for the number of limit cycle. In this paper we study
hopf bifurcation for special polynomial Lienard system and find a maximal number of
limit cycle near the origin which named Hopf cyclicity.

Keywords: Lienard system, Limit cycle, Hopf bifurcation
Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Consider the Lienard equation ẍ+ f(x)ẋ+ g(x) = 0, which has a equivalent form

ẋ = y − F (x), ẏ = −g(x) (1)

where F (x) =
∫ x
0 f(x)dx. Depending of F and g, this system has been widely studied by

mathematicans and scientists and many conclusions about the number of limit cycles for
this system are obtained. For example in [1] it is proved that the system

ẋ = y − Σn
i=0aix

i

1 + Σm
i=1bix

i
, ẏ = −g(x)

has Hopf cyclicity [n+m−12 ] at the point (0, a0), where g(−x) = −g(x), g(0) = 0 and
g′(0) > 0. In [2] author gives the number [4n+2m−4

3 ] − [n−m3 ] ( n > m ), as an upper
bound for the maximum number of limit cycle in neighborhod of the point (0, a0), for
above system with gx) = x(x + 1), where this number is Hopf cyclicity in case n = m.
Now suppose F and g be polynomials. Let Ĥ(i, j) denote the maximal number of small-
amplitude limit cycle bifurcated from a focus of system (1), where i and j are degree of
f and g. Yu and Han in [3] gave a table on Ĥ(i, j) which summarizes the existing result
for some i and j. In particular if g is quadratic then Ĥ(i, 2) = [2i+1

3 ] for i > 2, and if g is

cubic then Ĥ(i, 3) = 2[3i+6
8 ] for 2 6 i 6 50. Yu and Lynch in [4] considered two type of

symmetric Lienard systems and proved that the system

ẋ = y − Σm
i=0aix

2i+1, ẏ = −x(x2 − 1)
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has Hopf cyclicity m at the point A(1, y0) and B(−1,−y0) and the system

ẋ = y − Σm
i=0aix

2i, ẏ = −x(x2 − 1)

has Hopf cyclicity [m−12 ] at the point A and B, where y0 = Σm
i=0ai. In this paper we study

a polynomial Lienard system and by using some analysis technics find Hopf cyclicity for
this system. In order to prove main result we will apply a theorem given by Han in [5].
To state this theorem consider a Lienard system of the form

ẋ = p(y)− F (x, a), ẏ = −g(x), (2)

where F, p and g are c∞ function near the origin with g(0) = 0, g′(0) > 0, p(0) = 0, p′(0) >
0, F (0, a) = 0, a ∈ Rn. Let α(x) = −x + O(x2) satisfying G(α(x)) = G(x) for |x| � 1,
where G(x) =

∫ x
0 g(x)dx.

Theorem 1.1. ( Han [5] ). Suppose for |x| � 1,

F (α(x), a)− F (x, a) = Σi>1Bi(a)xi, a = (a1, ..., an).

If B2j+1(a0) = 0 and B2k+1(a0) 6= 0 for j = 0, 1, ..., k−1, and rank
∂(B1,B3,...,B2k−1)
∂(a1,a2,...,an)

(a0) = k

for some a0 ∈ Rn, then Eq.(2) has Hopf cyclicity k at the origin for all a near a0.

The proof of the above theorem given in [5] directly implies a generalized form of the
following.

Theorem 1.2. If there exists k > 1 such that for j > k+ 1, B2j+1 = O(B1, B3, ..., B2k+1)
as |B1|, |B3|, |B2k+1| are sufficiently small, then for any N > 0, there exists a neigborhood
U of the origin such that Eq.(2) has at most k limit cycle in U for all |B2j+1| 6 N ,
j = 0, 1, ..., k.

2 Main results

In this section we prove below theorem as the main result of this paper.

Theorem 2.1. The Lienard system

ẋ = y − qn(x), ẏ = −x(x+ 1) (3)

has Hopf cyclicity [2n−13 ] at the point (0, a0), where qn(x) = Σn
i=0aix

i.

Note that for g(x) = x(x + 1) we suppose G(x) =
∫ x
0 g(x)dx = x2

2 + x3

3 . Because of
G(α(x) = G(x) for |x| � 1, so we can take

α(x) =
−2x− 3 +

√
−12x2 − 12x+ 9

4
= −x− 2

3
x2 − (

2

3
)2x3 − 2(

2

3
)3x4 +O(x5).

Let Ii(x) = αi(x) − xi. To prove the theorem we first give some lemma without proof
which given in [2].

Lemma 2.2. For any integer n > 0, we have I3n(x) = −Σn
i=1C

i
n(32)iI3n−i(x).
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We introduce a new variable θ by x = (−1−
√
3 sin θ+cos θ)

2 = ξ(θ) for|θ| � 1. Then

it follows that α(x) = −1+
√
3 sin θ+cos θ

2 = ξ(−θ). Suppose that In(x) = In(ξ(θ)) = În(θ).

Then we have În(θ) = [ξ(−θ)]n−[ξ(θ)]n. Thus the periodic function În is odd in θ. Further
for its Furier expansion we have the following lemma.

Lemma 2.3. For any integer n, the function În(θ) has the following Furier expansion

În(θ) = Σi∈S(n)bn,i sin iθ,

where S(n) = {k|k 6= 0(mod3), 1 6 k 6 n} and bn,i are cofficients independent of θ with
bn,n = 2−n+2 sin nπ

3 .

By lemma 2.3 we have bk,k 6= 0 for k 6= 0 (mod 3). Hence, noting that different
functions sin(kθ) for k 6= 0 (mod 3) are linearly independent, lemma 2.3 implise that the
functions Îi(θ), i ∈ S(n), are linearly independent for any positive integer n > 1. In other
words, we have the following lemma.

Lemma 2.4. For any integer n > 1, the [2n−13 ] + 1 functions Ii(x), i ∈ S(n), are linearly
independent.

Then by lemmas 2.2 and 2.3 we see the fact that the n functions Ii(x), i = 1, ..., n, can
span a linear space of dimension [2n−13 ] + 1. Now we prove theorem (2.1).

Proof. Firstly we prove that Eq.(3) has at most [2n−13 ] limit cycle near the origin by
theorem 1.2 . We have

qn(α(x))− qn(x) = Σn
i=1aiIi(x) = Σi>1Bix

i = Qn(x). (4)

Then by lemma 2.3

Qn(x) = Σn
i=1aiÎi(θ) = Σn

i=1aiΣj∈S(i)bi,j sin jθ = Q̂n(θ).

Noting that S(j) = ∪ji=1Ŝi, where Ŝi = {i} for i 6= 0(mod 3) and Ŝi = ∅ for i = 0(mod 3),
one has

Q̂n(θ) = Σj∈S(n)Σ
n
i=jaibi,j sin jθ = Σj∈S(n)cj sin jθ,

where cj = Σn
i=jaibi,j . Then

Q̂n(θ) = Σj∈S(n)cjΣi>0
(−1)i

(2i+ 1)!
j2i+1θ2i+1 = Σi>0

(−1)i

(2i+ 1)!
ĉ2i+1θ

2i+1 (5)

where ĉ2i+1 = Σj∈S(n)j2i+1cj , i > 0. From last equation we can obtain Cl+1 = A−1l+1Ĉl+1,
where detAl+1 6= 0. Hence we have

ĉ2j+1 = O(|ĉ1, ĉ3, ..., ĉ2l+1|) forj > l + 1. (6)

Further noting that θ = −2
√
3

3 x+O(x2), from (4) and (5) we have

B2j+1 =
(2
√

3)2j+1(−1)j+1

32j+1(2j + 1)!
ĉ2j+1 +O(|ĉ1, ĉ3, ..., ĉ2j−1|), forj > 0 (7)
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which gives

ĉ2j+1 =
32j+1(2j + 1)!

(2
√

3)2j+1(−1)j+1
B2j+1 +O(|B1, B3, ..., B2j−1|), for 0 6 j 6 l. (8)

By (6), (7) and (8)

B2j+1 = O(|B1, B3, ..., B2l+1|) forj > l + 1.

In particular, Qn(x) = 0 when B2j+1 = 0, 0 6 j 6 l. It follow by theorem 1.2 that Eq.
(3) has at most l limit cycle near the origin. Finally we prove that l limit cycle can apear
near the origin. For simplicity, take a3j = 0, 1 6 j 6 [n3 ]. In this case, from (4) we have

(B1, B3, ..., B2l+1)
T = Sl(ak0 , ak1 , ..., akl)

T ,

where Sl is a constant matrix of order l + 1. On the one hand, from lemma 2.4, the
functions Ik0(x), Ik1(x), ..., Ikl(x) are linearly independent, and hence from (4) it is easy to
see that akj = 0, 0 6 j 6 l, if and only if qn(α(x))− qn(x) ≡ 0. On the other hand, from
the above proof, we see that B2j+1 = 0, 0 6 j 6 l, if and only if qn(α(x)) − qn(x) ≡ 0.
Therefore, we have detSl 6= 0, and the conclusion follows by theorem 1.1. The proof is
completed.
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Abstract

we introduce a very important application of PDE in financial markets.for this
purpose a european option pricing under underling asset with volatility and interest
rate is stochastic. for estimating the option pricing of the european model.here we
obtained approximation PDE and affine PDE, we solution this approximation PDE
with Alternatig Directio Implicit (ADI) time Discretization scheme then the estimate
eropean call and put option under HHW model.

Keywords: HHW model, ADI scheme,T- forward

1 Introduction

we describe the triple Heston-Hull-White (HHW) Model .In section 2 the HHW model is
combined Heston model with stochastic volatility and hull-White for a stochastic inter-
est rates process,as described by Grzelak and oosterlee (2009,2011),wich is three factor
model.these dynamic are formed by three correlated standard Brownian motions.in this
paper we briefly describe how to model PDE HHW with construct a portfolio of assets .By
applying Ito’s formula on the dynamics of the portfolio we will reach to the PDE HHW.
unfortunately ,the HHW model and that’s PDE are not affine ,not even apply to the log
transform .so in section 3 PDE approximation is obtained by removal of non affine PDE
HHW with this change.It has been possible to accept numerical model will be affine.In
section 4 we using a ADI scheme to solve PDE and we will get to a solution wich is highly
efficient

2 Heston-Hull-White Model

Consider the following system of the stochastic diffrential equation subject to the filtered
probability space (Ω,F , Q) and finite time [0, t] .the model is defined ,under the risk natural
measure Q ,the dynamics of these are presented as follow:





dS(t)/S(t) = r(t)dt +
√

v(t)dWQ
x (t) S(0) > 0

dv(t) = κ(v̄ − v)dt + γ
√

v(t)dWQ
v (t) S(0) > 0

dr(t) = λ(θ(t) − r(t))dt + ηdWQ
v (t) S(0) > 0

(1)
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Where S(t) , v(t) and r(t) (t > 0) are the stock price process,instantaneous volatility and
short term rate of interest ,respectively.the correlation of the Brownian motions are given
in the following way:





dWx(t)dWv(t) = ρx,ydt

dWx(t)dWr(t) = ρx,dt

dWv(t)dWr(t) = 0

(2)

Where λ ,θ(t) and η are parameters from Hull-White model and λ > 0 means the
speed of mean reversion of the short rate , θ(t) is the interest rate term-structure ,η is
defind as volatility of the interest rate.Glazark and Oosterlee interest is to price, under
the risk-free measure Q associated to the bank account as numeraire .

3 Mesure change to move T-forward

In the Heston-Hull-White model ,by switching between two pricing measures ,i.e we change
to T-forward stock price . the dynamics for the zero-coupon bond (ZCB) expiring at time
T , under the spot measure Q in the Heston-Hull-white for the forward asset price is defind
as :

F (t) =
S(t)

P (t, T )
=

S(t)

exp[Ar(t, T ) − Br(t, T )r(t)]
(3)

Forward exchange rate satisfies the following PDE under the forward measure.




dFt

Ft
=

√
vtdW T

F −r (t, T )dW T
r

dv(t) = κ(v̄ − v)dt + γ
√

v(t)dW T
v (t)

(4)

With dW T
F dW T

v = ρF,vdt, dW T
F dW T

r = ρF,rdt. Wich implies the following result

−∂V

∂t
= κ(v̄ − v)

∂V

∂v
+

1

2
γ2v

∂2V

∂v2
+ F 2(

1

2
v +

1

2
η2B2

r (t, T ) − · · ·

− ρF,rηBr(t, T )
√

v)
∂2V

∂F 2
+ ρF,vγFv

∂2V

∂F∂v

(5)

System (1) and PDE (5) does not fit in the class of affine diffusion process(AD), as it con-
tains the non-affine factor ρF,rηBr(t, T )

√
v ,with a non zero correlation,not even when we

make the log transform of the asset price.we cannot determine the characteristic function
by standard procedures due to the non-affine form.hence , accurate approximation are
needed.we therefor define an approximation to PDE (5) for a highly efficient computation
of an approximation solution.PDE affine by the replace the term none-affine

√
v in (5) by

time-dependent function ,ϕ(t, v(0)) wich gives us ,approximating pricing PDE, we denote
the solution byṼ :

−∂Ṽ

∂t
= κ(v̄ − v)

∂Ṽ

∂v
+

1

2
γ2v

∂2Ṽ

∂v2
+ F 2(

1

2
v +

1

2
η2B2

r (t, T ) − · · ·

− ρF,rηBr(t, T )
√

v)
∂2Ṽ

∂F 2
+ ρF,vγFv

∂2Ṽ

∂F∂v

(6)

With the same boundary and final condition as (5).
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4 Alternative Differential Implicit Scheme

with discretizing PDE ( 5),its approximating PDE (6 ).we are following final value problem
for a system of ordinary differential equations(ODEs):

V h+1 − Vh

△t
= Ah(t)Vh(t) + R Vh(T ) = VT (7)

where Vh(t) is a vector of approximation of option value and its unknown.that estimate
with boudary condition.Ah(t) 0 ≤ t ≤ T is a given square matrix,and gh(t) is a given
real vector that is estimated with boundary condition.splitting a matrix in sub matrix
: Ah(t) = A0 + A1(t) + A2 where A0(t) corresponds to the mixed derivatives,A1(t) to
the derivatives in the s direction and A2(t) to the derivatives in the v direction .similary
the vector R is split up: R = R0 + R1 + R2 .we will obtain the first-order for solve the
ODEs,the Douglas scheme is following:

Y0 = Vn + △t(Ah(t)Vh(t) + R)
Y1 = Y0 + θ △ tA2(Y1(t) − Vn)
Y2 = V1 + θ △ t(A1(tn−1) − A1(tn)Vn + R)
Vn−1 = Y2

wich generate the succsessive approximations,Vn to the solutions V (tn, Fi, vj) and θ is
given a real parameter. and the Craig-Sneyd scheme :

Y0 = Vn + △t(Ah(t)Vh(t) + R)
Y1 = Y0 + θ △ t(A1Y1 − A1Vh)
Y2 = Y1 + θ △ t(A2Y2 − A2Vh)

Y3 = Y0 +
1

2
△ tA0(Y2 − Vh)

Y4 = Y3 + θ △ t(A1Y4 − A1Vh)
Y5 = Y4 + θ △ t(A2Y5 − A2Vh)
Vh+1 = Y5
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Abstract

In this paper, we present the existence of solutions for G-backward stochastic
differential equations with quadratic growth and unbounded terminal value, under
some assumptions.

Keywords: G-expectation, G-Brownian motion, G-Backward stochastic differential
equations, quadratic growth, unbounded terminal value .
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1 Introduction

We consider the following G-backward stochastic differential equation:

Yt = ξ +

∫ T

t
f(s, Ys, Zs)ds −

∫ T

t
ZsdBs − (KT − Kt), (1)

where K is a decreasing G-martingale. The terminal value ξ and the generator f are
given. Bt is the G-Brownian motion. We present the existence of a solution (Y,Z, K) for
(1) (see Theorems 3.1) in the G-framework.

2 Preliminaries

We briefly recall some basic notions of G-expectation. Let (Ω, H, E) be the G-expectation
space. We denote by lip(Rn) the space of all bounded and Lipschitz real functions on Rn.
In this paper we set G(a) = 1

2(a+ − σ2
0a

−), where a ∈ R and σ0 ∈ [0, 1] is fixed.
Let Ω = R and H = lip(R), in [1], X with G-normal distribution (with mean at x ∈ R
and variance t > 0), is defined by

E[φ(x +
√

tX)] = P t
G (φ(x)) := u(t, x),

Where φ ∈ lip(R) and u = u(t, x) is a bounded continuous function on [0, ∞) × R which
is the solution of the following G-heat equation

∂tu − G(∂2
xxu) = 0, u(0, x) = φ(x).
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Let Ω = C0(R+) be the space of all R-valued continuous paths (ωt)t∈R+with ω0 = 0. We
set, for each t ∈ [0, ∞)

Wt := {ω.∧t : ω ∈ Ω},

Ft := Bt(W ) = B(Wt),

Ft+ := Bt+(W ) =
∩

s>t

Bs(W ),

F :=
∨

s>t

Fs.

Then (Ω, F ) is the canonical space with the natural filtration and Bt(ω) = ωt is the
canonical process. This space is used throughout the rest of this paper.

For each fixed T ≥ 0, we consider the following space of random variables

l0ip(FT ) := {X(ω) = φ(ωt1 , . . . , ωtm), ∀m ≥ 1, t1, . . . , tm ∈ [0, T ], ∀φ ∈ lip(Rm)}.

We further define l0ip(F ) :=
∪∞

n=1 l0ip(Fn).

Definition 2.1. [1] The canonical process Bt(ω) = ωt is called a G-Brownian motion
under a nonlinear expectation E defined on l0ip(F ) if for each T > 0, m = 1, 2, . . . , and for
each φ ∈ lip(Rm), 0 ≤ t1 < . . . < tm ≤ T , we have

E[φ(Bt1 , Bt2 − Bt1 , . . . , Btm − Btm−1)] = φm,

where φm ∈ R is obtained via the following procedure:

φ1(x1, . . . , xm−1) = P
tm−tm−1

G (φ(x1, . . . , xm−1, .)),

φ2(x1, . . . , xm−2) = P
tm−1−tm−2

G (φ1(x1, . . . , xm−2, .)),

...

φm−1(x1) = P t2−t1
G (φm−2(x1, .)),

φm = P t1
G (φm−1(.)).

It is proved in [3] that E[.] consistently defines a nonlinear expectation on the vector
lattice l0ip(FT ) as well as on l0ip(F ), It follows that E[|X|] where X ∈ l0ip(FT ) (resp. l0ip(F ))

forms a norm and that l0ip(FT ) (resp. l0ip(F )) can be continuously extended to a Banach

space, denoted by L1
G(FT ) (resp. L1

G(F )). For a given p > 1, we also denote Lp
G(F ) = {X ∈

L1
G(F ), |X|p ∈ L1

G(F )}. Lp
G(F ) is also a Banach space under the norm ||X||p := (E[|X|p])

1
p .

Definition 2.2. [1] Let Mp,0
G (0, T ) be the collection of processes in the following form:

for a given partition πT = {t0, . . . , tN} of [0, T ]

µt(ω) =

N−1∑

j=0

ξj(ω)I[tj ,tj+1)(t),

Where T ∈ R+, p ≥ 1 and ξj ∈ Lp
G(Ftj ), are given.
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let ||η||Hp
G

=

[
E

[(∫ T
0 |ηs|2ds

) p
2

]] 1
p

, ||η||Mp
G

=
[
E

[∫ T
0 |ηs|pds

]] 1
p

and denote by Hp
G(0, T ),

Mp
G(0, T ) the completions of Mp,0

G (0, T ) under the norms ||η||Hp
G
, ||η||Mp

G
respectively.

Let Sp,0
G (0, T ) =

{
h(t, Bt1∧t, . . . , Btn∧t) : t1, . . . , tn ∈ [0, T ], h ∈ lip(Rn+1)

}
. For p ≥ 1 and

η ∈ Sp,0
G (0, T ), set ||η||Sp

G
=

[
E

[
supt∈[0,T ]|ηt|p

]] 1
p . Denote by Sp

G(0, T ) the completion of

Sp,0
G (0, T ) under the norm ||η||Sp

G
.

We call Lp
G(FT ), Mp

G(0, T ), Hp
G(0, T ) and Sp

G(0, T ) the spaces of the G-framework.

Definition 2.3. [2] For each η ∈ M2,0
G (0, T ) with the form

ηt(ω) =

N−1∑

j=0

ξj(ω)I[tj ,tj+1)(t),

we define

I(η) =

∫ T

0
η(s)dBs :=

N−1∑

j=0

ξj(Btj+1 − Btj )

The mapping M2,0
G (0, T ) → L2

G(FT ) is a linear continuous mapping and thus can be
continuously extended to I : M2

G(0, T ) → L2
G(FT ).

Definition 2.4. [2] We define, for a fixed η ∈ M2
G(0, T ), the stochastic integral

∫ T

0
η(s)dBs := I(η).

We now introduce the generator of our G-BSDE. We assume that f is a function
defined on [0, T ] × Ω × R2 with values in R and has a linear growth in y and a quadratic
growth in z. We make the following assumptions:

H1 There exist α ≥ 0, β ≥ 0 and γ ≥ 0 such that
∀t ∈ [0, T ], (y, z) → f(t, y, z) is continuous,
∀t, y, z ∈ [0, T ] × R × R, |f(t, y, z)| ≤ α + β|y| + γ

2 |z|2.

H2 we will assume that
E

[
eγeβT |ξ|

]
< ∞.

H3 ∀y, z, f(., ., y, z) ∈ M2
G(0, T ),

H4 ∃λ > γeβT , E
[
eλ|ξ|] < ∞.

3 Main Results

The goal of this section is to study the G-BSDE (1) under the assumptions (H1)–(H4).

3.1 Existence of the solutions

Theorem 3.1. Let the assumptions (H1)–(H4) hold. Then the BSDE (1) has at least a
solution (Y, Z, K) ∈ S2

G × H2
G × L2

G.
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Abstract

In this talk, we show that the total space of the pullback fibration of a given
fibration f : E −→ X by a covering map c : X̃ −→ X is a covering space of E. Also,
we study conditions in which give us universal property of these covering maps.
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1 Introduction

We recall that a fibration f : E −→ X is a continuous map in which has homotopy lifting
property with respect to an arbitrary space. If f : E −→ X is a fibration and g : Y −→ X
is a continuous map, then

g∗E := {(y, e) ∈ Y × E|g(y) = f(e)},

equipped by the subspace topology and projection map p1 := pr1 : g∗E −→ Y defines
a fibration over Y , named pulback of f by g and denoted by g∗f . Also, recall that a
covering map is a continuous map c : X̃ −→ X such that for every x ∈ X there exists an
open subset U of X with x ∈ U for which U is evenly covered by c, that is, c−1(U) is a
disjoint union of open subsets of X̃ each of which is mapped homeomorphically onto U by
c. When X̃ is simply connected, c is called universal covering and it is called categorical
universal covering if for every covering map q : Ỹ −→ X with a path connected total space
Ỹ , there exists a covering map f : X̃ −→ Ỹ such that q ◦ f = c.

In this note, we consider the following commutative diagram:

c∗E
p2 //

p1
��

E

f
��

X̃
c // X,

where c is covering map, f is fibration and p1 is pullback fibration of f by c.
It is well-known that p1 is a fibration [4, page 98]. Here we prove that if c is a covering

map, then p2 is also a covering map and hence we have a diagram such that vertical maps
are fibration and horizontal maps are covering map. Next, we show that if c is universal
covering map, p2 is not necessarily universal unless f has unique path lifting property.
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2 Main results

Theorem 2.1. If f : E −→ X is a fibration and c : X̃ −→ X is a covering map, then
p2 : c∗E −→ E is a covering map.

Proof. For e given point e ∈ E, we would find an evenly covered open neighborhood. Let
x = f(e). Since c is a covering map, there exist an evenly covered neighborhood U of x
such that c−1(U) =

⊔
α∈J Vα and c|Vα : Vα −→ U is homeomorphism.

Let W := f−1(U) which is an open neighborhood of e by continuity of f . Also,

p−12 (W ) = p−11 ◦ c−1(U) = p−11 (
⊔
Vα) =

⊔

α∈J
p−11 (Vα).

Since Vα‘s are disjoint, Wα = p−11 (Vα)‘s are disjoint. it suffices to show that p2|Wα : wα −→
W is homeomorphism, for every α ∈ J . Note that Wα = {(y, g) ∈ Vα × f−1(U)|c(y) =
f(g)} and hence:
If p2(y, g) = p2(y

′, g′), then g = g′ which implies that c(y) = f(g) = f(g′) = c(y′) and
since c|Vα is injective, y = y′. So p2|Wα is injective.
If g ∈ W is arbitrary, then x′ = f(g) ∈ U . Let x̃′ = Vα ∩ c−1(x′). Then (x̃′, g) ∈ Wα and
p2(x̃′, g) = g which implies that p|Wα is onto. Continuity and openness of p2|Wα comes
from openness of projection maps and openness of Wα in c∗E.

Now, there is a question: If c : X̃ −→ X is universal covering, then, is p2 : c∗E −→ E a
universal covering? In the sequel, we answer this question in the negative sense generally
and find a sufficient condition for the positive case.

Example 2.2. Let c := exp : R −→ S1 be the exponential map and f := p1 : S1×S1 −→
S1 be projection, which are covering map and fibration, respectively. We can show easily
that c∗(S1 × S1) ≈ R × S1 and hence p2 : c∗(S1 × S1) −→ S1 × S1 cannot be universal
since R× S1 is not simply connected, while c is universal covering.

Definition 2.3. [4] Let p : E → B be a map and α̃ and β̃ be paths in E, then we say
that p has unique path lifting if

α̃(0) = β̃(0), p ◦ α̃ = p ◦ β̃ ⇒ α̃ = β̃.

Proposition 2.4. [4, Theorem 2.3.4] Let f : E −→ X be a fibration with unique path
lifting property and e ∈ f−1(x), then f∗ : π1(E, e) −→ π1(X,x) is a monomorphism.

In the next theorem, we show that unique path lifting property of fibrations is sufficient
to universal property of covering maps preserved, when we are pulling back them by a
fibration.

Theorem 2.5. If f : E −→ X is a fibration with unique path lifting and c : X̃ −→ X is
a universal covering map, then p2 : c∗E −→ E is a universal covering map.

Proof. Assume that c∗E is not simply connected and use injectivity of (p1)∗, (p2)∗, f∗ to
have contradiction.
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Remark 2.6. Note that in the above Theorem, by the universal covering we mean sim-
ply connected covering in which the existence of them is strongly depended on the local
property of the base space. In fact, the base space of covering map must be locally path
connected and semi-locally simply connected. For the spaces that haven’t got this nice
local behavior, there is a big challenge. Fortunately, for some families of spaces, existence
of the categorical universal covering is studied by the first author et.al [2, 3]. They proved
that a given space X has categorical universal covering if and only if X is semi-locally
Spanier space, that means every point x ∈ X has a neighborhood in which homotopy class
of every loop belongs to the Spanier group πsp1 (X,x)[1]. Since for a covering c : X̃ −→ X,

πsp1 (X,x) ≤ p∗π1(X̃, x̃), by a bit change in the proof, we can prove Theorem 2.5 for the
categorical universal covering.

Now, we consider the problem from another point of view. As an easy exercise, it can
be shown that pullback of a covering map by a continuous map, which is defined as same
as pullback fibration, is a covering map. In Theorem 2.1, we have seen that the total
space of pullback of fibration by a covering map is covering space of the total space of the
original fibration. Here, we show that the total space of pullback of a covering map by a
fibration give us a new fibration over the total space of the original covering.

Theorem 2.7. Let c : X̃ −→ X be a covering map and f : E −→ X be a fibration. Then
i) p1 : f∗X̃ −→ E is a covering map.
ii) p2 : f∗X̃ −→ X̃ is a fibration.
iii) p2 has unique path lifting property if f has unique path lifting property.

Proof. For (i), use definitions and universal property of pullbacks.
For (ii), assume that F : Y × I −→ X̃ is a homotopy, for a given space Y in which
F ◦J0 = p2 ◦g0, where j0 : Y −→ Y × I is j0(y) = (y, 0) and g0 : Y −→ f∗X̃ is continuous.
We have the following diagram:

Y
p1◦g0 //

J0
��

E

f
��

Y × I c◦F // X,

which is commutative by commutativity of the pullback diagram. Since f is fibration,
there exist c̃ ◦ F : Y × I −→ E in which commute two triangles of the diagram. Now, we
have the following commutative diagram

Y
g0 //

J0
��

f∗X̃

p1

��
Y × I c̃◦F // E.

Since covering maps are fibration, there exists F̃ : Y ×I −→ f∗X̃ such that p1 ◦ F̃ = c̃ ◦ F .
Therefore,

c ◦ p2 ◦ F̃ = f ◦ p1 ◦ F̃ = f ◦ c̃ ◦ F = c ◦ F.
An application of diagram show that p2 ◦ F̃ = F , as desired.
For (iii), use the fact that fibers of a fibration with unique path lifting has no nonconstant
path.
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[1] H. Fischer, D. Repovš, Z. Virk and A. Zastrow, On semilocally simply connected spaces,
Topology and its Applications. 158 (2011) 397–408.

[2] B. Mashayekhy, A. Pakdaman and H. Torabi, Spanier spaces and covering theory of
non-homotopically path Hausdorff spaces, Georgian Mathematical Journal. 20 (2013),
303–317.

[3] A. Pakdaman, H. Torabi and B. Mashayekhy, On the Existence of Categorical Universal
Coverings, arXiv:1111.6736.

[4] E.H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

Email: a.pakdaman@gu.ac.ir
Email: s.a.aghili93@gmail.com
Email: j.koohsari93@gmail.com

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

A covering property of pullback fibrations pp.: 4–4

380
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Abstract

In this paper, we give a characterization of a paracontact psudo-metric and K-
paracontact psudo-metric manifolds as a special almost paracontact psudo-metric
manifold and introduce a quasi paracontact psudo-metric manifold according to quasi
para Kähler psudo-metric manifold which is a natural generalization of the paracontact
psudo-metric manifolds.
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1 Introduction

A systematic study of general paracontact pseudo-metric structures was undertaken by
Simeon Zamkovoy in 2009 [8]. Cruceanu, Fortuny and Gadea gave the survey article on
paracomplex geometry in 1996 [2] and Mykhaylo Chursin, Lars Schafer and Knut Smoczyk
defined quasi para Kähler manifolds in 2010 [3]. In this paper, we introduce a quasi
paracontact psudo-metric manifold according to quasi para Kähler psudo-metric manifold
which is a natural generalization of the paracontact psudo-metric manifolds. Now, let
(M, ϕ, ξ, η, g) be a (2n + 1)-dimensional almost paracontact pseudo-metric manifold and
M = M × R be the product manifold of M and a real line R equipped with the following
almost para Hermitian structure (J, g) defined by

JX = ϕX + η(X)
∂

∂t
, J

∂

∂t
= ξ,

g(X,Y ) = e−2tg(X, Y ), g(X,
∂

∂t
) = 0, g(

∂

∂t
,

∂

∂t
) = −e−2t, (1)

for X, Y ∈ χ(M) and t ∈ R. Now, we denote by ∇ the covariant derivative with respect
to the metric g on M . Then, from (1) by direct calculation, we have

∇XY = ∇XY + g(X, Y )
∂

∂t
, ∇ ∂

∂t

X = −X,

∇X
∂

∂t
= −X, ∇ ∂

∂t

∂

∂t
= − ∂

∂t
, (2)
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for X,Y ∈ χ(M). we shall introduce a class of almost paracontact pseudo-metric man-
ifolds as the class of almost paracontact pseudo-metric manifolds corresponding to the
class of quasi para Kähler manifolds, which is regarded as a generalization of the class of
paracontact pseudo-metric manifolds.

Definition 1.1. An almost paracontact psudo-metric manifold M = (M,ϕ, ξ, η, g) is
called a quasi paracontact pseudo-metric manifold if the corresponding almost para Her-
mitian psudo-metric manifold M = (M, J, g) defined by (1) is a quasi para Kähler pseudo-
metric manifold.

Thus, from (1) and (2), we have further

(∇XJ)Y =(∇Xϕ)Y + g(X, Y )ξ − η(Y )X − g(X,ϕY )
∂

∂t
+ (∇Xη)(Y )

∂

∂t
, (3)

(∇XJ)
∂

∂t
= ∇Xξ + ϕX, (4)

(∇ ∂
∂t

J)X = 0, (∇ ∂
∂t

J)
∂

∂t
= 0. (5)

Now, we shall derive the condition for an almost paracontact psudo-metric manifold to be a
quasi paracontact psudo-metric manifold. Again, from (3)-(5), we see that M = (M, J, g)
is quasi para Kähler if and only if

0 =(∇JXJ)JY − (∇XJ)Y

=(∇ϕXϕ)ϕY − (∇Xϕ)Y − 2g(X, Y )ξ + 2η(Y )X + η(Y )∇ϕXξ

+ ((∇ϕXη)(ϕY ) − (∇Xη)(Y ) + 2g(X, ϕY ))
∂

∂t
, (6)

0 =(∇JXJ)J
∂

∂t
− (∇XJ)

∂

∂t
= −∇Xξ − ϕ(∇ϕX)ξ − 2ϕX, (7)

0 =(∇J ∂
∂t

J)JX − (∇ ∂
∂t

J)X = (∇ξϕ)(ϕX) + η(X)∇ξξ + (∇ξη)(ϕX)
∂

∂t
, (8)

for X, Y ∈ χ(M).

Proposition 1.2. An almost paracontact psudo-metric manifold M = (M,ϕ, ξ, η, g) is a
quasi paracontact psudo-metric manifold if and only if the following equalities

(∇ϕXϕ)ϕY − (∇Xϕ)Y = 2g(X, Y )ξ − 2η(Y )X − η(Y )∇ϕXξ, (9)

(∇ϕXη)(ϕY ) − (∇Xη)(Y ) = −2g(X, ϕY ), (10)

∇Xξ + ϕ(∇ϕX)ξ + 2ϕX = 0, (11)

(∇ξϕ)(ϕX) + η(X)∇ξξ = 0, (∇ξη)(ϕX) = 0 (12)

hold everywhere on M .

Proposition 1.3. Let M = (M,ϕ, ξ, η, g) be an almost paracontact psudo-metric manifold
satisfying the following condition

(∇ϕXϕ)ϕY − (∇Xϕ)Y = 2g(X, Y )ξ − 2η(Y )X − η(Y )∇ϕXξ, (13)

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

A generalization of paracontact psudo-metric manifolds pp.: 2–4

382



then, the following equalities are derived from the above equality

(∇ϕXη)(ϕY ) − (∇Xη)(Y ) = −2g(X, ϕY ), (14)

∇ξϕ = 0, ∇ξξ = 0, (15)

for X,Y ∈ χ(M).

Proposition 1.4. Let M = (M,ϕ, ξ, η, g) be an almost paracontact psudo-metric manifold
satisfying the following condition

(∇ϕXϕ)ϕY − (∇Xϕ)Y = 2g(X,Y )ξ − η(Y )(X + η(X)ξ + hX), (16)

for any X, Y ∈ χ(M). Then, the equalities (14) and (15) in Proposition 1.3 are derived
from (16), where we define a (1, 1)-tensor field h on M by h = 1

2ℓξϕ.

The tensor field h plays an important role in the geometry of almost paracontact
psudo-metric manifolds.

Lemma 1.5. On a quasi paracontact psudo-metric manifold M2n+1, h has the following
formulas

η ◦ h = 0, ϕ2h = h, hξ = 0. (17)

2 Main results

Lemma 2.1. On a quasi paracontact psudo-metric manifold M2n+1, we have the following
formulas:

h isn
′
t a symmetric operator, (18)

∇Xξ = −ϕX + ϕhX, (19)

g((∇Xϕ)ξ, Y ) = −g(ϕX, ϕY ) + g(ϕhX, ϕY ), (20)

h anti commutes with ϕ, (21)

(∇Xh)ξ = h(ϕX − ϕhX), (22)

dη(X,Y ) = g(X, ϕY ) − 1

2
g(hX, ϕY ) − 1

2
g(X, ϕhY ), (23)

for any X,Y ∈ χ(M).

Theorem 2.2. A paracontact psudo-metric manifold is characterized as a quasi paracon-
tact psudo-metric manifold satisfying N2 = 0.

Remark 2.3. A quasi paracontact psudo-metric manifold isn
′
t cosymplectic manifold.

Theorem 2.4. A K-paracontact psudo-metric manifold is characterized as a quasi para-
contact psudo-metric manifold satisfying N3 = 0.

Theorem 2.5. A quasi paracontact psudo-metric manifold is characterized as an almost
paracontact psudo-metric manifold M = (M,ϕ, ξ, η, g) satisfying the following condition

(∇ϕXϕ)ϕY − (∇Xϕ)Y = 2g(X,Y )ξ − η(Y )(X + η(X)ξ − hX), (24)

for any X,Y ∈ χ(M).
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In this paper induced equivalence spaces and U-products are introduced and dis-
cussed. also the notion of equivalently open subspace of a equivalence space and
equivalently open functions are studied.
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topology

Mathematics Subject Classification [2010]: 54H99

1 Introduction

In this paper we deal with equivalence spaces. An equivalence space is a structure close to
uniform spaces(Uniform spaces are somewhere the mid way points between metric spaces
on one hand and abstract topological spaces on the other hand). These spaces have been
introduced first in 2014 by F. Omidi and M.R. molaee [1].There are however a few aspects
of metric spaces that are lost in general topological spaces. For example, since the notion
of nearness is not defined for a general topological space, we cannot define the notion of
uniform continuity in abstract topological spaces. The same can be said about notions
such as total boundedness. An equivalence space is a mathematical construction in which
such uniform concepts are still available.
An equivalence space (X,U) is a set X along with a collection U of equivalence relations on
X such that U is closed under finite intersections. We refer to U as equivalence collection
on X.
A function f : X → Y where (X,U) and (Y,V) are two equivalence spaces, is called
equivalently continuous if (f × f)−1(V ) ∈ U whenever V ∈ V, where

(f × f)−1(V ) = {(x, y) ∈ X ×X | (f(x), f(y)) ∈ V }.

Moreover, if (X,U) is an equivalence space, then the collection TU = {G ⊆ X | for each x ∈
G, there exists U ∈ U such that U[x] ⊆ G} is a topology on X with the base {U [x] | U ∈
U , x ∈ X} where U [x] = {y ∈ X | (x, y) ∈ U}. We refer to TU as the U-induced topology.

We are going to consider induced equivalence spaces and U-products. Also, we will
introduce and discuss equivalently open subspaces.
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2 Induced equivalence spaces

Let {φi : X → Xi}i∈I be an indexed family of functions where X is a set and for each
i ∈ I, (Xi,Ui) is an equivalence space. The idea is to induce an equivalence collection on
X for which each φi is equivalently continuous without making equivalence collection on
X unnecessarily strong.

Definition 2.1. Let S be a family of equivalence relations on a set X. Then the collection
of all finite intersections of members of S (that forms an equivalence collection on X )
called the equivalence collection generated by S and is denoted by< S >.
Note that < S > is the smallest equivalence collection on X which contains S.

Proposition 2.2. Let {φi : X → Xi}i∈I be an indexed family of functions where X is
a set and for each i ∈ I, (Xi,Ui) is an equivalence space. Then there exists a smallest
equivalence collection on X for which each φi is equivalently continuous.

Proof. Let S← = {(φi × φi)−1(Ui) | Ui ∈ Ui, i ∈ I}. Let U← be equivalence collection
generated by S←. It is easy to see that U← is an equivalence collection on X.

The equivalence collection U← in the last proposition is called induced equivalence
collection.

Corollary 2.3. Let φ : X → Y be a function where X is a set and (Y,V) is an equivalence
space. Then V← = {(φ× φ)−1(V ) | V ∈ V}.

The following property is a characteristic of the equivalence collections.

Proposition 2.4. Let φ : X → Y and ψ : Y → Z be functions where (X,U), (Y,V)
and (Z,W) are equivalence spaces. If Y has the induced equivalence collection, then φ is
equivalently continuous if and only if ψφ is equivalently continuous.

Let (X,U) be a equivalence space and let A ⊆ X. By corolarry 2.3, ( let φbe the
inclusion map) the collection {(A×A)∩U | U ∈ U is the equivalence collection on A that
is called relative equivalence collection and denoted by U/A.

Definition 2.5. Let (X,U) and (Y,V) be two equivalence spaces. A function φ : X → Y is
said to be U - equivalence if φ and φ−1 are equivalently continuous. A function φ : X → Y
is said to be U - embedding if it is one to one and U - equivalence when regarded as a
function from (X,U) to (f(X),V/f(X).

Theorem 2.6. Let (X,U) and (Y,V) be to equivalence spaces and let φ : X → Y be a
function.Then the following statements are equivalent :
(a) φ is U - embedding.
(b) φ is one to one, equivalently continuous and U = V←.

Proposition 2.7. Let φ : X → Y be an equivalently continuous function where (X,U)
and (Y,V) are equivalence spaces. Suppose φ admits a U-equivalently left inverse. Then φ
is a U - embedding.
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3 equivalently open subspaces

Among the subspaces of an equivalence space, special attention should be given to those
which are equivalently open, in the sense that the inclusion map is equivalently open.
Roughly speaking, every equivalently open function is locally surjective(see [1]). For ex-
ample φ is always equivalently open when V is discrete i.e V is the collection of all equiv-
alence relations on Y.
Let (X,U) be a equivalence space. Then U is called rich if X2 ∈ U .

Proposition 3.1. Let (X,U) be a rich equivalence space and A ⊆ X. Then the following
statements are the same:
(a) A is equivalently open.
(b) for each U ∈ U , there exists V ∈ U such that V [x] ⊆ U [x] ∩A for all points x ∈ A.
(c) there exists V0 ∈ U such that V0[x] ⊆ A for all points x ∈ A.

Suppose α, β : X → Y are maps from X into Y. The coincidence set of α and β is
the set C(α, β) = {x ∈ X | α(x) = β(x)}. Also, if φ : X → Y is a function from the
equivalence space (X,U) into the set Y, then we say that φ is transverse to X whenever
(φ × φ)−1(4Y ) ∩ U = 4X for some U ∈ U . Roughly speaking, φ is transverse to X if φ
is one to one on a regoin of X2.

Proposition 3.2. Let (X,U), (Y,V) and (Z,W) be equivalence spaces, α, β : X → Y be
two equivalently continuous functions and φ : Y → Z be transitive toY. If φ ◦ α = φ ◦ β
and U is rich, then the coincidence set C(α, β) is equivalently open in X.
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Causality conditions and cosmological time function

Neda Ebrahimi∗

Shahid Bahonar University of Kerman

Abstract

In this paper the concept of dual cosmological time function and its regularity is
introduced. It is shown that the regularity of cosmological and dual cosmological time
functions are independent of each other. It is proved that if the cosmological time
function of the spacetime (M, g) is continuous, τ → 0 along every past inextendible
causal curve and τ → ∞ along every future inextendible causal curve then (M, g) is
globally hyperbolic.

Keywords: Spacetime, Globally hyperbolic, Cosmological time function, Lorentzian
metric

Mathematics Subject Classification [2010]: 83C99, 83C75, 83C20

1 Introduction

In this paper we investigate the concept of cosmological time function and its relation with
the causal hierarchy of the spacetime. So let us recall some ladders in the causal hierarchy
which are needed in this paper.

Definition 1.1. [2] A spacetime is non-total future imprisoning if no future inextendible
causal curve is totally future imprisoned in a compact set. A spacetime is non-partially
future imprisoning if no future inextendible causal curve is partially future imprisoned
in a compact set. Analogue definitions hold in the past case. A spacetime is non-total
imprisoning if it is bout non total future and non total past imprisoning.

Definition 1.2. [2] A spacetime (M, g) is globally hyperbolic if it is causal and the
intersections J+(p) ∩ J−(q) are compact for all p, q ∈ M .

The domain of dependence of A is defined as D(A) = D+(A) ∪ D−(A), where D+(A)
(resp. D−(A)) is defined as the set of points p ∈ M such that every past (resp. future)
inextendible causal curve through p intersects A.

Definition 1.3. [2] A Cauchy hypersurface is a subset S ⊂ M which is crossed exactly
once by any inextendible timelike curve (D(S) = M).

Equivalently it is proved that (M, g) is globally hyperbolic if it admits a Cauchy hyper-
surface [2].
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Remark 1.4. The continuous function t : M → R is a time function if it strictly increases
on every causal curve. We also recall that a temporal function t is a smooth time function
t with past directed timelike gradient. In addition t is called a Cauchy temporal function
if its level sets be Cauchy hypersurfaces. It is proved by Sanchez [3] that if M admits
a Cauchy temporal function then it is equivalent to the existence of a global orthogonal
splitting, M ≡ (R × S, g), where g can be written as g = −dt2 + βgt,

β is a function on R × S and gt is a Riemannian metric on each slice {t} × S.

2 Cosmological time function and dual cosmological time
function

Let (M, g) be a spacetime and d : M × M → [0, ∞] be the Lorentzian distance function.
We recall that the cosmological time function τ : M → [0, ∞) is defined by:

τ(q) := supp<qd(p, q)

We can also define dual cosmological time function by:

τd(p) := supp<qd(p, q)

Definition 2.1. [1] The cosmological time function τ of (M, g) is regular if and only if:

• τ(q) < ∞, for all q ∈ M,

• τ → 0 along every past inextendible causal curve.

Remark 2.2. If p < q then τ(p) + d(p, q) ≤ τ(q).

Definition 2.3. The dual cosmological time function τd is regular if and only if:

• τd(q) < ∞, for all q ∈ M,

• τd → 0 along every future inextendible causal curve.

The first condition shows that for each point q any particle that passes through it will
be in existence for at most a time of τd(q). If we believe that τd = 0 is a singularity the
second condition shows that the end of history of every particle is in a singularity.

Example 2.4. 1) Minkowski spacetime is an example of a spacetime that τ, τd = ∞.
2) (M, g), M = (a, b) × H with a > −∞, b = ∞, g = −dt2 ⊕ fh, and (H, h) a

homogeneous Riemannian manifold is an example of a spacetime that its dual cosmological
time function is not regular but its cosmological time function is regular.

2) (M, g), M = (a, b)×H with a = ∞, b < ∞, g = −dt2⊕fh, and (H, h) a homogeneous
Riemannian manifold is an example of a spacetime that its dual cosmological time function
is regular but its cosmological time function is not regular.

3) (M, g), M = (a, b)×H with a = ∞, b = ∞, g = −dt2⊕fh, and (H, h) a homogeneous
Riemannian manifold is an example of a spacetime that its dual cosmological time and
cosmological time function are regular.
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Lemma 2.5. If the cosmological time function of (M, g) is finite but its dual cosmological
time function is not then there is a sequence pn such that τ(pn) → ∞.

Proof. Since τd is not finite, there is p ∈ M that τd(p) = ∞. Hence there is a sequence pn

such that d(pn, p) → ∞ and consequently τ(pn) → ∞.

Corollary. If τ < a then τd is finite.

Lemma 2.6. Let (M, g) be a spacetime that its cosmological time function is continuous.
If τ → 0 along every past inextendible causal curve then (M, g) is non total imprisoning.

Proof. Suppose by contradiction that γ : [a, b) → M is a past inextendible causal curve
which is imprisoned in a compact set C. Let {pn} be an increasing sequence that converges
to p. Since C is compact and τ is continuous τ(pn) → τ(p) > 0, which is a contradiction.

Lemma 2.7. If (M, g) is globally hyperbolic spacetime there is ω > 0 such that the cos-
mological time function of (M, ωg) is equal to ∞.

Proof. Let M = R × S, g ≡ dt2 ⊕ βgt, as in remark 1.4. For every p = (s, a) ∈ R × S
let γ(t) = (t, a). γ is a past inextendible causal curve with length ∞ that shows that
τ((s, a)) = ∞.

Theorem 2.8. Let (M, g) be a spacetime that its cosmological time function is continu-
ous. If τ → 0 along every past inextendible causal curve and τ → ∞ along every future
inextendible causal curve then (M, g) is a globally hyperbolic spacetime.

Proof. Let St = {p ∈ M : τ(p) = t}. St is closed, achronal and edgeless. D+(St) = {q ∈
M : τ(q) ≥ t} and D−(St) = {q ∈ M : τ(q) ≤ t}. Hence M = D(St) = D+(St) ∪ D−(St)
and consequently St is a Cauchy hypersurface.
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Characterization of Representation up to Homotopy of

Double Groupoids

Sadegh Merati∗

Shiraz University

Mohammad Reza Farhangdoost

Shiraz University

Abstract

In this paper, we introduce the concept of representation of double Lie groupoids
and characterize them by Lie groupoid cohomology and using this result to introduce
representations up to homotopy of double Lie groupoids.

Keywords: Double Lie groupoid, Representation up to homotopy, Lie groupoid co-
homology, gauge-equivalent.

Mathematics Subject Classification [2010]: 20L05, 22A22, 18D05.

1 Introduction

The theory of representation of Lie groupoids is extend by Gracia-Saz and Mehta, [2] and
we would like to extend their results on double Lie groupoids.

Let G
s
//

t //M be a Lie groupoid, let G(0) := M , and G(p) be the manifold consisting

of composable p-tuples of elements of G, where p > 0, i.e.

G(p) := {(g1, · · · , gp) : s(gi) = t(gi+1)}.

There is a coboundary operator σ : Cp(G) → Cp+1(G) on the space of R-valued smooth
groupoid cochains Cp(G) := C∞(G(p)), which introduced by C. Arias Abad and M.
Crainic, [3]. We know that σ2 = 0, and then the cohomology of the complex (C•(G), σ)
is known as the smooth groupoid cohomology of G.

For E → M and F → M as a vector bundles, the space of smooth groupoid p-cochains
with values in E and the space of transformation p-cochains from E to F is introduced in
[2, 3].

Definition 1.1. [2] A E-valued cochain is called normalized if it vanishes whenever at
least one of its arguments is a unite.
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2 Representation of double Lie Groupoids

The square

A
sB

//
tB //

tC
��

sC

��

B

s
��

t
��

C
t
//

s // D

(2.1)

is a double Lie groupoid if the following conditions hold:

1. The horizontal and vertical source and target maps commute,

2. The multiplication maps respect source and target,

3. The interchange law

(α11.Cα12).B(α21.Cα22) = (α11.Bα21).C(α12.Bα22)

holds for all α11, α12, α21, α22 ∈ A such that sB(αi1) = tB(αi2) and sC(α1i) =
tC(α2i), for i = 1, 2.

4. The double-source map (sB, sC) : A → B s×sC is a submersion.

Now we define the representation of double Lie groupoid.

Definition 2.1. A representation of a double Lie groupoid (2.1) is a bi-vector bundle E
over B and C, together with a double Lie groupoid morphism (ρ, IdB, IdC , IdD), which ρ
is a map from A to GlB(E) × GlC(E).

Definition 2.2. A smooth double groupoid cohomology of double Lie groupoid (2.1) is
two smooth groupoid cohomologies, together with two degree 1 coboundary operators σB

and σC .

Let E be a bi-vector bundle over B and C. There are right CB(A)-module structure
on CB(A; E) and CC(A)-module structure on CC(A; E), given by:

1. for p, q > 0

(ω ⋆ f)(g1, · · · , gp+q) := ω(g1, · · · , gp)f(gp+1, · · · , gp+q),

2. for p = 0
(ω ⋆ f)(g1, · · · , gq) := ω(t(g1))f(g1, · · · , gq),

3. for q = 0
(ω ⋆ f)(g1, · · · , gp) := ω(g1, · · · , gp)f(s(gp)),

for ω ∈ Cp
V(A; E), f ∈ Cq

V(A) and V ∈ {B, C}.
Given a representation ρ of double Lie groupoid on bi-vector bundle E, we can con-

struct two operators ∆B and ∆C with degree 1 on CB(A; E) and CC(A; E) respectively,
whose action of 0-forms is given by

(∆Vx)(g) := πV ◦ ρgxsV (g) − xtV (g),
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for V ∈ {B, C}, x ∈ ΓV(E) and g ∈ A, and for p > 0 it is given by

(∆Vω)(g0, · · · , gp) := (πV ◦ ρ)g0ω(g1, · · · , gp)

+ Σp
k=1(−1)kω(g0, · · · , gk−1gk, · · · , gp)

+ (−1)p+1ω(g0, · · · , gp−1),

for V ∈ {B, C}, ω ∈ Cp
V(G; E). It is easy to show that ∆2

B = ∆2
C = 0 and

∆V(ω ⋆ f) = (∆Vω) ⋆ f + (−1)pω ⋆ (σVf). (2.2)

We conclude this section by the following theorem.

Theorem 2.3. There is a one-to-one correspondence between representations of double
Lie groupoid (2.1) on E and continuous degree 1 operators ∆B and ∆C on CB(A;E) and
CC(A; E), respectively, satisfying (2.2), preserving the space of normalized cochains and
∆2

B = ∆2
C = 0.

3 Representation up to homotopy of double Lie groupoids

Let ε =
⊕

Ei be a graded bi-vector bundle over B and C. We consider CV(A; ε) to be a
graded right CV(A)-module with respect to the total grading:

Cp
V(A; ε) =

⊕

q−r=p

Cq
V(A;Er),

where V ∈ {B, C}.

Definition 3.1. A representation up to homotopy of a double Lie groupoid A on a graded
bi-vector bundle ε is two continuous degree 1 operators ∆B and ∆C on CB(A; ε) and
CC(A; ε), respectively, satisfying (2.2), preserving the space of normalized cochains and
∆2

B = ∆2
C = 0.

Know, we consider representation up to homotopy on double groupoids, in one and
two term graded bi-vector bundles.

Case 1. In the case where ε = E is concentrated in degree 0, a representation up to
homotopy is the same as a representation, and there are no nontrivial gauge trans-
formations.

Case 2. In this case, we use the notation ε = E ⊕ F [1], where E is the part with degree
0 part and F is the part with degree 1 part. Then for V ∈ {B, C}

Cp
V(A;E ⊕ F [1]) = Cp

V(A; E) ⊕ Cp+1
V (A; F ).

Any degree 1 operator ∆V on CV(A; E⊕F [1]) decomposes as the sum of the following
four homogeneous components:

∆F
V : C•

V(A; F ) → C•+1
V (A;F ),

∆E
V : C•

V(A; E) → C•+1
V (A; E),

σ̂V : C•
V(A; F ) → C•

V(A; E),

Ω̂V : C•
V(A; E) → C•+2

V (A;F ).

The Leibniz rule (2.2) for ∆V is equivalent to:
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1. ∆F
V and ∆E

V satisfy (2.2),

2. σ̂V and Ω̂V are right C(A)-module morphisms.

Part (1) allows us to define quasi-actions ρF
V and ρE

V on F and E over V, respectively,
as follows:

(ρF
V (g))(α) = −(∆F

V α)(g) + αtV (g) (3.1)

(ρE
V (g))(ϵ) = (∆E

V ϵ)(g) + ϵtV (g) (3.2)

for α ∈ ΓV(C) and ϵ ∈ ΓV(E).

Part (2) implies that σ̂V corresponds to a linear map σV ∈ HomV(F, E) = C0
V(A; F →

E), and Ω̂V corresponds to a transformation 2-cochain ΩV ∈ C2
V(A; E → F ). Also

the equation ∆2
V = 0 is equivalent to:

∆E
V σ̂ + σ̂∆F

V = 0,

(∆F
V )2 + Ω̂V σ̂V = 0,

(∆E
V )2 + σ̂VΩ̂V = 0,

∆F
V Ω̂V + Ω̂∆E

V = 0.

The total operator ∆V preserves normalized cochains if and only if for every com-
ponents ρF

V , ρE
V and ΩV , we obtain the following conditions:

ρF
V and ρE

V are unital, (3.3)

ΩV is normalized. (3.4)

The results of this section is summarized in the following theorem.

Theorem 3.2. There is a one-to-one correspondence between double representations up
to homotopy on a 2-term graded vector bundle E ⊕F [1] and two 4-tuples (ρF

B, ρE
B, σB, ΩB)

and (ρE
C , ρE

C , σC , ΩC), where

1. ρF
V and ρE

V are unital quasi-actions on FV and EV , respectively,

2. σV : FV → EV is a linear map,

3. ΩV is a normalized element of C2(A; EV → FV),

satisfying (3.1-3.4), for V ∈ {B,C}.
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Electromagnetic Field Tensor in Kerr-Newman Geometry

S. Reza Hejazi

University of Shahrood
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Mustafa Bazghandi

University of Shahrood

Abstract

An application of Riemannian geometry in theoretical physics is considered. As we
will see by a suitable geometric structure on a rotating charged 4-manifold by space-
time coordinate (t, r, θ, φ) called Kerr-Newman geometry we will discuss an important
tensor on a given Riemannian 4-manifold which is so applicable in theoretical physics.
We consider a rotating charged black hole as a smooth Riemannian 4-manifold struc-
ture by the spacetime coordinate (t, r, θ, φ). Then, by using differential forms and
exterior derivative we will find the corresponding electromagnetic field tensor.

Keywords: Riemannian manifold, Electromagnetic field tensor, Differential forms,
Spacetime.
Mathematics Subject Classification [2010]: 58J70, 35A30.

1 Introduction

One of the most important tools in differential geometry are tensors on smooth manifolds.
These objects could discuss a vast field of physical phenomena specially those are not
reachable such as cosmological phenomena, also they are very applicable in theoretical
physics, quantum mechanics, string theory and etc. This article illustrates Kerr-Newman
geometry, a geometrical structure on a rotating charged black hole by considering the
spacetime coordinate (t, r, θ, φ) that induces a four-dimensional smooth structure on the
black hole. Rotating charged black hole electromagnetic field analysis could effect our
perception about black hole and it’s region on.

In the first section we introduce a special case of spacetime coordinate called Boyer-
Lindquist coordinate (generalization of Schwarzschild coordinate) together with its corre-
sponding metric to make the associated Riemannian manifold. In section two we define
the expression for component of electromagnetic tensor field. In section three we define an
equation for electromagnetic field from rotating charge body by using the associated po-
tential of Kerr-Newman metric. Finally the calculation of corresponding electromagnetic
field tensor in Kerr-Newman geometry is made in the last section.

2 Kerr-Newman Geometry

Consider an n−dimensional smooth manifold (with boundary) M . By a covariant k-tensor
on a point p ∈ M we mean a k−linear map F : TpM × · · · × TpM︸ ︷︷ ︸

k−times

→ R defines on the
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tangent space TpM . Suppose x = (x1, ..., xn) is a coordinate chart on M . It in not hard
to see that in this coordinate we have [5],

F =

n∑

i1,...,ik=1

Fi1···ik(p)dxi1 ⊗ · · · ⊗ dxik , (1)

where ⊗ is tensor product and Fi1···ik(p)’s are smooth real-valued functions on M . One
of the most important case of these tensors are called alternating tensors, those are anti-
symmetric on an odd permutation of their components.

Definition 2.1. A covariant two-tensor g : TpM × TpM → R is called a Riemannian
metric if g is symmetric and non-degenerate. Thus, g induces an inner product on the
vector space TpM . A manifold with a Riemannian metric is called Riemannian manifold.

Suppose we have a spherical symmetric mass with a given charge and rotation. Written
in the coordinate (t, r, θ, φ) in Boyer-Lindquist form [1], the Kerr-Newman metric [2], is a
Riemannian metric of the form

g = −∆

ρ2

[
dt− a sin2 θdφ

]2
+

sin2 θ

ρ2

[
(r2 + a2)dφ− adt

]
+
ρ2

∆
dr2 + ρ2dθ2, (2)

where ∆ ≡ r2−2mr+a2 +Q2, ρ2 ≡ r2 +a2 cos2 θ and a ≡ S/m is angular momentum per
unit mass. In these equations m and Q are mass and charge respectively. As we see the
Kerr-Newman geometry has a horizon, and therefore describes a black hole, if and only if
m2 ≥ Q2 + a2.

3 Electro Magnetic Field Tensor

First we begin with a definition for a kind of covariant k−tensor called differential forms.
Consider a smooth manifold with coordinate chart x = (x1, ..., xn). A covariant k−tensor
(1) is called an alternating tensor if

F (X1, ..., Xi, ..., Xj , ..., Xk) = −F (X1, ..., Xj , ..., Xi, ..., Xk),

i.e., they are anti-symmetric on an odd permutation of their components.

Definition 3.1. In any smooth coordinate chart x = (x1, ..., xn), a k−diffenetial form ω
is a covariant k−tensor is written locally as:

ω =
n∑

i1,...,ik=1

ωi1,··· ,ikdx
i1 ∧ · · · ∧ dxik . (3)

where the wedge product ∧, is defined by the tensor product in (1), [5].
We know that the electromagnetic fields are made up of the electric field vector Ei

and magnetic field and the magnetic field vector Bi. In fact they are components of a
covariant two-tensor Fµν defined by

Fµν =




0 −Ex −Ey −Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0


 = −Fνµ. (4)
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here E = (Ex, Ey, Ez) and B = (Bx, By, Bz) are electric and magnetic field respectively.
This matrix equation demonstrates the unity of the electric and magnetic fields.

The electromagnetic field tensor [3], Faraday= F, is an antisymmetric second-rank
tensor. Instead of expanding it in terms of the tensor product we have,

F = Fαβdx
α ⊗ dxβ, (5)

The exterior calculus prefers to expand in terms of antisymmetrized tensor products (recall:
dxα ∧ dxβ = dxα ⊗ dxβ − dxβ ⊗ dxα) thus, F is a differential 2-forms such as:

F =
1

2
Fαβdx

α ∧ dxβ, (6)

consequently, the differential 2-form for the general electromagnetic field can be written
as:

F = Exdx ∧ dt+ Eydy ∧ dt+ Ezdz ∧ dt+Bxdy ∧ dz +Bydz ∧ dx+Bzdx ∧ dy. (7)

4 Kerr-Newman Electro Magnetic Field Tensor

According to the Kerr-Newman metric (4) the non-zero components of gij of Kerr-Newman
metric are given as follow:

gtt = ρ−2
[
a2 sin2 θ −∆

]
, grr = ρ2

∆ ,

gθθ = ρ2, gφφ = ρ−2
(
sin2 θ(r2 + a2

)2 −∆a2c sin4 θ,
gφt = ρ−2

[
2a(r2 + a2 + ∆) sin2 θ

]
.

and the associated potential of the Kerr-Newman metric are expressed as:

At = ρ−2 [Qr − ρa cos θ] , Ar = 0, Aθ = 0,
Aφ = ρ−2

[
ρ(r2 + a2) cos θ −Qar sin2 θ

]
.

Thus, the electromagnetic field tensor (Fαβ) can be expressed in terms of potential as:

Fαβ = ∇αAβ −∇βAα,
∇αAβ = ∂αAβ − ΓραβAρ,

ΓραβAρ = 1
2g
ρα (∂αgβρ+ ∂βgρα − ∂ρgαβ) ,

where Γαβ is the Christofel symbol of the second line [4].
By using potential, we can calculate the electromagnetic field of a rotating charged

black hole with Kerr-Newman geometry such as:

F = Ftφdx
t ∧ dxφ where Ftφ = ∂tAφ − ΓλtφAλ − ∂φAt + ΓλφtAλ, (8)

then, for λ = t, r, θ, φ we have

Γrtφ = − ∆
2ρ2

(
(2acr2+a2+∆) sin2 θ

ρ2
∂r
)
,

Γθtφ = − 1
ρ2

(
(2a(r2+a2+∆) sin2 θ

ρ2
∂θ
)
,

Γttφ = 0,

Γφtφ = 0.
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For these non-zero Christofel symbols the electro magnetic field tensor (8) turns to:

∂φAθ = 0,
∂θAφ = −2a2 cos θ sin θ

[
ρ(r2 + a2) cos θ −Qar sin2 θ

]

+ρ−2
[
−ρ(r2 + a2) sin θ − 2Qar sin θ cos θ

]
.

Finally the corresponding electromagnetic field tensor for the Kerr-Newman black hole is
written as the following 2-form:

F =
Q

ρ4
(r2 − a2 cos2 θ)dr ∧ [dt− a sin2 θdφ+ 2Qρ4ar cos θ sin θdθ] ∧

[
(r2 + a2)dφ− adt

]
.
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Abstract

In this paper we give some corrections to a mistake happened in a paper about a
link invariant called Configuration Space Integral. The Configuration Space Integral
can be seen as a generalisation of the Gauss formula for the linking number of two
knots. This invariant is a strong finite type invariant for links and knots. We will
correct the mistake and reprove the concerning theorems.
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1 Introduction

In this paper we give some corrections to a mistake happened in the paper “The Config-
uration Space Integral for Links in R3” by Sylvain Poirier [1]. The Configuration Space
Integral can be seen as a generalisation of the Gauss formula for the linking number of
two knots. This invariant is a strong finite type invariant for links and knots. In section 2
we are giving some definitions in this field and in section 3 we will correct the mistake. In
the last section we give a proof for compactification result using the new diffeomorphism
defined in section 3.

2 Definitions

Let M be a compact one-dimensional manifold with boundary. Let L denote an embedding
of M into R3. We say that L is a link if we moreover have the condition that the boundary
of M is empty. And a link L it is a knot when M = S1.

The configuration space integral is a linear combination of integrals on configuration
spaces of a link. In [1] this integral is defined. For proving that this integrals converge,
the author chose a compactification of a configuration space which has a natural structure
of a smooth manifold. In this process Poirier constructed the compactified space H(G) of
a graph G, that is defined as follows:

Definition 2.1. If A is a finite set with at least two elements, let CA denote the space
of non-constant maps from A to R3 quotiened by the translation-dilations group (that is
the group of translations and positive homotheties of R3).
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Let G be a graph defined as a pair G = (V,E) where V is the set of “vertices” and E
is the set of “edges”: V is a finite set and E is a set of pairs of elements of V . We suppose
that #V ≥ 2 and that G is connected. Let R be the set of connected subsets A of V such
that #A ≥ 2.

Definition 2.2. Let H(G) be the subset of
∏
A∈R C

A made of the x = (xA)A∈R such that
for all A,B ∈ R, A ⊆ B implies that the restriction of xB to A is either the constant map
or the map xA.

Now we are ready to correct the mistake.

3 The Diffeomorphism

The mistake is that in [1] the author asserted that the space CA is diffeomorphic to the
sphere S3#A−4. But in fact CA is diffeomorphic to the space

{0} × S2 ×D3 × · · · ×D3,

where D3 denote the 3-dimensional disk in R3, that is

D3 = {x ∈ R3 | ||x|| ≤ 1},

and the number of factors D3 in the product above is #A− 2.

Proof. Intuitively, for translations choose an element a ∈ A to be at the origin. In this
way the images of other elements of A are to be considered modulo the dilations with with
center the origin. Choose an other element B ∈ A so that it’s image in R3 has largest
distance from origin. We can choose such an element b ∈ A because #A ≥ 2 and elements
of CA are not constant maps. Then for dilations normilize this biggest distance, i. e.
divide all vectors by the largest distance, so the image of b will be in S2. Now the image
of other elements of A can be any point in the disk D3.

More precisely consider the following diffeomorphism:

ϕ : CA → {0} × S2 ×D3 × · · · ×D3

defined by

[f ] 7→
(
f(x)− f(a)

‖f(b)− f(a)‖

)

x∈A
,

where [f ] denote all the maps f : A → R3 modulo translations and dilations in R3. The

map ϕ is well-defined, because for all x ∈ A, the term f(x)−f(a)
‖f(b)−f(a)‖ is invariant under all

translations and dilations.
The map ϕ is one-to-one. Let ϕ([f ]) = ϕ([g]) for non-constant maps f, g : A → R3.

So there are elements b, b′ ∈ A so that for all x ∈ A we have

f(x)− f(a)

‖f(b)− f(a)‖ =
g(x)− g(a)

‖g(b′)− g(a)‖ .

Hence for all x ∈ A,

f(x) =
‖f(b)− f(a)‖
‖g(b′)− g(a)‖ · (g(x)− g(a)) + f(a).
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This means that the value of f at each point of A is gained by some translations and
dilations of the value of g in that point. So [f ] = [g].

The map ϕ is onto. For each element

(cx)x∈A ∈ {0} × S2 ×D3 × · · · ×D3 ⊆
∏

R3

define the map f by f(x) = cx. So we have [f ] ∈ CA and ϕ([f ]) = (cx)x∈A.
Moreover, ϕ is smooth and have a smooth inverse, clearly.

The space S2 ×D3 × · · · ×D3 is a closed set and it is bounded, hence it is compact.
On the other hand the homology groups of this space are not equal to homology groups
of the sphere 3(#A− 2) + 2 = 3#A− 4, so they are not diffeomorphic.

4 Compactness of H(G)

We can see that H(G) is compact, as a closed subset of the compact manifold
∏
A∈R C

A,
for it is defined as an intersection of closed sets. For all A,B ∈ R such that A ⊆ B,
let us see why {(xA, xB) ∈ CA × CB | the restriction of xB to A is either the constant
map or the map xA} is closed, in the following way: by identifying each of CA, CB as a
compact spaces in section 3 a convenient way (fixing one vertex in A to the origin) in the
respective linear space L, L′ with the canonical linear projection π from L′ onto L, then
the above set is the projection by (xA, xB, λ) 7→ (xA, xB) of the closed thus compact set
of (xA, xB, λ) ∈ CA × CB × [0, 1] such that π(xB) = λxA.
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Abstract

The main goal of this article is concerned with finding first integrals for first-order
and higher-order ODEs and using one-parameter symmetries to reduce the order of
a given ODE. All techniques, which are expressed in this article, are illustrated by
examples.
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1 Introduction

There are many techniques for integrating of differential equations, but most works are
only for very limited class of problems. Surprisingly, most well-known techniques have a
common feature: they exploit symmetries of differential equations. The most basic type
of symmetry is a group of point transformations acting on the space of independent and
dependent variables. Lie’s fundamental observation was that knowledge of a sufficiently
large group of symmetries of a system of ODEs allow one to integrate the system by
quadratures and thereby deduce the general solution. This approach unifies and signif-
icantly extends the various special methods introduced for the integration of ODEs. In
this article, a survey of these methods is presented.

We begin the first section by a brief definition of a system of differential equations
with the total space of dependent and independent variables, then the prolong formulation
for finding the Lie algebra of symmetries including the invariance condition theoremare
given. These two ones together construct a computational method for finding the Lie
algebra of the symmetry group which is a vector space spanned by some vector fields called
infinitesimal generators correspond to the transformations in the Lie group of symmetries.
Finally in the main section we apply the symmetries to integrate a given ODE.

2 Mathematical Formulation

This section starts with a geometrical definition of a system of differential equations.
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Definition 2.1. An n−th order system of `−differential equations in p independent and
q dependent variables with total space E is given as a system of equations

∆ν(x, u(n)) = 0, ν = 1, · · · , `, (1)

involving x = (x1, . . . , xp), u = (u1, . . . , uq) and the derivatives of u with respect to x up
to order n. The functions ∆(x, u(n)) =

(
∆1(x, u

(n)), . . . ,∆`(x, u
(n))
)

will be assumed to
be smooth in their arguments, so ∆ can be viewed as a smooth map from the n−th jet
space Jn(E) to some `−dimensional Euclidean space R`, such as ∆ : Jn(E)→ R`.

Let us v =
∑p

i=1 ξ
i(x, u) ∂

∂xi
+
∑q

α=1 ϕα(x, u) ∂
∂uα be a vector field on E, a computational

theorem gives an important formula to obtain the prolongation of a vector filed;

Definition 2.2. Suppose v is a vector field on the Euclidean space E. The n-th prolon-
gation of v, denoted pr(n)v, will be a vector field on the n-th jet space Jn(E).

Theorem 2.3. The vector field v has the n−th prolongation

pr(n)v = v +

q∑

α=1

∑

J

ϕJα(x, u(n))
∂

∂uαJ
, (2)

where ϕαJ = DJ

(
ϕα −

∑p
i=1 ξ

i∂u
α

∂xi

)
+
∑p

i=1 ξ
iuαJ,i, J = (j1, ..., jk) is a multi-indices DJ =

Dj1Dj2 · · ·Djk is the J−th total derivative.

Proposition 2.4. (Infinitesimal condition) Suppose (1) is a system of differential equa-
tions of maximal rank defined over E. If G is a local group of transformations acting on
E, and

pr(n)v [∆ν(x, u(n))] = 0, ν = 1, · · · , `, whenever ∆(x, u(n)) = 0, (3)

for every infinitesimal generator v of G, then G is a symmetry group of the system.

For example an straightforward calculation [2], shows that the equation for the conduc-
tion of heat in a one-dimensional rod ut = uxx has a six-dimensional symmetry group with
a Lie algebra spanned by the generators: v1 = ∂

∂x ,v2 = ∂
∂t ,v3 = u ∂

∂u ,v4 = x ∂
∂x+2t ∂∂t ,v5 =

2t ∂∂x − xu ∂
∂u ,v6 = 4t ∂∂x + 4t2 ∂∂t − (x2 + 2t)u ∂

∂u .

3 First Order Equations

We begin by considering a single first order ordinary differential equation

du

dx
= F (x, u) (4)

It will be shown that if this equation is invariant under a one-parameter group of trans-
formations, then it can be integrated by quadrature. If G is a one-parameter group of
transformations on an open subset E ' R2, let v = ξ(x, u) ∂

∂x +ϕ(x, u) ∂
∂u be its infinitesi-

mal generator. The first prolongation of v is tbe vector field pr(1)v = ξ ∂
∂x +ϕ ∂

∂u +ϕx ∂
∂ux

,
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where ϕx = Dxϕ − uxDxξ = ϕx + (ϕu − ξx)ux − ξuu2x. Thus the infinitesimal condition
that G be a symmetry group of (4) is

∂ϕ

∂x
+

(
∂ϕ

∂u
− ∂ξ

∂x

)
F − ∂ξ

∂u
F 2 = ξ

∂F

∂x
+ ϕ

∂F

∂u
, (5)

and any solution ξ(x, u), ϕ(x, u) of the partial differential equation (5) generates a one-
parameter symmetry group of our ODE.

Once we have found a symmetry group G, there are several different methods we can
employ to integrate (4). Suppose v is the infinitesimal generator of the symmetry group,
and assume that v|(x0,u0) 6= 0, we introduce new coordinates

y = η(x, u), w = ζ(x, u), (6)

near (x0, u0) so in this new coordinate we can rectify v to v = ∂
∂w . Thus in the new

coordinate system, in order to be invariant, the differential equation must be independent
of w, so (4) is equivalent to elementary equation

dw

dy
= H(y),

for some functionH This equation is trivially integrated by quadrature, with w =
∫
H(y)dy+

c for some constant c. Re-substituting the expression (6) for w and y, we obtain a solution
u = f(x) of our original system in implicit form.

We change variable (6) by using the methods for finding group invariants. So v is
transformed into the form ∂

∂w provided η and ξ satisfy the linear partial differential equa-
tions

v(η) = ξ
∂η

∂x
+ ϕ

∂η

∂u
= 0, (7a)

v(ξ) = ξ
∂ζ

∂x
+ ϕ

∂ζ

∂u
= 1. (7b)

The first of these equations just says that η(x, u) is an invariant of the group generated
by v. We can thus find η by solving the associated characteristic ordinary differential
equation

dx

ξ(x, u)
=

du

ϕ(x, u)
. (8)

Often the corresponding solution ξ of (7b) can be found by inspection.
The equation in the new coordinates will be invariant if and only if it has the form

ϕ(x, u)

ξ(x, u)
= F (x, u), (9)

then we have a solution of the determining equation (3), so such a vector field v =
ξ ∂
∂x + ϕ ∂

∂u is always a symmetry of the equation.

Example 3.1. Consider the first order ODE ux = x4+2u4

x2u2
. This is a homogeneous ODE

which is invariant under the one-parameter group of scaling transformation (x, u) 7→
(λx, λu), λ > 0 with infinitesimal generator v = x ∂

∂x + u ∂
∂u . The new coordinates are

y = u/x and w = lnx. In this coordinates the equation reduces to wy = y−2+2y2, thus, the

solution is w = −y−1 + 2
3y

3, or, in terms of the original variables exp
{
−x
u + 2

3

(
u
x

)3}
= cx

for a constant c.
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4 Higher Order Equations

Symmetry groups can be used to aid in the solution of higher order ODEs. The integration
method based on the invariants of the group extends straightforwardly. Let

∆(x, u(n)) = ∆(x, u, ux, . . . , un) = 0, (10)

where un ≡ dnu/dxn, be a single n-th order differential equation involving the single
dependent variable u. The basic result in this case is that if we know a one-parameter
symmetry group of this equation, then we can reduce the order of the equation by one.

Example 4.1. Consider a homogeneous second order linear equation

uxx + p(x)ux + q(x)u = 0. (11)

This is clearly invariant under the group of scale transformations

(x, u) 7→ (x, λu),

with infinitesimal generator v = u ∂
∂u . Coordinates (y, w) which straighten out v are given

by y = x, w = lnu (provided u 6= 0), with v = ∂
∂w in these coordinates. we have

u = ew, ux = wxe
w, uxx = (wxx + w2

x)ew,

so the equation becomes
wxx + w2

x + p(x)wx + q(x) = 0,

which is independent of w. We have thus reconstructed the well-known transformation
between a linear second order equation and a first order Riccati equation; namely z =
wx = ux/u changes (11) into the Riccati equation

zx = −z2 − p(x)z − q(x).
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Abstract

In this talk, after reviewing concepts of compact-open topology, Whisker topology
and Lasso toplogy on fundamental groups, we present some topological properties for
the Whisker topology on a fundamental group.
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1 Introduction

The concept of a natural topology on the fundamental group appears to have origi-
nated with Hurewicz [8] in 1935. The topology inherited from the loop space by quotient
map, where equipped with compact-open topology, on fundamental group is denoted by
πqtop

1 (X, x0). Spanier [10, Theorem 13 on page 82] introduced a different topology that
Dydak et al. [4] called it the Whisker topology and denoted by πwh

1 (X, x0). They also
introduced a new topology on π1(X, x0) and called it the Lasso topology to character-
ize the unique path lifting property which is denoted by πl

1(X, x0) and showed that this
topology makes the fundamental group a topological group [3]. However Biss [2] claimed
that πqtop

1 (X, x0) is a topological group, but it is shown that the multiplication map is
not continuous, in general, hence πqtop

1 (X, x0) is a quasitopological group (see [6]). In this
talk, we show that πwh

1 (X,x0) is not a topological group, in general. In addition, it is not
even a semitopological group, but it has some properties similar to toplogical groups. For
instance, every open subgroup of πwh

1 (X, x0) is also a closed subgroup of πwh
1 (X,x0) and

πwh
1 (X,x0) is T0 if and only if it is T2. Moreover, πwh

1 (X,x0) is a homogeous and regular
space, and it is totally seperated if and only if is T0.

2 Notation and Preliminaries

Definition 2.1. Let H be a subgroup of π1(X,x0) and P (X,x0) = {α : (I, 0) → (X, x0)| α
is a path} be a path space. Then α1 ∼ α2 mod H if α1 (1) = α2 (1) and

[
α1 ∗ α2

−1
]

∈ H.
It is easy to check that this is an equivalence relation on P (X,x0). The equivalence class

of α is denoted by ⟨α⟩H . Now one can define the quotient space X̃H = P (X,x0)
∼ and the
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map pH : (X̃H , eH) → (X,x0) by pH(⟨α⟩H) = α(1) where eH is the class of constant path
at x0.

For α ∈ P (X,x0) and an open neighborhood U of α(1), a continuation of α in U is
a path β ∈ P (X, x0) of the form β = α ∗ γ, where γ(0) = α(1) and γ(I) ⊆ U . Thus we
can define a set ⟨U, ⟨α⟩H⟩ = {⟨β⟩H ∈ XH | β is a continuation of α in U} where U is an
open neighborhood of α(1) in X. It is shown that the subsets ⟨U, ⟨α⟩H⟩ as defined above
form a basis for a topology on X̃H for which the function pH : X̃H → X is continuous [9,
Theorem 10.31]. Moreover, if X is path connected, then pH is surjective. This topology
on X̃H is called the Whisker topology [4].

Definition 2.2. Let pe : X̃e → X be the defined end point projection map for {e} ≤
π1(X,x0) and put p−1

e (x0) as a subspace of (X̃e, x̃0) with its default Whisker topology.
One can transfer this topology by the bijection f : π1(X, x0) → p−1

e (x0) into π1(X, x0) with
[α] 7→ ⟨α⟩H . The fundamental group with Whisker topology is denoted by πwh

1 (X, x0).
Fishcer and Zastrow [7, Lemma 2.1.] have shown that the Whisker topology is finer than
the inherited topology from loop space with compact-open topology on π1(X,x0) which
is denoted by πqtop

1 (X,x0) .

3 Main results

In this section we are going to present some interesting properties of πwh
1 (X, x0). At

first, it seems necessary to characterize the open subsets and subgroups of πwh
1 (X, x0).

Let [α] ∈ π1(X, x0), for every open subset U of x0 there is a bijection φα : i∗π1(U, x0) →
(U, [α])

∩
p−1

e (x0) defined by φα([γ]) = [α∗γ] . It is easy to check that φα is a well defined
bijection.

The collection {[α]i∗π1(U, x0) | [α] ∈ π1(X,x0) and U open subset of x0} form a basis
for the Whisker topology on π1(X,x0). Moreover, these basis elements are closed and
hence they are clopen subsets.

The left (right) topological group is a group equipped with a topology that makes all
of the left (right) translations continuous. A semitopological group is a left topological
group which is also a right topological group [1, Section 1.2.]. πwh

1 (X, x0) is not a right
topological group in general, hence it is not a semitopological group. For example see the
Hawaiian earring is not a topological group since the inverse map in πwh

1 (HE, ∗) is not
continous [4]. Recall that a non-empty topological space X is called a G− space, for a
group G, if it is equipped with an action of G on X . A homogeneous space is a G− space
on X which G acts transitively.

Proposition 3.1. πwh
1 (X,x0) is a homogenous space.

Proof. Clearly πwh
1 (X, x0) acts on itself. To show that this action is transitive, it is

enough to prove that left translation map in πwh
1 (X, x0) is homeomorphism. It is known

that every left topological group is a homogenous space. Hence πwh
1 (X,x0) is a homogenous

space.

Corollary 3.2. Every open subgroup of πwh
1 (X, x0) is a closed subgroup.

Recall that a topological space is called totally separated if for every pair of disjoint
points there exists a clopen subset which contains one of points and does not contain
another. The following proposition state some separation axioms for πwh

1 (X, x0) .
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Proposition 3.3. For a connected and locally path connected space X, the following
statement are equivalent:

1. πwh
1 (X,x0) is T0.

2. πwh
1 (X,x0) is T1.

3. πwh
1 (X,x0) is T2.

4. πwh
1 (X,x0) is T3 (T3 = regular + T1).

5. πs
1(X, x0) = 1, where πs

1(X, x0) is the collection of small loops at x0.

6. πwh
1 (X,x0) is totally separated.

Moreover, πwh
1 (X, x0) is regular.

Corollary 3.4. If the right translation in πwh
1 (X,x0) are continuous, then πwh

1 (X, x0) is
a topological group.

It seems interesting to know that when πwh
1 (X, x0) has the countable axiom properties.

Proposition 3.5. If X is a first countable space, then πwh
1 (X, x0) is also first countable.

Proof. Let βx0 be a countable neighborhood basis at x0 and let [f ] ∈ πwh
1 (X, x0).

Then the colection βf = {[f ]i∗π1(V, x0) | V ∈ βx0} form a countable neighborhood basis
at [f ].

Proposition 3.6. The closure of trivial element in πwh
1 (X, x0) is equals to πs

1(X, x0).
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On (Semi) Topological BCC-algebras

F. Rajabi Setudeh∗

University of Sistan and Baluchestan

Nader Kouhestani

University of Sistan and Baluchestan

Abstract

In this paper, we introduce the notion of (semi) topological BCC-algebras and
derive here conditions that imply a BCC-algebra to be a (semi) topological BCC-
algebra. We prove that for each cardinal number α there is at least a (semi) topological
BCC-algebra of order α. Also we study separation axioms on (semi) topological BCC-
algebras and show that for any infinite cardinal number α there is a Hausdorff (semi)
topological BCC-algebra of order α with nontrivial topology.

Keywords: BCC-algebra, (semi)topological BCC-algebra, ideal, preideal, Hausdorff
space, Uryshon space

Mathematics Subject Classification [2010]: 06B10 , 03G10

1 Introduction

In 1966, Y. Imai and K. Iséki in [6] introduced a class of algebras of type (2, 0) called
BCK-algebras which generalizes on one hand the notion of algebra of sets whit the set
subtraction as the only fundamental non-nullary operation, on the other hand the notion
of impliction algebra. K. Iséki posed an interesting problem whether the class of BCK-
algebras form a variety. In connection with this problem Y. Komori in [7] introduced a
notion of BCC-algebras which is a generalization of notion BCK-algebras and proved that
class of all BCC-algebras is not a variety. W. A. Dudek in [5] redefined the notion of
BCC-algebras by using a dual form of the ordinary definition. Further study of BCC-
algebras was continued [5]. In recent years some mathematicians have endowed algebraic
structures associated with logical systems with a topology and have studied some their
propertises. For example, Borzooei et.al in [2] introduced (semi) topological BL-algebras
and in [3] and [4] studied metrizability and separation axioms on them. In [8] Kouhestani
and Borzooei introduced (semi) topological residuated lattices and studied separation
axioms T0, T1, and T2 on them. In this paper, in section 3 we will define (left, right, semi)
topological BCC-algebras and show that for each cardinal number α there is at least a
topological BCC-algebra of order α. In section 4, we study some topological results on
BCC-algebras endowed with a topology. In section 5, we will study connection between
(semi) topological BCC-algebras and Ti spaces, when i = 0, 1, 2. We prove that for any
infinte cardinal number α there is Hausdorff topological BCC-algebra of order α which its
topology is non trivial.
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Definition 1.1. A BCC-algebra is a non empty set X with a constant 0 and a binary
operation ∗ satisfying the following axioms, for all x, y, z ∈ X :
(1) ((x ∗ y) ∗ (z ∗ y)) ∗ (x ∗ z) = 0,
(2) 0 ∗ x = 0,
(3) x ∗ 0 = x,
(4)x∗y = 0 and y∗x = 0 imply x = y. On any BCC-algebra X one define x ≤ y ⇔ x∗y = 0.

Definition 1.2. Let (X, ∗, 0) be a BCC-algebra and I ⊆ X. I is called:
(i) ideal if 0 ∈ I, and for each x, y ∈ X, x ∗ y ∈ I and y ∈ I imply x ∈ I,
(ii) BCC-ideal if 0 ∈ I, and y ∈ I, (x ∗ y) ∗ z ∈ I, imply x ∗ z ∈ I.

Definition 1.3. Let T be a topology on a BCC-algebra (X, ∗, 0). Then:
(i) (X, ∗, T ) is (right) left topological BCC-algebra if x ∗ y ∈ U ∈ T , then there is a (V )
W ∈ T such that (x ∈ V ) y ∈ W and (V ∗ y ⊆ U) x ∗ W ⊆ U . In this case, we also say
that ∗ is continous in (first)second variable ,
(ii) (X, ∗, T ) is semi topological BCC-algebra if it is left and right topological BCC-algebra,
i.e. if x ∗ y ∈ U ∈ T , then there are V, W ∈ T such that x ∈ V, y ∈ W and x ∗ W ⊆ U and
V ∗ y ⊆ U. In this case we also say that ∗ is continuous in each variable separately,
(iii) (X, ∗, T ) is topological BCC-algebra if ∗ is continous , i.e. if x ∗ y ⊆ U ∈ T , then
there are two neighborhoods V,W of x, y, respectively, such that V ∗ W ⊆ U .

Definition 1.4. Let (X, ∗, 0) be a BCC-algebra. Then:
(i) a family Ω of subsets X is prefilter if for each U, V ∈ Ω, there exists a W ∈ Ω such
that W ⊆ U ∩ V,
(ii) for each V ⊆ X and x ∈ X, we denote V [x] = {y ∈ X : y ∗ x ∈ V } V (x) = {y ∈ X :
y ∗ x, x ∗ y ∈ V }.
(iii) a non empty subset V on X is preideal if for each x, y ∈ X, x ≤ y, y ∈ V imply
x ∈ V.

Theorem 1.5. Let I be a prefilter of BCC-ideals in a BCC-algebra (X, ∗, 0). Then there
is a topology T on X such that (X, ∗, T ) is a topological BCC-algebra.

Theorem 1.6. Let I be an ideal in BCC-algebra (X, ∗, 0). Then there is a topology T on
X such that (X, ∗, 0, T ) is right topological BCC-algebra. Moreover, if for each x, y, z ∈ X,
(x ∗ y) ∗ z = (x ∗ z) ∗ y, then (X, ∗, 0, T ) is a topological BCC-algebra.

Theorem 1.7. Let (X, ∗, 0, T ) be a topological BCC-algebra and a ̸∈ X. Suppose Xa =
X ∪ {a} and T ∗ = T \ {ϕ}. If 0 ∈ ∩T ∗, then there are an operation ⊗ and a topology Ta

on Xa such that (Xa, ⊗, Ta) is a topological BCC-algebra and 0 ∈ ∩T ∗
a .

Theorem 1.8. For any ineger n ≥ 4 there exists a topological BCC-algebra of order n.

Theorem 1.9. Let α be an infinite cardinal number. Then there is a topological BCC-
algebra of order α.

Theorem 1.10. Let (X, ∗, 0, T ) be a topological BCC-algebra and α be a cardinal number.
If α ≥ |X|, then there is a topological BCC-algebra (Y, ◦, 0, U) such that α ≤ |Y | and X is
a subalgebra of Y.

Theorem 1.11. Let α be an infinite cordinal number. Then there is a right topological
BCC-algebra of order α which is not a topological BCC-algebra.
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Theorem 1.12. Let Ω be a family of preideals in BCC-algebra (X, ∗, 0) such that is closed
under intersection. If for each x ∈ V ∈ Ω, there is a U ∈ Ω such that U [x] ⊆ V, then there
is a topology T on X such that (X, ∗, 0, T ) is a right topological BCC-algebra.

Theorem 1.13. Let Ω be a family of preideals in BCC-algebra (X, ∗, 0) such that is closed
under intersection. Let for each x ∈ V ∈ Ω, there is a U ∈ Ω such that U(x) ⊆ V. If
for each x, y, z ∈ X, (x ∗ y) ∗ z = (x ∗ z) ∗ y, then there is a topology T on X such that
(X, ∗, 0, T ) is a semi topological BCC-algebra.

Proposition 1.14. Let (X, ∗, 0, T ) be a topological BCC-algebra. If 0 ∈ ∩T , then B ⊆ X
is open iff, 0 is an interior point of B and W ∗ x ⊆ U.

Proposition 1.15. Let (X, ∗, 0, T ) be a left topological BCC-algebra and I be an ideal
in X. Then I is closed if 0 is an interior point of I, or 0 ∈ {xj : j ∈ J}, for each net
{xj : j ∈ J} which converges to 0.

Proposition 1.16. Let (X, ∗, 0, T ) be a semi topological BCC-algebra and I be an ideal
in X. Then I is open and closed if 0 is an interior point of I.

Proposition 1.17. Let (X, ∗, 0, T ) be a right topological BCC-algebra. If all of elements
of X are atoms, then 0 ∈ B, or B is closed, for each B ⊆ X which 0 ̸∈ B.

Proposition 1.18. Let (X, ∗, 0, T ) be a topological BCC-algebra and I be a BCC-ideal in
X. Then I is a BCC-ideal.

2 Main results

Theorem 2.1. Let T be a topology on BCC-algebra (X, ∗, 0). If for any a ∈ X the map
la : X ↪→ X, by la(x) = a ∗ x, is an open map, then (X, T ) is a T0 space.

Theorem 2.2. Let (X, ∗, 0, T ) be a right (left) topological BCC-algebra. Then (X, T ) is
a T0 space iff, for any x ̸= 0, there is a U ∈ T such that x ∈ U and 0 ̸∈ U.

Theorem 2.3. Let X be a BCC-algebra such that for any a ∈ X \ {0}, there is a b ∈ X
such that 0 < b < a. Then there exists a non trivial topology T on X such that (X, ∗, 0, T )
is a T0 right topological BCC-algebra.

Theorem 2.4. If α is an infinite cardinal number, then there is a T0 right topological
BCC-algebra of order α.

Theorem 2.5. If α is an infinite cardinal number, then there is a T0 topological BCC-
algebra of order α which its topology is nontrivial.

Theorem 2.6. Let (X, ∗, 0, T ) be a semi topological BCC-algebra. Then (X, T ) is a T1

space if and only if for any x ̸= 0, there are two open neighborhoods U and V of x and 0,
respectively, such that 0 ̸∈ U and x ̸∈ V.

Theorem 2.7. Let (X, ∗, 0, T ) be a semi topological BCC-algebra. Then (X, T ) is a T1

space if and only if it is T0 space.
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Theorem 2.8. Let (X, ∗, 0, T ) be a topological BCC-algebra. Then (X, T ) is Hausdorff
if and only if for each x ̸= 0, there are two disjoint open neighborhoods U and V of x and
0, respectively.

Theorem 2.9. Let (X, ∗, 0, T ) be a topological BCC-algebra. Then (X, T ) is a T1 space
if and only if it is Hausdorff space if and only if {0} is closed.

Corollary 2.10. If α is an infinite cardinal number, then there is a T1(T2) topological
BCC-algebra of order α which its topology is nontrivial.

Theorem 2.11. Let N be a fundamental system of neighborhoods of 0 in topological BCC-
algebra (X, ∗, 0, T ). The following conditions are equivalent.
(i) (X, T ) is T0 space,
(ii) (X, T ) is T1 space,
(iii) (X, T ) is Hausdorff space,
(iv) ∩N = {0}.

Theorem 2.12. Topological BCC-algebra (X, ∗, 0, T ) is Uryshon space if and only if for
any x ̸= 0, there are two open sets U and V containing x and 0, respectively, such that
U ∩ V = ϕ.

Theorem 2.13. Topological BCC-algebra (X, ∗, 0, T ) is Uryshon space if and only if it is
Hausdorff.
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On Benz-Planes admitting automorphisms with exactly two

fix points

Sajad Mohseni Takaloo∗
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Abstract

The axiom of Miquel with 8 points plays the same role in Benz-planes as Pappus
axiom in projective planes. In this paper we show a Benz plane ( i.e. a Möbius,
Laguerre or Minkowski plane ) that admits automorphisms with two arbitrary fix
points satisfies a degenerate form of miquel axiom with 6 points. The converse of this
assertion is a part of authors investigations.

Mathematics Subject Classification (2000) . 14N05; 14N15;
Keywords. Benz plane, Möbius plane, Laguerre plane, Minkowskie plane, Miquel

axiom, point reflection.

1 Introduction

The geometry of circles is as old as Euclidean geometry. Appollonius problem is the most
famous elementary problem in this area. The classical version of Appollonius problem is:

“find all circles tangent to three given circles in the Euclidian plane”.

in order to find all solutions we should consider lines as circles with a point at infinity.
This idea is well known since Gaus because of his elegant model for Euclidean geometry
based on complex plane. Adding an extra point ∞ to all lines in Euclidean plane we
find a uniform representation of lines and circles.The objects of this nonlinear geometric
structure are points and circles and it is more homogenous than Euclidean plane. This
geometry is called classical “inversive geometry” or “Möbius plane”. With stereographic
projection this geometry can be consider as the geometry of plane sections (circles) on a
sphere in a three dimensional Euclidean space. The geometry of plane sections of a conic in
3-dimensional space [1] gives general structures called Benz planes. Besides Möbius planes,
Laguerre planes and Minkowski planes are other types of Benz planes. Walter Benz find in
1970 a uniform analytic definition for them [1]. In Laguerre planes and Minkowski planes
we have another type of objects called “generator”. We recall an axiomatic definition for
all of them.

Let P be a nonempty set which we call it’s elements “point”, denoted by capital
letters and C a nonempty subset of the power set of P which we call it’s elements “
cycle”, denoted by small letters.
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In a Möbius planes each triple of distinct points determine a unique cycle but this
is not the case for Laguerre or Minkowski planes. On the point set of a Laguerre plane
we define an equivalence relation called “parallel” relation. Two points P,Q are called
parallel, denoted by P ||Q, if P = Q or there is no cycle containing P,Q. On the point set
of a Minkowski plane we define two equivalence relation of parallel points.

The common axioms for Möbius, Laguerre and Minkowski planes are the following
three axioms:

(B1) For any three pairwise not parallel points there is exactly one cycle which contains
them.

If A1, · · · , Ai are points of a cycle we write (A1, · · · , Ai) ∈ C. The unique cycle con-
tains three pairwise not parallel points A,B,C will be showed with (A,B,C)◦.

(B2) For any cycle z and any points P ∈ z, Q /∈ z and P nonparallel with Q there
exists exactly one cycle z′ with P ∈ z′ and z∩z′ = {P} (we say z and z′ are touching in P ).

(B3) Each cycle contains at least three points and there are at least four points not on
a cycle.

More precisely we describe the uniform definition of Benz-planes with the notion of
net. As before Let P be a nonempty set which we call its elements ”points” and G a
subset of powerset of P which we call its elements generators. The pair (P,G) is called a
net if there is a partition G =

⋃
i∈I Gi such that:

G1. For each P ∈ P and i ∈ I there is exactly one Gi ∈ Gi with P ∈ Gi (we set
P = G1 ∪G2).

G2. For i, j ∈ I with i 6= j, G ∈ Gi, H ∈ Gj we have |G ∩H| = 1 and |G| ≥ 1.

Let (P, G) be a net and C be another subset of P with φ /∈ C. The elements of C will
be called “cycles”. Let PP := P \ P , CP := {c \ P | c ∈ C, P ∈ c}, GP := {G \ P | G ∈
G, P /∈ G}and A(P ) := (PP ,CP ∪ GP ). The triple (P,C,G) is called a Benz plane if for
each point P ∈ P, A(P ) is an affine plane.

For a Benz plane, A(P ) is called “the residue at P”. For the classical model, the
residue at each point is the underlying real affine plane.

2 Miquel axiom

We call a Benz plane Miquelian, if the following property is satisfied[4].

M8. Let A1, A2, A3, A4, A
′
1, A

′
2, A

′
3, A

′
4 be distinct points of a Benz plane (L,C, G).

Then from each five assertions of six assertions (A1, A
′
1, A2, A

′
2) ∈ C, (A2, A

′
2, A3, A

′
3) ∈ C,

(A3, A
′
3, A4, A

′
4) ∈ C, (A4, A

′
4, A1, A

′
1) ∈ C, (A1, A2, A3, A4) ∈ C and (A′1, A

′
2, A

′
3, A

′
4) ∈ C

follows the sixth one (figure 1).
For simplicity we associate the eight points A1, A2, A3, A4, A

′
1, A

′
2, A

′
3, A

′
4 of M8 the ver-

texes of a cube and correspond to each four points of a cycle a face of the cube (figure
1).
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figure 1. Representaion of M8.

In a degenerate version of M8 called M6 we have only six distinct, pairwise non par-
allel points A,B,C,D,E, F (figure 2)[3].

M6. Let A,B,C,D,E, F be six distinct pairwise non parallel points of a Benz plane.
Then from each three assertions of four assertions (A,C,D, F ) ∈ C, (A,B,C)◦(C)(C,E,D)◦,
(A,B, F )◦(F )(F,D,E)◦ and (B,C,E, F ) ∈ C follows the fourth one.

A

B

D

E C

F

F = ∞

E

F

B A

CC

D

Figure 2. (M6)

3 Main results

Theorem 3.1. If the automorphism group of a Benz-plane contains for each four pairwise
non parallel points {X,Y, Z,W} an involution α with Fix(α) = {X,Y } and α(Z) = W
then it satisfies M6.

Proof. Let A,B,C,D,E, F be six distinct pairwise non parallel points. We show from
(A,C,D, F ) ∈ C, (A,B,C)◦(C)(C,E,D)◦ and (B,C,E, F ) ∈ C follows (A,B, F )◦(F )(F,D,E)◦.

By assumption there exists an automorphism α with Fix(α) = {F,C} and α(A) =
D. Then α induces an involution with exactly one fix point C in the residue A(F ).
Therefore α̂ := α|A(F ) is a point reflection in the affine plane A(F ) with α̂(A) = D. From
(A,B,C)◦(C)(C,E,D)◦ and α̂(A) = D follows that α(A,B,C)◦ = (E,D,C)◦. Hence
α̂(B) = E since α̂(B,E) = B,E in A(F ). Hence α̂(A,B) = E,D, i.e. A,B||E,D in
A(F ). This means (A,B, F )◦(F )(F,D,E)◦.

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

On Benz-planes admitting automorphisms with exactly two fix points pp.: 3–4

416



References

[1] Benz, W., Vorlesungen uber Geometrie der Algebren. Die Grundlehren der
mathematischen Wissenschaften in Einzeldarstellungen Bd. 197, Springer
Berlin/Heidelberg/New York (1973), 363 S

[2] Benz, W.; Maurer, H., Uber die Grundlagen der Laguerre-Geometrie. Ein Bericht.
Jahres- bericht d. DMV 67 (1964), 14-42.

[3] Schaeffer, H.Die Sieben-Punkte-Ausartungen des Satzes von Miquel in Möbiusenen
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Abstract

We are supposed to characterize the tangent space of an n−surface S = f−1(c) for
some f : U → R, U open in Rn+1, and f is a smooth function with the property that
∇f(p) 6= 0 for all p ∈ S, in the case that the whole space admits the general form of
the inner product. Finally we introduce a vector field X with integral curve α through
p such that the covariant derivative of f with respect to ά(0) at p, i.e., ∇α̇(0)f has
maximum value.

Keywords: Flow, Inner product, Positive definite, Surface, Vector field.
Mathematics Subject Classification [2010]: 37C10, 46C99, 14J29, 43A35.

1 Introduction

The idea of the definition of a regular surface is to introduce a set S, that is, in a certain
sense, two dimensional and that also is smooth so that the usual notions of calculus can
be extended to it [1, 9]. for example, if x : U ⊆ R2 → S be a parameterization of a regular
surface S and q ∈ U , then the vector subspace dxqR

2 ⊆ R3 of dimension 2, coincides with
the set of tangent vectors of S at x(q). In the case that f : U ⊆ R3 → R is a smooth
function and a ∈ f(U) is a regular point of f , then S = f−1(a) is a regular surface in R3.
As a result, in this case, the tangent space of S at p consides with ∇f(p)⊥,i.e., the set
of vectors at p which are perpendicular with respect to the usual inner product of R3 to
∇f(p) [2, 10]. In this note we are supposed to characterized the tangent space TpS for an
n−surface S in the case that Rn+1 admits a general inner product αA(u, v) = uAvt, in
which A is a symmetric positive definite (n+ 1)× (n+ 1) real matrix [3].

2 Preliminaries

Definition 2.1. [1] Let f : U → R be a smooth function, where U ⊆ Rn+1 is an open
set, let c ∈ R be such that f−1(c) is non-empty and let p ∈ f−1(c). A vector is said to
be a tangent to the level set f−1(c) if it is the velocity vector of a parameterized curve in
Rn+1 whose image is contained in f−1(c).

Definition 2.2. A parameterized curve is a smooth function α : I → Rn+1 for some open
interval I, and an n−surface is a non empty subset S ⊆ Rn+1 for some n ∈ N of the form
S = f−1(c) where f : U → R, U open in Rn+1, is a smooth function with the property
that ∇f(p) 6= 0 for all p ∈ S.
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Definition 2.3. [1, 9] A vector field χ on an n−surface S ⊆ Rn+1 is a function which
assigns to each point p ∈ S a vector χ(p) ⊆ TpRn+1. A tangent vector field on an n−surface
S ⊆ Rn+1 is a function which assigns to each point p ∈ S an element of TpS.

Definition 2.4. [2, 4] A parametrized curve α : I → Rn+1 is said to be an integral curve
of the vector field χ on the open set U ⊆ Rn+1, if α(t) ∈ U and α̇(t) = χ(α(t)) for all
t ∈ I. If χ is a smooth tangent vector field on an n−surface S, then α : I → S satisfying
previous conditions is called an integral curve of χ.

Definition 2.5. Let S be an n−surface in Rn+1. A function g : S → Rk is smooth if
it is the restriction to S of a smooth function g̃ : V → Rk defined on some open set V
consisting S. A smooth vector field is defined similarly.

Definition 2.6. Let U be an open set in Rn+1 and f : U → R be smooth. A point p ∈ U
such that ∇f(p) 6= 0 is called a regular point of f .

3 Main results

Theorem 3.1. Let A be a positive definite symmetric matrix and p ∈ f−1(c). Then the
vector ∇f(p)A−1, is orthogonal to all vectors tangent to f−1(c).

Proof. Each vector tangent to f−1(c) at p is of the form α̇(t0) for some parameterized
curve α : I → Rn+1 with α(t0) = p and Imα ⊆ f−1(c). But Imα ⊆ f−1(c) implies that
f(α(t)) = c for all t ∈ I. So the chain rule implies that

αA(∇f(p)A−1, α̇(t0)) = ∇f(α(t0)) · α̇(t0) =
d

dt
(f ◦ α)(t)|t=t0 = 0

Theorem 3.2. Let U be an open set in Rn+1 and f : U → R be smooth. Let p ∈ U be a
regular point of f , and let c = f(p). Then the set of all vectors tangent to f−1(c) at p is
equal to (∇f(p)A−1)⊥.

Proof. It suffices to show that, if V = (p, v) ∈ (∇f(p)A−1)⊥, then V = α̇(0) for some
parametrized curve α with Imα ⊆ f−1(c). Consider the constant vector field χ on U
defined by χ(q) = (q, v). Let

Y (q) = χ(q)− αA(∇f(q)A−1, χ(q))

αA(∇f(q)A−1,∇f(q))
∇f(q) (1)

Y is defined on an open set U where ∇f(q) 6= 0 for all q ∈ U . Obviously p ∈ U ,
χ(p) = V ∈ (∇f(p)A−1)⊥ and (1) implies that Y (p) = χ(p) and

αA(∇f(q)A−1, Y (q)) = αA(∇f(q)A−1, χ(q))

− αA(∇f(q)A−1, χ(q))

αA(∇f(q)A−1,∇f(q))
αA(∇f(q)A−1,∇f(q)) = 0

for all q ∈ U and Y (p) = V . Thus Y (q)⊥∇f(q)A−1 for all q ∈ U . Let α be an integral
curve [5, 6] of Y through p, then

α(0) = p, ά(0) = Y (α(0)) = Y (p) = χ(p) = V
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and
d

dt
(f ◦ α)(t) = ∇f(α(t)) · α̇(t) = αA(∇f(α(t))A−1, Y (α((t)) = 0

for all t ∈ I, so f(α(t)) = c. Since f(α(0)) = f(p) = c, so Imα ⊆ f−1(c).

Corollary 3.3. Let S be an n−surface in Rn+1, let χ be a smooth tangent vector field on
S. Then there exists an open interval I containing 0 and a parametrized curve α : I → S
such that, (1) α(0) = p, (2) α̇(t) = X(α(t)) for all t ∈ I, (3) and if β : Ĩ → S is any other
parameterized curve in S satisfying (1) and (2), then Ĩ ⊆ I and β(t) = α(t) for all t ∈ Ĩ.

Theorem 3.4. Let f : U → R be a smooth function and let α : I → U be an integral curve
of (∇f)A−1, then for each t0 ∈ I, the function f is increasing faster along α at α(t0) than
along any other curve passing through α(t0) with the same speed, i.e., if β : Ĩ → U is such
that β(s0) = α(t0) for some s0 ∈ Ĩ and ‖β̇(s0)‖ = ‖α̇(t0)‖ then d

dt(f◦β)(s0) ≤ d
ds(f◦α)(t0).

Proof. There exists a real number k ∈ [−1, 1] such that

d

dt
(f ◦ β)(s0) = αA(∇f(β(s0))A

−1, β̇(s0))

= k‖∇f(β(s0))A
−1‖‖β̇(s0)‖

= k‖∇f(α(t0))A
−1‖‖α̇(t0)‖

= k‖∇f(α(t0))A
−1‖‖∇f(α(t0))A

−1‖
= kαA(∇f(α(t0))A

−1,∇f(α(t0))A
−1)

≤ αA(∇f(α(t0))A
−1,∇f(α(t0))A

−1)

= αA(∇f(α(t0))A
−1, α̇(t0)) =

d

dt
(f ◦ α)(t0)
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Abstract

In this paper, we find a condition that the right and left translation of fuzzy topo-
logical generalized group are relatively fuzzy homeomorphism and then we investigate
some properties of fuzzy topological generalized group with respet to this condition.
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group.
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1 Introduction

The concepts of generalized group is defined by Prof Molaei in [3] and the concept of
fuzzy topological group is defined in [1]. In this paper some results on fuzzy topological
generalized group that is defined in [2], are investigated.
Let X be a non empty set and I = [0, 1]. A fuzzy set A in X is characterized by a
membership function µA which associates with each x ∈ X its grade of membership
µA(x) ∈ I.

Definition 1.1. Let A and B be fuzzy sets in X. Then:

• A = B ⇔ µA(x) = µB(x), for all x ∈ X,

• A ⊆ B ⇔ µA(x) ≤ µB(x), for all x ∈ X,

• C = A ∪ B ⇔ µC(x) = max{µA(x), µB(x)}, for all x ∈ X,

• D = A ∩ B ⇔ µD(x) = min{µA(x), µB(x)}, for all x ∈ X.

Remark 1.2. For a family of fuzzy sets {Ai, i ∈ I}, the union C =
∪

i∈I Ai and the
intersection D =

∩
i∈I Ai, are defined by

µC(x) = supµAi(x), x ∈ X,

µD(x) = infµAi(x), x ∈ X.

We denote by kc the fuzzy set in X with membership function µkc(x) = c for all x ∈ X.
The fuzzy set k1 and k0 correspond to X and ∅, respectively.
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Definition 1.3. [1] Let f be a mapping from a set X to a set Y . Let B be a fuzzy set
in Y with the membership function µB. then the inverse image of B, f−1[B], is the fuzzy
set in X with the membership function defined by

µf−1[B](x) = µB(f(x)),

for all x ∈ X.
If A is a fuzzy set in X then the image of A, f [A], is a fuzzy set in Y with the

membership function defined by

µf [A](y) = supz∈f−1(y)µA(z),

if f−1(y) is nonempty and 0 otherwise.

Definition 1.4. [1] A fuzzy topology on a set X is a family τ of fuzzy sets which satisfies
the following conditions:

• For all c ∈ I, kc ∈ I,

• If A, B ∈ τ , then A ∩ B ∈ τ ,

• If Ai ∈ τ for all i ∈ I, then
∪

i∈I Ai ∈ τ .

The pair (X, τ) is called a fuzzy topological space or FTS for short.

Definition 1.5. [1] Let A be a fuzzy set in X and τ a fuzzy topology on X. Then the
induced fuzzy topology on A is the family of fuzzy subsets of A which are the intersection
with A of τ - open fuzzy sets in X. The induced fuzzy topology is denoted by τA.

Definition 1.6. Let (A, τA) and (B, UB) be fuzzy subspace of FTS (X, τ), (Y, U), respec-
tively. Then a map f : (A, τA) → (B, UB) is relatively fuzzy continuous iff for each fuzzy
set V ∈ UB, f−1(V ) ∩ A ∈ τA. f : (A, τA) → (B, UB) is ralatively fuzzy open iff for open
fuzzy set W ∈ τA, f(W ) ∈ U . A bijective map f : (X, τ) → (Y, U) is a fuzzy homeomor-
phism iff it is a fuzzy continuous and fuzzy open. A bijective map f : (A, τA) → (B, UB)
is relatively fuzzy homeomorphism iff f(A) = B and f is relatively fuzzy continuous and
relatively fuzzy open.

Definition 1.7. [3] A generalized group is a non-empty set G admitting an operation
called multiplication, subject to the set of rules given below:

• (xy)z = x(yz), for all x, y, z ∈ G;

• for each x in G there exists a unique z in G such that xz = zx = x (we denote z by
e(x));

• For each x ∈ T there exists y ∈ T such that xy = yx = e(x) (we denote y by x−1).
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2 main results

Definition 2.1. Let X be a generalized group and G be a fuzzy set in X with membership
function µG. Then G is called a fuzzy generalized group if and only if the following
conditions satisfied:
i) µG(xy) ≥ min{µG(x), µG(y)}, for all x, y ∈ X.
µG(x−1) ≥ µG(x), for all x ∈ X.

Remark 2.2. It is an immediate consequence of the above definition that µG(x) =
µG(x−1) and µG(e(x)) ≥ µG(x) for all x ∈ X.

Definition 2.3. Let X be a generalized group and τ a fuzzy topology on X. Let G be a
fuzzy generalized group in X and let G be endowed with the induced fuzzy topology τG.
G is called a fuzzy topological generalized group if the multiplication and inverse maps
are relatively fuzzy continuous.

Lemma 2.4. Let X be a generalized group and τ a fuzzy topology on X. Let G be a
fuzzy topological generalized group in X and e(G) = {e1, ..., en} is finite set. Let µG(ek) =
max{µG(ei) : i = 1, ..., n} and a ∈ {x : µG(x) = µG(ek)}. Then µG(ea) = µG(ek).

Proof. Clearly µG(ea) ≤ µG(ek). Since µG(a) = µG(ek), according to Remark 2.2, we have
µG(ek) ≤ µG(ea). So µG(ea) = µG(ek).

Proposition 2.5. Let X be a generalized group and τ a fuzzy topology on X. Let G be a
fuzzy topological generalized group in X and e(G) = e1, ..., en is finite set. Then f : G → G
be an inversion map defined by f(x) = x−1, ra : G → G be a right translation defined by
ra(x) = xa, la(x) : G → G be a left translation defined by la(x) = ax and the inner
automorphism h : G → G defined by h(g) = aga−1 are all relative fuzzy homeomorphism,
where a ∈ {x : µG(x) = max{µG(ei)}i = 1, .., n}.

Proof. Let f : G → G be inversion map. Clearly f is one-to-one. Since

µf(G)(y) = sup
z∈f−1(y)

µG(z) = µG(y)

for all y ∈ G, f(G) = G. Since f−1(x) = x−1 is relatively fuzzy continuous, f is relatively
fuzzy open. Thus f is a relative fuzzy homeomorphism. Set µG(ek) = max{µG(ei) : i =
1, ..., n}. Let ra : G → G be a right translation. Then

µra(G)(x) = sup
z∈f−1(y)

µG(z) = µG(xa−1)

≥ min(µG(x), µG(a−1)) = min(µG(x), µG(ek))

= µG(x) = µG(xa−1a) ≥ min(µG(xa−1), µG(a))

= µG(xa−1) = µra(G)(x).

Thus ra(G) = G.
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Let Φ : G → G × G be map defined by Φ(x) = (x, a) and Ψ : G × G → G be a
map defined by Ψ(x, y) = xy. Then ra = Ψ ◦ Φ. Since Φ and Ψ are relatively fuzzy
continuous, ra is a relatively fuzzy continuous. Since r−1

a = ra−1 , ra is a relative fuzzy
homeomorphism. Similary la is a relative fuzzy homeomorphism. Since h = ra−1 ◦ la, h is
a relative fuzzy homeomorphism.

Corollary 2.6. Let F be a fuzzy closed subset, U an fuzzy open subset, and A any fuzzy
subset of a fuzzy topological generalized group G. Suppose a ∈ {x : µG(x) = max{µG(ei)} :
i = 1, .., n}. Then aU , Ua, U−1, AU , UA are relatively open and aF , Fa, F−1 are
relatively closed.

Let f : G → G be a map defined by f(x) = ax. According to Proposition 2.5, f is
a a relative homomorphism, so f(U) = aU is relatively open. Similary we may prove th
remaining parts of the corollary.

Proposition 2.7. Let G be a fuzzy topological generalized group in a group X and e(G) =
{e1, ..., en} be a finite set of identity elements. If a ∈ {x : µG(x) = max{µG(ei)} : i =
1, .., n} and W is a neighborhood of ea such that µW (ea) = 1, then aW is a neighborhood
of a such that µaW (a) = 1.

Proof. Since W is a neighborhood of ea such that µW (ea) = 1, there exist a fuzzy open
set U such that U ⊆ W and µU (ea) = µW (ea) = 1. Let la : G → G be a left translation .
By Propsition 2.5, la is a fuzzy homeomorphism. Thus aU is a fuzzy open set. So

µaU (a) = µU (a−1a) = µU (ea) = 1

and
µaW (x) = µW (a−1x) ≥ µU (a−1x) = µaU (x),

for all x ∈ X. So µaW (a) = 1 and there exist an fuzzy open set aU such that aU ⊆ aW .
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Abstract

In this present paper we defined the asymptotic average shadowing property for
itrated function systems (IFS) and show that if itrated function system F has the
asymptotic average shadowing property then Fk has the asymptotic average shadow-
ing property for all k ≥ 0. Also, if F is an IFS with the asymptotic average shadowing
property (on Z+), then so F−1 has the asymptotic average shadowing property.

Keywords: Shadowing property, Asymptotic average shadowing property, Asymptotic-
average pseudo orbit, IFS.

1 Introduction

The notion of shadowing is an important tool for studying prperties of discrete dynamical
systems. From numerical point of view , if dynamical system has the shadowing property,
then numerically obtained orbits reect the real behavior of trajectories of the systems. [1
, 4]
Iterated function systems(IFS), are used for the costruction of deterministic fractals and
have found numerous applications, in particular to image compression and image process-
ing. Important notions in dynamics like attractors, minimality, and shadowing can be
extended to IFS. [2, 3, 6, 7]
Let (X , d) be a complete metric space. Let us recall that a parametrized Iterated
Function system ( IFS ) F = {X; fλ|λ ∈ Λ} is any family of continuous mappings
fλ : X −→ X, λ ∈ Λ where Λ is a finite nonempty set. [5]
Let T = Z or T = Z+ = {n ∈ Z : n ≥ 0} andΛZ+ denote the set of all infinite se-
quences {λi}i∈T of symbols belonging to Λ. A typical element of ΛZ+ can be denoted as
σ = {λ0, λ1, ...} and we use the shorted notation

Fσn = fλ0ofλ1o...ofλn .

Definition 1.1. A sequence {xn}n∈T is called an orbit of the IFS F if there exist σ ∈ ΛT

Such that xn+1 = fλn(xn) , for λn ∈ σ.
Given δ > 0, a sequence {xn}n∈T in X is called a δ-pseudo orbit of F if there exist δ ∈ ΛT

such that for every λn ∈ σ, we have d(xn+1, fλ(xn)) < δ.
One says that the parameterized IFS has the shadowing property (on T), if given ε > 0 ,
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there exists δ > 0 such that for any δ-pseudo orbit {xn}n∈T there exist an orbit {yn}n∈T ,
satisfying the inequality d(xn, yn) ≤ ε for all n ∈ T . In this case one says that {yn}n∈T or
point y0 , ε−shadows the δ−pseudo orbit {xn}n∈T .
Please note that if Λ is a set whit one member then parameterized IFS F is an ordinary
discrete dynamical system. [5]

2 The asymptotic average shadowing property for IFS

In this section we investigate the structure of parameterized IFS whit the asymptotic
average shadowing property.

Definition 2.1. A sequence {xn}n∈T in X is called an asymptotic-average pseudo orbit
of the parameterized IFS F, if there exists the δ ∈ ΛT that

lim
n−→∞

1

n
Σn−1

i=1 d(fλi
(xi), xi+1) = 0.

Definition 2.2. A system IFS F is said to have the asymptotic average shadowing prop-
erty (AASP), if there exists the δ ∈ ΛT that every asymptotic-average pseudo orbit
{xn}n∈T of F can be asymptotically shadowed in the average by the orbit {yn}n∈T .

lim
n−→∞

1

n
Σn−1

i=1 d(fλi
(yn), xn) = 0, ∀λi ∈ σ.

Theorem 2.3. Let Λ be a finite set , F = {X; fλ|λ ∈ Λ} is an IFS and let k > 0 be an
integer . set Fk = {gµ |µ ∈ ⨿} = {fλk

ofλk−1
o...ofλ1 | λ1, ..., λk ∈ Λ}.

i) If the parameterized IFS F has the asymptotic-average shadowing property (AASP) then
so dose Fk for every positive integer K.
ii) If the parameterized IFS Fk has the asymptotic-average shadowing property (AASP)
then so dose F.

Theorem 2.4. Let X be a compact metric space. If F = {X; fλ|λ ∈ Λ} is an IFS with
the asymptotic average shadowing property (on Z+), so then F−1 = {X; gλ|λ ∈ Λ} has
the asymptotic average shadowing property where fλ : X −→ X is homeomorphism and
gλ = f−1

λ for all i ≥ 0.

Example 2.5. Let X = {x1, x2, ... , xn} be a finite set with the discrete metric d.
Suppose {fλ}λ∈Λ is the family of all surjective functions on X. F = {X; fλ|λ ∈ Λ} has the
asymptotic average shadowing property.

The following example shows that if for every λ ∈ Λ, fλ : X −→ X, as a discrete dy-
namical system, has the asymptotic average shadowing property then F = {X; fλ|λ ∈ Λ}
is necessarily an IFS whit the asymptotic average shadowing property.
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Example 2.6. Let X = [0, 1]. This is clear that the constant function f1(x) = 1 has the
asymptotic-average shadowing property and tent map

f2(x) =





2x 0 ≤ x <
1

2

−2x + 2
1

2
≤ x ≤ 1

has the asymptotic-average shadowing property. But F = {X; f1, f2} does not have
the asymptotic-average shadowing property.
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In this paper some characterization of totally umbilical foliations are given and
some properties of these are investigated.
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1 Introduction

The theory of foliations of manifolds was created in 1994 by Ehresmann and Reeb [2].
In recent years the study of this subject has become One of the most elegant and fruit-
ful areas of research in mathematics and physics. one of the most important class of
foliations is totally umbilical foliations. Let (M, g, F) be an (n + p)-dimensional foliated
semi-Riemannian manifold, where F is non degenerate n-foliation on M whose tangent
distribution (structural distribution) is D. Denote by D⊥ the complementary orthogo-
nal distribution to D in the tangent bundle TM of M with respect to g,and call it the
transversal distribution to F . Throughout the paper, F (M) stands for the algebra of
smooth functions on M , while Γ(TM), Γ(D) and Γ(D⊥) are the F (M)-modules of smooth
sections of TM , D and D⊥ respectively. The projection morphisms of TM on D and D⊥

with respect to the decomposition

TM = D + D⊥

are denoted by T and N respectively. Some operators will play an important role in the
paper. First, for any NX ∈ Γ(D⊥) we define the shape operator

ANX : Γ(D) → Γ(D); ANX(T Y ) = −T (∇̃T Y NX),

where ∇̃ is the Levi-Civita connection on (M, g). Also, we define the following F (M)
bilinear operator:

h : Γ(D) × Γ(D) −→ (D⊥); h(T X, T X) = N (∇̃T XT Y ). (1)
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we call h the second fundamental form of the foliation F , which is symmetric.
Taking into account that g is parallel with respect to ∇̃ we obtain

g(h(T X, T Y ), NZ) = g(ANZT X), (2)

∀X, Y, Z ∈ Γ(TM).
And choose an orthonormal frame field {E1, ..., En} in Γ(D) of sighature {ε1, ..., εn}, that
is εi = g(Ei, Ei).

2 Mean curvature

Definition 2.1. We define the mean curvature vector field H of F by the formula

H =
1

n
Σn

i=1εih(Ei, Ei). (3)

It is easy to check that H does not depend on orthonormal basis {Ei}, so it is a global
section of the transversal distribution (D⊥). We denote by Aα the shape operators of F
with respect to Eα.

Lemma 2.2. [3]

i)Any semi-Euclidean space (V, g) with V ̸= 0 has an orthonormal basis B = {e1, ..., em}.

ii)Any vector v has a unique expression

v = Σn
i=1εig(v, ei)ei,

where εi = g(ei, ei).

by using Lemma (2.2) and (2) we express H as follows

H =
1

n
Σn+p

α=n+1Σ
n
i=1εαεig(AαEi, Ei)Eα. (4)

The mean curvature form of the foliation F on (M, g)is a 1-form k on M defined by

k(X) = g(X, H), ∀X ∈ Γ(TM). (5)

Thus we have k(T X) = 0 and

k(NX) = g(NX, H). (6)

By using (3), (4) in (6) we deduce that

k(NX) =
1

n
Σn

i=1εig(h(Ei, Ei), NX) =
1

n
Σn+p

α=n+1Σ
n
i=1εαεig(AαEi, Ei)g(Eα, NX). (7)

Now, let { ∂
∂xi ,

δ
δxα } be a semi-holonomic frame field on the foliated semi-Riemannian

manifold (M, g, F). Then we put

H = Hα δ

δxα
and kα = k(

δ

δxα
).

Thus on the domain of a foliated chart on M we have

kα = gαβHβ. (8)
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3 Totally Umbilical Foliation

Definition 3.1. we say F is a totally umbilical foliation if its second fundamental form
h satisfies

h(T X, T Y ) = g(T X, T Y )H, (9)

∀X, Y ∈ Γ(TM), where H is the mean curvature vector field of F .

The condition (9) can also be expressed by using the shape operator of the foliation.
Indeed, by using (2) and (9) we obtain

g(ANZT X, T Y ) = g(h(T X, T Y ), NZ) = g(g(H, NZ)T X, T Y ).

Thus F is totally umbilical if and only if its shape operators satisfy

ANZT X = k(NZ)T X, ∀X, Z ∈ Γ(TM). (10)

Now, we put Aα = A δ
δxα

, α = {n + 1, ..., n + p} and by using (10) obtain the following.

Theorem 3.2. A non-degenerate foliation F on a semi-Riemannian manifold (M, g) is
totally umbilical if and only if its shape operators Aα satisfy

Aα = kαI, α ∈ {n + 1, ..., n + p},

where I is the identity on Γ(D) and kα are the local components of the mean curvature
form given by (8).
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A Bernoulli pseudo-spectral method for solving nonlinear

fractional integro-differential equations

Parisa. Rahimkhani∗

Alzahra University

Yadollah. Ordokhani

Alzahra University

Abstract

In this paper, a Bernoulli pseudo-spectral method for solving nonlinear Volterra
integro-differential equations of fractional order is considered. The fractional deriva-
tive is described in the Caputo sense. The suggested technique transform these types of
equations to the solution of a system of algebraic equations. The technique is applied
to some problems to show the validity and applicability of the proposed method.

Keywords: Fractional calculus, Caputo derivative, Bernoulli polynomials, Volttera integro-
differential equations.
Mathematics Subject Classification [2010]: 34A08, 45D05

1 Introduction

Fractional differential equations (FDEs) are generalizations of ordinary differential equa-
tions to an arbitrary order. A history of the development of fractional differential operators
can be found in [1].
Definition 1.1. The Riemann-Liouville fractional integral operator of order ν ≥ 0 is
defined as [2]

Iνf(t) =

{
1

Γ(ν)

∫ t
0

f(s)
(t−s)1−ν ds, ν > 0, t > 0,

f(t), ν = 0.
(1)

For the Riemann-Liouville fractional integral we have [2]:

Iνtβ =
Γ(β + 1)

Γ(β + ν + 1)
tν+β, β > −1. (2)

Definition 1.2. Caputo’s fractional derivative of order ν is defined as [2]

Dνf(t) =
1

Γ(n − ν)

∫ t

0

f (n)(s)

(t − s)ν+1−n
ds, n − 1 < ν 6 n, n ∈ N, t > 0. (3)

For the Caputo derivative we have the following two basic properties[2]:

(i)DνIνf(t) = f(t), (ii)IνDνf(t) = f(t) − ∑n−1
i=0 f (i)(0) ti

i! .
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Definition 1.3. Bernoulli polynomials of order m can be defined with the following
formula [3]

Bm(t) =
m∑

i=0

(
m
i

)
Bm−it

i. (4)

Theorem 1.4. Let Dνy(x) be approximated by the Bernoulli polynomials (Dνy(x) =∑m−1
k=0 ckBk(x)), and also suppose n − 1 < ν 6 n. Then

y(x) =

m−1∑

k=0

k∑

r=0

ckbk,rx
r+ν +

n−1∑

i=0

y(i)(0)
xi

i!
, (5)

where bk,r =

(
k
r

)
Γ(r+1)

Γ(r+1+ν)Bk−r.

Proof. Applying operator Iν , on both sides of Dνy(x) =
∑m−1

k=0 ckBk(x), we have

y(x) −
n−1∑

i=0

y(i)(0)
xi

i!
= Iν(

m−1∑

k=0

ckBk(x)) = Iν(
m−1∑

k=0

ck

k∑

r=0

(
k
r

)
Bk−rx

r) =
m−1∑

k=0

k∑

r=0

ck

(
k
r

)
Bk−rI

ν(xr)

=
m−1∑

k=0

k∑

r=0

ck

(
k
r

)
Bk−r

Γ(r + 1)

Γ(r + 1 + ν)
xr+ν =

m−1∑

k=0

k∑

r=0

ckbk,rx
r+ν .

Example 1.5. In this paper, we consider the following equation

Dνy(x) − λ

∫ x

0
k(x, t)F (y(t))dt = f(x), 0 6 x < 1, n − 1 < ν 6 n, (6)

y(i)(0) = δi, i = 0, 1, ..., n − 1, n ∈ N. (7)

Solution. We approximate Dνy(x) as:

Dνy(x) =

m−1∑

k=0

ckBk(x). (8)

From Eqs. (6), (7), (8) and Theorem 1, we have

m−1∑

k=0

ckBk(x) − λ

∫ x

0
k(x, t)F (

m−1∑

k=0

k∑

r=0

ckbk,rt
r+ν +

n−1∑

i=0

y(i) t
i

i!
)dt = f(x). (9)

Now, we collocate (9) at the zeros xp, p = 0, 1, ..., m − 1 of Legendre polynomial Pm(t)

m−1∑

k=0

ckBk(xp) − λ

∫ xp

0
k(xp, t)F (

m−1∑

k=0

k∑

r=0

ckbk,rt
r+ν +

n−1∑

i=0

y(i) t
i

i!
)dt = f(xp). (10)
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Then, we transfer the t−interval [0, xp] into τ −interval [−1, 1] by change of variable
τ = 2

xp
t − 1,

m−1∑

k=0

ckBk(xp)−λ
xp

2

∫ 1

−1
k(xp,

xp

2
(τ+1))F (

m−1∑

k=0

k∑

r=0

ckbk,r(
xp

2
(τ+1))r+ν+

n−1∑

i=0

y(i) (
xp

2 (τ + 1))i

i!
)dτ = f(xp).

(11)
By using the Gauss −Legendre integration formula [4], for p = 0, 1, ..., m − 1, we have:

m−1∑

k=0

ckBk(xp)−λ
xp

2

m∑

q=1

ωqk(xp,
xp

2
(τq+1))F (

m−1∑

k=0

k∑

r=0

ckbk,r(
xp

2
(τq+1))r+ν+

n−1∑

i=0

y(i) (
xp

2 (τq + 1))i

i!
) = f(xp),

(12)
where τq, q = 1, 2, ..., m, are zeros of Legendre polynomial pm(x) and ωj = −2

(n+1)p′
m(xj)pm+1(xj)

, j =

1, 2, ..., m. Eq. (12), give m nonlinear algebraic equations which can be solved, for the un-
knowns ck, k = 0, 1, ..., m−1, using Newton’s iterative method. Finally, y(x) given in (5)
can be calculated.

2 Main results

First, we consider the following equation [5]

Dνy(x) −
∫ x

0
[y(t)]3dt = ex − 1

3
e3x +

1

3
, 0 6 x < 1, 0 < ν 6 1, (13)

subject to the initial condition y(0) = 1. The exact solution of this problem, when ν = 1,
is y(x) = ex. Table 1 shows the approximate solutions obtained for different values of t
by using the present method for m = 4, 6, 8 and ν = 1, the second Chebyshev wavelet
method [5] for k = 5,M = 2 and ν = 1, toghether with the exact solutions. Also, the
numerical results for y(x) with m = 8 and ν = 0.7, 0.8, 0.9, 1 are plotted in Fig. 1.

Table 1: Comparison of numerical solutions with the other methods for ν = 1

t Exact solution Present method Ref [5]
m = 4 m = 6 m = 8

0 1 1 1 1 1.000122
0.2 1.221403 1.220677 1.221408 1.221403 1.221645
0.4 1.491825 1.490795 1.491828 1.491825 1.492295
0.6 1.822119 1.821352 1.822117 1.822119 1.823061
0.8 2.225541 2.224992 2.225543 2.225541 2.227565

Then, consider the following equation [5]

Dνy(x) −
∫ x

0
[y(t)]2dt = −1, 0 6 x < 1, 0 < ν 6 1, (14)

subject to the initial condition y(0) = 0. Table 2, shows the numerical for ν = 0.8, 0.9, 1,
by using the present method, when m = 8, and the second Chebyshev wavelet method [5],
for k = 6,M = 2.
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Figure 1: Comparison of y(x) for m = 8, with ν = 0.7, 0.8, 0.9, 1 and exact solution

Table 2: The numerical results for variouse values of ν

t Exact solution Present method Ref [5]
ν = 1 ν = 0.9 ν = 0.8 ν = 1 ν = 0.9 ν = 0.8

0 0 0 0 0 0 − 0.00017 − 0.00055
0.1250 −0.12498 −0.12498 − 0.15997 − 0.20339 −0.12498 − 0.16003 − 0.20344
0.2500 −0.24968 −0.24968 − 0.29791 − 0.35281 −0.24968 − 0.29794 − 0.35281
0.3750 −0.37336 −0.37336 − 0.42702 − 0.48422 −0.37336 − 0.42702 − 0.48420
0.5000 −0.49482 −0.49482 − 0.54829 − 0.60159 −0.49483 − 0.54828 − 0.60156
0.6250 −0.61243 −0.61243 − 0.66089 − 0.70527 −0.61245 − 0.66090 − 0.70527
0.7500 −0.72415 −0.72415 − 0.76327 − 0.79452 −0.72418 − 0.76332 − 0.79457
0.8750 −0.82767 −0.82767 − 0.85360 − 0.86834 −0.82770 − 0.85365 − 0.86838
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A Meshless Method Using the Radial Basis Functions for

Numerical Solution of the Gilson-Pickering Equation

F. Zabihi

University of Kashan

M. Saffarian∗

University of Kashan

Abstract

In this article, thin plate splines radial basis function method is presented for so-
lutions of Gilson-Pickering equation. This scheme works in a similar form as finite
difference methods and we use collocation points for basis nodes in radial basis func-
tion. A numerical example is studied to demonstrate the accuracy and efficiency of
the presented method.

Keywords: Gilson-Pickering (GP) equation, Radial basis functions (RBFs), Thin
plate splines radial basis functions(TPS-RBFs)

Mathematics Subject Classification [2010]: 65M50, 65N35

1 Introduction

We consider a class of fully nonlinear third-order partial differential equations for studying
by name Gilson and Pickering equation as follows [1]:

ut − εuxxt + 2κux − uuxxx − αuux − βuxuxx = 0, (1)

where ε, κ, α and β are arbitrary constants. Three special cases of equation have appeared
in the literature, up to some resealings. If ε = 1, α = −1, β = 3, and κ = 1

2 , then (1) is the
Fornberg-Whitham equation, for ε = 0, α = 1, β = 3, and κ = 0, (1) is Rosenau- Hyman
equation and (1) is the Fuchssteiner-Fokas-Camassa-Holm equation for the parameters
ε = 1, α = −3, and β = 2.
Irshad and Tauseef [1] applied tanh-coth method for obtaining numerical solutions of GP
equation. Also, Fan and other authors [4] used the G′

G -expansion method for solving this
equation. Fronberg and Flyer [5] obtained accuracy of radial basis function interpolation.
The purpose of this paper is to study numerical results of thin plate splines radial basis
function methods to GP equation. TPS-RBF-methods for solving the GP equation is a
new work.
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2 Thin plate splines radial basis function approximation

In the interpolation of different data using RBFs, we write the approximation of a distri-
bution u(X) as a linear combination form of N radial functions ϕj with N distinct centers
ξ1, ξ2, ..., ξN . This approximation usually takes the following form:

u(X) '
N∑

j=1

λjϕ(rj) + ψ(X), ∀ X ∈ Ω ⊂ Rd, (2)

where X = (x1, x2, ..., xd), d is the dimension of the problem, λ’s are coefficients to be
determined and rj = ||X − ξj || in the Euclidean norm.
Equation (2) can be written without the additional polynomial ψ. However, ψ is usually
required when ϕ is conditionally positive definite and ϕ has a polynomial growth toward
infinity.
One of the well-known RBFs is thin plate spline method [2] which we see in applying this
kind of RBFs for GP equation, ψ is exist and nonzero because ϕ is conditionally positive
definite in TPS-RBF method.
The generalized thin plate splines (TPS) defined as:

ϕ(x, ξj) = ϕ(rj) = r2mj log(rj), m = 1, 2, 3, ....

If Pqd represents the space of d-variate polynomials of order not exceeding q, and the
polynomials P1, ..., Pm are the basis of Pqd in Rd , then the polynomial ψ(x) in Eq. (2) is
usually written in the following form:

ψ(x) =
m∑

i=1

ηiPi(x),

where m = (q− 1 + d)!/(d!(q− 1)!). Therefore, we obtain m = 2 for TPS-RBF method in
GP equation.
We use collocation method for determinating the coefficients (λ1, ..., λN ) and (η1, ..., ηm).
However, in addition to the N equations resulting from collocating (2) at the N points
ξ1, ξ2, ..., ξN , an extra m equations are required. This is insured by the m conditions for
(2),

N∑

j=1

λjPi(xj) = 0, i = 1, ...,m.

In a similar representation as (2), for any linear partial differential operator L, Lu can be
approximated by

Lu(x) '
N∑

j=1

λjLφ(rj) + Lψ(x).

3 Numerical results

In this section, we give some computational results of the TPS-RBF method on the GP
equation to support our discussion in the previous sections. Accuracy of the estimated
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solutions can be worked out by measuring with the L2 and L∞ error norms and RMS
invariant which are defined by

L2 = ||Uexact − Unumerical||2 =

√√√√(δx)
N∑

i=1

(U exacti − Unumericali )2,

L∞ = ||Uexact − Unumerical||∞ = max
i
|U exacti − Unumericali |,

RMS =
L2√
N
.

In [1], one of the numerical solutions of GP equation is

u(x, t) =
3(c− 2κ)εc

αεc− c+ 2κ
(−1 + tan[

1

2

√
−2κ− c

εc
(x− ct)]2), (3)

We apply TPS-RBF method for GP equation for ε = 1.5, α = 1.75, β = −2, c = −0.5
and κ = 1.5. To compare the new technique with numerical solution (3), the spatial grid
spacing δx = 0.01 and time step t = 0.001 are taken.

Table 1: Error norms of TPS-RBF method for GP equation with δt = 0.001, and δx = 0.01.

t L2 L∞ RMS

0.5 2.0102× 10−5 1.8386× 10−6 5.0209× 10−7

1 9.4144× 10−5 7.2845× 10−6 2.3514× 10−6

1.5 2.8283× 10−4 2.1934× 10−5 7.0642× 10−6

2 8.9844× 10−4 6.8264× 10−5 2.2440× 10−5

(a) (b)

Figure 1: (a) Numerical solution (3) for t ∈ [0, 2], (b) TPS-RBF numrical solution for t ∈ [0, 2]

Errors in L2, L∞ norms and RMS invariant taken at several times are tabulated in
Table 1. In Figure 1, the plot of estimated solution (3) and estimated solution of TPS-
RBF are shown at different times. Also, the plot of estimated solution and distributions
of the errors at t = 1.5 and t = 2 are shown in Figures 2 and 3, respectively.

The numerical results are demonstrated the good accuracy of the scheme proposed
in this research. The method proposed in this work can be extended to solve the other
important nonlinear partial differential equations.
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(a) (b)

Figure 2: (a) Numerical solution (3) and TPS-RBF numrical solution , (b) Error= TPS-RBF
numrical solution- numrical solution (3) for t = 1.5 with δt = 0.001, and δx = 0.01.

(a) (b)

Figure 3: (a) Numerical solution (3) and TPS-RBF numrical solution , (b) Error= TPS-RBF
numrical solution- numrical solution (3) for t = 2 with δt = 0.001, and δx = 0.01.
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A Modification of Adomian Decomposition Method to Delay

Differential Equations Using Padé Approximation

Sepideh Ahmadzadeh∗
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Alireza Nazemi

University of Shahrood

Mehdi Ghovatmand

University of Shahrood

Abstract

In this paper we present an application of technique combining Adomian Decompo-
sition Method (ADM), Laplace transform and Padé approximant to find the analytical
solutions for Delay Differential Equations (DDE). Solutions to DDEs are first obtained
in convergent series form using the ADM. Then obtained from ADM’s truncated se-
ries, we apply Laplace transform to it, then convert the transformed series into a
meromorphic function by forming its Padé approximant. Finally, we take the inverse
Laplace transform of the Padé approximant to obtain the analytical solution.

Keywords: Adomian decomposition method, Delay differential equation, Laplace
transform, Padé approximant, Laplace-Padé resummation method

Mathematics Subject Classification [2010]: 44A10, 65Qxx, 74H15

1 Introduction

In this section we will explain the basic definitions of DDE, ADM, Padé approximant,
Laplace-Padé resummation.

Definition 1.1: We define the nth order delay differential equations (DDE) of the
form as follows:

u(n)(x) = f(x, u(x), u(η1(x)), u(η2(x)), · · · , u(ηm(x))), x ∈ I = [0, a], (1)

where u : I → R, f : I × R2 → R, ηi : I(i = 1, 2, · · · ,m) and ηi(x) < x for x ∈ I.
Definition 1.2: To introduce the basic idea of the ADM [?], we consider the operator

equation Fu = G, where F represents a general nonlinear ordinary differential operator
and G is a given function. Then F can be decomposed as:

Lu + Ru + Nu = G, (2)

where N is a nonlinear operator, L is the highest-order derivative which is assumed to be
invertible, R is a linear differential operator of order less than L and G is the nonhomoge-
neous term. The method is based by applying the operator L−1 formally to the expression
(2) we obtain:

u = h + L−1G − L−1Ru − L−1Nu, (3)

where h is the solution of the homogeneous equation Lu = 0, with the initial-boundary
conditions. The problem now is the decomposition of the nonlinear term Nu. To do this,
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Adomian developed a very elegant technique as follows:

Define the decomposition parameter λ as u =

∞∑

n=0

λnun then N(u) will be a function

of λ, u0, u1, · · · , next expanding N(u) in Maclurian series with respect to λ we obtain

N(u) =
∞∑

n=0

λnun where:
An =

1

n!

dn

dλn
[N(

∞∑

n=0

λkuk)]λ=0, (4)

where the components of An are so called the Adomian polynomials, they are generated
for each nonlinearity, for example, for N(u) = f(u) the Adomian polynomials, are given
as: 




A0 = f(u0)

A1 = f(u1)f
′(u0)

A2 = u2f
′(u0) + u1u2f

′′(u0) +
u3
1

3! f
′′′(u0)

...

(5)

Now, we parameterize (3) in the form:

u = h + L−1G − λL−1Ru − λL−1Nu, (6)

where λ is just an identifier for collecting terms in a suitable way such that un depends
on u0, u1, · · · , un and we will later set λ = 1,

∞∑

n=0

λnun = h + L−1G − λL−1Ru − λL−1Nu. (7)

Equating the coefficients of equal powers of λ, we obtain:



u0 = h + L−1G

u1 = −L−1(Ru0) − L−1(A0)

u2 = −L−1(Ru1) − L−1(A1)
...

(8)

and in general:
un = −L−1(Run1) − L−1(An−1), n ≥ 1.

Finally, an N-terms that approximate solution is given by:

ϕN (T ) =
N−1∑

n=0

un(T ), N ≥ 1,

and the exact solution is u(t) = lim
n→∞

ϕN (t).

Definition 1.3: Let u(t) be an analytical function with the Maclaurin’s expansion

u(t) =

∞∑

n=0

untn, 0 ≤ t ≤ T. (9)

Then the Padé approximant to u(t) of order [L/M ](t) which we denote by [L/M ]u(t) is
defined by [?]

[L/M ]u(t) =
p0 + p1t + · · · + pLtL

1 + q1t + · · · + qM tM
, (10)

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

A modification of Adomian decomposition method to delay differential . . . pp.: 2–4

442



where we considered q0 = 1, and the numerator and denominator have no common factors.
The numerator and the denominator in (10) are constructed so that u(t) and [L/M ]u(t)

and their derivatives agree at t = 0 up to L + M . That is

u(t) − [L/M ]u(t) = O
(
tL+M+1

)
. (11)

From (11), we have

u(t)

M∑

n=0

qntn −
L∑

n=0

pntn = O
(
tL+M+1

)
. (12)

From (12), we get the following algebraic linear systems



uLq1 + · · · + uL−M+1qM = −uL+1

uL+1q1 + · · · + uL−M+2qM = −uL+2

...

uL+M−1q1 + · · · + uLqM = −uL+M

(13)

and 



p0 = u0

p1 = u1 + u0q1

...

pL = uL + uL−1q1 + · · · + u0qL

(14)

From (13), we calculate first all the coefficients qn, 1 ≤ n ≤ M . Then, we determine the
coefficients pn, 0 ≤ n ≤ L from (14).

Definition 1.4: Several approximate methods provide power series solutions (poly-
nomial). Nevertheless, sometimes, this type of solutions lacks of large domains of conver-
gence. Therefore, Laplace-Padé resummation method [?] is used in literature to enlarge
the domain of convergence of solutions or inclusive to find exact solutions. The Laplace-
Padé method can be explained as follows:
First, Laplace transformation is applied to power series (1). Next s is substituted by 1/t
in the resulting equation. After that, we convert the transformed series into a meromor-
phic function by forming its Padé approximant of order [N/M ]. N and M are arbitrarily
chosen, but they should be of smaller values than the order of the power series. In this
step, the Padé approximant extends the domain of the truncated series solution to obtain
better accuracy and convergence, then t is substituted by 1/s and by using the inverse
Laplace s transformation, we obtain the exact or approximate solution.

2 Main results

In this section, we will demonstrate the effectiveness and accuracy of the LPADM described
in the previous section through one DDE system.

Example 2.1: we consider the following nonlinear diffrential equation of the first
order: du(t)

dt
= 1 − 2u2(t/2), u(0) = 1, 0 ≤ t ≤ 1, (15)

which u(t) = sin(t) is the exact solution of equation (14). Using the ADM, we get
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un+1(t) = −2

∫ t

0
Andt, n ≥ 0, u0(x) = 1, (16)

where An, n ≥ 0 are the domain polynomials that represent the nonlinear terms. We list
the set of Adomian polynomials [?] as follows:




A0(t) = u2
0(t/2),

A1(t) = u0(t/2)u1(t/2)
...

(17)

The solution in a series form is given by

u3(t) = t − t3

6
+

t5

120
− t7

5040
+

t9

362880
+ · · · . (18)

We get the fifth order approximation solution

u3(t) ≃ t − t3

6
+

t5

120
. (19)

Applying the Laplace transforms to u3(t) yields

ℓ[u3(t)] =
1

s2
− 1

s4
+

1

s6
. (20)

For simplicity let s = 1/t, then
ℓ[u3(t)] = t2 − t4 + t6. (21)

All of the [L/M ] t-Padé approximants of (21) with L ⩾ 1, M ⩾ 1 and L + M ⩽ 4 yields

[L/M ]u3(t) =
t2

1 + t2
. (22)

Let t = 1/s, applying the inverse Laplace transform to the Padé approximant yields

ℓ−1[
1

s2 + 1
] = sin(t), (23)

as an approximate solution which in this case is the exact solution.
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A Modified Reduced Differential Transform Method to Delay

Differential Equations Using Padé Approximation

Sepideh Ahmadzadeh∗
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Abstract

In this paper we present an application of technique combining Reduced Differ-
ential Transform Method (RDTM), Laplace transform and Padé approximant to find
the analytical solutions for DDEs. Solutions to DDEs are first obtained in convergent
series form using the RDTM. To improve the solution obtained from RDTM’s trun-
cated series, we apply Laplace transform to it, then convert the transformed series
into a meromorphic function by forming its Padé approximant. Finally, we take the
inverse Laplace transform of the Padé approximant to obtain the analytical solution.

Keywords: Reduced differential transform method, Delay differential equation, Laplace
transform, Padé approximant, Laplace-Padé resummation method
Mathematics Subject Classification [2010]: 44A10, 65Qxx, 74H15

1 Introduction

In this section we will explain the basic definitions of DDE, RDTM, Padé approximant,
Laplace-Padé resummation.

Definition 1.1: We define the nth order delay differential equations (DDE) of the
form as follows:

u(n)(x) = f(x, u(x), u(η1(x)), u(η2(x)), · · · , u(ηm(x))), x ∈ I = [0, a], (1)

where u : I → R, f : I × R2 → R, ηi : I(i = 1, 2, · · · ,m) and ηi(x) < x for x ∈ I.
The basic definitions of RDTM [?] are defined as follows.

Definition 1.2: If function u(x, t) is analytic and differentiated continuously with
respect to time t and space x in the domain of interest, then let

Uk(x) =
1

k!
[
∂k

∂tk
u(x, t)]t=0, (2)

where the t-dimensional spectrum function Uk(x) is the transformed function. In this
paper, the lowercase u(x, t) represents the original function while the uppercase Uk(x)
stands for the transformed function.

Definition 1.3: The differential inverse transform of Uk(x) is defined as follows:

u(x, t) =
∑

Uk(x)tk, (3)
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then combining equation (2) and (3) we can write

u(x, t) =
∞∑

k=0

1

k!
[
∂k

∂tk
u(x, t)]t=0 tk. (4)

From the above definitions, it is easy to verify that the concept of the RDTM is obtained
from the power series expansion. inverse transformation [?] of the set of values {Uk(x)}n

k=0

gives approximation solution in the following form

ũn(x, t) =

n∑

k=0

Uk(x)tk, (5)

where n is order of approximation solution. Therefore, the exact solution of problem is
given by

u(x, t) = lim
n→∞

ũn(x, t). (6)

The solutions series obtained from RDTM may have limited regions of convergence, even
if we take a large number of terms. Therefore, we propose to apply the Laplace-Padé
resummation method to RDTM truncated series to enlarge the convergence region as
depicted in the next definition.

Definition 1.4: Let u(t) be an analytical function with the Maclaurin’s expansion

u(t) =
∞∑

n=0

untn, 0 ≤ t ≤ T, (7)

then the Padé approximant to u(t) of order [L/M ](t) which we denote by [L/M ]u(t) is
defined by [?]

[L/M ]u(t) =
p0 + p1t + · · · + pLtL

1 + q1t + · · · + qM tM
, (8)

where we considered q0 = 1, and the numerator and denominator have no common factors.
The numerator and the denominator in (8) are constructed so that u(t) and [L/M ]u(t)

and their derivatives agree at t = 0 up to L + M . That is

u(t) − [L/M ]u(t) = O
(
tL+M+1

)
. (9)

From (9), we have

u(t)

M∑

n=0

qntn −
L∑

n=0

pntn = O
(
tL+M+1

)
. (10)

From (10), we get the following algebraic linear systems





uLq1 + · · · + uL−M+1qM = −uL+1

uL+1q1 + · · · + uL−M+2qM = −uL+2

...

uL+M−1q1 + · · · + uLqM = −uL+M

(11)
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and




p0 = u0

p1 = u1 + u0q1

...

pL = uL + uL−1q1 + · · · + u0qL

(12)

From (11), we calculate first all the coefficients qn, 1 ≤ n ≤ M . Then, we determine the
coefficients pn, 0 ≤ n ≤ L from (12).

Definition 1.5: Several approximate methods provide power series solutions (poly-
nomial). Nevertheless, sometimes, this type of solutions lacks of large domains of conver-
gence. Therefore, Laplace-Padé resummation method [?] is used in literature to enlarge
the domain of convergence of solutions or inclusive to find exact solutions.

The Laplace-Padé method can be explained as follows:

1. First, Laplace transformation is applied to power series (1).

2. Next, s is substituted by 1/t in the resulting equation.

3. After that, we convert the transformed series into a meromorphic function by forming
its Padé approximant of order [N/M ]. N and M are arbitrarily chosen, but they
should be of smaller values than the order of the power series. In this step, the Padé
approximant extends the domain of the truncated series solution to obtain better
accuracy and convergence.

4. Then, t is substituted by 1/s.

5. Finally, by using the inverse Laplace s transformation, we obtain the exact or ap-
proximate solution.

2 Main results

In this section, we will demonstrate the effectiveness and accuracy of the LPRDTM de-
scribed in the previous section through one DDE system.
We consider the following example:

Example 2.1: We consider the following pantograph delay [?] equation:

u′(t) =
1

2
exp

t

2
u(

t

2
) +

1

2
u(t), u(0) = 1, (13)

which u(t) = et is the exact solution of equation (13).
Using the differential transformation method, the differential transform version of equation
(13) is

(k + 1)U(k + 1) =
1

2

k∑

l=0

1

2ll!

1

2k−l
+

1

2
U(k), k ≥ 0. (14)
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Using the inverse transformation, we obtain the following series solution:

u(t) = 1 + t +
t2

2!
+

t3

3!
+

t4

4!
+ · · · +

tk

k!
+ · · · . (15)

We get the fourth order approximation solution

u(t) ∼=
6∑

k=0

U(k)tk = 1 + t +
t2

2!
+

t3

3!
+

t4

4!
. (16)

Applying Laplace transforms to u(t) yields

ℓ[u(t)] =
1

s
+

1

s2
+

1

s3
+

1

s4
+

1

s5
. (17)

For simplicity let s = 1/t, then

ℓ[u(t)] = t + t2 + t3 + t4 + t5. (18)

All of the [L/M ] t-Padé approximants of (18) with L ⩾ 1, M ⩾ 1 and L + M ⩽ 4 yields

[L/M ]u(t) =
t

1 − t
. (19)

Now since t = 1/s, we obtain in terms of s as follows

[L/M ]u(t) =
1

s − 1
. (20)

Finally, applying the inverse Laplace transform to the Padé approximants (20) yields

ℓ−1[
1

s − 1
] = et, (21)

an approximate solution which in this case is the exact solution.
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A new approach for numerical solution of Fokker-Plank

Equation using the Chelyshkov cardinal Function

Davod Rostamy Nazdar Abdollahi ∗

Imam Khomeini International University

Samaneh Qasemi

Abstract

In this paper a numerical method is presented for the solution of Fokker-Plank equation.
The main idea of this method is expanding the approximate solution by the Chelyshkov
cardinal function. At the end, using the operator derivative matrix the problem turns into a
system of algebraic equations.

Keywords: Fokker-Plank equation, Chelyshkov polynomials, cardinal functions.

1 Introduction

In statistical mechanics, the Fokker-Plank is a partial differential equation that describe the time
volution of the probability density function of the velocity of a particle under the influence of day
forces and random forces as in Brownian motion. Fokker-Plank equation occurs in many different
fields such as solid state physics, quantum optics, theoretical biology, ect. The general Fokker-
Plank equation for the motion of a concentration field u(x, t) of one space variable x at time t has
the form

∂u

∂t
= [− ∂

∂x
A(x, t) +

∂2

∂x2
B(x, t)]u. (1)

u(x, , 0) = f(x) x ∈ (−∞,∞) (2)

where u(x, t) is unknown, B(x, t) > 0 is the diffusion coefficient and A(x, t) > 0 is the drift
coefficient. We know that in one variable case the nonlinear Fokker-Plank equation is

∂u

∂t
= [− ∂

∂x
A(x, t, u) +

∂2

∂x2
B(x, t, u)]u. (3)

These polynomials are orthogonal respect to weight function 1 over the interval [0, 1]. The explicit
definition of these polynomials are as follow

PN,k(x) =
N−k∑

j=0

(−1)j

(
N − k

j

)(
N − k + 1 + j

N − k

)
xk+j , k = 0, 1, ..., N. (4)

In the present paper, we consider these polynomials for the case k = 0, then (4) becomes to

PN,0(x) =
N∑

j=0

(−1)j

(
N
j

)(
N + 1 + j

N

)
xj , (5)
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PN,0 is a polynomial of order N that has N zeros, so another representation of this polynomial
can be written as follow

PN,0 =
N∏

i=1

(x − xi), (6)

where xi, i = 1, ..., N are zeros of PN,0. Hereinafter we show PN,0 by PN (see[5]).

2 Cardinal function of Chelyshkov polynomial

For any orthogonal function ΨN (x) of order N , the cardinal function corresponding to it can be
written (see[6])

Cj(x) =
ΨN (x)

ΨN,x(xj)(x − xj)
, j = 1, ..., N. (7)

where the subscript xj denotes x− differentiantion and xj , j = 1, ..., N are roots of ΨN (x).
Chelyshkov cardinal function is built as follow

Cj(x) =
PN (x)

PN,x(xj)(x − xj)
=

∏N
i=1
i̸=j

(x − xi)

PN,x(xj)
(8)

Any function h(x) can be approximated by Chelyshkov cardinal function as follow

h(x) ≃
N∑

i=1

h(xi)Ci(x) = HT ΨN (x), (9)

where H and ΨN (x) are vectors that respectively given by

H = [h(x1), ..., h(xN )]T , ΨN (x) = [C1(x), ..., CN (x)]T ,

and we can write derivative of ΨN (x) as follow

Ψ′
N (x) = [C ′

1(x), ..., C ′
N (x)]T , (10)

the above vector can be expressed as

Ψ′
N (x) = DΨN (x), (11)

D is N × N operator derivative matrix. To compute the entries of matrix D we use (9), any
function C ′

j(x) can be expressed as

C ′
j(x) ≃

N∑

i=1

C ′
j(xi)Ci(x). (12)

By using (11) ,(12), we obtain

D =




C ′
1(x1) · · · C ′

1(xN )
...

...
...

C ′
N (x1) · · · C ′

N (xN )


 . (13)

Hence, u(x, t) is approximated by

u(x, t) ≃ ΨT
N (t)UΨN (x), (14)

such that U is N × N unknown matrix.
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Theorem 2.1. Let L2[Ω] be a Hilbert space with the inner product ⟨f, g⟩ =
∫
Ω

f(x) g(x) dx, and
u ∈ L2[Ω]. Then, we find the unique vector cj = [c1,j , c2,j , · · · , cm,j ]

T , j = 1, ..., n such that

u(x, t) ≈
m,n∑

i,j=0

ci,j Ci(x)Cj(t) = ΨT
N (t)UΨN (x). (15)

Proof. We improve theorems of [6] and [5].

3 Description of Numerical Method and Experimental Re-
sults

Consider the Fokker-Plank equation (3) that we can write as

∂u

∂t
= −u

∂

∂x
A − A

∂u

∂x
+ u

∂2

∂x2
B + 2

∂u

∂x

∂

∂x
B + B

∂2u

∂x2
. (16)

Where A := A(x, t, u) and B := B(x, t, u) .

∂

∂x
A(x, t, u) =

∂A

∂x
+

∂A

∂u
.
∂u

∂x
(17)

∂

∂x
B(x, t, u) =

∂B

∂x
+

∂B

∂u
.
∂u

∂x
(18)

∂2

∂x2
B =

∂2B

∂x2
+

∂2B

∂x∂u
.
∂u

∂x
+

∂2u

∂x2

∂B

∂u
+

∂2B

∂u2
(
∂u

∂x
)2 +

∂2B

∂u∂x
.
∂u

∂x
(19)

By using (11) , (14) we have:

∂u

∂t
= ΨT

M (t)DT UΨM (x),
∂u

∂x
= ΨT

M (t)UDΨM (x),
∂2u

∂x2
= ΨT

M (t)UD2ΨM (x). (20)

Replacing (17)-(20) into (16) and then by collocating the obtained equation in N × (N − 1) points
(xi, tj) , i = 1, ..., N, j = 1, ..., N − 1 on [0, 1] × [0, 1] we obtain a system with N − 1 equation and
N unknowns. To obtain N other equations, we use initial condition as

ΨT
N (0)UDΨM (xi) = f(xi), i = 1, ..., N.

So we get a system of N × N equations an unknown that be solved respect to ui,j .
Example 1. Consider equation (1) with boundary condition (2) where f(x) = x, x ∈ [0, 1],

A(x) = x and B(x) = x2

2 . We observe that the exact solution is u(x, t) = x exp(t).
Example 2. Consider equations (3), (2) with f(x) = x2, x ∈ [0, 1]. A(x, t, u) = 4u/x − x/3

Table 1: Absolute error of the method for example 1 with N = 3

x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6
t = 0.1 1.5e-18 1.2e-18 2.0e-18 1.5e-18 2.3e-18 2.0e-18
t = 0.2 2.9e-18 2.4e-18 3.9e-18 3.0e-18 4.9e-18 3.9e-18
t = 0.3 4.4e-18 3.6e-18 5.9e-18 5.3e-18 1.3e-17 2.1e-17

and B(x, t, u) = u, the exact solution is u(x, t) = x2exp(t).
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Figure 1:
(left) Comparison of numerical solution and analytical solution for u(x, 1) of Example 1 with N = 3.

(right) Comparison of numerical solution and analytical solution for u(x, 1) of Example 2 with N = 3.

Table 2: Absolute error of the method for example 2 with N = 3

x=0 x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6
t = 0 1.4e-17 1.3e-15 6.9e-16 4.2e-15 2.8e-15 1.8e-14 2.1e-14

t = 0.1 2.3e-18 13e-3 12e-3 13e-3 16e-3 17e-3 17e-3
t = 0.2 9.7e-19 51e-3 47e-3 51e-3 62e-3 69e-3 69e-3
t = 0.3 6.7e-19 11e-2 11e-2 11e-2 14e-2 15e-2 16e-2
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A new four-step explicit method with vanished phase-lag and

its derivatives for the numerical solution of radial Schrödinger

equation

Ali Shokri, Azar Noshadi∗and Roghayeh Norouzi
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Abstract

In this paper, we present a new method for the numerical solution of the time-
independent Schrödinger equation for one spatial dimension and related problems. A
technique, based on the phase-lag and its derivatives, is used, in order to calculate
the parameters of the new Numerov-type algorithm. We illustrate the accuracy and
computational efficiency of the new developed method via numerical examples.

Keywords: Multistep methods, Oscillating solution, Phase-lag, Initial value prob-
lems, Schrödinger equation

Mathematics Subject Classification [2010]: 65L05, 65L06

1 Introduction

The radial time- independent Shorödinger equation can be written as

y′′(x) =

(
l(l + 1)

x2
+ V (x)− E

)
y(x), (1)

where l(l+1)
x2

is the centrifugal potential, V (x) is the potential, E is the energy and W (x) =
l(l+1)
x2

+ V (x) is the effective potential. It is valid that limx→∞ V (x) = 0 and therefore
limx→∞W (x) = 0. We consider E > 0 and divide [0,∞) into subintervals [ai, bi) so that
W (x) is a constant with value W . After this the problem (1) can be expressed by the

approximation: y′′i = (W − E)yi, whose theoretical solution is yi = Ai exp(
√
W − Ex) +

Bi exp(
√
W − E x), where A i, B i ∈ R. Many numerical methods have been developed

for the efficient solution of the Schrödinger equation and related problems [1 - 5].

2 Phase-lag analysis of symmetric multistep methods

For the numerical solution of the initial value problem

y′′ = f(x, y), y(x 0) = y0, y ′(x 0) = y ′0, (2)
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the multistep methods of the form

m∑

i=0

ciqn+i = h2
m∑

i=0

bif(xn+i, qn+i), (3)

with m steps can be used over the equally spaced intervals {xi}mi=0 ∈ [a, b] and h :=
|xi+1 − xi|, i = 0 ( 1 )m − 1. If the method is symmetric then ci = cm−i and bi =
bm−i, i = 0 ( 1) bm2 c. Method (3) is associated with the operator L(x) =

∑m
i=0 ci u(x +

ih)− h2∑m
i=0 bi u

′′
(x+ ih), where u ∈ C2.

Definition 2.1. The multistep method (3) is called algebraic of order p if the associated
linear operator L vanishes for any linear combination of the linearly independent functions
1, x, x2, ..., x p+1.

When a symmetric 2k-step method, that is for i = − k ( 1 ) k, is applied to the scalar
test equation y′′ = −ω2y, a difference equation of the form

k∑

i=1

Ai(ν) (yn+i + yn−i) +A0(ν)yn = 0, (4)

is obtained, where ν = ωh, h is the step length and A0(ν), A1(ν), · · · , Ak(ν) are polyno-
mials of ν. The characteristic equation associated with (4) is

k∑

i=1

Ai(ν)
(
λi + λ−i

)
+A0(ν) = 0. (5)

From Lambert and Watson [15] we have the following definitions.

Definition 2.2. A symmetric 2k-step method with characteristic equation given by (5) is
said to have an interval of periodicity (0, ν20) if, for all ν ∈ (0, ν20), the roots si , i = 1(1)2m
of Eq. (5) satisfy λ1 = ei θ (ν), λ2 = e− i θ (ν), and |λi| 6 1, i = 3(1)2m, where θ(ν) is a real
function of ν.

Definition 2.3. For any method corresponding to the characteristic equation (5) the
phase-lag is defined as the leading term in the expansion of t = ν − θ(ν). Then if the
quantity t = O(ν r+1) as ν →∞, the order of phase-lag is r.

Theorem 2.4. The symmetric 2k-step method with characteristic equation given by (5)

has phase-lag order r and phase-lag constant c given by −cνr+2 + O(νr+4) =
D1

D2
where

D1 =
∑k

i=1 2Ai(ν) cos(iν) +A0(ν) and D2 =
∑k

i=1 2k2Ak(ν).

Proof. See [4].
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3 Introduction

We write the explicit symmetric 2m-step method as

qn+m + Σm−1
i=0 ci(qn+i + qn−i) + qn−m

= h2Σm−1
i=1 bi[f(xn+i, qn+i) + f(xn−i, qn−i)] + b0f(xn, qn) (6)

From the form (6) withm = 2 we get the following form of the explicit symmetric four-step
methods:

qn+2 + c1(qn+1 + qn−1) + c0qn + qn−2 = h2[b1(fn+1 + fn−1) + b0fn] (7)

Where fi = y′′(xi, qi), i = n− 1(1)n + 1. Considering (7), We choose c1 = − 1
10 . The free

parameter c1 is based on the paper. In this study it has been proved that the above value
of c1 gives for the method (7) the higher accuracy. Requesting the above method to have
the phase-lag and its first and second derivatives vanished. The phase-lag of this method
is PL = T1

39
5
+2υ2b1

. By solving the system of equations PL = 0, PL′ = 0 and PL′′ = 0, we

obtain the coefficients of the new proposed method:

b0 =
T1

10cos(υ)υ3 + 30υ2sin(υ)
, b1 =

T2
10cos(υ)υ3 + 30υ2sin(υ)

,

c0 =
T3

10υcos(υ) + 30sin(υ)
,

where

T1 = 30υ2 sin(υ)−10υ2 sin(3υ)+υ cos(2υ)+80υ cos(υ)−20 sin(υ)+sin(2υ)−20 sin(3υ)−3υ,

T2 = −40υ cos(2υ) + υ cos(υ) + 20 sin(2υ)− sin(υ),

T3 = −30υ2 sin(υ) + 10υ2 sin(3υ)− υ cos(2υ)− 50υ cos(υ) + 30υ cos(3υ) + 30 sin(υ)

+3 sin(2υ)− 30 sin(3υ) + 3υ

The new obtained method with the coefficients given by(10)− (11) has a local truncation

error which is given by: LTE = 161h6

2400

(
q
(6)
n + 3ω2q

(4)
n + 3ω4q

(2)
n + ω6qn

)
+ o(h8).

4 Numerical resales

In order to apply the new methods to the radial Schrödinger equation the value of param-
eter v is needed. For every problem of the radial Schrödinger equation given by (1.1), the
parameter v is given by v =

√
|V (x)− E|, where V (x) is the potential and E is the energy.

In our example the well known Woods-Saxon potential given by V (x) = u0
1+z − u0z

a(1+z)2
is

used, with z = exp[ (x−X0)
a ], u0 = −50, a = 0 : 6, and X0 = 7 : 0. The boundary conditions

for this problem are y(0) = 0, y(x) = cos(
√
Ex) for large x. We compute the approximate

positive eigenenergies of the Woods Saxon resonance problem using:
The eighth order multi-step method developed by Quinlan and Tremaine [4], which

is indicated as Method QT8. The tenth order multi-step method developed by Quinlan
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and Tremaine [4], which is indicated as Method QT10. The twelfth order multi-step
method developed by Quinlan and Tremaine [4], which is indicated as Method QT12.
The fourth algebraic order method of Chawla and Rao with minimal phase-lag [2], which
is indicated as Method MCR4. The exponentially-fitted method of Raptis and Allison,
which is indicated as Method MRA. The hybrid sixth algebraic order method developed
by Chawla and Raowith minimal phase-lag, which is indicated as Method MCR6. The
classical form of the fourth algebraic order four-step method, which is indicated as Method
NMCL2. The Phase-Fitted Method (Case 1), which is indicated as Method NMPF1.
The phase-fitted method (Case 2), which is indicated as Method NMPF2. The four-step
method with vanished phase-lag and its first derivative (Case 2), which is indicated as
Method NMC2. The four-step method with vanished phase-lag and its first derivative
(Case 1), which is indicated as Method NMC1. The new obtained method, which is
indicated as Method NMPFD12.

In the following figure, we present the maximum absolute error Errmax = |log10(Err)|
where Err = |Ecalculated − Eaccurate| of the eigenenergies E = 341.495874, for several
values of CPU time (in seconds). We note that the CPU time (in seconds) counts the
computational cost for each method.
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A new method for error analysis in generalized Volterra

integral equations in Lp space
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Abstract

In this paper, with a new simple proof, an important inequality for a contraction
integral equation is obtained. From a practical programming point of view, this in-
equality allows to express iterative algorithm with a ”for loop” rather than a ”while
loop”. The main tool used in this paper is the fixed point theorem in the Lebesgue
space.

Keywords: Integral operator; Successive approximation method; Approximation er-
ror.

Mathematics Subject Classification [2010]: 34A12, 65R10, 65R20.

1 Introduction

The solutions of integral equations play a major role in the fields of science and engi-
neering. Usually, physical events are modeled by a differential equation, an integral or an
integro-differential equation, or a system of these. Since few of these equations can not
be solved explicitly, it is often necessary to resort to numerical techniques [3]. There are
several numerical methods for solving integral equations, such as the method of Galerkin,
Collocation, Taylor series, Legendre wavelets, Jacobi polynomials, homotopy perturbation,
expansion, and recently, Chebyshev polynomials. On the other hand, investigations on
existence theorems for diverse functional-integral equations have been presented in other
references such as [1, 2, 4]. It seems that the presented method used in our study is
the best stopping rule for iterative algorithm in integral equation comparison with other
researches.

At the first we need to some preliminaries, and so in the next Section, by using the
weighted norm method, a contraction mapping is obtained. Thereafter at the continue,
by a simple technique, the stopping rule for our iterative algorithm has been introduced.
Finally, we report numerical results and demonstrate the efficiency and accuracy of the
proposed numerical scheme by considering some numerical example. In this paper, we in-
tend to prove the existence and uniqueness of solutions of the nonhomogeneous nonlinear
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Volterra integral equation

x(t) = f(t) + φ
(∫ t

0
F (t, s, x(s))ds

)
. (1)

Here,
(i) f ∈ Lp(I, R) for I := {t ∈ R : 0 ≤ t ≤ 1} and p > 1,
(ii) F : T × R → R is measurable, where T := {(t, s) ∈ I × I : t ≤ s}.
We further assume that:
(iii) the function t 7→

∫ t
0 F (t, s, f(s))ds belongs to Lp(I, R);

(iv) |F (t, s, x) − F (t, s, y)| ≤ L(t, s)|x − y|, x, y ∈ R, (t, s) ∈ T , where L is a nonnegative
and measurable function for which

M(t) :=
(∫ t

0
Lq(t, s)ds

) p
q
, t ∈ I,

1

p
+

1

q
= 1

exists and is integrable over I.
(v) φ is Lipschitz, that is, there exists α > 0 such that for all x, y ∈ R, |φ(x) − φ(y)| ≤
α|x − y|.

We extend the Volterra integral equation and discuss it’s solutions in Lp spaces. To this
end, we use the weighted norm method instead of the successive approximation method.
In the reminder of this section, we recall some basic results which we will need in this
paper. Let ω : I → R+, R+ = (0,+∞), be a continuous function.
Put

∥u∥p,ω =
(

sup
{

ω−1(x)

∫ x

0
|u(s)|pds; x ∈ I

}) 1
p
. (2)

Note that for ω ≡ 1 we obtain the classical norm ∥u∥p which makes Lp(I, R) into a Banach
space. In general, it is easy to see that (2) defines a norm for any ω. Indeed, multiplying

the Minkowski inequality by
(
ω(x)

)−1
p

we obtain

(
ω−1(x)

∫ x

0
|u(s) + v(s)|pds

) 1
p ≤

(
ω−1(x)

∫ x

0
|u(s)|pds

) 1
p

+
(
ω−1(x)

∫ x

0
|v(s)|pds

) 1
p
.

2 The Main Result

In this section, we prove that F defined by the right hand side of equation (1), is a
contraction with ∥.∥p,ωλ

, when λ is sufficiently large and ωλ is defined as equation (3), and
so give the main results.

Theorem 2.1. Under the assumed conditions, the operator F defined by the right hand
side of equation (1) is a contraction in Lp(I, R) with respect to the norm ∥.∥p,ωλ

, when λ
is sufficiently large and ωλ is defined by

ωλ(x) = exp
(
λ

∫ x

0
M(s)ds

)
,M(s) =

(∫ s

0
Lq(s, t)dt

) p
q
, λ > 1. (3)
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The equation (1) has a unique solution u∗ ∈ Lp(I, R), which is the limit in Lp(I, R) of the
sequence of iteration {Fnu0}, for any u0 in Lp(I, R).

Let p > 1 be arbitrary. Suppose λ is the smallest positive integer number for which F
is a contraction with respect to ∥.∥p,ωλ

.
Now, by using the above theorem for m ≥ 1 , we have:

∥Fmu1 − Fmu2∥p,ωλ
≤ Km

λ .∥u1 − u2∥p,ωλ
.

By the triangle inequality, we have

∥u1 − u2∥p,ωλ
≤ ∥u1 − Fu1∥p,ωλ

+ ∥Fu1 − Fu2∥p,ωλ
+ ∥Fu2 − u2∥p,ωλ

.

Thus

∥u1 − u2∥p,ωλ
≤ 1

1 − Kλ

(
∥u1 − Fu1∥p,ωλ

+ ∥u2 − Fu2∥p,ωλ

)
. (4)

In particular, if u1 and u2 are the fixed points of F , we get ∥u1 − u2∥p,ωλ
= 0. This shows

that the contraction mapping F has at most one fixed point. For any u ∈ (Lp(I, R), ∥.∥p,ωλ
),

by letting u1 = Fnu and u2 = Fmu in (4) we find that

∥Fnu − Fmu∥p,ωλ
≤ 1

1 − Kλ

(
∥Fnu − Fn(Fu)∥p,ωλ

+ ∥Fmu − Fm(Fu)∥p,ωλ

)

≤ Kn
λ + Km

λ

1 − Kλ
∥Fu − u∥p,ωλ

,

and since Kλ < 1, Kn
λ → 0 as n tends to infinity. So ∥Fnu−Fmu∥p,ωλ

→ 0 as n and m tend
to infinity. Since (Lp(I, R), ∥.∥p,ωλ

) is a Banach space, this Cauchy sequence converges to
some u∗ ∈ Lp(I, R), and this u∗ is clearly a fixed point of F .
The stopping rule : Now letting m tend to infinity in the last inequality, the following
important inequality is obtained

∥Fnu − u∗∥p,ωλ
≤ Kn

λ

1 − Kλ
∥Fu − u∥p,ωλ

. (5)

Now, let us explain the importance of the inequality (5). Suppose we are willing to accept
an error of ϵ, i.e., instead of the actual fixed point u∗ of F , we will be satisfied with a
point Fnu satisfying ∥Fnu − u∗∥p,ωλ

< ϵ, and suppose also that we start our iteration at
some point u0 in Lp(I, R). Since we want ∥Fnu0 −u∗∥p,ωλ

< ϵ, we just have to pick Nλ so

large that
K

Nλ
λ

1−Kλ
∥Fu0 − u0∥p,ωλ

< ϵ. Now the quantity ∥Fu0 − u0∥p,ωλ
is something that

we can compute after the first iteration and we can then compute how large Nλ has to be
by taking the log of the above inequality and solving for Nλ (remembering that log(Kλ)
is negative). The result is that if βλ := ∥Fu0 − u0∥p,ωλ

and

Nλ >
log(ϵ) + log(1 − Kλ) − log(βλ)

log(Kλ)
,

then ∥FNλu0 − u∗∥p,ωλ
< ϵ. From a practical programming point of view, this inequality

allows us to express our iterative algorithm with a ”for loop” rather than a ”while loop”,
but it has another interesting interpretation. Suppose we take ϵ = 10−m in our stopping
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rule inequality. What we see is that the growth of Nλ with m is a constant plus m
| log(Kλ)| ,

or in other words, to get one more decimal digit of precision we have to do (approximately)
1

| log(Kλ)| more iteration steps. Stated a little differently, if we need Nλ iterative steps to get
m decimal digits of precision, then we need another Nλ to double the precision to 2m digits.

Example 2.2. Consider the following linear Volterra integral equation

u(t) = f(t) −
∫ t

0
sin(2(t − s))u(s)ds, t ∈ I. (6)

In this integral equation, the exact solution is

u(t) = f(t) − 2√
6

∫ t

0
sin(

√
6(t − s))f(s)ds.

In particular, for f(t) = cos(t), this solution becomes u∗(t) = 0.6 cos(t)+0.4 cos(
√

6t). Now
by taking ϵ = 10−m, we guess that after Nλ iterative steps, m decimal digits of precision
must be obtained. In Table 1, for some initial guesses u0, the value of the parameters are
calculated.

U0 ϵ p q λ Kλ βλ Nλ ∥U∗ − UN λ∥p,ωλ

cos(t) 10−6 2 2 50 0.1414 0.0050 5 2.5003e − 010

t 10−4 2 2 40 0.1581 0.0739 4 3.3858e − 006

1 10−8 2 2 30 0.1825 0.0939 10 6.4212e − 017

Table 1: Numerical results for Example 2.2
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Abstract

We present a numerical method based on exponential splines for solving the nonlin-
ear Schrödinger equations with variable coefficients. The error analysis, stability and
convergence properties of the method are investigated. The efficiency of the method is
demonstrated by test problems. The numerical simulations validate and demonstrate
the advantages of the method.
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1 Introduction

We consider the following nonlinear Schrödinger

ı
∂u

∂t
+ α(t)

∂2u

∂x2
+ F (x, t)u + β(t)|u|2u = 0, a < x < b, 0 < t ≤ T, (1)

with the boundary conditions

u(a, t) = f0(t), u(b, t) = f1(t), 0 < t ≤ T, (2)

and the initial condition

u(x, 0) = ϕ(x), x ∈ [a, b], (3)

where α(t), F (x, t) and β(t) are bounded real functions and also u(x, t) is the complex-
valued wave function and α(t) is related to the second order dispersion coefficient.This
equation is one of the most universal models that describes many physical nonlinear sys-
tems. This problem has been studied by several authors such as [1, 2].

The purpose of this paper is to give a numerical method, based on a uniform mesh using
exponential splines for the nonlinear Schrödinger equation, which leads to the recurrence
relation. We give the truncation error of the method, convergence and stability analysis.
The analysis will be illustrated by investigating some examples. The numerical simulations
validate and demonstrate the advantages of the method.
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2 Exponential spline functions

We set up a grid in the x, t plane with grid points (xi, tj) and uniform grid spacing h and k,
where xi = a+ ih, h = (b−a)/N, i = 0, 1, 2, ..., N , and tj = jk, k = T/M, j = 0, 1, 2, ...,M .

A function S(x, t) of class C4[a, b] which interpolates u(x, t) at the mesh points (xi, tj),
depends on a parameter τ , reduces to quintic spline S(x, t), in [a, b] as τ → 0, is termed
an exponential spline function. For each segment [xi, xi+1], i = 0, ..., N − 1 the function
S(x, t), can be defined in the following form

S(x, t) = a∗
i (tj) + b∗

i (tj)(x − xi) + c∗
i (tj)(x − xi)

2 + d∗
i (tj)(x − xi)

3+

e∗
i (tj)e

ıτ(x−xi) + f∗
i (tj)e

−ıτ(x−xi), i = 0, ..., N,
(4)

where a∗
i (tj), b∗

i (tj), c∗
i (tj), d∗

i (tj), e∗
i (tj) and f∗

i (tj) are unknown coefficients, τ is a free
parameter and ı =

√
−1. We first develop the explicit expressions for the six coefficients

in (4) in terms of uj
i , uj

i+1, M j
i , M j

i+1, Zj
i and Zj

i+1, where:

S(xi, tj) = uj
i , S′′(xi, tj) = M j

i , S(4)(xi, tj) = Zj
i ,

S(xi+1, tj) = uj
i+1, S′′(xi+1, tj) = M j

i+1, S(4)(xi+1, tj) = Zj
i+1.

(5)

Now using (5), we can determine the four unknown coefficients in (4). By using the
continuity of the first and third derivatives of S(x, tj) at x = xi and the above expressions
for coefficients, we obtain the following useful relation

−3h2τ2(hτ csc hτ−1)
−6+2h2τ2+6hτ cot hτ

(uj
i−2 + uj

i+2) + 3h2τ2(hτ cot(hτ/2)−2)
−3+h2τ2+3hτ cot hτ

(uj
i−1 + uj

i+1)+
−3h2τ2(hτ(csc hτ+2 cot hτ)−3)

−3+h2τ2+3hτ cot hτ
uj

i = h2{ (6+hτ(h2τ2−6) csc hτ)
4(3−h2τ2−3hτ cot hτ

(M j
i−2 + M j

i+2)+
(−12+hτ(6−h2τ2) cot hτ+2hτ(3+h2τ2) csc hτ)

6−2h2τ2−6hτ cot hτ
(M j

i−1 + M j
i+1)+

(18−4hτ(3+h2τ2) cot hτ+hτ(−6+h2τ2) csc hτ)
6−2h2τ2−6hτ cot hτ

M j
i , i = 2, ..., N − 2.

(6)

In the limit for τ going to 0, (6) reduces to:

uj
i−2 + 2uj

i−1 − 6uj
i + 2uj

i+1 + uj
i+2 =

h2

20 (M j
i−2 + 26M j

i−1 + 66M j
i + 26M j

i+1 + M j
i+2), i = 2, ..., N − 2,

(7)

and the truncation error can be written as

ti =
1

32
h6 ∂6uj

i

∂x6
+

1

896
h8 ∂8uj

∂x8
(ξ), i = 2, ..., N − 2, (8)

whereby xi−2 < ξ < xi+2. Eq. (7) gives N − 3 linear algebraic equations in the unknowns
uj

i , i = 1, ..., N − 1, since uj
0 and uj

N are known from the boundary conditions. The two
missing equations, one at each end of the range of integration, can be derived as follows:

4uj
0 − 7uj

1 + 2uj
2 + uj

3 = h2

12 (4M j
0 + 41M j

1 + 14M j
2 + M j

3 ) − 1
48h6 ∂6uj

0
∂x6 + O(h8),

uj
N−3 + 2uj

N−2 − 7uj
N−1 + 4uj

N = h2

12 (M j
N−3 − 14M j

N−2 + 41M j
N−1 + 4M j

N )−
1
48h6 ∂6uj

N
∂x6 + O(h8).

(9)
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3 The Numerical method

At first, we discrete the problem in time variable by means of the θ-finite difference method,
θ ∈ [12 , 1]. In this case, we get a system of ordinary differential equations with bound-
ary conditions. Discretization by the proposed method yields the following system of
differential equations:

ıuj+1(x) + kθ(αj+1uj+1
xx (x) + βj+1|uj+1(x)|2uj+1(x) + F (x, tj+1)u

j+1(x)) =
G(x, tj),

G(x, tj) = ıuj(x) − k(1 − θ)(αjuj
xx(x) + βj |uj(x)|2uj(x) + F (x, tj)u

j(x)),
j = 0, ..., M − 1,

(10)

with

u0 = ϕ(x),
u(a, tj+1) = f0(tj+1), u(b, tj+1) = f1(tj+1).

(11)

At the grid point (xi, tj), the proposed differential Eq. (10) may be discretized by:

ıuj+1
i + kθ(αj+1M j+1

i + βj+1|uj+1
i |2uj+1

i + F j+1
i uj+1

i ) = Gj
i , (12)

where M j+1
i = S′′(xi, tj+1) ≃ uj+1

xxi . From (12) we have

M j+1
i =

1

kθαj+1
(Gj

i − ıuj+1
i − kθβj+1|uj+1

i |2uj+1
i − kθF j+1

i uj+1
i ). (13)

Substituting M j+1
i±2 , M j+1

i±1 and M j+1
i into (7) and (9) we obtain the following system:

Auj+1 +
h2βj+1

αj+1
Q(uj+1) =

h2

kθαj+1
G + T , (14)

with uj+1 = [uj+1
1 , uj+1

2 , ..., uj+1
N−1]

T , T = [tj+1
1 , tj+1

2 , ..., tj+1
N−1]

T , A = A0 + h2

kθαj+1 A1 and

A0 =




−7 2 1
2 −6 2 1
1 2 −6 2 1
. . .

. . .
. . .

. . .
. . .

. . .

1 2 −6 2 1
1 2 −6 2

1 2 −7




,

G =




4Gj
0+41Gj

1+14Gj
2+Gj

3+4(−ı−kθβj+1|f0(tj+1)|2−kθF j+1
0 )f0(tj+1)

12
Gj

0+26Gj
1+66Gj

2+26Gj
3+Gj

4+(−ı−kθβj+1|f0(tj+1)|2−kθF j+1
0 )f0(tj+1)

20
...

Gj
i−2+26Gj

i−1+66Gj
i +26Gj

i+1+Gj
i+2

20
...

Gj
N−4+26Gj

N−3+66Gj
N−2+26Gj

N−1+Gj
4+(−ı−kθβj+1|f1(tj+1)|2−kθF j+1

N )f1(tj+1)

20
Gj

N−3+14Gj
N−2+41Gj

N−1+4Gj
N+4(−ı−kθβj+1|f1(tj+1)|2−kθF j+1

N )f1(tj+1)

12




,
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A1 =




41(ı+kθF j+1
1 )

12
7(ı+kθF j+1

2 )
6

(ı+kθF j+1
3 )

12
13(ı+kθF j+1

1 )
10

33(ı+kθF j+1
2 )

10
13(ı+kθF j+1

3 )
10

(ı+kθF j+1
4 )

20
(ı+kθF j+1

1 )
20

13(ı+kθF j+1
2 )

10
33(ı+kθF j+1

3 )
10

13(ı+kθF j+1
4 )

10
(ı+kθF j+1

5 )
20

. . .
. . .

. . .
. . .

(ı+kθF j+1
N−5)

20

13(ı+kθF j+1
N−4)

10

33(ı+kθF j+1
N−3)

10

13(ı+kθF j+1
N−2)

10

(ı+kθF j+1
N−1)

20
(ı+kθF j+1

N−4)

20

13(ı+kθF j+1
N−3)

10

33(ı+kθF j+1
N−2)

10

13(ı+kθF j+1
N−1)

10
(ı+kθF j+1

N−3)

12

7(ı+kθF j+1
N−2)

6

41(ı+kθF j+1
N−1)

12




,

and

Q(uj+1) =




1
12(41|uj+1

1 |2uj+1
1 + 14|uj+1

2 |2uj+1
2 + |uj+1

3 |2uj+1
3 )

1
20(26|uj+1

1 |2uj+1
1 + 66|uj+1

2 |2uj+1
2 + 26|uj+1

3 |2uj+1
3 + |uj+1

4 |2uj+1
4 )

...
1
20(|uj+1

i−2 |2uj+1
i−2 + 26|uj+1

i−1 |2uj+1
i−1 + 66|uj+1

i |2uj+1
i + 26|uj+1

i+1 |2uj+1
i+1 + |uj+1

i+2 |2uj+1
i+2 )

...
1
20(|uj+1

N−4|2u
j+1
N−4 + 26|uj+1

N−3|2u
j+1
N−3 + 66|uj+1

N−2|2u
j+1
N−2 + 26|uj+1

N−1|2u
j+1
N−1)

1
12(|uj+1

N−3|2u
j+1
N−3 + 14|uj+1

N−2|2u
j+1
N−2 + 41|uj+1

N−1|2u
j+1
N−1)




.

4 Stability and Convergence

Theorem 4.1. The time semi-discrete method (10)-(11) is unconditionally stable for all
values of θ ∈ [12 , 1].

Theorem 4.2. The exponential spline approximation uj+1 converges to the exact solution
U j+1 of the boundary value problem defined by Eqs. (10)-(11) with order three by the ∥.∥∞
norm, i.e., ∥U j+1 − uj+1∥∞ = O(h4).
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An implicit finite difference method for solving integro-partial

time fractional diffusion equation with weakly singular kernel
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Shahid Bahonar University of Kerman

Abstract

In this paper we develop an implicit finite difference method to solve an one-
dimensional linear integro-partial time fractional diffusion equation with weakly sin-
gular kernel, formulated with Caputos fractional derivative. The numerical test is
performed and comparative results are provided to illustrate the usefulness of the
proposed method.

Keywords: Implicit finite difference method, Fractional calculus, Numerical meth-
ods, Time fractional diffusion equation

Mathematics Subject Classification [2010]: 65N06, 65R10, 35R11

1 Introduction

In this paper we introduced an method for the numerical solution of the following linear
integro-partial time fractional diffusion equation with weakly singular kernel:

∂αu

∂tα
(x, t) = µ

∂2u

∂x2
(x, t) +

∫ t

0
(t− s)−1/2∂

2u

∂x2
(x, s)ds, x ∈ [0, 1], t ∈ [0, T ], (1)

where µ > 0, 0 < α 6 1 and the unknown real function u(x, t) is sought for 0 6 x 6 1, 0 6
t 6 T , with the boundary and initial conditions:

u(0, t) = u(1, t) = 0, t > 0, u(x, 0) = g(x), 0 6 x 6 1. (2)

Definition 1.1. The Riemann-Liouville fractional integral operator of order α > 0 of a
function f(t) with respect to point t = 0 is defined as:

Iαf(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1f(τ)dτ, α > 0, t > 0, I0f(t) = f(t).

Definition 1.2. The Caputo fractional derivative of order α of functionf(t) is defined as:

Dα
∗ f(t) = In−αDnf(t) =

1

Γ(n− α)

∫ t

0
(t− τ)n−α−1f (n)(τ)dτ, n ∈ N, n− 1 < α 6 n.
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Note that for n− 1 < α 6 n, n ∈ N and t > 0, β > 0,

IαDαf(t) = f(t)−
n−1∑

k=0

dkf

dtk
(0+)

tk

k!
, IαIβf = Iα+βf. (3)

Properties of the operators Iα and Dα
∗ can be found in [1].

2 Description of the method

Suppose that we are working on a uniform grid {x|xi = ih, i = 0, 1, · · · ,M}, and {t|tj =
jk, j = 0, 1, · · · , N}, where M , N , are positive integers and 4x = h = 1

M , 4t = k = T
N .

Let ui,j ' u(xi, tj), where i = 0, 1, · · · ,M , j = 0, 1, · · · , N . First, consider the Eq.(1) and

evaluate it in x = xi, then by approximate ∂2u
∂x2

∣∣∣
xi,t

using the following finite difference

formula:
∂2u

∂x2

∣∣∣∣
xi,t

' u(xi+1, t)− 2u(xi, t) + u(xi−1, t)

h2
,

we have:

∂αu

∂tα
(xi, t) = µ

u(xi+1, t)− 2u(xi, t) + u(xi−1, t)

h2

+
Γ(1/2)

h2
I

1/2
t u(xi+1, t)− 2

Γ(1/2)

h2
I

1/2
t u(xi, t) +

Γ(1/2)

h2
I

1/2
t u(xi−1, t), (4)

by applying the operator Iαt to both sides of Eq.(4) and using the properties (3) we obtain:

u(xi, t) =
µ

h2
Iαt u(xi+1, t)− 2

µ

h2
Iαt u(xi, t) +

µ

h2
Iαt u(xi−1, t)

+
Γ(1/2)

h2
[I
α+1/2
t u(xi+1, t)− 2I

α+1/2
t u(xi, t) + I

α+1/2
t u(xi−1, t)]. (5)

Now, by replacing t = tn+1 (n = 0, 1, · · · , N − 1) in Eq.(5), we need to calculate the
integrals in. For this purpose we use the following integration rule:

∫ tn+1

0
(tn+1 − z)α−1g(z)dz '

∫ tn+1

0
(tn+1 − z)α−1g̃n+1(z)dz, (6)

where g̃ is the piecewise linear interpolant for g in nodes tj and tj+1:

g̃n+1(z) =
z − tj+1

tj − tj+1
g(tj) +

z − tj
tj+1 − tj

g(tj+1),

where tj 6 z 6 tj+1 (j = 0, 1, · · · , N − 1).
We can write the integral on the right-hand side of Eq.(6) as [2]:

∫ tn+1

0
(tn+1 − z)α−1g̃n+1(z)dz =

kα

α(α+ 1)

n+1∑

j=0

aj,n+1g(tj),
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where:

aj,n+1 =





nα+1 − (n− α)(n+ 1)α, if j = 0,

(n− j + 2)α+1 − 2(n− j + 1)α+1 + (n− j)α+1, if 1 6 j 6 n,

1, if j = n+ 1,

(7)

and also:

∫ tn+1

0
(tn+1 − z)α−1/2g(z)dz '

∫ tn+1

0
(tn+1 − z)(α−1/2)g̃n+1(z)dz,

furthermore:

∫ tn+1

0
(tn+1 − z)α−1/2g̃n+1(z)dz =

kα+1/2

(α+ 1/2)(α+ 3/2)

n+1∑

j=0

bj,n+1g(tj),

where:

bj,n+1 =





nα+3/2 − (n− α− 1/2)(n+ 1)α+1/2, if j = 0,

(n− j + 2)α+3/2 − 2(n− j + 1)α+3/2 + (n− j)α+3/2, if 1 6 j 6 n,

1, if j = n+ 1.

(8)

By using the above integrals approximations in Eq.(5) we have:

ui,n+1 = ψ

n∑

j=0

aj,n+1ui+1,j + ψui+1,n+1 − 2ψ

n∑

j=0

aj,n+1ui,j − 2ψui,n+1 + ψ

n∑

j=0

aj,n+1ui−1,j

+ ψui−1,n+1 + φ
n∑

j=0

bj,n+1ui+1,j + φui+1,n+1 − 2φ
n∑

j=0

bj,n+1ui,j − 2φui,n+1

+ φ
n∑

j=0

bj,n+1ui−1,j + φui−1,n+1, i = 1, 2, · · · ,M − 1, n = 0, 1, · · · , N − 1,

(9)

where ψ := µ
h2

kα

Γ(α+2) , φ := Γ(1/2)
h2

kα+1/2

Γ(α+1/2)(α+1/2)(α+3/2) .

In general, Eq.(9) can be written as:

−λui−1,n+1 + (1 + 2λ)ui,n+1 − λui+1,n+1 =

n∑

j=0

pj(ui−1,j − 2ui,j + ui+1,j), (10)

where 1 6 i 6M −1, 0 6 n 6 N −1, λ := ψ+φ, pj = ψaj,n+1 +φbj,n+1, (j = 0, 1, · · · , n).
For each 1 6 i 6M −1, 0 6 n 6 N −1, Eq.(10) is system a of M −1 equations and M −1
unknowns which has the following matrix form:

AUn+1 +Rn+1 =
n∑

j=0

(BjUj +Qj),
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where:

AUn+1 +Rn+1 =




1 + 2λ −λ 0 · · · 0
−λ 1 + 2λ −λ
...

. . .
. . .

. . .
...

−λ 1 + 2λ −λ
0 · · · 0 −λ 1 + 2λ







u1,n+1

u2,n+1
...

uM−2,n+1

uM−1,n+1




+




−λu0,n+1

0
...
0

−λuM,n+1



,

n∑

j=0

(BjUj +Qj) =
n∑

j=0

(




−2pj pj 0 · · · 0
pj −2pj pj
...

. . .
. . .

. . .
...

pj −2pj pj
0 · · · 0 pj −2pj







u1,j

u2,j
...

uM−2,j

uM−1,j




+




pju0,j

0
...
0

pjuM,j




),

for known square matrices A and Bj , and a known vectors R,Q, where the details of
the boundary conditions have been fully incorporated. Matrix A is a invertible matrix,
therefore for n = 0, 1, · · · , N − 1 the above system can be solved by:

Un+1 = A−1(
n∑

j=0

(BjUj +Qj)−Rn+1).

Example 2.1. Numerical results for the problem (1),(2) with g(x) = sin(πx) and u(x, t) =∑∞
n=0(−1)nΓ(3

2n + 1)−1(π
5
2 t

3
2 )n sin(πx), when t ∈ [0, 1] with h = k = 0.1 and α = 1, are

shown in Table 1.

Table 1: Absolute errors for equation (1) with µ = 1

x Errors

0.1 3.4240e− 4
0.2 6.5129e− 4
0.3 8.9643e− 4
0.4 1.0538e− 3
0.5 1.1080e− 3
0.6 1.0538e− 3
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Abstract

Let a, b and c be fixed complex numbers and Hn(a, b, c) be the n×n Hankel matrix,
all of whose entries above the anti diagonal are b, all of whose entries below the anti
diagonal are a and all of whose entries on the anti diagonal are c. In this paper new
explicite formulae for determinant and eigenvalues of this matrix are suggested . Then
we represent some intresting examples about them.

Keywords: Matrix theory, Hankel matrix, recursive relation, determinant.
Mathematics Subject Classification [2010]: 65F40; 15B05, 11B37

1 Introduction

Due to various applications of Hankel matrices, many authors have studied Hankel matri-
ces. A Hankel Matrix is a square matrix with constant skew-diagonal. Hankel Matrices
like Toeplitz Matrices have important applications, for instance in the Theory of Moment,
and Pade approximation. The well - known relation of Hankel matrices to orthogonal
polynomials yields a combinatorial application of the famous Berlekamp-Massey algo-
rithm in Coding Theory, which can be applied in order to calculate the coefficients in the
three-terms recurrence of the family of orthogonal polynomials related to the sequence of
Hankel matrices.Their connection to orthogonal polynomials often yields useful applica-
tions in Combinatorics. They have considerable applicatins in System Theory, Control
Engineering, some branches of Computer Sciences and Numerical Analysis (see [1]-[5]).

For each positive integer n and for all Complex numbers a, b, c, let Hn(a, b, c) be the
n×n Hankel matrix, all of whose entries above the anti diagonal are b, all of whose entries
below the anti diagonal are a, and all of whose entries on the anti diagonal are c. For
example,

H3(a, b, c) =



b b c
b c a
c a a


 ·
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In section 2 we show that, determinant of Hn(a, b, c) satisfies a linear recursive re-
lation. We solve that recursive relation to obtain a simple formula for the determinant
of Hn(a, b, c). Then we give some results about eigenvalues of this matirx. Finally we
represent some examples about these results.

2 Main results

In this section det(Hn) will denote the determinant of Hn, det(Hn−1) will denote the
determinant of the matrix that resulted from Hn by deleting of first row and last column
of (Hn), also det(Hn−2) will denote the determinant of the matrix that resulted from Hn

by deleting of two first rows and two last columns of (Hn).

Lemma 2.1. Let a, b, c be complex numbers. For each positive integer n, let Hn =Hn(a, b, c),
then

det(H1) = c, det(H2) = ab− c2,
and for n ≥ 3 we have

det(Hn) = (−1)n+1[(2c− a− b)det(Hn−1)] + (a− c)(b− c)det(Hn−2).

Theorem 2.2. Let a, b, c be complex numbers. For each positive integer n, let Hn =Hn(a, b, c).
If a = b = c, then det(H1) = c, and det(Hn) = 0 for n ≥ 2.
otherwise we have

det(Hn) = (
c(β + c)− ab

β − α )αn−1 + (
ab− c(α+ c)

β − α )βn−1,

where

α =
(−1)n+1(2c− a− b) +

√
2(2c− a− b)2 − (a− b)2

2
,

β =
(−1)n+1(2c− a− b)−

√
2(2c− a− b)2 − (a− b)2

2
.

Corollary 2.3. If we set a = x, b = x − 1 and c = x, then for all positive integer n ≥ 2
and for all complex variable x, determinants of all (Hn) are equal to (−x).
In exact we have

det(Hn) = (2x− x− (x− 1))det(Hn−1)− (x− x)((x− 1)− x)det(Hn−2)

= det(Hn−1) = det(Hn−2) = det(Hn−3) = . . . = det(H3)

= det(H2) = x(x− 1)− x2 = −x.

Theorem 2.4. Let a, b and c be complex numbers. For each positive integer n, if λ is an
eigenvalue of Hn(a, b, c). Then by well-known Gershgorin circles theorem we have

|λ− u| ≤ (n− 1)max{|a|, |b|, |c|},

where u = a , u = b and u = c.
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Corollary 2.5. Let a, b and c be complex numbers. For each positive integer n, if λ is an
eigenvalue of Hn(a, b, c), then we have

|λ| ≤ (n− 1)k + |u| ,

where
k = max{|a|, |b|, |c|} and u = a , u = b and u = c.

Corollary 2.6. Let a, b and c be complex numbers and Hn = Hn(a, b, c). Then we have
the following upper bounds for the spectral radius of Hn, in exact we have

ρ(Hn) ≤ (n− 1)k + |u| ,

where
k = max{|a|, |b|, |c|} and u = a , u = b and u = c.

Example 2.7. If a = b = 1, c = −1, in exact if we set

Hn =




1 1 1 · · · 1 1 −1
1 1 1 · · · 1 −1 1
1 1 1 · · · −1 1 1
...

...
... · · · ...

...
...

1 1 −1 · · · 1 1 1
1 −1 1 · · · 1 1 1
−1 1 1 · · · 1 1 1




·

Then we have

det(Hn) =
2n−2√

2

[
((−1)n −

√
2)n−2 − ((−1)n +

√
2)n−2

]
.

Corollary 2.8. If a = b = 1, c = −1, then by example (2.7) and Corollary(2.6) we have

ρ(Hn) = n.

Example 2.9. If a = 1, b = −1, c = 0, in exact if we set

Hn =




−1 −1 −1 · · · −1 −1 0
−1 −1 −1 · · · −1 0 1
−1 −1 −1 · · · 0 1 1
...

...
... · · · ...

...
...

−1 −1 0 · · · 1 1 1
−1 0 1 · · · 1 1 1
0 1 1 · · · 1 1 1




·

Then we have

det(Hn) =
1

4i
(−2i)n−1 − 1

4i
(2i)n−1

=
(
√

2)n−1

2
Sin(

(n− 1)π

2
).
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Fast approximate method for solving nonlinear system of

Fredholm-Volterra integral equations

Fariba Fattahzadeh∗

Islamic Azad University (Central Tehran Branch), Tehran, Iran

Abstract

A numerical method for solving nonlinear system of Fredholm-Volterra Hammer-
stain integral equations of second kind is presented. This method is based on replace-
ment of the unknown functions by truncated series of well known Chebyshev expansion
of functions. The quadrature formula which we use to calculate integral terms can be
estimated by Fast Fourier Transform (FFT). Also convergence and rate of convergence
are given.

Keywords: Nonlinear system of Fredholm-Volterra integral equation, Chebyshev
polynomials, error analysis.

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

In this paper we present a computational method for solving a system of nonlinear
Fredholm-Volterra integral equations of Hammerstain type:

xi(s) = yi(s) + λ1
∑n

j=1

∫ s
0 Kij(s, t)F (xj(t))dt+ λ2

∑n
j=1

∫ 1
0 K

′
ij(s, t)G(xj(t))dt,

i = 1, ..., n, 0 ≤ s, t ≤ 1.

(1)

Consider the nonlinear system of integral equation (1). At first we approximate xi(t) for
i = 1, .., n, as

xi(t) ' CT
i T(t), (2)

then we substitute this approximation into eq. (1) to get

CT
i T(s) = yi(s) + λ1

∑n
j=1

∫ s
0 Kij(s, t)F (CT

j T(t))dt+ λ2
∑n

j=1

∫ 1
0 K

′
ij(s, t)G(CT

j T(t))dt,

i = 1, ..., n, 0 ≤ s, t ≤ 1.
(3)
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In order to use Gaussian integration formula for eq. (6), we transfer the intervals [0, sl]
and [0, 1] into interval [−1, 1] by transformations

τ1 =
2

sl
t− 1, τ2 = 2t− 1.

For Chebyshev polynomials we consider the collocation points

sl = cos(
lπ

N
), l = 0, 1, . . . , N. (4)

Let
Hf
ij(s, t) = Kij(s, t)F (CT

j T(t)), Hg
ij(s, t) = K ′ij(s, t)G(CT

j T(t)).

Using collocation points (7) in transformed eq. (6) we get

CT
i T(sl) = y(sl) + λ1

sl
2

∫ 1

−1

n∑

j=1

Hf
ij(sl,

sl(τ1 + 1)

2
)dτ1 +

λ2
2

∫ 1

−1

n∑

j=1

Hg
ij(sl,

(τ2 + 1)

2
)dτ2,

(5)
for i = 1, .., n. Now we use Clenshaw-Curtis quadrature formula [10], to get

CT
i T(sl) = y(sl) +

n∑

j=1

N∑

k=0

′′wk[λ1
sl
2
Hf
ij(sl,

sl(sk + 1)

2
) +

λ2
2
Hg
ij(sl,

(sk + 1)

2
)], (6)

for l = 0, 1, . . . , N , and where

wk =
4

N

N∑

even n=0

′′ 1

1− n2 cos(
nkπ

N
), (7)

and double prime means that the first and the last terms are halved. The system
(9) consist of nonlinear equations with unknown vector with elements of Ci as C =
[c00, c01, . . . c0N , . . . , cN0, cN1, . . . cNN ], which can be solved by usual iterative method such
as Newton’s method or simplex method. The Fast Fourier Transform (FFT) technique
can be used to evaluate the summation part in (9) in O(N logN) operations. In fact eq.
(10) for weights wk can also be viewed as the discrete cosine transformation of the vector
v with entries:

vn =

{
2/(1− n2), n even
0, n odd.

2 Main results

Theorem 1. The solution of nonlinear system of Fredholm-Volterra Hammerstain Integral
equation (1) by using Chebyshev polynomials converge if 0 < α < 1/n; in other word for
i = 1, ., n, limN→∞ ‖xi(s)− xiN (s)‖ = 0.

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Fast approximate method for solving nonlinear system of Fredholm- . . . pp.: 2–3

475



Proof:

‖xi(s)− xiN (s)‖∞ = maxs∈[0,1] |xi(s)− xiN (s)|

= maxs∈[0,1] |λ1
∑n

j=1

∫ s
0 Kij(s, t)(F (xj(t)− F (xjN (s)))dt|+

maxs∈[0,1] |λ2
∑n

j=1

∫ s
0 K

′
ij(s, t)(G(xj(t)−G(xjN (s)))dt|

≤∑n
j=1 |λ1|M1L1s‖xj(s)− xjN (s)‖∞+

∑n
j=1 |λ2|M2L2‖xj(s)− xjN (s)‖∞

=
∑n

j=1(|λ1|M1L1s+ |λ2|M2L2)‖xj(s)− xjN (s)‖∞

≤∑n
j=1(|λ1|M1L1 + |λ2|M2L2)‖xj(s)− xjN (s)‖∞

⇒ ‖xi(s)− xiN (s)‖∞ ≤
∑n

j=1 α‖xj(s)− xjN (s)‖∞.
if we write the last relation for i = 1, .., n, and add up them, we obtain

n∑

i=1

‖xi(s)− xiN (s)‖∞ ≤
n∑

j=1

nα‖xj(s)− xjN (s)‖∞.

so
n∑

i=1

(1− nα)‖xi(s)− xiN (s)‖∞ ≤ 0.

According to this equation if we choose 0 < α < 1/n we have:

lim
N→∞

‖xi(s)− xiN (s)‖ = 0,

so the proof is completed.
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Local Gaussian radial basis function method for solution of

2D steady convection diffusion equation

Jalil Rashidinia

Iran University of Science and Technology

Mahdie Mahdavi∗

Iran University of Science and Technology

Abstract

A local collocation method based on Gaussian radial basis function is developed for
solution of steady state two dimensional convection- diffusion equation. consequently
the arising system is sparse, which is an effort to reduce the condition number of the
system and to overcome the ill- conditioning . This approach is suitable for solving
problems in high dimensional too.

Keywords: Gaussian radial basis function, Local collocation method, Convection-
diffusion equation.

1 Introduction

There are many methods for solving a partial differential equations, but these methods
need to a mesh on domain like Finite Difference (FD), Finite Element (FE), Finite volume
(FV) and other approaches. Therefore many scientists prefer to use meshless methods.
One of these methods is Radial Basis Function (RBF). RBF interpolation has been shown
to work in many cases where polynomial interpolation has failed [1]. Kansa showed RBFs
are an effective way for solving partial differential equations [2, 3]. This meshless method
has high accuracy, but it is ill-condition. There are many approaches to overcome this
ill-conditioning, the local collocation method is one of such approaches.

Definition 1.1. A function Φ : Rd → R is called radial if there exists a univariate function
φ : [0, ∞) → R such that

Φ(x) = φ(r),

where r = ∥x∥ and ∥.∥ is a norm on Rd (∥.∥ is typically the Euclidean norm.)[4].

Definition 1.2. The scattered data interpolation problem: given data (xj , fj), with j=1,...,N,
xj ∈ Rd, and fj ∈ R, find a smooth function u such that u(xj) = fj , for j = 1, ..., N .
For a set of N centers, xc

1, ..., x
c
N in Rd, a radial basis function interpolant is of the form

u(x) =

N∑

j=1

αjϕ(∥x − xc
j∥2, c). (1)

The αj coefficients in the RBF are determined by enforcing the interpolation condition
u(xj) = f(xj) at a set of points that usually coincides with the N centers and ϕ is a radial
basis function.
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2 Main results

2.1 Kansa’s method

Consider steady state problem:

Lu(x) = f(x), x ∈ Ω ⊂ Rd (2)

Bu(x) = g(x), x ∈ ∂Ω (3)

where L is a linear differential operator in Ω and B is a boundary operator on ∂Ω. By using
interpolation formula and collocation method in centers, following systems of equation is
obtained: [

Lϕ
Bϕ

]
α =

[
f
g

]
(4)

This method is known as Kansas method [5, 6].

2.2 Local method

In this method around of each strictly-interior point which are selected in domain, a stencil
is formed which this node is called centerpoint of its stencil. Each system collocates the
solution value in the boundaries of stencil (solution center) and collocates PDE operator
in its internal nodes (PDE center). In this paper stencils are chosen in the form of square
in sizes of 3 × 3 (Figure1). An RBF collocation is formed for each system that yield N
RBF local collocation system

A(s)λ(s) = d(s) s = 1, 2, ...N, (5)

As is collocation matrix as explained by equation(4) , αs is interpolation coefficients and
ds is called data vectors for each system. The solution of PDE, can be approximated by
equation(1). so that for each stencil we have:

u(s)(x) = Q(s)(x)λ(s), (6)

which Q(s) is called a reconstruction vector for stencil s. At each one of the centerpoint
of system s, we have:

u(s)(x(s)
c ) = Q(s)(x(s)

c )λ(s),

= Q(s)(x(s)
c )

[
A(s)

]−1
d(s)

= W (s)(x(s)
c )d(s),

where W (s)(x
(s)
c ) is weight vector. The obtained N simultaneous equations yield to a

sparse global system [7].
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Figure 1: A stencil in size 3 × 3, Red diamonds represent solution centers, Blue square
show PDE centers and black cross show center point.

3 Numerical illustration

In this section, we applied our approach based on Gaussian RBF, exp(−r2/c2), that r =
∥x − xi∥ and c = 50/N .
Consider 2D steady convection diffusion equation:

D
∂2u

∂x2
i

− qi
∂u

∂xi
= 0, (7)

where x1 ∈ [0, 1] , x2 ∈ [0, 0.2] and qi = (0, 1) exact solution of 7 is

ϕe = 2 − 1 − e(x1−1)pe

1 − e−pe
.

the Dirichlet boundary conditions can be obtained by using the exact solution and Peclet

Figure 2: Relative error for stencil 3×3

number is defined as pe =
1

D
that pe = 25. Dataset is selected N = 10, 15, 20, 25, 30, 40.
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This dataset is discretized with N+1 piont in x1 direction and N/5 + 1 point in x2

direction.
Relative error is calculated by following formula:

RE.error =

√∑k
j=1(uapp(xj) − uexa(xj))2

k(umax − umin)2
,

where xj are values u within the domain, u is the computed solution, uexa is exact solution,
umax, umin are the maximum and minimum values in the domain. Results is obtained in
Figure2 that show relative error which is reducing exponentially.
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Maximum Principle Theorems For Forth Order Differential

Equations

Davod Rostamy Samaneh Ghasemy∗

Imam khomeyni Inter national university

Nazdar Abdollahi

Abstract

In this paper first we present continuous maximum principle theorem for fourth order
differential equations. Then we express discrete maximum principle theorem for matrix form
of discrete problem( by finite element method or finite difference method). At the end we
make an example to find maximum of u.

1 Introduction

The early development of numerical analysis of partial differential equations was dominated by
functional analysis. In such a method an approximate solution is sought at the end points of a
finite grid of points, and the approximation of differential equation is accomplished by replacing
appropriate difference quotients and a finite linear system of algebraic equations. The maximum
principle theorem is used to show uniqueness and continuous dependence on data for solution and
approximate solution of partial equation. In this paper we consider the discrete approximation to
the fourth order boundary value problem

u(4)(x) = f(x, u(x), u
′
(x), u

′′
(x), u

′′′
(x)), a ≤ x ≤ b, (1)

subject to the boundary conditions
u(a) = g0, (2)

u(b) = g1, (3)

u′(a) = α1, u′(b) = α2. (4)

Some applications of involving population dynamics with spatial migration, chemical reaction and
control systems are given by some authors e.g. [1, 2, 3] and the references therein. In all these
studies, we observe that a result of employing a special type of (1). By using the maximum princi-
ple theorem and discrete maximum principle we have proved uniqueness both in (1) and the finite
difference method respectively.
Therefore,the paper is organized as follows.
In the next section we give the continuous maximum principle theorem. This problem is imple-
mented in section 3 and we give a discrete maximum principle theorem. At the end to illustrate
this principle we give an example.
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2 Existence and uniqueness solution (1)-(4) by the continu-
ous maximum principle

If u is a real valued function of C2([a, b]) and u′′(x) ≥ 0 in the interior of I = [a, b] , then u satisfies
the maximum principle. Moreover if u attains its maximum at an interior point of I then u is
constant on I. As an application of this principle we prove the existence of non negative solution
of a fourth order boundary value problem.

Theorem 2.1. (Continuous maximum principle) Let u be a real valued function of C4([a, b]).
Suppose u satisfies the inequalities

u(4)(x) ≥ 0 , x ∈ (a, b) (5)

u′(a) ≥ 0 , u′(b) ≤ 0, (6)

and moreover , attains its minimum at a point x0 ∈ (a, b), then u is constant on [a, b].

Proof. Since u attains its minimum at x0 ∈ (a, b), we consider w(x) = u′′(x) that u′(x) = 0
,w(x0) ≥ 0 and

−u′(a) =

∫ x0

a

w(x)dx ≤ 0 , u′(b) =

∫ b

x0

w(x)dx ≤ 0, (7)

now we assume two possible cases:

(i) There is a point x1 ∈ (a, x0) ∪ (x0, b) s.t. w(x1) < 0 . or

(ii) w(x) ≥ 0 on (a, b).

If the second one holds , then by (7) we have w(x) = u′′(x) ≥ 0 on [a, b] and u′(x0) = 0 hence u
is constant on[a, b]. So we prove that the first one is impossible. We assume that x1 ∈ (a, x0), the
second inequality in (7) implies that there is a point x2 ∈ (x0, b), s.t w(x2) ≤ 0 thus we have
w(x1) < 0 , w(x0) ≥ 0, w(x2) ≤ 0 , x1 < x0 < x2, and consequently, there is a point x3 ∈ (x1, x0)
such that w′(x3) > 0 and a point x4 ∈ (x0, x2) s.t. w′(x4) ≤ 0. On the other hand we have using
(5)

w′(x4) − w′(x3) =

∫ x4

x3

w′′(x)dx =

∫ x4

x3

w(4)(x)dx ≥ 0,

that is a contradiction.

Let u be a real valued function of C4([a, b]), and u satisfies (5), then u attains its minimum at
x = a or x = b (see[1, 2]).

3 Implementation of the finite difference method and the
discrete maximum principle

For our analysis we first show a discrete maximum principle similar to that in the continuous case
of Theorem 2.1. A matrix A = (ai,j) 1 ≤ i, j ≤ N is reducible if there exist a permutation matrix
P such that

PAP t =

[
A11 A12

0 A22

]
(8)

A11 is an r × r (1 ≤ r < N) sub matrix. A22 is an (N − r) × (N − r) sub matrix. A is irreducible
if there isn’t P . A is diagonally dominate if

| aii |≥
N∑

j=1j ̸=i

| aij | 1 ≤ i ≤ N (9)
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Moreover , A is irreducibly diagonally dominate if it is irreducible and diagonally dominate and
for at least one i0 (1 ≤ i0 ≤ N)

| ai0,i0 |>
N∑

j=1j ̸=i0

| ai0,j | (10)

Lemma 3.1. An N × N matrix A is irreducible if and only if for any two distinct indicas 1 ≤
i, j ≤ N ,there is a sequence of non zero element of A

{ai,i1 , ai1,i2 , · · · , ais,j}

where i, i1, i2, ..., is, j are distinct.

Before we represent discrete maximum principle theorem, define some useful sets.
℘N = {1, 2, . . . , N}, ξM = {N + 1, . . . , N + M}\ℓM , ℓM =

∪N
i=1 ℑi,M ,

ℑi,M = {j;N + 1 ≤ j ≤ N + M, ai,j ̸= 0}, 1 ≤ i ≤ N,

ℓM is the set of indices of the boundary point that are connected with some interior point (aij ̸= 0)
ξM is the set of indices of the boundary points which are not connected with any interior points.
generally ξM is the set of indices of the corner points.

Theorem 3.2. (Discrete maximum principle) Suppose that aii > 0 , aij ≤ 0 , i ̸= j 1 ≤ i ≤ N
1 ≤ j ≤ N + M

N+M∑

j=1

aij ≥ 0,

and A = (aij) 1 ≤ i, j ≤ N is irreducibly diagonally dominate. Let (w1, w2, . . . , WN+M ) satisfy

N+M∑

j=1

aijwj < 0 1 ≤ i ≤ N,

if there exists r (1 ≤ r ≤ N) such that

max
1≤j≤N+M

wj = wr ≥ 0.

Then

wj = wr, j ∈ ℘N ∪ ℓM ,

wj ≤ wr, j ∈ ξM .

Proof. Because of A is irreducible for any k ,(1 ≤ k ≤ N) according lemma (3.1) a sequence of
nonzero elements of A there is {ar,i1 , ai1,i2 , . . . , ais,k}. Thus we have

0 ≥
N+M∑

j=1

ar,jwj = ar,rwr +
N+M∑

j=1
j ̸=r

ar,jwj

≥ −
N+M∑

j=1
j ̸=r

ar,jwr +

N+M∑

j=1
j ̸=r

ar,jwj =

N+M∑

j=1
j ̸=r

=

N+M∑

j=1
j ̸=r

ar,j(wr, wj)

= −ar,i1(wr − wi1) −
∑

j∈ℑr,M

ar,j(wr − wj) −
N∑

j=1
j ̸=r
j ̸=i1

ar,j(wr − wj) ≥ 0.
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By considering ar,i1 < 0 ,ar,j < 0, j ∈ ℑr,M ,we get

wi1 = wr

wj = wr, j ∈ ℑr,M .

The same arguments yield
wi1 = wi2 = · · · = wis = wk = wr,

wj = wr j ∈ ℑr,M , i = i1, i2, . . . , is, k.

Since k (1 ≤ k ≤ N) is arbitrary, we obtain

wj = wr, j ∈ ℘N ∪ ℓM ,

it is clear that wj ≤ wr j ∈ ξM .

Now, we give an example to illustrate the discrete maximum principle. For a given domain
[a, b], we consider a uniform discretization with mesh size h = 1 such that

xi = ih, i = 0, 1, · · · , n, a = x0 < x1 < · · · < xn = b.

We consider problem (1) as u(4) = −4u
′′

and then we apply the central finite difference method
for this equation. For n = 6, we write the matrix form of this discretization as follow




1 0 −1 0
0 2 0 −1

−1 0 2 0
0 −1 0 2







u1

u2

u3

u4


 =




−α1

g0

α2 − g1

g1


 .
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Numerical analysis of fractional differential equation by

wavelets

A.H.Refahi Sheikhani
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Abstract

In this paper, we introduce methods baised on operational matrix of fractional
integration for solving a typical n-term non-homogeneous fractional differential equa-
tion (FDE). We use Block-puls, Haar wavletes and Hybrid of Block-pulse functions
and shifted Legendre polynomials matrices of fractional integration where a fractional
derivative is defined in the Caputo sense. By uses these methods we translate an FDE
to an algebric liear equations. Methods has been tested by some numerical examples.
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1 Introduction

In recent years, study on application of the FDE in science has attracted increasing at-
tention [5, 6, 7]. For instance, Bagley and Torvik formulated the motion of a rigid plate
immersing in a Newtonian fluid[1]. It shoulld be mentioned that the main reasons for the
theoretical development are mainly the wide use of polymers in various fields of engineering
[8, 9, 11, 12]. An FODE in time domain can be described as the following form,

an(aD
αn
t y(t)) + · · ·+ a1(aD

α1
t y(t)) + a0(aD

α0
t y(t)) = u(t), (1)

subject to the initial conditions y(i)(a) = di, i = 0, ..., n, where ai ∈ R,n < α ≤ n+ 1, 0 <
β1 < β2 < ... < 1 < α, and aD

αn
t y(t) denotes the caputo fractional derivative of order α.

We begin by introducing some necessary definitions and theorems of the fractional calculus
theory. In 1.1 the operational matrices of fractional order integration for some wavelets
are obtained. Section 2 is devoted to applying the operational matrices of fractional order
integration for solving FODE. Also in 2.2 the proposed methods are applied to an example.

1.1 Definitions and theorems

Definition 1.1. The Riemann-Liouville fractional integral of order α is

Iα(f(x)) =a D
−α
t f(x) =

1

Γ(α)

∫ x

a
(x− τ)α−1f(τ)dτ ;α > 0 (2)
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Definition 1.2. The fractional derivative of f(x) by means of Caputo sense is defined as

aD
α
xf(x) =

1

Γ(n− α)

∫ x

a
(x−τ)n−α−1f (n)(τ)dτ ;n−1 < α ≤ n, n ∈ N, x > 0, f ∈ Cn−1 (3)

The relation between the RiemannLiouville operator and Caputo operator is given by the
following expressions[2]:

IαaD
α
xf(x) = f(x)−

n−1∑

k=0

f (k)(0+)
(x− a)k

k!
, x > 0. (4)

Definition 1.3. The m-set of block-pulse functions is defined as:

bi(t) =

{
1 ; ηi

m ≤ t ≤
η(i+1)
m

0 ; otherwise
Where i = 0, 1, 2, · · · ,m− 1. (5)

Definition 1.4. (The Haar Wavelet Function) Let [0, η) be an interval, we define h0(t)
and h1(t) on [0, η) as follows

h0(t) = 1√
η

{
1 ; 0 ≤ t < η
0 ; otherwise

h1(t) = 1√
η





1 ; 0 ≤ t < η
2

−1 ; η
2 ≤ t < 1

0 ; otherwise
, (6)

and for i = 2j + k , j > 0 , 0 ≤ k ≤ 2j − 1, we define hi(t) = 2
j
2√
ηh1(2

jt− k).

Definition 1.5. The shifted Legendre polynomials are defined on the interval [0,1] and
can be determined with the aid of the following recurrence formulae[4]:

Pi+1(x) = (2i+1)(2x−1)
i+1 Pi(x)− i

i+1Pi−1(x), i = 1, 2, ...

Theorem 1.6. A function f(x) ∈ L2([0, T1)) may be expanded by the Block-puls functions
as:

f(x) ' F TBm(x);F =
(
f1 · · · fm

)
, Bm(x) =

(
b1(x) · · · bm(x)

)
. (7)

The Block-pulse coefficients fi are obtained as fi = 1
h

∫ ih
(i−1)h f(x)dx.

Proof. [3]

Theorem 1.7. Any function y(t) ∈ L2[0, η) can be decomposed as

y(t) ' CTHm(x);C =
(
f1 · · · fm

)
, Hm(x) =

(
h1(x) · · · hm(x)

)
. (8)

c′is are determined by ci = 2j
∫ η
0 y(t)hi(t)dt i = 2j + k, j > 0, 0 ≤ k ≤ 2j − 1.

Proof. [3]

Definition 1.8. Hybrid function of Block-pulse and shifted legender hyi,j(x) , i =
0, ...m− 1 and j = 0, ..., n− 1 are defined on the interval [0, 1) as

hyi,j(x) =

{
Pj(mx− i); i

m ≤ x < i+1
m

0 ; otherwise
, (9)

Now for approximate the functione f(x) we can set f(x) ' CTHynm(x) where
CT =

(
c0,0 · · · c0,n−1c(m−1),(n−1)

)
, Hymm(x) =

(
hy0,0(x) · · · hy(m−1),(n−1)(x)

)
,

and ci,j =
<f(x),hyi,j>
<hyi,j ,hyi,j>

where < u(x), v(x) >=
∫ 1
0 u(x)v(x)dx [10]
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2 Main results

In this Section we intriduse operational matrix methods baised on Block-pulse and Haar
wavelets and Hybrid of Block-pulse and shifted Legendre. Afterward we apply it to the
FDE as Eq. 1. Firstly we construct operational matrices.

2.1 Operational matrices of fractional order integration

Let Fα be the operational matrix of fractional integration for Block-pluse wavelet [2],
Then the Haar wavelet operational matrix derive as following

Pαm×m = Hm×mFαH
−1
m×m;Hm×m =

(
Hm(t0) · · · Hm(tm−1)

)
, ti =

2i+ 1

2m
. (10)

Now let Hynm ' ΦBmn(x) and IαHynm(x) = QαHynm(x) then we can construct opera-
tional matrix of fractional order integration for Hybrid functions as:

Qα = ΦFαΦ−1. (11)

In order to show the efficiency of operational matrix, we apply it to solve an example.

2.2 numerical examples

Example 2.1. Consider the following initial value problems Bagley-Torvik equation

D2y(x) +D
3
2 y(x) + y(x) = 1 + x ; y(0) = 1, y′(0) = 1. (12)

The exact solution is y(x) = 1 + x, [4]. The integral representation of Eq. (21) is:

y(x)− x− 1 + I
1
2 (y(x)) + I

1
2 (−x− 1) + I2(y(x)) = I2(1 + x). (13)

Now We consider three operational matrix of fractional order integration method to solve
numerical solution of eq.(19).Set

y(x) = CTb Bm(x) = CThHm(x) = CThyHynm(x) (14)

1 + x = CT1bBm(x) = CT1hHm(x) = CT1hyHynm(x). (15)

Then Eq. (22) can be represented in matrix form as:

CT (Im +O
1
2 +O2) = CT1 (Im +O

1
2 +O2), (16)

where O denote F , P and Q in Block-pulse, Haar and Hybrid operational matrix respec-
tivelly.This shows that CT = CT1 . Thus we have CTBm(x) = CT1 B(x) = 1 +x which is the
exact solution.

Conclusion

This article uses Block-pulse, Haar and Hybrid operational matrix method to solve FDE
by combining these functions with operational matrix of fractional order integration. We
translate the initial equation into a linear algebric equation which is easily to solve. The
example shows that the mothod can be more efficient.
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Numerical solution of Hammerstein Volterra integral

equations by using of polynomials

Ali Darijani∗

Higher Education complex of Bam.

Abstract

In this paper, the solution of nonlinear Volterra integral equations is approximated
with polynomials. These approximate solutions are obtained based on a minimization
method. In addition, the existence and convergence of these approximate solutions
are investigated, Also, it is shown which are very near to the best approximation. In
order to use Newton’s method for minimization, a suitable initial point is introduced.
Keywords: Nonlinear Volterra integral equations, Minimization, Initial point.

1 Introduction

In this paper, author intend to solve a large class of these equations which are called as
Hammerstein Volterra integral equations and their general form is as follows:

y(x) =

∫ x

0
k(x, t)F (y(t))dt+ g(x), 0 ≤ x ≤ 1 (1)

where functions k(x, t), F (y(t)) and g(x) are known and y(x) is the unknown function to
be determined. Here, the kernel k and the functions F and g are assumed to be continuous
and also, it is supposed that the equation (1) has a unique continuous solution on [0, 1].
There are many numerical methods for solving Hammerstein Volterra integral equations ,
for example, Maleknejad and his co-authors obtained a numerical solution of these equa-
tions by using Bernsteins approximation[1] and using Chebyshev polynomials[2]. In [3]
J. Saberi-Nadjafi, M. Mehrabinezhad and H. Akbari Solved Volterra integral equations
of the second kind by wavelet-Galerkin scheme. Most of these methods are based on the
appropriate linear combinations of some basic functions such as Chebyshev polynomials,
Bernstein polynomials, Taylor polynomials, wavelets. In order to increase the rate of
the convergence for approximate solutions, we approximate the solution by some linear
combinations of polynomials. In order to obtaining this polynomials for the solution ap-
proximation of integral equation, author is developed and innovated exists methods in the
work [4] in which leads to the highly significant results. Based on the proposed method,
the problem of solving a nonlinear integral equation is converted to a minimization prob-
lem of unconstrained nonlinear programming. This new approach obtained polynomial
solutions in which are very close to best polynomial approximations.
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2 Method description and fundamental theorems

Let me consider the operator R corresponding to equation (1) as the following:

R[z](x) = z(x)−
∫ x

0
k(x, t)F (z(t))dt− g(x), (2)

where, z is a function defined on [0, 1]. Suppose that the approximate solution of Eq.(1)
is presented as the following form

yn(x) = a0ϕ0(x) + a1ϕ1(x) + ...+ anϕn(x), (3)

where the parameters ai’s are unknown constants and ϕi(x) = xi, (i = 0, 1, ..., n).

Definition 2.1. Let M be a positive number and sufficiently large, y∗n = a∗0ϕ0 + a∗1ϕ1 +
· · ·+ a∗nϕn is called the approximate solution for equation (1) if

Mn‖R[y∗n]‖∞ + ‖y∗n‖∞ = min
(a0,a1,...,an)

(Mn‖R[yn]‖∞ + ‖yn‖∞), (4)

where yn = a0ϕ0 + a1ϕ1 + · · ·+ anϕn, and ‖R[yn]‖∞ = max0≤x≤1 |R[yn](x)|.

Lemma 2.2. [Existence] For each positive integer n, there exists the approximate solution
y∗n introduced as in the above definition.

Lemma 2.3. The sequence {y∗n} generated by the proposed method is uniformly bounded.

Theorem 2.4. The sequence {y∗n} is convergent to the exact solution of Equation (1).

Conclusion I: It concludes the sequence {y∗n} is the approximate solution of the min-
imization problem following:

min
yn∈A

‖R[yn]‖∞ (5)

where A = {yn | ‖yn‖∞ ≤ N} and N is sufficiently large. It is clear that equation (5) has
optimum solution ỹn and the sequence {ỹn} is convergent to y∗. Since y∗n is the optimum
solution of the problem (4) then

| ‖R[y∗n]‖∞ − ‖R[ỹn]‖∞ | ≤ (
1

M
)n(‖ỹn‖∞ − ‖y∗n‖∞). (6)

By considering M is very large and ‖ỹn‖∞ − ‖y∗n‖∞ is convergent to zero then concluded

‖R[y∗n]‖∞ ∼= ‖R[ỹn]‖∞. (7)

Applying Gronwall’s inequality on R[y∗n]−R[ỹn], definition R[y∗n], using of theorem 2.4.6
in [5] and Eq.(7) lead to

‖y∗n − ỹn‖∞ = O(
1

2n(n+ 1)!
), ‖ỹn − y∗‖∞ = O(

1

2n(n+ 1)!
), ‖y∗n − y∗‖∞ = O(

1

2n(n+ 1)!
).

(8)
From (8) is concluded that ỹn and y∗n are very close to each other and their convergence
rate is very high.
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3 More Computational Operations

In this section, it is illustrated the calculation method for the determination of the un-
known parameters of the approximate solution. According to conclusion I, it is sufficient
to solve the following mathematics programming problem:

min σ
s.t
|L[yn](x)| ≤ σ, ∀x ∈ [0, 1]

σ ≥ 0.

(9)

Of course the bounded condition of the solution of problem (9) must be considered which
by the choosing of suitable initial point in the Newton’s iterative method is guaranteed
y∗n ∈ A . To solve the above problem, a finite number of points xi, i = 1, 2, ...,m is selected
in interval [0, 1] and solve the following mathematical programming problem:

min σ
s.t
|L[yn](xi)| ≤ σ, i = 1, 2, ...,m

σ ≥ 0.

(10)

The numbers and positions of these points are selected such that the optimum value
of Eq.(10) is approached to that of Eq.(9). But for obtaining the optimum solution of
problem (10), it is sufficient to solve problem as following in which theirs optimum solutions
is the same min(a0,a1,...,an)

∑m
i=1(L[yn](xi))

2. The Newton’s iterative method is used for
minimizing of this expression. It is obvious that the rate of convergence of this method
depends on a suitable initial point which will be discussed in the next section.

3.1 Initial point

It is well known that the initial guesses for Newtons iterative method are very important.
To choose the initial guesses, in the first stage, the solution of (1) is approximated by the
constant polynomial y0(x) = a0. Since y∗ is continuous and usually does not have large
oscillations and especially y∗(0) = g(0), then solving the problem mina0∈B ‖R[y0]‖∞ where

B = {g(0) − 1, g(0) − 1 +
2

m
, · · · , g(0) + 1 − 2

m
, g(0) + 1} leads to obtaining polynomial

approximation of degree zero for y∗. Next, the solution of (1) is approximated by a
polynomial of degree at most one and use the approximate solution in the first stage as
initial guess in this stage. In the way same, this approach is continued until polynomials
of upper degree yield for the approximation of y∗.

4 Numerical examples

In this section, it is used the method discussed of the previous sections for solving some
examples, at first introduce maximum absolute error:

en = maxx∈[a,b] |y∗n(x)− y∗(x)|, (11)

where y∗n is the approximate solution obtained by the presented method.
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Example 4.1. Consider the equations :

y(x) = ex − (x+ 1)sin(x) +

∫ x

−1
sin(x)e−2ty2(t)dt, x ∈ [−1, 1] (12)

y(x) = −x3(−1 + esin(x)) + sin(x) +

∫ x

0
x3 cos(t)ey(t)dt, x ∈ [0, 1] (13)

whose the theirs exact solutions are y(x) = ex and y(x) = sin(x), respectively. Maxi-
mum absolute errors by current method are shown in table 1. Also, table 1 indicates that
the results of this method having a rapid rate of convergence.

Table 1: Maximum absolute errors based on proposed method

n 2 4 6 8 10 12

en in (12) 0.10 0.10e− 2 0.67e− 5 0.22e− 7 0.44e− 10 0.65e− 13
en in (13) 0.24e− 1 0.12e− 3 0.40e− 5 0.74e− 7 0.77e− 9 0.43e− 11

5 Conclusion

In this paper, the approximate solution of nonlinear Volterra integral equations is pre-
sented as a linear combination of some basic monomials. The unknown coefficients are
calculated based on the minimization of the residual function. In addition, the existence
and convergence of approximate solutions are investigated. This problem was solved by
using Newton’s method with a suitable initial point. It was observed that the approximate
solutions based on the proposed method are very near to the best approximation.
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Numerical solution of Volterra integral equations of the

second kind on Adomian decomposition method on the

Taylor series with step length of h

Malek Karimian∗

Department of Mathematics, Payam Noor University,

PO Box19325-3697 Tehran, Iran,

Abstract

In this paper, a new method for solving Volterra integral equations of the second
kind on Adomian decomposition method on Taylor series expansion is evaluated with
step length h ,then this method is used for the numerical solution of second kind
Volterra equation integral ,the proposed method compared to the approximate solution
of the problem have much less error.

Keywords: Numerical solution; Taylor series; Step length; Volterra integral equa-
tions; Adomian decomposition.
Mathematics Subject Classification [2010]: 45G05

1 Introduction

In this function

u(x) = f(x) +

∫ x

0
k(x, t)u(t)dt (1)

that is a Volterra equation integral of the second kind resolved into component that will
determine , in which the u(x) is unknown function, f(x) is known function and k(x, t) is
integral equation kernel.

Assume the functions k(x, t), kx(x, t), ...f, fx,...for 0 ≤ x ≤ T and 0 ≤ t ≤ x is contin-
ues. Then the equation (1) has uniqueness of a solution. Assume that u(x) =

∑∞
0 uj(x)

by utilize finite number of terms of the series(x = xi+1and xi+1−xi = h)which u0(xi+1) =
f(xi+1) , u(xi+1) =

∑n
0 uj(xi+1) approximation is heading. At each step of Taylor series

expansion we get function uj(xi+1) to return j = 1, 2, . . . , n.In this method, the focus is
on non- homogeneous Volterra integral equation of the second kind (1) in which k(x, t) is
the kernel of equation.

This equation try using an decomposition method on Taylor expansion by step length
h as a number of the equation (1) are deliberation .

As respected to the Adomian decomposition for solving Volterra equations:

u0(x) = f(x), un(x) =

∫ x

0
k(x, t)u(t)dt (2)
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Lemma 1.1. Suppose F is a continuous function if u(x) = f(x) +
∫ x
0 k(x, u)du In this

case, the derivative with respect to x is obtained from the following equation.

u
′
(x) = f

′
(x) + F (x, u) +

∫ x

0

∂

∂x
F (x, u)du

Proof: See [1]

Example 1.2. consider the answer of Volterra integral equation of the second kind , the
length step h = 0.1

u(x) = 1 +

∫ x

0
u(t)dt

The exact solution to the equation u(x) = ex and for thex = 0.2 to 8 decimal

u(0.2) = e0.2 ∼= 1.22140275

And results obtained from the mentioned method

u0(x) = f(x), u0(0.2) = 1

u1(0.2) = 0.2, u2(0.2) = 0.02, u3(0.2) = 0.00140267 u(0.2) ∼= u0+u1+u2 ∼= 1.22140267

The error of this method is error = 8.81601698 × 10−8.

Example 1.3. consider the answer of Volterra integral equation the second kind , with
the length steph = 0.02,

u(x) = x3 − x5 + 5

∫ x

0
tu(t)dt

that the exact answer is u(x) = x3 And forx = 0.12 we have

u(0.12) = (0.12)3 ∼= 0.001728

The proposed method forx0 = 0.1 and x1 = 0.12 is as follows

u(x) ∼= u0(x1) + u1(x1) + u2(x1) ∼= 0.0017276

The error is error = 4 × 10−7.

2 Main results

From Taylor expansion of the relationship (2) and return n = 1around x = xi

u1(xi+1) = u1(xi) + hu
′
1(xi) +

h2

2!
u
′′
1(xi) + · · · +

hj

j!
uj(xi). (3)
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If we use the lemma (1.1) and relationships (1), (3).

u
(j)
1 (xi) =

j∑

r=1

(
j
r

)
(

(
∂j−1

∂xj−1i

k(xi, xi)

)
u
(r−1)
0 (xi) +

∫ xi

0

∂j

∂xji
k(xi, t)u0(t)dt).

(4)

By substituting the equation(4) in equation (3):

u1(xi+1) =

∫ xi

0
k(xi, t)u0(t)dt.+

n∑

j=1

(

j∑

r=1

(
j
r

) hj
j!

(
∂j−1

∂xj−1i

k(xi, xi)

)
u
(r−1)
0 (xi) +

hj

j!

∫ xi

0

∂j

∂xji
k(xi, t)u0(t)dt). (5)

(6)

Where u0(xi) = f(xi).With going on this approach by j = n and with the use of Taylor
series expansion for the relationship (3)around x = xi

un(xi+1) =

∫ xi

0
k(xi, t)u0(t)dt.+

n∑

j=1

(

j∑

r=1

(
j
r

) hj
j!

(
∂j−1

∂xj−1i

k(xi, xi)

)
u
(r−1)
n−1 (xi) +

hj

j!

∫ xi

0

∂j

∂xji
k(xi, t)un−1(t)dt). (7)

If the value of h in equation (6)is neighbor to zero , we can waive then h third powers
(O(h3)) to function 1 ≤ j ≤ n, uj(xi+1)

un(xi+1) =

∫ xi

0
k(xi, t)un−1(t)dt (8)

+h

(
k(xi, xi)un−1(xi) +

∫ xi

0
k(xi, t)un−1(t)dt

)

h2

2

(
2 ∂
∂xi
k(xi, xi)un−1(xi) + k(xi, xi)u

′
n−1(xi)

+
∫ xi
0

∂2

∂x2i
k(xi, t)un−1(t)dt

)
+O(h3).

We get the answer

u(xi+1) = u0(xi) + u1(xi) + u2(xi) + ...

3 Result

The results suggest that to find the value of Volterra equations with an decomposition
method based on Taylor series expansion by step length h using any more words it will
apply with high accuracy, and it can be applied as a good approximation for the numerical
solution of integral equations
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On solving of the matrix equation AX = B with respect to

semi-tensor product

Badrosadat Afzali Borujeni∗

University of Shahrekord

Abstract

This paper studies the solutions of the matrix equation AX = B with respect to
semi-tensor product. Firstly, the matrix-vector equation AX = B with semi-tensor
product is discussed. Compatible conditions are established for the matrices, and a
necessary and sucient condition for the solvability of the matrix-vector equation is
proposed and several examples are presented to illustrate the eciency of the results.

Keywords: Matrix equation, matrix-vector equation, semi-tensor product, Kronecker
product
Mathematics Subject Classification [2010]: 65-XX, 65FXX, 65F10, 65N22

1 Introduction

In this paper, we study the solutions of the matrix equation AX = B with respect to
semi-tensor product, where A ∈ Mm×n , B ∈ Mh×k are known, and X is to be solved.
The semi-tensor product of matrices is proposed by Daizhan Cheng in order to solve
linearization problem of nonlinear systems, and a detailed introduction can be found in
[1]. Classical matrix theory is good at dealing with bilinear functions, but it can hardly
be used for multilinear functions. However, using the semi-tensor product method, a
multilinear function can be easily described in a matrix expression. Besides this, the
semi-tensor product of matrices is proved to be a powerful tool in many other elds. By
semitensor product, a logical system can be converted into an algebraic equation with the
same form as a discrete system, and kinds of control problems of logical systems are studied
[2]. Moreover semitensor product is well used in game theory [3], nonlinear systems, graph
coloring [7] and fuzzy logic systems [4]. During the research, some matrix equations with
semi-tensor product are involved.

Definition 1.1. let A = [aij ] ∈ Mm×n and B = [bij ] ∈ Mp×q. The Kronecker product of
A and B is defined as

A ⊗ B =




a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB


 ∈ Mmp×nq (1)
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Lemma 1.2. let A ∈ Mm×n and B ∈ Mm×k be given, and X ∈ Mn×k be unknown. The
solvability of the matrix equation AX = B is quivalent to the solvability of the matrix-
vector equation

(Ik ⊗ A)Vc(X) = Vc(B). (2)

Next we give a brief introduction of the semi-tensor product of matrices.

Definition 1.3. A Toeplitz matrix or diagonal-constant matrix is a matrix in which each
descending diagonal from left to right is constant. For instance, the following matrix is a
Toeplitz matrix: 


a b c d
e a b c
f e a b




In this section, we discuss the solvability of the matrix-vector equation with semi-tensor
product

AX = B (3)

where A ∈ Mm×n and B ∈ Mh×k are known. The problem is to nd a vector X satisfying
matrix-vector equation (3). Firstly, we start from the simple case m = h. Then the general
case is studied.

Theorem 1.4. The matrix equation AX = B, X ∈ Mp×q, with semi-tensor product is
equivalent to the following matrix-vector equation with conventional matrix product

(Iq ⊗ A)Vc(X) = Vc(B),

where

A =
(
Vc(Â1) Vc(Â2) ... Vc(Âq)

)
=




A1 Aα+1 . . . A(p−1)α+1

A2 Aα+2 . . . A(p−1)α+2
...

...
. . .

...
Aα A2α . . . Apα


 ,

and Ai is the i-th column of A.

Lemma 1.5. If matrix-vector equation (3) has a solution, then
n

k
must be a positive

integer, and the solution must belong to Cp ,where p =
n

k
.

Lemma 1.6. (1) If matrix equation (3) has a solution,
h

m
must be a positive integer;

(2) If a matrix with certain size p × q is a solution of matrix equation (3), we have that

p =
n

α

h

m
, q =

k

α
, where α is a common divisor of n and k, and satises gcd{α,

h

m
} = 1.

Corollary 1.7. Matrix equation (3) has a solution belonging to Mp×q if and only if the
following rank condition holds

rankA = rank
(
A Vc(B̂1) Vc(B̂2) ... Vc(B̂q)

)
.
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Example 1.8. 1) Take

A =

(
1 2 1 1
0 1 1 0

)
, B =




1 −1 2 2
4 1 −1 2

−1 4 1 −1
0 0 2 1
2 0 0 2

−1 2 0 0




Solution. By Lemma 1.5, the admissible sizes are 3 × 1, 6 × 2, 12 × 4, and it is easy to

verify that Xa =
(
1 2 −1

)T
is a solution of matrix equation (3). Hence Xa ⊗ I2,Xa ⊗ I4

are also solutions of the matrix equation(3). By Corollary 3, matrix equation (3) does not
have the unique solution for admissible size 12 × 4, butXa ⊗ I2 is the unique solution for
admissible size 6 × 2.By Remark 3, Xa is the unique solution for admissible size 3 × 1. 2)
Take

A =




1 2 1 1
0 1 1 0
1 0 1 1
0 0 1 1


 , B =




1 0 1 0 0 1 1 0 1 0
0 1
1 1 0 0 0 0 1 1 0 1
0 0
0 1 1 0 0 0 0 1 1 0
1 0
2 0 1 1 0 0 0 0 1 0
0 1




T

By Lemma 5, the admissible sizes are 3×1, 6×2, 12×4. We can verify that A is invertible
and

Xa =




1 0 0 0 0 0 0 0 1 0
0 0
0 1 0 0 0 0 0 0 0 1
0 0
0 0 1 0 0 0 0 0 0 0
1 0
0 0 0 1 0 0 0 0 0 0
0 1




T

is the unique solution for admissible size 12 × 4,so Xb =
(
1 0 1

)T
is the unique solution

for admissible size 3 × 1 and Xc = Xb ⊗ I2 is the unique solution for admissible size 6 × 2.
In the following, we assume that m | h and investigate the solvability of the equation.
Similarly, we give a necessary condition for the solvability of the matrix equation.

Theorem 1.9. Suppose that matrix equation (3) has a solution belonging to Mp×q Split

B into blocks of size
h

m
by

k

q
, then each block is a Toeplitz matrix. Actually, matrix B is

required to be in the following form:

B =




Block11(B) . . . Block1q(B)
. . . . . . . . .

Blockm1(B) . . . Blockmq(B)


 , (4)
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where Blockij(B) ∈ M h

m
×

k

q

,i = 1, ..., m, j = 1, ..., q are Toeplitz matrices.

To obtain all the solutions of matrix equation (3), rstly we gure out the admissible
sizes satisfying the condition in Theorem 1.8. Then for each size p, the solutions of
matrix equation (3) can be obtained via solving q matrix-vector equations with semi-
tensor product. The rest is to solve the matrix-vector equations with semi-tensor product,
which is the same as last section. We do not repeat it. Besides this, for each size p, matrix
equation (3) can be transformed into the simple case m = h, and the solutions can be
derived according to Theorem 1.4.

Remark 1.10. For a admissible size, even though it satises the condition in Theorem 1.9,
there may be no solution for the matrix equation.

2 Main results

In this paper, the solvability of the matrix-vector equation AX = B with semi-tensor
product has been considered. For this case, compatible conditions of matrices have been
derived, and a necessary and sucient condition for the solvability has been established.
Furthermore, concrete solving methods have been provided. Based on this, the solvability
of the matrix equation AX = B with semi-tensor product has been studied. Similarly,
compatible conditions, solvability conditions, and concrete solving methods of the matrix
equation have been developed as well. For each part, several examples have been presented
to illustrate the eciency of the results.
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Real orthogonal eigenvalue decomposition of symmetric

normal matrices

Elham Nobari

Mazandaran University of Science and Technology

Abstract

We propose an algorithm for eigenvalue decomposition of symmetric normal com-
plex matrices via real orthogonal transformations. This algorithm answers positively
to the open question which is raised in [M. Ferranti, R. Vandebril, Computing eigen-
values of normal matrices via complex symmetric matrices, J. Comput. Appl. Math.,
vol. 259, (2014), part A, 281-293].

Keywords: normal matrix, eigenvalue decomposition, real orthogonal transforma-
tion, common eigenvector.
Mathematics Subject Classification [2010]: 65F15, 65F30.

1 Introduction

There are various well-known methods for finding eigenpairs of complex matrices. Most of
these methods are based on a two-step approach, first the original matrix is transformed to
a unitary similar matrix of suitable shape, e.g. tridiagonal or Hessenberg matrix and then
using standard methods like QR-methods, divide-and-conquer, etc. (see[3]) to compute
the eigenvalue of a matrix. Though these two-step methods reduced the cost, but some
of the properties of the original matrix can be neglected in these procedure. For example,
when a symmetric normal matrix transformed to a tridiagonal matrix, the transformed
matrix may not be normal anymore. In fact, a matrix is normal and symmetric if and
only if it admits a real orthogonal eigenvalue decomposition [4], i.e. there are a real
orthogonal matrix Q and a diagonal matrix Λ for a symmetric normal matrix A such that
A = QΛQT . In this paper, we propose an algorithm for eigenvalue decomposition of any
symmetric normal matrix A using only real orthogonal transformations.

Theorem 1.1. [?] Let x,y ∈ Cn be given and ‖x‖2 = ‖y‖2 > 0. If x = eiθy for some θ,
let U(x,y) = eiθIn; otherwise, let φ ∈ [0, 2π) be such that y∗x = eiφ|y∗x| (take φ = 0 if
y∗x = 0), let ω = eiφy− x and let U(x,y) = eiφ Uω, in which Uω = I − 2(ω∗ω)−1ωω∗ is a
Housholder matrix. . Then U is unitary and U(x,y)y = x.

Theorem 1.2. [?] Let A ∈ Mn(C) be partitioned as A =

[
A11 A12

0 A22

]
, in which A11 and

A22 are square. Then A is normal if and only if A11 and A22 are normal and A12 = 0.

Lemma 1.3. [?] Let N ⊂Mn(Cn) be a commuting family of matrices, then some nonzero
vector in Cn is an eigenvalue of every A ∈ N .
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Let A ∈ Mn be a symmetric and normal matrix. If A = B + iC in which B and C
are real then it is easy to check that B and C are symmetric matrices too and {B,C} is
a commuting real normal family.

Theorem 1.4. [?] Let A ∈ Mn(R) be a normal matrix. There is a real orthogonal Q ∈
Mn(R) such that QTAQ is a real quasidiagonal matrix

A1

⊕
· · ·
⊕

Am ∈Mn(R),

each Ai is 1-by-1 or 2-by-2. The 1-by-1 direct summands display all the real eigenvalues

of A and each 2-by-2 direct summand has special form

[
a b
−b a

]
in which a, b ∈ R, b > 0;

it is normal and has eigenvalues a± ib.

In this theorem if in addition, A is a symmetric real matrix then it can not admit

summand of the form

[
a b
−b a

]
. Therefore there are an orthogonal real matrix Q and an

diagonal matrix Λ in which its diagonal entries are eigenvalues of A, such that QTAQ = Λ.

2 Main results

We want to construct an real orthogonal matrix Q such that QTAQ = Λ be a diagonal
matrix. For this aim, we use the Schur theorem and the construction which has been
used in its proof as follows. Assuming A be a real symmetric matrix and λ1, · · · , λn
be its eigenvalues in any prescribed order and x ∈ Rn be a unit eigenvector of A. Let
U1 = sign(x1)In if x = ±e1 and U1 = sign(x1)Uω otherwise, where ω = sign(x1)e1 − x,
see Theorem 2.1 and x1 is the first component of x. Therefore U1 = [x u2 · · · un] and

UT1 AU1 = UT1 [Ax Au2 · · · Aun]

= UT1 [λ1x Au2 · · · Aun]

=




xT

uT2
...

uTn


 [λ1x Au2 · · · Aun]

since U1 is an orthogonal matrix hence UT1 AU =

[
λ1 F
0 A1

]
. In the other hand, since

[
λ1 F
0 A1

]
is symmetric and real matrix so we have UT1 AU =

[
λ1 0
0 A1

]
by Theorem 1.2.

We have A1 = [uTi Auj ]
n
i,j=2 and λ2, · · · , λn are its eigenvalues. Similarly we can find V2

such that V T
2 A1V2 =

[
λ2 0
0 A2

]
, let U2 = [1]

⊕
V2 so (U1U2)

TA(U1U2) =



λ1 0 0
0 λ2 0
0 0 A2


.

Finally, this procedure yields to matrices Ui ∈ Mn−i+1(R), i = 1, · · · , n − 1. Now, let
Q = U1U2 · · ·Un−1 . Suppose that A be a symmetric and normal matrix, one can write
A = B+iC where B and C are real and symmetric matrices and BC = CB. Let λ1, · · · , λn
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and µ1, · · · , µn be the eigenvalues of B and C respectively, and x be a common eigenvector

of B and C. As we saw, we can write UT1 BU1 =

[
λ1 0
0 B1

]
and UT1 CU1 =

[
µ1 0
0 C1

]
for

(n-1)-by-(n-1) matrices B1 and C1, we have B1C1 = C1B1 since BC = CB. Therefore

QTBQ = diag(λ1, ..., λn) and QTCQ = diag(µ1, ..., µn

hence
QTAQ = QT (B + iC)Q = diag(λ1 + iµ1, ..., λn + iµn)

We saw that there exists a real orthogonal matrix Q such that QTBQ = Λ1 and
QTCQ = Λ2 are diagonal matrices, hence we have the eigenvalue decomposition A =
QΛQT . For getting this decomposition, we need a common eigenvector of B and C which
we know that it exists, see Lemma 1.3. Suppose Cy = µy for an eigenvector y ∈ Rn
and eigenvalue µ ∈ R of the matrix C. Let k be the greatest integer such that the set
{y, By, · · · , Bky} is an linearly independent set. Let W = span{y, By, · · · , Bky} be the
linear space of these vectors. Obviously, the vector space W is B-invariant and each
non-zero vector in W is an eigenvector of C, because

C(Bjy) = Bj(Cy) = µ(Bjy), j = 0, 1, · · · , k.

Now, we find an eigenvector of B in W. Using Gram-Schmidt method to construct an
orthogonal basis B′ = {q1, · · · ,qk} for W, then we extend B′ to an orthogonal basis
B = {q1, · · · ,qk,qk+1, · · · ,qn} for Rn. The matrix B is represented in the basis B by
B′ = [qTi Bqj ]1≤i,j≤n. SinceW is B-invariant, we have qTi Bqj = 0 for i = k+1, · · · , n, j =
1, · · · , k.

Therefore B′ =

[
B′′ F
0 F

]
where B′′ = [qTi Bqj ]1≤i,j≤k is a k-by-k matrix. Let λ be

an eigenvalue of B′′ and z = (z1, · · · , zk)T 6= 0 be its associated eigenvector. Let x =
z1q1 + · · · + zkqk. We claim that x ∈ W is a common eigenvector of B and C as we
desired. The i-th entry in the identity B′′z = λz is

k∑

j=1

(qTi Bqj)(zj) = λzi, i = 1, · · · , k.

Multiplying these relations by the vector qi, we have

k∑

j=1

qTi Bqjzjqi = λziqi, i = 1, · · · , k.

Hence, we have
k∑

i=1

k∑

j=1

qTi Bqjzjqi = λ
k∑

i=1

ziqi,

and by definition of x we have

k∑

i=1

(qTi Bx)qi = λx. (1)
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On the other hand Bx ∈ W, so Bx =
∑k

i=1 aiqi for some scalars ai ∈ R, i = 1, · · · , k.
Multiplying this by qTi we have qTi Bx = ai, i = 1, · · · , k. Finally

Bx=
k∑

i=1

(qTi Bx)qi (2)

By (1) and (2) we have Bx = λx. Note that we know that x is eigenvector of C since
x ∈ W, so x is a common eigenvector of B and C.

Example 2.1. Consider the following symmetric normal matrix A,

A =



−1 + 5i 2 4− 14i

2 2 + 3i −2 + 8i
4− 14i −2 + 8i −1 + i


 ,

we can write A = B + iC where

B =



−1 2 4
2 2 −2
4 −2 −1


 and C =




5 0 −14
0 3 8
−14 8 1


 .

A common eigenvector ofB and C is x =



−0.4884
−0.8710
−0.0528


 andQ =



−0.4884 −0.5631 −0.6667
−0.8710 0.3608 0.3333
−0.0528 −0.7435 −0.7435


 .

Therefore

QTBQ =




3.0000 −0.0000 −0.0000
−0.0000 3.0000 0.0000
−0.0000 0.0000 −6.0000


 and QTCQ =




3.4853 −0.0000 0.0000
−0.0000 −13.4853 −0.0000
0.0000 −0.0000 19.0000


 .

Hence

A = Q




3.0000 + 3.4853i 0 0
0 3.0000− 13.4853i 0
0 0 −6.0000 + 19.0000i


QT .

The eigenpair in this example have been computed by Matlab’s eig command.
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Reproducing kernel method for solving a class of Fredholm

integro-differential equations
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Abstract

In this paper, we present a new algorithm in the reproducing kernel Hilbert space
(RKHS) to solve integro-differential equations. The approximation solution is ex-
pressed by n-term summation of reproducing kernel functions. Some examples are
displayed to illustrate the effectiveness and stability of the present method. Results
obtained by the proposed method imply that it can be considered as a simple and
accurate method for solving such integro-differential equation.

Keywords: Reproducing kernel, Integro-differential, Exact solution.

Mathematics Subject Classification [2010]: 47G20, 33F05, 41A10.

1 Introduction

Numerical modeling of integral and integro-differential equations have been paid atten-
tion by many scholars. Several numerical methods have been developed for the solution
of the integro-differential equations. Particularly, in [1-5]. We study a class of Fredholm
integro-differential equations in the reproducing kernel Hilbert space

u(n)(x) = f(x) +

∫ b

a
k(x, t)(Nu(t)) dt, u(k)(x) = αk, 0 ≤ k ≤ n− 1, n ≥ 0, (1)

where u(n)(x) is the nth derivative of the unknown function u(x) that will be determined,
k(x, t) is the kernel of the integral equation, f(x) is an analytic function, N(u) is a linear
function of u. Our aim in this paper is to obtain the analytical solutions by using the
reproducing kernel method.
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2 Reproducing kernel Hilbert space

In this section, to solve Eq. (1), first, we define some useful reproducing kernel spaces
oWn+1[a, b].

Definition 2.1. oWn+1[a, b] = {u(n)(x) is an absolutely continuous real value function,
u(n+1)(x) ∈ L2[a, b]}, u(a) = α0, u

′(a) = α1, · · ·u(n)(a) = αn}. The inner product and
norm in oWn+1[a, b] are given respectively by

⟨u, v⟩ =

n∑

i=0

u(i)(a)v(i)(a) +

∫ b

a
u(n+1)(x)v(n+1)(x) dx, (2)

and
∥u∥m =

√
⟨u, u⟩m, u, v ∈ oWn+1[a, b]. (3)

It easy to see that ⟨u, v⟩oW n+1[a,b] satisfies all the requirements for the inner product.
The space oWn+1[a, b] is a reproducing kernel Hilbert space [6]. There exists Ry(x) ∈
oWn+1[a, b], for any u(y) ∈ oWn+1[a, b] and each fixed x ∈ [a, b], y ∈ [a, b], such that
⟨u(y), Rx(y)⟩ = u(x). We subsequently obtain a representation of the reproducing kernel
in oWn+1[a, b].

The reproducing kernel Ry(x) can be denoted by

Ry(x) =

{
R1(x, y) =

∑2n+2
i=1 ci(y)x

i−1, y ≤ x,

R2(x, y) =
∑2n+2

i=1 di(y)x
i−1, y > x,

(4)

where coefficients ci(y), di(y), {i = 1, 2, · · · , 2n + 2}, could be obtained by solving the
following equations

∂iRy(x)

∂xi
|x=y+0 =

∂iRy(x)

∂xi
|x=y−0, i = 0, 1, 2, · · · , 2n, (5)

(−1)n+1

(
∂2n+1Ry(x)

∂x2n+1
|x=y+0 − ∂2n+1Ry(x)

∂x2n+1
|x=y−0

)
= 1, (6)





∂iRy(a)
∂xi − (−1)n−i ∂2n−i+1Ry(a)

∂x2n−i+1 = 0,
∂2n−i+1Ry(b)

∂x2n−i+1 = 0, i = 0, 1, · · · , n,
R

(i)
y (a) = 0, i = 0, 1, · · ·n.

(7)

The definition of the spaces oWm[a, b], (m ≥ n + 1) are convenient for our numerical
experiment and we consider the RKHS oW 6[a, b].

3 The analytical solution

3.1 Definition of operators

We define the operator L : oWm[a, b] −→ C[a, b], (m ≥ n+ 1), as

L(u) = u(n)(x) −
∫ b

a
k(x, t)Nu(t)dt, (n ≥ 0), (8)
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then equation (1) can be written as

L(u) = f(x).
(9)

It is clear that L is a bounded linear operator and L∗ is the adjoint operator of L.

3.2 Solution of Eq. (1)

To obtain the solutions of Eq. (1), we define

ψi(x) = [LyRy(x)](xi) = L∗Ry(xi), i = 1, 2, · · · ,
(10)

where {xi}∞
i=1 be a dense subset of interval [a, b].

ψi(x) =
∂nRx(t)

∂tn
|t=xi −

∫ b

a
k(x, t)NR(x, t)dt, (n ≥ 0).

(11)

The orthonormal system {ψ̄i(x)}∞
i=1 of oWm[a, b] can be derived from the Gram-

Schmidt orthogonalization process of {ψi(x)}∞
i=1,

ψ̄i(x) =
i∑

k=1

βikψk(x), (βii > 0, i = 1, 2, · · · ),

(12)
where βik are orthogonal coefficients.

Lemma 3.1. The function system {ψi(x)}∞
i=1 is a complete system of the space oWm[a, b].

Theorem 3.2. If {xi}∞
i=1 is dense on [0, 1] and the solution of (1) is unique, then the

solution of (1)

u(x) =

∞∑

i=1

i∑

k=1

βikf(xk)ψ̄i(x),

(13)
and the approximate solution of equation (1) can be obtained by the n-term intercept

of (13) and un(x) =
∑n

i=1

∑i
k=1 βikf(xk)ψ̄i(x).

4 Numerical experiments

Example 4.1. In this example, we solve the integro-differential equation

u′′′(x) = sin(x) − x−
∫ π

2

0
xtu′(t)dt, u(0) = 1, u′(0) = 0, u′′(0) = −1,

where the exact solution is uex(x) = cos(x). By the present method, taking n = 10 and
n = 20, xi = π

2(n+1) × i, i = 1, 2, . . . , n. The approximate solution, the absolute errors

|un(x) − u(x)| for n = 10 and n = 20 are graphically shown in figure 1, respectively.
However, by increasing n, the behavior improves.
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Figure 1: The approximate solution, the absolute errors for n = 10 and 20, respectively.

Example 4.2. Take

u′′(x)+xu′(x)−xu(x) = ex−2 sin(x)+

∫ 1

−1
sin(x)e−tu(t)dt, u(0) = 1, u′(0) = 1,

with the exact solution uex(x) = ex. To solve this example nodes Example 1 were
chosen with the same descriptions.
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Figure 2: The approximate solution, the absolute errors for n = 10 and 20, respectively.
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Spectral Properties of The Packing Matrix of Fully binary

tree

A.M. Nazari∗

Arak University

D.A. Mojdeh
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M. Ghanbari
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Abstract

The packing matrix, is proposed by this paper, is designed as a means for uniquely
representing the structure of a full binary tree (FBT). Then we establish a number
of its spectral properties. Some results for the energy of the packing matrix are also
obtained.

Keywords: Full binary tree, Packing Matrix, eigenvalues.

Mathematics Subject Classification [2010]: 42A05, 42A10

1 Introduction and Preliminary

For notation and graph theory and linear algebra terminology, we in general follow [1]
AND [2]. Let T = (V, E) be a rooted tree and m is a nonnegative integer. T is called an
m − ray tree, if deg+(v) ≤ m for all v ∈ V . When m = 2, the tree is called a binary tree.
if deg+(v) ≤ 0 or m for all v ∈ V , then T is called a complete m − ray tree. The special
case of m = 2 results in a complete binary tree. In a complete m − ray tree, each internal
vertex has exactly m children. (Each leaf of this tree still has no children.) If T is a rooted
tree and h is the largest level number achieved by a leaf of T , then T is said to have height
h. If T is a complete binary tree of height h, then T is called a full binary tree (FBT)
if all the leaves in T are at level h. If |V | = n we denoted T by the notation FBT (n).
As examples FBT (3) and FBT (7) are taken in figure 1. Its obvious that there are only
FBT (3), FBT (7), FBT (15), FBT (31), FBT (63) and in general case FBT (

∑n
k=0 2k), for

n = 1, 2, 3, · · · Let A be an n × n matrix. The determinant det(A − λI) is a polynomial in
the (complex) variable λ of degree n and is called the characteristic polynomial of A: The
equation det(A − λI) = 0 is called the characteristic equation of A. By the fundamental
theorem of algebra the equation has n complex roots and these roots are called the eigen-
values of A. The eigenvalues might not all be distinct. The number of times an eigenvalue
occurs as a root of the characteristic equation is called the algebraic multiplicity of the
eigenvalue. The energy of the graph G whose eigenvalues are λ1, λ2, · · · , λn is defined as
E(G) =

∑n
i=1 |λi|. A square matrix A is called symmetric if A = A′. The eigenvalues of a

symmetric matrix are real. Furthermore, if A is a symmetric n×n matrix, then according
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Figure 1: FBT (3) and FBT (7)

to the spectral theorem there exists an orthogonal matrix P such that

PAṔ =




λ1 0 · · · 0
0 λ1 · · · 0
...

...
. . .

...
0 0 · · · λn




In the case of a symmetric matrix the algebraic and the geometric multiplicities of any
eigenvalue coincide. Also, the rank of the matrix equals the number of nonzero eigenvalues,
counting multiplicities. Finally in terms of ”Gershgorins Theorem”, every eigenvalue of
matrix An×n satisfies in the following inequality:

|λ − aii| ≤
∑

i̸=j

|aij|, i ∈ {1, 2, · · · , n}

2 Main results.

Definition 2.1. Let T is a FBT (n), then we define Packing matrix An×n such that

aij =





1, if vi(vj) is the left children of vj(vi);
−1, if vi(vj) is the right children of vj(vi);
0, otherwise.

(1)

Example 2.2. The packing matrices corresponding to FBT (3), FBT (7) and FBT (15)
are denoted with A3, A7 and A15 respectively and are given by following matrices.

A3 =




0 1 −1
1 0 0

−1 0 0




A7 =




0 1 −1 0 0 0 0
1 0 0 1 −1 0 0

−1 0 0 0 0 1 −1
0 1 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 −1 0 0 0 0
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A15 =




0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 −1 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 1 −1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 −1 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0




It is immediately seen that Am = A(FBT (m)) for m =
∑n

k=0 2k, n = 1, 2, 3, · · · is
a symmetric matrix with all diagonal elements equal to zero. Therefore its eigenvalues
are real, and their sum is equal to zero. The eigenvalues of Am form the spectrum of the
packing matrix and may be ordered as

λ1(Am) ≥ λ2(Am) ≥ λ3(Am) ≥ · · · ≥ λm(Am)

For instance, with use ”MATLAB” (numbers have been written with 4 decimal digits):
The characteristic polynomial of A3 is λ3 − 2λ = 0 and its eigenvalues are λ1 = 1.4142,
λ2 = 0 and λ3 = −1.4142.
The characteristic polynomial of A7 is λ7 − 6λ5 + 8λ3 = 0 and its eigenvalues are λ1 = 2,
λ2 = 1.4142, λ3 = λ4 = λ5 = 0, λ6 = −1.4142 and λ7 = −2.
The characteristic polynomial of A15 is

λ15 − 14λ13 + 72λ11 − 168λ9 + 176λ7 − 64λ5 = 0

and its eigenvalues are λ1 = 2.2882, λ2 = 2, λ3 = λ4 = 1.4142, λ5 = 0.8740, λ6 = λ7 =
λ8 = λ9 = λ10 = 0, λ11 = −0.8740, λ12 = λ13 = −1.4142, λ14 = −2 and λ15 = −2.2882,
The eigenvalues of A31 are λ1 = 2.4495, λ2 = 2.2882, λ3 = λ4 = 2, λ5 = λ6 = · · · = λ9 =
1.4142, λ10 = 0.8740, λ11 = λ12 = · · · = λ21 = 0, λ22 = −0.8740, λ23 = λ24 = · · · · · · =
λ27 = −1.4142, λ28 = λ29 = −2, λ30 = −2.2882, λ31 = −2.4495

Proposition 2.3. For every m =
∑n

k=0 2k, n = 1, 2, 3, · · · , if λ is a eigenvalues of Am,
then −3 ≤ λ ≤ 3.

Proof. With definition of Packing matrix Am = A(FBT (m)) (see difinition 2.1)and struc-
ture of FBT(m) (see Figure 1.) it is immediately seen in every rows of Am there are at
most 3 non zero numbers included 1 or −1. Now use the ”Gershgorins Theorem”, the
result obtained.

Definition 2.4. If T is a FBT(m) and Am = A(FBT (m)) is its Packing matrix, then
energy of Am is called ”packing energy” and calculated by PE(T ) =

∑m
i=1 |λi|.
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Lemma 2.5. If m =
∑n

k=0 2k, n = 1, 2, 3, · · · then m = 3t such that t is odd or m = 3t+1
such that t is even.

Lemma 2.6. For Am = A(FBT (m)) such that m =
∑n

k=0 2k, n = 1, 2, 3, · · ·
(a) The algebraic multiplicity of ”zero” is t + 1 if m = 3t + 1.
(b) The algebraic multiplicity of ”zero” is t if m = 3t.
Therefore the algebraic multiplicity of ”zero” always is a odd number.

Proposition 2.7. For every m =
∑n

k=0 2k, n = 1, 2, 3, · · · ,
(a) If m = 3t + 1 then PE(T ) ≤ 3(m − t − 1).
(b) If m = 3t then PE(T ) ≤ 3(m − t).

Proof. Use the Proposition 2.3 and Lemma 2.6.
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The Combination of Collocation and Multigrid Methods in

Solution of the 1-D Telegraph Equation

Maryam Safari

Teacher of Institute of Higher Education Parsian

Abstract

In this article, we introduce a high-order accurate method for solving one-space
dimensional linear hyperbolic Telegraph equation. We apply a compact finite differ-
ence approximation of two and four orders for discretizing spatial derivative of linear
telegraph equation and collocation method for the time component.

Keywords: collocation technique; compact finite difference schemes; high accuracy;
multigrid method; telegraph equation

1 INTRODUCTION

In the present work we are dealing with the numerical approximation of the following
second-order hyperbolic problem:

∂2u

∂t2
(x, t) + α

∂u

∂t
(x, t) + βu(x, t) =

∂2u

∂x2
(x, t) + f(x, t) (1)

(x, t) ∈ [0, L]× [0,∞) α, β > 0

with the initial conditions:

u(x, 0) = f1(x)
∂u

∂t
(x, 0) = f2(x) (2)

and boundary conditions:

u(0, t) = h1(t)) u(L, t) = h2(t) t ≥ 0 (3)

Equation (1), referred to as second-order telegraph equation with constant coefficients.

2 DERIVATION OF THE METHOD

For a positive integer n let h = 1
ndenote the step size of spatial variable x, and ∆t for step

size of time variable t. So we define

xi = ih i = 0, 1, ..., n (4)

tk = k∆t k = 0, 1, 2, ... (5)
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For derivation of the method, we first discretize Eq. (1) in space to obtain a system of
ordinary differential equations with unknown function at each spatial grid point. Then in
each spatial grid point, we construct a polynomial of r degree which depends on time and
obtain unknown coefficients with collocation approach. For Eq. (1) if we discretize spatial
derivatives in each grid point by the second order schemes (SO) we can obtain:

u′′i (t) + αu′i(t) + βui(t)− fi(x, t) =
1

h2
[ui+1(t) + ui−1(t)− 2ui(t)] (6)

Similarly if we discretize spatial derivatives in each grid point by the fourth order schemes
(FO) [2], we can obtain:

1

12
[(u′′i+1(t) + αu′i+1(t) + βui+1(t)− fi+1(t)) + (u′′i−1(t) + αu′i−1(t)+ (7)

βui−1(t)− fi−1(t)) + 10(u′′i (t) + αu′i(t) + βui(t)− fi(t))] =

1

h2
[ui+1(t) + ui−1(t)− 2ui(t)]

Where ui(t) = u(xi, t), u
′
i(t) = ∂u

∂t (xi, t), u
′′
i (t) = ∂2u

∂t2
(xi, t) and fi(t) = f(xi, t). the initial

and boundary conditions (2) and (3) for Eqs. (6) and (7) as follows:

ui(0) = f1(xi), u′i(0) = f2(xi), (8)

u0(t) = h1(t), u′0(t) =
dh1
dt

(t), u′′0(t) =
d2h1
dt2

(t),

un(t) = h2(t), u′n(t) =
dh2
dt

(t), u′′n(t) =
d2h2
dt2

(t)

If we write Eqs. (6) , (7) for each grid point, we obtain a system of (n + 1) ordinary
differential equations of second-order that should be solved. We employ the collocation
method in order to solve the resulted second order system of ordinary differential equations.
We give this concept and other results for the system of ordinary differential equations
obtained from (7) and can be easily stated for (6).
Let Pi(t) be a polynomial of degree r which approximates the solution at grid point xi
and is as follows:

Pi(t) = ai,rt
r + ai,r−1tr−1 + ...+ ai,1t+ ai,0 (9)

For each i we have:

Pi(tk) = ai,rt
r
k + ai,r−1t

r−1
k + ...+ ai,1tk + ai,0 k = 0, 1, ..., r − 2 (10)

By forcing the initial conditions (2) we have the following relations for ai,0 and ai,1:

ai,0 = Pi(0) = ui(0) = f1(xi), (11)

ai,1 =
dPi(t)

dt
|t=0 =

∂u

∂t
|(xi,0) = f2(xi) (12)

So, for any given r, we have the (r-1) unknown coefficients ai,r, ai,r−1, ..., ai,2 in each Pi(t)
that should be determined. To obtain these unknown coefficients, we can construct (r-1)
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equations at grid point xi by replacing Pi(t) in (7) and using collocation points tk , k =
0, 1, . . . , (r - 2).
If we apply the above procedure for each grid point xi , i = 1, 2, . . . , (n-1), we obtain a
linear system of(r− 1)× (n− 1) equations AX = B Where A is a block-tridiagonal matrix
given by A = tri[Ai−1, Ai, Ai+1], and Ai−1, Ai, Ai+1 are (r− 1)× (r− 1) matrices and B is
a vector consists of known values ai,0 and ai,1 for internal nodes and combination of ai,0
and ai,1 and boundary values of u , ut and utt for near boundaries nodes. the vector X is
consists of unknown values ai,2, ai,3, ..., ai,r.
We present the multigrid method for solving the above linear system of equations. Now
we want to use ICM method to obtain solution of Eq. (1) at any arbitrary time t = T. We
first describe how one can obtain the solution of system of ordinary differential equations
obtained from (7) on the interval [t0, t0 + (r − 2)∆t] in which t0 6= 0.
One approach that is given in [4] is to employ translation ui(t0 + t) = Pi(t), i.e. for
obtaining the approximate solution at any point in the interval [t0, t0 + (r − 2)∆t] it is
sufficient to calculate Pi(t) in which t ∈ [0, (r− 2)∆t]. In this case the boundary values of
u , ut and utt and in right hand side vector B should be calculated at t0 + tk where tk are
collocation points. Once the solution was obtained in the interval [t0, t0 + (r − 2)∆t], the
above procedure can be successfully implemented to obtain solution at [t0 +(r−2)∆t, t0 +
2(r − 2)∆t].
Therefore, at each interval, the coefficient matrix is invariant and the right hand side
vector B is updated. It should be noted that the approximate solution and its derivative
respect to t which were calculated at the current interval are used as initial conditions for
the next interval. The above procedure proceeds until the interval containing target time
t = T is reached.

3 conclusion

We applied finite difference approximations of orders two and four for discretizing the
spatial derivatives of telegraph equation. Also we used the collocation method for the time
component. We introduced the procedure that can incorporate multigrid method with the
mentioned schemes. numerical results show that compact finite difference approximations
of fourth order, collocation and multigrid methods give a very efficient technique for solving
the telegraph equation. The results of this paper can be extended to solve the two and
three dimensional telegraph equation.
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The Construction of Fractional Integration Operational

Matrix for Generalized Fractional order Legendre Functions
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Abstract

In this article, a general formulation for the generalized fractional-order Legendre
functions (GFLFs) on the interval [0, h] is constructed to obtain the numerical solution
of the fractional integration of a given function. Numerical example illustrate the
validity and applicability of the method.

Keywords: Generalized fractional-order Legendre functions, Operational matrix,
Fractional calculus, Numerical integration
Mathematics Subject Classification [2010]: 65D32, 26A33

1 Introduction

In this paper, we intend to expand fractional Legender functions in interval [0, h] to obtain
the fractional integration operational matrix.

Definition 1.1. The Riemann-Liouville fractional integral operator of order α > 0, of a
function u ∈ Cµ, µ > −1, is defined as:

Iαu(x) =
1

Γ(α)

∫ x

0
(x− t)α−1u(t) dt, α > 0, (1)

where Γ(.) is gamma function.

Definition 1.2. The Caputo definition of fractional derivative operator is given by:

Dαu(x) =





1
Γ(m−α)

∫ x
0

u(m)(t)
(x−t)α−m+1 dt, m− 1 6 α < m,

dmu(x)
dxm , α = m, x > 0,

(2)

The properties of the operators Iα and Dα, can be find in [1, 3]. For example two
useful properties are as:

Iαxγ =
Γ(γ + 1)

Γ(γ + α+ 1)
xγ+α, (3)

Iα

(
m∑

i=0

ciui(x)

)
=

m∑

i=0

ciI
αui(x), where {ci}mi=0 are constants. (4)
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2 Generalized fractional-order Legendre function

The fractional-order Legendre functions (FLFs) [2] can be defined by introducing the
change of variable t = xα for α > 0 on shifted Legendre polynomials. These functions are
denoted by Flαi (x), i = 1, 2, . . .. The fractional-order Legendre functions are a particular
solution of the following Sturm-Liouville problem:

((
x− x1+α

)
Fl
′α
i (x)

)′
+ α2i (i+ 1)xα−1Flαi (x) = 0, x ∈ [0, 1].

The functions Flαi (x) can be obtained by the following recursive form:

Flαi+1(x) =
(2i+ 1) (2xα − 1)

i+ 1
Flαi (x)− i

i+ 1
Flαi−1(x), i = 1, 2, . . . , (5)

where Flα0 (x) = 1, Flα1 (x) = 2xα − 1.
Also, the analytic form of Flαi (x) of degree α can be given by:

Flαi (x) =
i∑

s=0

bs,ix
sα, i = 0, 1, 2, . . . , (6)

where bs,i = (−1)i+s(i+s)!

(i−s)!(s!)2 and Flαi (0) = (−1)i, Flαi (1) = 1.

The FLFs are orthogonal functions with respect to the weight function ωαl (x) = xα−1

on the interval [0,1], i.e:

∫ 1

0
Flαn(x)Flαm(x)ωαl (x) dx =

1

(2n+ 1)α
δnm, (7)

where δnm is the Kronecker delta.
By introducing the change of variable t = xh, we define the generalized fractional-order

Legendre functions on the interval [0, h]. If these GFLFs are devoted by Flhαi (x), i =
1, 2, . . ., then Flhαi (x) has a recurrence formula as follows:

Flhαi+1(t) =
(2i+ 1)(2( th)α − 1)

i+ 1
Flhαi (t)− i

i+ 1
Flhαi−1(t), i = 1, 2, . . . , (8)

where Flhα0 (t) = 1, Flhα1 (t) = 2( th)α − 1, and analytic form of the Flhαi (t) of degree α is
given by:

Flhαi (t) =

i∑

s=0

bs,i
tsα

hsα
, i = 1, 2, . . . , (9)

The FLFs are orthogonal with the weight function ωαl (t) = tα−1 on the interval [0, h],
i.e: ∫ h

0
Flhαn (t)Flhαm (t)tα−1 dt =

hα

(2n+ 1)α
δnm. (10)

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

The construction of fractional integration operational matrix for . . . pp.: 2–4

518



2.1 Functions approximation

Suppose function u(x) defined over the interval [0, h], it can be expanded by GFLFs as:

u(x) =
∞∑

i=0

ciFl
hα
i (x), (11)

where the coefficients ci are obtained by:

ci =
(2i+ 1)α

hα

∫ h

0
Flhαi (x)u(x)ωαl (x) dx, i = 0, 1, 2, . . . . (12)

In practice, only the first m-terms GFLFs are consider. Then we have:

u(x) ' um(x) =
m−1∑

i=0

ciFl
hα
i (x) = CTΦ(x),

where the GFLFs coefficients vector C and the GFLFs vector Φ(x) are given by:

C = [c0, c1, . . . , cm−1]T, Φ(x) = [Flhα0 (x), F lhα1 (x), . . . , F lhαm−1(x)]T. (13)

Also, we can also approximate the arbitrary function u(x, t) ∈ L2 ([0, h]× [0, l]) as
follows:

u(x, t) '
m−1∑

i=0

n−1∑

j=0

uijFl
hα
i (x)Fllβj (t) = ΦT(x)UΦ(t), (14)

where U is an m× n matrix, with coefficients:

uij = (2i+ 1)(2j + 1)αβ × h−αl−β
∫ h

0

∫ l

0
u(x, t)Flhαi (x)Fllβj (t)ωαl (x)ωβl (t) dxdt, (15)

where i = 0, 1, . . . ,m− 1; j = 0, 1, . . . , n− 1, and

Φ(x) =
[
Flhα0 (x), F lhα1 (x), . . . , F lhαm−1(x)

]T
; Φ(t) =

[
Fllβ0 (t), F llβ1 (t), . . . , F llβn−1(t)

]T
.

3 The fractional integration operational matrix of GFLFs

Lemma 3.1. The GFLFs Rimann-Liouville fractional integral of order β > 0 are the
following form:

IβFlhαi (x) =
i∑

s=0

bs,i
hsα

Γ(sα+ 1)

Γ(sα+ β + 1)
xsα+β. (16)

Lemma 3.2. Let α, β > 0, then:

∫ h

0
IβFlhαi (x)Flhαj (x)ωαl (x) dx =

i∑

s=0

j∑

r=0

bs,ibr,j
(s+ r + 1)α+ β

Γ(sα+ 1)

Γ(sα+ β + 1)
hα+β. (17)
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In the following theorem we introduce the operational matrix of fractional integral of
GFLFs.

Theorem 3.3. Let Φ(x) be the GFLFs vector and β > 0, then:

IβΦ(x) ' PβΦ(x), (18)

where Pβ is the m×m operational matrix of fractional integral of order β and the elements
of the matrix Pβ = [pij ] are obtained as:

{pij}m−1
i,j=0 = (2j + 1)αhβ

i∑

s=0

j∑

r=0

bs,ibr,j
(s+ r + 1)α+ β

Γ(sα+ 1)

Γ(sα+ β + 1)
. (19)

Figure 1: The error function with m=10

Remark 3.4. Suppose that f(t) ∈ L2 ([0, 1]). If f(t) ∼= CTΦ(t), then:

Iβf(t) ∼= IβCTΦ(t) ∼= CTPβΦ(t).

Example 3.5. For f(t) = t2 , Fig.(1) shows the absolute error for the above approxima-
tion.
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Uniformly local biorthogonal wavelet constructions on

intervals by extension operators

Nabi Chegini

Tafresh University

Abstract

We construct a basis for a range of Sobolev spaces on interval (−1, 1) from corre-
sponding bases on (−1, 0) and (0, 1) by the application of extension operators. Two
examples of Hestenes extensions (as extension operators) are presented for construct-
ing wavelets that are in C0(−1, 1) and C1(−1, 1) .

Keywords: Wavelets, extension operators, Sobolev spaces

Mathematics Subject Classification [2010]: 42C40, 20E22, 46E35

1 Introduction

For t ∈ [0,∞) \ (N0 + {1
2}) and σ⃗ = (σℓ, σr) ∈ {0, . . . , ⌊t+ 1

2⌋}2, let

Ht
σ⃗(I) := {v ∈ Ht(I) : v(0) = · · · = v(σℓ−1)(0) = 0 = v(1) = · · · = v(σr−1)(1)}.

For t and σ⃗ as above, and for t̃ ∈ [0,∞) \ (N0 + {1
2}) and ⃗̃σ = (σ̃ℓ, σ̃r) ∈ {0, . . . , ⌊t̃+ 1

2⌋}2,

let univariate wavelet collections Ψσ⃗,⃗̃σ :=
{
ψ

(σ⃗,⃗̃σ)
λ : λ ∈ ∇σ⃗,⃗̃σ

}
, Ψ̃σ⃗, ⃗̃σ := {ψ̃(σ⃗,⃗̃σ)

λ : λ ∈ ∇σ⃗,⃗̃σ}
be Riesz bases for Ht

σ⃗(I) and H t̃
⃗̃σ
(I), after renormalizing, that satisfy some properties in

[1]. We assume to have available a univariate extension operator

Ğ1 ∈ B(L2(0, 1), L2(−1, 1)) with

{
Ğ1 ∈ B(Ht(0, 1),Ht(−1, 1)),

Ğ∗
1 ∈ B(H t̃(−1, 1),H t̃

(⌊t̃+ 1
2
⌋,0)

(0, 1)).
(1)

Let η1 and η2 denote the extensions by zero of functions on (0, 1) and on (−1, 0) to functions
on (−1, 1), respectively, with R1 and R2 denoting their adjoints. We assume that Ğ1 and
its “adjoint extension”, i. e., Ğ2 := (Id − η1Ğ

∗
1)η2 are local. For Ğ1, we will consider the

Hestenes extension which is of the form Ğ1v(−x) =
∑L

l=0 γl(ζv)(βlx) (v ∈ L2(I), x ∈ I),
where γl ∈ R, βl > 0, and ζ : [0,∞) → [0,∞) is a smooth cut-off function. Its adjoint

reads as Ğ∗
1w(x) = w(x)+ζ(x)

∑L
l=0

γl
βl
w

(
−x
βl

)
where w ∈ L2(−1, 1) and x ∈ I. A Hestenes

extension satisfies (1) if and only if

L∑

l=0

γlβ
i
l = (−1)i (N0 ∋ i ≤ ⌊t− 1

2⌋),
L∑

l=0

γlβ
−(j+1)
l = (−1)j+1 (N0 ∋ j ≤ ⌊t̃− 1

2⌋).
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Following [1] we will apply our construction using the modified, scale-dependent uni-
variate extension operator

G1 : u 7→
∑

λ∈∇̄(ℓ)
0,0

⟨u, ψ̃(⃗0,⃗0)
λ ⟩L2(I)Ğ1ψ

(⃗0,⃗0)
λ +

∑

λ∈∇̂(ℓ)
0,0∪∇(I)∪∇(r)

0,0

⟨u, ψ̃(⃗0,⃗0)
λ ⟩L2(I)η1ψ

(⃗0,⃗0)
λ . (2)

such that ∇σ⃗,⃗̃σ is the disjoint union of ∇(ℓ)
σℓ,σ̃ℓ

(index set of left boundary wavelets), ∇(I)

(index set of interior wavelets), and ∇(r)
σr,σ̃r

(index set of right boundary wavelets) and also

∇(ℓ)
0,0 = ∇̄(ℓ)

0,0 ∪ ∇̂(ℓ)
0,0 with ∇̄ℓ

0,0 = {λ : λ ∈ ∇0⃗,⃗0, ψ
0⃗,⃗0
λ (0) ̸= 0}. For simplicity, let us consider

L = 0, γ0 = 1 (reflection), 1
2 < t < 3

2 , 0 < t̃ < 1
2 . So ⃗̃σ = 0⃗, and σℓ, σr ∈ {0, 1}. By

definition of G1, for σℓ = 0 we have

G1ψ
(σ⃗,⃗0)
µ =

{
η1ψ

(σ⃗,⃗0)
µ when µ ∈ ∇̂(ℓ)

0,0 ∪ ∇(I) ∪ ∇(r)
σr,0,

Ğ1ψ
(σ⃗,⃗0)
µ when µ ∈ ∇̄(ℓ)

0,0.
(3)

Proposition 1.1. For all µ ∈ ∇σ⃗,⃗0 the adjoint extension G2 := (Id − η1G
∗
1)η2 satisfies

diam(suppG2ψ̃
(σ⃗,⃗̃σ)
µ ) ≲ diam(supp ψ̃(σ⃗,⃗̃σ)

µ ).

To construct Riesz bases for Sobolev spaces on (−1, 1), we fix some σr, τℓ ∈ {0, · · · , ⌊t+
1
2⌋}, and σ̃r, τ̃ℓ ∈ {0, · · · , ⌊t̃+ 1

2⌋}. Then from [1, Corollary 4.6], we have that

η2Ψ(τℓ,⌊t+ 1
2
⌋),(τ̃ℓ,0)(1 + ·) ∪G1Ψ(0,σr),(⌊t̃+ 1

2
⌋,σ̃r)

is, properly scaled, a Riesz basis for [L2(−1, 1),Ht
(τℓ,σr)(−1, 1)]s. Furthermore, its dual

collection is G2Ψ̃(ℓ̃,⌊t+ 1
2
),(τ̃ℓ,0)(1 + ·) ∪ η1Ψ̃(0,σr),(⌊r̃+ 1

2
⌋,σ̃r), where G2 := (Id − η1G

∗
1)η2.

2 Biorthogonal multi-resolution analyses and wavelets

In order to construct wavelets that, properly scaled, generate Riesz bases for a range
of Sobolev spaces, we use the following well-known theorem and proposition [3]. For
simplicity, we replace (σ⃗, 0⃗) with σ⃗.

Theorem 2.1. Let V σ⃗
0 ⊂ V σ⃗

1 ⊂ · · · ⊂ L2(I), Ṽ σ⃗
0 ⊂ Ṽ σ⃗

1 ⊂ · · · ⊂ L2(I), be sequences of

primal and dual spaces such that dimV σ⃗
j = dim Ṽ

⃗̃σ
j < ∞. Let Φσ⃗

j and Φ̃σ⃗
j be biorthogonal

uniform L2(I)-Riesz bases of subspaces V σ⃗
j and Ṽ σ⃗

j , respectively. In addition, Jackson esti-

mate and Bernstein estimate hold for V σ⃗
j and Ṽ σ⃗

j . Then with Φσ⃗
0 and Ψσ⃗

j = {ψσ⃗
j,k : k ∈ Jj}

(j ∈ N), being uniform L2(I)-Riesz bases for V σ⃗
j ∩ (Ṽ σ⃗

j−1)
⊥L2(I) (wavelets), for some s the

collection Ψσ⃗ := Φσ⃗
0 ∪∪j∈N2−sjΨσ⃗

j , is a Riesz basis for [L2(I),Hd(I)∩H1
σ⃗(I)]s/d when s ≥

0 and ([L2(I), H d̃(I)]−s/d̃)
′ when s ≤ 0.

Proposition 2.2. Let Ξσ⃗
j+1 ⊂ V σ⃗

j+1 be such that Φσ⃗
j ∪ Ξσ⃗

j+1 is a uniform L2(I)-Riesz

basis for V σ⃗
j+1, and such that the basis transformations from Φσ⃗

j ∪ Ξσ⃗
j+1 to Φσ⃗

j+1 and from

Φσ⃗
j+1 to Φσ⃗

j ∪ Ξσ⃗
j+1 are uniformly sparse. Then Ψσ⃗

j+1 := Ξσ⃗
j+1 − ⟨Ξσ⃗

j+1, Φ̃
σ⃗
j ⟩L2(I)Φ

σ⃗
j , and its

unique dual collection Ψ̃σ⃗
j+1 in Ṽ σ⃗

j+1 ∩V (σ)
⊥L2(I)

j are biorthogonal, uniformly local, uniform

L2(I)-Riesz bases for V σ⃗
j+1 ∩ Ṽ σ⃗

⊥L2(I)

j and Ṽ σ⃗
j+1 ∩ V σ⃗

⊥L2(I)

j , respectively.
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The relations Span Φσ⃗
j+1 = Span Φσ⃗

j ∪Span Ψσ⃗
j+1 and Span Φ̃σ⃗

j+1 = Span Φ̃σ⃗
j ∪Span Ψ̃σ⃗

j+1

imply that any function in Ψσ⃗
j and Φσ⃗

j and/or Ψ̃σ⃗
j and Φ̃σ⃗

j can be expressed as a linear com-

bination of the functions in Φσ⃗
j+1 and Φ̃σ⃗

j+1, respectively. So matrices M σ⃗
j and M̃ σ⃗

j exist

such that [(Φσ⃗
j )⊤ (Ψσ⃗

j+1)
⊤] = (Φσ⃗

j+1)
⊤M σ⃗

j , [(Φ̃σ⃗
j )⊤ (Ψ̃σ⃗

j+1)
⊤] = (Φ̃σ⃗

j+1)
⊤M̃ σ⃗

j . Moreover

(Φσ⃗
j+1)

⊤ = (Φσ⃗
j )⊤Gσ⃗

j,0 + (Ψσ⃗
j+1)

⊤Gσ⃗
j,1

where M̃ σ⃗
j = (M σ⃗

j )−⊤ :=

[
Gσ⃗

j,0

Gσ⃗
j,1

]
. Regarding to the locality of Φσ⃗

j , Ψσ⃗
j and their correspond-

ing dual collections, M σ⃗
j and M̃ σ⃗

j are uniformly local. To build dual wavelet collection, we

need to determine M σ⃗
j or M̃ σ⃗

j . On account of biorthogonality between dual and primal

scaling functions collections, we conclude that M σ⃗
j = ⟨Φ̃σ⃗

j+1, [(Φ
σ⃗
j )⊤ (Ψσ⃗

j+1)
⊤]⊤⟩L2(I). To

avoid the use of the L2(I)-inner product, we define the operator πσ⃗
j : V σ⃗

j → RdimV σ⃗
j ,

πσ⃗
j (vj) := [vj(0), v

(σℓ)
j (0), vj(x1), vj(x2), v

′
j(x2), vj(x3), vj(x4), v

′
j(x4),

. . . , vj(xm−3), vj(xm−2), v
′
j(xm−2), vj(xm−1), vj(1), v

(σr)
j (1)],

where xk := k2−(j+2), k = 0, . . . ,m andm = 2j+2. By applying πσ⃗
j+1 to [(Φσ⃗

j )⊤ (Ψσ⃗
j+1)

⊤] =

(Φσ⃗
j+1)

⊤M σ⃗
j , we deduce that M σ⃗

j = (πσ⃗
j+1(Φ

σ⃗
j+1))

−1πσ⃗
j+1([(Φ

σ⃗
j )⊤ (Ψσ⃗

j+1)
⊤]).

3 Examples of Hestenes extensions

As the univariate wavelet construction, we apply the C1, piecewise quartic (so d = 5)
(multi-) wavelets, with (discontinuous) piecewise quartic duals as constructed in [2] on
interval (0, 1). The relevant Hestenes extension with β0 = 1, L = 0, γ0 = 1 is formed by
Ğ1v := v(−x) when x ∈ (−1, 0) and v(x) when x ∈ I and it’s dual reads as Ğ∗

1v(x) =

v(x) + v(−x), x ∈ I and Ğ∗
1 ∈ B(H t̃(0, 1),H t̃(−1, 1)) for t̃ < 1

2 (v ∈ L2(I)). The adjoint

Figure 1: The five G2ψ̃
(1,1)
µ on (−1, 1). The vertical line is x = 0.

Ğ1, namely Ğ2, for all v ∈ L2(−1, 1) can be written as Ğ2v(x) := v(x) when − 1 < x <
0 and v(−x) when x ∈ I.

For some µ ∈ ∇(r)
σr,σ̃r

, the operator G2 expands ψ̃
(1,1)
µ (1 + ·) to (−1, 1) for µ ∈ ∇(r)

1,0

and the set of expanded dual wavelets per level 1 < |µ| has a cardinality of “5 ”. The
corresponding dual wavelets on (−1, 1) are illustrated in Figure 1. Now we consider a
Hestense extension with β /∈ {2ℓ : ℓ ∈ N0}, e.g., β = 1

3 and L = 0, γ0 = 1. Figure 2

shows that G2ψ̃
(1,1)
µ (1+ ·) for some µ ∈ ∇(ℓ)

1,0 are not local. Now we would like to construct
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Figure 2: Left: One dual wavelet function G2ψ̃
(1,1)
µ (1 + ·) on (−1, 1) when µ ∈ ∇(ℓ)

1,0 and
|µ| = 20. Right: Zoom in the left figure around right side x = −1.

wavelet functions by Hestense extension that their derivatives are continues at interface
x = 0. The relevant Hestense extension is given by Ğ1v := 3v(−x) − 2v(−2x) when x ∈
(−1, 0) and v(x) when x ∈ I. We apply G1 to a few wavelet functions ψ0⃗

µ where ψ0⃗
µ(0) ̸= 0

or ψ ′⃗0
µ (0) ̸= 0. In our case, just two wavelet functions will be extended from I to (−1, 1).

The corresponding C1-wavelet functions are illustrated in Figure 3.

Figure 3: The extended C1-wavelet functions G1ψ
(σ⃗,⃗̃σ)
µ .
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A New active queue management based on the prediction of

the packet arrival rate
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Abstract

In this paper,we predict the change in the packet arrival rate at the link through
the analysis of the network congestion control mechanism. An appropriate expression
for dropping probability is derived based on this prediction to stabilize the queue
length to the desired value. Its analysis of the stability is also carried out, and the
necessary and sufficient condition for the system to be stable is presented

Keywords: Network congestion control, Active Queue Management(AQM), Packet
arrival rate, Prediction, Stability

Mathematics Subject Classification [2010]: 34B15, 76A10

1 Introduction

With the growth of computer networks,excessive request for the limited network resources
results in more and more serious congestion. Network congestion avoidance and control
[1] gathers increasing attention in the past three decades. Transmission Control Protocol
(TCP ) and Active Queue Management (AQM) are the effective congestion control mech-
anisms at the end hosts and links,respectively.
In this paper,the prediction of packet arrival rate is derived from the analysis of the net-
work congestion control mechanism. A new AQM algorithm named as Straightforward
AQM (SFAQM) is proposed based on such a prediction.

2 Prediction of the change of packet arrival rate

Consider a system where there is a single congested router with a transmission capacity
of C. Let N TCP flows(compliant with protocol of TCP Reno)traverse the router,labeled
i = 1, . . . , NWi(t), Vi(t) and Ri(t) denote the congestion window size,packets ending rate
and Round Trip Time(RTT )of flow TCPi(i = 1, . . . , N) at time t > 0, respectively.Let
λ(t) denote the packets arrival rate at the router at time t > 0, then

Vi(t) = Wi(t)/Ri(t), (1)

∗Speaker
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λ(t) =

n∑

i=1

Vi(t), Ri(t) = ri + q(t)/C, (2)

where ri is the Round Trip Propagation Time(RTPT ) of TCPi, q(t) is the queue length
at the congested link,and q(t)/C models the queuing delay.
The TCP strategy has the characteristic of Additive Increase and Multiplicative Decrease(AIMD)
[?]. Corresponding to TCP ’s multiplicative decrease phase,if a packet is dropped,the
congestion window size of TCPi will decrease to Wi(t)/2, and the sending rate becomes
Vi(t)/2. Corresponding to its additive increase phase,if a packet is acknowledged,the TCPi

will increase its window size 1/Wi(t), and the sending rate increases with 1/(Ri(t)∗Wi(t)).
Thus,the expectation of the increment of the arrival rate at the router will be

∆λ(t) =
1

Wi(t)Ri(t)
(1 − p(t − τ)) − (Vi(t)/2)p(t − τ), (3)

where τ > 0 represents the time delay from the moment that the packets are dropped or
acknowledged to the moment that the host receives the information.
the expressions for the expectations of the sending rate Vi(t) and window size Wi(t) will
be developed.The proportion of the packets that are generated by TCPi is Vi(t)/λ(t).
Hence,the expectations of the send rate and window size are respectively

V (t) =

n∑

i=1

Vi(t)
Vi(t)

λ(t)
≥ (

∑n
i=1 Vi(t))

2

Nλ(t)
=

λ(t)

N
, (4)

W (t) =

n∑

i=1

Wi(t)
Vi(t)

λ(t)
≥ (

∑n
i=1 Vi(t))

2R

Nλ(t)
=

λ(t)R

N
, (5)

the variables Wi(t), Vi(t) and Ri(t) have been estimated for (3). Let the packet dropping
probability be updated once in every time interval and the number of arriving packets and
the dropping probability at the congested router be m(t) and p(t), respectively.Note that
the dropping process of each packet is independent of the process of other packets during
each sample interval.Recalling Eqs.(4)(6), the expectation of the increment of arrival rate
at the router will be

λ(t + τ) ≥
m(t)∑

Wi
N(1 − p(t))

λ(t + τ)R2
i (t + τ)

− λ(t + τ)p(t)m(t)

2N
≈ N(1 − p(t))m(t)

λ(t + τ)R2
− λ(t + τ)p(t)m(t)

2N
.

(6)

3 New AQM algorithm

Assume that the number of packets that will arrive at the router in the interval related to
time t > 0 is m(t). The arrival rate is λ(t + τ) when the congestion information arrive at
the hosts at time t + τ > 0, the desired arrival rate at the link is λref (t + τ), and then we
obtain

λ(t + τ) + ∆λ(t + τ) = λref (t + τ). (7)
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To achieve the desired queue length qref , the desired arrival rate at the router should be

λref (t + τ) = C + (qref − q(t))/α. (8)

Here, α is a parameter related to the time cost to control queue length to the desired
value.Using (6) in (7), we obtain

p(t) =
λ(t + τ) + m(t)N

λ(t+τ)R2 − λref (t + τ)

(λ(t+τ)
2N + N

λ(t+τ)R2 )m(t)
. (9)

We estimate the arrival rate λ(t) by counting the number of arriving packets m(t) at time
t > 0 as follows:

λ(t) = m(t)δ, (10)

where δ is the length of the sampling period. Considering this, (9) can be expressed as

p(t) =
m(t + τ) + m(t)Nδ2

m(t+τ)R2 − mref(t + τ)

(m(t+τ)
2N + Nδ2

m(t+τ)R2 )m(t)
, (11)

where m(t) and m(t+ τ) are the number of arriving packets during the interval related to
time t and t + τ respectively,and mref (t + τ) can be expressed as

mref (t + τ) = Cδ + (qref − q(t))δα. (12)

The last task is to estimate m(t) and m(t+τ). In this paper we predict m(t) and m(t+τ)
through simple analysis.The value of m(t) is predicted as the exponential weighted moving
average (EWMA) of m(t). Since m(t+τ) should change from m(t) to mref (t+τ), m(t+τ)
is predicted as a value between m(t) and mref (t + τ). Hence, m(t) and m(t + τ) are
expressed as

m(t) = (1 − ω1)m(t − δ) + ω1m0 (13)

m(t + τ) = (1 − ω2)m(t) + ω2mref (t + τ). (14)

4 Stability

The fluid-flow models have been widely used to describe the TCP and queue dynamics,
such as [2, 3]. In this paper the model introduced in Low et al[4]. is used because it has
the same value of dropping probability as SFAQM at the operating point, which will be
mentioned later. According to the demands of the analysis in this paper,we consider a
network with one bottleneck link, with only one TCP flow from each endhost.Furthermore,
the variation of RTT is ignored. The model is as follows:

{
Ẇi(t) = Wi(t−R)

R (1 − p(t − R))1/Wi(t) − Wi(t−R)
R

Wi(t)
2 p(t − R)

q̇(t) = −C +
∑N

i=1
Wi(t)

R

(15)
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where Wi(t) is the window size of TCPi at t > 0, R is the RTT defined in (4), p(t) is the
packet dropping probability,and q(t) is the queue length at the link.As we are interested in
the average behavior of the flows instead of any specific one, Vi(t) is approximated to the
expected packets ending rate V (t) of flows.Using (1) in this model,(15) can be rewritten
as follows: {

V̇ (t) = V (t−R)
R2V (t)

(1 − p(t − R)) − 1/2V (t − R)V (t)p(t − R)

q̇(t) = −C + NV (t)
(16)

Taking (V, q) as a state and p as the input,the operating point (V0, q0, p0) is defined by
V̇ (t) = 0 and q̇(t) = 0, hence

V̇ (t) = 0 =⇒ p0 =
1

V 2
0 R2/(2) + 1

(17)

q̇(t) = 0 =⇒ V0 = C/N. (18)

Recall the SFAQM algorithm. Rewrite (11) by substitution of (10),(12), and (14) as

p(t) =
[(1 − ω2)λ(t) + ω2λref (t + τ)]2 + Nδλ(t)/(R2) − λ(t)λref (t + τ)

(
[(1−ω2)λ(t)+ω2λref (t+τ)]2

2N + N/R2)λ(t)δ
. (19)

When the system is at the steady state, the queue occupation is stabilized at the reference
value qref . The packet arrival rate is stabilized at link capacity C, and the desired packet
arrival rate λref is also stabilized at C according to (8). Then, packet dropping probability
will be

p0 =
1

C2R2/2N2 + 1
. (20)

Linearize (16) and (19) at the operating point,then we obtain




V̇ (t) = − C
N(C2R2/2N2+1)

δV (t) − C2/2N2δp(t − R)

q̇(t) = NδV (t)

δp(t) = ∂p
∂λδq̇(t) − 1/α ∂p

∂λref
δq(t)

(21)
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Abstract

This paper presents a new idea to solve fractional differential equation based on
the linear programming problem. Indeed, by using the first concept of fractional
derivative, we will suggest a method where an equation with fractional derivative is
changed to linear programming and by solving it, the fractional derivative will be
obtained. Actually this suggested method is based on the minimization of total error.
Also some numerical examples are provided to confirm the accuracy of the proposed
method.

Keywords: Fractional calculus, fractional differential equation, Linear programming

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

It is difficult to solve a differential equation exactly, so recently some approximated meth-
ods were presented to solve them, for instance Homotopy Interfrence method, Homotopi
analytical method, and numerical methods. Most of the researches present different meth-
ods to formulate and model the physical structures. In last years, science and engineering
scientists paid attention to fraction calculations.Usages of fractional differential equations
in physics and engineering significantly have increased. Many phenomena, in various fields,
can be modeled by fractional differential equations, like some in control problems, statisti-
cal models, economic issues, electromagnetism, electrochemistry, telecommunication lines
and so on.

Fractional calculation is generalization of ordinary derivative and integral which has
non- integer arbitrary order. History of these problems like differential calculus back to
the time when Leibniz and Newton invented differential calculus. Fraction calculus has
introduced in September 30 of 1695 for the first time [1]. In 1812, Laplace defined a
fraction integral as a fractional derivative [2]. In 1819, the first description of a fractional
derivative was written by Lacroix in computational version [3]. First step in expanding
differential arbitrary functions was by Fourier in 1822 [4]. But the first theorem was written
by Liouville in 1823. The famous formula which is useful today named RiemannLiouville
integral inserted by Reimann in 1847. Next we will describe some definitions in fractional
derivatives concept.
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In the next, a brief description of initial definition of fractional calculus which is needed
in this paper is described.

Definition 1.1. Γ : (0, ∞) → R is known as the Euler-Gamma function (or Euler integral
of the second kind) and is defined as:

Γ(x) =

∫ ∞

0
tx−etdt. (1)

Definition 1.2. Suppose that n ∈ R+ . The operator Jn
a f(x) is defined on L[a, b] as the

following form:

Jn
a f(x) =

1

Γ(n)

∫ x

a
(x − t)n−1f(t)dt, (2)

which is Riemann-Liouville fractional operator of order n. For n = 0, it is identity operator
J0

a = I.

Definition 1.3. Let n ∈ R+ and m = [n]. The operator Dn
a is defined as:

Dn
af = DmJm−n

a f, (3)

which is named RiemannLiouville fractional derivativeoperator of order n.

In classical computation, finite difference function is used to define derivative. As an
example nth order of backward difference by hstep size which is defined as:

∆n
hf(x) =

n∑

k=0

(−1)k

(
n

k

)
f(x − kh). (4)

It can be useful to the following classical result.

Theorem 1.4. Suppose that n ∈ N, f ∈ Cm[a, b] that denote the space of functions with
continuous partial derivatives in [a, b] of order less than or equal to m ∈ N by Cm[a, b] and
a < x. Then

Dnf(x) = lim
h→0

∆n
hf(x)

hn
. (5)

Proof. See [5].

2 Numerical Scheme for Fractional Differential Formulation

In this section, a new method is presented to solve the equation with fractional derivative
and Grunwald-Letnikov fractional derivative is used. Linear programming (LP; also called
linear optimization) is a method to achieve the best outcome (such as maximum profit
or lowest cost) in a mathematical model whose requirements are represented by linear
relationships. More formally, linear programming is a technique for the optimization of a
linear objective function, subject to linear equality and linear inequality constraints. Its
feasible region is a convex polytope, which is a set defined as the intersection of finitely
many half spaces, each of which is defined by a linear inequality. Its objective function is
a real-valued affine function defined on this polyhedron.
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In the continue, you will see how a fractional differential equation changed to linear pro-
gramming. According to advantage of linear programming, solving a linear programming
is easier than fractional differential equation. The following theorem is used in suggested
method:

Theorem 2.1. If h(x) be a real, non-linear and non-negative function on [a, b], necessary

and sufficient condition for
∫ b
a h(x)dx = 0 is that h(x) be 0 on [a, b].

Proof. See [6].

Consider the following fractional differential equation:

Dα
a x(t) = f(x(t)), 0 < α < 1. (6)

According to equation (6) we have Dα
a x(t) − f(x(t)) = 0 and then

|Dα
a x(t) − f(x(t))| = 0. (7)

But according to the Theorem 2.1, the necessary and sufficient condition which cause the
equation (6) has a solution, is that the following problem has the zero objective function:

min

∫ 1

0
|Dα

a x(t) − f(x(t))|dt. (8)

To solve this problem, first we divided the integral interval into n suninterval and use the
midpoint method in each suninterval for approximating the integral. Then we have

min

∫ 1

0

∣∣∣Dα
a x(t) − f(x(t))

∣∣∣dt = min

n∑

i=1

∫ i
n

i−1
n

∣∣∣Dα
a x(t) − f(x(t))

∣∣∣dt (9)

= min
1

n

n∑

i=1

∣∣∣Dα
a x(

i

n
− 1

2n
) − f(x(

i

n
− 1

2n
))
∣∣∣

But according to definition of Grunwald-Letnikov fractional derivative, equation (9) will
be in the form:

min
1

n

n∑

i=1

(∣∣∣ 1

hα

i∑

j=0

wα
j x(

i − j

n
− 1

2n
) − f(x(

i

n
− 1

2n
))
∣∣∣
)
, (10)

where wα
j = (−1)j

(
α
j

)
= Γ(j−α)

Γ(−α)Γ(j+1) . In equation (10) there exists an absolute value

function, so we can change this problem to a linear programming problem with the fol-
lowing form:

min
1

n

n∑

i=1

ui + vi (11)

subjectto

1

hα

i∑

j=0

wα
j x(

i − j

n
− 1

2n
) − f(x(

i

n
− 1

2n
)) = ui − vi

ui, vi ≥ 0, i = 1, 2, · · · , n.
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3 Numerical Example

Consider the fractional derivative equation Dα
0 x(t) = −x2(t) + 1 with 0 < α ≤ 1 and

the initial condition x(0) = 0. According to the suggested method, we used numerical
results of linear programming (11). In Figure (1), the state variable x(t) is plotted for
different values of α. This equation have been solved by other numerical solutions such as

Figure 1: Approximate solution of x(t) for n = 100.

numerical solution by Baleanu and et al. (2013), Odibat and et al. (2008), Raja and et
al. (2010) and Batiha and et al. (2007). It can be seen that the proposed method of this
paper provide relatively the better results. Indeed, as the number of discrete points (n)
was increased and α approaches to 1, the solutions convergend.
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Abstract

In this paper, we present a new method for eigenvalue assignment in descriptor
systems based on matrix inverse eigenvalue problem. First a descriptor system is
changed to standard system with output feedback by defining the input vector as a
multiple of the output-derivative feedback, then using the matrix inverse eigenvalue
problem, output feedback matrix K is calculated such that eigenvalues of closed-loop
system are desirable and prescribed. A simple algorithm and an example is given to
illustrate the results.

Keywords: Eigenvalue assignment, Matrix inverse eigenvalue problem, Descriptor
systems, Null space

Mathematics Subject Classification [2010]: 93C05, 93B60

1 Introduction

Eigenvalue assignment techniques to improve the dynamic response of linear systems are
one of the most important problems in the modern control theory. Many approaches
have been proposed for this problem like [2, 5, 6]. Descriptor systems describe a physical
system more than other models of linear systems. Applications of descriptor systems can
be found in various fields such as electrical circuit networks, robotic systems, chemical
processes, economics. Bunse (1992), Duan and Wang (2005) and Darouach (2006) studied
on descriptor systems respectively in [1, 4, 3].

In this paper we investigate a new method for eigenvalue assignment in descriptor
systems with output-derivative feedback matrix. Many authors investigate approaches
to solve this problem, but the method that we have in this paper based on the matrix
inverse eigenvalue problem is much useful. The first superiority of this method is, we do
not need some certain conditions like in [5] or any restrictions for eigenvalues like amount
or multiplicity. Also we do not deal with nonlinear equations which solving them is so
difficult and time-consuming, especially for large system and it is the next advantage of
this method.

Consider the linear time invariant controllable and observable sysytem of the form

Eẋ(t) =Ax(t) + Bu(t), x(0) = 0 (1a)

y(t) =Cx(t) (1b)
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where open-loop, input and output matrices A, B and C have dimensions n × n, n × m

and l × n respectively and x(t) ∈ Rn is state vector, u(t) ∈ Rm is input vector and y(t) ∈ Rl

is output vector which 1 ≤ m ≤ n.
The aim of this paper is finding the output feedback matrix K in (1a), so that the

closed-loop matrix of system (1a) has desirable and prescribed eigenvalues. First we
convert the descriptor linear system to standard system using output-derivative feedback.
Next according to new standard system and method of solving matrix inverse eigenvalue
problem, the output feedback matrix K can be calculated. To establish the proposed
results, consider following assumptions: (I)rank[E|B] = n, (II)rank[A] = n, (III)rank[B] =
m. We define control low as

u(t) = Kẏ(t) = KCẋ(t). (2)

It is clear that if assumption (I) holds, then there exists K such that [1]

rank[E − BKC] = n (3)

for K such that (3) holds, from (2) system (1a) with output feedback (1b) can be rewrite
such as standard linear system, given by: Eẋ(t) = Ax(t) + BKCẋ(t), So ẋ(t) = (E −
BKC)−1Ax(t).

Lemma 1.1. consider a matrix M ∈ Rn×m with rank(M) = n and the eigenvalues equal to
λ1, λ2, ..., λn. Then, the eigenvalues of M−1 are the following: λ−1

1 , λ−1
2 , ..., λ−1

n . [2]

Theorem 1.2. define the matrices:

Ā = A−1E, B̄ = −A−1B (4)

and suppose (Ā, B̄) is controllable. Let K be output feedback matrix, such that L−1 =
{λ−1

1 , λ−1
2 , ..., λ−1

n } are the eigenvalues of the closed-loop system (5a) with (5b) and control
law (5c)

˙̄x(t) =Āx̄(t) + B̄ū(t) (5a)

ȳ(t) =Cx̄(t) (5b)

ū(t) =KCx̄(t) (5c)

where λi ∈ C and λi ̸= 0, i = 1, 2, ..., n, are arbitrarily specified. Then for this K, the
desired spectrum L = {λ1, λ2, ..., λn} is the eigenvalues of the controlled system (1a) with
(1b) and control law (2) and also, the condition (3) holds.

Proof. Considering that (Ā, B̄) is controlled, then one can find an output feedback matrix
K such that the controlled system (5a) and (5b) with output feedback (5c) given by
˙̄x = (Ā+B̄KC)x̄(t) has the poles equals to L−1 = {λ−1

1 , λ−1
2 , ..., λ−1

n }. Now by (4) note that:

(Ā + B̄KC)−1 = (A−1(E − BKC))−1 =⇒ (Ā + B̄KC)−1 = (E − BKC)−1A (6)

According to lemma 1.1 and equation (6), the spectrum L−1 = {λ−1
1 , λ−1

2 , ..., λ−1
n } are the

eigenvalues of closed-loop matrix (E − BKC)−1A . Therefore (3) holds and the eigenvalue
of closed-loop system (1a) with (1b) and controller (2) are equal to L = {λ1, λ2, ..., λn}.

Definition 1.3. The matrix inverse eigenvalue problem is that given four linearly inde-
pendent sets of real n-vectors {z1, z2, ..., zp}, {zp+1, zp+2, ..., zp+q}, {w1, w2, ..., wp} and {wp+1,

wp+2, ..., wp+q} with p+ q ≤ n and a set of complex numbers L−1 = {λ−1
1 , λ−1

2 , ..., λ−1
n }, find a
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real matrix Γn×n such that Γzi = wi, i = 1, 2, ..., p and Γzj = wj, j = p + 1, p + 2, ..., p + q and
the spectrum of Γ is L−1 = {λ−1

1 , λ−1
2 , ..., λ−1

n }, where we assume that the set L−1 is closed
under complex conjucation, i.e., λ ∈ L−1 if and only if λ̄ ∈ L−1.

Let Xr = [z1, z2, ..., zp], Xl = [zp+1, zp+2, ..., zp+q], Yr = [w1, w2, ..., wp] and Yl = [wp+1,
wp+2, ..., wp+q], clear that if the matrix Γ of the problem exists, the following consistency
condition must be satisfied

Xt
l Yr = Y t

l Xr (7)

Theorem 1.4. If the matrix inverse eigenvalue problem satisfies the consistency condition
(7), then the necessary and sufficient condition for the existence of the matrix Γ is that

there are vectors ui ∈
∫ i

u
and vi ∈

∫ i

v
, i = 1, 2, ..., n such that

uivj = σij , i, j = 1, 2, ..., n (8)

where
∫ i

u
and

∫ i

v
are the null spaces (λ−1

i Xt
l − Y t

l ) and (λ−1
i Xt

r − Y t
r ) respectively. if such ui

exist, then Γ can be obtained using the equation

Γ =T−1diag{ λ−1
1 , λ−1

2 , ..., λ−1
n }T, (9a)

T =
[
u1 u2 ... un

]
. (9b)

Let the base vectors of
∫ i

u
and

∫ i

v
be the form of matrices Si

u and Si
u respectively, then

vectors ui and vi, i = 1, 2, ..., n, can be expressed as ui = Si
uzi, vi = Si

vwi. Thus from
Equation (8) we have: zt

i(S
i
u)tSj

vwj, i, j = 1, 2, ..., n. This equation can be solved with the
iterative method. Briefly, first we assign some initial values to all wi, then the n-systems
of linear equations can be solved easily. [8]

2 Main results

In this paper, we consider Γ = Ā+ B̄KC that Ā+ B̄KC is the closed-loop matrix of system
(5a) and also U1 and V1 that are the matrices formed by the base vectors of the null spaces of
B̄ and C respectively. Then we have ΓV1 = (Ā+B̄KC)V1 = ĀV1, U t

1Γ = U t
1(Ā+B̄KC) = U t

1Ā.
Let Xl = U1, Xr = V1, Yl = ĀtU1 and Yr = ĀV1, now according to theorem 1.4 we can find
Γ. If such Γ exist, the matrix K can be computed through the equation

K = B̄†(Γ − A)C†. (10)

where B̄† and C† are the Moore-Penrose generalized inverse of B̄ and C respectively. This
method is generally solved when B̄ and C are full rank and rank(B̄) + rank(C) ≥ rank(Ā),
so we can expect a solution with probability 1 for a given set L. (For more details about
Moore-Penrose see [7])

Now we display briefly calculation that we have had in this paper by below algorithm:
Subject. Finding output feedback matrix K in (2) for eigenvalue assignment in descriptor
system (1a) with (1b).
Step 1. Inter A, B, C, E and eigenvalues L = {λ1, λ2, ..., λn}.
Step 2. Calculate Ā, B̄ and L−1 = {λ−1

1 , λ−1
2 , ..., λ−1

n } by (4) and lemma 1.1.
Step 3. Obtain Xl = U1 and Xr = V1 that are null space of B̄t and C respectively, then
calculate Yl = ĀtU1, Yr = ĀV1 and then obtain the null spaces (λ−1

i Xt
l −Y t

l ) and (λ−1
i Xt

r−Y t
r ).

Step 4. Obtain Z =
[
z1 z2 ... zn

]
,W =

[
w1 w2 ... wn

]
. [8]

Step 5. Calculate matrices T , Γ and obtain K from (9b), (9a) and (10) respectively.
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Conclusions

In this research, we investigate a new method for the eigenvalue assignment in descrip-
tor systems by output feedback matrix, which is based on the matrix inverse eigenvalue
problem. There are many approaches for this problem and our method is much simpler
than other methods, for example in [5] static output feedback matrix can be obtained from
state feedback matrix under certain conditions. Yheir method requaires solving non-linear
equations and for large systems it is quite cumbersome and time-consuming to derive the
non-linear system of equations. Removal of non-linear equations is an important advantage
of this method over other existing methods. This method does not require prior knowledge
of the open-loop eigenvalues and the controller does not impose any restrictions on the
position of the desired eigenvalues or their nature and multiplicity. The error of method
will be zero when B̄ and C are invertible.
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Abstract

Acoording to the importance of inverse scheduling problems in industry and com-
merce, in this paper the model of single machine inverse scheduling problem, with
fuzzy cost cofficient has been presented. Based on fuzzy distance minimization, the
model for solving this type of problems has been introduced. this model could opti-
mally solve problems for planners or decission making.

Keywords: Two-objective inverse scheduling problem, Fuzzy cost coefficients, Fuzzy
distance minimization

Mathematics Subject Classification [2010]: 86A22, 90C70, 90B36

1 Introduction

Consider inverse scheduling as a single machine, that should process n-job [3]:

• pj : Each job j, j = 1, ..., n has a processing time, pj associated with it. and p′
j is

the new minimally perturbed processing time of j job.

• dj : Each job j, j = 1, ..., n has a delivery time, dj associated with it. and d′
j is the

new minimally perturbed delivery time of j job.

• Cj : Completion time of job j, so where: Cj =
∑j

k=1.

Definition 1.1. [3] The amount of time a job takes more than delivery times (dj), we call
delay and it shows as Cj − dj and the time that shows the difference between completion
and delivery of job j, has been called tradiness Tj = max{0, Lj}.

Theorem 1.2. [3] The sequence of operations SPT (p1 ≤ p2 ≤ · · · ≤ pn), minimize the
mean time of completion time.

Theorem 1.3. [3] The sequence of operations EDD (d1 ≤ d2 ≤ · · · ≤ dn), minimize the
maximum tardiness.

Definition 1.4. [1] The value of a fuzzy number ã, in relation to the reducing function
s(α) = α, V (ã), is defined as V (ã) =

∫ 1
0 α[aL

α + aU
α ]dα.
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Definition 1.5. [1] The ambiguity of a fuzzy number ã, in relation to the reducing function
s(α) = α, A(ã) is defined as A(ã) =

∫ 1
0 α[aU

α − aL
α]dα.

Definition 1.6. [1] The fuzziness of a fuzzy number ã in relation to the reducing function

s(α) = α, F (ã), is defined as F (ã) =
∫ 1

2
0 [aU

α − aL
α]dα +

∫ 1
1
2
[aL

α − aU
α ]dα The above indices

are linear if nonnegative scalars are considered.

2 Problem formulation

In this paper two objectives has been considered, The first objective functions is discussed
in [2] with fuzzy cost coefficients α̃j , problem is solved by determining the minimum
total perturbation as the job processing times so the given sequence is converted to the
SPT sequence, in another objective function, it has been tried to minimize the delivery
perturbations cost coefficients k̃j and at the end change the scheduling sequence to the
EDD sequence.

p1 min
∑n

j=1 c̃j |p′
j − pj |

min
∑n

j=1 k̃j |d′
j − dj |

s.t 0 ≤ p′
1 ≤ p′

2 ≤ · · · ≤ p′
n

0 ≤ d′
1 ≤ d′

2 ≤ · · · ≤ d′
n

(1)

p1 is not a linear programming problem but can be converted into one by using a standard
transformation. min

∑n
j=1 α̃jxj + α̃jyj

min
∑n

j=1 k̃jaj + k̃jbj

s.t 0 ≤ p′
1 ≤ p′

2 ≤ · · · ≤ p′
n

0 ≤ d′
1 ≤ d′

2 ≤ · · · ≤ d′
n

xj − yj = p′
j − pj ∀j = 1, · · · , n

aj − bj = d′
j − dj ∀j = 1, · · · , n

xj , yj , aj , bj ≥ 0 ∀j = 1, · · · , n

(2)

As it clear in the article titled,[1], the fuzzy distance minimization has been studied for
problem (2), a distance metric approach is defined as one that minimizes the distance of
a solution to some ideal or desired point which can be provided by the DM as a point
composed of desired achievement levels In the space of the objective functions, this point
will be noted by (f̃∗

1 , f̃∗
2 ). Now, the definition of the Lp distance allows us to formulate

the following model:

min Lp =

[
∑2

k=1 wp
k

(
f̃k(x) − f̃∗

k

rf̃k

)p]1

p

s.t 0 ≤ p′
1 ≤ p′

2 ≤ · · · ≤ p′
n

0 ≤ d′
1 ≤ d′

2 ≤ · · · ≤ d′
n

xj − yj = p′
j − pj ∀j = 1, · · · , n

aj − bj = d′
j − dj ∀j = 1, · · · , n

xj , yj , aj , bj ≥ 0 ∀j = 1, · · · , n

(3)
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where rf̃j
= f∗U

j0 − fL
j∗0 is a normalization constant attached to j-th objective.

Let us use the degree of discrepancy corresponding to the j-th objective

d̃1(x) =
f̃1(x) − f̃∗

1

rf̃1

d̃2(x) =
f̃2(x) − f̃∗

2

rf̃2

(4)

3 Solving L1-problem

The model with two steps has been considered: Step 1 calculates the fuzzy minimum
distance under the L1 metric. In Step 2, it finds an optimum decision order to the fuzzy
minimum distance obtained in first step.

3.1 Calculating the fuzzy minimum distance

Setting p = 1 in (3), let us define the following problem:

min
∑2

k=1 wkd̃k(x)
s.t 0 ≤ p′

1 ≤ p′
2 ≤ · · · ≤ p′

n

0 ≤ d′
1 ≤ d′

2 ≤ · · · ≤ d′
n

xj − yj = p′
j − pj ∀j = 1, · · · , n

aj − bj = d′
j − dj ∀j = 1, · · · , n

xj , yj , aj , bj ≥ 0 ∀j = 1, · · · , n

(5)

In order to solve (5), for each α ∈ [0, 1] two ordinary problems are introduced:

min dL
α =

∑2
k=1 wkd

L
kα(x)

s.t
fL
1α(x)

rf̃1

− dL
1α =

f∗U
1α (x)

rf̃1

fL
2α(x)

rf̃2

− dL
2α =

f∗U
2α (x)

rf̃2

0 ≤ p′
1 ≤ p′

2 ≤ · · · ≤ p′
n

0 ≤ d′
1 ≤ d′

2 ≤ · · · ≤ d′
n

xj − yj = p′
j − pj ∀j = 1, · · · , n

aj − bj = d′
j − dj ∀j = 1, · · · , n

xj , yj , aj , bj ≥ 0 ∀j = 1, · · · , n





(P − left1(α)) (6)

and min dU
α =

∑2
k=1 wkd

U
kα(x)

fU
1α(x)

rf̃1

− dU
1α =

f∗L
1α (x)

rf̃1

fU
2α(x)

rf̃2

− dU
2α =

f∗L
2α (x)

rf̃2

0 ≤ p′
1 ≤ p′

2 ≤ · · · ≤ p′
n

0 ≤ d′
1 ≤ d′

2 ≤ · · · ≤ d′
n

xj − yj = p′
j − pj ∀j = 1, · · · , n

aj − bj = d′
j − dj ∀j = 1, · · · , n

xj , yj , aj , bj ≥ 0 ∀j = 1, · · · , n





(P − right1(α)) (7)
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where fL
jα denotes the value in x of j-th objective function when the coefficients are equal

to the left bound of the α-cut, and analogously fU
jα is for the case when the coefficients

are equal to the right bound of the α-cut. Now, the following theorem can be formulated:

Theorem 3.1. [1] Let d̃ be the fuzzy set defined through the following family of ordinary
sets: {[dL

α, dU
α ], α ∈ [0, 1]} where dL

α and dU
α are the solutions of problems (6) and (7)

respectively. Then, d̃ is a fuzzy number which represents the minimum L1-distance with
respect to desired point.

Theorem 3.2. [1] Assume that the desired point, (f̃∗
1 , f̃∗

2 ), is better than or equal to the
ideal point in each α-cut, and let d̃ be defined in the theorem 3.1; then, the value of d̃,
V (d̃), is greater than or equal to zero.

Theorem 3.3. [1] Assume that the desired point is better than or equal to the ideal point
in each α-cut, and let d̃ be defined in the above theorem; then the value of d̃, V (d̃), is equal
to 0 if and only if in each α-cut each individual objective achieves its desired level.

3.2 Model for optimum decision under L1-metric

In this subsection the way to find a decision vector has been introuduced such that its
distance to the desired point is the most like a fuzzy number d̃. An method defuzzyfication
has been choosed based on the value, the ambiguity, and the fuzziness of a fuzzy number.
These real indices lead to the following modelling:

Find x

s.t V
(∑2

j=1 wj d̃j(x)
)

≈ V (d̃)

A
(∑2

j=1 wj d̃j(x)
)

≈ A(d̃)

F
(∑2

j=1 wj d̃j(x)
)

≈ F (d̃)

0 ≤ p′
1 ≤ p′

2 ≤ · · · ≤ p′
n

0 ≤ d′
1 ≤ d′

2 ≤ · · · ≤ d′
n

xj − yj = p′
j − pj ∀j = 1, · · · , n

aj − bj = d′
j − dj ∀j = 1, · · · , n

xj , yj , aj , bj ≥ 0 ∀j = 1, · · · , n

(8)
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A numerical scheme for two-dimensional optimal control

problems with Grünwald-Letnikov for Riesz Fractional

Derivatives
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Abstract

In this paper, we study control systems containing a Riesz fractional derivative and
solve this problem by a numerical method which is so called Grünwald-Letnikov ap-
proximation scheme . A two-dimensional fractional optimal control problem is studied
as an example to demonstrate the performance of this method.

Keywords: Calculus of variations, Riesz fractional derivative, Grünwald-Letnikov

Mathematics Subject Classification [2010]: 49K05, 26A33

1 Introduction

Fractional calculus (FC) generalizes integrals and derivatives to non-integer orders. During
the last decade, FC was found to play a fundamental role in the modeling of a considerable
number of phenomena, in particular, the modeling of memory dependent phenomena and
complex media such as porous media. first we define a fractional derivative, and then
formulate a fractional optimal control problem (FOCPs) and find the necessary conditions
for optimality. The left and right Riemann-Liouville fractional derivatives of order α are
defined respectively:

aD
α
t y(t) =

1

Γ(1 − α)
(

d

dt
)

∫ t

a
(t − τ)−αy(τ)dτ,

tD
α
b y(t) =

1

Γ(1 − α)
(

d

dt
)

∫ b

t
(τ − t)−αy(τ)dτ,

where n − 1 < α < n. The usual definitions of the derivatives are obtained when α is an
integer. Note that for α ∈ (0, 1), the fractional operators are non-local. One space needed
Riesz fractional derivative R

a Dα
b y(t) is given by

R
a Dα

b y(t) =
1

2
(aD

α
t y(t) −t Dα

b y(t)),

R
b Dα

t y(t) =
1

2
(tD

α
b y(t) −a Dα

t y(t)). (1)
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The main point in the FOCPs is to find the optimal control u(t) which minimizes the
performance index [4]

J(u) =

∫ b

a
f(y, u, t)dt,

subjected to the system dynamic constraints

R
a Dα

b y(t) = g(y, u, t),

satisfying the terminal conditions y(a) = c and y(b) = d. Here f and g are a scalar and
R
a Dα

b y(t) is the right Riesz fractional derivative of order α. following expression defines a
modified performance index

J̄(u) =

∫ b

a
[H(y, u, λ, t) − λT R

a Dα
b y(t)]dt, (2)

where H(y, u, λ, t) is the following Hamiltonian

H(y, u, λ, t) = f(y, u, t) − λT g(y, t), (3)

and λT is the transpose of a ny × 1 vector of Lagrange multipliers. From (2) and (3) we
have

R
b Dα

t λ(t) =
∂H

∂y
, (4)

∂H

∂u
= 0, (5)

R
a Dα

b y(t) =
∂H

∂λ
, (6)

and it is also required that

λ(b) = 0. (7)

equations (4)-(6) coincide with the classical ones as α goes to 1. equations in (4)-(7) de-
scribe the necessary conditions in terms of the Hamiltonian for the FOCP defined above.
For the numerical solution of the system of FDEs with some terminal conditions, the
Grünwald-Letnikov approximation (GLA)[4] can be used. The Grünwald-Letnikov defi-
nition of the left Riemann-Liouville and right Riemann-Liouville fractional derivatives is
given as follows:

aD
α
t y(t) = lim

h→0

[ t−a
h

]∑

j=0

(−1)j

(
α
j

)
y(t − jh)

hα
,

tD
α
b y(t) = lim

h→0

[ b−t
h

]∑

j=0

(−1)j

(
α
j

)
y(t + jh)

hα
,
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respectively. the GLA of the left Riemann-Liouville and the right Riemann-Liouville
fractional derivatives at the ith node of the time interval [a, b], where the time interval
[a, b] is discretized by (N + 1) equally-spaced grid points, are defined as

aD
α
t y(ti) = 1

hα

i∑

j=0

ζα
j yi−j , i = 0, 1, · · · , N,

aD
α
t y(ti) = 1

hα

N−i∑

j=0

ζα
j yi+j , i = N, N − 1, · · · , 0. (8)

respectively, where yi ≈ y(ti), h = b−a
N , ti = a + ih, and

ζα
j = (−1)j

(
α
j

)
.

2 The two-dimensional example

Consider the following two-dimensional system in order to apply the fractional optimal
control (FOC) formulation described in Section 1. The aim is to minimize the following
quadratic performance index

J =
1

2

∫ 1

0
[y2

1 + y2
2 + u2]dt, (9)

subjected to the dynamic constraints,

R
0 Dα

1 y1(t) = −y1(t) + y2(t) + u(t), (10)
R
0 Dα

1 y2(t) = −2y2(t). (11)

Note that for this example a = 0, b = 1, and

f(y(t), u(t), t) =
1

2
[y2

1 + y2
2 + u2],

g(y(t), t) =

(
−y1(t) + y2(t) + u(t)

−2y2(t)

)
, (12)

The necessary conditions (3)-(6) of the FOC formulation result the following FDEs,

R
0 Dα

1 y1(t) = −y1(t) + y2(t) + u(t),
R
0 Dα

1 y2(t) = −2y2(t),

u(t) + λ1(t) = 0,
R
t Dα

0 λ1(t) = y1(t) − λ1(t),
R
t Dα

0 λ1(t) = y2(t) − 2λ2(t) + λ1(t), (13)

together with the condition u(1) = 0. Moreover, the initial conditions y1(0) = 1, y2(0) = 1
are imposed. firstly is substitutions the left and right Riesz Fractional derivatives (1) in
(13), next we apply the direct numerical scheme to solve the system of FDE’s in (13)
numerically using GLA.
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2.1 Numerical Results

The formulation presented in the above sections is applied to the multi-dimensional prob-
lem described in Section 1. It is solved numerically by the direct numerical scheme for
different values of α and N . When we take the number of nodes N as 128 and analyze
the behavior of the state variable y(t) and control variable u(t) as functions of t for the
values of α = 0.5, 0.75, 0.85, 0.95 and α = 1, we obtain the results given in the Figures(1).
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(a) State y1(t) as a function
of t for different α
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(b) State y2(t) as a function
of t for different α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

 

 
alpha=1
alpha=0.95
alpha=0.85
alpha=0.75
alpha=0.5

(c) State u(t) as a function
of t for different α

Figure 1: State y1(t), y2(t), u(t) as a function of t for different α

3 conclusion

A two-dimensional example was studied in details to apply the formalism. The set of
FDEs obtained from the formulation were approximated by Grünwald-Letnikov definition
and solved numerically using the direct numerical scheme. It is seen that as the sizes of
time sub-domains are decreased, the solutions converge slowly. Analytical solutions for
integer order systems are reached as the order of fractional derivatives goes to an integer
value.
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Abstract

In this paper, a new interior-point algorithm is presented for semidefinite optimiza-
tion (SDO) problems. The algorithm is based on a new class of search directions and
Ai-Zhang’s wide neighborhood for linear complementarity problems. Although, the
algorithm belongs to the class of large-step interior-point algorithms, its complexity
is coincide with the best iteration bound of short-step ones for SDO problems.

Keywords: Semidefinite optimization, Wide neighborhood, Interior-point method,
Polynomial complexity

Mathematics Subject Classification [2010]: 90C51, 90C22

1 Introduction

Semidefinite optimization (SDO) problems are one of the most important classes of opti-
mization problems which has become a popular research area in mathematical program-
ming. Among various methods for solving this class of problems, interior-point methods
(IPMs) are one of the most efficient and applicable classes of iterative algorithms which
solve SDO problems in polynomial time complexity.
The first IPMs for SDO problems were developed by Alizadeh [1] and Nesterov et al. [2].
After that, several authors such as Helmberg et al. [3], Vandenberghe et al. [4], Wang et
al. [5] and Mansouri et al. [6, 7] have proposed some interior-point algorithms for solving
the SDO problems. Most of these mentioned interior-point algorithms are based on a
small neighborhood of the central path (short-step IPMs) and their complexities coincide
with the best obtained iteration bound for solving the SDO problems.
In this paper, using Ai-Zhang’s wide neighborhood for linear complementarity problems
[8], we propose a large-step interior-point algorithm for SDO problems. Although, the
algorithm belongs to the class of large-step algorithms, we prove that its complexity co-
incides with the best iteration bound obtained by the short-step interior-point algorithms
for SDO problems.
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2 Interior-point methods for SDO problems

We consider the standard form of the SDO problem:

min
{

Tr (CX) s.t. Tr (AiX) = bi, i = 1, 2, ...,m, X � 0
}
, (1)

and its dual

max
{
bT y s.t.

m∑

i=1

yiAi + S = C, S � 0
}
, (2)

where C,X,Ai ∈ Sn for i = 1, 2, ...,m and y ∈ Rm. Denoting F0 as the strictly feasibility
set of the primal-dual pair of SDO problem, we assume that F0 6= ∅. Therefore, both
problems (1) and (2) are solvable and the perturbed KKT conditions for SDO problem
can be written as follows:

〈Ai, X〉 = bi, i = 1, 2, ...,m,
m∑

i=1

yiAi + S = C, (3)

HP (XS) = τµI, X, S � 0,

where the last equality is called the perturbed complementarity equation and

HP (XS) =
1

2

(
PXSP−1 + P−TSXP T

)
,

in which the matrix P belongs to the specific class

C(X,S) := {P ∈ Sn++| PXSP−1 ∈ Sn}. (4)

In this paper, we consider the wide neighborhood

N (τ, β) =

{
(X, y, S) ∈ F0 :

∥∥∥∥
(
τµI −X 1

2SX
1
2

)+∥∥∥∥
F

≤ βτµ
}
,

where β, τ ∈ (0, 1) are given constants. Using Newton’s method on System (3), we can
derive the following linearized Newton search direction system:

〈Ai,∆X〉 = 0, i = 1, 2, ...,m,
m∑

i=1

∆yiAi + ∆S = 0, (5)

HP (X∆S + ∆XS) = τµI −HP (XS).

Defining the new matrix

V := (τµI −HP (XS))+ + η (τµI −HP (XS))− +HP (XS), (6)

where

η := −Tr (τµI −HP (XS))+

Tr (τµI −HP (XS))−
, (7)
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and replacing the right hand side of the third equation in System (5) by the term tV −
HP (XS) with t ∈ [0, 1], this system can be rewritten as follows:

〈Ai,∆X〉 = 0, i = 1, 2, ...,m,
m∑

i=1

∆yiAi + ∆S = 0, (8)

HP (X∆S + ∆XS) = tV −HP (XS).

Taking a full Newton step along (∆X,∆y,∆S), the new iterate is given by

(X(t), y(t), S(t)) = (X, y, S) + (∆X,∆y,∆S). (9)

Below, we describe more precisely the wide neighborhood feasible interior-point algorithm
for SDO problems.
The wide neighborhood feasible algorithm for SDO problems
• Input parameters: Required precision ε > 0, neighborhood parameters β, τ ∈ (0, 13 ]
and the initial iterate

(
X0, y0, S0

)
∈ N (τ, β).

• step 0: Set k := 0.
• step 1: If nµk ≤ ε, then stop. Otherwise go to step 2.
• step 2: Let (X, y, S) = (Xk, yk, Sk) and µ = µk. Compute V = V k from (6) and
(∆X,∆y,∆S) (t) from (8).
Let (X(t), y(t), S(t)) = (X, y, S) + (∆X,∆y,∆S) (t) and find the smallest t̄ such that
(X(t), y(t), S(t)) ∈ N (τ, β), for any t ∈ [t̄, 1].
• step 3: Let tk = t̄ and set (Xk+1, yk+1, Sk+1) = (X(tk), y(tk), S(tk)) and µk+1 = tkµk.
Then, go to step 1.

3 Convergence analysis

In this section, we investigate the proposed feasible algorithm is well-defined and its com-
plexity is O (

√
n). The following two lemmas play an important role in convergence anal-

ysis.

Lemma 3.1. After a full Newton-step one has
(i) HP (X(t)S(t)) = tV +HP (∆X∆S) ,
(ii) µ(t) = tµ.

Lemma 3.2. Let (X, y, S) ∈ N (τ, β). Then

Tr
(
τµI −X 1

2SX
1
2

)−
≤ (τ − 1)nµ, (10)

Tr
(
τµI −X 1

2SX
1
2

)+
≤ √

nβτµ. (11)

In following, we present the main result of the paper as follows.

Lemma 3.3. Assume that the current iterate (X, y, S) ∈ N (τ, β). Let 0 < τ ≤ β ≤ 1
3 and

1− α√
n
≤ t ≤ 1 such that α ≤ 1

4

√
βτ . Then, the new iterate (X(t), y(t), S(t)) generated by

the feasible wide neighborhood algorithm belongs to N (τ, β).
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The following theorem states the complexity bound of the proposed algorithm .

Theorem 3.4. The proposed feasible wide neighborhood algorithm terminates in at most

O (
√
nL) iterations where L = 1

α log
Tr(X0S0)

ε and α = 1
4

√
βτ .

4 Concluding remarks

We proposed a new path-following wide neighborhood feasible interior-point algorithm for
SDO problems. The algorithm is based on using a wide neighborhood and a new class
of search directions. We proved that the proposed feasible wide neighborhood algorithm
terminates in at most O (

√
nL) iterations.
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An inverse linear fractional modeling

Mohamad Mohamadkhani∗

Shahrood University

Jafar Fathali

Shahrood University

Abstract

In this paper we consider the inverse fractional programming. Let x0 be a feasible
points of the model. We present a method to change the right hand side and coefficients
of objective function which is a linear fraction function in order to make the point x0

optimal or at least close to the optimal set.

Keywords: Inverse optimization; Fractional; linear programming
Mathematics subject classification [2010]: 90B90, 90B06.

1 Introduction

An inverse optimization is to change the values of parameters of the given problem as
little as possible such that an feasible known solution becomes an optimal solution of
the problem. For more information about inverse optimization see [1, 7]. In this paper
we consider the inverse linear fractional programming with changing the right hand side
and coefficients of objective function to make a given feasible point optimal or close as
possible as to the optimal set. Jain and Arya [5, 6] presented a model for inverse fractional
programming with adjust the coefficients of objective function to make a feasible given
point optimal.

Consider the following linear fractional programming.

max f(x) =

n∑

j=1

cjxj + c0

n∑

j=1

djxj + d0

n∑

j=1

aijxj = bi i = 1, ...,m

xj ≥ 0, j = 1, ..., n

(1)

We want to use the method of Dampe and Loshe [4] which is presented for linear
programming, for changing the right hand side and coefficients of objective function in
order to make a given point optimal or at least close to the optimal set.
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2 The inverse model

By using the Charnes and Cooper [3] transformation (also see [2]), let

tj =
xj

n∑

i=1

dixi + d0

forj = 1, ..., n

and t0 = 1
n∑

i=1

dixi + d0

. Also by setting

E =




d0 d1 ... dn

−b1 a11 ... a1n
...

...
. . .

...
−bm am1 ... amn


 , e =




1
0
...
0


 , t =




t0
t1
...
tn




we get the following problem
max ct

Et = e
t ≥ 0.

(2)

Lemma 1. By transforming model (1) using Charnes and Cooper [3] to model (2), if
vector e in the model (2) is replaced by vector

g =




1
g1
...

gn




then in the corresponding fractional model, only the values of right hand side vector b will
be changed.

Now let φt(g, c) = argmax{cT t : Et = g, t ≥ 0} be the set of optimal solutions of the
following linear parametric optimization problem,

max{cT t : Et = g, t ≥ 0} (3)

where the parameters of the right hand side and in the objective function are elements of
given sets β = {g : Bg = ĝ} and ζ = {c : Cc = ĉ}, respectively.

Let A ∈ Rm×n, B ∈ Rp×m, C ∈ Rq×n, ĝ ∈ Rp and ĉ ∈ Rq be fixed. Let t0 ∈ Rn also be
fixed. We want to find values ḡ and c̄ for the parameters, such that t0 ∈ φt(ḡ, c̄) or, if this
is not possible, t0 is at least close to φt(ḡ, c̄). Therefore we consider the following problem

min{||t − t0|| : t ∈ φt(g, c), g ∈ β, c ∈ ζ} (4)

The problem (4) can be solved by the method of Dampe and Loshe [4] in the polynomial
time.
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After solving the problem (4), let the optimal parameters for g and c be g̃ and c̃,
respectively, and t̃ be the optimal value of t. Also let m = n, E−1 and A−1 exist then
in following theorem we show the optimal solution of model (1) can be found by solving
model (4).

Theorem 1. Let m = n, E−1 and A−1 exist. The point x̃ where x̃j =
t̃j
t̃0

for j = 1, ..., n

is an optimal solution of model (1) by setting c = c̃ or

||x̃ − x0|| = min{||x − x0|| : x ∈ φx(b, c), b ∈ β′, c ∈ ζ} (5)

where φx(b, c) = argmax{cT x : Ax = b, x ≥ 0} and β′ = {b : Bb = b̂}.

Proof. By setting g̃ and c̃ in the model (3) we get the following problem;

max
n∑

j=0

c̃jtj

n∑

j=0

djtj = g̃0

n∑

j=1

aijtj = g̃i + bit0 i = 0, ..., m

tj ≥ 0, j = 0, ..., n.

(6)

By reversing transform tj to xj , we get tj = xjt0 for j = 1, ..., n. And by setting
t0 = 1

n∑

j=1

djxj + d0

;

max

n∑

j=1

c̃jxj + c̃0

n∑

j=1

djxj + d0

n∑

j=0

djxj = g̃0(

n∑

j=1

djxj + d0)

n∑

j=1

aijxj = g̃i(

n∑

j=1

djxj + d0) + bi i = 1, ...,m

xj ≥ 0, j = 1, ..., n

(7)

If g̃0 = 1 and g̃i = 0 for j = 1, ..., n then the model will be changed to the model (1).
Other wise we show the relation (5) holds.

||x̃ − x0||1 =

n∑

j=1

|x̃j − x0
j | =

n∑

j=1

| t̃j
t̃0

−
t0j
t00

|.
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3 Conclusion

In this paper we presented a method for solving fractional linear programming with chang-
ing the right hand side and coefficients of objective function in order to make a given point
optimal or at least close to the optimal set.
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Descriptor systems controller, with minimizing the norm of

state feedback matrix

Sakineh Bigom Mirasadi∗

University of Shahrood

Hojjat Ahsani Tehrani

Shahrood University

Abstract

In this paper, we describe the similarity transformation of the state space of a
descriptor system and then using state-derivative feedback. Then we determine para-
metric state feedback matrix for a linear descriptor system. First, we define the input
as a multiple of the state-derivative feedback, and when the descriptor system was
changed a standard system with state feedback, consider that the similarity transfor-
mations. Using the system closed-loop matrix graph, we find the parametric state
feedback matrix. Finally we get the controlled optimal matrix with minimum norm.

Keywords: Descriptor system, State-derivative feedback, Closed-loop matrix graph

Mathematics Subject Classification [2010]: 93C05, 93B60

1 Introduction

Minimum norm of feedback matrix in controllable descriptor systems in recent years have
had a favorable and certain effect on types of human life. Many researcheres have per-
formed extensive amounts of researches on eigenstructure assignment in descriptor system
like Bunse (1992), Duan and Wang (2005) in [1, 2]. Many authors like Karbassi and Bell
worked on minimization of the norm of feedback controllers, too [3, 4, 5, 6, 7].

The first advantago of this paper is, using the state-derivative feedback to convert the
descriptor to a standard system. Then using similarity transformation and parameteri-
zation, we transform the state space will facilitate the calculation of the system feedback
matrix and the feedback matrix using graph theory. Also, by identifying the parameters
location of the feedback matrix, we can count them in their numbers. The most important
superiority of this paper is that, makes it possible to calculate the state space similarity
transformation and parametric state feedback matrix for a descriptor system.

In this paper it is assumed that the descriptor system (1) is a linear time-invariant
system with state-derivative feedback (2). First we convert the descriptor system (1) with
(2) to standard system (5b) with state feedback control (5c), then we obtain state feedback
matrix for assigning desired eigenvalues to system (5b), finally we obtain minimum norm
of state feedback controller. Consider a controllable linear descriptor system described by

Eẋ(t) = Ax(t) + Bu(t), x(0) = 0 (1)
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where E ∈ Rn×n, x(t) ∈ Rn is state feedback, u(t) ∈ Rm is input vector and y(t) ∈ Rl

is output vector. It is assuemed that 1 ≤ m ≤ n, A ∈ Rn×n and B ∈ Rn×m are time-
invariant. Now consider the state-derivative feedback control

u(t) = Kdẋ(t) (2)

The program is to obtain a state-derivative feedback Kd, using the state feedback
techniques, such that the poles of the controlled system (1) and (2) are arbitrarily specified
by L = {λ1, λ2, ..., λn}, where λi ∈ C and λi ̸= 0, i = 1, 2, ..., n, such that this closed-
loop systems presents a suitable performance. To establish the proposed results, consider
following assumptions: I)rank[E|B] = n, II)rank[A] = n, III)rank[B] = m

Remark 1.1. It is clear that if assumption (I) holds, then there exists Kd such that:

rank[E − BKd] = n (3)

For Kd such that (3) holds, then from (2) it follows that (1) can be rewrite such as a
standard linear system, given by:

Eẋ(t) = Ax(t) + BKdẋ(t) =⇒ ẋ(t) = (E − BKd)
−1Ax(t) (4)

From (4) note that if rank(A) < n then the controlled system (1), with (2) given by
(4) is unstable, because it presents at least one pole equal to zero. [1]

Lemma 1.2. consider a matrix M ∈ Rn×m with rank(M) = n and the eigenvalues equal
to λ1, λ2, ..., λn. Then, the eigenvalues of M−1 are the following: λ−1

1 , λ−1
2 , ..., λ−1

n . [3, 4]

Remark 1.3. Consider that λ = a + jb is an eigenvalue of M , then from lemma 1.2
λ−1 = (a + jb)−1 = a

a2+b2
− j b

a2+b2

Theorem 1.4. define the matrices N , M as (5a) and suppose (N,M) is controllable. Also
let Kd be state feedback matrix, such that L−1 = {λ−1

1 , λ−1
2 , ..., λ−1

n } are the eigenvalues of
the closed-loop system (5b) with control law (5c),

N =A−1E, M = −A−1B (5a)

ż(t) =Nz(t) + Mw(t) (5b)

w(t) =Kdz(t) (5c)

where λi ∈ C and λi ̸= 0, i = 1, 2, ..., n, are arbitrarily specified. Then for this Kd, the
desired spectrum L = {λ1, λ2, ..., λn} is the eigenvalues of the controlled system (1) with
state-derivative feedback (2) and also, the condition (3) holds.

Proof. Considering that (N, M) is controlled, then one can find a state feedback matrix Kd

such that the controlled system (5b) with state feedback (5c) given by ż = (N +MKd)z(t).
has poles equal to L−1 = {λ−1

1 , λ−1
2 , ..., λ−1

n }. Now by (5a) note that:

(N + MKd)
−1 = (A−1(E − BKd))

−1 =⇒ (N + MKd)
−1 = (E − BKd)

−1A (6)

By equation (6), the spectrum L−1 = {λ−1
1 , λ−1

2 , ..., λ−1
n } is the eigenvalues of closed-

loop matrix (E −BKd)
−1A . Therefore (3) holds and the eigenvalue of closed-loop system

(1) and (2) are equal to L = {λ1, λ2, ..., λn}.
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2 Main results

Consider the following controllable system (5b) corresponding to the descriptor system
(1). First assign L−1 = {λ−1

1 , λ−1
2 , ..., λ−1

n } to system (5b) with (5c) by [5]. According
theorem 1.4 it is assigned L = {λ1, λ2, ..., λn} to system (1) with (2). Then minimize the
norm of the primary state feedback matrix for the pair (N,M) instead of state feedback
matrix for the pair of (B, A) by parameterizations of [6]. Now briefly display the method
of assigning and parameterizations of [6] by below algorithm. Pay attention to some basic
formula that we need in algorithm.

Consider the state transformation z(t) = T z̃(t) where T can be obtained by elementary
similarity operations as described in [3, 4]. Substituting (6) into (5b) yields ˙̃z = T−1NT z̃+
T−1Mw(t). It is noted that the transformation matrix T is invertible. In this way,

Ñ = T−1NT and M̃ = T−1M are in a compact canonical form know as vector companion
form [6]:

Ñ =

[
G0

In−m , 0n−m,m

]
, M̃ =

[
M0

0n−m,m

]

Now follow this algorithm:
Object. To assign desired eigenvalue L = {λ1, λ2, ..., λn} to system (1) and obtain the
state feedback matrix with minimum norm.
Input. The pair (B, A), matrices Ñ , M̃ , G0, M0 and T−1.
Step 1. Obtain the state feedback matrix F̃d and Fd, that assigns zero eigenvalues to
system (Ñ , M̃) and (N, M) respectively, which F̃d = −M−1

0 G0, Fd = F̃dT
−1.

Step 2. Consider the transformed closed-loop matrix Γ̃ = Ñ + M̃F̃d which Γ̃ =[
0m,n

In−m , 0n−m,m

]
and assumes a compact Jordan form with zero eigenvalues.

Step 3. Add a diagonal matrix D = diag{λ−1
1 , λ−1

2 , ..., λ−1
n } for an arbitrary set of self-

conjugate eigenvalues to Γ̃. Then the closed-loop system matrix (Ñ + M̃F̃d) becomes
Vp = (Ñ + M̃F̃d) + D

Step 4. Use simple elementary similarity operations of [3, 4] to obtain the matrix Ṽ from

Vp such that Ṽ =

[
Gλ

In−m , 0n−m,m

]

Step 5. Obtain the primary feedback matrix Kd that gives rise to the assignment of
eigenvalues L−1 = {λ−1

1 , λ−1
2 , ..., λ−1

n } to system (5b) by Kd = Fd + M−1
0 GλT−1.

Step 6. Obtain Fα = M−1
0 GαT−1 that Gα is a m × n matrix containing free parameters.

Use state transition graph (STG) method to locate free parameter in Fα. (For more detail
about determining parameter in Gα, see algorithm of [5])
Step 7. Obtain the parametric feedback matrix is defined as F = Kd + Fα which assigns
L = {λ1, λ2, ..., λn} with minimum the norm of state feedback matrix of system (1).

Example 2.1. consider the following linear descriptor system



1 0 0
0 1 0
0 0 0







ẋ1(t)
ẋ2(t)
ẋ3(t)


 =




0 1 0
1 1 0
0 −1 1







x1(t)
x2(t)
x3(t)


 +




0 0
1 0
0 1


u(t)

In this example, the suitable closed-loop poles are for the controlled systems (1) and
(2) are: λ1 = −0.5, λ2,3 = −0.5 ± 0.5i. One can obtain the feedback matrix Kd and F
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below that their norms are 4.2426 and 3.7417 respectively.

Kd =

[
1 3 0
0 −2 2

]
, F =

[
1 3 0
0 0 2

]

Conclusions

Considering in this paper, using the state-derivative feedback, the descriptor system be-
comes converted to a standard system, explains the advantages of this method. Because
working with a standard system, it is much easier than the descriptor mode. Then using
similarity transformation, we transform the state space will facilitate the calculation of
the system feedback matrix. Also we do the parameterization, the feedback matrix using
graph theory. Moreover, using this method, we identified the parameters location of the
feedback matrix, can also be counted in their numbers. This will be advantage of this
paper is that, makes it possible to calculate the state space similarity transformation and
parametric state feedback matrix for a descriptor system.

References

[1] A. Bunse-Gerstner, N. Nichols, and V. Mehrmaqnn, Regularization of Descriptor Sys-
tems by Derivattive and proportional State Feedback, SIAM J. Matrix Anal, 1992.

[2] G. R. Duan and G. S. Wang, Aigenstructure assignment in a class of second-order
descriptor linear system: A complete parametric approach, Automatica, Vol. 1, (2005),
pp. 1-5.

[3] S. M. Karbassi, and D. J. Bell, Parametric time-optimal control of linear discrete-time
systems by state feedback-part 1: Regular kronecker invariants, International journal
of control, 57 (1993), pp. 817-830.

[4] S. M. Karbassi, and D. J. Bell, Parametric time-optimal control of linear discrete-time
systems by state feedback-part 2: Irregular kronecker invariants, International journal
of control, 57 (1993), pp. 831-883.

[5] S. M. Karbassi, and D. J. Bell, New methods of parametric eigenvalue assignment in
state feedback control, LEE proc. D141 (1994), pp. 223-226.

[6] S. M. Karbassi, An algorithm for minimizing the norm of state feedback controllers in
eigenvalue assignment, Computers and mathematics with applications, Vol. 41 (2001),
pp. 1317-1326.

[7] S. M. Karbassi, and H. A. Tehrani, Minimum norm Time-optimal control of linear
discrete-time periodic systems by Parameterization of state feedback, International jour-
nal of Innovative computing, information and control ICIC, 5(8) (2009), pp. 2151-2158.

Email: s.mirassadi@shahroodut.ac.ir
Email: hahsani@shahroodut.ac.ir

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Descriptor systems controller, with minimizing the norm of state feedback . . . pp.: 4–4

557



Efficiency measure by interval data envelopment analysis

model and its application
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Abstract

Data envelopment analysis (DEA) is a non-parametric technique to measure the
efficiencies of a set of decision making units (DMUs) with common crisp inputs and
outputs. In real-world problems, however, inputs and outputs are interval. To analyze
a DMU with interval input/output data, this paper proposed an associated evaluating
approach. Nonetheless, numerous deficiencies must be improved in mentioned models.

Keywords: Data envelopment analysis, Efficiency, Interval data.

Mathematics Subject Classification [2010]: 90B50

1 Introduction

DEA is a non-parametric method for evaluating the efficiency of DMUs like bank branches,
schools, transport sectors etc. on the basis of multiple inputs and outputs. Charnes,
Cooper and Rhodes (CCR) [1] developed the DEA approach in 1978. After the paper
of CCR, there was an exponential growth in number of publications on DEA. In more
general cases, the data for evaluation are often collected from investigations employing a
polling approach, where in natural language, such as good, medium, and bad, are used to
represent a type of general situation of the examined entities rather than a specific case.
Thus, several studies proposed the interval DEA model for input and output data [2, 3].
In this paper, DEA model is extended to be an interval model for evaluating efficiency
and ranking of DMUs with interval data. At last a numerical presentation of real data
from a commercial bank of Iran is considered.

2 DEA model with interval data

This paper is proposing a model which is the extension of CCR model to an interval
framework. Let a set of n DMUs has m interval inputs [XL

ij , X
U
ij ] and s interval outputs

[Y L
ij , Y U

ij ] i.e., inputs and outputs are approximately known and not precisely measured.
Thus, interval CCR model is given by interval linear programming problem(LPP ) as
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follows:

Ek = max

∑s
r=1 urkỸrk∑m
i=1 vikX̃ik

s.t

∑s
r=1 urkỸrj∑m
i=1 vikX̃ij

≤ 1, ∀j = 1, ..., n, (1)

urk ≥ ε ∀r = 1, ..., s,

vik ≥ ε ∀i = 1, ..., m.

The efficiency score evaluated from the model should be interval because this model con-
tains interval parameters.

Ek = max

∑s
r=1 urk(Yrk)

L

∑m
i=1 vik(Xik)U

s.t

∑s
r=1 urk(Yrk)

L

∑m
i=1 vik(Xik)U

≤ 1 (2)

∑s
r=1 urk(Yrj)

U

∑m
i=1 vik(Xij)L

≤ 1, ∀j = 1, ..., n, j ̸= k

urk ≥ ε ∀r = 1, ..., s,

vik ≥ ε ∀i = 1, ..., m.

Similarly we can obtain(Ek)
U .

The theory fo fractional linear programming [5] make them possible to replace model (2)
with an equivalent LPP.

(Ek)
L = max

s∑

r=1

urk(Yrk)
L

s.t.
m∑

i=1

vik(Xik)
U = 1,

s∑

r=1

urk(Yrk)
L −

m∑

i=1

vik(Xik)
U ≤ 0

s∑

r=1

urk(Yrj)
U −

m∑

i=1

vik(Xij)
L ≤ 0, ∀j = 1, ..., n, (3)

urk ≥ ε ∀r = 1, ..., s,

vik ≥ ε ∀i = 1, ..., m.
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(Ek)
U = max

s∑

r=1

urk(Yrk)
U

s.t.
m∑

i=1

vik(Xik)
L = 1,

s∑

r=1

urk(Yrk)
U −

m∑

i=1

vik(Xik)
L ≤ 0

s∑

r=1

urk(Yrj)
L −

m∑

i=1

vik(Xij)
U ≤ 0, ∀j = 1, ..., n, (4)

urk ≥ ε ∀r = 1, ..., s,

vik ≥ ε ∀i = 1, ..., m.

3 Ranking of DMUS

Ranking of DMUs plays an important part in DEA interpretations. The final efficiency
of a DMU in DEA model with interval data is no longer a crisp number. The ranking
index for the jth DMU as

Ij =
∑n

j=0 EU
j∑n

j=0 EU
j −∑n

j=0 EL
j

4 numerical example

To illustrate the proposed interval DEA model consider this data.

DMU Input Output

1 [11, 14] [10, 10]
2 [30, 30] [12, 16]
3 [40, 40] [11, 11]
4 [45, 52] [12, 22]

We obtain the efficiency for first of interval and end of interval by proposed models.

Efficiency A B C D

[1, 1] [0.440, 0.747] [0.302, 0.385] [0.240, 0.684]
height

conclusion

DEA has wide application to evaluate the relative efficiency in a set of DMUs by using
multiple to common crisp inputs and outputs. The existing DEA models are usually
limited to common crisp inputs and outputs. In some cases, input and output data of
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DMUs cant be precisely measured, for example, quality of service, quality of input
resource, degree of satisfaction etc. so, the uncertain theory has played an important role
in DEA. In these cases, the data with crisp number will not satisfy the real needs and
this restriction will diminish the practical flexibility of DEA in application. Thus, the
data can be represented by interval sets. This paper attempts to extend the traditional
DEA model to an interval framework.
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Abstract

In this paper a multiobjective problem (MP) with a feasible set defined by inequal-
ity and equality constraints and a set constraint are considered. Then, by using the
concept of K-directional derivatives, we obtain necessary and sufficient conditions for
local weak efficiency on a new class of functions.

Keywords: K-directional derivative, Local cone approximation, Constraint qualifi-
cation, Efficiency, Weak Efficiency.

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

The subject of optimality conditions for optimization problems, which are not necessarily
smooth, has been extensively researched for the past decade. Central to this study has
been the development of the appropriate cone approximations for generalizing the con-
cepts of directional derivatives and subdifferentials. In this way, Elster and Thierfelder
[5, 4] and independently Ward [8] exploiting a general and axiomatic definition of local
cone approximation of a set, introduced a general definition of directional derivative for a
function f : X → R where X is a finite dimensional space or also a topological linear space.
Also ,Nobakhtian [7] by using the concept of K-directional derivative proved general opti-
mality conditions for a multiobjective problem with a feasible set defined by equality and
inequality constraints. In this paper, we introduce a new class of functions and prove that
under a suitable constraint qualification, it is a both necessary and sufficient condition in
order to K-strongly efficient stationary points, K-weakly efficient stationary points, local
efficient, local weak efficient, efficient and weak efficient be equivalent.

2 Notations and Preliminaries

Given the function f : X → R, the epigraph of f is epi f = {(x, r) ∈ X × R : f(x) ≤ r}.
The set epi f will be locally approximated at the point (x, f(x)) by a local cone approxi-
mation K and a positively homogenous function fK(x, .) will be uniquely determined.

Definition 2.1. ([3]) Let f : X → R, x ∈ X be a local cone approximation; the positively
homogeneous function fK(x; .) : Rℓ → [−∞,+∞] defined by fK(x; d) := inf{ξ ∈ R :
(d, ξ) ∈ K(epif ; (x, f(x)))} is called the K-directional derivative of f at x.
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We introduce a type of generalized directional derivatives used in literature; the upper
Dini directional derivative of f at x

fZ(x; v) = lim sup
t→0+

f(x + tv) − f(x)

t

is associated to the cone of the feasible directions

Z(Q, x) := {v ∈ Rℓ : ∀{tk} → 0+, x + tkv ∈ Q, ∀k}.

Definition 2.2. ([3]). Let f : X → R and K be a local cone approximation, the function
f is said to be K-subdiffrensiable at x if there exists a convex compact set ∂Kf(x) such
that

fK(x; v) = max
x∗∈∂Kf(x)

⟨x∗, v⟩ ∀v ∈ Rℓ

which ∂Kf(x) := {x∗ ∈ Rℓ : ⟨x∗, v⟩ ≤ fK(x, v), ∀v ∈ Rℓ} is called the K-subdifferential
of f at x.

3 Optimality Conditions

In this section, we study the problem (MP).

(MP) min f(x) = (f1(x), . . . , fm(x))

s.t. g(x) = (g1(x), . . . , gn(x)) 5 0,

h(x) = (h1(x), . . . , hp(x)) = 0,

x ∈ Q,

where fi, i ∈ I = {1, . . . , m}, gj , j ∈ J = {1, . . . , n}, hs, s ∈ E = {1, . . . , p} are K-
subdifferentiable and real valued functions which are defined from Rl and Q is an arbitrary
set. Let us introduce some notations which are used in the sequel.

S :=
{

x ∈ Rℓ
∣∣∣g(x) 5 0, h(x) = 0, x ∈ Q

}

Sl :=
{

x ∈ Rℓ
∣∣∣fi(x) ≤ fi(x0), ∀i ̸= ℓ, g(x) 5 0, h(x) = 0, x ∈ Q

}

F :=
∪

i∈I

∂Kfi(x0), F l :=
∪

i∈I−{ℓ}
∂Kfi(x0),

G :=
∪

j∈J(x0)

∂Kgj(x0), H :=
∪

s∈E

∂Khs(x0).

where J(x0) denote the index set of active constraints at the given point x0.

Definition 3.1. The following constraint qualifications are considered:

(CQ1) : F− ∩
G− ∩

H− ∩
K(Q, x0) ⊆

m∩

i=1

WF (Si, x0).

(CQ2) : F s
∩

G− ∩
H− ∩

K(Q, x0) ⊆ WF (S, x0).
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Definition 3.2. Let x0 ∈ S, and K be a local cone approximation. The point x0 is said
to be

• K-strongly efficient stationary point for (MP) if the following system is impossible:

fK
i (x0; v) ≤ 0 for all i ∈ I,

fK
i (x0; v) < 0 for some i ∈ I,

gK
j (x0; v) ≤ 0 for all j ∈ J(x0),

hK
s (x0; v) = 0 for all s ∈ E,

v ∈ K(Q, x0).

(1)

• K-weakly efficient stationary point for (MP) if the following system is impossible:

fK
i (x0; v) < 0 ∀i ∈ I,

gK
j (x0; v) ≤ 0 ∀j ∈ J(x0),

hK
s (x0; v) = 0 ∀s ∈ E,

v ∈ K(Q, x0).

(2)

It is always possible to choose suitable local cone approximation K such that every
efficient solution x̄ is a K-weakly or K-strongly efficient stationary point [1]. For differen-
tiable functions we can see in [6], that every efficient solution for the problem (MP) under
some constraint qualification is strongly efficient stationary point. We will prove under
suitable constraint qualification, it is possible to deduce necessary and sufficient optimality
conditions directly from impossibility of the system (1) or (2).

Theorem 3.3. Let (CQ1) be satisfied at x0 ∈ S and K be a local cone approximation
such that K(Q, x0) ⊆ Z(Q, x0). If x0 is a local efficient solution for (MP), then system
(1) is impossible.

Theorem 3.4. Let (CQ2) be satisfied at x0 ∈ S and K be a local cone approximation
such that K(Q, x0) ⊆ Z(Q, x0). If x0 is a local weak efficient solution for (MP), then the
system (2) is impossible.

In the sequel we define a new class of functions in order to prove under some constraint
qualification it is both necessary and sufficient condition for K-strongly efficient stationary
points, K-weakly efficient stationary points, local efficient, local weak efficient, efficient and
weak efficient solution of (MP) be equivalent.

Definition 3.5. Let x0 ∈ S. Problem (MP) is said to be KT-K-strictly pseudoinvex-infine
at x0 w.r.t η on S, if for any x ∈ S with f(x) ≤ f(x0), there exists η(x, x0) ∈ K(Q, x0)
such that the following system holds

fK
i (x0; η(x, x0)) < 0 ∀i ∈ I,

gK
j (x0; η(x, x0)) ≤ 0 ∀j ∈ J(x0),

hK
s (x0; η(x, x0)) = 0 ∀s ∈ E.
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From definition 3.5 we obtain that the KT-K-pseudoinvex-infineness is a generalization
of the KT-pseudoinvexity-II given by Arana [2] for a nondiferentiable multiobjective prob-
lem when the local cone approximation K is Clarke’s tangent cone and fi, i ∈ I, gj , j ∈ J ,
hs, s ∈ E are locally Lipschitz functions.

Theorem 3.6. Let (CQ1) be satisfied at x0 ∈ S and K be a local cone approximation
such that K(Q, x0) ⊆ Z(Q, x0). If problem (MP) is KT-K-strictly pseudoinvex-infine at
x0 w.r.t η on S, then the following statement are equivalent.

(1) x0 is an efficient solution for (MP),

(2) x0 is a local efficient solution for (MP),

(3) x0 is a K-strongly efficient stationary point for (MP),

(4) x0 is a K-weakly efficient stationary point for (MP),

(5) x0 is a local weak efficient solution for (MP),

(6) x0 is a weak efficient solution for (MP).
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Parameterization of the State Feedback Controller for Linear

Time-invariant Systems with Disturbance
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Abstract

In this paper, we obtain a state feedback matrix by elementary similarity op-
erations such that the eigenvalues of the close-loop system lie in the self-conjugate
eigenvalue spectrum Λ and for rejected disturbance a arbitrary system controllable
without disturbance is considered, then with use augmented matrix, the two systems
Merged in a new system without disturbance, by transformations similarity compute
optimal controller, so that disturbance has no effect on the system. Since, relation be-
tween the parameters of state feedback matrix is nonlinear in general therefore, many
different constraint may be imposed by the designer to obtain desired performance
criteria. A illustrative example is presented.

Keywords: Parameterization, Continuous-time, State feedback matrix, Disturbance
rejection,

Mathematics Subject Classification [2010]: 35A17, 60J28,15A18

1 Introduction

Different methods of parametric eigenvalue assignment for systems have been proposed
[1]-[2]. Also, different ways to describe disturbances and to analyze their effect on a system
are discussed in [3]-[5]. An overwive of different ways to eliminate disturbances include use
of feedback, feedforward, and prediction methods, which may be through classical control,
advanced control and adaptive control to be performed. Disturbance can be based on
calling control, remove the source and measurement and or estimated.
The classic disturbance models, impulse, step, ramp, and sinusoid, were discussed in [3].

2 Main results

Consider a linear system defined by the state equation

ẋ(t) = Ax(t) + Bu(t) + d(t) (1)

Where x ∈ Rn is the state vector, u ∈ Rm is the control input, d ∈ Rn is the disturbance
input and the matrices A and B are real constant matrices of dimensions n×n and n×m,
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respectively, with rank(B) = m and control rule u(t) = F1x(t). First, we define the
following arbitrary system controllable:

ż(t) = A2z(t) + B2u(t) (2)

Where u ∈ Rm is the control input, matrices A2 and B2 are real constant matrices of
dimensions n × n and n × m, respectively, with rank(B2) = m and control rule u(t) =
F2z(t).
Provided that z(0) ̸= 0,. Now we defind

d(t) = Cz(t) (3)

Where C is diagonal matrix with Cii =
di

zi
, i = 1, 2, .., n. Therefore, with replacement (3)

in (1) and with equation (2) we have:
[

ẋ(t)
ż(t)

]
=

[
A1 C
0 A2

] [
x(t)
z(t)

]
+

[
B1

B2

]
u(t) (4)

we will

ẏ(t) = Ay(t) + Bu(t) (5)

Where, matrices A and B are real constant matrices of dimensions 2n × 2n and 2n × m
However, with definition F for control rule u(t) = Fy(t) so that the without disturbance
system is stable. with using a similarity transformations described in [2] we have:

Ãλ =

[
Gλ

In−m , On−m,m

]
(6)

where Gλ is the first m × n sub-matrix of Ãλ . Obviously, Ãλ possesses the desired set of
eigenvalues and is in the same canonical form as Ã.
Thus, the primary feedback matrix which gives rise to the assignment of eigenvalues be-
comes

F̃ = F̃p + B0
−1Gλ = B0

−1(−G0 + Gλ) (7)

The above experssion leads to a general framework for obtaining the parametric controllers
in general. Thus, let

det(Ãλ − λI) = Pn(λ) = (−1)n(λn + C1λ
n−1 + · · · + Cn−1λ + Cn), (8)

That is the characteristic polynomial of the closed-loop system. Since it is required that
the zeros of this polynomial lie in the set Λ = {λ1, λ2, . . . , λn}, it is clear that

Pn(λ) = (−1)n(λ − λ1)(λ − λ2) · · · (λ − λn). (9)

By equating these two equations the coefficients Ci, (i = 1, 2, · · · , n) can be obtained as
follows [2]:

C1 = −∑n
i=1 λi

C2 =
∑n

i,j=1 i̸=j λiλj

...
Cn = (−1)nΠn

i=1λi

(10)
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Now by direct computation of det(Ãλ−λI) in parametric form and equating the coefficients
of the characteristic polynomial with (10), the following nonlinear system of equations is
obtained:

f1(g11, g12, . . . , g1n, g21, . . . , g2n, . . . , gm1, gm2, . . . , gmn) = C1

f2(g11, g12, . . . , g1n, g21, . . . , g2n, . . . , gm1, gm2, . . . , gmn) = C2
...
fn(g11, g12, . . . , g1n, g21, . . . , g2n, . . . , gm1, gm2, . . . , gmn) = Cn,

(11)

where gij , (i = 1, . . . , m, j = 1, . . . , n), are the elements of Gλ.
In this way, a nonlinear system of n equations with n × m unknowns is obtained. By
choosing N = n(m−1) unknowns arbitrarily it is then possible to solve the system. Thus,
different selections can be made to obtain different solutions. Clearly, some of these choices
lead to linear parameters. The controller gain matrix for the original pair (A,B) can then
be obtained by (7). In other words, the nonlinear system of equations (11) is uniquely
defined for any given pair (A, B) of fixed dimensions and regular Kronecker invariants [2].

Example 2.1. We consider a continuse-time linear system given by

ẋ(t) = Ax(t) + Bu1(t) + d(t) (12)

Where

A =




1 1 −1
2 0 3

−1 2 0


 , B =




1 0
2 −1
0 0


 (13)

We suppose in the first step x(0) = (1, 0, 1)t and d(0) = (1, 6, 1)t, then for solve the system
(12), should consider the Controllable system following:

ż = Az(t) + Bu2(t), u = F2z(t) (14)

A =




−1 −2 0
0 1 2

−1 0 3


 , B =




−1 1
2 0
0 1


 , Z(0) =




−1
3
1


 (15)

With the help of similarity transformations expressed in [1]-[2], and equations (4) and (8)
we have,

P6(λ) = λ6 + 6λ5 + 15λ4 + 20λ3 + 15λ2 + 6λ + 1, (16)

By equating the coefficients of equations (10) and (11) we obtain the nonlinear system of
equations 




g15g26 − g16g25 = 1

g13g26 − g14g25 + g15g24 − g16g23 = 6

g11g26 − g12g25 + g13g24 − g14g23 + g15g22 − g16g21 = 15

−g15 − g26 + g11g24 − g12g23 + g13g22 − g14g21 = 20

−g13 − g24 + g11g22 − g12g21 = 15

−g11 − g22 = 6
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Here, there are 6 equations with 12 unknowns. the nonlinear parametric controller matrix
F for the pair (A,B) is F = F̃ T−1 .
Different options can be considered for parameters gij and achieved different results. For
example, suppose g11 = −4, g21 = g24 = 2, g23 = −g25 = 1, g26 = 0, therefore we have:

F =

[
0.2134 −4.2620 −0.7415 0.0006 1.1601 4.7243

−0.7560 −0.7893 0.4762 0.6518 1.1268 −2.6908

]

Conclusions

In this paper, we compute a nonlinear parametic matrix state feedback of linear systems
with disturbance input. We first by introduce a augmented matrix, rejected disturbance.
Also for obtain feedback parameter nonlinear matrix to form a parallel operation of the
system by taking into our companion, the closed-loop system matrix in the new space
are we the first element of the m row to put parameters and using equation obtains
characteristic parameters of the relationship between nonlinear relationships are obtained.
The advantage of this parameter matrix the designer can impose constraints on the system
and the fact that in the case of nonlinear parameter is the number of parameters on the
behavior of the system designer may impose other constraints, since in most physical
systems and nonlinear engineering parameters appear, the importance of the matrix is
determined.
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Abstract

The importance of scheduling problems leads us to pay more attention in using
solution methods. due to high costs of prossesing and job transfer, inverse scheduling
problem has been used. In this paper inverse scheduling single machine has been
considered in order to minimize the cost coefficient of time parameters setting. So
Karush-Kuhn-Tucker condition has been used to represent a set of equations. The
proposed solution method for these equations, could be solved by MATLAB.

Keywords: Scheduling, Inverse scheduling, Single machine, Karush-Kuhn-Tucker
condition

Mathematics Subject Classification [2010]: 90B36, 68M20

1 Introduction

Consider single machine scheduling problem with n job.

• pj : Processing time of job j

• Cj : Completion time of job j which is
∑j

k=1 pk

Suppose scheduling problem is intended to minimize C which will be done with Shortest
Processing Times 1. In this sequence job has been sorted based on non-decrease processing
time.

Theorem 1.1. [1] The sequence job SPT(p1 ≤ p2 ≤ · · · ≤ pn), minimize the mean time
of compeletion time

Now, consider the problem discussed in [3] is solved by determining the minimum
total setting of the job processing times so that a given sequence is converted into an SPT
sequence. We formulate this problem as a mathematical programming:

min
∑n

i=1 αi|p′
i − pi|

s.t.
0 ≤ p′

1 ≤ p′
2 ≤ · · · ≤ p′

n

(1)
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where for i = 1, 2, . . . , n, p∗
i is the new value of processing time after regulation and

deviation from initial value and αi is the cost unit of deviation from pj . This problem has
been linearly stated at [2].

min
∑n

i=1 αi + xi +
∑n

i=1 αi + yi (2)

s.t 0 ≤ p⋆
1 ≤ p⋆

2 ≤ · · · ≤ p⋆
n (3)

p⋆
i − pi = xi − yi i = 1, 2, . . . , n (4)

xi ≥ 0, yi ≥ 0, i = 1, 2, . . . , n (5)

Theorem 1.2. [3](Karush-Kuhn-Tucker condition) Let f and gi, i = 1, . . . , n, be real val-
ued functions efined on Rn. We consider the following optimization problem

min f(x) = f(x1, . . . , xn)
s.t gi(x) ≤ 0, i = 1, . . . , m

(6)

Assume that constraint gi : Rn −→ R are convex on R for i = 1, . . . , m. Let X = {x ∈
Rn : gi(x) ≤ 0, i = 1, . . . ,m} be a feasible and a point x∗ ∈ X. Suppose that the objective
function f : Rn −→ R is convex at x∗, andf, gi, i = 1, . . . ,m, are continuously differentiable
at x∗. If there exist (Lagrange) multipliers 0 ≤ µi ∈ R, i = 1, . . . , m, such that

(i) ∇f(x∗) +
∑m

i=1 ∇gi(x
∗) = 0;

(ii) µigi(x
∗) = 0 ∀i = 1, . . . , m

Then x∗ is an optimal solution of problem (6).

The objective function is linear so it is convex. Also all constraints are linear so are
continuously differentiable. Thus theorem 1.2 could be applied.
Constraint (4) can be wrote in the form p∗

j = xj − yj + pj , so :

0 ≤ p∗
1 ≤ · · · ≤ p∗

n −→





−p∗
1 ≤ 0

p∗
1 − p∗

2 ≤ 0
...
p∗

n−1 − p∗
n ≤ 0

(7)

is g1 to gn,

xi ≥ 0 −→ −xi ≤ 0 (8)

is gn+1 to g2n,
yi ≥ 0 −→ −yi ≤ 0 (9)

is g2n+1 to g3n .
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For each i = 1, . . . , n for constraints in (7) coefficient λi, has been placed, for con-
straints in (8) coefficient µi, has been placed, for constraints in (9) coefficient γi has been
placed. Trough the indisvication of Karush-Kuhn-Tucker condition:

(i) in 1.2 :




2α1 − µ1 − γ1 = 0
2α2 − µ2 − γ2 = 0
...
2αn − µn − γn = 0

(ii) in 1.2:




λ1(−x1 + y1 − p1) = 0
λ2(x1 − y1 + p1 − x2 + y2 − p2) = 0
...
λn(xn−1 − yn−1 + pn−1 − xn + yn − pn) = 0





µ1(−x1) = 0
µ2(−x2) = 0
...
µn(−xn) = 0





γ1(−y1) = 0
γ2(−y2) = 0
...
γn(−yn) = 0

That





λ1 ≥ 0
λ2 ≥ 0
...
λn ≥ 0

,





µ1 ≥ 0
µ2 ≥ 0
...
µn ≥ 0

,





γ1 ≥ 0
γ2 ≥ 0
...
γn ≥ 0

Finally have:

=⇒





2αi − µi − γi = 0, ∀i = 1, · · · , n
2λi(xi−1 − yi−1 + pi−1 − xi + yi − pi) = 0, ∀i = 1, · · · , n, x0, y0, p0 = 0
µi(−xi) = 0, ∀i = 1, · · · , n
γi(−yi) = 0, ∀i = 1, · · · , n
γi, λi, µi ≥ 0 ∀i = 1, · · · , n

By solving the equations, the unknown of systems will be find(xi, yi, λi, µi, γi) by MATLAB
and the problem will be solved.
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Abstract

This paper gives a survey of the various forms of Pontryagins maximum principle
for optimal control problems with state variable inequality constraints. Furthermore,
the application of these maximum principle conditions is demonstrated by solving one
illustrative example.

Keywords: optimal control, maximum principles, state constraints, control con-
straints, mixed constraints
Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Optimal control problems with state variable inequality constraints (SVICs) arise fre-
quently not only in mechanics and aerospace engineering, but also in the areas of man-
agement science and economics.
This paper gives a survey of the various forms of the maximum principle for determin-
istic continuous-time optimal control problems with SVICs and explains the connection
between these approaches; see also Hartl[1], [2], Hartl and Sethi [3], and Arutyunov [1] for
earlier such attempts.

2 Problem statement and transformation

Let us consider the following optimal control problem with state constraints:

maximize

∫ T

0
F (x(t), u(t), t) dt + S(x(T ), T ), (1)

subject to

ẋ(t) = f(x(t), u(t), t), x(0) = x0, (2)

g(x(t), u(t), t) ≥ 0, (3)

h(x(t), t) ≥ 0, (4)

a(x(T ), T ) ≥ 0, (5)

b(x(T ), T ) = 0. (6)
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3 Direct adjoining approach

In this method, the Hamiltonian H and Lagrangian L are defined as follows:

H(x, u, λ0, λ, t) = λ0F (x, u, t) + λf(x, u, t), (7)

L(x, u, λ0, λ, µ, ν, t) = H(x, u, λ0, λ, t) + µg(x, u, t) + νh(x, t) (8)

where
λ0 ≥ 0

is a constant, λ ∈ En is the adjoint variable, and µ ∈ Es and ν ∈ Eq are multipliers.

Theorem 3.1. Let {x∗(.), u∗(.)} be an optimal pair problem (1)-(6) over a fixied interval
[0, T ], such that u∗(.) is right-continuous with left-hand limits and the constraint quali-
fication (2) holds for every triple {t, x∗(t), u}, t ∈ [0, T ] with u ∈ Ω(x∗(t), t). Assume
that x∗(.) has only finitely many junction times. Then there exist a constant λ0 ≥ 0, a
piecewise absolutely continuous costate trajectory λ(.) mapping [0, T ] into En, piecewise
continuous multiplier functions µ(.) and ν(.) mapping [0, T ] into Es and Eq, respectively,
a vector η(τi) ∈ Eq .for each point τi of discontinuity of λ(.), and α ∈ Eℓ, β ∈ Eℓ′

, γ ∈ Eq

such that (λ0, λ(t), µ(t), ν(t), α, β, γ, η(τ1), η(τ2), . . .) ̸= 0 for every t and the following con-
ditions hold almost everywhere:

u∗(t) = argmax
u∈Ω(x∗(t),t)

H(x∗(t), u, λ0, λ(t), t), (9)

L∗
u[t] = H∗

u[t] + µg∗
u[t] = 0, (10)

λ̇(t) = −L∗
x[t], (11)

µ(t) ≥ 0, µ(t)g∗[t] = 0, (12)

ν(t) ≥ 0, ν(t)h∗[t] = 0, (13)

dH∗[t]/dt = dL∗[t]/dt = L∗
t [t]

△
= ∂L∗[t]/∂t. (14)

4 Neural network construction

It can calculate the output value of feed–forward nwural network by the following formu-
lation: 




output =
∑I

i=1 viσ(zi), σ(x) =
1

1 + e−x
.

zi = wix + bi,
(15)

We consider three neural networks for each function: state (its neural network is nx),
costate (its neural network is np) and the control (its neural network is nu) function.
The trial solutions (for state, costate and control function) can be defined in the following
structures:





xT = x0 + t(t − t0)nx, nx =
∑I

i=1 vi
xσ(zi

x), zi
x = wi

xτ + bi
x,

pT = np, np =
∑I

i=1 vi
pσ(zi

p), zi
p = wi

pτ + bi
p,

uT = nu, nu =
∑I

i=1 vi
uσ(zi

u), zi
u = wi

uτ + bi
u,

(16)
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Note that we may have p(.) = 0 for free end points. For example, if x(tf ) is free, we must
have p(tf ) = 0, and thus, we can define pT in (16) as: pT = (t − tf )np. For other initial
(or boundary) conditions, we can construct appropriate trial functions.
The trial solutions (16) are the universal approximation and must satisfy conditions (9)-
(14). Thus we have

u∗
T (t) = argmax

u∈Ω(x∗
T (t),t)

H(x∗
T (t), uT , λ0, λT (t), t), (17)

L∗
uT

[t] = H∗
uT

[t] + µg∗
uT

[t] = 0, (18)

λ̇T (t) = −L∗
xT

[t], (19)

µ(t) ≥ 0, µ(t)g∗[xT (t), uT (t), t] = 0, (20)

ν(t) ≥ 0, ν(t)h∗[xT (t), t] = 0, (21)

dH∗[t]/dt = dL∗[t]/dt = L∗
t [t]

△
= ∂L∗[t]/∂t. (22)

where
LT = H(xT , uT , λ0, λT , t) + µg(xT , uT , t) + νh(xT , t).

In order to reformulate (17)-(22) as an unconstrained minimization problem, we first
collocate the optimality system (17)-(22) on the m points tk, k = 1, ..., m of the interval
[t0, tf ] and then define an optimization problem as

minimizeyE(y) =
1

2

m∑

k=1

{E1(tk, y) + E2(tk, y) + E3(tk, y) + E4(tk, y) + E5(tk, y)}, (23)

where y = (wx, wp, wu, bx, bp, bu, vx, vp, vu)T ∈ R3I(2n+m) and




E1(tk, y) =

[
∂LT

∂xT
+ λ̇T

]2

, k = 1, 2, . . . , m,

E2(tk, y) =

[
∂LT

∂λT
− ẋT

]2

, k = 1, 2, . . . , m,

E3(tk, y) =

[
∂LT

∂uT

]2

, k = 1, 2, . . . , m

E4(tk, y) = [µ(t)g∗
T (t)]2 , k = 1, 2, . . . , m

E5(tk, y) = [ν(t)h∗
T (t)]2 , k = 1, 2, . . . , m.

(24)

5 Numerical example

In this section, we try to implement the proposed algorithm to solve some problem.

Example 5.1. Consider the following optimization problem:

maximize

∫ 1

0
u(t) dt,

subject to

ẋ(t) = u(t), x(0) = 1, x(1) = isfree,

u(t) ≥ 0, x(t) − u(t) ≥ 0
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(a) exacte and approximated state function (b) exacte and approximated control function

Figure 1: state and control function for Example (5.1)

The exact state and control functions are as follows:
{

x(t) = exp(t),
u(t) = exp(t).

because x(1) is free, we have p(1) = 0. Considering this condition and the initial condition
x(0) = 1, we can choose the trial solutions as:





xT = 1 + tnx,
pT = (t − 1)np,
ut = nu.

We can see the approximate solutions for x(t) and u(t) in figure (1), respectively.
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Abstract

In this article a new notion of the practical stability of fractional discrete-time linear
systems is introduced. Necessary and sufficient conditions for this kind of systems
are established. It is shown that the fractional systems are practically unstable if
corresponding standard fractional systems are asymptotically unstable.
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Mathematics Subject Classification [2010]: 93B55,93B52,93D15

1 Introduction

Development of models based on fractional-order differential systems has recently gained
popularity in the investigation of dynamical systems [4-8]. Fractional derivatives provide
an excellent instrument to describe memory and hereditary properties of various materials
and processes. The advantages or the real objects of the fractional-order systems are that
we have more degrees of freedom in the model and that a memory is included in the model
(fractional-order systems have an unlimited memory).Recently, studying fractional-order
systems has become an active research area. In this paper a new concept of the practical
stability of fractional discrete-time linear systems will be introduced and necessary and
sufficient conditions for the practical stability will be established. In this paper, we recall
and present some stability results for linear fractional-order systems.

2 Preliminaries and definitions

2.1 Fractional-order derivatives

Definition 2.1. The disctere-time fractional derivative defined by Grunwald−Letnikov is

GDαx(tk) = lim
h→0

1

hα

k∑

i=0

(−1)i

(
α
i

)
x(tk−i) (1)

where
(

α
i

)
=

Γ(α + 1)

Γ(α + 1 − i) × Γ(i + 1)
(2)
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The generalization of the integer-order difference to a non-integer order (or fractional-
order) difference with zero initial time is defined as follows [6].

∆αxk = ∆αx(tk) =
k∑

i=0

(−1)i

(
α
i

)
x(tk−i) (3)

2.2 Fractional-order discrete-time linear systems

In this section we consider the commensurate fractional discrete-time linear system

∆αxk+1 = Axk + Buk (4)

xk+1 = (A + αIn)xk +

k∑

i=1

cixk−i + Buk, ci = (−1)i

(
α

i + 1

)
(5)

Stability of this kind of systems is tested by practical stability [3].

3 Stability of fractional discrete-time linear systems

By (5) the sequence ci converges to zero. Getting ci = 0 for i > L (greater L is better)
the system (5) will be a time delay system with L delays [1]

xk+1 = (A + αIn)xk +
L∑

i=1

cixk−i + Buk (6)

Xk+1 = AXk + Buk (7)

where

Xk =




xk

xk−1

xk−2

.

.

.
xk−L




, A =




A + αIn c1I c2I · · · cL−1I cLI
I 0 0 · · · 0 0
0 I 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · I 0




(8)

B =




B
0
0
...
0




, , C =
[

C 0 0 · · · 0
]
, Dk = D (9)
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3.1 New special form of state feedback law

With a state feedback law of the form

u(k) =
L∑

i=0

Fxk−i (10)

where Fk(i) is a feedback gain, applied to the system (6). The closed-loop system is

xk+1 = (A + αIn + BF )xk +
L∑

i=1

(ciIn + BF )xk−i (11)

defining

Γ =




A + αIn + BF c1I + BF · · · cLI + BF
I 0 · · · 0
0 I 0 · · ·
...

...
. . .

...
0 · · · I 0




(12)

the system (11) changes to a standard closed-loop system Xk+1 = ΓXk.

3.2 Decoupling and pole assignment of the closed-loop matrix

Defining

F = [F F · · · F ], Γ = A + B F (13)

The feedback matrix can be obtained by the algorithm given by Karbassi and Bell [4]

4 Numerical examples

In this section, we give two examples to show the success of the proposed method.

Example Check the practical stability of the fractional system

∆0.8xk+1 = Axk + Buk (14)

A =




−0.625 0.8 0.9
0.7 0 0.2
1 1.2 −0.8


 , Aα =




.175 0.8 .9
0.7 0.8 .2
1 1.2 0


 , B =




3.2 0.8
4.1 1
0 0


 (15)

Creating A, B as we said we otain the feedback matrix so that the eigenalues of matrix
A + BF changes to

{λ1 = .1, λ2 = .1, λ3 = .1, λ4 = .2, λ5 = .3, λ6 = −.4, λ7 = .5, λ8 = .3, λ9 = −.5} (16)

that

F = [FFF ] =

[
−2.72 2.01 −14.05 13.48 16.68 2.78 −0.25 −1.31 2.40
10.95 −8.55 56.33 −54.67 −67.64 −11.35 1.01 5.27 −9.70

]

(17)

By Fig.1 the input variables xi(t) converged to zero.

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Stabilizaton of fractional discrete-time linear systems pp.: 3–4

580



Figure 1: xi(t) of Example
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Abstract

In this paper, we presented a new method for control discrete-time linear systems
with disturbance, meaning that, for a discrete-time linear controllable with distur-
bance, a arbitrary system controllable without disturbance is considered, then with
use augmented matrix, the two systems Merged in a new system without disturbance,
by transformations similarity compute optimal controller, so that disturbance has no
effect on the system.

Keywords: Discrete-time, State feedback matrix, Disturbance rejection, Parameter-
ization, Norm minimization.
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1 Introduction

The disturbance-accommodation problem that has been studied extensively in the litera-
ture [1]-[3] is concerned with designing a feedback control law which ensures that the effect
of some or all disturbances acting on a linear system are completely rejected or reduced to
an acceptable level in steady state. Mathematical problems concerning disturbance rejec-
tion controllers have received somewhat more attention than those concerning disturbance
minimization.
Different ways to describe disturbances and to analyze their effect on a system are dis-
cussed in [2]-[3]. An overview of different ways to eliminate disturbances include use of
feedback, feedforward, and prediction methods, which may be through classical control,
advanced control and adaptive control to be performed, see [1].

2 Main results

Consider a controllable linear discrete-time-invariant system defined by the state equation

x(k + 1) = Ax(k) + Bu1(k) + d(k) (1)

Where x ∈ Rn is the state vector, u1 ∈ Rm is the control input, d ∈ Rn is the disturbance
input and the matrices A and B are real constant matrices of dimensions n×n and n×m,
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respectively, with rank(B) = m and control rule u1(k) = F1x(k). First, we define the
following arbitrary system controllable:

z(k + 1) = A2z(k) + B2u2(k) (2)

Where u2 ∈ Rm is the control input, matrices A2 and B2 are real constant matrices of
dimensions n × n and n × m, respectively, with rank(B2) = m and control rule u2(k) =
F2z(k).
Provided that z(0) ̸= 0,. Now we defind

d(k) = Cz(k) (3)

Where C is diagonal matrix with Cii =
di

zi
, i = 1, 2, .., n. Therefore, with replacement (3)

in (1) and with equation (2) we have:

[
x(k + 1)
z(k + 1)

]
=

[
A1 C
0 A2

] [
x(k)
z(k)

]
+

[
B1

B2

]
u(k) (4)

Now, Put y(k) =

[
x(k)
z(k)

]
, we will

y(k + 1) = Ay(k) + Bu(k) (5)

Where, matrices A and B are real constant matrices of dimensions 2n × 2n and 2n × m
However, with definition F for control rule u(k) = Fy(k) so that the system is stable, the
system controls that can be used to control the system without disturbance.

y(k + 1) = (A + BF )y(k) (6)

Using a similarity transformations and find a good F , can y(k) desire to zero.
So, our goal find the matrix F = [F1, F2] so that the system without disturbance (6) be
stable.
On the other hand, The state feedback matrix F in (6) Can be achieved so that, the norm
in addition to maintaining the stability of the system (6) be minimized [6].

Example 2.1. To demonstrate the advantages of the proposed approach, we consider a
discrete-time linear system given by

x(k + 1) = A1x(k) + B1u1(k) + d(k) (7)

Where

A1 =




3 3 3 4
1 5 8 8
1 1 8 8
6 6 5 6


 , B1 =




8 3
6 5
3 7
2 3


 (8)
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We want feedback matrix is defined in such a way that in addition to the disturbance
rejection system stability is to be maintained.
We suppose in the first step x(0) = (1, 2, 3, 4)t and d(0) = (−1, 0, 1, 1)t, then consider the
Controllable system following:

z(k + 1) = A2z(k) + B2u2(k), u2 = F2z(k) (9)

A2 =




5 6 4 8
2 0 5 7
8 3 6 7
3 4 1 8


 , B2 =




6 5
2 0
2 0
6 2


 , Z(0) =




1
1
1
1


 (10)

with definitions u(k) = Fy(k), replacement (7), (9) in equation (4) and with solving
equation (4) With the help of similarity transformations expressed in [4]-[5], we obtain,

F =

[
0.5081 0.6659 1.0628 1.1474 −1.6023 −1.4728 −1.4416 −3.0064

−0.9402 −1.3243 −1.9134 −2.0911 0.5320 1.1399 0.5809 2.5932

]
(11)

With norm 6.19. Also, state feedback matrix F Can be achieved so that, the norm in
addition to maintaining the stability of the system (4) be minimized [6]. now let us follow
the algorithm in [6] step by step.
According to Step 1 of the algorithm, two independent sets of parameters can be selected.
Either [g21, g23] is the effective parameters which produce parametric feedback matrix.
According to Step 1 of the algorithm, column 2 of Bo

−1 and rows 1 ans 3 of T−1 are
stored in V and W , respectively. That is,
Step 1.

V =

[
0
1

]
, W =

[
−0.0428 −0.0403 −0.0507 −0.0610 0.1229 0.0860 0.0946 0.1267
−0.0069 0.0006 −0.0022 −0.0034 0.0093 −0.0035 0.0127 −0.0016

]

Step 2.

P = V T V = 1, Q = WW T =

[
0.0572 0.0024
0.0024 0.0003

]

and

C = V T KW T =
[

0.8651 0.0212
]

Step 3.

α = −P−1CQ−1 =
[

−18.0584 69.4165
]

and therefore,

Gα =

[
0 0 0 0 0 0 0 0

−18.0584 0 69.4165 0 0 0 0 0

]
, Fα = B0

−1GαT−1
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Step4.

K = F + Fα =

[
0.5081 0.6659 1.0628 1.1474 −1.6023 −1.4728 −1.4416 −3.0064

−0.6461 −0.5523 −1.1534 −1.2266 −1.0409 −0.6569 −0.2432 0.1976

]

with the Frobenius norm 4.9164. Obviously, norm of the state feedback matrix with
method presented in [6] is reduced.

In the event that disturbance in every step change(for example d(k) = (−1, sin(π
6 k), cos(π

6 k), 1)t),
can be used as a proposed method to control this systems.

Conclusions

In this peaper, a method for control discrete-time linear systems with disturbance with
useing augmented matrix and similarity transformations presented. This method has
simpler calculation of the existing methods and In fact, a system with disturbance turns
into the system without disturbance. Also with use theory graph and linear parametric
matrix presented method in [6] reduction in the norm of feedback matrix.
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The overall efficiency of decision making units with

undesirable outputs ∗
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Abstract

In real applications, desirable and undesirable outputs are usually produced in a
production process. Furthermore, the majority of data envelopment analysis (DEA)
models evaluate the efficiency of decision making units (DMUs) from optimistic point
of view. In the current paper, DEA models are introduced for evaluating the per-
formance of DMUs with undesirable outputs from two viewpoints, optimistic and
pessimistic viewpoints. Afterwards, the overall efficiency of each DMU is calculated
by using the geometric average of two efficiencies.

Keywords: Data envelopment analysis, Efficiency, Undesirable outputs, Geometric
average

Mathematics Subject Classification [2010]: 90B50, 90C05

1 Introduction

The conventional data envelopment analysis (DEA) models usually evaluate the efficiency
of decision making units (DMUs) from optimistic point of view in which inputs are min-
imized and outputs are maximized. Nevertheless, there are studies with calculating the
performance from two aspects, optimistic and pessimistic [1]-[8]. Moreover, in many situ-
ations desirable and undesirable outputs are produced simultaneously. In DEA literature,
numerous papers exist with considering undesirable outputs. Some studies consider unde-
sirable outputs with strong disposability while others take weak disposability. For instance,
readers can refer to [2]-[4]-[5]-[6]-[7]-[9]. Wang et al. [8] calculated the overall performance
via calculating the geometric average of two efficiencies, optimistic and pessimistic efficien-
cies. In the current paper, optimistic and pessimistic efficiencies of DMUs are evaluated
in the presence of undesirable outputs with different disposability assumptions. Then,
the overall efficiency of each DMU is evaluated by using the geometric average of efficien-
cies. Actually, Wang’s models [8] are extended for obtaining the overall efficiency when
undesirable outputs with different disposability, strong or weak disposability, exist.

∗Will be presented in English
†Speaker
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2 The proposed approach

Assume there are n DMUs, DMUj (j = 1, ..., n), with using m inputs, producing s desir-
able outputs, and emitting k undesirable outputs. Inputs, desirable outputs and undesir-
able outputs are indicated as xij (i = 1, ...,m), yrj (r = 1, ..., s) and zkj (k = 1, ..., K),
respectively. In this study, strong and weak disposability assumptions are deemed for un-
desirable outputs. “Strong disposability of outputs implies that given an input vector x, if
an output vector y can be produced, then y∗ can also be produced as long as y∗ ≤ y. Weak
disposability of outputs means that if y can be produced, then θy (0 ≤ θ ≤ 1) can also
be produced proportionally.” according to [3]-[9]. At first, suppose undesirable outputs
are strongly disposable. Therefore, the following models are introduced for evaluating
the performance of DMUs from two viewpoints. Model (1) calculates the efficiency from
optimistic point of view as follows:

Max ebest
o =

∑s
r=1 uryro

s.t.
∑m

i=1 vixio +
∑k

k=1 wkzko = 1∑s
r=1 uryrj − ∑m

i=1 vixij − ∑k
k=1 wkzkj ≤ 0,

vi, ur, wk ≥ ε.

(1)

From pessimistic viewpoint, the performance is calculated as follows:

Min eworst
o =

∑s
r=1 uryro

s.t.
∑m

i=1 vixio +
∑k

k=1 wkzko = 1∑s
r=1 uryrj − ∑m

i=1 vixij − ∑k
k=1 wkzkj ≥ 0,

vi, ur, wk ≥ ε.

(2)

Then, the overall efficiency is calculated by using the geometric average of efficiencies,
i.e.

eOverall
j =

√
ebest
j ∗ eworst

j (3)

If we assume undesirable outputs are weakly disposable, models (1) and (2) are sub-
stituted with the following problems:

Max ebest
o =

∑s
r=1 uryro

s.t.
∑m

i=1 vixio +
∑k

k=1 wkzko = 1∑s
r=1 uryrj − ∑m

i=1 vixij − ∑k
k=1 wkzkj ≤ 0,

vi, ur ≥ ε, wkfree.

(4)

Min eworst
o =

∑s
r=1 uryro

s.t.
∑m

i=1 vixio +
∑k

k=1 wkzko = 1∑s
r=1 uryrj − ∑m

i=1 vixij − ∑k
k=1 wkzkj ≥ 0,

vi, ur ≥ ε, wk free.

(5)

Afterwards, the overall efficiency can be obtained by using (3). It is clear, the afore-
mentioned models can be extended when undesirable outputs with strong and weak dis-
posability assumptions present simultaneously.
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3 Example

Assume the aim is to evaluate the performance of 10 branches of a bank with two inputs,
labor (I1) and deposits (I2), one desirable output, performing loans (O1), and one un-
desirable output, non-performing loans (O2). Suppose the undesirable output is strongly
disposable. Data can be seen in Table 1. Models (1) and (2) are calculated. Then, overall
efficiencies are obtained by using (3). Results can be found in Table 2.

Table 1: Bank branches data

#Branch I1 I2 O1 O2

1 32 515578 1277833 446698
2 19 187679 102808 22585
3 14 150026 106734 12830
4 5 88358 14628 161
5 18 124349 75509 21035
6 18 127370 149860 39525
7 16 95288 55757 9632
8 17 89304 84631 13955
9 9 160138 102353 7153
10 13 148755 38375 7806

Table 2: Performance results

#Branch ebest
j eworst

j eOverall
j

1 1 1 1
2 0.661478 1.214058 0.896143
3 0.952636 2.023167 1.388287
4 1 1 1
5 0.634907 1 0.796811
6 0.926137 1.17842 1.044691
7 0.735916 1.179178 0.931545
8 1 1.449636 1.204008
9 1 2.622405 1.619384
10 0.390432 1 0.624846

The column 4 of Table 2 shows branch 9 is generally the most efficient unit while
branch 10 has the least overall efficiency score.

4 Conclusions

In this study, efficiencies of DMUs with desirable and undesirable outputs have been
evaluated from optimistic and pessimistic viewpoints. Then, the geometric average has
been utilized for calculating the overall efficiency. Finally, the efficiencies of 10 branches
of a bank have been measured for indicating the application of the approach.
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Abstract

In this article, We consider autoregressive processes in Hilbert spaces. We present
here existence, the strong law of large numbers and estimation of autocovariance
operators.

Keywords: Hilbertian white noise, Hilbertian autoregressive process, autocovariance
operators

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

functional data often arise from measurements obtained by separating an almost contin-
uous time record into natural consecutive intervals, for examples days. many important
examples of data that can be naturally treated as functional come from financial records.
The price of an asset exists only when the asset is traded. A great deal of financial re-
search has been done using the closing daily price, i.e. the price in the last transaction
of a trading day. However many assets are traded so frequently that one can practically
think of a price curve that is defined at any moment of time.[2]
The Hilbertian autoregressive model of order 1 (ARH(1)) generalizes the classical AR(1)
model to random elements with values in Hilbert spaces. This model was introduced by
Bosq (2000), then studied by several authors, as Mourid (1993), Besse and Cardot (1996),
Pumo (1999), Mas (2002, 2007), Horvath et al. (2010). Bosq in his fundamental work
(2000) provides basic results on Hilbertian strongly second order autoregressive and mov-
ing average processes. The existence, covariance structure, parameter estimation, strong
law of large numbers and central limit theorem, are the topics that are covered by Bosq
(2000).

For writing definition, theorem, proof, throughout this paper, we consider H as a real
separable Hilbert space equipped with scalar product 〈., .〉, norm ‖ . ‖ and Borel σ-field B.
The H-valued random variables considered below are defined over the same probability
space (Ω,F , P ) supposed to be rich enough and complete.

Definition 1.1. A sequence X = {Xn, n ∈ Z} of H-random variables is called an autore-
gressive Hilbertian process of order 1 (ARH(1)) associated with (µ, ε, ρ) if it is stationary
and such that

Xn − µ = ρ(Xn−1 − µ) + εn, n ∈ Z (1)

where ε = {εn, n ∈ Z} is an H-white noise, µ ∈ H, and ρ ∈ L.
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In order to study existence of x, consider the following conditions:
(C0) There exists an integer j0 ≥ 1 such that ‖ ρj0 ‖L< 1.
(C1) There exist a > 0 and 0 < b < 1 such that ‖ ρj ‖L≤ abj , j ≥ 0.
Bosq shows that C0 and C1 are equivalent.[1]
We may now give a statement concerning existence and uniqueness of X.

Theorem 1.2. If C0 holds, then (1) has a unique stationary solution given by

Xn = µ+
∞∑

j=0

ρj(εn−j), n ∈ Z (2)

where the series converges in L2(ω,A, P ) and almost surely. Moreover, ε is the innovation
process of (Xn − µ).[1]

Now, we state laws of large number.

Theorem 1.3. Let X be a standard ARH(1). Then, as n→∞,

E ‖ Sn
n
‖2= O(

1

n
) (3)

and, for all β > 0.5,

n
1
4

(Logn)β
Sn
n
→ 0 a.s (4)

[1]

For estimation of autocovariance operator, Mas(2007) use classical moment method
and provides the following normal equation

∆ = ρΓ (5)

where
Γ = E(X1 ⊗X1), ∆ = E(X1 ⊗X2).

If (5) is the starting point in estimation procedure, replacing the unknown operators by
the empirical counterparts gives:

∆n = ρnΓn

where

Γn =
1

n

n∑

k=1

Xk ⊗Xk

∆n =
1

n− 1

n−1∑

k=1

Xk ⊗Xk+1

Γ†n =
∑

l≤kn

1

λ̂l
êl ⊗ êl

where λ̂l and êl are the empirical counterparts of eigenvalues and eigenvectors of Γn.

Definition 1.4. The estimate of ρ is ρn given by ρn = ∆nΓ†n.
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Clustering of longitudinal data based on a random

change-point model using Dirichlet processes
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Abstract

A dynamic regression model which switches between two models with different
slopes at random time points is considered. Model-based clustering of longitudinal
data is conducted by assuming the Dirichlet process (DP) as a prior for the distri-
bution of random change points. The discreteness nature of the DP is utilized to
cluster subjects according to the time of changing slopes. Markov chain Monte Carlo
simulation methods are adopted to achieve the parameter estimates. Performance of
the proposed model is illustrated by conducting a simulation study.

Keywords: Bayesian approach, Change-point model, Dirichlet processes, Gibbs sam-
pler.

Mathematics Subject Classification [2010]: 62M99, 62J05, 62H30

1 Introduction

In recent years increasing interest has been shown in the problem of clustering of longitu-
dinal data. These data sets are available by repeatedly measuring subjects through time.
Usually in Econometrics and Biostatistics, it frequently happens that effect of occurring
an event on changing slope of response variable against time will appear in different times
lag for different subjects. Thus, it is usually important that different subjects can be cate-
gorized based on these change-point times. For example, when an economical event leads
to profitability declines for companies in the stock market, different firms show different
tolerances such that face values of some companies start decreasing sooner than others.
Thus, clustering of firms based on the time of standing against the decline is useful. Ad-
dressing this issue, we propose the use of the Dirichlet process (DP) in the structure of a
dynamic change-point model.

The rest of this paper is organized as follows. In Sections 2, we briefly introduce the
DP prior. Section 3 specifies the proposed dynamic change-point model. In Section 4, we
implement the Gibbs sampling scheme. The last section presents a simulation study.
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2 The Dirichlet process prior

The random measure G is distributed according to a DP [1] with a scaling parameter M
and a base distribution G0 which is a probability measure defined on a measurable space
(τ ; Ω), denoted by G ∼ DP (M,G0), if for any partition of Ω such as A1, · · · , Ak:

(G(A1), · · · , G(Ak)) ∼ Dir(MG0(A1), · · · ,MG(Ak)), (1)

where Dir indicates the Dirichlet distribution. The DP generates a discrete random proba-
bility measure G as G (·) =

∑∞
j=1 πj∆ξj (·), where ∆ (·) denotes a degenerated distribution

of unit mass centered at ξj with ξj
iid∼G0 and πj = γj

∏j−1
i=1 (1− γi) with γj

iid∼Beta (1,M)
(we say πj ∼ SB (M)). This representation is called stick-breaking. Variation of G around
G0 is controlled by M(> 0) such that, if M gets large then G becomes close to G0. Being
applicable, the above infinite summation is truncated to a finite integer C.
In a Bayesian framework, the DP is assumed as a prior for the distribution of random

effects. Let Yi|ξiiid∼f(.|ξi), ξi|Giid∼G and G ∼ DP (M,G0) for i = 1, · · · , n. The realizations
of the DP are discrete, thus several ξi’s prone to take similar values, such that the number
of distinct values of ξi, each constructing a cluster, being less than or equal to n.

3 The dynamic change-point model

Let Yit denotes the t-th measurement taken on the i-th subject, t = 1, · · · , T , i = 1, · · · , n.
The proposed dynamic change-point model for longitudinal data is given by

Yit = x′itβ + δ1t+ δ2i(t− ci)$(t− ci) + γyi,t−1 + αi + εit, (2)

where δ1, δ2 and β are regression coefficients. The αi
iid∼N(0, σ2α), δ2i

iid∼N(µδ2 , σ
2
δ2

) and

εit
iid∼N(0, σ2ε). The covariate yi,t−1 is the lagged-response variable for the i-th subject

which represents state dependence. The yi0’s are assumed to be fixed observed values.
The $(t − ci) = 1 for t ≤ ci and is set to zero otherwise. The ci’s are random-change
points. To have a flexible modeling structure along with being able to cluster subjects, we
consider the DP as a prior for unknown distribution of ci’s. More specifically, we assume

ci|Giid∼G where G ∼ DP (M,G0) and G0 is a discrete uniform distribution on {1, · · · , T}.
For simplicity, we assume all random effects be independent.

4 Bayesian Estimation

Now, consider the following vector representation of the model

Yi|cλi , αi,θ, σ2ε , δ2i
ind∼NT

(
X̃iθ + αi1T + δ2iai,cλi , σ

2
εIT

)
,

λi
ind∼G (λi) =

∑C
j=1 πj∆j (λi) , where πj

ind∼SB(M),

cj
iid∼DU{1, · · · , T}, αiiid∼N(0, σ2α) and δ2i

iid∼N(µδ2 , σ
2
δ2

), (3)

where Yi = (Yi1, · · · , YiT )′, θ =
(
δ1, γ,β

′)′, ai,cj = (b′cj − cj1′cj ,0′T−cj )′, bcj = (1, · · · , cj)′

and model matrix X̃i is defined according to θ. In a Bayesian framework, the following
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distributions are adopted as priors: Inverse gamma priors, IG(τ1, τ2) for σ2ε , IG(η1, η2)
for σ2α and IG(κ1, κ2) for σ2δ2 , the N(θ0,Λ) for θ and N(µ0, σ

2
0) for µδ2 . Data analysis

are conducted by using the Gibbs sampler which simulates iteratively from the complete
conditional posterior (CCPs) distributions derived in below. Then, average of samples for
each parameter is used as its Bayes estimate. After some algebra is done, we have

• θ | σ2ε , δ2i ,α,y ∼Np (µθ,Σθ) , with the mean vector and the covariance matrix

µθ = Σθ

(
θ′0Λ

−1 +
1

σ2ε

n∑

i=1

(
yi − αi1T − δ2iai,cλi

)′
X̃i

)
, Σθ =

(
Λ−1 +

1

σ2ε

n∑

i=1

X̃′iX̃i

)−1
.

• σ2ε | θ,α, δ2i ,y ∼IG (τ∗1 , τ
∗
2 ) , where τ∗1 = τ1+nT/2 and τ∗2 = τ2+ 1

2

∑n
i=1 r̃i

′r̃i where

r̃i = ri − αi1T − δ2iai,cλi and ri = Yi − X̃iθ.

• αi | σ2ε , δ2i , σ2α,θ,y ∼ N
(
µ∗i , σ

2∗
α

)
, where µ∗i = ψ1′

(
ri − δ2iai,cλi

)
and σ2∗α = σ2εψ

for ψ = σ2α/σ
2
c with σ2c = σ2ε + Tσ2α.

• σ2α | αi,y ∼IG (η∗1, η
∗
2) where η∗1 = η1 + n

2 and η∗2 = η2 + 1
2

∑n
i=1 α

2
i .

• λi | θ, σ2ε , αi, cλi , δ2i ,π,y ∼
∑C

j=1 πjϕT

(
yi|X̃iθ − αi1T − δ2iai,cλi , σ

2
εIT

)
∆j(λi),

• For each random effect, let λ∗r ’s, r = 1, · · · ,m be m unique values of λi’s.

f(c∗λr |α, δ2i , σ2ε ,θ,y) ∝ exp{− 1

2σ2ε

∑

{i:λi=λ∗r}
(ri−αi1t−δ2iai,cλi )

′(ri−αi1t−δ2iai,cλi )} ,

for c∗λr ∈ {1, · · · , T}. We simulate from this CCP by Metropolis-Hastings algorithm.

• δ2i | θ,α, c,λ, σ2ε ,y ∼ N(µ∗δ2 , σ
2∗
δ2

), where µ∗δ2 = σ2∗δ2

(
µδ2
σ2
δ2

+ 1
σ2
ε

(ri − αi1T )′ ai,cλi

)
,

and σ2∗δ2 =

(
1
σ2
δ2

+ 1
σ2
ε
a′i,cλi

ai,cλi

)−1
.

• µδ2 | δ2i ,y ∼ N
(
µ∗0, σ

2∗
0

)
, where µ∗0 = 1

σ2∗
0

(
µ0
σ2
0

+ 1
σ2
δ2

∑n
i=1 δ2i

)
and σ2∗0 =

σ2
0σ

2
δ2

nσ2
0+σ

2
δ2

.

• σ2δ2 | θ,α, δ2i ,y ∼IG (κ∗1, κ
∗
2) , where τ∗1 = κ1+n/2 and κ∗2 = κ2+ 1

2

∑n
i=1(δ2i−µδ2)2.

5 Simulation study

The data generating process is organized to the mixed model (2) by assuming the only
parameter of β be the intercept β0 and considering the sample size of n = 200 and T = 50.

We assume δ2i
iid∼N(µδ2 , σ

2
δ2

), αi
iid∼N(0, σ2α) and εit

ind∼N(0, σ2ε). We set β0 = 0, δ1 = 0,
µδ2 = −16 and γ = 0.5, and variance components σ2α = 400, σ2ε = 900 and σ2δ2 = 64. For
each subject, ci is randomly generated form the set {10, 20, 30, 40} and therefore, each
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Figure 1: Profiles of generated data points for 5 subjects (left) and for all subjects (right panel).

subject is randomly assigned to a cluster. The yi0’s are set to zero. Configuration of
generated data points are depicted in Figure 1. We fit model (3) by assuming G0 be
DU{1, · · · , 50}. We use the OpenBUGs software [2] with 100000 samples generated after
300000 burn-in. Non-informative independent priors with large variances are also adopted.

Results of estimated values of change points, c∗j , j = 1, · · · , 7 and estimate of size of
each cluster are reported in Table 1. As is seen, the estimated change points are close
to the real values, i.e. {10, 20, 30, 40}, except that the first cluster with the change-point
equals to 10 is divided to two clusters with change points equal to 9.12 and 13.18. Also,
it should be noted that the last two estimated change-points are inactive (empty) in most
runs of Gibbs sampler such that their estimated cluster sizes are 0.10 and 0.03.

Furthermore, we cluster the data set by using the estimated values. The likelihood of
each data point is computed for active clusters. The average of c∗1 and c∗2 are considered
as the change point of the first cluster. Then, each data point is assigned to the cluster
with larger likelihood. The ratio of true clustered subjects is obtained 0.8750.
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Table 1: Bayesian estimates of change points and sizes of each cluster are reported.

c∗1 c∗2 c∗3 c∗4 c∗5 c∗6 c∗7
c∗j 9.12 (0.23) 13.82 (0.31) 19.77 (0.20) 29.62 (0.25) 38.96 (0.26) 40.95 (2.19) 45.38 (2.88)

size 44.58 (2.26) 14.26 (2.16) 60.68 (2.52) 37.27 (2.04) 43.08 (1.95) 0.10 (0.42) 0.03 (0.19)
∗ Bayesian standard deviations are given in parentheses.
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Abstract

One of the important issues in many applications of income inequality indices is
finding an appropriate function of distance to measure disparity in population. A
natural way of viewing an income inequality index is in terms of the distance function
between an actual distribution of incomes and an appropriately normative distribution.
Based on Lorenz curve and line of equality, real analysis offers a number of distance
functions to construct some inequality measures. In this paper, we introduce some
income economic indices from the mathematical point of view.

Keywords: Distance measure, Income inequality index, Lorenz curve

Mathematics Subject Classification [2010]: 62A99, 62P20, 91B02

1 Introduction

A natural way of viewing an income inequality measure is in terms of the distance between
an actual distribution of incomes and an appropriately normative distribution (i.e. reflect-
ing a perfectly equal distribution of incomes). With this idea, Lorenz (1905) proposed a
graphical representation based on the percentage of total income earned by cumulative
percentage of the population for representing inequality in the wealth distribution. In a
perfectly equal society, the poorest %p of the population would earn exactly %p of the
total income and the Lorenz curve would follow the path of the 45 (line of equality).
As inequality increases, the Lorenz curve deviates from the egalitarian line. Based on
the discussion about Lorenz curve and line of equality, real analysis offers a number of
distance functions to construct some inequality measures. Cha (2007)[1] provides a par-
ticularly useful review on distance measures and some of these have been employed in
the economics measurement literature. One of the important issues in many applications
of income inequality measure is finding an appropriate measure of distance to measure
disparity in population. The 20th century witnessed tremendous efforts to exploit new
distance measures for a variety of applications. A number of distance measures for this
purpose have been proposed and extensively studied by statisticians and econometrists.
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2 Lorenz curve

The Lorenz curve is a graphical representation of the cumulative income distribution.
It was developed by Max O. Lorenz (1905) [4] for representing inequality in the wealth
distribution. The Lorenz curve can usually be represented by a function L(p), where p,
the cumulative portion of the population, is represented by the horizontal axis, and L, the
cumulative portion of the total wealth or income, is represented by the vertical axis. Let L
be the class of all non-negative income random variables with positive finite expectations.
For a random variable X in L with cumulative distribution function F , we define its inverse
distribution function by F−1

X(y) = inf{x : FX(x) ≥ y}.
According to Zenga (2007)[5], the Lorenz curve LX corresponding to X is defined by

LX(p) =

p∫
0

FX
−1(t)dt

1∫
0

FX
−1(t)dt

0 ≤ p ≤ 1. (1)

The numerator sums the incomes of the bottom %p proportion of the population. The
denominator sums the incomes of all the population. L(p) thus indicates the cumulative
percentage of total income held by a cumulative proportion %p of the population. To
visualize proportions (1), like Figure 1, we plot the points (p, L(p)).
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Figure 1: Lorenz curve

It can be noted that the Lorenz curve is always below the diagonal

I(p) = p 0 ≤ p ≤ 1.

The diagonal I, on the other hand, is also a Lorenz curve. Indeed, assuming that all the
incomes are equal. Thus the interpretation of I (the straight line) represents perfect equal-
ity and any departure from this 450 line represents inequality. Based on the discussion
about Lorenz curve and line of equality, it now becomes natural to measure the economic
inequality by using some distance d(I, L) between the egalitarian Lorenz curve(I) and the
actual one L, then we can consider d(I, L) as a measure of economic inequality in the
population. The main idea behind the construction of d(., .) is based on the fact that we
are merely interested in measuring the distance between I and L. This implies that we are
really interested only in the functional D = d(I, L) defined on the set of all Lorenz curves.
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3 Inequality measure as a distance function

Here, we introduce some income inequality measures according to distance functionals.

3.1 Robin Hood index

The Robin Hood index is an inequality measure, which admits a simple description in
terms of the geometry of the Lorenz curve. The Robin Hood is defined as the maximal
vertical distance between the Lorenz curve and the line of equality.

IRobin = d(p, L(p)) = max
0≤p≤1

(p − L(p)) .

The Robin Hood index is based on the Lorenz Curve and is closely tied to the better
known inequality measure the Gini coefficient which is also based on the Lorenz curve.

3.2 Gini Index

The most well-known member of the income inequality family is the Gini coefficient.
It is widely used to measure income inequality, mainly because of its clear economic
interpretation. This measure can be defined in various ways. The best known definition of
the Gini index of inequality is as twice the area between the equality line and the Lorenz
curve. Therefore, it can be expressed as

IGini = d(p, L(p)) = 2

∫ 1

0
(p − L(p))dp.

Several generalizations of the classical Gini index, placing smaller or greater weights on
various portions of income distribution, have been proposed by a number of authors. Kak-
wani (1980) [3] introduced the S- Gini Index as a generalization of Gini index. He proposed
a one-parameter family of generalized Gini indices by introducing different weighting func-
tions for the area under the Lorenz curve,

d(p, L(p)) = (

1∫

0

(p − L(p))αw(p)dp)
1
α ,

where w(p) is some increasing function which allows value judgments about in equality to
be incorporated.

3.3 Bonferroni index

The Bonferroni index has been revalued and studied for its features and for its interesting
applications in social and economic contexts. This index is based on comparison between
partial means of lower group and total mean. The Bonferroni index as a distance function
can be defined as

IBonf = d(p, L(p)) =

1∫

0

(1 − L(p)

p
)dp.

This index is sensitive to low income values.
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3.4 Zenga index

In 2007, Michele Zenga [5] introduced a new inequality measure based on ratio between
lower and upper group means of incomes in population. Zenga’s index of inequality is
defined as a distance function by the formula

IZenga = d(p, L(p)) =

∫ 1

0
[1 −

L(p)/p
(1 − L(p))/(1 − p)

]dp,

This index is more sensitive to extreme income values rather than other indices.

3.5 Canberra index

There are metrics which have not received much attention even thought they have many
advantages. One such metric is the Canberra metric, which is based on the function of
the partial means and the general mean of income distribution. The Canberra distance is
a weighted version of the classic L1 distance family which naturally extends to a metric
on symmetric groups. This measure may be defines as

ICanberra = d(p, L(p)) =

1∫

0

p − L(p)

p + L(p)
dp, ∀p ∈ (0, 1).

The Canberra measure such as the bonferroni index is sensitive to low income values.
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Abstract

In this paper, we describe and present results on the parameter estimation for the
Topp-Leone distribution. Three estimating methods have been investigated, namely,
the maximum likelihood method, the method of moments and the probability weighted
moments method. A simulation study has shown that the maximum likelihood esti-
mator outperforms the estimators obtained by other methods.

Keywords: Maximum likelihood estimation, Probability weighted moment method,
Simulation
Mathematics Subject Classification [2010]: 62F10, 68U20

1 Introduction

The Topp-Leone distribution is a univariate continuous two parameter distribution with
bounded support which was first proposed and used as a model for some failure data
by [2]. Reference [1] provided a motivation for this distribution based on its hazard rate
function and then studied the moments and some other main properties of the Topp-Leone
distribution. The random variable X with the range (0, 1) has one-parameter Topp-Leone
distribution if its probability density function (pdf) can be stated as

f(x; ν) = 2ν(1 − x)xν−1(2 − x)ν−1, 0 < x < 1, ν > 0, (1)

and we write X ∼ TL(ν). The corresponding cumulative distribution function (cdf) is
given by

F (x; ν) = [x(2 − x)]ν , 0 < x < 1. (2)

Moreover, the quantile function of the Topp-Leone distribution is

Q(u) = 1 −
√

1 − u
1
ν , 0 < u < 1. (3)

In what follows, we investigate the estimation of the shape parameter of the Topp-Leone
distribution with pdf (1) using the maximum likelihood (ML) method, the method of
moments and the probability weighted moments (PWM) method. We also provide a
simulation study to compare the mentioned methods numerically.
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2 Main results

We derive and present three different estimators for the shape parameter of the Topp-
Leone distribution using three considered methods. We start with maximum likelihood
method.

2.1 Maximum likelihood estimation

Let X1, · · · , Xn be a random sample of size n coming from the Topp-Leone distribution
with pdf (1). Then the log-likelihood function for the parameter ν becomes

ℓ(ν) = n log 2ν +

n∑

i=1

log(1 − xi) + (ν − 1)

n∑

i=1

log{xi(2 − xi)}.

The maximum likelihood estimator (MLE) of ν is obtained by maximizing ℓ(ν) with respect
to ν. Upon differentiating ℓ(ν) with respect to ν and equating the result with zero, the
MLE of ν, denoted as ν̂M , will be obtained as

ν̂ =
−n∑n

i=1 log{Xi(2 − Xi)}
. (4)

2.2 Method of moments

One of the simplest and oldest methods of estimation is the method of moments. In this
method, we obtain the estimators of the unknown parameters by equating the population
moments with sample moments, i.e.

E(Xr) =
1

n

n∑

i=1

Xr
i .

Reference [1] derived the r-th moment of the Topp-Leone distribution as follows

E(Xr) = 2r+2νν[Be(0.5, r + ν, ν) − 2Be(0.5, r + ν + 1, ν)],

where Be(·, ·, ·) is the incomplete beta function, defined as

Be(x, α, β) =

∫ x

0
tα−1(1 − t)β−1dt.

Considering the first population moment, (setting r = 1), the moment estimator of ν,
denoted as ν̂m, can be obtained by solving the following equation

22ν+1ν[Be(0.5, ν + 1, ν) − 2Be(0.5, ν + 2, ν)] = X,

where X = 1
n

∑n
i=1 Xi is the sample mean (sample first moment).
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2.3 PWM method

For an arbitrary random variable X with pdf f(x) and cdf F (x), the population probability
weighted moment of order (j, r, s) is defined as

Mj,r,s = E(Xj [F (X)]r[1 − F (X)]s). (5)

A logical estimator for Mj,r,s will be the sample probability weighted moment of order
(j, r, s), i.e.

M̂j,r,s = mj,r,s =
1

n

n∑

i=1

Xj
i [F (Xi)]

r[1 − F (Xi)]
s). (6)

One can obtain estimators of the unknown parameters of the model by equating (5) with
(6). Here, we use the usual orders j = r = 1 and s = 0 for the Topp-Leone distribution,
therefore we get

M1,1,0 = 24ν+1ν[Be(0.5, 2ν + 1, 2ν) − 2Be(0.5, 2ν + 2, 2ν)].

Consequently, from (2), the PWM estimator of ν, denoted as ν̂A, will be obtained by
solving the following non-linear equation with respect to ν

24ν+1ν[Be(0.5, 2ν + 1, 2ν)

− 2Be(0.5, 2ν + 2, 2ν)] =
1

n

n∑

i=1

Xν+1
i (2 − Xi)

ν .

3 A simulation study

In this section, we compare the performance of estimators using a simulation. We consider
three values for ν, i.e. ν = 1, 2 and 3 and consider the sample sizes to be 10, 20 and 30.
We can use the quantile function given in (3) in order to generate a Topp-Leone random
variable. The following algorithm has been applied to perform our simulation.

Step 1: Generate a random sample of size n, U1, · · · , Un, from the uniform distribution
on (0,1).

Step 2: Set Xi = 1 −
√

1 − U
1
ν
i for i = 1, · · · , n to attain a random sample of size n from

TL(ν).

Step 3: Obtain the ML, moment and PWM estimators of ν based on the random sample
generated in Step 2.

Step 4: Repeat Steps 1–3 N = 1000 times and obtain the estimated mean squared errors
of the estimators.

Let ν̂(i) be the estimator (MLE, moment estimator or PWM estimator) of ν obtained in
Step 3 and in the i-th iteration. Then the estimated mean squared error (EMSE) of the
estimator is given by

EMSE(ν̂) =
1

N

N∑

i=1

[ν̂(i) − ν]2.
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Table 1: Numerical Results.

ν 1 2 3
n method

10 ML 0.17955 0.65066 1.60353
Moment 0.22257 0.76345 1.68954
PWM 0.36563 1.23059 2.45521

20 ML 0.06833 0.28730 0.61134
Moment 0.09130 0.35022 0.70822
PWM 0.12330 0.49930 1.01141

30 ML 0.035961 0.14235 0.37223
Moment 0.050963 0.17017 0.43632
PWM 0.069264 0.22635 0.60825

All the computations of the simulation have been performed using MAPLE 17 and the
results are presented in Table 1. From Table 1, we observe that the ML method performs
better than the other methods as the EMSEs of the MLEs are less than the corresponding
EMSEs of Moment and PWM estimators. In addition the EMSEs are increasing with
respect to ν. It can also be seen that the EMSEs are decreasing with respect to n, in other
words, as the sample size increases, the estimators become exacter (get nearer to the true
value of the parameter), as expected. Summing up, one may prefer to estimate the shape
parameter of the Topp-Leone distribution using ML method if s/he considers the results
of this paper.
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Abstract

In this article, a new distribution, namely, weibull-G distribution is defined and
studied.We introduce a new generator based on the Weibull random variable called
the new Weibull-G family. Various properties and a characterization of the weibull-G
family are obtained. we discuss the estimation of the model parameters by maximum
likelihood and illustrate the potentiality of the extended family with applications to
real data.

Keywords: weibull distribution; maximum likelihood estimation; generator
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1 Introduction

Fit a suitable model to the data is the goal of many researchers. To add more flexibility
to Weibull distribution, many researchers developed many generalizations of the distri-
bution.These generalizations include the generalized Weibull distribution by Mudholkar
and Kollia(1994), the exponentiated-Weibull distribution by Mudholkar et al.,(1995) . Ex-
tended weibull Gurvich et al.,(1997) and gamma Zografos and Balakrishnan(2009) families.

Consider a continuous distribution G with density g and therefore G(x;ξ)
1−G(x;ξ) is called odds

ratio. Moreover we assume that random variable X has weibull distrbution [1]. In this
case, weibull-G family distribution will be defined as follows.

Definition 1.1. we define as the cdf of the weibull-G family distribution by replacing x
by G(x;ξ)

1−G(x;ξ) in the weibull cdf

F (x; α, β, ξ) =

∫ G(x;ξ)
1−G(x;ξ)

0
αβxβ−1e−αxβ

dx = 1 − exp{−α[
G(x; ξ)

1 − G(x; ξ)
]β}, xϵR;α, β > 0,

(1)

The pdf corresponding to (1) is given by

f(x; α, β, ξ) = αβg(x; ξ)
G(x; ξ)β−1

G(x; ξ)β+1
exp{−α[

G(x; ξ)

G(x; ξ)
]β}, x > 0, α > 0, β > 0. (2)
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Example 1.2. suppose that the parent distribution is BURXII with pdf and cdf given by
g(x) = cks−cxc−1[1+(x

s )c]−k−1 , s, k, c > 0 and G(x) = 1−[1+(x
s )c]−krespectively.Then,

the Weibull-BURRXII distribution has pdf given by

fWBBXII(x; α, β, s, k, c) =
αβcks−cxc−1

(1 + (x
s )c)1−k

exp{−α[(1 + (
x

s
)c)k − 1]β}. (3)

The following Lemma gives the relation between weibull-G and weibull, exponential, and
Gumbel distributions.

Lemma 1.3. (a) If a random variable Y follows the weibull distribution with parameters
α and β , then the random variable X = G−1( Y

Y +1) follows wei-G(α, β, ξ).
(b)IfarandomvariableY followsthestandardexponentialdistributionthentherandomvariable

X= G−1( Y
1
β

Y
1
β +1

) follows wei-G(α, β, ξ).

(c)IfarandomvariableY followstheGumbledistributionwithscaleparameter β, then the

random variable X = G−1( e−Y

α
1
β +e−Y

) follows wei-G(α, β, ξ).

Theorem 1.4. Let (Ω, Σ, P ) be a given probability space and let H = [a, b] be an interval
for some b ( a = −∞, b = ∞ might as well be allowed). Let X : Ω → H be a continuous
random variable with distribution function F (x) and let q1and q2 be two real function
defined on H such that

E[q1(X) | X ≥ x] = E[q2(X) | X ≥ x]η(x), xϵH,

Is defined with some real function η. Assume that q1, q2ϵC
1(H), ηϵC2(H) and G(x)

is twice continuously differentiable and strictly monotone function on the set H. Finally,
assume that the equation q2η = q1 has no real solution in the interior of H. Then G is
uniquely determined by the functions q1, q2 and η, particularly

F (X) =

∫ x

a
C | η

′
(x)

η(u)q2(x) − q1(u)
| e−s(u)du,

Where the function s is a solution of the differential equation s
′
= η

′
q2

ηq2−q1
and C is a

constant, chosen to make
∫
H df = 1 [2].

Proposition 1.5. Let X : Ω → (0,∞) be a continuous random variable and let q1(x) =

α( G(x;ξ)
1−G(x;ξ))

β − 1 and q2(x) = 1 for x > 0. The pdf of X is if and only if the function η
defined in Theorem 1.4 has the form

η = α(
G(x; ξ)

1 − G(x; ξ)
)β, x > 0.

Proof. Let X have density (2) , then clearly F , q1, q2 and η satisfy both the hypotheses
of 1.4 and the above differential equation. Conversely, assume that there are function q2

and η satisfying the differential equation then

s
′
=

η
′
q2(x)

η(x)q2(x) − q1(x)
= αβg(x)

G(x; ξ)β−1

Ḡ(x; ξ)β+1
, x > 0
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s(x) = α(
G(x; ξ)

Ḡ(x; ξ)
)β, x > 0, or e−s(x) = e

−α(
G(x;ξ)

Ḡ(x;ξ)
)β

, x > 0.

Now, in view of Theorem1.4, X has density function (2).

2 Maximum Likelihood Estimation and Application

Here, we determine the maximum likelihood estimates (MLEs) of the parameters of the
new family of distributions from complete samples only. Let x1, x2, ..., xn be observed
values from the Wei-G distribution with parameters α , β and ξ. Let Θ = (α, β, ξ)T be
theparameter vector. The total log-lielihood function for Θ is given by

ℓ(θ) = nlog(α) + nlog(β) + Σn
i=1log[g(xi; ξ)] − αΣn

i=1H(xi; ξ)
β+

βΣn
i=1log[H(xi; ξ)] − Σn

i=1log[G(xi; ξ)] − Σn
i=1log[1 − G(xi; ξ)],

Where H(x; ξ) = G(x;ξ)
Ḡ(x;ξ)

.The components of the score function U(Θ) = (Uα, Uβ, Uξ) are

Uα =
∂ℓ

∂α
=

n

α
− Σn

i=1H(xi; ξ)
β,

Uβ =
∂ℓ

∂β
=

n

β
− αΣn

i=1H(xi; ξ)
βlog[H(xi; ξ)] + Σn

i=1log[H(xi; ξ)],

Uξκ =
∂ℓ

∂ξ
= −αβΣn

i=1H(xi; ξ)
β−1∂H(xi; ξ)/∂ξκ + βΣn

i=1

∂H(xi; ξ)/∂ξκ

H(xi; ξ)

+Σn
i=1

∂g(xi; ξ)/∂ξκ

g(xi; ξ)
− Σn

i=1

∂G(xi; ξ)/∂ξκ

G(xi; ξ)
− Σn

i=1

∂G(xi; ξ)/∂ξκ

G(xi; ξ)
.

Setting Uα, Uβ and Uξ equal to zero and solving the equations simultaneosly yields the
MLE of These equations cannot be solved analytically and statistical software can be used
to solve them numerically using iterative method the Newton-Raphson type algorithm.
Application.The data set were used by (Birnbaum and Saunders 1969) and correspond to
the fatigue time of 101 6061-T6 aluminum coupons cut parallel to the direction of rolling
and oscillated at 18 cycles per second (cps). The data are:
70, 90, 96, 97, 99, 100, 103, 104, 104, 105, 107, 108, 108, 108, 109, 109, 112, 112,113,
114, 114, 114, 116, 119, 120, 120, 120, 121, 121, 123, 124, 124, 124, 124, 124, 128, 128,
129, 129, 130, 130, 130, 131, 131, 131, 131, 131, 132, 132, 132, 133, 134,134, 134, 134,
134, 136, 136, 137, 138, 138, 138, 139, 139, 141, 141, 142, 142, 142,142, 142, 142, 144,
144, 145, 146, 148, 148, 149, 151, 151, 152, 155, 156, 157, 157,157, 157, 158, 159, 162,
163, 163, 164, 166, 166, 168, 170, 174, 196, 212.
For these data, we fit the WBXII distribution defined in (3) and compare it with the
Weibull-log-logistic (WLL) (for x > 0) and the beta Burr XII (BBXII))(for x > 0)
(Paranaba et al., 2011) models with corresponding densities:

fWLL(x; α, β, s, c) =
αβcs−cxc−1exp{−α[(1 + (x

s )c) − 1]β}[(1 + (x
s )c) − 1]β−1

1 + (x
s )c

,

fBBXII(x; a, b, s, k, c) =
cks−cxc−1

B(a, b)
[1 + (

x

s
)c]−kb+1{1 − [1 + (

x

s
)c]−k}a−1,
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where a, b, s, k, c, α, β > 0 and B(a,b) is the beta function [3]. The MLEs of the
model parameters and the Akaike information criterion (AIC) for the WBXII and the
other models are listed in table1.The ftted densities for the data sets aredisplayed in figures
1 ,These results illustrate the potentiality of the WBXII distributions and the importance
of the two additional parameters.

Table 1: MLEs of the parameters and AIC of the WBXII models for the Data sets

Model Estimation AIC

WBXII(α, β, s, k, c) 103.5 0.95 141.42 0.04 9.68 877.97
WLL(α, β, s, c) 4174.28 0.99 566.53 6.09 924.37

BBXII(a, b, s, c, k) 102.13 119.74 61.54 0.53 924.8

(a) (b)

Figure 1: Estimated (a) cdf and (b) pdf for the WBXII,WLL,BBXII models

We fit the Weibull-G distributions to the real data sets to demonstrate the potentiality
of this family.
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The half generalized normal distribution and its properties

Atefe Pourchitsaz

Yazd University

Eisa Mahmoudi∗

Yazd University

Abstract

In this paper, we introduce a new distribution called as the half generalized normal
distribution. This distribution contains the half normal distribution in a special case.
Some mathematical properties of this distribution such as pdf, cdf, hazard rate, rth
moment and the moment generating function is studied in this paper.

Keywords: Generalized normal distribution, Half normal distribution, Hazard rate
function, Moments.

Mathematics Subject Classification [2010]: 60E05, 62H10, 62H12.

1 Introduction

A random variable X is said to have the generalized normal distribution with parameters
µ, σ and s if its density function is given by

f(x) = K exp {−|x − µ

σ
|s}, −∞ < x < ∞, −∞ < µ < ∞, σ > 0, s > 0,

where K =
s

2σΓ(1/s)
. We denote this as X ∼ GN(µ, σ, s). The generalized normal

distribution is bell-shaped and unimodal with mode at x = µ.
The cdf of X can be written as

F (x) =





Γ(1/s, ((µ − x)/σ)s)

2Γ(1/s)
ifx 6 µ

1 − Γ(1/s, ((x − µ)/σ)s)

2Γ(1/s)
ifx > µ,

where incomplete gamma function defined by

Γ(a, x) =

∫ ∞

x
ta−1 exp(−t)dt.

Nadarajah [2] introduced this distribution as the generalization of normal and Laplace
distributions where s = 2 and s = 1, respectively. A generalization of the half normal
distribution is studied by Cooray and Ananda [1].
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2 Half generalized normal distribution

In this section we introduce the random variable Y and study some of its distributional
properties.
We consider that the random variable Y has a half generalized normal distribution with
parameters σ and s if it can be represented as

Y = |X|, (1)

where X ∼ GN(0, σ, s), σ > 0 and s > 0. We denote this as Y ∼ HGN(σ, s).
A distribution that plays an important role in this paper is the gamma distribution with
pdf given by

g(x; α, β) =
βα

Γ(α)
xα−1e−βx,

where x > 0, α > 0 and β > 0 and also its cdf given by

G(x; α, β) =

∫ x

0
g(t; α, β)dt.

Theorem 2.1. let Y ∼ HGN(σ, s). Then the density function of Y is given by

fY (y;σ, s) = 2K exp{− ys

σs
},

where K =
s

2σΓ(1
s )

, σ > 0, s > 0 and y > 0.

Proof. One can use the formula fY (y; σ, s) = fX(y) + fX(−y) to obtain the pdf of Y =
|X|.

Remark 2.2. If Y ∼ HGN(σ′, s), σ′2 = 2σ2 and s = 2, we obtain the half normal
distribution with parameter σ, and hence the density function of Y is given by

fY (y) =
2√
2πσ

exp{− y2

2σ2
}, y > 0, σ > 0.

The cdf of random variable Y with HGN distribution can be written as

F (y) = G(ys,
1

s
,

1

σs
),

where G is cdf of gamma distribution.
Figure 1 plots some possible shapes of pdf and cdf of HGN distribution for distinct values
σ and s.
The survival function is defined as S(y) = 1 − F (y), where F (y) is the cdf of Y .

The hazard function is given by

h(y) =
2K exp{− ys

σs }
1 − G(ys, 1

s , 1
σs )

.

Figure 2 plots some possible shapes of survival and hazard function of HGN distribution
for distinct values σ and s.
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Figure 1: Graphs of pdf and cdf of HGN distribution for diffrent values σ and s.

(a) Plots of survival function. (b) Plots of hazard function.

Figure 2: Graphs of survival and hazard functions of HGN distribution for diffrent values
σ and s.

3 Moments of HGN distribution

The rth moment and moment generating function of half generalized normal distribution
is derived in this section.

Theorem 3.1. Let Y ∼ HGN(σ, s). Then for r = 1, 2, · · · it follows that the rth moment
is given by

E[Y r] =
σrΓ( r+1

s )

Γ(1/s)
.

Proof. Using the definition of expectation, we have

E[Y r] =
s

σΓ(1/s)

∫ ∞

0
yr exp{ ys

σs
}dy,
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and making the variable transformation z = ys, we have that

E[Y r] =
1

σΓ(1/s)

∫ ∞

0
z

r+1
s

−1 exp{− z

σs
}dz,

thuse the result is obtained after identifying the gamma function.

Theorem 3.2. Let Y ∼ HGN(σ, s). Then the moment generating function of the random
variable Y is given by

MY (t) =
s

σΓ(1/s)

∫ ∞

0
exp{−(

ys

σs
− ty)}dy

≃ 1

Γ(1/s)

∞∑

n=0

(tσ)nΓ(
n + 1

s
).

4 Conclusion

In this paper, we have introduced a new distribution called as the half generalized normal
distribution. This distribution contains the half normal distribution in a special case.
This new distribution can be written as the absolute value of generalized normal random
variable.
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A post quantum (n, n)-threshold secret sharing scheme using

AD cryptosystem
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Abstract

The existing secret sharing schemes either require integer numbers or require DLP
(Discrete Logarithm Problem) for verification. In addition, they use secure channel
for transmission of secret. In this paper we present a (n, n)-threshold secret sharing
scheme using AD cryptosystem through insecure channel in which the floating numbers
can be used. The proposed scheme doesn’t need DLP for verification. In addition, it
is secure against quantum algorithms.

Keywords: Secret Sharing Scheme, Ajtai and Dwork (AD) Cryptosystem, Lattice,
Post Quantum Cryptography.

Mathematics Subject Classification [2010]: 94A62, 94A62

1 Introduction

Secret sharing scheme (SSS) is a cryptographic primitive that allows a secret to be shared
among a set of participants such that only a qualified subset (or even the whole set) can
recover the secret [6]. SSSs are ideal for sensitive and highly important systems such as
encryption keys, missile launch codes, numbered bank accounts access control systems,
e-voting, authentication protocols and etc [6]. Classical constructions for (k,n)-threshold
secret-sharing schemes include the polynomial based Shamir scheme [1], the nonparallel
hyper planes-based Blakley scheme [5] and the integer-based Chinese remainder Theorem
(CRT) scheme [2]. In fact Blakley and Shamir invented threshold sharing schemes inde-
pendently [1, 5]. However, the existing schemes either use DLP for verification of secret
or require a secure channel for secret transmission. In 1994, Shor discovered a quantum
algorithm for solution of DLP [7]. Therefore, SSSs, which use DLP, are not resistant
against quantum attacks.

Lattice-based cryptosystems are resistant against quantum attacks. Steinfeld et al.
has introduced Lattice-based threshold-changeability for standard Shamir secret-sharing
schemes in [8]. They proved the security of their works by lattice reduction techniques
but their schemes require secure channel for secret transmission.

The Ajtai and Dwork (AD) cryptosystem is one of the post-quantum cryptosystems [4].
Post-quantum means that they are resistant against quantum attacks. In this paper, we
propose a (n,n)-threshold SSS based on the AD cryptosystem. Ajtai and Dwork uses hard
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Lattice problems to prove the security of AD-cryptosystem. Lattice-based cryptographic
constructions hold a great promise for post-quantum cryptography. Therefore, we use a
lattice based cryptosystem for SSS which is believed secure against quantum computers.

The outline of this article is organized as follows: First, we present the Ajtai-Dwork
Error-Free Construction in Section 2. Then we introduce verifiable AD-based SSS in
section 3.

2 The Ajtai-Dwork Error-Free Construction

In this section we recall the error-free construction of Ajtai and Dwork [3]. Ajtai and Dwork
have introduced a public-key encryption scheme which is secure under the assumption that
a certain computational problem on lattices is hard on the worst-case [4].

To simplify the exposition, we present the scheme in terms of real numbers, but we
always mean numbers with some fixed finite precision. For given security parameter n, we
let m = n3, and ρn = 2nlogn. We show the n-dimensional cube of side-length ρn by Bn.
In addition, we show the n-dimensional sphere of radius n−8 by Sn (for Small or Sphere).
Namely, we have Bn = {x ∈ Rn : 0 6 xi < ρn, i = 1, 2, ..., n} and Sn = {x ∈ Rn : ||x|| 6
n−8}.

Private-key: For a given security parameter n, the private-key is a uniformly chosen
vector in the n-dimensional unit sphere. We denote this vector by u.

For a private key u, define Hu (the distribution on points in Bn) by the following
process: 1) Pick arbitrary point a from the set {x ∈ Bn : 〈x, u〉 ∈ Z}, 2)Select random
numbers δ1, δ2, ..., δn from Sn, 3) Output the point v = a+

∑
i δi.

Public-key: The public-key is consist of the sequence of points w1, w2, ..., wn, v1,
v2, ..., vm and the integer i1 where the arbitrary points w1, w2, ..., wn, v1, v2, ..., vm are from
the distribution Hu and i1 is a random number from all the indices i so that 〈ai, u〉 ∈ 2Z+1.

Encryption. The encryption works in a bit-by-bit fashion. Namely, to encrypt
a string σ1, σ2, ..., σl, each bit σi, is encrypted separately. To encrypt a ’0’, we uni-
formly select b1, ..., bm in {0, 1}, and reduce the vector

∑m
i=1 bivi modulo the parallelepiped

P (w1, w2, ..., wn). The vector x =
∑m

i=1 bivi mod P (w1, w2, ..., wn) is the ciphertext which
corresponds to the bit ’0’. To encrypt a ’1’ we uniformly select b1, ..., bm in {0, 1}, and
reduce the vector 1

2vi1 +
∑m

i=1 bivi modulo the parallelepiped P (w1, w2, ..., wn) which is
denoted by v′ =

∑n
i=1 cjwj . The vector x = 1

2vi1 +
∑m

i=1 bivi mod P (w1, w2, ..., wn) is the
ciphertext which corresponds to the bit ’1’.

Decryption (Error-Frees): For a given ciphertext x, and the private-key u, we
compute τ = 〈v, u〉 and decrypt the ciphertext as a ’0’ if τ is within 1

4 of an integer and
decrypt it as a ’1’ otherwise.

Goldreich et al have proved the correctness of encryption-decryption process of AD
cryptosystem in [3].

3 The proposed scheme

The dealer divides the secret in a bit-by-bit fashion. Our scheme is a (n,n)-threshold
scheme, so in order to recover the secret, n participants have to pool their shares.
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3.1 Initialization phase

Common Parameters: The common parameters n,m,P,Bn, Sn, w1, w2, ..., wn, v1, ..., vm,
i1, v

′ and u are determined in exactly the same manner as in the section 2.

3.2 Construction phase

Suppose that Wi = (w1i, w2i, ..., wni)
t and U = (u1, u2, ..., un)t. In order to compute the

shares, the dealer executes the following procedure.

1. Choose random numbers ki 6= 0 and di 6= 0 for 1 ≤ i ≤ n− 1 such that
∑n

i=1 ki = 0.
Note that the values dis are selected for more security because without using dis, if
ki = 1 then ui is detected by Pi.

2. Compute Zi = (z1i, z2i, ..., zni)
t = (kid1u1, kid2u2, ..., kidnun) for 1 ≤ i ≤ n−1. Also,

Zn = (z1n, z2n, ..., znn)t = ((knd1 + 1)u1, (knd2 + 1)u2, ..., (kndn + 1)un).

3. Distribute Zi and Wi to Pi for i = 1, ..., n.

4. Compute and publish C to Pi (for i = 1, 2, ..., n) where C =
∑m

i=1 bivi if the i-th
bit of the secret is ’0’ and C = 1

2vi1 +
∑m

i=1 bivi otherwise. Note that b1, ..., bm are
uniformly select in {0, 1}.

5. Compute and publish G = (
∑n

j=1 z1jw1j ,
∑n

j=1 z2jw2j , ...,
∑n

j=1 znjwnj)
t.

6. Distribute Gi to Pi (for i = 1, ..., n) where G = (
∑n

j=1,j 6=i z1jw1j ,
∑n

j=1,j 6=i z2jw2j , ...,∑n
j=1,j 6=i znjwnj)

t.

3.3 Verification and recovery phase

According to the section 2, each Pi receives Wi, Zi, G and Gi. We use the following
proposition in our scheme.

Proposition 3.1. If ki 6= 0 and di 6= 0 such that
∑n

i=1 ki = 0, Zi = (z1i, z2i, ..., zni)
t =

(kid1u1, kid2u2, ..., kidnun) for 1 ≤ i ≤ n − 1 and Zn = (z1n, z2n, ..., znn)t = ((knd1 +
1)u1, (kn d2 + 1)u2, ..., (kndn + 1)un) then

∑n
i=1 Zi = U .

Proof.

(

n∑

i=1

Zi)j =

n∑

i=1

(Zi)j =

n−1∑

i=1

kidjuj + (kndj + 1)uj = djuj

n∑

i=1

ki + uj = uj

.

To recover the secret, all the shares are needed. In fact, only n participants can recover
the secret. The recovery with verification is made as follows:

1. Each Pi for i = 1, ..., n can verify the validation of his share wi: If G 6= Gi +
(z1iw1i, z2iw2i, ..., zniwni)

t then Pi has received a wrong share else his share is valid.

2. If all the shares are valid then recover the vector U by U =
∑n

i=1 Zi (see proposition
3.1), and compute x = 〈C mod P (w1, w2, ..., wn), U〉.

3. If x is within 1
4 of some integer then the secret is ’0’ else it is ’1’.
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4 Conclusion and future works

We constructed a simple, efficient unanimous consent SSS based on the famous AD cryp-
tosystem. We showed that the scheme doesn’t allow recovering the secret if at least one
participant is missing and this situation reduces to the break AD cryptosystem which is
believed to be hard. The scheme offers the possibility for the participants to check if all
the shares distributed by the dealer are valid. There is still a lot of work to be done in
order to improve the capabilities of the scheme: it would be good to find a (k, n) variant of
the scheme with k 6= n and a way to make it multisecret (to allow sharing several secrets
instead of one secret shared on each round).
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Abstract

The objective of this paper is to produce an implementable algorithm for construct
equal norm equangular tight frame (ENATF) in R2 of a given vector. This structure
have some application in some atomic structure in crystal physics and filter bank
theory in comminication.

Keywords: frame, egual norm, algoritmic, Hilbert space.
Mathematics Subject Classification [2010]: 57R25, 42C15

1 Introduction

Frames were introduced by Duffin and Shaefer in 1952 [4] as componet in the development
of non harmonic Fourier series and a paper by Daubechies Grossman Meyer in 1986 initated
the use of frame theory in signal processing [6].
The paper is organized as follows: section 2 contain preliminary definition on frames and
the basic notation used throughout the paper. In section 3 we reviewsome basic elements
concerning the notion of equal norm-angle tight frame (ENATF) in the form suitable
for the algorithm structure ENATF and we present throughout the review and several
examples, and suggest some possible applications.

2 Finite tight frames

Definitin a sequense {wi}m
i=1 of elements of a Hilbert space n-dimensional H over C or

R, is called finite frame, if there are constans A,B > 0 such that

Av ≤
m∑

i=1

< v, wi > wi ≤ Bv.

for all v ∈ H. the numbers A,B are called frame bounds respectively. The frame is called
tight frame if A = B. The tight frame is called Parseval frame if A = 1. The frame is
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called equal norm frame if ∥ wi ∥=∥ wj ∥ for all i, j . the frame is called equal angle if the
angle betwen for wi, wi−1 or wi, wi+1 are equal for all i. The frame is called ENATF if it
be a tight, equal norm and angular frame.
Some frames can be defined in a natural way by using group repersentation [5] [2] Let H be
a real(complex) n− dimensional Hilbert space and G a finite group such that g : H → H
be an unitary and irreducible reperesentation and let w ∈ Hbe a fixed vector. we defined
the subgroup Gw of G as follows:

Gw = {g ∈ G|g(w) = α(w)}
where α is a scaler depending on g. if {gi}m

i=1 is a system of the left cosets of G on Gw

then

w1 = g1(w), w2 = g2(w), . . . , wm = gm(w)
form an equal norm tight frame in H , namely for all v ∈ H we have

m∑

i=1

< v, wi > wi =
m

n
∥ w ∥2 v.

The orbit G
G(w) = {g(w)|g ∈ G}

is a tight frame with bound m′
n ∥v∥2 where m′ is a order the finite group G.

Proof. We refer to Theorem 2 we have for all v ∈ H

m∑

i=1

< v, wi > wi =
m

n
∥ w ∥2 v.

The repersentation being unitary we have for any g ∈ G

⟨v, wi⟩wi = ⟨v, g(w)⟩g(w) (1)

Let k be the number of elements of Gw. Then G has m′ = km elements, let {g1, . . . , gm′}
be an elements of the group G by equation 1 we have:

m

n
∥v∥2 = m⟨v, g(w)⟩g(w)

so 1
n∥w∥2v = ⟨v, g(w)⟩g(w) consequently

m′∑

i=1

⟨v, gi(w)⟩gi(w) =
m′

n
∥w∥2v
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let H = R2 and wT = (α1, α2) ∈ H then a sequense {wi}m−1
i=0 (m > 2) is a ENATF

with angle 2π
m such that

w0 = P 0w, w1 = P 1w, . . . , wm−1 = Pm−1w

where P 0 = IR2 ,

P =

[
cos2π

m −sin2π
m

sin2π
m cos2π

m

]

namely for all v ∈ H we have

m−1∑

i=0

< v, wi > wi =
m

2
∥ w ∥2 v.

Proof. we consider the map g : R2 → R2 where

(α1, α2) 7→ (α1cos
2π
m − α2sin

2π
m , α1sin

2π
m + α2cos

2π
m ) = Pw

the cyclic group Cm = ⟨g|gm = e⟩ = {e, g, . . . , gm−1} defines a unitary and irreducible
reperesentstion on R2. so by 2 the vectors

w0 = w, w1 = g(w), . . . wm−1 = gm−1(w)

are tight frame with bound m
2 ∥w ∥2. under hand gi(w) = P iw , since P is rotation of the

R2 so {wi}m−1
i=0 is a ENATF frame with angle 2π

m .

3 Main results

now we present the bellow algoritm for prouduct ENATF frame with a favorate vector in
R2.

algoritm1. ENATF

parameter:
m number of desired frame vector
, f0 = x0e0 + y0e1 is a given vector
algorithm:

1) For i = 1, . . . , M − 1 do
2) xi = xi−1cos

2π
m − yi−1sin

2π
m

3) yi = xi−1sin
2π
m + yi−1sin

2π
m

4) fi = xie1 + yie2

5) end.
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output :
ENATF{fi}m−1

i=0 .

for m = 3 and f0 = (1, 0) we have

wT
0 = (1, 0), wT

1 = (−1
2 ,

√
3

2 ), wT
2 = (−1

2 ,−
√

3
2 )

is a ENATF with bound 3
2 and angle 2π

3 .
for m = 4 and f0 = (1, 0) we have

wT
0 = (1, 0), wT

1 = (0, 1), wT
2 = (−1, 0) , w4 = (0, −1)

is a ENATF with bound 2 and angle π
2 .

so for any m the algorithm prouduct a m−regular hedral and such
m −→ ∞ this algoritm will prouduct a circle that is a continuous frame also for m = 3
the frames of algorithm product a Merseds Benz frame for use filter bank [1] and structer
Honycomb lattic[3] . If m ∥ v ∥2= 2 then the frames pruduct for algorithm is Parseval
frame.

References

[1] B. Boashash, editor, Time-Frequency Signal Analysis and Processing A Comprehen-
sive Reference, Elsevier Science, Oxford, ; ISBN 08(2003)044335-4

[2] N . Cotfas , Finite tight frame and some application , j: Math and phys 43 (2010)
193001 .

[3] N. Cotfas On the linear representations of the symmetry groups of single-wall carbon
nanotubes J. Phys. A: Math. Gen. 39 (2006) 975565

[4] R. J. Duffin and A. C. Schaeffer A class of nonharmonic Fourier series Trans. Am.
Math. Soc. 72(1952) 34166 .

[5] D . Han , and D . Larson , Frames, bases and group representations , j. Math. 45
(2000) 1–94 .

[6] I. Daubechies , A. Grossmann and Y. Meyer Painless nonorthogonal expansions J.
Math. Phys. 27 (1986) 127183.

Email: kamandar.mahdi@gmail.com
Email: hassanjafari9@gmail.com
Email: miriam803@yahoo.com

Poster

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Algorithmic construction of equal norm-angle tight frames in R2 of a given . . . pp.: 4–4

622
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Abstract

Low-density parity-check codes from Affine permutation matrices, called APM-
LDPC codes, are a class of LDPC codes whose parity-check matrices consist of zero
matrices or affine permutation matrices of the same orders. In this paper, using the
similar approach proposed for encoding of LDPC codes introduced by Richardson and
Urbanke, we propose an efficient algorithm for encoding APM-LDPC codes with a
linear complexity.

Keywords: LDPC codes, Efficient encoding, Girth, Affine permutation.

Mathematics Subject Classification [2010]: 11T71, 68P30

1 Introduction and preliminaries

Low density parity check (LDPC) codes [1] are excellent error correcting codes with perfor-
mance close to the Shannon Capacity limit under the assumption of having long codeword
length. LDPC codes can be algebraically constructed in several ways [2] based on circulant
matrices; these codes belong to a class of quasi-cyclic (QC) codes. In accordance with their
quasi-cyclic structure, some efficient encoding methods [6] that involve circulant matrices
and division techniques have been proposed.

One interesting method for algebraic construction of LDPC codes is based on affine
permutation matrices [3] which are a generalization of QC-LDPC codes. APM-LDPC
codes may be a good candidate to solve the memory problem due to their algebraic struc-
tures. In fact, the required memory for storing their parity-check matrices can be reduced
by a factor 1/m, when m × m affine permutation matrices are employed.

For some non-negative integers m, s, 0 ≤ s ≤ m − 1, the circulant permutation matrix

(CPM) Is
m, or briefly Is when m is certain, is defined as the matrix Is =

(
0 Is

Im−s 0

)
,

where Im−s and Is are the identity matrices of orders m− s and s, respectively. It is clear
that I0 = I is the identity matrix of order m. Moreover, we accept this convention that
for s = ∞, Is is the m×m zero matrix. Let Zm = {0, 1, · · · , m−1} be the ring of integers
modulus of m and Z∗

m = {a ∈ Zm| gcd(a,m) = 1} be the set of elements in Zm which are

prime relative to m. For non-empty bijection f on Zm, define If
m, or If when m is certain,

as m × m binary matrix (ei,j)m×m in which ei,j = 1 if and only if i = f(j). For empty
function ∅ on Zm, we accept this convention that I∅ is the m × m zero matrix.
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In this case, If is briefly denoted by Is,a which is permutation matrix (with row and
column indices from 0 to m−1) for which the only non-zero element in the first column is
happen in position s, and each other column has shifted down within a positions, regard
to the previous column. Is,a is called a affine permutation (APM) matrix with slope s
and shift a. Clearly, the transpose of the matrix If is If−1

, where f−1 is the inverse of
function f . The inverse of the function f(j) = aj + s (mod m) is f−1(j) = a−1j − a−1s
(mod m).

Now, for some positive integers v and k, v ≤ k, let S = (si,j) and A = (ai,j) be two
v × k arrays of some elements belong to Zm ∪ {∞} and Z∗

m, respectively. By IS,A, with
slope matrix S and shift matrix A, we mean the following matrix.

IS,A =




Is1,1,a1,1 Is1,2,a1,2 · · · Is1,k,a1,k

Is2,1,a2,1 Is2,2,a2,2 · · · Is2,k,a2,k

...
...

. . .
...

Isv,1,av,1 Isv,2,av,2 · · · Isv,k,av,k


 (1)

where each Isi,j ,ai,j is an APM matrix of order m. The matrix IS,A can be considered as
the parity-check matrix of a (v, k) LDPC code, called (v, k) APM-LDPC code, with CPM
size m.

In the case of general LDPC codes, a significant amount of memory is needed to
store their parity-check matrices. One of the advantage of APM-LDPC codes over other
types of LDPC codes in hardware implementation is memory efficiency in encoding and
decoding. In fact, by Lemma 1.1, if the locations of non zero elements in first two rows of
each block matrix are determined, then the location of the remaining non zero elements
will be determined. Therefore, like QC LDPC codes, the required memory for storing
APM-LDPC codes with CPM size m can be reduced by a factor of 1/m.

Lemma 1.1. If two first rows (or columns) of an APM matrix Is,a are known, then s and
a (subsequently, the whole matrix Is,a) can be determined uniquely.

2 Encoding Scheme for a Class of APM-LDPC Codes

In this section, we propose an efficient algorithm for encoding a class of APM-LDPC
codes with a linear complexity. For convenience, we divide the parity-check matrix of
APM-LDPC codes (1) into two parts: the information part HI and the parity part HP ,
i.e., H = [HIHP ]. For efficient encoding, we restrict the parity part HP of the parity-
check matrix to an almost lower triangular matrix with additional constraints. Consider
the parity-check of APM-LDPC codes in the following form.

H =




Is1,a1 I0,1 0 0 · · · 0 0
0 Is2,a2 I0,1 0 · · · 0 0
... 0 Is3,a3 I0,1 · · · 0 0

HI Iy,q
...

...
... · · ·

...
...

...
...

...
... · · · I0,1

...
0 0 0 0 · · · Isv−1,av−1 I0,1

Ix,p 0 0 0 · · · 0 Isv,av




(2)
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where Iy,q is located in the lth row block, for an integer l, l ̸= 1, v, and HI is the information
part of H. Moreover, Iy,q, Ix,p, I0,1 and Isi,ai , 1 ≤ i ≤ v, are m×m APM matrices. Using
a modified Richardson-Urbank encoding method [5], this approach is derived from [6] for
encoding of a class of QC LDPC codes having the parity-check matrices with a similar
form as (2). Now, H is divided into the following form

H =

(
A B T

C D E

)
(3)

where A is (v − 1)m × km, B is (v − 1)m × m, T is (v − 1)m × (v − 1)m, C is m × km,
D = Ix,p is m × m and E is m × (v − 1)m. Using the Gaussian elimination, H is changed
as follows.

H =

(
A B T

ET−1A + C ET−1B + D 0

)

Now, c =
(

s p1 p2

)
, with systematic part s and parity parts p1 and p2, is a codeword

if and only if HcT = 0. This implies the following equations.
{

AsT + BpT
1 + TpT

2 = 0
(ET−1A + C)sT + (ET−1B + D)pT

1 = 0

By the second equation, we have pT
1 = ϕ−1(ET−1A + C)sT , where ϕ = ET−1B + D is

a m × m nonsingular matrix. Now, pT
2 can be obtained by substitution pT

1 in the first
equation. If n = (k + v)m is the code length, then the overall complexity of computing
p1 is O(n) + O(m2) which decreases to the linear complexity O(n), if ϕ is chosen as the
identity matrix and n is large compared to m2. Therefore, we must choice (x, p) and (y, q)
such that ϕ becomes the identity matrix. However, it can be seen easily that the inverse
of T in relation 3 is as follows.

T−1 =




I 0 0 · · · 0 0 0
Is2,a2 I 0 · · · 0 0 0
I(2,3) Is3,a3 I · · · 0 0 0

...
...

...
. . .

... 0 0
I(2,v−2) I(3,v−2) I(4,v−2) · · · Isv−2,av−2 I 0
I(2,v−1) I(3,v−1) I(4,v−1) · · · I(v−2,v−1) Isv−1,av−1 I




in which, I(i,j), i < j, is defined as I(i,j) = Isj ,ajIsj−1,aj−1 · · · Isi,ai = Is(i,j),a(i,j)
, where

a(i,j) =
∏j

k=i ak mod m and s(i,j) = sj +
∑j−1

k=i ska
(k+1,j) mod m. Hence,

ET−1B = Isv ,av
[

I(2,v−1) I(3,v−1) I(4,v−1) · · · I(v−2,v−1) Isv−1,av−1 I
]
B

= Isv ,avI(2,v−1)Is1,a1 + Isv,avI(l+1,v−1)Iy,q

= I(1,v) + I(l+1,v)Iy,q = Is(1,v),a(1,v)
+ Is(l+1,v),a(l+1,v)

Iy,q

= Is(1,v),a(1,v)
+ Is(l+1,v)+ya(l+1,v),qa(l+1,v)

and
ϕ = ET−1B + D = Is(1,v),a(1,v)

+ Is(l+1,v)+ya(l+1,v),qa(l+1,v)
+ Ix,p.

Now, a proper choice of (x, p) and (y, q) can be summarized as the following theorem.
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Theorem 2.1. If (x, p) and (y, q) in the parity-check matrix H, given by (2), are chosen
in the following form, then matrix ϕ = ET−1B + D becomes the identity matrix.

1. (x, p) = (s(1,v), a(1,v)) mod m and (s(l+1,v) + ya(l+1,v), qa(l+1,v)) = (0, 1) mod m,
which implies (y, q) = (a(l+1,v))−1(−s(l+1,v), 1) mod m.

2. (s(1,v), a(1,v)) = (0, 1) and (x, p) = (s(l+1,v) + ya(l+1,v), qa(l+1,v)) mod m.

Consequently, the encoding algorithm for APM-LDPC codes having parity-check ma-
trices in form (2) with (x, p) and (y, q) satisfied in Theorem 2.1, are summarized as follows.

Algorithm. Encoding for a Class of APM-LDPC Codes

S1. Compute AsT and CsT .

S2. Compute ET−1AsT =
[

I(2,v) I(3,v) · · · I(v−1,v) Isv ,av
]
AsT .

S3. Compute pT
1 by pT

1 = ET−1AsT + CsT .

S4. Compute pT
2 by TpT

2 = AsT + BpT
1 .

The complexity of the above Algorithm is O(n), where n is the length of APM-LDPC
codes.
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Interpreting Absorbtion of radiation by affecting the Bohr

operator on Meijer’s G-function
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Abstract

The Mellin-Barnes integral which is a special type of Mellin inversion integral is
often used to analyze the behavior of special functions, here Meijer’s G-function. By
using properties of Meijer’s G-function, we demonstrate that absorbtion or emission
of spectral lines in Hydrogen atom may be described by Meijer’s G-functions.

Keywords: Radial function, Meijer’s G-function, Integral transform, Mellin trans-
form, Special function.
Mathematics Subject Classification [2010]: 33C60, 44Axx

1 Introduction

The Mellin transform and its inverse are useful tool in mathematics. It is used in many
diverse areas of mathematics, such as the study of special functions, the study of difference
equations, asymptotic expansions, and analytic number theory. In this paper to be familiar
with Meijer’s G-function and to prove one theorem related to this function one needs to pay
attention the form of inverse Mellin transform for two examples. Since they are integral
representations in which gamma functions appear as main part of integrand, Mellin-Barnes
integrals and Meijer’s G-functions are their generalized form.

Definition 1.1. The Mellin transform, of a function f(x) defined on the interval [0,∞) is
given by

M{f(x)} =

∫ ∞

0
f(x)xs−1dx, (1)

and its inverse integral is

f(x) =
1

2πi

∫ c+i∞

c−i∞
x−sM{f(x)}ds (2)

Example 1.2. Consider the function f(x) = e−x

M{e−x} =

∫ +∞

0
xs−1e−xdx = Γ(s)

∗Corresponding author
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Solution. So for this function the Mellin transform is just the definition of the Γ function

e−x =
1

2πi

∫ c+i∞

c−i∞
Γ(s)x−sds (3)

Example 1.3. Consider the function f(x) = (1 + x)−1

Solution.

M{(1 + x)−1} =

∫ +∞

0
xs−1(1 + x)−1dx.

By the substitution u = x
1+x

M{(1 + x)−1} =

∫ +∞

0
xs−1(1 + x)−1dx =

∫ 1

0
us−1(1− u)1−s−1du = B(s, 1− s)

which B(s, 1 − s) is Beta function, we note that the Beta function can be represented in

terms of the Gamma function B(s, 1− s) = Γ(s)Γ(1−s)
Γ(1)

(1 + x)−1 =
1

2πi

∫ c+i∞

c−i∞

Γ(s)Γ(1− s)
Γ(1)

x−sds

A special type of an inverse Mellin integral called the Mellin-Barnes integral is often
used to analyze the behavior of special functions. A Mellin-Barnres integral is an inverse
Mellin integral involving Gamma functions in the integrand. Integrals of this form lead to
a surprising variety of special functions. Most generally it is of the form

∫ c+i∞

c−i∞

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p
j=n+1 Γ(aj − s)

zsds (4)

Definition 1.4. A definition of the Meijer G-function is given by the following path
integral in the complex plane, called Mellin-Barnes type integral [1]:

Gm,np,q (
a1,...,ap
b1,...,bq

|z) =
1

2πi

∫

L

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p
j=n+1 Γ(aj − s)

zsds. (5)

The Meijer’s G-functions (MGFs) are an admirable family of functions which each of them
is determined by finitely many indices. Analytic manipulations and numerical computa-
tions involving Meijer’s G-functions have been provided by the software packages such as
Mathematica, Maple, and Matlab [2]. Choosing m = 1, n = 0, p = 0, q = 1, and b1 = 0 we
have

G1,0
0,1(−0 |z) =

1

2πi

∫

L
Γ(−s)zsds. (6)

Changing variable s→ −s and comparing (3) with (6) gives

G1,0
0,1(−0 |x) = e−x =

1

2πi

∫ c+i∞

c−i∞
Γ(s)x−sds (7)
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Based on the definition, the following basic property is easily derived:

zαGm,np,q (
ap

bq
|z) = Gm,np,q (

ap+α
bq+α|z), (8)

where the multiplying term zα changes the parameters of the G-function. In [3,4] we
deduce some useful relations upon which the radial functions of the Hydrogen atom may
be represented by summation of a number of Meijer’s G-functions.

2 Main results

An operator acting on a function generally maps it into another function.

Definition 2.1. The Bohr operator is represented by B̂ and defined as follows [4]:

B̂[(
1

rB
)
3
2G1,0

0,1(−0 |
r

rB
)] = [(

1

2rB
)
3
2G1,0

0,1(−0 |
r

2rB
)] (9)

The meaning of square B̂2 of the Bohr operator B̂ is obvious:

B̂2[(
1

rB
)
3
2G1,0

0,1(−0 |
r

rB
)] = B̂[(

1

2rB
)
3
2G1,0

0,1(−0 |
r

2rB
)] = [(

1

3rB
)
3
2G1,0

0,1(−0 |
r

3rB
)]

The operator B̂n is formed by B̂ acting n times:

B̂n[(
1

rB
)
3
2G1,0

0,1(−0 |
r

rB
)] = B̂B̂B̂...B̂[(

1

rB
)
3
2G1,0

0,1(−0 |
r

rB
)] = B̂n−1(B̂[(

1

rB
)
3
2G1,0

0,1(−0 |
r

rB
)])

with rB = 4πε0~2
me2

, where rB is the Bohr radius.

Theorem 2.2. Let R10 = 2( 1
rB

)
3
2 e
− r

rB = 2( 1
rB

)
3
2G1,0

0,1(−0 | rrB ) be the ground radial state of

the Hydrogen atom, then B̂n( r
rB

)n maps the ground radial state R10 into multiple of radial
state Rn+1,n such that

B̂n(
r

rB
)nR10 = B̂n[(

r

rB
)n2(

1

rB
)
3
2 e
− r

rB ] = 2[
1

(n+ 1)rB
]
3
2 [

r

(n+ 1)rB
]ne
− r

(n+1)rB (10)

Proof. The above statement holds when n=1

B̂[(
r

rB
)R10] = B̂[2(

1

rB
)
3
2 (

r

rB
)e
− r

rB ] = 2(
1

2rB
)
3
2 (

r

2rB
)e
− r

2rB =
√

3R21

Now by induction we may easily show that if B̂n( r
rB

)n maps the ground radial state R10

into multiple of radial state Rn+1,n, then B̂n+1( r
rB

)n+1 maps the ground radial state R10

into multiple of radial state Rn+2,n+1.
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