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PREFACE

-------- D PPy

€ The first edition of this book was written to provide an introduction to those branches of
postcalculus mathematics with which average analytical engineers or physicists need to be familiar
in order to carry on their own work effectively and keep abreast of current developments in their
fields. In the present edition, as in each of the preceding editions, much of the material has been
rewritten, but the various additions, deletions, and refinements have been made only because they
seem Lo contribute to the achievement of this goal.

CONTENT OF THE BOOK

Because ordinary dxﬁ‘enenua.l equations are probably the most 1mmedxately useml part of postcalcu-
lus mathematics for the student of applied science; and because the techniques for solving simple
ordinary differential eguations stem naturally from the techniques of calculus, this book begins
with a chapter on ordinary differential equations of the first order and their applications. This
chapter is followed by one which develops the theory and applications of linear differential equa-
tions, especially those with constant coefficients. In the present edition, this chapter has been
augmented by two major sections, one dealing with the series solution of linear differential equu-
tions, the other covering the method of Frobenius. In earlier editions, this material was postponed
until the chapter on Bessel functions. It is now included at this early stage so that the first four
chapters can be used as a basis for a self-contained course in ordinary differential equations.

Next, in Chap. 3, to prepare for a discussion of linear differential systems with constant
coefficients, there is an introduction to linear algebra. Although this material will be used exten-
sively in Chap. 4, it can be cmitted by students who are already familiar with matrices, determi-
nants, and the solution of simultaneous linear algebraic equantions. To this chapter there has now
been added an introductory section on complex variables. This material will be used in many places
throughout the rest of the book, but it can be omitted by students familiar with the properties of
complex variables through De Moivre's theorem and the Euler formulas.

Chapter 5 is devoted to numerical methods, and it covers such topics as finite differences,
interpolation formulas, numerical differentiation and integration, the numerical solution of ordinary
differential equations, featuring the various Runge-Kutta methods and Milne's method, and differ-
ence equations. A section on least-squares has been restored in this edition and a new section on the
G and Z transformations has been added. It is hoped that the material in this chapter will provide a
useful background in classical finite differences on which & more extensive course in computer-
oriented numerical analysis can be based. Chapter 6 is a new chapter that has not been included in
any of the earlier editions of this text. It deals with the problem of determining such properties of




the solutions of a differential equation as periodicity and stability without finding the solutions
themselves.

Chapter 7 is devoted to the application to mechanical systems and electric circuits of the ideas
developed in the first five chapters. As in the earlier editions, the mathematical identity of these
fields is emphasized. The section on systems with more than one degree of freedom has been
divided into a section on systems with several degrees of freedom and a section on systems with
many degrees of freedom. This new section features the interplay between differential equations
and difference equations, with emphasis on wave filters and wave traps. A final section on electro-
mechanical analogies has been restored from the second edition.

Motivated by the work on periodic phenomena in Chap. 7, Fourier series and their applications
are discussed in Chap. 8. In particular, in this edition more emphasis has been placed on the use of
the jumps of a function and its derivatives to eliminate the need to integrate to determine the
Fourier coefficients of a function. Chapter 9 is a new chapter containing in expanded form the
material on Fourier integrals that was grouped with Fourier series in earlier editions. The Fourier
integral is introduced as the limit of a Fourier series, and then a variety of Fourier transforms, with
their basic properties obtained from it. This chapter contains a new section on the Gibbs phenome-
non and the convergence of Fourier series and Fourier integrals at the jumps of a function. There is
also a new section on singularity functions and their fundamental properties.

In Chapter 10, the Laplace transformation is introduced as a natural outgrowth of the Fourier
integral and Fourier transforms. In this edition, the presentation of the requisite theory is a little less
abrupt than it was in earlier editions, and examples of particular transforms are given very early.
The chapter concludes with a new section in which the nature and properties of Laplace transforms,
Fourier transforms, and Z- transforms are compared and contrasted.

Chapters 11 and 12 deal, respectively, with differential equations and boundary-value prob-
lems, and Bessel functions and Legendre polynomials. Here, Fourier series play a prominent role in
satisfying initial and boundary conditions and provide motivation for the discussion and use of
expansions in terms of more general systems of orthogonal functions. In this edition, a new section
on the generating functions of J, and /, illustrate their use in obtaining many of the identities of
these functions. New examples in these chapters include incomplete systems of orthogonal func-
tions, interface Sturm-Liouville systems, and the use of Legendre polynomials in potential prob-
leros.

In Chaps. 13 and 14 we return to the subject of linear algebra and discuss vector spaces, linear
transformations, the existence of Green’s functions for systems of differential equations, and fur-
ther properties of matrices and their eigenvalues and eigenvectors. An important addition to Chap.
14 is a section on the discrete and fast Fourier transforms, an important topic in the field of signal
processing. This work is followed by a chapter on vector analysis developed in the traditional
geometric way, much as it was in the fifth edition. New material here includes some interesting
topics in differential geometry. Chapter 16 deals with the calculus of variations and its applications
to dynamics. New material here includes a section on Hamilton's equations.

The last four chapters provide an introduction to the theory of functions of a complex variable,
with applications to fluid mechanics and two-dimensional potential theory, the evaluation of real
definite integrals, the complex inversion integral of Laplace transformation theory, stability crite-
ria, conformal mapping, and the Schwarz-Christoffel transformation. The only significant differ-
ence between these chapters and the corresponding chapters in the last edition is that the introduc-
tory material through De Moivre’s equation and the formal content of Euler’s formulas has been
moved ahead and now appears at the beginning of Chap. 3.

This book falls naturally into three main subdivisions. The first twelve chapters constitute a
reasonably self-contained treatment of ordinary and partial differential equations and their applica-
tions. The next four chapters, 13 through 16, cover the related areas of linear algebra, vector
analysis, and the calculus of variations. The last four chapters, 17 through 20, cover the elementary
theory and applications of functions of a complex variable.



FEATURES N
This book contains enough material for a two-year course in applied mathematics. However, since
we have tried to keep important subjects concentrated in specific chapters rather than diffused
throughout the book, selected chapters are well-adapted for use as a text for any of several shorter
courses. Following this preface, in the section headed ‘“To the Instructor,’” there is a detailed
Planning Guide showing how this text can be used for a number of courses.

In this edition, as in each of the others, every effort has been made to keep the presentation
detailed and clear while at the same time maintaining acceptable standards of precision and accu-
racy. To achieve this goal, more than the usual number of worked examples and carefully drawn
figures have been included, and in every development there has been a conscious attempt to make
the transition from step to step so clear that a serious student, working with paper and pencil, should
seldom be held up very long. Many new exercises have been added in this edition, and there are
now more than 5000. Hints are given in many of the exercises, and answers to the odd-numbered
ones are given at the end of the book. A manual containing the answers to the even-numbered ones
is available for instructors using this text. More detailed solutions to the odd-numbered exercises
are provided in a Student Solutions Manual. As in earlier editions, words and phrases defined
informally in the body of the text are set in bold-faced type, and italics are used frequently for
emphasis. Illustrative examples are consistently set in type of a different size than that used for the
main body of the text.
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€ This book contains ample material for a two-year sequence in applied mathematics. It has

- been written so that important subjects are concentrated in specific chapters and are not covered

partially in several different places. By the judicious selection of particular chapters, it is thus

readily adaptable as a text for a number of short courses. To assist you in making maximum use of

the book, we have prepared the accompanying Course Modules and Planning Guide. It identifies

- modules suitable for a variety of one-term courses, as well as-combinations of modules on which

_ several one-year sequences can be based. It also mdxcates prerequisite relations for instructors
planning their own sequences.

One new feature of this edition is the inclusion in each chapter of an mu*oduetory overview
-section alerting the student to the material to be covered in the chapter, pointing out portions that
may be extensions of topics discussed earlier, and indicating where the new material will be used
later in the book. We hope that you will encourage your students to orient themselves to the work in
each chapter by reading these introductory statements carefully.

This book contains over 5000 exercises, many of them new. As in each of the other editions,
many of these contain extensions of topics in the text or interesting new results that could not be
included within the chapter because of space limitations. Since the difficulty of an exercise is often
a subjective judgment, we have made no attempt to distinguish ‘‘hard’’ problems from *‘easy’’
ones, nor to arrange the exercises in an assamed order of increasing difficulty. Nonetheless, nearly
every set begins with a few routine, practice problems. Answers to the odd-numbered exercises are
listed in the back of the book. A manual containing the answers to the even-numbered exercises is
available for the instructor, and a manual containing solutions to the odd-numbered exercises is
available for the student. B

C. Ray Wylie
Louis C. Barrett
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TO THE STUDENT

....... P R S R

This book has been written to help you in your development as an applied scientist,
whether an engineer, physicist, chemist. or mathematician. It contains material that will be of great
use to you, not only in the technical courses you have yet to take, but also in your profession after
graduation, as long as you deal with the analytical aspects of your field.

We have tried to write a book which you will find not only useful but also relatively easy, at
least as easy as a book about advanced mathematics can be. There is a good deal of theory in it,
for it is the theoretical portion of a subject which is the basis for the nonroutine applications of
tomorrow. But nowhere will you find theory for its own sake, interesting and legitimate as this may
be to a pure mathematician. Qur theoretical discussions are designed to illuminate principles, 1o
indicate generalizations, 1o establish limits within which a given technique may or may not be
safely used, or to point out pitfalls into which one might otherwise stumble. On the other hand,
there are many applications. illustrating with the material at hand the usual steps in the solution of
a physical problem: formulation, manipulation, and interpretation. These examples are, without
exception, carefully set up and completely worked, with all but the simplest steps included. Study
them carefully, with paper and pencil at hand, for they are an integral part of the text. If you do this,
you should find the exercises, though challenging, still within your ability to work.

A new feature in this edition is the inclusion in each chapter of an intreductory section, giving
an overview of the material to be covered, pointing out where we may have encountered some of
it before, and indicating where and how it will be used later in the book. Be sure to orient yourself
1o the work and purpose of each new chapter by reading carefully these introductory sections.
Another new teature 1s the inclusion of subttles for many of the important examples. These will
alert you to the main point of sach example and, perhaps more importantly, help you to identify
examples o which you may later wish to refer. You will find them listed inside the covers of this
book.

Terms defined informally in the body of the text are always indicated by the use of bold-faced
type. /talic type is used for emphasis, much as verbal stress is used when speaking. We suggest that
you read each section through for the main ideas before you concentrate on filling in any of the
details. You will probably be surprised at how many times a point which seems to hold you up in
one paragraph will be explained in the next as the discussion unfolds.

Because this book is long and contains material suitable for various courses, your instructor
may begin with any of a number of chapters. However, the overall structure of the book is this: The
first twelve chapters are devoted to the general theme of ordinary and partial ditferential equations
and related Lopics. Here you will find the basic analytical techniques for solving the equations in
which physical problems must be formulated when continuously changing quantitics are involved.
Chapters 13 through |6 deal with the somewhat related topics of linear algebra and matrix theory,
vector analysis, and the calculus of variations, Finally, Chaps, 17 through 20 provide an introduc-
tion to the theory and applications of functions of a complex variable.




It has been gratifying to receive letters from students who have used this book giving us their
reactions to it, pointing out errors and misprints in it, and offering suggestions for its improvement.
Should you be inclined to do so, we would be glad to hear from you also.

Finally, we hope that you will find this book in some sense a friendly book. It was written with
you in mind, as someone with whom we would like to share not only our knowledge but our
enthusiasm. We have written almost entirely in the first person plural. Never are you referred to
obliquely and impersonally as *‘the student.”” Our use of the word ‘‘we’’ indicates that we feel we
are exploring something interesting with you. And now good luck and every success. B

C. Ray Wylie
Louis C. Barrett
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CHAPTER 1

..........................................................................

ORDINARY DIFFERENTIAL
EQUATIONS OF THE
FIRST ORDER

...............................

4 Differential equations, that is, equations involving rates of change,
provide an indispensable tool for anyone studying continuously varying
phenomena, such as velocities and accelerations or electric currents. In this
chapter, after a review of the concepts of variable and function (Sec. 1.1), we
identify the major types of differential equations (Sec. 1.2). Then, as a
necessary foundation, we discuss the general notions of solution and family of
solutions (Secs. 1.3—1.5) and the existence and unigueness of solutions
(Sec. 1.6),

With these ideas in mind, we begin the study of methods of solving
differential equations by learning how to solve all the major forms of ordinary
first-order equations. These include exact equations (Sec. 1.7), equations
solvable by integrating factors (Sec. 1.8), separable equations (Sec. 1.9),
homogeneous equations (Sec. 1.10), linear equations (Sec. 1.11), and several
more special types of equations (Secs. 1.12 and 1.13).

Every section contains a number of examples, but significant practical
applications we leave to Secs. 1.14 and 1.15. This organization makes it
possible to use the bulk of this chapter for a portion of a course in the theory
of differential equations. At the same time, the work on orthogonal
trajectories in Sec. 1,14 and 8 examples and 120 exercises in Sec. 1.15
provide convincing evidence of the utility of differential equations and ample
material for practice in using them to formulate and solve physical problems
ranging from heat conduction and fluid flow to orbital motion.

Prerequisite for this chapter: single-variable calculus.

Prerequisite for Sec. 1.15: a calculus-based physics course and general
chemistry. B



1.1  VARIABLES AND FUNCTIONS

EXAMPLE 1

EXAMPLE 2

The variety and complexity of the problems which confront today’s engineers and scientists have
increased remarkably in recent years and, if anything, the increase seems to be accelerating. As a
consequence, not only is there a continuing demand for more and more effective computers and
better and better experimental facilities, but so too is there a growing need for more, and more
thoroughly understood, mathematics to support the whole scientific enterprise. Mathematics de-
mands clarity of thought and clarity of exposition, and so as we begin our study it seems proper that
we review briefly the raw material of all our work, variables and functions.

A variable is a symbol identifying elements of a given set. A function can be thought of as a
rule relating the elements of one set to the elements of a second set, possibly the same as the first.
The rule defining the functional values is often a formula of some kind, although other modes of
definition are possible. Variables that designate values for which a function is defined are called
independent variables, and, collectively, these values form the domain of the function. Variables
which identify values of a function are called dependent variables and, collectively, these values
form the range of the function.

Functions are usually denoted by single letters. For each x in the domain of a function f, the
value of f at x is denoted by f(x). As is customary, we shall often use the notation f(x) not only to
denote a value of f but also to name the function itself, although this is notationally inaccurate.
Depending on the domain of a function, which is never empty, the variable x may stand for a
number or any other object for which the function is defined.

Since for all real values of x, 2 + cos 7x = |, the expression f(x) = In (2 + cos mx) defines a function f of
the variable x having the set of all real numbers as its domain. The value of fat 1 is given by f(1) = [n (2 +
cos ) =1In 1 = 0, and f(2) = In 3 is the value of f at 2. In this example, the independent variable x may be
replaced by any real number. The range of f is made up of all values of the dependent variable y = f(x),
namely, all numbers y such that 0 < y < In 3.

Let the domain of a function g defined by g(x) = [} x(t) df be the set of all functions continuous on the closed
interval [0, 1]. If x;(f) = ¢ on [0, 1], the value of g at x| is given by g(x;) = [} t df = §; while if x() = cos ¢
on [0, 1], g(x,) = [§ cos mt dt = 0. Here x can be replaced by any function that is continuous on [0, 1]. Once
x is chosen, the corresponding value of the dependent variable y = g(x) is given by the integral of x from 0
to 1. :

Note that in Example 1 the independent variable x stands for a real number, but that in
Example 2 it stands for a function. A function whose domain is a set of functions is called a
functional. ) .

Frequently, values of a given function may be found by making the appropriate substitutions
for variables in some analytic expression. Such an expression is commonly called a representation
of the function on that part of the functional domain over which the representation yields the
corresponding functional values. Often, as in Examples 1 and 2, all values of the function are
determined by a single representation, but this need not be the case. In a variety of physical
problems the very nature of the function requires different representations on different subsets of
the domain. ' .



EXAMPLE 3
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At time ¢ = 0, a unit voltage is suddenly introduced into an electric circuit, as suggested in Fig. 1.1a. This
voltage is represented for 1 <0 by the expression E(f) = 0 but represented for 0 =< ¢ by the expression
E(t) = 1. Thus on the domain —® < <  the voltage E is given by the two representations

0 t<0
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Figure 1.1
Graphs of (a) a unit step function voltage; (b) a unit pulse of duration b — a.
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Example 3 illustrates the important fact that whereas the functions we dealt with in calculus
were usually either continuous on their domains or had only removable discontinuities, in applied
mathematics we must often consider functions with one or more nonremovable discontinuities.
Typically, these discontinuities will be what are called jumps.

According as J is positive or negative, the jump is said to be upward or downward. At a point
where f is continuous, the jump J is of course zero. The function E of Example 3 has an upward
jump J =] at ¢ = 0 and for all practical purposes is represented by the simple but very important

unit step function u(z), defined by

0 = 0 <0
“ 1 o<t

The unit step function will appear repeatedly in the work ahead of us.
A difference of two unit step functions

0 t<a
u(t—a)—u(t—b) =11 a<t<b a<b
0 b<t



EXAMPLE 4

EXAMPLE 5

1.1 VARIABLES AND FUNCTIONS

sbown in Fig. 1.1b as a unit pulse of duration b — a, is often used as an analytic filter to isolate a
desired segment of a function. Hence, if f(f) is a function whose domain includes the interval (a, b),
the product .

SOlut ~— a) — u(t — b)]

represents the ‘‘filtered’” function defined for all  in the domain of f by

0 t<a
f@® a<t<b
0 b<t

In other words, the filter function u(: — a) — u(¢ — b) reduces f to zero outside the ‘‘passband’’
a <t <b and reproduces f exactly within the passband.

The absolute value function |x| has the set of all real numbers as its domain. Its values are computed by using

the definition
' | ~% x=0
x| =
X 0=x

which expresses the function in terms of two alternative representations, one on (~, 0], the other on [0, ®).
In particular, since —3 <0, [—3| = —(=3) = 3.

The square root function V7 is always nonnegative and has the interval [0, %) as its domain. Thus the
domain of VZ is (—, o). In fact, VX2 = |x] and of course V(—3) = 3.

The radical expression Vx? — 2x2 is undefined at x = 1, so it cannot by itself define a function. What is
lacking is a suitable domain. By convention, this is to be taken as large as possible when not otherwise
specified. The intended domain of Vx* — 27 is therefore the set of all real numbers for which the radicand
x* — 2.2 is nonnegative. Solving the inequality x*(x* — 2) = 0, we find the domain to be the union of the
intervals (—oo, —\/i] and [\/5, o) and the isolated point x = 0. For every x in this domain.

VA =22 =V —2) = ViVl — 2= x[VxZ -2
hence our function is defined by the three representations

—x‘\/xi—Z x=-V2
V¥ — 222 = 0 x=0
V-2 V2=x

Its functional values can now be computed by simply using the appropriate representation. For instance, its
value at x = —3 is —(=3)V(-3)*—2= 3V/7. This is also its value at x = 3 because the value of the
function remains unchanged if x is replaced by —x.

A function y has the set of positive integers N as its domain, and for each n contained in N, y(n) =2 +
cos nm — sin {(2n — 1)7/2]. Among its values are y(1)=2—1—-1=0and y(2)=2+1 - (1) =4,
The value of y corresponding to any other positive integer can be computed using the same formula. However,
there is a much easier way. It is to use the identities

cosnm=(~1" and  sin{(2n — 1)m/2) = sin nrcos% — cosnm smg = (-1
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to transform the formula for y(n) into the simpler representation
Yy =2+ (1) = (=D =2+ (- D))

and thence into the two different representations

oy = {4 n even

All values of y are now known.
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Various properties of a function are often evident from its graph. The graph of a function f
is the set of all points (x, y) such that x is in the domain of fand y = f(x). The voltage function E(r)
of Example 3 is partly graphed in Fig. 1.1.

The function of Example 1 and the two functions |x| and Vx* — 2x? of Example 4 are even
functions.

An important geometric property of every even function fis that its graph is symmetric in the
y axis; i.e., for every x in the domain of £, the y axis is the perpendicular bisector of the line segment
joining the points (—x, f(—x)) and (x, f(x)), as illustrated in Fig. 1.2a.

The graph of an odd function f is symmetric in the origin; i.e., for every x in its domain the
origin is the midpoint of the line segment joining (—x, f(—x)) and (x, f(x)), as illustrated in Fig.
1.2b.

Figure 1.2
Graphs: (a) of an even function; () of an odd function.
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6 1.1 VARIABLES AND FUNCTIONS

If 5> 0 and [*, f(x) dx exists, then

J:f(x)dx=f_(:f(x)dx+Lbf(x)dx=Lof(—x)d(—foobf(x)dx
=—fboﬂ-x)dﬁfobﬂx)dwfobf(—x)dwfnbf(x)dx
= fo ’ [f(=x) + f(x)] dx

According as f is even or odd, the last integrand reduces to 2f(x) or 0. Thus we have
I fis even, [?, f(x) dx = 2f} f(x) dx.
[HEDREE 1t / is odd, J°, f(x) dx = 0.

Our past work in mathematics frequently involved equations containing one or more variables
whose solutions we had to find. Familiar examples might be

2+3x+2=0 tan 0 = % t=e™! {v =42, 8u =v%

We are now going to consider differential equations, which are equations containing derivatives
or differentials of one or more variables. Differential equations are of fundamental importance in
many areas of pure and applied science and engineering, and much of this text wilt be devoted to
their study.

Here are four examples of differential equations:

dy A
1 — =¢* + sin
(1) o e in X
(2) y' =2y +y=cosx
Pu  u_ du
3 ok o
= ax? 9y ot
) 3x%dx + 2ydy =0

In (1) and (2), only ordinary derivatives of y with respect to x occur. This signifies that y must
be a function of x. Thus y is the dependent variable and x is the independent variable. In (3), u is
the dependent variable and x, y, and ¢ are independent variables, as the partial derivatives of u
imply. In (4), either x or y can be thought of as the dependent variable, the other variable then being
independent.

In Exercises 1-8 let f be a function having the given repre- 2. f(x) =sinx + (7 — x)sinhx, x real; find (a) f(0),
sentation, o (b) f(m), (e) f(—m)
L f)=Vx+{l —xlIn(1+x)" x=0; find (a) £(0), 3. f(x) = x| + Tan"'x, ] 1L

®) /D), @© /&) é S }(_ Zl x x real; find (@) f(0), (b) f{I),



4. f(x)=mcosmx + Sin~'x, |x| <1; find (@) f(0),
() f(=1), (e) f(B

5. f(x) =Z7 o [1 + (—=D)"Ix"/n!, x real, find (a) f(0),
(b) f(1) — f(—1), (c) f(In 2). Hint: Recall the Maclaurin
seriest for e”,

6. f(x) = [3 x*(1) dt, x continuous on [0, 2J; if x;(r) = ¢"/2,
x() = 1, x3(1) = sin 71, find (8) f(xy), (b) f(x2), (€) f(x3)

7. fx,y) = 2" x(t)y(t) dt, x, y continuous on [, 277]; if
xi(#) = cos £, yy(f) = sin 2t, find (a) f(1, yy), (b) f(xy, 1),
©) f(xi, y1)

8. fix.y,2) =2 [§[3y() — 2(] dt, y, z continuous for all
real x; if yi() = 1/(1 + £2) and z,(¢) = Tan™' 1, find
(@) f(=, y1,0), ) (L, y1,2), (©) f(=Lyi, 20)

9. A function f is represented on the set of real pumbers by
f() = 2(1 — cos? §) + In ¢'. Give three other representa-
tions of fover the reals which do not contain the logarith-
mic function.

10. Every 40 min during an 8-h period, a dump truck reloads
with roadbase. After ¢ hours, how many times has it been
filled if it takes 40 min to get the first load?

11. A high-rise has 15 stories. The number of weeks it took
to construct each floor is given in the table:

Floors u-?: l 4-6 L7—-9 [ 10—12J 13-15

Weeks | 3 | 4 | 5 | 6 | 7

(a) Which floor was under construction during the forty-
fifth week?

(b) How many floors were completed at the end of
1 year?

14. Assuming they have the same domain,

16.

17.

(a) What can be said about the sum or difference of two
even functions? Of two odd functions? Of an odd
function and an even function?

(b) What can be said about the product of two even func-
tions? Of two odd functions? Of an odd function and
an even function?

. By considering the identity

WD )~ D)
2 2

fx)

show that any function defined over an interval which is
symunetric with respect to the origin can be written as the
sum of an even function and an odd function.

Express each of the following functions as the sum of an
even function and an odd function.

(@) e* +1In x| M) |x -1
0 x<€0
(C)f(x)—-{2 0
Evaluate
! cos 27 — cos 7
@ | ——

1 1+ x?

(b) f sin 2x ¢os 3x cosh 4x dx
n2
(c) f (M + sin® 7rx) dx
—In2

10
(d) f (6:%° — 13tsiner®> + 5) dt
-0

(¢) What was the total construction time?
12. Determine whether the following functions are even,
odd, or peither.
(a) x sin x?
(€) xlnx + Tan™' x
13. Prove that if a function fis both even and odd, then for
every x in the domain of f, f(x) = 0.

Identify the dependent and independent vadables in each of
the following differential equations.
18. !+ ' + yx = sec x 19. 3xy" + tanhy' =y

(b) e + x sinh x
20. Uy + vy, — xyuv =0

1.2 CLASSIFICATION OF DIFFERENTIAL EQUATIONS
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Various distinctive features are used to classify differential equations into a number of identifiable
types. Ordinary and partial differential equations are characterized by the number of independent
variables and the kind of derivatives they involve.

tNamed for the Scottish mathematician Colin Maclaurin (1698-1746).
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Clearly, Egs. (1) and (2) of Sec. 1.1 are ordinary differential equations. The same is true of Eq.
(4); for, according as x or y is chosen as independent variable and the equation is divided by the
differential dx or the differential dy, it involves one or the other of the ordinary derivatives dy/dx or
dx/dy.

Equation (3) of Sec. 1.1 is a partial differential equation.
Differential equations are also classified according to their order.

Equations (1) and (4) of Sec. 1.1 are first-order differential equations; Eqs. (2) and (3) are
second-order equations.

Another broad classification of differential equations is based on the way in which a dependent
variable and its indicated derivatives appear in the terms of such an equation.

A differential equation which is not linear in some dependent variable is said to be nonlinear
in that variable. A differential equation which is not linear in the set of all of its dependent variables
is simply said to be nonlinear.

The equation y” + 4xy’ + 2y = cos x is a linear ordinary differential equation of second order. The presence
of the product xy’ and the term cos x does not alter the fact that the equation is linear because, by definition,
linearity is determined solely by the way the dependent variable y and its derivatives enter into combination
among themselves within each term of the equation.

The equation y” + 4yy' + 2y = cos x is a nonlinear equation because of the occurrence of the product of y and
one of its derivatives.

The equation 8%u/dx? + dv/dt + u + v = sin « is linear in the dependent variable v but nonlinear in the
dependent variable u because sin u is a nonlinear function of «4. The equation is also nonlinear.

The equation dx/di® + dyldt + xy = sin ¢ is linear in each of the dependent variables x and y. However,
because of the term xy, it is not linear in the set of dependent variables {x, y}. As a consequence, the equation is
nonlinear, .
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As written, the equation 3x% dx + (sin x) dy = 0 is neither linear nor nonlinear. Division by dx transforms it
into the equation 3x% + (sin x)y’ = O which is linear in y, but division by dy gives 3x*dx/dy + sinx = 0
which is nonlinear in x. .
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From Definition 4 it follows that the most general ordinary linear differential equation of order
n in a single dependent variable is of the form

4)) ag(x)y™ + ay(y" D + - - @, ()Y + a(0)y = f(x)

where ao(x) # 0 throughout some interval.

Describe each of the following equations, giving its order and 9. 9%(x? 8%uldx?)/ax* = 8%uldt?
telling whether it is ordipary or partial and linear or nonlinear 10. 32u/0x? = u duldt
(a, b constants). ’

272 o 827 =
Ly = 5y’ + 3y = * 11. 0%u/ox* + 0%uldy* = ¢(x,y)

12. 8uldt + xu = d*x/dr?

2.y +(a+bsindx)y=0

3y =T 1y — 13y = xet 13. 0u/dx + u dv/dy = v d%/dx dy

4 yh 4By 4y 14. sect = x + 2x"2 d(x"?)/dt

5. x*%y" — 9xM2y' + 5y = Tan™' x For each of the following equations, determine whether or not
6. d(xy')dx + xy =0 it becomes linear when divided by dx or dy.

7. d(axy)ldt + bxy =In ¢ : 15. (x+y)dy=(x—y)dx 16, ady + bysinxdr =0
8. a? 0%ulax® = b? a%ulai® 17. 3ydx + 2xdy =0 18. e*dy +xyPdx =0

1.3 SOLUTIONS OF DIFFERENTIAL EQUATIONS

A solution of an algebraic or transcendental equation in a single variable x is a number which
satisfies the equation. On the other hand, solutions of differential equations are functions, rather
than numbers, which satisfy the equation. Whereas all variables which appear in algebraic or
transcendental equations are called ‘‘unknowns,’”’ only the dependent variables in a differential
equation are referred to as ‘‘unknowns.”
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Under certain constraints, thc motion of a spring-suspended mass is described by solutions of the differential
equation y” + k% = 0, where the dependent variable (or unknown) y is the vertical displacement of the mass,
the second derivative is taken with respect to the independent variable  (or time) and & is a positive cobstant.
Let f be the function represented by sin &z on the set of real numbers. Then f” is represented by —4? sin k¢,
Upon replacing y by sinkz and y" by —k?sin &z, the given equation is transformed into —A?sin ks +
k% sin k¢t = 0, which holds identically for al real values of ¢ The fact that this replacement process results in
an identity over the reals is described by calling f(£) = sin k7 a solution of y” + k% = 0 on (—, ) or by
saying that fis a solution of the differential equation. In other words, the differential equation is satisfied when
fis substituted for the unknown y. Another solution is the function g defined on (—, =) by g(¢) = cos &t.
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The equation u, — v, = O has « and v as unknowns. Functions f and g are defined, for all real values of x
and y, by f(x, y) = sinh x sinh y and g(x, y) = cosh x cosh y. Replacement of «, by df/dx = cosh x sinh y, and
of v, by dg/dy = cosh x sinh y, converts the given differential equation into cosh x sioh y — cosh x sinh y = 0.
Since this is an identity for all real values of x and y, we say that f(x, y) and g(x, y) are solutions for the
respective unknowns u and v and that the set of functions {f, g} is a solution of the given equation over the
entire xy plane.

R R T P TR N R R R R O R PR R R R R evsesesascsanerenanse sesseesivscsevsrnnne seereacesescsrsnae cessne

The last two examples illustrate the concept of a solution of a differential equation. They also
indicate how to substitute a set of functions for the unknowns of such an equation when testing to
see if the set 1s a solution of the equation.



10 : 1.3 SOLUTIONS OF DIFFERENTIAL EQUATIONS

At present we shall be concerned primarily with ordinary differential equations in a single
unknown. For such equadons, the preceding definition may be rephrased as follows.

A solution on / whose values are all equal to O is said to be trivial on /.

If a differential equation of order n is satisfied by a function f on /, then the nth derivative ™
of f necessarily exists throughout /. Since a function must be continuous wherever its derivative
exists, the existence of ' over J implies that fand its derivatives of all orders up to and including
n — 1 are continuous on /. A function that is not continuously differentiable at least n — 1 times on
I cannot be a solution over /. In other words

_ Every solution on an interval / of an nth-order differential equation in one depen-
dent variable must be continuously differentiable at least » — | times on /.

It is easy to verify that both y; = 2 ~ x and y, = x — 2 are solutions of y" = 0 on every interval /. Let f be
the function defined by f(x) = |x — 2| on (=, ®). Then f is represented by y;(x) = 2 — x for x = 2 and by
ya(x) = x — 2 for x = 2, and f is continuous at x = 2. However, f is not a solution of y" = 0 on any open
interval containing x = 2 because f” is not continuous at x = 2. In fact,

= L2ERID

1Al -1 as h— 0~
h —a h

1 as h— 0"

hence f'(2) does not exist.
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The equation |dy/dx| + 1 = O has no solution. The equation |dy/dx| + |y| = 0 has only the trivial solution
y=0.

Differential equations for which every solution of each equation is a solution of all the others
are said to be equivalent. If their solutions are the same only on some interval /, we say that the
differential equations are equivalent on /.

The study of the existence, nature, and determination of solutions of differential equations is
of fundamental importance not only to the pure mathematician but also to anyooe engaged in the
mathematical analysis of natural phenomena. In general, mathematicians consider it a triumph if
they are able to prove that a given differential equation possesses a solution and if they can deduce
a few of the more important properties of that solution. Engineers and applied scientists, on the
other hand, are usually greatly disappointed if a specific expression for the solution cannot be
exhibited. The usual compromise is to find some practical procedure by which the required solution
can be approximated with satisfactory accuracy.



