
THEORY AND APPLICATION
OF ANTENNA ARRAYS

M.T.Ma

Senior Member of the Technical Staff
Institute for Telecommunication Sciences

Office of Telecommunications
U. S. Department of Commerce

Boulder, Colorado

and

Professor-Adjoint of Electrical Engineering
University of Colorado

New York

A Wiley-Interscience Publication
John Wiley & Sons

London Sydney Toronto



Copyright @ 1974, by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

No part of this book may be reproduced by any means, nor
transmitted, nor translated into a machine language with-
out the written permission of the publisher.

Library of Congress Cataloging in Publication Data:
Ma,M.T.

Theory and application of antenna arrays.

"A Wiley-Interscience publication."
Includes bibliographies.
1. Antenna arrays. I. Title.

TK7871.6.M3 621.38'0283
ISBN 0-471-55795-1

Printed in the United States of America
10 9 8 7 6 5 4 3 2 I

73-15615



To Simone, Beverly, and John





PREFACE

Since early 1959when I was first engaged in research on antenna arrays
at Syracuse University, my interest in this subject has been divided into
two major phases. One of these, which occupied most of my attention from
1959 to 1966,was concerned primarily with basic analysis and synthesis
techniques pertinent to antenna arrays, which, for the most part, is an
applied mathematics problem. The goals then were to produce a particular
class of radiation patterns, to reduce sidelobe levels, to maximize the
directivity, and to synthesize an array with a relatively broad frequency
band, or to achieve some combinations of these. Isotropic elements were
mostly used for the sole purpose of developing general mathematical
models, which should not be limited to any particular kind of antennas or
frequency bands. Thus, mutual impedances and effects from the ground
were usually ignored. The arrays considered were either linear or two
dimensional with the number of elements in the array, amplitude and
phase excitations, or spacing distributions as controlling parameters. The
results so obtained constitute the basis of the first three chapters in this
book. They form the mathematical foundation for the theory of antenna
arrays and should satisfy the general need to present relevant array topics
with modern approaches and ample numerical illustrations in a single
volume.
Chapter I introduces the reader to the fundamentals of linear arrays of

discrete elements. It starts with the analysis for simple uniform arrays and
then proceeds to arrays with tapered amplitudes, phases, and spacings. A
relatively new approach, using finite Z-transforms for analyzing arrays
with nonuniform amplitude excitations, is presented in detail with illustra-
tive examples. Difference patterns produced by a monopulse array are also
formulated and studied. Chapter 2 offers many recently developed techni-
ques for synthesizing various linear arrays. It is here that power and field
patterns are equally emphasized. Considerable effort is devoted to the
understanding of arrays with equal sidelobes. In addition to the synthesis
of array patterns, optimization of the array directivity is also thoroughly
discussed. As an extension to the material presented in the first two
chapters, both analysis and synthesis of two-dimensional arrays are given
in Chapter 3. Greater attention is placed on ring and elliptical arrays.

vii



viii PREFACE

My interest since 1966 has gradually shifted to the "real world" with
emphasis on applications. In particular, the ionospheric prediction pro-
gram was then an activity of major importance at the Central Radio
Propagation Laboratory, then a part of the National Bureau of Standards.
In this program, there was a strong need to develop reasonably accurate
theoretical models for those HF antennas frequently involved in various
communication systems. Specifically, expressions for input impedances,
mutual impedances, radiated fields, and power gains were formulated with
some simplified assumption for current distribution on antennas and many
other necessary approximations. These imperfections, of course, will show
some effects on the final antenna performance, but were considered
adequate in view of the other uncertainties associated with the ionosphere.
Major results from this activity were compiled and issued as a laboratory
technical report in early 1969. Overwhelming response from a large
number of users has since been received in the form of requests for reprints
and inquiries about possible computer programs suitable for numerical
results. In fact, over one hundred copies of this report have been requested.
Because of this strong demand, I was prompted to make further impro-
vements on formulations and to produce more quantitative data. These are
essentially reflected in the last three chapters. A significant difference
between the book form and the previous report form is that the three-term
current distribution proposed originally by Professors R. W. P. King and
T. T. Wu of Harvard University has been used in Chapters 4 and 5 to
replace the simple sinusoidal current distribution that had been assumed in
the earlier report.

In Chapter 4, currents, impedances, fields, and power gains for simple
antennas such as dipoles, monopoles, and sleeve antennas above lossy
ground are presented in detai1. Equal attention is also given to arrays of
these antennas in the form of the Yagi-Uda antenna, the curtain array, or
the Wullenweber antenna. The basic principle and analytical formulation
for a class of broadband antennas, namely, the log-periodic dipole array
above lossy ground, are given in Chapter 5. Placing this array in alternative
geometric positions (relative to the ground) to yield maximum radiations at
low or high angles from the ground plane is also explored for different
possible applications. In Chapter 6, a few commonly used traveling-wave
antennas above lossy ground are analyzed.
Throughout this book, numerical examples are always presented for

each antenna or array subject. These examples are prepared not only to
serve the illustrative purpose, but also to give some design insight as to
how the various parameters will affect the result. The contents presented in
the last three chapters should directly benefit field engineers, design
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engineers, and other users in their applications, although the first three
chapters also provide them with fundamental principles. This entire vo-
lume could be used as textbook for a course sponsored by companies for
their staffs engaging in array and antenna designs. On the other hand,
parts of Chapters 1, 2, 4, and 5 are also suitable for classroom use for a
graduate course on arrays or antennas, or as self-study materials for
students interested in research on antenna arrays. In fact, a major portion
of the first three chapters was once given in a special course on "Antenna
Array Theory" at the University of Colorado. For this latter purpose,
selected problems are attached at the end of each of the first three chapters
as student exercises and as reviews of the material discussed. For each
chapter, references are listed to guide the reader to related topics, although
there has been no attempt to make the reference list complete.
To the management of my governmental agency I wish to express my

thanks for its encouragement and support throughout this undertaking. In
particular, D. D. Crombie (Director), W. F. Udaut (Deputy Director), and
F. W. Smith (Executive Officer) of the Institute for Telecommunication
Sciences (ITS) at Boulder offered many valuable suggestions, administra-
tive assistance, and initial approval for this manuscript to be published by
a nongovernmental publisher. J. M. Richardson (Director), R. C. Kirby
(Associate Director), R. Gary (Special Assistant to the Director), and D.
M. Malone (Attorney-Adviser) of the Office of Telecommunications at
Washington, D. C. also rendered their blessing and frequent services in
administrative regards. I wish to express my heartfelt appreciation to Mrs.
Lillie C. Walters for her masterful skill in developing computer programs
to produce such extensive numerical results for antennas presented in
Chapters 4, 5, and 6, without which the value of the book would diminish
substantially. I am also indebted to my colleagues at Boulder-£. L. Crow,
H. T. Doughtery, E. C. Hayden, R. B. Stoner, Lillie C. Walters (all of ITS),
and C. O. Stearns (National Oceanic and Atmospheric Administration),
who reviewed parts or all of the chapters and made constructive sugges-
tions for improvement. To Miss Ruth B. Hansen I offer my sincere
gratitude for her expert and patient typing of the entire manuscript. Last
but not least, my special thanks go to my wife and children for their
understanding of my temporary lapse of participation in family affairs,
school work, and evening football practice while I was busy preparing this
volume.

M.T.Ma
Boulder, Colorado
July 1973
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THEORY AND APPLICATION
OF ANTENNA ARRAYS





CHAPTER 1
ANALYSIS OF DISCRETE LINEAR ARRAYS

An antenna is a device ordinarily used for transmlttmg and recelvmg
elecrtromagnetic energy. In some circumstances these purposes may well
be served by an antenna consisting of a single element, which may be of
various types depending on operating frequency range, environment,
economy, and many other factors. The single element may be as simple as
a dipole or loop antenna or as complex as a parabolic reflector antenna.
When a particular application demands higher gain, a more directive
pattern, steerability of the main beam, or other performance that a single
element antenna cannot provide, an antenna made up of an array of
discrete elements may offer a solution to the problem. Although the
individual elements of an array may differ among themselves, they or-
dinarily are identical and are similarly oriented for analytical and opera-
tional convenience. A linear array of discrete elements is an antenna
consisting of several individual and distinguishable elements whose centers
are finitely separated and fall on a straight line. The arrays having this
particular geometric arrangement will be discussed in this chapter and
Chapter 2.
In general, four parameters are accessible for variation in a linear array

with a given kind of element, namely, the total number of elements, the
spatial distribution of elements, the amplitude excitation function, and the
phase excitation function. From the analysis viewpoint, these four
parameters would be specified. From them we would determine the
appropriate radiation characteristics, such as pattern, directivity, power gain,
and impedances. On the other hand, the synthesis problem is to determine
these four parameters in such a manner that the array response will
approximate a desired one as closely as necessary under certain criteria.
In this chapter, we will analyze the fundamental properties of various

kinds of linear array by several mathematical approaches. The synthesis
problem will be treated in Chapter 2. Also, the element to be considered
first in this chapter will be the rather idealized isotropic element. The
analysis will then be extended to some simple, commonly used elements in
free space. The analysis of arrays with practical antennas over a realistic
flat lossy ground, especially in the high-frequency band, will be dealt with
in Chapters 4-6.
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2 ANALYSIS OF DISCRETE LINEAR ARRAYS

1.1 Radiation Characteristics To Be Studied

Consider a typical antenna element located arbitrarily in free space with
the coordinates shown in Fig. 1.1. Its distant field can be represented by

(1.1)

wheref(O,f(!) represents the far-field function associated with the particular
element considered, k = 2'TT lA (Abeing the free-space wavelength), Ii and Oli

are, respectively, the amplitude and phase excitations, j =v=T ,
cos 1/Ji= cos 0 cosOi+ sin 0 sinOicos (f(!- f(!i)' (1.2)

and (ri,Oi,f(!i)identifies the element location. If n such identical and
similarly oriented elements form a linear array coincident with, say, the
~axis (see Fig. 1.2), we then have

(1.3)

and the total field contributed from the array will be

n
E(O,f(!)= ~ EJO,f(!)

i=!

n
=f( O,f(!) ~ Ii exp [j( k~i cosO+OlJ ].

i=!

to distant point

(1.4)

Fig. 1.1 A representative antenna element in freespace. (Here we use ~T/~
to replace the conventional set of coordinates xyz so that the
symbol z can be used later for other purposes.)
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The radiation pattern, also known as the polar diagram, is obtained by
taking the magnitude of E(O,cp); that is,

where
IE( 0, cp) 1= /f( 0, cp) I. lSI,

n
S= ~ I;exp[j(kr;cosO+aJJ

;=1

(1.5)

( 1.6)

is usually called the space factor or array factor, because it depends solely
on the space distribution of the elements in the array when the element
excitations are specified.
Mathematically, (1.5) represents the well-known principle of pattern

multiplication, which states that the radiation pattern of the array is given
by the product of the element pattern If(O,cp)1 and the magnitude of the
array factor.
In general, the radiation pattern of a linear array is a function of 0 and

cp, consisting of a main beam and several sidelobes in both the 0=constant
and cp =constant surfaces. Therefore, the principal task of studying the
fundamental characteristics of linear arrays is, upon specifications of array
geometry and excitation, to determine the location of the main beam and
nulls, if any, the beamwidth, the distribution of sidelobes and their relative
levels, and the directivity.
The term "array gain in a given direction" is defined as the ratio of the

radiation intensity in that direction to the average intensity. That is,

G(O )= !E(O,cpW
,cp Wo/4'7T ( 1.7)

where Wo is the total power. When Wo is taken as the total power
delivered to the array, G(O,cp) in (1.7) is proportional to power gain (details

~ ~todistont point

O~'n S.~I--~2------~n----
Fig. 1.2 A linear array of n elements along the r axis.



4 ANALYSIS OF DISCRETE LINEAR ARRAYS

are given in Chapter 4). It is called directive gain if Wo represents the total
power radiated from the array, in which case

(277 (77
Wo=)o )0 JE(O,<pWsinOdOd<p. ( 1.8)

The directivity of the array is defined as the maximum value of the
directive gain:

D=G(O ) = 4'ITIE(0,<P)maxI
2

(1.9)
,<p max 1277177

o oIE(O,<pWsinOdOd<p

We will study only the directivity in the first three chapters and post-
pone the analysis of power gain until Chapters 4-6, where practical
antennas over a lossy ground will be considered.

1.2 Uniform Arrays

We start the study of linear arrays by considering special cases first. One
of these is the equally spaced array, where

t = id, i= 0, 1, ... , n - 1 (1.10)

with d being the distance between two adjacent elements. Here we have
chosen the location of the first element to coincide with the coordinate
origin. If the elements of the array are excited with uniformly progressive
phases,

( 1.11)

where 00 determines the direction of the maximum of the array factor, the
expression (1.6) may be written as a polynomial in z:

where

n-) n-]

s= ~ liexp[jikd(cosO-cosOo)]= ~ liZ-i,
i=O i=O

z = e-ju, u =kd( cosO - cosOo)'

(1.12)

(1.13)

In addition, when Ii = 1, i=0,1,2, ... , n -1, a uniform array results. Note
that the definition for z in (1.13) is different from the usual notation, which
does not include the negative sign in the exponent. This change of notation
is necessary in order to conform to the conventional form of the Z
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transform of a function to be introduced in Section 1.4. The magnitude of
z in (1.13) always equals unity, although its locus, moving in a counter-
clockwise direction on the circumference of the unit circle wnen (Jvaries
from 0 to 'TT, depends on d and (Jo'

For broadside arrays, where the beam maximum occurs in the direction
perpendicular to the array axis, (Jo='TT/2 and z=exp(-jkdcos(J). As the
physical angle (J increases from 0 to 'TT, z moves from e-jkd to dkd• The
entire range of variation of z (called the visible range) is 2kd radians. The
locus of z describes a complete circle when d ="A/2, a portion of a circle
when d <"A/2, and more than a circle when d >"A/2. A set of examples
showing the locus of z is presented in Fig. 1.3. There is an overlap of z on
the unit circle for the case d >"A/2. To explain this point more specifically,
let us refer to Fig. l.3(c), where d=3"A/4. It is clear that two portions of
the array factor will have the same value. Since the overlap occurs on the
left half-circle in this case, the portion of the array factor between (J = 0°
and 70.52° (z = e-j3'lT/2 and e-j'lT/2) will be identical to that between
(J= 109.48° and 180° (Z=ei'lT/2 and ei3'lT/2).
For endfire arrays, where the beam maximum occurs in the direction of

the array axis, (Jo=o and z = exp[ - jkd(cos (J- 1)].The entire range of z on
the unit circle is still 2kd radians when (J varies from 0 to 'TT. The
description of the variation of z is similar to the broadside case except that
the starting point of the locus in this case is changed to z = 1 regardless of
d. A corresponding set of examples is shown in Fig. 1.4.
For a finite uniform array of n elements, the expression (1.12) for the

array factor S can be written in the convenient form

(a) d=>"/2

u=77"/2
(8=0)

(b) d = >"/4

(1.14 )

u= 377"/2

(8= 0 )

u=O

(8=77"/2)

u=-377"/2
(8=77" )

(C) c' = 3>"/4

Fig.l.3 Visible range of z for (Jo='TT/2,z=e-jU,u=kdcos(J.
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u=-1T
(8=1T)

u=-31T
(8 = 1T)

(a) d = >"/2 (b) d = >../4 (e) d = 3>../4

Fig.l.4 Visible range of z for 0o=O,z =e-ju,u=kd(cosO-I).

Since the complex conjugate of z is equal to the inverse of z, the magnitude
of S can be obtained in the following manner:

or

where

(l-z-n)(l-zn) 2-(z-n+zn)
iS12= (l-z-I)(l-z) = 2-(Z-I+Z)

l-cosnu sin2 (nu/2)
l-cosu sin2 (u/2) ,

\

Sin (nu/2) \
ISI= sin (u/2) ,

u = kd( cosO- cosOo)'

( 1.15)

(1.16)

( 1.17)

A word about (1.16) is in order. Mathematically, lSI is a periodic function
of u for the entire range - 00 .;;;u';;; 00. Physically, however, the visible
range of u is fixed by d and 00 because Icos0 I.;;;1. Therefore, the radiation
pattern in 0';;;0.;;; 'TT utilizes only a limited range of the expression in (1.16).
Examples for n=5 and d="A/2 are given in Fig. 1.5 to explain this point.
It is instructive to examine the behavior of the array factor S. In

particular, it can be manipulated to yield information about

a. Locations of major maxima or beams,
b. Locations of nulls,
c. Angular widths of major maxima (beamwidths), and
d. Locations of minor maxima or sidelobes.
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/
/
/

/
/

/"" /....... / \ I

'" V-7T u=O 7T

Invisible ~ ••I~-----Visible Range ---- ••1--- Invisible

lsi/U'I \
I \
I \
I (b) \

"' I \\ \
"'~\

-27T -7T u=O
Invisible ••I-- Visible Range ••I.. Invisible

Fig.1.5 Sketches of lSI in (1.16) for n=5 and d="A/2: (a) °0='17/2, (b)°0=0.

a. Major maxima, according to (1.14) or (1.16), occur at z = I or u = 0,
:t 2'17, :t 4'17, The maximum at u =0 is the principal one; those at
u = :t 2'17,:t 4'17, ,are known as the grating lobes. For ordinary directive
applications which limit the array pattern to only one maximum, grating
lobes are unwanted. They can easily be avoided by choosing d <"Ain order
to leave u= :t2'17, :t4'17,... ,in the invisible range. In terms of the real
variable 0, the principal maximum occurs at 0= '17/2 for broadside (°0
='17/2) and 0=0 for endfire (°0=0) arrays. The value of lSI a(z=1 (or
u = 0) is n, the total number of elements in the array.

b. Null locations are determined by setting z-n= I or sin(nu/2)=0
(except z = I or u = 0, which is already identified as the location of the
beam maximum):

or

2'17m
um = kd( cosOm- cosOo) = --,

n
( 1.18)

m=:t 1,2, .... (1.19)
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Here again, the total number of nulls in the visible range depends on d and
00, For example, when 00='TT/2, d=A/2, the governing equation is cosOm
=2m/n; m can be as large as -z.n/2 if n is an even number, or -z.(n-I)/2
if n is odd. The total number of nulls will, respectively, be n (even n) and
n -1 (odd n). When 00=0, d=A/2, the governing equation will be cosOm
= 1+ (2m/n); m can then be -1, -2, ... ,-(n-I). The total number of
nulls will be n-l regardless of whether n is even or odd. For d>A/2 and
d<A/2, the total number of nulls may, respectively, be more and less than
that for d=A/2. It should also be noted that u= "Z'TT,-z.3'TT, ... ,are always
possible nulls when n is even.
For broadside arrays, the first null on one side of the main beam (at

0='TT/2) is given by m= 1,

( 1.20)

For endfire arrays, the first null on one side of the main beam (at 0= 0)
is given by m= -1,

(1.21 )

The angle 01 in (1.20) and (1.21) can be determined exactly once the
number of elements n and the element spacing d in terms of wavelength
are specified.

c. The beamwidth is sometimes defined as the angular space between the
first nulls on each side of the main beam. For broadside arrays the
expression for the beamwidth is then

in radians. ( 1.22)

When n is very large, 01 in (1.20) will be very close to 'TT /2; we then have

Thus,

(1.23 )

In words, the beamwidth of a large broadside array of discrete elements is
roughly inversely proportional to the array length.
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For endfire arrays the expression for the beamwidth becomes

( 1.24)

When n is very large, OJis close to 0; we then have

Thus,

and

( 1.25)

which is approximately inversely proportional to the square root of the
array length.
Comparing (1.23) and (1.25), we can conclude that the beamwidth of a

broadside array is always narrower than that of an endfire array of the
same size.
Another conventional definition of the beamwidth is the angular space

between the half-power points on each side of the main beam. In this case,
the position of one of the half-power points, 0h [assuming f(O,q;)= 1], is
determined by

Uh = kd( cosOh - cosOo),

such that uh satisfies the following relation:

2

IS(uhW= tlsmaxl2= ~ .

( 1.26)

( 1.27)

The beamwidths for broadside and endfire arrays will then, respectively,
be 2(7T/2-0h) and 20h• We will have opportunity to use both of these
beamwidths. To distinguish them, we will call the one determined from
(1.22) or (1.24) the first-null beamwidth, and that from (1.26) and (1.27) the
half-power beamwidth.
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d. Locations of minor maxima or sidelobes can be found by setting the
derivatives of (1.15) to zero:

_dl_S_12= _si_n_(n_u_/_2)_[_n_co_s_(n_u_/_2)_s_in_(_u/_2_)_-_c_os_(_u_/2_)_si_n_(n_u_/_2_)] = 0
du sin3(u/2)

or

n tan ( ~ ) = tan ( n; ). ( 1.28)

It is clear that u = :t'17, :t 3'17, ... , are possible locations of sidelobes when n
is odd. Other solutions of (1.28) can be obtained numerically when n is
given. If, however, n is a large number, an approximate solution for
locations of side10bes may be determined by assuming that sidelobes are
roughly half-way between nulls. That is,

or

1= 1,2, ... , ( 1.29)

A ( 1+2/)cos()'-cos()o= :t nd -2- .

Obviously, the number of sidelobes is also dependent on d and ()o' The first
two sidelobes (closest to the beam maximum), which are usually the most
important ones, are at

3'17
U'l=:t -n

and
5'17

U'2=:t -n
( 1.30)

The levels of these sidelobes are, respectively,

sin (n/2)(3'17/n) 1
jSll=iS(U'I)I=\ sin (3'17/2n) 1= Isin(3'17/2n)1

2n
::= 3'17'

and

(1.31)

( 1.32)
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which, when referred to the major maximum S(O)= n, becomes

ISII 2
-13.5 dBS(O) - 37T or

and

~_1.- or -17.9 dB.S(O) = 57T

( 1.33a)

(1.33b)

The performance of the array will be influenced not only by the
behavior of the array factor, but also by the basic radiation pattern,j(O,qJ),
of the elements of which the array is constructed. Arrays made of the
following three simple elements are now considered: (A) isotropic elements,
(B) short parallel dipoles, and (C) short collinear dipoles.

Case A. Uniform arrays of isotropic elements: In this case, Ii = 1,
f(O,qJ)= 1, and from (1.5) and (1.16)

sin (nuI2)
IE(O,qJ)j=ISI=1 sin(uI2) I. (1.34)

Evidently, all the properties of the array factor, S, just described apply
directly to the array of this class. Furthermore, the directivity for this case,
according to (1.9), becomes

47Tn2 2n2D=------=--- __
27T("IEj2sinOdO fJEI2sinOdO
)0 0

( 1.35)

The expression for IE/ given in (1.34) is not very convenient for computing
the denominator of (1.35). A workable alternative expression may be found
directly from (1.14),

n-\

=n+2 ~ (n-m)cosmu.
m=\

( 1.36)
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After substituting (1.36) into the denominator of (1.35) and making a
transformation of variables from () to u, we obtain

[

n-l ]
= (kd) - I (b - a) n + 2 :E I n -:nm (sin mb - sinma )

n-l
~ n-m2k dn + 4 L.J -- sin (mkd) cos (mkd cos ()0 )

m
m~1

kd
where

a = - kd( 1+cos()o)'

b = kd( l-cos()o).

The expression for the directivity now becomes

(kd)n2
D = ---n---l ------------

nkd+2 ~ _n-_m_sin (mkd) cos (mkdcos()o)
m

m~l

( 1.37)

(1.38 )

( 1.39)

(lAO)

Note that there are two factors, sin(mkd) and cos (mkdcos()o)' in the
second term of the denominator of (1.39). This term vanishes, because of
sin (mkd), whenever kd=pw, or d=p'Aj2, p= 1,2, ... , no matter what
values ()omay take. Moreover, the same term can also vanish, because of
cos(mkdcos()o), for other values of d depending on ()o.As an example, for
endfire arrays where ()o=0, the above mentioned term becomes [en- m)
jm]sin(2mkd), which vanishes when kd=pw j2, or d=p'Aj4. Under all the
conditions which make this term vanish, the directivity is numerically
equal to n, the total number of elements in the array.
A graphical method for predicting the relative value of D as a function

of d is also possible. Using (1.35), (1.37), and (1.38), we can rewrite the
expression for directivity as follows,

D- 2kdn2
- bf iEl2du'

a
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where the denominator can be interpreted as the area under the curve of
IE(u)12 between u = a and u = b.
Let us consider the broadside case (00=wj2) with n=5. IE(u)12 is

presented in Fig. 1.6. Now, if kd=w(d="Aj2), the visible range is from
a= -w to b=w; the denominator in (l.40) becomes

(1.41 )

or twice the area under IE(uW between points A and A' of Fig. 1.6. When
d increases to, say, 4"Aj5 or kd = 8wj 5, the corresponding visible range is
increased to l6w[5 from a= -8wj5 to b=8wj5, and the denominator of

- (8"lT/5
(l.40) increases to 2)0 IE(uWdu, or twice the area under IE(u)12

between points A and A 1/. Since the numerator of (l.40) is also larger, and
the rate of increment in the denominator is not as fast as that in the
numerator, we conclude that

( 1.42)

If, however, d increases further to, say, "A(kd=2w), or exactly twice the
beginning element spacing (d="Aj2) considered, the denominator of (l.40)
will be

(1.43 )

Alii

-27T -7T u=O 7T

f--- Visi ble Range, d=>../2---l
I" Visible Range, d = 4 >"/5 -I

I" Visible Range,d=dm -I
I" Visible Range, d=>" "I

Fig. 1.6 A sketch of IEI2 for n = 5,00 = wj2, and various spacings.
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which is twice the area under IE(uW between points A and A"'. The
mathematical fact that W2= 2WI is also clearly pictured in Fig. 1.6, since
the area under IE(uW between points A and A'" is exactly twice that
between points A and A'. In this case, both the numerator and denomina-
tor are increased by the same factor, two. This explains why directivities
for both spacings (d=Aj2 and d=A) are equal (and numerically equal to
n),

Dld-A/2 = DI d-A = n. ( 1.44)

In reality, of course, d can never be made as large as a full wavelength if
the grating lobe located at u = 2'1Tis to be avoided. Comparing (1.42) and
(1.44) reveals that D reaches its maximum somewhere between d=A/2 and
d = A. From Fig. 1.6, we also see that, for single-frequency and fixed-beam
operation of a broadside array, d can at most be increased to a value dm

such that the upper limit of integration in the denominator of (lAO),
u = b = kdm, will reach as far as the point A * to avoid a larger sidelobe at
0=0. If the array is designed for capability of scanning by changing the
position of its beam maximum, a practical choice of d should be much less
than d

m
and somewhere near 1../2. On the other hand, when d decreases to

a value below 1../2, the directivity is always less than n, and decreases
monotonically with d. For academic interest, the limiting value of D as d
approaches zero can also be evaluated from (1.39), for uniform arrays of
isotropic elements, to be unity, because under the condition d~O the array
reduces to a single element,

kdn2

D!d_O:::: n-I

kdn+2 L n-m (mkd)
m

m-I

n2
n-I = 1. (lAS)

n+2 ~ (n-m)
m=1

For endfire arrays where 00=0, a similar interpretation is possible. The
function IE(uW for this case is given in Fig. 1.7 with n=5. Now, a=-
2kd, b=O, and the denominator of (lAO) is

o
W'=f JE(uWdu.

-2kd

When d=A/4(kd='1T12),(1.46) becomes

( 1.46)

( 1.47)
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-27T -7T u=O

I- ,d
o
'/4 :1

d =dm

d=A

Fig.1.7 A sketch of IEI2 for n=5,00=0, and various spacings.

representing the area under IE(u)12 between points Band B'. Since both
W{ and d in this case are exactly half the corresponding values for (1.41),
this explains why the directivity for d = /\/4 and 00 = 0 is also numerically
equal to that for d=/\/2 and °0=17/2. If we designate the directivity by
D(d,Oo), signifying that the directivity for an array of n equally spaced
isotropic elements is generally a function of element spacing d and main
beam position 00' we always have

( 1.48)

To avoid the grating lobe or a sidelobe of higher level, the element spacing
must be limited to d'm such that the lower limit of integration in (1.46),
u=a= -2kd'm' does not go beyond the point B* in Fig. 1.7.
A set of examples for the directivity with n = 2, 3, and 4 is presented in

Fig. 1.8 as a function of d for both 00 = 0 and 17/2. Directivities for higher
n (up to 20) can be found in an article by Tai.1 Directivities plotted in
contour form for various d and 00 with n=2, 3, and 6 were discussed by
Bach,2 and those for n = 2, 3, 4, and 10 were also included in a chapter by
Bach and Hansen3 in a recent book edited by Collin and Zucker.

Case B. Uniform arrays of short parallel dipoles (see Fig. 1.9): In this
case, 1;= 1,f(0,<p)=(1-sin20cos2<p)1/2, and

\
sin (nu/2) \( . 20 2 )1/2lEI= -s-in-(-u-/2-)- 1- sm cos <p ,

where u is given in (1.17).

( 1.49)

--'--
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, (broadside)

----~-~----~
Fig. 1.11 An equally spaced linear array of short collinear dipoles.

which is the same directivity of a single dipole, as it should be. A similar
set of examples for n = 2 and 3 is given in Fig. 1.10 as a function of d for
both 00= 0 and w /2. Results for a higher number of elements (up to n = 20)
were presented by Tai.1 Directivities for short parallel dipoles in the form
of contour plots can also be found in an article by Bach2 or the chapter by
Bach and Hansen.3

Case C. Uniform arrays of short collinear dipoles (see Fig. 1.11): In this
case, 1;= 1,j(O,q;) =sinO, and

Isin (nu/2) . I
IEI= sin(u/2) smO. ( 1.55)

Now, the radiation pattern is independent of q;, and is equal to that for
uniform arrays of isotropic elements multiplied by sinO. The denominator
for the directivity becomes

l2"l"[ n+2 :~11(n-m)cosmu]Sjn'8dOd<p~4~Wc, (1.56)

where

n-l

Wc= 2; +4 L ;3~;3sin (mkd) cos (mkdcosOo)
m=l

n-l
~ n-m- 4 £.J ----z.:22 cos (mkd) cos (mkd cos (0) .

mKd
m~l

( 1.57)

The factor IEmaxl2 in the numerator of the directivity is no longer always n2
in this case. It can be determined according to (1.55). For broadside arrays,
00=w/2,u=kdcosO,IEmaxl is still n because both factors sin(nu/2)
/sin(u/2) and sinO assume maximum values at O=w /2 or u =0. For 00=0,
however, u=kd(cosO-I), IEmaxl varies since one factor, sin(nu/2)
/sin(u/2), equals its maximum at u=O or 0=0, and the other factor sinO, ,
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vanishes at that point. Actually, under this condition, the pattern is no
longer endfire because it has a null at (J = 0 rather than a maximum as
supposed. Nevertheless, if we still desire to phase the array according to
lXi= -ikdcos(Jo with (Jo=O, the position at which IEmaxl occurs will depend
on kd and n. For example, if kd='TT, n=2, Eq. (1.55) becomes

which yields

( 1.58)

IEmaxl = 1.2981 approximately at ( 1.59)

( 1.60)

For higher values of n, we can always calculate IEmaxl numerically from
(1.55). We, therefore, have

n2

De= W'
e

or

D ~ I sin(nuj2) . /2 I
e- sin (uj2) smB max We' (or any other (Joexcept (Jo= 'TT/2).

(1.61 )

It is interesting to note that the limiting value of We as d~O is also 2n2/3,
irrespective of (Jo' Therefore, we again have the expected value

(1.62 )

A set of curves for Dc with n = 2 and 3 is presented in Fig. 1.12 as a
function of d for both (Jo=O and 'TT/2. Similar results for a higher number
of elements (with (Jo='TT/2 only) or plotted in the contour form can also,
respectively, be found from articles by TaV Bach,2 and Bach and Han-
sen.3

1.3 Improved Uniform Endfire Arrays of Isotropic Elements

In the previous section, we have studied the uniform endfire array of
equally spaced isotropic dements where the elements are phased according
to

lXi= -ikd, i=0, I, 2, ... ,n - 1. ( 1.63)
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6 6

4

2.

n=2.-

o

Fig. 1.12

o
0.5 (a) 1.0 d/X 0.25 (b) 0.5 d/X

Directivity of uniform arrays with short collinear dipoles: (a)
ai=O, (b) ai= -ikd.

The pattern for a typical five-element endfire array has been given in Fig.
1.7 and its directivities presented in Fig. 1.8 as a function of the element
spacing d for n = 2, 3, and 4.
The subject to be considered here is also essentially a uniform array, and

therefore can categorically be arranged as a part of the previous section.
Since, however, the topic constitutes a significant contribution to array
theory, we choose to discuss it in a separate section.
In 1938, Hansen and Woodyard4 suggested that an increase in directiv-

ity can be achieved by increasing the progressive phase lag above that used
in (1.63), that is,

a'l = - i(kd+ 8), (1.64 )

They also concluded that, for large n, the directivity will reach its maxi-
mum,

when

7.28(n-l)d 7.28nd
Dm = )... ::::--)...-,

8=8 = 2.94
m- n-l

( 1.65)

( 1.66)

Equation (1.66) has since been known as the Hansen-Woodyard condition
for maximizing the directivity of endfire arrays. However, this condition
was derived originally for a continuous excitation distribution. Its validity
is therefore subject to the conditions that the number of elements in the
discrete array is very large and that the overall array length, (n -l)d, is
much greater than the wavelength.
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Using a somewhat different approach, Eaton, Eyges, and Macfarlane5
later reached the same condition (1.66) and essentially the same result for
directivity, Dm = 1.82n for d="A/4.
Since there are approximations and restrictions in both of these deriva-

tions, Maher6 in 1960 formulated an exact approach by determining
numerically the optimum value of ~ in (1.64), when nand d are given, in
order to obtain the maximum directivity.
For the purpose of distinguishing the case being studied from that

analyzed in the previous section, the phase distribution in (1.63) is usually
called the condition for an ordinary endfire array and that in (1.64) is
referred to as the condition for an improved endfire array.
With (1.64), the array factor for an improved uniform endfire array

becomes

where

_I sin (nuI2) \
ISI- sin (uI2) ,

u= kd( cos(}-l) -~.

( 1.67)

( 1.68)

AI

To understand the basic difference between the ordinary and improved
endfire conditions, let us examine again the typical pattern for n = 5 and
kd = 'TT12 in Fig. 1.13, although the principle can be explained with any n
and d.
Clearly, the presence of ~ shifts the visible range from AB in Fig. 1.13(a)

to A' B' in Fig. 1.13(b). As a consequence, the maximum value of lSI

A

B -(7T+8)-z ~I

-47T/5 -27T/5 u=O -47T/5 -27T/5 u= - 8
I-- Visible Range ---j I--Visible Range--j

(0) (b)

Fig. 1.13 A graphical interpretation for improving directivity of endfire
array with n=5 and d="A/4: (a) ordinary endfire, ~=O, (b)
improved endfire, ~> o.
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actually decreases from Smax=5 for 8=0 tolSmaxl= sin (58/2)/sin(8/2) for
8 >0. The area under ISI2 for the entire visible range, represented by

(27T (7T (7T
J
o
J
o

ISl2sinOdOd<p = 2'IT J
o
IS12sinOdO,

also decreases because a larger portion of the area between u = 0 and
u= -8 in Fig. 1.13(b) is replaced by a smaller area between u= -2kd and
u= -(2kd+8). Since the expression for directivity has ISmaxl2in the
numerator and (1.69) in the denominator, and ISmaxl2decreases more
slowly than the quantity in (1.69) for a small positive 8, we can see that the
net effect of having 8 is to increase the directivity. From Fig. 1.13(a) we
also see that half of the beamwidth (between the beam maximum and the
first null) is originally

or

for 8=0.

Now, the half beamwidth for the improved endfire array becomes

.l (BW) - -1 (1. 28 ) 7840
2 ie - cos 5 + 'IT < .

Thus, we have

for 8>0.

( 1.70)

That is, another favorable effect of having 8 is to make the main beam-
width narrower. Disadvantages are to definitely sacrifice relative levels of
sidelobes and possibly the level of the backlobe at 0 = 'IT. While the
absolute levels of sidelobes for 8 > 0 remain the same as those for 8= 0,
their relative levels are higher because the level of the main beam is lower
for the improved endfire than that for the ordinary endfire. The increase or
decrease of the backlobe level depends on n, kd, and 8. When n is even
and kd = 'IT /2, there is a null at 0 = 'IT for the ordinary endfire array, and
generally a sidelobe (backlobe) for the improved endfire array. Therefore,
the level of the backlobe is increased by having 8 > O.On the other hand, if
n is odd and kd = 'IT /2, there is a sidelobe (baeklobe) at 0 = 'IT for the
ordinary endfire with its level determined by n. The level of the backlobe
for the improved endfire may be lower or higher than that of the corres-
ponding ordinary endfire, depending on 8. The details are shown in Fig.
1.14.
Obviously, 8 must not be too large. For the example considered in Fig.

l.13(b), the entire main beam will be eliminated if 8 is allowed to increase
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Fig. 1.14 Characteristics of a five-element improved endfire array: (a)
First-null beamwidth, (b) First sidelobe or backlobe level.

to 27T/5 radians. Therefore, the process of maximizing the directivity for
endfire arrays works in the following manner: As ~ is increased slowly,
both the maximum radiation at ()= 0 and the total power radiated de-
crease, but at different rates to yield an increasing directivity. The directiv-
ity eventually reaches its maximum at a value ~m' In what follows, we will
try to determine ~m when nand d are specified.
The directivity for improved endfire arrays can be written as

2

21 si~(n~/2) I
sm(~/2)

D; = --.,-----

~ IEI2sin(}d(}

2

2kdl_si_n -(n_~/_2_) I
sin(~/2)

-8r (n+
2ni:1

(n-m)COsmu]du
) - (8+2kd) m= I

2kdl sin(n~/2) I
sin (~/2)

n-l
~ n-mkdn +2 £.J -- sin (mkd) cos (mkd +m~)m
m=l

(1.71)
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As a check, when 15=0, Eq. (1.71) reduces to (1.39) with 00=0. Figure 1.15
displays the variation of Di with 15 for n = 5 and a number of element
spacings. Corresponding directivities for the ordinary endfire (15 = 0) and
that calculated according to (1.71) but using the Hansen-Woodyard condi-
tion (1.66) are also indicated therein for the purpose of comparison.
First-null beamwidths, levels of the first sidelobe, and the backlobe are

pictured in Fig. 1.14. From these figures, it is clear that the value of 15m
varies with d even when n is kept the same. In general, the directivity
increases, the first-null beamwidth decreases, and the level of the first
sidelobe increase monotonically with 15 in the interval (O,15m). Level of the
backlobe can, however, vary widely in the same interval. For similar
results with other values of nand d, readers are referred to the report by
Maher.6
Although we have chosen in this section the uniform endfire array (i.e.,

Ii= I) to discuss the possible improvement in directivity offered by (1.64),
the same principle should also apply to arrays with nonuniform amplitude
excitations. Material on this latter subject is presented in the next section.

1.4 Finite Z Transforms-A Different Approach
for Nonuniform Arrays

In Section 1.2, we have analyzed characteristics of uniform arrays where
Ii = I. The convenience of being able to study the problem with a general
term there is mainly due to the possibility of summing the array factor into
a finite ratio form such as that shown in (1.14) or (1.16). Although the
uniform array offers high directivity, the level of its first sidelobe is, at best,
only about 13.5 dB below the main beam [as indicated by (1.33)], which
may not be adequate for some applications. For a nonuniform excitation,

12

dO
I

8

6

4

10

2 ordinary endfire

0/
20 30

8, degrees

H-Wendfire

40 50

Fig. 1.15 Directivity of a five-element improved endfire array.
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the Ii coefficients in (1.12) will not be equal, and a simple form for S such
as that of (1.14) is not always obtainable. We would then be faced with the
task of having to analyze a polynomial of n terms called the array
polynomial. Each term in this polynomial consists of both real and im-
aginary parts. The order of complexity is proportional to the total number
of terms involved. Based on a new approach developed by Cheng and
Ma, 7,8 which treats linear arrays of discrete elements as a sampled-data
system by using finite Z transforms, we have found it possible again to sum
a large number of array polynomials associated with a variety of nonun-
iform excitations into a simpler form similar to that of (1.14). This simpler
ratio form will be called the array function. The distinct facts concerning
such an array function are that the denominator has a finite number of
terms and is free of n, and that the numerator also has a fixed finite
number of terms with n appearing in the exponents or the coefficients.
Thus, an increase in n does not change the number of terms involved nor
increase the complexity of the expression for S.
Suppose that the envelope of the amplitude excitations in a linear array

can be described by a continuous function, f(n, within the interval
O<f«n-l)d. Then the excitation coefficients, Ii' in (1.12) can be written
as

10= f(O),

II = f(d),_

(1.72)

In _ I=f [(n - I) d ] .

The array polynomial (1.12) becomes

n-I
S= ~ f(id)z-i

i=O

00 00
= ~ f(id)z-i - ~ f(id)z-i.

i=O i=n
(1.73 )

Here the continuous function, f(n, has been considered the extended
envelope function for the entire range f ~O. Now, the first term on the
right side of (1.73) is exactly what is called the Z transform of the function
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f(o, or of the sampled functionj*(o, the sampling period being d9,'0:

00

~ f(id)z-i = Z [f(S') 1==F(z).
i=O

(1.74)

The second term on the right side of (1.73) can be considered as the Z
transform of f(O U (S' - nd):

00

~ f(id)z-i =Z [f(n UU-nd) 1==G(z),
;=n

( 1.75)

where the shifted unit-step function is defined as

U(S'-nd) ( = 1,
=0,

C~nd
S'<nd.

(1.76)

( 1.77)O<;S'<nd
n~nd,

Under conditions that f(O has an analytic expression and that the Z
transform of f(O exists, both F(z) in (1.74) and G(z) in (1.75), expressed in
a ratio form, can be obtained directly from a Z transform table" or
derived by using the relation between Z transforms and Laplace trans-
forms discussed by Tamburelli.'2 In terms of the unit-gate function used
by Christiansen, '3

(
-1

YnU)==U(n-U(S'-nd) =0:
the array function S(z) may be written more compactly as

Q,(z)
S(z) =Z[fUhnU) 1=F(z) - G(z) == -(-)'

Q2 z
( 1.78)

Since the upper index of summation in the first expression of (1.73)is finite
(n - 1),S(z) in (1.78) is to be called the finite Z transform of f(n
Before demonstrating the advantage of using finite Z transforms for

analyzing linear arrays by showing examples, we first tabulate some simple
finite Z transforms and the shifting theorem,9 which are useful for the later
analysis. Detailed derivations of these formulas can be found from books
covering control theory or sampled-data systems.' 0 Extensive tables of
finite Z transforms and corresponding numerical results for a large
number of f(S'hn(O are given in reports by Christiansen,'4 and Ma and
Walters. I 5



Table 1.1 A Short Table of Array Functions.

S(z) =Z[f(~)ynm]
=QI(Z)/ Qiz)

1m
um
~
~2

sin(a~ +b)

cos(a~ + b)

See Fig. 1.16

See Fig. 1.17

See Fig. 1.18

See Fig. 1.19

d(z - nz-n+2+(n -1)z~n+ I]

d2(z2+ z -n2z-n+3+(2n2-2n -1)z-n+2
-(n -lfz-n+ I]

z2sinb + z sin (ad - b) - z-n+2sin(nad+ b)
+z-n+lsin(n-l)ad+b]
z2cosb - z cos (ad - b) - z-n+2cos(nad+ b)
+z-n+lcos(n-l)ad+bJ

2 n+l + n+l -n+2 '-n+1
z-n_lz n_lz -z

dz[l- z-(n-l)/2]2

dz(l- z-n/2)[I_ z-(n-2)/2]

dz(l-z-a)[1_z-(n-l-a)]

z-1

Z2-(2cosad)z + 1

Z2- (2 cosad)z + 1

(z -If

(z -1)2

(z-li

(z-lf

Shifting theorem: Z [f(~- nd) u(~- nd) 1= z - nz [fm]

ad=...L
n-I

~)=I-a~

o---~--- n-I
.d-d-

(a)

~~:~~l=I-a~_
o n-I

_d_

(b)

Fig. 1.16 Linear array with linear amplitude distribution of negative
slope: (a) for odd n, (b) for even n.
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Fig. 1.17 Linear array with triangular amplitude distribution for odd n.

Fig. 1.18 Linear array with triangular amplitude distribution for even n.

ad
t I:,~ -~ ~{n-I)d

o -------~------------- .•------ n-I
a o-I-Q

Fig. 1.19 Linear array with trapezoidal amplitude distribution .

2

......... -----,,, .

"""
0" I
-d-

---"":_~~~,ka~

n-l

Fig. 1.20 Linear array with sinusoidal amplitude distribution.
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Example 1. Analyze the array performance with the excitation function
shown in Fig. 1.20. In this case, the envelope function is f(n = sinkat in
O<~«n-I)d, where a is a constant. Without using finite Z transforms,
the array polynomial would be

S (z ) = sin (0) + [sin (kad) ]z - I + . . . + [sin (n - I ) kad ]z - (n- I) • ( 1.79)

We then are confronted with difficulty because it is not obvious that the
polynomial in (1.79) can be summed up into a neat form, without which
further analysis cannot proceed in general terms.
Now, with the aid of Table 1.1, we have

S(z) =Z [sinka~Yn(n]

z sin(kad) - z-n+2sin (nkad) + z-n+ lsin[ (n -I )kad]

Z2- 2z cos (kad) + I ( 1.80)

which is indeed a convenient expression, and is the ratio form for the
polynomial in (1.79). Its denominator is free of n, and the numerator
contains n either in the exponent or in a coefficient. Equation (1.80) can be
used as the starting point for further analysis of array characteristics.
From Fig. 1.20, we require the following condition for a practical

symmetric excitation,

(n-l)kad=7T,
under which (1.80) becomes

(z + z - n + 2 ) sin [7TI (n - I) ]
S(z) = --------

Z2 - 2z cos[ 7TI (n - I) ]+ I

( I+ z- n + I ) sin [7TI (n - I) ]
z+z-I-2cos[7T/(n-I)] .

( 1.81 )

(1.82 )

Whenever an array polynomial is transformed into an array function such
as (1.82), we are always interested in knowing what would happen if the
denominator vanishes at a value of z. Physically, we are certain that S(z)
cannot be arbitrarily large (although we wish it could be). Mathematically,
it is clear that the denominator of (1.82) will vanish when z = e:tj1T/(n-l).

Since the numerator of S(z), which has been designated as Ql(Z) in (1.78),
also vanishes at these particular values by noting

QI (z )lz~e:tj7T I(n -I) = (I +e:tj1T) sin (n: I ) =0,
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we conclude that z = e:i:.j'Tr/(n-l) are not poles. In fact, the values of S(z) at
z = e:i:.j'Tr/(n-l) are finite because

. ) . [ ( - n + 1) z - n sin ['IT / ( n - 1)] ]
11m S(z = 11m -2

z~e:J:.j'fT/(n-I> z~e:J:.j'1T/(n-1) 1- z

_ .n-l
=+)-2-'

The principal maximum of (1.82) occurs at z = 1, or u = 0, with

sin['n-j(n-l)] 'IT
S(l) = ------ = cot ---.

1- cos ['IT / (n - 1) ] 2( n - 1)

Nulls are given by z-n+1 = -1, or

(1.83 )

(1.84 )

z = e:i:.j(2p-I)'Tr/(n-l), p =2,3,4, ... , ( 1.85)

where z = e:i:.j'Tr/(n-l) for p = 1 have been deleted because they are not zeros
of S(z) as evidenced by (1.83). Note that z = e:i:.j'Tror u = :t'lT are always
possible nulls when n is even. This same fact was also noted in Section 1.2
in connection with the array factor for uniform arrays.
Locations of sidelobes can be numerically determined by setting the

derivative of lSI equal to zero, where lSI, according to (1.82) and the
relation z = e-ju, may be written as

lSI= I cos [(n-l)u/2] sin ['IT /(n-l)] I.
cos u - cos [ 'IT / ( n - 1) ]

For example, when n=6, we have

dlSI -2.5sin2.5u(cosu-cos36°) +cos2.5usinu
csc36°-- = 2

du (cosu-cos36°)

which vanishes at U'I =:t 140.3°, and

( 1.86)

Su',
S(1) =0.1194, or -18.5 dB. ( 1.87)
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The directivity for n = 6 can also be evaluated,

2kdcoe ('IT/10)
D=------fbjSl2du

a

.where

2kdcot2 ('IT/10) csc2 ('IT/S)
- fb 2 '

{cos2(Su/2)du/[cosu-cos('lT/S)J }
a

( 1.88)

a= -kd(l+cosOO)'

'IT
00= 2" for broadside,

b = kd( 1- cosOo),

°0= 0 for ordinary endfire. ( 1.89)

After some lengthy algebra, the denominator of (1.88) becomes

[
. 'IT . 'IT( 'IT) ( 2'lT) ] bw= tsm3u+4cosSsm2u+8cosS l+cosS sinu+ 6+4cosS u a

=2[ t sin3kdcos (3kdcosOo) +4cos ~ sin2kdcos (2kdcosOo)

+ 8cosi(1+ cosi)sinkd cos (kd cos°0 ) + (6+ 4cos 2
S
'lT) kd] . ( 1.90)

Substituting (1.90) into (1.88), we can calculate D when d and 00 are
specified. In particular, when d=A/2 or kd='lT, the directivity simplifies to

cot2 ('IT/10) csc2 ('IT/S)
D= -------=3.7887,

6+4cos(2'lT/S)
regardless of °0,
Based on the results calculated above, we can summarize in Table 1.2

the radiation characteristics for the array with n = 6, d= A/2, and the
excitation function shown in Fig. 1.20. Note that although n = 6 was
assumed in the above example, the general formulation for fen = sinkar
should work for any larger n with the understanding that the expression in
(1.90)will be more complicated. Note also that there are actually only four
excited elements in the array discussed in the above example, because
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excitation coefficients for the first and last elements are nil with f(n
=sinkar under the condition (1.81). At this point, it should be instructive
to compare the major results for an array with a nonuniform excitation
such as the example just considered to those for arrays with a uniform
excitation studied previously. For this purpose, a corresponding table
(Table 1.3) for n=4, d=Aj2, andfG)= U(n is given.
Two important results can be noted by comparing these two tables.

First, the directivity for the array with f(n = sin kar is smaller than that for
the uniform array. Second, the improvement in the level of the first
sidelobe for the array withf(n= sinkar over that for the uniform array is
made at the expense of having a wider beamwidth. The first result is true
only when d=Aj2. The fact that the uniform array yields maximum

Table 1.2 Radiation Characteristics for the Linear Array with n = 6,
d=Aj2, f(n = sinkar, a = t.

Principal maximum

Location of
principal maximum

Location of nulls

First-null beamwidth

Location of
sidelobes

Level of first side
lobe relative to the
principal maximum

Directivity

90='TT/2 90=0
(Broadside) (Ordinary Endfire)

3.0777 3.0777
u=Oandu=-2'TT;

u=O; or 9=0 and 180°
9=90° (bidirectional)

u= .z.3'TT/5 and u= -3'TT/5, -'TT,
u= .z.'TT; and u= -7'TT/5;
9 = 0°,53.1 0, 9= 66.4°, 90°
126.9°,180° 113.6°

73.8° 132.8°

u=.z.140.3°; u= -140.3° and
-219.7°;

9=38.8° and 9 = 77.3° and
141.2° 102.7°

-18.5 dB -18.5 dB

3.7887 3.7887
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directivity when d=p"Aj2, p=l, 2, ... ,has been proved elsewhere.5 The
second result is, in general, true whenever the array has a concave down-
ward type of excitation where the amplitude excitations for the central
elements are larger than those for the end elements.
Now, we wish to illustrate, by another example, the opposite effect

(narrower beamwidth at the expense of having higher sidelobe level) for
arrays having a concave upward type of excitation such as that shown in
Fig. 1.21. This case not only will serve the purpose of demonstrating once
more the easy manner of summing an array polynomial into an array
function by using finite Z transforms; it also will reveal the important
principle of superposition concerning a composite excitation function. Of
cour~e, the reason the principle of superposition applies is that Z trans-
forms and related operations can be used for treating linear systems only.

Table 1.3 Radiation Characteristics for the Linear Array with n = 4,
d="Aj2, and f(n= U(O-

°o='TT/2 00=0
(Broadside) (Ordinary Endfire)

Principal maximum 4 4

Location of u=O; or u=O and -2'TT;
principal maximum 0= 90° 0=0° and 180°

u= i:'TT/2 and u= -'TT/2, -'TT,
u= i:'TT; and -3'TT/2;

Location of nulls 0=0°,60°, 0=60°,90°
120°,180° 120°

First-null beamwidth 60° 120°

u= i: 131.8°; u= -131.8° and
Location of sidelobes -228.2°

0=42.9° and 0=74.5° and
137.1° 105.5°

Level of first sidelobe relative
to the principal maximum -11.3 dB -11.3 dB

Directivity 4 4
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1+k2(t-n;1 d)2

,----
o i
• •
I--d--j

n-i
•

Fig. 1.21 Linear array with I+J2[r - (n - I)d /2f as its amplitude distri-
bution.

If the envelope of the amplitude distribution in a linear array is a linear
combination of two or more component functions such that

m
f(O = L cJ;(O,

;=1
o~ r~ (n - I) d, (1.91 )

then the array function in the ratio form after applying finite Z transforms
can be expressed as

where

m
S(z)=Z[f(Oyn(Ol= L c;S;(z),

;=1
(1.92 )

is the ith component array function and Yn(n is defined in (1.77).

Example 2. With the aid of (1.92) and Table 1.1, analyze the array,
whose amplitude excitation is shown in Fig. 1.21, in general terms. In this
case,

(1.93 )
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and

S(z)=Z[j(KhnU)]

Z2+ z - n2Z-n+3+ (2n2- 2n -1)Z-n+2_ (n -I /Z-n+ 1+k2d2-- _

(Z_I)3

( 1.94)

where

- (2n2-6)(z2_Z-n+2) + (n+ 1)\Z-Z-n+3)],

Q2(z)=4(z-l(

The principal maximum occurs at z = I or u = 0,

( 1.95)

( 1.96)

. Q)(z) . Q't(z) n(n-l)(n+l)k2d2
S(I) = lIm -(-) = lIm , fI( ) =n+ 12 (1.97)

z-» Q2 Z z-» Q2 Z

Nulls are given by the roots of

( 1.98)

excluding z = I which is the location of the principal maximum. From
(1.95) it is clear that z = - I or u = ::t 7T are also possible nulls when n is
even. In general, the roots of (1.98) depend on nand kd. They are listed as
follows for smaller values of n:

cosu) = -I, forn=2: ( 1.99)

forn=3; (1.100)
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for n =4; (1.101 )

- (1 + k2d2 ) :tV 5+ 50k2d2 + l29k4d4

4(1 +4k2d2)
forn=5. (1.102)

The power pattern, ISI2, can be expressed in terms of the real variable u
because

j812= Q\(z)Qt(z-\)
Q2(Z)Q2(Z-I) ,

(1.103)

in which the pair, zm+z-m=2cosmu, always appears together in both
numerator and denominator. Locations of side10bes can be obtained by
solving numerically for

(1.104)

excluding those roots which have already been identified as locations of
the principal maximum and nulls. For n =4, the only root in (1.104) for the
side10be is U'I' which satisfies

cosu'\ =
-2(4+7k2d2)
3(4+9k2d2) •

( 1.105)

The directivity for n = 4 can also be evaluated as

where

2[A . 3 A' 2 A' ]b-kdO-COSOo)
= 3sm u+ 2sm u+ (slnu+Aou a~-kdO+cosOo)

=4(A3 sin3kdcos (3kdcos(}o) +A2 sin 2kd cos (2kdcos(}o)

+ A I sinkdcos (kdcos(}o) +Aokd],

(1.106)

(1.107)
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( 1.108)

Substituting (1.107) and (1.108) into (1.106), we can calculate the directiv-
ity with known values of d and Bo. In particular, when d="A/2 or kd='TT, D
simplifies to

regardless of Bo. The results for n=4, d="A/2, and the amplitude excitation
function shown in Fig. 1.21 are summarized in Table 104. It is clear that
the array performance described in Table 104 is not at all attractive,
because the level of the first sidelobe is only 1.87 dB below that of the
main beam. This tells why the "concave upward" type of excitation
distribution is very rarely used in practice.

1.5 Nonuniformly Spaced Arrays

In Section lA, we have studied, using finite Z transforms, arrays with
nonuniform amplitude excitations but constant element spacing and un-
iformly progressive phase. We also showed therein, by two examples,
possibilities for improving some of the array characteristics over those for
the uniform array where the amplitude excitation, element spacing, and
progressive phase are all kept uniform. Two other alternatives, nonuniform
element spacings and non uniformly progressive phases, are possible
approaches to achieving a result better in certain respects than that for the
uniform array. In this section, we will analyze the effect on array perfor-
mance of using variable element spacings, leaving the topic of arrays with
nonuniformIy progressive phases to be taken up in the next section.
Since the problem of nonuniformly spaced arrays was first studied by

Unz,16 many papers on the subject have appeared in the literature.17-27
Most of the work treats the problem from the synthesis viewpoint, trying to
determine a favorable set of spacings in order to improve some of the
radiation characteristics. For example, it has been shown that for such an
array the level of sidelobes can be lowered, grating lobes eliminated when
the average element spacing is large, and the total number of elements
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Table 1.4 Radiation Characteristics for the Linear Array with
n=4, d="A/2, and f(n = I+12[K-(n-l)d/2f.

Principalmaximum

Locationof
principalmaximum

Locationof nulls

First-nullbeamwidth

Locationof side10bes

Levelof first side-
lobe relativeto the
principalmaximum

Directivity

°o='lT/2
(Broadside)

53.3483

u=O; or
0=90°

u= ::t64.83° and
::t 180°;

0= 0°,68.9°,
111.1°,180°

u = ::t 121.65;
0=47.5°,
132.5°

-1.87 dB

2.5893

00=0
(OrdinaryEndfire)

53.3483

u=O, and -2'lT;
0=0° and 180°

u = - 64.83°, -180°
and -295.17°;

0=50.2°,90°
129.8°

u= -121.65°, -238.35°;
0= 71.1°,108.9°

-1.87 dB

2.5893

required in the array reduced. These results were achieved by various
techniques, some of which will be discussed in detail in Chapter 2 when we
present the synthesis work. Here, we are content to analyze two simple
arrays only: one of these is to have nonuniform spacings but constant
amplitude excitation, and the other is to have both the spacings and
amplitude excitations varied. In both cases the number of elements in the
array is rather small to reduce the algebraic burden. The purpose of doing
this is twofold: to lay the ground work for later dealing with the synthesis
problem and to provide the reader with a feeling of how important
characteristics of such arrays can be different from those already analyzed.

A. Nonuniformly Spaced but Uniformly Excited Arrays of Isotropic
Elements. From the mathematical and practical viewpoints, we require
that array elements be symmetrically situated and excited. It is, therefore,
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more convenient to choose the array center as the coordinate origin. When
the total number of elements in the array is odd, n = 2N + 1, such as that
shown in Fig. 1.22, the array factor can be written as a real function,

N N

S= 1+ ~ (e - jUi + ejUi) = 1+2 ~ cos ui' ( 1.109)
i~1 i=]

where

Ui = kdi( cosO- cos 00 ),

For N=2 or n=5, we have

i= 1,2, ... ,N. (1.110)

where
(1.111)

(1.112)

Naturally, the beam maximum occurs at u2=0 with Smax=5. Other
characteristics depend on a and d2• Since

where

b=kd2(1-cosOo ),

a= - kd2 ( 1+ cos°0 ),
and

W = 5kd2 +4 sinkd2 cos (kd2 cos 00 ) + sin (2kd2 ) cos (2kd2 cos 00 )

+ i sin (akd2) cos (akd2 cos 00) + 1. sin (2akd2) cos (2kd2cosOO)a a

+ -14 sin [ ( 1+ a) kd2 ] cos [ ( 1+ a) kd2 cos 00 ]+a

+ _4_ sin [(1-a)kd2] cos [(1-a)kd2cosOo],I-a

Fig. 1.22 A nonuniformly spaced symmetric array.

(1.113)
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the directivity for such an array becomes

25kd2D=--
W'

(1.l14)

which is identical to (1.39) when d2 = 2d and a = 1-.
The directivity as a function of the parameter a representing the ratio of

d) to d2 is plotted in Fig. 1.23(a) for ()o= 'TT/2 and kd2 = 3'TT/2, 2'TT,5'TT/2.
The associated first-null beamwidth and level of the first sidelobe are
respectively given in Figs. 1.23(b) and (c). It is interesting to see from Fig.
1.23(a) that although the maximum directivity always occurs at a <0.5, the
value of Dmax is not much higher than that for the uniform array (a=0.5).
From Figs. 1.23(b) and (c) we also see that the level of the first sidelobe
can be reduced with a <0.5 at the expense of having wider beamwidth, and
that the beamwidth can be made narrower with a> 0.5 at the sacrifice of
sidelobe level. We should note another important fact that increasing the
overall array length by increasing d2 does not always improve the directiv-
ity, as it can clearly be seen from Fig. 1.23(a) for 0.7<a<0.9. This
property is in contrast with that for the uniform array where the directivity
is always increased by having a larger element spacing (hence the overall
array length) provided, of course, that the element spacing is not too large
to cause appearance of the grating lobe. It means that the relative positions
of elements in the array should be carefully considered when nonuniform
spacings are used.

B. Nonuniformly Spaced and Excited Arrays of Isotropic Elements.
When, as before, the array is symmetrically configured and excited, and
the number of elements is odd, the array factor may be expressed as

N

S=lo+2 ~ Ijcosuj.
j~l

(1.l15)

If we again examine the case with N = 2 or n = 5, Eg. (1.115) becomes

S= 10+ 2(/1cosau2 +12coSU2), (1.116)

with Smax = [0+2(/)+[2) occurring at u2=0. The expression for the
directivity can also be integrated out:

(1.117)
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where

41/0+ 1; sin (2kd2) cos (2kd2cosOO) + -- sin (akd2) cos (akd2cosOO)
a

12
+ .-!.... sin (2akd2 ) cos (2akd2 cos°0 )

a

41/2+ -1- sin ((I +a)kd2 lcos ((I +a)kd2cosOO l+a

41/2+ I-a sin((I-a)kd2lcos((I-a)kd2cosOol. (1.118)

A set of numerical results with 00 = 7T /2 is presented in Fig. 1.24 for
1
0
=0.2704, II =0.2341, and 12=0.1302. This kind of amplitude excitation

corresponds roughly to the sinusoidal distribution shown in Fig. 1.20 for
the equally spaced counterpart. Basic features remain the same as the
previous case displayed in Fig. 1.23. The major differences between these
two cases are that the location of maximum directivity for a fixed d2 is now
shifted to a> 0.5, and that the level of the first sidelobe is still reasonable
when the parameter a is moderately larger than 0.5.
Although we have chosen an odd n to discuss the subject and presented

the results for a broadside array only, the technique will apply also to an
endfire array and arrays with an even number of elements. When the
number of elements in the array is larger, the number of parameters,
a

j
= dj dN, under one's control will also be larger. A greater improvement

in resultant characteristics may be possible if a favorable set of aj can be
determined.18,26 This will be studied in detail in Chapter 2 when the
synthesis problem is considered.

1.6 Arrays of Isotropic Elements with Nonuniformly Progressive Phases

In Sections 1.2-1.4 we have studied various arrays in which the element
spacing and progressive phase were kept uniform. Mathematically speak-
ing, these restrictions are

i =0, I, ... , ( n - I ) , (1.119)

with 00 determining the position of the beam maximum.
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Now, let us consider the array with a modified progressive phase (but still
with constant element spacing),

( 1.120)

where a and 8j are arbitrary. The array factor in this case can be written as

where

n-\ n-\

SNU(Z)= ~ Iiexp[j(ikdcosO+a'J]= ~ aiz-i,
i=O i-O

u=kdcosO+a,

(1.121)

(1.122 )

(1.123 )

( 1.124)

and the subscript NU signifies non uniformity in progressive phasing.
On the surface, the mathematical form of (1.121) is very similar to that

in (1.12), with ai replacing Ii' However, because of the simple difference
that a

i
is complex while Ii was real, we find the analysis of arrays with

nonuniformly progressive phases more challenging. For example, we are not
even sure now whether the beam maximum still occurs at Z = I (u = 0) even
with positive values for Ii' The facts that the radiation patterm is no longer
symmetric with respect to the beam maximum and that the Z transform
technique cannot be applied any more give added difficulty. The task of
finding the roots of jSNU(Z)! =0 and (d/ dZ)jSNU(Z)! =0 to determine the
locations of nulls and sidelobes is even more formidable. Fortunately, we
can simplify the problem by a special transformation of variables to be
introduced later in this section. This special transformation is obtained
through a study of the power pattern. Often, it is to our advantage to deal
with the power pattern since it involves real quantities only. In order to
discover the difference between the array with nonuniformly progressive
phases (NUPP) being studied and that with uniformly progressive phases
(UPP) considered previously, let us first formulate the power pattern for
the UPP array. It is defined as

n-l

= ~ I;"(zm+z-m),
m=O

(1.125)
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where
n-l-m

1;"= ~ I/m+i, l<m«n-l),
i=O

( 1.126)

(1.127)

and the subscript U signifies uniformity in progressive phasing. Since the
pair zm and z-m always appears together in (1.125), it is clear that ISul2 is
a real function of u,

n-l

ISul2=2 ~ I'mcosmu.
m=O

(1.128)

While the form in (1.128) is very helpful for finding the denominator of the
directivity, it is still rather inconvenient for determining the number of
nulls and sidelobes. Alternatively, (1.128) can be expressed as a real
polynomial,

n-l

Pu(y) = ~ A",)'m,
m=O

if we make the following substitution,

Z+Z-I =2cosu=y,

Z2+ Z-2= (z +Z-1)2 -2 =y2_ 2,

( 1.129)

(1.130)

In (1.129), Am is, of course, the final combined coefficient made of I'm or Ii
through (1.126) and (1.127). Indeed, the form in (1.129) is convenient
because it is real and the nulls and sidelobes can be obtained by setting,
respectively,

(1.131)
and

(1.132)
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Now, let us go back to NUPP arrays. The power pattern in this case,
based on (1.121), becomes

where

n-\-m

bm = ~ aJim + i' 1<;m <; (n - 1),
i~O

n-\

bo= t ~ [aiI2,
i~O

(1.134 )

( 1.135)

and iii and bm are, respectively, complex conjugates of ai and bm. In this
case bm is complex and (1.133) is different from (1.125). The expression
corresponding to (1.129) after the substitution in (1.130) is used takes the
form

(1.136)

where the combined coefficients A'm and A':n are all real. Comparing
(1.136) with (1.129), we see that the main difference between NUPP and
UPP arrays is the presence of the extra factor (4_y2)1/2 in NUPP arrays.
With (1.136) itself, we still have difficulty in determining the nulls and
sidelobes through PNU(y)=O and (d/dy)PNU(Y)=O. Since, however, we
can readily verify that5 if Zi is a zero of (1.133), so also is its conjugate
reciprocal 1/ Zi' therefore a special transformation of variables such as

( 1.137)

is suggested for (1.136) so that the original irrational polynomial in Y will
become a rational polynomial in x,

Q(x)
PNU ( X ) = ( 2 n - I '

1+x )
( 1.138)

where Q(x) is a polynomial of degree 2(n - 1) and its coefficients depend
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on ai in (1.133). In terms of the variable z, the transformation in (1.137) is
equivalent to a special bilinear transformation, 28

or

(1+j)z+(I-j)
x=------

(l-j)z+(l+j)

- (1+j)x + (1- j)
z= .

(l-j)x-(l+j)

(1.139)

(1.140)

It is, in general, easier to handle a polynomial such as Q(x) than one like
ISNU(ZW. The success of this technique lies in the fact that the transforma-
tion in (1.139) or (1.140) converts the zero pairs which are inverse complex
conjugates of each other into ordinary complex conjugate pairs. Figure
1.25 exhibits detailed one-to-one mappings between the z and x planes.
With this complicated transformation presented, we are now ready to

analyze the characteristics of NUPP arrays. First of all, it is not trivial to
determine the location of the principal maximum even when the condition
a =0 is inserted in (1.124) because the main lobe no longer occurs at
(J='TT/2 with the appearance of8i in (1.121). However, when

kd<'TT, (1.141)

Fig. 1.25 One-to-one mappings between z plane and x plane.
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the visible principal maximum still occurs at fJ = 0, u = - a], Z = ela" or
x = x] where 0<x] .;;;1 (see Fig. 1.25), giving

or

Note that, in terms of UPP arrays, the cases al =0 and al >0 correspond,
respectively, to the ordinary and improved endfire conditions.
Since all the physical nulls, minima, and sidelobes should lie on the

circumference of the unit circle in the z plane, it is clear from Fig. 1.25 that
they all should be on the real axis in the x plane. In fact, they should be in
the range Xl';;; x.;;; 1, where the lower bound Xl depends on kd. For
example, when kd = 'iT /2 and a] = 0, the entire visible range is - 'iT .;;; u .;;;0,
- 1 .;;;z .;;;1, or - 1 .;;;x.;;; 1. Thus Xl = - 1. Therefore, as far as the task of
determining nulls, minima, and sidelobes is concerned, all we have to do is
to find the real roots of

and

Q(x)=O ( 1.142)

(1.143)

in the range (l,xJ and then reexpress them in terms of z or fJ.The
directivity for NUPP arrays, based on the formulation outlined above, can
be obtained by modifying (1.133) into a more suitable form,

n-]

ISNUI2= L (bmzm+bmz-m)
m=O

n-l

=2 L (brmcosmu+bimsinmu),
m=O

(1.144)

where brm and bim are, respectively, the real and imaginary parts of bm in
(1.134). The denominator in the expression for the directivity thus becomes

( 1.145)
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where
b=kd+a,

a= -kd+a,

and

The directivity for NUPP is, therefore,

D _ /SNul2max
NU- W .

I

Two special cases can be noted from (1.148). They are

( 1.146)

(1.147)

( 1.148)

(1.149)

and

for A
d=P2'P= 1,2, ... , (1.150)

where

n-) n-)

W') = ~ la;12+2 ~ (brmcosma + b;msinma).
;=0 m=l

(1.151)

(1.152 )

Example. Analyze the characteristics of a five-element NUPP array
with29

and

In this case,

4

ISNu/2=5+ L (bmzm+bmz-m),
m=)
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where

where

Q(x) = (A'o- 2A '~)X8+ (4A'1 -8A';)x7 + (4A'o+ 16A'2 -4A ~-32A'~)X6

+ (12A'l +64A'3-8A'; -128A'~)X5+ (6A'o+ 32A'2 +256A'4)X4

+ (12A'l +64A'3 +8A'; + 128A'~)x3+ (4A'o+ 16A'2+4A'~+32A'~)x2

+ (4A'1 +8A ';)x+ (A'o+2A'~), (1.153)
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w) = 2~d {lOkd+4sinkdcosa +4sinkdcos (82 + a)

+ 4 sinkdcos (83 -82 + a) +4sinkdcos (84 - 83 + a)

+ 2 sin 2kd [cos (82 + 2a) + cos (83 + 2a ) + cos (84- 82 + 2a ) ]

+ t sin3kd [cos (83 + 3a) + cos (84 +3a)]

+ sin 4kd cos (84 + 4a) } . (1.154)

It is clear that when d=i\.j2 or kd=7T, W) =5. Then, according to (1.149),
we have

DNU (when kd=7T) = ISN~I~ax ,,;;5 (Du, directivity for UPP array).

This result implies that, for Ii = 1, kd= p7T,P = 1,2,3, ... , it is impossible to
make the directivity for NUPP arrays higher than that for UPP arrays.
However, when kd<7T, we may have many sets of values for a and 8's
such that DNU>Du. Specific results for d=i\.j4 (kd=7Tj2), which is the
element spacing commonly used for an endfire array, are shown in Figs.
1.26-1.28. In Fig. 1.26, where a=-90° (a)=O°, corresponding to the
ordinary endfire condition) and 82=0°, DNU is plotted as a function of 84
with 83 as the parameter. It is clear that Dr-u can be as large as 6.80 when
83= -40° and 84= -80°, which is much greater than Du=5 for the
corresponding UPP array. Actually, as far as the case a) =0 is concerned,
DNU reaches its maximum of 7.43 approximately when 82 = - 30°, 83 = -
55°, and 84 = - 95°, as indicated by curve I in Fig. 1.27. Curves II and III
in Fig. 1.27 give the same information for a) = 10° (a = -100°) and
a) =20° (a= -110°), respectively. Curve I in Fig. 1.28 shows that the
absolute maximum of DNU for the case considered occurs approximately
when al =55° (a= -145°), 82= +30°, 83= +60°, and 84= +60.5° with
DNulmax=9.81, a 96.2% increase over that for a UPP ordinary endfire
array with the same element spacing, or an 11.9%increase over that for a
UPP improved endfire array with the same element spacing and with
8=35° as presented in Fig. 1.15.
To gain insight into this rather dramatic improvement in directivity,

following are the details for calculating radiation patterns, beamwidths,
nulls, and sidelobes for two of the five cases just considered.
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Fig. 1.26 Directivity of a five-element NUPP arraywith d = "AI4.

Curve I' Ql=O., 82=-30.,
Curve II' Ql= 10., 82=-20.,
Curvem' Ql=20., 82=-10.,
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84, degrees
Fig. 1.27 Further results for directivity of a five-element NUPP array.
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Curve I' 01=55°, 82=30°, 83=60°
CurverI' 01=40°, 82=15°, 83=28°

80

Fig. 1.28 More results for directivity of a five-element NUPP array.

Case A. cxl=O, 82=-30°, 83=-55°, 84=-95°, and kd=90°. This
case corresponds to curve I in Fig. 1.27. From (1.153), we have

Q(x) =0.6012x8+ 1O.1812x7+96.8736x6+ I85.4572xs + 55.0360x4

-73.2996x3 -17.3120x2+6.4516x + 1.6012,

Q(x)
PNU(X)= ( 2)4'

I+x

Visible range: - I<x < I.

Principal maximum: at x = I (0 = 0) with PNU ( I) = 16.5996.

The roots of (djdx)PNU(X)=0 are approximately

Xl =0.3985 (°1 =61.2°),

x2 =0.0943 (°2 = 83.1°),

x3 = - 0.2667 (°3 = 109.4°),

x4= -0.6646 (04= 138.7°),

xs= 1.5548,
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Xs = -15.3340,

of which only the first four are in the visible range. Their corresponding
values of 0 are also indicated.
There are no nulls for this case.
Minima are given by XI and x3' withpNU(xl) =0.2444 or 18.32 dB below

the principal maximum, and PNU(X3) = 0.0773 (- 23.32 dB).
Sidelobes are given by x2 and x4' with PNU(X2) = 1.9304 (-9.34 dB) and

. PNU(X4) = 1.3107 ( - 11.02 dB).
The level at the backlobe direction (x = -lor 0 = 180°) is given by

PNU( -1)=0.5006 or -15.20 dB.
The half-power point can be determined by solving for PNU(Xh)

= WNu(I), which yields xh = 0.7660 or 0h = 33.50.
With the important data listed above, the radiation pattern for this case

can easily be plotted, but is omitted here.

c;ase B. £Xl = 55°, <52= 30°, <53= 60°, <54= 60.5°, and kd = 90°. This case
corresponds to curve I in Fig. 1.28.

Q(x) =2.9850xs + 1.9576x7 -42.4076x6 - 39.9016x5 + 143.4880x4

+ 185.0440x3 +62.9004x2 +4.0808x +0.0742,

Q(x)
PNU ( X ) = ( 2 ) 4 •

I+x

Visible range: -3.1721 <x<0.3152.

Principal maximum: at x=0.3152 (0=0°) withPNU(0.3 152) = 10.0340.

The roots of (d/dx)PNU(X)=0 are approximately:

XI = -0.0388 (01 =55.8°),

x2= -0.2691 (02=73.9°),

x3= -0.5799 (03=93.3°),

x4 = -1.1974 (04 = 120.1°),
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x7=2.7938,

xg =56.5936,

of which the first five are in the visible range.
Nulls are given by Xl' x3' and Xs as evidenced by

Sidelobes are given by x2 and X4' withpNU(x2) = 0.5426 (-12.67 dB) and
PNU(X4)= 1.1854 (-9.27 dB).
The backlobe is at x= -3.1721 (()= 180°), with PNU( -3.1721)=0.2087

(-16.82 dB).
The half-power point is at xh=0.1986 or ()h=30.5°.
These characteristics can now be readily compared with those for the

UPP ordinary and improved endfire arrays discussed previously.
Details for the other three cases in Figs. 1.27 and 1.28 (al = 10°, 20°, and

40°) are left to the reader as an exercise.
Although the condition Ii = I is used in the examples shown, the general

formulation for NUPP arrays described in this section also applies to
arrays whose amplitude excitations are not uniform.

1.7 Monopulse Arrays

When an antenna is used in a tracking radar, its beam is usually positioned
by a servo-mechanism actuated by an error signal. There are many
techniques for producing this error signal. One is the well-known simul-
taneous lobing,30 where all necessary information on tracking can be
obtained on the basis of a single pulse from an amplitude-comparison
monopulse system. In such a system, the same antenna with two offset
feeds or two identical antennas illuminated separately are used for both
transmitting and receiving. Work on monopulse theory has, in the past,
been done primarily on aperture antennas3l-33 with only very limited
attention paid to arrays with discrete elements,34 because of the cost and
complexity involved. Recent new development in high-power solid-state
phasing devices has raised performance capacities of arrays to the point
that it may be feasible to reconsider the use of arrays for radar tasks.
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In this section, we will give a mathematical formulation for discrete
monopulse arrays. Basically, two arrays or one array with dual excitations
are involved for producing sum and difference radiation patterns. The
former is responsible for range detection of moving targets, and the latter
is important for determining the angular tracking accuracy. As will be seen
later, the sum pattern from such an array is essentially the same as that
discussed before, and therefore is not repeated here in detail. Only the
difference pattern will be studied in addition. Both equally and unequally
spaced arrays are considered.
Suppose we have an unequally spaced but symmetric UPP broadside

array of 2N + 1 isotropic elements, as shown in Fig. 1.22,which constitutes
a component array of the monopulse system. The far-field can be repre-
sented by (1.115), or

where

N N

E(u)=Io+2 ~ I;cosu;=Io+2 ~ I;cos(a;u),
;=1 ;=1

(1.155)

( 1.156)

(1.157)

(1.158)

Note that in (1.158) we have chosen to normalize d; with respect to dN, the
same manner as in (1.111).
If an array with dual excitations is used to replace the two antennas in a

conventional monopulse tracking radar, the excitations have to be so
phased that one gives E(u+us) and the other E(u-us)' as shown in Fig.
1.29, where the sidelobe region is suppressed for clarity. The sum and
difference pattern functions are given, respectively, by

~(u) =E(u- us) +E(u+ us)

and

N

=210+4 ~ I; cos (a;us) cos (a;u)
;=!

!:::.(u)= E(u -us) - E(u+ us)

N

=4 ~ I; sin (a;us) sin (a;u),
;~I

(1.159)

( 1.160)
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Fig. 1.29 Sketches of monopulse array patterns: (a) overlapping, (b) sum
pattern, (c) difference pattern.

where

Us = kdN cos Os, (1.161)

and the angle ('TT /2) - Os is usually called the squint angle.
It is clear that upon a specification of Os and ai' Eq. (1.159) reduces

essentially to (1.155) if Ii cos (aiuS) is considered as the new set of excitation
coefficients. Thus, the basic properties learned before in studying the single
array still apply to the sum pattern here.
The sum and difference directivities are defined, respectively, as

kdN"2} (0)Ds= kd
N

(1.162)
~ ~2(u)du
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and

(1.163 )

where

(1.164)

and Om is the position of the beam maximum for ~(u).
In addition, the quantity known as the difference slope at the boresight

(O=7T/2, or u=O) is also important for determining the tracking accuracy.
It is defined below:

(1.165 )

From the design point of view, we wish to make those quantities defined in
(1.162), (1.163), and (1.165) as large as possible. The problem of determin-
ing a set of array parameters such as N, Os, or Ii to maximize some of the
characteristics will be discussed in Chapter 2. Here, to analyze the effects
of array parameters on the general performance of monopulse arrays, we
will specifically assume certain different excitations and spacings. For each
excitation and spacing, the directivities and difference slope can be calcu-
lated as functions of N and Os' Normally, when Os is below a certain value,
depending on di and Ii' the sum pattern will have more than one peak
(pattern splitting) resulting in an ambiguity for target detection. This fact
may be anticipated by examining Fig. 1.29. Therefore, the value of Os is
usually limited to 80° < Os < 89° to avoid the pattern splitting.

A. Uniformly Spaced and Excited Monopulse Arrays of Isotropic Ele-
ments. In this case, Ii = land ai= iIN. Typical curves showing the varia-
tion of Ds and D d for n = 9 (N = 4) as functions of Os and A are given in Fig.
1.30. The corresponding result for ~'(O) with d=V2 is shown in Fig. 1.31.
It is apparent that both Ds and Dd for a given element spacing are
relatively insensitive to changes in Os for 82°.,;; Os";; 90°, while ~'(O) de-
creases almost linearly when Os is increased from 82° to 90°. For d=A/2,
~'(O) reaches its maximum value approximately at Os = 810.
Figure 1.32 shows Ds as a function of N with d = A/2 and Os as a

parameter, from which we can conclude that, for a given Os < 89°, the sum
directivity cannot always be imporved by merely increasing the total
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Fig. 1.30 Variations of Ds and D d as functions of Oswith N = 4, I; = I, and
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Fig. 1.31 Difference slope of a nine-element symmetric monopulse array
as a function of Os with 1;= l,a;=ij4,d="Aj2.
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30

20

Os

10

89°

o

Fig. 1.32 Sum directivity of an equally spaced monopulse array of 2N + 1
elements with d=/\/2 and Ii= 1.

number of elements in the array. This fact is quite contrary to the
conventional single broadside array where the directivity (sum) is always
proportional to the number of elements for a given d. On the other hand,
the difference directivity when d = /\/2 is almost linearly proportional to N,
as can be seen from Fig. 1.33.

B. Uniformly Spaced but NonuniformIy Excited Monopulse Arrays of
Isotropic Elements. In this case, ai = i/N, Ii =1=1. Here we choose to con-
sider only two special excitations, one of which is the concave-downward
type with Ii = cos (i'TT/2N), i=0,1,2, ... ,N, and the other the concave-
upward type of excitation with Ii = (i/ N)2. Numerical results for Ds' Dd,

and ~'(O) as a function of Os with both of these excitations when N = 3 and
d= /\/2 are presented in Fig. 1.34. From 1.34(a) and (b), we see another
opposite effect for these two special excitations: when Os is increased from
80° to 89°, both the sum and difference directivities increase for Ii
= cos(i'TT/2N), while they generally decrease for Ii = (i/ N)2 after Ds re-
aches its maximum approximately at 0s=82°. When Os is fixed at 88°, the
directivities, however, increase with respect to N (up to N=9 at least) for
both excitations, as evidenced by Fig. 1.35(a) and (b). They begin to
decrease when N is larger than 15, as can be seen from Fig. 1.32.
Corresponding results for Urn [see (1.164)] where the difference pattern
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Fig. 1.33 Difference directivity of an equally spaced monopulse array of
2N + 1 elements with d=Aj2 and Ii = 1.

reaches its maximum are respectively given in Figs. l.34(c) and l.35(c) as a
function of Os and N.
As far as the difference slope is concerned, it decreases monotonically

for both excitations in the range 80° < Os < 89°. In practice, in addition to
using ~'(O) defined in (1.165), a somewhat different factor called the slope
of the error signal at the boresight35 may be used to locate the true
boresight direction when lost in the presence of noise. In his book on
monopulse, Rhodes30 shows that this slope of the error signal, depending
on the type of phase comparators employed, is directly proportional to
either the product or ratio of the difference slope ~'(O)and the sum pattern
evaluated at the boresight ~(O).Mathematically, these are, respectively,

~'(O)~(O),
~'(O)
~(O) ,

slope-sum product,

slope-sum ratio.

Detailed analysis and discussion on both of these quantities can be found
in a report by Pang and Ma,36but are omitted here.
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Fig. 1.34 Characteristics of an equally spaced monopulse array as a
function of OswithN=3: (a)Ds' Dd, ~/(O) for I; = cos (i'lT16), (b)
Ds,Dd'~/(O) for I; = (i/3)2, and (c) Urn'

c. Nonuniformly Spaced but Uniformly Excited Monopulse Arrays of
Isotropic Elements. In this case, I; = I and a; =j= i1N. For the purpose of
simple analysis, we choose once again, as in Section 1.5, N = 2 (n = 5)
with a( as the varying parameter. In fact, a; in this section is determined
according to two special kinds of spacing arrangement suggested by King
et al. 17 They are the logarithmic spacing (LS) and reverse logarithmic
spacing (RLS). The LS broadens the spacing between two adjacent ele-
ments as the elements of interest are farther away from the array center.
The RLS makes the spacing between two adjacent elements progressively
smaller. Therefore, we set

for LS: d;= A [ I - log ( 10 - i) ), i= 1,2, ... ,N (N < 10)

(1.166)
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Fig. 1.35 Characteristics of an equally spaced monopulse array as a
function of N with 0s=88°: (a) Ds,Dd, ~'(O) for Ii = cos (i7T/2N),
(b) Ds,Dd'~/(O) for Ii = (i/Nf, and (c) Urn'

and

for RLS: di=A log (I + i), ( 1.167)

where log is the common logarithm arid A, a common factor for all di, is
determined by the relation 2dN = L, L being the overall array length.
From (1.166) and (1.167), we can compute spacings and associated array

characteristics. Generally speaking, for LS geometry, the major improve-
ment over the corresponding equally spaced case is in the level of the first
sidelobe of the sum pattern at some sacrifice in difference slope. Results in
the difference directivity are also better although the improvement is only
marginal. Representative results for LS (N =2,a( =0.4731,L =2;\) are listed
in Table 1.5. Results for the corresponding equally spaced monopulse
array (N=2,a1=0.5,L=2;\) are given in Table 1.6 for comparison. It is
seen that the sum directivity for LS distribution in this case is higher only
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Table 1.5 Partial Characteristics for a Monopulse Array with
N = 2,/; = 1,d) = 0.4731A, d2 = A.

First Sum
sidelobe

(Js (deg) Ds Dd ~'(O) ~(O) Level (dB)

83 4.8747 3.0717 3.4435 8.6232 -17.47
85 4.9700 3.0533 2.5691 9.2808 -15.34
87 5.0051 3.0412 1.5842 9.7380 -14.11
89 5.0145 3.0366 0.5376 9.9702 -13.56

Table 1.6 Partial Characteristics for an Equally Spaced Monopulse
Array with N=2,/;= I,d) =0.5A,d2=A.

First Sum
Sidelobe

(Js (deg) Ds Dd ~'(O) ~(O) Level (dB)

83 4.9103 3.0279 3.5208 8.5928 -15.28
85 4.9783 3.0113 2.6252 9.2650 -13.50
87 4.9974 3.0003 1.6180 9.7328 -12.54
89 4.9999 2.9945 0.5486 9.9699 -12.08

Table 1.7 Partial Characteristics for a Monopulse Array with
N =2,/;= I,d) =0.6309A,d2=A.

First Sum
sidelobe

(Js (deg) Ds Dd ~'(O) ~(O) Level (dB)

83 4.7022 2.6199 3.9453 8.4252 -9.28
85 4.6383 2.6134 2.9387 9.1780 -8.38
87 4.5856 2.6095 1.8107 9.7004 -7.86
89 4.5574 2.6077 0.6139 9.9662 -7.62
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when 0;>87°, and in fact is greater than 5. As far as the RLS (N=2,a( =0.
6309, L = 2;\) is concerned, the effect is just the opposite; only the
difference slope is improved. Similar results are presented in Table 1.7.
Before concluding this section, we should note that neither the LS nor the
RLS distribution considered here is the best choice. Other nonuniform
spacings may offer even greater improvement over the equally spaced
monopulse array. The problem of determining analytically and uniquely
the best spacing distribution for any N and Os to maximize some of the
characteristics still remains unsolved.

1.8 Concluding Remarks and Discussion

In this chapter, we have analyzed basic characteristics associated with
linear arrays, in which all the elements are assumed to be identical and
similarly oriented, the mutual interactions among elements are totally
ignored, and the element used in the array is rather idealized or simple.
Uniform arrays where the amplitude excitations, element spacing, and the
progressive phase distribution are all kept constant are studied in terms of
isotropic elements, short parallel, and collinear dipoles. Arrays with nonun-
iform amplitude excitations are presented by the finite Z-transform
method. Improved endfire arrays, arrays with nonuniformly progressive
phases, and monopulse arrays are analyzed for isotropic elements only.
They can be easily extended to include other simple elements by applying
the principle of pattern multiplication.
Arrays of practical elements with mutual impedances also included will

be considered in Chapter 4. Work on arrays with nonidentical elements, or
with identical elements not similarly oriented, has not been thoroughly
investigated in the past. 3 7 Very limited attention has been given to arrays
whose elements are but small distances away from a straight line.38
For all the cases covered in this chapter, results are presented in a

deterministic manner. That is, the array performance can be evaluated
precisely once the required array parameters are specified. When the total
number of elements in the array becomes extremely large, say of the order
of 103, it may be desirable to analyze the characteristics from a probabi-
listic approach. Excellent work in this respect has been presented by
Professor Lo in his unique papers.39,40 Maher and Cheng have considered
a different facet of this subject by randomly removing elements from an
equi-spaced linear array.41
The analytical methods presented in this chapter should also apply to

arrays with acoustic sources.
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PROBLEMS

1.1 Analyze the broadside uniform array of five isotopic elements with
d=2"A/3 by determining (a) the directivity, (b) beam maximum, (c) null
positions, (d) approximate sidelobe positions and relative levels, and (e) the
directivity when d approaches zero.
1.2 Analyze the ordinary endfire uniform array of four short parallel

dipoles with d="A/4.
1.3 Determine the directivity for the broadside uniform array of four

collinear dipoles with O<,d<,"A.
1.4 Plot the directivity of an improved endfire uniform array with four

isotropic elements as a function of 8. What is 8m?
1.5 Verify some of the formulas given in Table 1.1.
1.6 From the text we know that (1.79) and (1.80) are equivalent. There-

fore, if the division is carried out for (1.80), we should get (1.79). Find
some trigonometric identities for n = 7 in this process.
1.7 Verify (1.90) by using the original polynomial form for S(z) and

carrying out the integration in the denominator of (1.88).
1.8 In Section lA, we analyzed two arrays whose amplitude excitations

were described by f(n=sinkat and f(n= U(n. Principal results were
respectively summarized in Tables 1.2 and 1.3. By comparison, we noted
that the sidelobe level for the array with a tapered amplitude excitation
[fW=sinkat) is improved over that with constant amplitude excitation
[fW = U(n] at the expense of having a wider beamwidth. Naturally, the
degree of improvement in sidelobe level and penalty in beamwidth de-
pends on how strongly the amplitude excitation is tapered. The extreme
case is the well-known binomial amplitude excitation which would
eliminate all the sidelobes. Analyze this binomial array with n = 4, /0= 1,
/ 1= 3, /2 = 3, /3= 1, d ="A/2 and summarize the result in a table similar to
Table 1.2.
1.9 In problem 1.8 we have analyzed the four-element binomial array

with /0:/1:/2:/3=1:3:3:1 and d="A/2 where the sidelobes are totally
eliminated and the beamwidth is very broad. The level of the sidelobe
relative to the beam maximum for this case may be considered the lowest
(- 00 dB). What amplitude distribution (also for n =4, d="Aj2) will make
the level of the sidelobe the highest (same level as the beam maximum) and
the beamwidth very narrow?
1.10 Formulate the problem of nonuniformly spaced symmetric arrays
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when the total number of elements in the array is even, n =2N. Calculate
the directivity for N =2, I;= I, and kd2 =317/2 as a function of d) / d2•
1.11. Analyze the characteristics of a four-element NUPP array with

ao=a)=I, a2=ei82, a3=ei83, kd=17/2. What £Xl' 82, and 83 will approxi-
mately yield the maximum directivity?
1.12 Complete the example given in Section 1.6 for £X) = 10°, 20°, and

40°.

1.13 How can you explain why the sum directivity of an equally spaced
monopulse array with n =2N + I, I;= I, a;= i / N does not always increase
with N for a fixed Os (other than 90° of course).

1.14. Calculate the sum and difference directivities for a seven-element
monopulse array with 1;= I, a;= i/N, L=3A, and 0s=86°. What is um in
this case?
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CHAPTER 2
SYNTHESIS OF DISCRETE LINEAR ARRAYS

In Chapter 1, we analyzed linear arrays and monopulse arrays with
different approaches where the total number of elements in the array,
space distribution, amplitude, and phase excitations were employed as four
sets of varying parameters. In this chapter, we will study the reverse
problem-synthesis. This is done by establishing various techniques to
determine a favorable combination of the above-mentioned four sets of
parameters to achieve certain specifications. One simple kind of specifica-
tion is to express a general requirement on sidelobes and beamwidth
without concerning details of the pattern or the directivity. This subject
will be studied in Sections 2.2 and 2.3.
A second kind of synthesis is to achieve a prespecified pattern shape. It

is here that the problem of approximation is usually involved because the
specifications are, almost without exception, of an ideal nature or are
arbitrary, and therefore do not necessarily correspond to a physically
realizable finite array. The approximation involved is to obtain a realizable
array factor approximating a prescribed pattern within some tolerable limit
of error. The synthesis procedure is then to determine the number of
elements required, space distribution, and excitations in order to yield
exactly this realizable array factor. Whenever possible, attention is always
focused on the point of devising a "best" array factor in the sense that the
mean-square error or the maximum error committed by replacing the
specified pattern by the approximating array factor is a minimum. Al-
ternatively, an upper bound of error, in the sense of either mean-square or
maximum deviation, is given so that the worst case we may expect in the
process of approximation is known beforehand. These topics are to be
included in Sections 2.4-2.7.
A third kind of synthesis is to achieve desired results from a known case.

This method, which is usually referred to as the perturbation approach, is
discussed in Section 2.8. A fourth kind of synthesis we consider in this
chapter is to maximize the directivity of an array with a given number of
elements without duly paying attention to details of other characteristics.
This subject will be studied in Section 2.9 and part of Section 2.10.
Finally, because of the similarity in mathematics used, the analogy

between theories of antenna arrays and passive networks will also be noted
in Section 2.11.

73
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Since we intend to present the synthesis techniques in general terms
without giving due attention to applications of any particular antenna
element, the idealized isotropic element in free space is assumed
throughout this chapter. Studies of various practical HF antennas above a
lossy ground plane will be given in the last three chapters.

2.1 Power Patterns and Relations to Excitation Coefficients and Others

In Section 1.6 when equally spaced arrays with nonuniformly progressive
phases were discussed, we had the occasion to note there that sometimes it
is more advantageous to deal with the power pattern because it involves
only real quantities. In essence, the power pattern for an equally spaced
UPP array of isotropic elements is related to the array polynomial, E(z),
by

where

n-\

= ~ I';'(zm+z-m),
m-O

(2.1 )

n-\-m

I'm = ~ I;Im+;'
;-0

l<;m<;(n-l), (2.2)

n-\

1'0=1 ~ It
;=0

(2.3 )

In (2.1) we have assumed that I;,i=O, I, ... ,(n-l) are real coefficients.
Since the pair zm and z-m always appears together in (2.1), the power
pattern can be converted into a polynomial of y of degree (n -1) with real
coefficien ts,

n-\

P(y) = ~ A;y;,
;=0

if the following substitution of variables is made:

y =z +Z-l =2cosu,
where

u = kd( cosO- cosOo),

(2.4 )

(2.5)

(2.6)
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with d the element spacing, k the phase constant, () the observation angle
measured from the array axis, and ()o the position of the principal maxi-
mum. It is clear from (2.5) that the maximum visible range for y is from
-2 to 2.
From the analysis viewpoint, li,i=O, l, ... ,(n-l) are given first. It is

then straightforward to calculate Ai in (2.4) via (2.2), (2.3), and (2.5). On
the other hand, when the synthesis problem is presented, we often try to
obtain a physically realizable P(y) from the specification through certain
approximation techniques. Here, by the adjective "realizable" we mean
that P(y) should satisfy

P(y) >0 in (2.7)

The question is, then, how can the excitation coefficients Ii be determined
from that realizable P(y)? The answer to this question can be found
through a factorization process. Since P(y) is a polynomial satisfying (2.7),
it must only contain a combination of the following possible elementary
factors:

(i) (y + ci) or (ci - y) with ci real and ;. 2,
(ii) (y + cY with ci real and Icil < 2, (2.8)
(iii) (y2 + 2cily + C;l + C;2)with Ci1 and Ci2 real.

It can be readily verified that the elementary array polynomials corres-
ponding to these factors are, respectively,

(i) Ei(z) = _1_ (1+C'iZ-1),
W,

or 1 (1 ,-I)-- -c.z
W ',

with

(ii)

, = I (c +y,c2 - 4 ).Ci 2" i- i ,

E(z) = 1+c.z-1 +z-2, , ,

C
i
i= 1when ci=2,

(2.9)

(1'1'1') E,.(z)= I [1+(' + ' ) -I " -2]--- Cil Ci2 Z +CilC i2Z
~~
V C'ilC'i2

I I

C i2 = Cil (complex conjugate of C'il ).
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Therefore the procedures of determining I; from P(y) are (a) to find the
elementary factors as those in (2.8), (b) to calculate the corresponding
array polynomials according to (2.9), and (c) multiply all these array
polynomials to obtain the final coefficients.
Note that the factor (i) in (2.8) gives a possible physical null at y = - 2 or

y = 2 only when c;= 2. It is also when c;= 2 that the solution for E;(z) is
unique and symmetric, as can be seen from the factor (i) in (2.9). The
factor (ii) in (2.8) always identifies a null at y = - c;, and there always exists
a unique and symmetric solution for E;(z) corresponding to this particular
factor. The factor (iii) in (2.8) gives, however, no nulls but only a mini-
mum. Hence, in order that arrays have the maximum possible number
(n -1) of physical nulls in the visible range - 2';;;;y ,;;;;2 (and thus that there
is a unique and symmetric solution for the array polynomial), the only
factors that can appear in P(y) are (y +2), (2 - y), and (y + cl with c; real
and Ic;1<2.
Furthermore, although the point y = 2 (z = 1,u = 0) can be a null in

principle, it normally is the position of the beam maximum, especially
when all the excitation coefficients are non-negative, as evidenced many
times in the previous chapter. Thus, the power pattern of an array having
symmetric and non-negative excitations and the maximum possible
number of nulls must take either of the following two forms, depending on
whether n is odd or even:

(n-I)/2
Po(y)= II (y+cl for odd n,

;=1

(n-2)/2
Pe(y)=(y+2) II (Y+CJ2 forevenn,

;=1

(2.10)

(2.11 )

where all c;'s are real, distinct, and Ic;1<2.
The corresponding array polynomials are, respectively, according to

(2.9),

and

(n-I)/2
Eo(z)= II (1+C;Z-I+Z-2)

;~I
for odd n (2.12)

(n-2)/2
EeC z ) = (1 + z - 1 ) II (1 + c;z - 1+ z - 2 )

;=1
for even n. (2.13)
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Excitation coefficients in array elements can then be determined by
expanding (2.12) or (2.13).
The directivity in (1.9), which has been discussed extensively in Chapter

1, can also be expressed in terms of the power pattern

where

4'ITP(Y)max
D= 217 17

~ ~ P(y) sinOdOdcp

2kdP(Y)max
W

(2.14)

w= tb

P(y) dy,

Ja Y4-y2 (2.15)

Yb = 2cos [kd( 1+cosOo)],

Ya = 2cos [kd ( 1- cos 00 ) ],

corresponding to 0 = 'IT,

corresponding to 0=O.
(2.16)

The maximum value of the power pattern, P(Y)max, becomes P(2) when
Y =2 is the position of the beam maximum.
For broadside arrays, 0o='IT/2,Ya=Yb' Eq.(2.15) should be replaced by

where

yc=2coskd,

w= 212

P(y) d-- 01,
Yc V4-y2

'IT
corresponding to 0=0 and 00= 2'

(2.17)

(2.18)

In (2.14), (2.15), and (2.17), we have treated P(y) as a general power
pattern which can take any form as long as it satisfies the realization
condition (2.7). In particular, it can be in the form of either (2.10) or (2.11)
if those condition on excitations and number of nulls are satisfied. Note
that the directivity has been expressed directly in terms of P(y); it is
therefore not necessary to determine the amplitude distribution in the
array polynomial first. Since P(y) is a finite polynomial iny, it can always
be rearranged in terms of the factor (4 - y2) so that the exact analytic
expression for Wand hence that for D can be obtained by integrating
(2.15) or (2.17) term by term. The integration itself is straightforward; no
manipulations with complicated transcendental functions, as are usually
involved, are required.
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Equations (2.10) to (2.13), though simple, are very useful and general
enough to cover most of the practical cases. It should be instructive to give
an example to demonstrate its usefulness, and at the same time show some
interesting interrelationships among the power pattern, amplitude excita-
tions, positions of nulls and sidelobes, and the directivity.
For an array of five elements, the power pattern and the resulting array

polynomial can, according to (2.10) and (2.12), be expressed as

z z
Po(Y)=(Y+c1) (y+cz),

Eo(z) = (1 + C1Z-1 +z-Z)( 1+ czz-1 + z-Z)

= 1+ (c( +CZ)Z-l + (2+c(cz)z-z+ (c1 +cz)z-3+Z-4. (2.20)

It is clear that Eo(z) does give a symmetric amplitude excitation. In order
that all the excitation coefficients be non-negative, we require

and (2.21)

which ensures that the beam maximum is at Y = 2. In addition, when kd = 7T

and 00= 7T /2, we have, according to (2.17) and (2.14),

W=27T[ 6+2( d+c~) + 8c1cZ+ dc~]

and

Positions of nulls and sidelobes are as follows:

(2.22)

(2.23)

nulls:

sidelobes:

Y= -c( and

and -2.

(2.24)

(2.25)

In (2.25), the position of the first sidelobe is obtained from the roots of

(2.26)

excluding Y = - c( and Y = - cz, which have already been identified as
nulls. The point y = - 2 is taken as the position of the second sidelobe,
although it does not satisfy (2.26), because Po(- 2) is not the principal
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maximum and has a non zero value. Levels of the sidelobes relative to the
principal maximum are

(2.27)

and

(2.28)

It is important to note that (2.20) through (2.28) clearly exhibit the
interrelationships among characteristics of this simple array.
Now, we are ready to discuss some special cases from the synthesis

viewpoint.

Case A. If the amplitude excitations are required to be equal (uniform
array), we then have from (2.20),

and

yielding Cl = (1- V5 )/2 and Cz = (l +v5 )/2. Substituting these values
into appropriate expressions, we obtain the following for 00 = 'IT /2 and
kd='lT:
Principal maximum: 25 at y = 2, u = 0, 0 = 'IT /2;
Nulls: aty=0.618 and -1.618, u=:i:.72° and :i:.144°,O=36.9°, 66.4°,

113.6°, and 143.10;
First-null beamwidth: 47.2°;
Sidelobes: at y = - 0.5 and - 2, u = :i:. 104.4° and :i:. 180°,0 = 0°, 54.50,

125.5°, and 180°;
First sidelobe= -k, or -12.04 dB;
Second sidelobe= is, or -13.98 dB;
Directivity = 5.

All of these results, of course, agree with what we learned from Section 1.2.
In addition, the position of the first sidelobe at u = :i:. 104.4° is exact and
obtained easily. No approximation of estimating it or solving a transcen-
dental equation for it is necessary. The approximate position of the first
sidelobe, according to (1.29), would have been at u = :i:. 108°. The results of
C1 and Cz determined for this particular case also satisfy both aD/acI=O
and aD / acz = 0 obtained from (2.23), giving further assurance that an
equally spaced array does yield the maximum directivity when Ii = I and
d="A/2.
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Case B. If we are not satisfied with the first-null beamwidth obtained
above, we can reassign ci in such a way that the first null at y = - CI be
moved closer to the beam maximum at y = 2. From previous experience we
know that this can only be achieved by sacrificing levels of the sidelobes.
In general, levels of both of the sidelobes will be changed when c. and C2

are allowed to vary. Detailed variations of sidelobes levels are displayed in
Fig. 2.1, where we have restricted C1+ c2 ;;;.0 so that none of the excitation
coefficients will become negative. It can be seen there that when C1 = -0.8
and C

2
= 1.142, we still can maintain the first sidelobe (now at y = - 0.171)

at the same level as case A by allowing the second sidelobe (still at y = - 2)
to bear the full burden for improving the beamwidth. Of course, in the
practical situation when a physical element used in the array has a null at
y = - 2 or nearby (e.g., the short collinear dipole), the unusually high level
of the second sidelobe will be reduced to an acceptable level in view of the
principle of pattern multiplication. It is also clear that the first-null
beamwidth cannot be made arbitrarily narrow by choosing a more nega-
tive value for cI, because this process will eventually raise the first sidelobe
to a very high level [see both Fig. 2.l(a) and Eq. (2.27)] or even change the
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Fig. 2.1 Sidelobe levels of a five-element array as a function of amplitude
excitations (or null positions).
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location of the principal maximum. When the extreme situation c)+ Cz = 0
occurs, the excitation coefficients for the second and fourth elements,
according to (2.20), will vanish. The resultant array will have only three
elements with a doubled spacing d' = 2d = A, and therefore the second
sidelobe will become a grating lobe, as clearly indicated in Fig. 2.1(b).
Case C. If we wish to make both of the sidelobes at a same level, say

- 20 dB, we then can set, from (2.27) and (2.28),

(2.29)

and

(2.30)

which yield c) = - 0.0413 and Cz = 1.6498. The required excitation
coefficients will be 1: 1.6085: 1.9318: 1.6085: 1.We also have the following,
assuming the same values for d and 00 as those in case A:
Principal maximum: 51.1062aty=2, u=O, or O='lT/2;
Nulls: at y=O.0413 and -1.6498, u= :!:88.8° and:!: 145.6°;0=36°,

60.4°, 119.6°, and 144°;
First-null beamwidth: 59.2°;
Sidelobes: at y = - 0.8042 and - 2, u = :!:113.7° and :!:180°,0= 0°, 50.

8°, 129.2°, and 180°, all at -20 dB;
Directivity: 4.6857.

Comparing these results with those for case A, we find naturally that the
first-null beamwidth is wider and the directivity is lower for the present
case-a price we have to pay in order to bring the sidelobe level down to
- 20 dB. Should we specify a higher or lower sidelobe level, the corres-
ponding first-null beamwidth will, respectively, be narrower or wider. As a
special case, we can choose c)= Cz = 2. Then, positions of the nulls and
sidelobes all coincide with the point y = - 2, and the sidelobes are totally
eliminated. It is equivalent to saying that the sidelobes are still equal but at
- 00 dB. The required excitation coefficients will then be I: 4: 6: 4: I, a
binomial distribution) (also see Probelm 1.8).
Note that the results obtained from the present case are identical to

those for the commonly known Dolph-Chebyshev array, z, 3 although a
totally different approach is used here. A general synthesis procedure of
obtaining arrays of any number of elements with equal sidelobes is
presented in the next section.
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2.2 Arrays with Equal Sidelobes

In the previous section, we demonstrated the usefulness and advantage of
dealing with the power pattern and illustrated a few cases for a simple
five-element array from different considerations. One of these considera-
tions is to equalize all the sidelobes to the same level, as shown in case C.
Now, we wish to formulate the general problem of synthesizing an array
with equal sidelobes, also starting from an expression for the power
pattern.
Referring to (2.10) or (2.11) we can set the following procedures: (a) to

solve for the positions,Yt, of all the sidelobes from (d/dy) P(Yt)=O; (b) to
equate all P(Yt)'s; and (c) to set the ratio P(2)/ P(y() equal to some
constant, say K2, which is fixed by a desired sidelobe level relative to the
principal maximum. Alternatively, step (c) may be replaced by a prespeci-
fied first null, Y = - CI, which is tantamount to specifying the beamwidth.
The above-mentioned procedures should result in a right number of
independent equations for the complete determination of P(y), from
which the required array polynomial E(z) can then readily be derived
according to (2.12) or (2.13).
For an odd n, we have (n -1)/2 distinct values of ci to be determined

for Po(Y) in (2.10). We then do the following:

(a) Set (d/dy)Po(Y) = 0 giving (n-3)/2 distinct values ofYt, namelY'YI'
Y2, ..• ,Y(n-3)j2' Note that Y(=I= -ci, i= 1, 2, ... ,(n-l)/2, which have been
identified as the nulls. Note further that Y = - 2 is always a sidelobe in this
case, as evidenced by the example shown in Section 2.1.
(b) Set

PO(YI) =Po(Y2),

Po(Y2) =PO(Y3)'
a total of (n-3)/2
independent equations

(c) Set

_P_o(_2_) = _P_o_(2__)__ =K2

PO(YI) Po( -2) ,

or alternatively, set CI = a specified value.

(2.31 )

(2.32)

(2.33 )
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Steps (b) and (c) give the required (n-l)/2 equations for solving for ci.
For an even n, we have (n - 2)/2 distinct values of ci to be determined

from Pe(y) in (2.11). We then do the following:

(a) Set (d/dy)PJy)=O giving (n-2)/2 values of y" namely Yl' Y2, ... ,
y (n-2)/2. Note that Yt't= - ci• Note further that y = - 2 is a null in this case.
(b) Set

PAYt) = Pe(Y2)'

PAY2) =Pe(YJ),

a total of (n-4)/2
independent equations

(c) Set

or alternatively, set C 1= a specified value.

(2.34)

(2.35)

(2.36)

The system of (2.34) and (2.35) or (2.36) again gives the required (n - 2)/2
equations.
When n is very large, it appears that we would have to solve for a large

set of simultaneous equations in (2.31)-(2.33) or (2.34)-(2.36). This, how-
ever, is fortunately not true. The actual probelm-solving procedures are
really simple. Since we have imposed the condition that all the sidelobes
are equal in level through the system of equations (2.31) or (2.34), it is clear
that all c;'s and y/s are related to each other. The simple example given in
the previous section shows that, for n = 5, ct, c2, andYl are related by (2.25)
and (2.30). Therefore, if a general and simple relationship among all ci and
Y, can also be found for an arbitrary n, we can solve the problem directly
in the case where (2.33) or (2.36) is specified; alternatively, we express
ci(i;>2) andy, (alll) in terms of c) only and then solve (2.32) or (2.35) for
c) when the constant K2 there is given. Thus, after finding the general
relationship for ci and Y" we have only one equation, either (2.32) or (2.35),
to solve numerically for Cl. Furthermore, sincey= -Ct determines the first
null, and since its position should be close to the principal maximum at
Y = 2, its approximate value is already known. The larger the n, the closer
the value of ct is to - 2. Therefore it should not be a difficult task to
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determine C1 numerically. This is the reason we have chosen here to
express all Ci and YI in terms of c1 first and then solve for it. Actually, we
can, with equal ease, express all the unknowns in terms of the last
cJc(n-1l/2 for odd n, c(n-2l/2 for even n] and then solve for it because the
value of this last ci should be close to 2.
Now, let us find the general and simple relationship among c/s and y/s.

As we noted at the end of Section 2.1, the results obtained for arrays with
equal sidelobes by our approach of dealing directly with P(y) should be
identical to those for the well-known Dolph-Chebyshev array.2 This is true
because the entire array pattern is representable by a polynomial and there
exists only one kind of polynomial (Chebyshev polynomial4) that displays
equal ripples (sidelobes). Therefore, the power pattern for an array of n
isotropic elements, P(y), discussed so far is but the square of the normal-
ized Chebyshev polynomial of order n-l, Tn-l(x). The normalization
constant is necessary to make the absolute value of sidelobes (ripples)
equal to unity as required by the ordinary way of defining Tn_l(x). This
extra normalization constant does not, however, produce any effect on null
positions. It is with this note that a simple relationship among c/s and y/s
can be derived by the known properties associated with a Chebyshev
polynomial. In his paper, Dolph2 used the transformation of variable,

(2.37)

where Xo is the positon of the principal maximum and u is the same as
(2.6), although only the broadside array was discussed by Dolph. The
symbol y used in our work here' is related to u by (2.5). It is, therefore,
straghtforward to establish the following:

(2.38)

which checks with the obvious fact that x = Xo when y = 2.
Positions of nulls and sidelobes, in terms of x, are given respectively by

and

sin [ (n - 1) cos - Ixl = 0,

(2.39)

(2.40)
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which yield, respectively,

(2i -1)'17
x[= :tcos ( )2 n-l

and

1'17
x[= :tcos--1,n-

where

(2.41)

(2.42)

and

. n-l
1= 1,2""'-2-;

n-3
1=1,2""'-2- for oddn,

. n-2
1,1= 1,2""'-2- for evenn.

Equating (2.41) to y = - C[ and (2.42) to y =y[ through the use of (2.38),
we have

and

2 [ (2i - 1)'17 ] x~
cos 2(n-l) =4 (2-cJ (2.43)

(2.44)

Thus, the following simple and important relations can be established:

2[ '17 ] 2[ 3'17] 2[ (n-2)'lT]= cos 2(n - 1) : cos 2 (n - 1) :...: cos 2(n - 1)

2 ( '17) 2 ( 2'17 ) 2 [ (n - 3) '17 1: cos n - 1 : cos n - 1 : ... : cos 2( n - 1) for oddn, (2.45)
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[
17 ] [317] 2 [ (n - 3)17]

=cos2 2(n-l) :cos
2

2(n-l) : ... :cos 2(n-l)

:COS2(_17 ) :COS2(_217 ): ... :COS2[ _(n-2)17]
n-l n-l 2(n-l)

where

for evenn, (2.46)

and

for oddn

(2.47)

for evenn.

(2.48)

It is seen clearly that, when C1 (or, equivalently, the first null) is specified,
all the c/s (i ~ 2) can be easily determined from the first half of (2.45) or
(2.46) no matter how large n may be. We can then calculate (a) y/s by the
second half of (2.45)or (2.46), (b) the sidelobe level relative to the principal
maximum by evaluating P(Yl)/ P(2),(c) the directivity by (2.14) and (2.15)
with a known element spacing and °0, and (d) the required amplitude
excitations in the array from (2.12) or (2.13).
On the other hand, if K2 is specified, we can (a) find the relations

expressing ci (i ~ 2) and Y, in terms of cl, (b) substitute them into P(2)
/ P(Yl)= K2, (c) solve for c1 numerically, (d) calculate the first-null be-
amwidth from C(> and (e) evaluate other characteristics according to the
same procedure stated in the above paragraph.
The array so synthesized is known to have optimum characteristics in

the sense that the sidelobe level is the lowest for a specified first-null
beamwidth or that the first-null beamwidth is the narrowest for a specified
sidelobe level. This means that it is impossible to find another set of
excitation coefficients yielding a better performance in both the first-null
beamwidth and sidelobe level, for a given n, d, and °0, This is actually true
only when d>"A/2 for °0=17/2 and d>"A/4 for 00=0, as pointed out by
Riblet.5 The reason for this is that if d<"A/2 for °0=17/2 or d<"A/4 for
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80=0, a portion of the pattern in the sidelobe region will be shifted to the
invisible range of u to make the final beamwidth wider although the
sidelobe level is not changed. Under that condition, we can synthesize
another array with the same set of n, d, and 80 to give a narrower
beamwidth for the same desired sidelobe level. Details on this particular
point, which is important from the optimization viewpoint, will be pre-
sented in the next section. For the remaining material in this section, we
will consider d>lI./2 for 80=7T/2 and d>lI./4 for 80=0 only.
Although the general relations between various c/s and y/s have been

derived in (2.45) and (2.46), some more special relations, which are
interesting and useful, are presented below:

A. For an array with equal sidelobes and an odd number of elements
(n=2N + 1), the entire region of sidelobes is symmetric with respect to a
central point.

A-I. If N is odd, this central point is a null aty= -C(N+I)/2' and the
following relations hold true:

(2.49)

. N-l
1=1,2""'-2-

(2.50)

Proof For n=2N+l, the power pattern becomes

With an odd N, we have, by using (2.45),

2-ci
2-C(N+I)/2

2-CN+I_i

2-C(N+ 1)/2

cos2 [(2i -1)7T /2(n -1)]
cos2 [N7T/2(n-l)]

cos2 [ (2N - 2i + 1)7T/ 4N ]
cos2 (7T /4)

cos2 [(2i -1)7T /4N]
cos2( 7T /4)

(2.51)

sin2[(2i-l)7T/4N]
cos2 (7T /4)

(2.52)



88 SYNTHESIS OF DISCRETE LINEAR ARRAYS

and

2+y;
2-C(N+1)/2

2+YN-;

2 - C(N+ 1)/2

cos2 [i'17/(n-l)]
cos2 ('17 /4)

cos2 [(N - i)'17 /2N]

COS
2 ('17 /4)

cos2 (i'17 /2N)
cos2('17/4) ,

sin2 (i'17 /2N)
cos2('17/4) .

(2.53)

(2.54)

The addition of (2.51) and (2.52) gives

4- (C;+CN+1_;)

2 - C(N+ 1)/2

or

__ 1__ =2
cos2 ('17 /4)

The additon of (2.53) and (2.54) yields

4+ (Y;+YN-;) =2

2 - C(N+ 1)/2

or

- C(N+I)/2= t(Y;+YN-;)'

(2.55)

(2.56)

Thus the proof for (2.49) and (2.50) is completed.
An example for n = 11 (N = 5) is shown in Fig. 2.2, where we can see that

the null, Y = - C3' is the symmetric point, and that positions of nulls and
sidelobes have the following interesting relations:

Pc (y)

(2.57)

Fig. 2.2 Relative positions of nulls and sidelobes for an eleven-element
array with equal sidelobes.
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and
, (2.58)

(2.59)

A-2. If N is an even number, the central point is a sidelobe at Y =YN /2
and the following relations hold true:

YN/2=HYN/2-i+YN/2+J, i= 1, 2, ... ,(~ -1),

(2.60)

The formal proof for (2.59) and (2.60), which can be done by procedures
similar to those for case A-I, is left to the reader, who should also draw a
graphical presentation as that in Fig. 2.2 in order to appreciate the detailed
symmetry.

B. For an array with equal sidelobes and an even number of elements
(n = 2N) there is no particular point in the entire region of Y with respect to
which the sidelobes are symmetric. Instead, the following relations hold
true:

i = 1, 2, ... ,(N - 1). (2.61)

The proof for the above can be found elsewhere,6 and is omitted here.
The expression for directivity given in (2.14) is still good for arrays

discussed in this section once P o(Y) or Pe (y) is determined.
Before giving a numerical example to illustrate the synthesis of arrays

with equal sidelobes, we are interested to note, once again, that if the
parameter c1 should become 2 (equivalently, if the first null of the array is
moved to the point Y = - 2), then, by using the general relation (2.45) or
(2.46) we conclude that

for all i and I (both odd and even n ).

Thus, the power pattern and the corresponding array polynomial will be,
respectively,

and

n-IP(y)=(y+2) for both odd and even n (2.62)

n-I

E(z)=(l+z-lr-I=L (n-l)! Z-i

. i! (n - 1-i)! '
1=0

which is the binomial distribution.

(2.63)
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Since the power pattern has only one null at Y = - 2 and no sidelobes, a
sidelobeless array results. As we already mentioned in Section 2.1 when
case C of the example was discussed, this array still can be considered as a
special array with equal sidelobes whose level is at - 00 dB relative to the
principal maximum [equivalently, P(2)1 P(y])=K2= 00].

Example. Let it be desired to synthesize a seven-element, equally
spaced, broadside array with d=A/2, which will have -20 dB sidelobes.
The given conditions are then n=7 (N=3), K2= 100, 80='TT12, and

kd = 'TT. Since n is an odd number, we must start with (2.10),
222

Po(Y)=(Y+C]) (Y+C2) (y+c]), (2.64)

where CI' C2, c], and the positions of sidelobes are related according to
(2.45). That is,

C2= 0.9282+ 0.5359cl'

C]= 1.8564+0.0718cl,

y] = -0.3922-0.8039c],

12 = - 1.4640- 0.2680c I'

The other condition, P(2) 1 P(y I)=P(2) 1 P( - 2)= 100, yields

(2 + c])(2 + c2)(2 + c]) = 10(2 - cl)(2 - c2)(2- c]).

Solving (2.65) and (2.67), we obtain approximately

(2.65)

(2.66)

(2.67)

YI =0.3620, Y2= -1.2128,
(2.68)

which, of course, check with (2.49) and (2.50).
The principal maximum for this array is at y = 2, u = 0, or 8= 90°, with

Po(2) = 95.2141.
Nulls occur at y = 0.9382, - 0.4254, - 1.7890;

u= :t62°, :t 102.3°, :t 153.5°;
0=31.5°,55.4°,69.9°,110.1°,124.6°,148.5°.

Sidelobes are at YI =0.3620, 12= -1.2128, and 13= -2;
u= :t79.6°, :t 127.3°, :t 180°;
8=0°,45°,63.8°, 116.2°, 135°, 180°,

with P0(0.3620)= Po(- 1.2128)= P( - 2) = 0.9521.
First-null beamwidth is (BW)I=40.2°.
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The half-power point, if desired, can also be determined by solving
p O(Yh) = -!- P0(2), or

Y~+ 1.2762y~ - 1.3165Yh -7.6138 =0. (2.69)

There is only one change of sign in (2.69), yielding one positive real root,
Yh=1.80l5, uh=:r.25.7°, or Oh=81.8° and 98.2°. The half-power beam-
width is, therefore, (BW)h = 16.40.
The required array polynomial is

Eo(z) = (1-0.9382z-1 + z-2)(1 +0.4254z-1 + z-2)(1 + l.7890z-1 + Z-2)

= 1+ 1.2762z - I + 1.6835z - 2+ 1.8384z - 3 + 1.6835- 4

(2.70)

(2.71 )

It is seen that for the case being considered (d="A/2, 00='IT/2) all the
excitation coefficients are positive and symmetric with respect to the
central element.
For the purpose of calculating the directivity we rearrange the power

pattern given in (2.64) in terms of (y2 - 4) so that the integration required
by (2.17) can be carried out term by term. That is,

Po(Y) = (y2_4)3 +2.5524y(y2-4)2 + 1O.9957(y2-4)2

+ l5.6309y(y2-4) +39.8763(y2_4) + 23.5654y +48.0833,

W=2 (2 Po(y)dy =2'IT(14.3050).
)-2 Y4-y2

Substituting (2.71) into (2.14), we obtain

D=6.6560. (2.72)

A caution should be borne in mind that the characteristics obtained
above can be expected exactly only if the accuracy in exci,tation
coefficients is maintained to the fourth digit after the decimal point, as
shown in (2.70). From the practical consideration, it may not be possible to
get such accurate excitations. The actual results would then deviate from
those ideal results. How much the deviation will be depends on how
inaccurate the excitations are. An analysis of the sensitivity function has
been given by Ma,6 which should be helpful for estimating the deviation
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mentioned above. Mathematically, the sensitivity of a quantity A with
respect to a parameter B, in a proportional form, may be defined as

(2.73)

which gives the percentage change in A for a given percentage change of
B. S~ can be first expressed as function of A, B, and some other
_parameters (if any) and then numerically calculated for a particular case.
For simplicity, we can choose cl in the above example as B. Typical items
we are interested in are percentage variations of the principal maximum,
sidelobe level, excitation coefficients, positions of nulls and side1obes, and
directivity, due to a small percentage shift of the first null. Again, let the
array with n = 7 and K2 = 100 be considered. The excitation coefficients
according to (2.12) are given by the following:

(2.74)

Now suppose that the parameter cl is changed, for some reason, by a small
amount aCI so that it takes a new value

(2.75)

and suppose that (2.65) still holds. That is, all the sidelobes of the new
array after c1 is changed still remain equal (of course, the level will be
changed). Then, by (2.65), we have

aC3 =O.07l8acp

aYI= -O.8038acl,

aY2= -O.2680acl,

(2.76)
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and

0.07l8c1SC3= --- = -0.0377,c, C
3

-0.8039c1SYl= ----- =2.0837,
c, YI

-0.2680c1
SY2 = ---- = - 0.2073.c, Y2

(2.77)

Here we can see that the position of the first sidelobe (Yl) is most sensitive
and the location of the last null (c3) is least sensitive to the change of C I' In
fact, they respectively increase (plus sign) and decrease (minus sign) by
about 2% and 0.04% when c1 is increased by 1%.Using (2.76) and (2.74) we
can also compute the percentage change in Ii' i= 1,2,3,4,5. The reader is
asked to apply similar steps for evaluating the percentage change of other
characteristics.
It should be noted that for arrays with a given number of elements,

equal sidelobes, and d>"A/2, the value of c1 is solely determined by a
specified value of K2 such as in (2.67). Once it is obtained, all the other c/s
are calculated according to (2.45) or (2.46), which in turn control the array
polynomial such as that in (2.70) and other characteristics. Therefore, the
current distribution in the array elements, when d >"A/2, is a function of
K2 only, and is independent of kd and Bo' When the specification on K2 is
changed, it is equivalent to varying the parameter C I' Then, C2' C3' .•. , will
vary accordingly. If K2 becomes larger and larger, so does C] to make the
first-null beamwidth wider and wider, until the limit C 1= 2 is reached,
corresponding to K2= 00. Thus, the value of C] and the associated beam-
width increase monotonically with K2, or decrease with increase in the
sidelobe level. Their relationship is shown in Fig. 2.3 for a few number of
n. On the other hand, the variation of D with respect to C] or K2 is not
monotonic, as can be seen from Fig. 2.4. Hence, we conclude that for each
n, there exists a particular value of c] (or a particular sidelobe level) which
will yield the maximum directivity. Of course, the maximum directivity
here is true only when the constraint on equal sidelobes is held. Without
this constraint, the directivity can be improved still further, the details of
which will be studied in a later section.7
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Fig. 2.3 First-null positions of arrays with equal sidelobes as a function of
the main-Iobe-to-sidelobe ratio.
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Fig. 2.4 Directivities of arrays with equal sidelobes as a function of the
first-null position when d =A/2 and ()o= 7T /2.
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2.3 Optimization with Smaller Element Spacing

As we mentioned in the previous section, the results obtained there are
considered optimum in Dolph's sense only when the element spacing is no
less than one-half wavelength (00 = 'TT/2). This section is intended to
explain why that solution is no longer optimum when d<A /2, and offers a
method of optimization when such a case arises. Since there is a slight
difference in the optimization procedure for the broadside and endfire
arrays, we propose to discuss them separately.
A. Optimum Broadside Array: u = kd cos 0, y = 2cos u. To keep the dis-

cussion simple and easy to understand, let us reexamine the numerical
example given in the previous section where the condition d = A/2 was
used. Based on data obtained there, the entire pattern may be plotted as in
Fig. 2.5(a). When the element spacing is greater than one-half wavelength,
the visible range of u is larger, and more sidelobes of the same level will be
brought into the visible range, to make the beamwidth narrower than that
for kd = 'TT. Note that these extra sidelobes are not independent by them-
selves in the sense that they are merely mirror images (with respect to
u= :t'TT) of those inside 0<; lui <;'TT.Admittedly, the sidelobes inside O<;lul
<; 'TT are not totally independent either since their positions are related by
(2.45), but at least they as a whole can still move around depending on the
specified value of K2. Those extra sidelobes in 'TT<;lui<;kd, when kd>'TT,
do not even have such limited freedom because they are completely fixed
by those inside 0<; lui <; 'TT. The result for d >A/2 is therefore still optimum
in Dolph's sense.
When the element spacing is less than one-half wavelength, or kd < 'TT, a

portion of the sidelobe region shown in Fig. 2.5(a) will be invisible. Then,
only the reduced visible portion of the pattern (in terms of u) will be
expanded to occupy the same physical range of 0, 0 <; 0<; 'TT. Under this
condition, the pattern no longer containes the maximum possible number
of sidelobes; the first-null beamwidth will be wider and the directivity will
be lower than those for kd = 'TT, although the sidelobe level remains un-
changed. A sketch for this case is given in Fig. 2.5(b).
The optimization technique to be described is based on the idea of

keeping the maximum possible number of sidelobes within the visible
range of u even if kd <; 'TT. In order to achieve this, the following linear
transformation of variables,

(2.78)

is suggested where the constants AI and A2 are to be determined by
suitable conditions. Since the pattern of the broadside array is symmetric
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Fig. 2.5 Power patterns of a seven-element broadside array with equal
sidelobes (-20 dB): (a) kd='Tr, (b) kd<'Tr without applying
(2.78), (c) kd<'Tr with (2.78).

with respect to u = 0 or ()= 90°, it is sufficient to consider the portion of the
pattern in 0": ()..:90°. In this region, the visible range for kd = 'Tr is
O":u":'Tr, or -2":y":2, and that for kd<'Tr is O":u":kd, or 2coskd":y'
..:2. Therefore, the conditions to ensure the transformation of the maxi-
mum number of sidelobes in -2":y": 2, when kd='Tr, into 2coskd":y',,: 2,



THEORY AND APPLICATION OF ANTENNA ARRAYS 97

wheny=2,when kd < '17 are y'=2

y'=2coskd wheny= -2.
(2.79)

The transformation between y and y' can be clearly illustrated by examin-
ing Figs. 2.5(a) and 2.5(c). From (2.78) and (2.79), we have

and (2.80)

(2.81 )

Note that for kd='17, Al = 1,Az=O, andy=y', an identical transformation.
For kd < '17 (A I* 1 and A z*0), then

y'-Az
y=-A-'

I

Substituting (2.81) into (2.64), we have the transformed power pattern

where
(2.82)

Cj=Alcj-AZ' i= 1,2,3. (2.83)

Based on (2.82), the new directivity and array polynomial will be, respec-
tively,

and

(2.84)

3
E'o(z)=(AI)-3 II (l+Cjz-l+z-Z).

j~1
(2.85)

Equation (2.85) gives the new set of excitation coefficients required to keep
the maximum number of sidelobes in the visible range even when kd < '17.

As an example, let us consider d = A/4 or kd = '1712. If we were to use the
same excitation coefficients obtained in (2.70), the resulting array perfor-
mance would have only one null in 0<tJ,";;;90°, corresponding to u=62°
(y=0.9382), which now gives 0=46.5° (against 0=31.5° for kd='17). The
other two nulls formerly at u= 102.3° and 153.5° would be shifted to the
invisible range. By the same reason, only one sidelobe would occur at
y = 0.3620, u = 79.60, or 0 = 27.80. Although the sidelobe level remains
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unchanged, the first-null beamwidth and directivity would be (BW)( = 87°
(against 40.2°) and D = 3.3871 (against 6.6560).
Now, using the transformation (2.78), we have

y=2(y'-l),

(2.87)

E'o(z) = 8( 1- 2.36l9z-1 +4.3947z-2-4.8458z- 3 +4.3947z-4

- 2.36l9z-5 + Z-6).

Principal maximum: Qo(2)=95.2l4l (unchanged) at 8=90°.
Nulls: at y'= 1.4691,0.7873,0.1055;

u = :t 42.7°, :t 66.8°, :t 86.9°;
8= 15°,42.1°,61.7°, 118.3°, 137.9°, 165.0°.

Sidelobes: at y\=1.l81O,y'2=0.3936,y'3=0;
u= :t53.8°, :t78.6°, :t900;
8=0°,29.2°,53.3°, 126.7°, 150.8°, 180°;
Qo(y'()= QO(y'a)= QO(y'3) =0.9521 (unchanged).

First-null beamwidth: (BW)'( = 56.6°.
Directivity: D' = 4.7870.

Three interesting points are noted. First, the number of physical nulls
and sidelobes remains the same, although their positions are changed.
Second, the first-null beamwidth and directivity, although poorer than
those when kd = 'TT, are better than those if no transformation is made.
Third, the new excitation coefficients in (2.87) are dependent on kd,
although they are still symmetric with respect to the central element. The
only price we have to pay is the sign change (phase reversal) in the
even-numbered excitation coefficients and the relatively larger ratio among
these coefficients, as can be seen from (2.87).
At this point the reader may have experienced some confusion between

y and y', and wonder why we did not use z' in (2.85). The reason is that,
when kd < 'TT, we synthesize the array by first obtaining a power pattern
Po(y) as if kd='TT, and then apply the transformation (2.78) to get QO<y').
Once this transformation is achieved, we actually can and should forget
about the difference between y and y', and treat y' as y. Of course, the
whole confusion would be totally eliminated if we could synthesize a Qo(Y)
directly when kd < 'TT without having to use the transformation between y
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andy'. The truth is that we do not know how to do this with our approach
of dealing with power patterns, or perhaps will have more complications if
we do ..
Although we have presented the optimization for arrays with equal

sidelobes, when the element spacing is less than one-half wavelength, by a
simple example with seven elements, the transformation (2.78) and the
same procedure apply also to any other array with an odd number of
elements. Specifically, whenever the power pattern of an array can be
represented by (2.10), the transformation can be used such that the
transformed power pattern and array polynomial will take, respectively,
the following forms:

1 (n-l)/2
Qo(y') = ---;;-=t II (y' + C;)2 (2.88)

Al ;~]
and

where

(2.89)

C;=A]c;-A2,
. n-l
1= 1,2""'-2-' (2.90)

Al and A2 are given in (2.80), and c;'s are the parameters in Po(y). The
expression for directivity in (2.84) is also good for this general case.
The reader is asked to repeat the same with different values of d

(O<.d<A/2) and plot D' versus d for n=7, K2= 100, and (Jo='TT/2.
When the array has an even number of elements, we start with (2.11). In

addition, if kd < 17, the transformation (2.78) applies. The transformed
power pattern will then be

where

(2.91 )

when kd<'TT. (2.92)

The expression (2.91) still satisfies the necessary condition

in the visible range which is now

2 cos kd <.; y' <.;2.

(2.93)

(2.94)
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Comparing (2.91)-(2.93)with (2.7)-(2.8), we note that the lower end of the
visible range has been changed from - 2 to 2coskd, and that the factor
y' _ y; does not correspond to any of those listed in (2.8). Because of this,
we are unable to determine an elementary array polynomial Ee(z) such
that Ee(z) Ee(z) will yield, with the aid of the relation Z+Z-l=y', the
factor y' - y;. It means that (2.93) and (2.94) are necessary but not
sufficient conditions. Therefore, the form (2.91) is not physically realizable
-no array polynomial exists to give a power pattern such as that in (2.91).
This leaves the problem of synthesizing broadside arrays yielding a better
beamwidth-sidelobe relationship than that from the Dolph-Chebyshev
array when the number of elements is even and the element spacing is less
than one-half wavelength, mysteriously unsolved5,8. Although a general
approach for trying to solve this kind of problem has been attempted by
Pokrovskii9,1O, no specific numerical results have been obtained to prove
that his formulation would lead to realizable arrays. The unfortunate
conclusion just noted may be expected by observing the form of (2.87)
where the new excitation coefficients for an array of odd number of
elements after the transformation (2.78) is applied are still symmetric but
change signs alternatively. The principal maximum which always occurs at
y'=2 or z=l for broadside arrays is Qo(2)=[E'(1)f>0. If the same type
of transformation were also successful when n is an even number, the final
excitation coefficients would have the same pattern in sign changes and
give a new array polynomial such as E;(z) = 1- C1Z-1 +C2Z-

2
- C2Z-

3 +
C
1
Z-4-Z-5 (n=6). Then, the array would have a null at z=l (which is

supposed to be the principal maximum). This fact confirms why the
realization of such an array is impossible. It will be clear later that this
same situation does not arise for the optimum endfire array whose prin-
cipal maximum, although still at 0= 0, does not occur at y' = 2 when the
ordinary endfire condition is not imposed.

B. Optimum Endfire Array: u=kdcosO+a, y=2cosu. Let us con-
sider first the power pattern Po(y) given in (2.10) where all the sidelobes
are supposed to be at an equal level. The entire pattern for d = A12 or
kd = 'TT is plotted in Fig. 2.6(a) when the ordinary endfire condition
a = - kd is used. Note that in this case there always is a large backlobe at
0= 'TT having the same magnitude as the principal maximum at 0= O.This
type of bidirectional pattern is usually unwanted. If a smaller d is chosen,
some portion of Po(y) on the left side of Fig. 2.6(a) will be invisible. It is
clear that there exists an element spacing d* <A/2 for the ordinary endfire
such that the whole visible range will end aty*=2cos(-2kd*) and that
the final pattern will have a sidelobe at 0 = 'TT with the same level as the
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Fig. 2.6 Power patterns of an endfire array with equal sidelobes (n
= odd): (a) ordinary endfire kd= -a=7T, (b) optimum endfire
when d <d* and a =1= - kd.

other sidelobes. In this case, no modification for improving the beamwidth
or directivity is possible if the sidelobe level remains unchanged. This
indeed is the case considered before by Rhodes.II
For d <d*, some of the sidelobes will also be invisible; then only the

visible portion will be expanded into the region O<J)<,7T, making the
beamWidth wider than the case when d=d*. In order to make improve-
ments under this circumstance, an optimum endfire condition a =1= - kd,
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together with the transformation (2.78), is proposed such that the final
pattern still contains much as it formerly did up to y = y*. Since there are
three unknowns [AI' A2 in (2.78), and al involved, there should be three
matching conditions to achieve the idea expressed above. They are

(optimum endfire) (original ordinary endfire)

y'=2cos(kd+a) wheny=2 (0=0),

y'=2cos( -kd+a) wheny=y* (0=7T), (2.95)

y'=2 wheny= -2 (0)7T/2).

The first condition of (2.95) maps the location of the principal maximum,
the second condition ensures that the maximum possible number of
sidelobes at equal level be kept and that the large backlobe be avoided,
and the third condition maps the sidelobe (for odd n) or the null (for even
n) originally at y = - 2 to y' = 2. It is also this third condition which
removes the difficulty of having an unrealizable power pattern encoun-
tered previously when the optimum broadside array with an even number
of elements was discussed. The details on this point will be clear later.
The transformation (2.78) with the conditions given in (2.95) is shown in

Fig. 2.6(b). From this figure we can see that, for d <d*, the tmnsformation
always squeezes the whole pattern up to y* into the visible range, and
therefore helps to shift the pattern toward the main beam, making the
beamwidth narrower and the directivity higher. Solving a, A I' and A 2 using
(2.95), we obtain

a (kd* ) (kd)tan 2" = coe -2- tan 2 '

. 2( a+kd)A1=-sm -2- <0,

where d* is related to y* by

y*=2cos( -2kd*),

(2.96)

(2.97)
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and y* can be easily determined by relations similar to those in (2.50),
(2.59), and (2.61):

or

y*=2[1-C(n+I)/4]

y*=2[ 1+Y(n-l)/4]

n-lfor n odd and -2- odd,

n-lfor n odd and -2- even,

(2.98)

(2.99)

y*=2+Yl-C(n-2)/2 for n even. (2.100)

It should be emphasized that d* or y* is fixed once the total number of
elements n and the sidelobe level represented by K2 are specified for arrays
with equal sidelobes. The phase a and the transformation coefficients A I

and A 2 required to optimize the endfire array can be calculated easily from
(2.96) once a d (<d*) is given. Since the value of kd* is less than but near
7T, it can be concluded from the first equation of (2.96) that ex should be in
the first quadrant. Note that (2.96) also holds true for d = d*, and in that
case yields

ex* =7T- kd* >0, (2.101)

and (2.102)

From (2.101) it seems that there is an extra phase of 7T for ex* as compared
with that required by the ordinary endfire condition. This extra phase of 7T

is actually taken care of by the fact that Al = - 1 and A 2 = 0. Of course,
this apparent discrepancy can be removed if we try to map y = - 2 onto
y' = - 2, replacing the third condition in (2.95). While this alternative
matching condition seems more natural as far as the limiting case d~d* is
concerned, it will create a little mathematical difficulty later in dealing
with the limiting case to the other end (d~O). In any case, these two
approaches yield the same array depending on whether we like to express
the final excitation coefficients with alternating signs, as will be clear later
in an example, or to have the sign reversal absorbed in ex if using the
alternative transformation suggested above.
The optimization discussed above specifically for P o(Y) (in Fig. 2.6)

applies as well to Pe(y) given in (2.ll).
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Substituting (2.81) into (2.10) and (2.11), we have the transformed power
patterns

(n-I)/2
Qo(y')=Ai(n-l) II (y'+C;)2

;=1

and
(n-2)/2

QeCy')=Ai(n-I)(y'-2) II (y'+C;)2
;~I

for odd n (2.103)

(n-2)/2
= -Ai(n-I)(2-y') II (y'+C;)2

;=1

where

C;=Alc;-A2.

for even n, (2.104)

(2.105)

Note that the coefficient in the second form of (2.104) is positive since
Al <0 and A i(n-I) <0 for an even n. Note also that we now have a factor
(2 - y') in (2.104) rather than (y' - 2cos kd) in (2.91). In this case, we do
fortunately have an elementary array polynomial (1- Z -I) corresponding
to (2-y'). Therefore, the power patterns in (2.103) and (2.104) are both
physically realizable. The corresponding array polynomials are, respec-
tively,

(n-I)/2
E'o(z)=Ai(n-I)/2 IT (1+C;z-l+z-2)

;~I
for odd n (2.106)

and
1/2 (n-2)/2

E'e(z)=[ -Ai(n-O] (l-Z-I) IT (1+C;Z-I+Z-2) forevenn,
;=1

(2.107)

from which a new set of excitation coefficients required for synthesizing
the optimum endfire array with equal sidelobes and d <d* can be derived.
The directivity D', the first-null beamwidth (201), and the half-power

beamwidth (20h) can be calculated, respectively, from

I 2kdQ(y'a)
D= W' ,

- C1 =2cos (kdcosOI +0:),

(2.108)

(2.109)
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and

where

and Y'h is determined by

Y'h =2cos (kdcos8h + a),

W'= fcY'b Q~',

y~ V4-y,2
Y'b=2cos( -kd+a),

y'a =2cos (kd+a),

(2.110)

(2.111 )

(2.112)

(2.113)

(2.114)

For the purpose of illustrating the theory thus presented, let us recon-
sider the example discussed in Section 2.2, where n = 7 and K2 = 100. The
answer on ci and y, obtained in (2.68) still applies. If the ordinary endfire
condition, -a=kd=7T, is used, the pattern will be bidirectional. To avoid
this, the longest element spacing we can' accept is d*, which can be
determined according to (2.98) and (2.97). That is,

y*=2(1-c2) = 1.1492, 2kd* = 305.10, or d* = 0.4238;\.

With -a*=kd*= 152.55°, the array polynomial yielding this desired
power pattern will be the same as that in (2.70), and the important
characteristics are given below:

Principal maximum: aty=2, u=O, 8=0, with Po(2)=95.2141.
Nulls: at y = 0.9382, - 0.4254, - 1.7890;

u= -62.0°, -102.3°, -153.5°, -206.5°, -257.7°, -298.0°;
8=53.6°, 70.8°, 90.4°, 110.7°, 133.6°, and 162.5°.

Sidelobes: at y\ =0.3620'Y2= -1.2128'Y3= -2'Y4=Y*= 1.1492;
u= -79.6°, -127.3°, -180°, -232.7°, -280.4°, -305.1°;
8=61.3°,80.5°, 100.4°, 121.7°, 147°, 180°;
with Po(Y\) = Po(Y2) = PO(Y3)= PO<y*)= 0.9521.

First-null beamwidth: (BW)l = 107.2°.
Half-power point: Yh= 1.8015, uh= -25.7°, 8h=33.8°,

(BW)h =67.6°.
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Directivity: Yb = y* = 1.1492,Ya =2,

w= icYb

Po(y)dy =46.7626,

Ya V4-y2
2kd*P (2)

D = Wo = 10.8423.

If d = "A14 is assigned instead, and if we still use the ordinary endfire
condition - Ci. = kd = 'IT 12 without applying the transformation presented
earlier in this section, the, excitation coefficients would, of course, remain
the same as those in (2.70). The entire visible range of u would be shrunk
to 0;> u;> - 180°, and as can be seen from the data listed above, the last
three nulls and sidelobes would be shifted to the invisible range. As a
consequence, the first null and half-power point in terms of () would be
changed, respectively, to ()1=71.9° and ()h=44.4°, making (BW)I=143.8°
and (BW)h=88.8°, which are much wider than those for d=d*. We also
would have D = 6.6560, the same as that for the broadside array when
d="A/2 [see (1.48)].
Now, let us apply the transformation (2.78) together with the optimum

endfire condition (2.96) to see how much improvement can be made for
the case d="A/4. Since kd*= 152.55° and kd=90°, the required phase and
the transformation coefficients, according to (2.96), will be Ci. = 6.82°,
Al = -0.5595, and A2=0.881O. We then have u=90°cos()+6.82°,

Qo (y') = 32.5986(y' -0.3561 )2(y' -1.1190)2(y' - 1.8819)2, (2.115)

E'o(z) = 5.7095( 1- 3.3570z-1 + 6.1745z-2 -7.4640z-3

(2.116)

Based on (2.115) and (2.116), the important characteristics of the new
array are as follows:

Principal maximum: at ()=O, u=96.82°,y~=2cos96.82°= -0.2378,
with Qo(y~)=95.2141.

Nulls: at y'=0.3561, 1.1190, 1.8819;
u= i:.79.75°, i:.56.0°, i:.19.8°;
()=35.9°, 56.9°, 81.7°,107.2°,134.3°,164.1°.
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Side1obes: at yi = 0.6785, y; = 1.5596,y; = 2., y~ = 0.2378;
u= :t:70.2°, :t:38.8°, 0°, -83.18°;
(J = 45.2°, 69.2°, 94.4°, 120.4°, 148.8°, 180°,
with QO<y;)= Qo(y;)= Qo(y;) = Qo(y~)=0.9521.

First-null beamwidth: (BW)( =71.8°.
Half-power point: y~= -0.1268, uh = 93.65°, (Jh = 15.3°,

(BW)h = 30.6°.
Directivity: y~ = 0.2378, y~ = - 0.2378, W' = 8.0561, D' = 37.1302.

Note that (BW)( and (BW)h are much narrower than those when the
ordinary endfire condition is used, and in fact are even better than those
when d=d*. Because of the improvement in beamwidths, the directivity is
increased by 558% as compared with the case - a = kd = 'IT /2, and by 342%
as compared with the case -a*=kd*= 152.55°.
Optimum endfire arrays with an even number of elements can be

handled in a similar fashion. Numerical results for n =3 through n = 7 and
for a sidelobe level of - 20 dB are given in Figs. 2.7 and 2.8 as a function
of d. For comparison, the corresponding directivities for the ordinary
endfire array (- a = kd) ate also included in Fig. 2.7(a) as the dashed
curves. The points marked with a star on these dashed curves are those
when d=d*.
From these figures we see that the smaller the d, the narrower will the

beamwidth become, and the higher will the directivity be. The limiting
characteristics for n = 3, 4, and 5 as d~O are also included in these figures.
They are obtained by taking appropriate limiting processes. Specifically,
the equations in (2.96) should be replaced by the following as d~O:

(
kd* )a-(kd)cot2 2 '

where

2

A =_ (X- x
3
+ x

5 _ ... )(- 3! 5! '

(
X2 x4 )2A =2 1- - + - - ...

2- 2! 4! '

a+kd 2(kd*)x=-2--(tkd)csc 2'

(2.117)
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Fig. 2.8 (a) Excitation coefficients (relative to ]0) for optimum endfire
arrays with equal sidelobes (- 20 dB).

The number of terms to be carried for A 1 and A 2 in (2.117) is determined
by n, the total number of elements in the array.
The limiting directivities as d~O presented here are generally smaller

than n2 obtained by Uzkov, 12 who formulated the problem by means of an
orthogonal transformation in vector space. The reason for this is again due
to the constraint on equal sidelobes studied here.
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Fig. 2.8 (b) Phases required for optimum endfire arrays with equal
sidelobes ( - 20 dB).

Although the optimized directivity increases when the element spacing is
decreased [as demonstrated in Fig. 2.7(a)], this kind of superdirective array
has long been considered impractical since it requires very large currents of
opposite signs in closely spaced neighboring elements [see Fig. 2.8(a)],
resulting in excessive heat loss and low radiation efficiency. For this
reason, we define the main-beam radiation efficiency, 7/, as another criter-
ion to evaluate the final performance of a superdirective array:

(2.118)
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where

By Schwarz's inequality we see that 11 in (2.118) is always less than 100%. It
can be 100% only when Ii = I (uniform array). Numerical results of 11 for
the same set of cases considered in Fig. 2.7 are presented in Fig. 2.9.
Clearly, we see that, when the element spacing becomes smaller, the
excitations yielding superdirectivities also tend to produce lower main-
beam radiation efficiency. A practical designer will choose a suitable
spacing to compromise between the directivity and the main-beam radia-
tion efficiency.
The problem of synthesizing optimum endfire arrays with equal side-

lobes was first formulated by DuHamell3 extending Riblet's methodS of
synthesizing broadside arrays. Their method was again based on
Chebyshev polynomials and was valid only when n is odd. It was
Pritchardl4 who, basing his work on Dolph's method,2 developed the
formulation also including the array when n is even. The material pre-
sented in this section was based on the unified approach proposed by
Ma.6•ls An extended table for characteristics of optimum endfire arrays
with equal sidelobes when n = 3 through n = 30 with the sidelobe level
varying from - 10 through - 50 dB has been published by Ma and
Hyovalti 16 as an NBS monograph.

10

Fig. 2.9 Main-beam radiation efficiency for optimum endfire arrays with
equal sidelobes ( - 20 dB).
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2.4 Array Synthesis by Interpolation

In the previous two sections, we presented a simple kind of array synthesis
with a specification on the sidelobe level or the beamwidth without
considering the pattern details. In this section we will study a second kind
of synthesis-to achieve a prescribed pattern shape within an acceptable
tolerance on error. This problem is conventionally solved by expanding the
prescribed pattern F(u) into its Fourier series and then summing the first
few terms for an approximation. One serious condition required by this
method is that d = 1../2 or kd = 'TT, since the entire visible range of u is then
exactly 2'TT ( - 'TT ,;;;;u ,;;;;'TT for broadside, and - 2'TT ,;;;;u ,;;;;0 for ordinary end-
fire) in order to satisfy Dirichlet's conditions for Fourier expansion. As
discussed by Jordan,17when d< 1../2, the visible interval for u is less than
2'TT, we then have to choose certain "extra" functions to fill in the
remainder of the interval. Thus, there is an unlimited number of solutions
available depending on what specific "fill-in" functions we have chosen. In
case d >1../2, the range of u is more than 2'TT. It is generally not possible to
obtain a solution by Fourier method.
The objectives of this section are to take a refined review of the

well-developed approximation 18,19 and interpolation20 theories, and then to
apply some results of this study to the synthesis of equally spaced linear
arrays. with arbitrary amplitude and phase distributions. Whenever poss-
ible, attention is always focused on devising a best power pattern P(y) in
the sense that the mean-square error or the maximum error committed by
replacing the given pattern, prescribed either analytically or graphically, by
the approximating power pattern is a minimum or that a prescribed
maximum deviation is not exceeded. The methods, not limited by the
element spacing, should help to obtain a best realizable power pattern,
based on which the required excitations can then be determined, and also
furnish the information as to how much mean-square error or maximum
deviation has been introduced during the approximation process.
Given an arbitrary radiation patternf(a), we can reexpress it as F(u) or

g(y), where u=kdcosO+a,y=2cosu, if d and a are chosen or specified.
The approximation problem is then to find a power pattern, whose possible
expressions have been outlined in (1.129) and (1.136), satisfying the realiza-
tion condition:

(a) for arrays with uniformly progressive phases (UPP),

n-1
Pu(y) = ~ A",ym;;;.o,

m=O
(2.119)
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or
(b) for arrays with nonuniformly progressive phases (NUPP),

(2.120)

and of a type such that P(y) and g(y) agree as closely as possible under
the given tolerance, with a minimum complexity. This complexity is
measured in terms of the degree (n -1) and the coefficients in P(y), which
in tum determine, respectively, the total number of elements and the
excitation coefficients in the array elements.

With the substitution of y=2cosu, (2.119) and (2.120) become, respec-
tively,

and - kd+ ex';;;;'u';;;;'kd+ ex (2.121)

where SAu) is an even while So(u) is an odd function of u.
If the specified pattern is an even function of u, it certainly should be

realized by an UPP array, Pu(y). The task of replacing a given arbitrary
function g(y) by a polynomial Pu(y) is guaranteed in principle by the
well-known approximation theorem established by Weierstrass in 1885.20

In terms of our notations, this approximation theorem says that if g(y) is
continuous in a';;;;' y';;;;' b, and if f is a positive quantity, there exists a set of
coefficients Am and a positive integer n associated with the polynomial

such that

n-l

Pu(y) = ~ AmYm,
m-O

(2.122)

m (2.123 )

Unfortunately, this theorem is only an existence theorem. The way to
determine Am and the smallest n remains unanswered. Hence, the job of
synthesizing equally spaced linear UPP arrays reduces to the one of
devising a method or methods to determine n and Am in (2.122) such that
(2.123) and (2.119) will be satisfied.
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A. Polynomial Interpolation. Since nearly all the standard formulas of
interpolation are polynomial in form, it is natural to look into the possibil-
ity of accomplishing the task of finding an approximating Pu(y) by using
the knowledge of the interpolation theory. The only restriction is that
Pu(y) should satisfy the realization condition (2.1 19). Before presenting
the details, it is worthwhile remarking that an interpolation formula does
not always provide a general solution.21 A solution may be obtained only
when certain conditions on the given function and others are satisfied.
The general problem of interpolation involves representing a function

with the aid of given values which this function takes at definite values of
the independent variable. Thus, let G(x) be a function whose values,
G(xO),G(x1), ... ,G(xn_1), when the independent variable x assumes, re-
spectively, xO,x1, ... ,Xn_1 over a normalized interval [-1,1], are known,
and let L(x) denote the approximating function so constructed that L(x)
takes the same values as G(x) at XO,xl>'" ,xn-l• Then if G(x) is replaced by
L(x) over the same interval [-1,1], the process constitutes interpolation
and the function L(x) is a formula for interpolation. There are many
interpolation formulas available;2o the most important one, suitable for
our purpose, is the Lagrange interpolation formula:

where

n-l

L(x) = L 'TI"(x)G(xJ
. (x-xJ'TI"'(xJ'
1=0

(2.124 )

(2.125)

It is noted that L(x) given in (2.124) does not necessarily approach
uniformly to G(x) if G is an arbitrary function and Xi' i=0, 1, ... ,(n - 1) are
arbitrarily chosen. In other words, whether L(x) converges uniformly to
G(x) depends heavily on G(x) and Xi' As shown by Buck22 and Krylov,23
if G(x) is relatively smooth or absolutely continuous in [- 1, 1], a proper
choice of the sampling nodes Xi may yield a uniform convergence of L(x)
to G(x) in [ ..,..1, 1].
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The question concerning the accuracy of (2.123) can be answered by
noting the remainder term, the derivation of which is similar to that of
finding the remainder term in Taylor's expansion. That is,

(2.126)

where ~ is some value of x between Xo and Xn _ \. The maximum possible
error and the maximum possible mean-square error committed during the
approximation process will be respectively,

MN
t:max<-,-,n.

- 1 M2 fl 2
102max = -2 --2 [(X-XO)(X-XI)'" (X-Xn-l)] dx,

(n!) -I

where

M = IGn(X )Imax'

N=I(x-xo)(X-X1)'" (X-xn-I)lmax'

(2.127)

(2.128)

(2.129)

(2.130)

It is clear that lOmaxand 102max depend not only on the behavior of the
known function G(x) but also on the number and the location of the
sampling nodes xO,xI""'Xn-1, Nothing, of course, can be done to improve
Gn(~) since it depends totally on the specification. If the function G(x) is
well behaved and is given analytically by a rather simple form, the
maximum value of its nth derivative, M, can always be found for each n.
On the other hand, if G(x) is either in such a form that it is not easy to
determine M or specified in a graphical form, the best thing one then can
do is to apply the technique of numerical differentiation. This procedure
will introduce some extra error, the order of which is dependent on the
general behavior of the specified graph and the details carried out when
performing the numerical calculations. For estimating N in (2.130), we can,
following and extending Krylov's proof,23 choose the following two ways
to make the task simple:
(a) Selecting sampling nodes Xi to coincide with the zeros of the Che-

byshev polynomial Tn(x)=cos(ncos-I x), namely,

(
2i + 1 )Xn_1_i=COS ~'lT , i=0,1,2, ... ,(n-l), (2.131)
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we have

(2.132)
where the last step is obtained due to the fact

for all nin -l<x<l

with equality if and only if x=cosi'lT/n, i=O, 1,2, ... , (n-l). Then the
possible maximum deviation committed during the approximating process
becomes

MN ME: ~--=---
max "" n! n!2n-1' (2.133)

from which the maximum possible error can be estimated if the number of
sampling nodes, n, is chosen beforehand or the minimum required number
of n can be determined if an allowable E:max is specified. Other choices of
sampling nodes might reduce the error at some points in the interval, but
are likely to introduce more error at the other points.
The same choice of sampling points, as described above, can also be

used when dealing with the mean-square error criterion. That is, starting
with

,'(x) ~ [ G"« )(x- x,)(x ;t,) ...(x- x"_ ,) r
M2T~(x) M2 T2n(x)< 2< 2 ----,-l<x<l,
(n!2n-1) (n!2n-1) ~

we obtain

(2.134)
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where the fact that Tn(x) is an orthogonal function with respect to the
weighting function (1- X2)-1/2 has been considered in carrying out the last
step. Hence, once again we can estimate the maximum mean-square error
committed by replacing G(x) by L(x) if the number n is preassigned or the
minimum required n can be determined if an allowable mean-square error
is specified. Of course, there is no reason to believe that f.2 obtained from
(2.134) has been minimized.
(b) Selecting sampling nodes Xi to coincide with the zeros of the

Legendre polynomialpn(x), we have

n!
(2n - 1)( 2n - 3) .. . 1

(2.135)

with the aid that

for all n, in -l<x<l.

(2.136)l<x<l.

As Pn(x) is a well-tabulated function, it should be easy to determine the
sampling nodes once the order, n, is selected. With (2.135), (2.127) becomes

~ MN _ M
f.max"" n!- (2n-l)(2n-3)'" l'

A comparison of this with (2.133) reveals that selection (a) will yield a
better approximation than selection (b), since f.max given in (2.133) is
always less than that given in (2.136). Identifying all the sampling nodes as
the zeros of Pn(x), we can also estimate the mean-square error,

- II M
2 IIf.

2=t f.2(x)dx<t 2 p~(x)dx
-I [(2n-l)(2n-3) ... I] -I

M2

2 •
(2n + 1)[ (2n - 1)(2n - 3) ... 1]

(2.137)

Although neither f.max nor f.~ax is minimized by coinciding sampling nodes
with the zeros of Legendre polynomials, the method is still of analytical
interest because it is easy to determine the sampling nodes and to estimate
the errors committed in this approach of approximation.
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Once a real polynomial L(x) is determined by one of the methods thus
described, it will be a solution as far as the approximation to G(x) is
concerned. In terms of array synthesis, G(x) should be the given power
pattern converted from g(y) through an appropriate transformation of
variables between x and y, and L(x) will represent a realizable power
pattern provided one more condition, namely, the realization condition,
L(x) ~ 0 for all x in [- 1,1], is also satisfied. L(x) can then be transformed
back, in terms of y, to become Pu(Y) of the form (2.122). The deviation
made during the approximation process is, therefore,

n-\

f(y)=g(y)-Pu(y)=g(y)- ~ A,.,}'m.
m=O

(2.138)

When the specified pattern is not an even function of u, the same
procedure just described could still be applied for synthesizing an UPP
array, with perhaps a large error. If, on the other hand, we use (2.120) with
the intention of synthesizing the :;trray as a NUPP array, the first summa-
tion terms in (2.120) are used to interpolate the given power pattern in the
very same manner as that for UPP arrrys, thus determining A' m with an
error f given by (2.138). The second summation terms are then used to
interpolate the function f to determine the coefficients A" m with a final
amount of error:

(2.139)

Note that the factor L:,-_20 A,:',ym(4_y2)1/2 serves as an extra correction to
f and that the final error f' is the result of a sort of "second approxima-
tion"; it can be made smaller than f if a right second approximation is
applied. This implies that, with one more degree of freedom to control the
phase distribution, the synthesis of NUPP arrays seems likely to yield more
accurate results than the UPP arrays if the given pattern is not an even
function of u. With PNU(y) completely obtained in this manner and if the
condition PNU(Y) ~ 0 in - 2<y < 2 is also satisfied, PNU(y) will then
represent a realizable power pattern.
Once a Pu(y) or PNU(y), whatever the case may be, is determined, we

can then extract a corresponding array polynomial Eu(z) according to (2.8)
and (2.9), or ENU(z) from (1.137) and (1.138), giving the required excitation
coefficients.
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B. Trigonometric Interpolation.The two interpolation methods dis-
cussed above are distinguished by the facts that the sampling nodes Xi are
nonequally spaced and that the approximating function always results in a
polynomial. When the values of a function at equidistant nodes are given,
the method of trigonometric interpolationz4 is found to be exceedingly well
suited. The numerical procedure for obtaining the harmonic components
of a function given at equidistant intervals is simple and straightforward,
and at the same time well convergent. Since the expressions given in
(2.121) for the power pattern are preferable when dealing with transcen-
dental functions, we assume that F(u;), the functional values of the given
function F(u) at the following nodes,

i7T
ui=--l'n-

i=O,l, ... ,(n-l), (2.140)

are known. Note that the range of u, [0,7T], has been divided into (n - 1)
equal intervals and that the original range of u, [-kd+a,kd+a], can be
transformed to [0,7T] through a simple translation of coordinates.
Since every given function can be rewritten as the sum of its even and

odd components,

(2.141 )
where

Fe( u) = -H F( u) + F( - u)]'
(2.142)

F 0 (u ) = t [F( u ) - F( - u) 1,
LanczosZ4 formulated in his book that an approximating function S(u) to
interpolate the given data F(u;) can be obtained as

(2.143)

with the even component given by

and the odd component by

So(u) = bl sinu+ bzsin2u+ ... + bn_Zsin (n -2)u,

(2.144)

(2.145)



THEORY AND APPLICATION OF ANTENNA ARRAYS 121

where

n-2
2 ~ . ki7T

bk = --1 LJ F 0 (uJ sm --1 'n- n-
;=1

k=O,l, ... ,(n-l), (2.146)

k= 1, 2, ... ,(n-2). (2.147)

Note that the coefficients ak and bk here should not be confused with those
used in Chapter 1. The prime attached to the summation sign in (2.146)
signifies that the two end terms of the sum are taken with half weight in
order to be consistent with the factor t appearing in the two end terms in
(2.144).The success of expressingak and bk in terms of summation instead
of definite integral (as the ordinary Fourier method) makes the calculation
extremely simple. Equation (2.143) is an analytical expression in the form
of a trigonometric polynomial of the lowest order to fit the given data
exactly. The accuracy for values of u between the nodes depends on the
given function. The power of trigonometric interpolation lies in the fact
that, with increasing n, the approximating function S(u) approximates F(u)
with ever-diminishing oscillations. For every given function of bounded
variation, the trigonometric interpolation converges unlimitedly to F(u) at
every point in the given range as the number of data nodes increases. This
behavior of the trigonometric interpolation is in marked contrast to that of
equidistant data by powers such as the polynomial interpolation. While we
can always find a polynomial of (n - l)th order which will also exactly fit n
equidistant data in a finite range, the error oscillations between the data
nodes do not have the tendency in general to diminish in amplitudes as n
increases. In fact, near the end of the range, the error oscillations may
increase indefinitely, thus giving an arbitrarily large error everywhere
except at the data nodes. The trigonometric kind of interpolation is
entirely free of this peculiar difficulty. It is thus superior to the ordinary
polynomial interpolation for data which are given equidistantly.
Both Se(u) and SoCu) will be present in S(u) if the given F(u) is an

arbitrary function. When F(u) is given as an even function, only Se(u) will
appear. The function S(u) obtained by using the above technique will
represent a realizable power pattern if it also satisfies the realization
condition. This realizable S(u) can then be converted to Pu(Y) or PNU(Y)
from which an array polynomial Eu(z) or ENU(z) is obtainable.
Two examples are given in order to illustrate the methods described in

this section.6,25 The first is to synthesize the pattern [J1(v)/vf, O<v<6,
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known as the power pattern from a uniformly illuminated circular aper-
ture,26,27with n = 5. Here J1 is the first-order Bessel function. Note that this
example is of practical interest and that it cannot be done by the conven-
tional Fourier approach. In the second example, the pattern with a
Gaussian distribution such as e-(x-I)2, -I « x « I, is to be synthesized
with n = 4. Since the analytic expression of the pattern in the second
example is simple, the maximum value of its nth derivative may be
calculated to predict the approximation errors beforehand. Only the cases
Pu(y) or Se(u) are considered since the first is an even function and the
second is symmetric with respect to x = I (the principal maximum).

Example 1. Desired pattern: g(v)=(J1(v)/vf, 0«v«6, with n=5. The
appropriate transformation of independent variables for the polynomial
interpolation, when kd=7T and a=O is v=1.5(2-y)=3(l-x), where x
=y /2 =cos u, - I «x « 1.
(a) Approximation by coinciding sampling nodes with the zeros of

T5(x): In this case, we have

xo= -0.9511,

The approximating polynomial, according to (2.124), is

L( x) = - 0.15552x4 - 0.02079x3 +0.26820x2 +0.14508x+0.01280.
The L(x) obtained above does not satisfy the realization condition L(x)
~ 0 in - I< x < 1. This fact may be expected because the desired pattern
has a null approximately at v = 3.832 or x = - 0.277. Therefore, L(x) may
have a minimum with negative value near x = - 0.277. This is confirmed
by noting that x = -0.289 is a root of (d/ dx)L(x)=O. The minimum value
of L(x) at this point is L( -0.289)= -0.00696. Thus, we must use a
modified approximating polynomial,

Lm(x) = L(x) +0.00696

= -0.15552(x +0.2890)\x -1.48716)(x + 1.04284), (2.148)

to synthesize the desired pattern with an additional error of 0.00696. It is
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seen that Lm(x»O in -I :<x:< 1. Based on (2.148), the realizable power
pattern becomes

Pu(y) = -0.00972(y +0.5780)2(y -2.97432)(y + 2.08568). (2.149)

The array polynomial required to yield this power pattern is

Eu(z) =0.09859E1 (z )E2 (z )EJ (z), (2.150)

where E1(z), corresponding to the factor (y +0.5780)2, is uniquely given by

(2.151)

Eiz), corresponding to (y - 2.97432), is given by

or

or

and EJ(z), corresponding to (y + 2.08568), is

EJ (z) = 1.1;698 (1 + l.33867z-l)

0.6;161 (1- 0.3864z-I),

(2.152)

0.8~430 (1 + 0.74701z-I).

(2.153)

Since neither Eiz) nor EJ(z) is unique, the final answer for Eu(z) in
(2.150) may have four different solutions:

0.05297( 1- 0.67125z-l- 3.18644z-2 - 3.25166z-J - 3.46437z-4),

0.07091(1- 1.3025Iz-l:- 2.02014z-2 - 2.99790z-J - 1.93320z-4),

0.13708( 1+ 1.53027z-1 + 1.03315z- 2+ 0.65329z-J - 0.51726z-4),
or

0.18351(I + 0.9386Iz-1 +0.91979z-2 + 0.19377z-J - 0.28864z-4).

Anyone of the above will yield the power pattern (2.149), from which
other important radiation characteristics may be easily calculated. The
synthesized pattern in terms of v is plotted as curve b in Fig. 2.10 to
compare with the desired pattern, curve a.
Note that the choice of the relation v = 1.5(2- y) = 3(1- x) in this

example is based on kd = 77 and a = 0, because under this condition the
visible range for y is - 2:< y:< 2, enough to cover the desired interval
0:< v:< 6. If kd = 277 /3 and a = 0 are specified instead, the visible range will
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v

Fig.2.10 g(v) = (lJ(v)/vf as the specified pattern (curve a); Curves b, c,
and d represent, respectively, the synthesized power patterns
obtained by choosing sampling nodes as the zeros of
T
5
(x),P5(x), and by trigonometric interpolation.

be - 1~ y ~ 2. The appropriate relationship among variables should then
be

v=2(2-y) =3(I-x), x=t(2y-l), (2.154)

such that the interval for x is still - 1~ x ~ 1, required by (2.131).
Although the expression for L(x) or Lm(x) obtained in (2.148)remains the
same under this new condition, the corresponding Pu(y) will be different
from that given in (2.149) in view of (2.154).The new Pu(y) will naturally
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result in different array excitations. It is clear then that the applicability of
the polynomial interpolation is indeed flexible and does not necessarily
demand d=A/2 as required by the Fourier expansion method mentioned
at the beginning of this section.
(b) Approximation by coinciding sampling nodes with the zeros of

P5(X): In this case, we have

Xo = - 0.9062, XI = -0.5384, x2=0,

X4 =0.9062; G(xo) =0.00317, G(xl) =0.00318,

G(x2) =0.0128, G(x3) =0.1516, G(x4) =0.2449.

Substituting these in Lagrange's interpolation formula (2.124), we obtain

L( x) = - 0.16442x4 - 0.00837 x3 + 0.27045x2 +0.14028x +0.01280.

(2.155)

Again, the above L(x) does not satisfy the realization condition. It hap-
pens that L( - 1) = - 0.01308 is the largest negative value in the interval
- 1< X < 1. Therefore, we may use the following as the modified realizable
approximating polynomial:

Lm(x) =L(x) +0.01308

= -0.16442(x+ 1)(x-1.488)(x2+0.5389x+0.106l)

;>0, (2.156)

Once Lm(x) is determined, the remaining task of finding Pu(y), through an
appropriate transformation between x and y dependent on kd and a, and
Eu(z) is similar to that for case (a). The reader is asked to carry out the
details. Equation (2.156) is plotted with v=3(l-x) as curve c in Fig. 2.10
for comparison.
(c) Trigonometric interpolation: In this case, we require that the entire

visible range for u be [0,7T].This can be met if we choose kd=7T, a=O, and
u=7Tv/6. The sampling nodes for n=5 are

Uo=O,

vo=O, VI = 1.5,

U2=7T/2,

v2=3.0, v3=4.5, v4=6.0.
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The functional values at thesepoints are

Fe ( uo) = 0.25000,

Fe(u3) =0.00264,

Fe(ut) =0.13835,

Fe(u4) =0.00212.

Substituting these into (2.146), we obtain

ao = 0.13993,

a3 = 0.01398,

a\ =0.10995,

a4= -0.00106.

a2 = 0.05663,

The approximating trigonometric polynomial is then

SA u) = 0.06996+0.10995cos u+0.05663cos2u +0.Q1398cos 3u
- 0.00052cos4u, (2.157)

which happens to satisfy the realization condition. Therefore, no modifica-
tion in this case is necessary. Based on (2.157), the realizable power pattern
is

Pu(y) = -0.OOO2657(y2+ l.6905y +0.7149)(y + 14.7692)(y -42.7769)

>0, in -2<;y<;2. (2.158)

The determination of an array polynomial Eu(z) for (2.158) is again
omitted. The realized power pattern in terms of v is presented as curve d in
Fig. 2.10.

Example 2. Desired pattern: g(y)=exp[-(y-2)2/4], -2<;y<;2, with
n=4. The specified pattern may be expressed as G(x)=;=exp[-(x-1)2] in
- 1<; x <; 1 when we choose x =y /2. Since there is no null in the specified
pattern, we may expect that the approximating polynomial obtained
directly from Lagrange's formula will also satisfy the realization condition.

(a) Approximation by choosing the zeros of Tix) as the sampling
nodes: Here we have

G (xo) =0.0247, G(x\) =0.1481, G(x2) =0.6840, G(x3) =0.9958.
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Lagrange's formula for interpolation yields

L (x) = - 0.24628x3 + 0.13343x2 + 0.73586x + 0.39643

= -0.24628(x - 2.2l70)(x2+ 1.67520x +0.72604) >0, in -1 <;x<; 1,
or

p u (y ) = - 0.03078 (y - 4.4340) (y2 + 3.33504y + 2.9042) > 0

In (2.159)

The required array polynomial giving the excitation coefficients is

where
(2.160)

E1(z)= 2.0~84 (1-4.l957z-1) or 0.4~82 (1-0.2383z-1),

(2.161 )

E2 (z) = l.3~13 (1 + 2.1064z-1 + 1.693lz-2)

0.7~85 (1 + 1.2440z-1 +0.5906z-2).

or
(2.162)

Again, the final solution for Eu(z) is not unique. The given pattern g(y)
and the synthesized pattern Pu(y) are respectively plotted as curves a and
b in Fig. 2.11. Since the analytic expression of the given pattern is
relatively simple, we can calculate the fourth derivative of G(x) rather
easily:

yielding

Then, according to (2.133), the estimated worst maximum deviation com-
mitted by replacing G(x) by L(x) should be 0.0625. The actual maximum
deviation between the two patterns occurs at x-O with

t:(0) =L(O) - G(O) =0.0284,
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Y

Fig. 2.11 Curve a shows the specified pattern g(y)=exp[ -(y -2i /4)];
Curves band c are, respectively, the synthesized power patterns
when sampling nodes are chosen as the zeros of Tix) and pix).

verifying that the estimated error will never be exceeded by using the
approximation described.
(b) Approximation by choosing the zeros of pix) as the sampling

nodes: Here we have

xo= -0.861, Xl = -0.340, x2 = 0.340, x) =0.861;

G(xo) =0.0314, G(xj) =0.1662, G(x2) =0.6471, G(x)) =0.9807;

L (x) = - 0.2492x) + 0.1588x2+ 0.7360x + 0.3883

= -0.2492(x - 2.2543) (x2+ 1.6168x +0.6913) ;>0,

In (2.163)

The realizable power pattern in terms of y becomes

Pu(y) = -0.0311(y -4.5086)(y2+ 3.2336y+2.7651)

;>0, In -2<y<2, (2.164)
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from which we obtain the final array polynomial

where

£1 (z) = 2.0~75 (1-4.2747z-l
) or 0.4~37 (1-0.2339z-I),

(2.165)

or

(2.166)

The synthesized power pattern in (2.164) is plotted as curve c in Fig. 2.11.
According to (2.136) the estimated maximum deviation in the process of
approximation should be 0.1143. The actual maximum error between G(x)
and L(x) is, however, t:max = 1t:(0)1= 0.0203, which is also under the esti-
mated value.
(c) Trigonometric interpolation: Here we have, when kd='TT and 0:=0

are again chosen:

uo=O,

ao=0.9287, al =0.5520,

The approximating trigonometric polynomial becomes, therefore,

Se (u ) = 0.4643+0.5520cos u+0.0447cos 2u - 0.0610cos 3u,
or

p u (y ) = 0.0305y3 +0.0223y2+0.3675y+0.4197

= -0.0305(y -4.2893)(y2+ 3.557ly +3.2081), (2.167)

which does satisfy the realization condition in - 2<y <2. With (2.167),
the required array polynomial can readily be obtained by the same
procedure. The reader is asked to find the final result for this. The
synthesized power pattern (2.167) is not plotted in Fig. 2.11 since it is so
close to the desired pattern. The maximum deviation between g(y)
= exp[ -(y - 2)2/4] and Pu(y) occurs aty =0 with t:max = 1t:(0)1=0.0522.
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When comparing the results obtained by these three methods, we note
that they all give very accurate approximation.

2.5 Approximation by Bernstein Polynomials

An approximation method using polynomial or trigonometric interpola-
tions has been described in Section 2.4 to synthesize a given power pattern.
While the accuracy of approximation shown there by two numerical
examples is very good, there is one distinct disadvantage with anyone of
the interpolation methods, namely, the resultant approximating polynomial
may not satisfy the realization condition. In that case, a modified realiz-
able polynomial has to be devised by adding a small positive quantity to
that derived from the interpolation formula. This addition of course will
introduce an extra error between the synthesized and desired patterns.
In this section, we present a different method of approximation, which

automatically guarantees the fulfillment of the realization condition, so
that no modification is necessary once the approximation is carried out.
This new method is primarily due to Bernstein, who was the first one to
give a constructive proof to Weierstrass' approximation theorem.
For a real function j(x) defined in the interval 0';;;x';;; 1, we can

construct a polynomial in x of degree .;;;n,

where

n

B£(x) =LetJ( ~ )xi(I_X)n-i,
i=O

,c.n= n. .
I i!(n-i)!

(2.168)

(2.169)

The expression given in (2.168) is called the Bernstein polynomial of order
n of the function j(X).28 The following theorems concerning the general
properties of B£(x) are taken from the books by Lorentz28 and Achieser.18

Theorem 1. For a functionj(x) bounded in O~x~ 1, the relation

lim B£(x) =j(x)
n->oo

(2.170)

holds true at each point of continuity of j, and it holds uniformly in
O~x~1 ifj(x) is also continuous in this interval.
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Theorem 2. Bernstein polynomials are linear with respect to the function
f(x) in the following sense:

B!(x) =a1B!'<x) +a2B!2(x), (2.171)

if

(2.172)

where a1 and a2 are arbitrary constants.

Theorem 3. If the given function f(x) is bounded, B!(x) will also be
bounded with the same upper and lower bounds. That is,

if

m<f(x)<M

in

In

O<x<l

o<x< 1.

for all n (2.173 )

(2.174)

The actual positions of these extrema may not coincide with those of f(x)
for a finite n.
The accuracy of approximation of a functionf(x) in O<x<1 by B!(x)

can be simply expressed in terms of the modulus of continuity w(8) which
is defined as I 9

(2.175)

for all Xl and x2 in [0,1], and /X1-x21<8. Clearly w(8) decreases to zero
with 8 if f(x) is continuous.

Theorem 4. If f(x) is continuous and w(8) is the modulus of continuity
of f(x) defined in (2.175), then

lJ(x) - B!(x )1< iw(n-J/2). (2.176)

Theorem 5. If w1(8) is the modulus of continuity of the first derivative of
f(x), then

(2.177)

It should be noted that the above relations giving the deviation between
f(x) and B!(x) hold true for all continuous f(x) or f'(x), requiring nothing
about the continuity of derivatives of higher orders. For a well-behaved
given function of which the higher-order derivatives do exist and are
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continuous, the estimation of accuracy from (2.177) is very conservative
and, in that case, a much better degree of approximation should be
expected. Nevertheless, it is convenient to be able to estimate the worst
possible error involved in an approximation before the details are derived.
In terms of the pattern synthesis discussed here, the functionf(x) should

represent the given power pattern which is normally specified in a finite
interval and is bounded with the upper and lower bounds respectively
representing the principal maximum and nulls. Then, the Bernstein po-
lynomial B!(x) obtained from (2.168) will be an approximating polynomial
with the degree of accuracy depending on nand f(x) to be estimated by
(2.176) or (2.177). This approximation polynomial will, in view of (2.173)
and (2.174), always satisfy the realization condition B!(x»O in 0<>< 1
and, therefore, represent a realizable power pattern.25
Before applying the theorems outlined above to the synthesis of linear

arrays, we must make a change of variables so that the whole visible range
of the given power pattern in terms of y will be transformed into the
interval 0< x < I required by (2.168). Generally, the transformation

(2.178)

will suffice. The exact values of A 1 and A 2 depend on kd and lX. In
particular, if the visible range for the given power pattern g(y) is -2<y
<2, Eq. (2.178) will become

x=Hy+2). (2.179)

(2.180)

Designating the transformed pattern by G(x), the associated Bernstein
polynomial will be

n

BnG(x) =L CtG( ~ )xi(l-xt-i.
i=O

The number of terms used under the summation sign, which determines
the number of elements in the synthesized array, can be estimated by
(2.176) or (2.177) when an allowable maximum error is also specified.
From (2.180), we see that BnG(x) can even be derived when the values of
G(x) at x=i/n, i=O, I, ... ,n are given. After obtaining BnG(x), we then
transform it back as a function of y, from which an array polynomial
giving the synthesized excitation coefficients can be determined in a usual
manner.
Let us consider the same examples as given in Section 2.4 to de-

monstrate the application of Bernstein polynomials. For the first example
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G( t ) = 0.00264,G(O) =0.00212,

where [J1(v)/vf was the specified power pattern, the transformation
(2.179) may be used if the visible range of y is indeed [- 2,2]. Then, we
have

2_{J1[6(I-X)] )
G(x)- ( ) ,6 I-x

GO) =0.01280, GO) =0.13835, G(l) =0.25000;

B4
G(x) = G(O)(I- X)4 +4G(t )x( 1- X)3 +6G( t )x2(l- X)2

+4GO)x3(l-x) + G(I)x4

= - 0.23502x4 + 0.42294x3 + 0.05790x2 + 0.00206x + 0.00212.

(2.181)
\

Here we do not need to verify if the realization condition is satisfied with
B4

G(x) in 0..; x..; I, because we know from the theorem that it must have
been.
Substituting (2.179) into (2.181), we obtain

0.23502
Pu(y) = - 256 (y4+0.8016y3- 23.1320/-70.7085y -60.7853)

0.23502
= - 256 (y+2.8288)(y-5.7232)(y2+3.6960y+3.7556)

~O in (2.182)

The required array polynomial Eu(z) is

(2.183)
where

EJz)= 0.6~35 (1+0.414Iz-l)

E2(z)= 0.4~48 (1-0.1804z-1)

or

or

1.5~40 (1+2.4147z-I),

2.3~43 (1- 5.5428z-1),

E3(z)= 0.6~1l (I + 1.0047z-1+0.3734z-2) or

_1_ (I+ 2.6913z - I + 2.6780z - 2 ).
1.6365



134 SYNTHESIS OF DISCRETE LINEAR ARRAYS

The error involved in this approximation can also be evaluated. Since
n=4,j(v)=[J1(v)/vf, v=6(1-x), we have

G' (x) = dv l'(v ) = 1211 ( v )[ 2J I ( v ) - vi 0 ( v ) 1
dx v3'

v x G'(x)

0 1 0
0.5 5.5/6 0.3558
1.0 5.0/6 0.6068
1.5 4.5/6 0.7753
2.0 4.0/6 0.6104
2.5 3.5/6 0.4257
3.0 3.0/6 0.2197

From the short table given above, it is clear that the modulus of continuity
of the first derivative of G(x) for n = 4 is

WI (!) = G'( 4.5/6) - G'( 1) =0.7753,

and the maximum error estimated by (2.177) should be 0.2907. The actual
maximum error between G(x) and B:(x) occurs at x=0.52 with t:max=O.
0435. This analysis of error reveals that the estimation by (2.177) is indeed
very conservative, because the given pattern does possess continuous
higher derivatives.
The result of (2.181) is given in Table 2.1, which may be compared with

those shown in Fig. 2.10 synthesized by the interpolation methods. Gener-
ally speaking, the approximation accuracy is poorer when a Bernstein
polynomial of a low order is used. The advantage of this method lies on
the fact that the accuracy can be uniformly improved by increasing n
without having to worry about the fulfillment of the realization condition.
For the purpose of demonstrating this point, the results by Bernstein
polynomials with n = 5 and 6 are also shown in Table 2.1. From there we
can see that BnG(x) does approach G(x) uniformly at each point of
continuity when n is increased.
The results for the second example considered in Section 2.4 where

G(x)=exp[-4(1-x)2], x=Hy+2), are listed in Table 2.2. The uniform
convergence of BnG(x) to G(x) when n is increased and that all BnG(x)
remain non-negative in the entire range 0~ x ~ 1 are again noted. It can be



Table 2.1 Approximation of G(x)= {J,[6(1-x)]/6(1-x)}2
by Bernstein Polynomial of Various Orders.

x G(x) B4G(x) BP(x) B6G(x)

1.0 0.250 0.250 0.250 0.250
0.9 0.2283 0.2049 0.2076 0.2099
0.8 0.1724 0.161 I 0.1622 0.1632
0.7 0.1044 0.1206 0.1187 0.1173
0.6 0.0469 0.0851 0.0849 0.0772
0.5 0.0128 0.0558 0.0503 0.0461
0.4 0.0007 0.0333 0.0280 0.0242
0.3 0.0011 0.0175 0.0137 0.0111
0.2 0.0039 0.0078 0.0060 0.0049

Table 2.2 Approxima tion of G(x)=exp[ -4(1- x)2]
by Bernstein Polynomials of Various Orders.

x G(x) Bf(x) Bf(x) Bf(x)

1.0 1.0 1.0 1.0 1.0
0.9 0.961 0.889 0.902 0.910
0.8 0.852 0.775 0.788 0.797
0.7 0.698 0.658 0.666 0.671
0.6 0.527 0.543 0.542 0.541
0.5 0.368 0.431 0.423 0.416
0.4 0.237 0.326 0.311 0.300
0.3 0.141 0.229 0.212 0.200
0.2 0.077 0.144 0.129 0.119
0.1 0.039 0.073 0.063 0.042
0.0 O.oI8 0.018 O.oI8 0.018

135
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concluded that the approximation of a given power pattern can always be
achieved by Bernstein polynomials and that the degree of accuracy can
also be unlimitedly improved by increasing n, although the rate of impro-
vement may be somewhat slow.

2.6 Inverse Z- Transform Method

In Section 1.4 we showed many advantages of applying the finite Z-
transform theory to the analysis of linear arrays where the amplitude
excitations are not equal. That approach enabled us to sum the array
polynomial of n terms into a finite ratio form from which the analysis then
proceeded. In this section the reverse problem, synthesizing linear arrays
by applying the inverse Z-transform theory, is studied.29
According to what we learned before, the power pattern of an equally

spaced linear array with uniformly progressive phases can be written as

(2.184)

where I; representing the amplitude excitations in the array are all real.
From the analysis viewpoint, with Ii first assigned, IEI2 can be calculated
in a straightforward manner. From the synthesis viewpoint, a desired
pattern expressed in terms of the observation angle () is usually specified.
We should (a) try to obtain IEI2 as a function of z and Z-I from the
specified pattern, (b) extract E(z) and E(z) from it with the relation
E(z) E(z) = IEI2 kept in mind throughout, and then (c) determine an
approximate set of Ii such that ~7:6IiZ-i will approximate the E(z) so
extracted within a tolerable limit of error.
Generally, the first step involves no approximation since it merely is a

transformation of variables. The second step is also exact if IEI2 happens
to be separable into two component parts which are, respectively, func-
tions of z and Z-l alone. We then designate one component as E(z) and
the other as E(z) . In this section we assume this condition is a prerequi-
site. The approximation which is usually involved in the third step is
discussed in the following.
If the factor E(z) so extracted is an analytic function and is regular at

the origin,30 we can expand E(z) as

(2.185)
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where the coefficients cp can be determined by one of the following
methods:3l

c = _1_. (E(z )zP-1dz
p 27T) Jr

or
= sum of residues of E (z ) zP-1,

co= lim E(z),
z-'> 00

-I. 2aE(Z)
c1= -1-' hm z -a-'• z~oo Z

I. 2a[2aE(Z)]
c2= 2! )~~z az z ~ '

p =0, 1,2, ... , (2.186)

(2.187)

Equation (2.186) is known as the residue method where r is a closed
contour enclosing the singularities of E(z), if any, but not enclosing
infinity with a counterclockwise direction of integration. Relations given in
(2.187) are obtained from the power series method.
Strictly speaking, (2.185) is the infinite-series representation of E(z).

Physically, it means that an array of infinite number of elements with c
p
as

the corresponding excitations should be constructed to produce the power
pattern IEI2 without committing an error. Practically, we can only allow a
finite number of elements in the array, say, n. The synthesis task is then
accomplished by designating cp up to p =n - I as the required excitations Ii
with an error due to the remainder terms,

R(z)=c z-n+c z-(n-l)+.
n n-l

In terms of the power pattern, we have

IEsl
2

= synthesized power pattern

=[E(z)-R(z)l[ E(z) - R(z) ]

(2.188)

(2.189)
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If the series expansion in (2.185) converges well, consideration of the first
term of (2.188) alone may be sufficient to give a reasonable estimation of
accuracy. That is,

or

error = c; - Cn [ Z nE (z ) + z - n E (z) ].

As an example, suppose a "Gaussian" pattern such as

j(O)=exp {-4[1-cos(kdcosO+a:)]2}

(2.190)

is the desired power pattern. Remembering the notations used in Chapter
1,

u=kdcosO+a:,

we can transform the given power pattern into

IE\2=exp { -4[1-Hz+z-1)]2}

= exp [ - (z2 - 4z +6 - 4z - 1+ z - 2) ],

which can readily be separated as

\EI2=exp [ - (z2-4z +3)] exp [ - (z-2-4z-1 +3)]'
yielding

E(z) =exp[ -(z2-4z+3)].

E(z) =exp [ - (z-2-4z-1 +3)].

(2.191)

(2.192)

With E(z) extracted from IEI2,we then have, according to (2.187),

-3co=e ,

If we choose n = 4, the synthesized array may approximately be repre-
sented by

(2.193)
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and the difference between IEsl
2 and IEI2 is given by

=O.0248-0.l577[ z4E(z) +Z-4 E(z) ], (2.194)

where the second term can be calculated with the help of (2.192) as a
function of () when kd and a are known.

2.7 Application of Haar's Theorem

All the synthesis methods described so far in this chapter were applicable
only to linear arrays with equal element spacing. Now we are ready to
study a new technique which is useful for synthesizing a nonuniformly but
symmetrically spaced array including, of course, that with equal spacings
as the special case. The technique is based on the application of Haar's
theorem. I 8

A set of real functions, gi(U), i=O, l...N, is said to form a Chebyshev
system with respect to an interval [a,b] if the following conditions are
satisfied:

1. gi(U), i=O, 1, ... ,N, are bounded and continuous in [a,b],
2. gi(U) are linearly independent real functions of the real variable u,

and
3. no linear combination of the form

N

G(ci,u) = ~ cigi(U),
i=O

(2.195)

which is not identically zero due to condition 2, has more than N distinct
real zeros in [a,b], where the c/s in (2.195) are real coefficients, not all zero.

According to Haar's theorem, 18 for any specified real function f( u), also
bounded and continuous in [a,b], the function G(ci,u) given in (2.195) can
be uniquely determined to approximate feu) best in the Chebyshev sense.
The best approximation in the Chebyshev sense is characterized by the fact
that the deviation function,

e(u) = feu) - G( ci,u), (2.196)
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attains its maximal magnitude at no less than N +2 consecutive points in
[a,b], the sign of e(u) at these points being alternately plus and minus, and
that maxle(u)1 in a<,u<'b is minimized.
The above theorem is very general. The g;(u)'s and f(u) can represent

any physical system with u as the general variable.32 In order to apply
Haar's theorem to the synthesis of a nonuniformly but symmetrically
spaced linear array such as that shown in Fig. 1.22, whose pattern function
may be written as

N

E ( u ) = 10+ 2 ~ I; cos u;
;~1

N

=10+2 ~ I;cosb;u,
;~l

(2.197)

it is clear that g;(u) in our application should take the form of cosb;u
including the constant term where bo=O, and that f(u) will represent a
desired field pattern. In fact, by comparing (2.197) with (2.195), we see a
one-to-one correspondence:

or

In (2.197), I; is the amplitude excitation of the ith pair of elements,

2'TT
u;= -~.-d;( cosO- cosOo) = b;u,

(2.198)

u = 'TT ( cos 0 - cos 00 ),

and 0
0
is the position of the main beam measured from the array axis. The

latest definition of u given in the last equation of (2.198) is chosen purely
for the convenience of presentation here, and should not be confused with
the previous definition.
We shall concentrate the discussion on the case of an odd total number

of elements as is explicitly expressed by (2.197). The case with an even
number of elements can be presented in a parallel manner.
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Fig.2.12 A sketch of cos U in 0 <; U <; 'TT.

Obviously, the set of real functions cos biu with 0= bo < bl < ... < bN are
linearly independent, continuous, and bounded in a finite interval [a, b]
which becomes, respectively, [O,'TT]and [0,2'TT] when 00='TT/2 (broadside)
and 00=0 (ordinary endfire). These intervals are obtained after consider-
ing the fact that cosbiu, i= 1,2, ... ,N are all even functions of u. It is clear
that the first two conditions required for a Chebyshev system have been
satisfied. The third condition can also be met by an appropriate choice of
bi. Let us consider a simple case where N = 1 to illustrate this point. The
array for this simple case has only three elements (one pair plus one at the
array center), and the field is given by EI(u) = 10+2I, cosb,u. If we choose
d)='A/2 (bj=l) and 00='TT/2, the part of cosu in the visible range
O<;u<;'TT is shown in Fig. 2.12. It is obvious that EI cannot have more than
one real zero in O<;u<;'TT no matter what 10 and II may be. All the
conditions required for a Chebyshev system are thus satisfied. This point
cannot be easily seen, however, for a larger N. In that case, the only thing
we can do is to choose the largest spacing dN in such a way,

dN <; ( :~~) or bN<; ( ~2) for Oo~ ( • ~2), (2.199)

that Jhe most oscillating term alone, cosbNu, does not have more than N
real zeros in 0<; u<; 'TTfor 00='TT/2, or in 0<;u<;2'TT for 00=0, and that the
required third condition may "likely" be fulfilled. Of course, the condition
(2.199) is only a necessary one because whether cosbiu will form a
Chebyshev system depends also heavily on b" bz, ... ,bN _ ,. Since there is no
simple way, so far, to establish a clear criterion for the general case, we can
only restrict ourselves to ( 2.199) and choose other bi from a practical
consideration, and hope for the best. Actually, we can also learn something
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about the appropriate choice of bi from the numerical process to be
presented.
Supposing all the conditions for a Chebyshev system are now satisfied,

we can then determine uniquely, according to Haar's theorem, the best
E(u) in the form of (2.197) such that

max \e(u)1 =max If(u) - E(u)1 ill (2.200)

is minimized.
Now we are ready to show how to obtain the E(u) satisfying (2.200)

upon a specification of f(u). Since there are N + I unknowns of Ii to be
determined, the simplest way of accomplishing this is to choose a set of bi
under the restriction of (2.199) and interpolate the given f(u) at a set of
N+1 points, u=Ul' j=1,2, ... ,(N+1), which mayor may not be
uniformly distributed in [a,b], such that an initial set of Ii' denoted by I?,
can be determined. Mathematically, the above statement means that, upon
taking

N

EO(u) =Ig+2 ~ I?cosb;u
i~]

with a choice of bi and _then setting

(2.201)

(2.202)

we can write the solution for I?-in matrix form as follows:
-]

Ig 2cosb]U1 2cosb2Ut

1° 2cosb]U2 2cosb2U2I

. . . . . . . ........

1° 2cosbtUN+1 2cosb2UN+1N

f(U] )
f( U2)

X

f(UN+1)

2cosbNUt

2cosbNU2

(2.203)
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Here U's are employed as the interpolating points. The existence of the
inverse Jmatrix is guaranteed by the conditions imposed on a Chebyshev
system. The N + 2 extrema points of the initial deviation function,

eO( u ) =f( u ) - £0 (u ), (2.204)

are then found at u?, i=O,l, ... ,(N+l) with a<ug<u? ... <u~+I=b by
setting deo(u)/du=O. The magnitudes of eO(u) at these extrema are, of
course, not equal in general since this is only an initial arbitrary interpola-
tion. The next step is to assume that

N

£I(U) =IJ+2 ~ I/cosb;u,
;=1

with 1/ as the new coefficients to be determined by equalizing

e1(u) =feu) - £I(U)

at u?, i = 0,1... (N + 1) such that the following will be true:

(2.205)

(2.206)

(2.207)

Equation (2.207) consists of a system of N + 2 equations which are just
enough to solve for 1/ and ~I' Here f1 may be either positive or negative
depending on whether e1(u8)>0 or e1(ug)<0. The set of coefficients 1/ so
obtained, though satisfying (2.207), does not necessarily ensure that el(u)
varies with equal ripples since el(u) now has a new set of extrema points,
ui, a<u~<u: < ... <u1+1=b. From these points we shall again try to
equalize the deviation function until a final set of extrema points, u/, are
obtained such that the values of ek(u)= f(u)- £k(u) at these points are
equal in magnitude to a certain accuracy but with signs alternately plus
and minus. The superscript k signifies the kth iteration after an initial
starting. The iterative process is proved to be convergent so long as the
conditions for a Chebyshev system have been satisfied.32,33
Once a solution is obtained, it not only provides precise information

concerning the amplitude excitation, element positions, and the minimum
possible absolute deviation between the synthesized and desired patterns
(with respect to the chosen set of b;), but also is unique and optimum in the
Chebyshev sense.
Throughout this section a broadside (()0='TT/2, [a,b]=[O,'TT]) Gaussian

pattern, f(u)=e-Au2 with A as a positive real number, is chosen as our
desired pattern. This choice is justified by the following reasons: (a) feu) is
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Fig. 2.13 A possible desired pattern.

Table 2.3 Synthesized Results when f(u) = e-
zu2 and N=3 (seven elements).

(a) bz=2.0,b3 =3.0; (b) bz= 1.8,b3 =3.3.

Maximum
Deviation (BWh Sidelobe

hI 10 II Iz 13 (€) deg. dB Directivity

(a)

1.5 0.2971 0.2310 -0.0062 0.1030 0.0473 17.24 -26.08 6.42

1.4 0.2848 0.2016 0.0345 0.0968 0.0494 17.33 -25.68 6.39

1.3 0.2698 0.1842 0.0641 0.0910 0.0516 17.41 -25.28 6.36

1.2 0.2515 0.1751 0.0867 0.0854 0.0540 17.50 -24.86 6.32

1.1 0.2285 0.1726 0.1049 0.0799 0.0567 17.61 -24.42 6.28

1.0 0.1995 0.1759 0.1203 0.0740 0.0599 17.73 - 23.91 6.24

0.9 0.1608 0.1864 0.1333 0.0681 0.0635 17.87 -23.37 6.19

0.8 0.1061 0.2069 0.1437 0.0628 0.0670 17.01 -22.87 6.14

0.7 0.0259 0.2418 0.1520 0.0580 0.0704 18.14 -22.41 6.10

0.6 -0.0981 0.2997 0.1587 0.0538 0.0736 18.26 -22.00 6.05

(b)

1.4 0.3098 0.1174 0.1263 0.0861 0.0304 16.57 -30.08 6.46

1.2 0.2915 0.0963 0.1578 0.0846 0.0310 16.60 -29.90 6.51

1.0 0.2613 0.0970 0.1732 0.0834 0.0316 16.62 -29.74 6.54

0.8 0.2059 0.1166 0.1819 0.0824 0.0320 16.63 -29.61 6.56

0.6 0.0864 0.1716 0.1873 0.0817 0.0324 16.65 -29.52 6.58

0.4 -0.2548 0.3393 0.1905 0.0812 0.0326 16.66 -29.45 6.59

144
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a very well-behaved function, (b) the parameter A can be varied to adjust
the desired beamwidth, and (c) sincef(u) practically vanishes after a point
B (see Fig. 2.13), all the sidelobes of the synthesized pattern Ek(u) will be
approximately at the same level represented by 20log It:k/ Ek(O)I.
Numerical results for A = 2, N = 3, and two different combinations of bz

and b
3
are given below. For completeness, the associated half-power

beamwidth and directivity are also included. The initial interpolating
points ~ are chosen uniformly inside the interval [0,'1T]. That is, ~
=)'1T /(N +2),)= 1,2, ... ,(N + 1).
Table 2.3(a) gives results for the case of N=3 (seven elements), f(u)

=e-zu" b3=3.0, and bz=2.0 with various bl, after three iterations. Im-
mediate conclusions for this case are (a) the radiation characteristics are
rather insensitive to the change of bl as long as bz = 2.0 and b3 = 3.0, (b) the
case with bl = 1.0 corresponding to the equally spaced array does not yield
the maximum directivity or the lowest sidelobe level, (c)since 10changes
sign from bl=0.6 to bl=0.7, it vanishes for 0.6<bl<0.7 and, therefore,
the central element can be omitted. This indicates that essentially the same
result can be achieved with only six elements in the array if we choose
bl ~0.65, and (d) the same performance can even be expected from an
array of five elements if bl somewhere between 1.4 and 1.5 is selected to
make lz vanish.
Included in Table 2.3(b) are the results for the same array but with

bz = 1.8 and b3 = 3.3. It shows that the maximum directivity occurs
approximately at the same time when 10=0 for O.4<bl <0.6. This implies
that a favorable solution can be achieved with a fewer total number of
elements for a given specified array length if the positions of the inner
elements are wisely assigned. It also reveals that an increase of the number
of elements from six to seven by allowing10*0 does not necessarily mean
an improvement in directivity if the elements are poorly spaced. Note that
in this case (b3=3.3) the condition (2.199) has definitely been violated.
Even though the entire basis functions, cosbju, i=O, 1,2, and 3, have not
formed a Chebyshev system, the iterative process still works. This should
not be surprising, however, because the actual f( u) = e - Au

2 and cosbju used
here behave much better than the minimum requirements of continuity
and boundedness in Haar's theorem. It is apparent that the third condition
for a Chebyshev system may be relaxed to a certain degree for a "better
class" of f(u) and gj(u). The precise information on this is unfortunately
not yet clear.
Cases with many other combinations of bj and various A's have been

considered with the same method described. Their results, too numerous to
be included here, have been reported elsewhere.34
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The technique of applying Haar's theorem can also be generalized for
arrays consistng of directive elements whose element pattern is represented
by W(u). For example, W(u) for a half-wavelength thin linear dipole with
the element pattern approximately given by cos[('7T/2)cosO]/sinO, when a
sinusoidal current distribution is assumed, will be

cos (u/2)
W(u) = -~-_-_-_-_- >0,

YI- u2/7?
(2.208)

If W(u) is bounded, continuous, and non-negative everywhere inside the
visible range as it usually is, the product of W(u) and feu) [e.g., feu)
= e - Au'], which can be considered as a new desired pattern, is also
bounded and continuous. If the field pattern E(u), synthesized previously
for arrays of isotropic elements, has satisfied the condition of having no
more than N real zeros, W(u)E(u) may also satisfy the same condition
because W(u»O. Under that case, the set of the following,

W( u)" W( u) cosbju, ... ,W( u) cosbNu,

will also form a Chebyshev system. The application of Haar's theorem then
yields that

maxle'(u)1 =maxl W(u)f(u) - W(u )E(u)1

= max W(u)lf(u) - E(u)l, O<u<'7T, (2.209)

is a minimum. Note that the expression shown in (2.209) may be consi-
dered as a weighted maximum deviation, and that W(u)E(u) now repre-
sents the synthesized optimum pattern for an array with half-wavelength
thin dipoles as its elements.

2.8 PerturbationMethod

In the previous section a method was presented to synthesize a linear array
whose field pattern approximates a desired pattern in the minimax sense.
Since the Gaussian type pattern, f( u) = e - AU', was particularly chosen as
the desired pattern, the sidelobes in the synthesized pattern were also
approximately at the same level. Both the amplitude excitations and
element spacings were allowed to vary.
Now we are showing another method of synthesis based on a perturba-

tion technique. The idea is to derive a desired pattern from a known one
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through small changes of element spacings or/and amplitude excitations.
Although the method to be described is valid when any known pattern is
chosen to start with, we will concentrate only on that of a uniform array
for the purpose of demonstrating the method. Since the overall pattern of a
uniform array is reasonable except perhaps that the level of its first
sidelobe is rather high, our objective here is to apply the perturbation
technique to reduce the level of the first few sidelobes by sacrificing those
far away from the main beam. Ultimately we will again try to equalize all
the sidelobes approximately.
Two kinds of perturbation are possible: One is to perturb the element

spacing only35 and the other is to change the amplitude excitation only.
We will discuss the former first in view of the practical preference of equal
amplitude excitation. Since, for many occasions before, we formulated
specifically the case when the total number of elements in the array is odd,
we now present the material by considering the array with an even number
of elements in order to get a balanced picture although the method applies
equally well to both cases.
For a nonuniformly but symmetrically spaced array of 2N elements as

shown in Fig. 2.14, the broadside field pattern may be written as

N

E(u) =2 ~ Iicosbiu,
i~l

To distant point

(2.210)

d2 d2

Fig. 2.14 A linear array of 2N nonuniformly but symmetrically spaced
elements.
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where

U= 'lTcos8, (2.211)

with di the distance from the ith pair of elements to the array center where
no element is present.
In general, the pattern function, E(u) in (2.210), consists of a main lobe

at u=O and several sidelobes at uj='lTcos8j of level E.i,j=1,2, ... ,m. The
last sidelobe can be made to be directed along the array axis (8=0) if we
put um = 'IT. Mathematically, the above picture can be represented by the
following:

aE(u) I =0au ' j = 1,2, ... , (m - 1).
U=Uj

(2.212)

(2.213)

Note that, in (2.213),Ii'm, since the derivative at the last sidelobe is not
necessarily equal to zero in the general case. It is clear that (2.212) and
(2.213) consist of (2m -1) equations with (N +m - 1) unknowns (bl'b2, •.. ,

b
N
; U1,U2, ••• ,Um-1). A solution exists in the range O~U~'lT if m~N. That

is, the total number of sidelobes including that at um = 'IT in the field pattern
can at most be equal to N, half of the number of elements in the array. The
solution will be unique if m =N.
A. For a uniformly excited array, we can set, without loss of generality,

Ii = !.Equation (2.210) thus becomes

N

E( u) = ~ cosbiu.
i=1

(2.214)

To make all the sidelobes at the same level 40, the right-hand side of (2.212)
should be (-1)140. That is,

(2.215)

Of course, it will be difficult to solve (2.213) and (2.215) directly for bi for a
multielement array. That is the reason a perturbation technique is
employed here.
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With an initial choice of bi' say b?, we can calculate the pattern EJ(u)
giving the positions of the sidelobes u} and their levels for We thus have

j= 1,2... N;

(2.216)

j= 1,2,... ,(N -1).

Note that if the uniform array with a half-wavelength element spacing is
chosen as the starting point, b?= t(2i - 1), ujO and €..i

0 in (2.216) are all
known.
Now, we wish to perturb the initial spacings by a small change so that

the new set of spacings bi is
(2.217)

As a consequence, the positions of the sidelobes (except perhaps the last
one at u~ = 77) and their levels will be changed to

and (2.218)

Since the new u) and ~ should also satisfy (2.212) and (2.213), we have

N

€..i
l = ~ cos (b?+ LlbJ ( u} + Lluj)

i~l

N

= ~ [cos (b?un cOSq:!- sin (b?un sinq:!],
i=1

N

~ [( b?+ Llbi) sin (b?+ Mi) (ujo+ Lluj) ]

i=1

(2.219)

N

= ~ (b?+MJ[sin(b?uncosq:!+cos(b?unsinq:!] =0, (2.220)
i~l

where

(2.221 )
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If t:.b/s are indeed very small, so will t:.uj be. The following approximations
may then be applied:

coscp~l, (2.222)

Equations (2.219) and (2.220) become, respectively,

N

t:.~= - u} ~ Mi sin (b?uj
O

),
i=1

N

+ ~ t:.bisin (b?u}) =0.
i=1

(2.223)

(2.224)

In the above, (2.216) has been used, and the second-order terms such as
(t:.b;)2and t:.bit:.ujhave been neglected.
With b?, u}, and ~o known and €) set in any desired manner, (2.223) and

(2.224) are nothing but ordinary algebraic simultaneous equations. We can
solve for t:.b/s first from (2.223) and then substitute them into (2.224) to
determine t:.u/s. With bi =b?+t:.bi as the new set of element spacings, the
perturbed pattern E1(u) should yield approximately the sidelobes to the
desired levels ~l. In view of the approximation involved, the results from
(2.223) and (2.224) will be more accurate if smaller t:.~'sare demanded at a
time. The process can be continued until a pattern with equal sidelobes (or
satisfying some other criterion) is achieved. Examples on this for arrays of
seven and eight elements are respectively shown as curves (a) and (b) in
Fig. 2.15. The final required spacings after four perturbations are also
indicated there.

B. When a set of element spacings, bi' is given and we wish to perturb
the amplitude excitations to improve the pattern shape, the problem can be
formulated in a completely parallel manner. Instead of using (2.217) we
will have

i= 1,2... N, (2.224 )

where I?'s are the initial amplitude excitations chosen to start the perturba-
tion process. One natural (though not necessary) choice is I?= 1. Substitut-
ing (2.224) and (2.218) into (2.212) and applying the approximations
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E(u)

1.0

0.6

0.6

0.4

0.2

(a)
Side lobe Level = -17.72 dB

(b)
Sidelabe Level = -17. 2 2 dB

d, = 0.3773 \
d2= 0.7B78\
d,= 1.3285\

d, = 0.2380 \
d2 = 0.7085 \
d, = 1.2777 \
d4 = 1.9300 \

Fig. 2.15 Field patterns (normalized) of uniformly excited arrays synthe-
sized by spacing perturbation: (a) n=7, (h) n=8.

similar to those in (2.222), we obtain the final governing equations for
determining 1:::.1;'s:

j= 1,2... N. (2.225)

As is expected, the solutions of the final amplitude excitations for the
equally spaced case with d= A/2 [hi= t(2i - 1)],when the same criterion of
equalizing all the sidelobes is employed, should be identical to those
discussed in Section 2.2. Since the method is not limited to the case with
hi = t(2i -1), we illustrate it by giving a numerical example for N = 3 (six
elements), hI=0.6, h2 = 1.4, and h3 = 2.5. The perturbed pattern function is
plotted in Fig. 2.16 where the final required amplitude excitations are also
given.
In view of the fact that the solution so obtained is not unique and

depends heavily on the amount I:::.£.i we demand in each perturbation step,
we list all the intermediate results in Table 2.4 for this simple example in
order to gain an insight of the entire process.
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4.5

E (u)

3.0

1.5

o

I, = 0.80749, I2 = 0.28700, 13 = 0.79573,
Sidelobe level: - 14.36 dB.

Fig. 2.16 Field pattern of a six-element nonuniformly spaced array where
bl =O.6,b2= lA, and b3=2.5, synthesized by amplitude pertur-
bation.

From Table 204 we see that four perturbations are involved to bring all
the sidelobes to approximately same level (- 14.36 dB). In each step, the
actual results are quite close to what are expected. In fact, one perturba-
tion could be saved should we take larger 6f/S than those in the above
example. We then, of course, run the risk of overcorrection and commit
larger errors in each step.

Should we demand to lower 1"11 and 1"31 only and not allow "2 to
increase, the result for the final sidelobe level would be better by requiring
perhaps more perturbation steps. It is here we can control the overall
pattern shape to make the solution very flexible.
Note that the approach presented in this section is formulated in terms

of u. It certainly is also applicable to the endfire array, although the
broadside array is chosen for discussion. In our method, we always require
solving a set of simultaneous algebraic equations. This process, although
straightforward and effective, can be burdensome if the array has a larger
number of elements. For this reason Harrington36 devised a different
perturbational procedure for the same problem as case A presented above.



Table 2.4 Example Solution Obtained by Perturbation (N=3, b]=O.6, b2=1.4, b3=2.5, I?=l).

...
~

Starting
point

First
perturbation

Second
perturbation

Third
perturbation.

Fourth
perturbation

Pattern function
Sidelobe positions
Sidelobe values

Demanded new sidelobes
Solutions from (2.225)
New pattern function
New sidelobe positions
Actual sidelobe values

Demanded new sidelobes
Solutions from (2.225)
New pattern function
New sidelobe positions
Actual sidelobe values

Demanded new sidelobes
Solutions from (2.225)
New pattern function
New sidelobe positions
Actual sidelobe values

Demanded new sidelobes
Solutions from (2.225)
New pattern function
New sidelobe positions
Actual sidelobe values

EO(u) =2(cosO.6u + cos 1.4u + cos2.5u)
u?=8804o, u~= 142.9°,ug= 180°.
(?= -1.4170, (~=0.2737, (g= -1.2360

(J = -1.2170, (1= 004737, (1= -1.0360
MI = -0.121488, /2= -0.202136, /3= -0.080568
EI(u)= 2(0.878512cosO.6u + 0.797864cos 1.4u +0.919432cos2.5u)
ul =86.6°, u1= 143.1°,u1= 180°
(J = -1.2242, (1= 004688, (1= - 1.0360

(r= -1.0742, (~=0.6188, (~= -0.8860
MI;" -0.089192, /2= -0.153526, /3= -0.062547
E2( u) = 2(0.789320cos 0.6u + 0.644338cos lo4u + 0.856885cos 2.5u)
ur=85.1°, u~= 142.0°, u~= 180°
(r= -1.0764, (~=0.6194, (~= -0.8860

(f = - 0.9264,d= 0.7694, (j = - 0.8400
!i/I=0.021449, /2= -0.095883, /3= -0.017635
E\u) = 2(0.810769cosO.6u + 0.548454cos lo4u + 0.839250cos2.5u)
uf=84.1°, u~= 141.3°, uj= 180°
d= - 0.9282,(~= 0.7700, (j = 0.8400

(~= - 0.8000, (~= 0.8000, (~= - 0.8000
MI = -0.003277, /2= -0.061448, /3= -0.043523
E4(u) = 2(0.807492cosO.6u + 00487006 cos lo4u +0.795727 cos2.5u)
u~=83.8°, u~= 140.8°, u~= 180°
(~= - 0.8003,(~= 0.8000, (~= 0.8000



154 SYNTHESIS OF DISCRETE LINEAR ARRAYS

His method also starts from the known uniform array whose normalized
pattern function when n=2N and d="A/2 is

where

I N
Eu( u) = N ~ cosb?u,

;=\

b?= t(2i-I).

(2.226)

Now, if the spacing b? is changed to bi = b?+M; by a small increment Mi,

the pattern function of the perturbed array becomes

= ~ f [cos(b?u)cos(Llb;u)-sin(b?u)sin(M;u)]
;~\

or

from which we obtain

Ab_2N i'IT Eu(u)-E(u) . (bO)d
L1 .- ------sln. u u.

,- 7T U I

o

(2.227)

(2.228)

Hence, if a desired pattern E(u) is assumed, fractional changes in element
spacing from uniform spacing can be calculated directly from (2.228). For
example, if we wish to reduce the first sidelobe of Eu(u) to the level of the
second as shown in Fig. 2.17(a), where N=3, the desired E(u) would
appear as the dashed curve. Then (Eu - E)/u, represented by Fig. 2.l7(b),
can be inserted in (2.228) for calculating the required fractional changes in
spacings. If an analytic expression of (Eu - E)/ u is not known, a numerical
integration would be involved. To avoid this, Harrington36 suggested
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Fig. 2.17 (a) Normalized field pattern of a six-element uniform array Eu

(solid curve), desired pattern E (dashed), (b) the function (Eu-

E)/u.

another approximation procedure. It essentially expands (Eu - E)/u into a
series of impulse functions as follows:

E -E I K
_u _::::_ ~ aj~(u-u),

u u j~l

where uj and aj denote, respectively, the position and strength of the )th
impulse, and K, the number of impulses applied, is equal to the number of
sidelobes reduced. To have an effective modification of the sidelobe level,
uj is usually taken to coincide with the position of the )th sidelobe in Eu'

For a large array, uj is approximately equal to [also see (1.29)]
7T

uj--(2)+I), )=1,2, ...,
. n
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where n is the total number of elements.
Substitution of (2.229) into (2.228) yields

K . bO
2N L sm jU'D..b. = - a. J

I J •
'TT U.

j~l J

(2.230)

Unfortunately, the impulse strength aj needed in (2.230) can only be
deterrpined by trial in order to make D..bj small as required, and at the same
time to ensure the condition of (2.229). For details guiding the choice of a

J
and related numerical examples, the reader is referred to Harrington's
original paper.36 With his method, the sidelobe level can be reduced to
about 21n times the level of the main beam, while the beamwidth can be
maintained approximately the same as that of a uniform array.
Since only finite terms are involved in the left-hand side of (2.227), the

answer obtained by this procedure yields an approximation minimizing the
mean-square error between ~D..bjsin (b?u) and (Eu - E)Iu.
Clearly, the method described above can also be applied to case B where

the element spacing is fixed and amplitude excitations are allowed to vary
for improving the pattern shape. The reader is asked to formulate the
necessary details.

2.9 Quadratic Form Approach-Maximization of Directivity

In the previous sections we were concerned with a few synthesis
approaches whereby either the sidelobe level in a synthesized pattern is
minimized or a specific desired pattern is approximated with different
criteria. Array directivity was not duly considered in all of these
approaches. Now we are presenting a different synthesis aimed at maximiz-
ing the array directivity without considering the detailed pattern shape.
More precisely, the purpose is to determine an optimum set of excitations
(amplitude and phase) to yield the maximum directivity with respect to a
prespecified number of elements and spacings. The success of this synthe-
sis is based on the fact that the array directivity can be expressed as a ratio
of two quadratic forms3? so that the method developed for eigenvalue
problems38 can be applied here. Arrays of both equal and nonequal
spacings are considered.
In order to cover the general case, let us go back to an arbitrarily spaced

and excited linear array of n elements shown in Fig. 1.2, whose field
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pattern was given in (1.4). We repeat it here for the convenience of
discussion:

n
E=j(IJ,f[!) ~ Iieia,exp(jkzicoslJ).

i~)

(2.231)

The directivity of this arbitrary linear array, according to (1.9), can be
written as

4'ITIE(1J0,f[!oW

D = £2" £"IEI2sinlJ dlJ df[!'
(2.232)

where (1J0' f[!o) is the position of the main beam determined by Ii and ai.
If we define two n X 1 column matrices [I] and [e],

I) eJuI

[1] = I2eiu2 (2.233)

IneJa"

[e J =

exp ( -jkzj coslJo)

exp ( - jkz2coslJ0) (2.234)

we can readily express (2.232) as

D = _[I_t_[ A_J_[I_J
[It[B][IJ'

(2.235)

where [1]+ is the conjugate transpose (adjoint) of [I]; [A] is an n X n square
matrix

[A]=[e][et, (2.236)
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whose typical element aim is given by

aim =exp [jk(zm - zJ cos 00];

and the typical element him in the square matrix [B] (also n x n) is

1 (2'" ('"
him = 4'1T J

O
J
O
pexp [jk(zm - zJ cosO] sinOdOdrp.

(2.237)

(2.238)

In (2.235) we have made the normalization that 1(00, rpo) = 1.
According to a theorem known in matrix theory for eigenvalue prob-

lems,38 whenever a function is expressed as a ratio of two quadratic forms
such as D in (2.235), where [A] and [B] are both Hermitian and [B] is
positive definite, we will have the following:

1. the eigenvalues (PI <.P2 <. ... <.Pn) or the roots of the eigenequation

det {[A] - P [ B]} = 0, (2.239)

are real, where det means "the determinant of";
2. PI and Pn represent respectively the lower and upper bounds for the

value of D; that is

(2.240)

3. the left equality in (2.240) is possible when [1] satisfies

4. the right equality in (2.240) is attainable when [1] satisfies

[A] [I] =Pn[B] [I].

(2.241 )

(2.242)

As far as the optimization of (2.235) is concerned here, the problem
reduces to the verification of [A] and [B] to see whether they satisfy the
required conditions, the evaluation of Pn representing the maximum
obtainable directivity, and the determination of [1] from (2.242) giving the
required excitations. Fortunately, all these steps can be easily performed or
calculated in our application.
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From (2.237) we see that the main-diagonal elements of [A] when l=m
are real, and that the off-diagonal elements when l=l=m are complex
conjugate, aim = ami' Therefore, [A] is Hermitian. The matrix [B] whose
element is given in (2.238) can be proven to be Hermitian by the same
consideration. To prove the positive definiteness of [B], we note a well-
known theorem39 stating that the Hermitian matrix [B] is to be positive
definite if the associated quadratic form, [ft[B][f], is positive for any real
or complex [f]. Since

(2.243)

represents the total power radiated by the array, it has to be positive from
the physical consideration. Therefore, the foregoing optimization theorem
applies. Furthermore, because of the special form of [A] in (2.236), it can
be shown37,40 that all eigenvalues of (2.239) are zero except the largest
one, Pn, which is given explicitly by

[ ]
+ -Ipn=Dmax= e [B] [e]>O, (2.244)

and that the required optimum excitation matrix found from (2.242) is

[f ]opt = [B] - I[e ] , (2.245)

where [B] - I is the inverse of [B].
Equations (2.244) and (2.245) constitute the complete solution to the

directivity optimization problem. Note. that this does not require the
s~lution of simultaneous equations. Once the element positions Zi are
gIven, blm can be calculated from (2.238), which is independent of (Xi and
80, The matrix [e] can be easily obtained if ()o is also known. Then, finding
the inverse of [B] is the only rather complicated operation to get the final
answer. Substituting (2.245) into (2.244) and noting the fact that [B] is
symmetric in application, we have

(2.246)

which is the denominator of (2.235). Of course, under this condition, the
numerator of (2.235) should be (Dmaxf.
As an example, let us consider the equally spaced (d=Aj2) broadside
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array of n isotropic elements. In this case, ()o= 7T /2, f((),fj)= 1, z. =(i -l)d
= (i -1),,/2; I

[e] =

[A] =

b = _si_n_k_( z_m_-_Z_I_) = ( 0,
1m k(zm-zJ 1,

and (2.239) reduces to

l'i=m

l=m

(2.247)

(2.248)

(2.249)

(l-p)
1 (l-p)

(l-p)

= ( _ 1) np n - I(p - n) = O.

(2.250)

It is clear that the only nonzero root of (2.250) is Pn = n, which can also be
obtained by substituting (2.247) and (2.249) into (2.244). Since both [B]
and [B]-l are now unit matrices, the answer for the required excitation
matrix, according to (2.245), is

(or Ij= 1, (2.251)
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Table 2.5 Optimum Directivities of an
Array with 0o=7T/2, j(O,q;)= I, z;=(i-I)d,
and n=3.

d/"A Dmax II=13 12

0.2 2.3404 2.7565 -3.1726
0.3 2.4658 1.4794 -0.4929
0.4 2.6737 1.0923 0.4891
0.5 3.0000 1.0000 1.0000
0.6 3.4800 1.0728 1.3345
0.7 4.0397 1.2496 1.5404
0.8 4.2514 1.3670 1.5173
0.9 3.7255 1.2344 1.2566
1.0 3.0000 1.0000 1.0000

a well-known result checking with that learned from Chapter I.
Strictly speaking, the directivity obtained above is optimum only with

respect to the particular element spacing used. When d is not a multiple of
A/2, the off-diagonal elements of [Bl will not always vanish, the final
solution will be different even though the other condition such as °0= 7T/2
remains unchanged. For the purpose of illustration, numerical results of
Dmax and [I loP! for a simple array of three isotropic elements are presented
in Table 2.5, as a function of d. It is seen that only when the spacing is a
multiple of A/2, the directivity reaches its maximum with I; = 1. Optimum
directivities of equally spaced broadside arrays with a larger number of
elements and with simple dipoles can be found elsewhere.? As another
example, let us determine the maximum directivity obtainable from an
equally spaced endfire array of five isotropic elements with d=A/4. In this
case, 00= 0, j(O,q;) = I, z; =(i -1)A/4. We then have

j -I -j
-j -j I j -I -j

[e] = -I [A] = -I -j I j -1
j j -1 -j 1 j
1 1 j -1 -j 1

(2.252)
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I,m = 1,2, ... ,5,

1 0.6366 0 -0.2111 0
0.6366 1 0.6366 0 -0.2122

[B)= 0 0.6366 1 0.6366 0
-0.2122 0 0.6366 1 0.6366

0 -0.2122 0 0.6366 1

11.9641 -24.3152 29.0256 -21.2782 8.3863

-24.3152 55.5026 -68.3902 51.9247 - 21.2782
[B)-I= 29.0256 -68.3902 88.0769 -68.3902 29.0256

- 21.2782 51.9247 -68.3902 55.5026 -24.3152

8.3863 -21.2782 29.0256 - 24.3152 11.9641

or relatively,

+ -IDmax=[e) [B) [e) = 19.8342,

9.1906exp (j160.7°)
23.0758exp ( - )8.9°)

[I loP! = [B) -I [e) = 30.0273exp (j1800)

23.0758exp (j8.9°)

9.1906exp (j199.3°)

11:12 :13: 14: 15= 1: 2.5108: 3.2672: 2.5108: 1,

(2.253)

(2.254)

The normalized pattern based on the excitations in (2.254) is given in Fig.
2.18. The directivity determined in (2.253) can be compared with those
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8 I degrees

Fig. 2.18 Normalized pattern of the five-element endfire array with
d=lI./4 yielding maximum directivity.

obtained before in Chapter 1, Sections 2.2 and 2.3. Table 2.6 is prepared
for this purpose. Before concluding this section we should note that the
method outlined here also applies to nonuniformly spaced arrays,41,42
although arrays with equal spacings are specifically chosen in the above
two examples for illustrative purpose.

2.10 Synthesis of Monopulse Arrays

In Section 1.7 we formulated the problem of monopulse arrays and
analyzed the characteristics associated with the sum and difference modes.
Now we are ready to study the reverse problem-synthesis of a monopulse
array. Since all the techniques presented so far in this chapter also apply to
the sum pattern in a monopulse array, we will concentrate on the
difference pattern only. Specifically, three methods will be examined. The
first is to extend the application of Haar's theorem, presented in Section
2.7, to the synthesis of a difference pattern which will approximate a
desired pattern in the minimax sense. The second method is to employ the
same perturbation technique discussed in Section 2.8 to reduce the side-
lobe level in a difference pattern, also from a known monopulse array.
Ultimately, all the sidelobes will be approximately equalized. The third
approach is similar to that given in Section 2.9, namely, the determination
of an optimum set of excitations required to maximize the difference
directivity for a given squint angle, element spacing, and number of
elements in the array.



•..
t

Table 2.6a A Comparison of Directivities by Different Approaches for a
Five-Element, Equally Spaced, Endfire Array with d="Aj4.

12 14 IJ
Directivity I;=I; I; al a2 aJ a4 as

Ordinary uniform endfire 5.00 1.0000 1.0000 0° -90° -180° 90° 0°
(Section 1.2)
Improved uniform endfire 8.77 1.0000 1.0000 0° -125° 1l0° -15° -140°
with 8=35° (Section 1.3)
Endfire with NUPP phases 9.81 1.0000 1.0000 0° -145° 100° -15° -159.5°
(Section 1.6) curve 1 in Fig.
1.28
Ordinary endfire with equal s. 4.68 1.6080 1.9341 0° -90° -180° 90° 0°
1. (-20 dB)
Optimized endfire with equal 18.47 2.5033 3.2867 0° - 165.5° 29.1° - 136.4° 58.2°
s. 1. ( - 20 dB) (Section 2.3)
Endfire with maximum direc- 19.83 2.5108 3.2672 0° -169.6° 19.3° -151.8° 38.6°
tivity (Section 2.9)

a For this table, Is = II' is implied. While the characteristics for the ordinary endfire array
with equal sidelobes ( - 20 dB) were not specifically worked out in this book, they can easily
be calculated by the method described in Section 2.2.
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A. Application of Haar's Theorem. If the same notation as that in
Section 2.8 is also adopted here, the difference pattern of a symmetrically
spaced and excited monopulse array of 2N + I elements may be written as

where

N

d(u)=4 ~ I; sin (b;us) sin (b;u),
;=)

(2.255)

u = 7TCOSO, Us= 7T cos Os' (2.256)

with d; the distance of the ith pair of elements to the array center, and Os
defined in Fig. 1.29(a).
In general, the difference function given in (2.255) has a maximum at

u = u) (previously called um) and several sidelobes at u2' u3, ••• ,up in the
visible range 0<u< 7T. The sidelobe levels at up j = 2, 3, ... ,p may not be
satisfactory if I; and b; are arbitrary. To reduce all the sidelobes to an
approximately same level, we again apply Haar's theorem as discussed in
Section 2.7. Since d(u) is an odd function and for the same reasons
outlined before, we choose this time feu) = ue-Au2 as the desired difference
pattern, where the positive parameter A may be used to control the pattern
shape. Because the basis function is now sin (b;u), it is clear that the first
two conditions required by a Chebyshev system have been satisfied. The
third condition that no linear combination of sin(b;u) should have more
than N-I distinct real zeros in a finite interval [a,b] depends again on the
choice of b;.
In the case b;=i (equal spacing withd=.\j2), the difference function in

(2.255) becomes

N

d ( u ) = 4 ~ I; sin ( ius) sin (iu)
;~)

(2.257)

Under this condition d(u) will always have two zeros at u=O and U=7T
because of the presence of sinu. The condition on the maximum allowable
number of real distinct zeros of d(u), no matter what I; and Us are, will be
satisfied if we choose an open interval (a,b)=(O,7T). Once the conditions
are established, the actual process of determining a unique set of I; to
approximately equalize all the sidelobes of d(u) follows what was outlined
in Section 2.7. For illustration, a simple example for N = 3, Us = 15.69°
(Os = 85°), and A = I is given here. First, we match d(u) in (2.257) to
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f(u) = ue-u2 at three arbitrary points ~ [0< VI < V2 < V3 < '7T] to obtain an
initial set of Ii (called Ii~' i= 1,2, and 3. That is, I? satisfies the following:

3
4 ~ IiOsin(iX15.69°)sin(i~)=f(~), j=1,2, and 3.

1~1

The initial deviation function, eO(u)=f(u)-Llo(u), vanishes at u=O, VI' U2

and V3; and deo(u)ldu=O at ug, u?, ug, and u~ where O<ug< VI <u?< V2

<ug< V3 <u~< '7T. The magnitude of eO(u) at uf are, of course, not equal
initially. The next step is to assume

3
LlI(u ) = 4 ~ I/ sin (i X 15.690) sin (iu)

i=1

with I/ as the new set of coefficients to be determined by equalizing
el(u)=f(u)-LlI(u) at u} so that the following will be true:

j=O, 1,2, and 3. (2.258)

Equation (2.258) consists of a system of four equations (in general, N + 1)
which are just enough to solve for I/ and fl' The process can be repeated
until the sidelobes are practically equalized. For this particular example,
after three iterations, we obtain the final solution:

II =0.2029,

uo = 0.3687, ul = 1.1187,

f3 =0.0210;

In the above, we have omitted the burdensome superscript which should
be used to identify the number of iterations.
This procedure for determining Ii by use of Haar's theorem can be easily

generalized for any N. As long as the element spacing does not exceed
A/2, which happens to be the most practical case, all the conditions
required by a Chebyshev system are satisfied. The solution so obtained is
therefore unique and optimum with respect to the chosen set of bi'
In the case bi are arbitrary corresponding to nonuniform spacings, it is

rather difficult to verify at the beginning whether the condition on the
maximum allowable number of real distinct zeros of Ll(u) can be satisfied
in the interval (0,'7T). The only way of satisfying it is perhaps by choosing
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all the bi small, say bi < i, which would then not be very practical. When
bi > i for some i so that the condition is violated, the iterative procedure
described above would not always converge, depending largely on what
the initial matching points ~ are used. Even if it does converge, we still
have no knowledge about the uniqueness of the final answer.

B. Application of Perturbation Method. As was done in Section 2.8, the
problem can be divided into two classes, namely, either the element
spacing or the amplitude excitation alone is perturbed at a time. We again
start from a known difference function satisfying

N

/l(uJ=4 ~ liOsin(b?uJsin(b?un=€.i°,
i='

j= 1,2, ... ,p, (2.259)

where u? is the known position of the beam maximum whose value is £?,
and ug, u~, ... ,u~ are those of sidelobes with respective levels £g, £~,... ,£~.

B.1 When the element spacing alone is to be varied while the ampli-
tude excitation is kept constant in order to control the sidelobe level, we
can insert liO= 1, bi = b?+ /lbi, and uJ= u)o+ /lu) into (2.259) to solve for /lbi
and /lu). Then we have a system of 2p equations with p +N unknowns
(/lb" /lb2, ••• ,/lbN, /luI' /lu2, ••• ,/lup)' To have a unique solution, we require
p = N. Fortunately, this condition can be easily met if we choose b?= i.
After a few perturbations, the final bN may be greater than N. In this case,
the situation p >N will occur. We then select the first N extrema points to
work with and suppress the remaining into the invisible range by a simple
rescaling process. This extra process can best be understood with a later
example.
After making an approximation similar to that in (2.222), we obtain the

final set of simultaneous equations in terms of the perturbed variables:
N

/l€.i=4 L [/1b;( Us cosb?us sin b?uJ+ uJ sinb?us cos b?uJ)
i='

+ /lu) ( b?sin b?uscos b?uJ) ], (2.260)
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N

o= '" {M.[ (cos bOuo- bOuosin bOuO)sin bOu£.J I l'j 'J lJ IS

;~I

(2.261 )

With b? and uJ known and setting ~ = /j + I1fyin any desired level through
small steps, we can solve for I1b; to determine the required new element
spacings. Eventually, all the sidelobes can approximately be equalized by
this procedure.
Let us consider again an example with N =3, b?= i, and Us = 15.69°.

After three iterations, the difference function becomes

11(u) =4(0.1822sinO.6699u +0.5292sin2.0379u

+ 0.8295sin 3.5749u ).

The levels of l1(u) at the first three extrema are

11(28.85°) = 5.2830, the main lobe,

11(80.87°) = -1.9895, the first sidelobe,

11( 124.20) = 1.9978, the second sidelobe,

and the required spacings are

(2.262)

bl =0.6699,
or

dl = 0.3350;\,

bz = 2.0379,

dz = 1.0190;\,

bJ=3.5749,

Since b
J
is now substantially larger than 3.0, resulting in another

extremum near u = 180° (see curve a in Fig. 2.19), and 111(180°)1>1.9900,
we must suppress a small portion of (2.262) into the invisible range. This
can be done by determining a u* so that 124.2°= UJ < u* < 180°, and that
l1(u*) = -1.9900. Solving this equation, we get u* = 158.2°. Multiplying bi
obtained above by 158.2/180=0.8789, we will have the modified
difference function,

11m(u). = 4( 0.1822sin 0.5888u + 0.5292sin 1.7911u

+0.8295 sin3.1419u), (2.263)



THEORY AND APPLICATION OF ANTENNA ARRAYS 169

Fig. 2.19 Synthesized difference patterns of a uniformly excited seven-
element monopulse array with us=15.69°: (a) d,=0.3350;\.,d2
= 1.0190;\.,d3= 1.7875;\', (b) d] = 0.2944;\.,d2= 0.8955;\.,d3 = 1.
5709;\'. .

all the sidelobes of which are now nearly equal in level, as can be seen
from curve b in Fig. 2.19. The final spacings will be

d] =0.2944;\', d2 = 0.8955;\', and d3 = 1.5709;\'.

B.2 When the amplitude excitation is allowed to vary while bi = i is
kept throughout, the perturbation can be performed in a similar manner.
The final set of equations in terms of the perturbed variables will then be

N

~S = 4 L [Mi sin (ius) sin (iuJ) +~UjiIiOsin (iu,) cos (iuJ) ],
i=1

(2.264)
N

0= L i sin (iu,) [Mi cos (iuJ) - ~~iI? sin (iuJ) ].
i~]

For N=3,bi=i,us= l5.69°,and I?= 1, the required amplitude excitations
obtained from (2.264) are, after two iterations,

I] = 1.1783, and
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The resulting important characteristics are:

A(35.1l 0) = 5.3514, the main lobe,

A(98.56°) = -1.9450, the first sidelobe,

A(152.2°) = 1.9450, the second sidelobe,

and

Clearly, the case that the number of extrema points, p, may be greater than
N can never happen here, since A(u) always vanishes at u= 180°.

c. Maximization of Difference Directivity. The difference directivity of
a monopulse array is defined as

4'1TA2(urn)
Dd= ~2'IT ~'IT A2(u) sinOdO dep ,

(2.265)

where urn is the positon of the beam maximum in the difference pattern.
Substituting (2.255) into (2.265), we obtain

where

[1'( [R] [1']
D=-----

d [1'([Q][I']'
(2.266)

[1']=
I) sinb)us
I2sinb2us (2.267)

[I'r is the transpose of [1'], and the typical elements in [R] and [Q] are,
respectively,

(2.268)
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i,j= 1,2, ... ,N.

From (2.268) we also have

[R] = [VJ[ V(,
where

(2.269)

(2.270)

(2.271 )

[V]=

sinb(um

sin blUm
(2.272)

Since (2.266) is expressed as a ratio of two quadratic forms, [R] and [Q] are
real matrices (special form of Hermitian matrices), and [Q] is positive
definite, we again can apply the theorem presented in Section 2.9 to
conclude that the maximum value of Dd should be given by the largest
root of det I[R] - P [Q]/ =O. Also, because of the special form of [R], the
eigenequation det I[R] - p[Q]1 = 0 degenerates, and the only nonzero root is
the largest one (representing the maximum difference directivity) which is
explicitly given by

(2.273)

where qij is the cofactor of Qji in [Q], and IQI is the determinant of [Q].
The excitation required to yield the maximum difference directivity is

[I']opt = [Q] -1 [V], (2.274)
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or

N

~ q;1 sinb;urn
i~1

sinb1us
N

~ q;2sinb;urn
i=l

sinb2us

N

~ q;N sin bi Urn
i=l

sinbNus

(2.275)

Three important points should be noted here. First, (Dd)max obtained in
(2.273), although a function of urn' bi' and N, is independent of US' Second,
the difference directivity so determined is optimum only with respect to the
particular values of bi and N used. Third, since Urn is denoted as the
position of the beam maximum of the difference pattern, it should satisfy
the following:

[ !Lt:,.(U)] =0
du U-Um

or
N
~ f;bicos (biurn) =0,
i=1

(2.276)

from which we can determine Urnwhen bi and N are specified. The smallest
positive solution of (2.276) should be used in (2.273) and (2.274) to
calculate (Dd)max and [I'loPt" The final [floP! can then be determined if Us is
also given.
For arrays of equal spacing with d=Aj2(bi=i), the results are very

simple. In this case, we have

1

o
o
1

o
o

o
o

2

o
o
2

o
o

o
o

000 000 2
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and the value of um should, in view of (2.276), satisfy

N N
~ i sin (ium) cos (ium) = t ~ i sin (2ium) =0
;=1 ;=1

(2.277)

(2.278)

(2.279)

Note that the second expression in (2.277) can be derived with the help of
the finite Z-transform theory and Table 1.1 discussed in Chapter 1.
Table 2.7 gives (Dd)max and um as a function of N when b;=i. For other

element spacings (also equal spacing), the calculated (Dd)max and um for
N=2 and 3 are presented in Fig. 2.20. The method can also be applied for
arrays with nonuniform spacings. The reader is asked to work out a simple
example on this as an exercise.

Table 2.7 Maximum Directivities and Main Beam Positions of Difference
Patterns for a Monopulse Array of 2N + I Elements.

N Urn (deg) (Dd)max

2 52.24 3.1249
3 37.04 4.3158
4 28.73 5.5195
5 23.47 6.7342
6 19.84 7.941 I
7 17.19 9.1541
8 15.16 10.3701
9 13.56 11.5815
10 12.27 12.7985
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Fig. 2.20 Difference characteristics of an equally spaced monopulse array
of 2N + 1 elements: (a) maximum directivity, (b) main beam
position.

2.11 Linear Array-Passive Network Analogy

In the previous sections various theories and techniques were presented for
the synthesis of linear arrays with different criteria. Because of the surpris-
ing similarity in mathematics involved, we now wish to note the analogy
between two different fields, linear arrays and passive networks. Since a
significant body of knowledge in the area of passive network synthesis has
been developed in the past,43 the material presented in this section may be
helpful for finding new approaches in array synthesis.
For many occasions in the first two chapters, we have dealt with the

field or power patterns associated with different kinds of arrays in the
following forms:

n-)

£. (u) = ~ Ije.ijU,
j~O

N

£2 (u) =/0+2 ~ Ijcosbju,
j~)

(2.280)

(2.281 )
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and

n-I

Pu(y) = ~ A",ym;>o,
m~O

Q(x)
PN(X) = ( 2)n-1 ;>0,

l+x

(2.282)

(2.283)

(2.284)

where the meaning of the notations has been explained before.
In the theory of passive network synthesis, a desired impulse response of

a network system is usually specified. The designer is faced with the
problem of translating the given time response specification, also under a
specified tolerance on accuracy, into a form that is amenable to a de-
termination of the network structure and the element values. One way of
solving this problem is known as the time-domain systhesis. Before doing
so, it is recalled that the Laplace transform of a realizable impulse response
(transfer function) can be expressed as a ratio of two polynomials in
frequency with real coefficients and that from a consideration of the
system stability, the roots of the denominator polynomial of the transfer
function must all have nonpositive real parts. These requirements imply
that the impulse response of a realizable network should be of the typical
form

M

h(t) = ~ a;eSjt,
i=O

(2.285)

where each ai and Si may be real, complex, or pure imaginary, but h(t)
itself is a real function of t, and S; must have a negative real part if it is
complex. In writing (2.285), it has been assumed that the degree of
denominator polynomial of

(2.286)

is at least one degree greater than that of the numerator polynomial, as it
should be for a passive network. Now, the network synthesis problem can
be stated as follows: Assumingf(t) is a known function of time represent-
ing a desired impulse response of the network system, we must find a
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function h(t) of the form (2.285) which will approximate the given f(t),
under a specified tolerance on accuracy, such that H(s) can immediately
be expressed as a ratio of two polynomials without further approximation
and satisfies the stability condition. From this H(s), a network structure
and the element values are then realized by one of the standard proce-
dures.43
A comparison of (2.285) with (2.280) and (2.281), and of (2.286) with

(2.282) and (2.284) reveals that the mathematical forms are very similar
although the symbols represent different physical entities in these two
different fields. It is natural that we should take advantage of this similar-
ity to deal with array problems by using the existing knowledge from
network problems, or vice versa, just as the familiar network-potential
analogy44 has been employed to solve a class of network problems by
using some results from the classical potential problems. Since tremendous
results pertinent to the network synthesis have been obtained,45.5o some
new techniques for array synthesis may be developed through a serious
study of the analogy. 51,52

2.12 Concluding Remarks and Discussion

In this chapter, we have presented various theories and techniques for the
synthesis of linear arrays with discrete elements. Consideration of sidelobe
level, beamwidth, particular pattern shape, and directivity was the main
concern. For generality, all the synthesis facets included were given with
the idealized isotrophic elements. Actual radiators in free space can easily
be incorporated, with minor modifications, when the principle of pattern
multiplication applies, as it usually does. Mutual interactions among ele-
ments can also be considered if necessary. For example, once the currents
are determined by one of the synthesis methods studied, we can then
adjust or design the voltage excitation and the actual feeding system, with
the knowledge of mutual impedances between elements, to yield such
required currents.
Only the pattern inside the visible range of observation received atten-

tion in this chapter. The pattern outside the visible range, which is related
to the reactive power of the array, 53-55was totally ignored. Synthesis of
continuous sources with a modified requirement on the sidelobe level has
been treated by Taylor.53An equivalence between arrays and apertures can
be easily established.56
When an approximation is involved in the course of synthesis, the

minimax criterion was mainly used when discussing the methods of in-
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terpolation, Haar's theorem, and Bernstein polynomials; synthesis with the
other popular criterion of mean-square error can be found elsewhere.26,54,57
Since space is limited, synthesis by many other valuable methods, notably
those by the Poisson sum formula,58 the Anger function,59 grating
plateau,60 mechanical quadratures,61 orthogonal and eigenvalue
methods,62,63 amplitude scanning,64 potential theory,65 variational
method,56,66 mode theory,67 and that yielding a maximally flat sector
beam,68 has been reluctantly omitted here.
All the synthesis approaches discussed in this chapter were, in principle,

valid only for a relatively narrow band centered at the designed frequency.
The synthesis of arrays good for a much wider band of frequencies has not
had much success in the past,59,69

PROBLEMS

2.1 Synthesize a six-element, equally spaced (d='I\j2), broadside array
with all its sidelobes equalized at - 20dB, and tabulate the important
radiation characteristics.
2.2 What sidelobe level of the array in Problem 2.1 will yield the

maximum directivity?
2.3 Obtain an optimum (narrowest beamwidth), five-element, equally

spaced, broadside array when d = 0.4'1\ and all its sidelobes are at a level of
25dB below the main beam.
2.4 Synthesize an optimum, six-element, equally spaced, endfire array

with d='I\j4 and the sidelobe level at -20dB. What will the directivity
and first-null beamwidth be if the ordinary endfire condition is imposed?
2.5 Synthesize a few five-element, equally spaced, braodside arays

whose patterns will approximate J2
0(v) in 0< v<5. What are the maximum

. deviations between your results and the desired pattern? If a maximum
deviation of the order of 0.01 is permitted, what will the minimum number
of elements be in your synthesis?
2.6 If the same pattern as that in Problem 2.5 is synthesized by the

Bernstein polynomial of order 6, obtain the final required amplitude
excitations and the maximum error involved.
2.7 Synthesize a five-element, nonuniformly but symmetrically spaced,

broadside array whose overall length is 2'1\by using Haar's theorem if
j(u)=J)(u)ju is the specified field pattern. What is the best position of the
inner pair of elements in order to minimize the error between the synthe-
sized and desired patterns?
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2.8 If the pattern of a five-element uniform array with d=Aj2 is used as
the starting point, apply the perturbation technique discussed in Section
2.8 to obtain an equally spaced array whose sidelobes are equalized at
-20dB.
2.9 Consider a five-element, non uniformly but symmetrically spaced,

braodside array whose field pattern may be expressed as

E(u) = 10+ 2I( cosb(u+ 212 cosb2u,

where bi=2djA, and U=7TCOSO. Determine the optimum set of Ii to
maximize the array directivity with respect to bl = 1.4 and b2=2.2. If bl is
allowed to change while b2 is fixed at 2.2, what value of b( and the
corresponding Ii will yield the absolute maximum directivity?

2.10 What will your answeres be if E(u) in Problem 2.9 is replaced by a
difference pattern il(u) = II cos blus cosblu + 12 cosb2us cosb2u with Us
= 16°? How does Urnchange with b( when b2=2.2?
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CHAPTER 3
ANALYSIS AND SYNTHESIS OF TWO-

DIMENSIONAL ARRAYS

In the first two chapters, we analyzed and synthesized linear arrays with
discrete elements from different viewpoints. Now we are ready to do the
same for two-dimensional arrays. Rectangular arrays with constant or
variable spacings will be studied first. This is followed by the ring (circular)
and elliptical arrays. The same techniques employed previously for the
synthesis of linear arrays will also be applied in this chapter.

z

P("8, rp)

y

I -I dy f-
x

Fig.3.1 A rectangular array.
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3.1 Rectangular Arrays

Consider the rectangular array of discrete elements situated in the xy plane
as shown in Fig. 3.1, where the central element is chosen as the coordinate
origin. If we have 2Nx + 1 elements in each column parallel to the x axis
with an equal spacing dx and 2Ny + 1 similarly oriented elements in each
row parallel to the y axis with a common spacing dy, the entire array will
have nx x ny elements, where nx = 2Nx + 1 and ny= 2Ny + 1. The array will
become a square array when Nx = Ny and dx = dy'
The field (at a distant point P in free space) contributed by the column

coincident with the x axis is then, according to (1.1),

Nx
Eo= f( O,cp) ~ Imaexp [j(mkdx sinOcoscp+ ax)], (3.1)

m- -Nx

wheref(O,cp) is the element pattern function, Ima is the amplitude excitation
of the mth element (counting from the origin) in the calumny =0, ax is the
associated phase excitation.• and k = 2'TT fA.
Note that the array factor in (3.1) is a function of both 0 and cp. Only the

pattern in the xz plane (cp= 0) has an expression comparable to that for
linear arrays considered before. In general, the pattern IEol consists of a
conical main beam and sidelobes.
When amplitude excitations for elements in other columns are propor-

tional to those for corresponding elements on the x axis,

(3.2)

we can sum up the total contribution from the array as

Ny

E(O,cp)= ~ En
n- -Ny

Nx Ny

=f(O,cp) ~ ~ Imnexp[j(mkdxsinOcoscp+aJ]
m= -Nx n= -Ny

(3.3 )
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where

Nx
Sx= ~ Imoexp[j(mkdxsinOcoslp+aJ]

m= -Nx

Ny

Sy = ~ Ionexp [j(nkdy sin 0 sinlp+ ay)].
n= -Ny

(3.4)

It is clear that Imn and ax + ay may, respectively, be considered the total
amplitude and phase excitations of the (m,n)th element in the array.
It is also clear from (3.3) that, under the stated conditions, the pattern of

the rectangular array is, besides the element pattern, the product of array
factors of two linear arrays, one along the x axis and the other along the y
axis. As such, the requirement on the spacings dx and dy should remain the
same as that for linear arrays (discussed in Chapter 1) in order to avoid the
grating lobes.
Although ax and ay can be arbitrarily adjusted, in principle, so that the

position of the main beam of Sx is not the same as that for Sy in (3.4), or
the two conical beams do not "intersect," the practical application does
demand that the two beams intersect. This indeed is the principal idea
behind the utilization of the rectangular or planar arrays. Assuming that
the main beams do point at the same position (Oo,lpo) and that the elements
are progressively phased, we can determine the required ax and ay as
follows:

(3.5)

(3.6)

Since sinO= sin('IT-O), we see from (3.4) that both Sx and Sy are
generally bidirectional (except of course the endfire array where 0

0
= 'IT /2)

in any vertical plane given by lp=constant. This represents two pencil
beams, one each above and below the array plane. The one below the array
plane can usually be eliminated by a proper choice of directive element
pattern function f( 0, lp) or be reflected by the use of a ground plane.
When Imo' Ion' Nx, Ny, dx, dy, 00' and lpoare all specified, the characteris-

tics such as the beamwidth, sidelobe levels, and positions can be analyzed
in the same manner as that for linear arrays. The results can be presented
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as a function of 0 and ep, or more conveniently as a function of u and v,
where

u = sinOcosep,
(3.7)

v = sinOsinep.

The directivity of the rectangular array can also be defined in similar
fashion:

4'77IE(0o,epoW

D= fa27ffa7fIE(O,epWsinOdOdep'
(3.8)

which can readily be calculated once the parameters are known. Therefore,
as far as the analysis of a rectangular array is concerned, the task is not
much different from that for linear arrays.
For the work of synthesis, the techniques employed before may also be

useful here. Once a desired pattern F(O,ep) is specified, it can be converted
into g(u, v) through (3.7). If the desired pattern happens to be separable
into two components such as

(3.9)

the synthesis methods described in Sections 2.4 through 2.8 can be directly
applied to devise L)(u) and Liv), approximating, respectively, g)(u) and
g2(V). The product, L(u, v)=L)(u)Liv), is then considered as the final
synthesized pattern with the error to be estimated by

or

where

t:(u,v) =g(u,v) - L(u,v),

- (27f17f (u v)t:2 = )fi Ig(u,v)-L(u,vWJ -0' dOdep,o 0 ,ep

(3.10)

(3.11)

au
J( ~:;) = ~:

ao
= sinOcosO.
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When the desired pattern g(u,v) cannot be separated into two parts such
as that in (3.9), the typical method of synthesis is then through a double
Fourier series expansion: 1,2

co co
g(u,v)- ~ ~ amnexp[j(mu+nv)'7Tj.

m=-oon=-OQ
(3.12)

The success of this approach, of course, is limited to the case when
dx = ~ = A /2 as we noted in the beginning of Section 2.4, and also depends
on whether the double integral,

f jg(u,v)exp[ -j(mu+nv) dudv,j (3.13)

for calculating the Fourier coefficients amn can be carried out easily or not.
U the elements are not equally but symmetrically spaced, the formula-

tion given above still holds if minor modifications are made in (3.4). First,
mdx and ndy should be respectively replaced by dm and dn, with d

m
denoting the distance in wavelengths between the mth pair of elements
along the x axis and the coordinate origin and dn denoting the counterpart
along the y axis. Second, the summation indices m and n should run,
respectively, from - M to M and - N to N, with (2dM) X (2d

N
) as the

entire array size.
Arrays with even number of elements on the rows and columns can be

similarly formulated.

3.2 Analysis of Ring Arrays

When an angular symmetry is desired in a two-dimensional operation, ring
or circular arrays can be considered to satisfy the requirement. Ring arrays
have been used in radio direction finding, radar, sonar, and many other
system applications.3,4 Early significant contributions on this subject were
made by DuHameI,5 who synthesized a single-ring array, with or without a
concentric cylindrical reflector, to produce a Dolph-Chebyshev type of
pattern. Extending the theory developed primarily for non uniformly
spaced linear arrays,6 Tighe7 was successful in synthesizing concentric ring
arrays yielding a Taylor's type of pattern.8 The directivity of such an array
was not discussed. Tillman9 and his associates treated the same subject by
using a "symmetric component" technique, and obtained the results in
terms of sequential currents. Real currents required to excite the elements
are then determined from combinations of sequential currents. Their final
results demand different current magnitudes on each ring and undergo
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phase changes from ring to ring. Using a still different approach of
Fourier-Bessel expansion as derived originally by LePage, Roys, and
Seely,1OStearns and Stewartl! investigated ring arrays primarily for obtain-
ing azimuthal patterns with low sidelobes. Royer!2 and Chu 13showed that
the ring arrays can be used to achieve a nearly omnidirectional pattern.
Antennas with circular apertures were studied by Taylor.8 Extensive
numerical results, based on Taylor's formulation, were obtained by Han-
sen.14 The problem of corner reflector treated by Waitl5 is also related to
the present subject.
In this section we are analyzing not only the horizontal (azimuthal)

pattern which has been important in many applications, but also the
vertical pattern (beam maximum pointing toward the array normal) in
view of its latest application for modifying the ionosphere.16 When the
array is placed above a ground system, the main beam in the elevational
pattern can be designed to point at about 10°-20° from the ground for
long-distance communication or direction finding. This elevational pattern
in the presence of a ground plane will be considered in Chapters 4-6.
Consider a single-ring array of radius a as shown in Fig. 3.2. The ring is

in the xy plane. There are N isotropic elements on the circumference of the
ring. The free-space far-field pattern function of such an array may be
obtained by summing the contribution from each element at some distant
point:

N
E( O,cp) = ~ In exp [jka sinOcos (cp - CPn) +jan],

n=\

(3.14)

z P(B,")

Fig.3.2 A ring array.

y
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where In is the current excitation of the nth element located at cP= CPnand
an is the associated phase excitation (relative to the array center at which
an element mayor may not be present). For the conventional cophasal
excitation,

(3.15 )

where (00, CPo) is the designed position of the beam maximum. By defining a
new set of variables p and ~ such that

( . 0 . . O' )2] 1/2+ sm smcp-sm osmcpo ,

sin 0 cos cP- sin 00 cosCPo
cos~= [( . 0 . 0 )2 (' 0 . . O' )2] 1/2 'sm coscp-sm ocosCPo + sm slllcp-sm osmcpo

we can rewrite (3.14) after using (3.15) in a more compact form:

N

E = ~ In exp [jk cos (~- CPn)].
n~1

(3.16)

(3.17)

Although (3.17) can be used to calculate the pattern as a function of 0 and
cpwhen ,a, N, In' CPn'00, and CPoare given, it can be very time consuming
even when N is only moderately large.
If the elements are uniformly excited and equally spaced along the

circumference in order to be practical and achieve angular symmetry,
In = I, CPn= 2'TTn/ N. Equation (3.17) can then be expanded as 2, I 7

00

E=NI ~ exp[jmN('TT/2-0]JmN(kp),
m=-oo

(3.18 )

where mN means the product of the running index m and the total number
of elements N, the term with the zeroth-order Bessel function Jo(kp) is
called the principal term, and the rest are residuals.
For the horizontal (azimuthal) cophasal pattern which lies in the array
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plane, ()= ()o = 7T /2. If the beam maximum is designed to point, say, in the
x direction, <Po=O. Then, we have

27Tn
(Xn=(Xnh= -kacosN, (3.19)

or

cos~= cos ~h = - sin -I ' (3.20)

(3.21 )

(3.22)

where I( = NI is the total current on the ring.
When considering the vertical pattern with the beam maximum pointing

toward the z direction «()o=O), we have

(in phase),

cos~ = cos~ = cos<p, or ~=<p,

(3.23)

(3.24)

(3.25)

00

E=Eo=I( m~oo exp [jmN( ~ -<p) ]JmN(kaSin()). (3.26)

Here again the situation concerning the range of variation similar to linear
arrays arises. Mathematically, JmN is a well-defined function in the entire
range of its argument. Physically, the visible ranges for Eh and Eo are,
respectively, restricted to 0< Ph<2a and 0< po<a. Furthermore, since the
value of a Bessel function of large order is very small in its visible range,
both Eh in (3.22) and Eo in (3.26), for a large N, reduce approximately to
the same mathematical form:

(3.27)
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Fig. 3.3 Radiation patterns for a uniform-cophasal ring array: (a) hori-
zontal, (}=(}0=77/2,rpo=0; (b) vertical, (}0=0, rp=O and 77; (c)
vertical, (}o= 0, rp= 77/2 and 377/2.

195



196 ANALYSIS AND SYNTHESIS OF TWO-DIMENSIONAL ARRAYS

with the understanding that p = Ph when E = Eh, and that p = Pv when
E = Ev' The expression (3.27) is exact when N approaches infinity, which
represents a continuous distribution on the ring circumference. The ac-
curacy of the approximation for a finite N depends, of course, on Nand
ka. For a given ka, a reasonable N can always be determined from a table
of Bessel functions for a good approximation. Figure 3.3 displays some
results in this respect. Actually, the approximation between (3.27) and the
exact formulation can be measured by the residual terms:

(3.28)

or

(3.29)

where the relation J _N(X)=( -1)NJN(x) has been used.
In general, the accuracy mentioned above can be improved steadily by

making N larger, as can be seen from Figs. 3.3(a) and (b) for Eh and Ev
when cp = 0 and '1T. There is, however, an exception for Ev when cp = '1T/2
and 3'1T /2, as is clear from Fig. 3.3(c) where the approximation with N = 7
is better than that with N = 10. In fact, in the case when cp = '1T/2 and 3'1T /2
(yz plane), an odd N always gives a better approximation for Ev than the
even number N + 1. This can be explained by (3.29). For example, the
dominant term in Rv for N=7 is 2J1ikp), while that for N=8 is 2Jg(kpv)
[which should have more influence than 2J1ikpv) in the range of interest].
In any case, the worst discrepancy between the exact and approximate
patterns occurs in the sidelobe region. As far as the main-lobe region is
concerned, (3.27) indeed is a simple and good approximation.
When N is large enough to make (3.27) valid so that patterns in both

planes can be described as a part of Jo(kp), there is no possible presence of
a grating lobe with an increasing ka, such as that for a linear array with an
increasing kd. This is true because the sidelobe levels of J o(kp) decrease
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monotonically as ka increases. On the other hand, because the first two
sidelobes at kp = 3.8 and 7.0 are relatively high with respective levels of
-7.9 and -10.5 dB only, it is clear that the use of a single-ring array is
rather limited. If, however, another element is put at the center of the ring
with an excitation 10, the patterns may approximately be expressed as

(3.30)

Choosing 10 and 1/ with the same sign and adjusting the magnitude of 10
relative to that of 1/, we are able to reduce the level of the first sidelobe at
the expense of the second for this single-ring-plus-one-at-the-center array.
If this arrangement is still not enough for some particular applications, we
can then use concentric rings where we will have an additional access to
control the radii and amplitudes for various rings to produce a favorable
result. Details of this from the synthesis viewpoint will be given in Section
3.6.
The directivity of a single-ring array with isotropic elements can be

expressed as

4'1TIEmaxl2
D= ~2'IT~'lTE(O,cpWsinOdOdcp'

(3.31 )

which is exact with (3.14) and approximate with (3.27). Equation (3.31) can
readily be calculated when In' a, and N are known. A simple exact
expression for the denominator of (3.31) can be found. Since the typical
term in IE(O,cpW is

1m In exp [j( am - an)] exp {JkasinO [cos (cp- CPm) - cos (cp- CPn)] }

= 1mIn exp [)( am - an) ] exp [jkPmn sinOcos (cp- CPmn) ],

where

2
. CPm-CPn

Pmn= asm 2 '

=0,

m,n= 1,2, ... ,N,

m=Fn

m=n,

(3.32)

(3.33)

_) [ sincpm- sincpn ]cp =tan -----
mn cos CPm- cos CPn ' m=Fn, (3.34)
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the denominator of (3.31) becomes
N N 271 71

m~l n~/mln exp [j(am - an)] ~ ~ exp [jkpmnsinOcos (<p- <Pmn)] sinOdOd<p

=4'ITW,

where

In obtaining (3.36), we have applied the following relation: 18

(71/21 ( . II) . LJ -JLJ= ( /2)1/211/2(X) = sinxIn 0 x Sln17 Sln17 U17 'IT 1/2 •
o (x) x

Substituting (3.36) into (3.31), we have

(3.35)

(3.36)

(3.37)

(3.38)

Note that while W is a function of <Pmand <Pnthrough Pmn defined in (3.33),
it is independent of <Pmnin (3.34).
Two special cases can be noted. When the radius of the ring approaches

zero (a~O), we have

Pmn~O,
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On the other hand, when a-HlO,

sinkpmn
---~O
kPmn

for

1,

A numerical example for the cophasal ring array with N = 6, CPn = 7Tn /3,
and In = 1 is presented in Fig. 3.4 as a function of the radius a. Since 8

0
= 0

is used in Fig. 3.4(a), the result there may be considered as the directivity
of the vertical pattern. The two curves in Fig. 3.4(b) are the corresponding
results for the horizontal pattern (80= 7T /2), where one is for the case when
the beam maximum points toward CPo=O (along an element) and the other
is for CPo= 30° (between two elements). It can be seen that the directivities
for all cases approach unity and N, respectively, as the radius approaches
zero and infinity. It is also clear that the directivity for 8

0
= 0 reaches its

maximum when a is approximately Pl. The maximum directivity for
80= 7T/2 and CPo= 0 occurs approximately when a = 0.5A or 1.75A, and that
for (Jo=7T/2 and CPo=30° occurs in the neighborhood of a=0.75A. Of
course, the above observation is true only for this particular example.
When any condition varies, the position of the maximum directivity will
change accordingly. Since the case of a uniformly excited cophasal ring
array is considered in the above example, the main-beam radiation effi-
ciency is unity (loo%) according to the definition given in (2.118).
It should be noted that the formulation outlined in (3.33) through (3.38)

is also good for arbitrary In' CPn'and an. Results on this will be presented
later when the synthesis of a single-ring array from the directivity
viewpoint is considered.
The same formulation can also be modified to include the possibility

when there is an element represented by 10 at the array center. For this
case, all we must do is to change the running indices m, n starting from 0
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Fig. 3.4 Directivity for a uniform-cophasal ring array with six isotropic
elements: (a) °0=0, (b) 0o=7T/2.
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for the double summation in (3.36) with the following understanding:

ao=O, Poo=O, POn=pom=a. (3.39)

When a particular physical element whose pattern can be represented by
f(O,cp) is used in the array, fVJ,cp) should be included in the integrand of
the denominator of (3.31). The specific result for f(O,cp)= sinPOcOSq-1/20,
p = 0, 1,... ,and q;>.1-, has been obtained by Cheng and Tseng: 19

where

N N

w= ~ ~ Imlnexp[j(am-an»)Smn'
m=1 n=1

P (-1); 'J (k)
Smn=tr(q) ~ p. p+q+; Pmn .,

(.,)2( -.)'(k /2)P+q+1;=0 l. pl. Pmn

r(p+ l)r(q)
Snn= 2r(p+q+ 1) ,

(3.40)

(3.42)

and r denotes the gamma function.
Clearly, (3.40) reduces to (3.36) when p=O and q=t. For the short

vertical dipole considered in Fig. 1.11,f(O,cp) = sinO corresponding to p = 1
and q= t. We then have

(3.43)

(3.44)

In this case, we can only consider the horizontal pattern with 00 = '1T/2. The
results of directivity for the six-element ring array with this short dipole as
its elements, when In=l, an= -kacos(cpo-'1Tn/3), are given in Fig. 3.5.
Now, the directivity approaches 1.5 and 9.0, respectively, as the radius
approaches zero and infinity. Since the results appearing in both Figs. 3.4
and 3.5 are high oscillatory, only those calculated values at a = irA, i = 0,
1,... ,16 are considered accurate.
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II
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Fig. 3.5 Directivity for a uniform-cophasal nng array with six short
dipoles when 00 = 7T/2.

3.3 Analysis of Elliptical Arrays

When analyzing the characteristics associated with a ring array, we note
from Fig. 3.4 that the directivities in both planes can be very low for a
finite size of the ring. For example, the directivity in Fig. 3.4(a) drops to a
relative minimum when a = 1.25;\ or ka = 2.57T. The reason for this is that
the contributions from individual elements add rather destructively for that
particular ka to cause either a higher sidelobe level and/or a broader
beamwidth in the radiation pattern. In other words, as far as that particu-
lar ka and the number of elements are concerned, the arrangement of
elements in the form of a ring as discussed in the last section will not yield
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z
n

x

Fig.3.6 An elliptical array.

a satisfactory directivity. A minor change in element arrangement may
improve the result. One of the possible minor changes is to have an
elliptical array, as shown in Fig. 3.6, where the semimajor and semiminor
axes are respectively denoted by X and Y. The distance from the origin to
the nth element on the elliptical circumference is now

Y
an = 1/2'

[ I - ( I - v2 ) cos2 CPn 1
where

When the major and minor axes are interchanged, we have

Xa' = ---------
n [1-(1-v'2)sin2cpnll/2'

where

(3.45)

(3.46)



o

\

\ \ /' .....ya--v;O.7
\ I \

\ .••._/1 \
\
\

(0 )

,
\

o

80, 0

0 I I I I I
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

X(,,)

2
06 08 1.0

I
1.2 1.4

X (,,)

I
1.6

I
1.8

I
20

Fig. 3.7 Directivity for a uniform-cophasal elliptical array with six
isotropic elements: (a) 80=0, (b) 80='TT/2, <p=0.
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Formulas (3.14) through (3.17) and (3.35) through (3.44) are still valid
for the elliptical array if the radius a of the ring array discussed in the last
section is replaced by (3.45) or (3.46), and (3.33) and (3.34) are, respec-
tively, replaced by the following:

and

=0,

, -) [ am sin 'Pm - an sin'Pn 1cPmn = tan -------.
. am cos 'Pm - an cOS'Pn

m=l=-n

m=n (3.47)

(3.48)

Numerical results for the cophasal elliptical array with N=6, In= 1, and
'Pn = n7r /3 are presented in Fig. 3.7 for two different values of v. The curves
in Fig. 3.7(a) are for °0=0, and those in Fig. 3.7(b) are for 00=7T/2 and
'Po=O. It is interesting to see that, for a given X, the case with a larger
value of Y (or v) does not always yield better directivity. By comparing
these results with those in Fig. 3.4, we also see that for °0= 0 the elliptical
array with X = 1.25A, v =0.3 is better than the ring array with a= 1.25A
while the area (7TXY) occupied by the former is only 30% of that (7Ta2) by
the latter. A similar situation is also noted for the case with 00= 7T /2 and
'Po=O.
Since the array considered in the above example is a uniform cophasal

one, the main-beam radiation efficiency as defined in (2.118) is also unity
(100%).

3.4 Equivalence to LinearArrays

Before we present the synthesis of ring and elliptical arrays, we digress a
little here to study the equivalence between the linear array discussed in
the first two chapters and the ring array in Section 3.2. To simplify the
algebra involved, let us consider the broadside pattern (an =0) from the
exact formula (3.14). If there is also an element at the array center, we can
write the broadside pattern as

N

E( O''P) = 10 + ~ In exp [jka sinOcos ('P - 'Pn)],
n=l

(3.49)
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which appears more complicated than the broadside pattern for a linear
array as it is a function of both 0 and cpo However, when the pattern in a
vertical plane, given by cp= Cpp= constant, is of particular interest, we have

N

E(O,cpp) =10+ ~ Inexp(jkansinO), (3.50)
n=.

where

an = a cos (Cpp- CPn). (3.51 )

Clearly, (3.50) has exactly the same mathematical form as that for a linear
array of N + 1 elements with an denoting the distance between nth element
and the reference element whose amplitude excitation is 10• This nth
element is located on the right side of the reference element if an is
positive, or on the left side if an is negative. When an =0, this element
coincides with the reference element to reduce the total number of ele-
ments by one. We should not be confused by the apparent discrepancy
between the factor sinO in (3.50) and cosO involved before for linear
arrays. This is due to the fact that 0 is used as the angle measured from the
array normal in this chapter while it was denoted as the angle from the
array axis in the first two chapters.
With this equivalence established, the experience learned previously for

linear arrays can be useful in understanding the characteristics associated
with the broadside pattern of a ring array. As an example, when N = 12,
cpn='TTn/6, CPp=O and 'TT(xz plane), we have for CPp=O,

a. =all =0.866a, a2 = alo=O.5a,

as = a7 = - 0.866a,

a4 = ag = 0.5a,

al =a •• = -0.866a,

If, in addition, 11=ls, 12=14, 16=112, 17=111, Ig=l.o as they usually are,
(3.50) takes the following special form:

E( 0,0) = E( O,'TT)= 10+ 2(12 + II 0) cos (O.5ka sinO)

+2(1. + III) cos (0.866kasinO) +216cos (ka sinO), (3.52)

which may be pictured in Fig. 3.8 as an equivalent symmetrically spaced
seven-element linear array. Once the amplitude excitations are known, the
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To Distant Point

a

Fig. 3.8 An equivalent symmetrically spaced seven-element linear array.

entire vertical pattern in the xz plane can be analyzed as that of an
equivalent linear array. Vertical patterns in other planes, horizontal pat-
terns identified by (}o= (}= 17/2 and 'Po= constant, and cases with different
Nand 'Pn can be handled in a similar manner. The equivalence between
elliptical and linear arrays can also be easily established.

3.5 Synthesis of Ring and Elliptical Arrays-from the Directivity
Viewpoint

In Sections 3.2 and 3.3, we formulated the mathematical basis for analyz-
ing characteristics of ring and elliptical arrays and gave a few numerical
results of directivity for the uniformly excited cophasal arrays. The direc-
tivity obtained for this simple excitation condition is not necessarily always
maximized. Now, we are ready to present the synthesis of a single ring or
elliptical array with the purpose of maximizing the directivity.19 The
method is essentially the same as that given in Section 2.9, using the
quadratic form approach.
In general, the directivity of a single ring or elliptical array can be jointly

expressed in the following form:

D = IE((}o,'PoW

( 1/417) ~27T ~7TIE ((}, 'PW sin (}d(} dIp

[It [A ][I]
[It[B][I] , (3.53)
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where in the first expression

N

E( O,cp) = f( 0,cp) ~ Ineia.exp [jkan sinOcos (cp - CPn)],
n~\

(3.54)

with the understanding that an = a for the ring array and an is given by
(3.45) or (3.46) for the elliptical array. The factor f(O,cp) in (3.54) represents
the element pattern with its beam maximum normalized to unity, f(Oo,CPo)
= 1. The phase and amplitude excitations are to be determined by maxi-
mizing the directivity. For excitations other than uniform-cophasal, as
discussed in the previous sections, In=F1, CXn=F-kansinOocos(cpo-CPn)'
In the second expression of (3.53), we have

[1] =

[1]+=conjugate transpose (adjoint) of [I],

[A ]= [e] [e ]+ = [amn ] ,

(3.55)

(3.56)

[e] =

exp[ -jka\sinOocos(cpo-CP\)]
exp[ -jka2sinOocos(cpo-CP2)] (3.57)

(3.58)

The typical element of [A] in (3.56) is

amn= exp [ - jkp'mn sin 00cos (CPo- cp'mn)],

= 1, m=n,

(3.59)

(3.60)
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where p'mn and cp'mn are given, respectively, in (3.47) and (3.48). The typical
element of [B] in (3.58) is

bmn = 4~ £2'1r £'1rP(O,cp) exp [ - jkp'mnsinOcos (cp-cp'mn)] sinOdOdcp,

m=l=n, (3.61)

(3.62)

According to the derivation given in Section 3.2, closed forms of (3.61)
and (3.62) exist for some simple elements. When f(O,cp)= 1 (isotropic
element),

sinkp'mn
bmn= k' ,

Pmn
(3.63)

For the short dipole where f(O,cp) = sinO, we have

sinkp'mn 1 ( sinkp'mn , )
bmn= k' - 2 k ' -coskPmn'

Pmn (kp'mn) Pmn

=!, m=n.
(3.64)

Since (3.53) is in the quadratic form where matrices [A] and [B] are both
Hermitian and [B] is also positive definite, the optimization theorem de-
scribed in Section 2.9 applies. The maximum obtainable directivity should
then be given by the largest root (also the only nonzero value) of (2.239),
or

where [B]-I is the inverse matrix of [B].
The required current excitation matrix should be

-I
[I 1opt = [B 1 [ e ],

from which In and an can be easily identified.

(3.65)

(3.66)
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(aj Broadside Optimization. When a vertical or broadside pattern is de-
sired, 00=0, Eq. (3.57) becomes

(e) = (3.67)

and (3.66) always yields an = O.This implies that, in order to maximize the
directivity for a broadside ring or elliptical array, the elements must be
excited in phase (i.e., cophasal). This condition, of course, is consistent
with that required for the broadside linear array studied in Chapter 2. The
amplitude excitations In obtained from (3.66) will depend, however, on
(N,a) for the ring array or (N, v,X) for the elliptical array when the values
of CPn,n= 1,2, ... ,N,are specified. Two examples for the optimum broadside
elliptical array with N = 6 and CPN = n7r /3 are given below:

N=6, v=0.7, X=2.0A, Dmax = 6.7977,

N=6, v=O.3,

1]=0.9997;

X=0.6A, D max = 4.5958,

1]=0.8828.

Note that in the above examples the main-beam radiation efficiency is no
longer lOO%.This is true because the amplitude excitations are no longer
uniform. Furthermore, since the value of X is moderate in the first
example, the current amplitudes, the maximum directivity obtained, and
the final radiation efficiency do not differ much from the uniform-
cophasal case presented in Fig. 3.7(a) where In= 1,D=6.7956, and 1]= 1.0.
In the second example, where X is rather small, the maximum directivity
obtained represents a good improvement over the uniform-cophasal case
with D = 3.8577. This improvement is achieved with larger differences in
the required current amplitudes and lower radiation efficiency.
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Even with this limited calculation, we may conclude that if the size of
the elliptical array is moderate for a given number of elements, or more
precisely, if the arc distance between two consecutive equally spaced
elements on the elliptical circumference is no less than one-half wave-
length, the directivity from the uniform-cophasal excitation is indeed very
satisfactory as far as the broadside operation is concerned. In other words,
under the same condition the improvement in directivity by the optimiza-
tion procedure just described is only marginal. Only when the distance
between two consecutive elements is very small, a larger improvement in
directivity is possible by sacrificing the radiation efficiency and current
amplitude distribution. This situation is similar to that associated with the
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Table 3.1 Required Excitations for a Ring Array
with N=6, J(O,cp)= 1, °0=17/2, %=0, cpn=17n/3,
and a=0.5A.

1.=15
12=/4
13=/6
a.=a5
a2=a4
a3
a6

Optimum

1.2230
1.2230
1.0972

-97.80
97.80

-162.40
162.40

Uniform-Cophasal

1.0
1.0
1.0

-900
900

-1800
1800

superdirective linear array discussed in Section 2.3 and to that displayed in
Table 2.5, where the optimization of the directivity for an equally spaced
broadside linear array was presented.
Although the above discussion is specifically directed to the elliptical

array, the same conclusion should also hold for the ring array. Since the
optimization procedure involved is rather simple, the reader is asked to
work a few examples for the ring array with N = 6 and various values for
the ring radius.

(b) Optimization in the Plane of the Array. In this case 00 = 17/2. The
answer from (3.66) will, in general, not give a uniform-cophasal array.
Numerical results for N=6 and CPo=O are presented in Figs. 3.9 and 3.10
with the same scale as those in Figs. 3.4(b) and 3.7(b) for easy comparison.

Table 3.2 Required Excitations for an Elliptical
Array with N=6, J(O,cp) = I, °0=17/2, %=0, CPn
= 17n/3, v = 0.3, and X = 1.0A.

1)=15
12=/4
13=/6
a)=a5
a2=a4
a3
a6

Optimum

1.6628
1.6628
1.2784

-73.90
73.90
38.70

-38.70

Uniform-Cophasal

1.0
1.0
1.0

-61.40
61.40

00
00
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Since the excitations are no longer uniform and cophasal, the main-beam
radiation efficiency as defined in (2.118) is also calculated and included in
the figures. It is apparent from Fig. 3.9 that the ring array will become
superdirective with lower radiation efficiency when its radius is less than
about 0.5A. For this reason, the results when X <0.6A for the elliptical
array are not included in Fig. 3.10. Note that in Fig. 3.9 the required
current excitations when a = 2.0A happen to be identical with those for the
uniform-cophasal excitation. Therefore, the directivity remains the same as
that for the uniform-cophasal array and the main-beam radiation efficiency
is 100%for a = 2.0A.
Specific results of In and an are given in Table 3.1 for the ring array with

a=O.5A. For this case, Dmax=6.9378, 'l}=95.63%, and the maximum-to-
minimum amplitude ratio = 11/13 = 1.1146. Similar results for the elliptical
array with v=O.3 and X= l.OA are shown in Table 3.2, where Dmax=8.
4864, 'l}= 83.82%, and 11/13 = 1.3006.
The normalized radiation patterns in the array plane corresponding to

Tables 3.1 and 3.2 are plotted respectively in Figs. 3.11 and 3.12 where
uniform-cophasal cases are also given for the purpose of comparison. It is
clear from these figures that the increase in directivity for the optimum
excitation is mainly achieved by making the main lobe a littler narrower
than that with a uniform-cophasal excitation. The sidelobe levels are,
however, quite high, as we have expected for the reason discussed in
Section 3.2. In fact, while directivity values higher than those given in
Tables 3.1 and 3.2 may be realized by a larger array with more elements,
the sidelobe levels of the pattern always remain high. Concentric ring or

-- Optimum

- - - Uniform - cophosol

18016060 80 100 120
cp, degrees

Fig.3.11 Normalized radiation patterns for a ring array with six isotropic
elements when 0o=7T/2,cpo=0, and a=0.5A.
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Optimwn
Uniform-cophasal

Fig. 3.12 Normalized radiation patterns for an elliptical array with six
isotropic elements when 00= 7T/2, CPo = 0,v = 0.3, and X = 1.0;\.

elliptical arrays may be syntheiszed to accomplish a substantial reduction
in the sidelobe level. The topic on concentric ring arrays is presented in the
following section.

3.6 Synthesis of Concentric Ring Arrays-From the Pattern Viewpoint

In Section 3.2 we showed that when the total number of elements equally
spaced on the circumference of a cophasal ring array with a given radius a
is large and they are equally excited, the pattern from such a ring may be
approximated as

(3.68)

where II is the total amplitude excitation, p=pv=asinO (O<,O<'7T) for the
vertical pattern, and p=Ph=2asin(cp/2) (0<'cp<,27T) for the horizontal
pattern.
If there are M concentric rings in the array in addition to one element at

the array center, and each ring contains a "large number" of elements, the
total contribution to the pattern will approximately be20

where

and u={ 7TsinO
7Tsin(cp/2)

(3.69)

} {
Vertical}for the . pattern,
honzontal
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and

If the maximum value of EM occurs at u = 0, as it usually does, the
directivities in both planes can be respectively expressed as

and

2E1(0)
Dv--.,,----

~ E1sinOdO
(3.70)

(3.71)

which may be calculated numerically when lIn and bn are known. It is clear
that the directivity expressions given above are only approximate. They
become exact when Nn, the number of elements on each ring, is infinitely
large. For a finite Nn, the exact results can also be obtained if we use the
following:

(3.72)

where
N1

EM=lo+ ~ llnexp [jkal sin 0 cos (<P-<Pln) +ja1n]
n=1

N2
+ ~ 12n exp [jka2sinOcos (<p -<P2n) +ja2n]

n=1

+ ...

NM
+ ~ IMnexp[jkaMcos(<p-<PMn)+jaMn]'

n=1

(3.73)

Once again, iEMI2 will have terms of the same form as (3.32) with Pmn
given by either type of (3.33) or that of (3.47) depending on the individual
product involved. Therfore, an exact expression for the directivity similar
to that in (3.38) can be derived. The details are omitted since our purpose
here is a study of the pattern only.
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An examination of (3.69) reveals that the formulation presented in
Section 2.7 with Haar's theorem should also apply here. This means that, if
the conditions outlined previously are satisfied, the set of the required
current lin can be uniquely determined so that the synthesized pattern EM
will be the best approximation to a specified function f( u) in the minimax
sense. Thus, the maximum magnitude of the deviation function,

e(u)=f(u)-EM(u), (3.74)
will be minimized in 0..;; u..;; 'TT. The conditions on the basis functions
JO(kbnuj'TT) and the specified functionf(u) required by Haar's theorem are
a. JO(kbnuj'TT), n=O, 1,... , M are bounded and continuous in (0, 'TT);
b. JO(kbnuj'TT) are linearly independent real functions;
c. f(u) is also bounded and continuous in (O,'TT);
d. No EM= '2/:=oItnJo(kbnuj'TT) should have more than M distinct real

zeros in (O,'TT),where the lin's are not all zero.
Since we are again usingf(u)=e-Au2 (with A as a positive number) as

the specified pattern, it is clear that the first three conditions have been
satisfied. The fourth condition can also be met by an appropriate choice of
bM (the radius of the largest ring). Let us consider a simple case where
M = 1 to illustrate this point. The array for this case has one ring and one
element at the array center, and the pattern function is given by

(
kbJU)E) = ItO+ IIIJo ----:;;- . (3.75)

If we choose kbJ =4, the part of Jo(kbJuj'TT) in the visible region (O<u<'TT,
or 0<kb)uj'TT<4) is shown in Fig. 3.13. It is obvious that EJ cannot have
more than one real zero in O<u<'TT no matter what ItO and III may be. For
this simple case all the conditions required by Haar's theorem are satisfied.
We can then apply the "extrema equalization" process, that was success-
fully used in Section 2.7 when dealing with the synthesis of nonuniforrnly
spaced linear arrays, such that the deviation function in (3.74) attains its
maximum magnitude at three (M +2) consecutive points in 0< u < 'TT with
the sign of e(u) at these points alternately plus and minus. Under this
situation the maximum magnitude of the deviation function, max le(u)l, is
considered minimized. The values of ItO and III obtained by solving
simultaneous equations as demonstrated in Section 2.7 are also unique
with respect to kb) = 4.
For arrays of two concentric rings plus one element at the array center,

M= 2. At the beginning we cannot readily see whether the fourth condition
required by Haar's theorem can be satisfied by certain choices of bz. To
start with, we generally choose a rather small bz, say kbz = 7, to make sure
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-.5

Fig.3.13 A sketch of Jo(4u/'TT) in 0";; u.,;; 'TT.

that Jo(kb2u/'TT) alone does not have more than two zeros in O<u<'TT and
that the fourth condition is "likely" to be satisfied. With another choice of
b
l
(bl <b2), we can apply the same procedure to determine the required

currents ItO' Itl, and It2 such that max If(u) - E2(u)1 will be minimized. The
solution thus obtained is optimum in Haar's sense with respect to those
particular values of bl and b2 (kb2 = 7). Once the currents are determined,
other array characteristics such as the directivity, beamwidth, and side-
lobes can also be calculated. The entire procedure can be repeated by
varying bl and keeping kb2 = 7 to obtain a set of solutions. From these we
then select one with the best performance (the narrowest beamwidth,
largest directivity, or lowest sidelobe) as the final answer to this synthesis
problem. The answer is considered the best one as far as this particular
kb

2
= 7 (or equivalently the array size) is concerned. The same procedure

can be continued by increasing b2 gradually until the whole process breaks
down (i.e., the iteration ceases to converge). It then appears that the
maximum array size has been found to give the best array performance
under the minimax criterion.
For arrays of more concentric rings, the same concept applies although

the total number of combinations of bn becomes more involved.
Thus far we have solved the approximation problem by considering the

principal terms only, which corresponds to Nn~oo. The actual number of
elements to be used on each ring can be determined by examining the
residual terms in (3.28) and (3.29). With a set of an obtained by using
Haar's theorem, we can always choose a corresponding set of finite Nn to
make the residual terms negligible.
Applying the theory outlined above and the procedure of computation

described in Section 2.7, we present in Table 3.3 two numerical examples.



Table 3.3 Characteristics for Arrays of Two and Three Rings.

(BW)v S.L.

1.5 7.5
4.5 8.1

-0.7532 1.0912 0.5848
12.0 0.0477 0.2426 0.2708 0.3752

21.32
14.58

-21.55
-23.34

Fig. 3".14 Plan views of the synthesized concentric-ring arrays: (a) M = 2,
vertical, (b) M=2, horizontal, (c) M=3, vertical, (d) M=3,
horizontal.
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Fig.3.15 Radiation patterns of the synthesized concentric-ring arrays: (a)
as a function of u,M=2, (b) as a function of u,M=3, (c) as a
function of O,M=2, (d) as a function of O,M=3, (e) as a
function of <p, M = 2, (f) as a function of <p, M = 3.
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The pattern synthesized according to the current amplitudes given in the
table also approximates the specified f(u) in the minimax sense. The
associated half-power beamwidth for the vertical pattern, (BW)v' is given
in degrees, and the approximate sidelobe level in dB (S.L.) is calculated
according to -20log[EM(0)/emaxl, where emax=[f(u)-EM(u)lmax' Note
from the relations following (3.69) that, for a chosen bn, the radius of the
nth ring required for the horizontal pattern is only one-half of the corres-
ponding radius for the vertical pattern. Furthermore, since cP /2 and () are
equivalent in the mathematical sense, the half-power point, Uh' determined
by solving EM(Uh)=0.707EM(0) should yield that CPh=2(}h'This implies
that (BW)h = 2(BW)v for the same set of bn.
As mentioned above, a study of the sizes of concentric rings and the

behavior of JmN should help determine the minimum number of elements
required on each ring to justify the neglecting of all the residual terms for a
certan accuracy. The actual number of elements for each example in Table
3.3 for an accuracy of the order of 10-3 is shown in Fig. 3.14. The detailed
synthesized patterns are given in Fig. 3.15.
The synthesis technique of applying Haar's theorem as discussed here

for isotropic elements can also be extended to arrays with directive
elements, following the same idea cited near the end of Section 2.7. The
realization of making this extension possible was essentially presented in
(2.209), and is not repeated here.
Although the synthesis of concentric elliptical arrays may be formulated

in principle by a parallel approach, the mathematics involved is unfor-
tunately much more complicated because a simple and approximate pre-
sentation for the field function, similar to that in (3.68), is not available.
Obviously, this complication arises from the fact that the variable p in
(3.16) has to be replaced by

[( . () . () )2 (' () . . ()' )2]1/2Pn =an sm COscp- sm oCOScpo+ sm smcp- sm osm CPo

for each ellipse, where an is given by (3.45), so that a mathematical
expansion similar to (3.18) is much involved, if not impossible.

3.7 Concluding Remarks

In this chapter we have presented methods of analyzing and synthesizing
two-dimensional arays with detailed attention paid to ring and elliptical
arrays. The criteria used for the synthesis of such arrays were in parallel
with those for dealing with linear arrays discussed in Chapter 2. Once
again we have restricted ourselves to arrays of discrete and simple ele-
ments. The mutual impedances between elements have also been ignored.
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The antenna of circular aperture type has been discussed elsewhere.8,14,21-25
This subject can mostly be treated by double Fourier transforms. The
impedance problem and the associated matching techniques, especially for
large or infinite scanned arrays of waveguides and slots, have thoroughly
been studied in the past. 26-38
Topics on arrays with elements occupying only a part of the circular

circumference or other geometry have also received limited attention.39,40
When only a portion of the elements in the array are excited, the array is
said to have parasitic excitation. This subject has been treated by Tillman9
and his associates.41 Quasi-ring arrays where the elements are not all
identically oriented have also been considered.42-44 The elements in this
special kind of array are usually arranged tangentially or radially (with
respect to the ring circumference) to achieve certain characteristics.
The elements of a ring or elliptical array can also be mounted near or on

a concentric reflecting structure to increase effectiveness of the system or
to facilitate possible airborne applications.5,45-47 Methods of analysis and
synthesis different from those presented in this chapter are also available.
These include using a probabilistic approach for analyzing large circular
arrays,48 employing sampling theory to synthesize a prescribed pattern in
the plane of the ring for a specified precision,49 and sidelobe reduction by
an iterative technique.5o
Finally, it should be noted that the problem of spherical or three-

dimensional arrays can be formulated as an extension to the materials
presented. Limited results in this category have already been pub-
lished. 5,48,51-54

PROBLEMS

3.1 Calculate the directivity for a uniform-cophasal ring array with eight
elements equally spaced on the circumference and a = l.OA:(a)Oo= 0 when
the element is isotropic, (b) (}o= 7T/2 and % = 0 when the element is
isotropic, (c)Oo= 7T /2 and %=0 when the element is a vertical short dipole.
3.2 Plot the radiation patterns corresponding to cases in Problems 3.1.

How do they differ from the ideal Jo(x)?
3.3 Calculate the directivity for a uniform-cophasal elliptical array with

eight equally spaced isotropic elements, X=2.0A and v=0.5: (a)(}o=O, (b)
(}o= 7T /2 and % = O.
3.4 Plot the vertical pattern (in the xz plane) of the elliptical array

described in Problem 3.3, and find an equivalent linear array.
3.5 Determine the optimum directivity and radiation efficiency for a

ring array with eight equally spaced isotropic elements as a function of the
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array radius when 00 = 1T /2 and «Po = O. What are the required amplitude
and phase excitations?
3.6 Plot the radiation pattern from the array in Problem 3.5 with

a = LOA.
3.7 Synthesize an array of three concentric rings to staisfy the following

specifications:
(a) the sidelobes in the radiation pattern are approximately at an equal

level,
(b) the first-null beamwidth is approximately 2uI = 1.8 rad (where UI is

the position of the first null), and
(c) kb3 = 10.

The array should also have an element at the array center. Make an
arbitrary choice of bl and b2• What are the required total currents on each
ring and the final sidelobe level in dB? Based on your method of synthesis,
what are the required minimum number of elements for each ring?
3.8 Calculate the directivity for the two concentric-ring array outlined in

Table 3.3 when 00=0.

REFERENCES

1. Collin, R. E. Pattern synthesis with nonseparable aperture fields,
IEEE Trans. Antennas and Propagation, Vol. AP-12, No.4, pp. 502-503,
July, 1964.
2. Schell, A. C. and A. Ishimaru. Antenna pattern synthesis, Chap. 7, in

Antenna Theory, Part I, edited by R. E. Collin and F. J. Zucker, McGraw-
Hill Book Co., New York, 1969.
3. Page, H. Ring aerial systems, Wireless Engineers, Vol. 25, No. 301, pp.

308-314, October, 1948.
4. Wild, J. P. Circular aerial arrays for radio astronomy, Proc. Royal Soc.
(London) Ser. A, Vol. 262, No. 1308, pp. 84-99, June, 1961.
5. DuHamel, R. H. Pattern synthesis for antenna arrays on circular,

elliptical, and spherical surfaces, Technical Report No. 16, EE Research
Lab., University of Illinois, Urbana, 1952.
6. Ishimaru, A. Theory of unequally spaced arrays, IRE Trans. Antennas
and Propagation, Vol. AP-lO, NO.6, pp. 691-701, November, 1962.
7. Tighe, R. F. Nonuniform two dimensional scanning arrays, IEEE
Wescon Record, Paper No. 104, 1963.
8. Taylor, T. T. Design of circular apertures for narrow beam width and

low sidelobes, IRE Trans. Antennas and Propagation,Vol. AP-8, NO.1, pp.
17-22, January, 1960.



THEORY AND APPLICATION OF ANTENNA ARRAYS 225

9. Tillman, J. D., Jr. The Theory and Design of Circular Antenna Arrays,
University of Tennessee Eng. Exp. Station, Knoxville, 1966.
10. LePage, W. R., C. S. Roys, and S. Seely. Radiation from circular
current sheets, Proc. IRE, Vol. 38, No.9, pp. 1069-1072,September, 1950.
11. Stearns, C. O. and A. C. Stewart An investigation of concentric ring
antennas with low sidelobes, IEEE Trans. Antennas and Propagation, Vol.
AP-13, No.6, pp. 856-863, November, 1965.
12. Royer, G. M. Directive gain and impedance of a ring array of anten-
nas, IEEE Trans. Antennas and Propagation, Vol. AP-14, No.5, pp.
566-573, September, 1966.
13. Chu, T. S. On the use of uniform circular arrays to obtain omnidirec-
tional patterns, IRE Trans. Antennas and Propagation, Vol. AP-7, No.4, p.
436, October, 1959.
14. Hansen, R. C. Tables of Taylor distributions for circular aperture
antennas, IRE Trans. Antennas and Propagation, Vol. AP-8, No.1, pp.
23-26, January, 1960.
15. Wait, J. R. Theory of an antenna with an infinite comer reflector,
Can. J. Phys., Vol. 32, NO.5, pp. 365-371, May, 1954.
16. Utlaut, W. F. Some radio and optical observations of ionospheric
modification by very high power HF ground-based transmission, GAP
International Symposium Digest, pp. 208-212, September, 1970.
17. Watson, G. N. Theory of Bessel Functions, University of Cambridge
Press, Cambridge, England, 1958.
18. Magnus, Wilhelm and Fritz Oberhettinger. Formulas and Theorems for
the Functions of Mathematical Physics, Chap. 3, Chelsea Publishing Com-
pany, New York, 1949.
19. Cheng, D. K. and F. I. Tseng.Maximisation of directive gain for
circular and elliptical arrays, Proc. lEE (London), Vol. 114, NO.5, pp.
589-594, May, 1967.
20. Ma, M. T. and L. C. Walters. Synthesis of concentric ring antenna
arrays yielding approximately equal sidelobes, Radio Sci., Vol. 3, No.5, pp.
465-470, May, 1968.
21. Fante, R. L. Optimum distribution over a circular aperture for best
mean-square approximation to a given radiation pattern, IEEE Trans. on
Antennas and Propagation, Vol. AP-18, No.2, pp. 177-181,March, 1970.
22. Hansen, R. C. Aperture theory, Chap. 1,Vol. 1 in Microwave Scanning
Antennas, edited by R. C. Hansen, Academic Press, New York, 1964.
23. Hu, M. K. Fresnel region field distributions of circular aperture an-
tennas, IRE Trans. Antennas and Propagation, Vol AP-8, No.3, pp.
344-346, May, 1960.



226 ANALYSIS AND SYNTHESIS OF TWO-DIMENSIONAL ARRAYS

24. Rhodes, D. R. On a fundamental principle in the theory of planar
apertures, Proc. IEEE, Vol. 52, No.9, pp. 1013-1021, September, 1964.
25. Ruze, J. Circular aperture synthesis, IEEE Trans. Antennas and Pro-
pagation, Vol. AP-12, NO.6, pp. 691-694, November, 1964.
26. Allen. J. L. On surface-wave coupling between elements of large
arrays, IEEE Trans. Antennas and Propagation, Vol. AP-13, No.4, pp.
638-639, July, 1965.
27. Amitay, N., J. S. Cook, R. G. Pecina, and C. P. Wu. On mutual
coupling and matching conditions in large planar phased arrays, IEEE
G-AP International Symposium Digest, 1964.
28. Diamond, B. L. A generalized approach to the analysis of infinite
planar array antennas, Proc. IEEE, Vol. 56, No. 11, pp. 1837-1851,
November, 1968.
29. Edelberg, S. and A. A. Oliner. Mutual coupling effects in large
antenna arrays: Part I-slot arrays, IRE Trans. Antennas and Propagation,
Vol. AP-8, N. 3, pp. 286-297, May, 1960.
30. Farrell, G. F. and D. H. Kuhn. Mutal coupling effects of triangular-
grid arrays by modal analysis, IEEE Trans Antennas and Propagation, Vol.
AP-14, No.5, pp. 652-654, September, 1966.
31. Farrell, G. F. and D. H. Kuhn. Mutal coupling in infinite planar arrays
of rectangular waveguide horns, IEEE Trans. Antennas and Propagation,
Vol. AP-16, No.4, pp. 405-414, July, 1968.
32. Galindo, V. and C. P. Wu. Numerical solutions for an infinite phased
array of rectangular waveguides with thick walls, IEEE Trans. Antennas
and Propagation, Vol. AP-14, No.2, pp. 149-158, March, 1966.
33. Hannan, P. W., D. S. Lerner, and G. H. Knittel. Impedance matching
a phased-array over wide scan angles by connecting circuits, IEEE Trans.
Antennas and Propagation, Vol. AP-13, NO.1, pp. 28-34, January, 1965.
34. Lechtreck, L. W. Effects of coupling accumulation in antenna arrays,
IEEE Trans. Antennas and Propagation, Vol. AP-16, No.1, pp. 31-37,
January, 1968.
35. Oliner, A. A. The impedance properties of narrow radiating slots in
the broad face of rectangular waveguide: Part I-Theory, IRE Trans.
Antennas and Propagation, Vol. AP-5, No.1, pp. 4-11, January, 1957.
36. Oliner, A. A. and R. G. Malech. Mutual coupling in infinite scanning
arrays, Chap. 3, and Mutual coupling in finite scanning arrays, Chap. 4,
Vol. 2 in Microwave Scanning Antennas, edited by R. C. Hansen, Academic
Press, New York, 1964.
37. Wu, C. P. and V. Galindo. Properties of a phased array of rectangular
waveguides with thin walls, IEEE Trans. Antennas and Propagation, Vol.
AP-14, No.2, pp. 163-173, March, 1966.



THEORY AND APPLICATION OF ANTENNA ARRAYS 227

38. Varon, D. and G. I. Zysman. On the mismatch of electronically steer-
able phased-array antennas, Radio Sci., Vol. 3, No.5, pp. 487-489, May,
1968.
39. Lee, S. W. and Y. T. Lo. On the pattern function of circular arc
arrays, IEEE Trans. Antennas and Propagation, Vol. AP-13, No.4, pp.
649-650, July, 1965.
40. Chiang, B. and D. H. S. Cheng. Curvilinear arrays, Radio Sci., Vol. 3,
No.5, pp. 405-409, May, 1968.
41. Simpson, T. L. and J. D. Tillman. Parasitic excitation of circular
antenna arrays, IRE Trans. Antennas and Propagation, Vol. AP-9, No.3,
pp. 263-267, May, 1961.
42. Hilburn, J. L. Circular arrays of radial and tangential dipoles for
turnstile antennas, IEEE Trans. Antennas and Propagation, Vol. AP-17, No.
5, pp. 658-660, September 1969.
43. Hilburn, J. L. and C. E. Hickman. Circular arrays of tangential di-
poles, J. Appl. Phys. Vol. 39, No. 12,pp. 5953-5959, December, 1968.
44. Knudsen, H. L. Radiation from ring quasi-arrays, IRE Trans. Antennas
and Propagation, Vol. AP-4, No.3, pp. 452-472, July, 1956.
45. Knudsen, H. L. Antennas on circular cylinders, IRE Trans. Antennas
and Propagation, Vol. AP-7 (supplement), pp. S361-S370, December, 1959.
46. Ma, M. T. and L. C. Walters. Theoretical methods for computing
characteristics of Wullenweber antennas, Froc. IEE (London), Vol. 117,
No. 11, pp. 2095-2101, November, 1970.
47. Proceedings of the Conformal-Array Antenna Conference, held at
Naval Electronics Laboratory Center, San Diego, Calif., January 13-15,
1971.
48. Panicali, A. R. and Y. T. Lo. A probabilistic approach to large circular
and spherical arrays, IEEE Trans. Antennas and Propagation, Vol. AP-17,
No.4, pp. 514-522, July, 1969.
49. Redlich, R. W. Sampling synthesis of ring arrays, IEEE Trans. Anten-
nas and Propagation, Vol. AP-18, No.1, pp. 116-118, January, 1970.
50. Coleman, H. P. An iterative technique for reducing sidelobes of circu-
lar arrays, IEEE Trans. Antennas and Propagation, Vol. AP-18, No.4, pp.
566-567, July, 1970.
51. Chan, A. K., A. Ishimaru, and R. A. Sigelmann. Equally spaced spheri-
cal arrays, Radio Sci., Vol. 3, No.5, pp. 401-404, May, 1968.
52. Hoffman, M. Convention for the analysis of spherical arrays, IEEE
Trans. Antennas and Propagation, Vol. AP-ll, No.4, pp. 390-393, July,
1963.
53. MacPhie, R. H. The element density of a spherical antenna array,



228 ANALYSIS AND SYNTHESIS OF TWO-DIMENSIONAL ARRAYS

IEEE Trans. Antennas and Propagation, Vol. AP-16, No.1, pp. 125-126,
January, 1968.
54. Sengupta, D. L., T. M. Smith, and R. W. Larson. Radiation
characteristics of a spherical array of circularly polarized elements, IEEE
Trans. Antennas and Propagation, Vol. AP-16, No.1, pp. 2-7, January,
1968.

ADDITIONAL REFERENCES

Das, R. Concentric ring array, IEEE Trans. Antennas and Propagation,
Vol. AP-14, No.3, pp. 398-400, May, 1966.

Ksienski, A. A. Synthesis of nonseparable two-dimensional patterns by
means of planar arrays, IRE Trans. Antennas and Propagation, Vol.
AP-8, NO.2, pp. 224-225, March, 1960.

Lo, Y. T. and H. C. Hsuan. An equivalence theory between elliptical and
circular arrays, IEEE Trans. Antennas and Propagation, Vol. AP-13,
No.2, pp. 247-256, March, 1965.

Lo, Y. T. and S. W. Lee. Affine transformation and its application to
antenna arrays, IEEE Trans. Antennas and Propagation, Vol. AP-13,
NO.6, pp. 890-896, November, 1965.

Lo. Y. T., S. W. Lee, and Q. H. Lee. Optimization of directivity and
signal-to-noise ratio of an arbitrary antenna array, Proc. IEEE, Vol.
54, No.8, pp. 1033-1045, August, 1966.

Mack, R. B. A study of circular arrays, Cruft Lab., Technical Report,
Harvard University, May 1, 1963.

Munger, A. D. and J. H. Provencher. Beam width and current distribution
for circular array antennas, Tables, NELC Report 1522, October,
1967.

Sureau, J. C. and A. Hessel. Element pattern for circular arrays of axial
slits on large conducting cylinders, IEEE Trans Antennas and Propaga-
tion, Vol. AP-17, No.6, pp. 799-803, November, 1969.

Taylor, T. T. A synthesis method for circular and cylindrical antennas
composed of discrete elements, IRE Trans. Antennas and Propagation,
No.3, pp. 251-261, August, 1952.

Willey, R. E. Space tapering of linear and planar arrays, IRE Trans.
Antennas and Propagation, Vol. AP-IO, No.4, pp. 369-383, July, 1962.

Special issue on "Electronic Scanning," IEEE Proc., Vol. 56, No. 11,
November, 1968.

Special issue on "Theory of Antenna Arrays," Radio Sci., Vol. 3, No.5,
May, 1968.

Phased-Array Antenna Symposium Digest, Polytechnic Institute of Brook-
lyn, 1970.



CHAPTER 4
ARRAYS OF STANDING-WAVE ANTENNAS

ABOVE LOSSY GROUND

In the first three chapters, we presented various theoretical aspects of
linear and two-dimensional arrays. The arrays considered therein were
constructed of isotropic or simple elements in free space, and the
associated impedance problem was not duly treated. Now we are ready to
formulate the array problem from an application viewpoint. First, the
arrays to be considered are made of practical elements and the elements
are placed above a lossy ground. Second, the current distribution on the
element is assumed according to an existing and authoritative literature.l
Third, based on the assumed current distribution the self- and mutual
impedances of the element will be calculated by the induced emf method.2
Finally, the total far-field radiated from the array, the input power ac-
cepted by the array, and therefore the power gain will also be computed. 3
The particular elements treated in this chapter are various standing-wave
types of antennas.

4.1 Current and Impedance of a Center-Fed Dipole

It has been known that the radiation characteristics of an antenna in the
presence of a lossy ground can be influenced substantially by the finite
ground conductivity and inhomogeneity. The original work on this subject
was begun some sixty years ago by Sommerfeld,4 and was later discussed
and extended by many others.5-8 The problem was conventionally simpli-
fied on the basis of a Hertzian dipole with a specified current moment.
This simplification is, of course, justifiable when the application is con-
fined to a very low frequency range. For higher frequencies the antenna
can no longer be regarded very short in terms of the operating wavelength.
Under this condition, a finite length of antenna should be considered.
Recent solutions to current distribution for a single finite dipole or a

pair of monopoles in the presence of a homogeneous and dissipative
half-space rely almost exclusively on numerical approaches. Basically, the
unknown current on the surface of an antenna is first formulated as a
Hallen-type integral equation, and then solved numerically when
appropriate boundary conditions are imposed.9•11 For arrays of many
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elements, the resulting coupled integral equations, if formulated by the
same approach as mentioned above, would be very large in number and
complicated, if not impossible, to solve. To simplify the situation, we
follow the traditional technique of assuming a realistic and approximate
current distribution on the surface of an antenna. For example, for the
center-fed dipole, the simplest form ever postulated for the current was a
sinusoidal distribution.12 The analysis based on this simple assumption is
straightforward, and the approximation is known to have only negligible
effect on the far-field pattern. The input impedance calculated accordingly
is also considered satisfactory when the half-length of the dipole is no
greater than a quarter wavelength. The accuracy, however, begins to
deteriorate when the antenna length is increased.2 Specifically, when the
half-length becomes a half wavelength (or any multiple thereof), the
assumed sinusoidal distribution gives a value of zero for the current at the
feeding point, resulting in an infinite value for the input impedance. Of
course, the actual input current for these antenna lengths will be small but
not zero, and the input impedance will be large but not infinite. Further-
more, the radius of the antenna does not enter into the analysis with this
simple current distribution. To offer a better approximation than the
sinusoidal and to overcome the associated difficulties, King and Wu
developed a theory consisting of three terms in the assumed current form. I
Briefly, two additional trigonometric terms, as a consequence of examining
the properties of the kernel in the original integral equation, are super-
posed on the dominant sinusoidal term. The results for the input admit-
tance (or impedance) thus obtained were found to agree more closely with
the measured data. I 3 This method remains valid only when the half length
of the antenna does not exceed roughly 5A/8, and when applied to arrays,
requires that all the elements in the array be symmetrically located.
As an extension to the three-term theory, Chang and King proposed

later a five-term method in order to be able to treat arrays whose elements
are unsymmetrically distributed. I 4, 15
Since most of the arrays considered in this chapter are symmetric and

the element half-length is not greater than the limit of 5A/8, we decide to
use King and Wu's three-term assumption for the current in our analysis. I
That is, for a single center-fed dipole in free space,

7T

kh*2'

"V [I(s)= J kh sink(h-lsl)+Tu(cosks-coskh)
60lfdR cos

( ks kh)]+ TD COST-COST ' (4.1 )



THEORY AND APPLICATION OF ANTENNA ARRAYS 231

or

- jV [ (kS 17 ) ]I(s)= 601/JdR sink\sl-l+TJcosks-Tn' cosT-cos"4 '
17

kh=- 2'
(4.2)

where V is the applied voltage, s is the distance along the dipole axis
measured from the feeding point, h is the half-length of the dipole,
k = 217 /A, and the other symbols are defined below.
The function 1/JdRin (4.1) and (4.2) is defined as followsl:

for kh <, 17/2,
h

f [coSkr(O) COSkr(h)]
1/JdR=csckh sink(h-ls'l) ------- ds'

reO) r(h)
-h

where

=2( 1+ coskh) Cc(ka, kh ) - 2coskhCc(ka,2kh)

- 2cotkh(l +coskh )Cs(ka,kh)

+ (cotkhcoskh -sinkh)Cs(ka,2kh), (4.3)

res) =Y(S-S,)2+a2

for kh ~ 17/2,

with a being the radius of the dipole;

./, = (h Sink(h-IS'I)[ coskr(h-A/4) _ COSkr(h)] ,
'rdR J_ r(h-A/4) r(h) ds

-h

= Cc( ka, i) + (1 +cOS2kh)Cc( ka,kh - i)
-COS2khCc( ka,2kh - i) +sin2kh[ Cc(ka,kh) - Cc(ka,2kh) ]

- (1 + cos2kh)Cs(ka,kh) + cos 2khCs(ka,2kh )

+ sin 2kh [ Cs(ka,kh-i)-cs(ka,2kh-i)]. (4.4)
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Note that it is perhaps more appropriate to use the notation lfdR(ka,kh) to
denote the expression in (4.3) and (4.4) since it is a function of both the
radius and half-length of the dipole. To avoid burdensome printing, we
adopt the simpler form. It is clear that, when kh = 'TT /2, both (4.3) and (4.4)
reduce to

(4.5)

The generalized sine integrals and cosine integrals appearing in (4.3)
through (4.5) and in later expressions are defined as

_ IX I - cosy;;+ii
C(b,x)- _~ dy,

o Vy2+ b2

Ix sinysin~
Ss(b,x)= _~ dy,

o Vy2+b2

_ IX siny cosv~
Cs(b,x)- -~ dy,

. 0 Vy2+b2

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11 )

(4.12)
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- ( ) _ IX cosy COSVy2+ b2

Cc b,x - ------dy.
o Vy2+b2

These integrals can be found in tabular form 16 or computed directly by a
numerical procedure.
The complex coefficients, Tu' TD, T'u, and T'D' in (4.1) and (4.2) can be

expressed as

where

(4.18)

Ih 11 , coskr(O) coskr(h) ,
t/JdUR= l-coskh -h (cosks -coskh)[ r(O) - r(h) ds

2 - coskh -
= 1 kh Cc(ka,kh) - 1 kh Cc(ka,2kh)-cos -cos

_ 2coskh C(ka,kh)+ coskh C(ka,2kh)
l-coskh l-coskh

sinkh ( )- 1 kh Cs ka,2kh ,-cos (4.19)
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h
1 ( [Sinkr(O) sinkr(h) 1

l/;dUI= l-cos(kh/2) )-h (cosks'-coskh) r(O) - r(h) ds'

1
I-cos (kh/2) [ -2Sc(ka,kh) +coskhSJka,2kh)

+2coskhS(ka,kh) -coskhS(ka,2kh)

+ sinkhSs(ka,2kh)], (4.20)

1 (h . , [Sinkr(O) Sinkr(h)] ,
l/;dl= I-cos (kh/2) )_hsmk(h-ISJ) r(O) - r(h) ds

= ~ h/ ) {-2sinkhSc(ka,kh)+2coskhSs(ka,kh)
I-cos k 2

- sin2kh[Sc(ka,kh) - SJka,2kh) 1

+ (1 + cos2kh ) Ss(ka,kh ) -cos2khSs(ka,2kh) }, (4.21)

h
1 1 (kS' kh ) [ e-jkr(O) e-jkr(h)] ,

l/;dD= l-cos(kh/2) -h cOST-coST r(O) - r(h) ds

(4.22)
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with

B1=2Sinh-1(!!-)_c(kaY3 kh)_c(kaV3 3kh)
a 2'2 2' 2

. kh (kaY3 ) kh --tsmTS -2-,3kh +cosTC(ka,2kh)

+ .1coskh c( kaY3 kh) + 1 . kh s( kaY3 kh)
2 2 2' 2 sm 2 2'

kh -- 2cosTC (ka,kh), (4.23)

1 kh (kaY3 ) 1 kh (kaY3 )+IcosTS -2-,3kh +IcosTS -2-,kh

. kh (kaV3) kh--!-smTC -2-,kh +2cosTS(ka,kh)

kh-cos TS(ka,2kh),

Ih e-jkr(h)

1/Iv= sink(h-ls'l) r(h) ds'=B2+jC2,
-h

with

(4.24)

(4.25)

B2 = -sin2kh[ Cc(ka,kh) - Cc(ka,2kh) ]

+cos2kh[ Cs(ka, kh) - Cs(ka,2kh)] +Cs(ka,kh), (4.26)
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C2 =sin2kh[Sc(ka,kh) - Sc(ka,2kh)]

-cos2kh[Ss(ka,kh) - S.(ka,2kh)]- Ss(ka,kh), (4.27)

fh -jkr(h)

t¥u= (cosks'-coskh) e ) ds'
-h r(h

= coskh[ Cc(ka,2kh) - C (ka,2kh) ]+ sinkhCs(ka,2kh)

+j { coskh[ S(ka,2kh) - Sc(ka,2kh)]- sinkhSs(ka,2kh) }, (4.28)

(4.29)

kh [ ( kaY) ) ( kaV3 )]C3=cosT S(ka,2kh)-tS -2-,3kh -ts -2-,kh

With a set of values for a and h given, all the functions outlined above
can be calculated. Consequently, we have, from (4.1) and (4.2), the
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self-impedance of the dipole,

- j60l/JdR coskh
Zs = sinkh + Tu(1-coskh) + Tv [I-cos (kh/2)] ,

or

for
7T

kh=/= 2'

(4.32)

j60l/JdRZ = ------------
s -l+T'u-(l-Y2 /2)T'v'

for
7T

kh=-2' (4.33)

The open-circuit mutual impedance between two parallel dipoles of
half-lengths hi and h2 spaced a distance d apart, as shown in Fig. 4.1, may
be calculated by

(4.34)

where /1(0) and /iO) are input currents of NO.1 and No. :2 antennas,
respectively. The s component electric field Es1(s), produced at No. 2
antenna by the current on No. 1 antenna, is given by6

where

-j30 ( a2 )fh1Es1= -k- e+ -2 /1(s')K(s,s')ds',as -hi

-jkR
K(s,s')=T'

(4.35)

(4.36)

Fig. 4.1 Two parallel dipoles when their feed points are both at s =O.
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[ z ] I/ZR= (s-s') +dz . (4.37)

Note that in (4.35) we have suppressed the time-dependence factor f!wt,

and that in (4.36) we have ignored the contribution from the radius of the
dipole. The currents lzCs) in (4.34) and ll(s') in (4.35) can take the assumed
form (4.1) or (4.2) depending on kh. By doing this we have also assumed
that the current distribution on one antenna is not affected by the presence
of another antenna.
Substituting (4.35) into (4.34) and using (4.1) and (4.2) for ll(s') and

lzCs), we have:

(a) for khl *",/2 and khz*'" /2,

where

. ( khz)Db =smkhz+ Tuz (l-coskhz) + Tm I-cos 2 '

(4.38)

(4.39)

(4.40)

Ib= t2

K(S,0)[Sink(hZ-IS1)+ TU2(cosks-coskhz)J-h2

( ks khz)]+ Tm cos2 -cos 2 ds,

(4.41 )

(4.42)
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Ie = t2

[K(s,hl) +K(s, - hi)] [sink(h2 -lsi) + TU2 (casks -coskh2)J-h2

( ks kh2 )]+ Tm cosT-cos 2 ds; (4.43)

(b) for khl = 'TT/2 and kh2 =I='TT/2,

j30{ kId+2Ib + [T'Ul --} sin ('TT/4) T'Dl]Ie}
Z =------------ (4.44)
m ~~ '

where

De = -1 + T'ul - T'Dl (1- cos ~), (4.45)

Id~ r:[sink(h,-I,I) + Tu,( cosks-coskh,) + Tm( cos ~ -cos k~, )]

Xih1

( -l+tT'Dlcosk;' +coS~T'Dl)[K(s,S')+K(s,-S')]ds'dS;

(4.46)

(c) for khl = kh2='TT/2,

j30{ kIe +2Ij+ [T'UI -!sin ('TT/4) T'Dl]Ig}
Zm= D D ' (4.47)

e d

where

(4.48)

(which will be identical to De if G2 = G1),

Ie = fh2

[sinklsj-l + T'U2 casks - T'm ( cos ~ - cos i) ]
-h2

X ih1

( -l+tT'Dlcos ~' +cosiT'Dl)[K(S,S')+K(s,-S')]ds'dS,

(4.49)
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(4.50)

I,~ of:, [K(',h,) +K(,o -h,)]

x ['inkl'l-l+ T'u>co,ks- TO.,(co, ~ -co, i)1dr.
(4.51)

Since Tv' TD, T'v, and T'D are given in (4.14) through (4.17), the
integrals la through Ig can all be computed numerically once the values for
01' 0z, hi' hz, and d are specified. Therefore, the mutual impedance in
(4.38), (4.44), or (4.47) can also be calculated. Obviously, when TVI = Tvz
= TDi = TD2 = 0, Eq. (4.38) reduces to the familiar expression for the case
of a simple sinusoidal current distribution.z

4.2 Fields and Power Gain

When a current distribution such as (4.1) or (4.2) is assumed on a wire
antenna situated in a coordinate system, as shown in Fig. 4.2, with the xy
plane representing the flat, homogeneous, and lossy earth, we can derive

x

fI per. fl.",)

Fig.4.2 Arbitrarily oriented linear antenna above flat earth.



THEORY AND APPLICATION OF ANTENNA ARRAYS 241

z

0--Y

Ei

(a) (b)

Fig.4.3 Incident and reflected fields that have (a) horizontal polarization,
and (b) vertical polarization.

the far-field produced at a distant point P(r,O,cp), including the ground-
reflected part. Before doing so, we must consider two separate cases
depending on the polarization. The first of these is the case in which the
incident (direct) electric vector is parallel to the reflecting surface (xy
plane) or perpendicular to the plane of incidence. This case is often
referred to as horizontal polarization. In the second' case called vertical
polarization, the incident electric vector is parallel to the plane of inci-
dence (or the incident magnetic vector is parallel to the reflecting surface).
These two cases are shown in Fig. 4.3, where the directions of the incident
electric (E;) and magnetic vectors (H;) have been, respectively, assumed in
the positive x direction. The terms "horizontally and vertically polarized
fields" are sometimes confusing. While the electric vectors (E; and Er) of
the horizontally polarized case are horizontal with respect to the ground [as
are clearly shown in Fig. 4.3(a»), the electric vectors in the vertically
polarized case are not entirely vertical, as can be seen from Fig. 4.3(b). In
the latter case, the electric vectors, in fact, have both the horizontal and
vertical components.
With this preliminary explanation, we obtain the total far-field com-

ponents above the ground as follows:

(a) for horizontal polarization,

Eh = total horizontal component =E;(rj) +Er(r2)

(4.52)

where rj is the direct distance between the antenna feed and the far-field
point, r2 represents the distance between the same points but through the
reflecting path, E; and Er are, respectively, the direct and reflected electric
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vectors, and Rh is the complex reflection coefficient for horizontal polariza-
tion which is defined as) 7

{
2 1/2

cos ()- (k' / k ) 1- [ (k / k') sin ()] }
Rh = 2 1/2'

cos ()+ (k' / k) { 1- [ ( k / k') sin ()] }
with

1/2
, [ .18a(1O)3]
k -k fr-} fMHz '

fr = relative permittivity (or dielectric constant) of the earth,

a=conductivity of the earth in mho/m,

fMHz = operating frequency in MHz;

(b) for vertical polarization,

E'h = total horizontal component [see Fig. 4.3 (b) ]

Ev = total vertical component

where the reflection coefficient for vertical polarization is given by

cos()- (k/k') {l- [(k/k') sin()]2} 1/2
R=--------------
v cos ()+ (k / k') { 1_ [ (k / k') sin ()]2} )/2 .

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

To emphasize the fact that Ej depends on '1 while Er depends on '2' the
variables ') and '2 are specifically introduced as arguments of the field
components in (4.52), (4.56), and (4.57). The dependence of the fields on
many other parameters is not explicitly expressed in order to simplify the
notation.
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Applying these field equations to Fig. 4.2 and expressing the result in
terms of spherical coordinates, we have3

X{ cosa' cos (cp - q/) cos(}f I(s) exp (jkscost/;)

X [I - Rv exp ( - j2kHs cos ()) ] ds

- sina' sin(}f I( s) exp (jks cost/;)[ 1+ Rv exp( -j2kH
s

cos(}) ]ds }, (4.59)

and

e-jkr,
Elp = - j30k -- cos a' sin ( cp - cp')

r(

X f I( s) exp (jks cost/;)[ 1+ Rh exp ( - j2kHs cos(}) ]ds, (4.60)

where the term exp(jkscost/;) is the phase advance of the current element
ds at s from the feeding point; Hs' the height of the current element ds
above the ground; a', the angle between the antenna and its projection on
the ground; and t/;, the angle between the antenna and the direction of
P(r,(},cp) at which the field components are calculated. The expression of
cos t/; is similar to (1.2),

cost/;= cos ()cos ()'+ sin(}sin ()' cos (cp - cp'), (4.61)

where the prime coordinates refer to the source direction (antenna
coordinates).
Note that the integrations in (4.59) and (4.60) should be performed along

the antenna length. The integration limits are therefore determined by the
actual antenna geometry. In (4.59) and (4.60) we have also applied the
conventional far-field approximation for r2• This means that r

2
:::::r( is used

for the inverse-distance factor, and that r2:::::rl +2H
s
cos(} is used for the

phase factor. In addition, we have also neglected the surface wave com-
ponent because it contributes only near the grazing angle (()= 7T /2) and
attenuates very rapidly with distance.2,17
The directive gain can be calculated if we insert

(4.62)
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into (1.7) and (1.8). However, because of the complexity of (4.59) and
(4.60), it is quite involved, if not impossible, to calculate analytically (1.8)
which represents the total power radiated by the subject antenna:

(4.63)

In the practical application, we sometimes prefer to calculate the power
gain instead.18•19 This latter quantity, according to the standard set by the
Institute of Electrical and Electronics Engineers (IEEE), is defined as20

or

where

10 log G in dB,

lin =input current at the feeding point,

Rin = input resistance.

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

The ratio of power gain to directive gain, or Wo/ Win' should represent the
radiation efficiency of the antenna.
The input current and resistance required in (4.64) can be determined

easily for an antenna in free space with the assumed current distribution
(4.1) or (4.2). In fact, under these conditions, Rin will be equal to the real
part of the self-impedance given in (4.32) or (4.33). On the other hand, the
input impedance of an antenna above an imperfect plane earth can also be
calculated by viewing the antenna and its imperfect image to form a
coupled two-port network21,22:

(4.70)
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where VI in volts and II in amperes are, respectively, the impressed voltage
and input current of the antenna, ZII in ohms is the self-impedance [ZII is
the same as Zs in (4.32) or (4.33)], Z12 in ohms is the mutual impedance
between the antenna and its image, and 12 in amperes is the image current
of II with respect to the imperfect ground. According to the litera-
ture3,21,22

(4.71)

where, for the horizontal antenna (a' = 0, see Fig. 4.2),

C = R'h = Rh of (4.53) calculated at ()= 0

and for the vertical antenna (a' = 'TT /2),

C = R'v = Rv of (4.58) calculated at ()= 0

k'-k
= k'+k'

(4.72)

(4.73)

It can be verified that when the earth is perfectly conducting (a = 00,

k' = 00), C approaches respectively - 1 and + 1 for horizontal and vertical
antennas.
The input impedance of the antenna above a ground plane is, then,

(4.74 )

from which we have

(4.75)

with Rll representing the real part of Zll' The mutual impedance required
here can be calculated according to (4.34) for the horizontal antenna, or
approximately evaluated by other means to be discussed in later sections
for other antenna orientations.
The formulation developed here for a single antenna above a lossy

ground can be extended to calculate the impedances and power gain of an
array with many dipoles and monopoles as its elements. Now, it should be
instructive, based on what we have outlined, to give quantitative results in
detail for a simple case. This is presented in the next section.
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4.3 Single Horizontal Dipole

The geometry for this problem is depicted in Fig. 4.4. In this case, ex' = 0,
8'='TT/2, cp'='TT/2,Hs=H, s=y, cosl/;=sin8sincp, and

I(s) =1 {sink(h -Iyl) + Tv( cosky -coskh)

+ TD( cos tky - cos tkh) },
'TT

kh=l= 2' (4.76)

or

I(s) =I' { sinklyl-l + T'vcosky - T'D( cos tky -cos ~) },
'TT

kh=2'

(4.77)

where Tv, TD, T'v' and T'D are given in (4.14) through (4.17). Note that
here we have implicitly assumed that the presence of earth will not affect
the distribution form for the current. In reality, this is definitely not true.
In view of the complicated derivations experienced in Section 4.2 and the
fact that the effect will probably not be too substantial if the antenna is
not too close to the ground, we are satisfied with this assumption without
overburdening the mathematics involved. For a more rigorous formulation,
the reader is referred to other existing works.9-

11

Substituting (4.76) into (4.59) and (4.60), we obtain

(a) for kh =I='TT /2,
e-jkr,

E" = j60I--sincpcos8 [1- Rvexp ( - j2kH cos8) ]Ap
'I. (4.78)

e-}kr,
Erp=j60I--coscp[ 1+Rhexp (- j2kHcos8) ]A1'I

2hf1-~
H

~~- ~-y
f, P,o

Fig. 4.4 A horizontal dipole above flat earth.
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where

cos (khcosl/J) - coskh Tu cos kh sin (kh cosl/J)
A = . - -------

I sin2l/J cosl/J

T
+ -:-f- [sin kh cos ( kh cos l/J) - cos l/Jcos kh sin ( kh cos l/J) ]
sm l/J

T
+ 1. D 2 [ t sin tkh cos (kh cos l/J) - cos l/Jcos tkh sin ( kh cos l/J)]

4 -cos l/J

TD cos tkh sin (kh cosl/J)
cosl/J

and R,; and Rh are, respectively, given in (4.58) and (4.53). The input
current and resistance in this case are

lin =1 [sinkh + Tu(l-coskh) + TD( I-cos tkh)],

where

j60l/JdRcoskh
ZII = - sinkh + Tu(1-coskh) + TD(1-cos tkh).'

Z12=Zm in (4.38) with hi =h2=h and d=2H,

k' is given in (4.54), and l/JdRcan be found in (4.3) or (4.4).

(b) for kh = 7T/2,

e-jkr,
E(J=j60I'--sinlpcosO [1- Rvexp (- j2kHcosO) ]A'I'

rl

e-jkr,
E",=j60I'--coSlp[ 1+Rh exp ( - j2kH cosO) ]A'I'

rl

(4.80)

(4.81 )

(4.82)

(4.83)

(4.84)

(4.85)
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j601/;dR
ZII = -----------

-1+ T'u- T'n(1-coS'lT 14) ,

ZI2=Zm in (4.47) with d=2H.

The factor 1/;dR in (4.86) is given in (4.5), and A " in (4.84) is

, l-cos1/;sin(('lT12)cos1/;] sin(('lT12) cos1/;]
A = -------- - ------
I sin~ cos1/;

T'ucos (('1712) cos1/;] T'ncos ('17 14) sin (('1712) cos1/;]+--------+-----------
sin21/; cos1/;

(4.86)

(4.87)

- t _::s 21/;[ t sin ( '17I4) cos (1cos1/;) - cos1/;cos ( ~ ) sin (1cos1/;) ].
(4.88)

Substituting the above formulas into (4.64), we can present some
numerical results for power gain by a series of figures. In Fig. 4.5, the
power gain of a half-wavelength horizontal dipole (2h = A/2) above two
different grounds (sea water and poor ground) with f= 10 MHz, hla
= 4680, H = AI4 is shown as functions of () and cpo If the ground were
perfectly conducting, the maximum power gain for this height (H=A/4)
should occur at ()= 0°. It is also true for the two grounds considered here,
except the performance for the poor ground is distorted somewhat in the
xz plane (cp= 0°) so that the position of the maximum power gain occurs at
()-37°. The difference in the maximum power gain for these two grounds
can be as much as approximately 2.5-3.0dB in favor of sea water because
of its higher conductivity.
The results for the same antenna, grounds, and frequency with H

changed to 3A/8 are shown in Fig. 4.6. The major difference is that the
position of the maximum gain shifts to ()=200-55° from ()=Oo. If the
height of the antenna above ground is increased further to H = A/2, the
maximum gain point will be shifted further toward the ground «() = 90°) as
evidence by most of the curves in Fig. 4.7. This kind of change in
characteristics should, of course, be expected from the elementary array
theory discussed in Chapter 1, because the situation here corresponds to a
two-element array with the element spacing represented by 2H. Note that
there is an exception for the dashed curve in Fig. 4.7(b) (corresponding to
cp = 90° and poor ground). The explanation for this is that the imperfect
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Fig. 4.5 Power gain of a horizontal dipole above a flat lossy ground with
h='A./4, H='A./4, h/a=4680, and J= 10 MHz: (a) cp=O°, (b)
cp=45°, (c) cp=90°. Solid curves are for sea water (£,=80, (J=5
mho/m); dashed curves are for poor ground (£,=4, (J=0.001
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Fig. 4.7 Power gain of a horizontal dipole above a flat lossy ground with
h=l\./4, H=l\./2, h/a=4680, and j=1O MHz: (a) <p=0°, (b)
<p = 90°. Solid and dashed curves are for sea water and poor
ground, respectively.
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(b)

Fig. 4.8 Power gain of a horizontal dipole above a flat lossy ground with
h=Aj2, H=Aj4, hja=9375, and 1=10 MHz: (a) <p=0°, (b)
<p = 90°. Solid and dashed curves are for sea water and poor
ground, respectively.

252



Fig. 4.9 Power gain of a horizontal dipole above a flat lossy ground with
h=i\.j2, H=i\.j2, hja=9375, and f= 10 MHz: (a) cp=O°, (b)
cp = 90°. Solid and dashed curves are for sea water and poor
ground, respectively.
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Table 4.1 Change of Rin at f = 10MHz when the Antenna Geometry is
as Shown in Fig. 4.4.

Rin (ohms)
Poor

h/"A H/"A h/a Zll (ohms) Zl2 (ohms) Seawater ground

1 1 4680 76.34+ j41.04 - 17.47 - j32.82 94.04 85.634 4

1 I 4680 76.34+ j41.04 - 24.72+ j9.91 100.55 84.254 8

1 I 4680 76.34+ j41.04 6.44+jI9.53 69.72 72.234 2"
1 1 9375 3631.53 - j2356.47 -1218.05-j1316.13 4850.59 4188.562 4

1 I 9375 3631.53 - j2356.47 -1099.75+j898.26 4701.68 3941.022 8

I 1
9375 3631.53 - j2356.472" 2 692.72+ j962.98 2935.11 3294.57

earth does not have substantial influence on the antenna performance in
the yz plane any more because of the increased height. The final
characteristics remain essentially the same as that obtainable in free space.
When the antenna length and the ratio (h/ a) are changed, the results for

the corresponding heights and grounds do not vary substantially. In
general, the power gain in the principal plane (cp = 0°), when the other
parameters are kept unchanged, becomes larger for a longer antenna.
Specific results for h=A/2, H=A/4, A/2 are displayed in Figs. 4.8 and
4.9.
Naturally, all the results presented above depend heavily on Rin of (4.75)

and Rh of (4.53). To give the reader the related quantitative information in
this regard, a short table for Rin as functions of h, H, and h/ a is prepared
in Table 4.1. Of course, Rin is independent of Band cpo The variation of Rh
with B at a frequency, say, f= IOMHz, is shown in Fig. 4.10. For com-
pleteness and for later application in Section 4.6, corresponding curves for
Rv are presented in Fig. 4.11. Note that Rv and Rh are independent of the
antenna configurations. As can be seen from (4.53) and (4.58), we have
Rv =Rh = - 1 at B=90°, and Rv = - Rh at B=0° for all types of grounds.
While both the amplitude and phase of Rh change gradually with (J, the
amplitude of Rv reaches a minimum and the phase of Rv undergoes a rapid
change at an angle known as the Brewster angle.2
The power gain for the same dipole in free space with a simple

sinusoidal current distribution (except h = "A/2, A, 3A /2, ... ) can be
obtained as a special case by setting Rv =Rh =0 (k =k') and Tu= TD =0 in
(4.76) through (4.82).
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Before proceeding to the next subject, a note about the suitability and
therefore the accuracy of using the reflection-coefficient approach as
presented here seems appropriate. Definitely, the results for the far-field
components are very good because the surface wave component attenuates
rapidly at a large distance from the source, as shown by a more rigorous
approach using the Sommerfeld integral.2 The input impedances are also
considered reasonably accurate if the antenna is not very close to the
ground, as verified by recent works in this field.23,24
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Fig. 4.10 Amplitude and phase variations of the horizontally polarized
ground reflection coefficient at f = 10MHz.
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4.4 Yagi-Uda Antenna
The formulation for the simple case considered in the previous section can
readily be extended to Yagi-Uda antenna with the same philosophy in
approximation. This antenna is essentially an elevated array of many
horizontal dipoles with different lengths and spacings as shown in Fig.
4.12. It consists of a reflector, a driven element, and several directors. The
reflector is the longest element, and the directors are shorter than the
driven element. Both the reflector and directors are parasitic. Referringto
Fig. 4.12, we have

()'= 7T /2, cp'=O, 01.'=0, s=x, cos Ij; = sin ()cos cp,

lj(s) =lj {sink(hj-Ixl) + TUj( coskx -coskhJ

+ TDj(cos !kx - cos tkhJ },

i= 1,2 ... N. (4.89)

(4.90)

The corresponding expression for khj = 7T /2 is temporarily omitted here. It
can be added accordingly, if required.
The field components contributed by the ith element (counting the

reflector as the first element) are
e-jkr,

EOj=j60Ij-r.-cos()coscp[ 1-Rvexp ( - j2kH cos()) JAi,
I

. e-jkr,.
Erpj= - 160li -r.- sm cp[1+ Rh exp ( - j2kH cos ()) JAj,

I

Reflector

/ Driven element

2/3 ••••• N
~

Directors

W/######/$/$#"M ~ y
f.ll. a

.• d,~ d d
E 4 ,+ 2

N-1
~ 2:di~

;=1

(a)
(b)

Fig.4.12 Yagi-Uda antenna above a plane lossy earth: (a) side view, (b)
top view.
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where A; will be identical to AI in (4.79) if we replace h, Tu' TD, and
dos"'=sinOsin<p in (4.79), respectively, by hi' Tu;, TD;, and cos'"
=sinOcos<p. In the exponential terms in (4.90), the factor r; representing
the distance between the base of the ith element and the far-field point is
related to r I by

(4.91 )

where y; is the coordinate position of the base of the ith element with the
understanding that y I= O.
The total field components can be obtained by summing up the contri-

butions from all the elements:

N e-jkr,
E(I= ~ E(I;-j60--cos 0cos<p[l-R"exp( -j2kHcosO)]S,

;=1 rl
(4.92)

N e-jkr,
E<p=~ E<p;=-j60--sin<p[1+Rhexp( -j2kHcosO)]S,

;=1 rl

where

N

S = ~ I; exp (j/9'; sinOsin<p)A;.
;=1

(4.93)

The input impedance looking into the base of the driven element (i = 2)
can be determined by considering the circuit relations:

VI = voltage applied at the base of the reflector

=0,

V2 = voltage applied at the base of the driven element
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VN = voltage applied at the base of the last director

= (ZNI +R'hZ'Nl)Ibl + (ZN2+R'hZ'N2)Ib2+ ... + (ZNN+R'hZ'NN)IbN
(4.94)

with the factor R'h in (4.72), and the self-impedance of the ith real element,
Zii' given by

- j60I/JdRicoskhiz..= ----------------
II sin khi + TVi( 1- cos khJ + TDi( 1- cos tkhJ (4.95)

The open-circuit mutual impedance between the ith and jth real elements,
Zij=~i' can be calculated by (4.38) with hi=hl' ~=h2' and d=IYi-Y);
the open-circuit mutual impedance between the ith real element and its
own image, Z'ii' can be calculated by (4.38) with hi =h2=hi and d=2H;
and finally the open-circuit mutual impedance between the ith real element
and the image of thejth element, Z'ij= Zji' can also be calculated by (4.38)
with ni=hl, hj=h2, and d=[4H2+(y;-yYP/2.
When V2, hi' ai' Yi' H, €r' 11, and fMHz are specified, all the impedances

listed above will be known quantities. We can then solve for Ibi from
(4.94), calculate the current maxima,

Ibi
Ii = (sinkhi + TVi(1- coskhJ + Tm(1- cos tkhJ] ,

i= l,2, ... ,N

(4.96)

(4.97)

needed for (4.93), and determine the input resistance according to

Rin = Re( V2 ).
Ib2

Note that, since the second element alone is excited, the- answer for Ib2
obtained in the above process should be the dominant one. Relative
amplitudes of the other Ib/s (i*2) depend naturally on the array geometry
and ground constants.
Using the equations thus developed, we have the following expression for
the power gain for the Yagi-Uda antenna:

+ sin2<p( 1+ IRhl2+21Rhl cos (I/Jh- 2kH cosO)] },

where R" = IRvleNv and Rh = IRhlei'i'h.

(4.98)



260 STANDING-WAVE ANTENNAS ABOVE LOSSY GROUND
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Fig. 4.13 Normalized free-space horizontal pattern of a three-element
Yagi-Uda antenna with hI =7.8 m, h2=7.5 m, h3= 7.0 m, a1 =a2
=a3=0.OOl m,Y2=7.5 m,Y3= 13.5m, 0=90°, andf= 10MHz.

Up to this point all the derivations in this section are based on the
current form (4.89) for kh;=I='TT /2. Whenever one of the element lengths is
such that kh; = 'TT /2, which often applies to the driven element, we should
make minor changes following the parallel presentation outlined in Sec-
tions 4.1 and 4.3.
Typical numerical results are now presented in graphical form. First, the

normalized free-space horizontal pattern, IE(O=90°, cp)1 with N =3, is

1.5

1.0

'b
a>

'"~
0.5

o 10 20 30 40 50
e. degrees

Fig.4.14 Vertical patterns for the same antenna and frequency as in Fig.
4.13: (a) free space, (b) antenna is A/4 above the sea water
(normalized to the free-space maximum).
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given in Fig. 4.13 to show that the Yagi-Uda antenna is normally designed
as an endfire array (beam maximum at qJ = 90°). The associated free-space
vertical pattern in the yz plane, 1£(0, 90°)1, is given as curve a in Fig. 4.14
with the maximum at 0=90°. When the same antenna is placed about A/4
above a plane lossy ground, the beam maximum will be shifted away from
the grazing direction as shown by curve b in Fig. 4.14. Thus, because of the
presence of the two parasitic elements, the maximum power gain for a
Yagi-Uda antenna no longer occurs at 0=0° even when H =A/4 as the
corresponding single horizontal dipole considered in the previous section.
Results for impedances, base currents, and other related information for

the antenna described in Figs. 4.13 and 4.14 are detailed as follows:

Z II = 86.1527+jI05.5823,

Z22 = 79.0692+j38.5374,

Z33 = 62.0726- j63.7130,

Z)2 = ZZI =43.2222- j29.8405,

ZZ3 = Z32 =46.5984- jI7.9325,

Z13=Z31 = -3.7859-j33.4458, ohms

Z'I1= -14.2381- j33.5649,

Z'22 = - 12.5321- j29.9286,

Z'33 = -10.1279 - j24.6912,

Z'IZ = Z'ZI = -13.3421- j31.7058,

Z'Z3 = Z'32 = -11.2283 - j27.2106,

Z'13 = Z'31 = -11.9060- j28.8597,

TU1 = - 0.58498+jO.26464, TDl = - 0.03852+jO.05039,

T~Z = 6.43175 +jlO.11997, TlJz = 1.32795 - jO.77386,

TU3 = - 0.20264 - jO.94152, TD3 = 0.10149+jO.09957,
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I
b
I i 0.00132+jO.00360 in free space ~

V
2
= 0.00044+jO.00395 (mhos) antenna A/4 above sea water

0.00030+ jO.00420 antenna A/4 above poor ground,

I
b2

i 0.01061-jO.00995 in free space J
V

2
= 0.01005-jO.00923 (mhos) antennaA/4aboveseawater

0.01006 - jO.00896 antenna A/4 above poor ground,

{

-0.00912+jO.00211 in free space J
-0.00975+jO.00045 (mhos) antenna A/4 above sea water

-0.01021 +jO.00019 antenna A/4 above poor ground,

i
50.15 ohms in free space ~

Rin = 53.98 ohms antenna A/4 sea water
55.43 ohms antenna A/4 above poor g.round.

Instead of presenting detailed vanatlOns of power gain with () for
numerous cases, we will show the maximum power gain occurring at some
(}maxas a function of element lengths and separations, the array height, and
the ground constants. In Fig. 4.15(a), three sets of Gmaxare plotted versus
Y3 (position of the director) with two different values of Yz (position of the
driven element). The two curves in set A are for N = 3, f = 10 MHz (A= 30
m), hi =7.8 m, h2=7.5 m, h)=7.0 m, al =a2=a)=0.001 m, H=7.5 m,
cp=90°, E:r= 80, and (7=5 mho/m (sea water). In this case, (}max::::=48°.1fwe
vary h) from 7.0 to 6.75 m and keep the other parameters the same, the
results are shown by set B with (}max::::=44°.Curves in set C correspond to
the case when h) is decreased further to 6.5 m, where ()max~42 0. By
comparison, we see that the maximum power gain in each case changes
little withY2 andY3 when other parameters are fixed. Also, it is clear that a
decrease of h) from 7.0 to 6.5 m changes the maximum power gain only by
a fraction of a decibel. The only significant change there is perhaps the
position of the beam maximum. On the other hand, when h) alone is
increased by the same amount to 7.5 m (the same length as the driven
element), the performance will deteriorate sharply even With the same-set
of Yz and Y)' An example showing this effect is presented in Fig. 4.15(b).
While the results presented for this case are by no means complete, it is
fair to conclude that, as far as the three-element Yagi-Uda antenna with
hl=7.8 m, h2=7.5 m, and a=O.ool m (which is A/4 above the sea water)
is concerned, the absolute maximum power gain we can expect from it is
approximately 10.4 dB, which roughly occurs at h) = 7.0 m with Yz = 7.5 m,
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Fig. 4.15 Maximum power gain for a three-element Yagi-Uda antenna
with h)=7.8 m, h2=7.5 m, a)=a2=a3=0.OOl m, H=7.5 m,
f{!=90°,j= 10MHz, t:,=80, and 0=5 rnho/m: (a) h3 = 7.0, 6.75,
and 6.5 m, (b) h3=7.5 m.

Y3 = 13.5m, and °max==48°. In fact, when h) alone is varied by a reasonable
amount while everything else is kept unchanged, we also find that the
maximum power gain is always lower than lOA dB (results are too
numerous to present here).
Detailed variations of power gain in the yz plane (f{!=900) for the

"optimum" case discussed above are shown in Fig. 4.16, where the case
with a poor ground is also added for comparison purposes. Of course, sea
water and poor ground are two extreme types of ground. The performance
of the same antenna with the same height above an "average" ground may
be predicted to lie between the two curves in Fig. 4.16.
It is also constructive to compare the above "optimum" case with the

similar case in Section 4.3 (simple horizontal dipole, h=H='A./4, sea
water). In essence, two improvements are made by adding two parasitic
elements in the Yagi-Uda antenna. First, the maximum power gain is
increased by about 3.2dB. Second, the position of the beam maximum is
shifted from 0max= 0° to 48°. This second improvement is considered an
important factor when the antenna is used for the purpose of long-distance
communication or direction-finding.
Naturally, if we want to have a still larger 0max(beam maximum closer

to the ground), the only effective parameter under our control is to



264 STANDING-WAVE ANTENNAS ABOVE LOSSY GROUND

10

8

4

2

o
10 30 40 50

O. degrees

60 70 80 90

Fig.4.16 Power gain of the same Yagi-Uda antenna as that described in
Fig. 4.13: (a) V4 above sea water (£,=80, (J=5 mho/m), (b)
A/4 above poor ground (£,=4, (J= 0.001 mho/m).

increase the array height H. Results for a comparable case with H = 15.0
m (A/2) are given in Fig. 4.17. It is seen there that not only 0maxis moved
to 64° (or 26° above the ground), the maximum power gain in this case is
also increased somewhat (Gmax= 12.35 dB). In general, 0max always in-
creases with H for a given Yagi-Uda antenna, but it never reaches 7T /2
because of the ground loss. The final value for Gmax,however, depends on
the free-space pattern, actual height, frequency, and ground constants.
If more directors are used in the antenna, an increase in power gain in

the amount of approximately 1.2 dB per element can be achieved without
substantial change in 0max' The general shape of G versus ° remains almost
the same as the basic three-element Yagi-Uda antenna with a comparable
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Fig.4.17 Power gain of a three-element Yagi-Uda antenna with hI =7.8
m, h2=7.5 m, h3=7.0 m, a=O.OOl m, Y2=5.5 m, h= 12.0 m,
H= 15.0 In, qJ=90°, andf= 10 MHz.

geometry and under a similar environment. An example for a four-element
antenna confirming the aspects just mentioned is shown in Fig. 4.18. The
number of directors we can add to the structure is limited by the cost and
weight considerations, although antennas with thirty or more elements
have been built.25
In principle, more reflectors can also be added to the antenna. However,

experience and existing measured results show that practically nothing can
be gained by increasing the number of reflectors.

4.5 Curtain Arrays

In this chapter, we have studied the characteristics of a single horizontal
dipole above a lossy ground, and then those of a "one-dimensional" array
such as the Yagi-Uda antenna. For the case of a single horizontal dipole
located in the y z plane (qJ= 90°), we learned that the pattern in a vertical
plane (qJ= constant) is heavily controlled by the height, H, of the antenna
above ground. When H is no greater than .\/4, the position of the beam
maximum generally occurs at ()max = 0°. As H is increased, ()max shifts
gradually toward the grazing direction. The horizontal pattern along a
surface of ()= constant always has its maximum pointing at qJ= 0°.
For the case of the Yagi-Uda antenna whose axis coincides with the y

axis while the elements are parallel to the x axis, we found that the position
of beam maximum in a vertical pattern is not only dictated by the antenna
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Fig.4.18 Power gain of a four-element Yagi-Uda antenna with hI =7.8 m,
h2=7.5 m, h3=h4=7.0 m, a=O.OOl m, h=7.5 m, Y3= 15.5 m,
Y4 =25.0 m, H = 15.0 m, <p=90°, andf= 10 MHz.

height but also by the relative positions and lengths of the reflector and
directors, although the position of the beam maximum in an azimuthal
surface is still fixed (i.e., <p = 90° for the geometry displayed in Fig. 4.12).
Now we are ready to extend the study to the case of two-dimensional

arrays consisting of horizontal dipoles such that positions of both the
maxima in the vertical and horizontal patterns can be changed by design-
ing. In particular, we will study the curtain arrays as shown in Fig. 4.19.
This type of array has been used extensively by Voice of America.26

The entire array is in the yz plane. Generally speaking, there can be N
bays arranged, say, along the Y axis with each bay containing a stack of M
elements along the z axis. In total, there are M x N identical and parallel
horizontal dipoles. There is also a vertical screen at a distance (x = - x,)
from the array to serve as a reflector. Let the height of the ith element on
each bay be Zj' i= 1,2, ... ,M, and the coordinates of bays beyn, n= 1,2, ... ,
N with y, = O. The field components radiated by the first element in the
first bay, including the ground-reflected part, are identical to those given in
(4.78) or (4.84) with the understanding that z, = H. The contributions by
the first bay as a whole are, therefore,

. e-jkro.
Eo I=}60II-- (sm<pcos(})A,BI,, ro

(4.99)
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1st bayM-_ 2nd-bay-- Nth bay--
3-_ 2h--2 __ 1-- zM--

t --1-r -- z3
z2 --zl
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e, IJ.,a

Fig.4.19 A curtain array above a plane lossy earth.

where

M

BI= ~ Cjexp [jkzj(cosO-cosOo)][1-R"exp(-j2kzj cosO)], (4.100)
j~1

M

B2= ~ C;exp[jkzj(cosO-cosOo)][l+Rhexp( -j2kzjcosO)], (4.101)
j=1

r 0 is the distance between (y, z) = (0,0) and the far-field point, and A I is the
same as that in (4.79) if kh=l=7T/2. Of course, Al should be replaced by A'l
in (4.88) if kh = 7T /2.
In (4.100) and (4.101), Ci represents the relative amplitude excitation of

the ith dipole with CI= 1, and Do is the desired position of the beam
maximum.
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The array factor for N bays, according to the basic formulation pre-
sented in Chapter 1, is

NSy = ~ eikynsinO (sin<p-sin<po)

n=1
(4.102)

where qJo is to determine the position of the beam maximum in an
azimuthal surface. Here we have assumed that the amplitude excitations
for corresponding elements in each bay are the same.
The array factor resulting from the array of the real elements and its

perfect image with respect to the screen at x= -Xl is, for OO~O~90° and
-90o~O~90°,

Sx = 1-exp ( - j2kx1 COStfx) =2jexp ( - jkx( COStfJ sin (kx( COStfx)'

(4.103)
where

COStfx= sinOcosqJ.

The total field components are then

The input resistance of the individual element can be expressed as

(4.104)

(4.105)

i= 1,2, ... ,M; n= 1,2, ... ,N (4.106)

where the subscript i is the position of the element within a bay while the
superscript n is the position of the bay. The symbol zt should be
explained as the input impedance at the base of the ith dipole in the nth
bay, which can be calculated by considering the following four groups:

z.n=znll+znZI+ ... +znl+ ... +znM(I I I II I

+ ZnZ + znZ + ... + Z,!2 + ... + znZ
d IZ II ,M

first group

+ ...
+znN+znN+ ... +ZnN+ ... +znN11,2 II 1M
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+R' (znl +znl + ... +z.nl+ ... +z.nMI
h ilp 12p lip I P

+ ...

+znn +Znn + ... +Znn+ ... +znn
ilp i2p iip iMp

ZnN ZnN+ ... +ZnN+ ... +znN)+ i1p + i2p iip iMp

+-znN+znN + ... +z.ndN + ... +z.nMNd)ild i2d II I

_ R' (znl + znl + ... + z.nl+ ... + znl
h i1t i2t lit ,Mt

second group

(4.107)

third group

fourth group

All the impedances in the first group of (4.107) are either open-circuit
self- or mutual impedances associated with the real elements. More
specifically, Zi7n is designated as the self-impedance of the ith dipole in the
nth bay; and Zi7,n', when n=l=n', and/or i=l=i', as the mutual impedance
between the ith dipole in the nth bay and the i'th dipole in the n'th bay.
The impedances in the second group of (4.107) are all open-circuit

mutual impedances between the real elements and their imperfect images
with respect to the ground. As an example, Zi~;'should be interpreted as
the mutual impedance between the ith dipole in the nth bay and the
imperfect image of the i'th dipole in the n'th bay. In a similar fashion, the
impedances in the third group of (4.107) are all open-circuit mutual
impedances between the real elements and their perfect images with
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respect to the vertical screen, and those in the fourth group of (4.107) are
the ones between the real elements and the imperfect images of perfect
images.
All these impedances can readily be calculated in terms of the dipole

length, z;, Yn, and Xl' depending on relative positions of the elements
involved. The self-impedance, Z;7n, can simply be computed according to
(4.32) or (4.33); and the mutual impedances, Z;7-n (N=i'), Z;7-;, Z;7-~, and
Z;7-7, by (4.38) or (4.47). All the remaining mutual impedances are those
between dipoles arranged in echelon or collinear. Since the geometry for
this latter case is no longer symmetric, the mutual impedances should,
strictly speaking, be calculated by a more refined approach such as the
five-term theory. 14,15 However, in' view of the complication of the system
already experienced, we are reluctantly satisfied by using expressions
similar to (4.38) and (4.47) as a further approximation. Of course, these
expressions can be derived in a completely parallel manner with the
relative antenna positions shown in Fig. 4.20. In addition to the horizontal
separation of d between the two antennas, there is also a vertical distance I
which is measured from the feeding point of one antenna to the nearest
end of the other. Note that when 1= - h2, the situation reduces to that in
Fig. 4.1. Now, we have

+ TDi (cos J.kz' - cos !khl) }, (4.108)

z = h,

z= 0 -<---d

z =-h,

Iz = I+ 2h2

C'"

Fig. 4.20 Two parallel dipoles of arbitrary lengths arranged in echelon.
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h
=j30kII £ I(T Ul coskh1 - * TDi cos !kz' + TDi cos tkh1)

x [K(z,z')+K(z, -z')]dz'

(4.109)

where

(4.110)

In the above, we once again have assumed avery thin dipole (al~O). The
current distribution on the second antenna referred to the feeding point of
the first antenna is

Iz(z) = I2(z) =Iz {sink(2hz + 1- z) + Tuz[ cosk(z -1- hz) -coskhz]

+ TD2[ cos tk(z -1- hz) -cos tkhz]},

in

or

for (4.I11a)

Iz(z) =I2'(z) =Iz{ sink(z-/) + Tuz[cosk(z-I-hz) -coskhz]

m for
7T

khz*Z' (4.111b)

Note that I2(l+2hz) = 1;'(/) =0 and I2(/+hz)=I;'(l+hz).
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The open-circuit mutual impedance is then

(4.112)

which can reduce to an expression similar to (4.38). In fact, (4.112) will be
identical to (4.38) when 1= - hz. It also simplifies to the expression
obtained elsewherez 7 with a simple sinusoidal assumption for the current
distribution by setting TUl = TDl = TU2= Tm = O.The numerical result for
Zm in (4.112) will, of course, depend on hI> hz, I, and d in terms of the
operating wavelength A.
Expressions corresponding to h, = hz = 7T /2 and h, = 7T /2, hz '1=7T /2 can

also be derived accordingly. Note that the special case, h, =hz, will apply
for curtain arrays considered in this section, although (4.112) is derived for
the general case where the lengths of the antennas are not necessarily
equal. Equation (4.112) is also good for d = 0 and 1> h, when the two
antennas are collinear. Note also that we deal only with a passive system;
the commonly recognized reciprocal relation for the mutual impedance,
Zij=Zji' should be true here. However, because numerical procedures are
involved for computing (4.112), the degree of computational accuracy
carried may cause a small discrepancy between zij and zji" In this case, we
will use the arithmetic mean of them as the final mutual-impedance term
in (4.107). The total power supplied to the entire system, when all the
elements are of equal length (2h), is

Win=IIJOW{R:+C;R~+ ... +citR1
+Ri+c;R~+ ... +C1R1
+ ...

+Ri' + c;Rf + ... + citR;}
N M

= II, (O)lz ~ ~ C?Rt
n=1 i=1

[C1=1, see Eq.(4.101)). (4.113)



THEORY AND APPLICATION OF ANTENNA ARRAYS 273

Here again we should be aware that the superscripts and subscripts
associated with the resistances above should be interpreted according to
the paragraph following (4.106).
With (4.105) and (4.113) we obtain the final expression for the power

gain for the curtain array:

480iA)i2ISy\2sin2(kx) costf;J [sin2<pcos20iB)12+cos2<pIB21
2]

G= N M .

Isinkh + Tu(1- coskh) + TD( 1- cos 1khW ~ ~ C?Rt
• n=) ;=)

(4.114)

Before we present detailed numerical results, it should be anticipated
that the direction of the maximum radiation, 0max, will not occur precisely
at 00 because of the complicated effects of Rv' Rh, and A) (or A')) in (4.99).
Typical results for power gain in the vertical plane by a curtain array of

two half-wave dipoles in one bay (h='Aj4, M=2, N= 1) over sea water are
shown in Fig. 4.21. The solid curve corresponds to the case with z) = 'A j 4

15

60 70 80 90

10

co
"C

c-
"ro
C> 5
~~
0

"-

0

-5

•••••••,. (b)
/ \i .
. '.

\
\
\
\
i
\,
!

e, degrees
Fig.4.21 Power gain of a curtain array over sea water with M=2, N= 1,

h=7.5 m, a=0.0016 m, x)=7.5 m, Bo=90°, <P=<Po=O°,C)=C2
= 1, andf= 10 MHz: (a) z) =7.5 m, Z2= 15.0m; (b) z) = 15.0m,
z2=30.0 m.
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and z2="A/2, and the dashed curve is for Zl ="A/2 and Z2="A, both with
00 = 'TT/2, CPo = cP =0, Cl = C2= I, XI = "A/4,andf= 10MHz. Obviously, both
Gmax and 0max for the dashed curve are higher than the corresponding
values for the solid curve. This is because of that the array yielding the
results in the dashed curve has a wider space between the dipoles and a
higher distance above the ground. In addition, we can also gain insight by
comparing the results presented here with those for a single horizontal
dipole studied in Section 4.3 where no vertical screen was present. For
example, by comparing the dashed curve in Fig. 4.21 'Yith the solid curve
in Fig. 4.7(a) where a single horizontal dipole of the same length is of the
same height above the same ground, we see that the general shape remains
essentially unchanged, although the additional element and the vertical
screen included here contribute approximately 4 dB to the maximum
power gain, make the pattern narrower, and shift 0max toward the grazing
direction. On the other hand, the solid curve in Fig. 4.21 differs substan-
tially from the result presented in Fig. 4.5(a). The reason that a minimum
(in Fig. 4.21) rather than a maximum [in Fig. 4.5(a)] radiation occurs at
0=0 is mainly due to the array factor (4.103). The extra element and the
vertical screen in the curtain array also increase the maximum power gain
by roughly 4 dB although the position of the maximum power gain has
changed.
The associated azimuthal pattern at 0= 54° corresponding to the

geometry represented by the solid curve in Fig. 4.21 is shown in Fig. 4.22.
Of course, the parameter CPo is not involved in this case since we consider
the curtain array with only one bay.
In the process of computation we found that the effect of 00 in the

practical range, 60°<°0<90°, is very negligible as far as the result in the
plane cp = 0 is concerned. Important characteristics such as the value and
position of the maximum power gain and the pattern shape remain
essentially the same for a given set of array geometry, frequency, and the
type of ground. Although lower values of 00 (0°<°0<60°) do have
substantial effect on Bl and B2 in (4.100) and (4.101), and tend to shift the
position of maximum radiation toward the zenith, this change in 0max, Bl,
and B2, however, has little effect on the final field expressions in (4.105)
because of the strong damping effect by the array factor (4.103) for smaller
values of e. Therefore, the influence of eo on the overall array performance
is not very sensitive. An example showing this fact is illustrated in Fig.
4.23, where 0max occurs near 54° for all values of eo concerned.
The role played by XI can be seen from Fig. 4.24. It is apparent that, for

the particular example shown in the figure, an increase of X I tends to
decrease both the values of Gmax and 0max. Values of XI smaller than "A/4
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will cause stronger coupling between the array and the screen, and are
often considered impractical.
Although sea water (10,=80, (7=5 mho/m) is chosen as the ground in all

of the examples given in this section, the formulation also applies to other
types of ground. For poor ground (10,=4, (7=0.001 mho/m) with the same
array geometry and frequency as the sea water case described, the maxi-
mum power gain is about 1.5 dB lower and the position of the maximum
power gain is about 2° smaller.
When there are more elements in the bay, we should expect an increase

in both Gmaxand 0max(closer to the ground) and a decrease in beamwidth.
An example for M=4, N=l, zi=iX7.5 m, h=xl=7.5 m, 00=90°, CPo=CP
=0°, Ci= 1, and fMHz= 10 over sea water is shown in Fig. 4.25. The
difference between Fig. 4.25 and the solid curve in Fig. 4.21 represents the
improvement by the two extra dipoles.
When two bays are used, an increase in Gmax(relative to that with only

one bay) is also expected. The exact amount of increase depends primarily
on the number of elements in each bay, the dipole length, and the distance
between the bays. In addition, an improvement in the azimuthal pattern
should also be evident. An example of the vertical pattern for M = N = 2,
YI =0, and h= 15.6 m with other parameters the same as for the solid
curve in Fig. 4.21 is presented in Fig. 4.26, from which we see that
Gmax= 12.41 dB, and that the beamwidth and 0maxin the vertical plane are
almost unchanged as compared with those associated with the solid curve
in Fig. 4.21. The corresponding azimuthal pattern at 0= 54° with CPo= 0° is
displayed in Fig. 4.27(a). Clearly, the beamwidth here is narrower than
that in Fig. 4.22. Since we now have two bays in the array, the parameter
CPocan be used to control the position of the beam maximum in an
azimuthal surface. Figure 4.27(b) shows the result with CPo= 30° when all
the other parameters are identical to those in Fig. 4.27(a). Evidently, the
precise position of the beam maximum in Fig. 4.27(b) is not quite at
cP = 30° as it is supposed to be. This is mainly due to the influence of other
factors in (4.99) and (4.103).
Before concluding this section, an explanation of the value for h used in

Figs. 4.26 and 4.27 is in order. The value of h = 15.6 m gives a center-to-
center distance of 0.52A (at fMHz = 10) between the bays. First, we note the
fact that the half-length of the dipole is A/4. This requires the center-to-
center distance between consecutive bays be at least A/2. Second, because
of the extra factor sinO appearing in the exponent of (4.102), the element
factor in (4.99), and the screen factor (4.103), the use of a much larger
value for Yz will not cause appearance of any grating lobe as we learned
from the theory in Chapter 1. A bay-to-bay distance of the order of a full
wavelength or larger is commonly adopted in practice. I 8
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Fig.4.27 Azimuthal pattern at 0=54° of the same array as in Fig. 4.26:
(a) q:>o=O°,(b) q:>0=30°.
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4.6 Vertical Monopole

In the previous sections we have analyzed and discussed characteristics of
a single horizontal dipole and arrays of horizontal dipoles, where both the
field components, E(J and E<p' were involved. In the remaining sections of
this chapter, we will be concerned with vertically polarized antennas. As
we see later, only one component of the electric field, namely E(J' is present
in these cases.
Let us consider first the commonly known whip antenna, or base-fed

vertical monopole. In general, there always is a piece of metal between the
ground and the base of the monopole for the purpose of excitation,
whether it is a solid disk or a special screen system. The geometry of the
problem may be depicted in Fig. 4.28, where a circular screen system
consisting of N equally spaced radial wires is specifically indicated. We
may consider the situation where a solid circular disk is put on the surface
of the earth as the limiting case when N~oo.
For the moment, let us ignore the presence of the screen. In this case, we

have (according to Fig. 4.2)

a'=90°, s=z, 1/;=0,

f(z) =f {sink(h - z) + Tu( coskz -coskh)

+ TD( cos tkz - cos tkh) }, z~O,
7T

kh=l= 2' (4.115)
or

fez) =I' { sinkz -1 + T'u cos kz - T'v( cos tkz -cos ~) },

z ;;'0, (4.116)

T
h

Fig. 4.28 Vertical antenna over a radial conductor ground screen.
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The field components can be obtained from (4.59) and (4.60). They are

£°=0
'P '

TD sin(). .
+ 2 (A4+jB4+R,,(A4-jB4)]t -cos ()

- (T ucoskh + TDcos tkh) tan() (As+ jBs+ Rv(As - jBs)] ),

or

7T
kh=l= 2' (4.117)

7T
kh=-

2 '

(4.118)

where the superscript 0 signifies that the screen is not present,

A2 = cos (kh cos()) - coskh,

B2 = sin (khcos()) -cos()sinkh,

(4.119)

(4.120)
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A3 = sinkhcos (kh cosO) - cosOcoskh sin (kh cosO), (4.121)

B3 = sinkh sin (khcosO) + cosOcoskh cos (kh cosO) - cosO, (4.122)

A4 = t sin tkh cos (khcosO) - cosO cos tkhsin (kh cosO), (4.123)

B4 = t sin tkh sin (khcosO) + cosO cos tkh cos (khcosO) - cosO, (4.124)

As = sin (kh cosO), Bs= I - cos (kh cos 0 ) , (4.125)

B6 = cosOcos ( ~cosO ), (4.126)

(4.127)

Vi . (7T ) Vi (7T)Bg=4sm "lcostl+ -2-cosOcos "lcosO -cosO,

(4.128)

(4.129)

(4.130)

and ro is the distance measured from the monopole base to the far-field
point.
Note that all the terms in (4.117) and (4.118) are finite, as they should

be. For example, let us choose the first term in (4.117) to explain. Although
the denominator (sinO) becomes zero when 0=0°, the numerator also
vanishes at 0= 0°, as can be verified with A 2 and B 2 in (4.119) and (4.120).
In fact,

. (A2+iB2) . (dAz .dBz)/1~ sinO = 1~ dO +j dO cosO=O.

The same explanation applies to other terms involving (t - cos20) or cos 0
in the denominator.
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When the ground is perfectly conducting (a = (0), the corresponding
field can simply be obtained from (4.117) or (4.118) by taking the limit
Rv~l:

(4.131)

where the superscript 00 denotes the special condition when a = 00.

When the screen is present, it is convenient to express the electric field
in the form

(4.132)

where 6.E(J represents the difference between the actual field and the field
that would exist in the absence of the screen. According to the work by
Wait and Pope,28,29 the ratio of 6.E(J/ E3 may be approximately given by

6.E(J e-jkro 1 Las 00 •
-0 --kq--' Eoo H<p(p,O)J)(kpsmO)pdp,
E(J '0 (J p-o

(4.133)

where a, p., € are the ground constants, 1J=Uwp./(a+jw€»))/2 (surface
impedance of the earth), w is the angular frequency, Os the radius of the
circular screen, and J) the Bessel function of the first kind. The quantity
H;'(p,O) is the associated cp component of the magnetic field expressed in a
cylindrical coordinate system (p,cp,z) and calculated at the surface (z=O)
of a perfectly conducting ground. Of course, the reason that H;'(p,z) is a
function of p and z only is that it is independent of cp.Note that p2 + Z2 =?o
and p / z = tanO.
The field H;'(p,O) is related to the current I(z) on the antenna by28,29

which becomes, after using (4.115) and (4.116), respectively,
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or

where

(4.136)

and (4.137)

(4.138)

Note that (4.137) and (4.138) must be integrated numerically. When a
situation arises such that the assumption of a sinusoidal current distribu-
tion is justified, (4.136) becomes unnecessary and (4.135) simplifies to

(4.139)

The above equations are sufficient for calculating the far-field radiated
from the base-fed monopole above a flat lossy earth with a poss.ible
additional screen. By a similar formulation, the input impedance of the
same antenna shown in Fig. 4.28 when the ground is not perfectly
conducting can be written as28,30

Zl) = Ztl+ilZ, (4.140)
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where the input impedance of the monopole above a perfect ground, ZIT,
should be only one-half of that for the center-fed dipole of length 2h in
free space. That is,

or

- )30t/J dR cos kh
Zoo = ---------------
II sinkh + Tu(l-coskh) + TD(I-cos !kh) ,

'IT
kh7'= 2' (4.141)

)30t/JdR
Zoo = -----------
II _ 1+ T' u - T'D [1- cos ( 'IT /4) ] ,

'IT
kh=-2'

(4.142)

The change in impedance, !:::'Z, may again be expressed in terms of
cylindrical coordinates by28,3o

1 Loo
!:::.Z= - -2- H;'( p,O)Ep( p,0)2'lTpdp,

I (0) 0
(4.143 )

where 1(0) is the base current, H;'( p, 0) is the same magnetic field given by
(4.135) or (4.136), and Ep(p,O) is the tangential electrical field on the
actual imperfect ground.
To calculate (4.143), we still need an expression for E/p,O). Unfor-

tunately, an exact solution for it is unknown. It is, therefore, necessary to
make further simplifications. In particular, when o»wt:, we can have the
following approximation28,31:

(4.144)

where TJe can be considered as an equivalent surface impedance of the
air-ground interface. This impedance should be

TJe=TJ (surface impedance of the imperfect earth alone) for p>as,

(4.145)

or

TJe= TJTJs (parallel combination of '11 and the intrinsic
TJ + TJs impedance of the ground screen, TJs) for 0<; p <; as' (4.146)
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where

and

1Is=j60kdln (d /27TC),

C = radius of the screen wire,

d= spacing between radial wires

(4.147)

= 27Tp/ N (see Fig. 4.28).

Note that 1Is~0 as N~oo, corresponding to the case when the ground
screen of radial wires is replaced by a solid circular disk.
Substituting (4.144) through (4.146) into (4.143), we have

with

and

11 ioo zLlZ[:::::::-z-) [H;'(p,O)] 27Tpdp
I (0 as

1 las 1I1Is [ Z ( ) ] zLlZz--z-- --- H<p p,O 27Tpdp.
I (0) 0 11+ 1Is

(4.148)

(4.149)

(4.150)

Physically, it is clear that the expression .:lZ] is the contribution by the
monopole over a perfectly conducting discoid, and that LlZz accounts for
the finite surface impedance of the radial screen over a lossy earth.
Once again, both (4.149) and (4.150) must be calculated numerically if

the expression given in (4.135) or (4.136) is used for H;'(p,O). On the other
hand, if a simpler form in (4.139) is used instead, both (4.149) and (4.150)
can be expressed in terms of the ordinary sine and cosine integrals, S(O,x)
and C(O,x), defined in (4.6) and (4.7).
Based on the formulation outlined above, the power gain of the subject

antenna discussed in this section will then be

(4.151)

where Eo is given by (4.132), Rin is the real part of the input impedance 2]]
in (4.140), and 1(0) is the base current which can be obtained by putting
z =0 in (4.115) or (4.116).
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A typical example, for h = as= A /4 at f = 10 MHz with a (radius of the
monopole)=0.0016 m, c (radius of the screen wire)=0.0015 m, and N
= 120, is shown in Fig. 4.29, where the case of sea water (a=5 mho/m,
f.,= 80) as the ground is presented as curve (a) and that with "good
ground" (a=O.Ol mho/m, f.,= 10) by curve (b). In both cases, Zn =38.
1966 + j20.6777 Q. On the other hand, !:J.Z= -0.5l49-jO.2l42 Q and
0.8567+j3.0246 Q, respectively, for curves (a) and (b). It is again evident
that the value and position of the maximum power gain are dependent on
the type of ground.
Since the calculations for the special case when a = 00, Tu = TD= 0, and

as = 00 can be easily made, it is found that the accuracy for the data
presented in curve (a) is indeed very satisfactory by comparison. On the
other hand, there is no simple way to check the accuracy for curve (b).

5
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Fig. 4.29 Power gain of a vertical monopole above a flat lossy ground
with h=as=V4, a=0.0016 m, c=0.0015 m, N= 120, andf= 10
MHz: (a) sea water (a=5 mho/m, f.,=80), (b) good ground
(a=O.Ol mho/m, f.,= 10).



THEORY AND APPLICATION OF ANTENNA ARRAYS 1K7

Furthermore, the condition, a»wf, required for making approximations in
the formulation is only marginally satisfied for curve (b) in this particular
example. It should help to explain why the difference betweeen the
maximum values in curves (a) and (b) is larger than expected.
In general, the results in terms of power gain are improved somewhat by

having a larger h or as although the general shape of G versus 0 remains
about the same. To be specific, variations of Gmax with h while all other
parameters are kept the same as in Fig. 4.29 are given in Fig. 4.30, where
sea water is chosen as the ground. The position of Gmax remains between
0=80° and 82°. Since the improvement in Gmax by increasing as is
insignificant, the results are omitted here.
To demonstrate the variation in power gain when the frequency is

changed, another example, with h=as="A.j4 at j=30 MHz and with the
same values for a, c, N as those used in Fig. 4.29 and sea water, is shown
in Fig. 4.31. Since the magnitude of the surface impedance of the earth is
larger (because of higher frequency) and h j a is smaller in this case, the
maximum power gain obtained is lower and the position of Gmax is farther
away from the ground. These facts are clearly seen by comparing Figs.
4.29 and 4.31.
Thus far we have only discussed the monopole as a single antenna

whose pattern, because of its vertical polarization, has only 0 dependence.
In order to have the azimuthal coverage at the same time, which may be
desirable in some application such as direction finding, we can arrange, for
example, a circular array made of this type of monopoles. Indeed, this is

'" 6"0

r)
5

0.500.45
4
0.25 0.40

hi"/-..

Fig. 4.30 Variations of the maximum power gain with respect to the
monopole length for the same antenna (specified in Fig. 4.29)
above sea water.
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Fig. 4.31 Power gain of a vertical monopole above sea water with
h=as='Aj4, a=0.0016 m, c=0.OO15 m, N=120, and 1=30
MHz.

the kind of array (with perhaps some minor modifications depending on
special situations involved) which has been built as a part of the Wullen-
weber antenna.32 The analytic method presented in Section 3.2 will then
apply. Actual calculations can be made with a known set of excitations to
individual elements if the array is used as a transmitting antenna or with a
measured set of signal levels if the array is used for receiving.

4.7 CylindricalSleeve Antenna

Another kind of radiator also with vertical polarization is known as the
cylindrical sleeve antenna, designed for broad-band application.33 It con-
sists of a vertically extended inner conductor of height h and radius ai' and
an outer conductor of coaxial line of height s and radius aD over a
horizontal conducting plane [see Fig. 4.32(a)]. It differs from the base-fed



(4.152)
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monopole discussed in the previous section in that the sheath of the coaxial
line does not end at the conducting plane but extends above it a distance s
to form a sleeve. This essentially moves the feed point upward from z = 0
to z = s. However, the discontinuity at z = s does cause considerable
difficulty in the rigorous solution of the problem. To avoid this trouble, an
approximation is usually made by considering the antenna with a uniform
height h and an equivalent radius ae (aj <ae < ao) and with the excitation at
z=s, as shown in Fig. 4.32(b). In this approximation we have implicitly
assumed that the conducting plane in Fig. 4.32(a) is infinitely large.
With this approximation, we can then derive the input impedance at

z =s through the conventional induced emf method with appropriate
boundary conditions33:

-p, lh fh
Zin= 2() I(z)dzLz I(z')K(z,z')dz',

4'lTI s 0 -h
where

2'lT
k=-"A.' (4.153)

exp[ -JkV(Z-z,)2+a; ]
K( z,z') = ---_-_-_-_- _-_-_-_---=-

V(Z-Z,)2+a;

p, = permeability,

(4.154)

r
2ai

ill~ ~
E. 11. a

(a)

r
z =h

z =-h

Fig. 4.32 (a) A sketch of sleeve antenna, (b) approximate equivalent of
(a).
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and I(z), the current distribution over the antenna, is still unknown.
An approximate Zin can usually be determined by assuming a suitable

form for I(z). When considering the conditions that (i) I(z) must be
continuous in O";;'z";;'h,(ii) I(h)=O, and (iii) aI(z)jaz must be continuous
except at the driving point z = s, Taylor concluded that the following form
may approximate I(z) very well33;

I I(z ) = I+ CI( - cos ks + cos kz ),
and

where

(4.155)

12(z)=81 [I-cosk(h-z)]

+ C2 {sink(h -z) + 82 [I-cosk(h - z)]}, s";;'z ";;'h,

(4.156)

8 = I
I I-cosk(h-s)'

sink(h -s)
8 =------
2 I - cos k (h - s) ,

and C and C2 are complex constants to be determined. Note that the
I .

current has been normalized to unity at z=s. Current forms assumed ill

(4.155) have also be verified experimentally and have proved satisfactory
provided that

"A
h-s<"A and s< 2' (4.157)

Substituting (4.155) into (4.152) and simplifying, we obtain an approxi-
mate expression for the input impedance of the sleeve antenna:

where

Yo=8tMo=yf(MOr+jMOi ),

Yt =8tMI =81 (Mlr +jMli),

Y2=28tM2=28t(M2r+ jM2i), (4.159)
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and

The detailed derivations of (4.158) and (4.159), which can be found
e1sewhere,33,34are omitted here. Instead, the real and imaginary parts of
Mo through Ms in (4.159) are summarized as follows:

Mor = [1 +cos2 k(h - s)] sinkae - cos2 k(h - s) sinkV4s2+ a;

- 2cosk(h -s) sinkY(h _S)2 + a; +2cosk(h -s) sinkV(h +S)2 + a;

+ (2k(h - s) cosk(h - s) - 2sink(h - s) lC (kae,k(h - s))

- (2k(h + s) cosk(h - s) +2sink(h - s) lC (kae,k(h +s))

+ 2khC (kae,2kh) +2sin2khCc(kae,k(h +s))

- sin 2khCc (kae, 2kh ) - sin2khCC<kae,2ks )

- 2cos2khCs(kae,k(h + s)) + cos2khCs(kae, 2kh)

+cos2khCs(kae,2ks) +2Cs(kae,k(h -s)), (4.160)

- 2cosk(h -s) coskV(h _S)2 + a; +2cosk(h -s) coskV(h +S)2 +a;

-coskV4h2+a; - [2kscos2k(h-s) +sin2k(h -s) ]S(kae,2ks)

- (2k(h - s) cosk(h - s) - 2sink(h - s) lS( kae,k(h - s))

+ (2k(h + s) cosk(h - s) +2sink(h - s) lS(kae,k(h +s))
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-2khS(kae,2kh) - 2Ss(kae,k(h -s))

- 2 sin 2khSc(kae, k(h +s)) + sin2khSc (kae, 2kh )

+ sin2khSc(kae,2ks) +2cos2khSs(kae,k(h + s))

- cos 2khSs (kae, 2kh ) - cos 2khSs (kae, 2ks ),

M'r=2coskscosk(h -s) [sinkae -sinkV4s2+a; ]

-2COSks[ sinkV(h-s)2+a; -sinkV(h+s)2+a; ]

+ [4kscoskscosk(h - s) +2sink(h - 2s)]C (kae,2ks)

+2[ sinks + k(h - s) cosks]C (kae,k(h - s))

+2[ sinks - k(h + s) cosks]C (kae,k(h + s))

(4.161 )

+ 2sinkh[ Cc(kae,k(h + s)) - Cc(kae,k(h - s)) - Cc(kae,2ks) ]

- 2coskh[ Cs( kae,k(h + s)) - Cs(kae,k(h - s)) - Cs(kae,2ks)],
(4.162)

Mli =2coskscosk(h -s) [coskae -coskV4s2+a; ]

- 2COSkS[ coskV(h _S)2 +a; -coskV(h +S)2 +a; ]

- [4kscoskscosk(h - s) +2sink(h - 2s) ]S(kae,2ks)

- 2[ sinks + k(h - s) cosks ]S(kae,k(h - s))

- 2 [sin ks - k ( h + s) cos ks ]S ( kae, k ( h + s) )

- 2sinkh[ Sc(kae,k(h + s)) - Sc(kae,k( h - s)) - SJkae,2ks)]

+ 2coskh[ Ss(kae,k(h + s)) - Ss(kae,k(h - s)) - Ss(kae, 2ks)],

(4.163)
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M2r= 1- sin2k(h -s) sinkV4s2+a; +sink(h -s) sinkV4h2+a;

+ [sink(h -s) + 1- sin2k(h -s n[ sinkV(h _S)2 +a;

-sinkV(h+s)2+a; -Sinkae]

- [2kh sink(h - s) + cos2k(h - s) -l]C (kae,2kh)

- 2sink(h - s)Cs( kae,k(h -s))

+ [ - kssin2k(h -s) +cos2k(h -s) -cosk(h -s)]C (kae,2ks)

+ {k(h +s) [sink(h -s) + t sin2k(h-s)]

+2- 2cosk(h -s) }C (kae,k(h +s))

+ { - k(h -s)[sink(h -s) + t sin2k(h -s)]

- [cos k (h+ s) - cos 2kh ]

X [2Ce(kae,k(h+s)) - Ce(kae,2kh) - Ce(kae,2ks)]

- [sink(h +s) - sin2kh]

X [2Cs(kae,k(h +s)) - Cs(kae,2kh) - Cs(kae,2ks)],

(4.164)
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+ [sink(h -s) + t sin2k(h -s)] [COSkV(h _S)2 +a;

-coskV(h +S)2 +a; -COSkae]

+ [2kh sink(h - S) + cosk(h - S) -1]S(kae, 2kh)

+ 2sink(h - s )Ss(kae,k(h - S))

+ [kssin2k(h -S) - cos2k(h - S) + cosk(h - S) ]S(kae,2ks)

- {k(h +S) [sink(h -S) + t sin2k(h -S)]

+ 2 - 2cosk(h - S) }S(kae,k(h +S))

+ {k(h -S) [sink(h -S) + t sin2k(h -S)]

- 2sin2 k(h - S) } S(kae,k(h - S))

+ [cos k ( h +S) - cos 2kh ]

X [2Se(kae,k(h +S)) - Se(kae,2kh) - Se(kae,2ks)]

+ [sink(h +s) - sin2kh]

X [2Ss(kae,k(h + s)) - Ss(kae,2kh) - Ss(kae,2ks)],

(4.165)

+ 2cosks(kscosks - sinks)C (kae,2ks), (4.166)
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- 2cosks(ks cosks - sinks )S( kae,2ks), (4.167)

- t sinkY4h2+a; - -Ix sinkY4s2+a; ]

+ 2Cs(kae,k(h - s)) +[ ks(1 + cosk(h - s))+ sink(h - s)] C (kae, 2ks)

+ [kh( 1+cosk(h -s)) - sink(h -s)]C (kae,2kh)

- k (h + s) [1+cos k (h - s) ]C (kae, k (h + s) )

+ [k(h -s) (1+cosk(h -s)) -2sink(h -s)]C (kae,k(h -s))

+ sink(h + s) [2Ce(kae,k(h + s)) - Ce(kae,2kh) - Ce( kae,2ks) ]

- cosk(h +s) [2Cs(kae,k(h +s)) - Cs(kae,2kh) - Cs(kae,2ks)],

(4.168)

M4i = [1+ cosk(h - s)] [ coskae +COSkV(h +S)2 +a; - coskV(h _S)2 + a;

- 1cos kY4h2 + a2 - 1cos kY4s2 + a2 ]2 e 2 e

- 2Ss( kae,k(h - s)) - [ks( 1+ cosk(h - s)) + sink(h - s) ]S(kae,2ks)

- [kh ( 1+ cos k (h - s) ) - sin k (h - s) ]S( kae, 2kh )

+ k(h +s) (1 +cosk(h -s) )S(kae,k(h +s))

- [k(h -s) (1 +cosk(h -s)) - 2sink(h -s) ]S(kae,k(h -s))

- sink(h + s) [2Se(kae,k(h + s)) - Se(kae,2kh) - Se(kae,2ks)]

+ cosk(h + s) [2Ss(kae,k(h + s)) - Ss(kae, 2kh) - Ss(kae,2ks)],

(4.169)
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MSr= coskssink(h -s) [SinkV4S2+a; - sinkae

+SinkV(h-s)2+a; -sinkV(h+s)2+a; ]

- [2kscoskssink(h - s) + cosks - cosk(h - 2s)]C (kae,2ks)

+ [k(h + s) coskssink(h - s) +coskh - cosks] C (kae,k(h + s»

- [k(h - s )coskssink(h - s)- cosks + cosk(h - 2s)] C (kae,k(h - s»

+ (coskh - cosks) [Ce(kae,k(h +s»

- Ce(kae,k(h - s» - Ce(kae,2ks) ]

+ (sinkh - sinks) [Cs(kae,k(h + s»

- Cs(kae,k(h - s» - Cs(kae,2ks)],

(4.170)
and

MSi =coskssink(h -s) [COSkV4s2+a; -coskae

+coskV(h _S)2 +a; -coskV(h+s)2 + a; ]

+ [2kscoskssink(h - s) + cosks - cosk(h - 2s) ]S(kae,2ks)

- [k(h + s) coskssink(h - s) +coskh - cosks ]S(kae,k(h + s»

+ [k(h - s) cosks sink(h - s) - cosks+cosk(h - 2s) ]S( kae,k(h - s»

- (coskh - cosks )[Se(kae,k(h + s) )-Se(kae,k(h - s»- Se(kae,2ks)]

- (sinkh - sinks) [Ss(kae,k(h + s»- Ss(kae,k(h - s» - Ss(kae, 2ks)].

(4.171 )
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All of the generalized sine integrals and cosine integrals in (4.160). through
(4.171) have been defined in (4.6) through (4.13).
Note that the complex constants C) and C2 in (4.158) are still unknown.

Since 2in is an analytic function of C) and C2, we can determine C1 and
C 2 by setting

yielding

and (4.172)

(4.173)

The final result of tin obtained by putting (4.173) into (4.158) is usually
considered the best approximation to the true 2in defined in (4.152). Using
(4.173) we can also calculate the current distribution in (4.155). Numerical
results of C1 and C2 for a typical sleeve antenna with h=7.2390 m,
s=2.5l46 m, aj=0.OO56 m, and ao=0.1054 m-ae are given below as a
function of frequency:

Frequency
(MHz)

8
10
12
14
16
18
20
22
24
26
28
30
32

0.6041 8-j0.363 10
1.28039-j0.52402
1.75302-jO.75330
2.l4839-j 1.09585
2.4937l-j 1.62849
2.70938-j2.46835
2.49742-j3.6970l
1.326l8-j4.95753

- 0.64426-j5.l5836
- 2.041 55-j4. 16334
- 2.54785-j3.l6l 06
- 3.10023-j2.l5180
- 2.63807-jl.07107

1.6l858-jO.12486
1.52778-jO.2l449
1.52759-j0.34905
1.58267-jO.55420
1.65846-jO.87396
1.67859-j 1.374 10
1.44559-j2.092l0
0.63594-j2.78933

- 0.6310 l-j2. 78725
-1.50666-jl.98585
-1.66750-jO.97ll6
- 0.94l80-j0.46891
- 0.9528l-jO.69870
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Examples of Zin and I(z) for the same antenna dimensions are shown in
Figs. 4.33 through 4.37. These results are in fair agreement with existing
measured data for a close (but not identical) model discussed elsewhere.6
The technique adopted here is actually an extension of the variational

formulation.35 Equation (4.158) is also good for the mutual impedance
between two parallel identical sleeve antennas when the equivalent radius
ae is replaced by d, the center-to-center separation of the two antennas.
Strictly speaking, the above derivation is based on the assumption that

the conducting plane of the sleeve antenna shown in Fig. 4.32(a) is
infinitely large. In reality, of course, the said plane cannot be infinite in
extent. The actual input impedance of the antenna should then be modi-
fied in a manner similar to that following (4.140). Since this modification is
not significant when the radius of the finite conducting plane is not less
than A/4, as shown by the example given in the previous section, we are
content here to ignore this additional consideration.
After taking care of current and input impedance, we are now ready to

derive the field radiated by the sleeve antenna above a finitely conducting
earth. Here again we follow the same approach as that for the vertical
monopole (Section 4.6) without first considering the presence of the

:: .

h ~ 7.2390m

s ~ 2.514m

ai ~ 0.0056m
ao ~ 0.054m ~ ae

o

200

-200 '.

20
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1612
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in/ : \" : \" \" \,," R ... \

,," m: \
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\
\
\
\
\
\
\

24 , 32" //...•._-,

..........'......o
8
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;00

400

600

Fig. 4.33 Approximate input impedance of a sleeve antenna above a
perfect ground.
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conducting plane. We then have

EO=O
'P '

E~= -j30k e-
jkro

sinO rh/(z) exp (jkz cosO)[ 1+Rv exp ( - j2kz cosO)] dz'0 )0

where

EO} = £$( 1- C}cosks) [exp (jkz cosO) +Rv exp ( - jkz cosO)] dz

E02 = C}£$ coskz[ exp (jkz cosO) +Rv exp ( -jkz cosO)] dz

C( .
= ~ {[ exp (jkscosO)] (jcosOcosks + sinks) -jcosOsm-u

+Rv[ ( - j cosOcosks + sinks )exp ( ~ jkscosO) +jcosO] },

(4.174)

(4.176)

h

E03 = (8}+ C282 )1 [exp (jkz cosO) +~ exp ( - jkz cosO)] dz
$

(81 + C282) .
= . 0 [exp (jkh cosO) - ~ exp ( - jkh cosO)

jCOS .

- exp (jkscosO) +Rvexp ( -jkscosO)], (4.177)
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E(J4 = [C2 sinkh - (8( + C282 ) coskh]
h

X f coskz [exp (jkz cosO) +Rv exp ( - jkz cosO)] dz
s

C2sinkh-(81+C282)coskh .
. 20 [ (j COS 0 COS kh + sin kh ) exp (jkh cos 0 )
sm

- (j cos 0 cos ks +sin ks ) exp (j ks cos0 )

+ Rv ( - jcosOcoskh + sinkh) exp ( - jkh cosO)

and

- Rv ( - j cosOcosks + sinks)], exp ( - jkscosO) (4.178)

h
X f sin kz [exp (j kz cos 0 ) +Rv exp ( - j kz cos 0 ) ] dz

s

C2 coskh + (8\ + C282 ) sinkh

sin20

x [ (j cos0 sin kh - cos kh )exp (jkh cos 0)

- (j cos 0 sin ks - cos ks ) exp (j ks cos0 )

- Rv (j cosOsinkh +coskh )exp ( - jkhcosO)

+ Rv (j cosO sinks+ cosks)] exp ( - jkscosO). (4.179)

To account for the finite conducting plane, we can also calculate the
difference quantity tJ.E(J in a fashion similar to that in (4.133). However,
considering that tJ.E(J«E~ in general and that the mathematics involved
here is already complicated, we choose not to pursue this modification any
longer.
Typical numerical results for 1E11 are given in Fig. 4.38, where the

normalized free-space pattern (when Rv =0) of a sleeve antenna with the
same dimensions as those in Fig. 4.33 and with f = 10 MHz is shown as
curve (a), while the corresponding pattern of the same antenna above sea
water at the same frequency is shown as curve (b). Note that this antenna
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also works at other frequencies in the range 8-32 MHz. Their correspond-
ing patterns do not differ appreciably from those in Fig. 4.38.
Because the sleeve antenna being considered is a vertical element, its

radiated field is independent of the azimuthal angle cpo If, however, there
are N elements arranged equally spaced on a ring circumference such as
part of the Wullenweber antenna,32 the total field will then be a function
of both () and cp depending on the excitation. For the practical purpose of
having a limited azimuthal coverage, only a small number of pairs of
elements, say n (n«N), are actually excited at a time. The array factor
contributed by these n pairs can be written as

n
Sl = L Iiexp [jka1 sin()cos (cp-cp;)]

i= -n
(4.180)

where a1 is the radius of the ring array, cp is measured from the axis of
symmetry (see Fig. 4.39), and CPi and Ii are the position and feed-point
current of the ith element.
To simplify the derivation, let us refer to Fig. 4.39, where eight of N

elements are actually excited. Since the effect of mutual coupling will
inevitably induce some currents on the neighboring unexcited elements, we
choose to consider only two additional parasitic pairs closest to the excited

2.0

1.5

1£81 1.0

0.5

o 10 20 30 40 50 60 70 80 90

e. degrees
Fig.4.38 (a) Normalized free-space vertical pattern of the sleeve antenna

specified in Fig. 4.33 atf= 10 MHz; (b) Vertical pattern of the
same antenna and frequency above sea water (normalized with
respect to the free-space maximum).
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elements and neglect the more distant unexcited pairs. For this reason, we
use n = 6 (four excited pairs plus two parasitic pairs) for (4.180). Of course,
the elements are excited by voltage sources. Although the beam maximum
from part of this ring array can be made to point in an arbitrary direction
(Oo,!Po) in principle, the special way of choosing azimuthal symmetry as
shown in Fig. 4.39 demands, however, !Po=O. Thus, the phase of the
voltage excitation must be e-}a, with

with !Po=O. (4.181)

If a single-sleeve antenna were considered, the voltage excitation in volts
must be numerically equal to Zin to produce a unit current (l A) at the
feed point [which has been assumed in (4.155)]. For this reason, the voltage
excitations (both amplitudes and phases) for the array being considered
must be

(4.182)

Because of this kind of excitations and the geometry displayed in Fig. 4.39,
we always have

Ii=LI> i= 1,2, ... ,n. (4.183)
This means that only Ii (for positive i) are needed for calculating Sl in
(4.180).
For another practical reason, a concentric vertical screen is always

placed behind the real ring array, resulting in an image ring array (assum-
ing a perfect image) whose radius is designated as a2• The contribution
from the corresponding portion of the image ring should then be

n
S2= ~ (- Ii ) exp [jka2 sinOcos (!p -!PJ 1

i= -n
(i0;60). (4.184)

The currents Ii required in (4.180) and (4.184) can be determined by a
circuit consideration:

t'l' = 0°
2 -1 -3

4 •••••• -5
6 •• 1 -2 00o 3 -4
05 -6

a 1 • Excited

o Parasitic

Array center

Fig. 4.39 Top view of a part of the ring array of sleeve antennas.



Zin- ZII'+ Z12- Z12' ZI2- Z12'+ Z13 ZI3 0 0 0
ZI2-ZI2,+ZI3 Zin - Zll' ZI2~ZI2' Z13 0 0

ZI3 ZI2-Z12' Zin-ZII' Z12-Z12' Z13 0
0 Z13 ZI2-Z12' Zin-ZII' ZI2-Z12' Z13
0 0 Z13 ZI2-ZI2' Zin+Rt-ZII' Z12- Z12'
0 0 0 ZI3 ZI2-ZI2' Zin+Rt-ZII'

II Z e-jcx, l10

12 Zine-;cxz

XI
13 = Zine-jcx3 I, (4.185)
14 Zine-jcx4

IS 0
16 0

I
~
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where

Zin= open-circuit self-impedance of a single-sleeve antenna,
given by (4.158),

Z12= open-circuit mutual impedance between No.1 and No.2
antennas with d=2a1sin(7TjN),

Z13= open-circuit mutual impedance between No. 1 and No.3
antennas with d=2a1 sin(27Tj N),

Z;I = open-circuit mutual impedance between No. 1 antenna
and its own image with d=a1-a2,

and

Z;2=open-circuit mutual impedance between No.1 antenna
and the image of No.2 antenna with

27T) 1/2
d= (af+~-2ala2cos Ii .

Here again we have only considered mutual interactions between relatively
close pairs of elements. A resistance of R, ohms has been added to the
parasitic elements (No.5 and No.6), since they both are unexcited but
terminated with a resistor of R, ohms.
After obtaining the Ii from (4.185) and substituting them into (4.180)

and (4.184), we have the total field radiated from the part of the array
under considertion:

The power gain will then be

I
5 2

30sin20 i~1 EOi ( S I + S2) I
Pin

(4.186)

(4.187)

where Eoi, i= 1,2,3,4, and 5, are given in (4.175) through (4.179), and Pin
representing the total power input should be



THEORY AND APPLICATION OF ANTENNA ARRAYS 307

4
Pin=2Re ~ VJ*;

i~1

(4.188)

with 2ingiven in (4.158), (Xi defined in (4.181), I*i meaning the complex
conjugate of Ii' and Re denoting the real part of.
Based on the above derivation, we are now ready to present numerical

results for the power gain as a function of frequency and ground constants.
In all of these examples, we have chosen a1 = 133.121 m (436.75 ft),
a2= 125.044m (410.25 ft), and dimensions of the sleeve antenna itself as
those in Fig. 4.33. Since we have also followed the general practice to
choose (00=75°, <Po=OO) as the designed direction of the main beam, a
series of G(75°, <p) and G(O, 0°) for N=120 and R(=50 ohms are
presented in Figs. 4.40 through 4.43. From these figures we can have a
clear understanding about (i) the broadband property of the sleeve
antenna, and (ii) overall characteristics expected from the array of this
antenna.
A final note is in order before we conclude this section. Although four

pairs of excited elements and specific dimensions for the sleeve antenna
and array geometry were used for illustrative purposes, the formulation
presented here should apply equally well to other configurations provided,
of course, that the conditions in (4.157) are met.

4.8 ConcludingRemarks

In this chapter we have analyzed various arrays of horizontal dipoles,
vertical monopoles, or sleeve antennas. The procedures and principles
involved in this analytic work are (i) to use an assumed special form for the
current distribution on the antenna, (ii) to derive the self- and mutual
impedances by the induced emf method, (iii) to calculate the radiation
fields based on the assumed current, (iv) to employ the reflection
coefficients to take care of the imperfect grounds, and (v) to formulate the
power gain according to (1.7). Throughout this chapter we have been
concerned only with the far fields without payng due attention to the
surface wave near the grazing angle (0 = 90°). Admittedly, the formulation
is not as rigorous as we would like, but the emphasis here is to devise an
approach, simplify it by some approximations, and obtain some useful
application-oriented quantitative information. Modern computer methods
may be developed in the future to help secure more direct and accurate
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results. Until then we must still try to make the practical problems simpler
to handle and easier to understand.
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CHAPTER 5
LOG-PERIODIC DIPOLE ARRAYS ABOVE

LOSSY GROUND

In Chapter 4, we analyzed arrays of standing-wave antennas above lossy
grounds. Specifically, the antennas considered therein were dipoles, mono-
poles, and sleeve antennas. The array considered in this chapter, the
log-periodic dipole array, also consists essentially of dipoles as its elements,
and could, in principle, be included as part of Chapter 4. On the other
hand, it could also, as some have suggested,I be included with the travel-
ing-wave antennas to be discussed in Chapter 6, in view of the special
manner of excitation involved. However, because of the importance of
unusual characteristics in the sense of the broad range of frequency
operation associated with this array, we choose to treat the subject as a
separate chapter.
Since the term frequency-independent antenna was introduced by

Rumsey, employing the so-called angle concept,2 many types of broadband
antennas have been developed with different design approaches. One of
these implies that the input impedance of an antenna whose physical
dimension is identical to its complement should be frequency indepen-
dent.3 The other makes the input impedance and radiation pattern of an
antenna vary periodically with the logarithm of frequency and requires
that the change of characteristics with frequency over a logarithmic period
be negligible.3 Both of these approaches result essentially from one basic
principle, that the performance of a lossless antenna should remain un-
changed if its dimensions in terms of the operating wavelength are held
constant.4
Strictly speaking, some dimension of the antennas designed from these

ideas should be infinite, extending from an infinitesimal feed point at one
end to infinity at the other end. A practical antenna can only be obtained
by taking a portion from this ideal infinite structure and by requiring that
truncation at both ends cause only minor deviations in the final perform-
ance. The actual finite physical dimension near the feed point (one end)
and that of the other end determine, respectively,the limits of the highest
and lowest frequency of operation. If, by proper design, these two
frequency limits are far apart {say 3: lor 5 : 1) and the electrical perform-
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ance of the antenna within this frequency range changes only slightly, it
is said that a broadband antenna has been developed.
Antennas of this nature take different physical shapes such as equiangu-

lar spiral,5 wire trapezoidal tooth or sheet circular tooth,4 zigzag wire,6

log-periodic dipole array/,8 log-periodic monopole array,9 and so on. The
log-periodic dipole array is the main subject discussed in this chapter.
Two general approaches for studying log-periodic dipole arrays have

been suggested in the past. One requires a detailed analysis of the propaga-
tion properties of the wave along the structure, 10 and the other treats the
topic from a circuit-and-array point of view.II Since our main concern in
this book is arrays and the method adopted for calculating impedances in
Chapter 4 is based on the circuit viewpoint, we are following the circuit-
and-array approach originally proposed by Carrell I for analyzing this
array. Moreover, since the array is more complicated, we choose to analyze
it in free space first in order to have a better understanding of its behavior.

5.1 Log-Periodic Dipole Arrays in Free Space

A representative log-periodic dipole array is shown in Fig. 5.1(a). It
consists of a number of parallel center-fed dipoles arranged side by side in
a plane. The lengths and radii of dipole elements form a geometric
progression with a common ratio T, called the scale factor:

hn an
--=--=T
hn+1 an+1 '

n= 1,2, ... ,N -1, (5.1 )

where hn and an are, respectively, the half-length and radius of the nth
dipole and N is total number of dipoles in the array. The ratio of half
length to radius is supposed to be the same for all the dipoles in a given
array. A line through the ends of dipole elements makes an angle a with
the array axis at the virtual apex O. The spacing factor 0' is defined as the
ratio of the distance between two adjacent dipoles to twice the full length
of the longer dipole. According to the geometry of Fig. 5.1(a), we have

o,=~=Yn+I-Yn = (hn+l-hn)cota =HI-T)cota. (5.2)
4hn+ I 4hn+ I 4hn+ I

The dipoles are energized from a balanced constant-impedance feeder with
adjacent dipoles connected to the feeder in a "phase-reversal" fashion, as
shown in Fig. 5.1(b).
According to Carrel's analysis from the circuit viewpoint, II we can

consider the entire structure as a parallel combination of two parts, one of
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them being the dipole elements and the other being the feeder circuit. This
concept is clearly represented in Fig. 5.2. Note that ZT in Fig. 5.2(b) is the
termination impedance connected to the last (longest) dipole at a usual
distance of dN=hN/2 from it.?
The current-voltage relations for the element circuit [Fig. 5.2(a)] can be

written as

[ Va ] = [Za ] [Ia ] or [Ia ] = [Za ] - I[ Va ], (5.3 )

where

I'a Via

[Ia] =
IZa and [Va] =

VZa (5.4 )

INa VNa

are N X I column matrices representing, respectively, the driving base
currents and response voltages for the dipole elements, and

Zlla Z'Za ZINa

[Za] = ZZla ZZZa ZZNa (5.5)

ZNla ZNZa ZNNa

is the associated N X N open-circuit impedance matrix.
Clearly, the matrix elements on the main diagonal of [Za] in (5.5) should

represent the self-impedances of the dipoles, which can be calculated
according to (4.32) or (4.33), depending on the values of hn• The off-
diagonal elements in (5.5) will then represent the mutual impedances
between dipoles indicated by the indices. These mutual impedances can be
calculated by (4.38) or (4.44).
Similarly, the current-voltage relations for the feeder circuit shown in

Fig. 5.2(b) can be expressed by

(5.6)
where
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an= radius of the nth dipole
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generator

Fig. 5.1 A sketch of the log-periodic dipole array: (a) symbols and
definitions, (b) method of feeding.

Ilj Ilf VIa

[Ij]=
12j and [Vj] = V2j V2a (5.7)

INj VNj VNa

are, respectively, the driving currents and response voltages for each
section of the transmission line constituting a complete feeder circuit, and
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I
NO

ViO V20 VNO

(a)

V'.f \1 V
NI'<I

I)~ 1"2 1"5
~I-d,-I

(b)

DIPOLE ELEMENTS

(c)

Fig.5.2 Equivalent circuits of the log-periodic dipole array: (a) element
circuit, (b) feeder circuit, (c) complete circuit.

Y11j Yl2j YINj

[Yj)=
Y21j Y22j Y2Nj (5.8)

YN1j YN2j YNNj

is the associated N X N short-circuit admittance matrix of the feeder. The
matrix elements of [Yjl in (5.8) depend naturally on the lengths of the
transmission line in each section and the characteristic admittance Yo, The
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parameter Yo will be known once a design or a choice of the transmission
line is made.
According to the classical formulation for a two-port network,12 we

obtain the matrix elements for (5.8) as follows:

Y1lf= - jYocotkdl,

Y(N-I)(N-J)f= - jYo( cotkdN_2 +cotkdN_1),

coskdN +jYOZT sin kdN
Y'T= Yo Y Z kd .' kd 'o TCOS N+}sm N

(5.9)

where d;, i = 1, 2, ... , N - 1, are clearly indicated in Fig. 5.l(a). Note that all
the expressions for the short-circuit admittances in (5.9) have a negative
sign, which is the result of the phase-reversal connection evidenced in Fig.
5.l(b). Note also that the relation [Jij] = [Va] is used in (5.6). The relation is
true because the two circuits are connected in parallel at the dipole bases.
Since there is no difference between the feeder voltage matrix [Jij] and the
antenna voltage matrix [Va]' we use [V] to represent both, as specifically
shown in Fig. 5.2(c).
Adding (5.3) and (5.6), we obtain the total input current matrix:

[I] = [10 ] + [If ] = [10 ] + [Yf] [ V]

= [10 ] + [Yf] [Za ] [10 ]

= {[U] + [ If] [Za ] } [10 ], (5.10)

where [U] is the N X N unit matrix.
The matrix elements of [1] in (5.10) should represent the input currents

to each node point (dipole base) where the antenna and feeder circuits are
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combined. In the actual model considered here [see Fig. 5.I(b)], all the
matrix elements in [I] are zero except 1(> which is the only current source
[at the base of the shortest dipole] for the entire array. Without loss of
generality, we assume II= I A. Thus, the dipole base current matrix [Ia]

can be determined from (5.10) by matrix inversion:

-(
= {[U] + [ If] [Za ] } (5.11 )

The response voltages appearing at the dipole bases can then be deter-
mined by substituting (5.11) into (5.3). The input impedance Zin of the
entire array, which is numerically equal to the voltage VI across the
feed point since the input current has been assumed to be unity, should be

N

= L Zlialia=Rin+jXin.
i~1

(5.12)

Before we proceed to the task of deriving expressions for fields, power
gain, and ground effect, it should be instructive to give a numerical
example at this point and to examine some of the special properties
associated with this array. Let us study the following example:

N=12, '1"=0.87, a= 12.50°, IZo= - =450 ohmsY ,o
h- =500, and hI2=7.50 m
a

(half-length of the longest dipole).

Whenf= 10MHz, we list the important parameters as follows:
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hI =0.0541.\, h2=0.0622A, h3=0.0714A, h4=0.082IA, .

hs=0.0944A, h6=0.1085A, h7=0.1247A, hg=0.1433A,

h9=O.l648A, hIO=O.l894A, hll =0.2177A, hl2=0=0.2502A,

Zlla=2.2758-)1767.0139 Q,

Z33a=4.0374-)1293.9828 Q,

Zssa=7.2503-)920.7765 Q,

Z77a = 13.3038-)616.5711 Q,

Z99a =25.3801-)353.3126 Q,

Z 1111a = 52.1358 - )98.4674 Q,

Z22a=3.0278-)1515.8728 Q,

Z44a = 5.3996-)1096.9476 Q,

Z66a =9.7866-)761.8090 Q,

Zgga= 18.2572-)481.6185 Q,

ZIOIOa=35.9173-)227.4312 Q,

ZI212a=78.5824+)41.8443 Q.

The dipole base currents obtained from the matrix inversion (5.11) are

Ila=0.2855/95.33°, I2a =0.3555/ - 88.72°,

I3a = 0.3385 /59.49°, I4a =0.2798/ -149.54°,

ISa=0.4991/-14.41°, I6a=0.7346/120.53°,
(5.13)

I7a=0.7758 / -74.97°, Iga = 1.0764 /64.24°,

I9a= 1.8787 /147.97°, IIOa=2.3343 / -114.76°,

Illa=2.3556 / -65.07°, Il2a = 1.1395/ -12.60°.

The input impedance of the array calculated from (5.12) is

Zin=464.3673 +)49.4957 ohms. (5.14)

In view of the assumption made in (5.11) that the input current is
II = I /0° A, we may conclude that the currents in (5.13) are actually
values relative to the input current. From there we see that the eleventh
dipole with half-length 0.2177A (with respect to the operating frequency)
has the largest current amplitude. If we normalize the currents further with
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IlIa' we should be able to see clearly the relative distribution of currents
over the dipole bases. By doing so, we have

11a
1=0.1212 /160.39°,
Ila

ISa1=0.2119 /50.66°,
lla

17a1=0.3293 / - 9.90°,
lIa

19a1=0.7975 / -146.96°,
lIa

I
~ = 1.0000/0°,
Ilia -

12a
-I - =0.1509 / -23.65°,
Ila

14a
1=0.1188 / - 84.47°,
Ila

16a1=0.3118 / -174.41°,
Ila

18a1=0.4569 /129.30°,
Ila

I/oa =0.9909 / -49.69°,
lIa

I/2a =0.4837 /52.47°.
Iia

(5.15 )

A few important conclusions may now be drawn. First, although there
are N dipoles in the array, the actual number of dipoles which contribute
significantly to the radiated field is less than N in general. In the above
example, N = 12, there are perhaps only five contributing elements (eighth
through twelfth dipole) whose normalized current amplitudes are relatively
large (> 0.40). The remaining elements (first through seventh) serve only
the purpose of making this array operable over a broader frequency range.
For this reason, Carrel divided the entire array structure into three
different regions. I I The first region is called the transmission region, which
includes the feed point and the first few short dipoles whose current
amplitudes are relatively small. This region is followed by an active region,
which consists of a number of dipoles whose full lengths are close to
one-half wavelength. It is this active region which serves the main objective
of radiating. The last portion of the array, called the unexcited region,
contains the longer elements toward the far end. This unexcited region
generally helps predict the end effect due to truncation discussed at the
beginning of this chapter. For the currents in (5.15), the first seven dipoles
may be considered members of the transmission region, while the next five
dipoles can be classified to constitute the active region. There is practically
no element in the unexcited region for this particular frequency (lOMHz).
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This unexicted region will eventually appear when the operating frequency
increases, as will be seen later. On the other hand, if we had started with
two more longer dipoles, they would fall into the unexcited region even
whenf= 10MHz.
The second conclusion we may draw from (5.15) is that, because the

current phases associated with the tenth and twelfth dipoles are, respec-
tively, lagging and leading, relative to the most active element (eleventh
dipole), we can predict, by the knowledge learned from Chapter 1, an
endfire type of pattern radiating toward the feed point. This result will be
clear when we discuss the pattern in the next section. The third conclusion
is that the most active element will occur more or less at one of those
elements whose half-lengths are slightly shorter than .\/4. In the above
example, it happens to be the eleventh dipole. It could be the tenth dipole,
as evidenced by the fact that 1/loa//llal=0.9909. All of these three
properties will remain when the array is operated with higher frequencies.
If we change the frequency to 12MHz for the same array, we obtain

h7 = 0.1497.\,

hI 0=0.2273.\,

hS = 0.1720.\,

hll =0.2612.\, hl2 = 0.3003.\;

and

//a = 1.0000/0°,
9a

/ta =0.3174 /96.89°,
9a

/Sa
1=0.7192 / -84.11°,

9a

/loa =0.7347 /45.79°,
9a

/)2a =0.0612 /130.44°;
9a

(5.16)

Zin = 372.5437- jl72.3898 ohms.

From the above, we see that the most active element has shifted to the
ninth dipole, whose half-length is 0.1977.\. Obviously, only the seventh
through tenth dipoles are contributing significantly this time, therefore
constituting the active region. The first six dipoles are in the transmission
region. The last two elements may be considered as belonging to the
unexcited region. The current phases of the eighth and tenth dipoles again
satisfy the basic requirement for an endfire radiation. Note how drastically
the current amptitude on the longest dipole has been attenuated. Also note
that, because the first six elements are relatively unimportant as far as our
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discussion here is concerned, the numerical data pertaining to them are
omitted in (5.16).
The unique properties outlined above still hold true even when the

frequency is increased to 32MHz. Under this condition, the most active
element will shift to the second dipole, leaving practically no element in
the transmission region and most of the elements in the unexcited region.
This situation is just the opposite of that when the lowest frequency of
10MHz was considered. Therefore, as far as the particular array studied in
this section is concerned, it should be able to operate within the range of
10"'1~32MHz, indeed a significantly broad band. Alternatively speaking,
the computed operating bandwidth for this array may be termed as

32
Bo= TO =3.2 (5.17)

(5.18 )

If the active region were very narrow, consisting of one or two dipoles,
the theoretical operating bandwidth should be determined by the ratio of
hN/hl• This ratio is generally called the structure bandwidth. II That is

hNBs= h =7"I-N.
1

For the above example, Bs = 4.6248.
Since the active region always has some width, it is apparent that the

actual operating bandwidth, Bo, is always less than Bs' According to
Carrel,l1 it may be defined as

(5.19)

where Ba is the average width of the active region. In view of the fact that
there is no clear-cut boundary between the active region and the other two
regions, it is rather difficult to define Ba precisely. Instead, an empirical
formula for Ba has been proposed: 11

Ba= 1.1+30.70'(1-7"). (5.20)

Using 7"=0.87 and 0'=0.1466, we obtain, for the example studied here,
Ba= 1.6851 and Bo=2.7445, which may be compared with that in (5.17) to
gain a feeling for the deviation between the computed and empirical
results.
Instead of tabulating all the base currents and input impedances for

different frequencies as we did in (5.13) through (5.16), we summarize them
in Figs. 5.3 through 5.9 for every 2MHz in the entire range 10~1
~ 32MHz. Ideally, the input impedance should remain frequency inde-
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Fig. 5.3 Normalized amplitude of dipole base currents of the log-
periodic dipole array in free space with N = 12, T = 0.87,
a= 12.5°, ZT=0,Zo=450 Q, h/a=500, h12=7.50 m,j= 10,12,
14, and 16 MHz.

pendent. However, in view of many imperfections in the formulation such
as the finite size of the array (truncation at both ends), the assumed form
for current distribution on dipoles, and the assumption of no interaction
between dipoles and the transmission line, the input impedance does vary
with frequencies although the variation is restrained within a relatively
small area shown in Fig. 5.9. This variation is indeed not substantial when
it is compared with that shown in the table preceding (5.13) for a single
dipole.
The degree of variation of Zin is generally measured by quantities known

as the mean resistance level Ro and the corresponding standing-wave ratio
(SWR), which are, respectively, defined as

(5.21)
and

VEmax
SWR= ~,

mm
(5.22)
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Normalized phase of dipole base currents of the same array as
in Fig. 5.3, also in free space, withj= 10, 12, 14, and 16 MHz.
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where Rmin and Rmax are, respectively, the minimum and maximum real
parts of the input impedance calculated within the entire operating band-
width. From the set of actually computed values presented in Fig. 5.9, we
have

and

Rmin = 145.50 ohms

Rmax = 464.37 ohms

Ro = 259.94 ohms,

SWR= 1.79.

occurring at

occurring at

j=32 MHz,

j= 10MHz,

(5.23)

If we operate the same array for the frequency range 14«j«28MHz
instead (still Bo=2), the corresponding set will be
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Fig. 5.9 Input impedance of the same array as in Fig. 5.3, in free space.

and

Rmin = 193.82 ohms

Rmax = 410.90 ohms

Ro = 282.21 ohms,

SWR= 1.46.

at

at

j=18 MHz,

j=14 MHz,

(5.24)

Note that all of the values in (5.23) and (5.24) are computed results, based
on the fomulation given in this section. Obviously, the mean resistance
level and the standing wave ratio should depend on Zo,T,a'(ora) for a
given array of N dipoles within an operating bandwidth Bo' Specific results
showing some of these effects are presented in Figs. 5.10 through 5.13,
where only the solid dots are actually computed. From Figs. 5.1I and 5.13,
we see clearly that there are a few favorable values of a' (or a) to minimize
the standing-wave ratio.
An approximate formula for the mean resistance level has also been

proposed by Carrel: II

Z
R'o= 0 , (5.25)

VI + (ZO/Za)(vr /4a')

where Za' called the average characteristic impedance of a dipole antenna
in free space, is determined mainly by h / a. According to some of the
original derivations, treating the dipole as an opened-out transmission
line, 13,14 Za also contains another frequency-dependent term involving
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Fig. 5.12 Variation of Ro with a' for a log-periodic dipole array in free
space with N = 12, 'T = 0.95, ZT = 0, Zo = 100 n, hi a = 100, and
h12 = 7.50 m in 10 MHz..;;!..;; 16 MHz.

hili.. Since there are many dipoles with different values of h in the
log-periodic dipole array considered here, Carrel replaced this frequency-
dependent term by an average numerical factor. I I His result is

Za:::::'120(In ~ - 2.25 ). (5.26)

A set of examples for R'o is given in Fig. 5.14, which may be compared
with the corresponding cases in Figs. 5.10 and 5.12.

5.2 Vertical Log-Periodic Dipole Array-Power Gain

A In Free Space. Having outlined the procedures for calculating [la]
and Zin and given some discussion through a numerical example, we are
now ready to derive the radiation pattern and power gain. The exact
expression for the far field radiated from the array depends on the actual
coordinates of the array. The configuration shown in Fig. 5.l(a), where the
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Fig.5.13 Variation of SWR with a' for the same array described in Fig.
5.12.
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as a function of a'.

array axis is arbitrarily chosen as the y axis and the entire array is in the yz
plane, may be called the vertical log-periodic dipole array. We still can
follow the same procedure as in Section 4.2 to determine the component
field expressions. Using the same notation as those shown in Fig. 4.2, we
have for the present case [Fig. 5.1(a)]

(}'=o, 1/1= (),
7T

a.'=-
2 '

s=Hs=z,

and the current distribution on the ith dipole is

[
. (kZ kh;)]I;(z) = 1m; smk(h;-Izl) + Tu;(coskz-coskhJ + TDi cos2 -cosT '

7T
kh;=I= 2'

= I'm;[ sinklzl-l+T'u;coskz -T'Di(COS~ -cosi)],
(5.27)
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where we have, for the purpose of avoiding confusion with the notation [I]
in (5.10), used 1m; or I'm; to denote the current maximum on the ith dipole.
The quantities TVi' TDi, T'U;' and T'Di in (5.27) are calculable according to
(4.14) through (4.17). To clarify the notation further, we also note that the
base current of the ith dipole determined from the assumed current form
in (5.27) can be easily obtained by setting z =O.Thisbase current should be
equal to I;a in (5.11). That is,

or

= I'm;[ -1 + T'U;- T'Di( l-COS~) ], (5.28)

IiaI
mi
= -----------------,

sinkh;+ TUi(l-coskh;) + TD; [1- cos (khi/2)]

'1T
kh;=/= 2'

IiaI' .= ------------
m, _ I + T'u; - T'Di [ I - cos ('1T /4) ] ,

(5.29)

The component far field radiated from the first dipole (the shortest) will
then be, according to (4.59) and (4.60),

e-jkr, fhl
£10= -j30k--sinO I)(z) exp (jkzcosO)dz

r) -hi

(5.30)

and

where

IF)= ---:---n [COS(khJ cos 0) - coskhJ]
Slnu
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(5.31 )

(5.32 )

, 1 [ . ('TT )] ,cos[('TT/2)cosO]
F i = sin 0 1- cos 0 sm "2 cos 0 + T VI sin 0

T'D! sinO [ Y2 ( 'TT ) Y2 ( 'TT )]- * _ cos20 4 cos "2cos 0 - -2-cos0 sin "2cos0

+ ( -1+ V; T'D!) tan 0 sin ( ~cosO ),

and r1 is the distance from the base of the first dipole to the far-field point.
Summing up the contributions from all the dipoles in the array, we

obtain
N

. ~ e-jkr;
E(J=-j60 £.J Imi--F;,r.

i=1 I

N

L -jkr
= -j'60 l' ._e_' F'

ml r. "
i=1 I

(5.33 )

where F; and F'i can, respectively, be obtained from (5.31) and (5.32) if
hI' Tv I' and TD1 there are replaced, respectively by hi' TVi' and TVi' Note
that, for the mere purpose of convenient presentation, we have given two
expressions in (5.33), depending on whether khi is 'TT /2. In reality, since all
the lengths of the dipoles in the array are different, as evidenced by (5.1),
there is at most one dipole, say the nth (1«n«N) whose half-length may
satisfy khn = 'TT / 2. In this case, all the remaining N -1 terms (i =1=n) in the
first expression of (5.33) are valid. Only the term identified with i= n
should be changed according to the second expression of (5.33).
Using the far-field approximation for the distance in the phase term,

(5.34)
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where y; is the coordinate (position) of the base of the ith dipole, we have
e-jkr, N ..

E(}- - )60-- ~ Im;exp(jky;smBsmqJ)F;. (5.35)
rl ;=1

The power gain for this vertical log-periodic dipole array will then
become, according to the definition given in (4.64),

where Rin is the real part of the input impedance Zin in (5.12) and

N

s= ~ Im;exp(jky;sinBsinqJ)Fj,
j~1

(5.36)

( 5.37)

with 1m; given in (5.29).Here again we must keep in mind that one of the F;
and 1m; in (5.37) may have to be changed to F;' and I:";, respectively, in
view of the note made following (5.33).
As we mentioned in the previous section when the numerical results of

I;a were presented, the array should radiate as an endfire array. Referring
to Fig. 5.I(a), we see clearly that the endfire direction points toward the
negative y axis(B = 90° and qJ = - 90°). For this reason, numerical results
of G(B,-900),G(B,900), and G(90°,qJ) for the same array discussed in the
previous section are given, respectively, in Figs. 5.15(a), 5.15(b), and 5.16.
Note that G(B, -90°) and G(B,900) should be symmetric with respect to
B =90°. Thus, the curves in 90° < B < 180° are not shown in Fig. 5.15.
Similarly, the portion of G(90°,qJ) in 90° < qJ< 270° is also omitted in Fig.
5.16.

B Above lossy ground. After considering the input impedance, fields,
and power gain of a vertical log-periodic dipole array in free space for the
purpose of understanding how and why it works over a relatively broad
band of frequencies, we are now ready to extend the formulation for this
antenna above a flat, homogeneous and lossy ground. If the vertical
log-periodic dipole array shown in Fig. 5.1(a) is placed H meters above the
ground represented by the xy plane, the situation may be depicted in Fig.
5.17. The main problem is then how to determine the dipole base currents
I;a, including the imperfect ground effect. In view of the complicated
mathematics encountered thus far in this chapter, we decide to determine
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Iia by further approximations deduced from two viewpoints, depending on
the type of ground involved.
(i) For ground with relatively low conductivity, such as "poor ground,"

sea ice, or polar ice cap, we propose to ignore the presence of the ground
for the purpose of determining the dipole base currents. In this regard, all
the procedures outlined in Section 5.1 for obtaining Iia [(5.3) through
(5.11)]are still considered approximately valid, because these poor grounds
are not likely to have substantial, if any, effects on the current distribution.
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When calculating the input impedance and radiated fields, we then take
the imperfect ground effect into account by adding necessary terms
pertaining to the vertically polarized reflection coefficient, as we did in
Chapter 4. Thus, the input impedance, under the assumption made, be-
comes

N

Z'in = Zin +R'o ~ ZHN+i)a1ia'
i=l

(5.38)
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1
7777717111171711771111111777111/~Y
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Fig. 5.17 Vertical log-periodic dipole array above flat lossy ground.
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where Zin is given in (5.12), R'v in (4.73), lia [i= 1, 2, ... , N] are those
obtained from (5.11), and Zl(N+i)a is the open-circuit mutual impedance
between the first dipole (shortest) and the image of the ith dipole [which
can be calculated according to (4.112) and Fig. 4.20].
Applying (4.59) and performing the necessary integration, we obtain the

field radiated from this antenna as follows:

E'(J = exp (jkH cosO) [1+Rv exp ( - j2kH cosO) lE(J, (5.39)

where E(J is given in (5.35) and Rv is defined in (4.58).
The power gain thus becomes

, rf1E'(J12 120. . 2
G (O,Ip) = 30R' = R'- Is exp (jkH cos0)[ 1+Rv exp ( - j2kH cos0) 11 '

m In

(5.40)

where R:n is now the real part of (5.38) and S is given in (5.37).
(ii) For ground with relatively high conductivity such as sea water or

fresh water, we propose to determine the dipole base currents as if the
whole array were above a perfectly conducting ground and then use Rv to
take care of the imperfect ground effect. With this assumption, we can still
devise a procedure similar to that outlined in Section 5.1 but with a
doubled size for all the matrices involved. Referring to the geometry shown
in Fig. 5.17, we see that the dipole base currents for the real array should
be identical to those for the image array and that there is no physical
connection between the actual transmission line and its image. Thus, we
have:

[I;'] is the corresponding dipole base current matrix for the array and its
image, 2N Xl,

[1 ~ 1= [ [I'a 1 ],
[I'a 1

(5.41 )

[Y'j] is the corresponding short-circuit admittance matrix for the transmis-
sion line and its image, 2N X2N,

[YII1=[ [Yjl
j [0]

(5.42 )
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and [Z~] is the corresponding open-circuit impedance matrix for the array
and its image, 2N X 2N,

[Z~] = [ [Za]

[Z~]
(5.43 )

where [1;] is an N X I submatrix of [1;'] in (5.41), representing the dipole
base current matrix for the array alone when it is placed above a perfectly
conducting ground; [Yj] is an N X N submatrix of [Yj'l in (5.42), represent-
ing the short-circuit admittance matrix for the real transmission line, which
is given in (5.8);[0] is an N X N null matrix; [Za] is an N X N submatrix of
[Z;'] in (5.43), representing the open-circuit impedance matrix for the real
array, which is given in (5.5); and [Z;] is also an N X N submatrix of [Z;'],
representing the open-circuit mutual impedance matrix between the real
dipoles and their images, given by

ZJ(N+I)a ZJ(N+2)a ZJ(2N)a

[Z~]=
Z2(N+ l)a Z2(N+2)a Z2(2N)a (5.44). . . . . . . . . . . . . .. . .
ZN(N+ l)a ZN(N+2)a ZN(2N)a

In (5.44), Z;(N+j)a clearly represents the open-circuit mutual impedance
between the ith real dipole and the image of the jth dipole. It can also be
calculated according to (4.112) and Fig. 4.20. As such, we should have
Z;(N+J)a = Zy(N+;)a'

Using the same derivation as that leading to (5.10), we obtain

[/"] = {[ U"] + [Yj' ][Z;']} [1;']' (5.45)

where [/"] is the corresponding input current matrix (2N X I) for the entire
system and [U"] is the 2N X 2N unit matrix.
If we also partition [/"] and [U"] into submatrices such as

[/"]=[ [1] ],
[1]

with (5.46)
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and

[UII]=[ [U]
[0]

we can simplify (5.45) to

[0] ],
[ U]

(5.47)

[
[I] ] = ([ [U]
[1] [0]

= [ [U] + [Yj )[ Za ]
[Yj )[Z'a]

or

(5.48)

which yields

Comparing (5.50) with (5.11), we see that the difference between the
free-space and perfect-ground approaches is identified with the extra term
[Yjl[Z'al in (5.50). With the dipole base currents so determined, the
remaining task of calculating the input impedenace and power gain still
follows (5.12) and (5.36) with only minor modifications. Specifically, they
become, respectively,

N

Z"in= ~ [ZJja+R'vZ\(N+ila]I';a
;=\

and (5.51 )

Gil (O,cp) = ~:O 18" exp (jkH cosO) [1+Rv exp ( - j2kH cosO)] 1
2
,

III

where R:~is the real part of Z:~and
N

8" = ~ I';";exp (jky; sinOsincp)F;,
;=1

(5.52)
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with I::'; relating to I:a in a manner similar to that in (5.29) depending on
kh;.
To illustrate the procedures so outlined, let us study once again the same

example discussed in the previous section. When the array is placed above
poor ground (£r = 4 and 0' = 0.001 mho / m) with H = 8meters, we use the
free-space approximation. The normalized dipole base currents so obtained
should be identical to those given in Figs. 5.3 through 5.8. The input
impedances for the same frequency range (10<j < 32MHz), calculated
according to (5.38), are presented in Fig. 5.18, which may be compared
with Fig. 5.9 for the corresponding free-space case. More specifically, when
j= 10MHz, we have

Z'in = 435.0526 +j48.6046 ohms. (5.53 )

Clearly, the difference between Z'in in (5.53) and Zin in (5.14) is contrib-
uted by the second term in (5.38). The associated mean resistant level and
standing wave ratio become, respectively,

Ro=267.92 ohms,

with
SWR=I.62 . (5.54)

R'min = 165.00 ohms occurring atj=32MHz

T 16 l'IOMd• 22 .
L i I I • I I

<Il 100 200 300 400 500 Ri~,ohmsE . •.c 18 260.
_ co
x-

-100 32.
-200 30

20• 12
24 •.

.14.
28

Fig. 5.18 Input impedance of the same array described in Fig. 5.3 placed
8 m above poor ground (£r=4, and 0'=0.001 mho/m).
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and

R'max = 435.00 ohms occurring at f = 10MHz.

Although the radiation pattern or power gain in free space is relatively
frequency insensitive in the entire operating bandwidth, as evidenced in
Figs. 5.15 and 5.16, the shape of G'«(), - 90°) will, however, vary substan-
tially with frequency and () in view of the height factor in (5.40). For this
reason, a set of G'«(), -90°) is presented in Figs. 5.19 and 5.20. Further-
more, because of the imperfect ground effect represnted by Rv' the maxi-
mum value of G'«(), - 90°) no longer occurs at ()= 90°, as we have ex-
perienced many times in Chapter 4. Instead, G'«(), -900)max generally
occurs around ()= 75° for the particular ground being considered. On the
other hand, since the height H is not tied with the variable cp, the shape of
G'(75°,cp) will remain almost the same as that for G(90°,cp) in Fig. 5.16,
although the level is changed somewhat differently for different frequen-
cies. Therefore, the variation of G'(75°,cp) is not presented here.
When the same array is placed above sea water (for = 80 and a = 5

mho/m) with the same height (H=8 meters), we use the perfect-ground
approximation. The normalized dipole base currents obtained according to
(5.50) will be slightly different from those given in Figs. 5.3 through 5.8.

10

CD

'"
o
0'>
I

-5

-10

Fig.5.19 Power gain of the same array described in Fig. 5.18 withf= 10,
14, and 18 MHz.
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Fig.5.24 Normalized phase of the same array described in Fig. 5.21 with
f= 10, 12, 14, and 16 MHz.

(5.55)
I'Sar = 0.5162 /106.39°,

lla

I'IOa °r = 0.9803 / - 65.32 ,
lla

I;2a °r =0.6337 /58.72 ,
lla

I~a °r =0.1721 / -35.88 ,
Ila

I~a °r =0.1771 / -104.00 ,
lla

I'6ar =0.3514 /178.32°,
lla

I'
I'lla = 1.0000 /0°,

lla

1'7 ar = 0.3207 / - 24.26° ,
Iia

I~a °r = 0.9029 / - 156.33 ,
Ila

1'3 ar =0.1800 /102.86°,
lla

I'sar = 0.3007 /42.80°,
Ila

They are presented in Figs. 5.21 through 5.26 with the same scale as that
used in Figs. 5.3 and 5.6 for easy comparison. More specifically, when
f= 10 MHz, we have.

I'lar =0.1347 /152.94°,
lla
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Continuation of Fig. 5.24 withj= 18,20,22, and 24 MHz.

180

'"<l>~
'"<l> 120"0

en
I-zw
a:
a:
:::J 60u
w
If)
<t
lD

W
....J
0a.
0

"-0
w
If)
<t -60:I:a.
0
w
N

-120 j....J
<t~a:
0z

-180

Fig. 5.25

•/I
1\
I \
I \
I \
I \

. ..L..
..........I..f...

..' / I '..' . " "..' /" "....... ,," '.

.... /"..' ./....

.~

which may be compared with those in (5.15) for the free-space case. It is
clear that the currents on the eighth through twelfth dipoles in (5.55) will
still produce an endfire radiation pattern with the beam maximum pointing
toward the apex of the array (cp = - 90°).
The input impedance Z "in and the power gain in the vertical plane

G"(O, -90°), calculated according to (5.51), are given in Figs. 5.27 through
5.29. In this case with sea water as the ground, the associated mean
resistance level and standing wave ratio are, respectively,

Ro = 232.04 ohms
and

with
SWR= 1.60,

(5.56)

R':mn = 144.93 ohms occurring atj=26 MHz
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Fig.5.28 Power gain of the same array as in Fig. 5.21 withJ= 10, 14, and
18 MHz.

and

R~ax = 371.51 ohms occurring atf= 16MHz.

Note also that G"(O, -900)max now occurs approximately at 0=82°, and
that G"(O, - 90°) generally is more frequency sensitive (via kH and Rv)
than G'(O, - 90°) for the poor ground. In fact, clear sidelobes appear in
Figs. 5.28 and 5.29 for frequencies above 14MHz, resulting from the array
factor contributed by the real array and its relatively good image. Again,
we have omitted the graph for G"(82°,q;) for the same reason explained
before.
Before concluding this section, we should remember that the two

approaches, free-space approximation and perfect-ground approximation,
formulated here are rather artificial. As such, the results presented should
be regarded only as limits of a practical situation which may fall between
these two ideal cases.
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Fig. 5.29 Continuation of Fig. 5.28 with f = 22, 26, and 30 MHz.

5.3 Modified Vertical Log-Periodic Dipole Arrays Above Lossy Ground

In the last example given in the previous section, the height of the array,
H, is specified in meters. Its value must be greater than hN (see Fig. 5.17).
The equivalent electric height, kH, changes with frequency. The specific
value of 8 meters used for H in the example corresponds to 0.267>. when
f = 10 MHz. It changes to 0.853A when the frequency is increased to 32
MHz. Even though the free-space pattern or power gain of the array does
not change much in the entire operating bandwidth 10MHz<f<32 MHz
(as the array is so designed), the final pattern or power gain of the array,
including the ground and height effects, may vary substantially in view of
the elementary theory presented in Chapter 1. In fact, these possible
substantial variations are clearly indicated in Figs. 5.28 and 5.29. Because
the array itself has broadband characteristics on the one hand and the
height factor is frequency-sensitive on the other, broadband applications of
the vertical log-periodic dipole array shown in Fig. 5.17 are, therefore,
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N

Fig. 5.30 Modified vertical log-periodic dipole array above lossy ground.

quite limited. This explains why a log-periodic monopole array built
directly on the ground surface is more generally used.9 Since the basic
property of a log-periodic monopole array is almost the same as that of the
array discussed in the previous section, we are not repeating the analysis
~~ .
Alternatively, for the vertical log-periodic dipole array, the trouble

caused by the fixed height can be overcome by a modified version of the
array shown in Fig. 5.30.15,16 In this case, the dipoles are still parallel to
the z axis, but the array axis is no longer parallel to the y axis. Instead, it
makes an angle 0:2+ 0:3 with the ground. The lengths and radii of the
dipoles still satisfy (5.1). The space between the dipoles along the array
axis is, however, more complicated than (5.2). To derive an expression
similar to (5.2), let us consider Fig. 5.31. Clearly, we have

By definition,

Since

Oa' Ob'
cos (0:2 + 0:3) = --==- = --==-.

Oa Ob

__ --Oa
d == Ob - Oa = ( Ob' - Oa' ) -==- .
n Oa'

(5.57)

(5.58)

(5.59)
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I
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Fig. 5.31 A working diagram of Fig. 5.30 for deriving (5.62)-(5.64).

we obtain

Similarly,

_ hn+1cot(a2+a3)Ob' = --------.
1- tana3cot (a2 + (3)

(5.60)

_ hncot(a2+a3) 'Thn+1cot(a2+a3)Oa' =------=------. (5.61)
1- tana3 cot (a2 + (3) 1- tana3 cot (a2 + (3)

Substituting (5.60), (5.61), and (5.57) into (5.58), we have

cot (a2 + (3) 1
dn=(l~'T)hn+l . )'1-tana3cot (a2+a3) cos (a2+a3

Then,

Note that the three angles, ai' a2, and a3' are not all independent.
Applying the sine law to triangles Oaa" and Oaa'" in Fig. 5.31, we obtain

sinal hn sma2
=-=-----

sin(900-al-a2-a3) Oa sin(90o+a3)'
or

sinal = sina2
cos (al +a2+(3) cosa3

(5.63)
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Since the height of each individual dipole base above ground varies now
we can also derive a general expression for it. From Fig. 5.31, we have '

(hn +Hn) tan (a2+a3)
tan(al +a2+(3)

or

tan(a2+a3)Hn =hn------------tan (a) +a2+ (3) -tan (a2 + (3)

sin (a2 +(3) cos (al + a2 +(3) sin (a2 + (3) cosa3
= hn . = hn ---.----smal sma2

(5.64)

Note that the last inequality is obtained because a2> 0, a3 >0, and
a2+a3<'1T /2.
It is clear that when

and (5.65)

(5.62) will reduce to (5.2), and Fig. 5.30 will convert to Fig. 5.l(a) if the
ground in Fig. 5.30 is ignored. On the other hand, if we still wish to
consider the ground, the array apex in Fig. 5.30 must be raised by a height
H, which should be no less than hN• Then, Fig. 5.30 will convert to Fig.
5.17 under the conditions in (5.65).
After making these fundamental changes in geometric parameters for

this array, we can derive the far fields in a manner similar to that leading
to (5.33) or (5.39):

£'1'=0,

(5.66)
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where

N

Smv= ~ 1miexp [jkyi sec (O'z + 0'3 ) cos 1/',]
i=\

X exp (jkHi cos f) ) [ I +Rv exp ( - j2kHi cos f)) ] Fi. (5.67)

In the above, r 1 is the distance from the base of the first dipole to the
distant point where the total field is calculated, the maximum current 1mi is
related to the base current 1ia [obtained by matrix inversion in (5.11) or
(5.50)] by (5.29), Yi is the Y coordinate of the base of the ith dipole, Hi is
given in (5.64), F; can be obtained from (5.31) if hi and a1 there are
replaced, respectively, by hi and ai' and

(5.68)

Note that the term exp(jkHicosf))[1 +Rv exp( - j2kHi cos f))] is now inside
the summation sign of (5.67). The quantity 1/" in (5.68) is the angle between
the far-field point (f),cp) and the array axis (f)'=7T/2-O'z-O'3, cp'=7T/2).
We should also remember that one of the 1mi and F; in (5.67) may have to
be replaced by I'mi and F'i if khi for that particular dipole happens to be
7T /2.
The power gain of the array is then

G(fJ,cp)= ~20ISmvlz,
In

where Rin is the real part of

N

Zin= ~ [Zlia+R'vZJ(N+l)a]Iia,
i=\

(5.69)

(5.70)

with the understanding that 1iacan be approximately obtained from (5.11)
if the ground involved has a very low conductivity or from (5.50) if the
ground conductivity is very high. Of course, the meanings of Zlia and
ZI(N+i)a remain the same as those in (5.12), (5.38), and (5.51).
To illustrate the improvement made by this modified vertical log-

periodic dipole array, as far as the reduction of sidelobe levels is con-
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cerned, we present as follows important characteristics of a comparable
numerical example:

N= 12, T=0.84,

h- =200, £r=80,a and 0=5 mho/m (sea water).

Freq. (MHz)

6
8
10
12
14
16
18
20
22

Zin (ohms)

303.33 -)112.16
277.24+) 63.77
338.69 +) 58.24
247.17+) 17.15
232.98 -) 81.1 0
425.51-) 44.30
239.44 -)127.13
350.98 -)134.15
223.05 -)222.24

Most Active
Element

tenth
ninth
seventh
sixth
fifth
fifth
fourth
third
third

Base Height of
Most Active
Element
in A's

HlO=0.1930
H9=0.2161
H7=0.1906
H6=0.1921
Hs=0.1883
Hs=0.2152
H4=0.2034
H3=0.1898
H3 = 0.2088

(5.71)

From the above table, we see that, in the entire operating bandwidth
6'" j '"22 MHz, the base height (above ground) of the most active dipole
varies only between 0.1883A and 0.2161A. Because all of them are less than
0.25A, we can conclude that no sidelobes with substantial levels will be
present in the pattern. This result is confirmed in Fig. 5.32, where power
gains withj=6, 12, and 18 MHz are presented. Corresponding results for
other frequencies between 6 and 22 MHz are too close to those in Fig. 5.32
to be included. The associated mean resistance level and standing wave
ratio can also be easily calculated with the Zin's in (5.71):

Ro = 308.07 ohms
and

SWR= 1.38.
(5.72)

Again the power gain in the azimuthal surface such as G(82°,lp) is omitted
here because it differs only slightly from that shown in Fig. 5.16.
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5.4 Horizontal Log-Periodic Dipole Arrays Above Lossy Ground

After studying the vertical log-periodic dipole arrays in the previous two
sections, we now proceed to discuss the horizontally polarized log-periodic
dipole array. A typical array of this kind is pictured in Fig. 5.33. The
dipole elements are now parallel to the x axis (and thus the ground) and
the array axis is also in the yz plane, making an angle ()" with the z axis.
Since the basic relations (5.1) and (5.2) also hold true for hi' a;, and a' here,
the formulation for determining I;a by (5.11) and Z'in by (5.38) when the
ground considered is relatively "poor" and that for obtaining I';a by (5.50)
and Z"in by (5.51) when the ground is relatively good are still good, except
that R'v in (5.38) and (5.51) should be replaced by R'h' which is given in
(4.72). The only other change we must make here is to rederive the far
fields.
Referring to Fig. 4.2, we have

a'=O°, cp' =0°, s=x,

cos1/J= sin(}coscp, (5.73)
and

[ ( kx kh;)]I;(x) = 1m; sink(h;-Ixl) + Tu;(coskx-coskh;) + TDi cos "2 -cos"2 '

7T
kh;=F "2

= I'm;[ sinklxl-l + T'Uicoskx - T'Di(cos k; -cos i) ], kh;=~.

(5.74)
The contribution to the fields, according to (4.59) and (4.60), from the ith
dipole are then

for kh; =F7T /2,

e-jkr,
Eo; =j30k -- cos ()cos cp[ 1 - ~ exp ( - j2kH; cos ()) ]

r;

X f:~/;(x) exp (jkx cos1/J)dx

e-jkr,
=j60Im;-r.-cos(}coscp[ 1-Rv exp ( - j2kH;cos(}) ]F;,

(

e -jkr,
E<p; = -j60Im;-r.-sincp [1+ Rh exp ( - j2kH;cos(}) ]F;;, (5.75)
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and for kh; = 7T /2,

e-jkr,
Eo;=j60I'm; -r.- cos ()cos cp [ 1- Rvexp ( - j2kH; cos ()) ]Pi'

1

e-jkr, (5.76)
E<p;= - j60I'm; -r.- sin cp [ 1+Rh exp ( - j2kH; cos ()) ]Pi'

1

where

cos (kh; cos1/;) - cos kh; Tv; cos kh; sin (kh; cos1/;)
F= ---------

1 sin21/; cos1/;

Tv; .+ -.-2- [smkh;cos (kh;cos1/;) -cos1/;coskh.sin (khcos.I,)]sm 1/; 1 1 'r

TD.
1 [1' Ik (+ l 2"2 sm"2 h;cos kh; cos1/;) - cos 1/;cos! kh sin ( kh cos 1/;) ]

4 -cos 1/; 1 1

TD;cos !kh; sin (kh;cos1/;)
cos1/;

1-cos1/;sin[ (7T /2)cos1/;] sin[ (7T /2)cos1/;]
F'= ---------- ------

1 sin21/; cos1/;

T~!icos[ (7T /2)cos1/;] Tb;cos( 7T/4)sin[ (7T /2)cos1/;]+-------+----------
sin~ cos1/;

Tb
__ ' 2.-,. {! sine 7T /4)cos[ (7T/2)cos1/;]
t -cos 'I'

- cos1/;cos( 7T/ 4)sin[ (7T /2) cos1/;] },

(5.77)

(5.78)

cos1/;is given in (5.73), Rh and Rv can be, respectively, found in (4.53) and
(4.58), and r; is the distance from the base of the ith dipole to the far-field
point.
Summing up the contributions from all the dipoles, we obtain
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and

where

e-jkr,
E = -j'60--sinmS~ r ~'r,

(5.79)

N

So = ~ 1m;exp (jky;cscO" coso/")[ 1-Rv exp ( - j2kH;cosO) ]F;, (5.80)
i-I

N

S~= ~ Im;exp (jky;cscOlcoso/")[1 +Rhexp( -j2kH;cosO)]F;, (5.81)
i-I

and

COSo/"=cosOcosO" + sinOsinO" sincp. (5.82)

Physically, the parameter 0/" is the angle between the far-field point (O,cp)
and the array axis (0 ", 'TT /2). The far-field condition,

r;= r, - ( ;~' dn) coso/" = r, - y; cscO /I coso/",
n='

(5.83)

with y; being the y coordinate of the base of the ith dipole, has been used
in (5.80) and (5.81).
Note that H; in (5.75), (5.76), (5.80), and (5.81) is related to H" the

height of the first dipole above ground, by

(5.84)

Note also that one of the 1m; and F; in (5.80) and (5.81) should be
replaced, respectively, by I'm; and F'; in (5.78) if kh; associated with that
particular dipole happens to be 'TT /2.
The power gain of this array can then be expressed as

G( fJ,cp) = ~o [coS20cos2cp/SoI2+sin2cpIS~n,
In

(5.85)

where Rin is the real part of (5.38) if the dipole base currents are obtained
from (5.11) or the real part of (5.51) if the dipole base currents are
determined from (5.50) (with, of course, R'h replacing R'v)'
Naturally, numerical results for this array depend on the many parame-
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ters involved. Since we have already analyzed and discussed the influence
of f, 'T, a, Zo, h j a, and ground constailts on dipole base currents, input
impedance, or power gain in the previous sections, we will not repeat the
same analyses here. Furthermore, results presented in Sections 4.3 and 4.4
concerning a single horizontal dipole and Yagi-Udaantennas should also
be useful for predicting various characteristics of the array being consid-
ered. The only new parameter involved in this section is perhaps 0",
although it is related to the heights of dipoles above ground. For this
reason, we present in Figs. 5.34 through 5.36 results of G(O, - 90°),
G(O, - 45°), and G(O,OO) with 0" = 46° for a horizontal log-periodic dipole
array above two different grounds at a single frequency of 12 MHz only.
The other parameters associated with this array are

N=12,

Zo=300 n,

'T = 0.87,

h12 = 16.7340m,

HI =2.9566 m, and hja=250.

10

oo
CT> 0
I

-5

.;--
/'

;'
;'

;'
;'

;'

/
./

;'

;'

;'

908,degrees

-10
Fig. 5.34 Power gain of a horizontal log-periodic dipole array with

N= 12, 'T=0.87, a= 18.0°, h12= 16.7340 m, HI =2.9566 m,
ZT=O, Zo=300 n, hja=250, 0" =46.0°, f= 12 MHz, and cp
= - 90°. Solid and dashed curves are for sea water and poor
ground, respectively.
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90 e,degrees

-10

-5

Fig. 5.35 Continuation of Fig. 5.34 with ep = - 450•

Actually, this array is operable for frequencies between 6 and 16 MHz.
When it is operated at the high-frequency limit (16 MHz), the second
dipole will be the most active element with Hz =0.2195.\, which is still
under 0.25.\. This is the reason why HI = 2.9566 m is chosen in this
example. For f= 12 MHz used in Figs. 5.34 through 5.36, dipoles NO.2
through NO.5 are actually in the active region, with NO.4 dipole as the

10

-5

-10

90 e,degrees

Fig. 5.36 Continuation of Fig. 5.34 with ep =00•
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most active element. Under this condition, we have H2=0.1648.\, H3=0.
2178.\, H4=0.2789.\, and H5=0.349l.\, explaining why the general shapes
of curves in Fig. 5.34 are very similar to those in Fig. 4.6 for the case of
single horizontal dipole with H = 3.\/8. Obviously, the reason for the
difference in power gain levels is that there are approximately four contri-
buting elements for Fig. 5.34, while there is only one element for Fig. 4.6.
The maximum level of power gain, G«(),- 900)max' achieved by the hori-
zontal log-periodic dipole array in this example is also comparable with
that obtained for the three-element Yagi-Uda antenna presented in Fig.
4.16. The change in positions of G«(),-900)max is the direct result of the
change in ()" «()" =46° in Fig. 5.34 and ()"= 90° in Fig. 4.16). Correspond-
ing results for ()"=90° atJ=12 MHz and H1=H;=9.375 m (3.\j8) are
presented in Fig. 5.37 for comparison purpose. Therefore, as far as the
final result for power gain is concerned, the array studied here does not
differ much from the Yagi-Uda antenna discussed in Section 4.4. The
major advantage associated with the horizontal log-periodic dipole array is,
of course, that it is operable over a much wider frequency band.
Before completing this section, we should note that the array geometry

shown in Fig. 5.33 is also valid for the special cases ()"= 0° and ()"= 180°.
These two arrangements have recently found application in radio
astronomy. Under these conditions, the first expression in (5.83)and (5.84),
namely,

and H; = HI + ( ;~l dn) cos()",
n=\

should be used in (5.80) and (5.81) to avoid the mathematical difficulty
with csc()" and cot()" there.
For ()"=0°, the maximum radiation of the array in free space points

toward ()= 180°.When the array is above ground, an essential requirement
is that the ground must be highly conductive to produce an effective
reflection, because otherwise there is no reason to choose such an ar-
rangement. Upon satisfaction of the ground condition, this array ar-
rangement «()" =0°) does enhance the broadband property associated with
the array. This is true because, when the operating frequency is increased
(.\ decreased), the most active element moves downward making H act (the
height of the most active element above ground) smaller. However, kHacl'
under this condition, changes insignificantly so that the shape of the final
pattern is relatively insensitive to the frequency change. Results of G«(),-
90°) and G«(),OO) with ()"=0° for the same array described in Fig. 5.34
above sea water are shown in Fig. 5.38, from which we see clearly that the
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level of the maximum power gain obtainable remains essentially the same
as that when (J fI = 46° and that the position of Gmax now shifts to (J = 0°. Of
course, the disadvantage with this arrangement is that there always are a
few longer elements above the active elements, which may have some
blocking effect on the final result. The minor unnatural shape of the curve
near 44° ..;;(J";; 64° in Fig. 5.38(a) may be the consequence of this effect.
For other frequencies or array dimensions, the level of power gain at (J=O°
may be slightly smaller than that at, say, (J = 10°. In any case, the level of
power gain at (J = 0° is still very substantial, even though it may not be the
maximum.
For (J fI = 180°, the maximum radiation of the array in free space points

toward (J = 0°. When the array is above ground, the first requirement is
that HI must be adjusted to at least equal ~~_Idn in length. The second
requirement is that the ground must be very poor to have an ineffective
reflection. Then, when the operating frequency is increased, the most
active element moves upward, making Hact larger. Under this condition,
kHact will increase quite substantially. Since the ground is poor, this
variation in kH act will not cause appearance of large sidelobes, as would be
the case if the ground were good. Thus, the shape of the final pattern still
remains very much like that in free space. An example for (J fI = 180° and
HI =49.0 m is hereby presented in Fig. 5.39.

5.5 Concluding Remarks

In this chapter, we have given detailed analyses of both horizontal and
vertical log-periodic dipole arrays based, primarily, on Carrel's approach.
Addition of ground effects and the assumption of three terms for the
current distribution on each dipole in the array followed the basic mehtods
outlined and discussed in Chapter 4. Although the overall formulation
given in this chapter is straightforward, it does have a couple of weak
points. First of all, there is no clear-cut boundary between the different
regions along the entire array structure. Currents on the first few short
dipoles in the transmission region, though relatively small in amplitudes,
still contribute significantly to the input impedance. Secondly, the analytic
method is not general enough to be applicable for other types of log-
periodic structure. 17, 18

From the numerical results presented, we learned that only a small
portion of the array (elements in the active region) actually contributes to
the radiated field. This fact implies that the array does not make use of
space very effectively. Definitely, a larger value of 7" can be used to
increase the width of the active region in the sense that more elements will
fall into it, thereby yielding a better result in terms of power gain.
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Fig. 5.38 Power gain of the array described in Fig. 5.34 above sea water
but with (}"=oo: (a) <p= -90° and (b) <p=oo.

However, the operating bandwidth will then be relatively decreased for a
given overall length. Apparently, the rather ineffective use of space may
well be the price we must pay for the broadband operation. Although a
possibility of modifying the design so that there may be multiple active
regions along the array structure has been suggested,19no significant
results by a systematic approach, theoretical or experimental, have been
published.
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It should be noted that some laboratory measured data were included in
Carrel's original report.!! Those data did appear in good agreement with
his computed results. Although our theoretical results were not formally
compared with any experimental data, part of them have, indeed, been
confirmed by many private sources. This should help establish some degree
of confidence about the curves and tables presented in the chapter.
As evidenced by the dipole base currents given in Section 5.2, we

recognize that the radiation pattern produced by a log-periodic dipole
array in free space is ordinarily endfire (backfire). By adding parasitic
elements and changing the feed system shown in Fig. 5.l(b) to a new
system called "snaking strip-transmission," a broadside log-periodic an-
tenna can be realized.20 The parasitic elements are used to suppress the
radiation in the backfire direction. The broadside radiation pattern so
produced has a narrower beamwidth.
Of course, the log-periodic dipole array discussed in this chapter can be

regarded as a single unit. Identical units can then be arranged to form an
array according to the basic theory presented in Chapters 1-3. The final
radiation pattern of such a system will be the product of that radiated by a
single log-periodic dipole array and the related array factor. Since the
array factor is frequently-sensitive in general, the use of such an array is,
therefore, very limited. However, by some special arrangements, a more
directive broadband array consisting of log-periodic dipole arrays can be
achieved.2!
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CHAPTER 6
TRAVELING-WAVE ANTENNAS ABOVE LOSSY

GROUND

In the previous two chapters, we analyzed arrays of standing-wave and
log-periodic antennas. With an assumed form for current distribution on
the antenna, important characteristics such as far-fields, input impedance,
and power gain from those arrays above. different lossy grounds were
presented. In this chapter, we treat still another kind, namely, the trave-
ling-wave type of antenna. Basically, the antenna involved is terminated
with an approximately matching resistance such that the currents in the
antenna wires are substantially traveling waves. Of course, considerable
power may be lost in the terminating resistance. This loss is apparently the
price paid for desirable features such as simplicity of construction, rela-
tively wide bandwidth of operation, and higher directive gain offered by
the radiator. Specific antennas to be discussed are the elevated sloping vee
antenna, the sloping rhombic, and the side-terminated vertical half-
rhombic. These antennas are very useful for HF and VHF point-to-point
communications.
Since the mutual impedance between antennas in these classes has not

been systematically investigated and is difficult to formulate, we are not
considering it here. For this reason, only the analysis of characteristics for
a single antenna above lossy ground is treated. The overall radiation
pattern of an array consisting of identical traveling-wave antennas will,
then, when the coupling effect between antennas is ignored, be the product
of the radiation pattern of a single antenna and the array factor studied in
Chapter 1.

6.1 Elevated Sloping Vee Antenna

This antenna is made of two diverging wires, as shown in Fig. 6.1, forming
an apex angle of 2y. The feed and termination points are, respectively, H
and H' meters above the ground. The angle between the antenna wires and
the ground plane is a'. The projection of the two wires on the ground
surface makes an angle pi with the x axis. The length of each wire is I
meters.
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Fig. 6.1 Elevated sloping vee antenna above flat lossy ground.

Although the structure of the antenna is simple, the mathematical
derivation of an exact expression for the input impedance with a finite I,
even in free space, is quite involved. An approximate formula for the
average impedance, when I-HfJ, has been obtained elsewherel,2:

Zin = 120(ln 2:a -0.60+ Insin y) - j170 ohms, (6.1)

where a is the radius of the wire and A is the wavelength at the operating
frequency.
If we take, for example, a typical set of parameters, say y = 20° and

a = 0.002 m, then

A= 10m (j = 30 MHz) , 20 m (15 MHz), 30 m (10 MHz);

Rin=600.77, 683.94, 732.61 ohms. (6.2)

When y= 15° and a =0.002 m, we have

A=lOm, 20m,

650.50,

30m;

699.16 ohms. (6.3 )
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Since the values obtained above are valid only for l~oo and also vary
with f, a, andy, a compromise value of 600 ohms for the input resistance
of all vee antennas with finite lengths has been traditionally considered
adequate by practical engineers.3 For this reason, a resistance of 300 ohms
is usually used for termination of each leg in Fig. 6.1. Under this condition,
even though the antenna is not perfectly matched, the currents in the
antenna wires are still very much traveling waves in nature. Thus, we can
write

II (s) = current distribution on antenna wire No.1 = - Ime-jkS (6.4)
and

I2(s) = current distribution on antenna wire No. 2= Ime-jkS,

where 1mis the current amplitude and s is the distance from the feed point.
Referring to Fig. 4.2, we have

for wire No.1, O'=900-a', ep'={3',

cosl/JI= cosOsina' + sinOcosa' cos (ep - {3'),

and for wire No.2, O'=900-a', ep'= -{3',

cosl/J2= cosOsina' + sinOcosa' cos (ep +{3'),

(6.5)

(6.6)
where

'_ . _I(H'-H)a -sm I' - (900 -'I) <a' <900 -'I, (6.7)

(6.8){3' . - I ( sin 'I )= sin --.
cosa'

For the special case of a horizontal vee antenna, H' = H, a' = 0, and {3'= y.
The height of the current element ds above the ground is

Hs=z=H + (sina')s. (6.9)

Substituting (6.4) and (6.9) into (4.59) and (4.60), we obtain, respectively,

EOl = 0 component of the far-field contributed by wire No.1

-jkr

=301m7{-cosa' cosOcos (ep- {3')[F(- F3Rvexp ( - j2kH cosO)]

+ sina' sinO [F( +F3Rv exp ( - j2kH cosO)] }, (6.10)
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E<pl = cp component of the far-field contributed by wire NO.1

-jkr
=30Im-e-cosa'sin (cp- ,8')[F) +F3Rhexp ( - j2kH cosO)], (6.11)

r

E92 =0 component of the far-field contributed by wire NO.2

-jkr
= 30Im-

e- {cosa' cosOcos (cp+ ,8') [F2- F4Rvexp ( - j2kH cosO)]r

-sina'sinO [F2+ F4~exp ( - j2kH cosO)]},
and

E<p2 = cp component of the far-field contributed by wire NO.2

(6.12)

-jkr
= -30Im-e-cosa' sin (cp+ ,8')[F2+ F4Rhexp ( - j2kH cosO)], (6.13)

r

where r is the distance from the feed point to the far-field point,

1-exp[ -jkl(l-cOSlfJ]
F.= ---------,
I 1-cOSlf;

i= 1, 2, 3, and 4, ( 6.14)

COSlf3= - cosOsina' + sinOcosa' cos (cp - ,8'),

COSlf4= -cosOsina' + sinOcosa' cos (cp + ,8'),

( 6.15)

( 6.16)

and Rh and Rv are, respectively, given in (4.53) and (4.58). The total field
components become

and

(6.17)

where

+ cos ( cp + ,8') [F 2 - F4Rv exp ( - j2kH cos 0 ) ] }

+ sina'sinO [F)- F2+ (F3 - F4 )Rvexp ( - j2kH cosO)] (6.18)
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and

F<p=cosO" {sin (<p - {3') [F) + F3Rh exp ( - j2kH cosO)]

- sin (<p+ f3') [Fz + F4Rh exp ( - j2kH cosO)] }. (6.19)

The expression for the power gain will then be

(6.20)

(6.21 )

where Rio is the real part of (6.1) or is assumed to be 600 ohms according
to the general practice.3 Note that the free-space approximation is implied
if the following simple relation is used:

Rio= 120 ( In 2:0 + In sin y - 0.60).

In all of the numerical examples presented later, we will use (6.21) because
an expression for the mutual impedance between the vee antenna and its
ground image has yet to be derived.
Before we present numerical results for the antenna considered in this

section, we note that the expressions E(JZ and E<pz in (6.12) and (6.13) with
f3' = 0 should represent the fields radiated by a traveling-wave sloping
long-wire antenna.4 Further, if the free-space (Rv =Rh = 0) pattern of the
wire ill the forward direction (<p=0) is desired (as is generally considered
important), the field expression simplifies to cos (a' +O)Fz, yielding a series
of conical lobes around the antenna wire. The lobe nearest to the antenna
wire is the largest in field strength (the main lobe) and all others progres-
sively diminish in strength (sidelobes). For this simple antenna, the level of
the largest sidelobe is only about 5.0-6.0 dB below that of the main lobe,
depending on the wire length I. This is why the usefulness of the long-wire
antenna is very restricted. An example of free-space field pattern for a
horizontal travelillg-wave long-wire antenna (a' = f3' =0) in the forward
direction (<p =0) is shown in Fig. 6.2.
The goal of designing an elevated sloping vee antenna is, then, to select

the wire length (I), the antenna heights (H and H'), and the apex angle
(2y) so that the maxima of the main lobe of each wire and their reflected
parts from the ground will reinforce each other in a desired direction. The
sidelobes of the individual wires can only be combined arbitrarily. In this
manner, the final ratio of the levels of the main lobe to sidelobes may be
improved.
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Fig. 6.2 Free-space field pattern for a horizontal traveling-wave long-wire
antenna (a'=f3'=O) in the forward direction (<p=0) with 1=4/1...

Numerical results for a typical sloping vee antenna in the forward
direction (<p=0) are given in Figs. 6.3(a) and 6.3(b), where H= 15 m,
H'=33.75 m, a=0.0016 m, y= 15°, f= 10 MHz, £r=4, and ()"=O.ool
mho/m (poor ground). We choose poor ground in this example because it
is closer to the condition assumed in (6.21). The corresponding results for a
ground with higher conductivity such as sea water should be approxi-
mately 1-2 dB better. Note that, with respect to the frequency of 10MHz
used there, the power gain changes only slightly from 1= 150m (5/1..)to 225
m (7.5/1..).This reveals that for a fixed leg length, say 1= 150 m, the
performance of a sloping vee antenna in free space should also remain
practically unchanged within the frequency range between f= 10 and 15
MHz. This is the reason we claimed at the beginning of this chapter that
this type of antenna can operate within "a relatively wide bandwidth." Of
course, when the ground effect is also included, the final characteristics in
terms of sidelobe level may change considerably, depending on the type of
ground involved. This change is mainly because of the height parameters
Hand H'. For the values of 1 in Figs. 6.3(a) and 6.3(b), the position of the
maximum gain remains approximately around 76°-78° and that of the first
sidelobe is around 41°-51 0. These results can be compared with those
obtained elsewhere. 3,5
Details of changes in levels of the maximum gain and the first sidelobe
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Fig. 6.3 (a) Power gain (in the vertical plane) of an elevated sloping vee
antenna above poor ground with H= 15m, H'=33.75 m, a=O.
0016 m, y = 150, f = 10 MHz, and 1= 150 m, 165 m, and 180 m.

with y, H, or H' are, respectively, shown in Figs. 6.4, 6.5, and 6.6. From
Fig. 6.4 we see clearly that, with a given set of H, H', a, f, and ground
constants, the maximum of G(O,O)max can be realized with y=20°, 18.5°,
and 16.5°, respectively, for 1= 150 m (5;\), 180 m (6;\), and 210 m (7;\).
Actually, these optimum values for y can also be derived theoretically. To
simplify the mathematics involved, let us consider the field expressions in
free space. From (6.18) and (6.19) with Rv=Rh=O, we obtain

F3= cosa' cosO [ - F1 cos (cp - f3') +F2 cos (cp+ f3')]

( 6.22)
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Fig.6.3 (b) Continuation of Fig. 6.3(a) with 1= 195m, 210 m, and 225 m.

and

~=cosa'[FJ sin (cp - fJ') - F2sin (cp + fJ')], (6.23)

where the superscript 0 denotes the fields in free space. In the forward
direction cp= 0° and 0= 90° - a', we have

COS1fJ=COS1f2 = sin2a' + cos2a' cosfJ', (6.24)

11=0, and ~= -2F)cosa'sin{3'.



THEORY AND APPLICATION OF ANTENNA ARRAYS 381

15

10
-- J = 150 m

180 m
210 m

o

-5
15.0 17.5 20.0

'Y, degrees

22.5

(6.25)

Fig.6.4 Variation of power gain with y for the same antenna as in Fig.
6:3.

Thus,

2 . 2 sin2[tkl(l-coSlh)]
= 16cos a'sm [3' 2'

(1-COS1h)

For a fixed set of Hand H', a' is constant. Setting dlpOI2jd[3'=O yields

cos2a' - cost[;
tklsin2[J' I [3') =cos2a'tan[tkl(1-cost[;))]. (6.26)-cos

When H'-H«l, cosa'~l, sina'~O, t[;)~[J'~y, Eq. (6.26)simplifies to

!klsin2y = tan [tkl( I-cosy)]. (6.27)
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Solving for Yop!' we obtain

[fA Yopt

2 34.6°
3 28.4°
4 24.4°
5 21.9°
6 20.2°
7 18.6°

(6.28)

which are slightly larger than those shown in Fig. 6.4. These deviations are,
naturally, due to the ground effect and the positive slope of the vee
antenna in Fig. 6.4.
In Fig. 6.5(a) where H' = 33.75 m, the maximum of G(O,O)max occurs

approximately at H=33.75 m (or a'=O) for all the three leg lengths
considered there. On the other hand, Fig. 6.5(b) reveals that, with H' = 15.
00 m, the maximum of G(O,O)max is obtainable at H> 15 m (a' <0).
Figures 6.6(a) and 6.6(b) with respective feed heights (H) of 15.00 and
33.75 m show that, for both cases the maximum of G(O,O)max occurs when
a' >o. The information displayed in these figures, as far as the maximum
gain is concerned, indicates that, with the range of parameters (H',H,a')
considered, the effect of feed and termination heights is more important
than the slope angle. The first sidelobe reaches, however, its highest level
near a'=O in all of these figures, except in Fig. 6.6(b) where the level of the
first side10be is the highest when a' <O.
To complete the presentation, we also give examples for power gains in

an azimuthal surface, G(76°,cp), in Figs. 6.7(a) and 6.7(b) with a'>O and
a' <0, respectively. Corresponding results for a' = 0 are shown in Fig. 6.8.
General shapes of these figures are all similar. Note that the curves in Figs.
6.7 and 6.8 are constructed from data computed for every five degrees in cpo
From the economic point of view, the elevated sloping vee antenna is

generally constructed with H' <H (or a' <0) so that only one high pole is
required for supporting the feed point and two shorter poles are installed
for the termination points. Results for G(O,O) with H = 33.75 m, H' = 15.0
m, a =0.0016 m, y= 15°, f= 10 MHz, £,=4, and (7=0.001 mhofm (poor
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Fig. 6.7 (a) Power gain (in an azimuthal surface) of an elevated sloping
vee antenna above poor ground with 1= 150 m, a=0.0016 m,
H= 15m, H'=33.75 m (a' >0), y= 15°, andf= 10MHz.

ground) are shown in Fig. 6.9, which may be compared with those shown
in Fig. 6.3.
Finally, we should also mention that some limited scaled-model mea-

surements of an elevated sloping vee antenna have been performed.6

Satisfactory agreement between these measured results and the computed
results obtained elsewhere3 has been noted in general.
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Fig.6.7 (b) Continuation of Fig. 6.7(a) but with H=33.75 m and H'= 15
m (0:'<0).

6.2 Sloping RhombicAntenna

Since the rhombic was first introduced by Bruce/,8 it has been extensively
used for short-wave communications. The antenna consists of four straight
wires of the same length I arranged in the form of a rhombus (see Fig.
6.10). It can be considered as an extension of the vee antenna studied in
the previous section.
If Hand H' are designated as the respective heights of the feed point
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Fig.6.8 Continuation of Fig. 6.7 with H=H'= 15 m (a'=O, solid curve)
and H=H'=33.75 m (a'=O, dashed curve).

and termination above ground, the height of the other two vertexes can be
expressed as

H"=t(H+H').

The angle between No. 1 wire and the ground plane now becomes

(H"-H) (H'-H)a' =sin - 1 / =sin - 1 2/ .

(6.29)

(6.30)
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The parameters /3' and y defined in the previous section still remain valid
here.
Following the same notation used in the previous section, we have the

same field expressions for wires NO.1 and NO.2 as those given in (6.10)
through (6.13). For wires NO.3 and No.4, the associated relations are

Hs =Z =H" + (sina')s, (6.31)

1 =1 e-jkle-jks= -I (6.32)
3 m 4'

E03 = 0 component of the far-field contributed by wire NO.3

-jkr'
= 301 e-jkl_e -,- {cosa' cosO cos (q;- /3') [F1 - F3Rvexp ( - j2kH" cosO)]

m r
- sina' sinO [F1 + F3Rv exp ( - j2kH" cosO)] }

-jkr
=30Im-

e-exp [ - jkl(l-cos\h)]
r

x {cosa' cosOcos (q;- /3')[Fj - F3Rvexp ( - j2kH" cosO)]

- sina' sinO [Fj + F3Rv exp ( - j2kH" cosO)] },

E<p3 = q; component of the far-field contributed by wire NO.3

-jkr
= -30Im-

e- exp [ - jkl(1-cosl/J2)]
r

X cosa' sin (q; - f3') [Fj + F3Rh exp ( - j2kH" cosO)],

E04 = 0 component of the far-field contributed by wire NO.4

-jkr
=30Im-

e- exp [ - jkl(l-cosl/Jj)]
r

x {-cosa'cosOcos(q;+/3')[F2-F4Rvexp( -j2kH"cosO)]

+ sina' sinO [F2 + F4Rvexp ( - j2kH" cosO)] },
and

E<p4 = q; component of the far-field contributed by wire NO.4

-jkr
=30Im-

e- exp [ - jkl(1-cos\ftl) 1r

X cosa' sin (q;+ /3') [F2 + F4Rh exp ( - j2kH" cosO)],

(6.33)

(6.34)

(6.35)

(6.36)
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where COS"'land cos "'2 are, respectively, given in (6.5) and (6.6) and F; can
be found in (6.14). Note that the distance from the vertex at the connection
of wires NO.2 and NO.3 to the far-field point, r', has been replaced by the
usual approximation r'=r-/cos"'2 in the phase term in (6.33) and (6.34).
A similar relation, rtf = r - /COS"'l'has been used in (6.35) and (6.36).
The total field components will then be

£0=£01 +£02+ £03+£04

-jkr
=301 _e_F,

m r 0

and

where

-jkr
=30Im-e-F~,r

(6.37)

F'o= Fo+ exp [jk/( 1- cos "'2 ) ] {Fl [cosa' cosOcos (cp- {3') - sina' sinO]

- F3Rv exp ( -j2kH" cosO) [cosa' cosOcos (cp - {3') + sina' sinO] }

+ exp [ - jk/(l- COS"'l)]{F2 [ -cosa' cos0cos (cp+ {3') + sin a' sinO]

+F4Rv exp ( -j2kH" cosO) [cosa' cosOcos (cp + {3') + sina" sinO] }

(6.38)

and

F~ = F'I'+exp [ - jk/( 1- COS"'l)]cosa' sin (cp+ {3')

X [F2+F4Rhexp( -j2kH"cosO)]

- exp [ - jk/( 1- cos "'2) ] cosa' sin (cp - {3')

X [Fl + F3Rh exp ( - j2kH" cosO)],

with Fo and F'I' given, respectively, in (6.18) and (6.19).
The power gain of the sloping rhombic thus becomes

(6.39)

(6.40)
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According to the general practice, I the expression given in (6.21) is still a
good approximation for the input resistance Rio in (6.40). Numerical
results presented later are actually obtained on this basis. The termination
resistance for f = 10 MHz and y = 20° is then approximately 700 ohms to
ensure a substantial traveling wave for the currents in antenna wires.
Assuming Rv=Rh=O (free space) and 0:':::::=0(H'-H«21), we also can

derive an expression similar to (6.27) for the optimum apex angle yielding
maximum power gain in the forward direction (cp = 0° and 0 = 90°). Under
these conditions, we have

F//=O

Thus,

and F~O= -2 {l-exp [ - jkl(l-cosy)] }F1 sin y.

,02_ '02_ sin2ysin4 [tkl( 1- cosy)]
IF I -IFcp I -64 2'

(I-cosy)

Equating the derivative of Ipol2 with respect to y to zero, we find

klsin2y = tan [tkl( 1- cosy)],
yielding

If A Yopt

2 38.5°
3 31.40
4 27.1°
5 24.2°
6 22.10
7 20.50

(6.41 )

(6.42)

(6.43)

which may be compared with those obtained in (6.28) for the correspond-
ing vee antenna.
A set of numerical results for a typical sloping rhombic antenna above

sea water is presented in Figs. 6.11 through 6.15. We choose sea water as
the ground here so that we can compare our results with those obtained
elsewhere for a horizontal rhombic above perfect ground. 4,9,1 ° Figure 6.11
gives power gain in the vertical plane (cp = 0°) with H = 10 m, H' = 20 m
(0:'>0), y=20°, a=0.0016 m, andf= 10MHz for 1=90 m (3A) and 120m
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Fig. 6.11 Power gain (in the vertical plane) of a sloping rhombic antenna
above sea water with H=1O m, H'=20 m, a=0.OOI6 m, y
=20°,1=90 m and 120 m, andf= 10MHz.

(4A). It is also clear that both the maximum power gain and the first
sidelobe, in level and position, depend on 1 and ground constants. As
generally recognized by practical engineers, 1 1 the level of the first sidelobe
is always high. Variations of the maximum power gain with respect to y for
H= 10 m, H'=20 m, 1=90 and 120 m, andf= 10 MHz are shown in Fig.
6.12. Evidently, the maximum of G(O,OO)max occurs, respectively, at y=26.
25° and y=22.50° for 1=90 m (3A) and 1= 120 m (4A). These optimum
values are smaller than the corresponding values obtained in (6.43) for a
horizontal rhombic in free space.
The influence of H on levels of the maximum power gain and the first
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Fig.6.14 Variation of power gain with H' for the same antenna as in Fig.
6.11.

sidelobe with H' = 20 m, y = 22.5°, q;= 0°, j = 10 MHz, and sea water as the
ground is presented in Fig. 6.13. For this particular geometry and ar-
rangement, it is apparent that H-H'=20 m (a'-O) should be a good
choice for both the maximum power gain and the first sidelobe.
On the other hand, when the parameter H is fixed at 10 m, H' = H = 10

m (a' = 0) will yield the worst first-sidelobe level for the rhombic with
y = 20° and j = 10 MHz above sea water, as clearly shown in Fig. 6.14.
From the same figure, we also see that H' = 22.5 m and H' = 30.0 m should
be chosen as the respective termination heights for 1= 90 m and 1= 120 m
to produce best results for the maximum power gain and the first sidelobe.
Finally, power gain in an azimuthal surface such as G(70°,q;) is calcu-

lated for every five degrees in q; with H = 10 m, H' = 20 m (a' >0),
a=0.OOI6 m, 1=120 m, y=20°,j=1O ~Hz, and sea water. The result of
these calculations is given in Fig. 6.15, which is very similar to that shown
in Fig. 6.7(a) for a sloping vee antenna. Since the parameter a' produces
little effect on G(70°, q;), corresponding results with a' = 0 and a' < 0 are
omitted here.
Fair agreement between computed and measured results for a single

horizontal rhombic above ground has been noted in some scaled-model
measurements,12 although the agreement in power gains has not been as
close as that in patterns. This is, of course, expected in view of the
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approximation for Rio used in (6.40) and the assumption of pure traveling
waves for currents in our theoretical model. The computed power gains
are, on the average, I or 2 dB higher than the measured ones.
Before concluding this section, we should note that an approximate

expression for the radiation resistance of a single rhombic antenna in free
space is also available13,14:

Rrad= 240(ln2k!sin2y +0.577) ohms, !~2A, (6.44)

which may be used to replace Rio in (6.40). The result is then, according to
the definition in (1.7), directive gain. The ratio Rradf Rio should represent
radiation efficiency of the rhombic. A set of Rrad is presented as follows:
for y=20°,

!fA Rrad (ohms)

2 397.27
3 494.58
4 563.64
5 617.20
6 660.94
7 697.96

(6.45)

and for y= 15°,

!fA Rrad (ohms)

2 263.47
3 360.78
4 430.53
5 483.36
6 527.13
7 564.12 (6.46)

which may be compared, respectively, with the values for Rio given in (6.2)
and (6.3) to gain some feeling about the radiation efficiency. However, we
must bear in mind that a "strict" comparison of Rrad and Rio is not too
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meaningful, since (6.21) and (6.44) were derived by different approaches
and are both approximate in nature.

6.3 Side-Terminated Vertical Half-Rhombic Antenna

This antenna is constructed from two long wires in series, forming an
inverted vee antenna,4 as shown in Fig. 6.16. The antenna, together with its
ground image, constitutes a rhombic antenna in the vertical plane. If the
termination is properly matched, the currents in both wires are again
substantially of the traveling-wave type.
With a treatment similar to the previous two sections, we have in this

case for wire No.1,

cos1h =cos(}sina' +sin(}cosa' coscp,

cos 1/12= - cos ()sin a' + sin ()cos a' cos cpo

()'= 90° - a',

and for wire No.2,

cp' = 0°,

cp' =0°,

Hs1 =z= (sina')s,

Hs2 = (1- s) sin a',

(6.47)

(6.48)

(6.49)

(6.50)

It is also clear that

I (s)=I e-jks1m'

I (s)=I e-jkle-jks2 m '

z

(6.51 )

Feed x

E,I1,a,

Fig. 6.16 Side-terminated vertical half-rhombic antenna above flat lossy
ground.
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and

y=a'.

The field components contributed by the individual wires are then

-jkr
E(JI=30Im-

e- [cosa' cosOcoscp(F1- RvF2)r

-jkr
EIJ2=30Im-

e- exp [ - jkl(l-coslf'l)]
r

x {cosa' cosO coscp [F2 - RvF1 exp ( - j2kl sina' cosO) ]

+ sina' sinO [F2 +RvF1 exp ( - j2klsina' cosO)] },

-jkr
Erpl= -30Im-e-cosa' sincp(FI + RhF2),r

and
-jkr

E 2= -30Im-
e-exp[ -jkl(l-coslf'l)]

rp r

X cosa' sincp[ F2 +RhFI exp ( - 2kl sina' cosO)],

where

(6.52)

(6.53)

(6.54)

(6.55)

( 6.56)

l-exp[ -jkl(l-coslf'J]
F= ---------,
I l-coslf'i

;= I and 2, (6.57)

with COSlf'land COS1f'2given, respectively, in (6.48) and (6.50). Combining
appropriate expressions, we obtain

and

-jkr

EIJ= EIJ1+EIJ2= 30Im-
e -F'or

( 6.58)

(6.59)
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where

F'e = cosa' cosOcoscp(F) +F2exp [ -jk/( 1- cosl/JI)]

+Rv {F2- F1 exp [ - jk/(I-cosl/J2)]})'

F~ = cosa' sincp(F) +F2 exp [ - jk/( 1- cosl/J))]

(6.60)

(6.61 )

The power gain of the side-terminated vertical half-rhombic antenna is
then

where

30[ IF'el2 + 1F~12]
G(O,cp)= R". '

m
(6.62)

(6.63)

with Rin given in (6.21). Note that (6.63) is only approximately true if the
ground involved is finitely conducting. It becomes exact when the ground
is perfect (Rv = 1 and Rh = -1). Under this latter condition, the vertical
half-rhombic antenna should behave much as a corresponding rhombic in
free space. Thus, optimum values for y given in (6.43) are still valid for a
vertical half-rhombic above perfect ground.
A set of numerical results for a typical vertical half-rhombic is now

presented. In Fig. 6.l7,G(O,0) is given with /= 120m, a=0.0016 m,a'=27.
5°, f= 10 MHz, and sea water as the ground. While the general
characteristics, such as the realizable level of the maximum power gain and
relatively high levels of the sidelobes, are essentially similar to those
associated with the other two antennas already discussed in this chapter,
the position of the maximum power gain now occurs at 0 = 880, much
closer to the ground (0=90°) than that with the sloping vee or rhombic
antenna. This rather striking feature is a direct result of the antenna being
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Fig. 6.17 Power gain (in the vertical plane) of a side-terminated half-
rhombic above sea water with 1= 120 m, a=0.0016 m, (X'=27.
5°, andf= 10 MHz.

vertical. Figure 6.18 shows the variation of power gain with (x' for the same
antenna in Fig. 6.17. It is clear that the highest level of the maximum
power gain occurs approximately at (x' = 26.6°, which is very close to the
theoretical value predicted in (6.43). Finally, corresponding power gains in
azimuthal surfaces identified by 0 = 88° and 70° are presented in Fig. 6.19,
which do not differ much from those shown in Figs. 6.7 and 6.8 for the
elevated sloping vee antenna and those shown in Fig. 6.15 for the sloping
rhombic antenna.
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Fig. 6.18 Variation of power gain with a' for the same antenna described
in Fig. 6.17.

6.4 Concluding Remarks

In this chapter, we have analyzed characteristics of elevated sloping vee,
rhombic, and vertical half-rhombic antennas, above lossy ground. Gener-
ally speaking, higher gains can be achieved with relatively simpler structure
by these antennas than by the ones discussed in Chapters 4 and 5. Antenna
wires and terminations of the three antennas analyzed here are assumed,
respectively, lossless and perfectly matched, so that the currents flowing in
the antenna wires take the form of a traveling wave. Of course, in reality,
none of these assumptions is correct. A way of estimating more accurately
the input impedance of a traveling-wave antenna is perhaps by actual
measurement. When the attenuation along antenna wires is known, a
suitable form for the current such as I(s) = -r. Ime-ase-jk.s, with a represent-
ing the attenuation constant, may be used to replace that assumed in (6.4).
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In this case, the resultant analysis should not be much more complicated
than that outlined in this chapter. Corresponding numerical results may
then be one or a fraction of a decibel lower than those presented,
depending on the actual attenuation and wire lengths.
Due to lack of existing formulation for calculating the mutual impe-

dance between traveling-wave antennas, only the analysis for a single
antenna above ground is given. Characteristics of arrays consisting of
identical traveling-wave atennas can be analyzed through those of a single
antenna (as presented) and those of the array factor studied in Chapter 1.
For example, referring back to Fig. 6.7(a), where power gain at 0=76° of
an elevated sloping vee antenna was presented, we find that the level of the
sidelobe at cp = 35° is unusually high for most of the practical applications.
In order to reduce it, we certainly can synthesize a uniform broadside
array along the y axis such that the array factor will have a null at or near
cp=35°. According to (2.10) and (2.12), the power pattern associated with a
uniformly excited three-element array should take the form of Po(Y) = (y +
1)2, where y = 2cos u, u = kd sin 0 sin cp k = 217 / A, and d is the spacing
between consecutive elements. Obviously, the only null due to the array
factor occurs at y = - 1 or u = 120°. If we wish to place this null at cp = 35°
and 0=76°, we require d=0.5989A, or 17.9674 m atf= 10 MHz, which is
the actual frequency used in Fig. 6.7(a). This means that an array of three
identical elevated sloping vee antennas along the y axis with an approxi-
mate element spacing of 18 m will reduce the level of the concerned
sidelobe very substantially. With a similar consideration, we can also
synthesize arrays to reduce the level of a sidelobe in Fig. 6.3, where power
gains in the vertical plane (cp = 0) of a sloping vee antenna were presented.
Of course, the same principle applies equally well to the sloping rhombic
and the vertical half-rhombic, although we choose the sloping vee antenna
for the purpose of illustration. In addition, interlaced arrays or other
combinations of rhombic antennas have also been investigated for enhanc-
ing the maximum power gain.4, 15 In any case, synthesis techniques pre-
sented in Chapter 2 should be useful for approximately meeting specific
criteria.
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Antenna, 1, 2
broadband, 317
frequency-independent, 316
input impedance of, above lossy

ground, 245
standing-wave, 229
traveling-wave, 373

Aperture, circular, 122, 192,223
Apex angle, of log-periodic dipole

array, 317
of rhombic antenna, 178
of sloping vee antenna, 173

Array factor, 3,4,5,6,44, 188
Arrayfunction, 25, 27, 29, 33, 34
Array polynomial, 25, 29,33,75, 76,

78,89,119,123,133
Arrays, bidirectional, 105, 189
binomial, 81, 89
broadside, 5, 8, 9,13,16,17,18,

141
optimum, 95

circular, 187; see also Arrays, ring
curtain, 265, 266, 267, 273; see also

Curtain arrays
Dolph-Chebyshev, 81, 84
elliptical, 187,202,203,207,210
endfire,5,8,9, 12, 14, 16, 17, 19
improved, 19,21,22,23,48,51
optimum, 100, 101, 102, 104,
106,107,112

ordinary, 21, 22, 24, 48, 51, 102,
105, 141

with equal sidelobes, 82, 84, 87, 88,
89,103,104,112

linear, 1,3,16,18,25,27,28,32,
33,34,35,73

SUBJECT INDEX

log-periodic dipole, 316; see also
Log-periodic dipole arrays

monopulse, 55, 56, 57, 58, 60, 61,
62,63,163,169,170,173,174

nonuniform, 24
nonuniformly spaced, 37, 38, 39, 40,

41
optimum, 86, 95
rectangular, 187, 188, 189
ring, 187, 191, 192, 197,207,210,

211,213,214,215
concentric, 191, 197,214,215,
217,219,220,222

quasi, 223
superdirective, Ill, 213
two-dimensional, 187
uniform, 4, 11, 14, 15, 16, 17, 18,

20, 79
with nonuniformly progressive

phases (NUPP), 42, 44, 46, 47,
49,114,119

with uniformly progressive phases
(UPP),44,46,48,51,74,113,
114,119

Approximation, 73, 113
best, in Chebyshev sense, 139
far-field, 243, 336

Backlobe, level of, 22, 23, 24
Beam, maximum (main beam, major

beam, or principal maximum),
3,6,7,16,22,30,35,36,39,
48,76,79, 157

conical, 188, 189
pencil, 189

Beamwidth, 3, 6, 8,22,32,51
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410 SUBJECT INDEX

first-null, 9, 24, 40, 41,82,86,104
half-power, 9, 43, 104, 144, 145

Bernstein polynomial, 130, 131, 132,
134,135

Bessel function, 122, 193, 196
Bilinear transformation, 47
Boresight, 57, 58, 61
Brewster angle, 254

Chebyshev polynomial, 84, 112, 116
Chebyshev system, 139, 141, 142,

143, 145, 146, 165, 166
Conductivity of earth, 242
Convergence, uniform, 115
Cosine integrals, generalized, 232
Curtain arrays, above lossy ground,

265
input resistance of, 268
power gain for, 273, 276, 277, 278

Dielectric constant, 242
Difference slope of monopulse array,

58,59,61
Dipole, average characteristic imped-

ance of, 331
center-fed, 229, 230
mutual impedance between two,
237,272

self impedance of, 237
current distribution on, 230
half-wave, 146
Hertzian,229
horizontal, above lossy ground, 246,

248
short collinear, 11, 18, 20
short parallel, 11, 15, 16, 17
short vertical, 201

Direction finding, 191
Directivity, difference, 57, 61

maximization of, 170
of elliptical array, 207

maximization of, 209, 210
of linear array, 4, 11, 12, 14, 17,23,

49, 77, 104
maximization of, 156

of rectangular array, 190
of ring array, 197,207,216
maximization of, 209, 210

sum, 57, 58, 60

Eigenequation, 158, 171
Eigenvalue, 158
Error, maximum (or maximum devia-

tion), 73,113,116,117,119,
139

mean-square, 73,116,117,118
weighted, 146

Excitation, amplitude, 2, 78, 188
coefficient, 25, 74, 77
concave downward, 33, 60
concave upward, 33, 37,60
cophasal, 193
nonuniform, 24, 32
phase, 2, 188

Fields, far, 241
Fourier-Bessel expansion, 192
Fourier series expansion, 113, 191

Gain, directive, 4
power, 1,3,229,240,244
for curtain array, 273, 277, 278
for horizontal dipole, 248, 249,
250,251,252,253

for horizontal log-periodic dipole
array, 360, 361, 364, 366, 367

for modified vertical log-periodic
dipole array, 355, 357

for sleeve antenna, 306, 308, 309,
310,311

for sloping rhombic antenna, 390,
392



for sloping yee antenna, 377,379,
382,383,385

for vertical half rhombic, 399, 400
for vertical log-periodic dipole

array, 340, 342, 344
for vertical monopole, 285, 286,

288
for Yagi-Uda antenna, 259, 264,

265,266
Gamma function, 201
Grating lobe, 7,14,37,189,196

Haar's theorem, 139, 140, 145, 165,
166,217

Hansen-Woodyard condition, 20, 24

Impedance, intrincic, of ground screen,
284

surface, of imperfect earth, 284
Impulse response, 175
Interpolation, 113

Lagrange's formula for, 115, 125,
127

polynomial, 115
trigonometric, 120, 125, 129

Isotropic elements, 11

Laplace transform, 26, 175
Legendre polynomial, 118,125,128
Log-periodic dipole array, 316

active region of, 324, 325
average width of, 326

horizontal, above lossy ground, 358
power gain for, 360

input impedance of, in free space,
322

mean resistance level of, 327, 331,
343,348

approximate, 331, 334
operating bandwidth of, 326
phase-reversal feed, 317, 321
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scale factor of, 317
spacing factor of, 317
standing wave ratio of, 327,343, 348
structure bandwidth of, 326
transmission line, 320

characteristic admittance of, 320
transmission region of, 324, 325
unexcited region of, 324, 325
vertical, above lossy ground, 337

above poor ground, 338
above sea water, 340
in free space, 333

Main-beam radiation efficiency, Ill,
199,205,214

Matrix, adjoint, 157,208
Hermitian, 158, 159, 171,209
positive definite, 76, 82,104,158,

159,171,209
Minimax criterion, 163, 217, 222
Minor maximum, 6; see also Sidelobes
Modified progressive phases, 44
Modulus of continuity, 131, 134
Monopole, vertical, above lossy ground,

279
base-fed, 279
far field from, 280
input impedance of, 283
power gain for, 285, 286, 288

Nulls,3,6,30,35,45,48,76

Orthogonal function, 118

Parasitic elements, 257, 304
Passive network, 174, 175
Pattern, difference, 56, 165

Dolph-Chebyshev, 191
element, 3, 188
field, 147
Gaussian, 122, 138, 143



412 SUBJECT INDEX

power, 36,44, 74, 76,89,113
sum, 56
Taylor's type of, 191

Pattern splitting, 58
Perturbation method, 73,146,167
Polarization, horizontal, 241
vertical, 242, 279, 288

Principle of pattern multiplication, 3

Quadratic form, 156, 158, 171,207,
209

Radar, 191
Range detection, 56
Realization condition, 77,113,119,

121,125,126,130,132,134
Reflection coefficient, for horizontal

polarization, 242, 255
for vertical polarization, 242, 256

Residue method, 137
Rhombic antenna, above lossy ground,

386
sloping 386
field components from, 389
optimum apex angle for, in free
space, 391

power gain for, 390, 392
radiation resistance of, in free
space, 396

vertical half, side-terminated, 397
field components from, 398
power gain for, 399, 400

Sampled-data system, 25, 26
Schwartz inequality, 112
Sensitivity, 92
Sidelobes, level of, 3, 10,22,24, 37,

86
position (or location) of, 6, 10, 44,

45, 78
Simultaneous lobing, 55

Sine integrals, generalized, 232
Sleeve antenna, 288
approximate input impedance of,

290,298
current distribution on, 290, 299,

300
far-field from, 301
input impedance of, 289
mutual impedance between two, 298
power gain for ring array of, 306, 308
self impedance, 306

Slope-sum product, 61
Slope-sum ratio, 61
Sonar, 191
Squint angle, 57

Taylor's expansion, 116
remainder of, 116

Tracking accuracy, 56, 58
Trigonometric polynomial, 121, 126,

129

Unit circle,S
Unit gate function, 26
Unit step function, 26

Vee antenna, above lossy ground, 373
average impedance of, 374
field components from, 375
power gain for, 377, 379

Visible range,S, 6, 7,13,75,96,100,
102,194

Weierstrass' approximation theorem,
114, 130

Wullenweber antenna, 303

Yagi-Uda antenna, above lossy ground,
257

base currents of, 261
input impedance of, 259



power gain for, 259, 262, 263, 264,
265

Z-transform, 25
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finile,24, 25, 26, 136, 173
inverse, 136
principle of superposition for, 33
shifting theorem for, 26




